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A wide range of important problems in civil engineering can be classified as 

inverse problems. In such problems, the observational data related to the performance of 

a system is known, and the characteristics of the system or the input are sought. There are 

two general approaches to the solution of inverse problems: deterministic and 

probabilistic. Traditionally, inverse problems in civil engineering have been solved using 

a deterministic approach. In this approach, the objective is to find a model of the system 

that its theoretical response best fits the observed data. In deterministic approach to the 

solution of inverse problems, it is implicitly assumed that the uncertainties in data and 

theoretical models are negligible. However, this assumption is not valid in many 

applications, and therefore, effects of data and modeling uncertainties on the obtained 



 iii

solution should be evaluated. In this dissertation, a general probabilistic approach to the 

solution of the inverse problems is introduced, which offers the framework required to 

obtain uncertainty measures for the solution. Techniques for direct analytical evaluation 

and numerical approximation of the probabilistic solution using Monte Carlo Markov 

Chains (MCMC), with and without Neighborhood Algorithm (NA) approximation, are 

introduced and explained. The application of the presented concepts and techniques are 

then illustrated for three important classes of inverse problems in geotechnical and 

transportation engineering as application examples. These applications are: Falling 

Weight Deflectometer (FWD) backcalculation, model calibration based on geotechnical 

instrument measurements, and seismic waveform inversion for shallow subsurface 

characterization. For each application, the probabilistic formulation is presented; the 

solution is obtained; and the advantages of the probabilistic approach are illustrated and 

discussed. 
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1 Introduction 
 

 

 

 

 

 

 

Statement of the Problem 
A wide range of tasks in civil engineering includes solution of inverse problems. 

In such problems, the observational data regarding the performance of a system is known 

and the information about the system is sought. Examples of inverse problems in civil 

engineering are interpretation of geophysical and nondestructive test data, determination 

of material constitutive parameters from laboratory or field data, earthquake location 

estimation, and interpretation of geotechnical instrumentation readings.  

There are two general approaches to the solution of inverse problems: 

deterministic and probabilistic approaches. In deterministic approach to inverse 

problems, which has been historically used for applications in civil engineering 

[Santamarina, Fratta, 1998], the objective is to find the model of a system that its 

theoretical response best fits the observed data. The obtained best fit model is then 

generally chosen to represent the inverse problem solution. This approach provides a 

single model as the solution of the problem, meaning that no uncertainty in the observed 

data or in the theoretically calculated model predictions is considered. However, data and 
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modeling uncertainties are always present, and their effect on the obtained results should 

be evaluated. Additionally, there are many situations, where there is information about 

the expected results prior to the solution of the inverse problem. For example, this 

information can be in the form of the limits of expected values or general trend of the 

results. Such information is important and should be included in the solution of the 

inverse problem. 

The probabilistic approach to the solution inverse problems, which is a new 

approach in civil engineering, provides the framework required for obtaining the solution 

of the inverse problem and offers mathematical techniques to include prior information 

about the solution and to evaluate uncertainty measures [Tarantola, 2005]. The 

introduction and application of the probabilistic approach to problems in civil 

engineering is the main focus of this research. 

 

Objectives 
The objectives of this research are: 

 

• introduction of the probabilistic approach to the solution of inverse,  

• presentation of the required mathematical background, 

• development of computational tools required for the implementation of the 

approach, and  

• illustration of its application and advantages for the solution of inverse 

problems in geotechnical and transportation engineering.  

 



3 

 

Three inverse problems in geotechnical and transportation engineering were 

selected as application examples. These problems are: 

 

• Falling Weight Deflectometer (FWD) backcalculation, 

• Model calibration based on geotechnical instrument measurements, and 

• Seismic waveform inversion. 

 

Organization 
Following the introduction, the concept of uncertainty in the solution of inverse 

problems is formally introduced in chapter two, and its importance is highlighted.  

In chapter three, the probabilistic solution of inverse problems is introduced as the 

main tool in evaluation of uncertainties in the solution of inverse problems. An overview 

of the major concepts used in probabilistic approach is then provided and the 

mathematical formulation for the probabilistic solution is presented in general terms 

using the introduced concepts.  

Chapter four presents several techniques for numerical evaluation of the 

probabilistic solution. In this chapter, direct application of the developed formulation for 

simple problems is discussed. For complex problems that direct application of the 

developed formulation is not feasible, a numerical technique for the solution of the 

problem using Monte Carlo Markov Chains (MCMC) is introduced and explained. To 

further reduce computational time of obtaining a solution for complex problems, the 

introduced MCMC technique is integrated with the recently developed Neighborhood 
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Algorithm (NA) to obtain an approximation to the probabilistic solution. Details of 

integration of NA with MCMC are presented, discussed, and explained in this chapter. 

Chapters five through seven provide the application examples. In chapter five, 

FWD backcalculation problem is considered. The probabilistic formulation of this 

problem is introduced and the results of probabilistic backcalculation of synthetic and 

experimental data are presented. Using the synthetic test data, different approaches to 

backcalculation, such as backcalculation using deflection bowl or time history records, 

are studied and compared. The results of these comparisons are also presented in this 

chapter. 

In chapter six, a brownfield redevelopment project is used as an example to 

demonstrate how the probabilistic approach to the solution of inverse problems can be 

used to calibrate a predictive model and complement the application of the observational 

method in geotechnical engineering. In this chapter, an overview of the mentioned 

brownfield redevelopment project is provided and the results of the calibration of a 

settlement prediction model using the probabilistic approach are presented and discussed. 

Chapter seven presents the probabilistic approach to inversion of the seismic 

waveforms for evaluation of soil and pavement layer moduli and thicknesses. The 

probabilistic formulation of this problem is introduced and the results of probabilistic 

backcalculation of synthetic and experimental data are presented.  

Finally, chapter eight provides the summary of the research and offers 

recommendations for future research. 
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2 Uncertainties in Measurements 
 

“To measure is to know.” 
 

Lord Kelvin (1824-1907) 
 

 

 

 

Introduction 
In comparison to the traditional deterministic approach, the main advantage of the 

probabilistic approach to the solution of inverse problems is its ability to quantify the 

uncertainties of the obtained results. Evaluation of these uncertainties requires a 

probabilistic representation of uncertainties of the input parameters of an inverse 

problem. Therefore, to provide the required background, the concept of uncertainty is 

formally introduced in this chapter.  

The concept of uncertainty, as it relates to direct physical measurements, is a very 

familiar and accepted concept in engineering. In simple terms, it is a representation of the 

likely values of the measurement results. The concept of uncertainty is sometimes 

confused with the concept of error. Error refers to the difference between the true value 

of the quantity subject to measurement, called measurand, and the measurement result. A 

measurement can unknowingly be very close to the unknown value of the measurand, 

thus having a negligible error; however, it may have a large uncertainty. Since the exact 

value of a measurand can never be evaluated, error is an abstract concept, which can 
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never be quantified. However, uncertainty is a measure that can be and should be 

quantified for every measurement. 

The probabilistic presentation of uncertainties in direct measurements is 

formalized by International Organization for Standardization (ISO) and United States 

National Institute of Standards and Technology (NIST) [ISO, 1993, Taylor and Kuyatt, 

1994]. According to the recommendations of ISO and NIST, measurement uncertainties 

should be expressed explicitly using probabilistic concepts. This presentation is the first 

step towards the implementation of the probabilistic approach to the solution of inverse 

problems, where the direct physical measurements are one of the inputs to the problem. 

In this chapter, important ISO and NIST concepts and guidelines for presentation 

of uncertainties in direct measurements are reviewed. Following this review, the notion of 

measurement is generalized to include indirect measurement of physical quantities in 

inverse problems. It is shown that using this generalized notion, any inverse problem can 

be viewed as a measurement, which its uncertainties should be evaluated. Such 

evaluation can be accomplished using a probabilistic approach to the solution of inverse 

problems. Therefore, the probabilistic approach can be considered as an extension of 

NIST and ISO guidelines to include generalized measurements. 

 

Measurement Specification 
The first step in making a measurement is to specify the measurand. The 

specification of a measurand, which specifies how the measurement should be carried 

out, is directly related to the required accuracy of the measurement. For example, if the 

length of a bar is to be determined with micrometer accuracy, its specification should 
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include the temperature and pressure at which the measurement is supposed to be carried 

out. The uncertainty of the length measurement, if temperature and pressure are not 

specified, is so high that micrometer accuracy can not be achieved, even if the accuracy 

of the measurement instrument is adequate. Theoretically, it is possible to find the 

minimum level of uncertainty attainable for any given measurement specification. 

However, in most practical applications, the minimum level is not usually achieved. The 

measurement specification and the associated minimum level of uncertainty attainable 

should be always considered in interpretation of measurement results, even when no 

uncertainty measure is provided. 

 

Evaluation and Expression of Uncertainties in Measurement  
Once a measurement is carried out according to a given specification, the 

associated measurement uncertainties arising from different source of uncertainty should 

be evaluated, combined, and expressed with the measurement results. Sole presentation 

of the measurement value without any uncertainty measure does not provide the complete 

picture and might be misleading. ISO and NIST [ISO, 1993, Taylor and Kuyatt, 1994] 

provide general recommendation for expressing uncertainties in direct physical 

measurements. These recommendations form a basis for probabilistic expression of 

measurement uncertainties, which can be directly used in the probabilistic approach to 

the solution of inverse problems. This section presents the major concepts and 

recommendation of NIST, which for the most part are adopted from ISO. 
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Evaluation of Uncertainty 

In the NIST approach, any source of uncertainty in the measurement is 

categorized in two classes based on the method used for its evaluation: 

 

• Type A Uncertainties: Uncertainties that are evaluated by statistical methods 

• Type B Uncertainties: Uncertainties that are evaluated by other means 

 

Evaluation of “Type A” uncertainties is based on any valid statistical method, 

such as evaluation of the mean and standard deviation of a series of measurements or by 

performing analysis of variances (ANOVA). For example, uncertainties of measurement 

instruments provided by manufacturer’s specifications or calibration reports are generally 

evaluated as “Type A” uncertainties.  

A “Type B” evaluation is based on non statistical evaluation, such as subjective 

evaluation based on scientific or engineering judgment, previous measurement data, 

experience with or general knowledge of the behavior of the instrument and measurand, 

and information published in reference books and handbooks. 

 Most sources of uncertainty can be evaluated either as a Type A or a Type B 

uncertainty. For example, the uncertainty in a measurement due to a change of the 

observers can be evaluated statistically with analysis of a series of observations from a 

group of independent observers, or it can be simply evaluated as a Type B using the 

previous experience and judgment for that type of measurement. 

It should be mentioned that NIST’s classification of uncertainties is different than 

the traditional classification that divides uncertainties into “random” and “systematic”. 
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There is not always a simple one to one correspondence between these two 

classifications. Depending on how the measured quantity is used in mathematical 

equations, a random uncertainty arising from a random effect may become systematic 

and vice versa. For example, the uncertainty in a correction value applied to a 

measurement result to compensate for a systematic effect can produce a random or 

systematic uncertainty. 

In routine engineering applications, direct statistical evaluation of the 

measurement uncertainties from all sources of uncertainty is not generally feasible and 

some of the measurement uncertainties should be evaluated as a Type B uncertainty. For 

example, in the measurement of settlement, in addition to uncertainty of measurement 

instrument, uncertainties in the measurement process due to other factors, such as 

uncertainty in positioning of instruments, or uncertainties due to change of the observer 

should also be evaluated and included in the uncertainty measure.  

 

Standard Uncertainty 

In NIST approach, the basic quantity representing uncertainty (Type A or B) from 

a single source is the standard uncertainty, denoted by symbol s , which is the standard 

deviation of the measurement when only one source of uncertainty is considered. In this 

representation, a Gaussian distribution for the source of uncertainty is implicitly 

considered and it is quantified by the value of the standard deviation.  

 



11 

 

Combined Standard Uncertainty 

A measurement is usually subject to uncertainties from different sources. Ideally, 

the standard uncertainty should be evaluated for each source of uncertainty in the 

measurement as a Type A or a Type B uncertainty and then combined together to provide 

a single uncertainty measure. In other words, if all the uncertainties in the measurement 

process are characterized by standard uncertainties is , these individual uncertainties 

should be combined to represent combined standard uncertainty, cs , of the measurement. 

Such combination can be obtained by calculating the square root of the sum of the 

squares of individual standard uncertainties is . This method, which is based on the 

probability theory, is sometimes referred to as law of propagation of uncertainty. The 

combined standard uncertainty is the quantity reported as the uncertainty in 

measurements.  

 

Expanded Uncertainty 

The combined standard uncertainty is the main quantity used in presentation of 

the measurement results. However, NIST also recognizes the presentation of uncertainty 

as expended uncertainty in the form of Sdobs ± , where obsd  is the measured value and S  

is half of the uncertainty interval. The relationship between expanded and standard 

uncertainty is presented by cksS = , where cs  is the combined standard uncertainty and 

k  is called the coverage factor. Typically k  is between 2 and 3. Assuming a Gaussian 

distribution, 2=k  defines an interval with a confidence level of 95 percent, whereas 

3=k  defines a interval with a confidence level of 99 percent.  
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Uncertainty Interval 

Uncertainties of measurements are also sometimes specified in the form of 

uncertainty interval, where for a given measurement, the upper and lower limits of the 

measurement value are identified. In such cases, given the upper and lower limits of the 

measurement result, denoted by upperd  and lowerd , the uncertainty can be calculated by 

assuming the best estimated value as 2/)( lowerupper dd +  and calculating a corresponding 

combined standard uncertainty for the measurement, cs . The combined standard 

uncertainty is then calculated such that there is a certain probability that the measurement 

result is between upperd  and lowerd . For example, for a 50 percent probability 

choose 2/)(48.1 lowerupperc dds −= , for a 67 percent probability select 

2/)( lowerupperc dds −= ,and for a 99 percent probability use 3/)( lowerupperc dds −= . 

NIST also presents guidelines to convert uncertainties stated in other forms to 

combined standard uncertainty. A detailed account of these guidelines is provided in the 

cited references [Taylor and Kuyatt, 1994]. 

 

Generalized Measurement 
In general, a measurement is considered to be a direct evaluation of a quantity 

subject to measurement. An inverse problem on the other hand is an indirect evaluation 

of the parameters of interest in the problem through measurement of another set of 

parameters and using the theoretical relationships between these two sets of parameters. 

Since the ultimate objective of an inverse problem is also measurement of the parameters 
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of interest in the problem, an inverse problem can also be considered a complex and 

indirect measurement using physical theories [Tarantola, 2005]. Such a measurement is 

referred to here as a generalized measurement. In principle, there is no difference 

between a direct measurement and a generalized measurement. In fact, the measurements 

that are considered direct measurements are simple forms of inverse problems. For 

example, measurement of the weight by a spring scale is a simple direct measurement, 

which can be considered a simple inverse problem. In this problem the parameter of 

interest is the weight of an object, which is evaluated indirectly by measurement of the 

deflection of a spring. In this example, the physical theory linking the observed parameter 

(deflection) to the parameter of interest (weight) is a very simple linear relationship. The 

solution of the problem is trivial, which is often solved using a calibrated gauge.  

Similar to direct measurements, there are uncertainties associated with any 

generalized measurement. These uncertainties are basically due to uncertainties in 

physical measurements and uncertainties inherent in physical theories that are used in 

generalized measurements. These uncertainties should be evaluated and presented with 

the results of generalized measurements. However, evaluation of these uncertainties can 

not be performed using the NIST guidelines. Since the NIST approach deals with direct 

measurements only, there is a great emphasis on the use of Gaussian probabilities for 

expression of uncertainties. Although use of Gaussian probabilities is very appropriate for 

representing uncertainties in direct measurements, they can not in general represent 

uncertainties in generalized measurements, where the uncertainty may follow other 

distributions. The probabilistic approach to the solution of inverse problems provides the 

required tools to evaluate uncertainties in generalized measurements. In this sense, the 
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probabilistic approach to solution of inverse problems can be considered as an extension 

of NIST and ISO guidelines to include generalized measurements. 

 

Summary 
Basic and established guidelines in the presentation of uncertainties in direct 

measurements were introduced and reviewed in this chapter. These guidelines are the 

first step towards the probabilistic solution of the inverse problems, where the simple 

physical measurements are one of the inputs to the problem. The notion of inverse 

problem as a generalized measurement was also introduced in this chapter. It has been 

stated that using this generalized notion, any inverse problem can be viewed as a 

measurement, which its uncertainties should be evaluated and presented with the 

measurement result. In this sense, the probabilistic approach to solution of inverse 

problems can be considered as an extension of NIST and ISO guidelines to include 

generalized measurements. 
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3 Probabilistic Approach to Inverse Problems 
 

“Far better an approximate answer to the right question, which is often vague, than the 
exact answer to the wrong question, which can always be made precise.” 

 
John Tukey, Statistician (1915-2000) 

 

 

Introduction 
Inverse problem is a mathematical problem where the objective is to obtain 

information about a parameterized system (i.e. model) from observational data, 

theoretical relationships between system parameters and data, and any available a priori 

information. The most general form of the inverse problem theory is obtained using a 

probabilistic point of view, where the a priori information on the problem parameters and 

theoretical relationships is represented by probability distributions. In this approach, the 

solution of the inverse problem is itself a probability distribution representing the 

combined information about model parameters and theoretical relationships. The inverse 

problem solution with probabilistic approach in simple cases will reduce to the same 

solution obtained from the traditional deterministic approach. However, with this 

approach, more information about the solution is obtained and more complex inverse 

problems can be solved. 

This chapter provides an introduction to the mathematical theory of inverse 

problems from a probabilistic point of view. This introduction is mainly based on the 

formulation of the theory presented by Tarantola [Tarantola 2005, Mosegaard and 

Tarantola 2002, Tarantola 2004, Tarantola and Valette 1982]. Following this 
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introduction, elements of probability theory required in formulating the probabilistic 

solution are initially introduced. General probabilistic approach to inverse problems is 

then formulated, solution of the problem is defined, and common techniques for appraisal 

of the solution are introduced. Due to introductory nature of the chapter, there has been a 

conscious effort to present the main ideas and important results with less emphasis on 

mathematical derivations and proofs. Interested readers can find a detailed mathematical 

treatment of the subject in the cited references. 

 

Elements of Probability Theory 
Probability theory is essential to the probabilistic formulation of inverse problems 

presented here. Therefore, this section contains a review of the elements of probability 

theory which are important for the analysis of inverse problems.  

 

Kolmogorov’s Concept of Probability 

The Kolmogorov’s [1933] definition of probability, clarifies the underlying 

mathematical structure of probability and allows a formal presentation of the concepts 

based on which the probabilistic solution of inverse problems are based. 

Consider a point x  that can be materialized anywhere inside a space of points 

denoted as χ . The point x  may for example be realized in the domain A  of χ  ( χ⊂A ). 

The probability of realization of a point can be completely described, if to every domain 

A  of χ  a positive number )(AP  can be assigned having three properties: 

 

• For any domain A of χ , 0)( >AP . 
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• If iA  and jA  are two disjoint domains of χ , then 

)()()( jiji APAPAAP +=∪ . 

• If domainEmptyA → , then 0)( >AP . 

 

The )(AP , which satisfies the above criteria, is called the probability of A  and 

defines a probability distribution over χ . It should be mentioned that in this definition, it 

is not assumed that the probability is necessarily normalized to unity (i.e. 1)( =χP ). If 

the probability is not normalized, it is sometimes referred to as a measure. Some 

probabilities are not normalizable (i.e. ∞=)(χP ). In such cases, only relative 

probabilities can be computed.  

Generally, any type of coordinate system can be selected to represent points in 

space χ ; however, for most applications, including for the applications considered in this 

work, the Cartesian coordinate system is the most convenient system. The formulation of 

probabilistic approach presented here assumes that the Cartesian coordinates are the 

coordinates used to define the problem. In special cases where the coordinates are not 

Cartesian, the presented formulation should be slightly modified [Tarantola 2005]. 

 

Probability Density 

A probability distribution, )(AP , can also be represented by its probability 

density function, )(xp , which is defined as:  

∫=
A

xxpAP δ)()(  (3-1) 
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where nxxxx δδδδ ...,21=  is a volume element. 

 

Homogeneous Probability Density 

The homogeneous probability distribution is a probability distribution that assigns 

to each domain of the space a probability proportional to its volume or: 

)()( AkVAM =  (3-2) 
where )(AM  represents the homogenous probability distribution, k is a proportionality 

constant, and )(AV is the volume of A of χ , which is defined as:  

∫=
A

xAV δ)(  (3-3) 

Combining equations (3-1), (3-2) and (3-3), it is easy to show that density 

function of homogenous probability density denoted by )(xµ  is: 

kx =)(µ  (3-4) 
where k  is a constant. It should be remembered that in coordinate systems other than 

Cartesian coordinate system, the homogeneous probability density may not be constant. 

 

Conjunction of Probabilities 

Consider two probability distributions P  andQ . The conjunction of these 

probabilities is a probability distribution denoted by QP ∧  which has the following 

properties: 

 

• PQQP ∧=∧ ; 

• For any subset A , 0))(( =∧ AQP ; if and only if 0)( =AP  and 0)( =AQ ; 
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• If M  denotes the homogenous probability distribution PMP =∧  

 

It is easy to show that if P  andQ  are represented by density functions )(xp  and 

)(xq , the simplest way to define ))(( xqp ∧ ,the probability density of QP ∧ , is given 

by: 

)()())(( xqxkpxqp =∧  (3-5) 
where k  is a constant. A graphical representation of conjunction of probabilities is 

depicted in Figure 3-1.  

 
Figure 3-1 - Illustration of the concept of conjunction of 
probabilities P  andQ , QP ∧  [Tarantola 2005]. 

 

The concept of conjunction of probabilities is somewhat analogous to the concept 

of intersection in set theory. The intersection of two sets is a set which its members are 

shared by both sets. Similarly, conjunction of two probability distributions is a 

probability distribution which assigns probabilities to every domain equivalent to 

multiplication of the probabilities assigned to that domain by individual probabilities. In 

other words, the domains with high probability will also have high probability under 

conjunction of probabilities. However, the domains that have low probabilities under 

either of distributions will have low probability under the conjunction of probabilities as 

well. 
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Marginal Probability  

If the space is divided into two subspaces according to VU ×=χ , given the joint 

probability density ),( vup , it is possible to derive marginal probability densities as: 

∫=
V

u vvupup δ),()(     and    ∫=
U

v uvupvp δ),()(  (3-6) 

where u  and v  are points in subspace U  and V  respectively. 

 

Independent Probabilities 

If the u  and v  are independent parameters, their joint probability can be expressed as: 

)()(),( vpupvup vu=  (3-7) 
 

Probabilistic Formulation of Inverse Problems 
Inverse problem is a mathematical problem where the objective is to obtain 

information about a parameterized system (i.e. model) from observational data, 

theoretical relationship between system parameters and data, and any available a priori 

information. [Tarantola 2005, Parker, 1994, Menke 1984]. There are three major 

components to any inverse problem: 

 

• Parameterization of the physical system in terms of a set of model parameters 

that from a given point of view completely describes the system. 

• A set of physical laws called forward model that for a given set of model 

parameters, makes prediction about the results of measurements. 

• Use of the measurements of observable parameters to infer or invert the actual 

values of the model parameters. 
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To be able to mathematically formulate the probabilistic solution of an inverse 

problem, there are a few concepts that should be introduced. 

 

Model Space and Data Space 

For any given inverse problem, it is possible to select a set of model parameters 

that will adequately describe the model (i.e. parameterization). The choice of these 

parameters is not unique. However, once a particular parameterization of the system is 

chosen, it is possible to introduce a space of values that describe possible values of model 

parameters. This abstract space is termed the model space, and is denoted by M , which 

represents all the conceivable models. Individual models, ,....},{ 21 mmm =  are basically 

points in the model space.  

In an inverse problem, the values of parameters m  are the main interest; however, 

they are not directly measurable. The goal of inverse problem is to obtain information on 

the values of m  by making direct observation on another set of parameters denoted as 

obsd . Similar to the concept of model space, it is possible to introduce an abstract idea of 

data space D , which is the space of all conceivable observed responses. The actual 

observed response is in fact a point in this space represented by ,...},{ 21 obsobsobs ddd = . 

 

State of Information 

In the probabilistic approach, any information about the problem, including the 

solution of the problem, is expressed by probability distributions that are interpreted 
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using the concept of the state of information. The state of information is an intuitive 

concept associated with the concept of probability. In addition to the statistical 

interpretation of probability, a probability distribution can be also interpreted as a 

subjective degree of knowledge of the true value of a given parameter. The subjective 

interpretation of the probability theory is usually named Bayesian, in honor of British 

mathematician Thomas Bayes (1763). The Bayesian interpretation of probability is a very 

common concept in everyday life, which is used in many situations, such as in weather 

forecast reports. For example, the forecast predicting a certain probability for having 

precipitation presents the subjective knowledge of the meteorologist based on all the 

available information. In civil engineering problems, the subjective knowledge about any 

parameter prior to any measurement may also be represented by a probability 

distribution. If there is no a priori information on the value of the parameter, this lack of 

information can also be represented by a homogeneous probability distribution, where all 

the possible models have the same probability. The other extreme situation is that when 

the exact value of the parameter is known from a direct measurement. This precise 

information can be also represented by a Dirac delta probability distribution. In general, 

the spread of the probability distribution is an indication of how precise the knowledge 

about the underlying parameter is; the narrower the spread of the distribution, the more 

precise the prior information. 

 

A Priori Information 

In the probabilistic approach presented, the probability distribution representing 

the state of information on the model parameters prior to the solution is denoted by 
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)(mMρ , and is termed the model a priori probability density function. Similarly, the a 

priori information on the observed data prior to the solution can be expressed as data a 

priori probability density function, which is denoted by )(dDρ . The a priori information 

on model parameters (represented by )(mMρ ) is independent of a priori information on 

the data (represented by )(dDρ ). This notion of independence can be used to define a 

joint probability over the joint model and data space, ),( DM=χ , as a product of the two 

marginal probability densities. This probability is denoted by: 

)()(),( dmdm DM ρρρ =  (3-8) 
where ),( dmρ  is referred to as joint a priori probability density function and k  is a 

normalization constant. This probability can be graphically depicted as a “cloud of 

probability” centered on the observed data and a priori model, as shown in Figure 3-2. 

 
Figure 3-2 - Illustration of the probability densities 

)(mMρ , )(dDρ , and ),( dmρ  representing a priori information 
on model, data, and joint model and data spaces respectively 
[Tarantola 2005]. 

 

),( dmρ
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Forward Model 

The forward model is a set of physical laws that for a given set of model 

parameters, Mm ∈ , predicts the value of observable parameters, Dd ∈ . The forward 

model can be expressed as: 

)(mgd =  (3-9) 
where )(mg  is the forward model operator. If the model predictions are exact and 

without any uncertainty, a single response is predicted for a given model. However, the 

forward model predictions are rarely exact and there are modeling approximations 

involved. In the probabilistic approach, the effect of this approximation can be 

represented by a probability density function, ),( dmθ . In this representation, for a given 

model parameter, instead of a single value of d , a probability in the data space is 

predicted representing the modeling uncertainties. This concept, as well as the probability 

),( dmθ , referred to as forward model probability density function, is conceptually 

depicted in Figure 2-3. It should be pointed out that evaluation of modeling uncertainties 

is a complex task, and in many cases, there is only limited published research available. 

For the applications presented in the chapters that follow, modeling uncertainties have 

been assigned based on experience or limited analysis. Further research is required to 

evaluate the modeling uncertainties for each application. 

It is worthy to mention that for the formulation presented here, the forward model 

is considered to be a general model and no simplifying assumptions, such as the linearity 

assumption, are made. For example, if the forward model operator, (.)g , is a linear 

operator (i.e. Gmd = , where G is a matrix), significant simplification of the inverse 

problem theory can be obtained [Menke 1984]. However, to present a uniform approach 
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to both linear and non-linear inverse problems, for the treatment presented here a general 

nonlinear operator is considered. 

 
Figure 3-3 - (left) Forward model with negligible modelization 
uncertainties (right) and forward model with modeling 
uncertainties [Tarantola 2005]. 

 

General Probabilistic Solution of the Inverse Problem 

In the probabilistic framework, the solution of an inverse problem is a probability 

distribution combining the a priori information, ),( dmρ  (i.e. experimental information), 

with information obtained from the forward model, ),( dmθ  (i.e. theoretical information). 

Since the predictions of the forward model are assumed to be independent of a priori 

information, the combination can be accomplished by conjunction operation [Tarantola, 

2005], which can be visualized as the multiplication of two probabilities. The resulting 

probability, denoted by ),( dmσ , is basically the solution of the problem, and it is termed 

a posteriori probability, where its density function is represented by [Tarantola, 2005]: 

),(),(),( dmdmkdm ρθσ =  (3-10) 
where k  is a normalization constant. The conjunction operation and the obtained 

probability are depicted in Figure 3-4.  

),( dmθ)(mgd =
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Having defined the a posteriori probability, marginal probability densities on 

model and data spaces are defined respectively as:  

ddmm
D

M δσσ ∫= ),()(    and   mdmd
M

D δσσ ∫= ),()(  (3-11) 

where )(mMσ  is model a posteriori probability density function, and )(dDσ  is the data a 

posteriori probability density function. The model a posteriori probability, as defined 

above, is often the prime quantity of interest in the solution of an inverse problem. 

 

 
Figure 3-4 - Representation of the general probabilistic solution 
of inverse problem as the conjunction of the a priori 
information, ),( dmρ  and information obtained from forward 
model ),( dmθ . [Tarantola 2005]. 

 

Probabilistic Solution in the Case of Data and Forward Model with 

Gaussian Uncertainties 

Substituting Equation (3-10) into Equation (3-11), and using Equation (3-8), the 

model a posteriori probability distribution (i.e. the problem solution in the model space) 

can be evaluated as: 

ddmdmkm
D

DMM δθρρσ ∫= ),()()()(  (3-12) 

or 

),( dmθ

),( dmρ ),( dmσ
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)()()( mmkm MM λρσ =  (3-13) 
where )(mλ  is the likelihood function: 

ddmdm
D

D δθρλ ∫= ),()()(  (3-14) 

If it is assumed that the data uncertainties are represented by a Gaussian 

probability, such as: 

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − )()(

2
1exp)( 1

obsd
T

obsD ddCddkdρ  (3-15) 

where dC  is the covariance matrix representing observational uncertainties, and that the 

forward model uncertainties can be presented by: 

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − ))((())((

2
1exp),( 1 mgdCmgdkdm T

Tθ  (3-16) 

where TC  is the covariance matrix representing forward model uncertainties. It can be 

shown that the likelihood function can be represented by [Tarantola 2005]: 

⎟
⎠
⎞

⎜
⎝
⎛ −+−−= −− ))(()(())((

2
1exp)( 11 mgdCCmgdkm obsdT

T
obsλ  (3-17) 

This result is important because it shows that, by the Gaussian assumption, 

observational and modeling uncertainties simply combine by addition of their respective 

covariances. It is worthy to mention that, by inspection of Equations (3-13) and (3-17), it 

can be observed that, if there is no a priori information (i.e. )()( mmM µρ = ), the 

maximum of the a posteriori probability occurs at the maximum of the likelihood 

function. Additionally, the maximum of the likelihood function occurs when the observed 

data fits best the model predictions in a weighted least square sense. If the covariance 

matrices are multiplications of the identity matrix, it can also be shown that the maximum 

of the likelihood function is the 2L  norm best fit model to the observed data. This is the 
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same solution obtained in the deterministic approach. Therefore, it can be concluded that 

the deterministic solution is a very special case of the probabilistic solution. 

 

Appraisal of the Probabilistic Solution 
It has been stated and illustrated that the solution of the inverse problem, the a 

posteriori probability distribution, is the conjunction of two probability distributions 

representing experimental and theoretical information about the problem. Although the a 

posteriori probability distribution contains all the information regarding the problem 

solution, it is generally desirable to quantify this information. In other words, it is 

desirable to appraise the obtained solution. Two important classes of quantities are 

generally presented as quantifying measures of the a posteriori probability distribution: 

(1) central estimators and estimators of dispersion, and (2) one and two dimensional 

marginal probability densities. 

 

Central Estimators and Estimators of Dispersion 

The a posteriori mean model (or the expected value) is a central estimator, which 

represents the most probable solution. It is calculated using following integral: 

∫=〉〈
M

M mmmm δσ )(  (3-18) 

where 〉〈.  indicates the mean or expected value. It should be mentioned that depending on 

the shape of probability distribution, the mean value may or may not coincide with the 

maximum of probability density. The dispersion estimator associated with the mean is the 

covariance matrix and is given by: 
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mmmmmmC M
T

M
M δσ )())(( 〉〈−〉〈−= ∫  (3-19) 

Since the concept of mean and covariance is derived for unimodal probability 

densities, for complex problems, where the posteriori probability density is complex and 

may have several modes, one should be careful in interpretation of the mean and 

covariance.  

 

One and Two Dimensional Marginal Probability Densities 

Another quantity of interest in presentation of probabilistic solution is the one 

dimensional marginal probability density of variable im : 

∫ ∫ ∏
≠
=

=Γ

ik
k

kMi mmm
1

)(...)( δσ  
(3-20) 

where Γ  indicates the marginal probability density. Joint marginal probability density of 

two parameters can be defined in a similar manner: 

∫ ∫ ∏
≠
≠
=

=Γ

jk
ik

k
kMji mmmm

1
)(...),( δσ  

(3-21) 

Evaluation of the integrals presented in equations (3-18) thru (3-21) generally has 

to be performed numerically. However, when the a priori and forward model probability 

distributions are simple, it is possible to obtain closed form formulas that can be directly 

used in evolution of estimator quantities and marginal probabilities [Menke 1984].  

 

Summary 
The mathematical theory of inverse problems from a probabilistic view was 

introduced in this chapter. The basic concepts and elements of the theory were presented 

and the general solution of the inverse problem was defined as the a posteriori 
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probability, which combines the a priori information about the problem with the 

information obtained by measuring some observable parameters (data) and theoretical 

information gained from a forward model. The obtained general solution was then 

formulated for the case where the data a priori and forward model probabilities are 

Gaussian. Two important classes of quantities that are used for appraisal of the results, 

namely, (1) central estimators and estimators of dispersion, and (2) one and two 

dimensional marginal probability densities, were also introduced and defined. 
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4 Monte Carlo Evaluation of the Probabilistic Solution 
 

Chance, too, which seems to rush along with slack reins, is bridled and governed by 
law.” 

 
Boethius, Roman Philosopher, c.a. 480-525 

 

 

 

Introduction 
Probabilistic formulation of inverse problems leads to the definition of the 

solution as a probability distribution in the model space [Tarantola 2005]. This 

probability distribution combines a priori information on the model parameters with new 

information obtained by measuring some observable parameters (data) and theoretical 

information gained from a forward model. For simple problems, it is possible to use the 

derived mathematical equations directly and obtain an analytical solution of the inverse 

problem. However, in general, due to the large number of the model parameters or the 

complexity of the theory linking the data and the model parameters, it may not be 

possible to describe the solution analytically. In such cases, one technique to evaluate the 

solution is to randomly generate a large collection of models according to the a posteriori 

probability distribution and analyze and display the models in such a way that 

information about the underlying probability is conveyed. This approach can be 

accomplished using a class of computational techniques referred to as Monte Carlo 

methods.  
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This chapter introduces Monte Carlo techniques for evaluation of the probabilistic 

inverse problem solution. To provide a context for practical applications and illustrate the 

presented concepts and techniques, a simple inverse problem example, along with its 

deterministic solution and analytical probabilistic solution, is initially introduced and is 

used throughout the chapter. For complex problems where obtaining an analytical 

solution is not feasible, a numerical technique using Monte Carlo Markov Chains 

(MCMC) is introduced and its application is illustrated. To further reduce the 

computational time in the solution of the complex problems, the MCMC technique is 

integrated with the recently developed Neighborhood Algorithm (NA). NA and it 

integration with MCMC are describes, and its application is illustrated using the 

previously introduced example. It should be mentioned that there are other techniques 

available for the evaluation of the probabilistic solution of inverse problems; however, a 

through discussion of these techniques are beyond the scope of this research. 

 

Illustrative Example 
A simple deflection based modulus determination experiment is presented below, 

and it is used as the illustrative example throughout this chapter. 

 

Deflection Based Modulus Determination Experiment: The objective of the 
experiment is to determine the elastic modulus of a cantilever beam from the 
measurement of the deflection of the beam. As depicted in Figure 4-1, the experiment is 
conducted by placing a known load P  at a measured length L  from the fixed end of the 
beam and measuring the deflection ∆ . In this inverse problem, modulus is the model 
parameter of interest and deflection is the observed data. The forward model predicting 
the deflection for any given modulus is simply obtained using mechanics of materials 
principles as: 
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EI
PL3

=∆  (4-1) 

where E  is the modulus and I is the moment of inertia of the beam. 

 
mL 5.0= , mb 05.0= , mh 01.0= , NP 100= , mobs 043.0=∆  

Figure 4-1 - Deflection based modulus determination experiment. 
 

Deterministic Solution 
In the deterministic approach, the objective is to find a set of model parameters 

which minimizes the difference between the model prediction and the observed data (i.e. 

obsdmg −)( ).  

 

Deterministic Solution of the Modulus Determination Experiment: Based on the 
traditional deterministic solution, the modulus of the beam can be evaluated by: 

obs
obs I

PLE
EI
PL

∆
=→∆−

33
min  (4-2) 

Using the numerical values provided in Figure 4-1, GPaE 8.69= , which 
suggests that the material is probably an aluminum alloy. It should be mentioned that in 
the deterministic approach, no estimate of uncertainty is obtained. 
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Analytical Evaluation of the Probabilistic Solution 
If the a priori and forward model probability distributions are simple, it might be 

possible to obtain a closed form analytical solution of the problem by direct application 

of the presented relationships. This technique is illustrated below; however, in practice, 

analytical solution can rarely be obtained, and only a numerical estimate of the solution 

can be calculated. 

 

Analytical Evaluation of the Probabilistic Solution of the Modulus 
Determination Experiment: To obtain a probabilistic solution, the a priori and forward 
model probability densities should be defined. Let’s assume a Gaussian a priori 
probability for observed data with the standard deviation ∆Σ , 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Σ

∆−∆
−

Σ
⋅=∆

∆∆
∆ 2

2)(
2
1exp1

2
1)( obs

π
ρ , and an independent homogeneous a priori 

probability density for modulus, E (representing no specific a priori information on the 
model parameter), kEE =)(ρ , where k  is a constant. 

As presented, in probabilistic approach, the uncertainties in forward model can 
also be incorporated in the solution. For many reasons, such as inherent simplifying 
assumptions in the derivation of the equation, uncertainties in evaluation of the model 
coefficients, etc, the given forward model, IEPL /3=∆ , can never be exact. Let’s assume 
that the leading cause of uncertainty in the forward model in this experiment is the 
uncertainty in the magnitude of the applied load. The forward model probability density 
can then be represented by the following probability density function: 
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θ  (4-3) 

where pΣ is the standard deviation representing uncertainty in load P . This equation 
simply means that for a given modulus, E , rather than predicting a single deflection 
value, a Gaussian probability in the data space is predicted by the forward model, which 
incorporates the modeling uncertainties.  

The solution of the inverse problem, the conjunction of probability densities, is 
then given by: 

),()()(),(),(),( ∆∆=∆∆=∆ ∆ EEEEE E θρρθρσ  (4-4) 

or 
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where k  is a constant. Probabilities )()(),( ∆=∆ ∆ρρρ EE E , ),( ∆Eθ , and ),( ∆Eσ are 
depicted in Figure 2-7.  
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Figure 4-2 - Graphical representation of the probability 
densities ),( ∆Eρ , ),( ∆Eθ , and ),( ∆Eσ  for the modulus 
determination experiment. It is assumed that Pap 1=Σ  and 

m001.0=Σ∆ . 
 
The maximum of the probability density ),( ∆Eσ , is located at GPaE 8.69= , 

which is the solution identified in deterministic approach. However, it can be observed 
that in addition to the reported value of the modulus, the solution depicted in Figure 4-2 
conveys information about the uncertainties of the obtained results.  

 
Appraisal of the Probabilistic Solution of the Modulus Evaluation Experiment: 

The information contained in the solution probability density function can be quantified 
in terms of central and dispersion estimators, such as mean and variance. Often times, 
for complex problems, these quantities are the only results that are reported. 

For this example, the a posteriori probability density on model space is simply: 

∫
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∆
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This integral is numerically evaluated and the results are depicted in Figure 4-3. 

),( ∆Eσ),( ∆Eθ),( ∆Eρ
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Figure 4-3 - Graphical representation of the probability 
density )(EEσ  for the modulus determination experiment. It is 
assumed that Pap 1=Σ  and m001.0=Σ∆ . 

 

Using the numerically evaluated probability density, )(EEσ , mean and variance 
quantities can be evaluated as: GPaEE 8.69)( =σ  and GPaCE 8.1= , where . 

EC  is the variance of )(EEσ . 
 

Direct Sampling Evaluation of the Probabilistic Solution 
The ultimate objective of the direct sampling solution technique presented here is 

to randomly generate a large representative collection of models according to the model a 

posteriori probability distribution, )(mMσ , and analyze and display the sampled models 

to derive information about the underlying a posteriori probability distribution. In 

addition to the basic question of how to generate such samples, there are several other 

issues, such as stability, convergence, and error estimates of the direct sampling approach 

that need to be discussed and addressed. These issues are discussed and addressed in this 

section. 
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Monte Carlo Sampling of Probability Distributions 

It is only when the problem is very simple; the analytical techniques can be used 

to characterize the solution. For more complex problems, one needs to perform an 

extensive numerical exploration of the model space and characterize the probabilities for 

each point in the model space. Except for the problems with a very small number of 

dimensions, this exploration cannot be systematic. In such cases, well-designed random 

(or pseudorandom) explorations can be used to solve the problem. These random 

methods are generally referred to as Monte Carlo methods.  

The term “Monte Carlo”, as it refers to computation calculations, was apparently 

first used by the Enrico Fermi, Stanislaw Marcin Ulam, and John von Neumann as a code 

name at Los Alamos laboratories for stochastic simulations in development of the atomic 

bomb. The name Monte Carlo, an illusion to the famous casino in Monaco, refers to the 

fact that these techniques use the law of random numbers in a similar way that is used in 

casinos. Today, the Monte Carlo methods refer to any simulation that involves the use of 

random numbers. Despite the wide spread use of these methods and numerous 

descriptions of them in articles and books, it is not possible to find a complete and 

comprehensive definition of Monte Carlo Methods. This is in part due to intuitive nature 

of these techniques, which are used in a wide range of areas including physics, biology, 

chemistry, and financial markets. In general, Monte Carlo methods provide approximate 

solutions to a variety of mathematical problems by performing statistical random 

sampling experiments. The methods apply to problems with no probabilistic nature as 

well as to those with inherent probabilistic structure. While most applications of Monte 

Carlo methods are performed on computers today, there are many applications using 
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coin-flipping, card-drawing, or needle-tossing experiments. However, advent of the 

computers and their ever increasing computational capabilities, made it possible to 

successfully apply Monte Carlo methods to more complex problems, including complex 

inverse problems. A good review of historical development of Monte Carlo methods in 

the context of inverse problems is given by Sambridge and Mosegaard [2002]. 

The fundamental idea behind Monte Carlo methods is that inference regarding the 

characteristic of the parameters of interest can be gained by repeatedly drawing random 

samples from the population of interest and observing the behavior of the parameters 

over the samples. Such an approach is graphically illustrated in Figure 4-4 for a two 

dimensional probability distribution.  

 

 
 

Figure 4-4 -  The collection randomly generated samples (right) 
of a probability distribution (left) allow inference of 
characteristics of underlying probability distribution [Tarantola 
2005]. 

 

The fundamental question here is that given a probability distribution, defined 

analytically or numerically, how random samples according to a desired probability 

distribution can be generated? Markov chains provide the mathematical tools required for 

generation of such samples. 
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Markov Chains 

A Markov chain, named after the Russian mathematician Andrey Markov (1856-

1922), is a sequence of random numbers such that the next value or state of the sequence 

depends only on the previous stage [Bhat and Miller, 2002]. This dependency is 

mathematically described by transition kernel, )( 1 nn xx +ψ , which is the probability 

distribution representing conditional probability of transition to 1+nx  from nx . Thus a 

sequence of random numbers 1x , 2x ,…, nx  can be generated such that next state 1+nx  is 

distributed according to the transition kernel )( 1 nn xx +ψ . A realization of the sequence is 

called a Markov chain. It is assumed here that transitional kernel does not change as the 

sequence progresses, making the chain homogenous in time. It can be shown that given 

certain conditions [Tierney, 1994] the chain will forgot its starting state and the 

distribution of the random numbers will converge to a stationary or target distribution, 

denoted as Ψ . In other words, as the sequence grows larger, the sample points nx  will 

become dependent samples of stationary distribution Ψ . The central question here is that 

given )(xΨ  as the desired stationary probability, how )(xψ should be constructed so that 

Markov chain converges to )(xΨ . Metropolis sampler [Metropolis et al 1953] is one 

technique for generating desired Markov chains with a given target distribution. 
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Metropolis Sampler 

Metropolis sampler [Metropolis et al 1953] is a special case of Metropolis-

Hasting sampler [Hasting 1970]. The sampler is a set of rules that generates a Markov 

chain with a given desired target probability, )(xΨ . To define the rules, consider a 

Markov chain with a given state nx . To move to the next state, the Metropolis sampler 

obtains a random candidate state, y  (generated randomly most often from a uniform 

distribution). If the value of )()( nxy Ψ>Ψ  the candidate point is accepted and yxn =+1 . 

If )()( nxy Ψ<Ψ , the candidate point is only accepted with a probability of 

)(/)( nxy ΨΨ . Otherwise, the candidate point is rejected and nn xx =+1 . It can be shown 

that the Markov chain generated in this manner will converge to )(xΨ . The Metropolis 

sampler can be represented by the following generalized algorithm: 

 

• Initialize the chain to 1x  

• At n th state, randomly generate a candidate point y (usually derived from a 

uniform distribution). 

• If )()( nxy Ψ>Ψ  accept the candidate and set yxn =+1 ; 

• if )()( nxy Ψ<Ψ  decide randomly to accept the transition with a probability 

of )(/)( nxy ΨΨ , if the candidate is accepted set yxn =+1 ; otherwise set 

nn xx =+1  

• Set 1+= nn  and repeat steps 2 through 5 

 

The above rules are also referred to as the Metropolis acceptances rule.  
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Cascade Metropolis Sampler 

The Markov chain in metropolis sampler only applies the Metropolis acceptance 

rule once with )(xΨ  target probability. Assume that the sampler is modified such that the 

acceptance rule is applied in cascade each time with different target probabilities, 

),(),(),( xxx Ψ ′′Ψ′Ψ … )(xnΨ  It can be shown that the stationary probability of the chain 

is simply obtained as multiplication of probabilities or )(...)()()( xxxx nΨ××Ψ ′′×Ψ′×Ψ .  

The cascade application of Metropolis acceptance rule at each state nx  can be 

implemented by application of the following set of rules to generate the next state of the 

chain: 

 

• At n th state, randomly generate a candidate point y (usually derived from a 

uniform distribution) 

• If )()( nxy Ψ>Ψ  then go to next step; if )()( nxy Ψ<Ψ  decide randomly to 

go to next step with a probability of )(/)( nxy ΨΨ ; If move to next step is 

rejected then set nn xx =+1 , 1+= nn  and go to step 1. 

• If )()( nxy Ψ′>Ψ′  then go to next step; if )()( nxy Ψ′<Ψ′  decide randomly to 

go to next step with a probability of )(/)( nxy Ψ′Ψ′ ; If move to next step is 

rejected then set nn xx =+1 , 1+= nn  and go to step 1. 

• …. 

• …. 
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• …. 

• If )()( n
nn xy Ψ>Ψ  then accept the candidate and set yxn =+1 ; if 

)()( n
nn xy Ψ<Ψ  decide randomly to accept the transition (i.e. yxn =+1 ) with 

a probability of )(/)( n
nn xy ΨΨ ; If the candidate is rejected then set 

nn xx =+1 , 1+= nn  and go to step 1. 

 

Monte Carlo Markov Chain (MCMC) Sampling of the Solution of Inverse 

Problems 

As presented in the previous chapter, the probabilistic solution of the inverse 

problem is the a posteriori probability, which can be presented as:  

)()()( mLmm MM ρσ =  (4-7) 

where )(mMσ  is the a posteriori probability density on the model space, )(mMρ  is the a 

priori probability density and )(mλ  is the likelihood function. For the applications 

considered in this research, it has been assumed that data and forward model uncertainties 

are Gaussian. It has been shown in previous chapter that for Gaussian data and forward 

model uncertainties, )(mλ  can be represented by: 

⎟
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2
1exp)( 11 mgdCCmgdkm dT

Tλ
 

(4-8) 

where TC  is the covariance matrix representing forward model uncertainties and dC  is 

the covariance matrix representing observational uncertainties. Equation 4-7 and 4-8 

form the basis for the development of Monte Carlo sampling algorithm for the solution of 

inverse problems.  
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The goal of the sampling algorithm is to sample the model space at a rate 

proportional to model a posteriori probability ( )(mMσ ). To achieve this goal, using 

Metropolis acceptance rule, the algorithm first generates samples of model space 

according to the model a priori probability )(mMρ , then these samples are accepted or 

rejected using cascade implementation of Metropolis acceptance rule based on their fit to 

observed data defined by likelihood function )(mλ . In other words the sampling 

algorithm is a cascade implementation of metropolis algorithm with probabilities )(mMρ  

and )(mλ . This means that models that are consistent with a priori information as well as 

observations are sampled most often whereas models that are incompatible with either a 

priori information or observational data are sampled rarely. The algorithm described 

above can be written as: 

 

• Initialize the chain to model 1m  

• At n th state, randomly generate a candidate model y (usually derived from a 

uniform distribution). 

• If )()( nMM my ρρ >  then go to next step; if )()( nMM my ρρ <  decide 

randomly to go to next step with a probability of )(/)( nMM my ρρ ; If move to 

next step is rejected then set nn mm =+1 , 1+= nn  and go to step 2. 

• If )()( nmy λλ >  then accept the candidate and set yxn =+1 ; if )()( nmy λλ <  

decide randomly to go to accept the transition (i.e. ymn =+1 ) with a 

probability of )(/)( nmy λλ ; If the candidate is rejected then set nn mm =+1 , 

1+= nn  and go to step 2. 
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The output of the algorithm consists of a collection of models that their statistical 

properties are asymptotically proportional to a posteriori probability distribution in the 

model space. More comprehensive description of this algorithm can be found in other 

references [Mosengaard and Tarantola 1995].  

 

Appraisal of Results 

Central and Dispersion Estimators 

Central and dispersion estimators for appraisal of inverse problem solution were 

introduced in the previous chapter as integrals in the model space. In MCMC approach, 

these integrals should be evaluated numerically. Since in MCMC applications the 

integrand of these integrals is not explicitly defined and is only sampled at certain 

random points, these evaluations are generally obtained using Monte Carlo integration 

techniques over the model space. A brief description of Monte Carlo integration 

techniques is presented below. Detail mathematical treatment of this subject can be found 

in other references [Hammersley and Handscomb 1964]. 

Numerical Monte Carlo integration can be simply viewed as evaluation of 

expected value of a function )(xf , denoted by )]([ xfE where x  is a random variable 

distributed according to )(xp .  

∫= xxpxfxfE δ)()()]([
 (4-9) 
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In general, x  is considered to be in multidimensional space and )(xf and )(xp  

are functions of x . If a sequence of random variables ix , distributed according to )(xp can 

be generated, the integral in Equation (4-9) can be evaluated by: 

fxf
N

xfE
N

i
i =≈ ∑

=1
)(1)]([

 
(4-10) 

where sign indicates the average value and N  is the number of random variables used 

to evaluate the integral. This is simply evaluation of the expected value of )(xf . The law 

of large numbers ensures that the Monte Carlo estimate converges to the true value of the 

integral: 
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(4-11) 

The uncertainty in Monte Carlo integration is basically the standard deviation of 

the estimate of )]([ xfE , which can be estimated by: 

221 ff
N

−=ε
 

(4-12) 

where ∑
=

=
N

i
ixf

N
f

1

22 )(1 . It is notable that the error of Monte Carlo integration is 

independent of dimension of the space and is simply dependent on the number of random 

variables. This property of Monte Carlo integration makes it more efficient than 

traditional quadrature techniques for evaluation of integrals in high dimensional spaces (5 

or higher). This property is especially appealing for evaluation of integrals in inverse 

problems, which often should be evaluated over a high dimensional space. Using this 

technique, the integrals for estimation of central and dispersion estimators can be 

evaluated as simple sums over sampled models. 
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Marginal Probability Densities 

Evaluation of marginal probabilities is often carried out by constructing the 

histogram or density estimates of the collected samples in MCMC. A histogram is the 

simplest non-parametric density estimator and the one that is most frequently 

encountered. To construct a histogram, the interval covered by the samples is divided into 

equal sub-intervals, known as “bins”. Every time a sample value falls into a particular 

bin, then a block of height one and width equal to the bin width is placed on top of 

histogram at that particular bin. Once this operation is repeated for all the samples, the 

obtained graph is called the histogram of the collected samples and is an estimate of the 

underlying probability density. The major shortcoming of histogram is that it does not 

provide a smooth evaluation of the probability density. 

Histogram is a special form of general probability density estimators. In 

constructing the histogram, once a sample falls in a bin, a unit box function centered at 

the midpoint of the bin is added to the histogram. This is known as box kernel density 

estimate. If instead of a box function, a smooth function is used, the final density estimate 

would be smooth. In this research, a Gaussian density estimate with an optimal 

bandwidth is used as the kernel density estimator function. The discussion of the details 

of implementation of this technique and selection of an optimal bandwidth are beyond the 

interest of this text and are presented in other references [Bowman and Azzalini, 1997]. In 

this text only results of the probability estimates are presented. 

To illustrate the ideas and methods presented, the example of deflection based 

modulus evaluation experiment is considered again. 
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MCMC Evaluation of the Probabilistic Solution of the Modulus Determination 
Experiment: As presented previously, assuming a Gaussian distribution for modeling 
uncertainties, the forward model probability density for this example can be represented 
by: 
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Furthermore, similar to the previous example, let’s assume a Gaussian a priori 
probability for observed data with the standard deviation of ∆Σ , which is represented 

by ⎟
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ρ . Finally, let’s consider a homogeneous a 

priori probability density for model parameter, represented by kEE =)(ρ , which 
represents no specific a priori information on the model parameter, where k  is a 
constant. 

 It has been shown in previous chapter that if data and forward model 
uncertainties are Gaussian, the likelihood function follows a Gaussian distribution, 
which its covariance is the sum of the covariances of the forward model and data a 
priori. Using this result, the likelihood function can be represented by: 
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Using the numerical values provided previously, the MCMC solution of the 
problem can be obtained using the described direct sampling method. The histogram of 
40000 sampled models and the corresponding probability density estimate are shown in 
Figure 4-5. The probability density estimate is obtained using a Gaussian kernel density 
estimate.  Based on the results presented in Figure 4-5, it can be observed that the 
estimates of the a posteriori probability are very close to the one obtained by analytical 
techniques. 

 
Appraisal of MCMC Solution of the Modulus Determination Experiment Using 

Monte Carlo Integration: As presented in previous chapter, the mean and variance of 
the evaluated solution can be calculated by: 
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Using Monte Carlo integration, these integrals can be evaluated as simple sums 
over sampled a posteriori models: 
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Using the numerically evaluated probability density, )(EEσ , mean and variance 
quantities can be evaluated as: GPaEE 9.69)( =σ GPaCE 8.1= . 
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Convergence 

One important issue in application of MCMC is to decide when to stop the chain 

and evaluate the underlying probability based on the collected samples. This issue has 

been explored both theoretically and empirically in literature. In fact, an active and 

important subfield of MCMC research is focused on the investigation and development of 

techniques to determine if a chain with finite number of samples have converged to 

underlying probability distribution and can be used as a reliable basis for estimation of 

the properties of the target distribution.  
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Figure 4-5 - MCMC solution of the deflection based modulus 
determination experiment. Histogram (top) and kernel density 
estimate (bottom) of the a posteriori probability density obtained 
from analysis of 40000 sampled models. 
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Theoretically, it has been shown [Tierney, 1994] that if a chain has three 

conditions of irreducibility, aperiodicity, and invariance, then in limit, as the number of 

the samples increases, the chain will converge to the target probability distribution. For a 

Markov chain, irreducibility implies that it is possible to visit any state to from any other 

given state in a finite number of steps. Aperiodicity means that the Markov chain does 

not circle around in the states with a finite period and a finally, invariance refers to the 

property of the chain that it will always converge to a unique distribution. It can be 

shown that [Robert and Casella, 1999] the Markov chain generated by Metropolis 

algorithm satisfies these conditions and therefore in the limit, as the number of samples 

approaches to infinity, the chain will converge to underlying probability distribution.  

Although this result proves the ultimate convergence of the chain, the primary 

concern in implementation of MCMC methods is to decide if the chain has reasonably 

converged in a finite number of steps. There has been very limited success in developing 

theoretical techniques for determination of the convergence of a chain. In general, there is 

no golden rule to determine the convergence. Available techniques aim at determination 

of the convergence through empirical diagnostic methods [e.g. Gelman and Rubin, 1992, 

Raftery and Lewis, 1992, Geweke, 1992, Roberts, 1992, Ritter and Tanner 1992, Zellner 

and Min 1995]. Cowles and Carlin [1996] give a comprehensive review of the available 

convergence diagnostics techniques. However, none of these techniques is general and it 

is possible to find examples where each method fails. These techniques can be divided 

into two general categories, techniques that rely on a single long chain to achieve 
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convergence and techniques that are based on comparison of several chains that are 

generated simultaneously. 

In the implementation used in this research, the convergence is assessed by 

diagnostic technique proposed by Gelman and Rubin [1992]. In this technique, several 

chains using the same probability are generated and compared. The lack of convergence 

of chains is determined from comparison of the mean of each chain to other means and to 

the mean obtained from mixing all chains together. If the calculated mean for each chain 

is close to the mean from other chains and to the mean obtained from mixing all the 

chains together, it can be assumed that chains have converged to the underlying 

probability. This comparison is carried out by calculating a scale reduction factor, R̂ , as 

follows: 
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(4-17) 

where B is the variance between the means from m  chains each with n  numbers and W  

is the average of the m  within chain-chain variances. For slowly mixing chains, the value 

of scale reduction factor, R̂ , is greater than one and approaches to one as chains 

converge. Gelman and Rubin suggest running chains until the scale reduction factor is 

close to one and preferably below 1.2. Further details about this diagnostic technique and 

other available techniques can be found in cited references.  

 

Computational Limitations 

As illustrated, MCMC technique is a general technique for solution of the inverse 

problems and estimation of the a posteriori probabilities. However, to obtain the solution, 
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a large number of models should be sampled and the likelihood function for each of them 

should be evaluated, which in turn requires the solution of the forward model. The 

number of required samples is a function of the dimension of the model space and the 

required precision in determination of the model parameters. However, as a general rule, 

as the number of the model parameters or required precision increases, the required 

number of samples increases as well. With the speed of modern computers, this might not 

be a problem for inverse problems that have forward models with a short computational 

time. However, for inverse problems where the computational time of the forward model 

is substantial, the time required for generation and evaluation of a large number of 

samples is prohibitive. In such cases, more sophisticated approaches should be used. The 

approach presented in the next section is one of the possible approaches. 

 

Direct Sampling Solution Using Approximation of the Likelihood 
Function 

As illustrated, MCMC heavily relies on running the forward model and evaluating 

the likelihood function. Consequently, it becomes inefficient once the required 

computational time of forward model increases. One approach for the solution of the 

inverse problems with computationally time consuming forward models (say more than 

few seconds) is to construct an approximation of the likelihood function over the model 

space with limited and targeted evaluations of forward model and use this approximation 

for evaluation of MCMC solution of the inverse problems. Using this approach, the 

number of forward model evolutions will be limited, which in turn reduces the required 

solution time. In this approach, the solution of the inverse problem will be carried out in 

two steps:  
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• Approximation stage: generation of approximate likelihood function and,  

• MCMC stage: evolution of MCMC solution of the problem using generated 

approximation. 

 

The approximation stage is implemented here using the recently developed 

Neighborhood Algorithm (NA) as the search and approximation tool [Sambridge, 1999]. 

A brief description of neighborhood algorithm is presented below. The MCMC has been 

described in previous section. 

 

Neighborhood Algorithm (NA) 

Neighborhood algorithm is a recently developed search and approximation 

algorithm. The objective of the algorithm is to find the optimum of an objective function 

by preferentially sampling the good regions of the space, which have higher values of 

function. This algorithm falls in the same class of global optimization methods such as 

simulated annealing and genetic algorithm and can be directly applied for optimization 

problems. However, rather than seeking a single optimal point, NA provides an 

approximation of the objective function, which is preferentially sampled more at the good 

regions of the space. The approximation constructed by NA (i.e. Neighborhood 

approximation) is used here to approximate the likelihood function for the solution of 

inverse problems using MCMC.   

NA approximation of likelihood function has several important features that are 

essential for obtaining MCMC solution of the inverse problem. The neighborhood 
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approximation is a global approximation to likelihood function through out the model 

space. Additionally, neighborhood approximation is preferentially sampled more at the 

regions of the model space with high value of the likelihood function resulting in a better 

approximation in important regions of the model space. Given the right control 

parameters, NA can locate the global optimum of the likelihood function and it will not 

get trapped in a local optimum. This feature of the algorithm makes it especially useful in 

the solution of highly nonlinear inverse problems, where the likelihood function might 

have several peaks. Finally, the value of likelihood function using neighborhood 

approximation can be efficiently calculated for every point in the model space.  

NA is a global optimization algorithm. Consequently, an additional result of the 

approximation stage is the identification of the maximum of the likelihood function (i.e. 

maximum likelihood point). As shown in previous section, in certain situations, the 

maximum of the likelihood function is the deterministic solution of the inverse problem. 

So, in these situations, the probabilistic approach presented here also identifies the 

deterministic solution as an intermediate step. In other words, for these problems, the 

search stage can be thought of as deterministic solution of the problem and MCMC stage 

as uncertainty evaluation stage.  

Finally, it should be mentioned that the accuracy of the obtained MCMC solution 

is directly related to the goodness of the approximation used for likelihood function, 

which is a function of the degree to which important regions of the model space are 

sampled. There is no general technique for evaluation of goodness of an approximation, 

intuitively, the more exploration in model space, the better the approximation.  
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Implementation of NA 

The basic premise of NA algorithm is to use previously evaluated samples to 

construct an approximation to the objective function through out the model space and use 

this approximation to guide generation of new models for which the forward model has to 

be evaluated. In general, the objective function can be any function, however, for the 

inverse problem solution presented here, the objective function is the likelihood function. 

The generalized algorithm can be presented as follows: 

 

• Construct the approximate likelihood function surface from the previous 

Pn models for which the function value has been calculated (i.e. forward 

model has been solves); 

• Use this approximation to generate the next sn samples in the prospective 

regions of the space and find the function value for them; 

• Add sn  to Pn  and repeat all the steps again. 

 

The two important missing detail of the above algorithm is how to construct the 

approximate likelihood function surface and how to generate new samples. NA algorithm 

uses a mathematical construct knows as Voronoi diagram [Voronoi, 1908] to construct 

the approximate surface and generate new samples. 
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Voronoi Diagram 

Voronoi diagram is a unique way of dividing the n-dimensional space into 

n regions called cells. Each cell is simply the nearest neighborhood region about one of 

the previous samples as measured by a particular distance measure (most often 2L  norm). 

A set of two-dimensional Voronoi cells about 30 random samples is presented in Figure 

4-6.  

 
Figure 4-6 - Typical Voronoi Diagram in two dimensions. 

 

Voronoi diagram provides a basis for construction of an approximation to 

objective function. In NA, the approximate value of the likelihood function within each 

Voronoi cell is assumed to be constant and equal to the value of the likelihood function 

evaluated for the point inside the cell. Once this approximation (i.e. neighborhood 

approximation) is constructed, NA uses this surface to guide the selection of the new 

samples. Using the concept of Voronoi cells, NA algorithm can be re-written as follows: 

 

• Generate initial sn  samples in model space; 
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• Solve the forward model for the most recent samples and choose rn  models 

with highest objective function values, 

• Generate sn  new models by drawing random samples in the Voronoi cells of 

each rn  models (i.e. sn / rn  samples in each cell). 

• Go to step 2. 

 

This algorithm preferentially draws samples in the regions of the model space 

with high function value. The algorithm has only two control parameter sn  and rn  which 

can be reduced to only one by setting rs nn = . At each step during the progress of 

algorithm, the maximum of the function can be easily identified among the set of 

sampled points and the approximate function can be created using neighborhood 

approximation.   

 

Stop Criteria 

An important issue in implementation of NA is to determine when to stop the 

algorithm. Since the objective of the algorithm is to optimize the objective function by 

preferentially sampling the good regions of the space, the stop criteria should be directly 

related to how precise the optimum point is located. Consider the following two stop 

criteria, which both should be satisfied to stop the algorithm: 

 

• The cell corresponding to the identified optimum has not changed for last sn  

sampled points 
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• The distance (in 2L  sense) between identified optimum and last sn   sampled 

points is less that ε , the required precision. 

 

These two criteria ensure that the region containing the optimum point is sampled 

adequately and additional sampling is not likely to change the location and precision of 

the identified optimum. These criteria were used as the stop criteria for the algorithm. 

 

Monte Carlo Solution Using Neighborhood Approximation 

Once the approximation to likelihood function is constructed, it can be used to 

obtain MCMC solution of inverse problem. If this approximation is dented as )(mNAλ , 

the solution can be represented as: 

)()()( mmm NA
MM

NA λρσ =  (4-18) 
where )(mNA

Mσ  is the a posteriori probability density obtained by using neighborhood 

approximation, and )(mMρ  is the model a priori probability density. MCMC techniques 

as described above can be directly applied to obtain the solution )(mNA
Mσ  and determine 

estimator quantities and marginal probabilities. 

To illustrate the application of the direct sampling using NA approximation of the 

likelihood function, the modulus determination experiment is considered again. However, 

to further demonstrate the advantage of the probabilistic approach in comparison to the 

deterministic approach, the experiment design is slightly modified. 

 

Deflection Based Modulus and Load Determination Experiment: In previous 
examples, the beam modulus was the only model parameter that had to be determined 
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from the solution of the inverse problem. For this example, it is assumed that in addition 
to the modulus, the exact magnitude of the load is also unknown and only an approximate 
magnitude is known. Therefore, in this example, there are two model parameters load, 
P , and modulus, E , which should be determined using one measured data value. It 
should be mentioned that in this case there is an infinite number of deterministic 
solutions. However, there is always a unique probabilistic solution to the problem. In 
reality, the a priori information on the model parameters, such as judgment on the type of 
material or simply an estimate of the load, might be enough to limit the solution to a set 
of probable solutions. However, there is no structured procedure in the deterministic 
approach to include such information in the solution process. However, they can be 
easily included in the probabilistic approach. 

Assume that there is no specific a priori information on modulus, i.e. it is 
represented by a homogenous a priori probability. However, based on the available 
information, a Gaussian a priori probability for load, P , can be formed, which conveys 
the expected value of the load. These probabilities are represented by: 
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where priP  and PpriΣ  are the mean and variance of the a priori distribution. For this 
example, since the uncertainty of the load is considered as an a priori information, the 
likelihood function can be simplified as: 
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Having defined the elements of the problem, the MCMC solution of the problem 
using NA is presented below. The solution consists of two stages, approximation stage 
and MCMC stage.  

Approximation Stage: The neighborhood approximation of the likelihood 
function, obtained using neighborhood algorithm, is presented in Figure 4-7. Since the 
likelihood function in this example is simple, for comparison purposes, exact plot of the 
function is also presented. It should be remembered that this exact plot is generally not 
available. By inspection of this figure, it can be observed that the neighborhood 
approximation is relatively coarse where the value of the function is low and it becomes 
dense near the regions of the function with high values.  It should be also noted that the 
likelihood function in this case is a function which has infinite number of maximum 
points. This type of behavior is not easy to approximate. However, it can be observed that 
the neighborhood approximation has reasonably captured the behavior of the function.  

MCMC Stage: The two dimensional a posteriori histograms of 10000 sampled 
models obtained using the neighborhood approximation of the likelihood function are 
presented in Figure 4-8. For comparison purposes, the analytical solution is also 
presented in this figure. Histogram and kernel density estimates of one dimensional 
posteriori marginal probabilities for each parameter are also presented in Figure 4-9. 
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Using the numerically evaluated probability density, mean and variance quantities for 
the modulus and load are presented below: 

GPaEE 6.72)( =σ ,    GPaCE 66.10=  
GPapp 4.100)( =σ

,    GPaCP 18.10=  
It can be observed that the approximate solution has captured the essential 

features of the exact analytical solution.  
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Figure 4-7 - Exact plot (top) and neighborhood approximation 
(bottom) of the likelihood function with 1000 models. Sampled 
models, as well as corresponding Voronoi diagram are also 
shown ( m001.0=Σ∆ ). 
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Matlab® Application Program 
To implement the outlined probabilistic approach, a user friendly Matlab® based 

application is prepared to evaluate the probabilistic solution with NA approximation. The 

application, which uses Matlab® scripts as inputs, is designed as a general purpose 

inversion tool for the solution of different inverse problems and is used for applications in 

the following chapters. A snapshot of the input window of this application is presented in 

Figure 4-10. 
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Figure 4-8 - Exact plot of ),( PEσ  (top) and MCMC solution 
using neighborhood approximation (bottom) of the modulus 
determination experiment 
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Figure 4-9 Histogram of 10000 samples of the one dimensional 
marginal a posteriori probabilities of (a) modulus and (b) load, 
and their corresponding kernel density estimates (c and d) 

 

Summary 
In this chapter, a number of techniques for quantitative evaluation of the 

probabilistic solution were presented. The techniques for direct analytical evaluation and 

numerical approximation of the probabilistic solution using Monte Carlo Markov Chains 

(MCMC), with and without Neighborhood Algorithm (NA) approximation, were 

introduced and explained. To demonstrate the advantages of the presented approach and 

to illustrate the concepts and techniques in more practical terms, a very simple modulus 
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determination experiment was presented. It has been shown that the major advantage of 

the probabilistic approach to inverse problem is its capability to evaluate the uncertainty 

measures for the solution. Additionally, it has been shown that the a priori information 

about the model parameters can be readily incorporated in the probabilistic solution 

process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 Snapshot of the input window of ProbInvert, the 
developed probabilistic inversion application. 
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5 Application One: Falling Weight Deflectometer 
Backcalculation 

 

 

 

 

Introduction 
Falling weight deflectometer test, commonly referred to as FWD test, is the most 

widely accepted, used, and studied technique for in-situ non-destructive evaluation of 

pavements. The objective of the test is to excite and measure the pavement response 

under the load levels equivalent to those applied on pavements by truck traffic. The 

measured pavement response is then analyzed or backcalculated to infer elastic moduli of 

pavement layers. FWD test is a very important tool for evaluation, design, and 

maintenance of transportation infrastructure. The test is routinely used by pavement 

engineers to backcalculate and estimate the in-situ pavement layer moduli, design 

overlays, estimate remaining life of pavements, evaluate load transfer capability, and 

perform network level monitoring. 

In this chapter the probabilistic backcalculation of FWD test results is introduced 

as the first example of the application of the probabilistic solution of inverse problems in 

civil engineering. Introduction of limited probabilistic concepts in FWD backcalculation 

has been previously suggested by others [e.g. Zaghloul et al, 2004]. However, to the 

author’s knowledge, the presented approach in this chapter is the most comprehensive 

and structured treatment of probabilistic backcalculation of FWD test results. Following 
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the introduction, a review of the FWD test procedure and current backcalculation 

techniques are provided. The backcalculation problem is then formulated from a 

probabilistic point of view and the results of the probabilistic backcalculation of synthetic 

test data are presented. To compare different methods of FWD backcalculation, such as 

static vs. dynamic and deflection bowl vs. time history backcalculation, the same set of 

synthetic test data are backcalculated using different methods and the results are 

compared. To illustrate the applicability of the developed backcalculation approach to 

actual field data, a set of experimental FWD test results are backcalculated using the 

probabilistic approach and the results are presented. The chapter concludes with a 

discussion of the importance of considering the frequency dependence of layer moduli on 

backcalculation results. This effect is evaluated using a spectral element model, which 

simulates the pavement response in the frequency domain. The developed spectral 

element model is used to backcalculate the same set of synthetic test results used 

previously. The results of the backcalculation are presented and compared to other 

results. 

 

Background 

Review of FWD Test Procedure 

FWD test is conducted by dropping a weight on a guided system from a series of 

predetermined heights and monitoring the ensuing pavement response. The test procedure 

with FWD is documented in ASTM 4694-96 [ASTM, 1996] and ASTM D4695-03 

[ASTM, 2003]. Schematics of the test setup and one of the trailers developed 

commercially for its implementation are depicted in Figure 5-1. 
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During each drop, an approximately a half sine transient impulse force is applied 

to the pavement. Currently available FWD trailers can apply loads ranging from 13600 to 

over 227000 N (3000 to over 50000 lb). The equipment has a relatively low preload so its 

influence on the pavement response is relatively negligible. The falling weight is 

generally dropped on a composite loading plate with a 0.30 m (12 inch) diameter. The 

composite plate generally consists of a steel plate, a PVC plate, and a rubber pad placed 

on the lower surface of the plate, which rests on the pavement. The function of the 

composite plate is to distribute the impact force, transferred to the plate via rubber buffers 

attached to the bottom of the weight, rather uniformly over the pavement surface. 

However, numerical studies have shown that for flexible pavements with a low paving 

layer modulus, the interaction between the pavement and the loading plate during the test 

might be significant enough to influence the stress distribution over the pavement surface 

and produce a non uniform distribution [Boddapati and Nazarian 1994].   

The FWD loading cycle is about 30 to 40 msec long. The transferred load to 

pavement and pavement response during the test is generally monitored for 60 msec by 

transducers resting at different radial offsets from the impact location. A typical loading 

history and corresponding deflection time history records measured during FWD test are 

depicted in Figure 5-2. The transferred load is commonly recorded by a load cell and 

pavement response is monitored by geophones. It is common practice to measure the 

pavement response at offset distances recommended by Federal Highway Administration 

(FHWA) for Long Term Pavement Performance (LTPP) study. These offsets are 0, 0.20, 

0.30, 0.45, 0.60, 0.90, 1.20 and 1.50 m (0, 8, 12, 18, 24, 36, 48 and 60 inch respectively). 

During an FWD test, after dropping the weight and completion of initial loading and 
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unloading cycle, the weight loses contact with the plate for a time period after which the 

contact takes place again. Previous studies have indicated that for the most conservative 

lower drop heights the time interval between two contacts is about 180 msec. 

Consequently, considering the duration of initial FWD impulse, the initial pavement 

response during the FWD test can be considered independent of the subsequent rebounds 

and impacts of the weight [Sebaaly, Davies and Mamlouk, 1985]. 

 

 

 
Figure 5-1 - Schematics of FWD test setup (top) and Dynatest® 
model 8000 FWD trailer (bottom). 
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Figure 5-2 - Typical measured loading history (top) and 
pavement response during FWD test at different offsets (bottom). 

 

Review of Current FWD Backcalculation Procedures 

Over the past few decades, there has been a considerable number of publications 

addressing different aspects of interpretation and backcalculation of FWD test results 

with many of the important findings presented in several volumes of American Society 

for Testing and Material (ASTM) special technical publications [Bush and Baladi, 1989, 

Von Quintus, Bush, and Baladi 1994, Tayabji and Lukanen, 2000]. The review of 

currently available backcalculation procedures indicates that the available procedures use 
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a deterministic approach to the solution of the problem. These procedures can be divided 

into several categories based on the degree of complexity of the forward model used 

[Uzan 1994], such as: 

 

• Static linear elastic procedures, 

• Static nonlinear elastic procedures, 

• Dynamic linear procedures using either time or frequency domain fitting, and 

• Dynamic nonlinear procedures. 

 

In static linear elastic procedures, the theoretical static response of an elastic 

pavement model under the maximum applied load is matched to the maximum measured 

deflection of the pavement at each transducer location. The maximum deflection of the 

pavement at each receiver is collectively referred to as the deflection bowl. Due to 

simplicity and speed of calculation, static linear backcalculation procedures are widely 

used in the current engineering practice. There are several programs available that 

implement this approach, such as MODCOMP [Irwin, 1993], Modulus [Michalak and 

Scullion, 1995] and ELMOD [ELMOD, 2001].  

In static non-linear backcalculation schemes, a nonlinear static model is used to 

generate a theoretical pavement response that matches the observed deflection bowl. The 

main premise of the static non-linear backcalculation scheme is that by considering the 

nonlinear effects, a more realistic theoretical model of pavement is used, which 

consequently provides a better backcalculated estimates of pavement material properties. 

The non-linear forward model is generally developed and analyzed using Finite Element 



71 

 

(FE) programs.  There have been also attempts to include nonlinear effects in linear static 

analysis by using empirically or theoretically generated relationships. Static non-linear 

models in theory can provide a better representation of pavement response, however, 

since the static model does not consider the dynamic nature of the FWD test, the validity 

and accuracy of the static non-linear backcalculation approach are questionable. 

The FWD loading cycle can not be in any sense considered as a static loading, as 

is assumed in static procedures. There have been several studies against using static 

pavement models in the FWD backcalculation [Mamlouk 1987, Uzan 1994, Alkhoury et 

al 2001]. However, there is a general notion that in absence of a shallow bedrock (<3m) 

and stiff and thick surface layer, the results of static linear backcalculation are reliable 

[Uzan 1994].  

In the dynamic linear analysis the theoretical dynamic pavement response is 

matched to the observed deflection bowl or time histories. The calculation of forward 

model can be implemented either in the time domain using either finite element or finite 

difference techniques [Loizos and Scarpas 2005] or in the frequency domain using 

analytical techniques, such as the transfer matrix approach suggested by Thomson [1950] 

and Haskell [1953], which was further developed by Kausel and Roesset [1981], or the 

spectral element technique [Doyle, 1997]. The studies by Uzan [1994] and Alkhoury et 

al. [2001 a,b]  are examples of successful application of dynamic linear forward model in 

the FWD backcalculation. Although dynamic modeling of a pavement for generation of 

the theoretical response is fundamentally a more appropriate approach to FWD 

backcalculation [Zaghloul et al. 1994], due to a restrictive computational cost, its 

application is currently very limited. However, with ever increasing computational power 
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available to practitioners, it is expected that dynamic modeling for backcalculation will 

be used more extensively in future. 

As partially outlined above, there have been a few decades of effort by engineers 

and researchers to improve the FWD backcalculation procedures. Despite the extensive 

research on FWD backcalculation and significant advances in this area, the current 

backcalculation procedures still use a deterministic approach, which lacks uncertainty 

measures. Adoption of the probabilistic approach in FWD backcalculation would 

improve the current backcalculation procedures by evaluation of uncertainties in the 

analysis, especially in the following areas: 

 

• Evaluation of uncertainties in backcalculation results due to uncertainties in 

the layer thickness input: Probably the most restrictive aspect of the FWD test 

is that it requires knowledge of the pavement layer thickness as an input to 

backcalculation routines. Such information is rarely available for every 

location and should be estimated from other data. The uncertainty in the 

thickness estimates used in the backcalculation translates to uncertainty in 

obtained results, which is not possible to evaluate with current backcalculation 

procedures. In the probabilistic approach, such estimates can be obtained. 

• Evaluation of uncertainties due to selection of backcalculation variables: The 

backcalculation results may vary depending on how the pavement model is 

developed and the model parameters, such as the number and thickness of 

pavement layers, are selected. Inappropriate selection of the model parameters 

may produce poor backcalculation results. For example, it is generally 
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accepted that when a thin paving layer (<80mm) exists, its modulus can not be 

reliably backcalculated. In the current backcalculation procedures, if such a 

layer is selected as one of the parameters, there is no measure that determines 

the uncertainty of the obtained results. In the probabilistic approach, 

uncertainty measures are obtained as a part of the solution. 

• Evaluation of uncertainties due to uncertainty in evaluation of the depth to 

shallow bedrock: The presence of a shallow bedrock affects the results of 

FWD test. Current practice relies on the analyst to detect presence of the 

bedrock from the recorded data and estimate the depth to the bedrock from a 

separate analysis and include it in the backcalculation analysis [Roesset et al. 

1995]. The inaccuracy in determination of the depth to bedrock affects the 

analysis results and increases uncertainties. In the probabilistic approach, 

these uncertainties can be quantified. 

 

Furthermore, since the probabilistic approach presented here uses a global search 

algorithm, the obtained results are repeatable, which is not generally the case for some of 

the available backcalculation procedures [Uzan 1994]. Using the probabilistic approach, 

also allows exploration of the possibility of simultaneous backcalculation of the layer 

moduli, depth to bedrock, and layer thicknesses as a part of the backcalculation analysis 

along with associated uncertainty measures. 
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Probabilistic Formulation of FWD Backcalculation 
Using the notion of generalized measurement presented in the previous chapters, 

the FWD test and the associated backcalculation can be considered as a generalized 

measurement of pavement layer properties using surface deflection measurements. The 

notion of a generalized measurement combined with tools developed in the previous 

chapters will be used here to backcalculate the pavement layer properties and obtain 

uncertainty measures. 

As presented in the review section, there are different approaches to the modeling 

of the pavement response in backcalculation of FWD test results, such as static or 

dynamic modeling. Similar to the deterministic formulation of FWD backcalculation, the 

probabilistic approach can also be formulated using different types of forward models. In 

this study, two general types of forward models are considered and probabilistic 

backcalculation is formulated using each of those: 

 

• Probabilistic formulation using static linear elastic forward model: Although 

the nature of the FWD test is obviously dynamic, due to their simplicity and 

computational savings, historically, static forward models have been used to 

model FWD test in backcalculation procedures. Since the static 

backcalculation routines are still very popular with practicing engineers, this 

class of backcalculation procedures is reformulated probabilistically to 

investigate the uncertainties in the obtained results from this approach. 

• Probabilistic formulation using dynamic linear elastic forward model: 

Intuitively, the dynamic backcalculation approach should provide a more 

realistic estimate of the pavement layer properties. The deterministic dynamic 
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backcalculation routines based on complete time history records of the 

pavement deflection have been previously proposed for FWD backcalculation 

[e.g. Alkhoury, 2001]. The probabilistic approach, in addition to more realistic 

modeling of the pavement response, provides the required tools to investigate 

the information carried by recorded data to backcalculate the layer moduli, 

obtain uncertainty measures, and consider the possibility of directly 

backcalculating other pavement properties, such as the depth to bedrock or 

even pavement layer thicknesses.  

 

The probabilistic formulation of a FWD backcalculation in terms of the a priori 

information and the forward model operator is presented below and its application is 

illustrated by backcalculation of synthetic and experimental FWD test data.  

 

Model a Priori Information 

In the probabilistic formulation, the model a priori information, represented by 

probability density )(mMρ , presents the knowledge about the value of the model 

parameters prior to the solution of the problem. For pavement layer properties, most 

often, there is no information available other than possible limits of the value of the 

parameters. The information about the limits of the value of the parameter of interest is 

presented by a homogenous probability density. Since this type of a priori information is 

the most common type encountered in practice, it is the only a priori information 

considered here. Homogenous a priori probability densities considered for all pavement 

layer properties in this chapter can be presented by: 
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where maxm  and minm are respectively the maximum and minimum limits of the value of 

the parameter of interest, m . The choice of limits of m generally depends on the 

problem and the experience and judgment of the analyst. However, when in doubt, a 

larger interval should be selected.  

 

Data a Priori Information 

Data a priori information, represented by probability )(dDρ , expresses the 

uncertainties in the measurement of the observed parameters, which for a FWD test are 

simply deflections at transducer locations.  

The uncertainties in deflection measurement can be divided into two categories 

according to guidelines of United Stated National Institute of Standards and Technology 

(NIST): uncertainties of “Type A” and “Type B” [Taylor and Kuyatt, 1994]. The 

uncertainties in deflection measurement of the transducers are usually evaluated as a 

“Type A” uncertainty by the transducer manufacturer. For example, for Dynatest 8081 

FWD/HWD system, these uncertainties are quantified in the owner’s manual as, “The 

deflections are measured with an absolute accuracy of better than 2%±2 microns, and 

with typical, relative accuracy of 1%±1. The resolution of the equipment (in terms of 

deflection) is one micron” [Dynatest, 1995]. However, in addition to uncertainties 

associated with instrument measurements, there are generally other uncertainties in FWD 

measurements that should be considered, such as the uncertainties in positioning and 

appropriate contact of the transducers, uncertainties in instrument readings due to 



77 

 

vibrations sources other than the FWD impact, and uncertainties due to presence of 

surface cracks. Ideally, each component of uncertainty should be evaluated statistically 

and combined with other components to obtain the standard combined uncertainty. 

However, in absence of such an evaluation, a reasonable estimate of uncertainty can be 

obtained from repeatability studies reported in literature. The repeatability of FWD 

measurements for several commercially available trailers is presented in Figure 5-3. 

Based on these studies data a priori probability distribution, )(dDρ , will be considered to 

be a Gaussian distribution with a mean equal to the observed value and a coefficient of 

variation of two percent.  

It should be mentioned that in a repeatability study each reading of the device is 

compared to previous readings of the same device, not to the actual value of the 

measurand. So, there is a difference between the result of repeatability studies and 

uncertainties. However, in absence of any measure of uncertainty, the repeatability results 

are used here as a rough estimate of the uncertainty in FWD measurements. Obviously, a 

more thorough evaluation of the uncertainty of FWD measurements in the probabilistic 

context would be required for more accurate estimates. 
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Figure 5-3 - Coefficient of variation of deflection from short term 
repeatability experiments [Benson, Nazarian and Harrison, 
1994]. D1 thru D6 indicates different deflection sensors. 
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Forward Model 

There are several approaches towards the modeling of the FWD test. The choice 

of the model depends on many factors, such as the type of analysis, required degree of 

complexity, computational requirements, and availability of resources. For this research a 

finite element model was selected as the forward model. In finite element analysis, the 

pavement response is generally calculated in the time domain. The main benefit of the 

finite element model is its generality and the ease of modeling different geometries, 

boundary conditions, and material models using commercially available and verified 

codes. Finite element analysis can also be used to obtain the static response of the system 

for a comparison to conventional backcalculation methods. The main disadvantage of the 

finite element analysis is its computational cost.   

The finite element forward model for this study was developed using ABAQUS® 

program [ABAQUS, 2005]. The developed finite element mesh is presented in Figure 5-4. 

The same mesh was used for both static and dynamic analyses.  

 
Figure 5-4 – Axisymmetric ABAQUS® Finite Element mesh 
with absorbing boundary elements for theoretical modeling of 
FWD test. 
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There were several considerations in the development and analysis of the finite 

element model, including: 

 

• Loading Wavelet: The FWD load pulse is modeled as a time varying, spatially 

uniform load on the 0.15 m radius loading plate. An idealized loading wavelet 

of the FWD test and its frequency spectrum resulting from a maximum load of 

50000 N are depicted in Figure 5-5. This wavelet is used in the numerical 

simulation of FWD tests. As presented, most of the energy of the FWD 

excitation is below 100 Hz.  

• Element Size and Type: The FWD test can be modeled as an axisymmetric 

problem. Consequently, the finite element model was developed using two 

dimensional axisymmetric elements. The size of the elements is very 

important in the finite element analysis, especially in the dynamic analysis. 

The element size generally depends on the material properties and 

characteristics of the impact loading wavelet. The approximate element size, 

e , can be estimated from the relationship max/ fVe R×< χ  [Zerwer, Cascante, 

and Hutchinson 2002], where RV  is the Rayleigh wave velocity, maxf is the 

highest frequency of interest, and χ  is a constant less than 0.5 because of the 

Nyquist limit considerations. Since the FWD excitation frequency is relatively 

low (<100 Hz), the element size near the impact location was dictated by the 

location of the transducers rather than element size e , as defined above. To 

minimize the number of model elements and consequently reduce the 
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computational time of the forward model, the element size was increased 

towards the boundaries of the model. 
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Figure 5-5 - Time history (top) and frequency spectrum (bottom) 
of idealized time history wavelet. 

 

• Overall Dimensions of the Model:  To ensure the accuracy of the static finite 

element analysis, consistent with the recommendations of previous studies, 

the model boundaries were established at 10 m from the impact location. 

Additionally, to ensure the accuracy of the dynamic analysis, infinite non-

reflecting boundaries were used at the perimeter of model. The relatively large 

dimension of the model and non-reflecting infinite boundaries reduce the 

effect of reflected waves from the boundaries and result in a more accurate 
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dynamic analysis. It should be mentioned that the infinite boundary elements 

are also formulated to model far field response in a static analysis. 

• Dynamic Analysis Time Step: The dynamic analysis of the FWD test was 

performed using an explicit time integration method. The explicit dynamic 

analysis procedure is based on the implementation of an explicit central 

difference time integration rule. Unlike implicit dynamic analysis methods 

that are unconditionally stable, the explicit dynamic analysis is only 

conditionally stable. The time step in this type of analysis should be small 

enough to prevent instability of the solution, which in simple terms means that 

the time step should be small enough to prevent information to propagate over 

more than one element per time step. This condition, which is sometimes 

referred to as Courant, Friedrichs, and Lewy (CFL) condition, requires 

selection of a time step t∆  such that: PVLt /<∆ , where PV  is the 

compressional wave velocity and L is the smallest distance between two 

nodes in the model [Cook, Malkus, and Plesha, 1989].   

 

Using the presented finite element model, the surface deflection time histories 

from the dynamic linear elastic analysis by ABAQUS® due to the presented loading 

wavelet are calculated and presented in Figure 5- 6. The material properties used in the 

definition of the model are presented in Table 5-1. The presented pavement profile was 

selected to be identical to the profiles considered in previous research studies, so that the 

theoretical accuracy of finite element model can be further verified through a comparison 

with the published deflection histories [Alkouhry et al, 2001]. The analysis was restricted 
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to 0.06 second because during the FWD test, pavement response is generally monitored 

for this period of time. ABAQUS® automatically adjusts analysis time step to satisfy 

CFL condition, however, the calculation results were reported at 0.001 second intervals.  

As mentioned, the response of the presented pavement system under the idealized 

loading wavelet, has been also previously studied by other researchers. To verify the 

numerical accuracy of the developed finite element model, the model predictions were 

compared to the published results. The published pavement deflection histories 

[Alkhoury, 2001] for the same pavement model, as presented in Table 5-1, are presented 

in Figure 5-7. These results are in close agreement with the obtained finite element 

results presented in Figure 5-6. The predictions of dynamic models have been also 

compared to actual filed measurements in general. In a recent study Loizos and Scarpas 

[2005] have verified that the predictions of dynamic finite element models are in fact in 

very good agreement with actual field measured values. Similar results were also 

published by Zaghloul et al. [1994].  

Table 5-1 - Geometrical and material properties used for 
definition of finite element model.  

Material Type Thickness 
(m) 

Elastic 
Modulus 
(MPa) 

Rayleigh 
Damping 

Ratio 

Poisson’s 
Ratio 

Mass 
Density 
(kg/m3) 

Asphalt Concrete 0.15 1000 0.001 0.35 2300 
Aggregate Base Course 0.25 200 0.001 0.35 2000 

Subgrade infinity 100 0.001 0.35 1500 
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Figure 5-6 - Predicted pavement surface deflection time histories 
from ABAQUS® finite element model. 
 

 
Figure 5-7 - Response of pavement surface deflection time 
histories [Alkhoury, 2001]. 

 

To be able to evaluate the probabilistic solution, modeling uncertainties should 

also be defined. In general, evaluation of modeling uncertainties is a complex task and 

further research is required to quantify such uncertainties. For examples presented in this 

chapter, based on the experience, nominal modeling uncertainties were assigned for each 

analysis. 
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Probabilistic Solution 

It was shown in previous chapters that the probabilistic solution of the inverse 

problem is the a posteriori probability, which can be presented as:  

)()()( mmm MM λρσ =  (5-2) 
where )(mλ  is the likelihood function: 
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(5-3) 

In these equations, the model parameter(s) m  is the parameter(s) of interest in the 

problem, dC  is the covariance of the data a priori information (assumed Gaussian) and 

TC  is the uncertainty in prediction of forward model )(mg  (assumed Gaussian as well). 

In this chapter, this problem is solved using the Monte Carlo solution scheme with 

neighborhood approximation, as presented in Chapter 4. For backcalculation analysis 

presented in this study the data were considered to be a single vector formed by 

combining the data from individual receives. 

 

Computational Time 

The computational time for backcalculation analysis is directly proportional to the 

number of forward model runs. In the probabilistic approach, the number of the forward 

model runs depends on many factors, such as the number of model parameters, accuracy 

required in defining the probabilities and accuracy in identifying the maximum point of 

probabilities. The NA algorithm provides two variables to control the search effort and 

define accuracy of the results. For FWD backcalculation using a three layer pavement 

model, depending on the value of control parameters, the number of forward model runs 

can vary significantly (approximately from 50 runs to 500 runs). Obviously, the higher 
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the required accuracy or the number of the model parameters, the higher the number of 

forward model runs.  

 

Backcalculation of Synthetic Test Data 

Synthetic FWD Test Data 

To be able to evaluate the performance of the probabilistic backcalculation 

approach, the approach is initially implemented on a set of synthetic FWD test results, 

where the material properties used for generation of the synthetic data are known. These 

data sets were generated using the described dynamic finite element model above. The 

material and geometric properties used in the generation of the synthetic data are the ones 

presented in Table 5-1.  

The presence of the shallow bedrock affects the FWD test results. Therefore, in 

addition to the presented finite element model, where no bedrock was considered in 

development of the model (i.e. deep bedrock), another set of synthetic data with the 

similar finite element model was also generated, except that it was assumed that the 

bedrock is at 2 m below the surface (i.e. shallow bedrock). Deflection time histories for 

both these cases are depicted in Figure 5-8. Artificial, normally distributed random noise 

with a maximum amplitude of one micron, which is a typical resolution of the FWD 

displacement measurement [Dynatest, 1995], was added to these records to simulate 

environmental noise in actual FWD test data and to avoid potential numerical problems. 

The deflection bowls for the simulations with and without bedrock are also shown in 

Figure 5-9. It should be emphasized that the deflection bowls are obtained from time 
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histories of dynamic model. The presented deflection bowls as well as the time histories 

are used here as the synthetic FWD test results for input to the backcalculation routine. 
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Figure 5-8 - Synthetic FWD data for no bedrock (top) and 
shallow bedrock at 2 m below the surface (bottom). 
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Figure 5-9 - Deflection bowls for synthetic FWD data. 
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Backcalculation of Layer Modulus based on Deflection Bowl Using Linear 

Static Forward Model 

The first set of backcalculation analysis consists of backcalculation of layer 

moduli based on the deflection bowl measurements for the pavement section with a deep 

bedrock. The forward model in this backcalculation analyses was the static linear finite 

element model presented previously. The data uncertainty was considered to follow a 

Gaussian distribution with the mean equal to the observed value and a coefficient of 

variation of two percent. Although present, no modeling uncertainty was considered for 

this analysis. 

One-dimensional kernel density estimates of marginal probability densities of the 

layer moduli from the backcalculation analysis are presented in Figure 5-10. A 

comparison between the observed deflection bowl and the defection bowl corresponding 

to the most probable moduli values is also presented in the same figure. It can be 

observed that, although there is a reasonably good match between the observed and 

backcalculated deflection bowls, the backcalculated layer moduli are very different from 

the values used in the generation of the synthetic data. This discrepancy is basically due 

to modeling uncertainties that are not included in the backcalculation analysis. In other 

words, the synthetic observed deflection bowl, as presented in Figure 5-9, was generated 

using a linear dynamic finite element model. However, the backcalculation routine uses a 

static model to backcalculate for layer moduli. Unless this discrepancy in modeling is 

explicitly considered in the backcalculation, the final results would not be close to the 

target values used in the generation of the deflection bowl. It should be mentioned that 
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this approach to backcalculation is similar to the current dominant practice of FWD 

backcalculation, where the results of the FWD test (a dynamic test) are summarized in 

terms of the deflection bowl and are backcalculated using a static forward model. Based 

on this analysis, it can be observed that the static backcalculation, without an explicit 

consideration of modeling uncertainty, results in incorrect backcalculated values.  

The fact that the static backcalculation may produce incorrect results has been 

previously acknowledged by other researchers. However, it is the general assumption that 

the difference in the obtained results is relatively small. Obviously, for the example 

presented here, this is not the case and this assumption should be further evaluated.  

In the probabilistic backcalculation, the modeling uncertainties, can be explicitly 

considered in the analysis. To illustrate such an approach, the modeling uncertainty for 

this analysis has been evaluated by comparing the deflection bowls from static and 

dynamic analyses of the same pavement model for a range of layer modulus values, as 

presented in Table 5-2. The kernel density estimates of the absolute difference between 

calculated deflections from dynamic and static analyses for each receiver are depicted in 

Figure 5-11. The calculated histograms of the this absolute difference are also presented 

in this figure.  

 

Table 5-2 – Range of layer moduli values used for evaluation of 
modeling uncertainties using deflection bowls from static 
analysis.  

Material Type Elastic Modulus Range (MPa) 
Asphalt Concrete 500~4000 

Aggregate Base Course 50~400 
Subgrade 50~400 
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Figure 5-10 - (a, b and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the deflection bowl with the static forward model without 
considering modeling uncertainties and (d) comparison of the backcalculated deflection bowls for the 
pavement section with the most probable layer moduli and the observed data. 
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The modeling uncertainty at each receiver for input in the backcalculation 

procedure can be evaluated by calculating the covariance of the difference between 

calculated deflections from dynamic and static analyses for each receiver. Based on this 

analysis, as a first estimate, a Gaussian distribution with a standard deviation of 0.1 mm 

will be used to represent the modeling uncertainty for all receivers. It can be observed 

that the evaluated modeling uncertainty is significantly higher than the data uncertainty. 

The uncertainty in data was shown to be small, with a coefficient of variation of about 2 

percent, where the coefficient of variation for modeling uncertainty ranges from 20 to 

about 170 percent.  

In the probabilistic approach with Gaussian data and model uncertainties, the 

covariance representing the modeling uncertainties can be added to the data uncertainty 

covariance. Using this approach, a new set of analysis was performed, which includes the 

combined effect of data and modeling uncertainties. One-dimensional marginal 

probability densities of the layer moduli from the backcalculation analysis are presented 

in Figure 5-12. It can be observed that the obtained probabilities have significant spreads, 

which indicated low reliability of the results. Based on these results, it can be concluded 

that due to high modeling uncertainties, the backcalculation of modulus using a static 

model is very unreliable.  
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Figure 5-11 – Histograms and kernel density estimate of the 
absolute difference between the calculated maximum deflections 
from dynamic and static analyses at each receiver location and . 
The area under each density estimate is equal to one unit. The 
histograms are scaled to fit in the same figure.  



 

 

93 

0.5 1 1.5 2 2.5 3 3.5 4

x 109Asphlat Layer Modulus (Pa)

M
ar

gi
na

l P
ro

ba
bi

lit
y

0.5 1 1.5 2 2.5 3 3.5 4

x 108Base Layer Modulus (Pa)

M
ar

gi
na

l P
ro

ba
bi

lit
y

0.5 1 1.5 2 2.5 3 3.5 4

x 108Subgrade Modulus (Pa)

M
ar

gi
na

l P
ro

ba
bi

lit
y

 
(a)      (b)      (c) 

0 0.25 0.5 0.75 1 1.25 1.5
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Receiver Offset (m)

D
ef

le
ct

io
n 

(m
m

)

 
(d) 

Figure 5-12 - (a, b and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the deflection bowl with the static forward model, which 
includes the modeling uncertainties, and (d) comparison of the backcalculated deflection bowls for the 
pavement section with the most probable layer moduli and the observed data. 
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Backcalculation of Layer Moduli Based on Deflection Bowl Using Linear 

Dynamic Forward Model 

It was shown that due to significant modeling uncertainties, the results of FWD 

deflection bowl backcalculation using static forward model are very unreliable. If instead 

of a static model, a dynamic model is used, the discrepancy and uncertainty in the 

modeling will be eliminated, and it is reasonable to expect that the analysis would 

recover the correct layer moduli. This expectation is in fact verified by the analysis 

results. Kernel density estimates of marginal probability densities for the layer moduli 

obtained from the probabilistic deflection bowl backcalculation with a dynamic forward 

model are presented in Figure 5-13. For this analysis, data uncertainty was considered to 

follow a Gaussian distribution with the mean equal to the observed value and a 

coefficient of variation of two percent. No modeling uncertainty was considered, because 

the same model was used to generate both theoretical and observed deflection bowls. As 

depicted, the backcalculation results have peaks at the correct modulus values. A 

comparison of the observed and backcalculated deflection bowls are also presented in the 

same figure. 

By review of the presented results, it can be observed that, even though the data 

uncertainty is very small (a coefficient of variation of two percent was used as presented 

previously) and there is no modeling uncertainty (the same model was used in the 

generation of theoretical and synthetic data), the backcalculated values have a relatively 

large spread and display several peaks. This spread and multiple peaks can be related to 

the sensitivity of the deflection bowl data to the layer modulus values.  
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Figure 5-13 - (a, b and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the deflection bowl with the dynamic forward model and 
(d) comparison of the backcalculated deflection bowls for the pavement section with the most probable layer 
moduli and the observed data. 
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Deflection bowl backcalculation procedures rely heavily on deflection 

measurements at discrete points. For the specific analysis presented here, eight discrete 

deflection measurements were used to backcalculate three unknown modulus values. So, 

it should be expected that any uncertainty in the deflection measurement and/or 

theoretical modeling would translate into a relatively significant variation of 

backcalculated moduli. This statement can be demonstrated in the probabilistic approach 

by increasing the uncertainty in data. Figure 5-14 depicts the kernel density estimates of 

marginal probabilities for the same problem with a combined data and modeling 

uncertainty coefficient of variation of eight percent. It can be observed that the spread of 

the backcalculated moduli has increased significantly. The increase in the spread 

indicates that, if for any reason the uncertainty in data or model increases, the reliability 

of backcalculation results based on the deflection bowl would decrease significantly. 
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Figure 5-14 -(a, b and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the deflection bowl with the dynamic forward model with 
high model and data uncertainty and (d) comparison of the backcalculated deflection bowls for the pavement 
section with the most probable layer moduli and the observed data. 
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The heavy reliance of the deflection bowl backcalculation on a very small set of 

data has resulted in difficulties in the deterministic backcalculation procedures, such as 

inconsistency of the results from different programs and analysts for the identical a set of 

data. As it has been shown, the a posteriori probabilities may have multiple peaks. In the 

deterministic backcalculation procedures, presence of several peaks means that the 

deterministic procedures can be trapped in any of the peaks and report the corresponding 

value as the backcalculation result. This means that there is chance that the reported 

values are not the correct values. This is a very serious problem, especially when the 

uncertainty in data increases. Such an increase should be expected for actual FWD test 

data, because for the experimental data, in addition to data uncertainty, there is always a 

modeling uncertainty component. Therefore, it can be concluded that, although the 

deflection bowl backcalculation using dynamic models can be used to correctly 

backcalculate the moduli, the relatively low sensitivity of the moduli to data (or in other 

words low information content of data) may produce a rather large uncertainty in the 

backcalculated result.  

 

Backcalculation of Layer Moduli Based on Deflection Time History Using 

Linear Dynamic Time Domain Forward Model 

Intuitively, deflection time histories of the FWD test carry significantly more 

information regarding the pavement than the discrete deflection bowl measurements. So, 

it is expected that the backcalculation procedures that use time histories should provide 

more reliable results. This in fact can be observed from the backcalculation of the 

synthetic test result on the pavement section with a deep bedrock using the dynamic 
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forward model. For this backcalculation analysis, the data uncertainty coefficient of 

variation was selected to be two percent and no modeling uncertainty was considered, 

because the same model was used in the generation of synthetic results, as well as 

theoretical data. Kernel density estimates of marginal a posteriori probability densities for 

the layer moduli obtained from the probabilistic backcalculation are presented in Figure 

5-15. A comparison of the backcalculated deflection time histories for the pavement 

section with the most probable layer moduli and the observed data are also presented in 

the same figure. As presented, these results have much sharper peaks at the correct 

moduli values. So, it can be concluded that using the complete deflection time history as 

the data is a much more reliable approach in the FWD backcalculation. The main 

practical problem in using this approach is its computational cost in terms of calculating 

the dynamic response of the pavement. However, with a rapid increase in the available 

computational power and availability of faster forward modeling approaches, the 

additional computational cost should not be considered as a major obstacle. 
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Figure 5-15 - (a, b and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the deflection time history with the dynamic forward model 
and (d) comparison of the backcalculated deflection time histories for the pavement section with the most 
probable layer moduli and the observed data. The two time histories are overlapping. 
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Backcalculation of Layer Moduli and Depth to Bedrock Based on Deflection 

Time History Using Linear Dynamic Forward Model 

The pavement response to FWD impact is remarkably different when a shallow 

bedrock is present, compared to when it is not. Consequently, the backcalculation of 

moduli should consider the effect of the bedrock. There is no direct indication of the 

presence of a shallow bedrock in deflection bowl measurements. However, presence of a 

shallow bedrock can be recognized by low amplitude reflections present at the later part 

of a time record. Currently, available backcalculation procedures rely on the ability and 

experience of the analyst to recognize presence of a shallow bedrock, estimate its depth, 

and include its effect in the analysis. 

Conceptually, the depth to bedrock can be considered as one of the model 

parameters that should be resolved from the backcalculation analysis. Any prior estimates 

of the depth to bedrock, if available, can also be included as a priori information. Using 

this method, the solution of the backcalculation problem simultaneously provides the 

backcalculated values of the depth to bedrock, as well as pavement layer moduli. To 

evaluate such an approach, the backcalculation of time histories of the synthetic test with 

a shallow bedrock was performed, where the depth to bedrock was considered to be one 

of the model parameters. Marginal a posteriori probability densities for the layer moduli 

and depth to bedrock obtained from the probabilistic backcalculation are presented in 

Figure 5-16. A comparison of the backcalculated deflection time histories for the 

pavement section with the most probable layer moduli and the observed data are also 

presented in this figure. 
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Figure 5-16 - (a, b, c and d) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
and depth to bedrock obtained from the probabilistic backcalculation of the deflection time histories with the 
dynamic forward model and (e) comparison of the backcalculated deflection time histories for the pavement 
section with the most probable layer moduli and the observed data. 
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As presented, these results have sharp peaks at the correct moduli and depth to 

bedrock values, confirming the possibility of simultaneously backcalculating moduli and 

depth to bedrock with low levels of uncertainty. However, the additional information (i.e. 

the depth to bedrock) is obtained at the expense of additional computational cost required 

to search a higher dimension model space and locate the “good” regions of the space. 

This analysis demonstrates that the dynamic deflection time histories carry much more 

information than deflection bowls and, thus, confirms that using time histories as the 

input data is a much more reliable approach in the FWD backcalculation. 

 

Backcalculation of Layer Moduli and Thickness Based on Deflection Time 

History Using Linear Dynamic Forward Model 

Theoretically, the thickness and moduli of pavement layers can be both 

considered as the model parameters in a backcalculation analysis. Including the thickness 

in backcalculation analysis increases the number of model parameters, which in turn 

would require more computational effort in the search stage. Limited backcalculation 

analyses performed as part of this research were not successful in recovering the correct 

thickness and moduli and further work is required to investigate the possibility of 

backcalculation of thickness and moduli from time history data. 

 

Backcalculation Based on Velocity Time History 

Most often, the transducers used in FWD testing do not directly measure the 

pavement deflection. These transducers generally measure the particle velocity of the 
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pavement motion following the impact. The measured velocity history is then integrated 

to evaluate the pavement deflection history. The integration introduces additional 

uncertainties in the analysis. If the resolution of the transducers is low or the noise level 

is high, such uncertainties can be significant. To reduce such uncertainties, the 

backcalculation analysis can be performed using the velocity time histories as data. 

For the backcalculation analysis presented in this research, there is no 

fundamental difference between using the velocity time histories or the deflection time 

histories. The deflection data has been historically used in FWD backcalculation mainly 

because it is more tangible. However, if using the deflection data introduces additional 

uncertainties; the backcalculation can be performed on the velocity level. 

The feasibility of such analysis is illustrated here by the backcalculation of 

velocity time histories of pavement during the synthetic FWD test. For this analysis, 

similar to the previous analyses, the data uncertainty coefficient of variation was chosen 

to be two percent. Marginal a posteriori probability densities for the layer moduli 

obtained from the probabilistic backcalculation are presented in Figure 5-17. A 

comparison of the backcalculated velocity time histories for the pavement section with 

the most probable layer moduli and the observed data are also presented in the figure. 

Based on the presented results, it can be observed that the velocity backcalculation can be 

used to backcalculate the correct layer moduli with small uncertainty. 
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Figure 5-17 - (a, b, and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the velocity time histories with the dynamic forward model 
and (d) comparison of the backcalculated velocity time histories for the pavement section with the most 
probable layer moduli and the observed data. 
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Backcalculation of FWD Test Data 
The objective of the analysis presented in this section is to demonstrate the 

applicability of the presented probabilistic approach for backcalculation of the actual 

FWD test results. To achieve this objective, time records of the actual tests are 

backcalculated using a dynamic forward model to obtain the layer moduli. Details of the 

analysis are presented in this section. 

 

FWD Test Results 

The test results used in this section were collected as a part of the FWD 

monitoring program performed in the course of a research project on pavement material 

characterization and seasonal variation of properties conducted jointly by Rutgers 

University and Stantec, Inc. The details of the project and its results have been published 

in a number of reports and papers [Zaghloul et al. 2006, Gucunski et al. 2004]. For the 

analysis in this section, the results from the section No. 340507 of SPS-5 test site are 

used. The load and deflection records for this test are shown in Figure 5-18. Inspection of 

the recovered core at this section indicates that the thickness of the paving layer is about 

0.36 m and it is underlain by a base layer of about 0.275 m thick. The presented data are 

used as the input to the backcalculation analysis to obtain the layer moduli and 

corresponding uncertainty measures based on the deflection time histories. 
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Figure 5-18 - Measured loading history (top) and pavement 
response for FWD test. 

 

Backcalculation Results 

For this backcalculation analysis, the presented loading history was used as an 

input to the analysis to model the test. The data uncertainty coefficient of variation for the 

presented analysis was selected to be two percent and modeling uncertainty was 

considered to be negligible. Both these assumptions will be examined in the next section. 

Kernel density estimates of marginal a posteriori probability densities for the layer 

moduli obtained from the probabilistic backcalculation are presented in Figure 5-19. A 
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comparison of the backcalculated deflection time histories for the pavement section with 

the most probable layer moduli and the observed data are also presented in the same 

figure. As presented, these results have sharp peaks at the moduli values. So, it can be 

concluded that using the complete deflection time history as the data it is possible to 

backcalculate the experimental FWD data for layer moduli. It should be mentioned that 

the accuracy of these results should be further validated with a more extensive study. 

 

A Discussion on Data and Modeling Uncertainties 

For the presented analysis of experimental data, it was assumed that modeling 

uncertainty is negligible and the data uncertainty coefficient of variation was selected to 

be two percent. Due to many factors, there are modeling uncertainties in predictions of 

forward models. An evaluation of such uncertainties is required before routine 

application of the presented approach for backcalculation of experimental FWD 

measurements. Some sources of uncertainty are discussed below. 

Based on the presented time history records, the data uncertainties seem to be 

much higher than assumed two percent. As presented in Figure 5-17, there are residual 

deflections at the end of the record, which is not present in theoretical results. A possible 

explanation for these residual displacements at the end of the record is that they are 

numerical artifact produced as a result of a poor transducer resolution. As mentioned 

previously, the response of the pavement during a FWD test is measured by geophones, 

which measure the velocity. To obtain displacement records, the velocity records are 

numerically integrated. Consequently, the poor resolution of the velocity records and/or 

presence of noise, would translate to a poor quality of deflection records. 
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Figure 5-19 -(a, b, and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the experimental deflection time histories with the dynamic 
forward model and (d) comparison of the backcalculated deflection time histories for the pavement section 
with the most probable layer moduli and the observed data. 
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For the set of the data presented in Figure 5-17, the velocity time histories can be 

calculated by differentiating the time history records. The velocity time history record for 

the receiver at a zero offset distance is presented in Figure 5-20 as a typical result. The 

poor resolution of the velocity record is evident from the jumps in the data. Such poor 

quality may explain residual displacements in the deflection records, which ultimately 

would affect the backcalculation results and increase the uncertainties. An alternative 

explanation for the residual displacements can be the low frequency vibration of the 

frame supporting the test apparatus. A thought understanding of the sources of 

uncertainty requires a more detailed study. However, this brief discussion highlights the 

necessity of quantifying the magnitude of the uncertainties in the data so that they can be 

appropriately represented in probabilistic backcalculation.  
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Figure 5-20 - Measured velocity time history record at receiver at 
zero offset. 
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Effect of Considering Dynamic Material Properties of Pavement 
Layers on Backcalculation Results 
 

Dynamic Moduli and Damping of Pavement Layers 

In FWD backcalculations, the pavement system is generally modeled as a layered 

elastic system, where the layer thicknesses and moduli are the model parameters. In the 

current practice, the layer thicknesses are often evaluated prior to the tests and are 

considered as a given input for backcalculation. So, pavement layer moduli are the only 

model parameters that should be evaluated in the backcalculation.  

Since the FWD test is in principle a dynamic test, the evaluated pavement moduli 

can not be treated as static elastic moduli of pavement layers. Furthermore, the dynamic 

pavement response is affected by internal or material damping of pavement layers, which 

should be included in the analysis.  

Moduli of pavement layers vary considerably throughout the year based on 

environmental factors and the type of pavement layers. However, for backcalculation 

purposes, the moduli of the pavement layers are assumed constant during the very short 

period of the test. The validity of this assumption is investigated here. 

 

Granular Layers 

Among the factors that affect the moduli of granular layers during the short period 

of FWD test, strain level is the only important factor that can not be considered constant. 

From the field experience, for good pavements, the strain levels during the FWD test are 

generally below 0.1% for the paving layer and are in the order of 0.01% for granular 

layers [Lozios, et. al. 2003]. The variation of modulus and damping of sands with strain 
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is presented in Figure 5-21 as representative of the typical behavior of granular layers. 

Based on these graphs, for strain levels encountered during the FWD test, the modulus 

and damping of the soil layers can essentially be considered constant and very close to 

the low strain static modulus. Additionally, based on these results, a hysteretic damping 

ratio of two to six percent is a good representative of the damping of granular pavement 

layers. 

 

 
Figure 5-21 - Variation of modulus (top) and damping (bottom) 
with shear strain for sands [Seed et. al. 1986]. F ′  indicates the 
ratio of the modulus at each frequency to the static modulus. 
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Asphalt Layer 

The most important factor during the short period of FWD test that affects the 

modulus of the asphalt layer is the excitation frequency. The variation of the pavement 

dynamic modulus with frequency is quantified by the modulus master curve [NCHRP 9-

19, 1999]. The master curve of a specific asphalt mixture allows evaluation and 

comparison of the asphalt modulus over an extended range of frequencies and 

temperatures. In the definition of the master curve, the modulus is defined as a complex 

modulus, where the absolute value represents the modulus value and the phase angle can 

be translated to into damping. Master curves are generated based on the time-temperature 

superposition principle. This principle allows for test data collected at different 

temperatures and frequencies to be shifted horizontally relative to a reference temperature 

or frequency. Typical modulus master curve for an asphalt mixture is presented in Figure 

5-22.  

The master curve is defined by a nonlinear sigmoidal function of the following 

form [NCHRP 9-19, 1999]: 

))(log(
*

1
log

Tsfe
E +++

+= γβ

αδ
 

(5-4) 

where, *E is the complex modulus, δ is the minimum value of the modulus, αδ +  is the 

maximum value of modulus, β andγ  are parameters describing the shape of function, 

Ts is the temperature shift factor, and f is the load frequency.  
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Figure 5-22 - Typical modulus master curves for different asphalt 
mixtures [Clyne et. al. 2003]. 

 

The dominant portion of the excitation frequency of the FWD loading pulse is 

generally below 100 Hz. As presented in the sample curves, for this range of frequencies, 

the modulus can not be considered constant. Consequently, the assumption of constant 

modulus during the backcalculation is not accurate, and effect of changes in modulus in 

forward modeling and backcalculation should be studied and, if necessary, included in 

the modeling and backcalculation.  

The variation of internal damping of asphalt is much less than the variation of 

modulus. Considering the small range of the damping ratios encountered, a constant 

hysteresis damping ratio of two to five percent is representative of the damping of an 

asphalt layer. 
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Concrete Layer 

It is generally accepted that the modulus and damping of the cured concrete is 

constant for the range of frequency and strain levels encountered during the  FWD test. 

 

Numerical Modeling of Dynamic Moduli and Damping 

It has been shown that changes in frequency of excitation are the most important 

factor affecting the pavement layer material properties during the short period of a FWD 

test. So far, the moduli of pavement layers in presented backcalculation analysis were 

considered to be independent of frequency and constant. This is the assumption generally 

used in the current backcalculation procedures. However, as illustrated, the modulus of 

asphalt is dependent on the frequency of excitation. Furthermore, the material damping in 

finite element analysis was modeled as Rayleigh damping, which is a frequency 

dependent damping. In other words, the damping ratio varies for different excitation 

frequencies. However, as shown, the damping of pavement layers is generally constant. 

The constant, frequency independent damping is modeled more appropriately using a 

hysteresis damping model.  

Modeling frequency dependent material properties in time domain is not straight 

forward. The most convenient approach to include frequency dependent material 

properties in the analysis is to use a frequency domain modeling approach. In the 

frequency domain modeling, the response of the pavement system is obtained by a 

synthesis of waveforms of many frequency components. In this research, a recently 

developed frequency modeling technique, referred to as spectral element method, is used 

to model the pavement response in the frequency domain. A general description of a 
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typical spectral element model of a pavement section and sample results are presented 

below.  

 

Frequency Domain Forward Model using Spectral Element Method 

Spectral element method is a modeling approach for evaluation of the dynamic 

response of horizontally layered media, such as pavements. Computationally, spectral 

element method is a much more efficient method than the finite element modeling. In this 

technique the solution is obtained by a synthesis of waveforms of many frequency 

components, which are in part are obtained analytically. An overview of the 

mathematical derivation and numerical implementation of this method is provided in 

Appendix A. A more comprehensive explanation of this technique can be found in cited 

references [Alkhoury, 2001, Rizzi and Doyle, 1992, Doyle, 1997].  

For this study, a Matlab® code was developed to implement the spectral element 

approach. The predicted surface deflection time histories evaluated by spectral element 

method due to an idealized loading wavelet, presented previously, are shown in Figure 5-

23. Except for the damping ratios, the material properties used in the numerical 

evaluation of the presented histories are similar to those used for the finite element 

model. These properties are also listed in Table 5-3. 

Table 5-3 - Geometrical and material properties used for 
development of spectral element results.  

Material Type Thickness 
(m) 

Elastic 
Modulus 
(MPa) 

Hysteresis 
Damping 

Ratio 

Poisson’s 
Ratio 

Mass 
Density 
(kg/m3) 

Asphalt Concrete 0.15 1000 0.05 0.35 2300 
Aggregate Base Course 0.25 200 0.02 0.35 2000 

Subgrade infinity 100 0.02 0.35 1500 
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Figure 5-23 - Predicted pavement surface deflection time 
histories from linear spectral element analysis. 

 

Comparison of Time and Frequency Domain Models 

The predicted surface deflections from time domain and frequency domain 

models for the pavement system in previous sections are compared in Figure 5-24. Since 

tow models use different damping models, the results were not expected to match and no 

attempt was made to vary the damping ratio to match them. However, the results are a 

qualitative verification of the modeling approaches. As presented, the two results are in a 

very good agreement. The slight difference in the predicted response is due to the 

difference in the formulation of damping in time and frequency domain analyses, as 

discussed previously. In the time domain, damping is modeled as Rayleigh damping, 

where as in the frequency domain, damping is modeled as hysteresis damping. The 

hysteresis damping is constant through out the analysis, but Rayleigh damping varies 

depending on the frequency of excitation. Effects of this difference on the 

backcalculation results are investigated in the next section. 
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Figure 5-24 - Comparison of predicted surface defections at 
different receiver location from time domain and frequency 
domain models. 
 

Backcalculation of Layer Moduli Based on Deflection Time History Using 

Linear Dynamic Frequency Domain Forward Model 

It has been shown that due to the difference in the damping model, there will be 

differences in the analysis results for the same pavement system using time or frequency 

domain models. The general assumption in the backcalculation analysis presented so far 

was that due to low sensitivity of the pavement response to damping ratios, the difference 

in the damping model is not expected to be a major source of discrepancy in 

backcalculation results. To evaluate this assumption, a backcalculation analysis was 

performed, where the pavement deflection time histories obtained from the finite element 

analysis were used as synthetic data and the backcalculation was done using a spectral 

element forward model. The synthetic data was presented previously in Figure 5-8. In 

this analysis, it has been assumed that the modeling uncertainty is negligible. In other 

words, it has been assumed that the spectral element results are comparable to finite 

element results. Marginal a posteriori probability densities for the layer moduli obtained 
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from the probabilistic backcalculation are presented in Figure 5-25. A comparison of the 

backcalculated deflection time histories for the pavement section with the most probable 

layer moduli and the observed data are also presented in the figure.  

It can be observed that, even though there is good match between the observed 

and backcalculated time histories, the backcalculated layer moduli are not correct. This 

result can be explained by the difference between the spectral element and finite element 

time history results. Consequently, the modeling uncertainties should be included in the 

analysis. This result is important because it highlights the importance of considering the 

modeling uncertainties in the analysis. 
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Figure 5-25 - (a, b and c) Kernel density estimates of marginal a posteriori probabilities for the layer moduli 
obtained from the probabilistic backcalculation of the deflection time history with the spectral element 
forward model and (d) comparison of the backcalculated deflection time histories for the pavement section 
with the most probable layer moduli and the observed data. 
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Pavement Response with Dynamic Moduli 

For the FWD test, modulus and damping of granular and cement concrete layers, 

and damping of on asphalt layer can be considered constant in forward modeling and 

backcalculation of pavement layer moduli. However, the asphalt layer modulus is 

strongly dependent on frequency of excitation for the frequency range of interest in FWD 

tests. To study the effect of variable moduli on the analysis results, a dynamic analysis 

using spectral element method was performed, where the frequency modulus master 

curve were used to model the frequency dependent asphalt modulus. Except for damping 

and modulus values, the geometry and material properties used in the analysis are 

basically the same properties used in the finite element and spectral element analyses 

presented. The modulus and damping values used in this analysis are presented in Table 

5-4. For this analysis, the asphalt modulus was calculated at each frequency based on the 

sample modulus master curve presented in Figure 5-26. The predicted surface deflection 

time histories due to an idealized loading wavelet are shown in Figure 5-27.  

 

Table 5-4 – Modulus and damping values used for numerical 
evaluation of spectral element analysis.  

Material Type Elastic Modulus (MPa) Damping Ratio 
Asphalt Concrete See Master Curve in Figure 

5-26 
0.05 

Aggregate Base Course 200 0.02 
Subgrade 100 0.02 
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Figure 5-26 – Sample modulus curve and constant modulus line 
used for numerical evaluation of the pavement response with 
spectral element approach. The curve parameters are 8.2=α , 

44.0−=β , 48.1−=δ , , 56.0−=γ  and 0=TS  (See equation 5-
4). 
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Figure 5-27 - Predicted pavement surface deflection time 
histories from spectral element analysis with dynamic asphalt 
layer modulus. 
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To evaluate the effect of dynamic moduli, response of the pavement system with a 

constant asphalt modulus is compared to the response obtained from the analysis with 

dynamic moduli. The properties of the pavement system with constant moduli are similar 

to the one used in the analysis with variable moduli, except that the value of the asphalt 

modulus is considered constant and selected such that the maximum deflections of the 

two systems are similar. This constant modulus value and the modulus master curve are 

depicted in Figure 5-26. The results of the comparison of the two systems are presented 

in Figure 5-28. It can be observed that, although the maximum deflections are similar, the 

time histories are quite different.  

Based on this preliminary simulation, it can be observed that the backcalculated 

asphalt modulus using the assumption of a constant modulus is at best some sort of an 

average modulus over the frequency range of interest. So, for more accurate 

backcalculation results, the frequency dependent modulus should be considered in the 

analysis.  

0 0.01 0.02 0.03 0.04 0.05 0.06
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Time (sec)

D
ef

le
ct

io
n 

(m
m

)

Linear Analysis

Nonlinear Analysis

 
Figure 5-28 - Predicted pavement surface deflection time 
histories from nonlinear spectral element analysis. 
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Finally, for the modeling and backcalculation of FWD test results it has been 

assumed throughout this study that the material response is elastic and there is no plastic 

deformation during the test. This is certainly a reasonable assumption for the level of 

FWD loading. However, under the combination of heavy loads, weak pavement system 

and/or high temperatures, plastic deformations of pavement layers may occur, which 

invalidate this assumption. These extreme cases were not considered in this study. 

 

Summary 
In this chapter, the probabilistic backcalculation of FWD test results was 

introduced, formulated and the results of the probabilistic backcalculation of synthetic 

test data using different backcalculation methods were presented as a better approach to 

the FWD backcalculation. The probabilistic backcalculation was then applied to different 

methods of backcalculation, such as static and dynamic backcalculation and the results 

were compared. Based on the presented results, it was shown that, although very popular, 

the static backcalculation procedures fail to capture the essential dynamic nature of the 

test and consequently can not be relied upon for accurate backcalculation. Through the 

comparison of two different sets of deflection bowl backcalculation using the dynamic 

forward model, it was also demonstrated that there is little redundancy in dynamic 

deflection bowl backcalculation procedures, which can produce large uncertainties in the 

obtained backcalculation results. It was also shown that the dynamic deflection time 

history backcalculation offers the best and most reliable approach in FWD 

backcalculation. The application of this approach was illustrated both on synthetic and 
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experimental test data. It was also shown that, at least in the case of synthetic data, the 

deflection time histories carry enough information to simultaneously backcalculate layer 

moduli and the depth to bedrock. However, such additional information is obtained at a 

higher computational cost required for a more thorough search of the model space. 

Finally, the effect of frequency dependent layer material properties on the predicted 

deflection time histories was investigated. It was shown that such effects can be 

significant and produce discrepancies in the backcalculation results. A complete 

understanding of these effects and techniques to include them in the backcalculation 

analysis requires further research. 
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6 Application Two: Model Calibration Based On 
Geotechnical Instrument Measurements 

 

 

 

 

 

Introduction 
In design and construction problems in geotechnical engineering, there are always 

elements of uncertainty due to different factors, such as the uncertainty in soil parameters 

and/or construction sequence. To reduce the potential risk from the uncertainties that are 

not included in the design, many important geotechnical engineering projects use an 

observational method towards design and management of the project. The observational 

method, which its development is generally attributed to Terzaghi [Casagrande, 1965, 

Peck, 1969], can be described by the following steps: 

 

• Assess probable and adverse outcomes for the design, 

• Establish key parameters for observation, 

• Calculate observational parameters under probable and adverse conditions 

using predictive models, 

• Measure observational parameters and compare them to calculations, 

• Calibrate the predictive model based on the measured observational 

parameters, and 
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• Change the design as needed. 

 

Implementing the observational method is not a trivial task due to many 

limitations in the ability to predict the ground response and/or monitor the desired 

parameter. This is especially important for the projects, where the complexity of the 

factors involved limits the ability of an engineer to evaluate the monitoring results and 

outcomes without the help of predictive models. So, the development of a representative 

model and its calibration is one of the important steps in implementing the observational 

approach.  

Model calibration is a classical example of an inverse problem, which can be 

solved using the probabilistic approach. This chapter introduces the probabilistic 

approach to the solution of inverse problems as a tool in calibration of the predictive 

models and implementation of the observational method. Model calibration has been 

historically performed by comparison between the observed and predicted model 

responses and adjustment of the model parameters to obtain a reasonable match. Once 

there is a good match between the observed and predicted responses, the model 

parameters are considered to represent the true ground parameters, and the model is 

considered calibrated. However, in this approach to calibration, effects of uncertainties in 

observations and model predictions are not included in the analysis. This affects the 

calibration analysis and consequently the model predictions for future measurements. 

Using the probabilistic approach, uncertainties in the calibration process can be 

quantified and their effects on the model predictions can be studied.  
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In this chapter, a landfill redevelopment project is used as an example to 

demonstrate how the probabilistic approach to the solution of inverse problems can be 

used to calibrate a predictive model and complement the application of the observational 

method in geotechnical engineering. Although the main focus of this chapter is on 

calibration based on the settlement data, the same approach can be used in different 

contexts and for different problems with different types of measurements. Following this 

introduction, an overview of the mentioned landfill redevelopment project is presented 

and the need for model calibration and implementation of the observational method is 

highlighted. The calibration of a settlement prediction model using the probabilistic 

approach is then outlined and formulated. Finally, the results of the analysis are presented 

and discussed. 

 

Background 

Project Overview 

In a large scale landfill redevelopment project on several landfills in Northern 

New Jersey, it was decided early on that some development features, including some of 

the light structures, would be supported on shallow foundations over the landfill material, 

which is underlain by a peat, organic silt, and deep varved clay strata. This decision was 

justified because the costs for relocating landfill materials would be prohibitive and the 

depth to competent bearing material makes deep foundation systems uneconomical. This 

type of construction is in contrast to common practice of landfill development, which 

relies on deep foundations to support structures planned for the project. Generally, due to 

expected long term biodegradation settlement of landfill materials, most of the landfill 
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development projects to date are limited to types of construction that are not very 

sensitive to settlement of the landfill materials, such as golf courses and parks. However, 

the feasibility of shallow foundation construction for this project was justified by 

considering the limited thickness of the landfill, the significant age of the landfill 

materials, and the limited amount of gas being generated. 

To limit the long term settlements from the compression of the landfill material 

and underlying peat, organic silt, and varved clay strata, in addition to implementation of 

an extensive environmental remediation program to address environmental concerns, 

implementation of an intensive ground improvement program was anticipated. The 

ground improvement program consisted of dynamic compaction of the landfill material, a 

surcharge program to pre-compress the landfill material and the underlying peat, organic 

silt, and varved clay strata, and the placement of controlled compacted fill of sufficient 

thickness to provide a significant separation between the bottom of the proposed footings 

and the top of the improved waste layer. Further details about the project and ground 

improvement program can be found in the published literature [Lifrieri, et al. 2006a, 

Lifrieri et al., 2006b]. 

At this time, the initial phase of this project, which consists of the development of 

a 10 acre parcel of the project site, is completed. However, other phases of the project are 

currently underway. The focus of this chapter is on the initial 10 acre parcel of the 

project. The envisioned development plan for this landfill parcel consists of construction 

of mid-rise residential and commercial real estate. The portion of the development that 

will not be pile supported generally consists of parking areas, roadways, and settlement 

sensitive landscaping features. To avoid future settlement related issues for these 
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features, a settlement criterion for the design of the ground improvement program was 

adopted, which specifies limiting the long term total site settlement in 10 years to a 

maximum of three inches. 

 

Site Conditions 

The soil borings performed within the project site indicated that the landfill 

material, nine to 12 feet thick, is covered with a two to three foot layer of fill material of 

various types. This waste layer is underlain by a peat and organic silt stratum with an 

average thickness of five to ten feet. However, at limited portions of the project site, this 

stratum is as thick as 25 feet. This organic stratum lie on top of a 110 to 140 feet thick 

deposit of varved clay, which in turn rests on top of the glacial till and bedrock. 

Geotechnical laboratory test results indicate that, except for the top desiccated portion of 

the varved clay stratum of about five to ten foot thick, the varved clay is normally 

consolidated and is very soft. A sketch of the generalized subsurface profile is depicted in 

Figure 6-1. 
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Figure 6-1 – Sketch of the generalized subsurface profile 
 

Ground Improvement Program 

The ground improvement program consists of dynamic compaction (DC) to 

improve the compression characteristics of the existing waste layer, followed by the 

placement of 12 feet of surcharge fill over the proposed site grades to improve the 

strength of the underlying peat, organic silt, and soft clay strata and to reduce post 

construction long term settlements resulting from the settlement of these strata. To 

monitor and verify the performance of the surcharge program, an instrumentation 

program was designed for the project site. The instrumentation program included 

installation and monitoring of magnetic extensometers, borros anchors, settlement plates, 

vibrating wire piezometers, stand pipe piezometers, and inclinometers.  

Peat/Organic Silt – 5~10 ft 

Glacial Till/Bedrock

Soft Varved Clay – 110~140 ft 

Stiff Clay – 5~10 ft 

Landfill Material – 9~12 ft 

Fill – 2~3 ft 
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To predict the future site response both during and after the construction and 

validate the satisfactory performance of the surcharge loads, a predictive model was 

developed and the ground settlement response was used to calibrate it. The calibrated 

model was then used to predict the long term settlement of the site. The following section 

presents the basic elements used in the analysis, formulates the probabilistic approach to 

the problem, and demonstrates how the probabilistic approach offers advantages in model 

calibration.  

 

Development of Predictive Model and Calibration Measurements 

Development of Predictive Model 

A plan of the site along with the location of the borings and installed monitoring 

instruments is presented in Figure 6-2. To evaluate the settlement and verify the 

performance of the surcharge, a two dimensional predictive model of the site was 

developed using Plaxis® software. The model geometry was developed based on the 

borings performed at the project site along the cross section shown in Figure 6-2. The 

developed model geometry is depicted in Figure 6-3.  
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Figure 6-2 – Total layer settlement for waste, organic site/peat 
and clay strata. E1-7 and E1-2 are the installed extensometers 
along the modeled cross section. 
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Figure 6-3 – Geometry of developed finite element predictive. 
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To model the fill placement activities, the stage construction analysis option in 

Plaxis® was used. Fill placement at different locations along the cross section took place 

at slightly different schedules. The loading history at two points along the cross section is 

presented in Figure 6-4. This loading sequence was idealized for the development of the 

model. The idealized loading sequence used in the model development is also presented 

in Figure 6-4. A close up of the loading stages in the finite element model is shown in 

Figure 6-5. 
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Figure 6-4 – Fill placement timeline at two points along the cross 
section and idealized fill placement timeline and stages used for 
model development.  

 

 
Figure 6-5 – Close up view of idealized loading stages.  
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Material properties for the initial development of the predictive model were 

selected based on the available site specific laboratory test results and published literature 

pertaining to the type of soils encountered at the project site. The initial material 

properties are listed in Table 6-1. 

 

Measurement Results 

The observed settlement of the waste, organics, and clay strata from monitoring of 

extensometers E1-2 and E1-7 along the modeled section are presented in Figure 6-6. The 

location of these extensometers is also indicated on the developed model presented in 

Figure 6-2. The presented ground settlement response will be used to calibrate the 

predictive model. Once the model is calibrated it was used to predict the future response 

of the site under the applied loads. 
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Figure 6-6 – Total layer settlement for waste, organic silt/peat 
and clay strata from extensometer measurements along the 
modeled cross section (Extensometer E1-2 and E1-7). 
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Table 6-1 – Initial material properties used for development of predictive model. 
 (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) 

Material Model unsatγ  
kg/m3 
(pcf) 

satγ  
kg/m3 
(pcf) 

yk  
m/sec 
(ft/d) 

xy kk /
 

υ  sV  
m/s 

(ft/s) 

c  
KPa 
(psf) 

φ  OCR cC ′  rC ′  αC ′  

Fill MC 1922 
(120) 

2002 
(125) 

3.52E-6 
(1) 

1 0.3 225 
(750) 

4.8 
(100) 

34 - - - - 

Waste SSC 1041 
(65) 

1521 
(95) 

10.6E-9 
(3E-3) 

1 - - 9.6 
(200) 

30 1 0.14 0.014 0.0014 

Organics SSC 961 
(60) 

1441 
(90) 

1.06E-9 
(3E-4) 

1 - - 19.2 
(400) 

20 1 0.34 0.034 0.017 

Stiff Clay MC 1762 
(110) 

1922 
(120) 

2.12E-9 
(6E-4) 

3 0.3 150 
(500) 

71.8 
(1500) 

23 - - - - 

Soft Clay 1 SSC 1601 
(100) 

1762 
(110) 

2.12E-9 
(6E-4) 

3 - - 14.4 
(300) 

23 1 0.1 0.01 0.004 

Soft Clay 2 SSC 1601 
(100) 

1762 
(110) 

1.76E-9 
(5E-4) 

3 - - 23.9 
(500) 

23 1 0.2 0.02 0.008 

Soft Clay 3 SSC 1601 
(100) 

1762 
(110) 

3.18E-9 
(9E-4) 

3 - - 33.5 
(700) 

23 1 0.3 0.03 0.012 

Soft Clay 4 SSC 1601 
(100) 

1762 
(110) 

1.06E-9 
(3E-4) 

3 - - 43.1 
(900) 

23 1 0.2 0.02 0.008 

Table Legend: 
 Independent Model Parameter for Calibration 
 Dependent Model Parameter for Calibration 

 
(A) Material Model: MC –Mohr-Coulomb Material Model, SSC–Soft Soil Creep Material Model (Plaxis, 2005), (B) Unit weight, (C) 
Saturated unit weight, (D) Permeability in vertical direction (E) Ratio of vertical to horizontal permeability, (F) Poisson’s ration, (G) 
Shear wave velocity, (H) Cohesion, (I) Friction angle, (J) Over consolidation ratio, (K) Strain based compression index, (L) Strain 

based recompression index, (M) Strain based secondary compression index. 



140 

 

Initial Model Predictions 

The predicted model response using initial material properties at E1-2 and E1-7 

extensometer locations is depicted in Figure 6-7. For a comparison, the measured 

response of the site at the same locations is depicted in the same figure. It can be 

observed that, even though the material properties for the model are obtained from the 

site specific laboratory test results, the predicted site response is very different than the 

observed response, which highlights the need for model calibration. 

 

Model Parameters 

A fundamental step in the solution of any inverse problem, including the 

calibration problem presented, is the selection of model parameters or parameterization. 

Due to a relatively short span of settlement monitoring used for model calibration, the 

presented site response can be considered to be essentially representative of the primary 

consolidation of subsurface strata. Therefore, it is logical to expect that the response can 

be adequately described by the compression indices and permeability coefficients of 

subsurface strata. Based on this logic, the compression indices and permeability 

coefficients of waste, organics, and first sublayer of soft clay strata were selected as the 

model parameters. Since all four soft clay sublayers represent one single geologic unit, 

the compression indices and permeability coefficients of other soft clay sublayers were 

not selected as independent model parameter. Instead, these were calculated based on the 

values of the first soft clay sublayer in such a way to keep the ratios between the 
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compression indices and permeability coefficients equal to the ratios in the original 

model. 
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Figure 6-7 – Comparison of observed vs. calculated total layer 
settlement based on initial layer properties for waste, organic 
silt/peat and clay strata. 
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The settlement response of the material is also affected by the value of 

recompression and secondary compression indices. Logically, these can not be 

considered constant while the compression index varies as a model parameter. Therefore, 

for the calibration problem presented, these parameters were determined using the 

established and verified correlations [Terzaghi, Mesri, and Peck 1995]. These 

correlations are presented below: 

For all layers:      cr CC ′=′ 01.0  
For waste layer:     cCC ′=′ 01.0α  

For organic silt/peat layer:     cCC ′=′ 05.0α  
For soft varved clay layer:     cCC ′=′ 04.0α  

(6-1) 

where cC ′  is the strain based compression index, rC ′  is the strain based recompression 

index, and αC ′  is the strain based secondary compression index. The independent and 

dependent model parameters are highlighted in Table 6-1 

 

Probabilistic Formulation 
Using the notion of the generalized measurement presented in previous chapters, 

the model calibration problem can be considered as a generalized measurement of the 

subsurface consolidation properties using surface settlement measurements. The notion of 

the generalized measurement, combined with the tools developed in the previous 

chapters, is used here to calibrate the predictive model, obtain the layer consolidation 

properties, and obtain associated uncertainty measures. It should be reiterated that the 

uncertainty measures can only be obtained using a probabilistic approach. Such estimates 

are not available in the traditional deterministic approach. 
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Model a Priori Information 

Homogeneous a priori probability densities were considered here for all model 

parameters. This probability density reflects the general information about the limits of 

the value of the parameter and can be presented by: 

⎪⎩

⎪
⎨

⎧
−=

0

1
)( minmax mmmMρ      

otherwise

mmm minmax <<
 (6-2) 

where maxm  and minm are respectively the maximum and minimum limits of the value of 

the parameter of interest, m .  

 

Data a Priori Information 

In the probabilistic approach, the uncertainties in observations are represented by 

data a priori probability, denoted by )(dDρ . For the settlement calibration problem 

presented, the data are basically the individual extensometer settlement measurements. 

For the extensometers used in this project, these uncertainties are quantified by the 

instrument manufacturer to be on the order of 0.25 to 0.5 cm (0.1 to 0.2 in). However, in 

addition to uncertainties associated with the extensometer measurements, there are other 

uncertainties in settlement measurements that should be considered, such as uncertainties 

due to a change of the observer, or due to a deviation of the line of extensometer casing 

from the vertical line. The evaluation of the magnitude of these uncertainties is not trivial 

and the best approach for their evaluation is to assign uncertainties to them based on the 

experience [ISO 1993, Taylor and Kuyatt 1994]. In this work, based on the available data 

and field experience, the data a priori probability )(dDρ , which combines all uncertainty 
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sources, was considered to be a Gaussian distribution with the mean equal to the 

observed value and a standard deviation of 0.75 cm (0.3 in).   

 

Forward Model 

The forward model used in the calibration was presented earlier. In the calibration 

analysis presented here, it is considered that the developed model is representative of the 

physical phenomenon that is being modeled. Consequently, the modeling uncertainties 

were considered to be negligible in comparison to the data uncertainties. In general, 

evaluation of modeling uncertainties is a complex task and further research is required to 

quantify such uncertainties. 

 

Probabilistic Formulation and Solution 

It was shown in the previous chapters that the probabilistic solution of the inverse 

problem, or simply the results of a generalized measurement, is the a posteriori 

probability, which can be presented as:  

)()()( mmm MM λρσ =  (6-3) 
where )(mλ  is the likelihood function: 

⎟
⎠
⎞

⎜
⎝
⎛ −+−−= −− ))(()(())((

2
1exp)( 11 mgdCCmgdkm obsdT

T
obsλ  (6-4) 

In these equations, model parameter m  is the parameter of interest in the 

problem, dC  is the covariance of the data a priori information (assumed Gaussian) and 

TC  is the uncertainty in predictions of the forward model )(mg . In this chapter, this 
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problem is solved using the Monte Carlo solution scheme with neighborhood 

approximation presented in Chapter 4.  

 

Calibration Results 
Based on the presented probabilistic formulation, a calibration analysis was 

performed to find the best model parameters, which can replicate the observed data, and 

obtain the corresponding uncertainty measures. The final result of the analysis, in terms 

of a comparison between the observed settlements of the waste, organics, and clay strata 

and the theoretically predicted site response for the obtained best fit model parameters, 

are presented in Figure 6-8. The model parameters corresponding to the best fit model are 

also presented in Table 6-2. 

 

Table 6-2 – Numerical values of the best fit model obtained from 
calibration analysis. 

 (A) (B) (C) (D) 
Material yk  m/sec (ft/d) cC ′  rC ′  αC ′  
Waste 16.1E-9 (4.6E-3) 0.26 0.026 0.0026 

Organics 16.6E-9 (4.7E-3) 0.40 0.040 0.020 
Stiff Clay 2.12E-9 (6E-4) - - - 

Soft Clay 1 2.12E-9 (6E-4) 0.07 0.007 0.0028 
Soft Clay 2 1.76E-9 (5E-4) 0.14 0.014 0.0056 
Soft Clay 3 3.18E-9 (9E-4) 0.21 0.021 0.0084 
Soft Clay 4 1.06E-9 (3E-4) 0.14 0.014 0.0056 

 

To evaluate the uncertainty of the obtained results, one-dimensional kernel 

density estimates of marginal probability densities of model parameters from the 

calibration analysis are also calculated and presented in Figure 6-9. The densities are 

basically the probabilistic solution of the problem, which not only contain information 

about the best fit model, they also reflect information about the uncertainties of the 
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obtained results. In other words, they provide the complete picture of the solution, which 

is not available in the deterministic approach. Based on these results, it can be observed 

that the calibration analysis has identified the compression indices of the layers with low 

levels of uncertainty (i.e. low spread of the probabilities). However, the uncertainties of 

the permeability coefficients of layers are relatively high. These results suggest that the 

settlement time histories carry adequate information to identify the compression indices 

of layers rather accurately. However, within the considered range, the sensitivity of the 

data to permeability values is much less and permeability coefficients can not be 

identified with confidence based on the used data. This simply points to the fact that 

additional data, such as pore pressure dissipation measurement should be included in the 

analysis. In general, a high uncertainty in observational method is simply an indication 

that it is necessary to obtain additional information from other available data to reduce 

the uncertainty of the results. In some cases, this means including more data in the 

calibration analysis or simply using a different type of analysis. 

The ability of the probabilistic approach to evaluate data uncertainties provides an 

engineer with the understanding of the limitations of the results and consequently enables 

him/her to devise a more appropriate course of action. In the deterministic approach, the 

results of the calibration analysis are simply the optimum values of the model parameters 

and no uncertainty measures are stated. Such a presentation of results does not provide 

the complete picture and in some cases may be misleading. 
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Figure 6-8 - Comparison of observed vs. calculated total layer 
settlement based on calibrated layer properties for waste (top), 
organic silt/peat (middle) and clay (bottom) strata. 
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 (d)      (e)      (f) 

Figure 6-9 - One-dimensional kernel density estimates of marginal probability densities of model parameters 
for permeability of waste (a), organic sit/peat (b), and clay (c) layer. Similar information is also presented for 
the compression index of waste (d), organic sit/peat (e), and clay (f) layer. 
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Summary 
In this chapter, calibration of a finite element settlement prediction model for a 

landfill redevelopment project was presented to demonstrate how the probabilistic 

approach to the solution of inverse problems can be used to complement the application 

of the observational method in geotechnical engineering. The basic formulation of the 

probabilistic solution of inverse problems was introduced and a numerical technique for 

evaluation of the solution was presented. The calibration of the settlement prediction 

model using the probabilistic approach was then outlined and formulated, and the results 

of the analysis were presented. Using the presented example, it was illustrated that the 

ability of the probabilistic approach to evaluate the uncertainties of the obtained analysis 

results provides an engineer with very valuable information regarding the limitations of 

the data and results and consequently assists him/her to devise an appropriate course of 

action. 
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7 Application Three: Seismic Waveform Inversion 
 

 

 

 

 

 

 

 

Introduction 
Elastic waves carry substantial information about the characteristics of the media 

they propagate in. The seismic evaluation techniques use the information carried by 

elastic waves to infer information about the properties of the media. These techniques are 

generally nondestructive and they are being used increasingly in engineering 

applications, such as in determination of stiffness and integrity of structural elements, 

evaluation of the elastic moduli of soil deposits and pavement systems, void detection 

and sizing in geotechnical engineering, and crack detection. There are several techniques 

that are routinely used for shallow subsurface investigations namely; spectral analysis of 

surface waves (SASW) [Nazarian et al. 1993, Nazarian, 1984, Gucunski and Woods 

1991], impulse response (IR) [Reddy, 1992], impact echo (IE) [Sansalone, 1997] and 

multi-channel analysis of surface waves (MASW) [Park, Miller and Xia, 1999]. 

However, these standard methods utilized in current engineering evaluations usually use 

a limited portion of the information carried by elastic waves, such as travel time, peak 
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return frequency, or wave velocity dispersion. Seismic waveform inversion seeks to use 

the full information content of the seismic waveform. The objective of the inversion is to 

find a reasonable model, consistent with a given a priori information, which its predicted 

waveforms match reasonably well the observed waveforms. 

This chapter presents the probabilistic formulation of the seismic waveform 

inversion problem for evaluation of subsurface properties in civil engineering. Following 

this introduction, a synthetic seismic experiment is described that will be used as an 

illustrative example. The inversion problem is then formulated from a probabilistic point 

of view and the results of the probabilistic inversion of synthetic data are presented. The 

chapter concludes with the application of the probabilistic backcalculation to a set of 

experimental seismic data collected for pavement evaluation. 

 

Probabilistic Formulation of Waveform Inversion Problem 
Using the notion of a generalized measurement presented in the previous chapters, 

the inversion of seismic data in general and waveform inversion problem in particular can 

be considered as a generalized measurement of the subsurface properties, such as 

compressional wave velocities, using surface measurements. The notion of the 

generalized measurement combined with the tools developed in the previous chapters is 

used here to calculate layer properties and obtain uncertainty measures.  
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Model a Priori Information 

Uniform probability density was considered for a priori probability density of all 

model parameters in this chapter. This probability density represents the information on 

the limits of the parameters. This probability density can be represented as: 

⎪⎩

⎪
⎨

⎧
−=

0

1
)( minmax mmmmρ

       otherwise

mmm minmax <<

 

(7-1)

where )(mMρ  is the a priori probability density for the model parameter, and minm  and 

maxm  are the lower and upper limits of the parameter, respectively.  

 

Data a Priori Information 

Data a priori, represented by probability )(dDρ , expresses the uncertainties in the 

measurement of the observed data. In seismic experiments, the data are often 

displacement, velocity, or acceleration time histories recorded by transducers. One 

technique that can be used in the evaluation of the data uncertainties is to use a noise 

record from transducers. This is especially a useful technique and is utilized in the 

numerical example presented later in this chapter, where an artificial Gaussian random 

noise is the only source of uncertainty in the problem and can be generated numerically. 

However, the technique can be used equally well if transducer noise is recorded and 

analyzed.  

In the presented technique, it is assumed that uncertainties can be represented by a 

Gaussian distribution. Assuming that an ensemble of N  noise waveforms is  is available, 

the covariance matrix can be estimated by [Priestley, 1981]:  
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1ˆ  (7-2)

where DĈ  represents the estimate of DC  based on N  records.  

 

Forward Model 

In general, determination of the surface response to impact loads mathematically 

falls into the area of wave propagation theory. Numerical solutions are required to obtain 

the solutions in general. However, closed form solutions and/or simplified techniques 

exist when the problem boundary and geometry are simple. These simplifications, if 

possible, present considerable savings in terms of the computational effort.  

For the analysis in this section, a finite element and a spectral element forward 

model are used to model the forward problem of wave propagation. A finite element 

models is selected as the forward model in inversion of synthetic data to conserve the 

generality of the presented procedure and provide a framework for considering other 

classes of problems. A spectral element model, as presented in Chapter 5 and Appendix 

A, is also considered, because it provides computational savings for simpler geometries. 

The spectral element model is used in the later part of this chapter for inversion of field 

seismic data.  

To be able to evaluate the probabilistic solution, modeling uncertainties should 

also be defined. In general, evaluation of modeling uncertainties is a complex task and 

further research is required to quantify such uncertainties. For examples presented in this 

chapter, based on the experience, nominal modeling uncertainties were assigned for each 

analysis 
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Probabilistic Formulation and Solution 

The probabilistic solution of inverse problem, or simply the results of a 

generalized measurement, is the a posteriori probability, which is presented as:  

)()()( mmm MM λρσ =  (7-3) 
where )(mλ  is the likelihood function: 

⎟
⎠
⎞

⎜
⎝
⎛ −+−−= −− ))(()(())((

2
1exp)( 11 mgdCCmgdkm obsdT

T
obsλ  (7-4) 

In these equations, model parameter m  is the parameter of interest in the 

problem, dC  is the covariance of the data a priori information (assumed Gaussian) and 

TC  is the uncertainty in prediction of the forward model )(mg  (assumed negligible). In 

this chapter, this problem is solved using the Monte Carlo solution scheme with 

neighborhood approximation presented in Chapter 4. 

 

Synthetic Seismic Experiment 
To illustrate the potential of the seismic waveform inversion, inversion of 

synthetic seismic test results is initially considered. The details of the test are presented in 

the following section. 

 

Test Setup 

Consider a hypothetical geological soil profile, as depicted in Figure 7-1. The 

profile consists of horizontal and inclined layers underlain by a half space or bedrock. 

Each layer is parameterized in terms of its thickness, T , compressional wave 

velocity, PV , density,γ , and poisson’s ratio υ . For the experiment presented in this 
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chapter, the objective of the seismic test is to quantify material properties of the 

subsurface layers, in terms of their compressional wave velocities, from the waveforms 

recorded at the surface. It is assumed that the layer thicknesses and dipping angle of 

layers are available from other information collected at the site, such as boring logs. To 

achieve the objective, a seismic test is performed by generating an elastic wave field 

using a known impact source and seismic waveforms are recorded at several locations 

along the surface. The recorded waveforms are then analyzed to infer/invert the unknown 

parameters of the model. 

Impact Source

x dx1 dx2

Vp1, ρ1, ν

Vp2, ρ2, ν

Vp3, ρ3, ν

Vp4, ρ4, ν

Vp5, ρ5, ν

T1
T2

T3

T4

T1

T2'

T3

T4

 
Figure 7-1 - Schematics of the synthetic seismic waveform 
inversion test setup 

 

It should be mentioned that the waveform inversion, considered herein, is a 

relatively new technique for applications in civil engineering. This technique is a much 
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more versatile and powerful technique in comparison to the traditional techniques used in 

civil engineering, such as SASW, MASW, IR, IE, where their inherent assumptions limit 

their applicability. The traditional techniques generally assume that subsurface layers are 

horizontal, whereas the waveform inversion can invert virtually any type of geometry. 

The only theoretical limitation in the use of the waveform inversion would arise from the 

limitation in the parameterization and modeling of the test setup. 

 

Synthetic Waveforms and Forward Model 

To simulate the test and generate a set of synthetic data, the presented seismic test 

is modeled by finite elements using ABAQUS® [2005] software. Assuming that no 

lateral reflections occur, the test setup can be described as an axi-symmetric model with 

an impact loading at the center. Explicit time integration of the equation of motion is used 

to obtain the solution. Because the strain levels during the seismic tests are small, linear 

elastic material models were considered for all layers. To accurately model the wave 

propagation, several criteria were imposed during modeling to ensure accuracy of the 

simulation. The element size was selected relatively small to capture short wavelengths 

and the overall model was selected relatively large to allow propagation of large 

wavelengths and reduce the effects of boundaries. Infinite absorbing elements were used 

at the boundaries to further reduce the reflections from the boundaries. The developed 

finite element model is presented in Figure 7-2. Receiver locations, as well as boundaries 

of the layers, for a typical test setup are superimposed on the finite element model in this 

figure. 
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Using the developed model, a set of synthetic waveforms was generated at three 

receiver locations shown in Figure 7-2. The geometric and material properties used in the 

generation of synthetic data are presented in Table 7-1. To simulate field conditions and 

avoid numerical instabilities, artificial Gaussian random noise was added to the 

calculated waveforms. The waveform at each receiver is one second long and is sampled 

at 0.001 second intervals. These waveforms are depicted in Figure 7-3 and are used as the 

synthetic data for inversion. 

 
Figure 7-2 - Finite element model with the test setup 
superimposed on the mesh 
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Table 7-1- Subsurface profile parameters in the generation of 
synthetic waveform inversion example. 

Parameter Value Unit 
Vp1 80 m/s 
Vp2 50 m/s 
Vp3 70 m/s 
Vp4 100 m/s 
Vp5 60 m/s 
T1 2 m 
T2 1 m 
T2’ 4 m 
T3 2 m 
T4 2 m 

ρ1 thru ρ5 1900 Kg/m3 
v 0.30 - 
n 2 - 
x 4 M 

dx1 2 M 
dx2 2 M 
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Figure 7-3 – Synthetic waveforms used in the inversion. 

 

Results of Inversion of Synthetic Seismic Test 

The presented synthetic data was analyzed to obtain the layer compressional wave 

velocities. Kernel density estimates of one-dimensional marginal a posteriori probability 
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densities for this example are presented in Figure 7-4. As presented, the inversion 

analysis results are very close to the target compressional wave velocities presented in 

Table 7-1. It can be observed that the inversion process has effectively inverted the 

profile and has clearly resolved the target compressional wave velocities. The calculated 

marginal a posteriori probability densities have clearly the peaks at the target 

compressional wave velocity values, which represent very low uncertainties of the wave 

velocities. In addition to the one-dimensional probabilities, for this case, estimates of 

some of the two dimensional joint marginal probabilities are also presented in Figure 7-5. 

These probabilities represent the joint marginal probability of two parameters.  A review 

of these results indicates that the waveform inversion is a very effective tool in 

identification of model parameters from a seismic test. Additionally, is can be observed 

that the waveform inversion can solve problems where the assumptions of traditional 

seismic analysis techniques limit their application. 

 

Inversion of Seismic Pavement Analyzer Data 
To investigate the feasibility of implementation of the waveform inversion for 

shallow subsurface characterization, like pavement profiling, inversion of seismic 

waveforms from Seismic Pavement Analyzer (SPA) [Nazarian et al. 1993] is considered 

below as an example. 

 

Test Setup 

Seismic Pavement Analyzer (SPA) is a device for nondestructive evaluation of 

pavements developed under the Strategic Highway Research Program (SHRP). One of 
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the main objectives in the development of the SPA was to create a device that will allow 

measurement of onset of deterioration in pavements at their early stages. Primary 

applications of the SPA include pavement profiling, in terms of elastic moduli and layer 

thicknesses, detection of voids or loss of support under rigid pavements, delamination in 

rigid pavements and bridge decks, and subgrade evaluation. The SPA was originally 

designed to incorporate five seismic techniques: Ultrasonic Body-Wave (UBW), 

Ultrasonic Surface-Wave (USW), Impact Echo (IE), Impulse Response (IR), and Spectral 

Analysis of Surface Waves (SASW). Waveform inversion is an additional technique that 

is investigated here. 

A schematic diagram of the SPA is depicted in Figure 7-6. The device includes a 

low frequency hammer (LFH), a high frequency hammer (HFH), five accelerometers (A1 

thru A5), and three geophones (G1 thru G3) at different offset distances from the 

hammers, as depicted in the figure. The test with SPA is conducted by recording 

pavement vibrations generated by impact of the low and high frequency hammers. 

 
Figure 7-6 – Schematics of SPA. 
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(d)      (e) 

Figure 7-4 - (a, b, c , d and e) Kernel density estimates of marginal a posteriori probabilities for the layer 
compressional wave velocities. 
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Figure 7-5 - (a, b, c , and d) Two dimensional kernel density estimates of marginal a posteriori probabilities 
for the layer compressional wave velocities. 
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Experimental Waveforms 

The test results used in this section were collected as a part of the SPA testing and 

monitoring performed in the course of a research project on investigation of the pavement 

material characterization and its seasonal variation conducted jointly by Rutgers 

University and Stantec Inc. The details of the project and its results have been published 

in a number of reports and papers [Zaghloul et al. 2006].  

For the example considered here, acceleration time histories A1, A2 and A3 from 

a test on a flexible pavement section were considered as the experimental data. While, the 

device collects much more information than these three time records, only these three 

accelerometers were considered to illustrate the potential of the waveform inversion 

technique.  

SPA is originally designed to record the changes in acceleration and load in terms 

of raw analog to digital (A/D) counts and not in terms of actual acceleration and load 

values. The A/D counts are adequate for implementation of the aforementioned five 

seismic techniques. Typical acceleration records collected during a test on a flexible 

pavement, along with the inducing loading wavelet of high frequency hammer measured 

by the load cell mounted on the hammer, are presented in Figure 7-7 in terms of A/D 

counts. The translation of these records from the A/D counts to the actual acceleration 

and load values requires multiplication of the recorded histories by calibration factors, 

which were not available for this study. However, as will be illustrated below, this step is 

not necessary for the waveform inversion application presented here.  

By inspection of the data in Figure 7-7, it can be observed that the recorded 

waveforms contain an initial wave packet followed by other oscillations. Intuitively, the 
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initial packet of the waves at each receiver location, which generally occurs between 0 

and 0.001 seconds, contains the major portion of the information carried by the waves. 

Therefore, for the example presented here, this portion of the wave is windowed using a 

Hamming window [Oppenheim and Schafer 1989] and resulting waveforms are 

considered as input data in the inversion procedure. The windowing functions along with 

the windowed waveforms are depicted in Figure 7-8. 
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Figure 7-7 –A/D counts from accelerometers A1, A2, A3, and the 
high frequency hammer from a test on a flexible section. 
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Figure 7-8 – Hamming window function and A/D counts from 
accelerometers A1, A2, A3 after the windowing operation. 
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Forward Model 

To evaluate the response of a pavement section to various loads, pavements are 

generally modeled as horizontally layered systems. Due to a low intensity of the 

excitation in the SPA test, the response of the pavement is essentially a linearly elastic 

one. Therefore, a spectral element model, as presented in Appendix A, can be used as a 

representative model and is considered here as the forward model.  

To predict the theoretical response of a typical pavement section during a SPA 

test, the recorded A/D counts of the loading time history, as presented in Figure 7-7, is 

used as an input to the model. The resulting waveforms are then windowed using the 

same windowing operations as described earlier. It should be noted that, since the input 

loading history is given and used in terms of A/D counts, the magnitude of the predicted 

accelerations from the model can not be realistic. However, since the pavement system is 

essentially linearly elastic, the relative variation of the acceleration is realistic and can be 

compared to the relative variation of acceleration in actual recorded data. To perform 

such a comparison during the inversion, the predicted acceleration time history at each 

receiver location is scaled so that the value of its maximum matches the value of the 

maximum acceleration in the actual data. Once this scaling has been performed, the 

theoretical and experimental data are compared to each other. 

 

Results of Inversion of SPA Data 

Using the presented forward model, the SPA data was analyzed to obtain the layer 

elastic modulus and layer thickness for each layer. For this analysis, the pavement was 
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modeled as a three layer system; an asphalt layer over a base layer, underlain by an 

infinite subgrade layer. The combined data and modeling uncertainty covariance was 

selected to be one unit of A/D count.  Obviously, a more comprehensive analysis is 

required to identify an appropriate value for modeling and data uncertainties. However, in 

this analysis, a nominal uncertainty value was selected to illustrate the waveform 

inversion for experimental test data. Kernel density estimates of marginal a posteriori 

probability densities for the layer moduli obtained from the probabilistic backcalculation 

are presented in Figure 7-9. A comparison of the acceleration time histories for the 

pavement section with the most probable layer moduli and the observed data are 

presented in Figure 7-10. It can be observed that the waveform inversion has identified 

the layer moduli and thicknesses. However, the uncertainty of the moduli is much lower 

than the uncertainty of the thicknesses calculated from the inversion analysis. It should be 

mentioned that the objective of the presented analysis was to validate the applicability of 

the waveform inversion for experimental data. Although the presented results validate the 

applicability of the approach, further research is required to completely understand 

different aspects of the waveform inversion for shallow subsurface investigation. The 

research should try to address a number of issues, such as evaluation of uncertainties in 

the modeling by comparing actual and theoretical data and verifying the inversion 

analysis by comparison of the results to other reference data such as laboratory test 

results. Such reference data were not available for this preliminary study. 
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Figure 7-9 – - Kernel density estimates of marginal a posteriori probabilities for the layer thickness (a and b) 
and layer moduli (c, d, and e) obtained from the probabilistic inversion of the acceleration time histories. 
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Figure 7-10 – Comparison of the acceleration time histories for 
the pavement section with the most probable layer moduli and the 
observed data. 
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Summary 
The probabilistic formulation of the seismic waveform inversion problem for 

evaluation of subsurface properties in civil engineering was presented in this chapter. 

Using a set of synthetic data, the potential of the waveform inversion for evaluation of the 

subsurface profiles was illustrated. It was shown that the waveform inversion is a 

powerful technique, which is not limited by many of the assumption of other seismic 

techniques such as Spectral Analysis of Surface Waves (SASW). Finally, by inversion of 

a set of experimental seismic data collected for a pavement section by Seismic Pavement 

Analyzer (SPA), the feasibility of the application of the probabilistic waveform inversion 

approach to real data was illustrated. 
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8 Closure 
 

 

 

 

 

Summary and Conclusions 
In this dissertation, a general probabilistic approach to the solution of the inverse 

problems was introduced as a better approach to the solution of inverse problems. The 

mathematical framework required for implementation of this approach was presented in 

detail. This approach is a new approach to inverse problems in civil engineering and is 

different from the currently used deterministic approach, where the objective is to find 

the model of a system, for which the theoretical response best fits the observed data. 

Following the mathematical formulation of the approach, techniques for direct analytical 

evaluation and numerical approximation of the probabilistic solution using Monte Carlo 

Markov Chains (MCMC), with and without Neighborhood Algorithm (NA) 

approximation, were introduced and explained. The application of the presented concepts 

and techniques was then illustrated in practical terms using a simple modulus 

determination experiment.  

The probabilistic approach was applied to three important classes of inverse 

problems in geotechnical/transportation engineering as application examples. These 

applications were: 
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• Pavement modulus backcalculation for Falling Weight Deflectometer (FWD), 

• Model calibration based on geotechnical instrument measurements, and 

• Seismic waveform inversion for shallow subsurface characterization. 

 

A brief summary of the major findings in each application is presented below. 

 

FWD Backcalculation 

As the first application, probabilistic FWD backcalculation was introduced 

formulated, and the results of the backcalculation of synthetic test data were presented. 

The probabilistic backcalculation was then used as a tool to compare different 

backcalculation procedures, such as static and dynamic backcalculation procedures. 

Based on the presented results, it was shown that the static backcalculation procedures 

fail to capture the essential dynamic nature of the test and consequently can not be relied 

upon for accurate backcalculation. It was also demonstrated that there is little redundancy 

in dynamic deflection bowl backcalculation procedures, which can produce large 

uncertainties in obtained backcalculation results. Among the compared backcalculation 

procedures, the dynamic deflection time history backcalculation offers the best and most 

reliable approach in the FWD backcalculation. The application of this approach was then 

illustrated both on synthetic and actual experimental data. It was also shown that, at least 

in the case of synthetic data, the deflection time histories carry enough information to 

simultaneously backcalculate for layer moduli and bedrock depth. Finally, the effect of 

frequency dependent layer material properties on predicted deflection time histories was 
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investigated. It was shown that such effects can be significant and produce discrepancies 

in the backcalculation results. 

 

Model Calibration 

As the second application, calibration of a finite element settlement prediction 

model for a landfill redevelopment project was presented. This example demonstrated 

how the probabilistic inversion approach can be used to complement the application of 

the observational method in geotechnical engineering. The basic formulation of the 

probabilistic solution was described for this problem and the calibration of a settlement 

prediction model using the probabilistic approach was then outlined and the results of the 

analysis were presented. It was illustrated that the ability of the probabilistic approach to 

evaluate the uncertainties of the obtained results provides an engineer with very valuable 

information regarding the limitations of the data and results. Consequently, it enables 

him/her to devise an appropriate course of action. 

 

Seismic Inversion 

As the last application, the probabilistic formulation of a seismic waveform 

inversion problem for evaluation of shallow subsurface properties was presented. Using a 

set of synthetic data, the potential of the waveform inversion for evaluation of the 

subsurface profiles were illustrated. It was shown that the waveform inversion is a 

powerful technique, which is not limited by many of the assumption of other seismic 

techniques, such as Spectral Analysis of Surface Waves (SASW). Finally, the feasibility 
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of the application of the probabilistic waveform inversion approach to real data was 

illustrated by inversion of a set of experimental seismic data collected for a pavement 

section by Seismic Pavement Analyzer (SPA). 

 

Recommendations for Future Research 
The following are recommendations for further development of the probabilistic 

approach and its adoption in engineering practice: 

 

• The probabilistic approach to the solution of inverse problems is a 

mathematical tool that can be applied to virtually any inverse problem in civil 

engineering. Advantages of using the probabilistic approach in other civil 

engineering applications should be further explored.  

• To introduce the approach in this research, Matlab® was used as a 

development environment and generic computer codes were generated for 

application of the approach. However, to optimize the computational 

efficiency of the approach and facilitate its implementation, development of 

efficient stand alone and application oriented codes should be considered.  

• One essential component of any inverse problem is the forward model used in 

generation of the theoretical solution. Development of efficient forward 

models for each application and evaluation of their uncertainties in 

comparison to actual measurements will be an essential and necessary next 

step in further development of the presented approach. 



177 

 

• As outlined in this research, in probabilistic approach, the input parameters of 

an inverse problem should be accompanied by uncertainty measures 

represented by a priori information. There limited guidelines in literature 

addressing the uncertainties in different contexts. A comprehensive review of 

these guidelines for application in probabilistic approach is required.  This 

review should be followed by development of application oriented guidelines 

to facilitate the application of this approach as a practical tool. 
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Appendix A: Spectral Element Method for Analysis of 
Wave Propagation in Layered Media 

 

 

 

 

 

 

 

Introduction 
Finite element method is a general and accepted numerical tool in analysis of 

wave propagation. However, in spite of the recent advances in computational capabilities, 

significant resources are still required to perform a reasonably accurate wave propagation 

analysis using finite element method. In the finite element analysis, the number and type 

of elements control the computational time required to solve the model. The number of 

elements required to converge a dynamic finite element model is generally more than a 

static model and tend to increases with increased excitation frequency. For a structure 

analyzed at a high excitation frequency, the number of elements may easily exceed the 

practical number to solve the problem in a timely manner. 

For horizontally layered media, over the years, a series of more efficient 

techniques have been developed, which involves a combination of analytical and 

numerical solutions. The general similarity of these techniques, referred to here as 

frequency domain techniques, is that the solution is obtained by a synthesis of waveforms 
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from superposition of many frequency components, which are in part are obtained 

analytically. The most notable work in this area has been done by Thomson [1950] and 

Haskell [1953], who developed the layer transfer matrix method. In this method, for a 

given layer, the amplitude of displacement and force vector at one interface are related to 

the amplitude of displacement and force at the other interface for each frequency 

component through the transfer matrix. Kausel and Roesset [1981] further developed this 

technique by introducing a layer stiffness matrix similar to those in the finite element 

method. The transfer and stiffness matrices involve transcendental functions which 

exhibit numerical complications in implementations. 

To overcome this problem, a semi discrete solution was introduced by Lysmer 

[1970] and was further generalized by Kausel and Roesset [1981]. The basic idea of this 

solution is to divide layers into sublayers with thicknesses shorter than the wavelength of 

interest and to approximate the wave in the vertical direction by a linear interpolation 

between layer interfaces, assuming that the mass of each layer is lumped at the interfaces. 

By doing so, the transcendental equation will be replaced by a simple eigenvalue 

problem, which can be solved by standard techniques.  

The requirement of subdivision of layers to sublayers of small thickness results in 

a large system of equations that should to be solved for each frequency component. This 

makes these techniques rather computationally expensive. The spectral element method 

[Rizzi and Doyle, 1992, Doyle, 1997] overcomes this issue by modeling the exact mass 

distribution and using double summation over significant wave numbers and frequencies 

instead of numerical integration. Consequently, each layer is modeled exactly without the 

need to subdivide the layer. Hence the method becomes more efficient.  
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The spectral element method can be described as a variation of p-type 

convergence analysis in finite element. In dynamic finite element analysis the 

convergence can be obtained by either increasing the number of elements or increasing 

the polynomial order of the interpolation functions. If the convergence is obtained by 

increasing the order of the interpolating function, the convergence is generally referred to 

as p-type convergence. Typically, the order of the polynomial interpolation function is 

increased, while the spatial mesh is held constant, until more accurate results are 

obtained. In spectral elements, the element interpolation functions are based on the 

eigenfunctions of the differential equation used to represent the dominant mechanics in 

the problem. This results in the “exact” form of the displacement field for the 

interpolation function. The interpolation functions of spectral elements are based on 

trigonometric functions, opposed to polynomial functions of conventional elements. The 

trigonometric functions incorporate the frequency of the response into the interpolation 

function. Having the interpolation function based on the eigenfunctions means that a 

single spectral element will give the “exact” dynamic solution across the element for 

simple loading and boundary conditions. This results in a reduced number of elements, 

and thus a reduced model size for a spectral element model as compared to the 

conventional finite element model.  

This appendix provides the basic formulation of the spectral elements and 

describes its implementation in this research. This appendix is not intended to be a 

tutorial about this technique. Further details of derivation and implementation of this 

approach can be found in cited references. 
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Spectral Wave Analysis 
The general form of spectral element analysis approach to wave propagation is 

presented by Doyle [1997]. This approach is illustrated here for the wave propagation 

analysis in an axi-symmetric horizontally layered media [Alkhoury et. al 2001].  

The general equation of motion for an isotropic elastic material can be represented 

by the following coupled differential equation: 

UUU ρµµλ =∇+∇∇+ 2.)(  (A-1) 
where U  is the displacement vector, ρ  is the material density, µ and λ  are the Lame 

constants, ∇  is the vector differential operator, ⋅∇  is the divergence operation and, 2∇  is 

the vector Laplacian operation.  

Using Helmholtz decomposition [Achenbach, 1973], the displacement field can 

be expressed in terms of gradient of a scalar potential function ϕ  and the curl of a vector 

potential functionψ  as:  

ψϕ ×∇+∇=u  (A-2) 
For an axi-symmetric motion, the vector potential ψ  has only one component θψ . 

Denoting the displacements in r  and z  direction by u  and w  the displacements and 

potentials are related by: 
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and stress-displacement relationships are given by: 
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(A-4) 

These potentials can be obtained by solution of the following differential 

equations, which are a set of decoupled equations obtained by substitution of Equation 

(A-3) into Equation (A-1).  
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 where pc  and sc  are compressional and shear wave velocities of the medium defined 

respectively as 2/1)2(
ρ

µλ +
=pc  and 2/1)(

ρ
µ

=sc . 

These equations can be transformed to the frequency domain using the Fourier 

transform: 
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where hat sign indicates that the expression is in the frequency domain and ω  is the 

frequency. These equations can be solved by separation of variables.  

To discretize the solution, a boundary condition is imposed on the problem. 

Assuming that at the radial boundary Rr =  (far from load) the amplitude of oscillations 

vanishes, the generic solution of wave equation can be discretized and is given by double 

summation over discrete angular frequency nω  with Nn ,...,1=  and discrete wave 

number 
R

k m
m

α
=  with Mm ,...,1= , where mα  is the m th positive root of Bessel 

function of first kind , 0J . The solution is presented below: 
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where 1J  is the Bessel function of first kind and order one, mnA  and mnB  are coefficients 

to be determined from the boundary conditions  and szmnk  and pzmnk satisfy the following 

relations referred to as spectrum relations: 
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Spectral Element Formulation 
The obtained discretized solution can be used to derive the spectral elements 

formulation. Such a derivation is presented below for a two node layer element and a one 

node half space element. 

 

Two-Node Layer Element 

The two node layer element with a height of h , which is depicted in Figure A-1, 

can be visualized as a layer confined by two circular surfaces within which the wave is 

constrained to move. The response at any point in the element is determined by a 

superposition of incident and reflected waves from each surface. To include both incident 

and reflected waves, the following general solution that is obtained by adding two 

potentials is considered. These potentials include waves propagating in both directions: 
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Figure A-1 - Two-node axi-symmetrical layer element [Alkhoury, 
2001]. 
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(A-8) 

where z  is the distance measured from the top surface of the element and mnA , mnB , mnC , 

and mnD  are constants. Substituting the potentials in Equation (A-8) into Equation (A-3) 

the radial and vertical displacements in the frequency domain are obtained as: 
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(A-9) 

So the displacements at the top of the layer, mnu1  and mnw1 , and the bottom of the 

layer mnu2  and mnw2  can be related to potential coefficients by: 

T
mnmnmnmnmn

T
mnmnmnmn DCBAIwuwu ],,,,][[],,,,[ 2211 =  (A-10) 

where mnI  is the matrix of coefficients. The algebra required to obtain mnI  in Equation 

(A-10) is straightforward but it should be performed with significant care. The exact 

expression of mnI  is given by Alkhoury et al. [2001] and will not be repeated here. 
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Similar to the derivation of Equation (A-10), the surface traction kT  at each 

interface can be related to the potential coefficients using equations (A-4) and (A-9). To 

obtain the surface tractions the Cauchy stress principle, mkmk nT τ= , is used. In this 

equation, mn  represents the normal to the surface of the layer and kmτ  is the component 

of the stress tensor. So the traction at the top of the layer, mnrT 1  and mnzT 1 , and the bottom 

of the layer mnrT 2  and mnzT 2 , can be related to potential coefficients by: 

T
mnmnmnmnmn

T
mnzmnrmnzmnr DCBAHTTTT ],,,,][[],,,,,,,[ 2211 =  (A-11) 

The exact expression of mnH  is also given by Alkhoury et. al. [2001] and will not 

be repeated here. Upon performing the required algebra to eliminate the coefficient from 

equations (A-10) and (A-11), the tractions and displacements can be related to each other 

by a complex and symmetric 4x4 dynamic stiffness matrix. 

T
mnmnmnmnmn

T
mnzmnrmnzmnr wuwukTTTT ],,,,][[],,,,,,,[ 22112211 =  (A-12) 
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In which: 
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One-Node Half Space Element 

In a one node half space element waves travel only in one direction. So only the 

incident wave potential is considered in the derivation of the element matrix. An 

illustration of the one node half space element is presented in Figure A-2. The steps in the 

derivation of the stiffness matrix in this case are similar to the steps in the derivation of 

the two node element presented earlier. Similar to the derivation for the two node 

element, the stiffness matrix can be obtained as: 

T
mnmnmn

T
mnzmnr wukTT ],][[],[ 1111 =  (A-14) 

where: 
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and szmnpzmnmmn kkk +=∆ 2 . 

 
Figure A-2 - One-node axi-symmetrical half space element. 
[Alkhoury, 2001]. 

 

Assemblage 

Assemblage of stiffness matrices follows the usual procedures of the conventional 

finite element method [Cook, 1974] except that dynamic, rather than static, equilibrium is 

imposed at each node. The stiffness matrix should be assembled at each frequency and 

wave number. The same procedure should be followed in assemblage of the global force 

vector. 

 

Boundary Conditions and Solution of the System for an Impact Load 

For an applied load at the surface of a horizontally layered medium the actual 

displacements are obtained by scaling the response at each frequency and wave number 

according to the coefficients of the decomposition of the load at that wave number and 

frequency. To illustrate the procedure, these coefficients are obtained below for a load 



188 

 

with a spatial distribution of q for ar ≤≤0 , as shown in Figure A-3, and a half sine time 

variation, as presented in Figure A-4, 

The scaling factors in the frequency domain, nF̂ , are obtained by Fourier 

transform. The Fourier transform coefficients can be numerically calculated by applying 

fast Fourier transform (FFT) to the time variation of the force function. For the half since 

force function depicted in Figure A-4, the variation of the magnitude of FFT coefficient 

with frequency is presented in Figure A-5. 

 
Figure A-3 – Spatial distribution of the load [Alkhoury, 2001]. 
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Figure A-4 - Time history of the idealized time wavelet. 
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Figure A-5 - Frequency spectrum of the idealized wavelet. 

 

The scaling factors in the wave number domain can be obtained based on Fourier-

Bessel theory. For a cylindrical shaped load of a radius a , the Fourier-Bessel coefficients 

are given by [Kreyszig, 1999]:  

)(
)(

2ˆ
12

1

a
R

J
RJ

aF m

mm
m

α
αα

=     Mm ,...,1=  (A-16) 

where mF̂  is the coefficient of Fourier Bessel series for a wave number 
R

k m
m

α
=  with 

Mm ,...,1= , and mα  is the m th  positive root of the Bessel function of first kind , 0J . 

The variation of Fourier-Bessel series coefficients for a circular load of a radius a , as 

depicted in Figure A-3, is presented in Figure A-6.  
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Figure A-6 – Coefficients of Fourier-Bessel series for a circular 
load of a radius ma 15.0= . 

 

Numerical Implementation 
The flowchart of the algorithm for implementation of the spectral element method 

is presented in Figure A-7 [Alkhory et. al. 2001]. A Mathlab® code was developed based 

on this algorithm to implement the presented spectral element approach. The algorithm 

can be generally described by the following steps: 

 

• Obtain time and wave number domain scaling factors by FFT and Fourier-

Bessel transform of the load function, respectively. 

• Form the stiffness matrix of the system for each frequency and wave number. 

• Solve for the displacements for a unit load in the frequency-wave number 

domain for each frequency and wave number combination. 

• Scale the calculated response using the obtained scaling factors. 

• Sum all the wave number domain responses for each frequency to obtain the 

response in the frequency domain. 
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• Use inverse FFT to obtain the response in the time domain. 

 

Illustrative Example 
To verify the accuracy of the developed spectral element code, a numerical 

example is considered and the results of the example are presented. The example 

considered here is the simulation of the pavement response during the Falling Weight 

Deflectometer (FWD) test. The pavement layer properties used for the numerical 

simulation are presented in Table A-1. The spatial and time variation of the load function 

considered for this example is similar to those presented in previous section.  

The predicted surface deflection time histories by the spectral element method are 

presented in Figure A-7. The response of the same pavement, as calculated by Alkhoury 

[2001a], is presented in Figure A-8. These results are in very good agreement, which 

confirms the accuracy of the developed code. Furthermore, as presented in Chapter 5, 

these results are also in good agreement with finite element results. 

 

Table A- 1 – Geometrical and material properties used in the 
numerical evaluation and verification of the spectral element 
method [Alkhoury, 2001]. 

Material Type Thickness 
(m) 

Elastic Modulus 
(MPa) 

Poisson’s 
Ratio 

Mass Density 
(kg/m3) 

Asphalt Concrete 0.15 1000 0.35 2300 
Aggregate Base Course 0.25 200 0.35 2000 

Subgrade infinity 100 0.35 1500 
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Figure A-7 - Predicted pavement surface deflection time histories 
from the spectral element analysis. 

 

 
Figure A-8 - Predicted pavement surface deflection time histories 
from the spectral element analysis [Alkhoury et al.,2001]. 

 

Summary 
In this appendix, derivation and implementation of the spectral elements 

technique is presented. Spectral element method, is a frequency domain analysis 
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technique for horizontally layered media, such as pavements. The method is much more 

efficient than the traditional finite element technique. The background and basic 

formulation of the spectral element method was presented in this appendix and its 

implementation was illustrated by the simulation of the FWD test. It is shown that the 

results of the developed Mathlab® code are in agreement with results published by 

others.  
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