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ABSTRACT OF THE DISSERTATION

New algorithmic and hardness results on graph

partitioning problems

by Marcin Jakub Kami«ski

Dissertation Director: Professor Vadim Lozin

In this thesis we study algorithmic aspects of two graph partitioning problems � graph

coloring and maximum cut. This is a summary of main results of the thesis:

◦ A polynomial-time algorithm for k-vertex-colorability in the class of P5-free

graphs (for any �xed value k).

◦ A proof of NP-completeness of vertex- and edge-colorability in the class of

graphs with girth at least g for any value of g ≥ 3.

◦ A polynomial-time algorithm for 3-vertex-colorability of (claw, hourglass)-

free graphs and an extension of that result to an in�nitely increasing family of

subclasses of claw-free graphs.

◦ An exact algorithm for max-cut running in time O∗(2(1−2/∆)n) in the class of

graphs with maximum degree ∆.

◦ A proof of NP-completeness of max-cut and max-bisection on unit disk graphs.
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Chapter 1

Introduction

The topic of this thesis is graph algorithms. In this introductory chapter we are going to

de�ne basic graph notions that are common for all the following chapters. We will also

list algorithmic problems considered in the text and present a discussion of complexity

results related to those problems. In the following sections we assume the knowledge of

notions and facts presented here; more speci�c notions will be de�ned when needed.

1.1 Graphs

In this thesis we consider undirected, loopless graphs without multiple edges. With the

exception of one chapter the graphs under consideration are also unweighted. For graph

notions not de�ned here we refer the reader to [D05].

The vertex set of a graph G = (V,E) is denoted by V and its edge set by E.

Cardinalities of these sets are n = |V | and m = |E|, respectively.

G = (V,E, w) is an edge-weighted graph, if G = (V,E) is a graph and w : E → R+ ∪

{0} is a weight function which assigns to each edge ij of G a nonnegative number wij .

The neighborhood of a vertex v, denoted by N(v), is the set of all vertices adjacent

to v. The closed neighborhood of v, denoted by N [v], is the set N(v) ∪ v. The number

of neighbors of a vertex v is called its degree and is denoted by deg(v). ∆ = ∆(G) is

the maximum of a vertex in graph G.

The average degree of a graph is the sum of degrees of all vertices of the graph

divided by the number of its vertices. The average degree is denoted by d = d(G);

notice that d = 2m/n.

If for some graph ∆ = d, then the graph is called regular of degree d. In particular,

regular graphs of degree 3 are called cubic.
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A subgraph of G is called induced by a set of vertices U ⊆ V if it can be obtained

from G by deleting the vertices of V − U . We denote such a subgraph by G[U ].

If F is a set of graphs then the family of F-free graphs consists of all the graphs

that do not contain any graph of F as an induced subgraphs. We say that graphs from

F are forbidden. Such families of graphs are closed under vertex deletion.

The chordless path and cycle on n vertices are denoted by Pn, Cn, respectively. Kn

is the complete graph on n vertices and Ka,b is the complete bipartite graph with parts

of size a and b.

A line graph of a graph G = (V,E) is the graph L(G) = (E,E′) such that ef ∈ E′

if and only if the edges e and f are incident in G.

1.1.1 Graph coloring

A k-coloring of a graph is an assignment of numbers from set {1, . . . , k} (called colors) to

the vertices of the graph in such a way that the endpoints of each edge receive di�erent

colors. A graph which admits a k-coloring is called k-colorable.

The set of vertices which have been assigned the same color is called a color class.

Color classes are independent sets and the smallest number of independent sets in which

the graph can be partitioned is called its chromatic number. A chromatic coloring of a

graph is a coloring with the least number of colors (with the chromatic number of colors).

A chromatic coloring is called unique if it is unique up to swapping color classes.

A k-coloring which satis�es an additional restriction � the color assigned to a vertex

has to belong to the list of colors admissible for this vertex � is called a k-list-coloring.

Similarly, we de�ne a k-edge-coloring to be an assignment of numbers from set

{1, . . . , k} to the edges of a graph in such a way that two edges sharing an endpoint

will receive di�erent colors. Notice that a k-edge-coloring of a graph corresponds to a

k-coloring of the vertices of its line graph. A graph which admits a k-edge-coloring is

called k-edge-colorable. The well-known theorem by Vizing states that every graph is

either ∆-edge-colorable or (∆ + 1)-edge-colorable.

Notice that a graph admits a k-coloring (k-edge-coloring) if and only if each of its
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connected components does. Also, the chromatic number of a graph is the maximum of

the chromatic numbers of its connected components.

1.1.2 Cuts in graphs

A cut in a graph is a partition of its vertex set into two disjoint parts. For each cut,

we de�ne its capacity to be the number of the edges whose endpoints belong to two

di�erent parts of the cut. Any cut with maximum cardinality is called a maximum cut.

In edge-weighted graphs, the weight w(C) of cut C is the sum of weights of all

the edges that have their endpoints in two di�erent parts of the cut. Notice that the

unweighted graph can be thought of as a graph whose all edges have weight one.

We will denote the maximum size of a cut in a graph G by mc(G). Notice that a

maximum cut in a graph is a union of maximum cuts of its connected components.

A cut in which the number of vertices in two parts di�er by at most one is called a

bisection. A maximum bisection is a bisection of maximum capacity.

1.2 Algorithmic problems

It this thesis we consider graph algorithms with a focus on their time complexity. The

number of vertices of the input graph, n, will be the measure of the input size of an

algorithm. Polynomial/exponential-time/space will mean polynomial/exponential in n.

Linear-time algorithms run in time linear in the number of edges of the input graph.

We also assume that the input graph is always connected, as if the graph is not, the

partition problems we study in this thesis can be solved on each of the connected compo-

nents separately and their solutions glued together. This pre- and post-processing can

be done very e�ciently (in linear time) and does not in�uence computational complexity

of the algorithms.

The reference for all algorithmic terms is [GJ79].
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1.2.1 Vertex coloring problems

Many di�erent versions of vertex coloring problems have been introduced and we study

some variants of the problem here. The basic coloring problem is vertex-colorability which

asks for a coloring of a graph with the least number of color classes.

Problem: vertex-colorability

Input: Graph G = (V,E)

Output: Chromatic coloring of G

A related problem is chromatic-number which consists in computing the chro-

matic number of a graph, i.e. the number of classes in a chromatic coloring.

Problem: chromatic-number

Input: Graph G = (V,E)

Output: Chromatic number of G

These two are well-known NP-hard problems. We also study the k-vertex-colorability prob-

lem which consists in deciding whether the input graph can be colored with k colors,

and if so, �nding such coloring.

Problem: k-vertex-colorability

Input: Graph G = (V,E)

Output: A k-coloring of G, if G is k-colorable; No otherwise

This problem is known to be NP-hard for any k ≥ 3.

All vertex colorability problems mentioned above are NP-hard in the class of all

graphs. However we may hope that the problems will admit polynomial time solution
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when the input graph is required to belong to a particular class of graphs.

An example would be the ∆-vertex-coloring problem in the class of graphs with

maximum degree ∆. This is a consequence of Brooks' Theorem ([B41]) that all graphs

with maximum degree ∆, except for the clique on ∆ + 1 vertices, are ∆-colorable, if

∆ ≥ 3. A linear-time algorithm was outlined in [L75] and described in detail in [BW01].

On the other hand, vertex-colorability is NP-hard in the class of graphs with

maximum vertex degree ∆, if ∆ ≥ 4.

Other classes of graphs which admit polynomial-time algorithms for vertex-colorability are

perfect graphs ([GLS84]), planar graphs, locally connected graphs [K05], and some

classes de�ned by forbidding induced subgraphs [R04, RS04, RS04a, RST02].

There is also a number of classes for which vertex colorability problem remain dif-

�cult. Examples are such classes are claw-free, line graphs ([H81]) and triangle-free

graphs ([MP96]).

We also study the problem of deciding whether the input graph is k-list-colorable

with respect to given color lists, and if so, �nding a k-list-coloring.

Problem: k-list-coloring

Input: Graph G = (V,E) and a list of admissible colors

L(v) ⊆ {1, . . . , k} for each vertex v ∈ V

Output: A k-list-coloring of G with respect to color lists, if G is k-colorable;

No otherwise

When all colors are available for each vertex, then the k-list-coloring is equiva-

lent with k-vertex-colorability and therefore k-list-coloring is computationally

more di�cult than k-vertex-colorability.
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1.2.2 Edge coloring problems

As we mentioned above a graph with maximum degree ∆ is either ∆-edge-colorable or

(∆ + 1)-edge-colorable. edge-colorability is the algorithmic problem of �nding an

edge coloring with the least number of colors.

Problem: edge-colorability

Input: Graph G = (V,E)

Output: A ∆-edge-coloring of G, if G is ∆-edge-colorable;

(∆ + 1)-edge-coloring otherwise

The k-edge-colorability problem consists in determining whether the input

graph is k-edge-colorable, and if so, �nding a k-edge-coloring.

Problem: k-edge-colorability

Input: Graph G = (V,E)

Output: A k-edge-coloring of G, if G is k-edge-colorable; No otherwise

Holyer proved in [H81] that 3-edge-colorability is NP-hard for cubic graphs and

hence also edge-colorability is NP-hard for general graphs. Notice that k-edge-

colorability on graph G is equivalent to k-vertex-colorability on its line graph

L(G).

1.2.3 Cut problems

The max-cut problem in an edge-weighted graph consists in �nding a cut of maximum

weight.

Problem: max-cut
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Input: Graph G = (V,E, w)

Output: A maximum cut of G

If the graph is unweighted (which is algorithmically equivalent with an edge-weighted

graph whose all edges have the same, positive weight), the corresponding problem is

called simple-max-cut. If there is no need for distinction or no risk of ambiguity, we

will identify both problems and call it simply max-cut.

The max-cut problem is known to be NP-hard in the class of all graphs ([K72])

and it is NP-hard even if the input graph is restricted to be a split or 3-colorable

graph ([BJ00]). The problem is also NP-hard in the class of graphs with maximum

degree ∆, if ∆ ≥ 3 ([Y78]).

On the other hand, max-cut can be solved in polynomial time for planar graphs

([H75], [O72]) or graphs with bounded treewidth ([BJ00]).

The max-bisection problem is to �nd a maximum bisection of a graph.

Problem: max-cut

Input: Graph G = (V,E, w)

Output: A maximum bisection of G

The max-bisection problem is NP-hard for general graphs ([GJ79]). However,

contrary to the max-cut problem, max-bisection remains NP-hard on planar graphs

(result of Jerrum presented in [JKLS05]).
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Chapter 2

Coloring vertices of P5-free graphs

In this chapter we study the problem of coloring vertices of P5-free graphs. Build-

ing on previous work, we develop a polynomial-time algorithm for solving the k-list-

coloring problem in the class of P5-free graphs. The result presented in this section

is based on the paper [KL06]. (The most recent version of this paper is [HKLSS06].)

2.1 Introduction

An interesting problem which has been studied in both the graph-theoretical and algo-

rithmic setting is the colorability problem in graphs without long induced paths. Here

we are concerned with computational complexity issues.

Given the class of graphs containing all graphs without induced subgraphs isomor-

phic to the induced path on t vertices (we denote such a path by Pt and call such graphs

Pt-free), we want to investigate whether the k-colorability problem can be solved

in this class in polynomial time or can be proved to be NP-hard. A number of results

have been obtained in this area for di�erent combinations of parameters k and t. (We

give an account of past research below.)

It has been known that the k-colorability problem can be solved in the class

of P4-free graphs in polynomial time. However, a polynomial-time algorithm for 3-

colorability was the only complete result for the class of P5-free graphs. Some

partial information was obtained for the 4-colorability in this class, when additional

structural restrictions are imposed on graphs. In this section we give a complete solution

to the k-colorability problem in P5-free graphs for an arbitrary value of k. In fact,

our algorithm solves a more general version of the problem, known as list coloring.
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2.2 Previous results

The class of P4-free graphs has been studied extensively and there exist linear-time al-

gorithms for most of algorithmic problems, also for k-colorability ([CPS84]). A nat-

ural question is to investigate whether the result can be extended for the class of graphs

containing no induced P5. A polynomial-time algorithm solving the 3-colorability

problem in that class was proposed in [RST02]. In [RS04a], the authors show that 3-

colorability can in fact be solved in polynomial-time for the class of P6-free graphs.

Later, the authors of [SW01] presented few algorithmic results concerning coloring of

graphs without long paths. They seem to be the �rst to consider the problem in terms

of two parameters � the number of colors k and the number of vertices t of the forbidden

path Pt. In their paper they showed, using a di�erent approach than in [RST02], how

to 3-color vertices of a P5-free graph in polynomial time. They also obtained two

hardness results showing that 5-colorability is NP-hard for P8-free graphs and 4-

colorability is NP-hard for P12-free graphs. The last result was recently improved

in [LRS06]; the authors of the note claim that modifying the reduction from [SW01]

4-colorability can be shown to be NP-hard for P9-free graphs.

Table 2.1 summarizes previously known results for the k-colorability problem in

the class of Pt-free graphs. (A similar table appears for the �rst time in [SW01] and

is being updated and redrawn ever since in all publications contributing to the area.)

When looking at the previous results, two possible research directions seem promising

and they were listed as open problems in [RS04]. We restate them here.

Problem 2.1. Is there a polynomial-time algorithm for the 4-colorability problem

in the class of P5-free graphs?

Problem 2.2. Is there a polynomial-time algorithm for the 3-colorability problem

in the class of P7-free graphs?

As far as we know there has been no progress on the second problem, while for

the �rst some results were obtained. The authors of [LRS06] showed that the 4-

colorability problem can be solved in polynomial time in the class of (P5, C5)-free
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t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 . . .

k = 3 P P P ? ? ? ? ?

k = 4 P ? ? ? ? NPc NPc NPc

k = 5 P ? ? ? NPc NPc NPc NPc

k = 6 P ? ? ? NPc NPc NPc NPc

k = 7 P ? ? ? NPc NPc NPc NPc

. . . P ? ? ? NPc NPc NPc NPc

Table 2.1: Previously known complexity results for k-colorability of Pt-free graphs.

graphs (where C5 is the chordless cycle on 5 vertices). Another result was obtained in

[HSW06]. In that paper a class of P5-free graphs that contain a dominating clique on

four vertices is studied. (This assumption may seem arti�cial but follows from the struc-

tural properties of P5-free graphs.) The authors provide a polynomial-time algorithm

solving the 4-colorability problem in that class.

We also want to mention that the chromatic-number problem is NP-hard in the

class of P5-free graphs ([KKTW01]).

2.3 Background

2.3.1 Coloring vertices

In this section we consider instances of the k-list-coloring problem. An instance

G = (V,E,L) consists of the underlying graph G = (V,E) together with a function

L : V → 2{1,...,k} which assigns to a vertex a list of its admissible colors. Recall that we

say that G is k-list-colorable if exists a coloring c : V → {1, . . . , k} such that for each

v ∈ V , c(v) ∈ L(v).

For a set W ⊆ V , we write L(W ) =
⋃

w∈W L(w). We say that L(v) (or L(W )) is

the palette of v (or W ). When we want to emphasize the underlying instance H, we

write LH ; if the subscript is omitted, we always refer to instance G.

If a vertex is assigned a color, we can exclude that color form the palettes of all its

neighbors. We say that an instance G = (V,E,L, D) is in simpli�ed form if there are

no adjacent vertices v, w ∈ V such that |L(v)| = 1 and L(v) ⊆ L(w). In this paper
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we assume that all instances are in simpli�ed form and that instance simpli�cation in

algorithms is done implicity. (It can be easily performed in time linear in the number

of edges.)

An instance G is said to be compatible with a set G of instances if G is k-list-colorable

if and only if at least one of the instances in G is k-list-colorable. Notice that if G is

compatible with G and some H ∈ G is compatible with H, then G is compatible with

(G −H) ∪H.

2.3.2 Dominating structure

We say that a subset W ⊆ V of the vertex set is a dominating set if every vertex in V

either belongs to W or has a neighbor in W .

Our algorithm is based on an interesting structural property of P5-free graphs that

has been described by Bascó and Tuza in [BT90a]. (The properties of graphs without

long induced paths have been also studied in other papers, see [BT90, BT93, BT02,

CK90].) Following their terminology, we say that H is dominating in G if G contains a

dominating set isomorphic to H. In particular, a dominating clique in G is a dominating

set in G which induces a complete graph. Similarly, a dominating P3 is a dominating

set in G which induces a path on 3 vertices.

Theorem 2.3 (Theorem 8 in [BT90a]). In every P5-free connected graph there is a

dominating clique or a dominating P3.

We will refer to a dominating set which induces a graph isomorphic to a clique or

P3 as a dominating structure. Below we assume that the dominating structure in the

input graph G is given and we denote the set by D. Notice that if G is k-list-colorable

(for k ≥ 3), then |D| ≤ k, and therefore a dominating structure in a P5-free graph can

be found in polynomial time. An e�cient algorithm for �nding a dominating structure

in P5-free graphs � not necessarily k-list-colorable � was presented in [CK90].

To give an application of Theorem 2.3, let us consider the 3-list-coloring problem

in the class of P5-free graphs. Notice that once a 3-coloring of vertices in D is �xed,

then |L(v)| ≤ 2 for all v ∈ V . The question whether the coloring of D can be extended
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for the whole graph can be stated as a 2-SAT instance and solved in polynomial time.

Hence, considering all possible 3-colorings of D and checking extendability of each, we

can obtain a polynomial algorithm for the 3-list-coloring problem in the class of P5

free graphs. (See [RST02] for more details.)

We can partition all vertices in V −D into disjoint classes depending on their neigh-

borhood in the dominating structure D. For I ⊆ D, UI(G) = {v ∈ V −D : N(v)∩D =

I}. If G is the underlying instance, we just write UI . These sets will be referred to as

bags.

While looking for a coloring in a graph, two adjacent vertices with disjoint palettes

can be as well though of as non-adjacent. Essential are only such neighbors that do not

have disjoint palettes.

For a vertex v ∈ V , we de�ne the set of its essential neighbors E(v) = {w ∈ N(v) :

L(v) ∩ L(w) 6= ∅}. The remaining neighbors N(v) − E(v) are called non-essential.

Note that the relation of being an essential (non-essential) neighbor is symmetric. Also,

assigning a color to a vertex does not change possible color choices for its non-essential

neighbors.

Similarly, for a set W ⊆ V , we de�ne the set of its essential neighbors E(W ) =⋃
v∈W E(v). Also, for sets U,W ⊆ V , we say that EU (W ) = E(W ) ∩ U is the essential

part of W with respect to U. A set W ⊆ V is called separated if all essential neighbors

of all its vertices belong to W , i.e. E(W ) ⊆ W .

Possibly only some vertices from bag UI have essential neighbors in UJ . For I, J ⊆ D

and I 6= J , UJ
I (G) = EJ(I). If G is the underlying instance we simply write UJ

I . Notice

that EUJ (UJ
I ) = U I

J .

2.3.3 Structure of the algorithm

The nature of our solution is inductive. Designing the algorithm solving the k-list-

coloring problem, we assume there exist polynomial-time algorithms for the p-list-

coloring problem for any p < k. The problem can be easily solved for k = 1, 2 and

with a bit more e�ort for k = 3 so below we assume that k is at least 4. Notice that

our inductive assumption allows us to �nd a chromatic coloring of a p-list-colorable
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P5-graph with p < k in polynomial time.

The main idea of our k-coloring algorithm is to use the structural property of P5-free

graphs to create a set of instances compatible with the input instance. These instances

are simpler and solving them essentially amounts to �nding a (k − 1)-coloring. For

clarity we divided the description of our solution into three parts, each corresponding

to one of the following sections.

2.4 Dominating an independent set

In this section we �x the underlying graph (V,E), the dominating set D, and two

independent sets S, T belonging to two di�erent bags UI , UJ . When we speak about the

essential part of S or T , we mean it with respect to the other of these two sets. These

essential parts of S and T will be denoted by S′ and T ′, respectively. We indicate the

instance (if it is di�erent than G) by placing it in the subscript, for example S′
H . Note

that S′ is empty if and only if T ′ is empty.

Our �rst goal is to develop a procedure that given an instance G creates a set of

instances G compatible with G. We also require that for each instance Gt ∈ G either

S′
Gt

is empty or the palette of T ′
Gt

has fewer colors than the palette of T ′.

Lemma 2.4. Let S ⊆ UJ
I and T ⊆ U I

J be independent sets. If S′ 6= ∅, there exists a

vertex in S′ that is adjacent to all vertices in T ′.

Proof. Let s1 a vertex from S which has the largest neighborhood in T . If S′ 6= ∅, then

s1 ∈ S′. For contradiction assume that there exists a vertex t2 ∈ T ′ that is not adjacent

to s1. Hence, there must exist a vertex s2 ∈ S (di�erent than s1) adjacent to t2. Notice

that s2 is not adjacent to some t1 ∈ N(s1) ∩ T (by the choice of s1). Since I 6= J ,

there exists a vertex v ∈ (I − J) ∪ (J − I) but then G[v, s1, s2, t1, t2] is an induced P5;

a contradiction.

Notice that from Lemma 2.4 follows that the vertices of S′ can be ordered quasi-

linearly with respect to the neighborhood containment.

Let v ∈ S′ be a vertex that dominates T ′ and let us look at the palette of v. We can

divide it into two parts � the colors that belong to the palette of T ′ and the remaining
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ones. Notice that assigning to v one of the colors from the palette of T ′ decreases

the size of the palette of T ′ in the resulting instance. On the other hand, truncating

the palette of v so that it contains only the colors not belonging to the palette of T ′,

decreases the size of S′ in the resulting instance. The following procedure makes use of

this observation.

PROCEDURE ΠS,T

Input: Instance G = (V,E,L, D).

Output: Set G of instances compatible with G such that for each Gt ∈ G, S′
Gt

= ∅

or |LGt(T ′
Gt

)| < |L(T ′)|.

Step 1. Let G = ∅. If S′ = ∅, then Return {G}.

Step 2. Find a vertex v ∈ S′ that dominates T ′. For every d ∈ LG(v)∩LG(T ′), Add

to G an instance G′ = (V,E,LG′ , D) such that LG′(v) = d and LG′(w) = LG(w) for

all vertices w ∈ V − {v}.

Step 3. If LG(v) − LG(T ′) 6= ∅, create an instance G′ = (V,E,LG′ , D) such that

LG′(v) = LG(v) − LG(T ′) and LG′(w) = LG(w) for all vertices w ∈ V − {v}. Add

to G the instances returned by Π(G′).

Step 4. Return G.

Claim 2.5. Procedure ΠS,T is correct and runs in polynomial time.

Proof. Let G be the input instance and G the output set of instances. To prove that

the procedure is correct, we will proceed by induction on |S′|. We will prove that G is

(*) compatible with G and (**) for each Gt ∈ G, S′
Gt

= ∅ or |LGt(T ′
Gt

)| < |L(T ′)|.

If |S′| = 0, then T ′ = ∅ and G consists only of G (Step 1). Clearly, G is compatible

with {G} and (**) is also satis�ed.

Suppose that |S′| = i and for all instances H with |S′
H | < i the output of the

procedure satis�es both conditions (*) and (**). First, let us notice that if one of the

instances in G is k-list-colorable, then so is G because for each instance Gt ∈ G and each

vertex v ∈ V , LGt(v) ⊆ L(v).
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Now suppose that G is k-list-colorable. Since in any k-coloring of G, v receives a

color from L(v), then either one of instances created in Step 2 or G′ is k-list-colorable.

If none of the instances created in Step 2 is k-list-colorable, then G′ must be k-list-

colorable and � by the induction hypothesis � at least one of the instances created in

Step 3 is k-list-colorable. Hence, (*) is satis�ed.

It is easy to see that all instances Gt created in Step 2 have |LGt(T ′
Gt

)| < |L(T ′)|.

The set of instances created in Step 3 comes from a call of the procedure for G′ and for

these instances the condition is satis�ed by the induction hypothesis, since |S′
G′ | < |S′|.

Hence, (**) is satis�ed.

Now let us show the running time of the procedure. Clearly, identifying sets S′, T ′,

�nding a dominating vertex v (Step 2) and creating new instances can be done in

polynomial time. Notice that the recursive call in Step 3 is done for an instance with

a smaller essential part of S so the depth of the recursion is at most n. Hence, the

running time follows.

Now we are going to use the procedure to design an algorithm that given G creates

a set of instances G compatible with G. We also want G to have a polynomial size and

we require that for all Gt ∈ G, the essential part of S in Gt is empty.

Lemma 2.6. There exists a polynomial-time Algorithm Π′
S,T (G) such that given two

independent sets S ⊆ UJ
I and T ⊆ U I

J generates a set of instances G compatible with G,

such that for each Gt ∈ G, S′
Gt

= ∅.

Proof. Each call of Procedure ΠS,T produces a set compatible with G that has a

polynomial number of members (in fact at most kn). All members have either S′(Gt) = ∅

or fewer colors in the palette of T ′(Gt) than in the palette of T ′.

Calling Procedure ΠS,T recursively until all instances have the property T ′(Gt) =

∅ builds a search tree of bounded depth (at most k) and polynomial degree (at most

kn). Hence, the number of instances is polynomial and so is the running time of the

algorithm.
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2.5 Dominating color classes

In this section, as in the previous one, we �x the underlying graph (V,E), the dominating

set D, and two subsets I, J ⊂ D, I 6= J , which induce two bags, UI , UJ . Procedure

ΘI,J presented in this section is parameterized by I and J .

Our goal is to design an algorithm that given an input graph G creates a set G of

instances compatible with G. We also want G to have a polynomial number of members

and that for each Gt ∈ G, UJ
I (Gt) is empty or the chromatic number of UJ

I (Gt) is smaller

than the chromatic number of UJ
I .

Claim 2.7. Procedure ΘI,J is correct and runs in polynomial time.

Proof. Let G be the input instance and G the output set of instances. We will show that

G is compatible with G and for each Gt ∈ G, either UJ
I (Gt) = ∅ or χ(UJ

I (Gt)) < χ(UJ
I ).

First let us notice that the set H is obtained from the set G by replacing instances

Gt ∈ G with a set of instances compatible with Gt. Hence, after Step 5, G is compatible

with the set H if and only if G is compatible with the set G. Since G is compatible

with G before the loop (Step 2), it is also compatible after Step 8, and therefore G is

compatible with the output set G.

Notice that after i-th iteration of the loop (Steps 3 � 7), for all Gt ∈ G there are

no vertices in A that have an essential neighbor in Bi. Therefore at Step 8, for all

Gt ∈ G, no vertex from A has an essential neighbor in U I
J and clearly either UJ

I (Gt) = ∅

or χ(UJ
I (Gt)) < χ(UJ

I ).

Each call of ProcedureΠ′
A,Bi

in Step 5 produces a polynomial number of instances

with a smaller chromatic number. For each such an instance the procedure Π′ is called

recursively and since the depth of the recursion is bounded by k, the running time of
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the algorithm is polynomial.

PROCEDURE ΘI,J

Input: Instance G = (V,E,L, D).

Output: Set G of instances compatible with G such that for each Gt ∈ G,

UJ
I (Gt) = ∅ or χ(UJ

I (Gt)) < χ(UJ
I ).

Step 1. If UJ
I = ∅, Return G.

Step 2. Find a chromatic coloring of G[UJ
I ] and let A be one of the color classes

(non-empty). (k−1)�color G[U I
J ] and let B1, . . . , Bk−1 be the color classes of that

coloring. Let G := {G} and H := ∅.

Step 3. For each i = 1, . . . , k Do

Step 4. If Bi 6= ∅ Then

Step 5. For each Gt ∈ G,

Add to H the instances returned by Π′
A,Bi

(Gt).

Step 6. G := H, H := ∅.

Step 7. End For

Step 8. Return G.

Now we will use the procedure to design an algorithm that given G creates a set of

instances G compatible with G. We also require that for each Gt ∈ G, UJ
I (Gt) is empty.

Lemma 2.8. There exists a polynomial-time algorithm Θ′
I,J that given two sets I, J ⊂ D

(I 6= J) generates a set of instances G compatible with G such that for each Gt ∈ G,

UJ
I (Gt) = ∅.

Proof. Calling Procedure ΘI,J recursively until instances have the property UJ
I (Gt) =

∅ builds a search tree of bounded depth (at most k), since at each step the chromatic

number of in UJ
I (Gt) decreases, and a polynomial degree. Hence, the running time of

the algorithm is polynomial.
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2.6 Main algorithm

In this section we combine techniques described above to construct an algorithm that

solves the k-list-coloring problem in the class of P5-free graphs. Let us notice that we

can assume that the input graph is connected, as if it is not, the k-list-coloring prob-

lem can be solved on its connected components separately.

We divide the presentation of the main algorithm into three steps. First, we make a

simple observation that if in some instance G all bags are separated, than the k-list-

coloring problem can be solved easily on G.

Lemma 2.9. Let G = (V,E,L, D) be an instance of the k-list-coloring problem

such that for each I ⊂ D, E(UI) ⊆ UI and |L(v)| = 1 for each v ∈ D. The k-list-

coloring problem can be solved on G in polynomial time.

Proof. Since vertices of UI have no essential neighbors outside UI and vertices of the

dominating structure have been already colored, graphs G[UI ] can be colored separately

for each I ⊂ D and solutions can be glued together. Notice that the coloring of each

G[UI ] is in fact the (k− 1)-list-coloring problem. By the inductive assumption this

can be solved in polynomial time.

Second, we want to design a polynomial-time procedure that given an instance G

with a dominating set of bounded size creates a set of instances G compatible with G.

We also require that all the bags of each graph in G are separated.
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ALGORITHM Λ

Input: Instance G = (V,E,L, D) such that |D| ≤ k.

Output: Set G of instances compatible with G such that for each Gt ∈ G and

each I ⊂ D, E(UI(Gt)) ⊆ UI(Gt).

Step 1. For each k-coloring of D Do

Step 2. For each I, J ⊂ D, I 6= J Do

Step 3. If UJ
I 6= ∅ Then

Step 4. For each Gt ∈ G,

Add to H the instances returned by Θ′
I,J(Gt);

Step 5. G := H, H := ∅;

Step 6. End For

Step 7. End For

Step 8. Return G

Lemma 2.10. Algorithm Λ is correct and runs in polynomial time.

Proof. First let us notice that since the size of D is bounded so is the number of

k-colorings of D (Step 1) and the number of pairs of subsets I, J ⊂ D (Step 2).

Hence, Step 3 will be performed at most a constant number of times and Step 4 takes

a polynomial time, so the polynomial running time of the whole algorithm follows.

From Lemma 2.8 it is clear that after Step 4, G is compatible with H if and only

if G is compatible with G. After Step 5, all graphs Gt in G have UJ
I (Gt) = 0 for

all pairs I, J that have been considered so far. Clearly, at Step 8 all instances in G

have UJ
I (Gt) = 0 for all pairs I, J ⊂ D, I 6= J and, hence, E(UI(Gt)) ⊂ UI(Gt) for all

I ⊂ D.

Now we are ready to state our main result.

Theorem 2.11. There exists a polynomial-time algorithm for the k-list-coloring prob-

lem in the class of P5-free graphs.
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t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 . . .

k = 3 P P P ? ? ? ? ?

k = 4 P P ? ? ? NPc NPc NPc

k = 5 P P ? ? NPc NPc NPc NPc

k = 6 P P ? ? NPc NPc NPc NPc

k = 7 P P ? ? NPc NPc NPc NPc

. . . P P ? ? NPc NPc NPc NPc

Table 2.2: Currently known complexity results for k-colorability of Pt-free graphs.

Proof. A k-list-colorable graph cannot contain a clique on k+1 vertices as its subgraph.

We assume that the input instance G does not contain such a subgraph. (This can be

tested in polynomial time, and if G contains a clique on k+1 vertices, then the instance

is not k-list-colorable.)

According to Theorem 2.3, a connected P5-free graph contains either a dominating

clique or a dominating P3. Since the size of any clique in G is at most k, the size of

the dominating structure is also bounded by k and a dominating set D can be found in

polynomial time.

Algorithm Λ is called for such an instance G. It creates a set of instances G that is

compatible with G. Moreover, all bags of every graph in G are separated and instances

of this type can be handled by Lemma 2.9.

2.7 Conclusion

In this section, we presented the �rst polynomial-time algorithm to solve the

k-colorability problem in the class of P5-free graphs. Table 2.2 presents the current

landscape of complexity results on this problem. We purposely avoid computing the

power of the polynomial in our solution since the computational complexity of the

algorithm is highly exponential in k. Finding a better algorithm for this problem or

possible showing that the problem is �xed parameter tractable is an interesting direction

for future research.
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Chapter 3

Coloring edges and vertices of graphs without short

or long cycles

In this section we show that vertex-colorability and edge-colorability remain

di�cult even for graphs without short cycles, i.e., without cycles of length at most g

for any particular value of g. On the contrary, for graphs without long cycles, both

problems can be solved in polynomial time. The content of this section is based on the

paper [KL07].

3.1 Introduction

vertex-colorability and edge-colorability are hard algorithmic problems. Show-

ing that 3-edge-colorability is NP-hard for cubic graphs, Holyer proved in [H81]

that edge-colorability is NP-hard. A closer look at the proof reveals that his con-

struction is triangle-free which implies that the 3-edge-colorability (and therefore

edge-colorability) remain NP-hard for graphs without cycles on three vertices. In

this section, we strengthen that result and show that the 3-edge-colorability prob-

lem is NP-hard for graphs without cycles of length at most g, for any �xed value of

g.

Similarly, Ma�ray and Preissmann showed in [MP96] that 3-vertex-colorability is

NP-hard for triangle-free graphs. We extend their result showing that k-vertex-

colorability is NP-hard (k ≥ 3) on graphs without cycles of length at most g, for

any �xed value of g.

Having proved the NP-hardness of vertex-colorability and edge-colorability on

graphs without short cycles, we study graphs without long cycles and show that both
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problems have polynomial-time solutions for these graphs.

3.2 Graphs without short cycles

The minimum length of a cycle in a graph G is called the girth of G. Graphs of large

girth have been a subject of intensive investigations with respect to various problems

(see e.g. [BKW99, LL03, M92]). In this section, we study computational complexity of

vertex-colorability and edge-colorability on graphs of large girth and show

that both problems are NP-hard for such graphs.

Theorem 3.1. For any natural g ≥ 3, the 3-edge-colorability problem is NP-hard

in the class of cubic graphs of girth at least g.

Proof. Let G be a cubic graph. To prove the lemma we will present a polynomial

reduction from G to a cubic graph G′ with girth at least g such that G is 3-edge-

colorable if and only if G′ is. Without loss of generality, we can restrict ourselves to

even values of g, since graphs of girth at least g + 1 constitute a subclass of graphs of

girth at least g.

For the proof, we shall need a cubic 3-edge-colorable graph of girth at least g. The

existence of such a graph follows from a result of Imrich, who proved in [I84] that for

any integer d > 2, there are in�nitely many regular graphs F of degree d whose girth

g(F ) satis�es the inequality

g(F ) >
c log n(F )
log(d− 1)

− 2,

where c is a constant and n(F ) is the number of vertices of F . Therefore, for any g ≥ 3,

there is a regular graph F of degree g and of girth at least g. By replacing each vertex

of F with a cycle of length g (see Figure 1 for illustration in case of g = 4), we obtain

a cubic graph H of girth at least g. If g is even, we need only 2 colors to color the

edges of each inserted cycle. The third color can be used to color the remaining edges

of the graph (i.e. the original edges of G). Hence H is 3-edge-colorable and we can also

assume it is connected.
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Figure 3.1: Replacement of a vertex of degree 4 with a cycle of length 4

Let ab be an arbitrary edge in H and Hab the graph obtained from H by removing

the edge ab. Observe that the distance between a and b in Hab is at least g − 1 and

Hab is connected. Connectedness follows from the fact that every cubic 3-edge-colorable

connected graph is bridgeless, i.e. removing an edge does not disconnect the graph (see

[D05]).

Now we transform G into G′ by replacing each of its edges with a copy of the graph

Hab as follows. Given an edge xy in G, we �rst delete this edge, then incorporate a copy

of the graph Hab, and �nally, connect x to a and y to b. Since the distance between a

and b in each copy of Hab is at least g − 1, the girth of G′ is at least g.

Now we show that G is 3-edge-colorable if and only if G′ is.

It is not di�cult to see that 3-edge-colorability of G together with 3-edge-colorability

of H imply 3-edge-colorability of G′. To prove the converse statement, assume G′ is

3-edge-colorable, and let x, y be a pair of vertices of G′ that are adjacent in G. Also,

let Hxy
ab be a copy of the graph Hab such that x is adjacent to a and y is adjacent to

b in G′. Our goal is to show that in any 3-edge-coloring of G′ the edges xa and yb

have the same color. Assume the contrary: the color of xa is 1, while the color of yb

is 2. In the subgraph of G′ induced by the edges of colors 1 and 2, every connected

component is a cycle (since this subgraph is 2-regular). The edges xa and yb belong to

a same component C of this subgraph, as these edges form a cutset in G′. Let P be

the path connecting a to b in C and consisting of edges of the graph Hxy
ab . According

to our assumption, the number of vertices in P is odd. But then the subgraph of Hxy
ab

induced either by the edges of colors 1,3 or by the edges of colors 2,3 is not 2-regular.

This contradiction shows that the edges xa and yb have the same color in any 3-edge-

coloring of G′, which completes the proof of the theorem.
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A natural consequence of the above theorem is the following corollary.

Corollary 3.2. For any natural g ≥ 3, the edge-colorability problem is NP-hard

in the class of graphs of girth at least g.

In the rest of the section we study vertex colorability.

Theorem 3.3. For every natural k, g ≥ 3, k-vertex-colorability is NP-hard in the

class of graphs of girth at least g.

Proof. The famous theorem of Erdös ([E59]) states that for each pair of integers

g, k (g ≥ 3, k ≥ 2) there exists a graph with girth at least g and chromatic number at

least k. For a graph of girth at least g and chromatic number at least k + 1, let H be

its edge-minimal (k + 1)-vertex-colorable subgraph. By de�nition of H, for any edge

ab, the graph Hab, obtained from H be removing ab is k-vertex-colorable and vertices

a, b receive the same color in every k-vertex-coloring of Hab. Notice that the distance

between a and b in Hab is at least g − 1.

To prove the theorem, we will show that an arbitrary graph G can be transformed

in polynomial time into a graph G′ of girth at least g such that G′ is k-vertex-colorable

if and only if G is. To this end, consider any short cycle C in G and any vertex v on C.

Split the neighborhood of v into two parts A,B so that one of the neighbors of v on the

cycle is in A, while the other one is in B. Remove vertex v from G and add a copy of

the graph Hab de�ned above along with the edges connecting a to the vertices of A and

the edges connecting b to the vertices of B. It is easy to see that the graph obtained in

this way is k-vertex-colorable if and only if G is.

Repeating this operation, we can destroy all short cycles in G, thus creating a graph

which is k-vertex-colorable if and only if G is. Since the number of short cycles is

bounded by a polynomial in the size of the input graph, the overall time required to

destroy all cycles shorter than g is bounded by a polynomial. This proves the theorem.

Corollary 3.4. For any natural g ≥ 3, the vertex-colorability problem is NP-hard

in the class of graphs with girth at least g.
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3.3 Graphs without long cycles

In this section we study graphs without long cycles. Unlike graphs without short cycles,

here we have to distinguish between graphs containing no long cycles and graphs without

long induced cycles. The maximum length of a cycle in a graph is called its circumference,

while the chordality of a graph is the maximum length of a induced cycle. Clearly, graphs

of circumference at most c constitute a subclass of graphs of chordality at most c. If

c < 3, these two classes are identical and coincide with the class of forests, i.e., graphs

every connected component of which is a tree. It is easy to see that restricted to trees

both vertex-colorability and edge-colorability can be solved in polynomial

time. A related result deals with the notion of partial k-trees, or equivalently, graphs

of tree-width at most k. It has been shown in [B90, ZNN96] (resp. [TP97]) that

edge-colorability (resp. vertex-colorability) of graphs of bounded tree-width

is a polynomially solvable task. We use this result to show that both problems have

polynomial solutions for graphs of bounded circumference.

Theorem 3.5. For any natural c, there exists a constant k such that the tree-width of

graphs of circumference at most c is at most k.

Proof. If c < 3, then k = 1, as forests are exactly graphs of tree-width at most 1. For

c ≥ 3, we use the induction on c and the following two observation (the proof of which

can be found, for instance, in [LR04]): �rst, the tree-width of a graph cannot be larger

than the tree width of any of its blocks (maximal 2-connected subgraphs), and second,

the addition of j vertices to a graph increases its tree-width by at most j.

Let G be a graph of circumference at most c and let H be a block in G. To prove the

theorem, we will show that by deleting at most c vertices from H we can obtain a graph

of circumference at most c−1. This is obvious in the case when H contains at most one

cycle of length c. Now let C1 and C2 be two cycles of length c in H. Assume they are

vertex disjoint. Consider two edges e1 ∈ C1 and e2 ∈ C2. Since H is 2-connected, there

is a cycle in H containing both e1 and e2. In this cycle, one can distinguish two disjoint

paths P ′ and P ′′, each of which contains the endpoints in C1 and C2, and the remaining

vertices outside the cycles. The endpoints of the paths P ′ and P ′′ partition each of the
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cycles C1 and C2 into two parts. The larger parts in both cycles together with paths

P ′ and P ′′ form a cycle of length at least c + 2, contradicting the initial assumption.

This contradiction shows that any two cycles of length c in H have a vertex in common.

Therefore, removing the vertices of any cycle of length c from H results in a graph of

circumference at most c− 1, as required.

Corollary 3.6. For any natural c, the vertex-colorability and edge-colorability prob-

lems can be solved for graphs of circumference at most c in polynomial time.

We complete the chapter by discussing complexity of the problems on graphs of

bounded chordality. For vertex-colorability, such restrictions do not generally lead

to an e�cient solution: indeed, 4-vertex-colorability remains NP-hard for graphs

of chordality at most 8 (since it is NP-hard for graphs containing no path on 8 vertices

as an induced subgraph [LRS06]) and vertex 5-vertex-colorability remains NP-

hard for graphs of chordality at most 8 (since it is NP-hard for graphs containing no

path on 8 vertices as an induced subgraph [SW01]). However, for graphs of chordality at

most 3 (chordal graphs) the problem of vertex colorability is known to be solvable

in polynomial time (see [G04]).

The authors are not aware of the status of the edge colorability problem on

graphs of bounded chordality. However, polynomial-time solvability of its decision ver-

sion can be easily derived from some known results.

Theorem 3.7. For any natural k and c, the edge k-colorability problem on graphs

of chordality at most c can be solved in polynomial time.

Proof. Since graphs of maximum vertex degree k+1 are not k-edge-colorable, the prob-

lem can be restricted to graphs of degree at most k. It has been shown by Bodlaender

and Thilikos [BT97] that if a graph has chordality at most c and maximum degree at

most k, then its treewidth is at most k (k − 1)c−3. As we mentioned before, coloring

the edges of graphs of bounded tree-width is a polynomially solvable task [ZNN96].



27

Chapter 4

Vertex 3-colorability of claw-free graphs

The 3-vertex-colorability problem is NP-hard in the class of claw-free graphs and

it remains hard in many of its subclasses obtained by forbidding additional subgraphs.

(Line graphs and claw-free graphs of vertex degree at most four provide two examples.)

In this section we study the computational complexity of the 3-vertex-colorability prob-

lem in subclasses of claw-free graphs de�ned by �nitely many forbidden subgraphs. We

prove a necessary condition for polynomial-time solvability of the problem in such classes

and propose a linear-time algorithm for an in�nitely increasing hierarchy of classes of

graphs. The algorithm is based on a generalization of the notion of locally connected

graphs. The results presented in this section come from the paper [KL07a].

4.1 Introduction

A claw is a complete bipartite graphs K1,3 with parts of size one and three. A graph is

called claw-free if it does not contain an induced subgraph isomorphic to the claw.

In this section we study the 3-vertex-colorability problem restricted to the class

of claw-free graphs. Finding a 3-edge-coloring in a graph G is equivalent to �nding a

3-vertex-coloring in the line graph of G. 3-edge-colorability can be thought of as

a subproblem of 3-vertex-colorability on claw-free graphs since line graphs are

claw-free. (In fact line graphs form a proper subclass of claw-free graphs, see [H69].)

In this chapter we study computational complexity of the problem in other subclasses

of claw-free graphs de�ned by �nitely many forbidden induced subgraphs. First we prove

a necessary condition for polynomial-time solvability of the problem in such classes,

and then for an in�nitely increasing hierarchy of classes that satisfy the condition, we

propose a linear-time solution. To develop such a solution for the basis of this hierarchy,
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we generalize the notion of locally connected graphs that has been recently studied in

the context of the 3-vertex-colorability problem.

A wheel on n vertices, denoted by Wn, is obtained from the cycle Cn by adding a

vertex adjacent to every vertex of the cycle. A diamond is the graph obtained from K4

by removing one edge; we denote it by K4−e. A gem is the graph obtained from P4 by

adding a vertex adjacent to all vertices of the path.

In this section we will assume that the minimum degree of the input graph is at

least three. Notice that if a graph G contains a vertex v of degree one or two, then G

is 3-colorable if and only if G− v is.

Every graph with �ve vertices contains either a triangle or its complement or a C5.

Therefore, every graph with a vertex of degree �ve or more contains either a claw or

K4 or W5. Since K4 and W5 are not 3-colorable, we conclude that every 3-colorable

claw-free graph, has maximum vertex degree at most 4. Therefore below we will also

assume that the the maximum degree of the input graph is at most four.

4.2 NP-hardness

In this section we establish several results on the NP-hardness of the 3-vertex-colorability prob-

lem in subclasses of claw-free graphs. We start by recalling the following known fact.

Lemma 4.1. The 3-vertex-colorability problem is NP-hard in the class of (claw, diamond)-

free of maximum vertex degree four.

The result follows by a reduction from 3-edge-colorability of triangle-free cubic

graphs, which is an NP-hard problem ([H81]). It is not di�cult to verify that if G is a

triangle-free cubic graph, then L(G) is a (claw,K4−e)-free regular graph of degree four.

To establish more results, let us introduce more de�nitions and notation. First, we

introduce the following three operations:

• replacement of an edge by a diamond (Figure 4.1);

• implantation of a diamond at a vertex (Figure 4.2);

• implantation of a triangle into a triangle (Figure 4.3)
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Figure 4.2: Diamond implantation

Observe that a graph obtained from a graph G by diamond or triangle implantation

is 3-colorable if and only if G is. Denote by

Ti,j,k the graph represented in Figure 4.4;

T 1
i,j,k the graph obtained from Ti,j,k by replacing each edge, which is not in the triangle,

by a diamond;

T 2
i,j,k the graph obtained from T 1

i,j,k by implanting into its central triangle a new triangle.

Finally, denote by

T the class of graphs every connected component of which is an induced subgraph

of a graph of the form Ti,j,k;

T 1 the class of graphs every connected component of which is an induced subgraph

of a graph of the from T 1
i,j,k;

T 2 the class of graphs every connected component of which is an induced subgraph

of a graph of the from T 2
i,j,k.

Notice none of the classes T 1 and T 2 contains the other. Indeed, T 2 \ T 1 contains a

gem, while T 1 \ T 2 contains the graph T∆
0,0,0 (see Figure 4.5 for the de�nition of T∆

i,j,k).

On the other hand, both T 1 and T 2 include the class T .
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Figure 4.3: Triangle implantation
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Figure 4.4: The graph Ti,j,k

Theorem 4.2. Let X be a subclass of claw-free graphs de�ned by a �nite set M of

forbidden induced subgraphs. If M ∩ T 1 = ∅ or M ∩ T 2 = ∅, then the 3-vertex-

colorability problem is NP-hard for graphs in the class X.

Proof. We prove the theorem by a reduction from the class of (claw, gem, W4)-free

graphs of vertex degree at most 4, where the problem is NP-hard, since this class is an

extension of (claw, diamond)-free graphs of maximum degree 4.

Let G be a (claw, gem, W4)-free graph of vertex degree at most 4. Without loss of

generality we can also assume that G is K4-free (since otherwise G is not 3-colorable)

and every vertex of G has degree at least 3. We will show that if M ∩ T 1 = ∅ or

M ∩ T 2 = ∅, then G can be transformed in polynomial time into a graph in X, which

is 3-colorable if and only if G is. Assume �rst that M ∩ T 1 = ∅.

Let us call a triangle in G private if it is not contained in any diamond. Also, we shall

call a vertex x splittable if the neighborhood of x can be partitioned into two disjoint

cliques X1, X2 with no edges between them. In particular, in a (claw, gem, W4,K4)-free

graph every vertex of a private triangle is splittable. Also, it is not di�cult to verify

that every chordless cycle of length at least 4 contains a splittable vertex.
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Given a splittable vertex x with cliques X1, X2 in its neighborhood, apply the di-

amond implantation k times, i.e., replace x with two new vertices x1 and x2, connect

xi to every vertex in Xi for i = 1, 2, and connect x1 to x2 be a chain of k diamonds.

Obviously the graph obtained in this was is 3-colorable if and only if G is. We apply this

operation to every splittable vertex of G and denote the resulting graph by G(k). Ob-

serve that G(k) is (C4, . . . , Ck)-free and the distance between any two private triangles

is at least k.

Let us show that if k is larger than the size of any graph in M , then G(k) belongs to

X. Assume by contradiction that G(k) does not belong to X, then it must contain an

induced subgraph A ∈ M . We know that A cannot contain chordless cycles C4, . . . , Ck.

Moreover, it cannot contain cycles of length greater than k, since A has at most k

vertices. For the same reason, each connected component of A contains at most one

private triangle. But then A ∈ T 1, contradicting our assumption that M ∩ T 1 = ∅.

Now assume that M ∩ T 2 = ∅. In this case, we �rst transform G into G(k) and

then implant a new triangle into each private triangle of G. By analogy with the above

case, we conclude that the graph obtained in this way belongs to X, thus completing

the necessary reduction.

The above theorem not only proves NP-hardness of the problem in certain classes,

but also suggests what classes can have the potential for accepting a polynomial-time

solution. In particular, for subclasses of claw-free graphs de�ned by a single additional

induced subgraph we obtain the following corollary of Theorem 4.2 and Lemma 1.

Corollary 4.3. If X is the class of (claw, H)-free graphs, then the 3-vertex-colorability prob-

lem can be solved in polynomial time in X only if H ∈ T∆, where T∆ is the class of

graphs every connected component of which is an induced subgraph of a graph of the

form T∆
i,j,k with at least two non-zero indices (see Figure 4.5) .

In the next section, we analyze some of (claw, H)-free graphs with H ∈ T ∆ and

derive polynomial-time solutions for them.
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4.3 Polynomial-time results

We start by reporting several results that are known from the literature. It has been

shown in [RST02] that the 3-vertex-colorability problem can be solved in polyno-

mial time for (claw, T0,0,2)-free graphs. More generally, we can show that

Theorem 4.4. The 3-vertex-colorability problem can be solved in polynomial time

in the class of (claw, Ti,j,k)-free graphs for any i, j, k.

Proof. First, observe that 3-vertex-colorability is a problem solvable in polynomial

time on graphs of bounded clique-width [CMR00]. From the results in [LR04] it follows

that (claw, Ti,j,k)-free graphs of bounded vertex degree have bounded clique-width for

any i, j, k. In the introduction, it was observed that claw-free graphs containing a vertex

of degree 5 or more are not 3-colorable, which provides the desired conclusion.

Another solvable case described in [RST02] deals with (claw, hourglass)-free graphs,

where an hourglass is the graph consisting of a vertex of degree 4 and a couple of disjoint

edges in its neighborhood. Unfortunately, the authors of [RST02] do not claim any time

complexity for their solution. In Section 4.3.1 we show that this case can be solved

in linear time by generalizing the notion of locally connected graphs studied recently

in connection with the 3-vertex-colorability problem. Then in Section 4.3.2 we

extend this result to an in�nitely increasing hierarchy of subclasses of claw-free graphs.
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4.3.1 Almost locally connected graphs

A graph G is locally connected if for every vertex v ∈ V , the graph G[N(v)] induced

by the neighborhood of v is connected. The class of locally connected graphs has been

studied in [K05] in the context of the 3-vertex-colorability problem.

A notion, which is closely related to 3-coloring, is 3-clique ordering. In a connected

graph G, an ordering (v1, . . . , vn) of vertices is called a 3-clique ordering if v2 is adjacent

to v1, and for each i = 3, . . . , n, the vertex vi forms a triangle with two vertices preceding

vi in the ordering.

It is not di�cult to see that for a graph with a 3-clique-ordering, the 3-vertex-

colorability problem is solvable in time linear in the number of edges. (We will refer

to such running time of an algorithm as linear time.) In [K05], it has been proved that

if G is connected and locally connected, then G admits a 3-clique-ordering and it can

be found in linear time. Therefore, the 3-vertex-colorability problem in the class

of locally connected graphs can be solved in linear time.

Now we introduce a slightly broader class and show that the 3-vertex-colorability of

graphs of vertex degree at most 4 in the new class can be decided in linear time. This

will imply, in particular, a linear-time solution for (claw, hourglass)-free graphs.

We say that a graph G is almost locally connected if the neighborhood of each vertex

either induces a connected graph or is isomorphic to K1 +K2 (disjoint union of an edge

and a vertex). In other words, the neighborhoods of all vertices are connected, or, if

the degree of a vertex is 3, we allow the neighborhood to be disconnected, provided it

consists of two connected components, one of which is a single vertex. If v is a vertex

of degree 3 and w is an isolated vertex in the neighborhood of v, then we call the edge

vw a pendant edge.

A maximal (with respect to set inclusion) subset of vertices that induces a 3-clique

orderable graph will be called 3-clique orderable component. Since a pendant edge

belongs to no triangle in an almost locally connected graph, the endpoints of the pendant

edge form a 3-clique orderable component, in which case we call it trivial. For the non-

trivial 3-clique orderable components we prove the following helpful claim.
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Claim 4.5. Let G be an almost locally connected graph with ∆(G) ≤ 4 and with at least

3 vertices.

(1) Every non-trivial 3-clique orderable component of G contains at least 3 vertices.

(2) Any two non-trivial 3-clique orderable components are disjoint.

(3) Any edge of G connecting two vertices in di�erent non-trivial 3-clique orderable

components is pendant.

Proof. To see (1), observe that in an almost locally connected graph with at least 3

vertices every non-pendant edge belongs to a triangle.

To prove (2), suppose G contains two non-trivial 3-clique orderable components M1

and M2 sharing a vertex v. Without loss of generality let v have a neighbor w in

M1 −M2. Since M1 is not trivial, the edge vw cannot be pendant, and hence there is

a vertex u ∈ M1 adjacent both to v and w. Notice that u cannot belong to M2, since

otherwise M2∪{w} induces a 3-clique orderable graph contradicting maximality of M2.

On the other hand, M2 must have a triangle containing vertex v, say v, x, y. If neither

u nor w has a neighbor in {x, y}, then G is not locally connected. If there is an edge

between {u,w} and {x, y}, then M2 is not a maximal set inducing a 3-clique orderable

graph. This contradiction proves (2), which in its turn implies (3) in an obvious way.

An obvious corollary from the above claim is that an almost locally connected graph

admits a unique partition into 3-clique orderable components and such a partition can

be found in linear time.

Now we present a linear-time algorithm that, given a connected, almost locally

connected graph G, decides 3-vertex-colorability of G and �nds a 3-coloring, if

one exists. In the algorithm, the operation of contraction of a set of vertices A means

substitution of A by a new vertex adjacent to every neighbor of the set A.

ALGORITHM A

Step 1. Find the unique partition V1, . . . , Vk of G into 3-clique orderable components.

Step 2. If one of the graphs G[Vi] is not 3-colorable, return the answer G is not

3-colorable. Otherwise, 3-color each 3-clique orderable component.
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Step 3. Create an auxiliary graph H, contracting color classes in each 3-clique orderable

component Vi and then removing vertices of degree 2.

Step 4. If H is isomorphic to K4, return the answer G is not 3-colorable. Other-

wise, 3-color H.

Step 5. Expand the coloring of H to a coloring of G and return it.

To show that the algorithm is correct and runs in linear time, we need to prove two

properties of the auxiliary graph built in Step 3 of the algorithm.

Claim 4.6. Let H be the auxiliary graph built in Step 3 of the algorithm. G is 3-colorable

if and only if H is.

Proof. If G is 3-colorable, then each 3-clique orderable component has a unique coloring.

Therefore, the graph obtained by contracting color classes of each 3-clique orderable

component (and, possibly, removing vertices of degree 2) is 3-colorable.

If H is 3-colorable, then vertices of degree 2 that were deleted in Step 3 can be

restored and receive colors that are not assigned to their neighbors. Let a be a vertex

of a triangle in H corresponding to a 3-clique orderable component in G. The edges

that a is incident to (but not the triangle edges) correspond to the pendant edges of

this component. Each is incident to two vertices in di�erent color classes in H and will

be in G.

From the de�nition of 3-clique-ordering one can derive the following simple observa-

tion.

Claim 4.7. If G has a 3-clique-ordering, then m ≥ 2n− 3.

Claim 4.8. Let G be a connected and almost locally connected graph of vertex degree at

most 4, and H be the auxiliary graph built in Step 3 of the algorithm. Then, ∆(H) ≤ 3.

Proof. Let T be a 3-clique orderable component of G. Denote by n2, n3, n4 the number

of vertices of degree 2, 3 and 4 in G[T ], respectively. Also, let m′ be the number of

edges in G[T ]. Then, 2m′ = 2n2 + 3n3 + 4n4. In addition, m′ ≥ 2(n2 + n3 + n4) − 3

(by Claim 4.7). Therefore, n2 ≤ 3. Notice that any pendant edge in G is adjacent to
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two vertices of degree 3 that are of degree 2 in the graphs induced by their 3-clique

orderable components. Therefore, the number of pendant edges of a 3-clique orderable

component is at most 3.

If a, b, c are vertices of a triangle corresponding to a locally connected component,

and three pendant edges are incident to a, then b and c are removed in Step 4 of the

algorithm, as both have degree 2, and a has degree 3 in H. If a is incident to two

pendant edges, and b to one, then c is removed (as has degree 2) and both b and c have

degree at most 3 in H. If each of vertices a, b, c is incident to one pendant edge only,

then the degree of each is at most 3.

Theorem 4.9. Algorithm A decides 3-vertex-colorability of a connected, almost

locally connected graph G with maximum vertex degree at most 4 and �nds a 3-coloring

of G, if one exists, in linear time.

Proof. The correctness of the algorithm follows from Claims 4.6, 4.8 and the observation

that by the Brooks theorem the only graph of maximum degree 3 that is not 3-colorable

is K4.

The �rst step of the algorithm can be implemented as a breadth �rst search and

performed in linear time. 3-coloring each of the locally connected components in linear

time can be done by applying the algorithm presented in [K05]. Also, building the

auxiliary graph and testing if it is isomorphic to K4 are linear time tasks. As was

proved in [L75], Step 4 may be performed in linear time as well, and Step 5 is also

clearly linear.

Corollary 4.10. If G is (claw, hourglass)-free, then there exists a linear time algorithm

to decide 3-vertex-colorability G, and �nd a 3-coloring, if one exists.

Proof. If ∆(G) ≥ 5, then G is not 3-colorable and it can be checked in linear time. Notice

that the only disconnected neighborhoods that are allowed in a 3-colorable, claw-free

graphs are 2K2 and K1+K2. Since G is H-free, none of the neighborhoods is isomorphic

to 2K2; otherwise, the graph induced by a vertex together with its neighborhood would

be isomorphic to H. Hence, all neighborhoods in G are either connected or isomorphic
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to K1 + K2. Therefore, the graph is almost locally connected and by Lemma 4.9, the

3-vertex-colorability problem can be solved for it in linear time.

4.3.2 More general classes

In this section we extend the result of the previous one to an in�nitely increasing hi-

erarchy of subclasses of claw-free graphs. The basis of this hierarchy is the class of

(claw, hourglass)-free graphs. Now let us denote by Hk the graph obtained from a

copy of hourglass H and a copy of Pk by identifying a vertex of degree 2 of H and a

vertex of degree 1 of Pk. In particular, H1 = H.

Theorem 4.11. For any k ≥ 1, there is a linear time algorithm to decide 3-vertex-

colorability of a (K1,3,Hk)-free graph G, and to �nd a 3-coloring, if one exists.

Proof. Without loss of generality we consider only connected K4-free graphs of vertex de-

gree at most 4 in the class under consideration. For those graphs that are hourglass-free,

the problem is linear-time solvable by Corollary 4.10. Assume now that a (claw, Hk)-free

graph G contains an induced hourglass H (which implies in particular that k > 1) and

let v denote the center of H. There are only �nitely many connected graphs of bounded

vertex degree that do not have vertices of distance k+1 from v. Therefore, without loss

of generality, we may suppose that G contains a vertex xk+1 of distance k + 1 from v,

and let xk+1, xk, . . . , x1, v be a shortest path connecting xk+1 to v. In particular, x1 is

a neighbor of v. Since G is Hk-free, x2 has to be adjacent to at least one more vertex,

say u, in the neighborhood of v. If u is not adjacent to x1, then u, x1, x2, x3 induce a

claw. Thus, u is adjacent to x1, while x2 has no neighbors in N(v) other than x1 and

u.

Let us show that u has degree 3 in G. To the contrary, assume z is the fourth

neighbor of u di�erent from v, x1, x2. To avoid the induced claw G[u, v, x2, z], z has

to be adjacent to x2. This implies z is not adjacent to x1 (else a K4 = G[x1, u, x2, z]

arises), and z is adjacent to x3 (else x2, x1, z, x3 induce a claw). But now the path

xk, . . . , x3, z, u together with v and its neighbors induce an Hk; a contradiction. By

symmetry, x1 also has degree 3 in G.
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Notice that in any 3-coloring of G, vertices v and x2 receive the same color. There-

fore, by identifying these two vertices (more formally, by replacing them with a new

vertex adjacent to every neighbor of v and x2) and deleting u and x1, we obtain a new

graph G′ which is 3-colorable if and only if G is. Moreover, it is not hard to see that

the new graph is again (claw, Hk)-free. By applying this transformation repeatedly we

reduce the initial graph to a graph G” which is either (claw, hourgalss)-free or contains

no vertices of distance k + 1 from the center of an hourglass. In both cases the problem

is linear-time solvable, which completes the proof.



39

Chapter 5

An exact algorithm for solving Max-Cut on graphs

with bounded maximum degree

Analyzing a simple enumerate & solve approach, we obtain new algorithmic results

for the max-cut problem. In particular, we propose the fastest known polynomial-

space algorithm for max-cut in the class of graphs with bounded maximum degree ∆

(for ∆ > 7). Our algorithm runs in time O∗(2(1−2/∆)n). The results presented in this

section are based on the paper [DKP07].

5.1 Introduction

The max-cut was one of the �rst problems whose NP-hardness was established. The

problem also seems challenging in the context of exact algorithms since it is not known

whether there exists a polynomial-space algorithm solving this problem in time O∗(cn)

for c < 2. (We say that a function f belongs to the set O∗(g(n)) if and only if f is in

the set O(poly(n) · f(n)) for some polynomial poly(n).)

The max-cut-extension is a version of the problem in which for some vertices it

has already been decided to which part they belong and the goal is to �nd a maximal

cut subject to the prepartition. We prove that if the graph induced by the vertices that

have not been assigned to any part is bipartite, then the max-cut-extension problem

can be solved in polynomial time.

This result allows us to apply the enumerate & solve technique. Having found

a large bipartite subgraph B of the input graph G, we enumerate all assignments of

vertices in G− B to two di�erent parts of the cut and then solve an instance of max-

cut-extension for each such preassignment. This approach yields a fast exponential

algorithm in the class of graphs with bounded maximum degree.
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5.2 De�nitions

Recall that a cut C = (V0, V1) in a graph is a partition of its vertex set V into two

disjoint subsets V0 and V1. Notice that the characteristic vector of one of the parts,

say V0, uniquely determines the partition.

For the purpose of this section, we will think of a partition as an assignment of 0−1

values to the vertices of the graph. Let xi be a Boolean variable which takes value 0,

if vi ∈ V0, and 1, if vi ∈ V1. The weight of a cut in a graph G = (V,E, w) can be

expressed as a pseudo-boolean function,

w(C) =
∑
ij∈E

wij (xixj + xixj) =
∑
i∈V

wixi − 2
∑
ij∈E

wijxixj , (5.1)

where wi =
∑

ij∈E wij .

Given a graph G as the input, the max-cut problem asks to compute a cut in G

that maximizes (5.1).

It is easy to see that if the weights are restricted to be nonnegative real numbers, the

max-cut problem can be solved in polynomial time for the class of bipartite graphs.

5.3 Previous work

The worst-case complexity of the maximum cut problem has been studied in a few

papers, some of them dealing with the weighted and some with the unweighted case.

The problem of �nding a maximum cut can be modeled as an instance of the constraint

satisfaction problem with two variables per clause (2-csp) or an instance of maximum

satis�ability with the two variables per clause (max-2-sat). Fast algorithms for any of

these two problems yield e�cient algorithms for simple-max-cut.

The fastest algorithm for simple-max-cut in arbitrary graphs was proposed by

Williams in [W05]. In fact, the algorithm computes the number of solutions to an

instance of a 2-csp problem and employs interesting, non-standard techniques. Used

as a simple-max-cut solver, the algorithm runs in time O∗(2ωn/3) but, unfortunately,

requires exponential space of O∗(2ωn/3) , where n is the number of vertices of the input

graph, ω < 2.376 is the matrix multiplication exponent (the product of two k×k matrices
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can be computed in time O(kω)). As mentioned before, it is not known whether there

exists a polynomial-space algorithm that computes simple-max-cut and runs faster

than the naive one of time complexity O∗(2n). This is one of open questions listed

in [W04].

More algorithms have been developed for sparse graphs. The upper bounds on their

running times are given as linear functions of the number of edges in the input graph.

(The number of edges of the input graph is denoted by m.) It makes them faster than

the algorithms whose running time is bounded by a linear function of the number of

vertices (like [W05] or the naive algorithm) only if m is linearly bounded by n.

In [GHNR03] an algorithm solving simple-max-cut (viamax-2-sat) in time O∗(2m/3)

was proposed by Gramm et al. The bound was then improved to O∗(2m/4) by Fedin and

Kulikov in [FK06]. Their algorithm solves the maximum cut problem in a graph with

integer weights on its edges. In a paper by Scott and Sorkin ([SS03]; see also [SS04])

a faster algorithm for max-cut, running in time O∗(2min((m−n)/2,m/5)), was described.

A recent paper by Kneis and Rossmanith ([KR05]) o�ers a simple-max-cut algorithm

with running time O∗(2m/5.217). All of those algorithms use polynomial space.

5.4 Our contribution

In this section we apply the enumerate & solve technique that seems to be a new

approach to the max-cut problem. The method consists in enumerating cuts in a

subgraph B of G and then extending them in an optimal way to cuts in G. The

technique is applied to graphs with bounded maximum degree and to general graphs.

In both cases, we obtain an exponential-time algorithm that uses polynomial space.

For some classes of graphs our algorithms o�er the best running time known. In

particular, we obtain the fastest known algorithm solving the max-cut problem in the

class of graphs with bounded maximum degree ∆, if ∆ = 8, 9. Our results also yield a

max-cut algorithm and a polynomial-space simple-max-cut algorithm, that are the

fastest known in the class of graphs with bounded maximum degree ∆, for ∆ ≥ 8.

For weighted graphs with bounded maximum degree ∆, we present an algorithmic
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scheme that computes a maximum cut. For �xed ∆, the algorithm runs in time O∗(2(1−(2/∆))n)

and polynomial space. For ∆ ≥ 8, our algorithm is faster than the max-cut algorithm

from [SS04] and the simple-max-cut algorithm from [KR05]. It is slower than the

exponential-space simple-max-cut algorithm from [W05] for ∆ ≥ 10.

For general weighted graphs, we obtain an algorithm that computes a maximum cut

and runs in time 2mn/(m+n). Our algorithm is faster than the max-cut algorithm from

[SS04] for m > 4n and faster than the simple-max-cut algorithm from [KR05] for

m > 4.217n. It is slower than the simple-max-cut exponential-space [W05] for m >

ωn/(3− ω) > 3.808n.

5.5 Extending a partial partition of vertices

In this section we consider a modi�cation of the max-cut problem. Suppose some of

the vertices have already been partitioned into two subsets and now the problem is to

�nd an optimal cut in the graph with respect to that pre-partition. We prove that if

the graph induced by the vertices that have not yet been partitioned is bipartite, then

the problem of �nding an optimal extension of the partial partition can be solved in

polynomial time. The algorithms presented in the following sections are based on this

result.

Let U ⊆ V be a subset of vertices of G such that the subgraph G′ = G[U ′] induced

by the vertices in U ′ = V \ U is bipartite. Also, let (U0, U1) be a partition of U into

two subsets. Consider the problem of �nding a partition (V0, V1) of V with U0 ⊆ V0

and U1 ⊆ V1 that maximizes (5.1). We refer to this problem as max-cut-extension.

The vertices in U have already been assigned to some parts of the cut, thus vari-

ables xi, for i ∈ U , have their values �xed. There are four possible types of edges in

the cut: edges with both endpoints in U , from U0 to U ′, from U1 to U ′, and with both

endpoints in U ′. The problem of �nding an optimal extension of the pre-partition is

now equivalent to maximizing the following pseudo-boolean function,

∑
i∈U0
j∈U1

wij +
∑
i∈U0
j∈U ′

wijxj +
∑
i∈U1
j∈U ′

wijxj +
∑
i∈U ′

j∈U ′

wij (xixj + xixj) (5.2)
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where all sums are taken over edges ij ∈ E of the graph G. Putting,

cj =
∑
i∈U0

wij −
∑
i∈U1

wij +
∑
i∈U ′

wij

where all sums are again taken over edges ij ∈ E, and omitting the constant term, the

problem is equivalent to �nding a maximum of the function,∑
j∈U ′

cjxj − 2
∑

ij∈E′

wijxixj (5.3)

where E′ is the edge set of the bipartite graph G′. In other words, the problem of

�nding an optimal extension of the pre-partition can be stated as the following integer

quadratic program:

max
∑
j∈U ′

cjxj − 2
∑

ij∈E′

wijxixj

s.t. xi ∈ {0, 1}

(5.4)

The standard linearization technique applied to (5.4) by introducing yij = xixj ,

yields the following integer linear program:

max
∑
j∈U ′

cjxj − 2
∑

ij∈E′

wijyij

s.t. yij ≥ xi + xj − 1

xi ∈ {0, 1}

yij ∈ {0, 1}

(5.5)

It is easy to see that (5.4) and (5.5) are equivalent. They have the same optimal value

and there is an easy correspondence between their optimal solutions, namely yij = xixj .

Having modelled the original quadratic problem (5.4) as an integer linear program,

let us study the continuous relaxation of (5.5):

max
∑
j∈U ′

cjxj − 2
∑

ij∈E′

wijyij

s.t. yij ≥ xi + xj − 1

xi ≥ 0

xj ≤ 1

yij ≥ 0

yij ≤ 1

(5.6)
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Lemma 5.1. The constraint matrix of the linear program (5.6) is totally unimodular,

i.e., the determinant of every square submatrix of it equals 0 or ±1.

Proof. Let A be the constraint matrix of (5.6). It has |U ′|+ |E′| columns and 2|U ′|+

3|E′| rows and all its entries are either 0 or ±1. Let B be an edge-vertex incidence

matrix of G′, with rows corresponding to edges and columns corresponding to vertices.

Notice that B is a submatrix of A. Moreover, any submatrix of A that has two non-zero

entries in every row and every column has to be a submatrix of B.

Take any square k× k submatrix of A. We will prove the lemma by induction on k.

Clearly, the result holds for k = 1.

Now assume that all (k − 1)× (k − 1) submatrices of A are totally unimodular and

consider a matrix M which is a k × k submatrix of A.

If all entries of any row or column of M are 0, then det(M) = 0 and M is totally

unimodular. If any row or column of M has a single non-zero element (±1), then using

the expansion method for calculating determinants and the induction hypothesis, it is

easy to see that det(M) is either 0 or ±1, and A is totally unimodular.

Suppose that each row and each column of M has at least two non-zero entries.

Hence, M must be a submatrix of B but, since B is an incidence matrix of a bipartite

graph, so is M . It is possible to partition the columns of M into two parts, according to

the partition of vertices of bipartite graph. The sum of the columns in each part yields a

unit vector (each edge of the bipartite subgraph has one endpoint in each part) and that

implies linear dependence of M , therefore det(M) = 0 and M is totally unimodular.

Theorem 5.2. Let U ⊆ V be such that the subgraph G′ = G[U ′] induced by the vertices

in U ′ = V \U is bipartite and (U0, U1) be a partition of U into two subsets, then the prob-

lem of �nding a partition (V0, V1) of V with U0 ⊆ V0 and U1 ⊆ V1 that maximizes (5.1)

is polynomial-time solvable.

Proof. The problem of �nding a partition (V0, V1) of V with U0 ⊆ V0 and U1 ⊆ V1

that maximizes (5.1) can be modelled as the integer quadratic program (5.4) which is

equivalent to (5.5). Total unimodularity of the constraint matrix of (5.6) (by Lemma 5.1)

implies the existence of an optimal 0 − 1 solution of (5.6), and such a solution can be
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found in polynomial time (see for example [S99]). Since the relaxation (5.6) of (5.5) has

an optimal 0− 1 solution, therefore (5.4) can be solved in polynomial time.

Before we proceed to the next section, let us brie�y describe the algorithmic tech-

nique we are going to apply. Given an induced bipartite subgraph G[B] of G, one can

enumerate all partitions of V \ B and �nd an optimal extension of each in polynomial

time (by Theorem 5.2). The complexity of such a technique is O∗(2|V \B|) and it strongly

depends on the size of the bipartite subgraph that has to be constructed.

5.6 Algorithm for graphs with bounded maximum degree

In this section we present and analyze an algorithmic scheme A(∆). For a �xed integer ∆

(∆ ≥ 3), the scheme yields an algorithm whose input is a weighted graph G = (V,E, w)

of maximum degree ∆ and whose output is a maximum cut in G with respect to the

weight function w.

Step 1. If G is isomorphic to the complete graph on ∆ + 1 vertices, then let B be any

pair of vertices and go to Step 3.

Step 2. ∆-color G. Let B be the union of 2 largest color classes of the coloring.

Step 3. Enumerate all partitions of elements of V \ B into two subsets (all 0 − 1

assignments) and for each �nd an optimal extension of the partial partition.

Step 4. Find a cut C that has the largest weight among all checked in Step 3. Return

the cut C.

Theorem 5.3. For a �xed integer ∆ (∆ ≥ 3), Algorithm A(∆) computes max-cut in

a graph G in time O∗(2(1−(2/∆))n) and polynomial space.

Proof. Let us �rst notice that the algorithm indeed �nds a maximum cut. It is

clear that the induced subgraph G[B] is bipartite. Therefore, any partition of V \ B

into two subsets can be extended to an optimal partition of V in polynomial time by

Theorem 5.2. Clearly, by enumerating all partitions of V \ B and then extending each

in an optimal way, one �nds a maximum cut in G.
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The enumeration of partitions in Step 3 is the bottleneck of the algorithm; it needs

exponential time O∗(2|V \B|). Other steps can be performed in linear time. It is clear for

Steps 1 and 4, and the linear time algorithm for Step 2 is given in [L75]. Notice, that

the algorithm can be implemented in such a way that each step uses only polynomial

space. In particular, in Step 3 we need to store only currently best solution.

Suppose that the input graph is isomorphic to the complete graph on ∆+1 vertices.

The number of partitions that are enumerated in Step 3 is 2n−2 but since ∆ = O(n)

the claimed running time follows.

Now suppose that the input graph G is not isomorphic to the complete graph on ∆+1

vertices. Then, by Brooks' Theorem G is ∆ colorable ([L75]). Clearly, the union of two

largest color classes has size at least 2n/∆ and |V \ B| ≤ n(1 − (2/∆)). The number

of partitions that are enumerated in Step 3 is O∗(2(1−(2/∆))n) and the claimed running

time follows.

5.7 Algorithm for general graphs

Let us notice that in the algorithm presented in the previous section, the assumption of

bounded maximum degree is needed only to obtain an induced bipartite graph. Now we

relax this assumption and study the complexity of the method in general graphs. Let

us formalize that as Algorithm B. The input of B is a weighted graph G = (V,E, w) and

the output is a maximum cut in G with respect to the weight function w.

Step 1. Find a maximal independent set I0 in G.

Step 2. Find a maximal independent set I1 in G[V \ I0]. Let B be the union of I0

and I1.

Step 3. Enumerate all partitions of elements of V \ B into two subsets (all 0 − 1

assignments) and for each �nd an optimal extension of the partial partition.

Step 4. Find a cut C that has the largest weight among all checked in Step 3. Return

the cut C.

To complete the description of the algorithm, we need to provide a procedure that
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�nds an induced bipartite subgraph in Steps 1 and 2.

From Turan's theorem follows that the size of a maximum independent set is at

least n/(d+1), and as shown in [STY03], there is a linear-time algorithm that constructs

an independent set of at least that size. As the time complexity of B depends on |B|,

we need to give a lower bound on the size of the bipartite subgraph B.

Claim 5.4. The set B of vertices constructed in Step 2 of Algorithm B has size at

least 2/(d + 2).

Proof. Let i = |I0| and m′ be the number of edges of the subgraph G[I0 ∪ I1]. If i ≥

2n/(d + 2), then |B| ≥ 2n/(d + 2) and the claim follows. Suppose i < 2n/(d + 2). The

average degree d′ in the graph G[V −I0] is d′ = 2(m−m′)/(n−i). Notice that m′ ≥ n−i,

since I0 is an independent set. Hence, d′ ≤ 2n/(n− i)− 2 and since i < 2n/(d + 2), we

have d′ < d. It follows that |B| = i + (n− i)/(d′ + 1) ≥ 2n/(d + 2).

Having established the lower-bound on the size of B, we can claim the running time

of Algorithm B. Notice that 2/(d + 2) = n/(n + m) and n− |B| ≤ mn/(m + n).

Theorem 5.5. Algorithm B computes max-cut in a graph G with n vertices and m

edges in time O∗(2mn/(m+n)), and polynomial space.

The proof of this theorem is similar to the proof of Theorem 5.3 and will be omitted.
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Chapter 6

Max-Cut and Max-Bisection are NP-hard on unit disk

graphs

In this section we prove that the max-cut and max-bisection problems are NP-hard

on unit disk graphs. We also show that λ-precision graphs are planar for λ > 1/
√

2 and

give a dichotomy theorem for the computational complexity of max-cut on λ-precision

unit disk graphs. The results presented here are based on the paper [DK07].

6.1 Introduction

Unit disk graphs are intersection graphs of unit diameter disks in the plane. Place n disks

of diameter one in the plane so that the centers of disks do not coincide. An undirected

graph is said to be a unit disk graph if there exists a one-to-one correspondence between

its vertices and disks in such a way that two vertices are adjacent if and only if the

corresponding disks intersect. (We assume tangent disks do intersect, however the

classes of unit disk graphs with open or closed disks coincide [LL06].) Each con�guration

of disks that de�nes a unit disk graph is called its intersection model. This can be easily

translated into a proximity model which is a collection of distinct points on the plane in

one-to-one correspondence with the vertices of the graph in such a way that two vertices

are adjacent if and only if two points are at distance at most one. Notice that unit disk

graphs are simple and loopless. Often it is convenient to identify points in the proximity

model and vertices of the graph and we will do so.

In recent years there has been an increasing interest in the study of unit disk graphs

and their randomized version, the random geometric graphs, due to their use as models

of wireless communication networks (see for example [ASSC02]).

Sometimes an additional assumption on the proximity model is imposed and points
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are required to be at distance greater or equal λ from each other. Graphs which have

such a proximity model are called λ-precision unit disk graphs. Notice that the class of

λ1-precision unit disk graphs is contained in the class of λ2-precision unit disk graphs,

for every λ1 ≥ λ2.

In [CC90], many algorithmic problems � chromatic-number, maximum-independent-

set, minimum-dominating-set � have been proved to be NP-hard on unit disk graphs.

The authors of that paper also provide a polynomial-time algorithm for max-clique.

They conclude the paper pointing out that the computational complexity of all consid-

ered problems is the same for planar and unit disk graphs.

The computational complexity of the max-cut and max-bisection problem on

unit disk graphs has not been known, even though several authors o�ered approxi-

mation algorithms for max-cut and max-bisection. In [HMRRRS98], among other

approximation results, the authors present a polynomial-time approximation scheme for

λ-precision unit disk graphs. A polynomial-time approximation scheme for the max-

bisection problem on unit disk graphs was developed in [JKLS05]. It is also worth

mentioning that the problem of recognizing unit disk graphs is NP-hard ([BK98]) so

approximation algorithms require providing an intersection model for the input graph.

In this section, we prove that the max-cut and max-bisection problems are NP-

hard for unit disk graphs, which to the knowledge of the authors were open problems

(see [S03, JKLS05]). Also, it turns out that max-cut is the �rst problem known whose

computational complexities on planar and unit disk graphs do not coincide. In the

last section, we show that the λ-precision unit disk graphs are planar for λ > 1/
√

2.

An interesting open problem is to investigate the computational complexity of min-

bisection on unit disk graphs ([DPPS01]).

6.2 Mesh drawings

A drawing of a graph G = (V,E) is a mapping f which assigns to each vertex of G a

distinct point in the plane and to each edge uv a continuous arc between f(u) and f(v),

not passing through the image of any other vertex. We also allow interiors of images of
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Figure 6.1: K5 and its mesh drawing.

two di�erent edges to intersect only at a �nite number of points. Each such intersection

is called a crossing point. A graph which can be drawn in the plane without any crossing

points is called a planar graph. Below, if it does not lead to misunderstanding, we often

do not distinguish between vertex/edge and its image.

The mesh M is the set of points in the plane which have at least one integral

coordinate. These points of the mesh that have two integral coordinates are called mesh

crosses. The distance between two points of v = (x1, y1) and w = (x2, y2) in M is the

Manhattan distance d(v, w) = {|x1 − x2|+ |y1 − y2|}.

A mesh drawing of a graph is a drawing in which the images of all vertices are mesh

crosses and the images of edges belong to the mesh. Notice that in a mesh drawing only

two edges can intersect at a crossing point and a crossing point always occurs at a mesh

cross.

A necessary condition for a graph to have a mesh drawing is to be of maximum

degree 4. In fact that condition is also su�cient, as shown by the following argument.

Let G be any graph of maximum degree 4. Place all vertices of G at distinct mesh crosses

in such a way that the distance between any pair of vertices is at least 5. For a vertex

of G whose corresponding mesh cross has coordinates (a, b) we de�ne four �corridors�:
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x = a − 1 or y = b + 2; x = a − 2 or y = b + 1; x = a + 1 or y = b − 2; x = a + 2 or

y = b− 1.

Then an edge between any pair of vertices in M can be drawn entirely within the

corridors of its endpoints. Hence, we can construct a mesh drawing of G and the

construction can be done in polynomial time.

Let us say that a mesh drawing is standard if the distance between any two crossing

points is at least 10, the distance between any two vertices is at least 10, the distance

between any vertex and any crossing point is at least 10, and if interior points of two

edges belong to two di�erent parallel vertical or horizontal lines, the distance between

these two lines is at least 10.

Given a mesh drawing of a graph, we can create its standard mesh drawing. Suppose

that the distance between two vertices v, w is less than 10. Pick a line which separates

these two vertices (i.e. at most one of v, w belongs to the line). Without loss of

generality, we can assume it is a horizontal line y = k for some k ∈ Z and v lies

above that line. Now all the points of the drawing whose y-coordinate is at most k

will be moved down by some constant c. The constant should be such that after w

is moved down by c the distance between v and w is at least 10. All the edges that

were broken by that operation should be extended (by adding a vertical segment of

length c) in a way that makes a new graph isomorphic to the original one. This way

we decreased the number of pairs of vertices that were at distance at most 10 from

each other. Similar techniques can be used to satisfy all the conditions of the standard

mesh drawing. Moreover, given a graph G, its standard mesh drawing can be found in

polynomial time.

Lemma 6.1. Every graph of maximum degree 4 has a standard mesh drawing and the

drawing can be found in time polynomial in the number of vertices of the graph.

Before we proceed to the next section, we want to note a useful fact. Given a graph

G, let G′ be the graph obtained from G by subdividing one of the edges of G twice.

Then,

mc(G′) = mc(G) + 2. (6.1)



52

x3

1

1

-1

-1

w0 w1

w2
w3

x0

x1

x2

-1

1

1

-1

Figure 6.2: Gadget H and its intersection model.

6.3 Reduction

In this section we give a polynomial-time reduction from the class of graphs with max-

imum degree ∆ ≤ 4 to the class of unit disk graphs. First we de�ne a gadget that will

be used in the reduction.

Let H be the graph on vertices: x0, x1, x2, x3, w0, w1, w2, w3 such that H[x0, x1, x2, x3]

is a K4, H[wi, xi, xi+1] is a K3, for i = 0, 1, 2, 3, where i + 1 is taken modulo 4, and H

has no other edges than those needed to satisfy the two previous conditions.

Lemma 6.2. H is a (1/
√

2)-precision unit disk graph.

Proof. Let us consider the following proximity model for H. Place vertices x0, x1, x2, x3

at points (1/2, 0), (0, 1/2), (−1/2, 0) and (0,−1/2), respectively. Vertices w0, w1, w2, w3

should be put at points (4/5, 4/5), (−4/5, 4/5), (−4/5,−4/5) and (4/5,−4/5), respec-

tively. Now it is easy to verify that this is indeed a proximity model of H and all

distances are at least 1/
√

2.

Given a graph G and the gadget H just de�ned, let (x0x2), (x1x3) be two edges in

G not incident to each other. We de�ne the graph G∗ to be the graph obtained from G by

adding the new vertices w0, w1, w2, w3 and edges necessary to make G∗[x0, x1, x2, x3, w0, w1, w2, w3]

isomorphic to H. We say that H was constructed in G on (x0x2), (x1x3).

The following lemma is straightforward by considering that the contribution of each

triangle wi, vi, vi+1 to the maximum cut in G∗ is exactly 2.
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Lemma 6.3. Let G∗ be the graph obtained from G by constructing H on two non-

incident edges of G. Then, mc(G∗) = mc(G) + 8

Let us state and prove the main theorem.

Theorem 6.4. max-cut is NP-hard on unit disk graphs.

Proof. To prove that max-cut is NP-hard on unit disk graphs we are going to present

a polynomial-time procedure that takes an arbitrary graph G of maximum degree 4 and

produces a unit disk graph G′. Moreover, knowing mc(G′) we are able compute mc(G)

in polynomial time.

Step 1 Let G be a graph of maximum degree 4. Let us consider its standard mesh drawing.

According to Lemma 6.1, it does exist and can be found in polynomial time.

Step 2 Subdivide edges of G putting new vertices at mesh crosses that are not crossing

points. Now we have two types of vertices � those that were created in this step

and those that correspond to original vertices of G.

Step 3 For each crossing point (x, y), subdivide only the edge between (x, y − 1) and

(x, y+1) (the vertical one). We remove two vertices placed at (x−1, y) and (x+1, y)

and consequently all the edges they were incident to. We place new vertices at

coordinates (x − 1.5, y + 0.5), (x − 0.5, y + 0.5), (x + 0.5, y + 0.5), (x + 1.5, y +

0.5) and create edges between pairs of vertices: (x − 2, y) and (x − 1.5, y + 0.5),

(x − 1.5, y + 0.5) and (x − 0.5, y + 0.5), (x − 0.5, y + 0.5) and (x + 0.5, y + 0.5),

(x + 0.5, y + 0.5) and (x + 1.5, y + 0.5), (x + 1.5, y + 0.5) and (x + 2, y). Notice

that the drawing is not a mesh drawing anymore.

Step 4 For each crossing point, construct a copy of graph H on the crossing edges. Place

new vertices in the way described in the proof of Lemma 6.2 and create straight

line edges in each copy of H.

Step 5 If along one of the original edges of G there is an odd number of vertices, we need

to subdivide one of the new edges once more. Pick an edge between points (x, y)
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and (x + 1, y) whose both endpoints and the neighbors of the endpoints are of

degree at most 2 and the endpoints belong to the original edge of G. Move vertex

at (x, y) to a new position (x − 1/4, y) and vertex at (x + 1, y) to (x + 5/4, y).

Create a new vertex at (x + 1/2, y + 1/2) and edges between pairs of vertices:

(x− 1/4, y) and (x + 1/2, y), (x + 5/4, y) and (x + 1/2, y).

Let U(G) be the graph whose drawing was constructed above. We will show that

the graph is in fact a unit disk graph.

Claim 6.5. U(G) is a (1/
√

2)-precision unit disk graph.

Proof of Claim. To prove that U(G) is a unit disk graph we will show that placing ver-

tices in the plane at the same coordinates as in the construction above gives a proximity

model of U(G).

Notice that after Step 2 all adjacent vertices, except the endpoints of crossing edges,

are at distance exactly 1. Once crossing edges have been replaced by a construction

described in Step 3, all the neighbors of a vertex are within distance 1 from it.

Notice that after constructing a copy of H at a crossing point (Step 4), �w� vertices

are farther than a unit distance from all the vertices that they are not adjacent to.

Also, the new edges created between endpoints belonging to two crossing edges are now

connected. This together with Lemma 6.2 yields that the graph obtained after Step 4

is a unit disk graph.

Observe that if we start with a standard drawing, an edge whose both endpoints

and the neighbors of the endpoints are of degree at most 2 can always be found. It is

easy to see, that the construction described in Step 5 leaves a unit disk graph.

Let k be the number of crossing points in the standard mesh drawing of G from Step

1, and let t be the total number of subdivisions of all the original edges of G created at

the end of executing Step 5. Notice that t must be even.

Claim 6.6. mc(U(G)) = mc(G) + 8k + t

Proof of Claim. A copy of H is constructed on each pair of crossing edges and each

copy of H increases the value of the maximum cut by 8 (Lemma 6.3). Also, each double
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subdivision of an edge increases the value of maximum cut by 2 (Equation 6.1). Hence,

mc(U(G)) = mc(G) + 8k + t.

We have shown that any graph G of maximum degree 4 can be transformed in a

unit disk graph G′, and this reduction can be implemented in polynomial time. If there

exist a polynomial-time algorithm solving max-cut on unit disk graphs, then knowing

the construction and mc(G′), the value of maximum cut of G′ can be also computed in

polynomial time. But as mentioned in section 1, max-cut is NP-hard on graphs with

maximum degree ∆, if ∆ ≥ 3, and therefore it is also NP-hard on unit disk graphs.

Taking two disjoint copies of a unit disk graph G creates a unit disk graph whose

maximum bisection is twice the value of maximum cut of G. The following fact is

therefore a simple corollary of Theorem 6.4.

Fact 6.7. max-bisection is NP-hard on unit disk graphs.

6.4 Precision and planarity

In this section we study the relation between λ-precision and planarity.

Theorem 6.8. A λ-precision unit disk graph is planar, for every λ > 1/
√

2.

Proof. Let G be a λ-precision unit disk graph, for some λ > 1/
√

2. Consider a drawing

of G de�ned by its proximity model: put vertices in the plane at the same positions as

in the proximity model and connect two of them by a straight line segment if and only

if the distance between them is at most 1.

Let us consider an edge e of G of length x. The set of points at distance more

than 1/
√

2 from both endpoints of e consists of two disjoint regions; one on each side

of the straight line containing e. It is easy to verify that the distance between these

two regions is strictly greater than 2
√

1/2− (x/2)2 and therefore always strictly greater

than 1. Hence, there is no edge crossing e and the planarity of G follows.

Finally, we can state a dichotomy result on max-cut for λ-precision unit disk graphs

which is a consequence of Theorem 4 and Theorem 8.
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Theorem 6.9. The max-cut problem is NP-hard in the class of λ-precision unit disk

graphs if λ ≤ 1/
√

2 and can be solved in polynomial time if λ > 1/
√

2

Proof. Notice U(G) constructed in the proof of Theorem 6.4 is a (1/
√

2)-precision

unit disk. Hence, max-cut is NP-hard in the class of λ-precision unit disk graphs for

λ ≤ 1/
√

2.

Since λ-precision unit disk graphs are planar for λ > 1/
√

2 and, as we mentioned,

max-cut can be solved in polynomial time on planar graphs, then the max-cut prob-

lem can be solved on these graphs in polynomial time.
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