
ILLUSTRATIVE DEFORMATION OF VOLUMETRIC
OBJECTS AND OTHER GRAPHICAL MODELS

BY CARLOS D. CORREA

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Deborah Silver

and approved by

New Brunswick, New Jersey

May, 2007

c© 2007
Carlos D. Correa

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Illustrative Deformation of Volumetric Objects and Other
Graphical Models

by Carlos D. Correa
Dissertation Director: Prof. Deborah Silver

The purpose of visualization is to gain understanding of 3D structures through images. Al-

though many rendering techniques have been proposed for this purpose, the effective visual-

ization remains a challenging task, due to occlusion, clutter, noise in the data, and acquisition

pose. Recent solutions to this problem deal with transfer functions and other rendering tech-

niques to enhance the visibility of certain parts of interest. At the core of these techniques is

the assumption that the user’s role is passive and that the data remains unchanged.

In this thesis, we explore a more active approach to visualization, where a scientist can

manipulate a dataset as if deforming a real model. We call this type of manipulation Illustrative

Deformation. Our approach draws the name from the types of deformations that are often

depicted in scientific illustration, which are used to enhance visibility of certain features while

providing context, or to abstract the structure of an object or procedure. Inspired by medical

and surgical illustration, our approach was designed to reproduce some of their key properties:

illustrations often contains cuts and dissections, they allow feature-sensitive operations, which

can be applied to a semantic component of the object without affecting other parts of the object,

and they enable virtual operations, which do not necessarily conform to reality, but are useful

for understanding the structure of complex objects.

Our approach is based on a generalized notion of 3D displacement maps, which unifies

ii

the specification of continuous and discontinuous deformations on both volumes and surface-

based objects. We show how displacements can describe a wide range of transformations,

including cuts and peels, how they can be extended to include feature-sensitive operations,

and how can they be implemented to obtain high quality interactive rendering on commodity

hardware. We also show how our approach can be extended to the deformation of surface-based

models without the need for remeshing. Through a number of examples and quantitative results,

we demonstrate the generality, flexibility and scalability of our approach, and we explore its

applications in medical illustration, surgical planning and simulation, and as a general tool for

visualization and computer graphics.

iii

Acknowledgements

I would like to thank my advisor, Professor Deborah Silver, for her vision and encouragement

throughout this research. This thesis would not have been possible without her support and

opportune guidance. I also want to thank Professor Min Chen for his valuable input and his

meticulous revision of notation and form.

I wish to thank Dr. Stanley Trooksin, Dr. Sid Roychowdhury and Dr. Marsha Jessup of the

Robert Wood Johnson Medical School for valuable input on surgical and medical illustration.

I am grateful to the National Library of Medicine for providing the Visible Human dataset, the

AIM@Shape repository for the surface-based models and Stefan Roettger for providing and

collecting a number of volume datasets. I wish to acknowledge the sources of the datasets in

Stefan Roettger’s collection.

I wish to thank my colleagues and friends from the Vizlab, who made these past years the

best of my graduate studies, for their timely advice and proof-reading of my papers.

Finally, I want to thank my parents Guillermo and Elsa for all their support and encourage-

ment during my studies and for giving me a thirst for knowledge and desired for intellectual

achievement. Last, but not least, I want to thank Maria, for her constant support. This thesis

would not have been possible without her.

iv

Dedication

To

My parents, Guillermo and Elsa

To

Maria

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xiii

List of Figures . xiv

List of Notation . xxi

1. Introduction . 1

1.1. Motivation . 1

1.2. Volume Rendering and Illustration . 4

1.3. Object Deformation . 5

1.4. Contributions . 7

1.5. Organization of the Thesis . 7

2. Related Work . 9

2.1. Introduction . 9

2.2. Sampled Object Representations . 10

2.2.1. Sampled Layered Representations (SLR) 12

2.3. Deforming Sampled Object Representations 13

2.3.1. Empirical Deformable Models . 14

2.3.2. Physically-Based Models . 15

Deformable Models in Surgical Simulation 16

2.4. Rendering Deformation . 18

vi

2.4.1. Indirect Space Warping . 19

2.4.2. Direct Space Warping . 22

2.4.3. Discontinuous Deformation . 24

2.5. Other Volume Manipulation . 27

2.6. Mesh Deformation and Cuts . 28

2.7. Summary . 29

3. Illustrative Deformation . 31

3.1. Deformation Templates . 32

3.2. Process Overview . 33

I Volume Deformation 35

4. Discontinuous Displacement Mapping . 36

4.1. Introduction . 36

4.2. Related Work . 37

4.3. Displacement Mapping . 39

4.4. Modeling discontinuities via Displacements 41

4.5. Rendering Pipeline . 43

4.5.1. Displacement Setup . 43

4.5.2. Displaced Object Points . 44

4.5.3. Displaced Surface Normal . 45

Normals at Displaced Points . 45

Normals at Discontinuities . 48

4.5.4. Compositing . 49

Mass Conservation . 51

Intensity Constancy . 52

4.6. Construction of Displacement Maps . 53

4.6.1. Procedural Description . 54

4.6.2. Inverse Weighted Interpolation . 54

vii

4.7. Algebraic Operations on Displacement Maps 57

4.7.1. Affine Transformations . 58

4.7.2. Addition . 60

4.7.3. Composition . 61

4.8. Results . 62

4.9. Chapter Summary . 63

5. Feature Aligned Deformation . 65

5.1. Introduction . 65

5.2. Related Work . 66

5.3. Transformation-Based Alignment . 68

5.3.1. Normal Estimation . 70

5.3.2. Implementation details . 70

5.4. Mask-based Alignment . 71

5.4.1. Mask-based Volume Deformation . 72

5.4.2. Surface Alignment . 74

5.4.3. Segment Alignment . 76

5.5. GPU Implementation . 78

5.6. Results . 79

5.7. Constrained Deformation . 80

5.7.1. Modulated Displacement . 82

5.7.2. Coordinate Modulation . 83

5.8. Chapter Summary . 85

6. Evaluation . 87

6.1. Introduction . 87

6.2. Quantitative Evaluation of Rendering Quality 87

6.2.1. Displacement Resolution . 88

6.2.2. Displacement Precision . 88

6.2.3. Precision of the Jacobian Matrix . 89

viii

6.2.4. Transparency Adjustment . 93

6.2.5. Gradient Modulated Rendering Images 94

6.3. Normal Estimation Validation . 95

6.3.1. Shape Estimation . 97

6.4. Performance Evaluation . 101

6.4.1. Memory Requirements . 101

6.4.2. Rendering Speed . 101

6.5. Chapter Summary . 105

II Surface Deformation 107

7. Complex Deformations and Cuts without Re-meshing 108

7.1. Introduction . 108

7.2. Related Work . 109

7.3. Overview . 111

7.4. Rendering and Deformation of Layered Representations 113

7.4.1. Finding the Deformed Surface . 114

7.4.2. Estimation of Normals . 114

7.4.3. Definition of Cuts . 115

7.4.4. Rendering of Cuts . 116

Rendering of Hollow Surfaces . 116

Rendering of solid objects . 117

Rendering of thick objects . 118

7.4.5. Seamless Integration . 118

7.5. Defining Displacement Fields . 118

7.5.1. Complex Cut Geometry . 119

7.5.2. Adaptive Sampling . 120

7.6. Implementation Details . 122

7.6.1. Interactive Exploration of Deformation 123

ix

7.6.2. Memory Efficiency . 123

7.6.3. Depth Estimation . 125

7.7. Results . 125

7.8. Chapter Summary . 127

8. Evaluation of Surface-based Deformation . 129

8.1. Introduction . 129

8.2. Rendering Quality . 129

8.3. Rendering Performance . 130

8.3.1. Size . 132

Representation Size . 133

8.3.2. Depth Estimation . 134

8.3.3. Empty Space Skipping . 135

8.4. Discussion . 137

9. Applications . 139

9.1. Introduction . 139

9.2. Scientific Illustration . 139

9.2.1. Case Study Illustrations . 140

9.2.2. Morphology Illustrations . 143

9.3. Surgery Planning and Simulation . 144

9.4. Volume Clipping and Focus+Context Visualization 146

9.5. Chapter Summary . 147

10. Conclusions . 149

10.1. Directions for future work . 151

Appendices . 153

Appendix A. Index of Datasets . 153

x

Appendix B. Index of Illustrative Deformations . 154

B.1. Tomato Illustrations . 154

B.2. Discontinuous Displacement Showcase . 154

B.3. CT Head Peel . 154

B.4. Hand Dissection . 155

B.5. Foot Surgery . 155

B.6. Frog Dissection . 155

B.7. Whiplash . 156

B.8. Craniotomy . 156

B.9. Carpal Tunnel Surgery . 156

B.10. Abdominal Surgery . 156

B.11. Anatomical Illustration . 157

B.12. Carp Illustration . 157

B.13. Neck Surgery . 157

B.14. Liver Surgery . 157

Appendix C. Displacement Templates . 158

C.1. Poke . 158

C.2. Twist . 158

C.3. Wave . 159

C.4. Bend . 159

C.5. Squeeze . 160

C.6. Dilate . 160

C.7. Peel . 161

C.8. Split . 161

C.9. Retractor . 162

C.10. CutQuad . 163

C.11. Peeler . 164

xi

Appendix D. Pixel Shaders . 165

D.1. Simple Deformation Renderer . 165

D.1.1. Unlit volumes . 165

D.1.2. Warp Procedure . 165

D.1.3. Shaded Volumes . 166

D.1.4. Normal Estimation Procedure . 166

D.2. Feature-Aligned Renderer . 167

D.2.1. Unlit Volumes . 167

D.2.2. Shaded Volumes . 168

D.2.3. Adjust Normal Procedure . 169

D.3. Surface Deformation using Ray Casting . 169

D.3.1. Continuous Deformation . 169

D.3.2. Hollow Cuts . 169

D.3.3. Solid Cuts . 170

D.3.4. Find Intersection . 171

D.3.5. Sample Implicit Representation . 172

References . 174

Vita . 184

xii

List of Tables

2.1. Example data capture modalities, and their typical characteristics and represen-

tation schemes. 11

6.1. Size in voxels of the displacement textures and texture memory requirement in

total . 101

6.2. Number of texture lookups for different lighting methods 104

6.3. Performance results for different volume datasets, with d = 1.0 for the distance

between view aligned slices of the volume . 105

8.1. Weighted average of rendering time for continuous and discontinuous defor-

mation in milliseconds . 132

8.2. Weighted average of rendering time for continuous and discontinuous defor-

mation in milliseconds . 137

xiii

List of Figures

1.1. Common problems in the visualization of 3D datasets 2

1.2. Example medical and anatomical illustrations. (a) Abdominal surgical opera-

tion (courtesy of Nucleus Inc.) (b) Craniotomy (courtesy of Nucelus Inc.) (c)

Anatomical illustration with dissected “flaps”, by Antonio Scrantoni and Paolo

Mascagni, 1833 (U.S. National Library of Medicine) (d) The Flayed Angel,

Jacques Gautier D’Agoty, 1746 (U.S. National Library of Medicine) 3

2.1. Direct transformation . 19

2.2. Indirect space warping . 20

2.3. Direct Space Warping . 23

2.4. Introducing Cuts for Indirect Space Warping 25

2.5. Introducing Cuts for Direct Space Warping 27

3.1. Iconic representations of deformation templates 32

3.2. Overview of Illustrative Deformation of volumes 34

3.3. Overview of surface-based deformation . 34

4.1. A cross section illustration of the traditional displacement mapping (left) and

the generalized displacement mapping allowing for unorthogonal and discon-

tinuous displacement (right). 39

4.2. Modeling of discontinuities using discretely sampled displacements. Top Row:

peeling of a tomato dataset. Bottom Row: Zoomed view. (a) Using out-of-

bounds displacement results in jagged lines and unintentional displacement (b)

Binary alpha masks results in aliasing (c) Smooth alpha masks. 42

xiv

4.3. System diagram for discontinuous displacement mapping. As we sample the

bounding box of the scene, each fragment p′ is displaced by a distance d ob-

tained by sampling the displacement texture D. The resulting position p =

p′ +d is used to sample the object texture f and gradient texture ∇(f) , to ob-

tain color and normal information. Color, normal and opacity (obtained from

alpha mask A) are used to compute the final color of the fragment. 44

4.4. Lighting computation for the piggy bank object. The light is above the piggy

bank. (a) No lighting. (b) Using the pre-computed gradient results in incorrect

lighting, notice how the underside of the cut surface is dark even though it is

facing the light. (c) Correct lighting, but artifacts occur at discontinuities –

rim of the cut area. (d) Correct lighting with proper handling of normals at

discontinuities. Now the rim, which is facing the light, is lit properly. 48

4.5. Cylindrical slab of area E and length ∆s. Light attenuation is due to the inter-

action of light with a number of particles in this slab. 50

4.6. Displacement map creation using Radial Basis Functions. (a),(b) Nodal defor-

mation on 2D slices (c),(d) Resulting deformation on a 3D volumetric dataset. . 56

4.7. Discontinuous displacement map creation using Decoupled Radial Basis Func-

tions. 57

4.8. Affine transformation of displacement on the tomato dataset. 58

4.9. Composition of two displacement maps D1 (wave) and D2 (peel) in different

order. 61

4.10. Example deformations on volumetric objects 63

4.11. Slicing of the tomato . 64

xv

5.1. Feature-aligned volume manipulation (a) A feature-aligned retraction applied

to a human hand data set, showing bones (left) and vessels (right) (b) Surgical

illustration of a hand (Copyright c©2006 Nucleus Medical Art. All rights reserved.

www.nucleusinc.com) (c) Multiple peel and cutting away operators applied to

the visible human data set (d) Illustration of human anatomy with dissected

“flaps”, by Antonio Scrantoni and Paolo Mascagni, 1833 (U.S. National Li-

brary of Medicine), similar to exhibitions such as BodyWorlds [119], and Bod-

ies, the Exhibition [1]. 65

5.2. Transformation-based alignment. 68

5.3. Piecewise linear alignment with a curve of three segments. Each line segment

is used to define a quadrilateral by extending its normals. Bilinear interpolation

is used as the displacement-object space mapping 69

5.4. An example of different types of alignment. (a) Axis aligned peel. Note how

the peeled layer is thick and flat, since it is aligned with an orthogonal axis.

(b) Surface aligned peel, aligned with a computed distance field. Notice how

it approximates a surface. (c) Segment aligned peel, based on segmentation,

which is more accurate. Note that in the feature based alignment (b) and (c) the

peel is thin and rounded. 71

5.5. Inverse warping cases for mask-based feature-aligned deformation 73

5.6. Normal blending for surface alignment. Black arrows indicate the normal of

the axis-aligned part of the cut, green arrows indicate the inversely transformed

normal, red arrows are the normals orthogonal to the surface of the cut, and the

blue arrows indicate the corrected normal after blending. 74

5.7. Normal blending for segment alignment. Black arrows indicate the normal of

the axis-aligned part of the cut, green arrows indicate the transformed normal,

red arrows are the normals orthogonal to the outer surface of the segment, and

the blue arrows indicate the corrected normal after blending. 77

5.8. Comparative Results . 80

5.9. Deformation of a knee CT Scan . 81

xvi

5.10. Constrained Deformation of CT Head Dataset 82

5.11. Constrained Deformation of Bar Dataset . 85

6.1. Twisting operators at different displacement resolutions 88

6.2. Peel operator at different displacement resolutions 89

6.3. Continuous and discontinuous operators with different displacement precision . 90

6.4. Test Volumes for analysis of the Jacobian Precision 91

6.5. Jacobian Determinant Histogram for Test Volumes 92

6.6. Normal Angle Error vs. average Jacobian Determinant (a) Unnormalized Jaco-

bian Matrix using 10-bit precision (b) Normalized Jacobian Matrix using 10-bit

precision. 93

6.7. Normal Angle Error vs. Range of Jacobian Determinant 93

6.8. Transparency Adjustment for Squeeze deformation 94

6.9. Transparency Adjustment for Dilate deformation 94

6.10. Rendering a twisted bar using gradient modulation 95

6.11. Rendering a peeled bar using gradient modulation 95

6.12. Comparison of lighting techniques for a continuous deformation 98

6.13. Comparison of lighting techniques for discontinuous deformation 98

6.14. Normal validation using Gradient Integration for Poke and Wave displacements 99

6.15. Error of shape estimation relative to the actual shape obtained from a depth map 100

6.16. Estimated shape for two different normal estimation methods for a poke operator100

6.17. Plot of rendering performance (msec.) for relative size of image, in terms of

zoom level (the larger the zoom level, the smaller the image) 102

6.18. Resolution vs. Rendering Time for two displacements. Resolution is given in

terms of size of displacement maps in voxels 103

6.19. Precision vs. Rendering Time for two displacements. 103

6.20. Lighting Method vs. Rendering Time for three displacements. 104

6.21. Transparency Adjustment vs. Rendering Time for two displacements. 105

7.1. Comparison of Sampled Layered Representations of the Armadillo model. . . 110

xvii

7.2. Composite Representation of an apple model. S, the original surface is rendered

as a mesh. The bounding box B(S′
D) is rendered as a layered representation.

The resulting rendering appears to the right. 112

7.3. Finding an intersection of a deformed layered representation. A ray in the de-

formed space S′D is transformed by a displacement field D(p). The transformed

ray maps into a curve in the undeformed space SD and yields an intersection. . . 114

7.4. Diagram for Ray intersection of cut surface. (a) For a hollow object, we com-

pute intersections with the object representation L(p), discarding those inside

the cut region (points 1 and 3), and stopping whenever it is outside the cut re-

gion (points 2 and 4). (b) For a solid object, we keep track of intersections

with the cut region and the object. In this case, points 2 and 5 are selected and

rendered. 117

7.5. Hollow, Thick and Solid Apple . 118

7.6. Complex Cut Geometries. (a-b) Ripple cuts on the bunny model 120

7.7. Turbine Model (10,778 polygons) used as a cutting tool on the Bunny model

(72,027 polygons) . 120

7.8. (a) Narrow Pull over golf ball model (245K triangles). (b) Linear search with

binary refinement results in missed intersections (c) Adaptive sampling based

on threshold (thresh=0.04) cannot resolve all misses (d) Jacobian sampling

finds the intersections properly. 122

7.9. Interactive Exploration of a peel deformation. By translating the displacement

space (blue box) in relation to the layered representation (wireframe box), an

effect of peeling is obtained. 123

7.10. Example cuts and deformations on geometric models. From left to right: (a)

Torso (25,528 triangles) with peeled skin and interior Mask model (10,213

triangles) (b) Hand with twisted finger (18,905 triangles) (c) Elephant with

twisted legs (39,290 triangles) (d) Bunny (72,027 triangles) cut by Turbine

Blade (10,778 triangles). 126

7.11. Twist deformation template applied to various polygonal models 126

xviii

7.12. Peeler cut template applied to various polygonal models 127

8.1. Comparison of explicit mesh deformation vs. our implicit approach. A hand

model (original: 18,905 triangles) is twisted along a finger. Our deformation

approach (right) provides smooth twisting across multiple resolutions of the

object. Explicit deformation results in collapse of nodes and crossing of edges

for the original model (middle row) and for lower resolutions (top row) (2,874

triangles). To obtain equivalent results, the mesh must be re-tessellated (52,463

triangles) as seen in the bottom row. 131

8.2. Rendering time for continuous deformation and solid discontinuous deforma-

tion, in relation to the relative size of the deformation bounding box, as a per-

centage of the screen area (512×512) . 132

8.3. Effect of size in rendering performance . 133

8.4. Effect of type of sampled representation in rendering time 134

8.5. Performance overhead of depth estimation . 134

8.6. Number of iterations of the intersection finding process vs. rendering time (msec.)136

8.7. Empty Space Skipping. Left: With no empty space skipping, a number of

unnecessary samples need to be taken and false intersections must be discarded.

Right: Empty Space Skipping avoids the test for false intersections 136

8.8. Speed up of empty space skipping for intersection finding algorithm vs. relative

size of deformation bounding box (512×512) 137

9.1. Illustration of whiplash injury . 141

9.2. Illustration of a craniotomy . 141

9.3. Transfer of deformation illustration to the Visible human dataset 142

9.4. Illustration of carpal tunnel surgery . 142

9.5. Illustration of abdominal procedure . 143

9.6. Anatomical Illustration with dissected flaps Dissected flaps 143

9.7. Application of our approach to Morphology Illustrations 144

9.8. Illustrative Deformation of Carp Dataset . 144

xix

9.9. Surgery simulation process for incorporation of our illustrative deformation

approach . 145

9.10. Neck surgery simulation . 146

9.11. (a-c) Retractor operator used to simulate dissection of a segmented frog dataset.

(d) A plier operator is applied to the internal organs, while simultaneously re-

tracting the skin. Geometric models are embedded in the scene to show the

placement of the operators. 146

9.12. Liver surgery simulation . 146

9.13. Clipping using discontinuous displacement mapping 147

9.14. Cutaway and Focus+Context Visualization of the brain in the CT Head dataset 148

xx

List of Notation

V Volume . 10

S Surface . 111

B(O) Bounding Box of Object O . 111

p Point in 3D space . 18

p′ Transformed point in 3D space . 18

p̂ 3D point in homogeneous coordinates . 59

TF Forward Transformation . 18

TB Backward Transformation . 26

F ◦G Composition of transformations: (F ◦G)(p) = F(G(p)) . 40

f (p) Scalar field . 19
−→v Vector in 3D space . 50

∅ Null position . 26

D(p) Displacement field . 40

A(p) Discontinuity scalar field .43

I Identity matrix . 47

JF Jacobian matrix of transformation F . 46

detM Determinant of matrix M .46
−→n Normal vector . 46

∇ f Gradient of a function f . 44

|−→v | Euclidean length (norm-2) of vector −→v . 53

L(p) Layered representation scalar field . 113

xxi

1

Chapter 1
Introduction

The purpose of visualization is to gain understanding of 3D structures through images. Al-

though many rendering techniques have been proposed for this purpose, the effective visual-

ization remains a challenging task, due to occlusion, clutter, noise in the data, and acquisition

pose. Many recent solutions to this problem deal with transfer functions and other rendering

techniques to enhance the visibility of certain parts of interest. At the core of these techniques is

the assumption that the user’s role is passive and that the data must remain unchanged. One of

the ways in which people interact with complex objects in “real life” is by direct manipulation.

In this thesis, we explore a more active approach to visualization, where a scientist can deform

a dataset as if deforming a real model. We call this type of manipulation Illustrative Deforma-

tion. Our approach draws the name from the types of deformations that are often depicted in

scientific illustration, which are used to enhance visibility of certain features while providing

context, or to abstract the structure of an object or procedure.

1.1 Motivation

The work in this thesis draws inspiration from two observations about the visualization process.

First, proper visualization of complex objects is sometimes difficult due to occlusion, clutter,

noise or acquisition pose. 3D objects are obtained via a variety of methods. Surface models are

often obtained artificially through a 3D modeling and sculpting software or scanned from a real

object. These models represent only the exterior of the object. Volumetric models, on the other

hand, represent also the interior of the object. These are acquired using computed tomography

(CT) or magnetic resonance imaging (MRI), or obtained as the result of a simulation or pro-

cedural definition. Volumetric objects are very common in biomedicine and engineering since

it is important that one can visualize the external and internal structure of objects. Figure 1.1

2

(a) Occlusion (b) Clutter (c) Noise (d) Pose

Figure 1.1: Common problems in the visualization of 3D datasets

shows examples of volumetric objects obtained via CT or MRI and some of the visualization

problems. In the engine dataset (a), we can see that the proper visualization of the internal

structure is complicated due to occlusion by a metallic plate. The neck dataset (b) is an MRI of

a patient’s neck. Visualization of the internal structures, e.g., the thyroid gland, is complicated

not only due to occlusion by the skin and muscle layers, but also due to clutter, as many organs

and glands are present in the region. The visman head dataset (c) is part of the Visible Human

Project, a complete 3D representation of a male donated to the study of human anatomy, from

the National Library of Medicine. In this case, noise prevents proper visualization of the ob-

ject of interest. In Figure 1.1(d), we have the mouse fetus dataset. Note that acquisition pose,

prevents some parts of interest, namely the head, from being visible.

The second observation is drawn from medical illustration. Medical and biological illus-

trators are trained to depict certain procedures and anatomical structures in such a manner that

they have the most value in terms of communicating a certain idea, for education, legal or for

surgical planning. In many of these illustrations, the illustrator is faced with the problem of

making visible features that otherwise may not be visible, while still maintaining a contextual

view of the surrounding object.

For this purpose, hand-drawn illustrations often include manipulating parts of an object

to depict the stages and outcome of a procedure, uncover hidden features, or reveal the spatial

relationship between different components of the objects. Such manipulation typically includes

the following characteristics:

• It often contains cuts and dissections, which, for example, are commonly found in illus-

trations of surgical procedures as exemplified by Figures 1.2(a) and 1.2(b).

3

(a) (b) (c) (d)

Figure 1.2: Example medical and anatomical illustrations. (a) Abdominal surgical operation
(courtesy of Nucleus Inc.) (b) Craniotomy (courtesy of Nucelus Inc.) (c) Anatomical illus-
tration with dissected “flaps”, by Antonio Scrantoni and Paolo Mascagni, 1833 (U.S. National
Library of Medicine) (d) The Flayed Angel, Jacques Gautier D’Agoty, 1746 (U.S. National
Library of Medicine)

• It may allow feature-sensitive operations, which can be applied to a semantic component

of the object, such as the skin in Figure 1.2(b), without affecting other parts of the object,

such as the skull.

• It may enable ubiquitous operations, which can be applied to various parts of the object

with different geometric transformations, as shown in Figure 1.2(c).

• It can facilitate virtual operations, which do not necessarily conform to the reality, such

as the unreal flaps used to illustrate anatomical structure in Figures 1.2(c) and 1.2(d).

Another motivation of our work is the increasing requirement for deformation techniques

for special effects and computer graphics in general. Rendering of special effects is often

performed as an offline process, where a high resolution surface model of an object is pro-

gressively transformed to obtain the desired effect. A number of interactive techniques have

been proposed to speed up the process or to work as a pre-visualization tool, where the artist

can rapidly prototype a draft version of the special effect without incurring in long hours of

rendering time. One of the problems in standard computer graphics is the requirement for re-

meshing when large deformations or cuts need to be simulated on polygonal objects. One of

the motivations for our approach was the possibility to treat polygonal objects as volumetric

representations and allow the simulation of complex deformations without re-meshing.

4

1.2 Volume Rendering and Illustration

Volume datasets are object representations commonly obtained by sampling a volumetric object

in a regular grid. Datasets are often acquired from CT or MRI scanners, defined procedurally,

or as a product of a simulation. Rendering of volumetric datasets can be done indirectly by

obtaining first an isosurface of interest and then rendering it with a traditional polygon renderer

[68] or directly. With the increasing power of graphic processor units (GPU), it has been

possible to implement direct volume rendering (DVR) on commodity hardware. One of the

most common mechanisms for interactive volume rendering is via 3D textures, where a volume

is sliced into view-aligned polygons and each slice is textured and composited along the view

direction [125]. Exploration of the different features of the dataset is commonly done via the

manipulation of transfer functions. With the advent of programmable GPUs, it is also possible

to perform interactive raycasting, where each pixel generates a ray that is used to traverse the

volume and perform the compositing of color and opacity values [96, 62]. Although slicing is

equivalent to tracing uniform rays along a volume, GPU-based raycasting opens the possibility

for techniques to improve the speed and quality of the rendering, such as adaptive sampling,

antialiasing, pre-integrated volume rendering [36] and empty-space skipping [70].

The exploration of volume datasets via transfer functions is prevalent. A number of tech-

niques have been proposed to improve its use [60], but it has been shown to be a complex task.

One of the main challenges is the problem of visibility, where the user wants to have a clear

view of a feature of interest and a clear view of contextual information at the same time. A

number of solutions have been proposed, motivated by illustration techniques:

• Non photorealistic techniques allow the rendering of different parts using non traditional

methods, resembling hand drawn illustrations [34, 116, 111, 12, 115, 107].

• Cutaway and ghosted views allow occluded objects to be rendered by fading [117], re-

moving [30, 124, 14] or distorting [123] occluding parts.

• Selective rendering allows the rendering of semantic parts of the object in multiple

modalities to improve the understanding of the structure of complex objects and enhance

visibility of occluded parts. This can be obtained via two-level rendering of segmented

5

volumes [45], or through volume decomposition [104, 24]

The above-mentioned focus+context techniques rely on the manipulation of viewing at-

tributes of the rendering engine and optical attributes of the data objects. Some solutions can-

not effectively resolve the occlusion problem. Others can, but at the cost of decreasing the

useful contextual information. Often the contextual information is completely suppressed. For

example: (a) techniques based on distorted viewing often have difficulties to remove occlusive

‘context’ to reveal the intended ‘focus’ of the interior structures; (b) techniques based on reduc-

ing opacity of the occlusive objects can sometimes in fact remove the important ‘context’ that

is relevant to the ‘focus’ to be revealed. Many of these techniques do not have a clear bound-

ary between focus and context, it is often difficult for users to determine in a focus+context

visualization whether a specific part of an object has the original geometry (or opacity) or the

magically changed geometry (or opacity).

Another way of providing visibility is through interactive deformation, including the ability

to cut and peel parts of an object. Deformation can be defined as the change in time of the shape

of an object, and has been widely explored for surface meshes, but relatively unexplored for

volumes. In this thesis, we explore the interactive deformation of volumetric objects.

1.3 Object Deformation

Deformation techniques have been commonly categorized as non-physics-based vs. physics-

based. In the former, we find techniques that allow “free” deformation of an object’s primitive

elements, with little or no regard to the physical realism of such deformation. In the latter,

we find techniques where deformation is driven as the result of applying a number of forces

and solving for a subset of the physical equations governing the dynamics of the object. How-

ever, the line between the two categories is becoming blurred. This comes as the result of the

introduction of constraints to otherwise non-physics-based deformation to account for desired

properties found in “real-life” situations, such as volume conservation and prevention of self-

intersection. In this thesis, we refer to non-physics-based deformation as those methods where

deformation is not obtained explicitly as the product of applying forces to a mesh, volume or

set of points. Furthermore, dynamic deformation effects, such as inertia and secondary forces,

6

are of little importance. Instead, deformations are defined empirically as a local or global trans-

formation of an object, defined by the user through direct manipulation, procedurally, or as a

combination of simpler deformations. Finally, here we further categorize Illustrative Deforma-

tion as a subset of non-physics-based deformation, where constraints such as self-intersection

and volume conservation are loosely enforced, and emphasis is given to high quality rendering

and interactivity. The term is analogous to the idea of illustrative rendering, where the appear-

ance of rendered objects does not adhere necessarily to the physics of light transport, but it has

an enhanced communicative value.

Another dichotomy in deformation is its definition as a modeling or rendering stage. De-

formation as a modeling stage is aimed towards the creation of a new object which can be

subsequently transformed and rendered independently. Most surface-based deformation tech-

niques fall into this category. Volume deformation as a modeling process is problematic, since

the deformed volume needs to be sampled at a suitable resolution. Re-sampling volumetric ob-

jects is more space demanding than for surface objects. In many cases, the size of the deformed

volume exceeds the texture memory available for interactive rendering. As a rendering stage,

deformation is obtained on-the-fly, without the need for an intermediate object representation.

For volumetric objects, this becomes critical, as it does not require extra memory for interme-

diate frames, and the sampling resolution is obtained on-the-fly by the pixel resolution of the

resulting image. In this thesis, we address the problem of interactive deformation as a rendering

process.

Interactive deformation of volumetric objects is a difficult problem due to their limited

geometric and topological information. Volumetric objects can be defined as a sampled repre-

sentation of a continuous region in 3D space. In surface models, deformation can be reduced

to the transformation of its vertices, since continuity is defined explicitly through a mesh. In

contrast, volumetric objects do not have a explicit connectivity and deformation techniques

cannot be simply reduced to the transformation of voxels. Because of the assumed continu-

ity of volumetric objects, the simulation of cuts and breaks is also challenging. Dealing with

cuts introduces additional challenges in deformation, namely, determining the shape and size

of the cut, rendering smooth surfaces that appear as the cut or break is applied, and allowing

the incorporation of semantics for meaningful deformation.

7

1.4 Contributions

In this thesis, we present a method for interactive deformation of volumetric objects, which

unifies continuous and discontinuous deformations in a single framework. Our rendering ap-

proach enables the simulation of high quality rendering of volume deformation at interactive

rates. The following contributions are made:

• A generalized method for modeling continuous deformations as 3D displacements, and

a method for encoding discontinuities into 3D displacements suitable for volume defor-

mation. This encoding preserves C1 continuity in the regions near the cuts and breaks,

required for high quality rendering of shaded volumes.

• A method for introducing volumetric constraints into deformation, for efficient rendering

of illustration-inspired images. These constraints enable deformations that are feature

aligned, so that parts of interest are preserved and made visible to the user or feature

anchored, so that certain parts are deformed smoothly between a deformable region and

a rigid region, such as fatty tissue between skin and bone tissues.

• A fast method for the estimation of normals for volume regions undergoing deformation

and for regions in the vicinity of cuts.

• A novel method for surface-based deformation without re-meshing, which extends the

notion of volume deformation to sampled layered representations of polygonal objects,

such as depth maps, layered depth images and signed distance fields.

1.5 Organization of the Thesis

This thesis is organized as follows: Chapter 2 provides a comprehensive description of the

state-of-the-art in the deformation of sampled object representations, including volumes and

implicit surfaces.

Chapter 3 describes an overview of our approach.

Chapter 4 describes the basic deformation mechanism, which we dubbed discontinuous

displacement mapping. We describe the general notion of deformation as well as a GPU-

based implementation. A number of examples are used to demonstrate the capabilities of our

8

approach.

One of the challenges of this approach is to represent feature sensitive operations, which

are required for illustration and visualization. Chapter 5 describes a method for realizing such

feature sensitive operations, through alignment of the deformation. We describe a method that

allows a deformation to align with a particular line or curve. We also describe a more effective

method for aligning the deformation with a particular feature of interest.

Chapter 6 provides an evaluation of volumetric deformation. This evaluation is two-fold.

On one hand, we evaluate the rendering quality of our deformations via a quantitative analysis

of the properties of the displacements and the rendering process. On the other hand, we evaluate

the performance cost of our system. This evaluation helps us validate the interactivity and

applicability of our approach. Further, it serves as a benchmark for future volume deformation

methods.

Chapter 7 marks the beginning of Part II, where we extend our mechanism to the deforma-

tion of surface-based objects. We describe a method for deforming surface meshes without the

need for remeshing. This is obtained by representing the regions undergoing deformation as a

sampled layered representation, such as depthmaps or distance fields. We extend our rendering

method to find accurate intersections with the surface mesh, and to integrate seamlessly with

the mesh representation of the parts that are not deformed.

Chapter 8 provides an evaluation of our approach as applied to surface deformation. We

compare our approach to mesh deformation and measure the performance across several di-

mensions.

Chapter 9 describes the applications of our approach and validates our method through

a number of examples. Our method has applications in medical and biological illustration,

surgical planning, volume clipping and as a focus+context visualization tool.

Chapter 10 presents some conclusions and directions for future work.

9

Chapter 2
Related Work

2.1 Introduction

Deformation refers to the change in time of the position and orientation properties of graphical

elements. There has been a considerable amount of research for the deformation of surface

meshes. Deformation is obtained by directly transforming the position of the vertices of the

mesh. In some cases, re-meshing is needed to account for large deformations or cuts, which

may change the explicit connectivity of the mesh. Volumetric datasets, in contrast, are rep-

resented using voxels, three-dimensional points that include appearance properties, such as

opacity and color. Unlike surface meshes, connectivity information is not explicit. One of

the most common way of representing them is by defining a regular grid in three-dimensional

space. Rendering of such a grid is performed by integrating the color or attenuation of a ray

traversing the volume. The use of a regular grid has been exploited by contemporary GPUs, as

their 3D texture capabilities are better suited for regularly placed samples. However, this condi-

tion also complicates the efficient deformation of volumetric datasets. Unlike surface meshes,

simply transforming the voxels makes it impractical for current ray-casting or texture-based al-

gorithms, as the regular grid is deformed into an irregular grid. This chapter describes previous

work in the field of volume and mesh deformation. The use of volumetric models also enables

a number of techniques that have not been possible with surface meshes, such as cuts. Since

the volumetric model contains information of the inside of the object, it directly benefits from

discontinuous deformations. Surface meshes, on the other hand, do not contain information of

the interior, so it must be synthesized artificially. This chapter also discusses the state-of-the-art

in cutting and other discontinuous deformations.

Volumetric objects can be considered Sampled Object Representations (SOR), which de-

fine graphical models using data obtained by a sampling process, which takes a collection

10

of samples at discrete positions in space in order to capture certain geometrical and physical

properties of one or more objects of interest. In our review of the state-of-the-art, we begin

introducing the notion of Sample Object Representations, then we describe the methods for

deforming SORs, placing particular emphasis on those techniques that introduce deformation

as a stage in the rendering process. Then, we describe techniques for volume cutting and other

discontinuous deformations, and finally, we conclude with a review of the state-of-the-art in

mesh deformation.

2.2 Sampled Object Representations1

The general notion of a sampled object representation (SOR) is a set of samples V = {(pi,vi)|i =

1,2, . . . ,n}, where vi is a value of a specific data type (e.g., Boolean, scalar, vector or tensor),

which represents some property at each sample location pi in k-D Euclidean space Ek. Typi-

cally these samples are associated with a spatial domain Dk, which is normally continuous or

consists of several disjoint sub-domains. An object specified by an SOR is thus a function f (p)

that defines the value at every p ∈ Dk [19].

Digitization is the primary technology for acquiring SORs of real-life objects and phenom-

ena. This technology, which is based on measuring various physical properties, is available

in a wide range of modalities as listed in Table 2.1. In most of these modalities, a sampling

process may involve the processing of multi-channel or multi-dimensional signals, including

convolution and deconvolution, quantization, and signal space conversion.

In some modalities, sampling positions are defined by a regular grid in the object space.

For example, computed tomography (CT) scanning normally utilizes a 3D anisotropic grid,

where the sampling interval in the z-direction differs from that in the x and y directions. In

many other modalities, sampling positions are defined by a regular grid in the image space. A

primary example of such modalities is photography, where sampling results are recorded on a

2D isotropic grid though individual samples may not correlate uniformly to signal sources in

the object space.

1Part of this section was published in our paper: Deforming and Animating Discretely Sampled Object Repre-
sentations, M. Chen, C. Correa, S. Islam, M.W. Jones, P.-Y. Shen, D. Silver, S. J. Watson, P.J. Willis, Eurographics
2005, State of the Art Reports, pp. 113–140

11

Data Number of Representation
Example Sampling Modality (physical property) Dimension Channels Scheme
Black-white photography (light reflection) 2 1 2D regular grid
Color photography (light reflection) 2 3 2D regular grid
Raw laser scans (distance to a plane) 2.5 1 2D regular grid
Circular full-body scans (distance to an axis) 2.5 1 2D curvilinear grid
Computed tomography (X-ray attenuation) 3 1 3D regular grid
Magnetic resonance imaging (relaxation of magnetized nuclei) 3 1 3D regular grid
Raw 3D Ultrasonography (sonic reflection) 2.5 1 unstructured 2D images
Processed 3D Ultrasonography (sonic reflection) 3 1 3D regular grid
Electron microscopy (electron diffraction) 3 1 3D regular grid
Spatial distance fields (distance to a surface) 3 1 3D regular grid
Spatial vector fields (e.g., velocity) 3 3 3D regular grid
3D photographic imaging (light reflection) 3 3 3D regular grid
Movies and videos (time-varying light reflection) 3 3 3D regular grid
Particle simulation results (space-time position, etc.) 4 1 time-series, 3D point set
Motion capture data (space-time position) 4 1 time-series, 3D point set
Seismic measurements (space-time density, temperature, etc.) 4 n time-series, 2D point set

Table 2.1: Example data capture modalities, and their typical characteristics and representation
schemes.

SORs can also be obtained by sampling continuous object representations. For example, a

continuous surface representation can be approximated by an unstructured point dataset using

a randomized discretization process or by a volume dataset using a voxelization process. In

many science and engineering disciplines, such as finite element analysis and computational

fluid dynamics, SORs are commonly used to approximate continuous spatial and temporal data

representations derived from theoretic studies, scientific modeling and computer simulation.

SORs commonly exhibit a subset of the following characteristics, which collectively signify

the differences between SORs and other schemes for representing graphical objects and scenes.

• Limited geometrical information — Most SORs do not contain any explicit geometrical

description of the objects represented, while some contain partial geometric informa-

tion (e.g., in a point set). It is common to translate sampled physical information (e.g.,

X-ray attenuation) to geometrical information (e.g., an isosurface of a tumor). In addi-

tion, SORs are particularly suited for modeling amorphous objects, such as fire, dust and

smoke, for which a precise geometrical description is difficult to obtain.

• Limited topological information — The only topological information available in a SOR

is the spatial or temporal order in which samples were captured. Such information does

not imply a definite topological relationship between any two data points in the object

space, although it is often used to derive, analytically or statistically, more meaningful

topological information, such as the possible connectivity between two sampling points

12

in the context of 3D model acquisition and the association of a set of voxels to the same

object in the context of segmentation.

• Little semantic information — Although a SOR, such as a photographic image and a

computed tomography scan, may capture a collection of objects in a scene, it does not

normally contain any semantic information, about the objects of interest, such as object

identification and object hierarchy.

• Multiple data channels — Many SORs capture data from a complex signal source (e.g.,

reflectance) or multiple signal sources (e.g., a combination of density, sonic, temperature

and imagery logging in seismic measurements).

• Multi-valued data channels — Many SORs contain data sampled in an integer or floating-

point real domain. In some situations, this facilitates a high level of accuracy (e.g., the

texture of a piece of textile in an image), but in others, this brings about a degree of

uncertainty (e.g., the boundary of a piece of textile in an image).

2.2.1 Sampled Layered Representations (SLR)

Many object representations are specified in an analytical manner, for instance, using a math-

ematical function to define the shape of an object. Such a representation is referred to as an

analytical object representation (AOR). One of the most popular analytical objects are paramet-

ric curves. In general we can consider surface meshes as piecewise AORs, where the surface

is usually approximated by a triangular patch. SORs are often used to represent analytical ob-

ject representations (AORs) as well. The use of SORs to represent triangular meshes has been

proposed in several occasions, usually by defining a grid and sampling the shortest distance to

the surface along one, two or three dimensions. Such a representation is said to be an implicit

representation of the surface. Because the sampling is usually done along layers, we call them

Layered Representations. This name is also consistent with one of the first applications of this

idea for the representation of image-based objects, called Layered Depth Images (LDI) [102].

In the simplest case, an SLR can be a depth map or relief map [87], where each sampled

position stores the closest distance to the surface along a given direction. One of the most com-

mon uses of depth maps is displacement mapping, first introduced by Cook [22], where each

13

depth value refers to a displacement added to the meso-structure of an object to create realistic

details. The use of displacement mapping as an object representation has been suggested by

Xu et al. [131] and Kautz [57]. Another type of layered representation is a multi-layer depth

map, which overcomes the limitations of depth maps for representing objects with concavities,

by combining a number of depth maps into a single structure. Policarpo and Oliveira used four

depth maps to represent non-height-field surface details on objects [90]. This idea was further

developed by Wang et al. [122, 121] in their generalized displacement maps. Instead of 4 depth

maps, Wang et al. allow any number of layers, described as a 3D texture. Unlike the depth

maps, this structure stores the distance to the closest point in the meso-structure surface.

A generalization structure is signed distance fields, a 3D grid where each point stores the

distance to the closest point to the surface, or, in some cases, it also stores the coordinates of the

closest point and the direction of the gradient. A number of methods for computing the signed

distance field of polygonal objects have been proposed, e.g., [103, 110]. Distance fields may

require considerable memory. As an alternative, we can use a collection of arbitrarily oriented

depth maps. One example is a depth map cube, which uses depth maps along the faces of a cube

to represent a complex object, such as in [57]. Note that for objects with concavities and hidden

features, a simple cube may not be sufficient. It is possible to improve the representation of

the object by subdividing the cube into a more complex geometry, closely bound to the desired

surface. This leads to the displaced subdivision surfaces proposed by Lee et al. [66], and

displacement volumes [10].

2.3 Deforming Sampled Object Representations

In this thesis, the term deformation refers to intended change of geometric shape of an object

under the control of some external influence such as a force. To facilitate the computation of

geometric changes, a deformable model normally has two primary components, a data repre-

sentation and an algorithm based on a physical or mathematical concept. Applications of defor-

mation techniques include computer animation, object modeling, computer-aided illustration,

surgical simulation, and scientific visualization. Here, we distinguish two types of methods for

deforming SORs, empirical deformable models and physically-based models. However, the

14

line between the two types of deformations is becoming blurred. This comes as the result of

the introduction of constraints to otherwise non-physics-based deformation to account for de-

sired properties found in “real-life” situations, such as volume conservation and prevention of

self-intersection. In this thesis, we refer to non-physically-based deformation to those methods

where deformation is not obtained explicitly as the product of applying forces to a mesh, vol-

ume or set of points. Furthermore, dynamic deformation effects, such as inertia and secondary

forces, are of little importance.

2.3.1 Empirical Deformable Models

Empirical deformable models are non-physically-based deformable models which are designed

to imitate physical behaviors of deformable objects with little or very limited physics in their

computation algorithms.

Some of the methods that fall into this category are:

• Global and local deformation [6, 5] to volume datasets through ray deflectors [64] or

spatial transfer functions [20].

• Free-form deformation [100] to volume datasets through volume bounding boxes [18]

• Skeleton-based volume deformation such as volume wires [120] or the approach in [105].

• Pre-defined procedural deformation specifications to segmented volume datasets in in-

teractive data exploration [76];

• Implicit models as a parametric control for deforming the volume dataset [52];

• Splitting operations to volume datasets and hypertexture in a combinational manner using

spatial transfer functions [54].

• Chain-mail algorithms, which uses the grid topology in a volume dataset to propagate

displacements [42].

15

2.3.2 Physically-Based Models

Although empirical models can be implemented in real-time for very large datasets, accurate

deformations cannot always be realized, especially in emulating physical responses to an input

force. For this reason, there have been many physically-based models proposed for deforma-

tion.

Almost all physically-based models are associated with a mesh data representation, typi-

cally with triangular or rectangular elements for surfaces and tetrahedral or hexahedral elements

for solids or volumes. In most applications involving SORs, such data representation can be ex-

tracted or reconstructed using a number of techniques, such as marching cubes [74], Delaunay

tetrahedralization, among many others.

Typical physically-based models include continuum mechanics, mass-spring systems, par-

ticle systems, smoothed particle hydrodynamics and fluid dynamics. In these models, a de-

formable object is essentially a function of the forces acting on the material properties of the

object. Deformation is computed is by finding a solution to the equilibrium state of energy

functionals. Finite difference, finite element and finite volume methods are commonly used

to obtain approximate solutions of mesh-based partial differential equations found in the La-

grangian formulation of motion in continuum mechanics [82].

• Mass-spring Models — In these models, an object is approximated as a finite mesh of

points. The mechanics of deformation is defined as coupled ordinary differential equa-

tions, which specifies equilibrium at the mesh points. Vertices are adopted as nodes in a

mass-spring model, which are connected via springs to their neighbors. An initial condi-

tion can be assigned to each vertex and the internal force acting on a vertex is calculated

based upon its local neighbors. This force is then used to calculate vertex motion using

Newton’s law of motion.

• Finite Element Methods (FEM) — Unlike mass-spring models, where the equilibrium

equation is discretized and solved at finite mass points, the FEM system is discretized by

representing the desired function within each element (e.g., line, triangular, quadrilateral,

tetrahedral and hexahedral elements), as a finite sum of element-specific interpolation

functions. FEM is used extensively in computer graphics for deformation (e.g., [98,

16

11]). In computational science, FEM is normally used in conjunction with a non-linear

elasticity model, while it is common in computer graphics to employ a reduced linear

model as discussed below.

• Low Degree-of-freedom Models — For many applications, such as surgical simulations

and interactive modeling, real-time solutions are necessary. This class of models are

designed to reduce the computational costs of above mentioned physically-based models.

For example, one may use a system of equations that are linearly independent [98], have

a restricted class of deformation functions [128], use iterative solutions for the first-

order differential equation of deformation [7], preprocessing non-linearity in high-order

differential models [25], and linear elasticity theory [79, 58].

Point-based data representations are becoming a popular alternative to mesh-based repre-

sentations in computer graphics. As SORs, they lack in the topological connectivity necessary

for the application of most physically-based deformation models. One can either superimpose

a mesh structure over a point set, or define neighborhood using an approximation, such as

moving least squares [81, 80]. The latter is referred to as meshless or mesh-free deformation.

Deformable Models in Surgical Simulation

The role of deformable models in surgery simulation and training is diverse, since they are

required for collision detection, rendering and haptics simulation. When the user interacts

through a virtual tool, forces applied to the model produce a deformation, described as a set

of displacements of the underlying geometry, and they generate internal forces and vibrations

which are fed back to the user as haptic stimuli.

Although non-physical models, such as 3D ChainMail [42] and free form deformation

[100], are computationally inexpensive, physically based models are the dominant paradigm

because of their accuracy. These include mass-spring models [21, 77] and finite element meth-

ods (FEM). Of these two, the latter is the most common, because it is more accurate and can

accommodate different material properties through a small number of parameters. Further-

more, the focus of most surgical simulation systems is a simulation on localized regions, which

FEM can handle properly (i.e., no need to simulate large displacements).

17

FEM, however, is computationally expensive for real-time simulation, since it requires solv-

ing large partial differential equations (PDEs). Techniques for achieving real-time finite ele-

ment simulation can be classified into two categories: those that simplify the mathematics, and

those that speed-up the solution algorithms. In the former category we find approaches that

simplify the modeling of elastic tissue using linear models [133, 11]. Linear elasticity is often

preferred because it reduces the problem to a linear equation that can be solved quickly by

pre-computing the inverse of the stiffness matrix. However, linear elasticity only is accurate

for small deformations. Large deformations, such as global rotations, usually result in an un-

realistic volume growth of the model. For this reason, different techniques have been proposed

to handle large deformations, such as warping of the stiffness matrix [78] and quasi non-linear

deformation [25]. Zhuang and Canny propose real-time deformation using non-linear elasticity

[134]. In surgery simulation, the problem is often described as a dynamic problem. Alterna-

tively, the problem can be reduced to a static problem, which ignores body forces, inertia and

energy dissipation. BroNielsen proposed this simplification for surgery simulation for obtain-

ing real-time response [11]. However, loss of dynamics may affect the realism of the simulation

and static systems are mostly used in surgery planning, where the desired solution is the equi-

librium state of the deformable model after being subjected to forces, with no interest in the

intermediate states.

The second category for real-time deformation includes techniques for speeding up the

solution of the resulting equations. BroNielsen and Cotin proposed a technique based on con-

densation [11], which reduces the size of the PDE to be solved by ignoring the internal finite

elements in the computation. They also proposed explicit integration over implicit integration

for its reduced computation time and memory requirements. However, explicit integration leads

to instability for large time steps. Another possibility for speed-up is the use of multiresolution

techniques, as suggested by Debunne et al. [28] and Wu [129]. Wu and Tendick propose a

multigrid integration scheme [130] to solve non-linear deformations in real-time. Real-time

deformation has also been possible with increased computation capabilities, such as parallel

processing and specialized hardware [112, 39].

A challenge in surgical simulation that prevents extensive use of precomputed quantities in

FEM is real-time cutting. Pre-computation of the stiffness matrix and applied forces forbids

18

topology changes in the mesh, required for simulating cutting. Cotin et al. [25] propose a hybrid

approach for real-time cutting that uses a static model in regions that do not require topology

changes, and a dynamic model for a limited region where cutting and tearing is needed. For a

complete survey in deformation for surgical simulation, refer to [72].

Because of the high computational costs of physically-based methods, they are not suitable

for illustration and visualization. In this thesis, we consider an empirical deformation method

instead.

2.4 Rendering Deformation

Traditionally, deformation is performed at the modeling stage, which results in an explicit de-

formed object to be forwarded to the rendering stage. Earlier approaches to volume deformation

followed this paradigm, such as [53, 48, 67, 37], aimed towards morphing of volumes, or the

methods in [40], aimed to volume animation. It is often desirable to couple the modeling and

rendering of deformation together to facilitate interactive deformation or reduce the needs for

generating explicit deformed objects at each time step. This approach is particularly effective

when deformation rendering is accelerated by using modern graphics cards. Another reason for

coupling the modeling and rendering of deformation is that the generation of deformed objects

is limited by the sampling frequency of the deformed object. In the case of large deformations,

such as a large pull or a twist, this sampling may be much larger than the sampling frequency

of the original undeformed object.

In order to describe the space of volume deformation approaches, let us define a deforma-

tion as a mapping function TF : R
3 7→ R

3, such that, for a given point p , we can obtain a new

position p′ , as depicted in Figure 2.1.

p′ = TF(p) (2.1)

TF is a continuous deformation if TF ∈C0. Here, C0 denotes the set of all continuous functions

in 3D space. A useful, but not necessary, property is that TF is differentiable at every point p.

We denote TF as a forward transformation. Let PV be the set of all points p in the volume

representation V of an object. Hence, we obtain a new set P′
V = {p′|∀p ∈ PV ,p′ = TF(p)}. Let

19

x∆

r

p’
p

∆y

Figure 2.1: Direct transformation

V ′ be the new axis-aligned bounding volume for all the points in P′
V . We call this new volume

V ′ the deformed volume.

Rendering of the deformed volume is obtained by sampling the points in V ′. Let f ′ be the

scalar function defined for the deformed volume. Since we assume continuity of the scalar

values,

f ′(p′) = f (p) , for p′ = TF(p) (2.2)

where f (p is the scalar function that represents the SOR defined by volume V . Forward trans-

formation is of limited use in the deformation of volumetric objects. This approach was used

by McGuffin et al.[76], where rendering and deformation are coupled by treating each voxel

as a rendering primitive. This approach, however, suffers from undersampling problems as the

space between voxels are not rendered or deformed in any way. That is, it treats the volume

as a disconnected set of points. However, most volumetric objects are obtained by sampling a

continuous object.

For this reason, volume deformation techniques are commonly in the category of space

warping techniques. We distinguish two different types of methods: those that perform indirect

space warping, also referred to as proxy-based space warping, and those that perform direct

space warping. At the core of these two is the idea that volume rendering is obtained by

sampling the deformed volume V ′.

2.4.1 Indirect Space Warping

Indirect or proxy-based space warping is obtained by defining a set of control points Q which

are deformed using a forward transformation. Let us define Q′ as the deformed set of control

20

∆’p

r

p

q1 q2

q3q4

q’1

q’2

q’3q’4

v

p’i

Figure 2.2: Indirect space warping

points, i.e.,

Q′ = {q′|∀q ∈ Q,q′ = TF(q)}. (2.3)

In order to render this deformed volume, it suffices to sample the space at regular intervals ∆p,

along a ray direction −→v . The sampling points are:

p′
i = i∆p−→v (2.4)

and the sampled value of the scalar field f ′ is obtained through interpolation. This is depicted

in Figure 2.2.

A number of approaches have been proposed which differ in the type of proxy geometry

and interpolation function. Westermann and Rezk-Salama [126] define Q as a free-form lattice.

Deformation is obtained by directly transforming the points in Q and sampling is obtained by

slicing the deformed lattice into view-aligned slices. Since the vertices are parameterized in

the undeformed space, also known as the texture space of the volume, the sampled value is

computed using the Bernstein polynomial as described by Sederberg and Parry [100]:

f ′(p′) = f ′(s, t,u) =
3

∑
i, j,k

fi jkBi(s)B j(t)Bk(u) (2.5)

where Bi = Bi,3 are the Bernstein polynomials of degree 3, fi jk = f (qi jk) are the scalar values

evaluated at the control points, and (s, t,u) is the parametrization of the sample point p′.

A simpler interpolation mechanism was proposed by Rezk-Salama et al., using trilinearly

interpolated patches instead of a free-form deformation lattice. In their work, Q defines a grid

21

of linear patches, usually of a size much smaller than the original grid PV . The interpolation

is obtained with Eq.(2.5), except that Bi = Bi,1 are the Bernstein polynomials of degree 1 [56].

This approach proves to be very effective since trilinear interpolation is readily available in

most contemporary graphics processors. One of the disadvantages of this implementation is

that automatic parameterization of the sample positions into texture space is ambiguous, due to

irregular deformation of the linear patches. Depending on the viewpoint, the slicing mechanism

and (automatic) rasterization of the proxy slices generates different parameters (s, t,u). This is

observed also when rendering a textured irregular quadrilateral. Depending on the triangulation

of the quadrilateral, a different parameterization is obtained. This problem can be solved with

a tessellation of the proxy slices, either on a finer grid or by introducing a new vertex in the

barycenter of the slice polygon. This works since the parameterization of a triangle is unique.

Another group of methods that can be considered in this category as skeleton-based de-

formation techniques, such as the approach by Gagvani et al.[40] by Singh et al. [105] and

Volume Wires [120]. Instead of having a grid of axis-oriented patches, the proxy points Q are

defined along a curve-skeleton, centered within certain features of interest. Each segment in

this skeleton is used to define a cuboid, which is an elongated cube along the principal direction

of the feature. The corners of all the cuboids define the control set of points Q. By transforming

the points via rotations and translations, it is possible to animate and manipulated articulated

volumetric objects. Similar problems appear in the joints of two segments due to ambiguous

trilinear interpolation. This was solved by adding additional points in the barycenter of the

slices that resulted from sampling an irregular cuboid.

Physics-based volume deformation approaches fall also into this category, and Q is usually

defined as a mass-spring model or a finite element mesh. In the former, control points are points

with mass connected with elastic links. Examples of both mass-spring models and FEM are

found in [21, 133].

Recent approaches to model deformations consider the actual voxels as control points. Un-

like the above, where a mesh is explicitly defined between the control points, these approaches

do not require an explicit mesh topology. These methods fall in the general category of mesh-

less deformation. Although the literature is abundant for its application in surface meshes and

image warping, a few methods have been proposed for volume deformation [44]. In general,

22

the set of control points is a subset of the set of sample points of the undeformed volume, i.e.,

Q ⊆ PV (2.6)

Since no connectivity is required, the interpolation function must operate over scattered data

[97]. Several methods are proposed for this, of which the most representatives are the Shep-

ard’s interpolant, radial basis functions and moving least squares. Shepard’s interpolation is in

general a weighted average of the scalar value of the control points, i.e.

f ′(p′) =
n

∑
i=1

wi(p′) f (qi) (2.7)

where n is the number of control points, wi : R
3 7→ R a weighting function such that satisfy the

following conditions:

wi(qi) = 1 ,
n

∑
i=1

wi(p) = 1 , wi(p) ≥ 0

wi(p′) is often defined as a function of the distance between p′ and control point qi.

Radial basis functions construct the interpolation as a linear combination of basis functions.

One of the properties is that it can be defined to be infinitely differentiable, which provides a

smooth and continuous deformation. However, as we shall see in the next sections, this poses

a problem when creating discontinuous deformation, that may arise when simulating cuts and

breaks. Solutions can be found to obtain such discontinuous deformation through modifications

of the radial basis function, or by employing moving least squares.

Indirect space warping has become very popular because of its implementation feasibility

in the vast majority of contemporary GPUs, by exploiting hardware accelerated tri-linear in-

terpolation. However, the reliance on this capability requires a proper handling of the proxy

geometry, which needs to be properly tessellated.

2.4.2 Direct Space Warping

To avoid dealing with complex meshes, deformation can be defined as a point-wise warping of

the volume. For each point p′ ∈ P′
V ,

p = T−1
F (p′) (2.8)

23

r

∆’p

v

p’i
p

Figure 2.3: Direct Space Warping

where T−1
F is the corresponding inverse transformation of TF . The scalar value f ′(p′) can be

found by sampling the original scalar field, i.e., f (p), as seen in Figure 2.3

This approach was first introduced in ray tracing systems. With the advent of programmable

shaders, it has been recently extended to 3D texture based volume rendering and GPU-based

ray casting. In ray casting, space warping can be implemented by deforming or deflecting the

rays into curves, giving the illusion of rendering a deformed object. This approach has been

proposed by Kurzion and Yagel [64]. In their work, a procedural definition of a deflector is

used to model different kinds of deformations. A deflector changes the sampling positions been

traversed by a ray during the rendering process, by assigning a displacements towards a user-

defined sink position. Although this can be extended to model a number of deformations, it is in

general a non-intuitive approach to deformation. Kurzion and Yagel also proposed an extension

for hardware rendering. Since deflecting rays were difficult to implement with the existing GPU

capabilities, they proposed to tessellate the slices and then applying the deformation on the 3D

vertices [64]. Unlike their original ray deflection work, their hardware extension is really an

indirect space warping method.

Another approach that uses ray-casting is the concept of spatial transfer functions (STF)

[20]. Unlike the above, rather than deforming the ray, the position of each sampled point is

transformed via a procedural definition, represented as a spatial transfer function. The spatial

transfer function is then a realization of the inverse warping function T −1
F . One of the advan-

tages of STFs is the ability to create complex deformations by combining algebraically simpler

ones.

Another recent approach has been proposed by Chen et al. [18], using the GPU to perform

24

interactive ray casting. Unlike the ray deflectors or spatial transfer functions, they embed the

rays into a free-form deformation lattice, providing the user a range of deformations from the

manipulation of a few control points. It is similar to the approach by Westermann and Rezk-

Salama [126], where a FFD lattices is also used, except that Chen et al. do not require a

deformable proxy geometry to render the volumetric object.

With the programmability of current GPUs, and in particular, of fragment shaders, it has

been possible to perform direct space warping in texture-based rendering and GPU-based ray-

casting of volumes. Rather than applying a deformation to control vertices in a proxy mesh,

it is applied directly on the 3D points obtained through slicing or ray casting, each of them

corresponding to a single pixel in the final image. The inverse deformation T −1
F is evaluated

for each fragment (intermediate pixel) in the image. This has certain advantages over the pre-

vious approaches. The most notable one is that tessellation is not needed and therefore more

complex deformations can be obtained without extra computation. In addition, this approach

achieves smooth rendering of non-linear deformation. With indirect space warping, they are

approximated by tri-linear interpolation. However, indirect space warping is in general much

faster, since the number of control points (3D vertices) are far less than those in direct space

warping (pixels for each slice).

The approach proposed in this thesis falls into this category. A recent approach by Brunet

et al. [15] also uses GPU capabilities to perform inverse warping. They exploit the fragment

shader to sample an inverse deformation function, which can be represented procedurally on

the fragment shader or pre-computed and stored as a 3D texture.

2.4.3 Discontinuous Deformation

The majority of previous work on volume deformation considers the transformation function

as continuous. Particularly for surgery and medical illustration, deformations often contain

discontinuities. Therefore TF and T−1
F are not necessarily continuous.

There are a number of ways to define discontinuous deformation. The most intuitive is by

using forward deformation. This approach was used by McGuffin et al [76]. By using points

as primitives, it was possible to define discontinuities since no intermediate space is needed

between the points. However, as pointed out before, this method proves insufficient for volume

25

p p

CUT

REMESHING DEFORMATION

Figure 2.4: Introducing Cuts for Indirect Space Warping

rendering.

Introducing discontinuities in space warping approaches is more challenging. In the case

of indirect space warping, this challenge arises because the interpolating functions required for

the sampling of the proxy mesh are inherently continuous. Therefore, discontinuous volume

deformation requires, similarly to surface-based deformation, a re-tessellation of the proxy ge-

ometry. A discontinuous deformation can be defined as a collection of disconnected continuous

deformations. Therefore, the proxy geometry is split and re-meshed along the cuts. Sampling

occurs at those points inside the proxy mesh and not in the empty space generated by the cut.

This process is shown in Figure 2.4. Note how the discontinuity appears as no sampling rays

are cast into the empty space. This approach was used by Kurzion and Yagel in their hard-

ware implementation of ray deflectors [64]. In a recent work, Bruckner and Gröller [13] use

re-tessellation to split volumetric objects and generate exploded views of volume data on the

fly. In their system, a volume object can be split with planar cuts defined by the user, and each

generated sub-volume is transformed linearly via rigid transformations.

One of the shortcomings of this approach is the requirement of re-tessellation on the fly,

which may be computationally expensive for complex non-linear cuts and deformations, and

the inability to represent arbitrarily smooth cuts due to the linear interpolation imposed by the

proxy mesh.

A mechanism to overcome the need for re-meshing is to use point-based deformation. In

this case, Q is a subset of the original sample points PV . Deformation is obtained by forward

transformation. Unlike cuberille rendering, the sampling of the space is done by interpolating

the scalar value in a local neighborhood centered at each deformed point p′. Because no mesh

is required for Q, introducing cuts is easier. For more information on point-based and meshless

deformation, refer to [82].

26

Another mechanism is to model discontinuities via direct space warping. Unlike the pre-

vious approaches, direct space warping requires the sampling of all the points in the deformed

space, including the empty space introduced by a discontinuity. The deformation equation in

2.8 is no longer valid, since the transformation is undefined for the points in the empty space.

Ideally, for any forward transformation, TF from PV to P′
V , we should always have its corre-

sponding T−1
F , such that, for each point p′ ∈ P′

V , there exists p ∈ PV and p′ = TF(p). With a

discontinuous deformation, this condition is no longer met. This can be solved by allowing the

definition of a modified inverse transformation TB, as follows.

Let P′
V ′ be a collection of all points in V ′. Since P′

V is a set of all points located in V ′ with a

pre-image in V , the empty space in V ′ is thus defined by a set of points P′
empty = P′

V ′ −P′
V . We

thereby replace the T−1
F in Eq.(2.8) with a modified backward transformation TB as:

p = TB(p′) =















T−1
F (p′) p′ ∈ P′

V

∅ p′ ∈ P′
empty

(2.9)

where ∅ denotes a null position, indicating a point that does not have an origin prior to the

manipulation. In general, such points are considered empty, or completely transparent. We

thereby assume that, for purposes of rendering:

f ′(∅) = 0 (2.10)

This method is depicted in Figure 2.5. Note how the rays are also cast into the empty space.

Points in that region are depicted as white dots and they are inversely mapped to the null space

∅.

This method has been implemented as Spatial Transfer Functions in [20] and Spatial and

Temporal Splitting [54], using raycasting, where discontinuities are handled by maintaining a

special value for a null position. Although this has produced good results with ray-casting, it

requires a good sampling of the surface of the cut to obtain anti-aliased images. Further, this

approach does not extend easily to interactive volume rendering. Discontinuous deformation

can also be realized with ray deflectors, in [64]. One problem with ray deflectors is that, in

order to define a discontinuity, rays would have to be deformed away from each other at some

27

p

CUT

Figure 2.5: Introducing Cuts for Direct Space Warping

point, and they would never “hit” the surface of the cut. As an alternative, Kurzion and Yagel

define discontinuous deflectors by allowing intersecting rays. Since a sample point cannot be

mapped to two different positions in the original volume V , they only allow points on one side

of the intersection to sample the volume in that side of the intersection. As the sampling is done

smoothly along the deflected ray, this approach produces rendering of cuts with little aliasing in

comparison with Spatial Transfer Functions. However the specification of such ray deflectors

is not straight forward, and may be difficult for complex discontinuous deformations.

2.5 Other Volume Manipulation

There are other methods for transforming volumetric objects that differ slightly from deforma-

tion. In these methods, a manipulation of the volume is achieved by either carving, clipping or

ghosting parts of the volume. Volume clipping is a popular tool to remove parts of an object in

order to gain visibility of occluded parts. Clipping is usually performed by applying a differ-

ence boolean operation of the volume with another clip volume, usually defined procedurally.

Planar cuts are the most common, and methods for rendering clipped surfaces have been pro-

posed [47]. Weiskopf et al. proposed the use of general shape clipping volumes for effective

visualization [124]. A similar idea is the process of volume carving [30], where parts of the

volume are interactively removed as a modeling process.

28

2.6 Mesh Deformation and Cuts

Triangular meshes, as opposed to volumes, are not sampled object representations. However,

many deformation techniques draw similarities from these approaches. Deformation of meshes

is essentially a direct mapping problem, as described above. In empirical models, this mapping

is obtained via a number of methods, namely:

• Direct transformation of the vertices of the mesh, as it is common in consumer 3D editing

software, such as 3D Studio [31] and Maya [4].

• Global or local deformations [6]. Deformations such as twists and bends are usually

defined as procedures. As an alternative to mesh deformation, Barr proposes inverse

transformation for the ray tracing of deformed surfaces [5].

• Transformation of an embedding lattice, of which the most common one is free-form

deformation [100, 75], where the lattice is a tri-cubic grid. Other examples include

skeleton-driven deformations [16]. Pose-space deformation techniques [69], which are

at the core of current character animation techniques, also achieve deformation by the

transformation of an embedding structure, also known as envelopes.

• Sketching [59, 83], where the deformation is obtained by a mapping from a 2D curve,

usually sketched by the user, into a 3D transformation.

Recent efforts have been made to enforce certain constraints in mesh deformation, in the

hopes of obtaining realistic results at interactive rates without the need for complex physics.

Some of the properties often enforced in mesh deformation are:

• Smoothness of the deformation [135, 132]. This property leads to the prevention of

folding artifacts or breaks in the mesh.

• Volume conservation [50, 92, 10, 118], where a volumetric functional is minimized in

order to achieve realistic deformations of non-compressible solids.

• Prevention of self-intersection [41, 118, 38].

• Preservation of surface details [83, 10].

29

Another aspect of deformation is the modeling of cuts and breaks. Simulation of fractures

was introduced by Terzopoulos and Fleischer [113]. Several models have been proposed for

discontinuous deformation: cutting, as the surface interacts with a cutting tool, e.g., for surgical

simulation [11, 29, 8, 101], or illustration [88], fracturing of brittle [85] or ductile materials [84]

and splitting of objects [109].

One of the problems with mesh deformation is the requirement for an explicit mesh. In the

case of large continuous deformations, such as a twist, the resulting mesh may contain large

degenerate triangles, which may intersect. Most mesh-based deformations handle the problem

by an adaptive re-meshing of the problematic region. In the case of cuts and breaks, a mesh is

required to propagate the break or cut in the desired direction. In addition, the modeling of the

interior requires a solid mesh representation, usually a tetrahedral mesh. A re-meshing is also

required in this case, as the cut is seldom introduced along the actual edges of the mesh. Unlike

the re-meshing for continuous deformation, cuts imply topology changes in the mesh.

2.7 Summary

This chapter has described the state-of-the-art in deformation of volumetric and surface-based

objects. Volumetric objects can be described as sampled object representations, obtained by

sampling a continuous object in a regular grid. Because of this sampling, deformation of

sampled object representations requires an inverse warping mechanism. This space warping

handles the sampling problems that occur when attempting to produce deformation via forward

point transformation. The most common method has been indirect space warping, where a con-

trol proxy mesh is deformed first and the volume deformation is obtained through interpolation.

Current GPUs enable interactive volume deformation through direct space warping, where an

inverse transformation is used to directly warp the sample points in the deformed volume. How-

ever, the modeling of cuts and breaks and high quality rendering has been more problematic,

due to the topological changes that may occur. Since volumetric objects do not have explicit

topology, the introduction of cuts seems straight forward. However, accurate rendering of vol-

umetric cuts has been difficult, due to sampling problems and the lack of a unifying mechanism

for encoding discontinuous deformations.

30

The following chapter describes a method for deforming volumes at interactive rates, based

on a generalization of displacement maps, which also allows the modeling and high quality

rendering of large deformations and discontinuities.

31

Chapter 3
Illustrative Deformation

We define Illustrative Deformation as a non-physics-based deformation method, where the

shape of an object is modified via global and local deformations, to mimic the type of de-

formations commonly found in scientific illustrations. Unlike physics-based approaches, the

deformation is applied as the result of user intervention via a set of transformation templates,

rather than as the result of a set of virtual forces being applied to certain control points on the

object. There are several properties of scientific illustrations which artists and scientists use to

provide a better understanding of objects and phenomena. First, deformation often depict cuts

and breaks, so that important parts that are being occluded are made visible, while preserving

contextual information of the object. Second, these cuts and deformations are ubiquitous, in

the sense that they can be applied anywhere in the object, and at several scales. Finally, they do

not adhere necessarily to reality, as shown in certain anatomical illustrations, e.g., 1.2(c), where

the placement and deformation of certain layers such as muscle may not describe a physically

feasible deformation, but it provides the most comprehensive view of the different anatomical

layers.

We describe this method as a top-down approach. Traditional deformation approaches

model reality in a bottom-up approach: first, a series of equations are specified, which are

designed to model certain physical properties of the movement of bodies. The equations are

integrated in time to obtain displacements for the graphical elements, which in turn produce

a 3D image. This process is refined by modifying the equations, setting parameters or adding

constraints in order to obtain the desired result.

In our approach, we begin with an abstract description of the deformation. This description

defines a global deformation of an object, such as a peel, a twist, a bend, etc. We represent

these generic deformations as templates, which are described in the following section. We then

32

Twist Poke Split Retractor Slicer

Figure 3.1: Iconic representations of deformation templates

apply the template to the object, in a similar fashion to the way textures and displacements

are applied to surface meshes. Our rendering process then produces the resulting image. We

then can refine our results by either adding new deformation templates, or combining simple

deformations to form a complex one.

3.1 Deformation Templates

At the core of our approach is the idea of deformation templates. Unlike physically-based

methods, where deformation is obtained via a physical simulation, here we define global and

local deformations as displacement maps. These in turn are defined procedurally, as in [6], via

interpolation of point-wise transformations, as the tool described in [54], or as a combination of

simpler deformations. Displacement maps are sampled structures where each position contains

a displacement vector, which is used to transform the position of a point in 3D space. This idea

was introduced as a means to add geometric details to a base surface [22], in a similar fashion

to the way textures are used to change the appearance of an object. During the reminder of the

thesis, we use the terms displacement maps and deformation templates/metaphors interchange-

ably. Deformation templates can be continuous or discontinuous. Examples of continuous

deformations are twists, bends, pulls and pokes. Examples of discontinuous deformations are

cuts, peels and slices. When these deformations are applied to a volumetric cube, we obtain

iconic representations of our deformation templates, as shown in Figure 3.1.

An important aspect of deformation templates is that they are generic, and therefore can be

applied to any dataset. This means that deformation is decoupled from the object representa-

tion.

33

3.2 Process Overview

In our approach, deformation is part of the rendering process. The deformation is specified

as a displacement map, available from a pool of deformations. Since volumetric objects are

sampled representations, deformation cannot be obtained by directly transforming the sam-

ple points. Instead, inverse warping is required. That is, rendering of a deformed volume is

obtained by sampling the deformed space and warping each point into the original sampled

representation in order to find the necessary color and opacity values. Because of this inverse

warping, deformation templates store inverse displacements. The overall rendering process is

then as follows:

1. The user selects a deformation and applies it to the model. This application is defined in

a similar fashion to traditional texture mapping. We call this the mapping stage of our

algorithm.

2. The deformation mapping specified by the user defines a volume in 3D space, where part

of the deformed volume needs to be rendered. This deformed space is traversed at regular

intervals along the view direction (slicing stage)

3. Each sampled generated by the slicing process is inversely warped according to the de-

formation template. We call this the warping stage.

4. Each warped coordinate is used to retrieve opacity and color information from the orig-

inal volumetric object via sampling. This is the sampling stage. In addition, for each

sample we obtain normal estimation for lighting models. This is the lighting stage.

5. In the final stage, the compositing stage, color and opacity values are composited together

to produce the final image.

In this thesis, we explore the different aspects of this rendering process in order to obtain

meaningful deformations that can be used for medical illustration, surgical simulation or as a

visualization tool in general. One difficulty with inverse warping is the simulation of cuts and

breaks, since they imply that the warping function is not invertible. We solve this by encod-

ing discontinuity information along with the displacement in such a way that C1 continuity is

34

y

z

x

DEFORMATION
TEMPLATES

view direction

slices

MAPPING SAMPLING LIGHTING COMPOSITINGWARPING

sample
point

inversely
warped
point

Per Sample Point

SLICING

Repres.
Object
Sampled

Figure 3.2: Overview of Illustrative Deformation of volumes

y

z

x

DEFORMATION
TEMPLATES

view direction

slices

MAPPING SAMPLINGWARPING

Object
Repres.

RAYCASTING

sample
point

point
warped
inversely

Layered

FIND
INTERSECTION

LIGHTING

Figure 3.3: Overview of surface-based deformation

preserved. This method is described in Chapter 4. Another challenge is the introduction of

feature-sensitive operations. For instance, some deformations require the preservation of fea-

ture of interest, such as internal structures or rigid parts. In our approach, this can be done in the

mapping stage, as a transformation of the displacement mapping, or in the sampling stage, as a

modification of opacity information. This method is described in Chapter 5. The final stage,

compositing, makes sense for volumetric objects where each voxel contributes to the final im-

age. However, as described in the previous chapter, surface meshes can also be defined using

sampled layered representations. Rather than doing slicing along the view, we trace rays in the

view direction along each pixel. As we inversely warp the points along the ray and sample the

layered representation of the object, we test for intersections. Once we find an intersection, we

render the point according to the lighting parameters. The overall process is depicted in Figures

3.2 and 3.3, and described in detail in Chapter 7.

Part I

Volume Deformation

35

36

Chapter 4
Discontinuous Displacement Mapping 1

4.1 Introduction

In Chapter 2, we described volume deformation as a point-wise mapping that transforms the

position of all points within a volume to new positions. We also described that this point-wise

mapping can be thought of as either a forward mapping, such as in traditional mesh deforma-

tion, or inverse mapping or space warping, more appropriate for discretely sampled volumes,

where an inverse transformation is applied to the points in the deformed space to find the cor-

responding point in the undeformed object. However, this method implies challenges when

incorporating cuts and discontinuities, since the mapping may not be defined for some points

in the deformed space.

This chapter describes a novel and general method for performing volume deformation. As

described in Chapter 3, we define deformation in a top-down approach, starting from a rough

specification of the deformation and, by means of combination of refinement, reaching to the

desired deformation state. The process of adding deformation to the volume can be thought of

as a process of “adding” details, and therefore are similar to the idea of displacement maps.

Displacement maps are discretely sampled objects, typically defined as 1D, 2D or 3D tex-

tures, where each element defines a spatial displacement rather than a color attribute. Displace-

ment maps are commonly used to add visual details to a base surface by perturbing points on

the surface for a small distance along the corresponding surface normals. For this reason, tradi-

tional displacement maps are generally (i) applied along the surface normal and (ii) assumed to

be continuous. These conditions make it difficult to simulate large and complex deformations

such as cuts and flips.

1Portions of this chapter were published in our paper: Discontinuous Displacement Mapping for Volume Graph-
ics, by C. Correa, D. Silver and M.Chen, Eurographics and VGTC Workshop on Volume Graphics, 2006, pp.9–16

37

It is our objective to extend the idea of displacement maps to model large deformations and

discontinuities in volumetric objects by relaxing these two conditions. The first condition has

been relaxed in some recent work. Wang et al. [122] employed volumetric displacement func-

tions in order to simulate non-orthogonal displacements on surface objects. Similar ideas are

found in [121] and [91]. These approaches, nonetheless, consider only displacements within

small volumetric regions along the surface. The removal of the second condition is critical to

rendering large cuts and breaks. Surface meshes do not contain adequate volumetric informa-

tion, such as surface thickness and interior structure, to allow the creation of correct visual ef-

fects. Although this can be handled using a tetrahedral description of the interior, re-tessellation

of such meshes is a time-consuming task, which limits the quality, smoothness and thickness

of cuts and breaks.

Here, we introduce a generalized notion of a displacement map, which allows for unconven-

tional features such as unorthogonal and discontinuous displacements. Figure 4.1 illustrates the

difference between the traditional and generalized displacement mapping. We discuss the ma-

jor technical difficulties associated with this generalization, and outline our solutions to these

problems. In particular, we consider a GPU-based volumetric approach without involving any

mesh structure and the intensive computation associated. By employing inverse displacement

maps in 3D vector space, we are able to apply complex displacements to volumes. Our ren-

dering approach involves the use of a proxy geometry for sampling of the inverse displacement

map, which is then mapped into the original object space. Correct calculation of surface nor-

mals becomes a particular issue since conventional normal estimation would lead to noticeable

lighting artifacts on surfaces displaced in varying directions, and at breaking points in a discon-

tinuous displacement map.

4.2 Related Work

Displacement Mapping. Displacement mapping was introduced by Cook [22] as a type of

texture mapping technique for modifying the geometry of a surface, resulting in correct shad-

ows and silhouettes (in contrast to bump mapping [9]). Typical approaches to the realization of

displacement mapping include explicit surface subdivision (e.g., [23]), direct ray tracing (e.g.,

38

[73, 89]), and image space warping (e.g., [99]).

In surface subdivision [23], geometric primitives are subdivided into micro-polygons, re-

sulting in an explicit representation of the displaced surface. The method has been made avail-

able through commercial software such as RenderManTMand MayaTM. Hardware solutions

were also developed [43, 32]. Discontinuities are introduced with costly re-meshing of the ob-

ject. This approach cannot be extended easily for volume graphics, since no surface model is

available.

In ray tracing, the conventional approach is to pre-compute an inverse displacement map,

and perform the intersection calculation in the displaced space of a surface [73, 89], similar

to Barr’s suggestion for rendering deformed objects [5]. To alleviate the cost of ray-tracing

an entire scene, recent approaches to displacement mapping propose to traverse rays through

extruded triangles in the texture space [122, 121, 91]. In image space warping, the visual effect

of a displacement is achieved in the image space rather than the object space. The method was

first introduced by Schaufler and Priglinger [99], focusing on warping the image of the base

surface according to the projected displacement, and later extended by Oliveira et al. [87]. The

extension of ray tracing to the modeling of cuts is difficult, since it requires determining a ray

intersection with the new surface produced by the cut. Further, current approaches for displace-

ment mapping based on extruded triangles cannot model large or discontinuous displacements.

In our approach, we exploit the GPU capabilities of contemporary graphics boards to solve

the limitations of the inverse displacement maps and image-space warping approaches when

applied to discontinuous displacement on volumetric objects.

Displacement as a means of deformation. Most deformation techniques have considered

deformation as a mapping problem. For surface mesh deformation, this mapping is usually

explicit by finding the displacement of each element. In a recent development, Von Funck et al.

used a vector-field representation in order to model deformation on surface meshes [118]. Their

structure is actually a velocity map, which can be defined as an infinitesimal displacement map.

The actual displacement is found for each point through time integration.

In volume deformation, the use of a discretely sampled structure to store the displacements

was hinted at by Westermann and Rezk-Salama in [126] and later in [94]. However, these

approaches did not handle the case of discontinuities, and many details necessary for a GPU

39

surface
displacedn

p’

p

base surface

n
base surface

p

n’
p’

D
n’

d point
break

Figure 4.1: A cross section illustration of the traditional displacement mapping (left) and the
generalized displacement mapping allowing for unorthogonal and discontinuous displacement
(right).

implementation were not explored. Brunet et al. [15] recently explored the use of GPU pro-

grammability to pre-compute deformations in a 3D texture. Unlike a displacement map, their

approach stores the result of the transformation. Although the end result is, in principle, equiv-

alent for both approaches, displacement maps have the advantage of being algebraically oper-

atable, which provides means for combination and composition of deformations in a flexible

way.

4.3 Displacement Mapping

Displacement mapping is traditionally considered as a variation of 2D texture mapping, and

it is used to alter the base surface geometrically. A volumetric displacement mapping can be

considered as a variation of 3D texture mapping, where 3D displacements are used to perturb

the volume, enabling the simulation of large deformations and cuts. Since texture mapping in

2D or 3D often involves textures defined in a higher dimensional parametric space, we consider

a general notion of space Λ without explicitly distinguishing between geometry and texture

spaces.

A Generalized Notation. Let Λ be a reference coordinate system used by an object position

function P and ΛD a reference coordinate system used by an object displacement function −→D B.

Let W : ΛD 7→ Λ be a coordinate transformation between the two systems, and W −1 its inverse.

We consider the following generalized mapping from a point on the object P(λ) to a new point

P′(λ):

P′(λ) = W ((W−1 ◦P)(λ)+(
−→D B ◦W−1 ◦P)(λ) (4.1)

40

where λ ∈ Λ and F ◦G is the composition of transformations F and G. P defines a coordinate

mapping from Λ to a point in R
3. DB is a vector function that can be specified procedurally

or by using a discretized representation such as a texture. In Eq.(4.1), it is no longer a must

that the surface normal determines the direction of displacement, and function −→D B is no longer

assumed to be continuous. As illustrated in Figure 4.1, in comparison with the traditional notion

on the left, this generalized notion allows for unorthogonal and discontinuous displacement.

Λ can be a 2D parametric space as in the traditional notion, the 3D Euclidean space as in

[61], or any reference system appropriate to an application. In this work, we use Λ = ΛD = R
3

as the reference coordinate systems. In the following discussions, we use mainly the inverse

form of Eq. (1), that is,

P(λ) = W ((W−1 ◦P′)(λ)+(
−→D C ◦W−1 ◦P′)(λ) (4.2)

where −→D C is the inverse of −→D B. Since Λ = R
3, we can make P(λ) = p and P′(λ) = p′ where

p,p′ ∈ R
3. By decomposing −→D C as D(P′(λ)) = D(p′), and following our notation for volume

deformation, Eq. 4.2 can thus be rewritten as:

p = W (W−1p′ +D(W−1p′) (4.3)

In the following discussions, we shall assume that the displacement function and the posi-

tion function are defined in a common reference coordinate system Λ and that the coordinate

system mapping W is the identity transformation. We will revisit this later on in Section 4.7.1 to

define affine transformations on displacement maps and in Chapter 5 to define feature-aligned

deformations. Based on this assumption, the displacement mapping function is then a direct

inverse warping transformation, defined as:

p = T−1
F (p′) = p′ +D(p′) (4.4)

For simplicity, we consider the backward displacement mapping function in the form of D

in the following discussions. There is no constraint as to the displacement values of D. The

displacement can be of any direction and magnitude.

41

4.4 Modeling discontinuities via Displacements

As described in Chapter 2, previous approaches such as Spatial Transfer Functions consider the

discontinuity by introducing a null position ∅, and the deformation becomes:

p = TB(p′) =















T−1
F (p′) p′ ∈ P′

V

∅ p′ ∈ P′
empty

(4.5)

where P′
V is the set of points in the deformed volume that have a pre-image in the original set of

points PV , and P′
empty the set of points with no pre-image. Rendering of the volume is performed

by sampling a scalar function f ′, defined as:

f ′(p′) =















f (p) p 6= ∅

0 otherwise
(4.6)

The problem with this method is the difficulty of expressing a null value in the displacement

map. A zero vector would indicate a zero displacement, which is not the same as ∅. A vector

of ones would indeed map a sample point to a position outside the original volume, which, in

principle, could be assumed to be defined as ∅, since no valid displacement can be that large.

However, this introduces problems for hardware implementation (and even for traditional ray-

casting), due to tri-linear interpolation used to sample the displacement map. We refer to such

method of encoding discontinuities as out-of-bounds encoding. With an arbitrarily large value

for the definition of ∅, points near cuts would have a displacement interpolated between this

value and the displacement of the closest non-cut point. This value, however, may be a valid

displacement, but in a direction and with a magnitude unintended by the deformation. This

causes ragged edges and aliasing artifacts in cuts as shown in Figure 4.2(a).

For this reason, we consider the displacement as a pseudo-inverse D+ of the original for-

ward displacement −→D C, which is defined as the inverse displacement for those points in the

co-domain of −→D B, and an interpolated value D∗ for those points in the region of discontinuity,

such that D+ maintains C0 continuity. In other words, D+ is valid for all points in the displace-

ment map, including those where there should be a discontinuity. For the rest of this chapter,

42

(a) Out-of-bounds displacement (b) Binary alpha mask (c) Smooth alpha mask

Figure 4.2: Modeling of discontinuities using discretely sampled displacements. Top Row:
peeling of a tomato dataset. Bottom Row: Zoomed view. (a) Using out-of-bounds displacement
results in jagged lines and unintentional displacement (b) Binary alpha masks results in aliasing
(c) Smooth alpha masks.

we refer to such complete displacement simply as D.

In order to model the actual discontinuity, we use an alpha mask with the same size and

resolution of the displacement map. This alpha mask is used to tag certain points as parts of the

cut. One alternative is to define the alpha mask as a binary map, where a value of 1 indicates

a valid displacement and a value of 0 defines a region of discontinuity. The problem with this

binary map is the presence of aliasing in the surface of the cut, as shown in Figure 4.2(b).

A better approach is to define the alpha mask as a smooth scalar field, such that a value

greater than or equal to 0 is considered as a valid displacement, and a value less than 0 as

a region of discontinuity. This smooth scalar field can be obtained by smoothing the binary

definition of the cut, or by computing its signed distance field. In fact, the alpha mask is an

implicit representation of the cut surface, where the actual surface is the zero-set {x|A(x) = 0}

This approach results in a better and smoother surface in cuts and breaks, as shown in Figure

4.2(c).

43

Therefore, TF becomes invertible and its inverse transformation TB = T−1
F is:

p = T−1
F (p′) = p′ +D(p′) (4.7)

And the sampling of the scalar function can be defined as:

f ′(p′) =















f (p) A(p) ≥ 0

0 otherwise
(4.8)

where A(p) is a scalar field defining the continuity mask of D(p).

4.5 Rendering Pipeline

Our approach uses texture-based volume rendering with view-aligned slices. We use slicing

as a rendering mechanism for discrete sampling of the displaced object space, rather than for

storing a view-dependent representation of the displaced object. Since this space is unknown

we define a bounding box object as a proxy scene geometry.

Let O be the function of an object and O′ that of the displaced object. The proxy scene

geometry in effect defines a bounded spatial domain of O′. If the proxy scene geometry contains

a volume data set, we can use the texture-based volume rendering method which samples the

proxy scene geometry with slices parallel to the view plane. Each pixel in a slice is then mapped

back to the original object space where O is defined, via an inverse displacement map. Function

O can be any object representation such that given a position p in the original object space, it

returns appropriate luminance attributes at p. O(p) can easily be an implicit surface function, a

level set surface, a distance field or a color volume texture. In our case, we use a scalar volume

dataset, which we denote as f , and store it as a 3D texture in GPU memory.

4.5.1 Displacement Setup

To create a displacement texture, D, of size w× h× d, we first specify −→D B procedurally, and

then sample its inverse transformation D =
−→D C at discrete positions {x,y,z|x = 0,1, . . . ,w;y =

0,1, . . . ,h;z = 0,1, . . . ,d}. As described above, the inverse may not be defined for all points in

44

SAMPLE
OBJECT

GET
NORMAL

TRANSFORM
Eq (4) CUTS: Eq (5)

ADJUST NEAR (p’)nn(p)

APPLY
LIGTHING RGBα(

FINAL
)

αDk)(

j(O)

Oj

αDk

Dkα

(D .x)k

k(D .y)
k(D .z)

αDk)(

Dk

RGBαRGBα
HANDLE
DISCONTINUITIES

ADD
p’+d = pp’ DISPLACEMENT

J

gradients

d

Scene Bounding Box

JD D

Figure 4.3: System diagram for discontinuous displacement mapping. As we sample the bound-
ing box of the scene, each fragment p′ is displaced by a distance d obtained by sampling the
displacement texture D. The resulting position p = p′+d is used to sample the object texture f
and gradient texture ∇(f) , to obtain color and normal information. Color, normal and opacity
(obtained from alpha mask A) are used to compute the final color of the fragment.

the domain of the deformation, so D is extended such that at least C0 continuity is obtained.

C1 continuity is desired, as it will imply that the discontinuity is differentiable at all points.

The displacement values must be normalized in the interval [−1,1], then scaled and biased to

fit in the range of valid values of GPU textures ([0,1]). The alpha mask can be created as a

binary mask, so that it is 1 if p′ has a pre-image in the co-domain of −→D B and 0 otherwise,

and discretize it in a 3D texture. As described above, aliasing-free rendering is possible as

long as the alpha mask is smooth. Therefore, we define the final alpha mask A as an implicit

representation of such binary map, obtained through smoothing or via a distance field of the

binary map. Similarly to D, alpha mask values must be biased and scale to fit into the range of

3D textures. D and A are illustrated in Figure 4.3, where the striped pattern in the displacement

map is used to show the stretching that occurs at the discontinuity. The actual break is depicted

as a dark region in the alpha texture.

4.5.2 Displaced Object Points

In order to determine the displaced volume, we slice the proxy scene geometry into view-

oriented slices, as shown in Figure 4.3. The bounding box of O′ can easily be found by com-

bining the bounding boxes of the object(s) and their displacements. The slices are rendered in

back-to-front order and finally composited using alpha blending. For each point p′ on the slice,

45

we must find the appropriate displacement, since there can be more than one displacement act-

ing on the object (See Section 4.7 on composite maps). We use a fragment program to find the

opacity and color values of a given pixel with texture coordinates p′. This program computes

p = p′ + D(p′), where p is the position in the original object O that corresponds to the texture

coordinate p′. It then samples the 3D texture f at the position p and retrieve the color compo-

nents. Finally, in order to handle discontinuities, it samples the alpha mask A at the position p′

and modulate the pixel’s color components with the mask, according to Eq.(4.8). The process

of the fragment shader is depicted in Figure 4.3.

4.5.3 Displaced Surface Normal

In order to properly shade the object, we need the normal information at each point. Since we

store objects as volumes, normals can be obtained using finite differences or filters such as the

Sobel operator. For interactive rendering, the gradient can be pre-computed and stored in a 3D

texture. When processing fragments, a texture fetch of the gradient texture yields the normal of

the voxel and its magnitude (This is shown as ∇(f) in Figure 4.3). There are three cases to be

considered: the points that are not displaced, the displaced points, and those in the boundary of

a discontinuity. For points not displaced, the pre-computed normals can be used directly. The

other two cases are handled as follows.

Normals at Displaced Points

For a point undergoing displacement, we must obtain a new normal. Figure 4.4(b) shows the

case where the pre-computed normal is used, which results in incorrect shading. In Figure

4.4(b), we peel the top of a piggy bank object (the light is above the piggy bank). We see the

incorrect shading of the peeled surface. Since the surface was originally facing away from the

light, it remains dark even though it is now facing the light after peeling. A more accurate

shading of the surface can be seen in Figures 4.4(c) and 4.4(d) where the peeled surface is

correctly shaded and toward the light.

Normals can be computed on-the-fly by sampling the neighboring voxels (after displace-

ment) and applying finite differences. However, this method requires up to 6 (for central dif-

ferences) additional displacement computations, which is computationally expensive. What is

46

needed is a way to transform the undeformed normals on the fly without additional sampling.

This was proposed by Barr for forward deformation of surface meshes. The new normal at p′

can be obtained by transforming the original one at p using the Jacobian of the deformation:

−→n (p′)
= detJF(J−1

F)>−→n (p) (4.9)

where −→n (p) is the normal vector through the point p, JF is the 3× 3 Jacobian of the forward

transformation TF and detJF its determinant .

Our approach, however, defines an inverse space warping, so it is necessary to obtain a

similar expression based on the inverse transformation. Given TB = T−1
F as the inverse trans-

formation, and since p = TB(p′), Eq.(4.9) leads to:

−→n (p)
= detJB(J−1

B)>−→n (p′)

or equivalently:

1
detJB

(JB)>−→n (p)
= −→n (p′) (4.10)

where JB is the Jacobian of the inverse transformation TB = T−1
F .

Since TB(p′) = T−1
F (p′) = p′ +D(p′), we can defined it as a multi-variate mapping in 3D:

p = TB(x,y,z) =













TBx(x,y,z)

TBy(x,y,z)

TBz(x,y,z)













=













x+Dx(x,y,z)

y+Dy(x,y,z)

z+Dz(x,y,z)













47

and the Jacobian JB is the derivative of TB with respect to the spatial coordinates. Therefore:

JB(x,y,z) =













∂TBx
∂x

∂TBx
∂y

∂TBx
∂ z

∂TBy
∂x

∂TBy
∂y

∂TBy
∂ z

∂TBz
∂x

∂TBz
∂y

∂TBz
∂ z













=













1+ ∂Dx
∂x

∂Dx
∂y

∂Dx
∂ z

∂Dy
∂x 1+

∂Dy
∂y

∂Dy
∂ z

∂Dz
∂x

∂Dz
∂y 1+ ∂Dz

∂ z













= I+JD

where I is the identity matrix and JD is the Jacobian of the displacement map. Then, Eq. (4.10)

becomes
−→n (p′) =

1
det(I+JD)

(I+JD)>−→n (p)

Since normal vectors must be normalized, the 1
det(I+JD) factor can be omitted. This leads to

our normal transformation equation:

−→n (p′) = (I+J
(p′)
D)>−→n (p) (4.11)

This last step avoids the division for zero that might occur when the Jacobian is singular.

However, the Jacobian is only singular at regions of breaks. In our approach, the displacement

map is well defined and continuous for all points, and the breaks are handled by a different

mechanism in the pipeline (see Figure 4.3). In practice, the Jacobian of the displacement map

is approximated as the gradient of the displacement texture, i.e., JD ≈
(

∇Dx ,∇Dy ,∇Dz

)>, using

finite differencing. For speed up, one can pre-compute the matrix

B = (I+J
(p′)
D)> (4.12)

for each voxel in the displacement map, and store it as 3D textures.

48

(a) (b)

(c) (d)

Figure 4.4: Lighting computation for the piggy bank object. The light is above the piggy bank.
(a) No lighting. (b) Using the pre-computed gradient results in incorrect lighting, notice how
the underside of the cut surface is dark even though it is facing the light. (c) Correct lighting,
but artifacts occur at discontinuities – rim of the cut area. (d) Correct lighting with proper
handling of normals at discontinuities. Now the rim, which is facing the light, is lit properly.

Normals at Discontinuities

Unfortunately, even with correct normal transformation, we still see artifacts on the resulting

objects at the boundaries of cuts. In this case, the normals of an object may change even when

that part of the object does not undergo displacement. An example of this is depicted in Figure

49

4.4(c). Note that the rim of the piggy bank at the cut is dark. This is because those normals have

not undergone transformations (like in the underside of the peeled surface) and are therefore

incorrectly pointing away from the light source. This is especially noticeable on solid objects

with a uniform interior. Even for the case of objects with a heterogeneous interior, as long as

their normals are not directed orthogonal to the cut, the cut surface will be lit incorrectly.

To properly compute the normals at the discontinuities, we need a way to determine the

new surface that has been created. Luckily, this information is stored in the alpha map A. We

can compute the gradient of the alpha mask ∇A, and use this value only at the boundary of

a cut. However, applying only this gradient in the boundary, may generate artifacts near the

boundary. To solve this, we gradually correct the normal in the vicinity of the cut to the desired

normal, via blending:
−→n (p′) = ω(I+JD)>−→n (p) +(1−ω)∇(p′)

A (4.13)

where ω ∈ [0,1] is a blending factor. Figure 4.4(d) shows the result of applying this method for

the piggy bank object. Note that the pixels at the rim of the cut are now properly shaded. This

blending mechanism is similar to the solution proposed by Weiskopf et al. [124] for volumetric

cutaways. Although the alpha gradient can be computed on the fly using finite differencing, it

can also be precomputed and stored in a 3D texture for speedup.

4.5.4 Compositing

Because our displacement method is integrated with rendering, the final image is obtained by

compositing the samples obtained by slicing the deformed space. An important consideration

is that the sampling frequency of the deformed space affects the result of the composition.

To picture this problem, let us consider a deformation where a large compression is simulated.

Because all the visible voxels are being compressed into a narrow part, it might happen that only

a few samples are assigned to that compressed part, resulting in aliasing or undersampled space.

For this reason, it is necessary to adjust the sampling frequency when rendering deformed

volumes. However, this is not always feasible in texture-based rendering. Therefore, we can

alternatively adjust the transparency or emission properties of the traversed voxels.

For the analysis of this aspects, let us review the volume integral equation. For a ray −→v

50

s∆

E N

Figure 4.5: Cylindrical slab of area E and length ∆s. Light attenuation is due to the interaction
of light with a number of particles in this slab.

parameterized by t, we want to obtain the intensity at the eye position pe. This is obtained as

follows:

I(te) =
∫ te

0
c(t)e−

∫ E
t τ(s)dsdt (4.14)

where c(t) is the emission coefficient of the point p = pB + t−→v , for pB a point at the back of

the volume (t = 0), and t = te at the eye (pe). The exponential is the absorption or extinction

part of the integral. When discretized, the extinction part becomes:

e−
∫ S

t τ(s)ds ≈ e−∑n
i=0 τ(i∆s)∆s

=
n

∏
i=1

eτ(i∆s)∆s

=
n

∏
i=1

ti

where ti is also referred to as the transparency of the voxel.

It is debatable as to what should be the behavior of light in a deformed volume. For most

physical objects, deformation implies a compression or expansion of particles, which alter the

way light is absorbed as it traverses the volume. Those cases apply when mass conservation is

assumed. On the other hand, a volume may represent an abstract 3D object, where the notion

of particles does not apply. In those cases, it is more important to maintain the intensity values

constant across the deformation, for all the light rays. Here we consider the two cases.

51

Mass Conservation

The attenuation function τ(s) is derived as the effective area occluded by the particles in a

cylinder slab of area E and length ∆s, as seen in Figure 4.5. Let ρ be the local density of

particles in that cylinder slab. The number of particles in the slab is N = ρE∆s, and the atten-

uation coefficient is τ = APρ , where AP is the cross sectional area of each particle. Now, for a

deformed volume, which is the one being rendered, let us define τ ′ = A′
Pρ ′ as the attenuation

coefficient, where A′
P = AP. The slab in the deformed volume, with volume V ′ = E ′∆′s, maps

back to a volumetric figure of volume V = |detJB|V ′, where JB is the Jacobian of the backward

transformation. Since the number of particles remains constant:

N = ρ ′V ′ = ρV (4.15)

or equivalently:

ρ =
ρ ′V ′

V =
ρ ′

|detJB|
(4.16)

Because the cross sectional area of particles remain constant, the attenuation coefficient in the

undeformed volume is then:

τ(s) = APρ = AP
ρ ′

|detJB|
= τ ′(s) 1

|detJB|
(4.17)

and therefore:

τ ′(s) = |detJB|τ(s) (4.18)

Now let us consider only the extinction part of a voxel. In the deformed space, which is the

one to be rendered, this is defined as:

T (t) = e−
∫ t

0 τ ′(s)ds (4.19)

= e−
∫ t

0 |detJB|τ(s)ds (4.20)

52

Discretizing the attenuation coefficient along the view direction ∆s:

T (t) ≈
n

∏
i=1

eτ(i∆s)|detJB|∆s (4.21)

= ∏ t |detJB|
i (4.22)

where ti is the transparency of the original voxel i along the ray.

In most renderers, it is the opacity αi = 1− ti, rather than the transparency, the quantity

used to represent extinction. Let α ′
i be the opacity of a voxel i along a view ray when sampling

the deformed volume. The opacity adjustment can be found as follows:

α ′
i = 1− (1−αi)

|detJB| (4.23)

This is the approach taken by Chen et al. in [18].

Intensity Constancy

Now let us consider a ray −→v traversing the deformed space, parameterized such that a sample

point is defined as p′ = pe′ + t−→v . In the undeformed space, this ray maps into a curve u,

parameterized by s.

If we assume intensity constancy, the attenuation due to particles along the ray and along the

curve u should be the same. This can be achieved by considering the integration along the ray

in the deformed space as a line integral along a curvilinear coordinate transformation, defined

by the inverse transformation TB. Let T (X) be the extinction coefficient in the undeformed

space along a curve u, and T ′(X) the extinction coefficient in the deformed space.

T (X) = e−
∫ X

0 τ(s)ds (4.24)

= e−
∫ X

0 τ(s(t)) ds
dt dt (4.25)

= e−
∫ X

0 τ ′(t)dt (4.26)

= T ′(X) (4.27)

53

Because s = s(p) = s(TB(p′)), then ds
dt is a multivariate derivative and is defined as :

ds
dt = |JB

−→v | (4.28)

where JB = I + JD is the Jacobian of the inverse displacement as described in the previous

section and |−→v | is the length of vector −→v . And then we have:

τ ′(t) = |JB
−→v |τ(t) (4.29)

Following a similar analysis to the one derived for the mass conservation assumption, we

determine that the opacity adjustment for a particular sample in the deformed space is obtained

as:

α ′
i = 1− (1−αi)

|JB
−→v | (4.30)

The main difference with the result for the mass conservation assumption is that this method

neglects the change in the extinction parameters in the directions orthogonal to the deformation.

Therefore, the intensity values at the eye points remain constant across deformations, from

any viewpoint. This result is useful for the rendering of abstract or non-physical volumetric

objects. However, it is also useful for the depiction of deformed isosurfaces. Maintaining the

intensity constant for an isosurface provides a cue for continuity. The results of the composition

mechanism for a deformed volume are explored in Chapter 6.

4.6 Construction of Displacement Maps

An important part of the process of realizing illustrative deformation is the construction of dis-

placement maps. Here, we describe three methods. The first two allow the creation of primitive

displacement maps, while the third, described in the following section, uses algebraic opera-

tions on primitive maps to create more complex displacements. The two methods for primitive

displacement map creation are through procedural description and through interpolated nodal

displacements using Radial Basis Functions. More information is given in Appendix C.

54

4.6.1 Procedural Description

The first mechanism for creating displacement maps is through a procedural description. As

an example, consider the poke operator, as shown in Figure 4.10. This displacement uses a 3D

Gaussian function to simulate a pull in the Z direction. The displacement can be constructed

as:

D(x,y,z) =

(

0, 0, −ze
(x−0.5)2+(y−0.5)2

2σ2

)>

(4.31)

for (x,y,z) in a unit cube, and σ chosen so that displacement becomes 0 at the XY boundaries

of the unit cube. This displacement is discretized and stored in a 3D texture of size 64 ×

64× 64. Note that the z value is used to modulate the amplitude of the Gaussian pull, and

that the Z component of the displacement is negative, since D stores the inverse displacement.

For instance, the point (32,32,32) in the 3D texture, corresponding to the normalized point

(0.5,0.5,0.5) in the unit cube, contains the displacement vector (0,0,−0.5).

When considering cuts, we follow a similar process. First, we compute the alpha channel

of the cut procedurally, so that A(x,y,z) is 0 whenever there is a cut, and 1 elsewhere, and

discretize it in a texture volume. In addition, we apply a smoothing operator over the alpha

mask in order to obtain a smooth region around the boundaries needed for the blending of

the normals, as described in Section 4.5.3. The result is stored in the alpha component of the

displacement texture.

It is important to note that procedural displacements must be derived in the inverse space,

rather than as a direct transformation. For twists, bends and tapering, we use the derivations

by Barr [6]. For all others, we derived a series of mathematical expressions, summarized in

Appendix C.

4.6.2 Inverse Weighted Interpolation

Some displacement maps might be difficult to derive analytically. In addition, manual displace-

ment of all grid points may become difficult to manage. For this reason, many deformation

techniques use nodal displacements to drive the deformation of a set of given control points

and scattered data interpolation to determine the displacements at grid points. Because we

have inverse displacements, the interpolation methods are often referred to as inverse distance

55

weighted interpolation methods, where a given function is interpolated within a 3D region,

based on the distance to user-specified control points [97]. The most common interpolation

methods are Shepard’s interpolant, based on Radial Basis Functions (RBFs) and Moving Least

Squares. In this work, we use Radial Basis Functions for the interpolation of nodal displace-

ments. In this method, the interpolation function is constructed as a linear combination of

radially symmetric basis functions, centered at the control points. A function g at a point p can

be interpolated from a set of control points p1,p2, . . . ,pn as follows:

g(p) =
n

∑
i=1

αigi(d(p,pi))+ pm(p) (4.32)

where d(p,pi) is the distance from point p to control point pi, gi is a basis function, pm is a

polynomial of degree m, and αi are coefficients. These coefficients are found by putting the

data points into the RBF equation and solving the system of linear equations. A number of

radial basis functions have been proposed, of which we use Hardy’s inverse multiquadrics:

gi(d) = (d2 + r2
i)

µ (4.33)

Depending on the value of µ , the radial basis function can be differentiable to a certain degree.

For µ = −0.5, the interpolation if C∞. Because of the ability to predict the differentiability

of radial basis functions, we have used this method for the creation of displacement maps. In

addition, we use a polynomial of degree 1:

p1(p) = 1+ x+ y+ z (4.34)

for a point p = (x,y,z)>.

We built a 2D warping editor that allows us to deform a 2D image using radial basis func-

tions. In this case, the interpolated function g is a 2D displacement. A 3D displacement can

be created by extending the 2D displacement along the Z axis. The use of 2D instead of 3D

enables easier control of the deformation and can be used to find deformations along a partic-

ular axis. For instance, Figure 4.6 shows the process of creating 3D displacements from a 2D

deformation. In Figure 4.6(a), we show the deformation of a 2D grid using 8 control points

56

(a) Deformation on a grid (b) Deformation on dataset slice

(c) Resulting 3D Deformation (d) Resulting 3D Deformation

Figure 4.6: Displacement map creation using Radial Basis Functions. (a),(b) Nodal deforma-
tion on 2D slices (c),(d) Resulting deformation on a 3D volumetric dataset.

(marked in red). Figure 4.6(c) shows the result of applying the generated displacement to a bar

dataset. Certain displacements can be generated with a particular dataset as a target, as the case

depicted in Figure 4.6(b) and (d), where a 2D deformation of 9 control points is used to derive

a bending transformation on a bar dataset. The use of a slice of the target dataset allows a better

manipulation of the control points to achieve the desired result.

One of the advantages of RBFs is the ability to obtain displacements that are at least C1

continuous. However, this poses a problem for defining discontinuous deformation. In the

case of cuts, C1 continuity is desired in the sub-regions that appear after the cut. For this

reason, we devised what we call Decoupled Radial Basis Functions (DRBF). For simplicity,

let us consider a DRBF in 2D with two continuity regions (i.e., there is a single cut). The

two continuity regions divide the image (or volume for 3D) into the regions VP and VQ. In

addition, we assign control points to a particular region, i.e., control points are divided into the

sets {p1,p2, . . . ,pn} and {q1,q2, . . . ,qn}, respectively. The 2D displacement with cuts is then

given by:

D(p) =















∑n
i=1 aigi(d(p,pi))+pm(p) p in VP

∑m
j=1 b jh j(d(p,qj))+pm(p) p in VQ

(4.35)

57

(a) Original Grid (b) Deformed grid (Decoupled RBF)

(c) Original Dataset (d) Applied Deformation (e) Smoother Deformation

Figure 4.7: Discontinuous displacement map creation using Decoupled Radial Basis Functions.

where gi and h j are radial basis functions, and ai = (αi1,αi2)
> and b j = (β j1,β j2) are the

2D coefficients, which are found by putting the control points and their inverse displacements

into the equation and solving the system of linear equations. The discontinuity map, A is then

obtained as follows:

A(p) =















1 (p in VP and p+D(p) in VP) or (p in VQ and p+D(p) in VQ)

0 otherwise
(4.36)

An example is shown in Figure 4.7, where a cut (shown as a yellow line) divides the grid

guide in two regions. When applying a deformation, the grid is split as it crosses the boundary

defined by the cut, effectively forming a discontinuous deformation. Figure 4.7(d) also shows

the result of applying the displacement to the bar dataset. Note also that a complex deforma-

tion can be found by interpolating the displacement values down to zero, in order to create a

smoother cut (Figure 4.7(e)). Other methods for creating displacement maps are described in

the following section, as the result of algebraic operations.

4.7 Algebraic Operations on Displacement Maps

One of the advantages of displacement maps is the ability to operate on them algebraically.

This enables the creation of complex deformations from the combination of simple primitive

58

(a) Translations

(b) Rotations

(c) Scalings

Figure 4.8: Affine transformation of displacement on the tomato dataset.

displacements. This section describes several mechanisms for operating displacement maps,

such as affine transformations, addition and composition.

4.7.1 Affine Transformations

One of the operations defined on the displacement map is the translation of the displacement

map by a constant vector u, i.e., the displacement equation becomes:

p = p′ +D(p′−u) (4.37)

Similarly, scaling of the displacement map can be defined:

p = p′ +σD(σ−1p′) (4.38)

where σ 6= 0 is a real value.

We can generalize this notion by unifying this operation, together with rotations and shears,

as an affine transformation of the displacement. An affine transformation on a vector p can be

59

defined as Mp+u, where M is a 3×3 affine matrix and u is a global translation. Alternatively,

we can use homogeneous coordinates of a point p. Let use define p̂ as the representation of p

in homogeneous coordinates, i.e.

p̂ =







p

1







(4.39)

Using homogeneous coordinates, we can generalize the displacement by defining an affine

coordinate transformation between the displacement space and the object space. That is, related

to Eq.(4.1), W (p) = Mp, where M is a 4× 4 affine transformation. Then, the displacement

equation becomes:

p̂ = p̂′ +M×D(M−1p̂′)

= M×
(

M
−1p̂′ +D(M−1p̂′)

)

(4.40)

The last expression is useful, since it explains the way the affine transformation is applied.

First, coordinate frame Λ is transformed via the inverse transformation into the displacement

coordinate frame ΛD. Since the displacements are given with respect to ΛD, the result is finally

transformed in the coordinate frame defined by M.

The normal transformation when undergoing this type of coordinate transformation is given

by the concatenation of the transpose of the Jacobians of the coordinate transformation. This

can be derived as follows. The inverse transformation is defined as TB(p′) = p′ + (W ◦D ◦

W−1)(p′). The normal transformation J>B is:

J
>
B = (I+JW JDJ

−1
W)>

= I+J
−>
W J

>
DJ

>
W

= J
−>
W

(

I+J
>
D

)

J
>
W

where JW is the Jacobian of the transformation. Therefore, the normal transformation equation

becomes:
−→n (p′) =

[

J
−>
W (I+JD)> J

>
W

]

−→n (p) (4.41)

For an affine matrix, JW is the 3×3 upper sub-matrix of M. In this work, transformations are

60

represented as a rotation followed by a scaling and a translation, i.e., M = T×S×R. Therefore,

JW = (S×R) and Eq. (4.41) becomes:

−→n (p′) =
[

(S−1 ×R)(I+JD)> (R>×S)
]

−→n (p) (4.42)

This transformation via affine matrix is an efficient mechanism for controlling the shape, po-

sition and orientation of a displacement map. Examples are shown in Figure 4.8, where trans-

lation, rotation and scaling of a slicing displacement produce interesting deformations on a

tomato dataset. Since this method only involves multiplication of constant matrices, this is an

efficient alternative for controlling the displacement in an interactive application.

4.7.2 Addition

Displacement maps offer the flexibility of creating new displacements via addition. Let D1 and

D2 be two displacement maps. Then, a new displacement map DS = D1 + D2 can be defined,

such that:

p = p′ +D1(p′)+D2(p′) (4.43)

Further, since the displacements contain discontinuities, the new alpha mask is defined as:

A1+2 = ρmin(|A1|, |A2|) (4.44)

ρ =















−1 A1 < 0∧A2 < 0

1 otherwise
(4.45)

Addition can be performed on a pre-processing stage to create a new displacement and then

apply it to a volumetric object. Alternatively, they can be added on the fly. In that case, the

normal transformation can be obtained by simply adding the Jacobians of the displacements:

−→n (p′) = (I+J
(p′)
D1 +J

(p′)
D2)>−→n (p) (4.46)

61

(a) p = p′ +D1(p′ +D2(p′)) (b) p = p′ +D2(p′ +D1(p′))

Figure 4.9: Composition of two displacement maps D1 (wave) and D2 (peel) in different order.

where JD1 is the Jacobian of D1 and JD2 is the Jacobian of D2. Since we pre-compute the

matrices B1 = (I+JD1)
> and B2 = (I+JD2)

>. Eq.(4.47) can be re-written as follows:

−→n (p′) = (B1 +B2 − I)>−→n (p) (4.47)

4.7.3 Composition

In general, two transformations can be combined as follows:

p = G1(G2(p′)) (4.48)

where G1(u) = u+D1(u) and G2(v) = v+D2(v) are displacement mappings.

For computing the normal, we must simply concatenate the Jacobians of the two mappings:

−→n (p′) = (B1 ×B2)
−→n (p) (4.49)

where B1 = (I+JD1)
> and B2 = (I+JD2)

> are the pre-computed normal transformation matri-

ces of the displacement mappings, as defined in Eq.(4.11). An example is shown in Figure 4.9,

where two different displacements are combined in different order and applied to the tomato

dataset. Since each displacement changes the frame of reference, composition is, unlike addi-

tion, not commutative in general.

Pre-computed combination of displacement maps results in another displacement map and

62

does not require any changes in the GPU rendering process. It is a useful mechanism to create

complex displacements from simple ones. On the other hand, on-the-fly combination enables

the interactive creation and manipulation of independent displacement maps, though it requires

a modified GPU implementation. Composite maps can be realized in the GPU program in a

single pass by iterating the displacement procedure on the voxel positions for each displacement

map, before sampling the original object. This approach, however, cannot be generalized easily

to many compositions. Research on a general multi-pass rendering process is being undertaken.

4.8 Results

We have implemented the displacement mapping approach within an interactive program which

allows the user to rotate and scale the object and to move or change the displacement map. The

displacement map can be changed interactively via linear transformations (see Section 4.7).

Figure 4.4 shows a peeling of the side of a piggy bank dataset, revealing the coins in the inside.

In order to validate our approach, we created a number of displacement textures and applied

them to various datasets. Figure 4.10 shows four displacements applied to the box, bar, engine

and tomato datasets. The first two are synthetic objects created procedurally. The strips in the

box dataset help us track the continuity and smoothness of the displacement. A similar effect

is obtained by tracking the inner bar (in yellow) of the bar dataset. More information on the

datasets can be found in Appendix A.

One of the difficulties of the use of displacement maps is the definition of large or global

deformation, since the region of influence is bounded. Scaling and affine transformations help

realize arbitrarily large deformations in a scalable manner. For global deformations, such as

kinematic movement, a displacement would require a size comparable to that of the dataset.

Further, out-of-bounds deformations are difficult to model. For instance, consider the slicing

deformation shown in Figure 4.11. The sliced portions of the tomato are part of the deformation

definition, but soon fall out of the bounds of the displacement map, and we require a explicit

definition of how the displacement is extended beyond the texture boundaries. This can be

modeled using texture clamping capabilities. For instance, it is possible to specify that defor-

mation values are clamped to 0 outside the map bounds, that they are clamped to the values on

63

Original Poke Peel Split Slice

Figure 4.10: Example deformations on volumetric objects

the edge, or that the deformation repeats. However, this method has limited expressiveness and

cannot capture all possibilities. For this reason, we had to explicitly define the out-of-bounds

interpolation of displacement values for the slicing deformation, as part of the warping process.

A more general and scalable solution is yet to be found. In Figure 4.11, several time steps are

rendered which show a progressive slicing as the user moves the displacement vertically. This

displacement can be obtained from a simple slicing displacement and repeating it periodically

along the main diagonal of the displacement map.

4.9 Chapter Summary

In this chapter, we have demonstrated how discontinuous displacement maps can simulate many

different types of volume effects such as fracturing, slicing, deforming and cutting of graphical

64

Figure 4.11: Slicing of the tomato

objects. We have employed inverse displacement maps in 3D vector space to solve for large and

discontinuous displacements. We have also devised a collection of techniques, including com-

puting surface normals changed due to unorthogonal displacement, correcting lighting artifacts

at fractures, and creating composite maps from primitive maps on the fly. The displacement

map can easily be represented as a 3D texture and the entire rendering process can be coded

into a fragment program yielding interactive results. We have shown their effect on a num-

ber of different models, and their ability to be combined in multiple ways, demonstrating the

generality, interactivity, and usability of this approach.

65

Chapter 5
Feature Aligned Deformation1

5.1 Introduction

In the previous chapters, we described a method for modeling cuts and deformations in volu-

metric objects. One of the applications of this method is in scientific illustration, where defor-

mations are used to depict the stages and outcome of a procedure, to uncover hidden features,

or to reveal the spatial relationship between different components of an object. However, scien-

tific illustrations often recurse to feature-sensitive operations to be effective. Feature-sensitive

operations are only applied to a semantic component of an object, such as the skin in Figure

5.1(b) and the muscles in Figure 5.1(d), without affecting other parts of the object.

1Portions of this chapter were published in our paper: Feature Aligned Volume Manipulation for Illustration and
Visualization, by C. Correa, D. Silver and M. Chen, IEEE Transactions on Visualization and Computer Graphics,
2006, pp. 1069–1076

(a) (b) Illustration (c) (d) Illustration

Figure 5.1: Feature-aligned volume manipulation (a) A feature-aligned retraction applied to
a human hand data set, showing bones (left) and vessels (right) (b) Surgical illustration of a
hand (Copyright c©2006 Nucleus Medical Art. All rights reserved. www.nucleusinc.com) (c) Mul-
tiple peel and cutting away operators applied to the visible human data set (d) Illustration of
human anatomy with dissected “flaps”, by Antonio Scrantoni and Paolo Mascagni, 1833 (U.S.
National Library of Medicine), similar to exhibitions such as BodyWorlds [119], and Bodies,
the Exhibition [1].

66

We can see from these illustrations that, when specifying a cut or peel, one important con-

sideration is “alignment”. Here, aligned manipulation refers to those cuts or peels that are

applied to certain layers while other features of interest are preserved. The simplest is axis-

aligned, which aligns the operator with the axis-planes. It is feature-insensitive and is ap-

plied to all points within the volume bounds. Deformations and cuts depicted in the previous

chapter can be all considered as axis-aligned. This however is not always satisfactory as the

“object” within the volume is not necessarily cubic. In this chapter, we introduce a num-

ber of approaches for obtaining feature-aligned deformation, which can be classified as either

transformation-based or mask-based methods. Transformation-based methods use a coordinate

frame transformation to align an axis-aligned deformation to an arbitrary line, curve or surface.

Mask-based methods use a volumetric mask along a surface or segment of interest. We extend

our rendering algorithm to accurately estimate the normals along the surface of cuts and dis-

sections while maintaining continuous normals, which allows us to obtain correct shading of

the object being manipulated, opaque or translucent.

5.2 Related Work

As described in Chapter 2, most volume deformation techniques treat the volume as an homo-

geneous collection of voxels. The notion of feature sensitivity has been explored in the context

of multi-dimensional transfer functions [60, 45] and illustrative techniques [117, 14] , where

the distinction of features of interest is made in the rendering process.

In the context of volume deformation, feature sensitivity has been largely unexplored. One

of the first to suggest the use of features when deforming volumes was McGuffin et al. [76],

who proposed to define semantic layers of the data where primitive points are extracted for ren-

dering. Because of the rendering process, which treats voxels as their own disjoint primitives,

meaningful deformation could be obtained by transforming the voxels associated with a par-

ticular layer. In this way, they were able to achieve deformations where a layer such as skin is

moved or peeled away to gain visibility of the muscle and bone layers. However, as described

before, this method does not yield smooth surfaces or volumes.

Other volume rendering techniques, such as [125, 93, 108, 18] do not include any type of

67

feature sensitivity and consider the volume as an homogeneous collection of points. Most of

these, however, were intended for continuous deformation, where the feature preservation may

be of limited use, since there is no natural way to explore the interior of the object. In contrast,

discontinuous deformation of volumes exploit the idea of feature alignment to be more effec-

tive. Since there is a mechanism to gain visibility of internal structures by cutting, splitting or

exploding, it becomes necessary to specify a way of keeping features of interest untransformed.

Approaches that enable such operations are Spatial Transfer Functions [20], volume splitting

[54] and exploded views of volumetric objects [13]. In all these cases, the feature and “back-

ground” volume (i.e., the difference volume between the original volume and the feature of

interest), are obtained through a pre-processing stage where two volumes are utilized. There-

fore, the problem of feature alignment is reduced to the rendering of a multi-object scene: one

object, corresponding to the feature of interest, is rendered using traditional volume rendering

techniques, while the other, the remaining volume, is deformed according to each methodology.

One of the problems with these methods is that explicit segmentation of volumes may introduce

aliasing at the boundaries, and pre-processing of the datasets is required. It also decouples the

rendering of the objects, so there is no guarantee on the smoothness and continuity of the de-

formation in the regions where the feature of interest and the background volume meet. In this

chapter, we describe a method where feature alignment is part of the deformation and rendering

process, so that it can be achieved in a single rendering pass.

Another important aspect of feature-sensitive deformation is the correct lighting of the sur-

faces of the cut. Because cuts are feature-aligned, the “underside” must represent the surface

left by the removal of the feature of interest. Correct representation of this surface via shading

is essential for providing cues about the shape of the object. In previous approaches, this has

been relatively unexplored, and surfaces of cuts often present artifacts or use a simpler shad-

ing model to hide them. A mechanism for adjusting the normals near the surface of cuts for

volumetric clipping was proposed by Weiskopf et al. [124], which allow correct rendering of

cut surfaces. We extend this idea for the rendering of deformed feature-aligned volumes, in a

similar way as we define the normals in Chapter 4.

68

5.3 Transformation-Based Alignment

In many cases, deformation operators need to be aligned with a particular line, curve or surface.

For instance, a peel on the cranium needs to be aligned with the surface of the skull, which in

turn can be approximated by a curve in the surface of a sphere. In such cases, the alignment

can be represented via a transformation. In Chapter 4, we defined generalized displacements

as:

p = W (W−1(p′)+D(W−1(p′)) (5.1)

where W is a mapping function from the displacement space to the object space and W −1 its

W (p’)−1p’ to displacement
space

to object space

displace point

W(p) p

Figure 5.2: Transformation-based alignment.

inverse. This process is depicted in Figure 5.2. The mapping function W defines an embedding

of the displacement space into object space. The simplest one, as described in chapter 4 is via

linear transformations. This process embeds the cubic space of the displacement into a cuboid

of arbitrary orientation and scale. This is achieved by defining W as an affine matrix A:

p̂ = A×
(

A
−1p̂′ +D(A−1p̂′)

)

(5.2)

= p̂′ +A×D(A−1p̂′)

where A is a 4×4 affine matrix and p̂′ is the sampling point expressed in homogeneous coor-

dinates.

Another possibility is to align the deformation with an arbitrary curve in space. This is

achieved by first parameterizing the space along the length of the curve and then defining

an interpolation function in the enclosed volume. One of the simplest methods is piecewise

69

bilinear interpolation. Here, we define two parameters, s and t along a connected sequence

of line segments and the mapping function W : (s, t) 7→ (x.y) as a coordinate transformation

function. The third spatial parameter r is assumed to coincide with the object spatial coordinate

z.

Since we can safely ignore the third coordinate, the mapping function W can be defined at

each line segment as a quadrilateral interpolation function. Given p1, p2, p3 and p4 the corners

of a quadrilateral, and s, t ∈ [0,1] two parameters:

p′(x,y) = W (p(s, t)) = (1− s)(1− t)p1 + s(1− t)p2 +(1− s)tp3 + stp4 (5.3)

p1

p3

p2

p4

t s

s

t p

(0,0) (1,0)

(0,1) (1,1)

W

Displacement SpaceObject Space

Figure 5.3: Piecewise linear alignment with a curve of three segments. Each line segment is
used to define a quadrilateral by extending its normals. Bilinear interpolation is used as the
displacement-object space mapping

Other finite elements can be used to accommodate different types of alignment shapes (such

as tetrahedra or hexahedra) and various types of interpolation (tri-linear, tri-cubic, etc.). In this

work, we use bi-linear hexahedra as shown above. A similar analysis can be performed for

other shape functions, to align the deformation to a surface.

70

5.3.1 Normal Estimation

Following the analysis introduced in the previous chapter, it is also necessary to estimate the

normals of deformed points in order to obtain proper lighting of deformed volumes. In Chapter

4 we derived an expression for normal estimation of inversely displaced points, using the trans-

pose of the Jacobian of the inverse transformation. According to vector calculus, given two

differentiable transformations F and G, the Jacobian of the composite transformation F ◦G

evaluated at a point p is:

JF◦G(p) = JF(G(p))JG(p) (5.4)

Also, as a corollary of this equation, the Jacobian of the inverse function F−1 is:

JF−1(p) =
(

JF(F−1(p)
)−1 (5.5)

For a transformation-based deformation, the new normal can be estimated by concatenating

the transpose Jacobians of each transformation mapping, as follows:
−→n (p′) =

(

JW (W−1p′ +D(W−1p′))(I+JD(W−1p))JW−1(p)
)>−→n (p) (5.6)

=
(

JW (W−1p′ +D(W−1p′))(I+JD(W−1p))J−1
W (W−1(p))

)>−→n (p) (5.7)

5.3.2 Implementation details

The implementation of this into our rendering pipeline requires a mechanism for computing the

mapping transformation W and its inverse. W can be computed on the fly using the expression

in Eq.(5.3). The inverse transformation W−1, however, is more complicated to compute. As an

alternative, we use the slicing mechanism to generate the s and t parameters directly. In the case

of three-dimensional elements, an additional parameter r can be also computed via slicing. Tri-

linear interpolation on hardware of these parameters yield the correct parameterization of each

point in object space. For each sample point, now we have two texture coordinates, one corre-

sponding to the coordinates in object space (x,y,z) and the other in displacement space (s, t,r).

In addition, higher order transformations (e.g., quadratic or cubic) can also be accommodated,

by adding additional shape functions to the computation of W . However, to avoid extra compu-

tation, a generic mechanism can be devised based on texture lookups. W can be precomputed

in a 2D texture or a 3D texture, indexed by the parameters (s, t) and (s, t,r) respectively.

71

(a) Axis Alignment (b) Surface Align-
ment

(c) Segment Align-
ment

Figure 5.4: An example of different types of alignment. (a) Axis aligned peel. Note how the
peeled layer is thick and flat, since it is aligned with an orthogonal axis. (b) Surface aligned
peel, aligned with a computed distance field. Notice how it approximates a surface. (c) Segment
aligned peel, based on segmentation, which is more accurate. Note that in the feature based
alignment (b) and (c) the peel is thin and rounded.

5.4 Mask-based Alignment

The second category of alignment deformations is mask-based alignment. In this case, rather

than matching the “shape” of the deformation with the feature of interest, we “mask-out” those

points that should not be deformed with a volumetric mask. This has proven to be a better

and faster alternative to transformation-based alignment. An example of this type of alignment

can be seen in Figure 5.4(c), where the operator is said to be aligned with the brain tissue,

since the peeler appears to follow its contour. In this chapter, we propose two mask-based

techniques for allowing deformations that are sensitive to the specific features on a volume

model. We consider surface features that are defined by an iso-surface, and volume features

that are defined by a segment, resulting in the notions of surface-aligned and segment-aligned

deformation respectively. The merits of such alignments can be seen Figures 5.4(b) and 5.4(c).

Consider the skin of the head is the context, and the brain is the focus of these visualizations.

From Figure 5.4(a) where a peel is performed using axis-alignment, we can observe that the

part being peeled is wedge shaped and the operator cuts through the brain. The visualization

conveys limited information about the part supposing to be in focus. Feature alignment corrects

72

this problem. Virtual surfaces are created without segmentation (except for background), using

a distance field computation. The distance field is computed based on a boundary, from which

virtual shells of different thicknesses can be defined. For example, in 5.4(b), a surface-aligned

peel is applied to the top of the head with a uniform depth from the surface of the skin. Such

alignment can be used to investigate and illustrate layered structures without the pre-knowledge

of segmentation. However, while this is a good approximation , the operator still cuts through

the brain. If we have the specification of volume features, typically obtained from segmentation

or defined by a range of iso-values, we can create a more effective focus+context visualization.

In 5.4(c), with the segmentation knowledge of external layers including the skin and skull, we

apply a segment-aligned peel to the head. The brain, that is, the focus, is not only highlighted

but also visualized with correct geometry. In addition, the correct shading at the back of the

peel provides further meaningful context to the visualization.

5.4.1 Mask-based Volume Deformation

In order to define a mask-based deformation function, we introduce a masking function M,

which defines the feature-sensitivity of points in the original volume V , and is typically repre-

sented by a volume dataset. When M(p) ≥ 0.5, p is part of the feature to be preserved, and

cannot be transformed. An example of this is shown in Figure 5.4(c) where the peel is applied

to the skin and not to the brains (which is masked as a feature of interest).

Using the notation introduced in Chapter 4, let PV be the set of points of the original volume

and P′
V the deformed set of points. Let PM be the subset of PV , such that PM = {p|p∈PV ,M(p)≥

0.5}, and VM is an axis-aligned bounding volume of PM . Any point not in PM is operatable. In

addition, the backward transformation function TB, is also accompanied by a bounding volume,

VT , such that the manipulation is only performed over those points residing in VT .

Unlike our original definition of deformation, in feature-aligned deformation, an inversely

transformed point, p′, may have been masked as non-operatable by M, which results in empty

space. To handle the complexity of this inverse mapping, we introduce an initial “probe” p0,

73

2. p = p’

3. p =
M

B1. p = T (p’)

CUT

Figure 5.5: Inverse warping cases for mask-based feature-aligned deformation

for each point p′ ∈ P′
V ′ as follows:

p0 =















TB(p′) p′ resides in VT

p′ otherwise
(5.8)

We then obtain p by taking the feature mask into account as:

p =































p0 p0 ∈ PV ∧ (M(p′) < 0.5∧M(p0) < 0.5)

p′ p′ ∈ PV ∧M(p′) ≥ 0.5

∅ otherwise

(5.9)

These three cases are shown in Figure 5.5, namely: (1) the point is transformed, (2) the point is

masked and therefore untransformed, and (3) the point is empty due to the feature-aligned cut.

Following the same analysis as other deformation functions, the normal at a point p′ is

defined as:

−→n T =































−→n J p = T−1
F (p′)

−→n p = p′

0 p = ∅

(5.10)

where −→n T denotes the resulting normal at the inversely transformed point, −→n denotes the

original normal, −→n J denotes the transformed normal at sampling point p′, and 0 is the zero

vector. −→n J is obtained using the transpose of the Jacobian of the inverse transformation, as

derived in the previous chapter, and therefore denoted here with a subscript J.

74

DT= τ

DT= τ+δ

DT= τ−δ

DT

α

nT

(a) Original Normals

DT= τ

DT= τ+δ

DT= τ−δ

DTn*T

(b) Normals after axis-aligned cut adjustment

DT= τ

DT= τ+δ

DT= τ−δ

DTn*T

n(p’)

(c) Normals after feature-aligned cut adjustment

Figure 5.6: Normal blending for surface alignment. Black arrows indicate the normal of the
axis-aligned part of the cut, green arrows indicate the inversely transformed normal, red arrows
are the normals orthogonal to the surface of the cut, and the blue arrows indicate the corrected
normal after blending.

5.4.2 Surface Alignment

As stated previously, for certain deformations axis alignment is not sufficient. Peeling is one

such deformation, since generally the peeling operation is applied to a specific surface layer

of an object. In this case, feature-based alignment is desired. As an approximation, a surface-

aligned feature can be obtained by defining a mask based on distance from the surface. This

can be obtained with the distance field of the volume, after a background segmentation. Let us

define DT as the distance field stored as a volume. Then, the mask M can be defined such that

75

M(p) ≥ 0.5 for DT (p) ≥ τ , and M(p) < 0.5, for DT (p) < τ . One such function is:

M(p) = 0.5DT (p)− τ
δ

+0.5 (5.11)

where δ 6= 0 is a thickness parameter that describes how large is the falloff region at both sides

of the cut, i.e., the thickness of a slab aligned with the isosurface M(p) = 0.5.

Here τ > 0 is a parameter that specifies the desired distance from surface. For instance, τ

can be thought of as the “depth” of the peeled surface, which is to be transformed in order to

reveal the feature underneath.

The normal at a point is defined by the influence of different normal information. For a

point in the interior of the volume, the normal is defined by the transformed normal −→n J. For

a point in the vicinity of the cut, it is defined by either the gradient of the distance field ∇DT ,

which defines the surface of the feature of interest, or the gradient of the alpha map ∇α , which

defines the surface of the cut.

To blend these three normals, we first require special handling of the boundary around the

cut surface defined by DT (p) = τ . For a feature point (i.e., M(p) ≥ 0.5), the gradient of the

distance field ∇DT points outwards from the interior to the surface. However, for a non-feature

point on the boundary (i.e., M(p) < 0.5), the gradient ∇DT points incorrectly from the surface

to the interior. We solve this by using a signed weighting function β , which takes values from

−1 to 1. First, the normal, as obtained using Eq.(5.10) is adjusted for the axis-aligned cut, as

described in chapter 4:
−→n ∗

T = (1−ω)−→n T +ω∇α (5.12)

where ω ∈ [0,1] is a weighting function that decreases with the distance to the discontinuity,

i.e., for a point in the boundary, ω = 1, and for a point at a pre-defined distance D from the

boundary, ω = 0. This parameter ω controls the gradient smoothness of the cut surface, and

it is similar to the “impregnation” region described by Weiskopf et al. in [124] for performing

volumetric clipping.

Then, the final normal at a point is a combination of this adjusted normal and the normal of

76

the surface of interest ∇DT .
−→n (p′) = (1−|β |)−→n ∗

T +β∇DT

β =































τ−DT (p)
δ −1 τ −δ < DT (p) < τ

τ−DT (p)
δ +1 τ ≤ DT (p) < τ +δ

0 otherwise

(5.13)

β is used to gradually blend the normal of the distance field with the transformed normal. Note

that it is asymmetric with respect to τ . That is, for a point with DT in the interval [τ,τ +

δ), β ranges from 1 down to 0, but for a point with DT in the interval (τ − δ ,τ), β takes

values from 0 down to −1. This negative weighting blends the transformed normal −→n J and

the normal between the normal of the distance field in the opposite direction. This results in

correct normals at both sides of the break. This is illustrated in Figure 5.6, and an example of

surface-aligned peeling is shown in 5.4(b).

5.4.3 Segment Alignment

Segment alignment is obtained by defining M(p) based on a volume feature, that typically

is determined through segmentation. It can be seen quite easily that the above technique for

surface alignment can be extended to handle an arbitrary volumetric mask by replacing DT (p)

directly with M(p). Normal adjustment is handled as follows:

First, we assume that the gradient of the original volume is computed with the aid of the

segmentation information, stored as a volume texture. This correctly estimates the surface gra-

dient of the features of interest. Further, for the boundary between two features, the normals

on either side point to the opposite direction of those of the other side. This leads to a prob-

lem in texture-based volume rendering, since trilinear interpolation of these opposite normals

would yield an incorrect zero gradient at the surface of the cut. To overcome this problem, we

estimate the gradients for segmented data so that they always point outwards from the feature

of interest on both sides of the boundary. When computing the gradient volume texture using

finite differences, we consider the values of the neighbors of a voxel as 0, if they correspond to

a different segment or an empty voxel, or as 1 if they correspond to the segment of interest. This

is equivalent to computing the gradient of the distance field of the segmented features rather

77

Tnα

T−n
M=1

M=0.5

M=0.5 M=0

(a) Original Normals

Tn*
T−n

α

M=1

M=0.5

M=0.5 M=0

(b) Normals after axis-aligned cut adjustment

Tn*
T−n

n(p’)

M=1

M=0.5

M=0.5 M=0

(c) Normals after feature-aligned cut adjustment

Figure 5.7: Normal blending for segment alignment. Black arrows indicate the normal of
the axis-aligned part of the cut, green arrows indicate the transformed normal, red arrows are
the normals orthogonal to the outer surface of the segment, and the blue arrows indicate the
corrected normal after blending.

than on the binary volume.

Finally, we invert the normals in the non-feature side of the cut following the blending

mechanism in the previous section. To define a thick area where this blending can be possible,

we assume that the mask M(p) defines a smooth scalar field. The region where we need to

invert the directions of the normals is defined by the isosurfaces M(p) = 0.5 and M(p) = 0, as

shown in Figure 5.7. After adjustment for the axis-aligned part of the cut using Eq.(5.12) , we

78

can obtain the normal as:
−→n (p′) = (1− γ)−→n ∗

T

γ =















2M(p)+1 0 < M(p) < 0.5

0 otherwise
(5.14)

Previous approaches for achieving the same results of segment alignment often use pre-segmented

datasets and two-pass rendering, where the segment of interest to be preserved is rendered first,

and then the non-feature part of the volume is manipulated and rendered afterwards. However,

this approach results in aliased boundaries, because of pre-segmentation. Although this can

be addressed with pre-smoothing and pre-processing of colormaps, our approach works on a

single pass and requires no pre-processing of the dataset or the transfer function.

5.5 GPU Implementation

In order to implement this, we extended the implementation described in the previous chapter,

to include queries about the feature mask. The mask is stored as a 3D texture. To properly

model feature alignment, the fragment shader must sample the volume at both the original and

warped positions, which decreases the performance. In addition, determining which case to

apply when computing the final warped position, as defined in Eq.(5.9), requires conditional

statements which are known for being slow in current GPU architectures. With the introduction

of new GPU architectures, with dynamic branching, our approach can be greatly accelerated.

To obtain the correct color attributes, the normals must be determined, by evaluating Eq. (4.11).

The normal of each fragment requires at most three gradient texture samples: the normal ob-

tained from the transformation (∇T), as discussed in Section 4.1, the normal of the cut (∇α),

and the normal of the feature mask, depending on the alignment. These are blended together as

shown in Eqs. (5.13) and (5.14).

The GPU memory requirements for this process are predominantly determined by the res-

olution needed to store the volumetric dataset (e.g., the head dataset requires 2563 bytes and its

gradient requires 3×2563 bytes). An additional requirement is imposed by the pre-computation

of the manipulation operators. However, these are in general very small compared to the 3D

79

volume data. When resources are scarce, normals can be computed on the fly using finite dif-

ferences, not only for the original dataset, but also for the alignment mask and the operator

itself.

5.6 Results

One of the applications of feature-aligned volume manipulation is medical and biological il-

lustrations. In Figure 5.1(b), an illustration from hand surgery is shown. Figure 5.1(a) demon-

strates a retraction operator on a CT hand mimicking the same type of cut. Figure 5.1(d) is

an image from the illustration of human anatomy by Antonio Scrantoni and Paolo Mascagni,

dated 1833 (NLM). Interestingly, this image is very similar to contemporary exhibitions such as

BodyWorlds [119] and Bodies, The Exhibition [1] which portray dissections of actual bodies.

Figure 5.1(c) shows a similar type of operation applied to the Visible Man dataset. The dataset

was first posed using [40] to position the arm upright. Five peel operators were then applied to

both arms.

Figure 5.8 shows a comparative table of applying mask-based deformations to various

datasets. In the first row, we see a peeler deformation applied to the CT head dataset, sim-

ulating the kind of illustrations used for craniotomies. Axis-aligned manipulation inevitably

deforms bone and brain tissue and results in a flat cut. Surface alignment is a good approxima-

tion of the shape of the skull, and finally, segment alignment provides the best illustration of

bone tissue. In the second row, we see a cut on a forefoot CT dataset. A similar cut is applied

to a hand dataset in the third row. Feature alignment is used to reveal bone tissue. Surface

alignment, as seen in the foot deformation, provides a fast mechanism to explore and visualize

tissue difficult to segment, such as small veins and vascular structures. Finally, the fourth row

shows a simulation of dissection of a frog dataset. Axis alignment does not allow to visualize

the internal organs of the frog. While surface alignment gives a hint of the internal organs, the

best results are obtained with segment-alignment.

In addition to illustration-like effects, the manipulation operators also improve on clipping

and slicing and generate focus+context visualizations. Now slices can be arbitrary geometries,

and there is a focus+context mechanism (peeling) for keeping the sliced portion in view. In

80

Axis Surface Segment
CTHead

Foot

Hand

Frog

Figure 5.8: Comparative Results

Figure 5.4(c) one gets to see the underside of the peel or skin.

5.7 Constrained Deformation

Another important part of feature preservation is the ability to constrain the deformation smoothly.

So far, our solution to feature preservation is to “mask” out the points that are not deformable.

81

2D Slice

3D

Original Axis-Aligned Feature-Aligned Constrained
Figure 5.9: Deformation of a knee CT Scan

This method has proven to be very useful and fast. However, there are some shortcomings.

One is the possibility of self-intersecting deformation due to the masking operation. To see

this problem, let us consider a simple deformation applied to a CT scan of a knee (Figure

5.9). Axis-aligned deformation provides a continuous transformation, but does not preserve

the rigidity of the bone structure. Feature-aligned, which can be used to model the bone tissue

as rigid, does not solve the problem either, as the other non-bone tissue is deformed through

the bone, giving an unrealistic transformation. A more plausible deformation constraints the

movement of points so that self-intersection is prevented. Here, we further exploit the mask

volume to modulate the displacement, as can be seen in Figure 5.9. In our method, we guar-

antee certain constraints by modulating the magnitude (and the direction) of the displacement

with a certain scalar value. Since prevention of self-intersection is desired, this scalar value is

usually defined as a distance transform to the feature of interest.

Depending on how we perform the modulation, we derive two different methods, as ex-

plained in the following sections.

82

Figure 5.10: Constrained Deformation of CT Head Dataset

5.7.1 Modulated Displacement

This method represents a constraint via a scalar field C : R
3 → R. This scalar field is used to

confine the displacement of a given point p within a sphere of radius C(p), and we use this

radius to modulate the displacement as follows:

p = p′ +C(p′)D(p′) (5.15)

In many occasions, we want to prevent self-intersection with a feature of interest, and therefore,

C(p′) is defined as a function of the distance transform: C(p′) = 1
max(D(p′))DT (p′), where DT (p)

is a scalar field representing the distance field to a feature of interest. This definition has two

properties:

1. Elements within the feature of interest are not deformed. This occurs since the one-sided

distance field has value C(p) = 0, and therefore the displacement is the zero vector.

2. Elements outside the feature of interest cannot be deformed through the region of interest.

This happens because a point p′ in the sampled space can only be moved within a sphere

of radius r, defined as:

r = p−p′

= C(p′)D(p′)

=
1

max(D(p′))
DT (p′)D(p′)

≤ DT (p′)

We used this method to represent collision-free deformation on the knee (Figure 5.9). Fig-

ure 5.10 shows this approach applied to the deformation of the CT head. We define a constraint

so that the bone tissue, defined by the skull and jaw bones, is undeformed. Note how the bone

remains still while the skin, cartilage and muscle tissue deforms.

83

For a constrained deformation, normals can be obtained by evaluating the Jacobian of the

constrained displacement. According to vector calculus [27], for a vector field G, defined as

the product of vector field F and a scalar field f , G = f F , we can define the jacobian JG of G

using the product of derivatives as follows:

JG = f JF +F∇ f
> (5.16)

where JF is the Jacobian of the vector field F and ∇ f is the gradient of scalar field f . Therefore,

the normal estimation for constrained deformation can be defined as:
−→n (p′) =

(

I+CJD +D∇>
C

)>

(p′)
−→n (p) (5.17)

This can be rewritten as:
−→n (p′) = (I+CJ

>
D +∇CD>)−→n (p)

= ((1−C)I+CI+CJ
>
D +∇CD>)−→n (p)

= ((1−C)I+CB+D)−→n (p) (5.18)

where B = (I+JD)> is the precomputed matrix in Eqn.(4.12), and D = ∇cD>.

One of the limitations with this approach is the assumption of linearity of the displacements

implied by the modulation process. This may cause unrealistic deformations for nonlinear

displacements, such as twisting, where decreasing the magnitude of a large twist angle does

not represent a less pronounced twisting. For this reason, we propose a different modulation

mechanism, which modulates the sample coordinates.

5.7.2 Coordinate Modulation

Some deformations, such as twisting and poking, have an interesting property: the deformation

of a given region is equivalent to the deformation of another region with a different magnitude.

For example, a twisting of 120◦ is equivalent to perform 12 times a twisting of 10◦. In the

twisting displacement, both twists are present, but in different regions of the 3D volume. Ex-

amples of these types of displacements are twists, bends, pokes, peels and retractors, among

others. One of the advantages of this approach is that it overcomes the problems of linear con-

straints on non-linear deformations, as shown in the previous section. Here, the magnitude of

a constrained displacement is not necessarily a scaling of the unconstrained displacement, and

the direction may be different.

84

The constrained displacement is then defined as:

p = p′ +D(T (p)) (5.19)

for T (p) a coordinate transformation.

To understand the nature of T , let us consider the twist displacement. A twist around the Z

axis can be defined as follows:

D(x,y,z) =













(x−0.5)cosα(z)+(y−0.5)sinα(z)− (x−0.5)

−(x−0.5)sinα(z)+(y−0.5)cosα(z)− (y−0.5)

0













α(z) = 2πz (5.20)

A twisting of σα radians is equivalent to sampling the displacement map at (x,y,σz).

Therefore, we can define the constraint transformation as:

T (x,y,z) = (x,y,DT (x,y,z)z) (5.21)

where DT (x,y,z) is the same scalar function as before, which represents the distance field to a

feature of interest.

Normal estimation is also simpler, as it can be done by concatenating the transpose of the

Jacobians:

J = I + JD(T (p))JT (p) (5.22)

For the case of the twisting constraint in Eq.(5.21), the Jacobian is defined as:

JT =













1 0 0

0 1 0
∂DT
∂x z ∂DT

∂y z DT (x,y,z)+ ∂DT
∂ z z













(5.23)

One of the advantages of this approach is that it works for cuts as well, as there is no

need for specifying additional modulation for the alpha mask. It also enables the introduction

of more complex constraints such as rigid movement of features. Let us consider the twisting

example, where the constraint is defined along the z-axis. Let us define the modulation function

DT as follows: for z ≤ 0.5, it should be defined as the distance along the z-axis. For z > 0.5 it

should behave as a rigid component, so that the displacement should be the same for all points

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Modulation Function
Figure 5.11: Constrained Deformation of Bar Dataset

in that region. For a point p in that region, we want D(T (x,y,z)) = D(T (x,y,0.5)). Therefore:

D(x,y,DT (x,y,z)z) = D(x,y,DT (x,y,0.5)0.5)

DT (x,y,z)z = 0.52

DT (x,y,z) =
0.52

z
Figure 5.11 shows a number of twisting operators applied to the bar dataset. For the first

row, the modulation is defined as the distance along the z direction, which is equivalent to

defining an anchor at one end of the bar. For the second row, we define an entire region as

rigid, as described above.

By considering more complex modulation functions, it is possible to express complex rigid-

ity constraints, such as kinematic chains of bones. This can be done by modulating several

distance transforms for the different rigid structures, in a similar way as it was proposed by

Little et al. for 2D images [71].

5.8 Chapter Summary

One of the characteristics of illustrative deformation is the preservation of certain features of

interest. In those cases, the deformation is aligned with a certain feature so that both the de-

formed part and the undeformed part provide useful information of the concept or object being

represented. In this chapter, we presented a number of mechanisms for achieving deformation

alignment, classified into two categories. The first one, called transformation-based methods,

achieve alignment by transforming the displacement space into object space so that it follows

86

a particular line, curve or surface. Examples of these methods are affine transformations, bi-

linear quadrilateral mapping and, in general, any other alignment via finite element interpo-

lation. We presented a generic mechanism for specifying the transformation and its inverse

based on the rendering pipeline presented in the previous chapter. One of the shortcomings of

these approaches is that feature alignment is obtained through an approximation of the feature

by a line, curve or surface. In most cases, perfect alignment would require a large number of

elements. As an alternative, we devised another group of methods, collectively referred to as

mask-based methods. These methods use a volumetric mask to specify the feature to be pre-

served. The deformation applied to the volume is then modified so that points in the mask are

not transformed. Depending on how the mask is defined, we derived two mask-based methods.

One, called surface alignment, is obtained by specifying the mask as a function of distance to

a surface. This has proven to be a good approximation of certain features when no segmenta-

tion information is available. The second, called segment alignment is obtained by specifying

the mask as a feature obtained through segmentation. We presented several methods for es-

timating accurately the normals in the deformed volume space and for adjusting the normals

in the vicinity of cuts. We provided a GPU-based implementation that renders feature-aligned

deformation in real-time with a quality comparable with that obtained using non-interactive

raycasting methods. We also showed how feature alignment may not be applicable for cer-

tain types of deformation, where it is more important that tissues transform in a plausible way,

without collisions or self-intersection. We defined a method for constraining the displacement

using modulation, whereby the magnitude of the displacement is controlled in such a way that

points are guaranteed to never cross the boundary of features of interest. Through a number of

examples, we have shown the interactivity and operatability of these methods.

87

Chapter 6
Evaluation

6.1 Introduction

The previous chapters presented a method for implementing volume deformation via a gener-

alized concept of 3D displacement maps. We showed how it can be used to represent complex

deformations and cuts. This chapter evaluates the rendering quality and performance of discon-

tinuous displacement maps in volumetric objects. Although rendering quality might be thought

of as a subjective measure, it is possible to characterize it in terms of desired properties, such

as smoothness, local continuity and correct shape cues provided by lighting. In turn, this can

be reduced to the analysis of several properties of the displacement map, such as resolution and

precision, and of the rendering method, such as lighting and compositing. In order to provide

high-quality rendering of images, we must increase the resolution of the displacement and Ja-

cobian maps for proper lighting, which in turn carries a performance overhead. The second part

of this chapter deals with the study of the rendering time for the different factors that influence

quality and performance.

6.2 Quantitative Evaluation of Rendering Quality

This section describes a quantitative evaluation of the rendering quality of deformed volumes.

Quality can be described in terms of the smoothness of the deformation and the smoothness

of cuts. Since the deformation is sampled as displacements, a number of factors influence the

smoothness of the rendered image, namely: (1) The displacement resolution, i.e., the spatial

discretization of the displacement volume; (2) the displacement precision, i.e., the number of

bits used for representing a displacement value; and (3) the precision of the Jacobian matrix,

which is also stored as a 3D texture.

88

83 163 323 643

Figure 6.1: Twisting operators at different displacement resolutions

6.2.1 Displacement Resolution

Since displacements are pre-computed and stored in 3D textures, there is a discretization error

that must be taken into account. In the first case, numerical errors may be due to the spatial

discretization of the displacement volume. We refer to this as the resolution of the displacement

map, and is usually expressed in terms of the size in voxels of the displacement map. The larger

the displacement map, the better the rendering quality of the deformation.

Figure 6.1 shows the result of applying a twisting operator at different resolutions, from 83

to 643, with a zoomed-in version for easy comparison. Note the dramatic difference between the

first resolution and the last two. At resolutions of 643 or higher, the difference is not noticeable.

Figure 6.2 shows the result of varying the resolution for a discontinuous peel operator. In

this case, resolutions higher than 2562 ×4 are required to obtain a smooth surface of the peel.

Note that the issue of resolution is more problematic in the case of cuts and breaks, since the

discontinuity information, i.e., the alpha map, is sampled as well. Depending on this sampling,

the thickness region necessary for proper lighting, as described in Section 3, changes, resulting

in different luminance properties in the surface of the cut.

6.2.2 Displacement Precision

Errors can also be due to the roundoff error of GPU texture storage. Contemporary GPUs

have a certain amount of bits for the representation of 3D textures. We refer to this as the

precision of the displacement map. For instance, current GPUs usually store texture values as

89

322 ×4 642 ×4 1282 ×4 2562 ×4
Figure 6.2: Peel operator at different displacement resolutions

32 bit quantities. If we store each component of the displacement map in an RGBA component,

the resulting precision is of 8 bits per component. Alternatively, the displacement map can be

stored in two separate textures, one for the XY components and another for the ZA components

of the displacement, for a precision of 16 bits. A higher precision of 32 bits can be achieved by

storing each component in its own texture.

Figure 6.3 shows the result of applying a twisting operator with 8-bit precision vs. 16-bit

precision. Note that 8-bit precision results in a jagged deformation. In general, artifacts such

as these are more distracting than those produced by low resolution but with higher precision,

as the ones shown in Figure 6.1. Figure 6.3 also shows the result of applying a peel operator at

8-bit and 16-bit precision.

6.2.3 Precision of the Jacobian Matrix

As described in the previous chapters, normal information needed for lighting of volumes is

obtained using the transpose of the Jacobian of the deformation. The Jacobian is a 3×3 matrix,

which can be stored in 3 separate textures in the RGB channels. The maximum precision here

is 10 bits per component, which can be realized using the R10G10B10A2 texture encoding.

However, very small values and very large values in the Jacobian matrix are problematic. For

90

8bit (twist) 16bit (twist) 8bit (peel) 16bit (peel)
Figure 6.3: Continuous and discontinuous operators with different displacement precision

large values, they may not be represented properly within the encoding precision and they must

be normalized. Given the Jacobian matrix B at a given point in the displacement space, the new

normalized matrix B∗ is:

B
∗ =

1
maxi, j |Bi j|

B (6.1)

For small values, this normalization may also improve the ability to properly encode the Jaco-

bian. In order to evaluate the impact of the Jacobian precision, we applied a series of deforma-

tions to our test bar dataset and compared the normals estimated by this method vs. the normals

estimated using 32-bit precision Jacobians. This 32-bit precision Jacobian was obtained on the

fly with the maximum precision available in the GPU, instead of being encoded in a 3D texture.

The deformations we applied where chosen as to represent the spectrum of Jacobian values that

we might encounter in real applications. In general, the determinant of the Jacobian at a single

point in the object represents the local volume change at that point. For inverse warping, the

following conditions hold for the Jacobian matrix B:

• if detB = 1, there is no local volume change. To represent this deformation we created a

series of twist deformations, with total twisting angle increasing from 90 to 720 degrees.

• if detB > 1, there is local contraction (Note that in traditional forward deformation, this

91

Pre-computed JacobianPre-computed Jacobian On-the-fly Jacobian
Unnormalized Normalized

Squeeze

Twist

Twist-Squeeze

Dilate

Figure 6.4: Test Volumes for analysis of the Jacobian Precision

case corresponds to local expansion, as the determinant of the inverse Jacobian is the re-

ciprocal of the determinant of the forward Jacobian). For this case, we selected a squeeze

deformation, with increasing contraction strength. We also selected a combination of the

last two, a series of twist and squeeze deformations, with increasing contraction strength.

• if detB < 1, there is local expansion. We selected a series of dilate deformations.

These test deformations are shown in Figure 6.4. Figure 6.4 also compares the resulting im-

ages obtained before and after normalization. Figure 6.5 shows the histogram of the Jacobian

determinant as a reference. Incorrect Jacobian encoding (prior to normalization) results in in-

correct normals. This can be appreciated in the changes in the shading of the objects, especially

in the specular reflections. To measure the precision error, we compared the difference be-

tween the angles of the normals estimated with Jacobians stored as 3D textures and the normals

92

 0

 0.1

 0.2

 0.3

 0.4

 0.5

−8 −6 −4 −2 0 2 4 6 8 10

Re
la

tiv
e

Fr
eq

ue
nc

y

det J

"histSqueeze2b"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

−8 −6 −4 −2 0 2 4 6 8 10

Re
la

tiv
e

Fr
eq

ue
nc

y

det J

"histTwist540"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

−8 −6 −4 −2 0 2 4 6 8 10

Re
la

tiv
e

Fr
eq

ue
nc

y

"histTwistSqueeze2b"

det J
 0

 0.1

 0.2

 0.3

 0.4

 0.5

−8 −6 −4 −2 0 2 4 6 8 10
Re

la
tiv

e
Fr

eq
ue

nc
y

det J

"histDilate1d2"

Figure 6.5: Jacobian Determinant Histogram for Test Volumes

estimated with Jacobians computed on the fly (32-bit precision). We obtained a single measure

as the mean of the difference. To understand the effect on the different types of deformations,

we plotted the normal angle error against the average of the determinants of the Jacobian for

that deformation. This is depicted in Figure 6.6. For example, squeeze deformations appear

spanning values in the determinant from 1 to approximately 6. In contrast, dilate deformations

appear with determinant values less than 1. As we can see from Figure 6.6, deformations with

local contraction are the most prone to errors due to the presence of large numbers in the Ja-

cobian. After normalization, these errors drop considerably. For deformations such as twists,

however, we also find large values in the Jacobian, although the average determinant is approx-

imately 1. For expanding deformations, however, normalization does not seem to improve the

error. Note, however, that the initial error is not large, due to the absence of large numbers in

the Jacobian. To understand this effect, note the plot in Figure 6.7, where the normal angle error

is plotted against the range of the Jacobian determinant (maxi j|detBi j|−mini j|detBi j|), instead

of the average. Note how the error increases with the range for a particular deformation. Inter-

estingly, the effect in twist-squeeze deformations increases slower than those for deformations

with contractions.

93

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 1 2 3 4 5 6

twist_squeeze
dilate

squeeze
twist

N
or

m
al

 a
ng

le
 e

rr
or

average(det J)
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 1 2 3 4 5 6

N
or

m
al

 a
ng

le
 e

rr
or

average(det J)

twist_squeeze
dilate

squeeze
twist

(a) (b)
Figure 6.6: Normal Angle Error vs. average Jacobian Determinant (a) Unnormalized Jacobian
Matrix using 10-bit precision (b) Normalized Jacobian Matrix using 10-bit precision.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60 70 80 90

N
or

m
al

 a
ng

le
 e

rr
or

range (det J)

"rangeTwists"
"rangeSqueezes"

"rangeDilates"
"rangeTwistSqueeze"

Figure 6.7: Normal Angle Error vs. Range of Jacobian Determinant

6.2.4 Transparency Adjustment

As described in Chapter 4, deformed volumes require a different sampling rate due to possi-

ble expansion or contraction of the volume. For slice-based volume renderers, where adaptive

sampling is not possible or may be computationally expensive, an alternative is to adjust the

transparency of the traversed voxels. Figure 6.8 show the effect of this adjustment in for a

squeeze deformation. Note how the unadjusted renderer results in overly transparent voxels

due to a reduced sampling. For the intensity constancy assumption, the volume is deformed

so that the intensity remains essentially the same for all pixels. Compare to the original vol-

ume. For the mass conservation assumption, the region in the middle appears more opaque,

since particles are assumed to be contracted and therefore there is a larger attenuation of light.

In contrast, Figure 6.9 shows the effect for an expanding deformation. The opposite effects

occur. No adjustment results in overly opaque regions, whereas a more physically-accurate

deformation would make them more transparent, as particles are further away from each other.

94

Original No adjustment Intensity Constancy Mass Conservation
Figure 6.8: Transparency Adjustment for Squeeze deformation

Original No adjustment Intensity Constancy Mass Conservation
Figure 6.9: Transparency Adjustment for Dilate deformation

6.2.5 Gradient Modulated Rendering Images

In volume rendering, it is common to modulate the opacity of a voxel by the magnitude of

its gradient. When deforming a volumetric object, the magnitude of the gradient may change.

Therefore, the magnitude of the gradient g′ at a sample point p′ is given by:

g′ =
∣

∣

∣
B
−→n (p)

∣

∣

∣
g (6.2)

where g is the gradient magnitude in the original dataset prior to normalization, and −→n (p) is the

undeformed normal and it is assumed to be of norm 1. Figure 6.10 shows the result of rendering

the twisted bar using gradient modulation. Compare with the image obtained by computing the

gradient on the fly.

Further, when introducing cuts, a new surface appears, which changes the gradient magni-

tude of the points in the proximity of cuts. Similarly to the normal blending equation, we blend

the gradient magnitudes near cuts:

g∗ = ωg′ +(1−ω) f (p′) (6.3)

95

(a) Jacobian (b) Sobel on the fly (SotF)

Figure 6.10: Rendering a twisted bar using gradient modulation

(a) Correct weighting (b) No weighting (c) Incorrect weighting (d) SotF

Figure 6.11: Rendering a peeled bar using gradient modulation

where ω ∈ [0,1] is a blending factor and f (p′) is the density value at point p′. If no blending

is performed, the resulting image may not appear to have a surface cut, since the gradient

magnitude might be very small or zero. Figure 6.11 shows a gradient-modulated rendering of

a peeled volumetric bar with and without blending. Note that no surface appears on the case of

no blending. Compare this to the case of obtaining the gradient magnitude on the fly. In order

to model holes or regions of low density, the blending equation requires the density value at

the sample point p′. Figure 6.11 also shows the case where the gradient is performed without

regards of the density value, which treats the cut surface as a surface of homogeneous opacity.

This may introduce occluding surfaces where there should be a hole.

6.3 Normal Estimation Validation

An important aspect introduced in this thesis is a method for estimating the normal in a de-

formed volume. One problem for validation is that no ground truth is available, as obtaining

volumetric datasets is still a costly operation. Therefore, we lack a reference model for the de-

formed state of volumetric models. Our validation procedure is then obtained by two properties

of accurate normal estimation. First, if the surface is smooth (as is the case for the test dataset),

96

and the deformation is smooth, the rendering of the deformed dataset should be smooth as well.

Second, normal information, and lighting in general, is a rendering mechanism for providing

hints of the shape of an object. Therefore, if the normals are estimated correctly, it should be

possible to estimate the shape of the object.

For the first procedure, we compared our method with others. The methods are:

Jacobian. This is our method, and follows Barr’s idea of transforming the original normal via

the inverse transpose of the Jacobian of the deformation. In the previous chapter, we extended

this idea to obtain similar transformations for inverse mapping, as shown in Eq.(4.11).

Central Differences/Sobel on the fly. This is the prevalent method in previous volume

deformation approaches. This method computes the normal on the fly, by sampling the neigh-

bors of a point and approximating the gradient via central differences. This method is known to

produce staircasing effects due to sampling. In addition, to reduce noise, it is common to apply

a smoothing operator prior to differentiation. Since this may be prohibitive for computation on

the fly, this can be done by applying central differences on a pre-smoothed dataset. The first

method without smoothing is here referred to as central differences on the fly (CotF), and the

second method as Sobel on the fly (SotF). Although being prevalent, it is very costly for volume

deformation, as there is need to perform up to 6 extra warpings.

For a deformed volume, this method performs finite differencing on the deformed samples:

−→n (p′) ≈ ∇ f ′

=













∂ f ′
∂x
∂ f ′
∂y
∂ f ′
∂ z













≈













f ′(p+δx)− f ′(p−δx)
2|δx|

f ′(p+δy)− f ′(p−δy)
2|δy|

f ′(p+δz)− f ′(p−δz)
2|δz|













=













f (TB(p+δx))− f (TB(p−δx))
2|δx|

f (TB(p+δy))− f (TB(p−δy))
2|δy|

f (TB(p+δz))− f (TB(p−δz))
2|δz|













97

where TB is the inverse displacement.

DotProduct. A third method is to approximate directly the diffuse and specular components

of a point by approximating the directional derivative in the direction of the light and the view

vector, respectively. This is the approach used by Westermann et al. [126], which computes the

diffuse intensity of a point as:

Id =
−→l ·∇ f (6.4)

=
d f
ds (6.5)

where s is a parameterization of rays in the light direction −→l , such that a point p is defined as

p = pe + s−→l . The directional derivative of f can be approximated using central differences on

the deformed volume, which requires up to 2 extra warpings.

Figure 6.12 compares these methods for a twisting deformation on our test. It can be seen

from the figure that our method provides the smoothest results. This is especially noticeable in

the first two rows, which shows an isosurface of interest (as opposed to transparent rendering in

the third and fourth rows). Note the highlight due to specular reflection. For central differences,

it presents staircasing effects.

6.3.1 Shape Estimation

One of the difficulties of validating our approach is the lack of ground truth models. Ideally,

we would have a volumetric object, say a physical bar as depicted throughout this Chapter,

made of an elastic or plastic material, and have it deformed in several ways and scanned in into

a volumetric representation. Because of the difficulty, cost and time constraints of MRI and

CT scanning, this is not a viable solution. As an alternative, we focus into one aspect of the

rendering of volumetric object, which is proper lighting. When lighting is properly simulated,

shading gives shape cues that may not be available otherwise.

For this reason, we validate the normal estimation through shape estimation. Normals can

be used to estimate the shape of an object. Therefore, accuracy in the normal estimation can

be obtained by measuring the accuracy of the shape estimation. Estimation of depth from nor-

mal information has been used for shape-from-shading. In shape-from-shading problems, the

98

Jacobian CDiff on the fly Sobel on the fly DotProduct
Figure 6.12: Comparison of lighting techniques for a continuous deformation

Jacobian CDiff on the fly Sobel on the fly DotProduct
Figure 6.13: Comparison of lighting techniques for discontinuous deformation

normal information is obtained first using images of the same object under different lighting

conditions. The shape of the object, expressed as depth values, is obtained by integrating the

normal information. In our case, since we already have the normal information, it suffices to

use Horn’s gradient integration to obtain the estimated depth values [51]. Although gradient

estimation has been recognized as an ill-posed problem, this method is suitable for our exper-

imentation since we deal with synthetically estimated normals rather than noisy data, and the

smoothness of the displacement operators is known. For our validation, we used a volumetric

cube and all our displacements are assumed to be C1 continuous.

99

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Actual Depth

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Estimated Depth

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Estimated Depth

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Actual Depth

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Estimated Depth

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Estimated Depth

Actual Depth Estimated (1000 iters) Estimated (100000 iters)
Figure 6.14: Normal validation using Gradient Integration for Poke and Wave displacements

The validation procedure is then as follows:

1. Once a deformed volume is rendered, we store the estimated normals in an image IN .

2. At the same time, we store the depth values of the deformed volume in image ID. This

image can be obtained by reading the depth buffer.

3. We perform gradient integration on image IN . The result of this process is a depth image

ÎD.

4. The error of the normal estimation is quantified as the error in the depth estimation, i.e.,

the difference
∣

∣ÎD − ID
∣

∣.

Figure 6.14 shows the estimated depth from our computed normals for a poke and a wave

deformation. Note that the depth converges to the actual depth of the deformed object, although

the rate is faster for the poke operator. This occurs as the wave operator has a higher spatial

frequency which demands for a larger resolution image.

Figure 6.15 shows the accuracy error of our normal estimation method, relative to the num-

ber of integration steps, for a number of displacements. As expected, the error decreases with

number of integration steps, as the shape obtained from gradient integration converges to the

actual shape of the deformed object.

100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 100 1000 10000 100000

Er
ro

r

Iterations

poke1
poke2
wave

retractor

Figure 6.15: Error of shape estimation relative to the actual shape obtained from a depth map

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Estimated Depth

 0
 50

 100
 150

 200
 250

 300 0
 50

 100
 150

 200
 250

 300

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

Estimated Depth (CotF)

Jacobian Central Differences
Figure 6.16: Estimated shape for two different normal estimation methods for a poke operator

This method also lets us compare the smoothness of the rendered images for different nor-

mal estimation algorithms, independently of the lighting and compositing conditions. For in-

stance, estimating the normals via central differences results in staircasing effects, which are

clearly visible from the estimated shape depicted in Figure 6.16. This comparison avoids the

need for re-computing a deformed volume with density and normal information via sampling,

which can be very large depending on the sampling requirements. However, it must be noted

that the estimated shape via gradient integration is an approximation of the real shape and error

is expected. Further, staircasing effects from central differences are expected to be smoothed

out as more integration steps are performed. This condition also can be used for validation, as

our method and central differences are expected to converge to the same surface. Experimen-

tation showed that normal estimation via the Jacobian provides smoother surfaces than central

differences, and it provides accurate normals for shape estimation.

101

Displacement Resolution Size in KB
Peel 128×128×1 320
Slicing 128×128×1 320
Extrusion 32×32×32 640
Split 64×64×64 5120

Table 6.1: Size in voxels of the displacement textures and texture memory requirement in total

6.4 Performance Evaluation

6.4.1 Memory Requirements

One aspect that affects the performance is the texture memory size and bandwidth. Volumetric

displacement mapping requires the storage of the x,y,z components of the displacement. Al-

though they can be stored in a single texture using 8 bits for each component, this precision

is usually low for a smooth deformation, and results in visible jagged lines. In these cases, a

16-bit displacement can be used which would require at least two 3D textures. The first tex-

ture DISPXY stores the x and y components of the displacement as the luminance and alpha

components, while the second texture DISPZA stores the z component and the α value (for

discontinuities). This requirement does not pose a scalability problem in practice, since the

use of general displacement maps allows the creation of complex cuts and deformations with

relatively small 3D textures. Table 6.1 shows the size of the displacement textures used in

this thesis, and the total amount of texture memory required, which includes the storage of

pre-computed Jacobians. Note that they are well within the limits of current GPU technology.

6.4.2 Rendering Speed

A number of factors affect the rendering speed of our approach. Our rendering speed can be

quantified depending on the number of texture lookups that must be performed and the relative

complexity of the procedures that must be performed per pixel during the volume rendering

stage. We obtained the results on a Pentium XEON 2.8 Ghz PC with 4096 MB RAM, equipped

with a Quadro FX 4400 (512MB), with a viewport of size 512× 512. We used a sampling

distance of 1 for the rendering of the volumes, meaning that at least one sample per voxel was

used for rendering.

Relative Size of Image. Volume rendering performance is primarily pixel-bound, the

102

relative size of the effective image with respect to the screen image is a considerable factor

of performance. Although this is applicable for all rendering systems, it gives insight on how

performance is degraded for a complex pixel shaders as ours, where deformation is computed.

We use the bar dataset of size 1283 voxels. To obtained the results, we disabled the lighting of

the volume. Figure 6.17 plots the zoom level of the image vs. rendering time in milliseconds

for two different displacements. Note how the performance improves exponentially with the

zoom level.

 0

 50

 100

 150

 200

 100 1000

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

Twist
Peel

Figure 6.17: Plot of rendering performance (msec.) for relative size of image, in terms of zoom
level (the larger the zoom level, the smaller the image)

Resolution of the displacement map. Since the resolution does not change the number of

texture lookups, this usually does not affect the rendering speed. However, as the size increases,

texture memory begins to fill quickly and a penalty due to texture memory swap may occur in

some cases. A displacement map needs to be stored using two 32-bit textures when using 16-

precision, as described earlier. This requires a total memory of MEMdisplacement = 8n Bytes,

where n is the size of the displacement map in voxels. In addition, storing the jacobian of the

displacement requires a total size of MEM jacobian = 16n Bytes. In total, the requires texture

memory is MEMtotal = 24n. This can be appreciated in Figure 6.18. Note how the rendering

time is constant for most of the cases, except for the case of a 2563 displacement, which requires

a total memory of 384MB.

Precision of the displacement map. For 8-bit displacements, deformation can be achieved

with a single texture lookup, while 16-bit displacements require two. This introduces a perfor-

mance penalty, as can be seen in Figure 6.19. Due to texture capabilities of new graphics cards,

the overhead time is becoming smaller. This is essential, as 8-bit displacements were shown to

103

 0

 20

 40

 60

 80

 100

2563128364332316383

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Size

 0

 20

 40

 60

 80

 100

2562x41282x4642x4322x4162x482x4

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Size

Twist Peel
Figure 6.18: Resolution vs. Rendering Time for two displacements. Resolution is given in
terms of size of displacement maps in voxels

be unacceptable for rendering of volume deformations. We can also see the effect of increased

texture memory for the case of a twist of size 2563. Because 8-bit rendering requires half the

texture memory, the penalty of increasing the precision to 16-bit is noticeable.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

8-bit
16-bit

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

8-bit
16-bit

Twist (643) Twist (2563)
Figure 6.19: Precision vs. Rendering Time for two displacements.

Lighting Computation. Lighting computation is an essential part of our framework. As

described before, several methods have been proposed earlier, most of which require the on-

the-fly computation of normals using finite differences. Since this computation requires the

deformation of each point’s neighbors, this can be computationally expensive, as it requires

more texture lookups. The number of texture lookups can be reduced by approximating directly

the diffuse component, as proposed by Westermann and Rezk-Salama [126]. In addition, it may

be beneficial to compute the Jacobian of the displacement on the fly. The number of texture

lookups required for each case are described in table 6.2, assuming 16-bit displacements. The

104

relative penalty for the extra texture lookups is basically confirmed by the results shown in

Figure 6.20. It can be seen from table 6.2 that approximating the diffuse component is a viable

Method Texture Lookups Num. Texture Lookups Overhead Factor
Unlit (base case) 1 (value) + 2 (deformation) 3 1

Jacobian 3 (base) + 4 (jacobian) + 1 (gradient) 8 2.67
Jacobian on the fly 3 (base) + 6 (neighbors) + 1 (gradient) 10 3.34
Central Differences 3 (base) + 6 × 3 (neighbors, each value and displacement) 21 7
Diffuse Component 3 (base) + 2 × 3 (neighbors, each value and displacement) 9 3

Table 6.2: Number of texture lookups for different lighting methods

alternative for lighting, in terms of performance. However, this approach does not yield the

same results in terms of quality, as can be appreciated in Figure 6.12.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

Jacobian
Jacobian on-the-fly
Central Differences

Diffuse Approx.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

Jacobian
Jacobian on-the-fly
Central Differences

Diffuse Approx.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

Jacobian
Jacobian on-the-fly
Central Differences

Diffuse Approx.

Twist (643) Peel (642 ×2) Twist (2563)
Figure 6.20: Lighting Method vs. Rendering Time for three displacements.

Transparency Adjustment. As described in the previous Chapter, deformation of volumes

implies a change in the sampling rate, which can be appreciated in the transparency of voxels

when using semi-transparent volumes. In order to account for homogeneity in the sampling

rate, we must adjust the transparency of voxels. This in turn, implies a change using the Ja-

cobian matrix. Figure 6.21 shows the performance cost of adding transparency adjustment. It

can be seen that performance is not considerably degraded, which can be explained due to the

nature of this process, which does not require extra texture lookups, but merely a matrix-vector

multiplication and a reciprocal square root computation. In order to measure this factor, we

enabled lighting of the volume, using the Jacobian method, since this requires the Jacobian

matrix.

Feature Alignment. We simulated a number of deformations applied to different datasets for

the different types of alignments described in Chapter 5. Table 8.1 shows the results obtained

with our test datasets for the different alignment cases.

105

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

No Adjustment
Adjustment

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Frame

No Adjustment
Adjustment

Squeeze Dilate
Figure 6.21: Transparency Adjustment vs. Rendering Time for two displacements.

Alignment Dataset Resolution fps
Axis foot 143×256×183 20.44

stag beetle 208×208×123 9.24
visible human 2mm 256×189×436 6.27
cthead 256×256×256 5.06

Surface foot 143×256×183 18.31
stag beetle 208×208×123 7.32
orange 256×256×256 6.11
cthead 256×256×256 3.93

Segment foot 143×256×183 17.95
hand 255×250×155 5.54
frog 250×235×68 8.08

Table 6.3: Performance results for different volume datasets, with d = 1.0 for the distance
between view aligned slices of the volume

6.5 Chapter Summary

In this chapter, we have evaluated our deformation approach from a quantitative perspective.

The evaluation is two-fold. On one hand, we studied the rendering quality in terms of different

properties of the displacement and Jacobian maps, such as encoding precision and resolution,

and of the rendering process itself, such as transparency adjustment, gradient modulation and

the different lighting estimation methods. These properties in turn, reflect higher level proper-

ties of the deformation, such as smoothness and local continuity. On the other hand, we studied

the performance cost of interactive deformation, in terms of the different factors. One of the

conclusions we have obtained from this study is that the use of the Jacobian provides the highest

rendering quality of the other methods. In order to avoid resolution problems, the Jacobian can

be computed on the fly without a considerable degradation of performance, at least compared

106

to the prevalent alternative, which uses finite differences for estimating the normals. Displace-

ment maps need at least a precision of 16-bit to provide smooth deformations. Although 8-bit

precision is inaccurate, contemporary cards include certain texture modes that emulate 32-bit

precision from lower resolution textures. This, in effect, removes the ragged edges that ap-

pear when using 8-bit. It does not improve resolution, though. The use of deformation also

implies certain adjustments when dealing with semi-transparent volumes. One of them is the

transparency adjustment due to the irregular sampling imposed by deformation. Another is the

incorporation of gradient modulation. For the case of cuts and breaks, gradient modulation is

intended to highlight the most salient isosurfaces of a volume. Because of the presence of cuts,

new isosurfaces appear and therefore must be adjusted. This chapter provides a benchmark for

future volume deformation methods.

Part II

Surface Deformation

107

108

Chapter 7
Complex Deformations and Cuts without Re-
meshing

7.1 Introduction

In the previous chapters, we showed how complex deformations and cuts can be achieved for

volumetric objects. Volumetric objects are commonly obtained from computed tomography

(CT) or magnetic resonance imaging (MRI). In other cases, volumetric objects are the result

of static or time-variant simulations. In all these cases, the object representation is a sampled

volume. For the purposes of illustration, however, it has been very common to use polygonal

surfaces rather than volumes to obtain high-quality renderings. In some cases, surfaces are pre-

ferred because of low memory consumption and ease of implementation. Surface rendering are

not prone to aliasing effects inherent in the rendering of sampled representations. One of the

shortcomings of surface representations is that a mesh topology needs to be defined explicitly.

When adding large deformations or cuts, this requires a re-tessellation or re-meshing to create a

finer resolution mesh [3]. Re-tessellation can be an expensive process and as the meshes grow,

interactivity may be affected. Furthermore, cuts and other types of discontinuous deformation

(where the mesh must be “broken”) must always be re-tessellated as the cut is rarely along

existing edges in the mesh. In this chapter, we extend our approach for illustrative deforma-

tion of volumetric objects to polygonal surfaces, which will enable us to produce high-quality

deformations including cuts and twists without the need to re-tessellate a mesh. Example defor-

mations are shown in Figure 7.10. The methodology works even for low resolution polygonal

models. It can also produce complex deformations in real-time so that deformations can be

interactively explored.

The key to our approach is to treat the areas of the object undergoing deformation as vol-

umetric objects. Several representations have been proposed for the sampling of polygonal

109

surfaces into sampled structures, which we collectively called layered representations. Lay-

ered representations of objects have been used in the graphics community for various pur-

poses, such as image-based rendering, displacement mapping, and multi-resolution rendering.

e.g.,[102, 57, 10, 131]. A layered representation of an object is an implicit representation that

describes a geometry as a set of numeric values along one or several layers, which are usually

axis-oriented, such as depth maps, displacement maps and 3D signed distance fields. Here we

make the tacit assumption that these are sampled representations, as opposed to the so-called

multi-layer representations, which refer to the use of multiple nested surfaces to represent log-

ical layers of an object, such as skin, muscle and bone. Complex deformations have not been

fully explored with these representations. Some of the issues that arise include memory require-

ments, remeshing, aliasing and interactivity. Because surface models are explicit, rather than

sampled representations, our approach needs to seamlessly integrate both representations. We

achieved this with a hybrid rendering algorithm. At the core of this algorithm is a ray-casting

rendering process that finds intersections of view rays with an object. This is different from the

rendering algorithm used in the previous chapters for volume rendering, where a 3D dataset

is sampled and composited at regular intervals. Deformation is applied in a similar manner

through an inverse rendering process. As described in the previous chapters, interactivity is

obtained by decoupling deformation from the layered representation.

This chapter further extends the idea of Illustrative Deformation, with (1) a unified method

for handling continuous and discontinuous deformations, including complex deformations with-

out the need for re-meshing, (2) a novel method for representing an object using a composite

layered representation and a hybrid rendering algorithm which seamlessly integrates the var-

ious representations, and (3) a novel method for encoding cuts in a displacement vector field

which preserves C1 continuity of the deformation field and which allows rendering of sharp

cuts free of aliasing artifacts.

7.2 Related Work

Sample Layered Representations (SLR) were introduced in Chapter 2 as implicit representa-

tions of surfaces, obtained by sampling the closest distance to the object in a 2D or 3D grid.

110

(a) Depth Map (b) Depth Map Cube (c) 3D Distance Field (d)Surface Mesh
Figure 7.1: Comparison of Sampled Layered Representations of the Armadillo model.

2D SLRs can be depth or height maps, which sample the closest distance to the object along

a particular direction. One of the limitations of this representation is the inability to represent

portions of a surface that are not visible from a point of view, as seen in Figure 7.1(a). A combi-

nation of depthmaps along the faces of a cube can be used to model the other main orientations

of a surface model, as shown in Figure 7.1(b). However, concavities which are not visible from

any of the faces of the cube cannot be represented. The most complete representation would be

a 3D distance field, which samples the distance along a 3D grid. An example is shown in Fig-

ure 7.1(c). Compare with the rendering obtained with an explicit representation of the surface

model, in Figure 7.1(d).

Deformation of layered structures. Traditional displacement mapping can be thought of as

a local deformation of a base surface, which is usually defined as an inverse mapping problem

from an object space, or “shell” space [91] to the displacement space. This mapping is done

by sampling the space obtained by extruding prisms from each surface triangle. Rendering

of complex large deformations poses additional challenges. Traditional displacement maps

define displacement as an independent geometry, but, for general deformations, displacements

are used to represent a change in the surface. Extrusion of triangles may not be sufficient,

as a given surface primitive may undergo large deformations beyond the space defined by an

extruded prism. Instead, it is easier to define arbitrary regions in 3D space where a layered

111

representation is sampled. Deformation of layered structures has been suggested before. Botsch

and Kobbelt [10] suggest the use of “displacement volumes” to deform complex surfaces by

first deforming a smooth version and then adding the detail as a normal displacement of the base

surface. Smith et al. propose the use of displacement for animation of 3D models [106]. Elber

[35] extends the idea of depth maps to model geometric deformations. Chen et al. propose

an inverse approach for deforming light fields [17], in a similar way to the deformation of

displacement-based representations.

The above, however, are designed to handle small continuous deformations. Our approach

handles both large continuous and discontinuous deformation. We achieve this by encoding

deformation as a displacement vector field and using an extra dimension for encoding conti-

nuity information. The idea of using vector fields for displacement was used by von Funck et

al. [118] for the modeling of continuous deformation. One of the strengths of vector fields as

deformation metaphors, as opposed to procedurally defined models or sketch based deforma-

tion, is the ability to store them as generic templates which can be combined algebraically to

obtain more complex deformations and applied to different models. Furthermore, this can be

efficiently implemented in current GPUs as textures. To the best of our knowledge, this is the

first interactive method that combines cuts and breaks with other continuous deformations such

as twists and bends using a single methodology and without remeshing.

7.3 Overview

Our approach works by integrating deformation into the rendering pipeline. First, a composite

representation of an object is created. Let us define a 2D manifold S as the surface of a model

and SD a subset of this manifold where deformation is to take place. SD is represented using

a layered representation. Let S′
D be the desired deformed surface and B(S′

D) be the bounding

box of this new surface . A picture of a composite representation of an apple model is shown

in Figure 7.2. A first stage of the rendering process is to render the surface S−SD. This is done

by discarding points of S that are within B(S′
D), which can be implemented in fragment shaders

using depth interval culling.

After rendering S− SD, we need to render the surface S′
D. For a continuous deformation

112

0

0

0

viewing rays

S

S

Bounding Box B(S ’)

S’

Figure 7.2: Composite Representation of an apple model. S, the original surface is rendered
as a mesh. The bounding box B(S′

D) is rendered as a layered representation. The resulting
rendering appears to the right.

(without cuts), we do not explicitly compute the deformed surface, but we model it as a dis-

placement vector field of the undeformed surface SD. Rendering of this new surface is done by

propagating rays through B(S′
D) and deforming them by the vector field. The deformed ray is

used to find the intersection point in the undeformed surface (Figure 7.3). This is an inverse

problem similar to image warping, deformation of light fields [17] and ray deflectors [63, 20].

This process is summarized as follows:

1. A deformation field D(p) is defined on the fly or re-used from a collection of deforma-

tions.

2. A composite representation of a portion SD of the surface is created (L(SD)). It could be

a single depth map, a collection of oriented depth maps or a signed distance field.

3. The mesh S−SD is rendered (using a traditional renderer).

4. The deformation region is rendered, via ray casting on the geometry B(S′
D). Each ray is

“warped” into the layered representation to find surface intersections and their normals.

Section 4 describes in detail the process of rendering of a deformed layered representation, that

is, finding the intersection with a deformed surface and estimating the normals. One important

contribution of our work is a method for the rendering of cuts and breaks of layered structures.

Unlike previous displacement approaches, where holes are pre-computed into the definition of

a meso-structure, we apply the cuts interactively to an otherwise continuous representation of

the object.

113

7.4 Rendering and Deformation of Layered Representations

A layered representation is an implicit representation of an object. Rendering of such a repre-

sentation is performed by tracing rays along the layered region and finding its zero-crossings.

Since the 3D texture representation of a signed distance field is the one with the most complete

information about an object from our spectrum of representations, we will assume that we have

such a representation and operations and queries, such as ray traversal and estimation of nor-

mals, are based on such a definition. Section 7.6.2 will describe how these operations can be

applied to smaller representations.

Let L be a layered representation defined as a signed distance field of a surface, SD, in R3

sampled in a 3D grid. Each point in this grid contains the distance to the closest point on SD.

In addition, the sign of L(p) is used to denote whether a point is in the interior or the exterior

of the object. As a convention, we define L(p) < 0 for a point outside the object and L(p) > 0

for a point inside. L can be created in real-time for small sized regions using the algorithm by

[103], where a banded distance field is used. Once the representation is obtained, finding the

surface is equivalent to finding the zero-set L(p) = 0.

Let us define a continuous deformation as a bijective transformation TF : R3 7→ R3, such

that a point p is deformed into p′ = Tf (p), and its inverse transformation T−1
F , such that p =

T−1
F (p′). Here, we assume that the inverse transformation is defined as a displacement: p =

p′ + D(p′). The relation between p and p′ is shown in Figure 7.3. The use of displacements

has been explored widely and has a number of advantages which are exploited in our approach,

namely: (1) are simpler to understand and operate than other deformations, (2) the inverse

transformation can be obtained from forward transformations as a negative displacement, and

(3) most physically-based methods have displacements as outputs.

Let us define L′ as the signed distance field of the deformed surface S′
D in R3. The deformed

surface corresponds to those points p′ in the zero-set L′(p′) = 0, which can be defined as the

zero-set of the undeformed surface in a transformed coordinate system defined by T −1
F . That

is, the deformed surface is the zero-set:

L′(p′) = L
(

T−1
F (p′)

)

= L(p′ +D(p′)) = 0 (7.1)

114

x’

S’0 S0

x=x’+D(x’)

D(x’)

Figure 7.3: Finding an intersection of a deformed layered representation. A ray in the deformed
space S′D is transformed by a displacement field D(p). The transformed ray maps into a curve
in the undeformed space SD and yields an intersection.

For clarity, in the reminder of this chapter, we use p in place of p′.

7.4.1 Finding the Deformed Surface

The deformed surface is found by traversing rays along the region being deformed. Given a

ray direction −→v and an initial position p, a given point along the ray is touching the surface if:

L(t) = L(p+ t−→v +D(p+ t−→v)) = 0 for a given parameter t along the ray. The general mecha-

nism is depicted in Figure 7.3. The simplest way of finding an intersection is by sampling the

parameter t linearly, and finding the point where a sign change in L′(t) occurs. However, this

has been shown to be prone to aliasing effects. As an alternative, most displacement methods

use a combination of linear and binary search to narrow down to the correct intersection. Al-

though this does not solve the problem in the general case, there are alternatives which produce

close to exact solutions based on distance fields [33] or image pyramids [86]. These solutions

may not suffice for extreme deformations. We present a general solution to this problem in

Section 7.5.2.

7.4.2 Estimation of Normals

After finding the intersection point, it is necessary to find the normal to the surface at that point.

Since it is a layered representation, the normal to the surface is determined by the gradient of

L. For speed up, this can be obtained before deformation and stored as a texture. This has been

widely used for depth maps, and can be extended to any of the representations in our spectrum.

For a deformed surface, the new normal can be found by multiplying the original normal by the

115

inverse transpose of the Jacobian of the forward transformation function TF [6]. From vector

calculus, we have that for an inverse transformation, J−>
T (p) = J>T−1(T (p)) [27]. Therefore,

the new normal can be found using the transpose of the Jacobian of the inverse transformation.

For an inverse displacement, the Jacobian is defined as JT−1(p) = I +JD(p), where JD(p) is the

Jacobian of the displacement and I is the identity matrix. Therefore, normals can be obtained

as:
−→n ′(p) = normalize((I + JD(p))>−→n (p+D(p))) (7.2)

where −→n ′(p) is the normal to the deformed surface at point p and −→n (p) is the normal to the

undeformed surface at point p. This applies only for continuous deformation. For a discontin-

uous deformation, such as a cut, a new surface may be created and normals are not a simple

transformation of the surface before the cut (Section 4.4.2).

7.4.3 Definition of Cuts

Deformation is performed in the inverse space, therefore, cuts may be difficult to model, since

they imply that the transformation T is not invertible. Modeling discontinuities as special dis-

placement values is problematic. The cut would have to be defined as a displacement value

which maps to nothing, but it would lead to singularities in the displacement field. These sin-

gularities would be seen as artifacts near the edges of cuts (due to tri-linear interpolation of

displacement values). Difficulties arise when computing the normals, since the displacement

field would not be differentiable. As an alternative, we add a new dimension to the displace-

ment field. We define a cut implicitly as a signed distance function, in a similar fashion to

the definition of the layered structure of the surface. Because this signed distance function is

defined for all points in a given sample space, we must define the displacement in those points

as well, so that the displacement function D has at least C1 continuity.

Let us define A as the implicit representation of the cut. A given point p in space is said to

be “cut” if A(p) > 0. The border of the empty space is a set of surfaces defined as {p|A(p) = 0}.

Depending on whether the object is modeled as a solid or a thin surface, these surfaces may or

may be not visible. In practice, this field A can be represented along with the displacement into

a single structure. For a continuous deformation, A is not necessary.

116

7.4.4 Rendering of Cuts

Cuts on a polygonal object generally imply that the interior of the object will be visible. The

interior could be part of SD or part of S− SD. S− SD will be rendered in step 2 of the process

(Section 3). Note that with B(S′
D) removed, the back faces of the object are rendered. Then, the

layered representation is rendered creating the front cut surface. If the layered representation

does not extend to the back of the object, the object would be seen as hollow, as shown in

Figure 7.5(a). In this case, no intersection with the ray is found, and an empty region results.

There is another case, where the layered representation encompasses a portion of the interior of

the object (that is visible). For a hollow object, this can be obtained by ray intersection with the

layered representation, as described in Section 4.4.1. However, we may want to model other

types of objects, such as solids or partial solids which contain a thick shell. In these cases parts

of the cut become the interior surface. Below we explain how to handle these different types of

surfaces.

Rendering of Hollow Surfaces

For hollow surfaces, rays along the deformed region only intersect the original object, as long

as they are outside of the region defined by the cut, i.e., the deformed surfaces are defined by

the set of points {p|L(p + D(p)) = 0∧A(p) < 0}. A naive approach to obtaining the inter-

sections in the presence of a cut would be to compute the combined implicit representation of

the deformed space as L′(p)−A(p) = L(p + D(p))−A(p), and find the zero-crossings of this

new representation. However, cuts are generally sharp, and chances of skipping the intersection

increase considerably, which results in jagged boundaries. As an alternative, we exploit the fact

that both surfaces are represented in disjoint structures and we compute intersections on each

of them separately. The ray casting algorithm traverses the space looking for zero crossings

of the continuous representation L′(p). Once an intersection p is found, it is checked whether

it belongs to the interior of the cut. If A(p) > 0 then the point is discarded as a surface in-

tersection and the search proceeds. This is shown in Figure 7.4(a). The intersections 1 and 3

are discarded and only 2 and 4 are used for rendering. Note that these intersections are on the

interior or underside of the model. We can use the normals to render the interior in a different

117

1
2

4

3

(a) Thin object

1
2

3
4

5

6

(b) Solid object

Figure 7.4: Diagram for Ray intersection of cut surface. (a) For a hollow object, we compute
intersections with the object representation L(p), discarding those inside the cut region (points
1 and 3), and stopping whenever it is outside the cut region (points 2 and 4). (b) For a solid
object, we keep track of intersections with the cut region and the object. In this case, points 2
and 5 are selected and rendered.

color.

Rendering of solid objects

For rendering solid objects, we must compute the intersection with both the object and the

cut geometry. This is equivalent to finding the intersection with the combined representation

L′(p)−A(p). As described above, directly evaluating this expression may lead to artifacts. A

similar algorithm is used, except that when an intersection with the object is discarded (because

it is within the volume of the cut), it may be possible that it still intersects the cut geometry, in

which case this needs to be computed. For this, we classify the intersection as INOUT if the

ray went from the interior of an object to the exterior, and as OUTIN otherwise. This classifi-

cation is obtained depending on the slope in the change of L(p) or A(p). The ray traversal is

modified to compute two intersections: pL, the intersection with L(p) = 0 and pA, the intersec-

tion with A(p) = 0. If only one of these is an OUTIN intersection, the algorithm returns the

corresponding point. If both intersections are OUTIN, the algorithm returns the closest of the

two. If none of them are, the algorithm continues in the search of intersection. This is depicted

in Figure 7.4(b). Only intersections 2 and 5 are rendered. Intersections with the cut surface

have a different normal, which is obtained directly from the gradient of A(p).

118

Rendering of thick objects

A combination of the above is the case where we have hollow objects with a “thick skin”. In

this case, there are regions where intersections with the cut are needed (the thick part of the

outer shell of the object), and other regions where these are ignored . Remarkably, this can be

obtained by modifying the surface representation and following the algorithm for solid objects.

Let us define τ > 1 as the thickness of the hollow object. Then, the new surface representation

is:

L̂(p) =















τ −L(p) L(p) > τ
2

L(p) otherwise
(7.3)

The different rendering of cuts can be seen in Figure 7.5.

(a) Hollow (b) Thick Hollow (c) Solid

Figure 7.5: Hollow, Thick and Solid Apple

7.4.5 Seamless Integration

The final step in our rendering process is to blend the composite representations in a seamless

manner. In order to do this, we allow some overlapping in the boundaries of S− SD, and the

result from both rendering stages are alpha blended. As a condition, the deformation field D(p)

should also be blended to zero in this overlapping region to create a smooth border.

7.5 Defining Displacement Fields

Displacement fields can be defined procedurally, or they can be pre-defined as 2D or 3D dis-

placement maps. Displacements here are obtained by sampling an inverse procedural definition

119

of a deformation. For example, twisting and bending can be computed by sampling the inverse

transformation, as defined in [6]. Displacements can be collected and stored as textures. One of

the advantages of the defining displacements this way is that the same “deformation metaphor”

(i.e., texture) can be used for many different objects. The accompanying video shows a number

of deformations applied to a number of objects. It also enables us to create complex defor-

mations by combining simpler ones. Minimization can be used to obtain volume conserving

deformations. By designing these generic templates, local self-intersection can be guaranteed

as well, in a similar way as defined by Botsch and Kobbelt [10]. Global self-intersection, how-

ever, depends on the placement of the displacement fields within the object. Here, we do not

address these problems, but rather describe a method for adapting the deformation to certain

geometry.

7.5.1 Complex Cut Geometry

When computing cuts, the field A is usually specified along with the displacement field D. This

is useful for creating simple generic cut tools which can be defined by a procedure, or sampled

with very low resolutions. They can be defined procedurally, as the ripple pattern shown in

Figure 7.6, where a pattern is added to the cut, as in Figure 7.6(a) or to the cut surface as in

(b). One of the strengths of this method is that the implicit definition of cuts and deformations

allows us to use other surfaces as the outline for the cut. They can be obtained in turn as a

layered representation of another surface. The result would be a deformation or cut that follows

the contour of a surface of arbitrary complexity. As an example, Figure 7.7 shows a Turbine

Blade model used as a cutting tool applied to the Bunny model. To model a deformation while

cutting, for instance, we can displace points along the gradient of the implicit representation

of the cut object. This is done by first defining a displacement which maps points in the outer

layers of an object, in an interval [0,ω1] to another interval [ω0,ω1]. That is, the displacement

is obtained by applying:

D(p) =

(

ω0 +
LC(p)

ω1
(ω1 −ω0)

)

∇C(p) (7.4)

120

where LC(p) is the layered representation of the cut geometry, and ∇C(p) its gradient. The cut

information is defined as A(p) = −DC(p). Cracks can be simulated in the model, as can be

seen in Figure 7.7, by allowing discontinuities in the gradient field. Other materials can also be

simulated by modifying the behavior of the gradient field.

(a) Cut with a complex geometry (b) Deformed surface with a complex geometry

Figure 7.6: Complex Cut Geometries. (a-b) Ripple cuts on the bunny model

(a) Transparent Turbine Blade (b) Zoom of the cut (c) Zoom of the view without Tur-
bine Blade

Figure 7.7: Turbine Model (10,778 polygons) used as a cutting tool on the Bunny model
(72,027 polygons)

7.5.2 Adaptive Sampling

One of the challenges with the rendering of implicit surfaces is accurately finding the first

intersection with the surface. With linear search, regions of high spatial frequency might be

121

skipped, resulting in artifacts near edges. A number of solutions have been proposed. Previ-

ous approaches aiming toward ray tracing require “guaranteed” intersection-finding algorithms,

based on Lipschitz constants. Hadwiger et al. use adaptive sampling based on a user-controlled

threshold [46]. In our paper, we are interested in the cases where adaptive sampling is needed

in the case of deformation. For this purpose, and without loss of generality, we assume that

the original undeformed surface can be rendered robustly using one of the above techniques.

With deformation, additional conditions must be met so that the deformed surface is rendered

properly. For instance, a long narrow pull or a large twisting, may increase the required sam-

pling of the deformed surface. Let us define a ray in deformed space p0 + tv, where v is the

view direction and p0 is the ray entry point. This ray corresponds to a 3D curve R(s) in un-

deformed space. We can consider s = T−1(t), for an inverse transformation T−1, such that

R(s) = T−1(p0 + tv). To avoid missing intersections in the case of a sharp or large deforma-

tions, we ensure that samples in the deformed space correspond to uniform samples along the

curve in the undeformed space. Taking the derivative of s with respect to t yields:

ds
dt = |JT−1v|

where JT−1 is the Jacobian of the transformation T−1
F . Since T−1

F is a displacement, JT−1 =

I + JD, where I is the identity matrix and JD is the Jacobian of the displacement field. Then,

assuming a constant sampling distance δ s, an adaptive sampling (which we call Jacobian sam-

pling) is obtained as:

δ ti =
1

|(I+JD(t))v|δ s (7.5)

and points along the ray direction can be found as pi+1 = pi +δ tiv. Fig.(7.8) shows an example

of a narrow pull on the golf ball model, with different sampling methods. Because adaptive

sampling can be costly, we allow the programmer to define whether to use a threshold-based

sampling as in [46], Jacobian sampling or no adaptive sampling at all.

122

(a) (b)

(c) (d)
Figure 7.8: (a) Narrow Pull over golf ball model (245K triangles). (b) Linear search with
binary refinement results in missed intersections (c) Adaptive sampling based on threshold
(thresh=0.04) cannot resolve all misses (d) Jacobian sampling finds the intersections properly.

7.6 Implementation Details

In our GPU-based implementation, we store layered representations as displacement maps,

which can be 1D, 2D or 3D maps. Similarly, we define displacement fields as textures. We

exploit the programmability of fragment shaders for our hybrid rendering pipeline. First, com-

puting the surface S−SD can be done efficiently using render-to-texture capabilities. The entry

and exit depth values of the geometry B(S′
D) are obtained from the depth buffer, and used on

the triangle mesh renderer to cull away fragments in that interval. Ray intersection is obtained

by rendering B(S′D), assigning ray entry points as texture coordinates. Each fragment is used

to trace rays along the bounding geometry and performing the necessary computations as de-

scribed in the previous sections. For ray intersection, a linear search is first used to narrow the

interval and followed by binary search. For cuts, this procedure needs to be repeated at possible

123

intersections along the interior. Because of current GPU iteration limitation (in terms of speed),

A can be encoded explicitly, to skip the iterations in the interior of the cut.

7.6.1 Interactive Exploration of Deformation

We can explore the deformation interactively using two mechanisms. One mechanism is to

translate or scale the displacement field within a given deformable region B(S′
D). This has been

used to interactively peel the face in Figure 7.9. For these deformations, it is not necessary to re-

compute the displacement field, but instead, we apply a global transformation to it. This global

transformation acts as a mapping from the object space to a translated, rotated or scaled dis-

placement space. Given a space transformation M : R3 7→ R3 from the displacement space to the

layered representation space, Eq.(7.1) can be generalized to L′(p) = L(p+M(D(M−1(p))) = 0.

An example is shown in Figure 7.9. Another mechanism is to interactively move the deforma-

tion around the object. This method effectively transforms the bounding geometry along the

deformation. Note that for this case, SD changes, and we must obtain a new layered represen-

tation of L(SD).

Figure 7.9: Interactive Exploration of a peel deformation. By translating the displacement
space (blue box) in relation to the layered representation (wireframe box), an effect of peeling
is obtained.

7.6.2 Memory Efficiency

As described above, there are certain representations which are more memory efficient than

others. Furthermore, some representations are easier to obtain. For instance, depth maps can

be obtained in real-time exploiting the ability of contemporary GPUs to render depth images

into textures. In our case, only a small part of the object needs to be converted. It also has been

shown that signed distance fields of complex objects can be obtained at interactive rates [103,

124

110]. Depending on the type of deformation and the region of an object where it is applied, one

may choose different types of representations. Here we show how different representations can

be defined in relation to a complete signed distance field.

A depth or height map, is a 2D mapping function H : R2 7→ R, which contains depth values

to the closest point in the surface along a given vector −→n , normal to the plane where the depth

map is defined. That plane is assumed to pass through a given point in space p0. The implicit

representation L can be defined as the depth of the projection of the point into the plane:

L(p) = H(px)−d(p) (7.6)

where d(p) = |−→n ·−→p0p|/|−→p0p| is the closest distance of p to the plane, and px is the projection of

the point into the plane, defined in 2D coordinates local to that plane. It is usually represented

as a 2×3 projection matrix, i.e., px = Pp.

For a depth map cube, the surface representation can be obtained as a combination of each

of the representations obtained from each depth map, according to equation Eq.(7.6). Curless

and Levoy [26] showed a mechanism for combining depth maps into a single representation.

For the purpose of rendering, a simpler function would suffice. Given two representations L1

and L2, a new representation L can be found as:

L(p) = ρ ·min(|L1(p)|, |L2(p)|) (7.7)

where the sign ρ is 1 only for the cases where L1(p) and L2(p) are positive, i.e., when the

point is in the inside of both representations, and −1, otherwise. For a depth map cube, the

3D representation is obtained by combining the depth maps from each face. A more general

representation is displaced subdivision surfaces, where a number of depth maps are used to

describe a complex object. The ability to compose layered representations for a single object

enables us to overcome memory limitations imposed by the graphics hardware. As an example,

a 3D layered representation of an object may need 8 MB of texture memory while a depth

map cube of the same resolution requires only 384 KB. However, there is a visibility tradeoff,

and the depth map cube can only be used for geometries which do not contain significant

concavities. Using a subdivision criteria, this idea can be further extended to define the entire

125

object implicitly and allow complex global deformations.

7.6.3 Depth Estimation

Because the deformation region B(S′
D) and the remaining geometry S− SD are disjoint, depth

information within the deformation region does not need to be computed. This occurs because

ray traversal is stopped whenever an intersection is found. This condition, however, cannot

be met when rendering another non-deformable surface S2, as depicted in Figures 7.10(a) and

7.7. In this case, the other surface may intersect the volume defined by B(S′
D), and therefore

depth information must be accurately estimated to provide correct inter-surface occlusion. One

alternative is to include S2 into the computation of the SLR of SD. In this case, the remaining

geometry is S− SD − S2
⋂

B(S′D) and the layered representation of the deformation region is

L(SD + S2
⋂

B(S′D)). However, since S2 is not being deformed, this is usually unnecessary or

may introduce additional sampling requirements. Instead, S2 can be rendered independently.

In such case, our rendering algorithm must be adapted to provide depth information of the ray

intersections. The process is as follows: When rendering B(S′
D), the entry and exit points, r0

and r1, in displacement space are passed as texture coordinates. At the same time, we obtain the

z-buffer values from those points directly from the Z-buffer as d0 and d1. The pixel shader then

computes the total traversal distance of a ray as dT = |d1−d0|. As the ray traverses the SLR, the

traversed distance in displacement space is accumulated, to yield: dr = ∑∆ti for the traversal

iterations before intersection. Then, the depth of the intersection point can be computed as :

d =
1

(1− dr
dT

) 1
d0

+ dr
dT

1
d1

(7.8)

7.7 Results

Figure 7.10 shows a number of examples of our approach. In Figure 7.10(a) a deformation

cut is applied to the face of the torso model, revealing the mask interior object, which was

placed inside. Note how the underside of the cut can be seen. Figures 7.10(b) and (c) show

a twisting transformation applied at different scales for the hand model (18,905 triangles) and

to the elephant (39,290 triangles). In order to test the flexibility of our approach, we applied

126

Figure 7.10: Example cuts and deformations on geometric models. From left to right: (a) Torso
(25,528 triangles) with peeled skin and interior Mask model (10,213 triangles) (b) Hand with
twisted finger (18,905 triangles) (c) Elephant with twisted legs (39,290 triangles) (d) Bunny
(72,027 triangles) cut by Turbine Blade (10,778 triangles).

Figure 7.11: Twist deformation template applied to various polygonal models

the same deformation template to a number of polygonal models, of varying size. Figure 7.11

shows the result of a twist deformation for 6 objects. Similarly, Figure 7.12 shows the result of

a peeler deformation for 6 different objects.

One of the possibilities of our approach is the inclusion of multiple deformations. Defor-

mations which overlap (such as a cut in an area that is undergoing a twist) can also be handled

127

Figure 7.12: Peeler cut template applied to various polygonal models

by the framework. In this case, a second pass through the algorithm is performed, so that the

layered representation is obtained progressively, one before deformation and the next after one

of the deformations have been applied. Because this can be done directly while raycasting,

there is no need for re-sampling of the space. Our approach can be also extended to models

represented as points. In these cases, the deformation is handled for the layered renderer with

our mechanism and the rest of the object with an appropriate rendering method. With our ap-

proach, it would be possible to create a library of deformations, in a similar way of libraries of

models and textures.

7.8 Chapter Summary

This chapter presented a novel way of performing deformations on surface-based objects. We

extended our volumetric method to accomodate sampled layered representations, which are

128

implicit representations of objects that can be defined in a 3D grid similar to volumes. Be-

cause we are deforming a volumetric representation, no remeshing is needed. Remeshing is

often coupled with deformation to avoid collapsing of vertices and intersection of edges when

performing large displacements or rotations, such as a twist, or to change the topology of the

mesh in the case of cuts. In our approach, we use a layered representation of the region of

an object undergoing deformation to obtain high quality deformations without remeshing. We

defined a spectrum of layered representations, all of which are supported by our methodology.

We showed how our approach can be efficiently implemented in the GPU, allowing complex

deformations to be realized at interactive rates. We also described a hybrid rendering algo-

rithn which seamlessly integrates the different representations. This makes it possible to create

complex rendering merging surface-based and volumetric objects. Some of the applications is

medical illustration. Because in medical illustration a depiction of internal organs and tissues

is important, a volumetric object is desired. However, since the skin can be simulated with a

surface, it may be beneficial to apply our method to the tissues of interest, which provides a

smoother rendering of the deformed surface.

129

Chapter 8
Evaluation of Surface-based Deformation

8.1 Introduction

In this chapter, we evaluate our approach of surface-based deformation. Similar to volume

deformation, we performed a series of quantitative experiments to validate the rendering quality

of our approach, in regards to the smoothness of deformation without the need for remeshing.

We also performed a series of experiments to measure the rendering performance and detect

bottlenecks in our approach. We also propose mechanisms for improving the performance,

such as empty space skipping.

8.2 Rendering Quality

Similar to our volume deformation algorithm, quality of the rendering depends on the smooth-

ness and continuity of the resulting surface. Rather than replicating the experiments for volume

deformation, which also apply for surface-based deformation, we focus on one of the problems

of traditional surface-based deformation, which is the need for remeshing in order to obtain

smooth results. We show that using our approach, smooth deformation is obtained for low and

high resolution models without remeshing.

For the deformation of surfaces, traditional methods use explicit meshes, which may result

in collapse of vertices and self-intersection, violating the smoothness principle of deformation.

Figure 8.1 shows a comparison of our deformation approach with traditional mesh deformation

using explicit twisting [6] on a model at different resolution. Since layered representations

do not have explicit topology, artifacts due to the resolution of the mesh do not appear. We

deformed a hand model of 18,905 triangles using a twisting motion. Note how this results

in collapse of vertices and self-intersection of the surface, and is particularly problematic for a

130

low resolution model (2,874 triangles). Obtaining smooth results with a traditional deformation

requires a re-meshing of the object into 52,463 triangles. In contrast, our approach provides

smooth deformation results for both the low and high resolutions.

8.3 Rendering Performance

We performed a series of quantitative experiments on a Pentium XEON 2.8 Ghz PC with 4096

MB RAM, equipped with a Quadro FX 4400 with 512MB of video memory. We compared our

rendering time for a continuous deformation and a discontinuous deformation. Since discon-

tinuous deformations need to find more intersections, it is generally slower, since it requires the

use of branching operations, which are known to be slow.

Our first experiment was designed to determine the impact of using different objects for de-

formation. Because deformation is applied only on a region of the object, performance depends

both on the number of triangles as well as on the size of the sample layered representation used

for the part undergoing deformation. However, since most complex operations are implemented

in the deformed region, the performance is mostly determined by the rendering of the SLR. To

test this, we rendered a deformation on objects of varying size and measured the rendering

time. Because the rendering of the SLR depends on the number of pixels generated rather than

the number of vertices, we measured the effective size of the deformation, as a percentage of

the screen area (512× 512). This is depicted in Figure 8.2. To summarize the rendering time

for the two methods in a comparable way, we computed a weighted average on those results.

The weighted average is computed as
∑aktk
∑ak

(8.1)

where ak ∈ [0,1] is the relative render area of the deformed space and tk is the rendering time

for a measure k. Table 8.1 shows the results of this averaging, where rendering time is given in

milliseconds.

A one-way ANOVA showed no significant difference between the different objects (F =

1.672, p > 0.05) at a confidence level of 95%. This confirms that increasing the number of

vertices does not affect significatively our approach.

For this reason, we are able to perform performance tests with little regards on the actual

131

2,874 triangles (Explicit) 2,874 triangles (Our approach)

18,905 triangles (Explicit) 18,905 (Our approach)

52,463 triangles (Explicit) 52,463 triangles (Our approach)
Figure 8.1: Comparison of explicit mesh deformation vs. our implicit approach. A hand model
(original: 18,905 triangles) is twisted along a finger. Our deformation approach (right) pro-
vides smooth twisting across multiple resolutions of the object. Explicit deformation results in
collapse of nodes and crossing of edges for the original model (middle row) and for lower reso-
lutions (top row) (2,874 triangles). To obtain equivalent results, the mesh must be re-tessellated
(52,463 triangles) as seen in the bottom row.

132

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Dragon (871,414 triangles)

Continuous
Cuts

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Armadillo (172,974 triangles)

Continuous
Cuts

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Bunny (72,027 triangles)

Continuous
Cuts

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Hand (18,905 triangles)

Continuous
Cuts

Figure 8.2: Rendering time for continuous deformation and solid discontinuous deformation,
in relation to the relative size of the deformation bounding box, as a percentage of the screen
area (512×512)

Model Triangles Continuous Cuts
hand 18,905 89.79 225.46
bunny 72,027 87.32 249.92
armadillo 172,974 83.89 260.18
dragon 871,414 119.24 323.20
buddha 1,087,716 106.9 387.89

Table 8.1: Weighted average of rendering time for continuous and discontinuous deformation
in milliseconds

mesh complexity of the surface, but rather on the complexity in terms of the properties of the

sampled layered representation, and the rendering process itself.

8.3.1 Size

Here, we are interested in size in terms of number of voxels required to represent an SLR,

or to represent a displacement. Both affect the amount of texture memory available in the

GPU. Figure 8.3 shows the rendering time for an SLR of varying size, using a viewport of size

512× 512 and an effective render area of approximately 0.9. Similarly, we also plotted the

133

 0

 50

 100

 150

 200

2563128364332316383

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Size

Size Displacement
Size Dataset

Figure 8.3: Effect of size in rendering performance

effect of varying the size of the displacement while maintaining the size of the dataset constant

at 643 voxels. Since both the dataset and the displacement are stored as 3D textures, and the

pixel shader does not make any difference between the roles of the textures, the performance

is essentially the same. Note, however, that rendering time seems to grow for the case of the

displacement compared to the size of the dataset.

Representation Size

Another factor related to size is the type of representation. As described in the previous chapter,

some sampled layered representations are more memory efficient than others. For instance,

depth maps only require 2D textures while distance fields require a 3D texture. Although the

rendering algorithm is essentially the same, the distance to the surface is determined differently

depending on the representation, as described in Section 7.6.2. Figure 8.4 shows the rendering

time vs. the type of SLR. On the left, we see a comparison of representing the surface as a

depth map vs. a 3D distance field. Note how the performance is essentially the same, given that

both require the same number of texture samples (the only difference is the type of texture). On

the right, we compare the rendering time for a depth map cube vs. a 3D distance field. In this

case, we see how a depth map cube is much slower, as a result of requiring at most 6 texture

lookups. This cost, however, is balanced by the benefit in texture requirement. For an SLR

whose distance field is stored in a texture of size n3 , a depth map cube requires only 6n2 bytes.

134

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Render Area

3D Distance Field
Depth Map

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Render Area

3D Distance Field
Depth Map Cube

Figure 8.4: Effect of type of sampled representation in rendering time

 0

 100

 200

 300

 400

 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Render Area

No Depth
Depth

Figure 8.5: Performance overhead of depth estimation

8.3.2 Depth Estimation

In the previous chapter, we described how depth estimation is required whenever a surface S

different from the one being deformed intersects the deformed region B(S′
D). Depth estimation

requires extra normalization factors and accumulation of traversed distances, which adds a

computational cost to the rendering process. Figure 8.5 shows the performance penalty of

adding depth estimation to the rendering algorithm, against the render area, for a deformation

of size 643.

135

8.3.3 Empty Space Skipping

One of the important aspects of our approach is the accurate finding of intersections for smooth

surface rendering. For a discontinuous deformation, we showed that smooth rendering requires

the computation of more than one intersection. The rendering algorithm must compute in-

tersections with the deformed surface and may discard them if they are in the region of cut.

Depending on the complexity of the cut surfaces, the number of “false” intersections may

increase, and the algorithm must then perform several iterations of the intersection finding pro-

cess. Unfortunately, pixel shaders in current GPUs often limit the way loops are coded. For

instance, the ones available to the moment of our experimentation do not allow variable sized

loops. Although dynamic branching is enabled, i.e., the program control can be forced out of

a loop by a break statement, there is a considerable penalty in performance due to branching.

This can be appreciated in Figure 8.2, which showed a significant drop of performance when

simulating discontinuous as compared to continuous deformation.

In another experiment, we measured the rendering time for a discontinuous deformation

while varying the number of iterations of the intersection finding algorithm. The results are

shown in Figure 8.6. We plotted the rendering time for two different cases, when the effective

render area is 0.35 and 0.7. Note how the render time increases almost linearly with the number

of iterations. What is worse is that in most of the test cases, the extra number of iterations are

not needed as the correct intersection is the first intersection to be hit by a ray. In order to

improve the rendering time, we use Empty Space Skipping, which uses information from the

definition of the displacement to skip through the regions where there is no possibility of an

intersection. As described in the previous chapter, a region within a cut, where there is nothing

but empty space, is defined by A(x) > 0. Therefore, there is only need to traverse the space

defined by A(x)≤ 0 in order to find the true intersections. This can be achieved by representing

the cut surface A as a distance field, and using the distance to the closest point in the cut surface

to determine the sampling distance of the next object. Whenever the surface is reached, a

constant sampling distance is used.

Another mechanism is to represent A explicitly. In such case, A is defined by a surface.

Instead of using B(S′D) as a proxy geometry to render the deformed region, we use the explicit

136

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5

Re
nd

er
in

g
Ti

m
e

(m
se

c)

Num Iterations

 (a = 0.35)
(a = 0.7)

Figure 8.6: Number of iterations of the intersection finding process vs. rendering time (msec.)

SD

true intersectionfalse intersections

A(x)

Figure 8.7: Empty Space Skipping. Left: With no empty space skipping, a number of unneces-
sary samples need to be taken and false intersections must be discarded. Right: Empty Space
Skipping avoids the test for false intersections

representation A+B(S′D). Each generated ray is used to find the first intersection with the lay-

ered representation L(x), without an the need for testing for false or true intersections. The

explicit representation of A can be found as part of the process of the displacement creation,

or by extracting the isosurface A(x) = 0 in the sampled representation of A. This process is

depicted in Figure 8.7 Figure 8.8 shows the result of using empty space skipping, compared to

the case described earlier in our results, where no optimization is performed. Note how the per-

formance improvement is dramatic, and that, since no extra tests are need for the intersection

process, the performance is essentially the same as the one for continuous deformation (com-

pare with Figure 8.2) A t-test showed a significant difference between enabling and disabling

137

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Dragon (871,414 triangles)

Empty Space Skipping (ESK)
No ESK

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Armadillo (172,974 triangles)

Empty Space Skipping (ESK)
No ESK

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Bunny (72,027 triangles)

Empty Space Skipping (ESK)
No ESK

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Hand (18,905 triangles)

Empty Space Skipping (ESK)
No ESK

Figure 8.8: Speed up of empty space skipping for intersection finding algorithm vs. relative
size of deformation bounding box (512×512)

Model Triangles Cuts (no ESK) Cuts (with ESK)
hand 18,905 225.46 75.77
bunny 72,027 249.92 114.95
armadillo 172,974 260.18 126.00
dragon 871,414 323.20 126.5
buddha 1,087,716 387.89 120.8

Table 8.2: Weighted average of rendering time for continuous and discontinuous deformation
in milliseconds

Empty Space Skipping (t = 5.09, p < 0.0001). These results are summarized in table 8.2, using

the weighted average in Eq.(8.1).

8.4 Discussion

One of the results of our experiments is the validation of our approach as a mechanism for

smooth deformation without the need for remeshing. Further, we also concluded that there is

no significant impact of the number of vertices in the original mesh model and the rendering of

a deformation. This is important for providing a constant rendering time for datasets of varying

138

size. However, this also implies that reducing the number of vertices does not have a significant

impact on performance. We also detected a bottleneck in the rendering of cuts and other dis-

continuous deformations as a result of the need for estimating accurately multiple intersections

along a given ray. Depending on the complexity of the cut geometry, the number of iterations

of the intersection process varies. However, because of the lack of dynamic branching on con-

temporary GPUs, this is computationally expensive. As an alternative, the maximum number

of iterations must be hardcoded into the deformation program. For cuts with concave geometry,

for instance, there are at most two intersections, corresponding to the intersection with either

the front or the back face of a surface. In order to improve performance, we devised an empty

space skipping mechanism, which uses the distance to the surface of the cut to skip the regions

where no intersection is valid. Further, performance is maximized when the cut is represented

explicitly, and the deformation algorithm is simplified considerably, to the point where ren-

dering performance is comparable to that of continuous deformation. Finally, our deformation

algorithm proves to be a feasible mechanism for rendering complex cuts and deformations at

interactive rates.

139

Chapter 9
Applications

9.1 Introduction

This chapter describes the applications of our approach in medical and biological illustration,

as a rendering stage in surgical planning and simulation, and as a general tool for clipping and

focus+context rendering in visualization.

9.2 Scientific Illustration

Illustrative deformation has been inspired by scientific illustration, in particular medical and

surgical illustration. In turn, our framework can be used to generate on the fly illustrations of

real scientific datasets. The high-quality rendering enable the illustrator to use the result as the

final product, or as an intermediate stage, where the illustrator uses the deformed dataset as

inspiration for a finished illustration.

Scientific illustration has been used for centuries for communicating ideas, abstracting com-

plex structures and natural processes. Recently, hand-drawn illustrations have been the inspi-

ration of many modern scientific visualization. For instance, the study of water by Leonardo

has inspired many flow visualization software [55]. Hand-drawn illustration of internal organs

has inspired modern cutaway and exploded views [30, 13]. In our work, the illustration of

deformation and cuts has inspired our framework.

One of the most important milestones is Andreas Vesalius’ De Humanis Corporis Fabrica,

published in 1543, a compendium of human anatomy, of which stands out the detailed draw-

ings of human dissections. The drawing “Vigesimaqvinta qvinti libri figvra” shows the internal

organs of female anatomy through a detailed dissection of the abdomen. It was common of him

and other contemporary illustrators to represent the retracted skin as it would result from an

140

actual dissection. The aspect of illustration we want to emphasize is the depiction of deforma-

tion, either to represent the range of movement of limbs and organs, or to represent a surgical

procedure.

Contemporary illustrations are created through a variety of techniques, from traditional

hand-drawings and airbrushed paintings, to computer assisted imagery. For the latter, however,

the illustrator often uses a surface based model of an idealized anatomy. Within our framework,

real patient data can be used to generate interactive illustrations. Throughout this chapter, we

show a number of contemporary surgical illustrations that inspired some of our work and that

we used to validate our approach.

9.2.1 Case Study Illustrations

In order to validate the applicability of our approach, we have selected a number of contempo-

rary illustrations from an online repository (courtesy of Nucleus Inc. c©), and re-create similar

illustrations on real medical datasets. We attempted to re-create the lighting and material char-

acteristics depicted in the reference illustration.

Figure 9.1 shows an application of a continuous deformation. In this case, we simulate an

illustration of a whiplash action. We applied a bending deformation on the CTHead dataset.

The bending deformation is obtained from the inverse sampling of a forward bending, as de-

fined by Barr in [6]. In order to gain visibility of the skull, we used gradient modulation. The

brain tissue is not represented, as the CT dataset does not contain sufficiently distinct samples

to reconstruct properly the surface of the brain (MRI scans are more appropriate for such goal).

One important aspect to notice from our illustrative deformation is that lighting is computed

properly as the head deforms, whereas the reference illustration seems to have been created by

re-targeting a base illustration in three different poses, and lighting does not change accord-

ingly.

Figure 9.2 shows an illustration of one stage of a craniotomy. One of the requirements for

this illustration is the preservation of bone tissue. We applied this to the CTHead dataset, after

an approximate segmentation of the skull. Note that for illustrations purposes, a complete and

accurate segmentation is not required, as the system allows the user to explore interactively

the region near cuts in order to adapt the resulting image to the desired state. This makes our

141

(a) Reference Illustration (Courtesy
Nucleus Inc. c©)

(b) Illustrative Deformation

Figure 9.1: Illustration of whiplash injury

approach very attractive not only for illustration, but also as a visualization tool. To validate our

surface deformation approach, we also applied the deformation to the isosurfaces corresponding

to the skin and the skull. The surfaces were obtained using the marching cubes method [74], and

decimated to about 50% the number of triangles. In addition, the resulting mesh was filtered

for noise reduction. Deformation is applied to a layered representation of the isosurfaces, as

described in Chapter 7.

Reference Illustration Volume Deformation Isosurface Deformation
(Courtesy Nucleus Inc. c©)

Figure 9.2: Illustration of a craniotomy

Another important aspect of our approach is the flexibility offered by using generic de-

formation templates. For instance, we can easily transfer the deformation to another dataset.

142

Figure 9.3 shows the same deformation as applied to the head of the Visible Human dataset.

Figure 9.3: Transfer of deformation illustration to the Visible human dataset

Another example of a surgical procedure is shown in Figure 9.4, where a carpal tunnel

procedure is simulated on a CT hand dataset. First, an approximate segmentation of the veins

and bones is obtained. Note that veins are difficult to segment from the CT dataset. For this

reason, the two deformations on the right only show the bone tissue. Similar to the previous

example, we applied surface deformation on the isosurfaces corresponding to skin and bone

tissue.

Reference illustration Volume Volume Isosurface
(Courtesy Nucleus Inc. c©) (veins) (bones) (bones)

Figure 9.4: Illustration of carpal tunnel surgery

Figure 9.5 shows an illustration of an abdominal surgical procedure. For this case, we use a

portion of the Visible Human dataset. Similarly to the previous illustrations, we used a feature

mask to preserve the internal organs so that they do not undergo deformation. Volumetric

deformation allows the visualization of the intermediate tissues between skin and organs, which

gives depth and thickness to the deformed layer. This effect cannot be usually obtained with

mesh deformation of the segmented isosurfaces.

143

Reference illustration Volume deformation
(Courtesy Nucleus Inc. c©)

Figure 9.5: Illustration of abdominal procedure

(a) Reference Illustration (b) Visible Human dataset
Figure 9.6: Anatomical Illustration with dissected flaps Dissected flaps

Another type of illustrations are of anatomical structures, where “unrealistic” flaps are used

to separate muscle layers and allow the visibility of internal tissues and bone. These types of

illustrations where prevalent during the early days of medical illustration, where it was common

to represent the entire human being [95, 49], also similar to contemporary exhibits such as

Bodies [1] and Bodyworlds [119].

9.2.2 Morphology Illustrations

Another use for deformation is the analytical exploration of morphology and the study of evo-

lution, as pioneered by D’Arcy Thompson in his book “On Growth and Form” [114]. In his

work, he uses the deformation of a 2D Cartesian grid to explain and illustrate the morphological

differences between different animal species. In Figure 9.7, an example of his illustrations is

depicted, where a rectangular grid is used to inscribe an illustration of the Polyprion species.

144

(a) Reference Illustration (b) 2D Displacements using RBF
(From “On Growth and Form” [114])

Figure 9.7: Application of our approach to Morphology Illustrations

Figure 9.8: Illustrative Deformation of Carp Dataset

Another species, Antogonia carpos can be inscribed in a non-linear grid, obtained by deform-

ing the rectangular grid. This method of deformation is essentially an interpolation mechanism

given the displacements of control points, carefully placed in matching feature points. In our

case, this can be accomplished with our displacement generation method using Radial Basis

Functions, as described in Chapter 4. We used a projection image of the carp dataset, using

maximum intensity projection, and inscribed it into a 2D grid. After deforming the image,

we generated a 3D displacement that smoothly interpolates this 2D displacement along the Z

direction. The results as applied to the 3D dataset are seen in Figure 9.8. Our approach can

be extended to evolutionary morphing simulation directly on volumetric objects, extending the

surface morphing approach in [127].

9.3 Surgery Planning and Simulation

Although this thesis is aimed towards illustrative deformation, our rendering algorithm can ac-

commodate physically-based deformations. As described in Chapter 8, displacements can be

obtained from layered representations of surface objects. This is useful for representing cut-

ting and deforming tools required for surgical simulations, such as pliers, knifes and needles.

145

FEM
Simulation

Rendering
Sampling
InterpolationNodal

Displacements
Regularly Sampled
Displacements

MESH

(a) Surgery Simulation with Nodal Displacements

Layered Representation

Rendering
Regularly Sampled
DisplacementsSimulation

FEM
Volumetric

(b) Surgery Simulation Process with Displacements in a Grid

Figure 9.9: Surgery simulation process for incorporation of our illustrative deformation ap-
proach

In addition, physical accurate displacements can be used. Instead of using generic deforma-

tion templates, displacement maps can be obtained from a physical simulation, either from a

mass-spring or finite element simulation. However, our approach assumes that displacements

are stored in a regular grid. In contrast, FEM or mass-spring methods have a explicit mesh

usually composed of either triangles or tetrahedra. In this case, displacements are obtained at

each node in the mesh. Recent alternatives, such as meshless deformation, define displace-

ments at scattered points. In order to have a suitable displacement “format” for our approach,

nodal displacements must be transformed into regularly sampled displacements. This requires

a regularization and sampling process, which may be computationally costly. This process is

depicted in Figure 9.9(a). Another alternative is to use regularly sampled displacements for

the physical simulation itself. This is the approach used for physically-based deformation of

volumes. One of the difficulties with this approach is the accurate simulation of boundary con-

ditions, as sampled representation does not have explicit geometry. A possible solution for this

problem is use the sampled layered representation as a mechanism for specifying boundary

conditions. This process is depicted in Figure 9.9(b). Figure 9.10 shows an example of using

generic template displacements for surgery simulation. In this case, we simulate an incision

into an MRI neck dataset, and a subsequent pull operation on one the carotid arteries. Figure

9.11 shows an example of our approach applied to the simulation of a frog dissection. We used

a segmented frog dataset and combined two deformations: a retractor deformation as depicted

in Figures 9.11 (a) through (d), and a poke operator, simulating the deformation due to contact

146

Figure 9.10: Neck surgery simulation

(a) (b) (c) (d)
Figure 9.11: (a-c) Retractor operator used to simulate dissection of a segmented frog dataset.
(d) A plier operator is applied to the internal organs, while simultaneously retracting the skin.
Geometric models are embedded in the scene to show the placement of the operators.

with a surgical tool, as shown in Figure 9.11(d). Note also that surface meshes can be added

where deformation occurs to represent the virtual tools. Many current surgical simulations are

designed to work with a triangular or tetrahedral representation of an object, usually obtained

via segmentation from a volumetric model. In our approach, we are able to deform surface

object representations, by transforming them into sampled layered representations. Figure 9.12

shows our approach applied to a layered representation of the liver. We can simulate incisions

without the need for re-meshing, as described in the previous Chapter.

9.4 Volume Clipping and Focus+Context Visualization

Another of the applications of our approach is as a visualization tool in general. Deformations

have been used before as focus+context techniques, where a feature of interest is distorted

Figure 9.12: Liver surgery simulation

147

(a) Plane Cut (b) Spherical Cut
Figure 9.13: Clipping using discontinuous displacement mapping

so that it becomes highlighted, while still maintaining a view of the surrounding regions for

context. Examples of these are magic volume lenses [123] and magnification lenses [65].

In our approach, focus+context visualizations can be obtained with both continuous and

discontinuous deformations. In the case of a continuous deformations, a dilate deformation

acts as a 3D distortion lens, which enhances the rendering of internal objects, while reducing

the rendering regions of surrounding objects. In the case of discontinuous deformation, cuts and

peels can be thought of as focus+context clipping mechanism. In the simplest case, when no

deformation is specified, our approach works as a clipping mechanism with arbitrary clipping

geometry. Examples are shown in Figure 9.13. When the clipped portion of the volume is

retained along with the original volume, and a feature is preserved, it enables a focus+context

visualization. Examples are shown in Figure 9.14. The first illustration shows a cutaway of the

CT Head skin and skull to provide visibility of the brain. In the second, a peel deformation is

used to visualize both the brain (region in focus) and the underside of the skull (as the context).

9.5 Chapter Summary

In this chapter, we have shown a series of examples to illustrate the range of applications of our

approach. Inspired by biomedical illustration, our approach can be used for depicting surgical

procedures, anatomical structures or natural phenomena with “real” volumetric datasets, much

in the way illustrations are used. However, we can now rotate around our illustration. Further,

our surface-based deformation approach enables the illustration of more abstract models, which

148

(a) Cutaway (b) Peel
Figure 9.14: Cutaway and Focus+Context Visualization of the brain in the CT Head dataset

may be modeled by an artist or extracted from MRI or CT data, which, although do not include

information about the internal structure of an object, it provides smoother images. One of the

advantages of our approach is the ability to explore the deformation space interactively, which

is an aid for an illustrator in the task of depicting or visualizing complex procedures. Another

application is in surgical planning and simulation. In this case, interactivity is crucial. We have

shown two methods in which illustrative deformation can be incorporated into surgical simula-

tion systems. First, as a rendering process, where nodal displacements, usually obtained from a

Finite Element simulation, are interpolated into grid displacements. Second, as a modeling pro-

cess, where the grid structure is incorporated into the simulation of forces in order to bypass the

costly interpolation stage. Finally, we have shown how our approach can be used as a powerful

visualization technique, that goes beyond clipping and transfer functions, by enabling deforma-

tion of occluding parts to achieve visibility of hidden objects in a natural way. Movies demon-

strating our approach are available at http://www.caip.rutgers.edu/˜cdcorrea/feature/index.html

and http://www.caip.rutgers.edu/˜cdcorrea/displacement/index.html.

149

Chapter 10
Conclusions

In this thesis, we have presented a unified framework for specifying and rendering complex

continuous and discontinuous deformations of volumetric objects. We call this Illustrative

Deformation. We have generalized the notion of 3D displacement maps, which have been

previously used in computer graphics to add surface detail to mesh objects. Not only did we

apply this notion to volume graphics, but we also extended it to allow large deformations and

discontinuities such as cuts and breaks.

Chapter 4 described this notion, under what we have dubbed “discontinuous displacement

mapping”. We proposed a novel method for encoding discontinuity information on displace-

ment maps which guarantees C1 continuity in the displacement. This continuity is essential for

the rendering of sharp cuts and breaks free of aliasing artifacts, and also, since the displacement

can be differentiated at every point, it allows correct lighting of the volumetric object. One of

the limitations of this general notion of displacement is the difficulty for specifying semantic

constraints, which are necessary for surgical simulation and medical illustrations. One such

constraint is the preservation of features of interest, which should not undergo a deformation.

For example, simulating the illustration of a surgical procedure requires the deformation of

skin and muscle tissues, but the preservation of bone structure. Chapter 5 described an efficient

method for specifying feature sensitive operations. This method introduces feature masks into

the displacement, which are used to modify the transformation so that elements within the mask

are preserved. We also presented a novel method for adjusting the shading in the regions near

cuts, which enables the accurate rendering of deformed surfaces in the vicinity of the cut.

In Chapter 6, we validated our approach through a series of quantitative tests, which are re-

lated to the properties of rendering quality, such as smoothness, continuity and preservation of

detail. Some important outcomes of this evaluation is the validation of our approach as the one

150

with the best image quality compared to previous attempts for volume deformation. Not only

does it provide the best quality, it was also shown that it is the most efficient in terms of perfor-

mance, due to the ability of pre-computing quantities in 3D textures. This speed up, however,

comes with a price in extra texture memory requirements. However, we have also shown that

our alternative for reducing texture memory is as efficient as other previous alternatives, with a

much higher rendering quality. Another advantage of our approach is the ability to model com-

plex deformations with guaranteed cost. As shown in our evaluation chapter, performance cost

depends on the resolution and precision of the displacement, and not to the complexity of the

deformation. That is, two deformations sampled at the same frequency yield almost identical

results. However, it is important to note that the optimal sampling frequency for a displacement

map might differ and require different resolutions.

We also showed that our approach can be extended to the deformation of surface-based

objects. Traditional approaches to mesh deformation transforms the vertices of the mesh. For

large deformations or cuts, this usually implies a remeshing stage, which may be computation-

ally costly and can limit the complexity of the deformation. In this thesis, we were able to

simulate complex deformations on surface models without remeshing. This was possible with

the sampling of the surface into a layered representation, an implicit representation of the sur-

face which samples the closest distance to the surface at regularly spaced points. The layered

representation can be 2D, as it is the case of depth or height maps, or 3D, such as distance

fields. We validated our approach with different layered representation methods in order to

explore the trade off between texture memory requirement, speed and image quality.

Our approach has applicability in a number of fields. In medical and biological illustration,

our approach allows the illustration of anatomical structures and surgical procedures on real 3D

datasets, obtained via computed tomography or magnetic resonance imaging. We showed that,

due to the generality of displacement maps, deformations can be easily transferred to different

datasets. We also showed that surface-based deformation can be applied by first obtaining

an isosurface description of the features of interest. One future direction for our work is the

combination of surface and volume rendering to obtain better illustrations. Surface deformation

rendering would be critical for the simulation of smooth surfaces such as the skin, whereas

volume rendering is necessary for the depiction of internal layers and features.

151

Another application of our work is surgical simulation and planning. Our approach can be

introduced in simulation engines as a rendering process. However, most simulation approaches,

such as mass-spring and finite elements, require nodal displacements obtained from an explicit

mesh, instead of sampled displacements in a grid. One mechanism is to introduce an interme-

diate interpolation stage which converts nodal displacements into grid-sampled displacements,

but this can be computationally expensive. Alternatively, it should be possible to modify the

physical simulation engine to solve the equations of motion directly on the grid. Finally, our

approach works as a general tool for visualization and graphics, where deformation is used as

a focus+context mechanism, and discontinuous deformation can be used as a clipping tool.

10.1 Directions for future work

In this thesis, we have described a unified framework for deformation of volumetric objects.

We have shown that surface-based models can also be accommodated within our approach, by

describing them as a layered representation. Surface-based models have an advantage over vol-

umetric objects in that they are generally smoother and require less information to be stored.

Volumes, on the other hand, contain material information or both the exterior and interior of

objects. A more comprehensive method for illustrative deformation would treat certain surfaces

of interest, such as the skin, as surfaces, whereas other parts can be treated as volumes. Further,

our deformation framework can also be complemented with illustrative or non-photorealistic

rendering (NPR). As opposed to the so-called “photorealistic” rendering, illustrative rendering

simplifies the lighting model and uses illustration-inspired drawing techniques to enhance or

abstract certain parts of the object, for a better understanding of shape or function. Common

NPR techniques use simplified shading, hatching and stippling to accentuate the shape of an

object. When the shape is undergoing deformation, these hatch or stipple patterns can also be

used to accentuate the deformation. Since deformations are displacement fields, a lot of infor-

mation can be extracted by analyzing its properties. For instance, the rendering of field lines

yields the direction of the deformation, while the Jacobian determinant can used to illustrate

the “strength” of the deformation. These cues can be added to the rendering process to provide

the user with a better understanding of the manipulation process. The idea of using illustrative

152

cues for visualizing movement has been explored by Joshi and Rheingans [55] and we believe

it can be further explored for interactive deformation.

As graphic processors units become more powerful, and with the introduction of physics

processor units (PPUs), it now becomes possible to accelerate physics-based-deformation of

complex datasets. Our approach, rather than becoming obsolete, will greatly benefit from the

increased processing power of upcoming hardware. Features such as hardware accelerated col-

lision detection could be used to generate the displacements needed to simulate the interaction

of volumetric objects with a virtual surgical tool. However, recent research efforts of using the

GPUs as general purpose processors (GPGPUs) questions whether the PPUs would be of any

use beyond their utility as yet another GPGPU [2].

The idea of using deformation to manipulate data can be further extended as a visualization

tool for other types of objects, such as flow volumes, general vector fields, video data or discrete

spatial data, such as graphs. For volumetric objects, our method extends easily, but special care

must be taken depending on the domain. For instance, lighting computation does not apply

for the visualization of video, as they are formed by images of an already lit scene. A better

idea would be to focus on the tracking and preservation of features of interest, as described in

Chapter 5. We believe that the use of deformation to manipulate data can become a key enabler

for exploration techniques beyond slicing, rotations and transfer functions.

153

Appendix A
Index of Datasets

The following table shows the index of the datasets used throughout this thesis. For each

dataset, we define its size in number of voxels, its source, which may be Computed Tomography

(CT), Magnetic Resonance Imaging (MRI) or procedurally defined and the credits. Any special

pre-processing is noted where it applies.

Name Size Source Credits Notes

Cube 1283 Procedural VIZLAB Rutgers

Bar 1283 Procedural VIZLAB Rutgers

Engine 256×256×128 CT General Electric

Tomato 256×256×64 MRI Lawrence Berkeley Laboratory

Piggy Bank 256×256×179 CT Siemens

Hand 255×240×155 CT University of Iowa

Visible Man 255×189×436 MRI National Library of Medicine Segmented

CT Head 256×256×256 CT Stanford University

Foot 143×256×183 CT University of Iowa

Frog 250×235×68 MRI Whole Frog Project Segmented

Knee 256×256×256 CT University of Iowa

Visman Head 256×256×256 MRI National Library of Medicine Segmented

Visman Abdomen 256×170×256 MRI National Library of Medicine Segmented

Neck 256×256×256 MRI Robert Wood Johnson Hospital

Carp 200×100×512 CT University of Erlangen, Germany

154

Appendix B
Index of Illustrative Deformations

B.1 Tomato Illustrations

This illustration (Figure 4.8) is obtained using the tomato dataset (CT) and the peel displace-

ment. An ambient intensity of 0.5 is used to simulate the translucent nature of the material

(as opposed to opaque). Figure 4.9 combines the peel displacement with a waving displace-

ment. The order of composition alters the order. Figure 4.11 is produced by applying the slicer

displacement and repeating it periodically. The repetition is obtained by wrapping around the

texture coordinates as follows:

int iy = (int)((texcoord.y-1)/0.125)+1;

texcoord.x = texcoord.x + iy*0.25;

texcoord.y = texcoord.y - iy*0.125;

B.2 Discontinuous Displacement Showcase

This collection of illustrations are obtained by applying the poke, peel, split and slice displace-

ments onto the cube, bar, engine, and tomato datasets.

B.3 CT Head Peel

Figure 5.4 shows a peel of the CT head dataset. Surface alignment is obtained with a distance

field of the dataset after background segmentation. Segment alignment is obtained after seg-

mentation of the brain tissue. Segmentation is produced by an intensity-guided space filling

approach, after performing edge detection. Figure 5.8 shows a similar peel, with alignment on

the skull. The skull is segmented using thresholding of the bone tissue density and space filling

on the interior of the skull with randomly positioned seeds.

155

B.4 Hand Dissection

The illustration of hand dissection (Figure 5.1) was obtained using the retractor displacement

over the hand dataset (CT). Feature alignment was obtained by an approximate segmentation

of bone tissue. Intermediate tissue is approximated as well to provide visibility of vessels.

The illustration in Figure 5.8 applies the retractor2 displacement to the same dataset. Surface

alignment is obtained using a distance field of the hand dataset after background segmentation.

Segment alignment is obtained after segmentation of the bone tissue and noise filtering. It can

be seen that other tissue between the proximal phalanges are preserved in the feature mask.

B.5 Foot Surgery

This illustration (Figure 5.8) was obtained using the retractors displacement on the foot dataset

(CT). Surface alignment was obtained with the distance field of the foot after background seg-

mentation and setting the desired layer at τ = 0.74. Segment alignment is obtained with a

segmentation of the bone tissue, by density thresholding. The feature mask is smoothed out

with a Gaussian filter.

B.6 Frog Dissection

This illustration (Figure 5.8) was obtained using the retractors displacement on the frog dataset.

The dataset was obtained from the segmented frog dataset, after smoothing and merging the

different segments. Surface alignment is obtained with the distance field after background

segmentation. Segment alignment is obtained using the original segmentation masks of bones

and organs. To produce a smooth mask, a Gaussian filter is applied.

The illustration in Figure 9.11 is obtained in the same manner, with a different transfer

function. A poke operator is added to the feature of interest to show the use of multiple dis-

placements. In addition, geometric models are added to depict the surgical tools.

156

B.7 Whiplash

The whiplash illustration (Figure 9.1 is obtained with the CT head dataset, using the bend

displacement. Depending on the orientation of the displacement, a forward or backward bend

is obtained. In order to show the skull, we applied gradient modulations with an exponent of

eg = 0.5 and slice opacity α = 1.

B.8 Craniotomy

Figure 9.2 shows a craniotomy of the CT head dataset. Feature alignment is obtained via

segmentation of the bone tissue, using density thresholding. The mask was smoothed out with

a Gaussian filter. The surface-based deformation is obtained by deforming the skin isosurface.

The isosurfaces of skin tissue and the skull are obtained using the marching cubes method.

To obtain a smooth result, the isosurfaces are decimated at about 30% of the original triangle

cut and smoothed out using a Laplacian operator. The backside of the cut is rendered with a

procedural texture, to resemble the lines depicted in the reference illustration.

B.9 Carpal Tunnel Surgery

This illustration (Figure 9.4) was obtained using the cutquad displacement on the hand dataset

(CT). Feature alignment is obtained with a segmentation of the bone tissue. The surface-based

illustration is obtained using the isosurfaces from bone tissue and skin. Both isosurfaces were

decimated and smoothed using a Laplacian operator. Prior to isosurface extraction, the dataset

is thresholded into the appropriate density range and an antialiasing filter is applied.

B.10 Abdominal Surgery

This illustration (Figure 9.5) is obtained using the retractor dataset on a portion of the seg-

mented Visible Human dataset. The segmented dataset is smoothed using a Gaussian filter. The

feature is obtained from the segments of the colon, organs and bone tissue which are merged

together and smoothed using a Gaussian filter.

157

B.11 Anatomical Illustration

This illustration (Figure 9.6) is obtained using the segmented Visible Human and a series of

flap displacements. The dataset used contains only the bone and muscle tissues. The placement

of displacements is obtained via affine transformations for proper alignment. A cut displace-

ment (using only the discontinuity mask) is used to “carve” out portions of the abdomen. The

rendering was obtained using an ambient intensity of 0.7 and an opacity of α = 0.5.

B.12 Carp Illustration

This illustration (Figure 9.8) was obtained using the carp dataset. The 3D displacement was

obtained from a 2D displacement using radial basis functions over a number of control points.

The 2D displacement was extruded along the z-direction (orthogonal to the 2D displacement)

such that it gradually fades into zero. This was necessary as to provide a plausible deformation

of the fish, where the mid-parts are more deformed than the surface of the sides.

B.13 Neck Surgery

This illustration (Figure 9.10) was obtained using the neck dataset (MRI) with the retractor

displacement. A transfer function is applied to hide the skin tissue and provide visibility of

the muscles. A feature mask is applied, containing vessels and bones. This was obtained

using thresholding of the corresponding density values. Given that a contrast dye was used

in the original scan, the vessels and the bones are obtained from the same range of densities.

A second operator is applied to the feature segment, to simulate a surgical procedure on the

carotid artery.

B.14 Liver Surgery

This illustration (Figure 9.12) were obtained from a surface extracted from the segmented Vis-

ible Human dataset. The surface was decimated and post-processed for smoothing.

158

Appendix C
Displacement Templates

This appendix shows the procedural definition of the displacements used in this thesis, as func-

tions of the x,y, and z coordinates of a normalized volumetric cube, i.e., x,y,z ∈ (0,1).

C.1 Poke

D(x,y,z) =













0

0

−ze
(x−0.5)2+(y−0.5)2

2σ2













A(x,y,z) = 1

C.2 Twist

D(x,y,z) =













(x−0.5)cosθ(z)+(y−0.5)sinθ(z)− (x−0.5)

−(x−0.5)sinθ(z)+(y−0.5)cosθ(z)− (y−0.5)

0













A(x,y,z) = 1

where θ(z) is a twisting angle, as a function of the z coordinate (usually linear).

159

C.3 Wave

D(x,y,z) =













0

asin(ω
√

(x−0.5)2 +(z−0.5)2)

0













A(x,y,z) = 1

where a is the amplitude of the wave and ω its frequency.

C.4 Bend

θ̂ = tan−1 y− y0
z− z0

θ = clamp(θ̂ ,θmin,θmax)

ŷ =
θ
2π

+ y0

y′ =















(y− y0)cosθ − (z− z0)sinθ + ŷ θmin < θ < θmax

ŷ otherwise

z′ =















(y− y0)sinθ +(z− z0)cosθ + z0 θmin < θ < θmax

z0 +
√

(y− y0)2 +(z− z0)2 otherwise

D(x,y,z) =













0

y′− y

z′− z













A(x,y,z) = 1

where θmin and θmax define the minimum and maximum bending angles, and (0,y0,z0)
> is the

center of the bend.

160

C.5 Squeeze

σ = s 1
1+ e5−20∗|0.5−z|

D(x,y,z) =













σ(x−0.5)

σ(y−0.5)

0













A(x,y,z) = 1

where s ∈ (0,1) is the strength of the squeeze deformation

C.6 Dilate

D(x,y,z) = −Dsqueeze(x,y,z)

A(x,y,z) = 1

161

C.7 Peel

θ = tan−1 x
y

r =
√

x2 + y2

y′ =































−y −π < θ ≤ π/2

y −π/2 < θ ≤ 0

r otherwise

x′ =































1− x −π < θ ≤ π/2

x −π/2 < θ ≤ 0

θ
π otherwise

D(x,y,z) =













x′− x

y′− y

0













A(x,y,z) =















0 y < −2R or r > 2R

1 otherwise

C.8 Split

σ = f (z)

Dx =































σ x < 0.5−σ

−σ x > 0.5+σ

0.5− x otherwise

Dy = 0

Dz = 0

A(x,y,z) =















1 x < 0.5−σ ∨ x > 0.5+σ

0 otherwise

162

where σ = f (z) is a function describing the size of the split. For a linear split, f (z) = 0.25z.

C.9 Retractor

The retractor is obtained by combining two mirrored one-sided retractors. The one-sided re-

tractor is defined as follow:

cc = 0.5

cs = cs +σ(z)p(x)

ce = cc +0.4

Dx = 0

Dy =































cc − y cc < y < cs

cc + y−cs
ce−cs

(ce − cc)− y cs < y < ce

0 otherwise

Dz = 0

A(x,y,z) =















0 cc < y < cs

1 otherwise

where cc is the center of the cut, cs is the start and ce the end of the retracted layer, p(x) is the

shape and σ(z) is the strength of the retractor. For our illustrations, σ(z) = kz, and p(x) is a

Gaussian function:

p(x) = e5(0.5−x
L)

2
(C.1)

where L ∈ (0,1.0) is the length of the cut.

163

C.10 CutQuad

Similar to the retractor, this is obtained as a combination of two mirrored one-sided cuts, which

in turn are a combination of the retractor and a sinusoidal rippling effect.

cx = 0.5

cy = 0.5

cs = 0.5+(1− s(y))z2

ce = 0.9

s(y) =

[

(

y− cc
L

)2
]1

0

t(x) =
x− cs
ce − cs

Dx =















cx + t(x)(ce − cx)− x x < ce

0 otherwise

Dy = 0

Dz = (1− t(x))(1− s(y))z2 sin2 2πt(x)

A(x,y,z) = 0.5+(x− cs)

where cs and ce are the start and end of the retracted layers, s(y) is the strength of the retraction

and L is the length of the cut, and [x]10 is a clamping operator.

164

C.11 Peeler

z0 = 4(x−0.5)2

d(y) = 0.5y2 + z0

D(x,y,z) =













0

0

−min(d(y)− z0, [z− z0]
1
0)













A(x,y,z) =































z0 − z z < z0

z−d(y) z > d

max(z−d,z0 − z) otherwise

165

Appendix D
Pixel Shaders

This appendix shows the pixel shaders for implementing illustrative deformation on commodity

hardware. Our implementation uses Cg (nVidia) language for the description of pixel shaders,

compatible with fragment profiles fp20 through fp40.

D.1 Simple Deformation Renderer

This renderer is the basic algorithm, which implements our framework of discontinuous dis-
placement mapping. Two implementations are shown. One, a simple volume renderer without
any lighting, useful for fast deformation or previewing tool. The second, a volume renderer
with lighting, where the normals must be computed and transformed.

D.1.1 Unlit volumes
float4 main(

float3 texCoord : TEXCOORD0,
uniform sampler3D dataTexture,
uniform sampler1D transferFunction,
uniform float sliceAlpha

):COLOR {
// warp
float4 warpedCoord = warp(texCoord);
// sample
float density = tex3D(dataTexture, warpedCoord.xyz);
// classify
float4 color = tex1D(transferFunction, density);
// modulate discontinuity
float opacity = (warpedCoord.w<0.5)? 0:1;
color.w = color.w * opacity * sliceAlpha;
return color;

}

D.1.2 Warp Procedure
uniform sampler3D disp_xy;
uniform sampler3D disp_za;
float4 warp(float3 texCoord) {

float4 d1, d2;

d1 = tex3D(disp_xy, texCoord);
d2 = tex3D(disp_za, texCoord);

float3 disp = 2*float3(d1.x, d1.w, d2.x) - 1;

166

float4 warpedCoord;
warpedCoord.xyz = vector.xyz + disp;
warpedCoord.w = (2*d2.w-1);
return warpedCoord;

}

D.1.3 Shaded Volumes
float4 main(

float3 texCoord : TEXCOORD0,
uniform sampler3D dataTexture,
uniform sampler1D transferFunction,
uniform float sliceAlpha

):COLOR {
// warp
float4 warpedCoord = warp(texCoord);
// sample
float density = tex3D(dataTexture, warpedCoord.xyz);
// get normal
float3 normal0 = 2*tex3d(gradTexture, warpedCoord.xyz).xyz - 1;
float3 normal = deformNormal(normal0, texCoord, warpedCoord.w);
// classify
float4 color = getLighting(density, normal);
// modulate discontinuity
float opacity = (warpedCoord.w<0.5)? 0:1;
color.w = color.w * opacity * sliceAlpha;
return color;

}

D.1.4 Normal Estimation Procedure
float3 deformNormal(float3 normal0, float3 texCoord, float opacity) {
// 1. Estimate Jacobian

float3 texCoordX = texCoord + float3(dx,0,0);
float3 texCoordY = texCoord + float3(0,dx,0);
float3 texCoordZ = texCoord + float3(0,0,dx);
float3 texCoordX0 = texCoord - float3(dx,0,0);
float3 texCoordY0 = texCoord - float3(0,dx,0);
float3 texCoordZ0 = texCoord - float3(0,0,dx);

float3 dispx;
float3 dispy;
float3 dispz;
float3 dispx0;
float3 dispy0;
float3 dispz0;

//X+
dispx.xy = 2*tex3D(dispTex_, texCoordX).xw-1;
dispx.z = 2*tex3D(dispTex2_, texCoordX).x-1;
//Y+
dispy.xy = 2*tex3D(dispTex_, texCoordY).xw-1;
dispy.z = 2*tex3D(dispTex2_, texCoordY).x-1;
//Z+
dispz.xy = 2*tex3D(dispTex_, texCoordZ).xw-1;
dispz.z = 2*tex3D(dispTex2_, texCoordZ).x-1;
//X-
dispx0.xy = 2*tex3D(dispTex_, texCoordX0).xw-1;

167

dispx0.z = 2*tex3D(dispTex2_, texCoordX0).x-1;
//Y-
dispy0.xy = 2*tex3D(dispTex_, texCoordY0).xw-1;
dispy0.z = 2*tex3D(dispTex2_, texCoordY0).x-1;
//Z-
dispz0.xy = 2*tex3D(dispTex_, texCoordZ0).xw-1;
dispz0.z = 2*tex3D(dispTex2_, texCoordZ0).x-1;

//Central diff
float s = sizeDisp/2;
float3 dPdx = s*(dispx - dispx0);
float3 dPdy = s*(dispy - dispy0);
float3 dPdz = s*(dispz - dispz0);

float3x3 J;
J[0].xyz = float3(1+dPdx.x, dPdx.y, dPdx.z);
J[1].xyz = float3(dPdy.x, 1+dPdy.y, dPdy.z);
J[2].xyz = float3(dPdz.x, dPdz.y, 1+dPdz.z);

// 2. Multiply Jacobian
float3 normal = mul(J, normalize(preNormal));

// 3. Estimate Alpha Normal
float3 alphaNormal;
alphaNormal.x = s*2*(tex3D(dispTex2_, texCoordX)-tex3D(dispTex2_, texCoordX0));
alphaNormal.y = s*2*(tex3D(dispTex2_, texCoordY)-tex3D(dispTex2_, texCoordY0));
alphaNormal.z = s*2*(tex3D(dispTex2_, texCoordZ)-tex3D(dispTex2_, texCoordZ0));

float w = 1 - saturate((opacity-0.5)/thickness);

return normalize(lerp(normal, alphaNormal,w));
}

D.2 Feature-Aligned Renderer

This section shows the code for implementing feature-aligned deformation. This is obtained
by querying the mask volume before obtaining density and normal samples from the volume.
Similarly to our previous code, we show the rendering process for both unlit and shaded vol-
umes.

D.2.1 Unlit Volumes
float4 main(

float3 texCoord : TEXCOORD0,
uniform sampler3D dataTexture,
uniform sampler3D maxTex,
uniform sampler1D transferFunction,
uniform float sliceAlpha,
uniform float layer

):COLOR {
// warp
float4 warpedCoord = warp(texCoord);

// query feature mask
float mask = tex3D(maskTex, texCoord.xyz).w;
if(mask>=layer) {

mask0 = tex3D(maskTex, warpedCoord.xyz).w;
warpedCoord.w = (mask0<layer)? 0: warpedCoord.w;

} else {
warpedCoord.xyz = texCoord.xyz;

168

warpedCoord.w = 1;
}

// sample
float density = tex3D(dataTexture, warpedCoord.xyz);
// classify
float4 color = tex1D(transferFunction, density);
// modulate discontinuity
float opacity = (warpedCoord.w<0.5)? 0:1;
color.w = color.w * opacity * sliceAlpha;
return color;

}

D.2.2 Shaded Volumes
float4 main(

float3 texCoord : TEXCOORD0,
uniform sampler3D dataTexture,
uniform sampler3D maxTex,
uniform sampler1D transferFunction,
uniform float sliceAlpha,
uniform float layer

):COLOR {
// warp
float4 warpedCoord = warp(texCoord);
// query feature mask

float4 maskVector = tex3D(maskTex, texCoord.xyz);
float3 normalMask = normalize(2*maskVector.xyz-1);
float mask = maskVector.w;

if(mask>=layer) {
float4 mask0Vec = tex3D(maskTex, warpedCoord.xyz).w;
normalMask = normalize(2*mask0Vec.xyz-1);
mask = mask0Vec.w;
warpedCoord.w = (mask0<layer)? 0: warpedCoord.w;

} else {
warpedCoord.xyz = texCoord.xyz;
warpedCoord.w = 1;

}

// sample
float density = tex3D(dataTexture, warpedCoord.xyz);
// get normal
float3 normal0 = 2*tex3d(gradTexture, warpedCoord.xyz).xyz - 1;
float3 normalDefo = deformNormal(normal0, texCoord, warpedCoord.w);
// adjust normal
float3 normal = adjustNormal(normalDefo, normalMask, mask);

// classify
float4 color = getLighting(density, normal);
// modulate discontinuity
float opacity = (warpedCoord.w<0.5)? 0:1;
color.w = color.w * opacity * sliceAlpha;
return color;

}

169

D.2.3 Adjust Normal Procedure
float3 adjustNormal(float3 normal0, float3 normalMask, float mask) {

float delta = mask - layer;
float beta;
if(delta<0) {

beta = saturate(delta/featureThickness + 1);
} else {

beta = -saturate(-delta/featureThickness + 1);
}
float3 adjustedNormal = (1-abs(beta))*normal0 - beta*normalMask;
return normalize(adjustedNormal);

}

D.3 Surface Deformation using Ray Casting

This section presents the code for surface deformation using ray casting. The core of the imple-
mentation is findIntersection which implements a combination of linear and binary search
for finding zero crossings of the layered representation. We show the different implementations
for continuous deformation, hollow and solid cuts.

D.3.1 Continuous Deformation
float4 main(v2f IN,

uniform float3 viewDefo,
uniform float3 lightVecDefo,
uniform float delta,
sampler2D image4,
sampler3D dataTex,
sampler3D disp_xy,
sampler3D disp_za
):COLOR {
float3 coord = IN.texcoord.xyz;
float3 intersection;
float3 warpedIntersection;
bool intersect = findIntersection(coord, viewDefo, delta,

intersection, warpedIntersection);
if(!intersect) discard;

// Get normal (the same way as obtained for volumes,
// using the Jacobian of the displacement)
float3 normal = normalize(getNormal(warpedIntersection));

float3 halfVec = normalize(lightVec - viewDefo);
float4 color = getLighting(normalVec, viewDefo, lightVec, halfVec);

return color;
}

D.3.2 Hollow Cuts
float4 main(v2f IN,

uniform float3 viewDefo,
uniform float3 lightVecDefo,
uniform float delta,
sampler2D image4,
sampler3D dataTex,

170

sampler3D disp_xy,
sampler3D disp_za
):COLOR {
float3 coord = IN.texcoord.xyz;
float3 intersection;
float3 warpedIntersection;
bool intersect;

for(int i=0;i<num_iterations;i++) {
intersect = findIntersection(coord, viewDefo, delta,

intersection, warpedIntersection);
if(intersect) break;
coord = intersection + viewDefo*delta;

}
if(!intersect) discard;

// Get normal (the same way as obtained for volumes,
// using the Jacobian of the displacement)
float3 normal = normalize(getNormal(warpedIntersection));

float3 halfVec = normalize(lightVec - viewDefo);
float4 color = getLighting(normalVec, viewDefo, lightVec, halfVec);

return color;
}

D.3.3 Solid Cuts
float4 main(v2f IN,

uniform float3 viewDefo,
uniform float3 lightVecDefo,
uniform float delta,
sampler2D image4,
sampler3D dataTex,
sampler3D disp_xy,
sampler3D disp_za
):COLOR {
float3 coord = IN.texcoord.xyz;
float3 intersection;
float3 warpedIntersection;
bool intersect;

for(int i=0;i<num_iterations;i++) {
intersectAlpha = findIntersectionAlpha(coord, viewDefo, delta,

intersectionA, warpedIntersectionA);
normal = getNormalAlpha(warpedIntersectionA);

if(intersectAlpha) break;
intersect = findIntersection(intersectionA, viewDefo, delta,

intersection, warpedIntersection);
normal = getNormal(warpedIntersection);
if(intersect) break;
coord = intersection + viewDefo*delta;

}
if(!intersect) discard;

// Get normal (the same way as obtained for volumes,
// using the Jacobian of the displacement)
float3 halfVec = normalize(lightVec - viewDefo);

171

float4 color = getLighting(normalVec, viewDefo, lightVec, halfVec);

return color;
}

D.3.4 Find Intersection
bool findIntersection(float3 startCoord,

float3 ray,
float delta,
out float3 intersection,
out float3 warpedIntersection) {

bool intersect;
float3 coord = startCoord;
float4 warpedCoord = warp(coord);

float distance;
float prevDistance = sampleImplicit(warpedCoord.xyz);

// Linear search
for(int i=0;i<num_linear_steps;i++) {
warpedCoord = warp(coord);
if(coord.x<0 || coord.y<0 || coord.z<0 || coord.x>1 || coord.y>1 || coord.z>1) {
intersect = false;
intersection = startCoord;
break;

}
distance = sampleImplicit(warpedCoord);
if(distance*prevDistance<0) {
intersect = true;
break;

}

intersection = coord;
coord = coord + ray*delta0;
prevDistance = distance;

}

// Binary Search
float3 coord2;
for(int i=0;i<num_binary_steps;i++) {

delta = delta*0.5;
coord2 = coord0+ray*delta;
warpedCoord = warp(coord2);
distance = sampleImplicit(warpedCoord);
if (distance*prevDistance>0) {
coord0 = coord2;

}
}

// find alpha component of deformation
float alpha = (warpedCoord.w<0.5)? -1:1;

if(alpha<0) {
// intersection within volume of cut
intersect = false;

}

intersection = coord0;

172

warpedIntersection = warpedCoord;

return intersect;
}

D.3.5 Sample Implicit Representation
This method differs depending on the type of layered representation. For a 3D distance field
represented as a 3D texture dataTex is:

float sampleImplicit0(float3 texCoord) {
return (2*tex3D(tex_, texCoord).w-1);

}

For a depthmap, represented as a 2D texture depthmap.

float sampleImplicit(float3 texCoord) {
return tex2D(depthmap_,texCoord.xy).x-texCoord.z;

}

Finally, for a depth map cube, represented as 6 textures texZ1, texZ0, texX1, textX0, texY1
and texY0:

float sampleImplicit(float3 texCoord) {
// samples are obtained at the center of voxels
// therefore we need to apply an offset of ’deltasample’
float deltasample = 0.5f/sizevol;
float vZ1 = tex2D(texZ1_, texCoord.xy).x -deltasample;
float dZ1 = vZ1-texCoord.z;

float2 coordZ0 = float2(1-texCoord.x, texCoord.y);
float vZ0 = tex2D(texZ0_, coordZ0.xy).x-deltasample;
float dZ0 = texCoord.z -(1-vZ0);

float2 coordX0 = float2(1-texCoord.z,texCoord.y);
float vX0 = tex2D(texX0_,coordX0).x - deltasample;
float dX0 = vX0-texCoord.x;

float2 coordX1 = texCoord.zy;
float vX1 = tex2D(texX1_,coordX1).x - deltasample;
float dX1 = texCoord.x -(1-vX1);

float2 coordY0 = float2(texCoord.x,1-texCoord.z);
float vY0 = tex2D(texY0_,coordY0).x - deltasample;
float dY0 = vY0 - texCoord.y;

float2 coordY1 = texCoord.xz;
float vY1 = tex2D(texY1_,coordY1).x - deltasample;
float dY1 = texCoord.y - (1-vY1);

float depth = combine(dZ1,dZ0);
depth = combine(depth, dX1);
depth = combine(depth, dX0);
depth = combine(depth, dY0);
depth = combine(depth, dY1);
return depth;

}

173

Here, the procedure combine is used to combine two depth fields, and it can be implemented
as follows:

float combine(float depth1, float depth2) {
float deltasample1 = 0; //strength_ * 0.5f/sizevol;
float u = min(abs(depth1), abs(depth2));
float signu = (depth1<0 && depth2<0)? -1:1;
return signu*u;

}

174

References

[1] Bodies the exhibition, 2005.

[2] Ageia. Physics, gameplay and the physics processing unit. Technical report, 2005.

[3] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in remeshing of
surfaces. In The state-of-the-art report of the AIM@SHAPE EU network, 2005.

[4] Maya: A 3d animation and visual effects tool, 2002.

[5] A. Barr. Ray tracing deformed surfaces. Computer Graphics (Proc. SIGGRAPH 86),
20(4):287–296, 1986.

[6] Alan H. Barr. Global and local deformations of solid primitives. In SIGGRAPH ’84:
Proc. of the 11th annual conference on Computer graphics and interactive techniques,
pages 21–30, New York, NY, USA, 1984. ACM Press.

[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems: building
blocks for iterative methods. SAIM, Philadelphia, PA, 2nd edition, 1994.

[8] Daniel Bielser, Pascal Glardon, Matthias Teschner, and Markus Gross. A state machine
for real-time cutting of tetrahedral meshes. In PG ’03: Proc. of the 11th Pacific Confer-
ence on Computer Graphics and Applications, page 377, Washington, DC, USA, 2003.
IEEE Computer Society.

[9] J. F. Blinn. Simulation of wrinkled surfaces. Computer Graphics (Proc. SIGGRAPH
78), 12(3):286–292, 1978.

[10] Mario Botsch and Leif Kobbelt. Multiresolution surface representation based on dis-
placement volumes. Computer Graphics Forum, 22(3):483–492, 2003.

[11] Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric deformable models for
surgery simulation using finite elements and condensation. Computer Graphics Forum,
15(3):57–66, 1996.

[12] Stefan Bruckner, Sören Grimm, Armin Kanitsar, and Meister Eduard Gröller. Illustrative
context-preserving volume rendering. In Proceedings of EuroVis 2005, pages 69–76,
May 2005.

[13] Stefan Bruckner and M. Eduard Groller. Exploded views for volume data. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1077–1084, 2006.

[14] Stefan Bruckner and Meister Eduard Gröller. Volumeshop: An interactive system for
direct volume illustration. In H. Rushmeier C. T. Silva, E. Gröller, editor, Proceedings
of IEEE Visualization 2005, pages 671–678, October 2005.

175

[15] Tom Brunet, K.Evan Nowak, and Michael Gleicher. Integrating dynamic deformations
into interactive volume visualization. In Proceedings Eurographics/IEEE-VCTC Sym-
posium on Visualization (EuroVis) 2006, 2006.

[16] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. In-
teractive skeleton-driven dynamic deformations. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and interactive techniques, pages 586–
593, New York, NY, USA, 2002. ACM Press.

[17] Billy Chen, Eyal Ofek, Heung-Yeung Shum, and Marc Levoy. Interactive deformation
of light fields. In SI3D ’05: Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 139–146, New York, NY, USA, 2005. ACM Press.

[18] H. Chen, J. Hesser, and R. Manner. Ray casting free-form deformed-volume objects.
The Journal of Visualization and Computer Animation, 14:61–72(12), 2003.

[19] M. Chen, S. Islam, M. W. Jones, P.-Y. Shen, D. Silver, S. J. Walton, and P. J. Willis.
Deforming and animating discretely sampled object representations. In Eurographics
State of the Art Reports (to appear), Dublin, Ireland, 2005.

[20] M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea. Spatial transfer functions: a
unified approach to specifying deformation in volume modeling and animation. In Proc.
Volume Graphics ’03, pages 35–44. ACM Press, 2003.

[21] Y. Chen, Q. Zhu, and A. Kaufman. Physically-based animation of volumetric objects.
In Proc. IEEE Computer Animation ’98, pages 154–160, 1998.

[22] R. L. Cook. Shade trees. Computer Graphics (Proc. SIGGRAPH 84), 18(3):223–231,
1984.

[23] R. L. Cook, L. Carpenter, and E. Catmull. The Reyes image rendering architecture.
Computer Graphics (Proc. SIGGRAPH 87), 21(4):95–102, 1987.

[24] Carlos D. Correa and Deborah Silver. Dataset traversal with motion-controlled transfer
functions. In IEEE Visualization 2005, pages 359 – 366, October 2005.

[25] S. Cotin and H. Delingette. Real-time elastic deformations of soft tissues for surgery
simulation. IEEE Transactions on Visualization and Computer Graphics, 5(1):62–71,
1999.

[26] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 303–312, New York, NY, USA,
1996. ACM Press.

[27] Harry Davis. Introduction to Vector Analysis. Allyn and Bacon, 3rd edition, 1967.

[28] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic real-
time deformations using space & time adaptive sampling. In SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics and interactive techniques,
pages 31–36, 2001.

176

[29] Hervé; Delingette, Stéphane Cotin, and Nicholas Ayache. A hybrid elastic model allow-
ing real-time cutting, deformations and force-feedback for surgery training and simula-
tion. In CA ’99: Proc. of the Computer Animation, page 70, Washington, DC, USA,
1999. IEEE Computer Society.

[30] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive cutaway illustrations. In Proceed-
ings of Eurographics Conference ’03, 2003.

[31] Discreet. 3d studio max, (3dsmax), 2004.

[32] M. Doggett and J. Hirche. Adaptive view dependent tessellation of displacement maps.
In Proc. EG/SIGGRAPH Workshop on Graphics Hardware, pages 59–66, Interlaken,
Switzerland, 2000.

[33] W. Donnelly. Per-pixel displacement mapping with distance functions. In GPU Gems
2, pages 123–136., 2005.

[34] David Ebert and Penny Rheingans. Volume illustration: non-photorealistic rendering of
volume models. In VIS ’00: Proceedings of the conference on Visualization ’00, pages
195–202, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[35] Gershon Elber. Geometric deformation-displacement maps. In PG ’02: Proceedings of
the 10th Pacific Conference on Computer Graphics and Applications, page 156, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[36] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In HWWS ’01: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9–16,
New York, NY, USA, 2001. ACM Press.

[37] S. Fang, R. Raghavan, and J. T. Richtsmeier. Volume morphing methods for landmark-
based 3D image deformation. In M. H. Loew and K. M. Hanson, editors, Proc. SPIE Vol.
2710, p. 404-415, Medical Imaging 1996: Image Processing, Murray H. Loew; Kenneth
M. Hanson; Eds., pages 404–415, April 1996.

[38] S. Fisher and M.C. Lin. Deformed distance fields for simulation of non-penetrating
flexbile bodies. In Proceedings of the Eurographics workshop on Computer animation
and simulation, pages 99–111, 2001.

[39] A. O. Frank, I. A. Twombly, T. J. Barth, and J. D. Smith. Finite element methods for
real-time haptic feedback of soft-tissue models in virtual reality simulators. In Proc.
Virtual Reality, pages 257–xxx, 2001.

[40] Nikhil Gagvani and Deborah Silver. Animating volumetric models. Graph. Models,
63(6):443–458, 2001.

[41] James E. Gain and Neil A. Dodgson. Preventing self-intersection under free-form de-
formation. IEEE Transactions on Visualization and Computer Graphics, 7(4):289–298,
2001.

[42] Sarah F. Gibson. 3d chainmail: a fast algorithm for deforming volumetric objects. In
SI3D ’97: Proceedings of the 1997 symposium on Interactive 3D graphics, pages 149–
ff., New York, NY, USA, 1997. ACM Press.

177

[43] S. Gumhold and T. Hüttner. Multiresolution rendering with displacement mapping. In
Proc. EG/SIGGRAPH Workshop on Graphics Hardware, pages 55–66, 1999.

[44] Xiaohu Guo and Hong Qin. Real-time meshless deformation: Collision detection and
deformable objects. Comput. Animat. Virtual Worlds, 16(3-4):189–200, 2005.

[45] Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-quality two-level vol-
ume rendering of segmented data sets on consumer graphics hardware. In VIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 40, Washington, DC,
USA, 2003. IEEE Computer Society.

[46] Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja Buhler, and Markus Gross.
Real-time ray-casting and advanced shading of discrete isosurfaces. In Eurographics
2005, 2005.

[47] Jan Hardenbergh and Yin Wu. Emissive clipping planes for volume rendering. In SIG-
GRAPH ’03: ACM SIGGRAPH 2003 Sketches & Applications, pages 1–1, New York,
NY, USA, 2003. ACM Press.

[48] Taosong He, Sidney Wang, and Arie Kaufman. Wavelet-based volume morphing. In VIS
’94: Proceedings of the conference on Visualization ’94, pages 85–92, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[49] R. Herrlinger. History of Medical Illustration from Antiquity to 1600. Editions Medicina
Rara, 1970.

[50] Gentaro Hirota, Renee Maheshwari, and Ming C. Lin. Fast volume-preserving free
form deformation using multi-level optimization. In SMA ’99: Proc. of the fifth ACM
symposium on Solid modeling and applications, pages 234–245, New York, NY, USA,
1999. ACM Press.

[51] B.K.P. Horn. Obtaining shape from shading information. In The Psychology of Com-
puter Vision, pages 115–155, 1975.

[52] Jing Hua and Hong Qin. Haptics-based dynamic implicit solid modeling. IEEE Trans-
actions on Visualization and Computer Graphics, 10(5):574–586, 2004.

[53] John F. Hughes. Scheduled fourier volume morphing. In SIGGRAPH ’92: Proceedings
of the 19th annual conference on Computer graphics and interactive techniques, pages
43–46, New York, NY, USA, 1992. ACM Press.

[54] Shoukat Islam, Deborah Silver, and Min Chen. Volume splitting and its applications.
IEEE Transactions on Visualization and Computer Graphics, 13(2):193–203, 2007.

[55] Alark Joshi and Penny Rheingans. Illustration-inspired techniques for visualizing time-
varying data. In IEEE Visualization, page 86, 2005.

[56] Kenneth Joy. Bernstein polynomials. On-line Geometryc Modeling Notes, 2000.

[57] Jan Kautz and Hans-Peter Seidel. Hardware accelerated displacement mapping for im-
age based rendering. In GRIN’01: No description on Graphics interface 2001, pages
61–70, Toronto, Ont., Canada, Canada, 2001. Canadian Information Processing Society.

178

[58] R. Keiser, M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Contact handling for
deformable point-based objects. In Proc. Vision, Modeling, Visualization (VMV), pages
315–322, November 2004.

[59] Youngihn Kho and Michael Garland. Sketching mesh deformations. In SI3D ’05:Proc.
of the 2005 symposium on Interactive 3D graphics and games, pages 147–154, New
York, NY, USA, 2005. ACM Press.

[60] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. In VIS ’01: Pro-
ceedings of the conference on Visualization ’01, pages 255–262, Washington, DC, USA,
2001. IEEE Computer Society.

[61] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes. In
Computer Graphics (Proc. SIGGRAPH 96), pages 313–324, 1996.

[62] J. Kruger and R. Westermann. Acceleration techniques for gpu-based volume render-
ing. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 38,
Washington, DC, USA, 2003. IEEE Computer Society.

[63] Y. Kurzion and R. Yagel. Continuous and discontinuous deformation using ray deflec-
tors. In Proceedings of GRAPHICON’96, pages 102–110, July 1996.

[64] Yair Kurzion and Roni Yagel. Interactive space deformation with hardware-assisted
rendering. IEEE Comput. Graph. Appl., 17(5):66–77, 1997.

[65] E. LaMar, B. Hamann, and K. I. Joy. A magnification lens for interactive volume visu-
alization. In Proc. IEEE Pacific Conference on Computer Graphics and Applications,
pages 223–231, 2001.

[66] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. In Computer
Graphics (Proc. SIGGRAPH 2000), pages 85–94. ACM Press, 2000.

[67] Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature -based volume meta-
morphosis. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pages 449–456, New York, NY, USA, 1995.
ACM Press.

[68] Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph. Appl.,
8(3):29–37, 1988.

[69] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified ap-
proach to shape interpolation and skeleton-driven deformation. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and interactive tech-
niques, pages 165–172, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-
lishing Co.

[70] Wei Li, Klaus Mueller, and Arie Kaufman. Empty space skipping and occlusion clip-
ping for texture-based volume rendering. In VIS ’03: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), page 42, Washington, DC, USA, 2003. IEEE Computer
Society.

179

[71] J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations incorporating rigid struc-
tures. In MMBIA ’96: Proceedings of the 1996 Workshop on Mathematical Methods
in Biomedical Image Analysis (MMBIA ’96), page 104, Washington, DC, USA, 1996.
IEEE Computer Society.

[72] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann. A survey of surgical simulation: appli-
cations, technology and education. Presence, 12(6), December 2003.

[73] J. R. Logie and J. W. Patterson. Inverse displacement mapping in the general case.
Computer Graphics Forum, 14(5):261–273, 1995.

[74] W. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. In SIGGRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, pages 163–169, 1987.

[75] Ron MacCracken and Kenneth I. Joy. Free-form deformations with lattices of arbitrary
topology. In SIGGRAPH ’96: Proc. of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 181–188, New York, NY, USA, 1996. ACM Press.

[76] Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using deformations for
browsing volumetric data. In Proceedings of IEEE Visualization (VIS) 2003, pages 401–
408, October 2003.

[77] Wouter Mollemans, Filip Schutyser, Johan Van Cleynenbreugel, and Paul Suetens.
Tetrahedral mass spring model for fast soft tissue deformation. In Proc. International
Symposium on Surgery Simulation and Soft Tissue Modeling, pages 145–154, 2003.

[78] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. Stable real-time defor-
mations. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 49–54, San Antonio, Texas, 2002.

[79] M. Müller and M. Gross. Interactive virtual materials. In Proc. Graphics Interface (GI
2004), pages 239–246, May 2004.

[80] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations based
on shape matching. ACM Transactions on Graphics, 24(3), 2005.

[81] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Cross, and M. Alexa. Point based ani-
mation of elastic, plastic and melting objects. In Proc. ACM SIGGRAPH Symposium on
Computer Animation, pages 141–151, 2004.

[82] A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M.Carlson. Physically based de-
formable models in computer graphics. In Eurographics STAR Report, 2005.

[83] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A sketch-based in-
terface for detail-preserving mesh editing. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers, pages 1142–1147, New York, NY, USA, 2005. ACM Press.

[84] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical modeling and
animation of ductile fracture. In SIGGRAPH ’02: Proc. of the 29th annual conference
on Computer graphics and interactive techniques, pages 291–294, New York, NY, USA,
2002. ACM Press.

180

[85] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and animation of brit-
tle fracture. In SIGGRAPH ’99: Proc. of the 26th annual conference on Computer
graphics and interactive techniques, pages 137–146, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[86] Kyoungsu Oh, Hyunwoo Ki, and Cheol-Hi Lee. Pyramidal displacement mapping: a
gpu based artifacts-free ray tracing through an image pyramid. In VRST ’06: Proceed-
ings of the ACM symposium on Virtual reality software and technology, pages 75–82,
New York, NY, USA, 2006. ACM Press.

[87] M. M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping. In Computer
Graphics (Proc. SIGGRAPH 2000), pages 359–368. 2000.

[88] Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo Igarashi. Volumetric illustra-
tion: designing 3d models with internal textures. ACM Trans. Graph., 23(3):322–328,
2004.

[89] M. Pharr and P. Hanrahan. Geometry caching for ray-tracing displacement maps. In
Proc. Eurographics Rendering Workshop, pages 31–40, 1996.

[90] Fabio Policarpo and Manuel M. Oliveira. Relief mapping of non-height-field surface
details. In SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics
and games, pages 55–62, New York, NY, USA, 2006. ACM Press.

[91] Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. Shell maps. ACM
Trans. Graph., 24(3):626–633, 2005.

[92] Ari Rappoport, Alla Sheffer, and Michel Bercovier. Volume-preserving free-form solid.
In SMA ’95: Proc. of the third ACM symposium on Solid modeling and applications,
pages 361–372, New York, NY, USA, 1995. ACM Press.

[93] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume render-
ing on standard PC graphics hardware using multi-textures and multi-state rasterization.
In Proc. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 109–118,
2000.

[94] C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner. Fast volumetric defor-
mation on general purpose hardware. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 17–24, New York,
NY, USA, 2001. ACM Press.

[95] Harry Robin. The scientific image: From cave to computer. H.N. Abrams, Inc., 1992.

[96] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and Wolfgang Strasser.
Smart hardware-accelerated volume rendering. In VISSYM ’03: Proceedings of the sym-
posium on Data visualisation 2003, pages 231–238, Aire-la-Ville, Switzerland, Switzer-
land, 2003. Eurographics Association.

[97] Detlef Ruprecht and Heinrich Müller. Image warping with scattered data interpolation.
IEEE Comput. Graph. Appl., 15(2):37–43, 1995.

181

[98] Stanley E. Scharoff, Alex Pentland, Irfan Essa, Martin Friedmann, and Bradley
Horowitz. The thingworld modeling system: virtual sculpting by modal forces. SIG-
GRAPH Computer Graphics, 24(2):143–144, 1990.

[99] G. Schaufler and M. Priglinger. Efficient displacement mapping by image warping. In
Proc. Eurographics Rendering Workshop, pages 175–186, 1999.

[100] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric
models. In SIGGRAPH ’86: Proc. of the 13th annual conference on Computer graphics
and interactive techniques, pages 151–160, New York, NY, USA, 1986. ACM Press.

[101] Guy Sela, Jacob Subag, Alex Lindblad, Dan Albocher, Sagi Schein, and Gershon Elber.
Real-time haptic incision simulation using fem-based discontinuous free form deforma-
tion. In SPM ’06: Proc. of the 2006 ACM symposium on Solid and physical modeling,
pages 75–84, New York, NY, USA, 2006. ACM Press.

[102] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski. Layered depth images.
In SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, pages 231–242, New York, NY, USA, 1998. ACM Press.

[103] Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance transform using
graphics hardware. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003
(VIS’03), page 12, Washington, DC, USA, 2003. IEEE Computer Society.

[104] V. Singh and D. Silver. Interactive volume manipulation with selective rendering for im-
proved visualization. In Proc. IEEE Symposium on Volume Visualization and Graphics
’04, pages 95–102. IEEE Computer Society, 2004.

[105] V. Singh, D. Silver, and N. Cornea. Real-time volume manipulation. In Proc. Volume
Graphics ’03, pages 45–51. ACM Press, 2003.

[106] Raymond Smith, Wei Sun, Adrian Hilton, and John Illingworth. Layered animation
using displacement maps. In CA ’00: Proceedings of the Computer Animation, page
146, Washington, DC, USA, 2000. IEEE Computer Society.

[107] Mario Costa Sousa, David S. Ebert, Don Stredney, and Nikolai A. Svakhine. Illustra-
tive Visualization for Medical Training. In László Neumann, Mateu Sbert Casasayas,
Bruce Gooch, and Werner Purgathofer, editors, Proceedings of the First Eurographics
Workshop on Computational Aesthetics in Graphics, Visualization and Imaging 2005
(May 18–20, 2005, Girona, Spain), pages 201–208, Aire-la-Ville, Switzerland, 2005.
Eurographics Association.

[108] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume rendering
framework for graphics-hardware-based ray casting. In Proc. Volume Graphics 2005,
pages 187–195, 2005.

[109] Denis Steinemann, Miguel A. Otaduy, and Markus Gross. Fast arbitrary splitting of
deforming objects. In ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation 2006, 2006.

[110] Avneesh Sud, Naga Govindaraju, Russell Gayle, and Dinesh Manocha. Interactive 3d
distance field computation using linear factorization. In SI3D ’06: Proceedings of the

182

2006 symposium on Interactive 3D graphics and games, pages 117–124, New York, NY,
USA, 2006. ACM Press.

[111] Nikolai Svakhine, David S. Ebert, and Don Stredney. Illustration motifs for effective
medical volume illustration. IEEE Comput. Graph. Appl., 25(3):31–39, 2005.

[112] G. Szekely, Ch. Brechbuhler, R. Hutter, A. Rhomberg, N. Ironmonger, and P. Schmid.
Modelling of soft tissue deformation for laparoscopic surgery simulation. Medical Im-
age Analysis, 4(1):57–66, 2000.

[113] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: viscolelas-
ticity, plasticity, fracture. In SIGGRAPH ’88: Proc. of the 15th annual conference on
Computer graphics and interactive techniques, pages 269–278, New York, NY, USA,
1988. ACM Press.

[114] D’Arcy Wentworth Thompson. On Growth and Form. Cambridge University Press,
1961.

[115] Christian Tietjen, Tobias Isenberg, and Bernhard Preim. Combining silhouettes, sur-
face, and volume rendering for surgery education and planning. In Eurographics / IEEE
VGTC Symposium on Visualization (EUROVIS 2005), pages 303–310, Leeds, UK, June
1-3 2005.

[116] S. M. F. Treavett and M. Chen. Pen-and-ink rendering in volume visualisation. In VIS
’00: Proceedings of the conference on Visualization ’00, pages 203–210, Los Alamitos,
CA, USA, 2000. IEEE Computer Society Press.

[117] Ivan Viola, Armin Kanitsar, and Meister Eduard Groller. Importance-driven volume
rendering. In VIS ’04: Proceedings of the conference on Visualization ’04, pages 139–
146, Washington, DC, USA, 2004. IEEE Computer Society.

[118] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field based shape
deformations. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 1118–1125,
New York, NY, USA, 2006. ACM Press.

[119] Gunther von Hagens’ Bodyworlds, 2005.

[120] S.J. Walton and M.W. Jones. Volume wires : A framework for empirical non-linear
deformation of volumetric datasets. Journal of WSCG 2006, 14, 2006.

[121] L. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum. Generalized displacement
maps. In Proc. Eurographics Symposium on Rendering, 2004.

[122] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum. View-dependent
displacement mapping. ACM Transactions on Graphics (Proc. SIGGRAPH 2003),
22(3):334–339, 2003.

[123] Lujin Wang, Ye Zhao, Klaus Mueller, and Arie E. Kaufman. The magic volume lens:
An interactive focus+context technique for volume rendering. In IEEE Visualization,
page 47, 2005.

[124] Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Interactive clipping techniques for
texture-based volume visualization and volume shading. IEEE Trans. Vis. Comput.
Graph., 9(3):298–312, 2003.

183

[125] Rüdiger Westermann and Thomas Ertl. Efficiently using graphics hardware in volume
rendering applications. In SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages 169–177, New York, NY, USA,
1998. ACM Press.

[126] Rüdiger Westermann and Christof Rezk-Salama. Real-time volume deformations. Com-
put. Graph. Forum, 20(3), 2001.

[127] David F. Wiley, Nina Amenta, Dan A. Alcantara, Deboshmita Ghosh, Yong Joo Kil, Eric
Delson, Will Harcourt-Smith, Katherine St. John, F. James Rohlf, and Bernd Hamann.
Evolutionary morphing. In IEEE Visualization, page 55, 2005.

[128] A. Witkin and W. Welch. Fast animation and control of nonrigid structures. Computer
Graphics (Proc. SIGGRAPH 90), 24(4):243–252, 1990.

[129] Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Tendick. Adaptive nonlin-
ear finite elements for deformable body simulation using dynamic progressive meshes.
Comput. Graph. Forum, 20(3), 2001.

[130] Xunlei Wu and Frank Tendick. Multigrid integration for interactive deformable body
simulation. In Proc. ISMS, pages 92–104, 2004.

[131] Yi Xu and Yee-Hong Yang. Object representation using 1d displacement mapping. In GI
’04: Proceedings of the 2004 conference on Graphics interface, pages 33–40, School of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 2004. Canadian
Human-Computer Communications Society.

[132] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. Large mesh deformation using the volumetric graph laplacian. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 496–503, New York, NY, USA,
2005. ACM Press.

[133] Q. Zhu, Y. Chen, and A. Kaufman. Real-time biomechanically-based muscle volume
deformation using FEM. In Proc. Eurographics 1998, pages 275–284, 1998.

[134] Y. Zhuang and J. F. Canny. Real-time global deformations. In Proc. 4th International
Workshop on Algorithmic Foundations of Robotics, 2000.

[135] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multiresolution mesh edit-
ing. In SIGGRAPH ’97: Proc. of the 24th annual conference on Computer graph-
ics and interactive techniques, pages 259–268, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

184

Vita

Carlos D. Correa

2007 Ph. D. in Electrical and Computer Engineering, Rutgers University

2003 M. Sc. in Electrical and Computer Engineering, Rutgers University

1998 B. Sc. in Computer Engineering, EAFIT University, Colombia.

2006-2007 Teaching Assistant, Department of Electrical and Computer Engineering.

2005-2007 Research Assistant, Visualization Group

2001-2004 Research Assistant, Collaboration Group, CAIP Center, Rutgers U niversity

1998-2000 Research Assistant and Consultant. Virtual Reality Lab and Conexiones Project.
EAFIT University

Relevant Publications and Presentations
• Carlos D. Correa, Deborah Silver and Min Chen. Feature Aligned Volume Manipulation
for Illustration and Visualization. IEEE Transactions on Visualization and Computer Graphics
(Proceedings Visualization / Information Visualization 2006), vol. 12, no. 5, Sept.-Oct. 2006,
pp. 1069-1076.
• M. Chen, C.Correa, S. Islam, M.W. Jones, P.Y.Shen, D.Silver, S.J.Watson and P.J. Willis.
Manipulating, Deforming and Animating Sampled Object Representations. Accepted for pub-
lication in : Computer Graphics Forum, 2007.
• Carlos D. Correa, Deborah Silver and Min Chen. Discontinuous Displacement Mapping for
Volume Graphics. Eurographics/IEEE VGTC Workshop on Volume Graphics 2006, VG’06,
Boston, MA, 30-31 July, 2006, pp. 9-16.
• Carlos D. Correa and Deborah Silver. Dataset Traversal with Motion-Controlled Transfer
Functions. Proceedings of IEEE Visualization 2005. Minneapolis, Min. 23-28 Oct. 2005, pp.
359-366.
• M. Chen, C. Correa, S. Islam, M.W. Jones, P.-Y. Shen, D. Silver, S. J. Watson, P.J. Willis (In
Alphabetical Order). Deforming and Animating Discretely Sampled Object Representations.
Eurographics 2005, State of the Art Reports (STAR), August 29 - September 2, 2005, pp. 113-
140.
• Carlos Correa. ”Hands-in” Visualization: An Active Approach for Interactive Manipulation
of Volumetric Objects. IBM Graphics and Visualization Student Symposium (Invited Talk).
Dec 6, 2005.

