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This dissertation presents a distributed control model built on a decision-theoretic 

framework, where intelligent beings (i.e., agents with their own controllers) are capable 

of utilizing their resources and functions to perform tasks in a dynamically and 

probabilistically changing environment. The intellectual merit of this work is to model 

the decision making process of agents in consideration of the non-determinism caused by:  

(i) probabilistic agent’s behavior, i.e., probabilistic outcomes for agent’s actions due to 

failures, faults or other natural reasons; (ii) partially unknown and probabilistic 

environment, due to distributed nature of the system, lack of means for full observation 

within an agent or within the environment, lack of full knowledge about other agents’ 
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behaviors, and due to failures and faults occurring within the environment. The main 

novelty of this work comes from the way the decision making process of each agent, 

while modulated and distributed,  constantly takes the benefit of what it learns from its 

environment and from itself. The decision making process of each agent includes 

synthesizing task plans, and executing these plans.  
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1. Introduction 

 

1.1 Objective 

The objective is to develop a control framework for multi-layered distributed systems 

with autonomous agents. Agents are minimally pre-programmed to perform their tasks in 

a cost-effective manner by utilizing their basic functions and through interactions with 

the environment. Agents’ interaction with their environment may be in the form of 

collaboration with one or more other agents for the purpose of avoiding adverse or 

undesirable circumstances or achieving a favorable condition. Agents may also interact 

with their environment by maneuvering and selfishly altering one or more conditions of 

mutual interest.  Except for preliminary models, the underlying behavioral models of 

agents and their environment are assumed to be probabilistic. Agents are subject to 

internal failures and there are fault conditions (unknown in advance) involving one or 

more agents.  

 

1.2 Motivation & Intellectual Merit 

This work is inspired by the fact that automated systems of the future (in manufacturing 

and service applications) will require time and cost effective responses to the dynamic 

changes in their environment. Pre-programmed automated systems with pre-defined & 

fixed normative and disruptive behavior and centralized control are too-rigid and costly 
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to change and adapt to new environments. New distributed control paradigms with cost 

effective, reconfigurable and scalable solutions will be required. 

 

Our proposed distributed control model is built on a decision-theoretic framework, where 

intelligent beings (i.e., agents with their own controllers) are capable of utilizing their 

resources and functions to perform tasks in a dynamically and probabilistically changing 

environment. The intellectual merit of this work is to model the decision making process 

of agents in consideration of the non-determinism caused by:  (i) probabilistic agent’s 

behavior, i.e., probabilistic outcomes for agent’s actions due to failures, faults or other 

natural reasons; (ii) partially unknown and probabilistic environment, due to distributed 

nature of the system, lack of means for full observation within an agent or within the 

environment, lack of full knowledge about other agents’ behaviors, and due to failures 

and faults occurring within the environment. The main novelty of this work comes from 

the way the decision making process of each agent  constantly takes the benefit of what it 

learns from its environment and from itself, while modulated and distributed.  The 

decision making process of each agent includes synthesizing task plans, and executing 

these plans.  

 

Agent’s goal is to establish task plans and control, and cost estimation models, so that a 

sufficient level of profit can be maintained regardless of the environmental conditions. 

The prices of tasks are calculated by each agent based on a model which it learns from its 

past history and through a feedback mechanism that attempts to optimize task plans and 

reduce the risks of previously experienced faults and failures. It does so by attempting to 
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control the underlying conditions to the extent possible. While synthesizing task plans, 

agents not only deal with their own internal conditions, constraints and risks (due to 

internal unobservable failures and faults), but also deal with environmental conditions, 

constraints, and non-determinism. While executing a task, an agent may often be required 

to avoid number of adversary conditions and/or to ensure some favorable conditions in 

the environment. Since the environment is initially unknown to the agent, it must 

synthesize its perception model of the environment including the impact of its own 

control actions.  This model constantly changes as the agent makes additional observation 

of the environment. For computational efficiency, and also due to the fact the agent’s 

decision making must satisfy some real time control constraints, cost and benefit of new 

information received from the environment must be analyzed by the agent prior to any 

changes in the existing perception model. For an agent to evaluate its risks associated 

with internal but unobservable fault conditions, or environmental fault conditions, it uses 

an adaptive and evolutionary model for the diagnosis and avoidance of these faults 

conditions. Both parametric and model structural changes are included in the formulation.  

 

1.3 Problem Definition and Approach 

In traditional control synthesis problems, given a fixed plant model P and control 

specification S, the objective is to compute a controller C, such that P ∧ C →  S.  While 

the overall problem remains the same, there are a number of major differences between 

our formulation and the traditional ones. While we will discuss the detail of these 

differences in various chapters, here we will merely focus on the overall aspects of the 
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problem. For one,  P  which defines behavioral model of the agent and any interaction 

with its environment is constantly changing. P  is initially known to the extent that it 

describes the normative behavior of the agent. Disruptive behavior, such as failures of 

agent’s components, is partially known at the best, but in any case it is probabilistic. Any 

part of P which relates to the interaction of the agent with its environment is usually 

unknown or only partially known, but probabilistic. Furthermore, those elements (e.g., 

events or transitions) of P , which involves the environment or even the internal failures, 

are often partially controllable and observable. While the agent will never know the true 

model of P  , it must make observations from the environment so that it can build its 

perception of the environment. Every time that an agent interacts with the environment 

and executes a control action either collaboratively or selfishly, the perception model 

becomes subject to potential changes. This is because the rewards of and response to 

these actions are unknown (even probabilistically) if not experienced before. On the other 

hand, specification S depends on the task that agent is planning to perform, and thus is 

not necessarily known in advance. Furthermore, S  depends on the type of solution that 

agent intends to take. For some solutions, the agent may be required to interact selfishly 

or collaboratively with the environment, which adds additional layers of requirements to 

S.  Finally, control C is synthesized on the basis of minimizing the overall cost for an 

agent while satisfying the required specifications. Cost for an agent includes not only the 

operational cost but also the cost of learning about the environment and  the risks and 

penalties involved with internal or external failures. 
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Generally speaking, the control synthesis problem posed here can be formulated as a 

Markov Decision Process provided that the underlying models were known. Thus we 

attempt to formulate and solve these problems using heuristic search and machine 

learning techniques. While in this thesis, we will work on many different aspects of the 

above synthesis problem in a distributed system, we will only briefly tackle the problem 

of fault detection and avoidance. For more results on this, we will refer the reader to a 

companion dissertation work [Zhao 06].  

 

1.4 Background and Literature Review 

1.4.1 Agent 

Many different definitions for the word “agent” have been introduced in the literature, 

each hoping to explicate a specific point of view [Franklin 96]. [Maes 95] provides the 

following definition: Autonomous agents are computational systems that inhabit some 

complex dynamic environment; sense and act autonomously in this environment and by 

doing so realize a set of goals or tasks for which they are designed. Another definition is 

given by Russell and Norvig [Russell 03], which states that an agent is anything that can 

be viewed as perceiving its environment through sensors and acting upon that 

environment through actuators.  

 

The word autonomous usually refers to the fact that agent’s decisions are rather relying 

on its own perception of the environment and not on the facts given to it at the design 

time. A rational agent, also called an intelligent agent [Vlassis 03], is an agent that 

attempts to make the best decisions based on a given performance measure. On the other 
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hand a computational agent is an agent that tries to perform/solve a specific task and is 

implemented on a computational device [Vlassis 03].  

 

In another categorization we can find three types of agents: reactive or reflex agents, 

deliberative or goal-oriented agents and collaborative agents [Bigus 01]. Reactive agents 

respond only to external stimuli and the information available from their sensing of 

environment (present state of the environment) [Brooks 86]. With this approach the 

agents do not require to revise their perception of their world as it changes. They show 

emergent behavior, which is the result of the interactions of these simple agents. 

However, purely reactive systems suffer from two main limitations: First, because purely 

reactive agents make decisions based on local information, they cannot take into 

consideration non-local information or predict the effect of their decisions on global 

behavior [Sycara 98, Thomas 98, Huberman 88]. Secondly, the relationship between 

individual behaviors, environment, and overall behavior is not understood, which 

necessarily makes it hard to design agents to fulfill specific tasks [Sycara 98]. Goal-

directed agents have domain knowledge and the planning capabilities necessary to take a 

sequence of actions in the hope of reaching or achieving a specific goal. Collaborative 

agents work together to solve big problems (cooperating agent community). Each 

individual agent is autonomous. These agents can solve problems by collaboration and 

synergy. Problems will be parsed into smaller chunks that can be solved by a modular 

approach. The approach is based on specialization of agent functions and domain 

knowledge. [Bratman 87] introduced agents with beliefs, desires and intentions (BDI). 

What an agent believes to be true is the basis for all of its reasoning, planning and 
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actions. When an agent reasons about the state of the world (beliefs) and its desires 

(goals) it must decide what course of action to take (intensions). The objective of 

designing intelligent agents is to achieve specific tasks automatically. An intelligent agent 

works based on events, i.e. if any specific event happens the corresponding agent will 

react accordingly in order to satisfy a predetermined objective by taking some special 

actions under different conditions (states). When an event occurs the corresponding agent 

must recognize it and respond to it [Bigus 01]. 

 

1.4.2 Multiagent Systems 

First we need to introduce two concepts that are widely used in multiagent systems, 

namely organization and structure. An organization provides a framework for agent 

interactions through the definition of roles, behavior expectations, and authority relations. 

A structure gives each agent a high level view of how the group solves problems [Sycara 

98]. Multiagent Systems (MAS) are systems in which many intelligent agents interact 

with each other. Their interaction can be either cooperative or selfish [Durfee 89a]. This 

means they can either pursue a common goal like an ant colony or they can have their 

own individual goals like being in an economic market environment.  

 

[Howarth 04] defines MAS by: “Agents are small software programs that communicate 

with each other, acting behaviorally to interact and respond, matching available resources 

to demand. In a multiagent system, each agent communicates with the network of agents, 

considering options for matching its capabilities with demand, negotiating on such 

constraints as quality, price and time, and then making decisions for committing 
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resources to match demand.” MAS is usually an “Open System,” meaning that the 

structure of the system itself is capable of dynamically changing. The characteristics of 

such a system are that (1) its components are not known in advance; (2) can change over 

time (plug and play); and (3) can consist of highly heterogeneous agents implemented by 

different people, at different times, with different software tools and techniques [Sycara 

98]. 

 

There are many fundamental aspects that characterize multiagent systems which 

distinguish them from single agent systems. These characteristics have different 

dimensions and therefore different authors categorize them differently in the literature. 

Vlassis, for example, introduces these characteristics in [Vlassis 03] as “Design,” 

“Knowledge,” “Perception,” “Environment,” “Control” and “Communication” and 

compares them with the single agent systems. Design: Software agents, also known as 

“softbots,” will be designed differently in a MAS, since they will be implemented by 

different people. Such agents are called heterogeneous in contrast to homogeneous 

agents. Homogeneous agents are designed in an identical way. They basically have the 

same capabilities. On the other hand heterogeneity can affect all the functional aspects of 

an agent, like its decision making process, where as in homogeneous environment this 

problem does not exist. Knowledge: In a MAS the levels of knowledge of every agent 

about the current state of the environment can differ. Each agent must consider the 

knowledge of every other agent that is involved in the decision making process. 

Perception: The collective information that reaches the sensors of the agents in a MAS is 

typically distributed. The agents may observe data that differ spatially, temporally or may 
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be semantically (different interpretations). This makes the world state partially 

observable to each agent. Environment: Agents have to deal with environments that can 

be either static or dynamic. Most techniques in AI are designed for stationary 

environments, because they are easier to handle. In MAS, because of the existence of 

many agents, the environment appears dynamic from the point of view of each agent. 

Control: Control in MAS is distributed and not centralized. The decision making of each 

agent lies to a large extent within the agent itself. In a cooperative environment 

distributed decision making results in asynchronous computation and may be speed ups, 

but appropriated coordination mechanisms need to be additionally developed. 

Communication: Interaction between agents are associated with some form of 

communication. In MAS agents can potentially be both senders and receivers of 

messages. Communication can be used in coordination or negotiation. It also raises the 

issue of different protocols and common language. 

 

Sycara [Sycara 98] on the other hand, describes the characteristics of MAS as: (1) each 

agent has incomplete information or capabilities for solving the problem and, thus, has a 

limited viewpoint; (2) there is no system global control; (3) data are decentralized; and 

(4) computation is asynchronous.  

 

From another point of view we can characterize MAS by (1) In an multiagent 

environment, the agents are usually interoperating. In other words they are able to 

coordinate with each other in peer-to-peer interactions. Such functions will require 

techniques based on negotiation or cooperation [Jennings 98, O’Hare 96, Bond 88]. 
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Therefore another definition for a MAS can be a loosely coupled network of problem 

solvers that interact to solve problems that are beyond the individual capabilities or 

knowledge of each problem solver [Durfee 89a]. (2) Higher Computational efficiency. (3) 

Higher reliability due to the fact that agents can cover for each other. (4) The number of 

agents and their capabilities can be changed easily; therefore extensibility will be another 

important feature of a MAS. (5) Since appropriate information is exchanged among 

agents, system can tolerate uncertainty and therefore a MAS is robust. (6) Because of 

modularity a MAS is easier to maintain. (7) MASs are reusable. Specific agents with 

certain functionalities can be reused in different teams to solve different type of 

problems. (8) They are flexible. Agents with different abilities can adaptively organize to 

solve the current problem [Sycara 98, Huhns 97, O’Hare 96, Wooldridge 95, Chaib-draa 

92, and Bond 88]. 

 

In order for MAS to solve common problems coherently, the agents must communicate 

amongst themselves, coordinate their activities. Coordination and communication are 

central to MAS, for without it, any benefits of interaction vanish and the group of agents 

quickly degenerates into a collection of individuals with a chaotic behavior [ASAP 05]. 

 

MAS researchers develop communications languages, interaction protocols, and gent 

architectures that facilitate the development of multiagent systems [AAAI 05]. 

Multiagent systems have been widely used in Negotiations, Task Allocation Problems 

and Modeling other agents for the sake of conflict resolution or state identification. Some 

of these categories will later be discussed in different chapters of this dissertation. 
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1.4.3 Synthesis 

The control synthesis for both centralized and distributed systems have been extensively 

discussed and analyzed within the discrete-event system control-theoretic framework. 

Pinzon et al. have a very comprehensive study of different methods in [Pinzon 99]. 

Classical methods include techniques by Petri Nets [Petri 62, Jafari 95], supervisory 

control theory developed by Ramadge and Wonham [Ramadge 87a, Ramadge 87b] 

control synthesis via net condition/event systems [Krogh 96, Rausch 95] and time 

transition models (temporal logic). These works are model-based, synthesizing the 

complete controller from specifications provided as input. Should the rules or the 

underlying processes change, the whole synthesis algorithm must be run again in order to 

synthesize the control model. This is in contrast to our approach where we synthesize 

control actions only when needed. Here, we describe each of these methods briefly. A 

comprehensive description of these methods can be found in [Pinzon 99]. 

 

Ramadge and Wonham [Ramadge 87a, Ramadge 87b] framework uses formal languages 

and finite state automata in order to design the controller. First the plant model P is 

obtained by describing the process in terms of a formal language. This language is 

obtained from a finite automaton whose alphabet consists of a finite set of events. 

Controller C is then synthesized by identifying those controllable events that must be 

disabled according to the input specification SP  at certain states. This formalism 

provides solutions for the state-avoidance problem and the string-avoidance problems. 
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Similar modeling frameworks have also been used  by Alpan [Alpan 97] and Darabi 

[Darabi 00].  

Timed Transition Models (TTM’s) are an extension of state machines. They were 

introduced by Ostroff [Ostroff 89a, 89b] in describing a plant model P for real time 

discrete events systems. In this framework specifications are described using Real Time 

Temporal Logic (RTTL). In order to develop the controller C, the “unsafe” states are 

identified and a set of sufficient conditions are obtained under which the unsafe behavior 

can be made safe. The process works based on a step by step backtracking of states which 

could bring the system to an unsafe state. To guarantee safe behavior, a control strategy is 

devised, which could change the enabling conditions of some of transitions in the system. 

This control strategy is sufficient but conservative in that some unreachable unsafe state 

may also be considered in the backtracking process.  Pinzon [Pinzon 01] developed 

control synthesis solutions for sequential specifications using temporal logic. 

 

Petri Nets were first introduced by C. A. Petri [Petri 62]. Petri Nets can describe many of 

the characteristics of discrete event systems. They are mathematically well defined and 

developed and are also very practical. They can graphically describe complex real 

systems. Using Petri Nets we can analyze systems both qualitatively and quantitatively. 

[Giua 92] developed a procedure for safety controllers using “monitors.” This method is 

fairly similar to the method introduced in [Yamalidou 96]. In their synthesis procedure an 

uncontrolled plant was first constructed. Desired marking constraints were described by a 

set of generalized mutual exclusion constraints. A constraint is enforced by a new place 

called “monitor.” 
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Net condition event systems (NCES) are extensions of Petri Nets. They are used in the 

controller synthesis method introduced by Hanisch and Rausch [Rausch 95]. In the 

general model of Condition Event Systems, modules described by their input/output 

behavior are interconnected by means of two signals: (1) piece-wise constant “condition 

signals,” and (2) point-wise non-zero “event signals.” Condition signals connect states 

from one module to the states in other modules. Hence, state transitions in other modules 

can be enabled or disabled by condition signals. Event signals provide information about 

state transitions in one module. They are used to force state transitions in other modules if 

these state transitions are enabled. 

 

[Han 03] introduced a formal methodology that works on the idea of reusing of off-the-

shelf software components to ensure system properties at design time (controller design), 

and automation of software design process (automatic generation of the controller). They 

proposed a hierarchical plant tree architecture and a systematic controller synthesis for 

manufacturing cells. The structure is partitioned into three class diagrams, namely the 

static structure, which is modeled by class diagrams of Unified Modeling Language 

(UML); the dynamic structure, which is modeled using Petri nets and the functional 

logic, which is modeled using rule sets. 

 

1.4.4 Fault Detection and Autonomic Computing 

We can view the problem of fault detection and diagnostics from two different 

perspectives: a control engineering perspective and a computer science perspective. 
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In the literature there are some classical views to the problem of fault detection in the 

discrete event dynamic systems. Lin [Lin 94] has formally defines the diagnosability and 

studies its properties. Examples of this classical approach can be found in [Sampath 95, 

Zad 99]. [Sampath 96] introduced a discrete event systems approach to the failure 

diagnosis problem. This approach is applicable to systems that fall naturally in the class 

of discrete event systems (DES), moreover, for the purpose of diagnosis, continuous-

variable dynamic systems can often be viewed as DES at a higher level of abstraction. 

They present a methodology for modeling physical systems in a DES framework. 

[Sampath 01] also presents a hybrid approach to failure diagnosis that integrates the 

qualitative discrete event system diagnosis methodology with quantitative analysis based 

techniques. [Srinivasan 93] uses backtracking. In this approach the path from the current 

state to a faulty state is defined by solving sets of equations and inequalities obtained 

from the underlying discrete-event/continuous-time dynamical system. 

 

IBM has recently introduced the idea of autonomic and proactive computing. Internet has 

fueled the growth of computing applications and in turn the complexity of their 

administration. The idea is to design a network of organized, "smart" computing 

components that give us what we need, when we need it, without a conscious mental or 

even physical effort [Karp 02]. We can ask ourselves what if when all systems made a 

mistake in the planning, they learned from that error and built the results of that learned 

experience into their next series of decisions. The vision is to solve some of the problems 

using principles of system design to overcome current limitations. These principles 
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include the ability of systems to self-monitor, self-heal, self-configure and improve their 

performance. Furthermore, systems should be aware of their environment, defend against 

attack, communicate with use of open standards, and anticipate users actions [Want 03]. 

 

Formally, the phrase “autonomic computing” is used to describe systems that can 

configure, protect, optimize and heal themselves without a lot of input from the 

humanware that has until now been required to keep them up and running. (The term 

“autonomic,” comes from the autonomic nervous system found in mammals and other 

higher order creatures - basically those necessary body functions that we don’t have to 

think about in order to perform.) Autonomic computing has two simple rules, namely 

discover and twiddle. Our environment changes dramatically, sometimes in unexpected 

manner. An autonomic storage management system should perpetually scan for events, 

diagnose problems down to their root cause, and respond in the most efficient fashion. As 

the environment changes, the system should learn to anticipate the impact of those 

changes, and, as it gets smarter, it should learn to proactively intervene so as to preempt 

negative events. 

 

This idea is more used in computer science framework and especially in network 

systems. But we think that it can be used in our framework too. A control engineer cannot 

predict all the possible states of the system beforehand. With a high likelihood the 

controlled system may face situations, which was not planned by the designer. The 

system should be capable of learn from the new experiences and avoid those situations in 

the future. 
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One of the approaches to deal with autonomic computing is the idea of Recovery 

Oriented Computing (ROC) [Patterson 02]. Recovery Oriented Computing (ROC) takes 

the perspective that hardware faults, software bugs, and operator errors are facts to be 

coped with, not problems to be solved. By concentrating on Mean Time to Repair 

(MTTR) rather than Mean Time to Failure (MTTF), ROC reduces recovery time and thus 

offers higher availability. Since a large portion of system administration is dealing with 

failures, ROC may also reduce total cost of ownership. One to two orders of magnitude 

reduction in cost means that the purchase price of hardware and software is now a small 

part of the total cost of ownership. 

 

Another approach is the one presented by Gruschke [Gruschke 98]. The idea is to use an 

event management to condense events to meaningful fault reports. This severe practical 

need is addressed by event correlation, which is an area of intense research in the 

scientific community and the industry. He introduces an approach for event correlation 

that uses a dependency graph to represent correlation knowledge. It deals with the 

complexity, dynamics and distribution of real–life managed systems. That is why it is 

considered to provide integrated event management. The basic idea is to connect the 

event correlator to a given management system and gain a dependency graph from it to 

model the functional dependencies within the managed system. The event correlator 

searches through the dependency graph to localize managed objects whose failure would 

explain a large number of management events received. 
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1.4.5 Problem of Deadlock 

A deadlock occurs, because two or more components require the same resources during a 

particular time period in a circular manner. Computer scientists have a different approach 

to deadlock problem than the one taken by control engineers. In our work we plan to 

integrate these approaches to a point that an efficient and practical solution can obtained. 

 

Prevention, detection/recovery, and avoidance are three strategies that address deadlock. 

Prevention is the method where the designer breaks the circular wait offline (during the 

design time). Detection/recovery methods use a monitoring mechanism and a resolution 

procedure for preemption of some deadlocked resources. In avoidance methods the 

designer tries to prevent circular waits in a dynamic manner by an appropriate operational 

control. 

 

Viswandadham, Narahari and Johnson [Viswanadham 90] consider a flexible 

manufacturing cell as a combination of processes and resources. They assume that parts 

are the processes and the machines, buffers, conveyors and other equipments are the 

resources. In [Viswanadham 90] they discuss deadlock prevention and deadlock 

avoidance. Like in the computer science literature they assume four conditions for the 

deadlock situation: mutual exclusion, no preemption, hold and wait, and circular wait 

([Coffman 71]). “Mutual exclusion” means that a resource cannot be used by two or more 

processes at the same time. “No preemption” means that a resource will not be released 

by a process, until the process completes its job. “Hold and wait” is referred to the 

situation where the processes hold resources allocated to them, while waiting for 
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additional ones, and “circular wait” is when a circular claim of tasks exist. Fanti and 

Zhou [Fanti 04] claim that the first three items are satisfied in the flexible manufacturing 

cells and the only condition to be checked is the latter one. 

 

Deadlock prevention can be satisfied by falsifying one or more of these necessary 

conditions using static resource allocation. Viswandadham, Narahari and Johnson 

[Viswanadham 90] use the reachability graph of a Petri Net (PN) to arrive at resource-

allocation policies that enforce deadlock prevention. These kinds of policies can become 

infeasible if the state space becomes very large. Therefore, in such cases they suggest 

deadlock avoidance as a preferred alternative. In deadlock avoidance they try to falsify 

one of the four necessary deadlock conditions in a dynamic way. They keep track of the 

current state and possible future conditions using a look-ahead algorithm and a 

generalized stochastic PN model. Deadlocks can be avoided depending on the degree of 

the deadlock and the degree of the look-ahead process. The assumptions in this method 

are: I) system’s model is known, II) the capacity of all resources is one, III) the nature of 

the resources is the same for all. 

 

In order to characterize the deadlock situation in computer science literature, the state of 

the system can be represented by three types of graphs, namely Task-Wait-For Graph 

(TWFG), Task-Resource Graph (TRG), and General-Resource Graph (GRG). In TWFG, 

which is a digraph, the nodes are the tasks. In this representation an edge means that a 

task is waiting for the other. A cycle in this graph represents a deadlock. In this research 

we use the TWFG graph for detecting the deadlocks. They categorize deadlocks into 
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three groups, which are the resources/communication deadlock model, the general 

resource system model and a hierarchy of deadlock models presented by Knapp [Knapp 

87]. He has proposed a hierarchical set of deadlock models to describe the characteristics 

of deadlocks. Each model is restricted on the form resource requests can assume. For 

example, a task might need to acquire a combination of resources like (R1 and R2) or R3. 

This hierarchy includes: single-resource model, AND model, OR model, AND-OR 

model, C(n,k) model and Unrestricted model. In the AND model tasks can request a set 

of resources. A task cannot be executed (is blocked) until all its requested resources are 

available. A cycle in a Wait-For graph is the necessary and sufficient condition for the 

existence of deadlocks in this model. And a blocked task T is said to be deadlocked if T is 

either in a cycle or can only reach deadlocked tasks. In the distributed systems the 

deadlocks can be classified into three different groups, namely Path-Pushing algorithms, 

Probe-Based algorithms, and Global State Detection algorithms. Some of these 

algorithms can be found in Chandy-Misra algorithm [Chandy 82], Chandy-Misra-Haas 

algorithm [Chandy 83], and the Obermarck algorithm [Obermarck 82]. 

 

The algorithm proposed by Mitchell and Merritt in [Mitchell 84] is the one that we are 

going to mainly focus on. This algorithm is a Probe-Based algorithm. Probes are going to 

be sent in opposite directions, in a TWFG. This algorithm will be described in the next 

chapter. 
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1.4.6 Learning 

Supervised learning is learning from examples provided by a knowledgeable external 

supervisor. This is an important kind of learning, but alone it is not adequate for learning 

from interaction. In interactive problems it is often impractical to obtain examples of 

desired behavior that are both correct and representative of all the situations in which the 

agent has to act [Sutton 98]. 

 

In reinforcement learning (RL), the learner tries by direct interaction with the 

environment to discover the best action (by trying them), which gives the highest reward. 

In this method the emphasis is on how agents can improve their performance in a given 

task by perception and trial-and-error [Vlassis 03]. The agent has to exploit what it 

already knows in order to obtain reward, but it also has to explore in order to make better 

action selections in the future. The dilemma is that neither exploration nor exploitation 

can be pursued exclusively without failing at the task. The agent must try a variety of 

actions and progressively favor those that appear to be best. On tasks with a stochastic 

outcome, each action must be tried many times to gain a reliable estimate its expected 

reward [Sutton 98]. 

 

Weiβ [Weiβ 95] describes the concept of multiagent RL as the following: “Multiagent 

learning is learning that is done by several agents and that becomes possible only because 

several agents are present.” In multiagent RL many agents are simultaneously learning by 

interaction with environment and each other. While there are many results and findings in 

the area of single RL, the multiagent RL has been rowing quite slowly. The reason is that 
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theoretical results for single agent RL do not directly apply to multiagent RL. Issues like, 

exponentially large state spaces, and the intractability of several distributed decision 

making algorithms make the multiagent RL much more complex [Bernstein 00]. Recent 

results have been showing that game-theoretic models can help in this matter [Wang 03].  

 

In many MAS applications, agents only possess incomplete information about their 

environment and about other agents. Clearly complete knowledge at the time of design 

would help agents to properly predict possible future conflicts and/or interpret other 

agent’s actions for more effective planning or decision making. On the other hand, if this 

knowledge was not given to the agent during the design time, there would be two options 

to gain that knowledge during the run-time. One approach is to have an advertisement 

structure like in RETSINA [Sycara 03]. In this approach agents advertise their 

capabilities and services through a middle agent to the whole society and therefore others 

can inform themselves about the behavior of the other agents by communicating with the 

middle agent. Another approach is to estimate the model of the other components by 

observing and interpreting their behavior. This is the avenue that we are planning to take 

in our research work. Our challenge is to devise a methodology that can help agents to 

construct a perception of their environment or other agents that they interact with. Our 

identification methodology will be based on Formal Language Inference, which has been 

studied by different authors with distinctive assumptions. 

 

Oncina and Garcia [Oncina 92] introduced an algorithm, such that given a set of positive 

data (correct observations) and a set of negative data (wrong observations) of an 



22 

 

unknown regular language, we can obtain a deterministic finite automaton consistent with 

the data. Carrasco and Oncina [Carrasco 94] proposed another algorithm which allows 

for the identification of any stochastic deterministic regular language as well as the 

determination of the probabilities of the strings in the language. The algorithm builds the 

prefix tree acceptor form the sample set and systematically merges equivalent states. 

Higuera [Higuera 98] presents a new learning method called learning distributions from 

experts. In his paper the experts are stochastic deterministic finite automata (sdfa). This 

method deals with situations arising when we want to learn sdfa from unrepeated 

examples. It is intended to model situations where data is not generated automatically, 

but in some probabilistic order as one would expect from a human expert. 

 

1.5 Preliminaries 

1.5.1 System 

System is one of those primitive concepts whose understanding might best be left to 

intuition rather than an exact definition [Discrete Event Systems, Modeling and 

Performance Analysis, Ch. Cassandras]. Based on IEEE’s standard dictionary of 

Electrical and Electronic Terms a system is a combination of components that act 

together to perform a function not possible with any of the individual parts. A dynamic 

system is one where the output generally depends on past values of the input. The state of 

a system at any time instant t should describe its behavior at that time instant in some 

measurable way. Another definition of state could be the collective information that is 

contained in the world at any time step t, and that is relevant for the task at hand [Vlassis 

03]. The state space of a system is the set of all possible values that the state may take. 
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One way to classify systems is based on the nature of the state space selected for a model. 

In continuous-state models, the state space is a continuum consisting of all n-dimensional 

vectors of real numbers. In discrete-state models the state space is a discrete set. In 

hybrid systems some state variables are discrete and some others are continuous. 

 

1.5.2 Discrete Event System 

As with the term “system”, we do not attempt to define what an event is. It is a primitive 

and should be thought of as occurring instantaneously and causing transitions from one 

discrete state value to another. In continuous-state systems the state generally changes as 

time changes. Therefore we refer to such a system time-driven system. In discrete-state 

systems the state changes only at certain points in time through instantaneous transitions. 

With each such transition we associate an event. Hence we call them event-driven 

systems.  

 

Discrete event systems (DES) are event-driven systems. They describe the system state 

changes driven by the occurrence of individual events. Formally a discrete-event dynamic 

system (DEDS) or more broadly, a DES is a discrete-time, event-driven system, i.e. its 

state evolution depends entirely on the occurrence of asynchronous discrete events (no 

clock) over time. A discrete event occurs instantaneously and causes transitions from one 

discrete state to another. 
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Figure 1-1: A manufacturing system 

 

A model of a manufacturing system can be a good example of a DES. The entities (or 

clients) in a manufacturing system are parts. A manufacturing system (Figure 1-1) 

usually consists of a set of machines performing specific operations on the parts, a set of 

material handling devices such as robots, and a set of buffers for holding parts that are 

temporarily in idle state. 

 

One possible event set for this example can be: 

e1: arrival of a part from the outside world to the input buffer 

e2: movement of the part from the input buffer to the machine, done by the robot 

e3: completion of service at the machine 

e4: movement of the part from the machine to the output buffer, done by the robot 

 

A possible state space of the example might be: 
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{ }},{},,{},,{:),,( 321321 FExWIxFExxxxX ∈∈∈= , where x1 is the state of the input 

buffer: empty (E) or full (F), x2 is the state of the machine: idle (I) or busy (B) and x3 is 

the state of the output buffer: empty (E) or full (F). 

 

Obviously there are many other alternatives to model this system, both for the set of 

events and the state space. How to look into the system and design the controller to 

achieve the desired objective depends on the control and process engineer. Modeling is 

always subject to personal biases. 

 

Every system obviously exists to perform a particular function. In order for such a 

function to be performed, the system needs to be controlled. To get the desired behavior 

the right input will be selected by the controller. Design and implementation of the 

controller is the main issue in the literature. Since modeling is always the first step taken 

by the control engineer to design the controller, we introduce a method for modeling a 

DES in the next section, namely, state automaton and Petri net.  

 

1.5.3 Formal Language Theory 

One of the formal ways to study the behavior of a DES is based on the theory of formal 

languages and automata. Since in this dissertation we will be using some of the related 

concepts, we briefly introduce at this point the basics of the theory. 

  

A symbol is an abstract entity and has no formal definition, e.g. digits – letters. A string 

(word) is a finite sequence of symbols, for example a, b and c are symbols and abcb is a 
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string. The empty string will be denoted by λ. A finite set of symbols is called an 

alphabet, e.g. }1,0{=E . 

 

A formal language is a set of strings of symbols from an alphabet, e.g. set of all strings 

over a fixed alphabet E , denoted by *E . For example if }1,0{=E , then 

,...}000,11,10,01,00,1,0,{* λ=E  is a language. The formal language theory attempts to 

model all the admissible event sequences in a DES. A regular expression is a string that 

is used to describe or match a set of strings, according to certain syntax rules. Regular 

expressions provide a compact finite representation for potentially complex languages 

with an infinites numbers of words. Any language that can be denoted by a regular 

expression is a regular language. 

 

1.5.4 Finite State Automata 

A finite state automaton is a finite set of states and a set of transitions among the states 

that occur on input symbols chosen from an alphabet. Formally, finite state automaton is 

a 5-tuple ),,,,( 0 mQqQ δE , where Q is a finite set of states q, E  is a finite input 

alphabet, QQ →×E:δ  is the transition function, Qq ∈0 is the initial state and 

QQm ⊂ is a subset of states to be called marker states. A state transition graph is 

associated with an finite automaton, where the vertices of the graph correspond to the 

states and if there is a transition from state q to p on input a, then there is an arc labeled a 

from state q to state p.  
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It is often convenient to represent an automaton graphically through a state transition 

diagram, which is simply a directed graph consisting of circles (states) and arcs (events). 

Figure 1-2 shows a sample finite automaton. State q0 is the initial marking, and is shown 

with a double circle. 
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Figure 1-2: Finite automaton 

In this example },,,{ 3210 qqqqQ = , }1,0{=E , 20 )0,( qqf = , 10 )1,( qqf = , 31 )0,( qqf = , 

01 )1,( qqf = , 02 )0,( qqf = , 32 )1,( qqf = , 13 )0,( qqf = , 23 )1,( qqf = . The initial state is 

q0.
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2. Framework and Preliminary Results on Control Synthesis – 

The case of Deterministic Environment and Selfish Agents 

 

2.1 Overview 

In this chapter we discuss the architecture and framework of the system that we will be 

using in this dissertation. We also introduce some preliminary results with relaxed 

assumptions. Later in chapter 3 we will discuss the more general case of our 

methodology. 

 

In our distributed framework, each agent is capable of performing one or more basic 

functions (in the literature, basic functions are sometimes called actions.). The objective 

of an agent is to achieve a certain goal(s) as part of the system’s global goal(s). In this 

chapter we assume that the agents are selfish (non-collaborative) but communicate 

according to a pre-defined protocol. In Chapter 4 we will relax this assumption and will 

deal with collaborative agents. We also assume that agent’s environment is deterministic, 

fully observable and known (either initially or through communication with other agents). 

An agent’s environment is defined by everything which is outside of its jurisdictions, 

including other agents. These assumptions will be relaxed in Chapter 3 and the later 

chapters. Finally, in this chapter we will assume that the agent is not subject to failures, 

but it is possible for the agent to be engaged in a deadlock condition with other agents. 

Deadlock conditions are not known in advance, but once a condition is detected and a 
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solution is identified, the agent’s control synthesis algorithm can be modified to avoid it 

in the future. 

 

Next we will present our formulation of agent’s control synthesis. We will then present 

some results on deadlock detection and avoidance, and will also discuss how these can be 

embedded into the synthesis model. We will start with some preliminaries and 

definitions. 

 

Our modeling framework encompasses the following major characteristics:  

• Agents can be either providers and/or requesters.  

• Each agent embeds in it a set of basic functions and a set of rules or control 

specifications.  

• Agent’s actions are triggered by either internal or external events (described by 

flags). (4) Each such event or flag is associated with a goal (sub-goal), which 

must be achieved by the agent.  

• Each agent locally synthesizes a set of control actions in order to reach its goal(s). 

The solution depends on the agent’s current conditions.  

• It is possible for several agents (providers) to simultaneously respond to the same 

event triggered by a requester agent. In such a case, the requester would select a 

provider agent that provides the least-cost solution. 

• Local rules enforce agents to execute their basic functions only when the 

precondition rules are satisfied in a certain state. Postaction rules persuade the 

agent to carry out some other basic functions after the main basic function is 
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executed (Some authors use the expression effectors - action generating devices - 

to describe postactions).  

• There are also common rules, called global rules hereafter that must be satisfied 

by every agent in the system.  

 

The control synthesis of agents is based on a search technique. In the simplest form, an 

agent may just adopt the first feasible solution, which defines the set of control actions to 

be taken to reach the goal from the current state. In a more complex form, an agent may 

seek an optimal solution by taking into account its current state, including the set of its 

existing tasks. Yet, in a more complex scenario, the provider agent may face competition 

from other provider agents, thus seeking a solution which will undermine the other 

bidders. Finally, a solution may be sought in the face of uncertainties associated with 

failures or drop offs from other agents. In this chapter we will only focus on the simplest 

solution where the first feasible solution obtained is priced and communicated to the 

requester. It is of course possible that in some cases, no feasible solution is obtained due 

to conditions such as deadlocks. More complex cases will be studied and presented in the 

following chapters.  

 

2.2 Definitions 

Agent: We define an agent as a 6-tuple ),,,,,( InARflFS=Φ , where:  

},...,,{ 21 msssS = is a finite set that defines the state of the agent at any moment, 
},...,,{ 21 nfffF = is a set of basic functions, 
},...,,{ 21 rfl ϕϕϕ= is a set of flags, 

},...,,{ 21 srrrR = is a set of rules, 
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},...,,{ 21 taaaA = is a set of attributes, 
},...,,{ 21 wiiiIn = is a set of initiators. 

Rules:  These are condition-action rules, defined as part of system specification. There 

are two types of rules: 

Global Rules: Inter-agent requirements which can be changed at the system configuration 

level. 

Layout Specifications: Inter-agent requirements which define physical/logical 

accessibility or inter-connectivity between agents. Layout specifications are part of the 

global rules. 

Local Rules: Intra-agent requirements changeable at the agent configuration level. Local 

rules are divided into three categories, namely “Preconditions”, “Postactions” and 

“Poststates.” “Preconditions” are those conditions that must hold before a basic function 

can be executed. Preconditions are usually a conjunction of function-free literal stating 

what must be true in a state before the action can be executed. Postactions are functions 

that must be executed by an agent after an action is taken.  

Post-state or Transition function f,Φδ  is a mapping from FS ×  to S. Transition functions 

change the state of the agent Φ  upon execution of a basic function f. They are also 

referred by effects.  

Flags are set after a goal function is executed. 

Basic Functions: These are agent’s primitive capabilities or skills, pre-defined at the 

system design level, and cannot be changed by the designer. Every basic function has a 

set of inputs and outputs. Basic functions requiring physical actions are performed using 

agent’s actuators. A basic function is applicable in any state that satisfies the 

preconditions; otherwise, the function cannot be applied. 
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State: Each agent is associated with a state defined by an n-tuple, where n is a finite 

number. State of an agent changes according to the basic functions executed by that 

agent.  

Flags: A low/high signal triggered when the execution of a task (sub-goal) is finished by 

the agent. This flag will become low when the task is transferred to another agent. 

Initiators: These are flags (events) that trigger a sequence of tasks to be executed by the 

agent. Each initiator is associated with one or more ordered goal functions (the goal 

functions must be executed in an ordered sequence). Initiators will be activated by 

request messages that the agent receives from its requesters. 

Attributes: Define properties of agents, such as capacity of a machine. 

Entity: An entity E is an object that is processed and manipulated by agents and can be 

shown by a tuple E = (PPi, j, k), where PPi is the processing sequence id associated with 

the entity E, j is an instance id of the entity E and k is the current stage of the entity in the 

processing sequence. 

Processing Sequence: is an ordered set of agents where PPi = {All the agents 
iΦ , which 

must be visited in a sequential order by an entity E} 

 

2.3 Assumptions and Methodology 

The following assumptions are made: 

1. Agents communicate with their environment according to a pre-defined protocol.  

2. An agent’s environment is assumed to be fully observable and deterministic. Agents 

have full and complete perception model of each other, either initially or through 

communication channels. This assumption will be relaxed in Chapter 2.  
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3. Agents can be grouped into colonies, where a colony defines the boundary by which 

agents can communicate and access each other.  

4. Pre- and postaction rules, also known as condition-action rules or if-then rules are 

used in our application. Using “forward chaining” new rules can be generated – these 

are postaction rules which define new functions for execution (production rules). A 

rule has antecedent clauses joined by conjunctions and has a consequent clause. A 

rule states a relationship between clauses. A rule whose antecedent clauses are all true 

is said to be triggered or ready to fire. Most rule systems allow boolean condition 

operators in addition to equality [Bigus 01]. 

5. A requester agent requiring a certain service issues a request to other agents in its 

colony. Every agent who receives that request is a potential provider. An agent can be 

a requester of a job and at the same time the provider of another job. 

6. When a provider completes a task (reaches a sub-goal), it signals an event and raises a 

flag. Flags cause the agent to send a request to its providers for the next operation that 

has to be done on a given entity. It basically transfers the job (global goal) to the other 

agents (cooperative environment). In return to this request message, the providers set 

a flag that initiates a search algorithm for the execution of the task. These flags are 

called initiators.  

7. The providers have a list in their active memory where they keep track of to-do jobs. 

This list includes the set of initiators that are currently in “set” position. 

8. The colonies, the basic functions, the rules, and the flags of an agent are all 

determined by the control designer in the specifications of the agent during the design 

stage. 
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2.3.1 Methodology 

In this chapter we will deal with the problem-solving agents which search for sequence of 

actions that lead to desirable states. These desirable states are called goal states. The 

process of finding out which sequence of actions will take the agent to its goal state 

without breaking any of the rules is called synthesis. An agent with several immediate 

options of unknown value can decide what to do by first examining different possible 

sequences of actions that lead to states of known value and then choosing the best 

sequence. This process is called search [Russell 03]. 

 

The synthesis methodology can be summarized as follows: 

1. A provider agent initiates synthesis as soon as it receives a request message from a 

requestor agent, which is generated by an initiator from the requestor agent,  

2. Since it is possible to have more than one provider for every request, there can be a 

competition between different providers. In order to have an organized competition, 

we have assumed a market environment for the agents, where they can announce their 

costs/prices to the requester. 

3. Every synthesis solution is associated with a cost, which depends on the basic 

functions to be executed, their sequence and duration of execution, and also the tasks 

or jobs waiting to be executed by that agent.  Generally speaking, there are also non-

deterministic elements to the cost function, including internal failures within the agent 

which could potentially make some or all of the basic functions un-executable. 

Furthermore, there are also environmental factors which are often un-observable by 
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agents, but could directly or indirectly affect the agent’s performance. In chapter three 

we will discuss these issues in more detail. If a provider is not able to perform the 

tasks associated with a request, the cost value will be set at infinity.  

4. The bidding policy in this chapter is first-price sealed bid auction. The requester will 

receive the estimated cost value from all of its providers and will choose the provider 

with the lowest cost. Many other auction protocols can be chosen as a desired policy. 

5. The selected provider will be announced to all the providers involved in this request. 

They will basically update their flag list and remove the request from their active 

memory. And an assignment will be sent to the selected provider. From this point on 

the provider must put the assigned task into its task (to-do) list. At the same time the 

requester will remove the flag from its own list. 

6. As a last step the provider physically commits the sequence of basic functions and 

removes the initiator from its task (to-do) list.  

7. When the selected provider attempts to execute the task (reach the sub-goal), it must 

first acquire all the necessary resources required for the solution. One solution for the 

agent is to reserve these recourses and lock them. These resources will not be 

available for other agents until the agent unlocks them – This assumption is similar to 

an enforced control that can be considered as part of the communication protocol. We 

will later relax this assumption. 

The above steps are illustrated in figures 2-1a, b and c: 
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Figure 2-1a, b, c: Requester - Provider 

 

2.3.2 Search Algorithm - Introduction 

The problem of synthesis can be solved using a search technique.  Search techniques 

usually use an explicit search tree that is generated by the initial state and the successor 

function that together define the state space. 

 

Search algorithms can be categorized into two groups. Uninformed search methods (or 

blind search) have no additional information about states beyond that provided in the 

problem definition. All they can do is generate successors and distinguish a goal state 

from a non-goal state. On the other hand, informed search or heuristic search knows 

whether one non-goal state is “more promising” than another one [Russell 03]. In this 

chapter we will discuss both. We will start with un-informed search techniques.  

 

Exponential-complexity search problems cannot be solved by uninformed methods such 

as breadth first, uniform-cost or depth first search for any but the smallest instances 

[Russell 03]. Since the only objective of this chapter is to familiarize the reader with the 

system’s framework and the approach, we assume that the instances of the problems are 

small and consequently the uninformed search methods can find a solution. We will 
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consider the depth-first search as our search strategy and we will build the synthesis 

based on this strategy (We do not consider cost optimality in this chapter. Uniform-cost 

search finds optimal solution as opposed to breadth first or depth first search.).  

 

Depth first search (DFS) always expands the deepest node in the current fringe of the 

search tree and the search proceeds immediately to the deepest level of the search tree, 

where the nodes have no successors. As those nodes are expanded, they are dropped from 

the fringe, so then the search “backs up” to the next shallowest node that still has 

unexplored successors. The advantage of depth first search strategy is that it requires very 

modest memory. It needs only to store a single path from the root to a leaf node, along 

with the remaining unexpanded sibling nodes for each node on the path. For a state space 

with branching factor b and maximum depth of m, the space requirements for this 

strategy is in order of O(bm) and the time cost is O(bm) (m is infinity in case of 

unbounded trees). The disadvantage of depth first search is that it can make a wrong 

choice and get stuck going down a very long or sometimes infinite path when a different 

choice would lead to a solution near the root of the search tree; hence it is not optimal. 

Another drawback of this method is that it is not complete. If the left sub tree were of 

unbounded depth with no solution, the search would never terminate. There are some 

possible improvements that are explained in section 2.3.4. 

 

2.3.3 Search Algorithm – Depth First Search Strategy 

Below we present the algorithm that can be used to synthesize control laws for agents to 

reach a goal state starting from a given initial condition, Algorithm path search – part I 
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and II are built based on the depth first search strategy. Initiator of an agent defines the 

goal function(s) that must be searched from the current state of the agent. The algorithm 

initially starts at the root of the search tree. The total number of possible branches at the 

root node is equal to the total number of the basic functions that the agent possesses. 

Each branch is equivalent to the execution of the corresponding basic function. If all the 

preconditions for a specific basic function are satisfied, the algorithm generates a new 

node and expands the tree. Otherwise, that branch will not be part of the solution and the 

tree will be at a dead end and the algorithm will continue with another yet unexpanded 

node of the tree.  

 

The algorithm is shown below. The search_path function will first be called after 

receiving the initiator and this procedure will call the DFS function recursively. In each 

iteration, the algorithm takes the first possible function, and stores the step with the 

corresponding predicted state in a linked list. If the search algorithm reaches the target, it 

will return the path, the related state transitions and the corresponding total cost. If it does 

not find any possible path it returns NULL with an infinite value for the cost. This search 

will be invoked when there is a service request for the agent. 

 

Note: Throughout this dissertation we use the methodology mentioned in [Baase 90] to 

describe the algorithms. 

 
Algorithm: path search – part I 
 
Input: Destination list (sub-goals) of the initiator ij – Current state S of the agent Φ 
 
Output: Path P – Cost C 
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Comment: All the inputs are the elements of the agent Φ. Initiator ij has a corresponding list of 
goal functions (ordered), which we call the destination list. The goal of the agent is to execute the 
goal functions in the list one by one, starting from the first goal function in the list. The output of 
this algorithm is the path P (if any found) and its corresponding cost C (This cost is not optimal). 
The path will be a list of basic functions that must be executed by the agent in order to achieve 
the goal defined by the initiator ij. If there is no solution the returned path will be NULL. 
Function calculate_cost is a function that calculates the cost of the solution in the last step. 
 
procedure search_path (destlst: BasicFunctionsList, s: StateOfAgent) 
var 

dest: BasicFunction 
state: StateOfAgent 
p: BasicFunctionsList 
c: Integer 

begin 
p is NULL 
while destlst is nonempty 

 dest = first element of destlst 
 remove first element from destlst 
 (p, state) = DFS_path((p, s), dest) 
 if p = NULL 

break 
 end if 

end while 
c = calculate_cost(p) 
return (p, c) 

end 
 
 
Algorithm: path search – part II 
 
Input: Basic function set F – Transition functions i,Φδ – Current state S of the agent Φ - Agent’s 
local and global rules R – Path P – Destination dest, as the goal function 
 
Output: (path, state, c) which is the path to the goal function from the current state with its 
cumulative cost. 
 
Comment: Variable (path, state, c) is a collection of basic functions and the corresponding states 
and costs (after hypothetical execution). The element “path” is a list of basic functions that shows 
the steps that must be executed by the agent  in order to reach the goal and the element “state” is 
the list of states, which shows the consecutive state transitions according to the “path” and c is the 
cumulative cost of the execution of the “path.” (path, state, c) can be implemented as a linked list. 
PostactionEnables are the preconditions that must be true, in order to execute a specific basic 
function as a postaction. Note that these conditions are different than the preconditions that are 
part of the specifications. “update” function updates the state of the agent based on its current 
state and the transfer functions (effects). 
 
procedure: DFS_path ((path: BasicFunctionsList, state: StateOfAgent), dest: BasicFunction) 
var 

bfunc: BasicFunctionsList/*Basic functions defined in the specifications of the agent*/ 
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(path, state): (BasicFunctionsList, StateList) 
last: (BasicFunction, StateOfAgent) 
expected_state: StateOfAgent/*Next hypothetical state of the agent after execution of a basic 

function*/ 
x: BasicFunction 

begin 
last = last element of (path, state) 
if last.path has Postactions then 

 for all Postactions of last.path 
if all PostactionsEnables of the Postaction are True then 

if all the preconditions of the Postaction are True then 
expected_state = update(last.state, Postaction) 
(path, state).add(Postaction, expected_state)  
if last.path = dest then 

   return (path, state) 
else 

   (path, state) = DFS_path((path, state), dest) 
if path not equal to NULL then 

return (path, state) 
end if 

end if 
  end if 

end if 
next 

else 
 for all x in bfunc 

if all Preconditions of x are True then 
expected_state = update(last.state, x) 
(path, state).add(x, expected_state) 

if x = dest then 
   return (path, state) 

else 
   (path, state) = DFS_path((path, state), dest) 

if path not equal to NULL then 
return (path, state) 

end if 
end if 

  end if 
end if 

next 
end if 
ruturn NULL 

end 
 

As we already mentioned, the cost calculation can be based on the duration of time that 

resources are utilized or fixed cost on each resourse used. Since in this chapter we assume 

that the agents can only execute one job at a time, the cost calculation is straight-forward. 
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Here we assume that the total cost of a single task (from initial state to some goal) is 

equal to the total number of basic functions executed.  

 

2.3.4 Possible Improvements 

The problem of DFS not being complete can be alleviated by using a predetermined 

depth limit l which solves the infinite-path problem. Unfortunately if l < d (where d is the 

depth of the shallowest goal node) then the shallowest goal is beyond the depth limit and 

another source of incompleteness will be created. This case can very much happen, 

because d is usually unknown. To overcome this issue we can also use iterative 

deepening search or iterative deepening depth first search, which finds the best depth 

limit. In this algorithm we start with d equal to 0 and then we increase d in each iteration 

by 1, until a goal is found, which obviously happens when the algorithm reaches d, i.e. 

the depth of the shallowest goal node. This strategy is complete when the branching 

factor is finite and even is optimal when the path cost is a non-decreasing function of the 

depth of the node. The time complexity of this algorithm is O(bd) and the memory 

complexity is O(bd). 

 

2.3.5 Search Algorithm – Informed (Heuristic) search – A* search 

These types of search use problem specific knowledge beyond the definition of the 

problem itself and therefore can find solutions more efficiently than an uninformed 

strategy. A* search [Hart 68] is one of the informed search algorithms that fits under the 

category of best-first search. In best-first search algorithms the nodes are expanded based 

on their evaluation function f(n). The evaluation function usually measures the distance to 
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the goal from that node. Another key component of these algorithms are the heuristic 

functions that are usually denoted as h(n). This function estimates the cost of the cheapest 

path from node n to a goal node. A* search evaluates nodes by combining g(n), the cost to 

reach the node and h(n) the cost to get from the node to the goal: f(n) = g(n) + h(n) 

therefore f(n) will be the estimated cost of the cheapest solution through n. If the heuristic 

function h(n) satisfies certain conditions, A* search is both complete and optimal. A* is 

optimal if h(n) is an admissible heuristic, that is provided that h(n) never overestimates 

the cost to reach the goal. 

 

Suppose that we describe the state of an agent by },...,,{ 21 msssS = . The goal function 

can then be stated as },...,,{ 21 msssS ′′′=′ . Assuming that each basic function of the agent 

can influence only one of the elements of the state set, then the agent needs at least m of 

its basic functions to reach S´ from S if mm ssssss ′≠′≠′≠ ,,, 2211 K . In other words, the 

heuristic function h is equal to the number of the elements in S and S´ that do not match. 

This assumption guarantees the admissibility of the heuristic function and therefore the 

completeness and optimality of the algorithm. 

 
 
2.3.6 Illustrative Example 

We use the same example used in chapter 1 to clarify our approach. Consider a flexible 

manufacturing cell (FMC) as shown in figure 2-2, which consists of one input buffer, one 

output buffer, one robot, two machines and one part type. Parts arrive to the system and 

are processed according to their “process plan”. The process plan determines the 

sequence of machines to be visited by each part. Robots transfer parts from one station to 
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another. Each step in a process plan is considered to be a sub-goal, while the overall goal 

is to complete each part successfully. In this system the buffers, the machines and the 

robot are agents with different capabilities and specifications, and parts are entities, 

 

System specifications 

In general, specifications are categorized into three different categories. The global rules 

are common between all agents. Every agent must follow the global rules. An example of 

a global rule can be the process plan of an entity (entity will be described shortly). All the 

agents have access to this information. Another category is the layout specification, 

which define how the agents are connected to each other and who can access whom. The 

last category is the set of local rules. These rules are private and embedded into each 

agent. Basic functions of an agent are defined in its local specification, and can be 

different from one agent to another. We categorize the local specifications into three 

different groups. Preconditions are those that have to be satisfied before a basic function 

can be executed. Postactions are those functions that must be executed by the agent after 

an action has been taken. Poststates or transition functions are the states of agents after 

the execution of a basic function. Initiators are also part of the local specifications. 

Initiators initiate a set of functions to be executed by an agent after receiving a request. 
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Figure 2-2: Flexible Manufacturing Cell (FMC) 

 

Note: Each agent has a set of functions that is public to other agents in its colony. We call 

them the “interface functions.” Some preconditions or postactions require information 

about the state of the other agents. And because of the distributed nature of our 

framework, the agent’s are not able to directly measure the required states. The purpose 

of having interface functions is to be able to get information about the state of the other 

agents during the synthesis. These interface functions will be announced to the other 

agents in the colony by the “bookkeeper agent.” 

 

Input Buffer Φ  = Ii (i = 1) 

Description: This agent is the place where different parts arrive to the cell. When a part 

arrives, it is placed in the input buffer by some mechanical means. We do not consider 
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the arrival mechanism in this example. At this point the flag of the input buffer will set to 

high and hence it will generate a request message. 

Attributes (Ii.A): Ii.A.a1(capacity) = 1, Ii.A.a2(providers) = {R1}, Ii.A.a3(interface function) 

= {Out(E)} (The output of out(E) is a boolean value). 

State (Ii.S): (s1, s2, s3) = (parts_in_system, part_id_in_process, availability): (# of parts in 

the buffer, part_id in front of the queue, locked/unlocked) 

Basic Functions (Ii.F): none 

Flags (Ii.fl): Ii.fl. 1ϕ is equal to one if there is a part in the buffer and equal to zero, 

otherwise. 

Specifications (Ii.R):  

• Ii.R.r1: specifications of out(E) 
out(E) returns “true” if: 
Ii.S.s1 > 0 
Ii.S.s2 ≠ NULL 
Ii.S.s3 = unlocked 

Initiators (Ii.In): none 

 

The capacity of the buffer is one according to the value of Ii.A.a1. The only provider of 

the input buffer is R1. The interface function out(E) will return a true value, if any agent 

attempts to take a part from it and if all the conditions for returning “true” are satisfied. 

The state of the input buffer will be determined by three values, namely, number of parts 

currently in the buffer, the state of the part currently in the front of the buffer (if there is 

no part in the buffer this value will be NULL), and the availability of the buffer, meaning 

whether the buffer is locked by any agent (requester) or not. The input buffer does not 

have any basic functions, therefore there will be no local specifications defined for it. 
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Since the part arrives to the cell by some mechanical means the buffer does not have 

initiators. But if when a part arrives to the buffer the flag Ii.fl. 1ϕ (i = 1) is set to high. 

 

Output Buffer Φ  = Oi (i = 1) 

Description: This agent will be the last place that parts visit in the cell. When the last 

process of machining is done, the part will be placed in the output buffer by the robot. 

We do not consider the removal mechanism of parts from the buffer. 

Attributes (Oi.A): Oi.A.a1(capacity) = ∞ 

States (Oi.S): (s1) = Since the capacity of the buffer is infinite, the state of the output 

buffer is irrelevant. 

Basic Functions (Oi.F): none  

Flags (Oi.fl): none 

Specifications (Oi.R): none 

Initiators (Oi.In): none 

Machine Φ  = Mi (i = 1, 2) 

Description: M1 and M2 are responsible for the machining of  parts. We assume that the 

machines can only process one part at a time. Our assumption is that the local machine 

controllers will control the machining process. 

 

Attributes (Mi.A): Mi.A.a1(capacity) = 1, Mi.A.a2(providers) = {R1, Mi}, Ii.A.a3(interface 

function) = {in(E), out(E)} (The output of in(E) and out(E) is boolean). 

States (Mi.S): (s1, s2, s3, s4) = (stage, parts_in_system, part_id_in_process, availability): 

(idle/busy/done, # of parts in the machine, part_id being worked on, locked/unlocked) 
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Basic Functions  (Mi.F):  

Mi.F.f1 = start_man(E), where E is the entity.  

Flags  (Mi.fl):  

Mi.fl. 1ϕ is equal to one if a part is ready to be taken out of the machine. 

Initiators (Mi.In): if Mi.In. 1ϕ  = 1 → start_man(E) 

Specifications (Mi.R): 

• Mi.R.r1: specifications of start_man(E) 

Preconditions: 
Mi.S. (s1, s2, s3, s4) = (idle, 1, ≠ Null, unlocked) 
Postactions: none 
Poststates: 
Mi.fl. 1ϕ  = 1 
Mi.In. 1ϕ = 0 

• Mi.R.r2: specifications of in(E) 

in(E) returns true if: 
Mi.S.s1 = idle 
Mi.S.s2 < Mi.A.a1 
Mi.S.s4 = unlocked 

• Mi.R.r3: specifications of out(E) 

out(E) returns true if: 
Mi.S.s1 = done 
Mi.S.s2 > 0 
Mi.S.s4 = unlocked 

 

The state vector of the machines are determined by four values. The first value signifies 

the operating condition of the machine which can be “idle”, “busy” and “done”. The 

machine will be in “idle” state when there is no part in its manufacturing table. It will be 

in “busy” state, if it is involved with machining of a part or it can be in “done” state if the 

machining process of the part is finished and the machine is waiting for the part to be 

removed. The next value in the state vector of the machine is the number of parts in it. In 
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our example this number is either one or zero. The third value in the vector is the state of 

the part currently in the machine (this value will be NULL if there is no part in the 

machine). The last value is the availability of the machine, which can be either “locked” 

or “unlocked”. Each machine has a flag. It will be activated upon arrival of a part and 

will be deactivated as soon as the finished part is removed from the machine. Each 

machine has only one basic function available. The basic function is called start_man(E). 

This function will be executed whenever there is the need for manufacturing (Mi.In = 1). 

It will be initiated upon arrival of a part into the machine. 

 

The functions in and out are for communication purposes. Since other agents are not 

aware of the state of the machines (because of the distributed nature of the system), they 

must get the necessary information (state of the machine) through communication using 

these two functions. These functions return a Boolean “true” or “false” value based on 

the conditions of the machine. For example if the circumstances for putting any part into 

the machine are met (from machine’s point of view) then the robot will receive a true 

value upon calling the in function. 

 

Before the execution of start_man(E) some preconditions must be satisfied: Machine i 

must be in idle condition; there must be one part in the machine, therefore the entity’s id 

will not be NULL; and finally the machine must be in unlocked state. After the job is 

finished there will be no other mandatory basic function to be executed. And obviously 

the initiator flag goes low, upon completion of the job and the flag goes high.  
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In order to put a part into a machine, first of all the machine must be in idle state. And 

obviously number of parts currently in the machine must be less than the capacity of the 

machine, and the machine must also be unlocked. These are all the conditions for the in 

function to return a true value. If any single one of these conditions is not satisfied, the 

machine will return “false.” The conditions of the out function are similar to the in 

function. 

 

Robot Φ  = Ri (i = 1) 

Description: R1 is responsible for moving the parts between different stations. We assume 

that the robot can hold at most one part in its arm. We do not consider the technical 

details of the complex mechanical functions executed by the robot in order to grab a part 

and move it around. We consider them as granted. The robot has one initiator, namely 

Ri. 1.ϕIn . If this initiator becomes active the robot must take the part from the requester 

and put it in the final destination. The process plan determines the next destination. 

 

Attributes (Ri.A): Ri.A.a1(capacity) = 1, Ri.A.a2(reachability) = {I1, M1, M2, O1} 

States (Ri.S): (s1, s2, s3, s4, s5) = (stage, occupancy, location, part_id_in_process, 

availability): (idle/busy, empty/not empty, Ii/Oi/Mi, E, locked/unlocked) 

Basic Functions (Ri.F):  

Ri.F.f1 = move(Y, E), where Y ∈ {M1, M2, I1, O1}, where E is an entity 

Ri.F.f2 = take(Y, E) where  Y ∈ {M1, M2, I1}, where E is an entity 

Ri.F.f3 = put(Y, E) where  Y ∈ {M1, M2, O1}, E is an entity 

Flags (Ri.fl): none 
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Initiator (Ri.In): if Ri.In. 11 =ϕ  → put(E.PPi(k+1), E) Xi∈{M1, M2, I1} 

Specifications (Ri.R): 

• Ri.R.r1: specifications of move(Y, E): 
Preconditions: 
Ri.S.s3 ≠ Y 
Ri.S.s5 = unlocked 
Y∈ Ri.A.a2 
Postactions: 
if Ri.S.s4 ≠ Null then put(Y, E) 
if Ri.S.s4 = Null then take(Y, E) – These two postactions are not necessary but they 
will reduce the search space of the agent. 
Poststates: none 

 

• Ri.R.r2: specifications of take(Y, E): 
Preconditions: 
Ri.S.s1 = idle 
Ri.S.s2 = empty 
Ri.S.s3 = Y 
Ri.S.s4 = NULL 
Ri.S.s5 = unlocked 
Y∈ Ri.A.a2 
Y.out = true 
Postactions: 
move(W, E) where W is the next station in the processing sequence after Y and E 
= (PPi, j, k + 1) – This postaction is not necessary but it will reduce the search 
space of the agent. 
Poststates: none 

 

• Ri.R.r3: specifications of put(Y, E): 

Preconditions: 

Ri.S.s1 = idle 
Ri.S.s2 = not empty 
Ri.S.s3 = Y 
Ri.S.s4 ≠ Null 
Ri.S.s5 = unlocked 
Y∈ Ri.A.a2 
Y.in = true 
Postactions: none 

 Poststates: Ri.In. 01 =ϕ  
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Robot R1 can reach all other agents. The state of the robot is determined by five different 

values. The first value is the stage of the robot, which can be “idle” or “busy”. The robot 

will be in idle state when there is no part in its arm and does not move. It will be in busy 

state, if it has any parts in its arm or if it is moving towards a station. The second value is 

the occupancy of the robot. It will be either “empty” or “not empty”. The third value is 

robot’s location. Since the robot is moving around in the cell, this value has to be tracked. 

The state of the part, currently hold by the robot, is the next value (this value will be 

NULL if there is no part in the robot). The last value is the availability of the robot, 

which can be either “locked” or “unlocked.” 

R1 has three basic functions available: Robot executes move(Y, E) function by moving 

towards location Y, and performing  some task on entity E. Function take(Y, E) is 

executed by taking a part form agent Y, and put(Y, E) is executed by putting part E in 

agent Y. R1 has also an initiator, which is going to be set by a requester like M1 or M2. 

 

Transition functions 

The changes in the states are depending on the level we are at. The transition functions at 

the synthesis level are different than the transition functions at the execution level. The 

reason is that at the execution level agents may lock some other agents to avoid conflict. 

A locked agent cannot perform any synthesis. In order to avoid this, we consider two sets 

of transitions functions; functions at the synthesis level and at the execution level. The 

transition functions at the execution level are described below. As we can see in figure 7, 

when a basic function is executed by the agent, its state is changed to “locked.” The 
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transition functions are shown as Colored Petri Nets, and the conditions are shown as 

guards.  

 

a) Ri.S(s1, s2, s3, s4, s5) = (stage, occupancy, location, part_id_in_process, availability): (idle/busy, 
empty/not empty, Ii/Oi/Mi, E, locked/unlocked) 

moveRi ,δ ( Ri.S(s1, s2, s3, s4, s5), move(Y, E)) = Ri(s1,s2, Y, E, locked) 

takeRi ,δ ( Ri.S(s1, s2, s3, s4, s5), take(Y, E)) = Ri(s1, not empty, Y, E, locked) 

putRi ,δ ( Ri.S(s1, s2, s3, s4, s5), put(Y, E)) = Ri(s1, empty, Y, E, unlocked) 
 

b) Mi.S(s1, s2, s3, s4)  = (stage, parts_in_system, part_id_in_process, availability): (idle/busy/done, 
# of parts in the machine, part_id being worked on, locked/unlocked) 

manstartMi _,δ (Mi.S(s1, s2, s3, s4), start_man(E)) = Mi.S (s1, s2, E, locked) 
 
Process Plan 

Now that we have defined all the system components and specifications we need to 

introduce the process plan of the entities in the system. An example process plan is 

PP1={I1, M1, O1}, which means that part type 1 has to go to stations I1, M1 and O1, 

respectively.  

 

Scenario 

Suppose that the initial state of R1 is R1.S = (idle, empty, M1, NULL, unlocked), and the 

initial state of  M1 and M2 are  M1.S = M2.S = (idle, 0, NULL, unlocked). Also suppose 

that part E(PP1, 1, 1) arrives in input buffer I1. PP1 means that the arriving part is of type 

1. The first “1” in the above tuple means that this part is the first instance of this entity 

type, arriving into the cell. The second “1” means that the part is currently in the first 

station of the process plan (I1). 
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11 .. ϕfI  becomes equal to one. I1 will send an initiator request message to R1, since R1 is 

in the list of the providers’ of I1. R1 receives the request message that entity E is ready to 

be picked up (Figure 2-3) and therefore its initiator R1.In. 1ϕ will change its state to “1”. 

 

 

Figure 2-3: Request from the input buffer  

 

According to R1’s initiator R1.In. 11 =ϕ → put(E.PP1(2), E), R1 must search for a path that 

takes the part from I1 and puts it into E.PP1(2) = M1. At this point the robot will initialize 

the search algorithm by calling function search_path( put(M1, E), (idle, empty, M1, 

NULL, unlocked)). As we can see in Figure 2-4, a search tree will be generated, where 

the root is the current state of R1 and the branches of the root are the possible basic 

functions of R1. Since the location of R1 is currently next to M1, it cannot take the part 

from the buffer (One of the preconditions of basic function take(I1, E) is R1.S.s3 = I1, 

which is currently not true - R1.S.s3 is equal to M1). So the left most branch will reach a 

dead end. The second branch will also reach a dead end because for executing put(I1, E), 

R1.S.s2 must be “not empty,” which is not the case. The only possible action that the robot 

I1

R1

Request1

1.. 11 =ϕfI

(idle, empty, M1-, NULL, unlocked)

E(PP1, 1, 1)

(1, E(PP1, 1, 1), unlocked) I1

R1

Request1

1.. 11 =ϕfI

(idle, empty, M1-, NULL, unlocked)

E(PP1, 1, 1)

(1, E(PP1, 1, 1), unlocked)
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can take will be move(I1, E) (All the preconditions for this action are satisfied.) Now the 

search algorithm will hypothetically assume that R1 takes this action; therefore based on 

the given transition function moveRi ,δ  it will predict the next state of the robot which is 

R1.S.(busy, empty, I1, NULL, unlocked). Note that R1.S.s5 remains equal to “unlocked,” 

because we are still in the synthesis level and not real physical execution. 

 

R1

R1
*

take(I1, E)

put(I1, E)

move(I1, E)

R1.S.s3 = I1

(idle, empty, M1, NULL, unlocked)

R1.S.s2 = not empty

(busy, empty, I1, NULL, unlocked)  

Figure 2-4: Search tree 

 

Now the search algorithm continues the same procedure to find that all the preconditions 

for take(I1, E) are satisfied. This means that the part can be taken from the input buffer. 

The next state prediction is going to be R1.S.(busy, not empty, I1, E(PP1, 1, 1), unlocked). 

This step can be seen in Figure 2-5. By taking this action half of the goal functions is 

satisfied and the search will continue until it reaches the last basic function in its 

destination list, which is put(M1, E). Since the “take” function has a postaction, the robot 

will do the postaction first. This action is going to be move(M1, E(PP1, 1, 2)). Since all 

the preconditions are satisfied, the robot will take this action (without doing the search) 

and therefore its next state will be R1.S.(busy, not empty, M1, E(PP1, 1, 2), unlocked).  
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R1

R1
*

move (I1, E)

(idle, empty, M1, NULL, unlocked)

(busy, empty, I1, NULL, unlocked)

R1
**

take(I1, E)

(busy, not empty, I1, E(PP1, 1, 1), unlocked)

R1

R1
*

move (I1, E)

(idle, empty, M1, NULL, unlocked)

(busy, empty, I1, NULL, unlocked)

R1
**

take(I1, E)

(busy, not empty, I1, E(PP1, 1, 1), unlocked)  

Figure 2-5: Search tree – second level expansion 

 

The search continues to find out that the next possible expansion of the nodes can be 

move(M1, E). This node is shown in Figure 2-6 as R1
***. The second branch of this node 

brings the robot to the goal function. One of the preconditions of put function is Y.in = 

true. In this case Y is M1. The state of M1 is currently M1.S.(idle, 0, NULL, unlocked). 

The robot will call this public function (in) of the machine. Since all the preconditions of 

this function are satisfied, it will return “true”, so the robot can now put the part into the 

machine. This successfully completes the search (Figure 2-6). Now that the control 

synthesis is performed successfully, that agent must announce the cost of this operation. 

Note that according to the process plan this task (done by the robot) is a sub-goal of the 

main goal. 
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R1

R1
*

move(I1, E)

(idle, empty, M1, NULL, unlocked)

(busy, empty, I1, NULL, unlocked)

R1
**

take(I1, E)
(busy, not empty, I1, E(PP1, 1, 1), unlocked)

R1
***

(busy, not empty, M1, E(PP1, 1, 2), unlocked)

R1
****R1.S.s2 = empty

take(M1, E)
put(M1, E)

move(M1, E)

(idle, empty, M1, NULL, unlocked)

R1

R1
*

move(I1, E)

(idle, empty, M1, NULL, unlocked)

(busy, empty, I1, NULL, unlocked)

R1
**

take(I1, E)
(busy, not empty, I1, E(PP1, 1, 1), unlocked)

R1
***

(busy, not empty, M1, E(PP1, 1, 2), unlocked)

R1
****R1.S.s2 = empty

take(M1, E)
put(M1, E)

move(M1, E)

(idle, empty, M1, NULL, unlocked)  
 

Figure 2-6: Search tree - expansion  

 

Next the search algorithm calculates the cost of execution of this task, which is assumed 

here to be proportional to the total number of basic functions used, or is the depth of the 

generated path in the search tree. In this example the agent R1 uses the “move” function 

twice, the “take” and put functions each once, therefore the cost of this operation is 4. R1 

will announce this cost to its requester I1 (Figure 2-7). Since R1 is the only provider of I1, 

I1 will accept this offer, it will assign the task to R1 and it will clear its flag (Figure 2-8). 

R1 can now execute this task. 

 

Figure 2-7: Response from the Provider R1 

I1

R1

Requester

Provider1

Cost1 = 4

1.. 11 =ϕfI

1.. 11 =ϕInR

I1

R1

Requester

Provider1

Cost1 = 4

1.. 11 =ϕfI

1.. 11 =ϕInR
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All the other steps in the process plan goes through the same set of synthesis procedure 

until the part exits the cell. Figure 2-9 shows the whole solution state space, when a part 

is processed by the agents in the example manufacturing cell.  

 
Figure 2-8: Task assignment 

 
 

 
Figure 2-9: Solution state space 
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2.4 Deadlock 

2.4.1 Overview 

As we mentioned earlier in chapter one, a deadlock occurs because two or more agents 

require same resources in a circular manner during a particular time period. Obviously, in 

a complex distributed system such as the one used in this chapter, we can face many different 

kinds of deadlocks, which must be detected and possibly avoided. Below we explain different 

deadlock levels using illustrative examples. 

 

Consider the situation where Machine M1 and robot R1 each have capacity of one. 

Machine M1 is occupied with a part of part type PP1, and suppose that this part has to be 

removed by R1 (after the job is done by the machine) from M1. Let us also suppose that 

R1 has taken a part from another location to put into machine M1, according to the given 

process plan (Figure 2-10). Since M1 is occupied by another part and since that part must 

be removed by R1 and R1 is already busy with another part in its hand that has to go to 

M1, we are in a deadlock situation.  This is the simplest case of a deadlock. 

 

We can prevent the system to go to these kinds of deadlocks by applying proper local 

rules. In the previous example of this chapter, the “take” action cannot happen, unless the 

entire path can be created by the search algorithm (The machine, which is the target 

destination of the entity, must be free). Hence we see that the local specifications will 

prevent this sort of deadlock in the system. 
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PP2

M1

PP1

R1  

Figure 2-10: Deadlock 

 

Now assume the following configuration: Machine M1 is occupied with a part type PP1 

and machine M2 is occupied with a part type PP2. According to the process plans of PP1 

and PP2, the part in M1 must be transferred by R1 to M2 and the part in M2 must be 

transferred by R1 to M1 (Figure 2-11). Obviously this is a deadlock situation, since we 

assume that R1 is the only service provider agent for M1 and M2. 

 

M1

PP1

M2

PP2

R1R1  

Figure 2-11: First Level Deadlock 

 

Now consider another scenario: Machine M1 is occupied with a part of type PP1 and 

machine M3 is occupied with a part of  type PP2. R1 is the provider of machine M1 and R2 

is the provider of machine M3. M2 is currently empty. According to the process plans, the 

part in M1 must be transferred to M2 and then to M3 and the part in M3 must be transferred 

to M2 and then to M1 (Figure 2-12). Since M2 is currently free, we are not in a deadlock 

situation, but as soon as any of the robots moves the part to M2, the system  is 
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deadlocked. This kind of deadlock is called Impending Part Flow deadlock (or Second 

Level deadlock), i.e. the deadlock will happen in the next two steps. 

 

 

M1

PP1

M2
R1 R2

M3

PP2

 

Figure 2-12: Impending Part Flow Deadlock (Second Level Deadlock) 

 

This example can be extended to higher level deadlocks (Figure 2-13). In figure 2-13 we 

have a situation, where we have n machines and n-1 robots (service providers of the 

machines). With the same reasoning as in the previous case we can conclude that a (n-

1)th level of deadlock can occur  in this case. 

 

 

M 1 

PP 1 
M 2 

R 1 R n-1 
Mn

PP2

Mn-1

R2

M3 … 

 

Figure 2-13: Impending Part Flow Deadlock ((n-1)th Level Deadlock) 

 

A completely different type of deadlock can happen at execution level. Suppose that R1 

has found a path from M1 to M2 for a part of type PP1. At the same time, R2 finds a path 

from M3 to M2 for transferring a part of type PP2 (Figure 2-14). Since M2 is free, both R1 
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and R2 are able to generate a path from their respective sources to the single destination 

(M2). The problem occurs when the two robots attempt to execute their planned tasks. 

Since the capacity of M2 is only one, the robot working faster will seize the destination 

resource (M2) and the other robot will go to a deadlock state. This type of deadlock 

depends on the timing of the events. The solution to this problem is the process of 

"locking the resources,” which we already saw in the previous example - as soon as a 

resource is locked by an agent, it cannot be used by other agents. At the execution level 

the first step is to check the availability of all the required resources as planned by a 

synthesized solution.  If all the resources are available, they will be locked by the agent. 

In this example R2 will lock machine M2 and therefore R1 will not take its part from M1 

anymore, until M2 becomes available again. 

 

 

M 1 

PP1

M 2

Locked by R 2 
R 1

PP 2

R 2

 

Figure 2-14: Timing deadlock 

 

2.4.2 Approach 

In a distributed environment, there is not a single centralized controller that can manage 

the issue of deadlock. Therefore we must present a framework through which agents can 

communicate and solve the deadlock problem collaboratively. When the cost estimates 

from all the providers for a request are infinity, there is a potential for a deadlock 
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condition. Therefore the system must explore the situation and eventually look for the 

existence of a deadlock. This process includes three steps - The first step is to determine 

resources that are causing an agent not to find any path from a source to a destination. 

Having the list of unavailable resources, we can then start the process of detecting the 

deadlock (if there exist any), which will be the second step. The last step is to configure 

the system in a way that it does not go to the deadlock state again in the future. Figure 2-

15 shows the three steps: 

 

 

Unavailable
Resource
Detection

Deadlock
Detection

Deadlock
Avoidance

 

Figure 2-15: Deadlock Detection and Avoidance Steps 

 

Before we describe our methodology, we characterize agents as active and passive 

agents. Active agents are those that are explicitly involved in a deadlock, and cause the 

deadlock. Examples of active agents can be machines and buffers. Passive agents are 

those that are not explicitly involved in deadlocks. A robot is an example of a passive 

agent. To show the difference between active and passive agents we refer to figure 2-11 

again. We recall that deadlock occurred here because machine M1 and machine M2 cannot 

take any action after they are finished with their current tasks. But robot R1 is not 

explicitly involved in this deadlock situation. Suppose that R1 is also a provider for other 

two machines, M3 and M4. R1 can easily transfer a part from M3 to M4 even though M1 

and M2 are in deadlock situation.  
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In manufacturing applications it is reasonably straight-forward to distinguish between 

active and passive agents. Generally speaking, however, it is extremely difficult to 

distinguish between passive and active sources. 

 

2.4.3 Deadlock Detection 

Two separate algorithms will be presented for detection and avoidance of deadlocks. The 

deadlock detection itself includes two separate sub-algorithms. The first sub algorithm 

detects all the resources that cannot be used during the path-generation at synthesis level. 

The second sub-algorithm detects the deadlock. If the returned path obtained from 

synthesis is NULL, we then need to determine those resources that cause this.  This will 

be accomplished by our first sub-algorithm, hereafter referred to by RDT (Resource 

detection algorithm). After finding the resources that are responsible for NULL solution, 

the deadlock algorithm will be called from these resources. 

 

2.4.4 Resource Detection Algorithm (RDT) 
 
This algorithm works based on a Breadth First Search strategy (section 2.3.2). If the search 
algorithm of the agent (usually the robot) fails to find a path from a source to destination, RDT is 
called. The objective is to find the list of resources that causing a NULL path solution. The 
algorithm works as follows: 

I) All the agents in the reachability attribute of the agent A are listed as nΦΦΦ ,...,, 21 . 
In other words from agent A point of view nΦΦΦ ,...,, 21  are known and reachable. 

II) A breadth first search tree is created with the following nodes: 
{ } { } { } { } { } { } { }nnnnn ΦΦΦΦΦΦΦΦΦΦΦΦ − ,...,,,,...,,...,,,...,,,,...,, 21212121  

III) Every single node is examined, based on the breadth first search, and according to the 
following: 
a) For all the basic functions: all the preconditions corresponding to the resource or 

resources in the node is set to “true.” 
b) The search algorithm is called. If the path is found, the cost of the generated path 

and the node is returned. The members of the nodes are the resources that cause 
the cost to be infinity. 
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IV) If there is no path, the cost of infinity is returned. 
 
RDT will return the list of the resources that are currently not available. Based on this list we can 
initialize the deadlock detection algorithm, which is based on the Mitchell-Merritt algorithm. 
 
 
2.4.5 Mitchell-Merritt algorithm 

Mitchell and Merritt [Mitchell 84] create in their algorithm a TWFG, where the vertices 

are the tasks and each vertex has one private label and one public label. The private label 

(indicated by an index in the lower half of the node) is a unique variable and non-

decreasing over time to the vertex. The public label (indicated by an index in the upper 

half of the node) is available to every task and is not necessarily unique. Initially the 

public and private labels are the same. The edges in the TWFG mean that one task is 

waiting for another. Four types of state transitions are used in this algorithm:  

• When a process starts to wait for another resource it becomes a blocked task 

(process). The labels of the blocked task become a value larger than their original 

value, and also greater than the public label of the process being waited on, which 

is also unique to the node. In the TWFG an edge is going to be drawn from the 

blocked task to the needed resource. 

• A task becomes active when it gets the necessary resource. The edge will be 

removed from the waiting vertex.  

• A transmit step occurs when a blocked task discovers that its public label is 

smaller than the public label of the process it is waiting on. In that case the 

waiting process will replace its public label with the one just read. This causes the 

larger labels to migrate along the edges of the TWFG. 

• A (deadlock-) detect step occurs when a task receives its own public label back.  
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Example I 

Consider the situation in figure 2-11 again. M1 wants its part to be transferred to M2 by 

R1. It has to wait for M2 because M2 is occupied by a part. Therefore this task will be 

blocked. By the above algorithm two nodes will be created having labels 1 and 2. Based 

on blocked task transition step, both will get value 2 for label. On the other hand, M2 

wants its part to be transferred to M1 by R1. It has to wait for M1, because it is occupied 

by a part. Therefore this task will be blocked too. When we update the graph, node M1 

will detect the same public label (2), hence a deadlock condition. Figure 2-16 shows these 

steps. 

 
 

22
1 
1 

2 
2 

2 2

M 1 M 2

2 2
2 2 

M 1 M 2 M 1 M 2 

* Deadlock detected 
 

Figure 2-16: Example a 

 
Example II 

Consider figure 2-17, where we have the layout of a flexible manufacturing cell. M1 

needs M2, M2 needs M3 and M3 needs M1. Since M2 is occupied with part of type PP2, the 

TWFG will create two nodes for M1 and M2. The graph will be expanded because M2 has 

to wait for M3. If we initially assign the public label 3 to node M3, then the public label of 

M1 and M2 will change according to the steps in figure 2-18. Eventually M3 will wait for 

M1, which generated the cycle. Since both public labels are the same for M1 and M3, a 

deadlock will be detected. 

 



66 

 

 

M 1 

PP 1 

M 2 

R 1 R 2

M 3 

PP 3 PP 2

 
Figure 2-17: Example b – Layout 
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Figure 2-18: Example b - TWFG 

 

2.4.6 Deadlock Avoidance 

The last step in our methodology is to avoid the deadlock. In order to implement our 

methodology we assign a list of “bad” states to all the active agents. We call the list “To-

Avoid-List” (Figure 2-19). Each element of this list is a list itself. Every such sub-list 

includes the state of all the active agents involved in a deadlock case, and have been 

detected in the previous steps.  

 

Whenever there is any interaction between the agents, the active agent will check the To-

Avoid-List to make sure the system does not make a transition to a bad state. When a 

request is sent to an active agent, it will predict its next state. Having the predicted state, 

the active agent will check its To-Avoid-List, to find whether the forecasted state is in 



67 

 

one of the sub-lists. If the predicted state is found, a query will be sent to other active 

agents in the sub-list. If the current states of all the mentioned agents match the states in 

the sub-list, the system will eventually go to a deadlock state. Therefore the active agent 

will not allow the requester to execute the task, thus will avoid the deadlock. 

 

Obviously, this method will only avoid the deadlocks of first level and second level 

types.  An illustrative example will clarify this methodology. 

 
 

SSS kj .,...,.,.1 Φ Φ Φ 

SSS tr .,...,.,.1 Φ Φ Φ 

SSS kj .,...,.,.1 Φ Φ Φ 

… 

 
 

Figure 2-19: To-Avoid-List of agent Φ1 

 
Example 

Suppose that the situation in figure 2-17 has been detected as a deadlock condition. Upon 

detection, the system will update the To-Avoid-List of all the active agents involved in 

this matter (M1, M2 and M3). These lists can be seen in figure 2-20. Some remarks in order 

here:  

a) State of every machine also includes the state of the entity being worked on. The 

second item of entity’s state is its instance number. Since there is only one 
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instance of each entity type, we will never come back to the exact same state 

again, because the other parts will have a different instance number. Hence we 

will ignore the instance number in the To-Avoid-List and we will depict it with an 

“*” (don’t care). 

b) Stage and the availability of the machines do not affect the deadlock situation; 

therefore we consider them also as don’t care (“*”). 

c) We assume the current stage numbers of the parts to be r, s and t. 

 
 

M1

PP1

M2 M3

PP3PP2

(M1.S): (*, 1, E(PP1,*,r), *), 
(M2.S): (*, 1, E(PP2,*,s), *),
(M3.S): (*, 1, E(PP3,*,t), *)

(M1.S): (*, 1, E(PP1,*,r), *), 
(M2.S): (*, 1, E(PP2,*,s), *),
(M3.S): (*, 1, E(PP3,*,t), *)

(M1.S): (*, 1, E(PP1,*,r), *), 
(M2.S): (*, 1, E(PP2,*,s), *),
(M3.S): (*, 1, E(PP3,*,t), *)

(M1.S): (*, 1, E(PP1,*,r), *), 
(M2.S): (*, 1, E(PP2,*,s), *),
(M3.S): (*, 1, E(PP3,*,t), *)

(M1.S): (*, 1, E(PP1,*,r), *), 
(M2.S): (*, 1, E(PP2,*,s), *),
(M3.S): (*, 1, E(PP3,*,t), *)

(M1.S): (*, 1, E(PP1,*,r), *), 
(M2.S): (*, 1, E(PP2,*,s), *),
(M3.S): (*, 1, E(PP3,*,t), *)

 
Figure 2-20: To-Avoid-Lists 

 
After the recovery process, which can be through some manual operations (like system 

reset), the system starts to work again. Now suppose that the system is in the state shown 

in figure 2-21. Assume that the state of the part of type PP1 is E(PP1, *, r), the state of the 

part of type PP2 is E(PP2, *, s-1) and the state of the part of type PP3 is E(PP3, *, t). Let 

us assume that PP2 has to be taken from its current location (such as M4) and be put into 

M2 (according to a given process plan). R1 will send a request to M2 and will wait for its 

response. M2 will predict its next state which is (M2.S): (*, 1, E(PP2,*,s), *). It will check 

its To-Avoid-List with the predicted state. Since they match, M2 will send queries to M1 
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and M3. M1 and M3 will respond to these queries by sending their current states to M2. 

Since the current states of M1 and M3 match with the states in the To-Avoid-List of M2, 

M2 will conclude that the system eventually goes to a deadlocked state. Therefore it will 

not accept the request of R1. And hence the robot will not take the part from M4 until M1 

or M3 change their states. 

PP2

M1

PP1

M2
R1

M3

PP3

 
Figure 2-21: A state before the deadlock 

 

2.5 Summary 

In this chapter we presented our preliminary results on control synthesis algorithm for 

agents which are selfish. We assumed that the agent’s environment is deterministic and 

fully observable. The agent is not subject to failures, but it is possible to reach to fault 

conditions, specifically deadlocks. Two search algorithms were presented and it was also 

shown how to embed deadlock detection and avoidance in this algorithms. 
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3. An Agent and Its Environment – Control Synthesis 

 

3.1 Introduction 

In the previous chapter we assumed that the environment is fully observable, thus the 

agent is aware of environment’s state at any given time. We also assumed the 

environment to be deterministic, that is, the outcome of agent’s interaction with the 

environment is fully predictable. By environment we mean anything which falls outside 

of the agent’s boundary. We understand that this is a loose definition, and depends on the 

level of control and functionality provided by the agent. In real life applications, the 

environment is not always deterministic, and therefore, the outcome of actions taken by 

the agent and their impact on the environment are not fully predictable. Furthermore, at 

any point in time, an agent only has a partial knowledge on state of its environment. The 

imperfect knowledge on the state of environment and non-deterministic nature of 

interactions between agent and its environment pose a major challenge on our synthesis 

solution methodology. In this chapter we will focus our attention on selfish agents which 

interact with a probabilistic and partially known environment. The agent has its own set 

of tasks to carry out, but to synthesize and obtain a cost effective task plan, it must 

interact with its environment and manipulate it, if necessary. We note that the agent can 

be part of a larger distributed system, but for the sake of our analysis here, they are all 

considered as part of the environment. Since our agent is selfish and has no intention of 

collaborating with its environment, it could decide to take control actions without seeking 

any consensus from the environment. It only hopes that the environment will respond 
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positively to its course of actions. We recall that due to the probabilistic nature of these 

interactions, the outcomes can only be measured on some probabilistic scale.  Our agent 

manipulates the environment either for the purpose of avoiding some adverse and 

disruptive conditions, or for the purpose of achieving some desirable or favorable goals. 

In this chapter we will discuss both and show that under some circumstances these two 

problems can be dealt with in a similar way. 

 

3.2 Problem Formulation 

In traditional control synthesis problems, given a fixed plant model P and control 

specification S, the objective is to compute a controller C, such that P ∧ C →  S.  While 

the overall problem remains the same, there are a number of major differences between 

our formulation and the traditional ones [Ramadge 87a, b]: (1) Our agent intends to 

synthesize a controller for the purpose of manipulating its environment. To that end, plant 

model P   describes the perception of the agent from its environment. The true P  , while 

unknown, can only be approximated by making series of observations and model 

identifications. (2) The plant model is probabilistic here. (3) Since the approximated 

model remains incomplete, there is no guarantee that the model will not change when the 

agent reinforces an action against its environment. Furthermore, these changes are 

completely unknown to our agent, and can only be learned through explore and exploit 

mechanisms. (4) Specification S can only be defined on a probabilistic scale. It is defined 

to ensure that disruptive state(s) are avoided in the environment; favorable conditions are 

reached in the environment; or a mixture of the two. (5) Since our agent only observes 

events from the environment (and that is only partially), the control specification S is 
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initially defined based on these observable events. To solve the problem at hand, we will 

need to convert this specification to one defined according to states (and not events). 

 

3.2.1 Background and Preliminaries 

In all scenarios that we cover in this chapter we assume that the agent has a set of sensors 

to observe its own states and the inputs from the environment. We also assume that the 

agent has basic functions some of which can be used to alter state of the environment. 

Our solution approach to this problem will utilize reinforcement learning. The objective 

in reinforcement learning is to learn a control strategy, or policy, for choosing actions 

that achieve a specific goal. In reinforcement learning the actions of the agents are 

directly related to a reward function that assigns a numerical value to each distinct action 

the agent may take from each distinct state. This reward function can be built into the 

agent and is a feedback that the agent receives from its environment when an action is 

performed. This is illustrated in Figure 3-1. 

AGENT ENVIRONMENT

ACTION

REWARD

STATE  

Figure 3-1: Reinforcement Learning 

Generally speaking, an agent builds a sequence of actions, observes the consequences 

and learns a control policy AS →:π , which defines appropriate actions a from set A, 

given the current state Ss∈ . The best control policy is the one that maximizes the 

accumulated reward over time by the agent. 
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To solve this problem, Markov Decision Processes (MDP) has been used in the literature 

[Mitchell 97]. In a Markov Decision Process (MDP) the agent has a set of actions A that 

it can perform in a set of states S. At each discrete step t, the agent senses the current 

state, st, selects and performs an action, at (From now on we may use a for an action and f 

for a basic function interchangeably). The environment responds to this action by 

rewarding the agent, valued at rt = r(st), and generating a succeeding state ),(1 ttt ass δ=+ . 

Note that δ and r are part of the environment and not necessarily known to the agent 

(They can be even nondeterministic, as we will see later in this chapter). We assume that 

S and A are finite. The agent is seeking a policy that produces the greatest possible 

expected reward over time, also known as discounted cumulative reward, defined by 

∑
∞
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t rsV γπ   (3-1) 

In this equation γ is the discount factor which has a value between 0 and 1 and it 

determines the relative value of delayed versus immediate rewards. In case of 

probabilistic outcomes, we use expected outcome as follows: 
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To simplify the notation, we show st as s from now on. Given a fixed policy π, its value 

function Vπ satisfies the Bellman equations: 

∑
∈′

′′+=
Ss

sa sVsPsrsV )()()()( ππ γ   (3-3) 

In these equations Psa is the state transition probabilities. Psa gives the distribution over 

all possible states that can be reached from state s by taking action a. Note that in case of 
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deterministic action-transition functions, Psa is either 0 or 1 for each set of s and a. The 

above equation states that the expected sum of discounted rewards Vπ(s) in state s is the 

sum of  immediate reward r(s) (sometimes shown as r(s, a)) and the expected sum of 

future discounted rewards. These equations can be used to efficiently solve for Vπ. A 

version of Bellman’s equations for the optimal value function is as follows: 

∑
∈′
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sVsPsrsV )()(max)()( ** γ  (3-4) 

The action that attains the maximum in equation (3-4) is: 

∑
∈′∈
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sa
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sVsPs )()(maxarg)( **π   (3-5) 

The objective of the agent is to find a policy that maximizes Vπ , that is, 

ssV ∀≡    )(maxarg* π

π
π   (3-6) 

Once the states, actions, immediate rewards and the discount factor are defined, the agent 

can start calculating the optimal policy by learning V*(its value function) and using 

equations (3-4) and (3-5). The agent can acquire the optimal policy by learning V*, 

assuming that it has perfect knowledge about immediate reward function r and the state 

transition function δ. Two algorithms called value-iteration and policy-iteration can solve 

the Bellman equations and find the best possible policy or control actions for each state 

[Sutton 98]. 

 

In terms of agent’s knowledge of its environment and also the nature of outcomes from 

the environment, there are a number of scenarios as listed below:  

I) Known and fully observable and deterministic environment – Agent’s actions 

and outcomes are deterministic 
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II) Known and fully observable but probabilistic environment – Agent’s actions 

and rewards are probabilistic – An optimal policy can be learned using 

Bellman equations – equations (3-4) and (3-5). 

III) Unknown environment but deterministic – Agent’s actions and rewards are 

deterministic – Agent has to learn the environment once and forever. 

IV) Unknown and probabilistic environment – Agent’s actions and rewards are 

probabilistic – Agent must explore and exploit the environment. 

 

We did discuss scenario I comprehensively in the second chapter. Now let us discuss the 

more complicated scenarios where the agent cannot predict next states (outcome of 

actions) nor it can predict the possible rewards. This problem can be solved using one of 

the reinforcement learning algorithms, the Q-Learning algorithm. In case of deterministic 

environments the value of Q is the reward received immediately upon applying action a 

as the first action from state s, plus the value of the following optimal policy thereafter. 

That is, 

)),(()(),( * asVsrasQ δγ+=   (3-7) 

This value is maximized in equation (3-5), to choose the optimal action a in state s. 

Hence:  

),(maxarg)(* asQs
a

=π   (3-8) 

This rewrite is important, because it shows that if the agent learns the Q function instead 

of V* function, it will be able to select optimal actions even when it has no knowledge of 

the functions r and δ. In each state the agent needs to consider each available action a in 

its current state s and choose the one that maximizes Q(s,a). 
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Q-Learning [Mitchell 97] 

The key problem is to find a reliable approach to estimate training values for Q, given 

only a sequence of immediate rewards r spread out over time. This can be accomplished 

through iterative approximation. There is a close relationship between Q and V*: 

),(max)(* asQsV
a

′=
′

   (3-9) 

Equation (3-9) allows rewriting equation (3-7) as: 

)),,((max)(),( aasQsrasQ
a

′+=
′

δγ  (3-10) 

This recursive definition of Q provides the basis for algorithms that iteratively 

approximate Q. Q̂  is the learner’s estimate of the actual Q. In this algorithm the leaner 

represents its estimate by a large table with a separate entry for each state-action pair. 

That is, the table entry for the pair as,  stores the value for ),( asQ′ , which will be 

learner’s current hypothesis about the actual but unknown Q(s,a). This table will be 

initially filled with random values. The agent repeatedly observes its current state s, 

chooses some action a, executes this action and then observes the resulting reward r = 

r(s,a) and the new state ),( ass δ=′ . It then updates the table entry for ),(ˆ asQ following 

each such transition, according to the rule: 

),(max),(ˆ asQrasQ
a

′′′+←
′

γ   (3-11) 

This training rule uses the agent’s current Q̂  values for the new state s′ to refine its 

estimate of ),(ˆ asQ  for the previous state s. With this method the agent does not need to 



77 

 

know the general functions ),( asδ and r(s). Instead it executes the action in its 

environment and then observes the resulting new state s′  and reward r. 

Q-Learning Algorithm 

Algorithm: Q-Learning 
 
Input: Table entry ),(ˆ asQ for each State s, Action a combination 
 
Output: Table ),(ˆ asQ  
 
procedure Q_Learning ( ),(ˆ asQ : 2-dimensional array) 
var 

r: Real 
s, s′: State 
a: Action 

begin 
For each s, a initialize the table entry ),(ˆ asQ to zero 
Observe the current state s 
Do forever: 

Select an action a and execute it 
Receive immediate reward r 
Observe the new state s′  
Update the table entry for ),(ˆ asQ  as (3-11) 

ss ′←  
end Do 

end 

For case of probabilistic reward and actions (non-deterministic outcomes) the functions 

r(s) and ),( asδ can be viewed as first producing a probability distribution over outcomes 

based on s and a and then drawing an outcome at random according to this distribution. 

With this assumption the Q learning algorithm for deterministic case can be extended to 

handle nondeterministic MDPs. The value πV of a policy π is defined as in equation (3-

2). We now generalize the definition of Q, again by taking its expected value: 
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where )(sPsa ′ is the probability that taking action a in state s will produce the next state 

s′ . So we can re-express Q recursively: 

( ) ),(max)]([),( asQsPsrEasQ
s asa ′′′+= ∑
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γ  (3-13) 

To solve these equations we need a new training rule. Our earlier rule will fail in case of 

nondeterministic environments, because it will fail to converge. This difficulty can be 

overcome by modifying the training rule so that it takes a decaying weighted average of 

the current Q̂  value and the revised estimate. Writing nQ̂ to denote the agent’s estimate 

on the nth iteration of the algorithm, the following revised training rule is sufficient to 

assure convergence of Q̂  to Q: 

[ ]),(ˆmax),(ˆ)1(),(ˆ
11 asQrasQasQ nannnn ′′++−← −′− γαα  where 

),(1
1

asvisitsn
n +
=α  (3-14) 

Where s and a here are the state and action updated during the nth iteration and where 

visistsn(s,a) is the total number of times this state-action pair has been visited up to and 

including the nth iteration. By reducing α at an appropriate rate during training, we can 

achieve convergence to the correct Q function. 

 

Scenario IV above is the one which resembles our case the best, except for the fact that in 

the above scenarios,   the agent and environment states are combined into a single state, 

whereas in our case, these states are clearly separate from each other. Furthermore, in 

our case, the reward function is defined by the agent, but its value, though probabilistic, 

is evaluated based on the direct or indirect response of the environment to the agent’s 
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actions. A word of caution is in place here – since the agent and environment are each 

acting selfishly, there may not be any response (negative or positive) from the 

environment against an action taken by the agent. In such a case, the reward of this 

action, as compared to taking no action, is nil. On the other hand, due to its own 

dynamics, the environment may respond positively or negatively to the action taken by 

the agent. This can be seen as a change in transition probabilities between its states, 

additional states or transitions, etc.  

 

3.2.2 Control Synthesis for the Selfish Agent – Manipulation of Environment 

Let us now move into our own problem. We will start by stating some assumptions:  

1) The environment is initially unknown, probabilistic, and only partially observable. 

2) The environment is considered as an uncontrolled process, but can possibly be 

manipulated by the agent using its basic functions. 

3) The agent does not have any state/transition model of the environment. It only 

receives some input signals from the environment, and it interprets them as 

events.  

4) Environment’s model, as seen by the agent, is assumed to be a Deterministic 

Stochastic Finite Automaton (DSFA). 

 

To apply any synthesis solution methodology, we need to first identify the initial 

perception model of the environment. Having done that we can then apply the Q-learning 

algorithm described above to reach the goal. In section 3-3 you can find the identification 
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methodology using regular language theory. To better appreciate our issues here, we will 

give an analogy from continuous control theory. 

 

In continuous control theory we define the process of determination of the equations of a 

model's dynamics as “model identification.” This can be done off-line: for example, 

executing a series of measures from which to calculate an approximate mathematical 

model, typically its transfer function or transfer matrix. Such identification from the 

output, however, cannot take into account the underlying unobservable dynamics. Even 

assuming that a "complete" model is used, all the parameters included in these equations 

(called "nominal parameters") are never known with absolute precision: therefore the 

control system will have to behave correctly even in absence of their true values. Some 

advanced control techniques include an "on-line" identification process (“Adaptive 

Control”). The parameters of the model are calculated ("identified") while the controller 

itself is running: in this way, if a drastic variation of the parameters ensues (for example, 

if the robot's arm releases a weight), the controller will adjust itself consequently in order 

to ensure the correct performance (See figure 3-2). In this chapter we will use a similar 

concept for the identification of the underlying model, but within context of the discrete 

event control theory. The method of identification is based on the regular language theory 

and proper sampling. 
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Figure 3-2: Adaptive Control Loop 

 

Before we start with the details of our solution approach we will provide an example. 

 

3.2.3 Example I 

The following example will clarify our approach to solve the problems that need 

identification and cost estimation. The solution to this example requires understanding of 

three major concepts that are being addressed in this thesis. The first one is the concept of 

“identification.” The agent has to identify the unknown or partially known environment. 

The identification includes recognition of the state/transition model of the environment. 

Obviously this model is only for the transitions that are observable to the agent. The 

second concept is the “risk analysis” and “fault avoidance” concept. And the third 

concept is the concept of “global search with learning” in partially known and 

probabilistic environments. 

 

Figure 3-3 shows the example. There are 5 machines and two robots. Robot R1 is 

currently located at M3. Part P1 arrives at M1, which has to first visit either M2 or M5 and 

then move to M4 according to the process plan. Based on the specifications of the agent if 

Plant

?

Adaptive Controller

+ 
- 

Plant

∆

Adaptive Controller

+ 
- 
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it chooses the path from M1 to M2, it has to visit the black box that is located in the path 

between M1 and M2 and perform a process control that is defined in its specifications (For 

example the robot has to prevent the black box of transitioning to a bad state). The agent 

does not have any information about neither the model of the process running in the black 

box, nor about how it can influence the behavior of that process – the only known 

information is that the bad event occurring in the black box must be avoided. On the 

other hand if the robot chooses the path from M1 to M5, there is the risk of going to a 

known global bad state (Deadlock happens if R1 takes P1 and waits for M5 to become 

empty, while R2 is doing the same) since R2 is bringing in part P3 into M5, even though 

M5 is occupied with P2. For the agent (R1) to compute the most cost effective path, it may 

need to explore the box, and possibly manipulate it (if possible) as well as calculate the 

risk and may be do some collaboration with R2. In this chapter we will only discuss how 

the agent can identify and control the black box. Risk analysis and collaboration will be 

done in chapter four. The cost effectiveness of this solution compared to other paths and 

synthesizing task plans for the robot will be discussed in chapter five.  

 

 

 

 

 

 

 

Figure 3-3: A manufacturing system – Example 
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3.3 Identification – Perception Model Building 

In this section we discuss how an agent can create a perception model of its environment. 

Perception provides agents with information about the world they inhabit and is initiated 

by sensors [Sutton 98].  

 

We make the following assumptions: 

I) States of the environment have initially no meaning to the agent. What the 

agent knows about its environment is through the events that it can observe. 

And it cannot observe all the events taking place in its environment. 

II) Using its sensors, the agent has the capability to catch certain events 

(alphabets in the stochastic regular language), that are predefined in it. These 

events are equivalent to transitions in the environment’s model. 

III) Control objective related to the environment is initially defined to the agent in 

the context of events. After the uncontrolled environment is identified, the 

control objective is redefined using the environment’s states, which have been 

created in the initial perception model. 

IV) Environment will be modeled as a deterministic stochastic finite automaton 

(DSFA) which always starts from a certain known initial state. 

 
3.3.1 Preliminaries 

Let E be a finite alphabet, E* the set of all strings on E and λ the empty string such that 

for every symbol e in E satisfies eλ = λe = e. A stochastic finite automaton (SFA), A = 
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(E, Q, P, q1) consists of an alphabet E, a finite set of nodes Q = {q1, q2, … qn}, with q1 

the initial node and a set of probability matrices pij(e) giving the probability of event 

E∈e such that the model makes a transition from node qi to node qj led by the symbol e 

in the alphabet. If we assume that pif is the probability that the string ends at node qi, the 

probability )(wp for the string w to be generated by A is defined by: 

∑
∈

=
Qq

jfj
j

pwpwp )()( 1   (3-15) 

∑∑
∈ ∈

−=
Qq Ee

kjikij
k

epwepwp )()()( 1  where w = xe  and x = we-1
  (3-16) 

The language generated by the automaton A is defined as { }0)(:* ≠∈= wpwL E . The 

language that is generated by means of a stochastic finite automaton is called stochastic 

regular language (SRL). 

 

Two SRL are said to be equivalent if they provide identical probability distributions over 

E*. It is not enough that two languages L1 and L2 include the same strings for them to be 

equivalent, also the probability of every string must be equal: 

*
2121 )()( E∈∀=⇔≡ wwpwpLL   (3-17) 

In this work we limit ourselves to deterministic stochastic finite automata (DSFA). This 

means that for every node Qqi ∈ and symbol E∈e , there exists at most one node such 

that 0)( ≠epij . In such cases, a transition function ),( aik δ= can be defined. This 

function gives the final node qk for the transition starting at qi and driven by symbol a. 

The probability of this single transition will be denoted by pi(e) [Carrasco 94]. 
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3.3.2 Identifying Stochastic Regular Languages 

A complete sample consists of two subsets: S+ with strings in L (positive examples) and 

S- with stings not in L (negative examples). If only S+ is presented, then S is a positive 

sample. The algorithm identifies in the limit L if adding new examples to S may only 

produce a finite number of changes of hypothesis. Negative examples may cause the 

algorithm to reject language L′whose only difference with L lays on LL −′ . The concept 

of identification in the limit was first introduced by [Gold 67]. In that model, an 

algorithm A reads strings of a presentation and for each string it conjectures a DFA as the 

solution. We say that algorithm A identifies the DFA A in the limit if and only if for any 

presentation of L(A) the infinite sequence of automata conjectured by A converges to a 

DFA that accepts the same language as the original A. The convergence point depends on 

the presentation. 

 

Samples of SRL consist only of positive examples which appear repeatedly. 

Nevertheless, the statistical regularity is able to compensate the lack of negative data. 

Using ideas from [Oncina 92], [Carrasco 94] introduced in their work an algorithm which 

identifies, in the limit, stochastic regular languages. This algorithm does not grow 

exponentially with the size of S. They use the fact that the probability of appearance of 

every string follows a well defined distribution. 

 

The algorithm first builds the prefix tree T from S and evaluates at every node the relative 

frequencies of the outgoing arcs, incorporating this information in T. We will write as ni 

the number of strings arriving at node qi, fi(e) the number of strings following arc δi(e), 
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and fi(#) the number of strings ending at node qi. The quotients fi(e)/ni  and fi(#)/ni 

estimate the probabilities pi(e) and pif respectively. The algorithm compares couples of 

nodes (qi, qj), varying j from 2 to t and i from 1 to j-1. Equivalent nodes are shown as 

( ji qq ≡ ). As T is built, equivalent nodes have equal outgoing transition probabilities for 

every symbol E∈e  and the destination nodes must be equivalent too; or mathematically 

we can say: 

⎪⎩

⎪
⎨
⎧

≡

=
∈∀⇒≡

)()(

)()(

ee

epep
eqq

ji

ji
ji δδ

E   (3-18) 

This provides a criterion in order to reject equivalence of nodes. However, experimental 

data are subjected to statistical fluctuations and equivalence must be accepted within a 

confidence range. In such case, the nodes will be called compatible. A confidence range 

for a Bernoulli variable with probability p and observed frequency f out of n tries is given 

by the Hoeffding bound [Hoeffding 63]: 

α
2ln

2
1
nn

fp p−  with probability larger than (1-α)  (3-19) 

A recursive algorithm called ALERGIA has been designed [Carrasco 94] to identify 

DSFA. The algorithm is given in Appendix.  

 

There are two types of errors where the algorithm could fail when looking for a solution: 

1. (type α) rejection of compatibility between two equivalent nodes, 

2. (type β) merge of two non-equivalent nodes. 

[Carrasco 94] shows that type α error is bounded by ( )t12 +Aα , where α is the confidence 

level, t is the size of the prefix tree and A  is the size of the alphabet set. Using the 
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Chebychev’s inequality [Feller 50], [Carrasco 94] also shows that the upper bound of the 

type error β is B, where: 

( ) ( )
⎪⎩

⎪
⎨
⎧ −−

=
−

otherwise                                   1
)( and  if        )( 22 εδδδεδεδ pfVarpfVarpB pp  (3-20) 

In these equations, we have: ⎟⎟
⎠

⎞
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n
pp

n
pp

fVar
−

+
−

=δ . We can see that B vanishes with s (sample size), 

because )( fVar δ  tends to zero and so does ε. 

 

Experimentally, it can be shown that ALERGIA needs a very short time and 

comparatively small samples in order to identify a regular set. Evan for large samples, 

only a linear time is needed [Carrasco 94]. 

 

3.3.3 An Illustrative Example (Example II) 

Let us consider the following chemical process in which temperature and pressure are 

changing. A heater is working next to this plant which may cause the temperature to rise. 

Think of an agent which needs to somewhat interact with and manipulate this process (it 

is like the black box in our previous example). This agent cannot observe the heater, but 

can only sense the effects of the heater (temperature/pressure going up or down). The 

agent can also turn on or off a fan in order to regulate the temperature within the process. 

The objective is to identify the uncontrolled process model of this plant using a positive 

collection of samples. For the agent to interact with this process, it must make sure that it 

does not reach to any disruptive or adverse condition (such as explosion when both temp. 
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and pressure are too high). At this point we only identify the uncontrolled process and 

leave the control part for later. Figure 3-4 shows the state/transition model of this plant 

represented as a deterministic stochastic finite automaton (DSFA) which should be 

recognized by the agent. We assume that the agent can use the “reset” function to reset 

the system to its initial position after visiting the only disruptive state (marked as x in the 

figure below).  

 

 

 

 
Figure 3-4: Chemical Process Model 

 
In this model T↑, T↓ and P↑ are events showing that the temperature and pressure have 

passed certain thresholds. Event “Explosion” shows that the chamber has exploded. The 

agent can sense these events using special sensors (switches). λ indicates an empty string. 

The numbers in front of each event indicates the probability of making that transition in 

that state. λ is the empty string. Now suppose that the sample set shown in figure 3-5 is 

collected by the agent. 

T↑T↓T↑P↑ex
T↑T↓T↑

T↑T↓

420T↑P↑ex
212T↑
215λ

T↑T↓T↑P↑ex
T↑T↓T↑

T↑T↓

420T↑P↑ex
212T↑
215λ

 
Figure 3-5: Sample Set S 

With the choice of α = 0.8, one has: 

67.02ln5.0: ≈=
α

γ  
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As shown in figure 3-6, the algorithm starts by building the PTA. Each node is labeled 

with a number corresponding to its lexicographic order. In brackets, the number of strings 

arriving and terminating at the node are plotted. Every arc has a label with the symbol 

(Available events) including the transitions, and in brackets appears the number of strings 

using that arc. Next, the algorithm checks if nodes 2 and 1 are equivalent (compatible). 

Since there is no common event going out of these nodes, they cannot be equivalent; 

therefore the algorithm jumps to the next comparison between nodes 1 and 3. The 

termination probabilities shown below are similar: 

3272.0
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55
167.0110227.0

8
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55
15
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⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

−≈−=′−
nn

pp γp  

Also, the outgoing transitions have similar probabilities: 

3272.0110273.0
8
6

55
40

≈⎟⎟
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⎝

⎛
′

−=−=′−
nn

pp γp  

Here, we observe that nodes 1 and 3 have the potential of being compatible, but first we 

have to see whether )()( 31 ↑≡↑ TT δδ  is true or not. In order to verify this condition, the 

algorithm uses its recursive property and checks first the children of these nodes. 

1[55,15]

2[40,12]

T↑[40]

4[20,0] 3[8,2]

P↑[20] T↓[8]

6[20,20]

ex[20]

5[6,2]

T↑[6]

7[4,0]

8[4,4]

P↑[4]

ex[4]

 
Figure 3-6: Prefix Tree Acceptor (PTA) 
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By executing ALERGIA we find out that nodes 4 and 7 as well as nodes 6 and 8 are 

compatible and can be merged. The resulting prefix tree is shown in figure 3-7. By 

continuing the algorithm, we discover that nodes 2 and 5 as well as nodes 1 and 3 are also 

compatible and can be merged. The result is shown in figure 3-8. Figure 3-9 shows the 

final uncontrolled DSFA as hypothesis. We observe that the structure of this finite 

automaton is the same but the probabilities have been only roughly estimated, due to the 

small size of the sample. Obviously we need larger samples in order to find more 

accurate probabilities and in order to choose a reasonable confidence level.  

1[55,15]

2[40,12]

T↑[40]

4,7[24,0]

3[8,2]
P↑[20]

T↓[8]

6,8[24,24]

ex[24] 5[6,2]

T↑[6]P↑[4]

 
Figure 3-7: Prefix Tree Acceptor after merging states 6-8 and 4-7  

1,3[63,17]

2,5[46,14]

T↑[46]

4,7[24,0]

P↑[24]

T↓[8]

6,8[24,24]

ex[24]

 
Figure 3-8: Prefix Tree Acceptor after merging states 2-5 and 1-3 
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T↑(.73) P↑(.52)

T↓(.17)

Ex(1)

S0(.27) S1(.3) S*(0) ×(0)

 
Figure 3-9: Identified model 

 

3.4 Control Synthesis 

As mentioned earlier in this chapter, our agent manipulates its environment for one of the 

two reasons; either avoid some adverse or disruptive condition(s), or reach a favorable 

condition or state. Here we will discuss the former goal. The latter one will be discussed 

later.  

 

Theoretically speaking, this problem can be formulated as a MDP, and can be solved by a 

Q-Learning approach, assuming that the underlying environment state/transition model 

exists. While we can always start from the initial perception model identified above, we 

note that with every control action of the agent, there is a possibility that this model can 

change not only parametrically but also structurally. Since we are interested in reducing 

the overall probability of reaching bad state(s), the calculations should be done on the 

perception model identified after a control action is taken. Also, due to changing 

underlying models (after each control action), the computation of the future cumulative 

reward becomes rather very challenging. Thus, here we present an approximate 

methodology to synthesize a controller for the agent.  
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3.4.1 The Problem of Avoiding Bad State(s)  

To formulate this problem we note that the agent can only see the “events” and has no 

knowledge about the “states” of its environment. Therefore, any objective for 

manipulating the environment must be stated in terms of these events. From these events 

and also the perception model built, the agent then recognizes the state or condition 

which must be avoided. The objective must be specified in some probabilistic terms, 

since the model of the environment is stochastic. As we can see in figure 3-10, the agent 

must cut off all the possible paths to the bad state. In case of probabilistic systems, this 

can be done by reducing the overall transition probability to the bad state. To formulate 

the criterion for satisfying this goal, we assume that the underlying perception model of 

the environment is a homogeneous Markov chain with a single absorbing state (we 

consider the bad state as the absorbing state). Then we calculate the probability of 

absorption using a phase-type distribution, assuming that the chain starts in a transient 

state.  

 

As for the solution, the agent tries to take those actions which reduce the probability of 

absorption (reaching the adverse state). It stops when this probability reaches a certain 

specified threshold. Hence, S can be defined such that the overall probability of going to 

absorbing state from transient states is less than a given threshold. The tendency in this 

approach is to reduce probability of accessing the bad state from its close by neighboring 

state, so that the maximally permissive property of the model can still hold. Next we 

present the details. We start with some basics of Markov chains and phase-type 

distribution. 
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Figure 3-10: Cutting off the possible paths to the bad state 

 

3.4.2 Markov Chains 

To specify a Markov chain model we only need to identify: 

1. A state space 

2. An initial state probability p0(q) = P[X0=q] for all Qq∈  

3. Transition probabilities p(i, j), where qi is the current state and qj is the next state. 

In DSFA, A = (E, Q, P, q1), state transitions are driven by events belonging to the 

alphabet set E. And the transition probabilities are expressed as pij(e), where e belongs to 

E . In Markov chains, however, we will only be concerned with the total probability p(i, 

j) of making a transition from qi to qj, regardless of which event actually causes the 

transition. By applying the rule of total probability we get: 

∑
∈

=
Ee

iij epepjip )()(),(   (3-21) 

where pi(e) is the probability that event e occurs at state qi. If the transition probabilities 

do not change over time (the probability of going from state qi to state qj is the same as it 

will be at any other time in the future), then we call the Markov chain a Homogeneous 

Markov Chain, which will be the case throughout our discussion. 
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3.4.3 Phase-type Distribution 

A phase-type distribution [Neuts 81] consists of a “general” mixture of exponentials and 

is characterized by a finite and absorbing Markov chain. The number n of phases in the 

PH distribution is equal to the number of transient states in the associated (underlying) 

Markov chain. A PH distribution represents random variables that are measured by the 

time T that the underlying Markov chain spends in its transient portion till absorption. 

Each of the states of the Markov Chain represent one of the phases. Some of the 

probability distributions that can be considered as special cases of a phase-type 

distribution are: 

• Exponential distribution - 1 phase.  

• Erlang distribution - 2 or more identical phases in sequence.  

• Deterministic distribution (or constant) - The limiting case of an Erlang 

distribution, as the number of phases become infinite, while the time in each state 

becomes zero.  

• Coxian distribution - 2 or more (not necessarily identical) phases in sequence, 

with a probability of transitioning to the terminating/absorbing state after each 

phase.  

• Hyperexponential distribution - 2 or more non-identical phases, that each has 

a probability of occurring in a mutually exclusive, or parallel, manner. (Note: The 

exponential distribution is the degenerate situation when all the parallel phases are 

identical.) 
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In the discrete time case we have the following definitions and theorems [Neuts 81] 

[Mocanu 06]: Assume that for 1≥m the matrix P is the transition matrix of a 1+m state 

discrete Markov Chain with one absorbing state (From this point on we illustrate matrices 

and vectors by bold face letters.). Hence, arranging the matrix to have the 1+m th state as 

the absorbing one, we will have 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

0
TT

P , and since T is a stochastic matrix we will have the following condition: 

11 =+ 0TT , where 1 is a column vector of ones. Hence we can have:  

( )1TIT −=0   (3-22) 

The time to absorption of a discrete Markov Chain represented by the matrix P is 

denoted by ),( TαPH , where α is the initialization probability vector. The probability 

density function of this random variable is equal to: 

0TαT 1)( k-kf =  where 0fk   (3-23) 

and we also have 
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3.4.3 Approximate Control Synthesis Methodology 

As we mentioned earlier the objective of the agent is to use its basic functions (actions) to 

avoid a bad event or rather a bad state in the environment. As we can see in figure 3-11, 

the agent starts with an initial perception model of the environment, but incrementally 

expands its knowledge about the environment during control synthesis. The eventual goal 
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of the agent is to learn more about the environment as much as possible and to control the 

process in a way to achieve the desired goal.  

 

 

 

 

 

Figure 3-11: Evolution of the perception model 

 

The basic approach is as follows: (1) Identify the uncontrolled perception model of the 

environment based on the collected samples. (2) Search for all the possible direct paths 

(cycles are excluded) from the initial state to the bad state by creating the “forward-path 

structure,” which will be explained more in detail later in the chapter. (3) To deactivate 

(disable) those paths to the bad state by searching through the basic functions and 

selecting and applying the appropriate ones. This will be done by a search process that 

considers nodes of the forward-path structure from bad state to the initial state 

(backward-search) level by level.  

 

It is known that in a “maximally permissive” context the agent must first disable the 

events that are in the direct neighborhood of the bad state. If that is not possible through 

the direct neighbors then the second closest neighbors (nodes) will be examined and so 

on. Hence in this methodology the agent starts the search from a level that is the closest 

to the bad state. The agent then applies its basic functions in every node in the level and 

Complete Model

Initial Model

Identification

Identification

Identification

Complete Model

Initial Model

Identification

Identification

Identification
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identifies the newly generated finite automata. Every finite automaton outputs a reward to 

the agent which is a function of the probability of the time to absorption. If any of the 

received rewards is satisfying the objective (probability is less than a certain threshold) 

then the corresponding finite automaton is the solution. If the received rewards in that 

level do not satisfy the objective but at least one of the rewards is greater than the latest 

reward from the previous level then the new finite automaton with the best action-node 

combination will be selected.  The selected finite automaton will be the base finite 

automaton for the next level and the agent moves to the next level in its search. 

 

In order to proceed we first need to slightly change the definition of the DSFA, in order 

to be able to embed the actions of the agent in the mode. Initially we defined DSFA as A 

= (E, Q, P, q1) consisting of an alphabet E, a finite set of nodes Q with q1 the initial node 

and a set of probabilities pij(e) of transitioning from node qi to node qj led by symbol e in 

the alphabet. With transitions affected by the basic functions of the agent, we redefine the 

elements of P as pija(e), where pija(e) is giving the probability of a transition from qi to 

node qj led by symbol e when action a is applied in node qi. Figure 3-12 illustrates this 

concept. 

 

 

 

Figure 3-12: Basic function a applied in node qi 

 

a e (pija(e))
qi qj

a e (pija(e))
qi qj
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Agent’s goal is to avoid a state qx with maximum likelihood. To do so, we first generate a 

node-arc structure, called “forward-path structure.” This tree basically indicates all the 

paths from the initial state to the bad state by eliminating all the cycles. 

 

Our approach here is similar to what has been commonly used to solve the state 

avoidance problem in supervisory control literature. Starting from a designated bad state, 

the immediate states with direct access to the bad state are examined first. If the events or 

transitions between theses states and the bad state are controllable, then the problem is 

solved by disabling the respective events. If the event leading to the bad state from a 

neighboring state is not controllable, then this state is designated as a pre-bad state, and 

its neighboring states are examined. The process continues until all paths leading to the 

bad state are disabled, or no controller is found. We basically take a similar approach 

except for the fact that there the underlying models were assumed to be deterministic, and 

a complete model of the underlying process or plant model existed. For us, perception 

model is non-deterministic and that the complete model of the environment is unknown. 

Having said this, we will also travel backward in state space, but as soon as a control 

action by the agent satisfies our avoidance criterion, we will stop. For this approximation 

to work properly, we must assume that, except possibly for the bad state, all the other 

states are accessible from each other. We will return to this discussion later on, after we 

present all the necessary formulations. For now we will present the algorithm for creating 

the forward path structure: 

 
Algorithm: forward path search 

Input: Finite Automaton A = (E, Q, P, q1) where elements of P are defined as pija(e) 
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Output: Node n 
 
procedure forward_path_structure (fa: FiniteAutomaton) 
var 

m, n, tmp: Node 
q: Queue 

begin 
n = q1 
q.enqueue(n) 
while q is nonempty 

Node m = q.dequeue() 
for each tmp in neighbors[m]  

if not qualified(m, tmp)  
continue 

  end if 
tmp.data = c.data  
tmp.parent = m 
m.children.add(tmp)  
q.enqueue(tmp) 

end for 
end while 
 
return n 

end 
 
 
Algorithm: qualified 
 
Input: Nodes m and tmp 
 
Output: Boolean 
 
Comment: This algorithm examines a temporary node as a leaf in the current forward path 
structure and decides whether it is qualified to be added to the structure or not. 
 
procedure qualified (m: Node, tmp: Node) 
var 

m, tmp: Node 
begin 

if m.data = tmp.data 
 return false 
end if 
while not (m.parent is nothing) 

if m.parent.data = tmp.data 
 return false 
end if 

end while 
 
return true 

end 
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The example in figure 3-13 clarifies the method of creating the forward-path structure. 

The root of the tree is the initial state (level 0). The next level of the tree (level 1) 

includes all the neighbor nodes of the initial state, namely q2 and q4. Both nodes are 

qualified to be added to the structure. The second level of the tree (level 2) includes all 

the direct neighbors of q2 and q4. The neighbors of q2 are q1, q3 and qx. Since q1 is the 

initial state therefore we dismiss it (cycle is eliminated). Node q3 had not been seen 

before therefore we add it to the forward path structure. qx is the bad state and therefore is 

being considered as the leaf of the tree. On the other hand q4 has one neighbor namely qx. 

It will be considered as another leaf of the tree. According to figure 3-13 there are 3 paths 

from starting to the terminating state without having any cycles. They are (q1→ q2→ qx), 

(q1→ q4→ qx) and (q1→ q2→ q3→ qx). 

 

 

 

 

 

Figure 3-13: A finite automaton and its corresponding forward-path structure 

 

The last step is to arrange all the batches using the output of the above algorithm. We 

define a batch of nodes i as the set of nodes which are i nodes apart from the terminating 

node, inclusive. We also make note of those nodes that have been appeared in higher 

level batches at least once. This is because that an agent cannot apply two or more 
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different actions at one single node. Continuing with the example of figure 3-12, we will 

have the batches depicted in figure 3-15.  

 

 

 

 

 

 

Figure 3-15: Restructuring the forward-path structure 

 

Now that we have found all the paths from the starting state leading to the bad state(s), 

the objective of the agent will be to reduce the probability of entering to the bad state to a 

given threshold through all of these paths. Notice that these paths are set of nodes that 

start from any leaf of this structure and end up into the bad state. 

 

3.4.3.1 Reward Criterion and Control Policy 

We assume that agent’s clock (measured in discrete time ticks) is independent of the 

environment’s clock and we also assume that the agent must interact with its environment 

for k ticks given the initial state (k is assumed to be known to the agent). We consider 

environment’s perception model as a homogeneous Markov chain with a single absorbing 

state. The objective is to reduce the probability of absorption within time period k≤ , to 

below ( 10 ≤≤ ε ).  From equation (3-24) we know that 1kkXP αT−=≤ 1)(  where X is 

the random variable representing the time to absorption. We want to make sure that 

regardless of what state the agent finds its environment in, and as long as their 

qx

q3q2 q4

q2

Batch1

Batch2

qx

q3q2 q4

q2

Batch1

Batch2
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interaction takes k≤ time ticks, the overall probability of reaching the bad state is less 

than a pre-specified threshold. That is, we have for S, 

ε≤−=≤= 1k
FA kXPD αT1)(  (3-25) 

The agent starts from batch one of the forward-path structure (there are t nodes). We 

denote the set of nodes in batch j by 

{ })1for   is at  applied  then  (if and jtno_actionqfbatchqbatchqqan
iiii stsjssj <≤∈∈= (3-26) 

Starting from any node in anj, the agent applies each of its m basic functions to the first 

node (if the preconditions of the functions are met and the function is available) followed 

by the identification of the new controlled model of the environment. As such, at most m 

new finite automaton are created. With the first finite automaton satisfying (3-25), the 

alghorithm stops, and a solution is obtained. If no such solution exists, but there are DFAs 

with positive rewards, the one with the highest reward is selected. If none of the DFAs 

creates a positive reward, the node is ignored and the next node in the same level is 

examined. When all the nodes in anj are examined (t nodes), then the algorithm moves to 

the next j, investigating the finite automaton with the highest reward in the previous 

batch. The same process is applied to the nodes in batch j + 1 until the solution is found 

or some termination criterion is reached. The criterion for choosing a finite automaton 

can be set according to the rules of reinforcement learning. We can choose the one that 

gives the agent the highest reward. Or to conduct “exploration” we can decide to choose a 

path which does not necessarily give the highest reward.  

 

The reward function is dependent on DFA defined in (3-25) where FA indicates the 

corresponding finite automaton. The action-node pair that reduces the value of DFA the 
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most will get the highest reward and can therefore be selected for the next step. This is 

not necessarily true if the agent decides in the next step to explore rather than to exploit. 

Equation (3-27) can then be used for each node for a given level of the forward-path 

structure to select the control policy with the highest immediate reward: 

( ) newFAFA
Ff

qFA FADDpolicy
mqfm
→=

∈
,

-maxarg,  (3-27) 

In equation (3-27) 
mqFApolicy , is the policy selected for node qm in current finite 

automaton FA, F is the set of basic functions, 
mqfFA , is a new finite automaton when 

basic function f is applied in qm and FAnew is the newly generated finite automaton by 

selecting the desired policy. In this equation 
mqfFAFA DD

,
-  is the reward. Equation (3-27) 

shows that with 
mqFApolicy ,  the agent moves towards a direction which brings it closer to 

the desired goal. 

 

When the agent moves to the next batch, it must also carry all the information about the 

new model to the next level in order to make correct decisions. Figure 3-16 shows the 

structure that will be used for the storage of the finite automata during the search in order 

to achieve the mentioned goal. Each level of this linked list structure corresponds to a 

batch. And in each level the linked list includes at most n elements if we assume that n is 

the number of nodes in that batch. Each best node-basic function combination generates a 

new FA and therefore a new element in this structure. The last best FA in each batch will 

be moved to the next level as the starting FA. Finite automata are indicated as i
jFA , where 

i is the level and j is the index of the corresponding node in that level (batch). ( )imm fq , on 
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top of each element in the linked list shows that node qm has been effected with the basic 

function f in level i.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-16: Finite Automata Linked List Structure 

3.4.3.2 Special Cases and Drawbacks 

I. If a node can make two or more transitions to the upper level in the forward-path 

structure, then only one common basic function can be applied to that node. 

Otherwise there will be a conflict between two actions in that node. 

II. If a new FA generates a new node (state) that has a smaller distance to the bad 

state than the current active node (which is being evaluated in the current level), 

then we will ignore this option. The reason is that the upper levels in the tree have 

already been checked in the algorithm and we cannot go back to the previous 

levels in the search.  
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III. We conjecture that the algorithm presented above will work better for some 

topologies of the DSFA and worse for some others. Especially, we believe that for 

strongly connected DSFAs the algorithm will terminate faster and more 

accurately than others. 

 

3.4.3.3 Algorithms 

Algorithm: Control Policy 

Input: FiniteAutomaton FA0, Integer k 
 
Output: (FiniteAutomaton FA, LinkdedList faLinkedListStructure) 
 
Comment: The uncontrolled finite automaton will be identified by the agent and will be indicated 
by FA0 and inputted to this algorithm. It will be the first element of the output finite automaton 
linked list structure. The forward-path structure will be built for FA0. Set ani will be generated 
based on the forward-path structure. For all nodes in ani, the agent applies all m possible basic 
functions },...,,{ 21 mfffF =  to each node and creates new FA for each node-basic function 

combination. It is obvious that the preconditions and other rules },...,,{ 21 srrrR =  regarding basic 
function fj, must hold for the agent in order to be able to apply fj at any node. Also two different 
basic functions cannot be applied to the same node at once. These finite automata will be stored 
in a list called Candidate_FA. Out of the list in the candidate FAs, one with the highest reward 
(exploitation) or any other one based on the exploration criteria will be chosen and added to the 
FA linked list structure. If the reward is zero or negative then the agent moves to the next batch. 
The selected candidate will be the base for the next level calculations (active FA). This procedure 
will continue for each and every node in each level until a solution is found or until all nodes are 
examined and the agent cannot find any solution. 
 
procedure control_policy (FA0: FiniteAutomaton, k: Integer) 
 
var 

candidate_FA, batch: List 
activeFPS, qn: Node 
f: BasicFunction 
DactiveFA, DtempFA: Double 
F: BasicFunctionsList 
faLinkedListStructure: LinkedList 
activeFA , tempFA: FiniteAutomaton 

begin 
activeFA = FA0 
faLinkedListStructure.add(FA0) 

 if ε≤activeFAD   
 return (activeFA, faLinkedListStructure) 
 end if 
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activeFPS = forward_path_structure(activeFA) 
do forever 

for each batchj in activeFPS 
 create anj 
 for each node qn in anj 
  for each f in F select f /*selecting can be based on strategic experimentation to 

add the exploration factors to this algorithm*/ 
  if f can be executed based on the rules and if there is no other function 

already applied in qn  
  candidate_FA.add(identify(FA, qn, f)) 
  end if 
  end for 
  tempFA = FAnew based on equation (3-24) /*or any other exploration criterion 
  if FA_qualified(activeFA, tempFA, batch, j) 
  if ε≤tempFAD   
   faLinkedListStructure.add(tempFA) 
   return (tempFA, faLinkedListStructure) 
   end if 
  activeFA = tempFA 
  activeFPS = forward_path_structure(activeFA) 
  candidate_FA.clear 
  update anj 
  end if 
 end for 

end for 
if maxCost has been reached then return (Nothing, faLinkedListStructure)  /*the agent 

has a upper bound cost that it does not want to surpass  
end do 

end 
 

Algorithm: Finite Automaton Qualification 

Input: FiniteAutomaton FA0, List k 
 
Output: Boolean 
 
Comment: This algorithm examines a temporary finite automaton in the Control Policy algorithm, 
compares it to the current active finite automaton and decides whether it is qualified to be added 
to the finite automata linked list structure. 
 
procedure FA_qualified (activeFPS: Node, FAtemp: FiniteAutomaton, batch: List, j: Integer) 

var 
tempFPS: Node 
i: Integer 

begin 
 tempFPS = forward_path_structure(FAtemp) 

for each batchi in tempFPS and each batchj in activeFPS where i < j 
 if there is a new node in batchi that is not in batchj then return false 
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end for 
end for 
return true 

end 
 

3.4.4 Example III 

Let us consider the chemical process of section 3.3.3 again to show this approach in more 

details. As you can see in figure 3-17, we have a furnace that is filled with air. There is a 

heater that turns on and off by some means that are unobservable and unknown to the 

agent. Its basic functions include FAN_ON, FAN_OFF and NO_ACTION. FAN_ON 

function turns on the fan in the furnace to reduce the temperature, FAN_OFF turns the 

fan off. The effects of these basic functions are “unknown” to the agent. Each function 

has its own preconditions, postactions and poststate (see chapter two). The current state 

of the agent is: fan = off. The objective of the agent is to interact with the environment 

(the furnace) for k = 10 clock ticks and keep the probability of transitioning to the 

explosion state less than ε = 0.7. The set of events that the agent can sense from the 

environment are: λ, T↑, T↓, P↑, P↓ and Explosion. λ indicates an empty string. T↑, T↓, 

P↑, P↓ are events showing that the temperature and pressure have passed certain 

thresholds. Event “Explosion” shows that the both temperature and pressure have passed 

certain threshold and the chamber has exploded. The agent can sense these events using 

special sensors (switches). We assume that the environment always starts from the same 

starting state. 
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Figure 3-17: Chemical Process 

 

Solution: Using the method described in section 3.3.3, the agent identifies the model 

shown in figure 3-9. It then triggers the Control Policy algorithm taking the identified 

model as its input. The first step is to test the uncontrolled finite automaton (FA0) for its 

time to absorption probability. If is satisfy the required threshold then there will be no 

need for control policy search. Based on the structure of the model (Figure 3-9) we have: 
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less than ε = 0.7. Hence the algorithm continues.  

 

Figure 3-18 illustrates Forward_path_structure and the batches. In the first batch we have 

only S*. There is only one function available for the agent to execute, namely FAN_ON. 
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Air Outlet
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Figure 3-18: Batches of FA0 

 

After applying basic function FAN_ON in S* the agent identifies the new generated FA. 

The sample set obtained is shown in figure 3-19. The output model is depicted in figure 

3-20. As you can see, there is one new transition edge added from S* to S1, which results 

in lesser probability of absorption while k = 10. In other words the perception model of 

the environment has been changed by manipulating system dynamics using external 

means. 

 

 

 

Figure 3-19: Sample set S when applying fan_on in S* 

 

 

 

 

 

Figure 3-20: Identified model 1
1FA  
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This new model has the same number of states and the same forward path structure. The 

new transition creates only a cycle which is eliminated in the forward path structure. The 

agent will now calculate the time to absorption for the new model. Based on the structure 

of the model shown in figure 3-20 we have:
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As we can see, the probability of time to absorption has been reduced to 0.8977 but it is 

still not enough to stop the search. The agent adds model of figure 3-20 to its finite 

automata linked list structure and moves to the next step. We recall that by applying 

FAN_ON in S*, the agent can now use only FAN_OFF as its basic function. The next 

batch to look at is batch2 which includes node S1. By applying FAN_OFF in S1, the agent 

will increase the probability of time to absorption therefore the environment’s reward will 

be negative and therefore it will be rejected. Hence the agent will move to the last batch. 

The same scenario repeats since the probability increases again. At this point, depending 

on the computational costs, the agent may stop the algorithm without finding any control 

solution or continue the search by going back to FA0. 

 

By visiting the first batch again the agent comes back to the S* state and now we suppose 

that in this iteration the agent will choose NO_ACTION instead of FAN_ON, even 

though FAN_ON has a higher reward as opposed to reward zero, associated with 
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NO_ACTION. By doing so, the agent will move to the next batch and this time it will 

apply FAN_ON in S1.  

 

 

 

 

Figure 3-21: Sample set S when applying FAN_ON in S1 

 

 

 

 

Figure 3-22: Identified model 2
1FA  

Based on the structure of the model shown in figure 3-22 we have: 
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As you can see the probability of time to absorption has been drastically reduced and 

therefore the agent has found a control solution. 
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3.4.5 Example IV 

Let us consider the chemical process again but this time we assume that the agent has 

access to a valve which it can open or close to reduce the pressure. Its additional basic 

functions now include VALVE_OPEN to open the valve to reduce the pressure and 

VALVE_CLOSE to close the valve. The current state of the agent is: fan = off and valve 

= close. The objective of the agent is to interact with the environment (the furnace) for k 

= 10 clock ticks and to keep probability of absorption within a period k≤ , to less than ε 

= 0.7. 

 

Solution: Using the same approach described previously, the agent identifies the model 

shown in figure 3-9. We know that the structure of figure 3-9 does not satisfy the control 

requirements. Having triggered the search algorithm, our agent applies two of its basic 

function in node S* of the first batch. Suppose that by applying FAN_ON in S* the 

structure in figure 3-20 is identified, with the probability of time to absorption equal to 

0.8977. By applying VALVE_OPEN in S* the agent obtains a better probability of time 

to absorption, i.e. 0.8774, with the structure shown in figure 3-23. Therefore this structure 

will be added to the finite automata linked list structure. 

 

 

 

 

Figure 3-23: Identified model when applying VALVE_OPEN in S* 
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Now the agent moves to the next batch. In this batch we have node S1. The available 

functions will be VALVE_CLOSE and FAN_ON. VALVE_CLOSE will increase the 

probability of time to absorption; therefore it cannot be an option. On the other hand, 

applying FAN_ON in S1 will generate the sample set shown if figure 3-24 with the 

corresponding model shown in figure 3-25. This function thus, changes the perception 

model of the agent from its environment. 

 

 

 

 

Figure 3-24: Sample set S when applying FAN_ON in S1 

 

 

 

 

Figure 3-25: Identified model when applying FAN_ON in S1 

 

As we can see in figure 3-25, the new model has an additional state and three new 

transitions. This shows that the agent can learn a more complete model by applying some 

new basic functions. By calculating the new time to absorption for the new model, we 

obtain: 
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which shows that the combination of two basic functions can also be used to reduce the 

probability of absorption within a period k≤ . 

 

3.4.7 Complexity 

What was presented above is a machine learning problem. In an ideal case the agent must 

visit all possible states indefinitely many times to have the best identification results. To 

make an exact calculation we can consider the following: 

 

The search complexity is dependent on the number of states and number of available 

basic functions. Suppose that the number of states in the complete model of the 

environment is n and that the number of available basic functions is m. In the worst case 

the agent must check mn different combinations, which is exponentially complex in time. 

 

In a complete search, every node in each level of the forward-path tree must be 

examined. The order in which the basic functions are applied is important. If basic 

function f1 is applied to node A first and then basic function f2 is applied to node B, the 
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resulting FA might have a different structure if the order was changed. If we consider n 

nodes in each level (worst case) of the forward-path structure that can have k levels and if 

we also consider m basic functions for the agent, then there will be mn
 × n! × k different 

combinations. 

 

Despite the worst case non-polynomial complexity of our approach, we believe that the 

computational efforts can be drastically reduced by introducing cost factors. We recall 

that our agent is seeking a solution here only for the purpose of estimating a cost for 

various task plans that it must make for its own purposes. Therefore, if the estimated cost 

of obtaining a solution here (which includes the cost of learning amongst other things) 

exceeds some threshold that the agent calculates independently, such a solution will not 

be beneficial any more. We will discuss this more rigorously in section 3.4.8 and as well 

as in chapter 5 of this dissertation.  

 

3.4.8 Improving the Search Algorithm 

I) As you can see the algorithm Control Policy does not specify how basic functions are 

chosen by the agent. As mentioned before one obvious strategy would be for the agent in 

state S to select the basic function that maximizes the immediate reward, there by 

exploiting its current model approximation. However, with this strategy the agent runs 

the risk that it will overcommit to combination of functions that are found during the 

early training, while failing to explore other combination of functions that have even 

higher rewards. For this reason, like in classical Q learning algorithm, it is very common 

to use a probabilistic approach to selecting functions. Actions with higher rewards are 
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assigned higher probabilities, but every “qualified” action is assigned a non-zero 

probability. 

 

II) Even though a solution is found for the first time, the agent should not rely on the 

solution forever. It should continue to search for other solutions in the next instances, 

because of the probabilistic nature of the problem. If the agent comes always to the same 

conclusion then at some point with a certain confidence interval it can deduce that the 

current solution is the best possible solution.  

 

III) During iterations the agent does not have to start always from FA0. After the first 

iteration when the solution is not found the agent can start the main loop in any of the 

levels of the finite automata linked list structure (Figure 3-16). 

 

IV) Cost: in order to reduce the total cost of the computation we can assign the following 

cost factors to the search steps: 

a) cost of each basic function (cf): Some of the basic functions can have a negative 

cost and some of them can have a positive cost (for instance FAN_OFF can save 

energy for the agent, and therefore can be assigned a negative cost.). 

b) cost of the time that a basic function (ct) is being used during the control process: 

This can be easily quantified by measuring the distance of the active node from 

the bad state. 

c) cost of learning (cl): The number of iterations that an agent goes through the 

training iterations.  
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Hence: 

ltftotal cccC ++=     (3-28) 

Obviously, these costs must be normalized to the same scale. The sum of all these costs 

can be deducted from the reward received from the environment:  

totalFA ClkXPtD ×−≤×= )(   (3-29) 

In equation (3-26) t and l are normalizing constants. 

 

3.4.9 The Problem of Reaching a Favorable State 

Here the agent strives to guide the environment towards a state where a certain event has 

a higher chance of occurrence. As soon as the desired event is located in the 

environment’s perception model, the problem becomes the problem of reaching a 

favorable state probabilistically. 

 

There are two cases to consider depending on if the desired event occurs somewhere in 

FA0. We present only a solution for the first case where the desired event can be located 

directly in the initial model. The methodology for solving this kind of problems is quite 

similar to the problem of avoiding a bad state, except that the criterion for entering to the 

desired state changes from (3-25) to (3-29). 

ε≥−=≤= 1k
FA kXPD αT1)(   (3-30) 

The forward-path structure will be constructed in the same way and a similar 

methodology as in the case of avoiding a bad state will be applied to this problem for 

satisfying inequality (3-27). 
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3.4.10 Conclusion 

In this chapter we introduced an algorithm that utilizes the ideas from reinforcement 

learning to exert control on an unknown environment. This algorithm identifies a 

perception model of the environment at each level using regular language theory and 

adapts its search to the newly identified models. The search algorithm is goal oriented. 

The agent examines its basic functions around the bad state to save the maximally 

permissive property of the process and to reduce the computational cost. In this method 

we showed that even a process that is continuous in time can be controlled using a 

discrete event control theoretic framework. 

 

3.5 Implementation Issues 

We understand that in real life examples, the issue of observing the environment after 

each and every action and taking samples for the purpose of building a perception model 

could be either infeasible or in many instances too costly to work. Therefore, for our 

paradigm to be applicable for real life examples, we must think of simulations which 

capture the dynamic behavior of the environment.  

 

Going back to our illustrative example, it is quite reasonable that we have access to a 

simulation model of the chemical process which also computes the various disturbances 

of its environment. In such a case, our control synthesis model can be used and learning 

procedures can be applied using the simulation. 
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4. Risk Analysis and Collaborative Fault Avoidance 

 

4.1 Introduction 

Our main focus in this chapter is on how the agents perfrom risk analysis during the 

synthesis and how they can overcome a potential faulty state using collaboration 

concepts. We recall that the environment model is probabilistic and unknown. In chapter 

three we showed how agents must prevent a fault condition while they are interacting 

with some environmental components. We showed a control synthesis strategy that our 

agent can take into affect the state of this environmental component for the purpose of 

avoiding adverse conditions, or creating some desirable effects. Here, we assume that our 

agent could reach to a state which in conjunction with other agents could result in a 

global bad condition. We will assume that the nature of such a global state is known a 

priori. But, the likelihood of reaching this state must be calculated by the agent at 

different times. Should such likelihood be too high (compared to some threshold limit) 

the agent must then ask for collaboration from other agents. In this chapter, we will 

address both risks calculation and collaboration scheme.  

 

The collaborative measures discussed in here are based on game theory concepts. The 

first step to avoid the global faulty state uses pure communication. The agents may 

announce their local state to each other. If this step does not help, they may decide to 

move to the second level of collaboration where they execute some sort of game theory 

algorithm to find the best possible solution by changing their schedule. The specifics of 

scheduling changes are outside of the scope of this dissertation. 
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4.2 Problem Definition 

The risk of reaching a globally defined fault state depends on and is defined by the 

agent’s perception of its own behavior and that of other agents. Agents create their own 

perception models. They can also create models of their perception from others or they 

can receive the models from other agents through communication. In this sequel we will 

assume that any model of the environment is probabilistic and originally unknown by any 

agent. 

 

Since a fault state is defined by a collection of states of several agents visited during a 

specific period of time, we need to include “time” into our modeling paradigm. We will 

assume that agents share a common time origin. Our new paradigm requires us to switch 

from Markov chains we used in chapter three to continuous time Markov processes. 

 

Let FS  be a global fault state and Y define the set of all agents which are involved in this 

fault state. That is 
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where the tuple ( )( )iii
Fi ttS 21 ,,,Φ  shows that agent iΦ  is in state i

FS during time 

period ( )ii tt 21 , . Note that FC is a minimal set, that is, removal of one or more agents from 
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it will result in the elimination of the fault condition. If no non-null FC set is obtained for 

any given system, then we say that system experiences no faults.  

 

 

 

 

 

Figure 4-1: Timelines 

Figure 4-1 illustrates a fault condition. Clearly ( )mtt 2
2
1 ,  is the time period where the fault 

condition holds. 

 
 
4.2.1 Formulation of Risk 

 
We define the risk of agent 1Φ entering into global fault state SF by: 
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That is, the risk for agent 1Φ  is the probability that its visits to state 1
FS during 

( )1
2

1
1 , tt overlaps with the overall condition FC becoming true.  

 

4.2.2 Assumptions 

We make the following assumptions: 

I) Any global fault state is known to all agents. 

II) Agents are initially modeled as DSFA – The identification methodology was 

fully described in chapter 3. These models are either given to the agents, or 
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they learn about these models gradually when system evolves. We will treat 

these models as continuous time Morkov models for the purpose of risk 

calculations. 

III) The agent, who initially initiates its risk calculation, knows its own schedule. 

In other words, if agent 1Φ is initiating the risk calculation then the 

assumption is that the time period ( )1
2

1
1 , tt is known and will be communicated 

to others. 

IV) Agent’s action does not affect the perception model of the other agents. In 

other words the agents are independent of each other. 

 
 
4.3 Methodology Overview 

Agent 1Φ calculates its risk ( )),(, 1
2

1
1

1
1

ttSRisk FΦ , using its own model and its perception 

models of the other agents. We assume that the perception model of other agents is 

stationary over time period leading to ( )1
2

1
1 ,tt . Without loss of generality we will assume 

that risk calculation is initiated by agent 1Φ . 

 

We will present two approaches to calculate the above risk. First we show a shuffling 

approach that agent 1Φ uses to compute its risk. By shuffling the perception models of all 

the agents involved in the fault condition, 1Φ builds a global continuous time Markov 

chain. From this model, 1Φ then estimates the probability of absorption to global bad 

state during ( )1
2

1
1 ,tt . 
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The second approach avoids shuffling; thus avoiding state space explosion problem. 

While it is only an approximation and is less accurate, it has some advantages over the 

shuffling approach. We will discuss these later. 

 

4.3.1 Time to Absorption 

In order to calculate the risk, an agent needs to know when it will make a transition to its 

potential local bad state. Like in the previous chapter we will use the time to absorption 

concept to calculate this parameter. It is known that the probability density function of 

the time to absorption in a homogeneous, single absorbing state Markov process is given 

by  

)()( 1Tα T −= tetf   (4-4) 

where α is the initial probability vector. 1 is vector of ones and T is the matrix of the 

transient states. Using distribution function (4-4) and the assumption of the potential local 

bad state 1
FS  being a temporary absorbing state, we can calculate the probability of going 

to 1
FS . 

 

4.3.2 Shuffle 

In the shuffle approach we consider the full generator of all the involved Markov 

processes. Then we construct the shuffled Markov process which shows the full 

behaviour. The transition matrix of the shuffled model shows the transitions from any 

composite state to any composite state. The global fault state can now be easy identified 

using set Y. By arranging the global transition matrix to an appropriate shape, we will 
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now be able to calculate the probability distribution of the time to absorption by using 

equation (4-4) and the cumulative probability using following equation: 

1tetF Gα−=1)(   (4-5) 

where 111
321 ΦΦΦ ⊗⊗= αααα is the shuffled initial probability and G is the shuffled 

transition matrix. Then the risk in the time interval ( )1
2

1
1 , tt  is computed as: 

( )1

1 1 1 1 1 1 1 1 1
1 2 1 2 2 1 2 1, ( , ) ( ) ( ) ( ) ( ) ( )FRisk S t t P t T t P T t P T t F t F tΦ = < < = < − < = −  (4-6) 

 

4.3.3 Approximation Method 

We assume that during ( )1
2

1
1 ,tt  only one visit to i

FS is possible by agent iΦ . Note that an 

agent iΦ  may enter and exit i
FS during ( )1

2
1
1 ,tt  many times, but we assume that the 

probability of such an event is too small and can be neglected.  

 

We categorize agents by their time when they enter their corresponding fault states i
FS . 

Two categories are defined: 

• Agent iΦ is already in i
FS at 0t . We say 0Y∈Φi . 

• Agent iΦ  enters into i
FS after 0t . We say 0Y∉Φi . 

These two sets are depicted in figure 4-2. 

 
 
 
 
 
 

 

Figure 4-2: Two Categories 

0Y∉Φ i 0Y∈Φ i0Y∉Φ i 0Y∈Φ i
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Each of these categories can further be subdivided into different subcategories. As shown 

in figure 4-3, agents that belong to 0Y∈Φi are divided into two groups, namely those 

that leave their fault states earlier than 1
1t  and those that leave these states after 1

1t . 

Obviously, agents in the first subcategory cannot contribute to the fault condition. 

Therefore we only consider the second subcategory, denoted by B. In figure 4-3 
iendT is 

the time when agent iΦ leaves its bad state i
FS . 

 
 

 

 

 

Figure 4-3: Set B 

Agents that belong to 0Y∉Φi can be subdivided into two groups depending on when 

they reach their corresponding fault states (after or before 1
2t ), as shown in figure 4-4. 

Clearly, the ones with this time greater than 1
2t , are not of interest to us here. In figure 4-4 

ibeginT indicates the time when the agent makes a transition to state i
FS . 

 
 
 
 
 
 
 

 

Figure 4-4: Subcategories of 0Y∉Φi  

0Y∈Φ i

1
1tT

iend p

1
1tT

iend ≥
B

0Y∉Φ i

1
2tT

ibegin f

1
2tT

ibegin ≤
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Agents with time to absorption 
ibeginT  less than 1

2t can further be divided into two 

subcategories, as it can be seen in figure 4-5. The first category includes those agents that 

leave their fault state earlier than 1
1t . The second category includes those agents that leave 

their fault state after 1
1t . The first subcategory will not contribute to any fault, thus will be 

discarded. The second category on the other hand is of interest to us here and is denoted 

by A. Figure 4-6 shows all the categories and subcategories. 

 
 

 

 

 

Figure 4-5: Subcategory A 

 

 

 

 

 

 

Figure 4-6: Categories and Subcategories 

From this point on we may show 
ibeginT by iT  (time to absorption) and 

iendT by iiT τ+  

(time to absorption plus corresponding Sojourn time). These notations may be used 

throughout this chapter interchangeably.   

0Y∉Φ i
1
2tT

ibegin ≤

1
1tT

iend p

1
1tT

iend ≥ A

0Y∈Φ i0Y∉Φ i

1
1tT

iend p

1
1tT

iend ≥

1
2tT

ibegin f

1
1tT

iend p

1
1tT

iend ≥
BA

0Y∈Φ i0Y∉Φ i

1
1tT

iend p

1
1tT

iend ≥

1
2tT

ibegin f

1
1tT

iend p

1
1tT

iend ≥
BA
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Now we discuss how any two agents are positioned with respect to each other in our time 

line of fault condition. The first case is where Ai ∈Φ and Aj ∈Φ , as shown in figure 4-7.  

 

 
 
 
 

 

 

 

Figure 4-7: Ai ∈Φ and Aj ∈Φ  

This case translates into the following inequalities: 

iij

jji

TT

TT

τ

τ

+

+

p

p
   (4-7) 

The second case is when Ai ∈Φ and Bj ∈Φ , as shown in figure 4-8. We notice that in 

order to guarantee the overlap the time where agent jΦ comes out of the absorbing state 

must be greater than the time where agent iΦ goes out of the absorbing state. 

 
 
 
 
 

 

 

 

 

Figure 4-8: Ai ∈Φ and Bj ∈Φ  
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This case translates into the following inequality: 

0tT ji +τp    (4-8) 

The last case is where Bi ∈Φ and Bj ∈Φ , as shown in figure 4-9. We notice that, in 

order to guarantee the overlap, the times where the agents leave their fault states must be 

greater than 1
1t . As long as this condition holds there is no mutual constraint between 

iΦ and jΦ . This case translates into the following inequalities: 

1
10

1
10

tt

tt

j

i

f

f

+

+

τ

τ
   (4-9) 

 
 
 

 

 

 

 

 

Figure 4-9: Bi ∈Φ and Bj ∈Φ  

 

Having defined the above categories we can calculate the risk as follows: 
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ttSRisk
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 given that
period overlap  theguarantees

such that  TimeSojourn 

 given that
 period overlap  theguarantees

such that  TimeSojourn 

),(,
Y

  (4-10) 

For now we consider the Sojourn Times exponentially distributed. In case of 0Y∈Φi , 

iτ is the Residual Sojourn Time.  

 

Interpretation of equation (4-10): 

For each i we are only interested in cases where it is likely to overlap with other agents, 

and that happens when iΦ is either in A or in B. We multiply the probability of being in A 

or in B by the probability of having a Sojourn time such that the overlap with other agents 

are guaranteed, given that the agent is in A or is in B. Calculating these probabilities for 

all the agents and multiplying them with each other gives us the risk. 

 

Note: In equation (4-10) the main product is taken over { }mi ΦΦ−∈Φ ,1Y , because it is 

given that 1Φ  is in state 1
FS during ( )1

2
1
1 , tt . Agent mΦ  is not part of this product because 

agents are lexicographically ordered and therefore every agent will compare itself only 

with the ones that have a greater index. The last comparison will take place for i = m -1 

between 1−Φm  and mΦ  and then the calculation will stop.  
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For equation (4-10) to work, we need to calculate the following two terms, 

namely:
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈Φ A

Φ
P

i

i

 given that
 period overlap  theguarantees

such that  TimeSojourn 
 and 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈Φ B

Φ
P

i

i

 given that
period overlap  theguarantees

such that  TimeSojourn 
. 

We already know that Ai ∈Φ . We just need to calculate the overlap period of iΦ with the 

other agents. There are actually two different types of agents who can create overlap with 

agent iΦ ; agents who are in set A and agents who are in set B. Let jΦ to be an arbitrary 

agent, then Aj ∈Φ or Bj ∈Φ . Using conditional probabilities, figures 4-7 and 4-8 and 

inequalities (4-5) and (4-6) we can rewrite the first term, as: 

( ) ( )( )
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(4-11) 

Using a similar approach we can rewrite the second term: 
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(4-12) 

Note: ( )BBP ijij ∈Φ∈ΦΦΦ , with ovelaps  is always one, as long as both agents are in 

B (See figure 4-9).  
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The next step is to calculate the different terms in equations (4-11) and (4-12). These 

terms are: 

• ( )AP i ∈Φ  

• ( )BP i ∈Φ  

• ( )1
1

1
1

1
20

1
20 ,,,, tTtTtTttTtTTTTP jjiijiiijjji ≥+≥+≤≤≤≤++ ττττ pp  
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1
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1
1

1
200 ,, tttTtTttTP ijjjij ≥+≥+≤≤+ τττp  

( )AP i ∈Φ   

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

( ) ∫∫

∫∫

∫∫

∫∫

∫

∫

+≤−=

−
−

+−
−

≤−

=

−+−≤−=

−≤−+−≤−=

−≤≤∧=≤−+

−≤≤∧=≤−=

−⋅≤≤+≤=

≤≤⋅≤≤+≤=+≤∧≤≤=

≥∧≤≤=≥∧≤∧≥=

≥∧≤∧∉Φ=∈Φ

≤≤≤≤

≤≤≤≤

≤≤

≤≤

1
2

1
1

1
1

0

1
2

1
1

1
1

0

1
2

1
1

1
20

1
1

0

1
20

1
2

1
1

1
20

1
1

0

1
20

1
2

1
1

1
20

1
1

0

1
20

)()(

)()(
)()(

)(

)()(
)()(

)(

)()()()()()(

)()()()()()(

)()()(

)()()(

)()(

)(

)()(

)()(

1
1

0
1
2

0
1
2

0
1
2

0
1
2

1
1

0
1
20

1
2

1
1

0
1
2

1
10

1
2

1
1

0
1
2

1
20

1
1

0
1
2

1
20

1
1

0
1
2

1
20

1
1

1
20

1
20

1
1

1
1

1
20

1
1

1
20

1
1

1
20

1
1

1
20

t

t
T

t

t
Ti

TT
TT

t

t
T

TT
TT

t

t
Ti

TT

t

t
tTtTTT

t

t
tTtTi

TT

t

t
tTtTiTT

t

t
tTtTi

TT

t

t
tTtTii

TT

t

t
tTtTii

TTiii

iiiiiii

endiendii

endiii

dttfdttfttP

tFtF
tFtF

dttf

tFtF
tFtF

dttfttP

tFtFdttftFtFdttfttP

tFtFdttfttPtFtFdttfttP

tFtFdttfttttTttP

tFtFdttfttttTttP

tFtFtTtTtP

tTtPtTtTtPTttTtP

tTtTtPtTtTtTP

tTtTFPAP

ii

ii

ii

i

ii

ii

i

iiiiiiii

iiiiiiii

iiii

iiii

ii

ii

i

τ

τ

τ

ττ

τ

τ

τ

ττ

(4-13)  

In summary: 
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Note: In order to calculate ( ) dttfttP
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Therefore using equation (4-8) we can write: 
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We note that in the above equation, all the parameters belonging to agent iΦ are defined 

with respect to the perception model that 1Φ has from iΦ . In that respect, 1
iΦT is the 

matrix of the transient states, 1
iΦα is the initial probability vector and 1

1Φλ is the exit rate 

from the fault state i
FS . 
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In summary: 
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Below, we calculate terms A and B. For A we have: 
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Now, we calculate A1 and A2 separately: 
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Substituting (4-21) and (4-22) in (4-20), results: 
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Now we calculate B: 
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Hence by substituting A and B in (4-19) we will get: 
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Below, we calculate terms C and D. For C we have: 
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And for D we have: 
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Hence, by substituting C and D in (4-26), we obtain: 
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Similarly: 
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Using equations (4-14), (4-18), (4-25), (4-29) and (4-30) in (4-11) and (4-12) and then 

substituting (4-11) and (4-12) in (4-10) we can now calculate risk ( )),(, 1
2

1
1

1
1

ttSRisk FΦ  for 

agent 1Φ . 
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4.3.4 Comparison Between Shuffled and Approximation Method 

We provided two different approaches to calculate the risk in sections 4.3.3 and 4.3.4. In 

this section we compare these two methods. 

 

In the shuffle method we design a model in which we include the behavior of all of the 

agents who are member of (4-2) at one place. Then we identify the global fault state, 

which is the combination of all the potential local bad states. And finally we calculate the 

probability of transitioning to global fault state using time to absorption distribution. 

 

In the approximation method we look at the agents individually. We then calculate the 

probability of all agents being in their potential local bad state any time during a specific 

period of time. 

 

We have the following observations: 

I) In the shuffle method, we need to shuffle all the models together. In cases 

where the number of agents is high and the perception models are complex 

with too many number of states, the shuffled model will be too large. The 

approximation method avoids this problem by looking at the individual 

models separately. 

II) The shuffled model has only one fault state, but in the approximation model 

we consider that each agent has an absorbing state. 
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III) Shuffle model only deals with Markovian models and exponential 

distributions, while approximation model could include those as well as 

general distributions. 

IV) Approximation model fits appropriately with communication and 

collaboration framework which we will discuss shortly. In approximation 

model, it is possible to include fixed probabilities (including 0 and 1) for some 

agents. This is very important because some agents may decide to 

communicate their numbers directly to agent 1Φ . 

V) Approximation method ignores the correlation of events ( )( ){ }1
2

1
1

1 ,, ttSF  between 

agents. This can be a major source of error. Our observation is that while it is 

possible to include their correlations, the formulations will be quite difficult. 

This will be a future research topic. 

 
 
4.4 Example 

Consider three agents 321 ,, ΦΦΦ . Models of agents 2Φ and 3Φ have been depicted in 

figure 4-10 and 4-11. These models are from agent 1Φ point of view. The model of agent 

1Φ is not shown in here, because its information is on hand deterministically. In our 

notation of i
jS , i is agent’s index and j is the index of its state. The shaded states are the 

potential fault states. 

 

 

 
Figure 4-10: Agent 2Φ  
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Figure 4-11: Agent 3Φ  

 
The infinitesimal generators of the above agents can be written as: 
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⎥
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For the approximation method we consider the dark states as terminating states, and 

backward transitions from the fault state will be ignored, therefore the modified 

infinitesimal generators will be: 
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We must consider the fact that the dark states are not inherently absorbing states, but for 

the risk calculations using the approximation method, they are considered absorbing 

states so that the risk of transitioning to a global fault state can be calculated. 

 

The initial probabilities are considered to be:  

[ ]0111
32
== ΦΦ αα    (4-33) 

The Sojourn Time rates for the agents 32,ΦΦ are 6.2,4 11
32
== ΦΦ λλ , respectively. We also 

assume that 3,2 1
10 == tt and 41

2 =t . 
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4.4.1 Solution – Shuffle Method 

First we construct the shuffled automaton of 2Φ  and 3Φ which shows their full behaviour 

(see figure 4-13). 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4-13: Shuffled automata 2Φ  and 3Φ  

The generator of the shuffled automaton 2Φ  and 3Φ  is obtained by Kronecker sum ⊕  of 

1
2ΦG and 1

3ΦG . Then 111
3232 ΦΦΦΦ ⊕= GGG is the following 9 by 9 matrix: 
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The lines in matrix G correspond to the transitions from composite states. Note that the 

last line of 1
32ΦΦG corresponds to the transitions out of the composite bad state 3

3
2
3 SS . In 

order to take in account that the system never goes out from the bad state we equal to 

zero all the entries on the last line of the matrixG . We obtain the generator Q (in which 

the state 3
3

2
3 SS  is absorbing).  
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Q   (4-35) 

At this point the probability distribution of the time to absorption is computed using (4-4) 

and the cumulative probability using (4-8). As the initial state is considered to be 3
1

2
1 SS , 

the vector α has a 1 in the first position and 0 elsewhere.  Then the risk in the time 

interval ( )1
2

1
1 , tt  is computed using (4-9). By substituting the given numbers in the 

example, we get figures 4-14 through 4-16. F(t) and ( )1

1 1 1
1 1, ( , 1)FRisk S t tΦ +  (which covers 

the numerical case considered in this example when 1
0 12, 3t t= = and 1

2 4t = ) are depicted 

in the figures. In these figures increment is 0.01. For example, the time value of 2 

corresponds to an abscissa of 200. The risk on the time interval (3, 4) is the value at point 

300. For instance, the risk in time interval ( ) )4,3(, 1
2

1
1 =tt  is 0.1014. 
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Note: In this method the value of t0 is irrelevant. Equation (4-9) is true regardless of value 

of t0. This is due to the following simple calculus:  

0)( 0
tet Gαα =  then )(11)(1)( )()(

00)(
000

0
tFeeeetttF tttttt

t =−=−=−=− −− 111 GGGG
α ααα  

 

 
Figure 4-14: F(t) – Cumulative Distribution of Time to Enter to Global Fault State  

 

 
Figure 4-15: ( )1

1 1 1
1 1, ( , 1)FRisk S t tΦ +  

We used the same approach for calculating the Risk for another example for the same 

model for 1
2ΦG but a new model called 1

4ΦG with the rates below: 
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As we can see in figure 4-16, the risk absolute value has decreased and the peak of the 

curve has shifted to the right. 

 

Figure 4-16: ( )1

1 1 1
1 1, ( , 1)FRisk S t tΦ + with 1

2ΦG and 1
4ΦG  

 

4.4.2 Solution – Approximation Method 

We now solve the same problem using the approximation method. Using equation (4-12) 

we can write the following: 



144 

 

( )

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )∏

∏

=

=

Φ

∈Φ+∈Φ⋅≥+≥+≤≤+∈Φ+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∈Φ⋅≥+≥+≤≤++

∈Φ⋅≥+≥+≤≤≤≤++
∈Φ=

3
33

1
102

1
133

1
2300232

3 3
1
103

1
122

1
220032

3
1
133

1
122

1
230

1
220223332

2

1
2

1
1

1

,,

,,

,,,,

),(,
1

j

j

F

BPAPtttTtTttTPBP

BPtttTtTttTP

APtTtTtTttTtTTTTP
AP

ttSRisk

τττ

τττ

ττττ

p

p

pp (4-36) 

Therefore: 

( )

( )

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+≤+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤−⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤−≤−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤−+≤−−

+≤+

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+≤⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤−≤−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤−+≤−−

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤−⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′+′≤′−≤−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′−′+′′−+

′≤′−≤−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≤−=

∫∫
∫∫

∫∫

∫∫

∫∫

∫∫
∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫

∫∫

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤≤≤≤≤

≤≤≤≤≤≤≤≤

≤≤≤≤

Φ

03
1
1033

1
1

3
1
120

1
1

203
1
120

1
1

02
1
102

03
1
103

2
1
130

1
1

302
1
130

1
1

3
1
1

3
1
12

1
1

23

3
1
12

1
1

2
1
1

1
2

1
1

1

1
2

1
1

3

1
1

0

31
2

1
1

1
2303

1
1

0

1
2303

1
2

1
1

1
2303

1
1

0

1
2303

1
2

1
1

1
2202

1
1

0

1
2202

1
2

1
1

1
2202

1
1

0

1
2202

1
2

1
1

3

1
1

0

31
2

1
1

1
2

1
1

1
2202

1
2303

1
2202

1
2303

1
1

0

1
1

0

1
2

1
1

1
2202

1
2303

1
2

1
2

1
1

1
2202

1
2303

1
1

1
2202

1
2303

1
1

0

1
1

0

1
2

1
1

2

1
1

0

2

1

)()(

)()(

)()(

),(,

ttPtTPdttfdttfttP

dtfdtfttPttP

dtfttPdtfttPttP

ttPtTP

ttPtTP

dtfdtfttPttP

dtfttPdtfttPttP

dttfdttfttP

dtftdfdtftdfttPttP

dtftdfttPdtftdfttP

dtftdfttPttP

dttfdttfttP

ttSRisk

t

t
T

t

t
T

t

t
tTtT

t

t
tTtT

t

t
tTtT

t

t
tTtT

t

t
tTtT

t

t
tTtT

t

t
tTtT

t

t
tTtT

t

t
T

t

t
Tt

t

t

t
tTtTtTtTtTtTtTtT

t

t

t

t

t

t
tTtTtTtT

t

t

t

t
tTtTtTtT

t

t

tTtTtTtT

t

t

t

t

t

t
T

t

t
T

F

ττ

ττ

τττ

τ

τ

ττ

τττ

τ

ττ

ττ

ττ

τ

p

p

p

p

p

pp

(4-37) 

 

With the assumption that the sojourn times are exponential and also equation (4-16), we 

can extend equation (4-37) as follows. We know that:  
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For simplification, we assume: 
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Now we calculate A, B, C, D, E, F, G, H, I and J respectively: 
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By substituting A, B, C, D, E, F, G, H, I and J into equation (4-39), we will get: 
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 (4-40) 

Using Maple we obtain: 
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( ) .00370),(, 1
2

1
1

1
1

=Φ ttSRisk F  

Figures 4-17 through 4-20 show the risk as a function of t0, 1
1t , 1

2t and 0
1
1 tt − respectively. 

 

Figure 4-17: Risk as a function of t0 

 

Figure 4-18: Risk as a function of 1
1t  
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Figure 4-19: Risk as a function of 1
2t  

 

 

Figure 4-20: Risk as a function of 0
1
1 tt −  

 

If we change the Sojourn Time rates of the agents to 3846.0,25.0 11
32
== ΦΦ λλ  (reciprocals 

of the initial values), respectively then the following result is obtained: 
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=Φ ttSRisk F . 

This is intuitively obvious, since by increasing the mean time spending in the potential 

bad states the agents will be more likely prone to transition to a global fault state and 

therefore the risk in increasing. 

 

4.4.3 Interpretation of Figures 

Using the results obtained from the shuffle and approximate models, we note the 

following – When the agents are significantly homogeneous in terms of their states and 

transitions, the likelihood of them reaching a conflict state is more at the beginning than 

later. When these agents are more heterogeneous, then this likelihood becomes more 

spread across the timeline, i.e. we obtain a wider distribution (higher variance). This 

information is important for one agent to predict the behavior of similar agents without 

extensive requirements on communication and collaborations. 

 

4.5 Communication and Collaboration 

The agents strive to keep their risk within an accepted range. If the risk of execution of an 

action is determined to be high, agents attempt to cooperate with each other. Cooperation 

includes two major factors; the first one is communication. Communication is the 

intentional exchange of information brought about by the production and perception of 

signs drawn from a shared system of conventional signs [Russell 03]. The exchange of 

structured messages can be enabled using a mechanism called “Language.” We assume 

that the agents use a common language to exchange information. The second factor is 

collaboration. If communication factor is not enough to reduce the risk then the agents 
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attempt to collaborate. Collaboration, which requires communication as well, helps to 

reduce the amount of risk by rescheduling the local task plans. Communication and 

collaboration will be discussed in this section in more detail. We will assume that agents, 

if decide to communicate and collaborate, are honest and reliable. Furthermore, they are 

not selfish. 

 

4.5.1 Communication Framework 

In terms of communication the agents can provide the requesting agent iΦ with two types 

of major information. The requester agent in this context is the one who initializes the 

risk calculation. We assume that any agent jΦ located in the community of agent iΦ will 

provide the following information to agent iΦ upon request: 

• Its schedule with respect to time period ( )1
2

1
1 ,tt  - it can be deterministic or 

probabilistic. If agent jΦ  communicates to iΦ the exact time period as to when it 

will be transitioning in (and out) to (and from) its potential local fault state j
FS , 

then iΦ will be able to make more accurate risk calculations. 

• Its current state at time t0 – it is usually deterministic. Generally, this piece of 

information will be deterministic, because it will be about the current situation of 

agent jΦ . Knowing this fact will help agent iΦ to set ( )0Y∈Φ jP to a value 

between 0 and 1 in its calculations. 

Note: We can extend the amount of information that will be exchanged between the 

agents by assuming that the agents communicate their fully extended models. Evidently, 

an agent has a more complete model of itself compared to the requester agents. If it 
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provides this model to the public community (requesters), then the requesters can make 

better decisions based on a more complete model. But on the other hand, every agent is 

prone to privacy and does not necessarily like to fully open up to other agents. 

 

If these pieces of information are enough to reduce the risk factor sufficiently, then 

iΦ will not go to the next step, otherwise it will trigger the collaboration methodology to 

reduce the risk factor. 

 

4.5.2 Collaboration Framework 

 

If the estimated risk (calculated by the requester agent iΦ ) is too high (compared to a 

given threshold), then the agent will try to reduce its risk (cost), using collaboration. 

Agent 1Φ announces its high risk situation together with time period ( )1
2

1
1 ,tt  to the 

involved parties (see set FC - equation (4-2)).  

 

Involved parties will investigate their schedule to see whether there is a potential overlap 

existing in the set FC. If any one agent disagrees with the overlap time, with 100% 

certainty – calculated from its own perception model and schedule – then no further 

collaboration will be required. Agent iΦ assumes no risk. If all the parties agree on a 

possible overlap during ( )1
2

1
1 , tt  then the collaboration process starts. 
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The main idea of collaboration in this work is to reduce the risk by moving away from the 

overlap period as much as needed and by keeping the cost of the movement 

(rescheduling) as low as possible. 

 

As we see from figure 4-21, there exists an overlap between time 1
1t  and time 2

2t (It’s 

depicted between dashed lines), which makes the collaboration necessary to reduce the 

overall risk and cost. 

 

 

 

 

Figure 4-21: Overlap between agents 

 

4.5.2.1 Game Theory 

In this section we look at those aspects of game theory that can be used to analyze games 

with simultaneous moves. We look only at games where the players make only one 

move. Game theory can be used in two ways: agent design and mechanism design. In 

mechanism design which is the approach in this section, the collective good of all agents 

(avoiding the global fault state) is maximized when each agent adopts the game-theoretic 

solution that maximizes its own utility [Russell 03]. 

 

A game is defined by [Russell 03]: 
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• Actions that the players can choose 

• A payoff matrix that gives the utility to each player for each combination. 

Each player must adopt and then execute a strategy (policy). A pure strategy is a 

deterministic policy specifying a particular action to take in each situation (in a one move 

game the pure strategy is a single action.). On the other hand, a mixed strategy is a 

randomized policy that selects particular actions according to a specific probability 

distribution over actions. A strategy profile is an assignment of a strategy to each player; 

given the strategy profile the game’s outcome is a numeric value for each player. A 

solution to a game is a strategy profile in which each player adopts a rational strategy. 

Outcomes are actual results of playing a game, while solutions are theoretical constructs 

used to analyze a game. 

 

Now let us look at an example in our framework (figure 4-22) where we only have two 

agents involved and where we assume that these agents move in opposite directions. 

 

 
 
 
 
 

Figure 4-22: Case of Two Agents 

In the sequel we will assume that agents involved in condition (4-2) announce their 

membership to one of the two sets; left-moving and right-moving agents. We define left-

moving agents the ones who are willing to expedite their schedules. We define right-

moving agents who are willing to delay their schedules. 

Case of two agents (figure 4-22) 
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Assumptions: 

• There are two agents 1Φ and 2Φ  with an overlap of two time units.  

• It is given that both agents can change their schedule by at most 4 time units. 

• 1Φ can move only to the right and 2Φ can move only to the left (reasonable moves 

– shortest path moves are in the opposite direction). 

• Each move per time unit costs $1 and is the same for both agents 

We can consider the two player game of figure 4-23. The objective of the game is to clear 

the overlap. 

 

 
 
 
 
 

Figure 4-23: Two Player Game Payoff Matrix 

 

The points (-2,0), (-1,-1) and (0,-2) are Nash Equilibrium. Because any deviation around 

these points wouldn’t improve the cost (profit) of player one and two (Agents 1Φ and 2Φ ).  

 

Even though there might be different Nash Equilibrium points, but in order to find a 

reasonable solution the player might agree on choosing the Pareto-optimal solution (i.e. 

when there is no other outcome that all player would prefer.) It is known that every game 

has at least one Pareto-optimal solution. In cases where the solutions have the same 

outcome (two or more equal Pareto-optimal equilibrium points) the players can 

“communicate.” The communication can be based on establishment of convention that 

orders the solutions before the game begins or it can be based on negotiation to reach a 
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mutually beneficial solution during the game. Games in which players need to 

communicate like our framework are called coordination games. In our framework we 

assume that the agents strive to minimize the joint cost and share it as fairly as possible. 

Hence the outcome of the game introduced in our example would be (-1,-1). 

 

Case of two agents (figure 4-24) – More General Case 

Assumptions: 

• There are two agents 1Φ and 2Φ  with an overlap of two time units. 

• There is no limitation on number of moves. 

• 1Φ and 2Φ can both move on either direction. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4-24: Two Player Game Payoff Matrix – More general case 

 

Let X1 and X2 be the number of units that agents 1Φ and 2Φ move, respectively. Let us 

also consider C1(X1) and C2(X2) as the cost of the movements of 1Φ and 2Φ , which are 

increasing functions of X1 and X2. Figure 4-24 shows the payoff matrix in case where the 

cost per move unit is $1. 
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Let us suppose that 1Φ knows C1(X1) and that there exists )(ˆ
22 XC Likewise, 2Φ knows 

C2(X2) and that there exists )(ˆ
11 XC .  

Let us also consider the following utility functions: 

⎩
⎨
⎧

≥+
+∞−

=
kXXXC
kXX

XXU
2111

21
211  if  )(

 if        
),(

p
  (4-41) 

⎩
⎨
⎧

≥+
+∞−

=
kXXXC
kXX

XXU
2122

21
212  if  )(

 if        
),(

p
  (4-42) 

In these functions k is the amount of overlap. Nash equilibrium is when 

kXX =+ 21 (regardless of the outcome). We assume that the less an agent reschedules 

its task plan the less cost it incurs. 

 

Nash equilibrium from agent 1Φ  point of view is where ),( 11 XkX − . Therefore: 

)( 111 XCU =  and )(ˆˆ
122 XkCU −= . Nash equilibrium from agent 2Φ  point of view is 

where ),( 22 XkX − , therefore: )( 222 XCU =  and )(ˆˆ
211 XkCU −= . A rational agent 

would think that opponent has the same cost structure, that is the more the agent 

reschedules its task plans (number of moves) the more it has to pay. 

 

4.5.2.2 Collaboration Methodology 

It is obvious that an agent can always delay its schedule to break up the overlap, thus 

remove the fault condition. But it is always in the best interest of agents to minimize 

rescheduling. The following theorem shows that an n-agent problem reduces to a two-

agent problem. 
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Here we will drop the trivial case of when an agent can move in one direction, 

indefinitely. So the solution must at least include two agents. We will show that two-

agent solution is sufficient. 

 

Theorem: In case of n agents, a two agent solution has always the minimal cost 

(outcome) measured in distance units, provided that there is at least one agent in set of 

left-moving agents and right-moving agents. 

 

Proof: Without loss of generality we consider a three-agent case. 

Assumptions: 

• Agents move to a reasonable direction – shortest path direction 

• There is at least one agent which tries to move to the left and one agent which is 

prone to move to the right 

• Without loss of generality we consider the time units to be discrete. 

 

Definition: The shortest path of agent iΦ is defined as: 

kyp ii +=   (4-43) 

agent iΦ can prevent the global overlap by moving shortest possible units pi to the 

suitable direction. In this equation k is the amount of overlap and yi is the minimum 

additional move required to break the overlap.  

 

Then any displacement pi is a solution. In other words with these assumptions we will 

have always a solution. 
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Figure 4-25: General Case 

 

Let us define L = set of left moving agents and R = set of right moving agents. We show 

the total number of units that agent iΦ moves by xi. If agent iΦ is a member of L then we 

show the movements by l
ix and if it is a member of R then we show the movements by r

ix . 

 

Observations:  

• Having these assumptions, it follows that any pair ( )l
j

r
i xx ,  of displacement is a 

solution if:   kyykppxx jiji
l
j

r
i ++=−+≥+   (4-44) 

• A move reduces overlapping if ii yx f . Then ii xykkk −+=′→  

• If iΦ moves by xi, then pj does not change if jΦ is in the same set as iΦ (yi 

changes). 

• If iΦ moves by xi, then pj decreases by ii yx − if jΦ is not in the same set as iΦ . 
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Suppose l
k

l
j

r
i xxx ++ is such that we have a solution. Then we have: 

kyp ii += , kyp jj += and kyp kk += (Figure 4-26). 

 

 

 

 

 

 

 

Figure 4-26: Three agent solution 

Assume jΦ moves l
jx , which is not a solution but reduces the overlap by l

jx ( j
l
j yx f ), 

therefore l
jj xykk −+=′ (Figure 4-27). 

 

 

 

 

 

 

 

Figure 4-27: jΦ moves l
jx  

Then based on (4-44) l
k
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i xx + is a solution if: 

kppxx ki
l
k

r
i ′−′+′≥+    (4-45) 

j
FS

States

Time

i
FS

k

k
FS

yk

yi

yj

l
jx

j
FS

States

Time

i
FS

k

k
FS

yk

yi

yj

l
jx

Time

j
FS

States

i
FS

k

k
FS

yk'

yi

l
jx

k'

Time

j
FS

States

i
FS

k

k
FS

yk'

yi

l
jx

k'

j
FS

States

i
FS

k

k
FS

yk'

yi

l
jx

k'



162 

 

But we know that 

j
l
jij

l
jiii yxpyxkykyp +−=+−+=′+′=′ )(   (4-46) 

and 

kkkkk pkykkkykyp =+=′+′−+=′+′=′ )(   (4-47) 

Substituting (4-46) and (4-47) in (4-45): 

kyyxykyxkyy

xykyxppkppxx

ki
l
jjj

l
jki

l
jjj

l
jikki

l
k

r
i

++=+−−+−++=

−+−−−+=′−′+′≥+

2

)()(
 

This means that l
jx does not improve the solution cost. In other words we always have a 2 

agent move solution. 

 

How does this information affect the risk calculations? 

Having this theorem, the requester agent can initiate the collaboration algorithm when 

needed. If all the involved parties agree on the overlap time then the collaboration will 

start. We know that only two agents need to move in order to avoid the risk. The left 

moving agents will compare themselves with the individual right moving agents. Each 

agent announces the best solution (If there exists any) using the method shown in figure 

4-23. After collecting all the results, the requester agent will chose the best response for 

fault state avoidance 

 

4.6 Conclusion 

In this chapter we pointed out the issues of risk, communication and collaboration. 

Generally, agents try to avoid faults. These fault condition could be local or global. 

Global faults affect a set of agents. Here we introduce a methodology to calculate the risk 
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of transitioning to a global fault state if the fault condition is known. Then we introduced 

a framework to avoid this global fault state using collaboration between involved agents. 

Game theory concepts have been used to expand this framework. 
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5. A Decision-theoretic Control Methodology  

 

5.1 Introduction 

In chapters two, three and four we discussed different situations that an agent may face in 

the framework defined in this dissertation. Chapter five deals with the overall formulation 

and explains how these different components cope with each other in a live running 

system in order to reach a desired state by an individual agent and with the cooperation of 

others. 

 

Tasks will be announced to single agents. A task has a certain value, which will be 

declared to these agents. Each agent’s job is to analyze the task, synthesize a solution and 

make a cost/benefit calculation. If there exists any reasonable solution, then it will bid for 

the execution of the job. During the synthesis it may need to cooperate with other agents 

directly or indirectly to achieve the goal. In order to satisfy this objective, in some cases, 

an agent must learn the model of its unknown environment as well as its own model (if 

not fully known). Based on these learned models it then takes appropriate decisions to 

reach its goals of completing the tasks it has in its task-to-do list.  

 

There are two phases in each agent’s life, namely learning and execution, as shown in 

figure 5-1. These two phases are quite interrelated. An agent can learn much about itself 

and its environment during execution of a certain task and must execute different actions 

while learning the model. 
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Figure 5-1: Agent’s structure – simple view. 

 

Generally speaking, the learning phase can be of two types: One type of learning is to 

learn the model of the agent (transition probabilities) as well as an optimal control policy 

(Adaptive dynamic programming approach). Another type is to find an optimal policy 

without learning the model (Q-learning approach). In any event, this phase must be 

carried out off-line because of the computation complexity involved with iterative 

learning stages. In our framework however, the outcome of the learning phase does not 

quite include a full policy. The reason is that our agents are in a dynamically changing 

environment and have to interact with other agents. Therefore they cannot make a final 

decision when they are in an offline state. Consequently the ultimate control policy will 

be concluded in their execution stage when they initiate another search algorithm. 

 

5.2 Framework 

Figure 5-2 summarizes the different components in our framework. The big cloud in this 

picture is the “environment” that includes various units including distributed agents. This 

cloud reflects environmental dynamics as well as static structure of the surroundings. 

From an individual agent’s point of view some of these dynamics are known and 

Learn ExecuteLearn Execute
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observable and some others are unknown. The agents go through certain learning process 

to become familiar with these dynamics to make sequential decisions based on these 

findings later on. 

 

 

 

 

 

 

 

Figure 5-2: Environment 

 

There are some areas in the environment that are initially black boxes to the agents. An 

agent can model these unknown areas using regular language identification methodology 

mentioned in chapter three. Then it can learn to control these areas (using its basic 

functions) if they are controllable, and then it can carry out the learned steps (sequential 

decisions) at the execution layer. An example that is showing this concept was introduced 

in chapter three of this dissertation. Another example can be a task for a walking-robot to 

go from room A to room C, without falling into a trap that is somewhere in room B. 

Assuming that the structure of room B is unknown to the agent, room B can be 

considered as an unknown area (black box) and falling into the trap can be assumed as a 

bad state. Agent wants to avoid the bad state while it passes through room B. Agent learn 
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this process by executing trials. After this initial learning step, the agent can be plugged 

into the live and running environment, which will be the second phase. 

 

5.3 Learning Stage 

5.3.1 Agent’s Model - Environment 

As we mentioned previously, the agent first learns its environment (Figure 5-2). Learning 

the environment means: 

• Learning the states and the transition probabilities of its own 

• Locating the unknown areas of the environment, modeling and controlling them 

based on the specifications 

• Recognizing the situations where the agent needs to calculate the risk, which will 

be then used at the execution stage 

The process of learning the model itself is quite easy, because the environment is fully 

observable (except the unknown black boxes). This means we have a supervised learning 

task where the input is a state-action pair and the output is the resulting state. In the 

simplest case, we can represent the transition model as a table of probabilities. We keep 

track of how often each action outcome occurs and estimate the transition probability 

Psa(s′) from the frequency with which s′ is reached when executing a in s. This is the 

maximum likelihood estimate. A Bayesian update with a Dirichlet prior might work too. 

The algorithm below shows the above methodology: 

 

Algorithm: Model-Learning 
 
Input: Percept indicating the current state s′  
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Output: Psa(s′) for all s, a and s′ 
 
procedure Model_Learning (percept, set of actions a) 
var 

N(s,a): Integer /* A table of frequencies for state-action pairs, initially zero */ 
N(s,a, s′): Integer /* A table of frequencies for state-action-state triplets, initially zero */ 
t, s, s′: State 
a: Action /* s and a are the previous state and action */ 

begin 
Observe the current state s and random action a 
Do forever: 

if s is not null then 
  if s is a pre black box state then run control_policy 
  Select an action a and execute it 

Observe the new state s′  
  increment N(s,a) and N(s,a, s′) 
  for each t such that N(s, a, t) <> 0 
   Psa(t) = N(s, a, t) / N(s,a) 
  end for 
end if 

end Do 
end 

 

When running the algorithm, the agent may face one special case when executing the 

line: “Observe the new state s′ ,” namely when an agent faces a black box. Figure 5-3 

shows how the state space looks like when the agent comes into these types of situations. 

As we will see later on in this chapter, this special case can be considered as a virtual 

transition in the global search with only one arc, but with a modified reward (cost) 

function. 

 

 

 

 

 

Figure 5-3: Transition model of the agent when facing a black box 

State before 
black box n

State after 
controlling 
black box n

State-Transition model of the agent 
while controlling the black box

State before 
black box n

State after 
controlling 
black box n

State-Transition model of the agent 
while controlling the black box



169 

 

5.4 Execution Stage 

After the agent learns a preliminary model of the system, it will be time to execute the 

task. Because of some of the properties of the system, the agent needs to make the final 

synthesis at the start of this stage. In order to understand our approach, we first introduce 

three different types of nodes in the global search tree. There are three different types of 

nodes that the agent is facing: 

• Regular Nodes 

• Black Box Nodes 

• Risk Analysis Nodes 

During the search the agent is usually in a regular node, where it applies one of its basic 

functions, and receives a fixed reward from the environment. It may also be in one of the 

black box nodes where it must control its uncontrolled environment by applying the 

control solution that it has learned during the learning stage. Finally it may be in a risk 

analysis node. These nodes are the ones that lead to a potential global fault state situation. 

Figure 5-4 shows a sample search tree.  

 

 

 

 

 

 

 

Figure 5-4: Execution Search Tree 
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5.4.1 Regular Nodes 

Now we formulate the reward function and transition out of these nodes to complete our 

Markov Decision Process model. When applying a basic function a in state s, the agent 

will make an immediate transition to s′ and will receive reward r(s,a).  If state s is a 

regular node we then define the reward as: 

noderegular  a is  if      )(),( sacasr −=   (5-1) 

Where c(a) is the cost of using action a. 

 

5.4.2 Black Box Nodes 

We saw in figure 5-3 that executing a set of control actions in the black box to reach the 

desired objective can be combined into “one” virtual transition – in and out of the black 

box. Relevant to the global search is the total cost of these actions, which can be 

described as below: 

successful is outcome  theand nodebox black  a is  if    )(),(
boxblack in 

sKacasr
ja

j +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑ (5-2) 

where K is a constant positive reward that the agent receives when the job in the black 

box is performed successfully. 

successfulnot  is outcome  theand nodebox black  a is  if    )(),(
boxblack in 

sKacasr
ja

j ′−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑ (5-3) 

where K′ is a constant negative reward that the agent receives when the job in the black 

box is performed unsuccessfully. We notice that usually KK ff′ . 
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Figure 5-5: Agent’s transitions during interaction with a black box 

Figure 5-5 shows how transitions from a pre-black box state look like if we don’t 

consider the detailed state transition model of an agent during the interaction with a black 

box. From this point of view, only two issues must be addressed in the global search. One 

is whether the outcome of the control policy was successful and other one is the state of 

agent when the interaction with the environment is complete. 

 

5.4.3 Risk Analysis Nodes 

In chapter 4 we comprehensively discussed how an agent can calculate the risk of 

transitioning to a fault state and how it can reduce this risk using collaboration. Here in 

we will use this information in agent’s global search. 

 

First we need to calculate the amount of reward an agent gains when executing an action 

in its pre-bad (fault) state. This state may or may not lead the agent into a global fault 

state, depending on the other agents. In general, we have: 

node analysisrisk -pre a is  if    )()(),( sRCcacasr −−=   (5-4) 
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In this equation c(RC) is the cost of risk analysis and it may have different values 

according to different situations:  

• if the initial risk analysis shows that the risk is not too high 

model) perceptioneach in  states local ofnumber  and 1)-(4in  agents ofnumber (
)()(

1

1

c
RCcRCC

−=
−=

(5-5) 

• if the risk is too high, the communication will be initiated and if communication 

alone shows a low risk based on new information then: 

)()(
)()()(

21

21

esion packagcommunicatnumber of cRCc
RCcRCcRCC

−−=
−−=

  (5-6) 

• if the risk is too high, and communication alone does not reduce it very much and 

collaboration is required, then: 

)()(
)()()()()()()(

43

214321

geschedulinmoves in rnumber of cgestion packa communicaadditionalc
RCcRCcRCcRCcRCcRCcRCC

−−
−−=−−−−=

(5-7) 

• if the risk is too high, and collaboration cannot help reducing it (or no possibility 

of collaboration), then: 

state)fault  global potential(
)()()()()()()()(

5

3215321

c
RCcRCcRCcRCcRCcRCcRCcRCC

−
−−−=−−−−=

 (5-8) 

We notice that usually )(),(),(),()( 43215 RCcRCcRCcRCcRCc ff . 

 

At this point we need to see how these rewards affect the transition functions. Figure 5-6 

shows different transitions of the agent after doing the risk analysis. As we see, in three 

cases the agent makes a transition to a safe state and in the last one, it makes a transition 

to a global fault state. 
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Figure 5-6: Agent’s transitions after risk analysis 

 

5.5 Global Search 

After introducing different state types in the global search tree, we are now ready to 

introduce the global search methodology of the agent, which is built into a Markov 

Decision Process model. 

 

 

 

 

Figure 5-7: Steps in Execution Stage 

An agent goes through 5 different steps while at the execution stage. After receiving a 

task request it first investigates the nodes learned at the learning stage – this step is to 

identify the special nodes (black box and risk analysis nodes). In the next step it updates 

the rewards using communication, and collaboration and current states of the other agents 

based on the equations (5-1) through (5-8). Only then the agent would be ready to solve 

the corresponding Bellman equations (3-3) – (3-5). Following finding a solution, the 
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agent would schedule the new steps and will execute them accordingly. These steps are 

shown in figure 5-7. 

 

5.5.1 MDP Model 

We show the value of a task T by V(T). If the agent reaches the objective goal it will 

receive V(T) as reward. In this phase, the objective of the agent is to synthesize a path 

from its current state to the desired state (current job) with a reasonable cost. We use an 

MDP model to solve this problem. Having the full perception model Psa(s′) and the 

corresponding rewards r(s,a) we can solve the Bellman equations and find the optimal 

policy. 

∑
∈′∈

′′=
Ss

sa
Aa

sVsPs )()(maxarg)( **π   (5-9) 

 

Below you can find the algorithm that does the search using the modified policy iteration 

method. 

 
Algorithm: Global Search 
 
Input: Initial MDP, set of global fault states based on (4-1), set of black box locations and times 
of minimum interactions with them, set of basic functions 
 
Output: Policy π 
 
procedure Global_Search(Initial model MDP, set of actions a) 
begin 

Identify the black box nodes 
Update related rewards according to (5-2) and (5-3) 
Identify the risk analysis nodes 
for each 
 Update related rewards based on (5-3) through (5-8) 
end for  
π =  modified_policy_iteration_algorithm [Russell 03] 
return optimal policy π 

end 
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5.6 Conclusion 

In this chapter we used the results of chapter two to four to build a framework that can be 

embedded into a single agent. An agent learns its own model and environment’s model in 

an offline state. Then it can be plugged into a live system to interact with others and to 

perform specific tasks. While in this system, it can update the learned model through 

collection of information and make more accurate and reliable decisions.  
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6. Conclusions and Future Work  

 

6.1 Conclusion 

In chapter two we presented our preliminary results on control synthesis algorithm for 

agents which are selfish. We assumed that the agent’s environment is deterministic and 

fully observable. The agent is not subject to failures, but it is possible to reach to fault 

conditions, specifically deadlocks. Two search algorithms were presented and it was also 

shown how to embed deadlock detection and avoidance in this algorithms. 

 

In chapter three we introduced an algorithm that utilizes the ideas from reinforcement 

learning to exert control on an unknown environment. This algorithm identifies a 

perception model of the environment at each level using regular language theory and 

adapts its search to the newly identified models. The search algorithm is goal oriented. 

The agent examines its basic functions around the bad state to save the maximally 

permissive property of the process and to reduce the computational cost. In this method 

we showed that even a process that is continuous in time can be controlled using a 

discrete event control theoretic framework. 

 

In chapter four we pointed out the issues of risk, communication and collaboration. 

Generally, agents try to avoid faults. These fault conditions could be local or global. 

Global faults affect a set of agents. Here we introduce a methodology to calculate the risk 

of transitioning to a global fault state if the fault condition is known. Then we introduced 
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a framework to avoid this global fault state using collaboration between involved agents. 

Game theory concepts have been used to expand this framework. 

 

In chapter five we used the results of chapter two to four to build a framework that can be 

embedded into a single agent. An agent learns its own model and environment’s model in 

an offline state. Then it can be plugged into a live system to interact with others and to 

perform specific tasks. While in this system, it can update the learned model through 

collection of information as well as collaboration and make more accurate and reliable 

decisions.  

 

6.2 Future Work 

1 - The approximate risk calculation model presented in chapter 4 provides a fundamental 

framework whereby an agent can calculate its risk of encountering global conflicts or 

faults conditions, through communication and collaboration with the other agents. At this 

time, this methodology has some shortcomings in terms of complexity of calculations and 

accuracy of the results. We believe that extension of this methodology and its 

simplification will be a major step. 

  

2 - In chapter 3 we presented a control synthesis model which acts upon an unknown 

environmental black box for the purpose of avoiding some adverse conditions or creating 

desirable ones. For such a methodology to be fully useful in real applications, it is 

essential to further extend the underlying learning schemes and simulations. It is also 
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essential to include cost more directly into the underlying search to reduce the 

computational complexity. 

  

3 - The results in chapter 2, where controller reconfigures itself to deal with previously 

unknown conditions can be extended to different situations. Such an embedded 

intelligence will be essential for real life applications. 

  

4 - The cost models that we presented in Chapter 5 are fairly simple. We believe these 

can be extended further including a more formalized model for learning.
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Appendix 

 
Algorithm for recognizing the stochastic regular language [Carrasco 94]: 
 
algorithm ALEGRIA 
input: 
 S: sample set of strings 
 α: 1-confidence level 
ouput: 
 DSFA 
begin: 
 A = Stochastic Prefix Tree Acceptor (SPTA) from S 
 do (for j = successor(firstnode(A)) to lastnode(A)) 
  do (for i = firstnode(A) to j) 
   if compatible(i, j) 
    determinize(A,i) // making sure all descendents have at most one 
outgoing transition corresponding to a given symbol 
    exit (i-loop) 
   end if 
  end do 
 end do 
 return A 
end algorithm 
 
 
 
algorithm different 
input: 
 n, n´: number of strings arriving at each node 
 f, f´: number of strings ending/following a given arc 
ouput: 
 boolean 
begin: 

 return ⎟
⎠
⎞

⎜
⎝
⎛

′
+

′
′

−
nnn

f
n
f 112ln

2
1

α
f   

end algorithm 
 
 
 
algorithm compatible 
input: 
 i, j: nodes 
ouput: 
 boolean 
begin: 
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 if different(ni, fi(#), nj, fj(#)) 
  return false 
 end if 
 do (for Aa∈∀ ) 
  if different(ni, fi(a), nj, fj(a)) 
   return false 
  end if 
  if not compatible(δ(i,a), δ(j,a)) 
   return false 
  end if 
 end do 
 merge (A, i, j) 
 return A 
end algorithm 
 
 
algorithm determinize 
input: 

A: finite automaton 
i: node in A, possibly with duplicate arcs 

output: 
equivalent deterministic finite automaton 

begin 
do (for Aa∈∀ ) 

if (node i has two transitions δ1(i,a), δ2(i,a) on a) 
merge (A, δ1(i,a), δ2(i,a)) 
determinize(A, δ1(i,a)) 

end if 
end do 

end algorithm 
 

 



181 

 

References 

[AAAI 05] http://www.aaai.org/AITopics/, AI Topics, a dynamic library of introductory 
information about Artificial Intelligence, 2005. 
[Alpan 97] G. Alpan, Design and Analysis of Supervisory Controllers for Discrete Event 
Systems, Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey, 1996. 
[Arrow 63] K. Arrow, Social Choice and Individual Values, 2nd edition, New Haven: 
Cowles Foundation, 1963. 
[ASAP 05] http://www.asap.cs.nott.ac.uk/themes/ma.shtml, ASAP, the Automated 
Scheduling, Optimization and Planning group, School of Computer Science and 
Information Technology, University of Nottingham, 2005. 
[Baase 90] S. Baase, Computer Algorithms: Introduction to Design and Analysis, 
Addison-Wesley Publishing Company, 2nd Edition, 1990. 
[Bernstein 00] D.S. Bernstein, S. Zilberstein, and N. Immerman, The complexity of 
decentralized control of Markov decision processes, Proceedings of the 16th International 
Conference on Uncertainty in Artificial Intelligence, Stanford, CA, 2000. 
[Bhat 84] U.N. Bhat, Elements of applied stochastic processes, John Wiley & Sons, 1984. 
[Bigus 01] J.P. Bigus, and J. Bigus, Constructing Intelligent Agents Using Java, Second 
Edition. Professional Developer’s Guide Series, Wiley, 2001. 
[Bonasso 96] IL R. Bonasso, D. Kortenkamp, D.P. Miller, and M. Slack, Experiences 
with an Architecture for Intelligent, Reactive Agents, Intelligent Agents II, eds. M. 
Wooldridge., J.P. Muller, and M. Tambe, pp. 187-202, Lecture Notes In Artificial 
Intelligence 1037, New York Springer-Verlag, 1996. 
[Bond 88] A.H. Bond, and Gasser, I., Readings in Distributed Artificial Intelligence. San 
Francisco, Calif.: Morgan Kaufmann, 1988. 
[Bratman 87] M.E. Bratman, Intensions, Plans, and Practical Reasons, Cambridge, MA: 
Harvard University Press, 1987. 
[Brooks 86] R.A. Brooks, A robust layered control system for a mobile robot, IEEE 
Journal of Robotics and Automation, Vol. 2, pp. 14-23, 1986. 
[Carrasco 94] R.C. Carrasco, and J. Oncina, Learning stochastic regular grammars by 
means of a state merging method, Proceedings of the 2nd International Colloquium on 
Grammatical Inference and Applications, ICGI, pp. 139-152, 1994. 
[Cassady 67] R. Cassady, Auctions and Auctioneering, Berkeley, University of California 
Press, 1967. 
[Chaib-draa 92] B. Chaib-draa, B. Moulin, R. Mandiau, and P. Millot, Trends in 
Distributed Artificial Intelligence. Artificial Intelligence Review, Vol. 6, No. 1, pp. 35-66, 
1992. 
[Chandy 82] K.M. Chandy, and J. Misra, A Distributed Algorithm for Detecting 
Resource Deadlocks in Distributed Systems, Proceedings of ACM SIGACT-SIGOPS 
Symposium on Principles of Distributed Computing, Ottawa, Ontario, Canada, pp. 157-
164, August 1982. 
[Chandy 83] K.M. Chandy, J. Misra, and L.M. Haas, Distributed Deadlock Detection, 
ACM Transactions on Computer Systems, Vol. 1, No. 2, pp. 144-156, May 1983. 
[Coffman 71] E.G. Coffman, M.J. Elphick, and A. Shoshani, System deadlocks, ACM 
Computing Surveys, Vol. 3, pp. 67-78, 1971. 



182 

 

[Corkill 83] D. Corkill, and V. Lesser, The Use of Metalevel Control for Coordination in 
a Distributed Problem- Solving Network., Proceedings of the Eight International Joint 
Conference on Artificial Intelligence (UCAI- 83), pp. 767-770, Menlo Park. Calif.: 
International Joint Conferences on Artificial Intelligence, 1983. 
[Darabi 00] H. Darabi, Toward Fault Tolerant and Re-configurable Discrete Event 
Systems, Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey, 2000. 
[Davis 83] R. Davis, and R.G. Smith, Negotiation as a Metaphor for Distributed Problem 
Solving, Artificial Intelligence, Vol. 20, No. 1, pp. 63-100, 1983. 
[Debouk 00] R. Debouk, Failure diagnosis of decentralized discrete-event systems, Ph.D. 
thesis, University of Michigan, Ann Arbor, 2000. 
[Decker 97] K. Decker, K. Sycara, and M. Williamson, Middle Agents for the Internet, 
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence 
(IJCAI-97), pp. 578-583, Menlo Park, Calif.: International Joint Conferences on Artificial 
Intelligence, 1997. 
[Dent 92] I. Dent, J. Boticario, J. McDermott, T. Mitchell, and D. Zabowski, A Personal 
Learning Apprentice. In Proceedings of the Tenth National Conference on Artificial 
Intelligence, pp. 96-103, Menlo Park. Calif.: American Association for Artificial 
Intelligence, 1992. 
[Durfee 89a] E.H. Durfee, and V. Lesser, Negotiating Task Decomposition and 
Allocation Using Partial Global Planning, Distributed Artificial Intelligence, Vol. 2, eds. 
L Gasser and M. Huhns., pp. 229-244, San Francisco, Calif.: Morgan Kaufmann, 1989. 
[Durfee 89b] E. Durfee, V. Lesser, and D. Corkill, Cooperative distributed problem 
solving, The Handbook of Artificial Intelligence, Vol. IV, A. Barr, P. Cohen, E. 
Feigenbaum, eds., Addison Wesley, pp. 83-167, 1989. 
[Fanti 04] M.P. Fanti, and M. Zhou, Deadlock Control Methods in Automated 
Manufacturing Systems, IEEE Transactions on Systems, Man, and Cybernetics—Part A: 
Systems and Humans, Vol. 34, No. 1, January 2004. 
[Feller 50] W. Feller, An introduction to probability theory and its applications, John 
Wiley & Sons, New York, 1950. 
[Ferber 96] J. Ferber, Reactive Distributed Artificial Intelligence: Principles and 
Applications, Foundations of Distributed Artificial Intelligence, eds. G. O’Hare and N. 
Jennings, pp. 287-314, New York Wiley, 1996. 
[Ferber 99] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial 
Intelligence, Harlow, UK: Addison Wesley Longman, 1999. 
[Ferguson 95] I.A. Ferguson, Integrated Control and Coordinated Behavior: A Case for 
Agent Models, Intelligent Agents: Theories, Architectures, and Languages, eds. M. 
Wooldridge and N.K. Jennings, pp. 203-218, Lecture Notes in Artificial Intelligence, V. 
890, New York, Springer-Verlag, 1995. 
[FIPA 05] http://www.fipa.org, Foundation for Intelligent Physical Agents. 
[Franklin 96] S. Franklin, and A. Graesser, Is it an Agent, or just a Program?: A 
Taxonomy for Autonomous Agents, Proceedings of the Third International Workshop on 
Agent Theories, Architectures, and Languages, Springer Verlag, 1996. 
[Garrido 96] L. Garrido, and K. Sycara, Multiagent Meeting Scheduling: Preliminary 
Experimental Results, Proceedings of the Second International Conference on Multiagent 
Systems, pp. 95-102, Menlo Park, Calif.: AAAI Press, 1996. 



183 

 

[Gasser 92] L. Gasser, An Overview of DAI, Distributed Artificial Intelligence Theory 
and Praxis, eds. N. Avouris and L. Gasser, pp. 9-30, Boston, Kluwer Academic, 1992. 
[Giua 92] A. Giua, Petri Nets as Discrete Event Models for Supervisory Control, Ph.D. 
Thesis, Dept. of Computer and Systems Engineering, Rensselaer Polytechnic Institute, 
Troy, N.Y., July 1992. 
[Gruschke 98] B. Gruschke, Integrated Event Management: Event Correlation Using 
Dependency Graphs, Proceedings of the 9th IFIP/IEEE International Workshop on 
Distributed Systems: Operations and Management, 1998. 
[Han 03] W. Han, and M.A. Jafari, Component and Agent-Based FMS Modeling and 
Controller Synthesis, IEEE Transactions On Systems, Man, And Cybernetics —Part C: 
Applications And Reviews, Vol. 33, No. 2, May 2003. 
[Hart 68] P.E. Hart, N.J. Nilsson, B. Raphael, A Formal Basis for the Heuristic 
Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and 
Cybernetics,Vol. 4, No. 2, pp. 100-107, 1968. 
[Higuera 98] C. De la Higuera, Learning stochastic finite automata from experts, 
Proceedings of the 4th International Colloquium on Grammatical Inference and 
Applications, ICGI, pp. 79-89, 1998. 
[Hoeffding 63] W. Hoeffding, Probability inequalities for sums of bounded random 
variables, American Statistical Association Journal, Vol. 53, pp. 13-30, 1963. 
[Howarth 04] F. Howarth, http://www.it-director.com/article.php?articleid=11774, March 
2004. 
[Huberman 88] B.A. Huberman, and T. Hogg, The Behavior of Computational Ecologies, 
The Ecology of Computation. ed. B.A. Huberman, Amsterdam, The Netherlands: North-
Holland, 1988. 
[Huhns 97] M. Huhns, and M. Singh, Readings in Agents. San Francisco, Calif.: Morgan 
Kaufmann, 1997. 
[Jafari 95] M.A. Jafari, Supervisory Control Specification and Synthesis, Petri Nets in 
Flexible and Agile Manufacturing, Ed. M.C. Zhou, Kluwer Academic Publisher, pp. 337-
368, 1995. 
[Jennings 98] N. Jennings, K. Sycara, and M. Wooldridge, A Roadmap for Agent 
Research and Development, Autonomous Agents and Multiagent Systems, 1998. 
[Knapp 87] E. Knapp, Deadlock Detection in Distributed Databases, ACM Computing 
Surveys, Vol. 19, No. 4, pp. 303-328, December 1987. 
[Karp 02] M. Karp, Network World Storage Newsletter, 10/09/02; 
http://www.research.ibm.com/autonomic/index.html, October, 2002. 
[Klemperer 99] P. Klemperer, Auction theory: a guide to the literature, Journal of 
Economic Surveys, Vol.13, No. 3, pp. 227-286,1999. 
[Krogh 96] B.H. Krogh, and S. Kowalewski, State Feedback Control of Condition/Event 
Systems, Mathematical and Computer Modeling, Vol. 23, No. 11/12, pp. 161-173, 1996. 
[Krothapalli 99] N. Krothapalli, and A. Deshmukh, Design of negotiation protocols for 
multi-agent manufacturing systems, International Journal of Production Research, Vol. 
37, No. 7, pp. 1601-1624, 1999. 
[Lee 93] Y. K. Lee, S.J. Park, OPNets: An Object-Oriented High-Level Petri Net Model 
for Real-Time System Modeling, Journal of Systems and Software, Vol. 20, No. 1, pp. 
69-86, January, 1993. 



184 

 

[Lin 94] F. Lin, Diagnosability of discrete-event systems and its applications, Journal of 
Discrete Event Dynamic Systems: Theory and Applications, Vol. 4, No. 2, pp. 197–212, 
May 1994. 
[Lopomo 98] G. Lopomo, The English Auction is optimal among simple sequential 
auctions, Journal of Economic Theory, No. 82, pp. 144-166, 1998. 
[Maes 95] P. Maes, Artificial Life Meets Entertainment: Life like Autonomous Agents, 
Communications of the ACM, Vol. 38, No. 11, pp. 108-114, 1995. 
[McAfee 87] R.P. McAfee, and J. McMillan, Auctions and bidding, Journal of Economic 
Literature, No. 25, pp. 699-738, 1987. 
[Mitchell 84] D.P. Mitchell, and M.J. Merritt, A Distributed Algorithm for Deadlock 
Detection and Resolution, Proceedings of the 3th Annual ACM Symposium on Principles 
of Distributed Computing, ACM SIGACT SIGOPS, Vancouver, B.C., Canada, pp. 282-
284, August 1984. 
[Mitchell 97] T.M. Mitchell, Machine Learning, McGraw Hill, 1997. 
[Mocanu 06] A Simple Laplace Transform Calculus, July 21, 2006. 
[Muller 94] J.P. Muller, and M. Pischel, Modeling, Interacting Agents in Dynamic 
Environments, Proceedings of the Eleventh European Conference on Artificial 
Intelligence (ECAI-94), pp. 709-713, Chichester, UK., Wiley, 1994. 
[Neuts 81] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models – An 
Algorithmic Approach, Baltimore, Maryland, 1981. 
[Obermarck 82] R. Obermarck, Distributed Deadlock Detection Algorithm, ACM 
Transactions on Database Systems, Vol. 7, No. 2, pp. 187-208, June 1982. 
[O’Hare 96] G. O’Hare, and N. Jennings, Foundations of Distributed Artificial 
Intelligence, New York: Wiley, 1996. 
[Oncina 92] J. Oncina, and P. García, Inferring regular languages in polynomial updated 
time, Pattern Recognition and Image Analysis, Series in Machine Perception and 
Artificial Intelligence, Vol. 1, pp. 49-61, World Scientific, Singapore, 1992. 
[Ostroff 89a] J.S. Ostroff, Synthesis of controllers for real-time discrete event systems, 
IEEE Proceedings of the 28th Conference on Decision and Control, Tampa, Florida, Dec. 
1989. 
[Ostroff 89b] J.S. Ostroff, Temporal Logic for Real-Time Systems, Advanced Software 
Development Series. Research Studies Press Limited (distributed by John Wiley and 
Sons), England, 1989. 
[Patterson 02] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. 
Enriquez, A. Fox, E. Kıcıman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, 
J. Traupman, and N. Treuhaft Recovery Oriented Computing (ROC): Motivation, 
Definition, Techniques, and Case Studies, Computer Science Technical Report, 
UCB//CSD-02-1175, U.C. Berkeley, March, 2002. 
[Petri 62] C.A. Petri, Communication with Automata, Ph.D. Dissertation, University of 
Bonn, Bonn, Germany, 1962. 
[Pinzon 99] L.E. Pinzon, H.-M. Hanisch, M.A. Jafari, and T. O. Boucher, A Comparative 
Study of Synthesis Methods for Discrete Event Controllers, Journal of Formal Methods 
in System Design, Vol. 15, No. 2, pp. 123-167, September 1999. 
[Pinzon 01] L.E. Pinzon, Developing Sequential Controllers for Discrete Event Systems, 
Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey, 2001. 



185 

 

[Ramadge 87a] P.J. Ramadge, and W.M. Wonham, Supervisory control of a class of 
discrete-event processes, SIAM Journal of Control and Optimization, Vol. 25, No. 1, pp. 
206-230, January, 1987. 
[Ramadge 87b] P.J. Ramadge, and W.M. Wonham, Modular feedback logic for discrete 
event systems, SIAM Journal of Control and Optimization, Vol. 25, No. 5, pp. 1202-
1218, September, 1987. 
[Rausch 95] M. Rausch, and H.M. Hanisch, Net condition/event systems with multiple 
condition outputs, ETFA 95 Conference, Paris, France, October, 1995. 
[Ross 96] S. Ross, Stochastic Processes, John Wiley, 2nd edition, 1996. 
[Russell 03] S.J. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach, 
Englewood Cliffs, NJ: Prentice Hall, 2nd edition, 2003. 
[Sampath 95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C. 
Teneketzis, Diagnosability of discrete-event systems, IEEE Transactions on Automatic 
Control, Vol. 40, pp. 1555–1575, September, 1995. 
[Sampath 96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C. 
Teneketzis, IEEE Transactions on Control Systems Technology, Vol. 4, No. 2, March 
1996. 
[Sampth 01] M. Sampath, A hybrid approach to failure diagnosis of industrial systems, 
Proceedings of the American Control Conference, Arlington, VA, pp. 25-27, June, 2001. 
[Sandholm 93] T. Sandholm, An implementation of the contract net protocol based on 
marginal cost calculations, Proceedings of the National Conference on Artificial 
Intelligence, AAAI Press, Menlo Park, CA, pp. 256-262, 1993. 
[Schwartz 97] R. Schwartz, and S. Kraus, Bidding mechanisms for data allocation in 
multi-agent environments, Agent Theories, Architectures, and Languages, Springer, New 
York, pp. 61-75, 1997. 
[Srinivasan 93] V.S. Srinivasan, and M.A. Jafari, Fault Detection/Monitoring Using Time 
Petri Nets, IEEE Transactions On Systems, Man, And Cybernetics, Vol. 23, No. 4, 
July/August, 1993. 
[Stone 00] P. Stone, and M. Veloso, Multiagent systems: a survey from a machine 
learning perspective, Autonomous Robots, Vol. 8, No. 3, 2000. 
[Sutton 98] R.S. Sutton, and A.G. Barto, Reinforcement Learning: An Introduction, 
Cambridge, MA, MIT Press, 1998. 
[Sycara 98] K. Sycara, Multiagent Systems, American Association for Artificial 
Intelligence, pp. 79-92 , Summer 1998. 
[Sycara 03] K. Sycara, J.A. Giampapa, B.K. Langley, and M. Paolucci, The RETSINA 
MAS, a Case Study, Software Engineering for Large-Scale Multi-Agent Systems: 
Research Issues and Practical Applications, Alessandro Garcia, Carlos Lucena, Franco 
Zambonelli, Andrea Omici, Jaelson Castro, ed., Springer-Verlag, Berlin Heidelberg, Vol. 
LNCS 2603, pp. 232-250, July, 2003. 
[Tai 02] T. Tai, and T.O. Boucher, An Architecture for Scheduling and Control in 
Flexible Manufacturing Systems using Distributed Objects, IEEE Transactions on 
Robotics and Automation, Vol.18, No. 4, pp.452-462, 2002. 
[Thomas 98] J. Thomas, and K. Sycara, Stability and Heterogeneity In Multiagent 
Systems, Proceedings of the Third International Conference on Multiagent Systems, 
Menlo Park, Calif: AAAI Press, 1998. 



186 

 

[Vickrey 61] W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders, 
Journal of Finance, No.16, pp. 8-37, 1961. 
[Viswanadham 90] N. Viswanadham, Y. Narahari, and T.L. Johnson, Deadlock 
prevention and deadlock avoidance in flexible manufacturing systems using Petri net 
models, IEEE Transactions on Robotics and Automation, Vol. 6, pp. 713-723, December 
1990. 
[Vlassis 03] N. Vlassis, A Concise Introduction to Multiagent Systems and Distributed 
AI, Introductory Text, University of Amsterdam, September 2003. 
[Walsh 98] W. Walsh, M. Wellman, P. Wurman, and J. MacKie-Mason, Auction 
protocols for decentralized scheduling, Proceedings of the 18th International Conference 
on Distributed Computing Systems, Amsterdam, The Netherlands, pp. 612-621, 1998. 
[Wang 98] L.C. Wang, S.Y. Wu, Modeling with colored timed object-oriented Petri nets 
for automated manufacturing systems, Computers and Industrial Engineering, Vol. 34, 
No. 2, pages 463-480. 1998. 
[Wang 03] X. Wang, and T. Sandholm, Reinforcement learning to play an optimal Nash 
equilibrium in team Markov games, Advances in Neural Information Processing Systems, 
15, Cambridge, MA, MIT Press, 2003. 
[Want 03] R. Want, T. Pering, D. Tennenhouse, Comparing autonomic and proactive 
computing, IBM Systems Journal, Vol. 42, No. 1, p129, 2003. 
[Weiβ 95] G. Weiß, Distributed reinforcement learning, Robotics and Autonomous 
Systems, No. 15, pp. 135–142, 1995. 
[Wellman 93] M. Wellman, A market-oriented programming environment and its 
application to distributed multicommodity flow problems, Journal of Artificial 
Intelligence Research, No. 1, pp. 1-22, 1993. 
[Wellman 94] M. Wellman, A computational market model for distributed configuration 
design, Proceedings of 12th National Conference on Artificial Intelligence, AAAI-94, 
Seattle, WA, pp. 401-407, 1994. 
[Wooldridge 95] M. Wooldridge, and N. Jennings Intelligent Agents: Theory and 
Practice, Knowledge Engineering Review, Vol. 10, No. 2, pp. 115-152, 1995. 
[Yamalidou 96] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis, Feedback 
control of Petri Nets based on place invariants, Automatica, Vol. 32, No. 1, pp. 15–28, 
1996. 
[Ygge 96] F. Ygge, and H. Akkermans, Power load management as a computational 
market, Proceedings of the 2nd International Conference on Multi-Agent Systems, AAI 
Press, Menlo Park, CA, pp. 393-400, 1996. 
[Zad 99] S.H. Zad, R.H. Kwong, and W.M.Wonham, Fault diagnosis in timed discrete-
event systems, Proceedings of the 38th IEEE Conference on Decision Control, Phoenix, 
AZ, pp. 1756–1761, December, 1999. 
[Zhao 06] P. Zhao, Distributed System with Self-diagnosis and Self-Healing, Ph.D. 
Dissertation, New Brunswick, New Jersey, 2006. 



187 

 

Curriculum Vitae 

Ardavan Amini 

 

Education 

1992-1996 B.S. in Electrical Engineering, University of Tehran, Faculty of 
Engineering, Tehran, Iran. 

 
2000-2003 M.S. in Industrial and Systems Engineering, Rutgers University, New 

Brunswick, New Jersey. 
 
2003-2007 Ph.D. in Industrial and Systems Engineering, Rutgers University, New 

Brunswick, New Jersey. 
 
 
Experience 
 
1997-1999 Electrical Engineer, Bisan Pars Co. Ltd. (Rep. of HORIBA Europe, 

Germany), Tehran, Iran. 
 
2000-2002 Research Assistant, Department of Industrial and Systems Engineering, 

Rutgers University, New Brunswick, New Jersey. 
 
2002-2004 Teaching Assistant, Department of Industrial and Systems Engineering, 

Rutgers University, New Brunswick, New Jersey. 
 
2004-2007 Research Assistant, Center for Advanced Infrastructure and Transportation 

(CAIT), Rutgers University, New Brunswick, New Jersey. 
 
 
Publications 
 
2002 “A Distributed Discrete Event Dynamic Model for Supply Chain of 

Business Enterprises,” M.A. Jafari, et al., IEEE Computer Society, 
Proceedings of the Sixth International Workshop on Discrete Event 
Systems (WODES’02), pp. 279-285. 

 
2005 “Control Synthesis for Reconfigurable Distributed Systems with 

Applications in Manufacturing,” A. Amini, et al., 16th IFAC World 
Congress Proceedings, Prague, Czech Republic. 

 



188 

 

2005 “Modeling Admissible Behavior using Event Signals,” L.E. Pinzon, et al., 
Proceedings of the 2005 IEEE International Conference on Robotics and 
Automation, Barcelona, Spain. 

 
2007 “An Online Fault Detection and Avoidance Framework for Distributed 

Systems,” P. Zhao, et al., Proceedings of the 2007 IFAC Workshop on 
Dependable Control of Discrete Systems, Paris, France. 

 
 


