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ABSTRACT OF THE DISSERTATION

Performance Analysis and Design of Batch Ordering

Policies in Supply Chains

by ABDULLAH SIDDIK KARAMAN

Dissertation Director: Professor Tayfur Altıok

Devising manufacturing/distribution strategies for supply chains and determining their

parameter values have been challenging problems. Linking production management to stock

keeping processes improves the planning of the supply chain activities, including material

management, culminating in improved customer service levels. In this thesis, we investigate

a multi-echelon supply chain consisting of a supplier, a plant, a distribution center and a

retailer. Material flow between stages is driven by reorder point/order quantity inventory

control policies. We develop a model to analyze supply chain behavior using some key

performance metrics such as the time averages of inventory and backorder levels, as well as

customer service levels at each echelon. The model is validated via simulation, yielding good

agreement of robust performance metrics.

The metrics are then used within an optimization framework to help design the supply

chain by calculating optimal parameter values minimizing the expected total cost. Optimal

design of the material flow system is part of the overall planning and operation of a supply

chain. The outcome of the optimization framework specifies not only how much and where

to hold inventory but also how to move inventory across the supply chain.

The developed model requires limited computational requirements, which in turn helps

frequently update the performance measures and optimal system parameters so as to be
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more responsive to short-term changes in demand or supply. In addition, it can be used

as a decision support system for effective decision making as opposed to using simplistic

inventory models, which results in significantly higher operating costs.

In a similar vein, we consider a distribution inventory system with one warehouse and

several retailers. The challenge in this system is to describe the demand arrival process

at the warehouse. We propose a procedure to characterize the demand arrival process at

the warehouse as a superposition of several independent Erlang processes. An important

characteristic of the superposed process is that although the individual processes are inde-

pendent from each other, the superposed process may be no longer independent. We present

a methodology to characterize such arrival streams as Markovian processes. We, then, ex-

tend the methodology to phase-type arrival streams as well.

Keywords and Phrases: Supply chains; Batch ordering policies; Finite production rate;

Stochastic lead-times
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Chapter 1

Introduction

Improving decision-making practices in a supply chain is a major source of competitive

advantage in today’s uncertain business environments. For years, different echelons in a

supply chain have operated almost independently. However, there is strong evidence of

success in supply chain performance in cases with high coordination among echelons. Efforts

to link production management to various stock keeping processes result in better planning

of the supply chain activities, better management of the materials, culminating in improved

customer service levels and lower inventories.

Conflicting objectives often arise among the members of interacting systems fulfilling the

customer demand. While, for example, the plant management tries to eliminate frequent

setups and produce in large quantities, the distribution management tries to accelerate the

flow of finished products to achieve higher flexibility and agility. Devising manufactur-

ing/distribution strategies for supply chains and determining their parameter values have

been challenging problems. Efficient and effective management is to produce and distribute

at the right quantities, to the right locations, at the right times, while maintaining high

customer service levels.

A supply chain is defined as a process that moves goods and information from points-

of-origin to points-of-consumption. It includes a set of processes to efficiently link suppliers,

manufacturers, distributors, and retailers in order to acquire raw materials, transform them

into final products, ship these final products to intermediate storage locations, retailers and

customers.

Motivation

A typical supply chain has a topology consisting of a number of retailers where customer
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demand occurs, distribution centers feeding retailers and other distribution centers, manu-

facturing plants supplying distribution centers, as well as vendors supplying raw materials

to plants. Clearly, a concerted activity is needed across all the nodes for effective material

flow in the supply chain. Controlling the material flow in a cost-effective manner has been

a major challenge in practice. It depends on how well the demand from a customer or the

next stage is forecasted at all levels and integrated into decision and control mechanisms.

Inventory control policies are used for this purpose to achieve replenishment at the right

quantity and the right time at each level. The more complex the supply chain topology, the

more gain is achieved attending to concerted activities.

From a broader perspective, supply chain activities include strategic, tactical and oper-

ational decisions. Strategic decisions result in long-run plans. These are closely linked to

the corporate strategy, and guide design issues, such as the number, location, and capacity

of manufacturing plants and warehouses, and flow of materials in supply and distribution

networks, among others. On the other hand, tactical decisions relate to plans and schedules

to meet customer demand such as purchasing and production decisions, inventory policies,

etc. The operational level focuses on day-to-day activities and executes plans. Tactical

and operational level decision-making functions are closely related to each other and are

distributed across the supply chain [93].

An important aspect of supply chain management is the establishment and monitoring

of well-defined performance measures. A performance measure is used to assess the effi-

ciency of plans and activities across the supply chain, which preferably plays a critical role

in determining customer service level, responsiveness to customers. Some critical service

measures include but are not limited to fill rate, total order cycle time, total response time

to an order, average backorder levels, average lateness or earliness of orders relative to cus-

tomer due dates, and flexibility. These measures, however, depend exclusively on inherited

uncertainties in a supply chain. The sources of uncertainties, on the other hand, are due to

supplier lead time and delivery performance, quality of incoming materials, manufacturing

process time, transit times and demand, among many others [77]. A prerequisite to deter-

mine aforementioned performance measures is to develop models that take uncertainties into

account to analyze supply chain behavior.
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Scope

There are two important issues in developing a multi-echelon supply chain model, among

others. Demand process is considered to be one of them. In general, demand at a facility

depends on the decisions and operations of downstream locations. The second one, on the

other hand, is the lead time, which depends mainly on the decisions and operations of

upstream locations. The performance of the individual facilities depends on both demand

process and lead time as well as its own operational rules. The former two processes in a

long-term planning horizon is highly uncertain. Dealing with uncertainties, however, requires

assumptions on the probability distributions of these values [98].

Over the past two decades, supply chain management has attracted significant attention

from researchers and practitioners. This is mainly due to the potential gain achieved by

the effective management of the supply chains. In addition, information and communication

systems changed the traditional understanding and led to new organizational culture by

providing access to data to all components of the supply chain. As a result, decision support

systems implementing optimization-based algorithms are needed to account for interaction

between all the nodes of the supply chain. Although some novel results have been presented

to control material flows, more research needs to be done due to the broad and complex

nature of the problem.

Contribution of This Thesis

In this thesis, we study a multi-echelon supply chain and its operational rules. Our aim

is to develop a model to analyze supply chain behavior using some key performance metrics

such as the time averages of inventory and backorder levels, as well as customer service levels

at each echelon. The metrics are then used within an optimization framework. In multi-

echelon supply chains, optimal production and inventory control policies have quite complex

structures. This is because the control policy for a given echelon has considerable impact on

the other echelons. In fact, the general practice is to restrict the control policies to a class

of general operating schemes. All echelons, for example, apply reorder point/order quantity

inventory control policies. Optimization in this sense is to coordinate such operating schemes

in the best possible way. We propose an optimization procedure to help design the supply

chain by calculating optimal parameter values minimizing the expected total cost. Optimal
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design of the material flow system is part of the overall planning and operation of a supply

chain. The optimal configuration specifies not only how much and where to hold inventory

but also how to move inventory across the supply chain.

The supply chain under consideration consists of a supplier, a plant, a distribution center,

and a retailer. Material flow between stages is achieved by reorder point/order quantity

inventory control policies. Production rate at the plant is finite and transportation times

between stages are stochastic.

The developed model requires limited computational requirements, which in turn helps

frequently update the performance measures and optimal system parameters so as to be

more responsive to short-term changes in demand or supply. In addition, it can be used

as a decision support system for effective decision making as opposed to using simplistic

inventory models, which results in higher operating costs.

In a similar vein, we consider a distribution inventory system with one warehouse and

several retailers. The challenge in this system is to describe the demand arrival process at

the warehouse. We propose a procedure to characterize the demand arrival process at the

warehouse as a superposition of several independent Erlang processes. A similar example

is also a queue to which the arrival process is the superposition of separate arrival streams,

each of whose inter-arrival times is of Erlang distribution. An important characteristic of

the superposed process is that although the individual processes are independent from each

other, the superposed process may be no longer independent. We present a methodology to

characterize such arrival streams as Markovian processes. We, then, extend the methodology

to phase-type arrival streams as well.

Forecasting is one of the key ingredients necessary to handle uncertainties in the early

stages of planning. It is a crucial driver for procurement, manufacturing and distribution

activities in a supply chain. Improving the quality of forecasts has been a challenging prob-

lem. Failure to account for large autocorrelations, trend, and seasonality in data sets is key

ingredient contributing to lack of accuracy in forecasting. Time series models such as Box-

Jenkins auto regressive integrated moving average (ARIMA), and multiple regression have

been widely used to account for these type of patterns. Likewise, TES (Transform-Expand-

Sample) models were utilized to generate forecasts for correlated data sets [73].
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TES is a methodology [71, 72] to model empirical time series. Its merit is to capture

both the empirical distribution and autocorrelation function, simultaneously. The analytical

formulas of TES processes provide calculation of autocorrelations as well as its transition

structure. Forecasts for the future can be calculated by utilizing the known transition struc-

ture of TES processes [73]. We also report an experimental study that compares TES process

forecasting to traditional Box-Jenkins ARIMA models. Jagerman and Melamed [73] also im-

plement the TES forecasting methodology based on the use of mixture of uniform random

variables as the innovation density. Our study contains an extensive computational study of

TES forecasting, and exploits phase-type random variables as the innovation density.

Organization

The rest of the thesis is organized as follows. Related literature is reviewed in Chapter

2. In Chapter 3, we describe a decomposition procedure in order to analyze batch ordering

policies in a multi-echelon supply chain and obtain important performance measures. In

Chapter 4, we propose a methodology illustrating how the performance measures can be

used within an optimization framework. Chapter 5 applies the decomposition procedure to

a distribution inventory system. Chapter 6 reports on an experimental study that compares

TES process forecasting to traditional Box-Jenkins ARIMA models. Finally, Chapter 7

concludes the thesis by mentioning several extensions and future research directions.
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Chapter 2

Literature Review

Effectively coordinating activities and decisions across multiple echelons in supply chains

has been a challenging problem. From an operational perspective, decisions include but

are not limited to deployment strategies (push versus pull), inventory control policies (the

determination of the optimal levels of order quantities and reorder points, periodic versus

continuous review, echelon and installation stock), and setting safety stock levels at each

inventory holding location. These decisions play a critical role in determining the customer

service level, the most critical measure of performance in a supply chain.

Multi-echelon Inventory Systems

A commonly investigated supply chain network is the multi-echelon, serial inventory

system. Customer demand arrives at the last stage, the last stage orders from the next

upstream stage, etc., and the first stage orders from a supplier which has unlimited capacity.

In the ordering mechanism, either the echelon stock or the installation stock is used. Echelon

stock is defined as the stock at any given installation plus stock in transit to or on hand

at a lower installation, however installation stock is just the inventory on hand at a given

installation.

The research in multi-echelon, serial inventory systems in terms of material handling

practices dates back to the classical work of Clark and Scarf [43] where they considered a

multi-echelon inventory system with periodic review. They computed the optimal ordering

policy for each echelon separately. In order to link the successive echelons to each other, they

utilized a penalty function evaluated in the case of stockouts. Federgruen and Zipkin [55]

extended the Clark-Scarf approach to infinite horizon, and presented a new solution method-

ology. De Bodt and Graves [46] considered the multi-echelon model under continuous review

and presented inventory control policies that minimize approximate expected cost per unit
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time. In a similar vein, Badinelli [17] investigated the problem where each facility utilizes an

installation stock (R, Q) policy. The motivation behind using installation stock policies was

the limited information requirements. Recently, Chen and Zheng [38], Chen [32], and Chen

and Song [35] presented optimal policies of the model under different demand processes, in

particular, compound Poisson, independent identically distributed, and Markov-modulated

demand, respectively. Chiang and Monahan [41] considered a two-echelon inventory system

with two channels of demand: a traditional retail store and an Internet-enabled direct chan-

nel. Jemai and Karaesmen [75], on the other hand, presented Nash equilibrium inventory

strategies in a noncooperative environment.

Distribution Inventory Systems

Another commonly investigated network is the distribution inventory system. In this

system, demand arises in the retailers in the form of some stationary stochastic process.

An inventory control policy is utilized to maintain inventories at the retailers above certain

threshold levels. A central warehouse (distribution center) supplies the retailers, which in

turn replenishes its inventory according to a policy from an outside supplier with unlimited

inventories. Initially, Sherbrooke [92] considered a depot-base system for repairable items

where demand for items follow compound Poisson processes at the bases. An analytical

solution was given to determine the optimal base-stock levels for each item subject to a

limited system investment. Later, Moinzadeh and Lee [83] investigated the same system

where the replenishment is made in batches. They provided a power approximation method

to determine the optimal batch sizes and safety stocks.

Deuermeyer and Schwarz [47] and Schwarz et. al. [91] examined a single warehouse

multi-retailer distribution system where each facility follows a continuous review (R, Q)

policy and the identical retailers face stationary Poisson demand. An approximate model

was presented to calculate the system service levels in [47], and an optimization framework

was developed to maximize the system fill-rate subject to a system safety stock constraint

in [91]. The system with one-for-one replenishments was investigated in [10], and a periodic

review control policy was used in [30]. Forsberg [56], on the other hand, considered non-

identical retailers. Chew and Tang [40] also considered non-identical retailers operating

under an (s, S) policy. Recently, Chen et. al. [39] presented coordination mechanisms of
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a centralized system where the demand in each retailer arrives at a constant rate that is a

general decreasing function of the retail price in the market.

In the aforementioned studies regarding multi-echelon distribution networks, the main

idea has been to decompose the system into smaller subsystems, that is, decompose the sys-

tem to a warehouse and retailers with their own procurement and demand arrival processes.

Effective demand inter-arrival times at the warehouse and effective lead-times at the retailers

were characterized. Then, procedures for the single-location models were utilized to obtain

desired performance measures.

Svonoros and Zipkin [96], Axsäter [10, 11, 12], and Chen and Zheng [36] considered multi-

echelon distribution system with some differences in the solution methodologies. Svonoros

and Zipkin, and Axsäter exploited a solution methodology based on the approach to match

every supply unit with a demand unit. In other words, they kept track of each supply unit and

its sojourn time in the system and calculated the holding and backorder costs accordingly.

Chen and Zheng, on the other hand, disaggregated the backorders at the warehouse among

the retailers and then computed the long-run inventory levels.

A common characteristic of the above studies related to distribution inventory system is

that all assume constant transportation times between the external supplier and the ware-

house as well as between the warehouse and retailers. An exception to this was Svonoros

and Zipkin [97] where they assumed stochastic transit times under base-stock policies. In

addition, Erkip et. al. [51] considered the depot-warehouse system with correlated demands

at the warehouses, and Nahmias and Smith [85] investigated the system with the partial lost

sales assumption. Some recent reviews of the multi-echelon systems were Diks et. al. [48],

Houtum et. al. [69], Thomas and Griffin [100], Beamon [20], and Erenguc et. al. [50].

Production Inventory Systems

In a similar vein, there is significant amount of research on modeling, analysis and de-

sign of integrated production/inventory systems. Altiok [6] studied a single-product system

consisting of a production facility and a finished product warehouse. He used a continuous

review (R, r) policy to control the inventory level at the warehouse and presented a procedure

to compute cost minimizing values of R and r for both the backorder and lost sales case.

Later, Altiok and Ranjan [9] investigated the multi-stage production/inventory systems in
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series.

This research is a continuation of the study by Gurgur and Altiok [61]. Gurgur and Altiok

have further extended the multi-stage production/inventory system where each stage has its

own input and output stock keeping activities. In particular, each stage was composed of

a machine, an input buffer for the raw materials or semi-finished products, and an output

buffer for the finished products. An (R, r) policy was used to control production within a

stage and a (Q,R) policy was used to control procurement between stages. The system was

decomposed to be able to analyze the performance measures of interest.

Ishii et. al. [70] and So and Pinault [94] considered pull type production/distribution

systems. A method determining the base-stock levels and lead-times is given in [70], and a

method estimating the safety stock is given in [94]. Pyke and Cohen [89] also developed a

model to analyze the material flow in an integrated production/distribution system. They

considered a single product system that consists of a factory, a finished goods stockpile

(FG), and a retailer. A base-stock policy and a (Q,R) policy was used in the retailer and

FG, respectively. They assumed constant transportation, processing and set-up times. The

presented solution methodology analyzed the FG in isolation and evaluated the steady-state

distribution of the stock on hand. The probabilities were then used to link the FG to the

factory and to the retailer in order to find the distribution of inventories in these echelons.

Cohen and Lee [44] presented a model framework to measure cost/service tradeoffs for

various management strategies. In particular, the framework can be used to assess the im-

pact of various alternative manufacturing and material flow strategies. In a similar vein,

Lee and Billington [78] studied a heuristic stochastic model for managing material flows.

They considered a pull-type, periodic review, order-up-to inventory system, and determined

the review period and order-up-to quantity. Toktay and Wein [101] incorporated forecasting

into production/inventory systems. He et. al. [63] examined several inventory replenishment

policies for a make-to-order inventory-production system and derived an optimal replenish-

ment policy using a Markov decision process approach. Bernstein and DeCroix [21], on the

other hand, considered an assembly system using base-stock policies. Boute et. al. [24]

presented a procedure based on matrix-analytic techniques for computing the replenishment

lead time distribution.
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Design of Multi-echelon Systems

Optimal design of the material flow system is part of the overall planning and operation

of a supply chain. The optimal configuration specifies not only how much and where to

hold inventory but also how to move inventory across the supply chain. A prerequisite for

such an optimization problem is a descriptive model of system performance as a function of

control policies. A viable approach to solve the optimization problem is to employ a cost-

minimizing objective function that assigns penalties for holding inventory and shortages.

Optimal configuration here constitutes the best trade-off among set-up or ordering, holding,

backordering and shortage costs.

Several different models for optimal control of production inventory systems were consid-

ered in literature. In particular, Zipkin [108] considered a multi-item single location inventory

system and Veatch and Wein [102] considered multi-echelon inventory systems in series. An

extension of such models is to consider capacity limits at the production echelons. Vericourt

et. al. [103] analyzed a make-to-stock system where the supplier has limited production

capacity and addressed the optimal stock allocation problem. Song and Yao [95] extended

the optimization problem to assemble-to-order systems. Liu et. al. [79], on the other hand,

studied the production inventory systems under fill rate constraints. A similar model with

lost sales was investigated in [67] with at most one replenishment order outstanding.

In multi-echelon supply chains, optimal production and inventory control policies have

quite complex structures. In fact, the general practice is to restrict the control policies to

a class of general operating schemes. All echelons, for example, apply reorder point/order

quantity inventory control policies. Optimization in this sense is to coordinate such operating

schemes in the best possible way. Federgruen and Zipkin [54], Zheng and Federgruen [53],

and Federgruen and Zheng [53] presented efficient algorithms to compute optimal control

parameters. Finding optimal parameters is more difficult under service level constraints

[15, 19] though it is a possible alternative to cost minimizing problem where it is difficult

to quantify costs explicitly [88]. Yet, the solution procedures should be implementable in

day-to-day operations. Upper and lower bounds for the optimal order quantities and reorder

levels were derived in [2]. Also, a technique where a high-demand system is approximated

by a low-demand system was given in [13].
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Glasserman and Wang [60], on the other hand, studied the fill-rate bottlenecks, that is,

facilities that most constrain the system-wide fill rate. Kim [76] incorporated lost sales into

an optimal inventory model by using a queuing system with finite waiting room. Chiang

[42] showed that a base-stock policy is optimal for the backorder case in a periodic review

inventory system. A simple procedure for determining order quantities under a fill rate

constraint and normally distributed lead-time demand presented in [16]. Adida and Perakis

[1], Chen and Simchi-Levi [34], and Chen et. al. [33] studied optimal pricing and inventory

control policies under general assumptions.

Sensitivity analysis of some standard single location models suggests that system perfor-

mance is fairly insensitive to stock allocation in the vicinity of optimal solution [37]. Even,

in many cases the optimal decisions does not depend on specific form of the demand distri-

butions but on the means and standard deviations of demand [84]. Gallego and Zipkin [57]

extended the analysis to multi-echelon systems and showed that similar results hold in case

of constant lead times.

Modeling Issues in Multi-echelon Supply Chains

In the analysis of multi-echelon inventory systems, a general practice is to assume con-

stant or independent, identically distributed transportation times. In a similar vein, another

practice is to assume them to be phase-type distributed random variables because of their

generality and versatility [7, 86]. Phase-type random variables enable to approximate any

general distribution. Duri et. al. [49], Svonoros and Zipkin [97], and Zipkin [110] utilized

phase-type random variables in modeling service and transportation times. Hayya et. al.

[62] showed the effect of using different forecasting procedures in calculating variance of

demand during lead-time.

An important issue in multi-echelon production distribution systems is to investigate the

stability of the system. Most studies in this area assume unlimited production capacity.

However, real world systems have finite production rate, and an ineffective policy may lead

to high backorder levels. An exception to this is Glasserman and Tayur [59], in which they

investigated the stability of a multi-echelon system under a base-stock policy and presented

conditions for stable inventory and backorder levels.
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Superposition of Multiple Arrival Streams

There are several situations in which the arrival process is the superposition of different

arrival streams. Such an arrival process arises as the stream of replenishment orders in a

distribution inventory system. The inventory system consists of many retailers replenishing

their stock from a central warehouse where the retailers face independent, stationary Poisson

demand and follow a continuous review (R,Q) inventory control policy. Another example is

a queue to which the arrival process is the superposition of separate arrival streams, each of

whose inter-arrival times is of Erlang distribution.

An important characteristic of the superposed process is that although the individual

processes are independent from each other, the superposed process may no longer be inde-

pendent. Additionally, exact characterization of the superposed process becomes computa-

tionally impractical as the number of the superposed processes increase. For these reasons,

most of the work in this area delve into approximations. Typical methods approximate

the superposed processes by renewal processes, which may be inadequate in capturing the

temporal dependence.

Albin [3] developed a hybrid approximation scheme that combines stationary-interval

method and asymptotic method of Whitt [106]. Both methods determine the approximating

renewal process by identifying moments for the intervals between successive points and fitting

a convenient distribution to the moments. Bitran and Dasu [22] developed an approximation

using Super-Erlang chains, which takes into account the local and long-term behavior of the

second-order measures of the nonrenewal process being approximated. Bitran and Dasu [23]

analyzed a queue in which the arrival process is the superposition of separate arrival streams,

each of whose inter-arrival time distributions is phase-type, and the service time distribution

is also phase-type. The above approximation methods are based on first order and second

order statistics. However, Girish and Hu [58] developed higher order approximations for the

single server queue with general inter-arrival and service time distributions. Balciog̃lu et. al.

[18] used a three parameter renewal approximation in predicting the mean waiting time in a

queue with deterministic service times. Vuuren and Adan [104], on the other hand, proposed

an approximation method based on state space aggregation.
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Chapter 3

Analysis of Single-Product, Multi-Echelon Supply

Chains

We consider a single-product supply chain consisting of a supplier, a plant, a distribution

center (DC), and a retailer arranged in series as illustrated in Figure 3.1. The retailer faces

customer demand according to a Poisson process and has its own operating characteristics.

It uses a continuous review (RR, QR) installation stock inventory control policy, that is, when

the inventory position (inventory on hand plus outstanding orders minus backorders) at the

retailer down-crosses RR, it orders a replenishment batch size of QR from the DC. The order

arrives after a transportation lead-time delay, if the DC has sufficient on-hand inventory.

Otherwise, it experiences additional delays due to stockouts at the DC. Any excess demand

at the retailer is backlogged and filled as soon as the replenishment order arrives in a first-in

first-out manner.Supplier DC RetailerInputBuffer OutputBufferPlant Demand(RI,QI) (R,r) (RDC,QDC) (RR,QR)
Figure 3.1: A multi-echelon supply chain

We assume that it is possible to have several outstanding backorders at the retailer at

any point in time. The effective lead-time between the DC and retailer is the time between

the placement and receipt of the order by the retailer. This includes the transportation

lead-time as well as the delay in the DC due to the stockouts.

Demand at the DC are orders from the retailer and satisfied immediately if there is
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available stock on-hand. The unsatisfied demand is backordered. Similarly, the DC itself re-

plenishes its inventory from the output buffer of the upstream plant, based on an (RDC , QDC)

installation stock inventory policy. The effective lead-time consists of the delay in the plant

output buffer and the transportation time.

Note that we use installation stock policies in the replenishment process since they require

relatively limited information, that is, only the inventory position at the current installation.

On the other hand, echelon stock policies require the inventory position at the current

installation and at all the downstream installations.

The plant is the echelon where production in the supply chain takes place. It includes two

buffers: one for the raw materials and the other for the finished products, where both have

their own stock keeping and production control policies. The plant operates a make-to-order

manner, that is, the general aim is to produce as much as needed rather than to produce as

much as possible. We assume that the facility produces one at a time, and every time the

production activity takes place, one unit of raw material is pulled from the input buffer.

Orders from the DC are satisfied using the available inventory in the plant output buffer.

A continuous review (R, r) policy is used to control production in the output buffer. It is an

exhaustive production policy in the sense that, whenever the inventory level in the output

buffer drops below r, the plant resumes production and continues until the inventory level

reaches back R again. Additional stoppages in production may occur due to shortage of raw

material in the input buffer.

The input buffer, in turn, orders from an external supplier with unlimited inventories.

Again, the inventory control policy is of continuous review, installation stock (RI , QI) type.

No additional delays can occur at the supplier and the resulting lead-time includes only the

transportation time.

We assume that all transportation times between facilities and production time at the

plant are phase-type distributed because of their generality and versatility [7, 86]. However,

there are some restrictions on transportation times. We assume that the units are processed

sequentially in the transportation system. In other words, replenishment orders do not

cross over time, and they are received in the same order they were placed. In contrast,

assuming independent, identically distributed random variables represents parallel processing
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of replenishment orders and allows orders to cross in time. Zipkin [108], and Svoronos and

Zipkin [97] utilize same concept of transportation times. We assume, in particular, all

transportation times follow a k’th order Erlang (Erlang-k) distribution and the production

time at the plant comes from a mixture of generalized Erlang distribution (MGE-K). Erlang-

k and MGE-K distributions are special cases of phase-type distributions. See Appendix A

for a brief introduction to the phase-type random variables.

Performance evaluation of the system above is quite difficult because of its complex na-

ture and large state-space. Indeed, we next present a decomposition procedure, which uses

single-location models as building blocks to analyze the entire supply chain. The perfor-

mance measures of interest are the long-run average number of inventories, the number of

backorders, and the customer service levels in each facility. The measures will then be used

within an optimization context (cost minimization subject to a given customer service level)

to choose among several policy parameters.

3.1 Modeling Approach

It is plausible that the entire system can be modeled using a Markovian approach. However,

it is easily seen that exact analysis of the above system is computationally impractical due

to the fast growing state space of the underlying Markov chain. Hence, the only viable

approach, other than simulation, is approximation. Widely used approximation techniques

decomposes the system into several subsystems, which can be analyzed in isolation. Then,

an iterative procedure links the subsystems to each other. Here, we will implement a similar

procedure.

Let us consider the supply chain shown in Figure 3.1. We will decompose the system in

such a way that each subsystem consists of an inventory holding buffer with its own stock

keeping policy. Keeping in mind that lower levels of inventory in the upstream facilities

will result in longer lead times for downstream stages, and higher levels of inventory in the

downstream facilities will cause longer demand inter-arrival times at the upstream stages,

we characterize the appropriate effective procurement lead-times and effective demand inter-

arrival times at each subsystem. Consequently, we treat each subsystem as a single-location
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production or inventory system, which can be analyzed with a modest computational ef-

fort. Finally, we relate the subsystems to each other by using an iterative scheme. The

decomposition method adopted is based on [7, 9, 61]. In summary, it includes constructing

each subsystem, deriving a set of equations for the unknown parameters, and linking the

subsystems to each other. Now, let us introduce the following notation:

λ : demand rate at the retailer,

TTS,P : transportation time between supplier and plant,

MTP : manufacturing time at the plant,

TTP,DC : transportation time between plant and DC,

TTDC,R : transportation time between DC and retailer,

Ω(i) : subsystem involving inventory buffer i, i = I, O, DC, R

M
′
i : node modeling procurement to inventory buffer i, i = I, O, DC, R,

M
′′
i : node modeling demand arrival process to buffer i, i = I, O,DC, R,

U
′
i : processing time at M

′
i , i = I, O, DC, R;

U
′′
i : processing time at M

′′
i , i = I, O,DC, R;

Ni : inventory level in Ω(i), i = I, O, DC,R.

We propose to develop a decomposition as shown in Figure 3.2. The first subsystem,

Ω(I), includes the input buffer of the plant in the supply chain. An (RI , QI) inventory

control policy is used to control replenishment process at the input buffer. Node M
′
I models

the effective procurement process and M
′′
I models the effective demand inter-arrival process

at the input buffer. Similarly, the second subsystem, Ω(O), includes the plant output buffer.

An (R, r) policy is used to control production. Node M
′
O represents procurement process and

node M
′′
O represents demand arrival process. Other subsystems are described accordingly.

In the following sections, we explain how we construct the nodes M
′
i and M

′′
i ’s and their

respective processing times U
′
i and U

′′
i ’s for i = I, O, DC,R.

3.1.1 Analysis of Procurement Times

In this section, we analyze the effective procurement times at each subsystem. In general, in

addition to transportation times, the procurement times include possible delays experienced
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OutputBuffer UDC''UDC'' ⋯

(R,r)TTS,P InputBuffer UO''MTP UO'' ⋯

(RI,QI)
MTP UI'

DC UR''UR'' ⋯

(RDC,QDC)TTP,DC UO'
Retailer λ(RR,QR)UO' UO'

⋯

Ω(I):

Ω(R):
Ω(DC):
Ω(O):MI'(UI') ΠO1-ΠO MI''(UI'')

MO'(UO') MO''(UO'')
MDC'(UDC') MDC''(UDC'')
MR'(UR') MR''(UR'')

kI
kO
kDC

∆I1-∆I
ωO(0) ωO(1)ωO(2)ωO(i)

TTDC,R UDC'UDC' UDC'

⋯

ωDC(0) ωDC(1)ωDC(2)ωDC(i)
Figure 3.2: Subsystems Ω(I), Ω(O), Ω(DC) and Ω(R)



18

at the corresponding sources. We start with the subsystem containing the plant input

buffer since it is the first upstream facility of the supply chain, and continue with the other

subsystems in an orderly manner.

For subsystem Ω(I), the random variable U
′
I represents the effective procurement time

at the input buffer. Since, the supplier has always sufficient raw material to replenish the

input buffer, the effective procurement time consists only of the transportation lead-time

from supplier to the input buffer. That is,

U
′
I = TTS,P .

The first node in the second subsystem, M
′
O, represents the procurement process of the

output buffer. The procurement time is simply the manufacturing time, MTP , at the plant

when there is available inventory in the input buffer. However, when the input buffer is

out-of-stock, we have to wait for a replenishment order to arrive at the input buffer. More

rigorously, let ∆I be the conditional probability that there are no units in the input buffer

given that a unit is about to finish processing at the plant. Then, the effective procurement

time is given by:

U
′
O =





MTP w.p. 1−∆I ,

MTP + TTS,PL w.p. ∆I .

The procurement time at the DC, U
′
DC , however, is more involved. The DC replenishment

request is filled as soon as it is received, if the output buffer has ample stock on hand.

Otherwise, a delay occurs until sufficient number of units accumulate in the output buffer

since no partial shipment is allowed between facilities. Let ωO(i) denote the conditional

probability that there are i units missing (i = 0, 1, 2, . . .) in the output buffer at the time a

procurement order is received from the DC. Then, the effective procurement time will be:

U
′
DC =





TTP,DC w.p. ωO(0),

TTP,DC +
∑i

j=1 U
′
O w.p. ωO(i).

Finally, let ωDC(0) be the conditional probability that there are no units missing in

the DC given that a demand arrives from the retailer, and let ωDC(i), i = 1, 2, . . . be the

conditional probability that there are, for any i, (i−1)∗QDC +1, (i−1)∗QDC +2, . . . , i∗QDC

units missing in the DC given that a demand arrives from the retailer. Then, the effective
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lead time to the retailer is given by:

U
′
R =





TTDC,R w.p. ωDC(0),

TTDC,R +
∑i

j=1 U
′
DC w.p. ωDC(i).

It is clear that, with probability ωDC(0), there is enough stock in the DC and the order

experiences no delays. On the other hand, with probability ωDC(i), the DC does not have

sufficient inventories resulting in delay in the replenishment process. Note that, this delay

is approximately i procurement lead times from the output buffer to the DC.

3.1.2 Analysis of Demand Inter-Arrival Times

In this section, we analyze the effective demand inter-arrival times at subsystems. These are

generally simpler than the analysis of the effective procurement times. Here, we start with

the subsystem including the retailer, and continue with the rest in an orderly manner.

The retailer faces customer demand according to a Poisson process with constant rate

λ. Equivalently, the effective demand inter-arrival times are independent and follow an

exponential distribution.

Demand to the DC arrives from the retailer that uses an (RR, QR) stock keeping policy

to place orders. That is, when the inventory position in the retailer down-crosses RR, the

retailer places a replenishment order and the inventory position is immediately updated to

RR + QR. The next replenishment order from the retailer is triggered when the inventory

position again drops below RR. So, every time the retailer receives kDC = QR orders, it

places a replenishment request to DC. As a result, the orders to the DC follow an Erlang

distribution with phase rate λ and kDC phases due to the fact that orders to the retailer

follow a Poisson process with intensity λ.

In order to characterize the effective demand inter-arrival time at the output buffer, let

kO = dQDC/QRe with the operator, de, denoting the ceiling function. A procurement order

is placed by the DC to the output buffer every time there are kO orders from the retailer.

This is because, with every kO orders to the DC, its inventory position drops to RDC again,

and a replenishment order is placed by the DC. Consequently, the effective demand inter-

arrival time to the output buffer follows an Erlang distribution with kO phases, with every

phase being an Erlang random variable with rate λ and kDC phases.
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Effective demand inter-arrival times to the input buffer are more involved. Manufacturing

in the supply chain takes place at the plant. Every time the plant produces one product,

a unit of raw material is withdrawn from the input buffer. So, the random variable, U
′′
I ,

includes the manufacturing lead-time, MTP , at the plant. On the other hand, there are

stoppages due to the production control policy used in the plant. As we mentioned before,

an (R, r) policy is in effect at the plant. That is, when the inventory level drops below r,

the plant resumes production and continues until the inventory level reaches back R again.

When the target value R is attained, the plant goes into an idle period and remains there

for R− r departures to occur from the output buffer. Rigorously, let ΠO be the conditional

probability that there is only one space available in the output buffer at the time a unit is

about to finish processing at the plant. Accordingly, the effective demand inter-arrival time

is as follows:

U
′′
I =





MTP w.p. 1− ΠO

MTP +
∑kI

j=1 U
′′
O w.p. ΠO

Thus, with probability 1− ΠO, the inter-arrival time consists only the manufacturing lead-

time at the plant, and with probability ΠO, it includes both the production time and the

time it remains blocked where kI = d(R− r)/QDCe.

3.1.3 Steady-State Analysis of the Subsystems

In this section, we calculate the steady-state probabilities of the underlying Markovian

process in each subsystem. Each of the subsystems, Ω(i) for inventory holding buffers

i = I, O,DC, R, is a two-node subsystem with its own stock keeping policy, and phase-type

procurement and demand inter-arrival times. The use of the phase-type random variables

gives rise to a Markovian analysis, and matrix-recursive procedures based on [29, 64, 86]

are used to obtain steady-state probabilities and the measures of interest. We assume all

transportation times follow a second order Erlang distribution (Erlang-2) and the produc-

tion time at the plant comes from a mixture of generalized Erlang distribution (MGE-2) for

numerical convenience. The following notation is needed:
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βi : transportation time (rate of Erlang-2), i = S, P, DC,

β
′
i : processing rate of U

′
i , i = I, O, DC, R,

β
′′
i : processing rate of U

′′
i , i = I, O,DC, R,

µ
′
i : rate of MGE-2 (processing time) at the plant, i = 1, 2,

a : prob. of moving from first phase to the second phase of MGE-2.

Analysis of Subsystem Involving Plant Input Buffer

Let us start with subsystem Ω(I), the subsystem involving the plant input buffer. Let

{It, Jt, Nt, t ≥ 0} be a stochastic process where It represents the phase of U
′
I , Jt represents

the phase of U
′′
I , Nt denotes the number of inventories in the input buffer where

It =





i, U
′
I is in phase i, i = 1, 2,

B, U
′
I is blocked,

Jt =





0, U
′′
I is starving,

i, U
′′
I is in phase i, i = 1, 2, . . . , kI + 2,

Nt = 0, 1, 2, . . . , RI + QI ,

making {It, Jt, Nt, t ≥ 0} a Markov chain with a finite number of states. Here, demand to the

input buffer arrives singly, however, the supply comes in batches of QI . The state-space and

the transitions of the Markov chain are presented in Figure 3.3. Let us define the following

steady-state probabilities:

P̃(i, 0, 0) =




P (i, 0, 0)

0
...

0




(kI+2)×1

, P̃(i, j, n)|RI
n=0 =




P (i, 1, n)

P (i, 2, n)
...

P (i, kI + 2, n)




(kI+2)×1

,

for i = 1, 2, and

P̃(B, j, n)|RI+QI
n=RI+1 =




P (B, 1, n)

P (B, 2, n)
...

P (B, kI + 2, n)




(kI+2)×1

.

In fact, P̃(i, j, n) denotes the steady-state probability vector that the effective procurement

time is in phase i, the demand inter-arrival time is in phase j, and the input buffer contains
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1,0,02,0,0 1,2,0,2,2,01,1,02,1,0 1,3,02,3,0 1,kI+2,02,kI+2,01,2,R2,2,R1,1,R2,1,R 1,3,R2,3,R 1,kI+2,R2,kI+2,RB,2,R+1B,1,R+1 B,3,R+1 B,kI+2,R+1B,2,Q-1B,1,Q-1 B,3,Q-1 B,kI+2,Q-1B,2,QB,1,Q B,3,Q B,kI+2,QB,2,Q+1B,1,Q+1 B,3,Q+1 B,kI+2,Q+ 1B,2,Q+R-1B,1,Q+R-1 B,3,Q+R-1 B,kI+2,Q+R-1B,2,Q+RB,1,Q+R B,3,Q+R B,kI+2,Q+R

(1-ΠO)(1-a)µ1βSβS βS βS βS
βS βS βS βS

ΠO(1-a)µ1ΠO(1-a)µ1

ΠO(1-a)µ1

(1-ΠO)µ2 βO'' βO'' βO''
βO'' βO''

βO''βO''

ΠOµ2aµ1
Figure 3.3: Transition diagram for subsystem Ω(I) (backordering case)



23

n units of raw material. Similarly, P̃(B, j, n) represents the steady-state probability that the

procurement process is blocked, the effective demand inter-arrival time is in phase j, and

there are n units of raw material in the input buffer. The rest of the probabilities are defined

in the same manner.

We use the following sets of flow-balance equations in order to obtain the long-run prob-

abilities of the subsystem:

βSP̃(1, 0, 0) = BP̃(1, j, 0),

AP̃(1, j, n) = BP̃(1, j, n + 1), n = 0, 1, 2, . . . , RI

βSP̃(2, 0, 0) = BP̃(2, j, 0) + βSP̃(1, 0, 0),

AP̃(2, j, n) = BP̃(2, j, n + 1) + βSP̃(1, j, n), n = 0, 1, 2, . . . , RI − 1

AP̃(2, j, R) = βSP̃(1, j, R),

CP̃(B, j, n) = BP̃(B, j, n + 1), n = RI + 1, RI + 2, . . . , QI − 2

CP̃(B, j, QI − 1) = BP̃(B, j, QI) + βSP̃(2, 0, 0), (3.1)

CP̃(B, j, n) = BP̃(B, j, n + 1) + βSP̃(2, j, n−QI), n = QI , QI + 1, . . . , QI + RI − 1

CP̃(B, j, QI + RI) = βSP̃(2, j, RI),

where

A =




µ1 + βS 0 0 0 0 . . . 0 0

−aµ1 µ2 + βS 0 0 0 . . . 0 0

−ΠO(1− a)µ1 −ΠOµ2 β
′′
O + βS 0 0 . . . 0 0

0 0 −β
′′
O β

′′
O + βS 0 . . . 0 0

0 0 0 −β
′′
O β

′′
O + βS . . . 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . −β
′′
O β

′′
O + βS




(kI+2)×(kI+2)

,

B =




(1−ΠO)(1− a)µ1 (1−ΠO)µ2 0 . . . 0 β
′′
0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0




(kI+2)×(kI+2)

,
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C =




µ1 0 0 0 0 . . . 0 0

−aµ1 µ2 0 0 0 . . . 0 0

−ΠO(1− a)µ1 −ΠOµ2 β
′′
O 0 0 . . . 0 0

0 0 −β
′′
O β

′′
O 0 . . . 0 0

0 0 0 −β
′′
O β

′′
O . . . 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . −β
′′
O β

′′
O




(kI+2)×(kI+2)

.

In total, we have (kI +2)× (QI +2RI +2) unknowns. Representing P̃(B, j, QI) in terms

of P̃(B, j, QI − 1), and utilizing the Equation 3.1, we obtain

P̃(B, j, QI − 1) = βS(C− β2
SBW(C−1B)QI−RI−2)−1P̃(2, 0, 0),

where

W = ((C−1B)RIC−1A−1 + (C−1B)RI−1C−1(A−1B)A−1 + · · ·+ C−1(A−1B)RIA−1)(A−1B)

+((C−1B)RI−1C−1A−1 + · · ·+ C−1(A−1B)RI−1A−1)(A−1B)2

...

+(C−1A−1)(A−1B)RI+1.

Letting

P̃(2, 0, 0) =




1

0
...

0




(kI+2)×1

,
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we solve for probabilities P̃(B, j,QI − 1); from which we can obtain the rest of the proba-

bilities as shown below:

P̃(1, 0, 0) = (1/βS)B(A−1B)RI+1(C−1B)QI−RI−2P̃(B, j, QI − 1),

P̃(1, j, n) = (A−1B)RI+1−n(C−1B)QI−RI−2P̃(B, j, QI − 1), n = 0, 1, 2, . . . , RI

P̃(2, j, 0) = βS((A−1B)RIA−1P̃(1, j, RI) + (A−1B)RI−1A−1P̃(1, j, RI − 1) +

. . . + (A−1B)A−1P̃(1, j, 1) + A−1P̃(1, j, 0)),

P̃(2, j, n) = βS((A−1B)RI−nA−1P̃(1, j, RI) + (A−1B)RI−n−1A−1P̃(1, j, RI − 1) +

. . . + (A−1B)A−1P̃(1, j, n + 1) + A−1P̃(1, j, n)), n = 1, 2, . . . , RI − 1

P̃(2, j, RI) = βSA−1P̃(1, j, RI),

P̃(B, j, n) = (C−1B)QI−n−1P̃(B, j,QI − 1), n = RI + 1, RI + 2, . . . , QI − 2

P̃(B, j,QI) = βS((C−1B)RIC−1P̃(2, j, RI) + (C−1B)RI−1C−1P̃(2, j, RI − 1) +

· · ·+ (C−1B)C−1P̃(2, j, 1) + C−1P̃(2, j, 0)),

P̃(B, j, QI + n) = βS((C−1B)RI−nC−1P̃(2, j, RI) + (C−1B)RI−n−1C−1P̃(2, j, RI − 1) +

· · ·+ (C−1B)C−1P̃(2, j, n + 1) + C−1P̃(2, j, n)), n = 1, 2, . . . , RI − 1

P̃(B, j,QI + RI) = βSC−1P̃(2, j, RI)).

Finally, all the probabilities are normalized.

Analysis of Subsystem Involving Plant Output Buffer

Our second subsystem is Ω(O), the subsystem involving the plant output buffer. Here, again

{It, Jt, Nt, t ≥ 0} is a Markov chain where It represents the phase of U
′
O, Jt represents the

phase of U
′′
O, Nt denotes the number of inventories in the input buffer where It = 1, 2, B,

Jt = 1, 2, . . . , kO, and Nt = R, R−1, R−2, . . .. We use a three-moment MGE-2 approximation

for the 4-phase procurement time (the parameters are γ1, γ2, and b). This approximation has

practically no effect on the accuracy of the results [7]. The state-space and the transitions of

the Markov chain are presented in Figure 3.4. Let us denote the steady-state probabilities
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γ2
βDC''
βDC'' βDC''B,1,R B,2,R B,k0,RβDC''

γ1b γ1b γ1bβDC'' βDC''1,1,R-1 1,2,R-1 1,k0,R-1βDC'' βDC'' βDC''2,1,R-1 2,2,R-1 2,k0,R-1βDC''
γ1b γ1b γ1bβDC'' βDC''1,1,R-2 1,2,R-2 1,k0,R-2βDC'' βDC'' βDC''2,1,R-2 2,2,R-1 2,k0,R-2βDC''
γ1b γ1b γ1bβDC'' βDC''1,1,R-kQDC 1,2,R-kQDC 1,k0,R- kQDCβDC'' βDC'' βDC''2,1,R-kQDC 2,2,R-kQDC 2,k0,R- kQDCβDC''

γ1(1-b) γ1(1-b) γ1(1-b)
γ1(1-b) γ1(1-b) γ1(1-b)γ2 γ2 γ2

γ1(1-b)γ1(1-b)γ1(1-b)γ2 γ2 γ2

βDC''βDC'' βDC''βDC''
βDC''

Figure 3.4: Transition diagram for subsystem Ω(O) (backordering case)
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of the Markov chain by:

P̃w(n)|kO
n=1 =




P (1, n,−kQDC)

P (2, n,−kQDC)
...

P (1, n, 0)

P (2, n, 0)
...

P (1, n, R− 1)

P (2, n, R− 1)




(2R+2kQDC)×1

, P̃B(i) =




P (B, 1, i)

P (B, 2, i)
...

P (B, kO, i)




kO×1

where i = R,R − QDC , . . . , R − (kmin)QDC , k is a large enough number that ensures

the remaining probabilities are zero, and kmin is defined as kmin = min{i : R − iQDC ≤
r, i integer, i ≥ 0}. Then, the flow-balance equations are given below:

AP̃w(1) = BP̃w(kO) + CP̃B(R), (3.2)

AP̃w(n + 1) = β
′′
DCP̃w(n), n = 1, 2, . . . , kO − 1,

DP̃B(R) = E1P̃w(1) + E2P̃w(2) + . . . + EkO
P̃w(kO),

where

A =




γ1 + β
′′
DC 0 0 0 0 0 . . .

−bγ1 γ2 + β
′′
DC 0 0 0 0 . . .

−(1− b)γ1 −γ2 γ1 + β
′′
DC 0 0 0 . . .

0 0 −bγ1 γ2 + β
′′
DC 0 0 . . .

0 0 −(1− b)γ1 −γ2 γ1 + β
′′
DC 0 . . .

0 0 0 0 −bγ1 γ2 + β
′′
DC . . .

...
...

...
...

...
...

. . .




,

B =




β
′′
DC 0 . . . β

′′
DC 0 β

′′
DC 0 0 . . .

0 β
′′
DC . . . 0 β

′′
DC 0 β

′′
DC 0 . . .

0 0 . . . 0 0 0 0 β
′′
DC . . .

...
... · · · ...

...
...

...
...

. . .




,

are (2R + 2kQDC)× (2R + 2kQDC) matrices,

C = [cij ] =





β
′′
DC , if i = 2kQDC + 2R− 2kminQDC + 1, j = kO

0, otherwise,
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is a (2R + 2kQDC)× kO matrix,

D =




β
′′
DC 0 . . . 0 0

−β
′′
DC β

′′
DC . . . 0 0

...
...

. . .
...

...

0 0 . . . −β
′′
DC β

′′
DC




kO×kO

,

and

Et = [eij ] =





(1− b)γ1, if i = t, j = 2kQDC + 2R− 1

γ2, if i = t, j = 2kQDC + 2R

0, otherwise,

are kO × (2R + 2kQDC) matrices for t = 1, 2, . . . kO. By utilizing Equation 3.2, we get

P× P̃w(1) = 0 and P is given

P = A−B(β
′′
DCA−1)kO−1 −CD−1E,

and

E = E1 + E2(β
′′
DCA−1)1 + . . . + EkO

(β
′′
DCA−1)kO−1.

In addition, we have the normalization equation:

p = e(1×(2R+2kQDC)) + e(1×(2R+2kQDC))(β
′′
DCA−1)1 + . . . + e(1×(2R+2kQDC))(β

′′
DCA−1)k0−1

+e(1×kO)D
−1E + (kmin − 1)kO(0, . . . , 0, 1)(1×kO)D

−1E.

After replacing the first row of matrix P with row vector p, we solve for P̃w(1) from the

equation P× P̃w(1) = [1, 0, . . . , 0]T2R+2kQDC
. The rest of the probabilities are obtained using

P̃w(n) = (β
′′
DCA−1)n−1P̃w(1), n = 2, . . . , kO,

P̃B(R) = D−1EP̃w(1).

Note that, Nt may take values in (−∞, R]. We use truncation at a reasonable backorder

level to deal with finite number of states.

Analysis of Subsystem Involving Distribution Center

On the other hand, solving the probabilities of the subsystem Ω(DC), the subsystem in-

volving the distribution center, is more involved. First, the effective procurement time has

a complex phase structure. However, a three-moment MGE-2 approximation is utilized
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based on [7] (the parameters of the MGE-2 are γ1, γ2 and b). This approximation simpli-

fies the solution procedure. Second, the procurement orders and demand arrivals to this

system are both in batches. Still, we are able to utilize the matrix recursive scheme used

in the previous subsystems and solve for the probabilities. Again, {It, Jt, Nt, t ≥ 0} is a

Markov chain where It represents the phase of U
′
DC , Jt represents the phase of U

′′
DC , Nt

denotes the number of inventories in the DC where It = 1, 2, B, Jt = 1, 2, . . . , kDC , and

Nt = QDC + RDC , QDC + RDC − 1, . . .. The Markov chain has infinite number of states,

and yet we again truncate the state-space at a state with negligible holding probability. The

state-space and the transitions of the Markov chain are presented in Figure 3.5. Let the

probabilities of the subsystem be:

P̃(n)|kDC
n=1 =




P (1, n, RDC − kQR)

P (2, n, RDC − kQR)
...

P (1, n,RDC)

P (2, n,RDC)

P (B,n, RDC + 1)
...

P (B, n, RDC + QDC)




(QDC+2kQR+2)×1

.

The flow-balance equations of the system in compact form are:

AP̃(1) = BP̃(kDC), (3.3)

AP̃(n + 1) = β
′′
RP̃(n), n = 1, 2, . . . , kDC − 1

The matrices A and B are given as:

A =




γ1 + β
′′
R 0 0 0 0 0 0 . . .

−bγ1 γ2 + β
′′
R 0 0 0 0 0 . . .

0 0 γ1 + β
′′
R 0 0 0 0 . . .

0 0 0 −bγ1 γ2 + β
′′
R 0 0 . . .

−(1− b)γ1 γ2 0 0 0 γ1 + β
′′
R 0 . . .

0 0 0 0 0 −bγ1 γ2 + β
′′
R . . .

0 0 −(1− b)γ1 γ2 0 0
. . . . . .

...
...

....
. . . . . .

...
...

. . .




,
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δ2δ2 δ2
βR''

βR'' βR''B,1,QR+RDC B,2,QR+RDC B,k,QR+RDCβR''
βR'' βR''1,1,RDC 1,2,RDC 1,k,RDCβR''

βR'' βR''2,1,RDC 2,2,RDC 2,k,RDCβR''γ1b
βR'' βR''1,1,RDC-QR 1,2,RDC-QR 1,k,RDC-QRβR''

βR'' βR''2,1,RDC-QR 2,2,RDC-QR 2,k,RDC-QRβR''

γ1(1-b)
βR'' βR''B,1,QDC+RDC B,2,QDC+RDC B,k,QDC+RDCβR'' βR''

βR''
βR''

βR''
γ1b γ1b

γ1b γ1b γ1b

γ2
γ1(1-b)

γ2 γ2γ1(1-b) γ1(1-b)
γ1(1-b) γ1(1-b)

βR''

Figure 3.5: Transition diagram for subsystem Ω(DC) (backordering case)
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B =




β
′′
R 0 β

′′
R 0 0 . . .

0 β
′′
R 0 β

′′
R 0 . . .

0 0 0 0 β
′′
R . . .

...
...

...
...

...
. . .




.

Utilizing the Equation 3.3, we get P× P̃(1) = 0 where

P = A−B(β
′′
RA−1)kDC−1.

Finally, normalization is achieved by:

p = e(1×(2RDC+QDC+2+2kQR)) × (I + (β
′′
RA−1) + . . . + (β

′′
RA−1)kDC−1).

Replacing the first row of matrix P with row vector p, we solve for

P× P̃(1) = [1, 0, . . . , 0]T(2RDC+QDC+2+2kQR).

Rest of the probabilities are given by:

P̃(n) = (β
′′
RA−1)n−1P̃(1), n = 2, . . . , kDC .

Analysis of Subsystem Involving Retailer

Finally, the subsystem Ω(R) models the behavior of the retailer where demand arrives singly

and according to a Poisson process, and the replenishment process takes place in batches.

A queuing analogy of the above model is the system M/PHk/1 where arrivals are from a

Poisson process, and the service time distribution is of phase-type and in exact batches of

k. Although general solution procedures for the above queuing system are given in [31], we

will again use the matrix-recursive algorithms utilized in the previous subsystems. Typical

approaches use the generating function of the steady-state distribution. Inverting this func-

tion to compute the probabilities may be problematic and may require more computational

effort than our approach.

Let {It, Nt, t ≥ 0} be a Markov chain where It represents the phase of U
′
R, and Nt denotes

the level of inventories at the retailer where It = 1, 2, B, and Nt = QR +RR, QR +RR−1, . . ..

As in the subsystem Ω(DC), the effective procurement time has a complex phase structure.

We again use a three-moment MGE-2 approximation (the parameters are γ1, γ2 and b).

The Markov chain has infinite number of states, however we truncate the state-space. The
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Figure 3.6: Transition diagram for subsystem Ω(R) (backordering case)
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state-space and the transitions of the Markov chain are presented in Figure 3.6. Let the

probabilities of the subsystem be:

P̃w(n)|2n=1 =




P (n,RR)

P (n,RR − 1)
...

P (n,RR − kQR)




(kQR+1)×1

, P̃(B) =




P (B,RR + QR)
...

P (B, RR + 1)




QR×1

.

Corresponding flow-balance equations are:

AP̃(B) = BP̃w(1) + CP̃w(2),

DP̃w(1) = EP̃w(2) + FP̃(B), (3.4)

GP̃w(2) = γ1bP̃w(1),

where

A =




λ

−λ λ

. . .

−λ λ




QR×QR

,B =




γ1(1− b)

γ1(1− b)
. . . . . .

γ1(1− b)




QR×(kQR+1)

,

C =




γ2

γ2

. . . . . .

γ2




QR×(kQR+1)

,D =




λ + γ1 . . . −γ1(1− b)

−λ λ + γ1
. . .

. . .

−λ λ + γ1

−λ γ1




,

E =




−γ1(1− b)
. . .




, G =




λ + γ2

−λ λ + γ2

. . .

−λ λ + γ2

−λ γ2




,

and D, E, G are (kQR + 1)× (kQR + 1) matrices. Additionally,

F = [fij ] =





λ, if i = 1, j = QR

0, otherwise,

is a (kQR + 1)× (QR) matrix.
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After, representing P̃(B) and P̃w(2) in terms of P̃w(1), and by utilizing Equation 3.4,

we obtain P× P̃w(1) = 0 where

P = D− γ1bEG−1 − FA−1B− γ1bFA−1CG−1.

The normalization condition is given as:

p = e(1×(kQR+1)) × (I + γ1bG−1) + e(1×(QR)) × (A−1B + γ1bA−1CG−1).

Replacing the first row of matrix P by the row vector p, we solve for

P× P̃w(1) = [1, 0, . . . , 0]T(kQR+1)×1.

The rest of the probabilities are given by:

P̃w(2) = γ1bG−1P̃w(1),

P̃(B) = (A−1B + γ1bA−1CG−1)P̃w(1).

Thus, we have analyzed each of the subsystems with its own stock keeping policies and

with phase-type procurement and demand inter-arrival times. We present matrix-recursive

procedures in order to compute the steady-state probabilities of the subsystems. We assume

the parameters of the procurement and demand inter-arrival times are unknown. Conse-

quently, we are still in need of a way to relate the parameters of the subsystems to each

other. As an example, consider the conditional probability ∆I . It is a key ingredient to

determine the effective procurement time of the subsystem Ω(O) and is required before the

solution procedure started. To circumvent the situation an iterative algorithm that links the

subsystems to each other is presented in the next section.

3.1.4 An Aggregation Algorithm

The nature of the decomposition algorithm requires subsystems to supply information to

each other. This is achieved by utilizing a fixed-point iteration algorithm. The unknown

parameters of the subsystems are ΠO, ∆I , ωO(i), i = 0, 1, 2, . . ., and ωDC(i), i = 0, 1, 2, . . ..

As part of the algorithm, ΠO is used in the analysis of Ω(I) and updated in the analysis of

Ω(O). Similarly, ∆I is used in the analysis of Ω(O) and updated in the analysis of Ω(I).

ωO(i)’s, on the other hand, are obtained from the analysis of Ω(O) and used only in the
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analysis of Ω(DC). Similarly, ωDC(i)’s are obtained from the analysis of Ω(DC) and used

only in the analysis of Ω(R). Yet we have to assign values to these unknown probabilities.

Using the formula presented by Altiok and Ranjan [9], and Gurgur and Altiok [61] based on

the Little’s Law, the conditional probabilities ∆I and ΠO are computed using the steady-state

probabilities of the subsystems Ω(I) and Ω(O):

∆I =
P̃I(0)

ξ̄IE[U
′
I ]

,

where P̃I(0) is the arbitrary-time probability that there are no units in the input buffer, ξ̄I

is the throughput of the first subsystem, and E[U
′
I ] is the expected value of the starvation

period. Similarly,

ΠO =
P̃O(B)

ξ̄OE[U
′′
O]

where P̃O(B) is the probability that the output buffer is blocked, ξ̄O is the throughput of

the second subsystem, and E[U
′′
O] is the expected value of the blocking period. In addition,

ωO(i)’s are evaluated

ωO(0) = Pr(NO ≥ QDC\NDC = RDC),

ωO(i) = Pr(NO = QDC − i\NDC = RDC), i = 1, 2, . . . .

where NO and NDC represent the inventory level in the output buffer and the DC, respec-

tively. Finally, the conditional probabilities ωDC(i)’s are obtained by

ωDC(0) = Pr(NDC ≥ QR\NR = RR),

ωDC(i) =

iQDC∑

j=(i−1)QDC+1

Pr(NDC = QR − j\NR = RR), i = 1, 2, . . . .

The ωO’s and ωDC ’s are arrival-point probabilities. The throughput of the subsystems are

obtained using

ξ̄j =
Utilization of M

′′
j

E[U
′′
j ]

, j = I, O, DC,R.

Due to backordering practice in the system, the throughput of the system is known to be

λ. Thus, the algorithm stops when all the subsystems’ throughputs converge to the actual

throughput, λ. As a result, the algorithm starts by assuming some initial values for the

unknown parameters. It iterates back and forth between the subsystems Ω(I) and Ω(O).

After all the throughputs are sufficiently close to λ, it analyzes subsystems Ω(DC) and Ω(R)

and stops. A summary of the algorithm is given in Table 3.1.
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1. Initialize: ΠO = ∆I = ωO(i) = ωDC(i) = 0, for all i = 0, 1, 2, . . ., ε = 10−4.
2. Analyze Ω(I), obtain its steady-state probabilities, update ∆I and ξ̄I .
3. Analyze Ω(O), obtain its steady-state probabilities, update ΠO and ξ̄O.
4. If max {|ξ̄I − λ|, |ξ̄O − λ|} ≤ ε, obtain ωO(i) and go to step 5; else go to step 2.
5. Analyze Ω(DC), obtain its steady-state probabilities, obtain ωDC(i) and ξ̄DC .
6. Analyze Ω(R), obtain its steady-state probabilities and ξ̄R.

Table 3.1: The aggregation algorithm for multi-echelon supply chains with backordering

3.2 Computational Accuracy

We test the accuracy of our disaggregation/aggregation approximation by comparing its

results against simulation in a number of examples. The purpose of numerical examples is

to see the ranges of the system parameters where the approximation is accurate and where

it is not. The approximation procedure described above and the discrete-event simulation

model runs are implemented on a Pentium IV PC operating at 2.80 GHz. The simulation

model is developed using the Arena1 simulation software. Each simulation run consists of

50,000,000 job departures to provide point estimates and 95% confidence intervals for key

performance measures. The convergence criterion is chosen to be ε = 10−4. In most of the

cases, the convergence is achieved in three iterations. The approximation and the simulation

results are given in Tables 3.2, 3.3, and 3.4 for different traffic intensities.

In this study, we focus on average inventory levels, average backorder levels, and customer

service levels. Here, we define the customer service level as the probability of fully satisfying

the demand of an arriving customer.

We have three plant-related scenarios: low production rate (Table 3.2), medium produc-

tion rate (Table 3.3),and high production rate (Table 3.4). DC buffer capacities are chosen

proportional to the retailer buffer capacities. In each experiment, demand rate is varied

while keeping other parameters constant. The relative error of the performance estimates

varies from -12.32% to 0.20% for the average inventory levels, and -9.49% to 0.24% for the

customer service levels. It is clear from the results that the percentage deviation gradually

increases as the demand rate (system load) increases. On the other hand, the accuracy in

1Arena is a trademark of Rockwell Software.
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DC Retailer
R I = 10 R = 30 µ 1  = 1 R DC = 10 R R = 5

Q I = 13 r = 10 µ 2  = 1 Q DC = 20 Q R = 10β S = 1 β P = 1 a = 0.1 β DC = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.7997 N/A 99.99% 15.6996 N/A 99.99%
Simulation 15.7994 N/A 99.99% 15.6997 N/A 99.99%
Rel. Error 0.00% N/A 0.00% 0.00% N/A 0.00%

Analytic 22.7858 0.0010 99.64% 21.9288 0.0043 98.97%
Simulation 22.7823 0.0010 99.64% 21.9227 0.0044 98.96%
Rel. Error 0.02% 0.10% 0.00% 0.03% -2.87% 0.01%

Analytic 23.7933 0.0000 100.00% 23.6748 0.0000 100.00%
Simulation 23.7923 0.0000 100.00% 23.6740 0.0000 100.00%
Rel. Error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Analytic 9.3014 0.0016 99.77% 9.2019 0.0024 99.69%
Simulation 9.3023 0.0016 99.77% 9.2027 0.0024 99.69%
Rel. Error -0.01% 0.00% 0.00% -0.01% 0.00% 0.00%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.5996 N/A 99.99% 15.4995 N/A 99.99%
Simulation 15.5988 N/A 99.99% 15.4998 N/A 99.99%
Rel. Error 0.01% N/A 0.00% 0.00% N/A 0.00%

Analytic 20.8371 0.0196 97.22% 19.2997 0.0918 92.90%
Simulation 20.8356 0.0192 97.23% 19.2980 0.0910 92.91%
Rel. Error 0.01% 1.99% -0.01% 0.01% 0.88% -0.01%

Analytic 23.5084 0.0000 100.00% 23.1657 0.0082 99.92%
Simulation 23.5087 0.0003 99.99% 23.1769 0.0055 99.88%
Rel. Error 0.00% -100.00% 0.01% -0.05% 48.82% 0.04%

Analytic 9.1027 0.0035 99.59% 9.0019 0.0048 99.47%
Simulation 9.1028 0.0034 99.59% 9.0004 0.0059 99.45%
Rel. Error 0.00% 1.72% 0.00% 0.02% -18.51% 0.02%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.3995 N/A 99.99% 15.2995 N/A 99.98%
Simulation 15.3996 N/A 99.99% 15.2996 N/A 99.99%
Rel. Error 0.00% N/A 0.00% 0.00% N/A -0.01%

Analytic 16.8501 0.4775 82.80% 12.3514 3.1976 60.38%
Simulation 16.8410 0.4806 82.78% 12.3409 3.2264 60.38%
Rel. Error 0.05% -0.65% 0.02% 0.09% -0.89% 0.00%

Analytic 22.1015 0.0917 98.86% 16.9652 2.4833 85.58%
Simulation 22.2227 0.0781 98.94% 18.8766 1.2556 91.18%
Rel. Error -0.55% 17.35% -0.08% -10.13% 97.78% -6.14%

Analytic 8.8698 0.0086 99.19% 7.2189 1.7709 85.11%
Simulation 8.8524 0.0357 98.95% 8.2332 0.7466 94.03%
Rel. Error 0.20% -75.88% 0.24% -12.32% 137.20% -9.49%

Plant

DC

Retailer

λ=0.85

Input Buffer

Output Buffer

λ=0.8

Parameters:

Input Buffer

Output Buffer

DC

Retailer

λ=0.65

λ=0.7

Input Buffer

Output Buffer

λ=0.6

DC

Retailer λ=0.75

Table 3.2: Accuracy of the approximation algorithm for a low production rate with backo-
rdering
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DC Retailer
R I = 10 R = 30 µ 1  = 2 R DC = 10 R R = 5

Q I = 13 r = 10 µ 2  = 1 Q DC = 20 Q R = 10β S = 1 β P = 1 a = 0.1 β DC = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 14.9903 N/A 99.86% 14.7890 N/A 99.85%
Simulation 14.9924 N/A 99.88% 14.7922 N/A 99.87%
Rel. Error -0.01% N/A -0.02% -0.02% N/A -0.02%

Analytic 23.5033 0.0006 99.77% 22.6686 0.0025 99.33%
Simulation 23.5246 0.0005 99.79% 22.6955 0.0023 99.36%
Rel. Error -0.09% 20.00% -0.02% -0.12% 8.70% -0.03%

Analytic 22.9963 0.0000 100.00% 22.7856 0.0000 100.00%
Simulation 22.9959 0.0000 100.00% 22.7839 0.0000 100.00%
Rel. Error 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%

Analytic 8.5104 0.0174 98.58% 8.3143 0.0263 98.07%
Simulation 8.5109 0.0175 98.57% 8.3146 0.0262 98.06%
Rel. Error -0.01% -0.57% 0.01% 0.00% 0.38% 0.01%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 14.5876 N/A 99.85% 14.3861 N/A 99.84%
Simulation 14.5916 N/A 99.86% 14.3896 N/A 99.84%
Rel. Error -0.03% N/A -0.01% -0.02% N/A 0.00%

Analytic 21.6497 0.0112 98.15% 20.2854 0.0512 95.16%
Simulation 21.6821 0.0102 98.24% 20.3260 0.0495 95.30%
Rel. Error -0.15% 9.80% -0.09% -0.20% 3.43% -0.15%

Analytic 22.5465 0.0001 100.00% 22.2047 0.0004 99.98%
Simulation 22.5466 0.0002 99.99% 22.2087 0.0035 99.92%
Rel. Error 0.00% -50.00% 0.01% -0.02% -88.57% 0.06%

Analytic 8.1185 0.0379 97.47% 7.9228 0.0528 96.78%
Simulation 8.1192 0.0378 97.47% 7.9205 0.0537 96.75%
Rel. Error -0.01% 0.26% 0.00% 0.03% -1.68% 0.03%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 14.1845 N/A 99.84% 13.9829 N/A 99.83%
Simulation 14.1882 N/A 99.83% 13.9857 N/A 99.80%
Rel. Error -0.03% N/A 0.01% -0.02% N/A 0.03%

Analytic 18.2354 0.2517 87.99% 14.7063 1.4689 71.70%
Simulation 18.3063 0.2438 88.30% 14.7971 1.3927 72.17%
Rel. Error -0.39% 3.24% -0.35% -0.61% 5.47% -0.65%

Analytic 21.4653 0.0124 99.64% 18.7505 0.7023 94.12%
Simulation 21.5210 0.0368 99.40% 19.5314 0.4381 95.71%
Rel. Error -0.26% -66.30% 0.24% -4.00% 60.31% -1.66%

Analytic 7.7162 0.0737 95.91% 7.0983 0.3662 89.71%
Simulation 7.7027 0.0862 95.78% 7.3054 0.3470 92.87%
Rel. Error 0.18% -14.50% 0.14% -2.83% 5.53% -3.40%

DC

Retailer

λ=1.1

λ=1.2

Input Buffer

Output Buffer

λ=1.0

DC

Retailer λ=1.3

Plant

DC

Retailer

λ=1.5

Input Buffer

Output Buffer

λ=1.4

Parameters:

Input Buffer

Output Buffer

Table 3.3: Accuracy of the approximation algorithm for a medium production rate with
backordering
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DC Retailer
R I = 10 R = 30 µ 1  = 3 R DC = 10 R R = 5

Q I = 13 r = 10 µ 2  = 1 Q DC = 20 Q R = 10β S = 1 β P = 1 a = 0.1 β DC = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 13.9536 N/A 99.60% 13.7493 N/A 99.59%
Simulation 13.9634 N/A 99.59% 13.7603 N/A 99.57%
Rel. Error -0.07% N/A 0.01% -0.08% N/A 0.02%

Analytic 22.5378 0.0077 98.67% 21.7468 0.0203 97.48%
Simulation 22.6589 0.0060 98.89% 21.8943 0.0162 97.82%
Rel. Error -0.53% 28.33% -0.22% -0.67% 25.31% -0.35%

Analytic 21.9653 0.0003 99.98% 21.7186 0.0007 99.96%
Simulation 21.9677 0.0005 99.98% 21.7228 0.0014 99.50%
Rel. Error -0.01% -40.00% 0.00% -0.02% -50.00% 0.46%

Analytic 7.5330 0.0942 95.12% 7.3375    0.1220 94.15%
Simulation 7.5329 0.0941 95.11% 7.3379    0.1222 94.13%
Rel. Error 0.00% 0.11% 0.01% -0.01% -0.16% 0.02%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 13.5448 N/A 99.58% 13.3401 N/A 99.57%
Simulation 13.5553 N/A 99.54% 13.3516 N/A 99.50%
Rel. Error -0.08% N/A 0.04% -0.09% N/A 0.07%

Analytic 20.7776 0.0542 95.32% 19.5297 0.1485 91.52%
Simulation 20.9550 0.0438 95.89% 19.7482 0.1219 92.38%
Rel. Error -0.85% 23.74% -0.59% -1.11% 21.82% -0.93%

Analytic 21.4102 0.0018 99.92% 20.9534 0.0071 99.74%
Simulation 21.4294 0.0046 99.87% 21.0112 0.0180 99.63%
Rel. Error -0.09% -60.87% 0.05% -0.28% -60.56% 0.11%

Analytic 7.1409 0.1558 93.07% 6.9384 0.1981 91.84%
Simulation 7.1417 0.1563 93.05% 6.9361 0.2016 91.81%
Rel. Error -0.01% -0.32% 0.02% 0.03% -1.74% 0.03%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 13.1352 N/A 99.56% 12.9301 N/A 99.55%
Simulation 13.1474 N/A 99.46% 12.9402 N/A 99.41%
Rel. Error -0.09% N/A 0.10% -0.08% N/A 0.14%

Analytic 17.8320 0.4265 84.97% 15.3820 1.3327 73.90%
Simulation 18.1074 0.3495 86.29% 15.6731 1.1521 75.37%
Rel. Error -1.52% 22.03% -1.53% -1.86% 15.68% -1.95%

Analytic 20.1064 0.0526 98.81% 18.0850 0.6440 94.24%
Simulation 20.3249 0.0770 98.83% 18.9284 0.3970 95.36%
Rel. Error -1.08% -31.69% -0.02% -4.46% 62.22% -1.17%

Analytic 6.6954 0.2689 90.06% 6.0693 0.7905 82.38%
Simulation 6.7066 0.2815 90.20% 6.3649 0.5566 87.19%
Rel. Error -0.17% -4.48% -0.16% -4.64% 42.02% -5.52%

λ=2.0

λ=1.5 λ=1.6

λ=1.7 λ=1.8

Retailer

Parameters:

Input Buffer

Output Buffer

DC

Retailer

Input Buffer

Output Buffer

DC

Retailer

Plant

Input Buffer

Output Buffer

DC

λ=1.9

Table 3.4: Accuracy of the approximation algorithm for a high production rate with backo-
rdering
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the backorder levels is somehow surprising (ranging from -100% to 137.24%). This is because

backorder levels are very low and approximating very small probabilities does not seem to

be quite successful.

3.3 Analysis of Single-Product Supply Chains with Lost Sales

In this section, we consider the multi-echelon supply chain model with lost sales. Customer

demand arrives to the retailer according to a Poisson process and any excess demand that is

not immediately satisfied from the on-hand inventory is lost. Compared to inventory models

with backordering, models with lost sales has received less attention from the researchers.

Performance evaluation of the multi-echelon supply chain with the lost sales assumption is

quite difficult because of its complex nature and large state-space. Indeed, we next present a

decomposition procedure, which is similar to the decomposition procedure with backordering.

The performance measures of interest are the time averages of inventories and backorders,

and the customer service levels in each facility.

Let us consider the supply chain shown in Figure 3.1. We will decompose the system in

such a way that each subsystem consists of an inventory holding buffer with its own stock

keeping policy. Consequently, we treat each subsystem as a single-location production or

inventory system, which can be analyzed with a modest computational effort. Finally, we

relate the subsystems to each other by using an iterative scheme. In summary, it includes

constructing each subsystem, deriving a set of equations for the unknown parameters, and

linking the subsystems to each other.

We propose to develop a decomposition as shown in Figure 3.2. The first subsystem,

Ω(I), includes the input buffer of the plant in the supply chain. An (RI , QI) inventory

control policy is used to control replenishment process at the input buffer. Node M
′
I models

the effective procurement process and M
′′
I models the effective demand inter-arrival process

at the input buffer. Next, we explain how we construct the nodes M
′
i and M

′′
i ’s and their

respective processing times U
′
i and U

′′
i ’s for i = I, O, DC,R.

In this part, we analyze the effective demand inter-arrival times at subsystems. We

start with the subsystem including the retailer, and continue with the rest in an orderly
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manner. The retailer faces customer demand according to a Poisson process with constant

rate λ. Equivalently, the effective demand inter-arrival times are independent and follow an

exponential distribution.

Due to the lost-sales practice in the supply chain, some portion of the demand at the

retailer is lost. Let λe be the effective demand arrival rate. We compute λe as λe = λ× (1−
Pr(NR = 0)) where NR represents the number of inventories at the retailer.

Demand to the DC arrives from the retailer. Every time the retailer receives kDC = QR

orders, it places a replenishment request to DC. As a result, the orders to the DC follow an

Erlang distribution with phase rate λe and kDC phases due to the fact that orders to the

retailer follow a Poisson process with rate λ.

The effective demand inter-arrival times to the output buffer and input buffer are ana-

lyzed accordingly.

The effective procurement times at each subsystem, in general, includes in addition to

transportation times, possible delays experienced at the corresponding supplying echelons.

The effective procurement times in lost sales case are identical to effective procurement times

in backordering case and are not described here.

We calculate the steady-state probabilities of the underlying Markovian process in each

subsystem. As before, each of the subsystems, Ω(i) for inventory holding buffers i =

I, O, DC, R, is a two-node subsystem with its own stock keeping policy, and phase-type

procurement and demand inter-arrival times.

Steady-state analysis of the subsystems Ω(I), Ω(O), and Ω(DC) are identical to the

steady-state analysis in the backordering case and are not discussed here. The only difference

is in the steady-state analysis of the subsystem Ω(R). Hence, we next present analysis of

Ω(R).

Let {It, Nt, t ≥ 0} be a Markov chain where It represents the phase of U
′
R, and Nt denotes

the level of inventories at the retailer where It = 1, 2, B, and Nt = QR+RR, QR+RR−1, . . .,0.

As in the subsystem Ω(DC) in backordering case, the effective procurement time has a

complex phase structure. We again use a the three-moment MGE-2 approximation (the

parameters are γ1, γ2 and b). The Markov chain has finite number of states. The state-space

and the transitions of the Markov chain are presented in Figure 3.7. Let the probabilities of
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Figure 3.7: Transition diagram for subsystem Ω(R) (lost-sales case)
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the subsystem be:

P̃w(n)|2n=1 =




P (n,RR)

P (n,RR − 1)
...

P (n, 0)




(RR+1)×1

, P̃(B) =




P (B, RR + QR)
...

P (B,RR + 1)




QR×1

.

Corresponding flow-balance equations are:

AP̃(B) = BP̃w(1) + CP̃w(2),

DP̃w(1) = EP̃(B), (3.5)

FP̃w(2) = γ1bP̃w(1),

where

A =




λ

−λ λ

. . .

−λ λ




QR×QR

, B =




γ1(1− b)
. . .

γ1(1− b)

. . .




QR×(RR+1)

,

C =




γ2

. . .

γ2

. . .




QR×(RR+1)

, D =




λ + γ1

−λ λ + γ1

. . .

−λ λ + γ1

−λ γ1




,

F =




λ + γ2

−λ λ + γ2

. . .

−λ λ + γ2

−λ γ2




,

and D, F are (RR + 1)× (RR + 1) matrices. Additionally,

E = [eij ] =





λ, if i = 1, j = QR

0, otherwise,

is a (RR + 1)× (QR) matrix.
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After, representing P̃(B) and P̃w(2) in terms of P̃w(1), and by utilizing Equation 3.5,

we obtain P× P̃w(1) = 0 where

P = D−EA−1B− γ1bEA−1CF−1.

The normalization condition is given as:

p = e(1×(RR+1)) × (I + γ1bF−1) + e(1×(QR)) × (A−1B + γ1bA−1CF−1).

Replacing the first row of matrix P by the row vector p, we solve for

P× P̃w(1) = [1, 0, . . . , 0]T(RR+1)×1.

The rest of the probabilities are given by:

P̃w(2) = γ1bF−1P̃w(1),

P̃(B) = (A−1B + γ1bA−1CF−1)P̃w(1).

Thus, we have analyzed each of the subsystems with its own stock keeping policies and

with phase-type procurement and demand inter-arrival times. We present matrix-recursive

procedures in order to compute the steady-state probabilities of the subsystems. An iterative

algorithm that links the subsystems to each other is presented in the next paragraph.

This is again a fixed-point algorithm that subsystems supply information to each other.

The unknown parameters of the subsystems are ΠO, ∆I , ωO(i), i = 0, 1, 2, . . ., ωDC(i), i =

0, 1, 2, . . ., and U
′′
i , i = O, DC, R. As part of the algorithm, ∆I is obtained from the analysis

of Ω(I) and used in the analysis of Ω(O). Similarly, ωO(i)’s are obtained from the analysis

of Ω(O) and used in the analysis of Ω(DC), and ωDC(i)’s are obtained from the analysis of

Ω(DC) and used in the analysis of Ω(R). On the other hand, U
′′
R is obtained from the analysis

of Ω(R) and used in the analysis of Ω(DC). U
′′
DC , U

′′
O, and ΠO are exploited similarly.

As a result, the algorithm starts by assuming some initial values for the unknown pa-

rameters. It iterates back and forth between all the subsystems. After all the throughputs

are sufficiently close to each other it stops. A summary of the algorithm is given in Table

3.5.

We test the accuracy of our disaggregation/aggregation approximation by comparing its

results against simulation in a number of examples. The purpose of numerical examples is
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1. Initialize: k=1,ΠO = ∆I = ωO(i) = ωDC(i) = 0, for all i = 0, 1, 2, . . ., U
′′
i = λ,

i = O,DC, R, and ε = 10−4.
2. Analyze Ω(I), obtain steady-state probabilities, update ∆I and ξ̄I .
3. Analyze Ω(O), obtain steady-state probabilities, update ΠO, ξ̄O, and ωO(i).
4. Analyze Ω(DC), obtain steady-state probabilities, update ξ̄DC and ωDC(i).
5. Analyze Ω(R), obtain steady-state probabilities, update ξ̄R and U

′′
R.

6. Analyze Ω(DC), obtain steady-state probabilities, update ξ̄DC , and U
′′
DC .

7. Analyze Ω(O), obtain steady-state probabilities, update ξ̄O, and U
′′
O.

8. If max {|ξ̄k
I − ξ̄k−1

I |, |ξ̄k
O − ξ̄k−1

O |, |ξ̄k
DC − ξ̄k−1

DC |, |ξ̄k
R − ξ̄k−1

R |} ≤ ε, stop;
else k = k+1, go to step 2.

Table 3.5: The aggregation algorithm for multi-echelon supply chains with lost sales

to see the ranges of the system parameters where the approximation is accurate and where

it is not. The approximation and the simulation results are given in Tables 3.6, 3.7, and 3.8

for different traffic intensities.

We have three plant-related scenarios: low production rate (Table 3.6), medium produc-

tion rate (Table 3.7),and high production rate (Table 3.8). It is clear from the results that

the percentage deviation gradually increases as the demand rate (system load) increases.
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DC Retailer
R I = 10 R = 30 µ 1  = 1 R DC = 10 R R = 5

Q I = 13 r = 10 µ 2  = 1 Q DC = 20 Q R = 10β S = 1 β P = 1 a = 0.1 β DC = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.8024 N/A 99.99% 15.7037 N/A 99.99%
Simulation 15.8021 N/A 99.99% 15.7046 N/A 99.99%
Rel. Error 0.00% N/A 0.00% -0.01% N/A 0.00%

Analytic 22.8070 0.0009 99.65% 21.9669 0.0041 99.02%
Simulation 22.8147 0.0009 99.68% 21.9764 0.0037 99.06%
Rel. Error -0.03% 0.00% -0.03% -0.04% 10.59% -0.04%

Analytic 23.7963 0.0000 100.00% 23.6801 0.0000 100.00%
Simulation 23.7969 0.0000 100.00% 23.6821 0.0000 100.00%
Rel. Error 0.00% 0.00% 0.00% -0.01% N/A 0.00%

Analytic 9.3016 N/A 99.77% 9.2025 N/A 99.69%
Simulation 9.3017 N/A 99.77% 9.2023 N/A 99.69%
Rel. Error 0.00% N/A 0.00% 0.00% N/A 0.00%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.6053 N/A 99.99% 15.5075 N/A 99.99%
Simulation 15.6059 N/A 99.99% 15.5069 N/A 99.99%
Rel. Error 0.00% N/A 0.00% 0.00% N/A 0.00%

Analytic 20.9086 0.0180 97.37% 19.4458 0.0810 93.39%
Simulation 20.9304 0.0163 97.49% 19.4962 0.0686 93.73%
Rel. Error -0.10% 10.73% -0.12% -0.26% 18.11% -0.36%

Analytic 23.5206 0.0000 100.00% 23.2068 0.0067 99.95%
Simulation 23.5270 0.0002 99.99% 23.2404 0.0018 99.94%
Rel. Error -0.03% -100.00% 0.01% -0.14% 268.62% 0.01%

Analytic 9.1037 N/A 99.59% 9.0040 N/A 99.47%
Simulation 9.1034 N/A 99.59% 9.0036 N/A 99.47%
Rel. Error 0.00% N/A 0.00% 0.00% N/A 0.00%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.4115 N/A 99.99% 15.3948 N/A 99.99%
Simulation 15.4093 N/A 99.99% 15.3191 N/A 99.99%
Rel. Error 0.01% N/A 0.00% 0.49% N/A 0.00%

Analytic 17.2192 0.3884 84.49% 16.6965 0.5187 82.09%
Simulation 17.3397 0.2784 85.31% 13.9497 1.0050 68.87%
Rel. Error -0.69% 39.51% -0.96% 19.69% -48.39% 19.20%

Analytic 22.3156 0.0661 99.14% 22.0056 0.1048 98.72%
Simulation 22.5380 0.0136 99.63% 20.7545 0.0776 98.18%
Rel. Error -0.99% 385.11% -0.49% 6.03% 35.10% 0.55%

Analytic 8.8834 N/A 99.25% 8.7683 N/A 98.99%
Simulation 8.8937 N/A 99.29% 8.7363 N/A 98.81%
Rel. Error -0.12% N/A -0.04% 0.37% N/A 0.18%

λ=0.75

Output Buffer

DC

Retailer

λ=0.6

λ=0.7

Input Buffer

Output Buffer

DC

Retailer

λ=0.65

Plant

DC

Retailer

λ=0.85

Input Buffer

Output Buffer

λ=0.8

Parameters:

Input Buffer

Table 3.6: Accuracy of the approximation algorithm for a low production rate with lost sales
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DC Retailer
R I = 10 R = 30 µ 1  = 2 R DC = 10 R R = 5

Q I = 13 r = 10 µ 2  = 1 Q DC = 20 Q R = 10β S = 1 β P = 1 a = 0.1 β DC = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 15.0183 N/A 99.86% 14.8303 N/A 99.85%
Simulation 15.0203 N/A 99.88% 14.8334 N/A 99.87%
Rel. Error -0.01% N/A -0.02% -0.02% N/A -0.02%

Analytic 23.6094 0.0005 99.81% 22.8507 0.0019 99.46%
Simulation 23.6452 0.0003 99.85% 22.9043 0.0013 99.58%
Rel. Error -0.15% 66.67% -0.04% -0.23% 46.15% -0.12%

Analytic 23.0246 0.0000 100.00% 22.8300 0.0000 100.00%
Simulation 23.0257 0.0000 100.00% 22.8343 0.0000 100.00%
Rel. Error 0.00% 0.00% 0.00% -0.02% 0.00% 0.00%

Analytic 8.5208 N/A 98.61% 8.3317 N/A 98.14%
Simulation 8.5209 N/A 98.61% 8.3328 N/A 98.14%
Rel. Error 0.00% N/A 0.00% -0.01% N/A 0.00%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 14.6460 N/A 99.85% 14.4656 N/A 99.84%
Simulation 14.6480 N/A 99.86% 14.4680 N/A 99.85%
Rel. Error -0.01% N/A -0.01% -0.02% N/A -0.01%

Analytic 21.9702 0.0073 98.61% 20.8791 0.0281 96.66%
Simulation 22.0530 0.0052 98.88% 21.0038 0.0199 97.23%
Rel. Error -0.38% 40.38% -0.27% -0.59% 41.21% -0.59%

Analytic 22.6211 0.0000 100.00% 22.3612 0.0002 99.99%
Simulation 22.6296 0.0000 100.00% 22.3842 0.0005 99.98%
Rel. Error -0.04% N/A 0.00% -0.10% -60.00% 0.01%

Analytic 8.1458 N/A 97.58% 7.9635 N/A 96.96%
Simulation 8.1465 N/A 97.58% 7.9646 N/A 96.97%
Rel. Error -0.01% N/A 0.00% -0.01% N/A -0.01%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 14.2898 N/A 99.84% 14.1271 N/A 99.84%
Simulation 14.2924 N/A 99.84% 14.1222 N/A 99.82%
Rel. Error -0.02% N/A 0.00% 0.03% N/A 0.02%

Analytic 19.4217 0.1087 92.46% 17.4310 0.4077 84.57%
Simulation 19.6205 0.0731 93.57% 17.6510 0.2507 86.11%
Rel. Error -1.01% 48.70% -1.19% -1.25% 62.62% -1.79%

Analytic 21.9387 0.0017 99.93% 21.0427 0.0726 99.16%
Simulation 22.0235 0.0031 99.90% 21.3356 0.0169 99.56%
Rel. Error -0.39% -45.16% 0.03% -1.37% 329.59% -0.40%

Analytic 7.7836 N/A 96.27% 7.5805 N/A 95.22%
Simulation 7.7828 N/A 96.26% 7.5964 N/A 95.44%
Rel. Error 0.01% N/A 0.01% -0.21% N/A -0.23%

λ=1.1

Plant

DC

Retailer

λ=1.5

Input Buffer

Output Buffer

λ=1.4

Parameters:

Input Buffer

λ=1.0

λ=1.2

Input Buffer

Output Buffer

DC

Retailer λ=1.3

Output Buffer

DC

Retailer

Table 3.7: Accuracy of the approximation algorithm for a medium production rate with lost
sales
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DC Retailer
R I = 10 R = 30 µ 1  = 3 R DC = 10 R R = 5

Q I = 13 r = 10 µ 2  = 1 Q DC = 20 Q R = 10β S = 1 β P = 1 a = 0.1 β DC = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 14.0903 N/A 99.61% 13.9211 N/A 99.60%
Simulation 14.1013 N/A 99.61% 13.9328 N/A 99.60%
Rel. Error -0.08% N/A 0.00% -0.08% N/A 0.00%

Analytic 22.9957 0.0042 99.13% 22.4157 0.0093 98.50%
Simulation 23.1407 0.0024 99.41% 22.5938 0.0053 98.95%
Rel. Error -0.63% 75.00% -0.28% -0.79% 75.47% -0.45%

Analytic 22.1138 0.0002 99.99% 21.9274 0.0004 99.98%
Simulation 22.1203 0.0002 99.99% 21.9413 0.0004 99.98%
Rel. Error -0.03% 0.00% 0.00% -0.06% 0.00% 0.00%

Analytic 7.6111 N/A 95.54% 7.4412    N/A 94.75%
Simulation 7.6107 N/A 95.54% 7.4415    N/A 94.74%
Rel. Error 0.01% N/A 0.00% 0.00% N/A 0.01%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 13.7567 N/A 99.59% 13.5972 N/A 99.59%
Simulation 13.7718 N/A 99.58% 13.6082 N/A 99.55%
Rel. Error -0.11% N/A 0.01% -0.08% N/A 0.04%

Analytic 21.7709 0.0202 97.49% 21.0382 0.0432 95.94%
Simulation 21.9873 0.0122 98.18% 21.2934 0.0259 96.92%
Rel. Error -0.98% 65.57% -0.70% -1.20% 66.80% -1.01%

Analytic 21.7265 0.0007 99.96% 21.4954 0.0014 99.93%
Simulation 21.7479 0.0008 99.97% 21.5380 0.0017 99.94%
Rel. Error -0.10% -12.50% -0.01% -0.20% -17.65% -0.01%

Analytic 7.2755 N/A 93.91% 7.1140 N/A 93.02%
Simulation 7.2762 N/A 93.90% 7.1159 N/A 93.03%
Rel. Error -0.01% N/A 0.01% -0.03% N/A -0.01%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 13.4430 N/A 99.58% 13.2960 N/A 99.57%
Simulation 13.4545 N/A 99.52% 13.3035 N/A 99.49%
Rel. Error -0.09% N/A 0.06% -0.06% N/A 0.08%

Analytic 20.1887 0.0912 93.62% 19.1951 0.1894 90.30%
Simulation 20.4906 0.0540 94.96% 19.5549 0.1088 92.11%
Rel. Error -1.47% 68.89% -1.41% -1.84% 74.08% -1.97%

Analytic 21.2057 0.0034 99.86% 20.8094 0.0108 99.65%
Simulation 21.2845 0.0039 99.87% 20.9692 0.0092 99.74%
Rel. Error -0.37% -12.82% -0.01% -0.76% 17.39% -0.09%

Analytic 6.9557 N/A 92.09% 6.7974 N/A 91.08%
Simulation 6.9584 N/A 92.12% 6.8028 N/A 91.13%
Rel. Error -0.04% N/A -0.03% -0.08% N/A -0.05%

Plant

Input Buffer

Output Buffer

DC

λ=1.9

Retailer

Parameters:

Input Buffer

Output Buffer

DC

Retailer

Input Buffer

Output Buffer

DC

Retailer

λ=2.0

λ=1.5 λ=1.6

λ=1.7 λ=1.8

Table 3.8: Accuracy of the approximation algorithm for a high production rate with lost
sales
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Chapter 4

Designing the Supply Chain

In this chapter, we propose an optimization procedure to help design the supply chain by

calculating optimal parameter values minimizing the expected total cost. Optimal design of

the material flow system is part of the overall planning and operation of a supply chain. The

optimal configuration specifies not only how much and where to hold inventory but also how

to move inventory across the supply chain. Following this, we examine the attributes that

drive the overall performance of the supply chain.

In multi-echelon supply chains, optimal production and inventory control policies have

quite complex structures. This is because the control policy for a given echelon has a

considerable impact on the other echelons. In fact, the general practice is to restrict the

control policies to a class of general operating schemes. All echelons, for example, apply

reorder point/order quantity inventory control policies. Optimization in this sense is to

coordinate such operating schemes in the best possible way.

The focus of this chapter is on the multi-echelon supply chain illustrated in Figure 3.1.

Production at the manufacturing plant is controlled by a continuous review (R, r) policy.

Material flow between stages is achieved by reorder point/order quantity inventory control

policies. So far, we have achieved a fast aggregation/disaggregation approximation method

that provides us with a set of key performance measures in the supply chain such as the

time averages of inventory and backorder levels, as well as the customer service levels. Here,

we use these measures to construct an optimization framework that effectively address the

possible configuration of control policies.
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4.1 Problem Formulation

The objective of optimization in our problem is to determine appropriate production and

inventory policy parameters. A viable approach to solve the optimization problem is to

employ a cost-minimizing objective function that assigns penalties for holding inventory and

shortages. In addition, a penalty per set-up or ordering is charged to avoid excessive set-ups

or replenishment orders, respectively.

Let us introduce the following notation:

λ : demand rate at the retailer,

Ki : set-up or ordering cost per replenishment order at echelon i, i = I, O, DC,R

hi : unit holding cost per unit time at echelon i, i = I, O, DC, R

gi : unit backordering cost per unit time at echelon i, i = O,DC, R

pi : shortage cost per unit short at echelon i, i = I, O,DC, R

TCi steady-state expected total cost per unit time at echelon i, i = I, O, DC, R

TC : TCI(RI , QI) + TCO(R, r) + TCDC(RDC , QDC) + TCR(RR, QR).

The expected total cost for subsystem i includes set-up or ordering cost, holding and

backordering costs per unit time, and shortage cost per unit short. Thus, the expected total

cost per unit time can be written as

TCi =
Kiλ

Qi

+ hiN̄i + giB̄i + piλPri(backorder),

where N̄i denotes long-run average number of inventories at echelon i, i = I, O, DC,R,

B̄i denotes the long-run average number of backorders at echelon i, i = O, DC, R, and

Pri denotes the probability of encountering a shortage upon order arrival at echelon i =

I, O, DC, R.

Optimal configuration here constitutes the best trade-off among set-up or ordering, hold-

ing, backordering and shortage costs. The overall goal is to minimize the total expected

system-wide costs, TC, throughout the supply chain, and find the corresponding decision

variables (RI , QI), (R, r), (RDC , QDC), (RR, QR).

We can construct other optimization problems as well. One of them is an optimiza-

tion framework that minimizes total system-wide costs (ordering and holding costs) while
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conforming a prescribed customer service level. Boyaci and Gallego [26] relates this service-

constrained model to the traditional model with backorder costs and shows that it is possible

to prespecify backorder costs to achieve desired service levels. Another problem is an opti-

mization scheme that maximizes customer service level subject to a given system capacity

constraint, among others. However, we address only the first problem in this thesis.

4.2 An Approximate Optimization Procedure

In this section, we propose an iterative optimization procedure, which iterates back and forth

among the subsystems. In each iteration, it uses the approach developed in the previous

sections to evaluate the system performance. The basic idea of the optimization procedure

is that we optimize the original system as we optimize the subsystems while the iterative

procedure continues. That is, the total system cost is reduced by reducing the individual

subsystem costs.

In fact, the optimization procedure both updates the values of control parameters and the

unknown parameters of the decomposition approach. To be more precise, as the procedure

passes through the first subsystem, Ω(I), it updates the unknown parameter ∆I as well as

control parameters (RI , QI) so that the first subsystem cost is reduced. Then, the procedure

proceeds with the second subsystem, Ω(O). In a similar vein, it updates ΠO, ωO(i)’s, and

the policy values (R, r) so that the second subsystem cost is also decreased, and so on. The

algorithm continues in this way until the convergence criterion is achieved and there is no

further improvement in the subsystem costs.

In each subsystem, we use a direct search method to improve the subsystem cost. These

methods are heuristic techniques and use only function values to improve the current solution.

Since our procedure provides us the function values (subsystem costs) in a fast pace, direct

search methods are suitable for our problem. In particular, we use a modified Hooke-Jeeves

pattern search method. The Hooke-Jeeves method has been extensively used to incorporate

the history of a sequence of iterations into the generation of a new search direction [68, 90].

The Hooke-Jeeves method performs two types of search. An exploratory search examines

the local behavior of the function being optimized. Then, a pattern move uses the information
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generated in the exploration search to accelerate the convergence of the method.

The exploratory search proceeds from an initial point to each coordinate direction by

a specified step size. If the function value improves, the move is considered successful and

the current point is retained. Otherwise, the step is replaced by a step in the opposite

direction and the resulting point is retained depending upon whether it succeeds or fails. The

exploratory search continues until all coordinate directions are investigated. The resulting

point is termed as a base point. Then, the pattern move starts from the current base point

and moves along the direction from the previous to the current base point. If the function

value improves, this new point is termed as the temporary base point. An exploratory search

is conducted starting from the temporary base point. If the exploratory search finds a point

with an improved function value, the temporary base point is accepted as the new base

point. If not, the search resumes to the previous base point for a new exploratory search.

The overall search terminates whenever this exploratory search fails.

The search procedure can be made more efficient if we consider the special property of the

underlying Markov chain of the subsystems. We have eight parameters in the search space,

namely (RI , QI), (R, r), (RDC , QDC), and (RR, QR). In our case, the second subsystem,

Ω(O), possesses the following important property: probabilities remain the same for fixed

Q = R − r as explained in [6]. For fixed Q = R − r, the transition rates of the Markov

chain remain the same no matter what the values R and r are. So, a one-dimensional search

procedure is sufficient for each Q and R. This property also holds for subsystems Ω(DC) and

Ω(R). That is, for fixed QDC and QR the long-run probabilities continue remain the same

for subsystems Ω(DC) and Ω(R), respectively. Therefore, once the probabilities obtained

for a given QDC and QR, we can evaluate the cost function for all pairs of (RDC , QDC) and

(RR, QR), no matter what the values of RDC and RR are. These special characteristics of

the subsystems substantially reduce the computational effort required for the optimization

procedure.

Following this, we develop two different search schemes. First one will use only modified

exploratory moves of the Hooke-Jeeves method, which we call single step search. Second one

will use both modified exploratory and pattern moves all the way to the optimal solution,

which we call optimized steps search. We investigate the convergence and stability issues of
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both search schemes.

To sum up, the optimization procedure starts from an initial point in the feasible region.

As the iterative procedure goes back and forth among the subsystems, modified Hooke-Jeeves

method perturbs the production and inventory control parameters of the subsystems so that

the respective costs are improved. During these steps, we exploit the special property of the

underlying Markov chains of the subsystems to reduce the required computational effort in

the search procedure. In the next sections, we give a detailed description of the optimization

procedure both with single step search and optimized step search.

4.2.1 Optimal Configuration with Single Step Search

In this section, we consider the optimization procedure only exploiting the modified ex-

ploratory moves of the Hooke-Jeeves method. The procedure starts from an initial point in

the feasible region. As it iterates throughout the subsystems, modified exploratory moves of

the Hooke-Jeeves method perturbs the production and inventory control parameters.

In a given subsystem, the modified exploratory moves search all the directions around

a given point and chooses the one that has the minimum subsystem cost. Our procedure

starts from the first subsystem, Ω(I). As it passes through the first subsystem, it updates

the unknown parameter ∆I as well as the control parameters, (RI , QI), so that the cost

of the first subsystem is decreased. The exploratory search of the Hooke-Jeeves method

uses the directions d1 = (1, 0) and d2 = (0, 1). The initial base point is (RI , QI), and its

function value is its corresponding subsystem cost. The exploratory search first checks the

cost of the subsystem at (RI , QI) + d1. If the cost is lower, it continues with the other

direction, d2, proceeding from the point (RI , QI) + d1 and its corresponding cost. If not, it

considers the opposite direction and checks the cost at (RI , QI) − d1. Again, if the cost is

lower, it continues with the direction, d2, proceeding from the point (RI , QI) − d1 and its

corresponding cost. If not, the method continues with the direction, d2, proceeding from the

point (RI , QI) and its corresponding function value, etc. In general, the method continues

to search other directions until all of them are exhausted. On the whole, the exploratory

search fails to consider all the adjacent points of (RI , QI).

The exploratory search is modified so that it searches all the adjacent points of (RI , QI)
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and selects the one that has the minimum subsystem cost. The modified exploratory search

uses the directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and d4 = (1,−1). The initial base

point is (RI , QI) and its function value is its corresponding subsystem cost. The search

checks the cost at (RI , QI) + d1, (RI , QI) − d1, (RI , QI) + d2, . . .,(RI , QI) − d4. The one

with the minimum subsystem cost is selected. In fact, there are eight adjacent points of

(RI , QI) and the underlying Markov chain need to be solved eight times for the long-run

probabilities. Note that, the modified exploratory search is utilized only once, not all the

way to the optimal solution.

The optimization procedure continues with the other subsystems. As the procedure

passes through the second subsystem, Ω(O), it updates the unknown parameters ΠO and

ωO(i)’s as well as the control parameters, (R, r), so that the cost of the second subsystem

is decreased. Again, it uses the modified exploratory moves of the Hooke-Jeeves method.

The exploratory search again uses the directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and

d4 = (1,−1). The initial point is (R, r), and the function value is its corresponding subsystem

cost. The search checks the costs of the subsystem at (R, r) + d1, (R, r) − d1, (R, r) + d2,

. . .,(R, r)− d4. It chooses the one with the minimum subsystem cost.

In the second subsystem, the exploratory search is more efficient due to the special

property of the underlying Markov chain. Since, all the probabilities remain same for fixed

Q = R − r, the underlying Markov chain need to be solved only once for (R + 1, r + 1),

(R, r) and (R − 1, r − 1), once for (R + 1, r), (R, r − 1), and once for (R, r + 1), (R − 1, r).

There are two more cases to be considered (R − 1, r + 1) and (R + 1, r − 1). As a result,

the underlying Markov chain need to be solved only five times for the long-run probabilities.

Next, the optimization procedure proceeds with the third subsystem.

As the optimization procedure passes through the third subsystem, Ω(DC), the modified

exploratory search uses the directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and d4 = (1,−1).

The starting base point is (RDC , QDC), and the function value is its corresponding subsystem

cost. The search checks the cost at (RDC , QDC) + d1, (RDC , QDC) − d1, (RDC , QDC) + d2,

. . .,(RDC , QDC)− d4. The point with the minimal subsystem cost is selected.

In a similar vein, the special property of the underlying Markov chain makes the ex-

ploratory search much more efficient. The underlying Markov chain need to be solved
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only once for the (RDC + 1, QDC + 1), (RDC , QDC + 1) and (RDC − 1, QDC + 1), once

for (RDC + 1, QDC), (RDC , QDC), (RDC − 1, QDC), and once for (RDC + 1, QDC − 1),

(RDC , QDC − 1), (RDC − 1, QDC − 1). Consequently, the underlying Markov chain need

to be solved only three times for the long-run probabilities.

Finally, the optimization procedure passes through the fourth subsystem, Ω(R). The

exploratory search checks the cost of the subsystem at (RR, QR) + d1, (RR, QR) − d1,

(RR, QR) + d2, . . .,(RR, QR)− d4 where d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and d4 = (1,−1).

It selects the one with the minimum subsystem cost.

Again, the underlying Markov chain need to be solved only three times for the long-run

probabilities due to the special property of the underlying Markov chain. The underlying

Markov chain need to be solved only once for (RR+1, QR+1), (RR, QR+1), (RR−1, QR+1),

once for (RR + 1, QR), (RR, QR), (RR− 1, QR), and once for (RR + 1, QR− 1), (RR, QR− 1),

(RR−1, QR−1). In the forward iteration, the modified exploratory search has been utilized

only once, not all the way to the optimal solution.

When the optimization procedure completes a forward iteration, it starts a backward

iteration as well. In the backward iteration, it passes only through the third subsystem,

Ω(DC), and the second subsystem, Ω(O). As the procedure passes through the third sub-

system, it utilizes both the modified exploratory and the pattern moves of the Hooke-Jeeves

method in contrast to the forward iteration. The underlying reason of using both moves is

to extend the search space. The procedure needs this extension because if the value of QR is

changed in the forward iteration, the usual modified exploratory search does not check the

values of QDC that are multiples of QR. If, for example, the optimal value of QDC is equal

to 2QR, the regular search space does not include the point 2QR. In a way, the backward

iteration is a procedure that adopts the changes in the forward iteration.

The exploratory search uses the directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and d4 =

(1,−1). The initial base point is (RDC , QDC) with its corresponding subsystem cost. The

search checks the cost of the subsystem at (RDC , QDC)+d1, (RDC , QDC)−d1, (RDC , QDC)+

d2, . . .,(RDC , QDC) − d4. It selects the one with the minimum subsystem cost. Let us

suppose that the point (RDC + 1, QDC + 1) has the minimal value. Now, this point is

termed as the current base point. The pattern move starts from the current base point
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(RDC + 1, QDC + 1) and moves along the direction (RDC + 1, QDC + 1)− (RDC , QDC). If the

resulting point, (RDC +2, QDC +2), has an improved function value, this new point is termed

as the temporary base point. An exploratory search is conducted around the temporary base

point (RDC + 2, QDC +2). If the exploratory search finds a point with an improved function

value, the temporary base point, (RDC + 2, QDC + 2), is accepted as the new base point. If

not, the search resumes to the previous base point, (RDC +1, QDC +1), for a new exploratory

search. The overall search terminates whenever this exploratory search fails. Note that, the

exploratory search utilizes both searches all the way to the optimal solution.

As the procedure passes through the second subsystem, Ω(O), in the backward iteration,

it utilizes both the modified exploratory and the pattern moves of the Hooke-Jeeves method

as well. Again, the reason for using both searches is to be adaptive to the parameter changes

in the previous steps. The exploratory search again uses the directions d1 = (1, 0), d2 = (0, 1),

d3 = (1, 1), and d4 = (1,−1). The initial base point is (R, r), and the function value is its

corresponding subsystem cost. The search checks the costs of the subsystem at (R, r) + d1,

(R, r) − d1, (R, r) + d2, . . .,(R, r) − d4. It chooses the one with the minimum subsystem

cost. Let us suppose that the point (R + 1, r + 1) has the minimum cost, which makes it the

next base point. The pattern move starts from (R + 1, r + 1) and moves along the direction

(R + 1, r + 1) − (R, r). So, if the resulting point, say (R + 2, r + 2), has an improved cost,

this new point is termed as the temporary base point. An exploratory search is conducted

around the temporary base point (R + 2, r + 2). If the exploratory search finds a point with

an improved cost, the temporary base point, (R+2, r+2), is accepted as the new base point.

If not, the search resumes at the previous base point, (R + 1, r + 1), for a new exploratory

search. The overall search ends whenever the exploratory search fails.

The iterative optimization procedure stops whenever all the production and inventory

control parameters converge to their final values. In case there is cyclical behavior, we stop

the algorithm after two identical cycles accepting the current solution. A summary of the

algorithm is given in Table 4.1.
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1. Initialize: k=1, ΠO = ∆I = 0, ωO(i) = ωDC(i) = 0, for all i = 0, 1, 2, . . ., ε = 10−4,
and (Rk

I , Q
k
I ), (R

k, rk), (Rk
DC , Qk

DC), (Rk
R, Qk

R).
2. Iteration k
i. Perform exploratory moves on Ω(I), update (RI , QI), ∆I and ξ̄I .
ii. Perform exploratory moves on Ω(O), update (R, r), ωO(i).
iii. Perform exploratory moves on Ω(DC), update (RDC , QDC), ωDC(i).
iv. Perform exploratory moves on Ω(R), update (RR, QR), ξ̄R.
v. Perform exploratory and pattern moves on Ω(DC), update (RDC , QDC), ξ̄DC .
vi. Perform exploratory and pattern moves on Ω(O), update (R, r), ΠO and ξ̄O.
3. If max {|ξ̄k

I − ξ̄k−1
I |, |ξ̄k

O − ξ̄k−1
O |, |ξ̄k

DC − ξ̄k−1
DC |, |ξ̄k

R − ξ̄k−1
R |} ≤ ε, and

max {|(Rk
i , Q

k
i )− (Rk−1

i , Qk−1
i )|, |(Rk, rk)− (Rk−1, rk−1)|} ≤ 0 for all i, i = I, DC, R,

stop; else let k = k+1, and go to step 2.

Table 4.1: The single step optimization procedure for the multi-echelon supply chain

4.2.2 Optimal Configuration with the Optimized Step Search

In this section, we consider the optimization procedure exploiting both the modified ex-

ploratory moves and pattern moves of the Hooke-Jeeves method all the way to the optimal

solution. The procedure starts from an initial point in the feasible region. As it iterates

throughout the subsystems, modified exploratory search and pattern moves of the Hooke-

Jeeves method perturbs the production and inventory control parameters of the subsystems.

The procedure starts from the first subsystem, Ω(I). As the procedure passes through the

first subsystem, it updates the unknown parameter ∆I as well as the policy values, (RI , QI),

so that the cost of the subsystem is decreased. It uses both the modified exploratory search

and pattern moves of the Hooke-Jeeves method to check for possible improvement directions

and chooses the one with the lowest subsystem cost.

The modified exploratory search uses the directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1),

and d4 = (1,−1). The initial point is (RI , QI), and its function value is its corresponding

subsystem cost. The search checks the cost of the subsystem at (RI , QI)+ d1, (RI , QI)− d1,

(RI , QI) + d2, . . .,(RI , QI)− d4. It selects the one with the minimum subsystem cost.

Let us assume that the point (RI + 1, QI + 1) has the minimum function value. This

point is termed as the base point. The pattern move starts from (RI + 1, QI + 1) and moves

along the direction (RI + 1, QI + 1) − (RI , QI). If the resulting point, (RI + 2, QI + 2),

has an improved function value, this new point is termed as the temporary base point. An
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exploratory search is conducted around the temporary base point (RI + 2, QI + 2). If the

exploratory search finds a point with an improved function value, the temporary base point,

(RI +2, QI +2), is accepted as the new base point. If not, the search resumes to the previous

base point, (RI + 1, QI + 1), for a new exploratory search. The overall search terminates

whenever this exploratory search fails.

The optimization procedure continues with the other subsystems. As the iterative pro-

cedure passes through the second subsystem, Ω(O), it utilizes both the exploratory and the

pattern moves all the way to the optimal solution. The exploratory search again uses the

directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and d4 = (1,−1). The initial point is (R, r),

and the function value is its corresponding subsystem cost. The search checks the costs of

the subsystem at (R, r) + d1, (R, r)− d1, (R, r) + d2, . . .,(R, r)− d4. It selects the one with

the minimum subsystem cost. Let us suppose that the point (R+1, r +1) has the minimum

cost, which makes it the next base point. The pattern move starts from (R + 1, r + 1) and

moves along the direction (R+1, r +1)− (R, r). So, if the resulting point, say (R+2, r +2),

has an improved cost, this new point is termed as the temporary base point. An exploratory

search is conducted around the temporary base point (R+2, r+2). If the exploratory search

finds a point with an improved cost, the temporary base point, (R + 2, r + 2), is accepted as

the new base point. If not, the search resumes at the previous base point, (R + 1, r + 1), for

a new exploratory search. The overall search ends whenever the exploratory search fails.

In a similar vein, the procedure passes through the third and fourth subsystems. It utilizes

both the exploratory and the pattern moves in the third subsystem. However, it utilizes only

the exploratory moves in the fourth subsystem. This is because, if the procedure employs

both the exploratory and pattern moves in the fourth subsystem, the policy values in the

fourth subsystem, (RR, QR), can change considerably. Consequently, the search procedure

employed in the backward iteration can not adopt the changes in the forward iteration.

When the optimization procedure completes a forward iteration, it starts a backward

iteration. In the backward iteration, it passes only through the third subsystem, Ω(DC), and

the second subsystem, Ω(O). Again, as the procedure passes through the third subsystem,

Ω(DC), it utilizes both the modified exploratory and the pattern moves of the Hooke-Jeeves

method.
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As the procedure passes through the second subsystem, Ω(O), in the backward iteration,

again it utilizes both the exploratory and the pattern moves. It uses both to be adaptive to

the parameter changes in the previous steps.

The iterative optimization procedure stops whenever all the production and inventory

control parameters converge to their final values. In case there is cyclical behavior, we stop

the algorithm after two identical cycles accepting the current solution. A summary of the

algorithm is given in Table 4.2.

1. Initialize: k=1, ΠO = ∆I = 0, ωO(i) = ωDC(i) = 0, for all i = 0, 1, 2, . . ., ε = 10−4,
and (Rk

I , Q
k
I ), (R

k, rk), (Rk
DC , Qk

DC), (Rk
R, Qk

R).
2. Iteration k
i. Perform exploratory and pattern moves on Ω(I), update (RI , QI), ∆I and ξ̄I .
ii. Perform exploratory pattern moves on Ω(O), update (R, r), ωO(i).
iii. Perform exploratory pattern moves on Ω(DC), update (RDC , QDC), ωDC(i).
iv. Perform exploratory moves on Ω(R), update (RR, QR), ξ̄R.
v. Perform exploratory and pattern moves on Ω(DC), update (RDC , QDC), ξ̄DC .
vi. Perform exploratory and pattern moves on Ω(O), update (R, r), ΠO and ξ̄O.
3. If max {|ξ̄k

I − ξ̄k−1
I |, |ξ̄k

O − ξ̄k−1
O |, |ξ̄k

DC − ξ̄k−1
DC |, |ξ̄k

R − ξ̄k−1
R |} ≤ ε, and

max {|(Rk
i , Q

k
i )− (Rk−1

i , Qk−1
i )|, |(Rk, rk)− (Rk−1, rk−1)|} ≤ 0 for all i, i = I, DC, R,

stop; else let k = k+1, and go to step 2.

Table 4.2: The optimized step optimization procedure for the multi-echelon supply chain

4.3 Numerical Experience

In this section, we address a number of planning and control issues in the multi-echelon

supply chain considered in this chapter. We present the path of convergence on some of the

numerical examples to provide insight into both the single step (Tables 4.3, 4.4) and the

optimized step (Tables 4.5, 4.6) optimization procedures, and the optimal configuration of

production and inventory control policies. For instance, in Table 4.3, the upper part shows

the demand rate, production capacity at the plant, transportation times, and cost parameters

at the input buffer, output buffer, DC and retailer. In the following part, the first row shows

the initial values of the inventory and production control parameters and their respective

subsystem costs. For example, the value of (QI , RI) is equal to (13, 10) in the input buffer,

and the value of (R, r) is equal to (30, 10) in the output buffer, etc. In addition, the subsystem
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 0 25 20 15λ=1.5 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 3.0495 12.8896 17.4546 11.8722 48.6952 89.71%
12 9 31 11 20 11 11 6 2.9038 12.9424 15.6534 11.637 43.1367

35 13 22 12 13.0352 16.3958 43.9718
11 9 35 13 22 12 12 5 2.8447 13.0659 16.4209 10.9298 43.2613

36 12 24 1 13.2773 12.2116 39.2634
10 8 37 13 24 1 12 5 2.8257 13.5157 12.7513 10.9966 40.0893

37 13 24 1 13.5157 12.7513 40.0893
10 8 37 13 24 1 12 5 2.8213 13.519 12.7597 11.0009 40.1009

37 13 24 1 13.519 12.7597 40.1009
10 8 37 13 24 1 12 5 2.8213 13.519 12.7597 11.0009 40.1009

37 13 24 1 13.519 12.7597 40.1009
C.S.L

10 8 37 13 24 1 12 5 2.8213 13.519 12.7597 11.0009 40.1009 93.51%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table 4.3: Convergence path of the optimization procedure with single steps (medium pro-
duction rate)
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 30 25 20 15λ=1.5 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 6.5111 12.8839 17.4397 11.8606 48.6952 89.71%
14 9 31 11 20 11 11 6 6.2612 12.8844 15.5804 11.5368 46.2627

35 13 22 12 12.9888 16.3566 47.1433
15 8 35 13 22 12 12 5 6.0874 13.0987 16.4442 10.9708 46.6011

37 13 24 1 13.3082 12.2814 42.6478
16 8 37 13 24 1 11 5 5.9705 13.2861 12.204 10.7301 42.1907

35 13 22 1 13.0752 12.1223 41.8981
17 8 35 13 22 1 12 5 5.8708 13.0541 12.104 10.9154 41.9443

36 12 24 1 13.2652 12.1867 42.2382
18 7 37 13 24 1 12 5 5.8029 13.4016 12.4706 10.8595 42.5346

37 13 24 1 13.4016 12.4706 42.5346
19 7 37 13 24 1 12 5 5.7361 13.3771 12.4125 10.8323 42.358

37 13 24 1 13.3771 12.4125 42.358
20 7 37 13 24 1 12 5 5.6901 13.3536 12.3577 10.807 42.2085

37 13 24 1 13.3536 12.3577 42.2085
21 7 37 13 24 1 11 5 5.6581 13.3327 12.3094 10.7834 42.0835

35 13 22 1 13.1249 12.2604 41.8267
22 7 35 13 22 1 12 5 5.6335 13.1049 12.2456 10.9786 41.9625

37 13 24 1 13.3139 12.2946 42.2207
23 7 37 13 24 1 11 5 5.632 13.296 12.2261 10.7411 41.8952

35 13 22 1 13.0857 12.1513 41.6101
24 7 35 13 22 1 12 5 5.6234 13.0705 12.1492 10.9354 41.7784

37 13 24 1 13.2817 12.2212 42.0616
24 7 37 13 24 1 11 5 5.6318 13.2807 12.1918 10.724 41.8283

35 13 22 1 13.0694 12.1063 41.5314
24 7 35 13 22 1 12 5 5.6235 13.0704 12.1491 10.9353 41.7783

37 13 24 1 13.2816 12.2211 42.0616
24 7 37 13 24 1 11 5 5.6318 13.2807 12.1918 10.724 41.8283

35 13 22 1 13.0694 12.1063 41.5314
C.S.L

24 7 37 13 24 1 12 5 5.6281 13.2817 12.194 10.7338 41.8376 94.34%

24 7 35 13 22 1 11 5 5.6268 13.0694 12.1462 10.9535 41.7959 93.01%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

DC Retailer CostI.B. O.B. 

Table 4.4: Convergence path of the optimization procedure with single steps (medium pro-
duction rate)
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cost of the input buffer is 3.0495 and the subsystem cost of the output buffer is 12.8896,

etc. The initial expected total system cost is 48.6952 and the customer service level at the

retailer is 89.71%. Following rows show the revised values as the optimization algorithm

passes through the subsystems. In particular, the second row shows the updated values

during the first forward iteration and their respective subsystem costs. As the optimization

procedure passes through the first subsystem, Ω(I), (QI , RI) is updated to (12, 9) in the

input buffer, and (R, r) is updated to (31, 11) in the output buffer, etc. The respective

subsystem cost of the input buffer is 2.9038 and the subsystem cost of the output buffer is

12.9424, etc. The resulting expected total system cost is 43.1367. Note that, the procedure

utilized a single step towards the optimal solution through the forward iteration. The third

row shows the updated values during the first backward iteration. As the iterative procedure

passes through the third subsystem, Ω(DC), (QDC , RDC) is updated to (22, 12) in the DC,

and (R, r) is updated to (35, 13) in the output buffer. The respective subsystem cost of the

DC is 16.3958 and the subsystem cost of the output buffer is 13.0352. The resulting expected

total system cost is 43.9718. Note that, the procedure utilized the single step optimization

procedure through the forward iteration and optimized step procedure all the way to the

optimal solution through the backward iteration. Other rows are interpreted accordingly.

As can be seen from Table 4.3, the expected total system cost has been decreased by

almost 18% and the customer service level has been increased by more than 4%. A similar

conclusion can be drawn from Table 4.4. We get the same results by using the optimized

step search procedure 4.5 in a fewer number of steps. However, optimized step search has

failed to converge in a number of examples concluding that the single step procedure, at

the expense of more iterations, is a more robust method than the optimized step procedure.

Additionally, we have observed much higher gain if we started the optimization procedure

from other initial points 4.6. Also, for different production rates, we include the paths of

convergence both using single step search as well as optimized step search in Appendix B.

We include additional paths of convergence for varying demand levels.

Within the given input settings, our results show that the optimal QDC value is always a

multiple of QR value. This is intuitive and consistent with existing results. If, on the other

hand, the reverse is true, the DC will carry unnecessary inventories resulting in excessive
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 30 25 20 15λ=1.5 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 6.5111 12.8839 17.4397 11.8606 48.6952 89.71%
24 7 33 13 20 11 11 5 5.6266 12.8952 15.5682 11.294 45.3841

35 13 22 12 13.0677 16.4189 46.4072
24 7 35 13 22 12 12 5 5.6308 13.0681 16.4225 10.9325 46.0538

37 13 24 1 13.2795 12.2162 42.0589
24 7 37 13 24 1 11 5 5.6318 13.2807 12.1918 10.724 41.8283

35 13 22 1 13.0694 12.1063 41.5314
24 7 35 13 22 1 12 5 5.6235 13.0704 12.1491 10.9353 41.7783

37 13 24 1 13.2816 12.2211 42.0616
24 7 37 13 24 1 11 5 5.6318 13.2806 12.1918 10.724 41.8282

35 13 22 1 13.0694 12.1063 41.5314
24 7 35 13 22 1 12 5 5.6235 13.0704 12.1491 10.9353 41.7783

37 13 24 1 13.2817 12.2211 42.0616
24 7 37 13 24 1 11 5 5.6318 13.2807 12.1918 10.724 41.8283

35 13 22 1 13.0694 12.1063 41.5314
C.S.L

24 7 37 13 24 1 12 5 5.6281 13.2817 12.194 10.7338 41.8376 94.34%

24 7 35 13 22 1 11 5 5.6268 13.0694 12.1462 10.9535 41.7959 93.01%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table 4.5: Convergence path of the optimization procedure with optimized steps (medium
production rate)
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 30 25 20 15λ=1.5 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
22 20 15 12 10 15 5 20 7.7476 23.7671 39.2231 137.6181 208.3559 0.00%
23 7 25 16 10 16 6 21 5.6107 13.5541 19.2399 42.8631 81.2678

27 16 12 14 13.1224 17.2453 78.8416
23 7 27 16 12 13 7 20 5.6195 13.1248 16.9384 20.0623 55.7451

28 15 14 11 12.9241 16.4639 55.07
24 7 28 15 14 8 8 19 5.6233 12.911 15.3226 18.5828 52.4397

30 15 16 9 12.847 14.7016 51.7547
24 7 30 15 16 9 7 18 5.626 12.8504 14.7007 17.6729 50.85

28 14 14 8 12.7086 15.2882 51.2957
24 7 28 14 14 8 8 17 5.6143 12.7115 15.352 17.3769 51.0546

30 14 16 9 12.6969 14.7198 50.4079
24 7 30 14 16 9 8 16 5.6259 12.6942 14.7008 16.4023 49.4232

30 14 16 9 12.6942 14.7008 49.4232
24 7 30 14 16 9 8 15 5.6212 12.6969 14.7087 15.784 48.8108

30 14 16 9 12.6969 14.7087 48.8108
24 7 30 14 16 9 8 14 5.6212 12.6969 14.7088 15.2029 48.2298

30 14 16 9 12.6969 14.7088 48.2298
24 7 30 14 16 9 9 13 5.6212 12.6969 14.7088 14.6175 47.6444

32 14 18 10 12.7686 14.8879 47.8952
24 7 32 14 18 10 9 12 5.6279 12.7686 14.8786 13.8527 47.1278

32 14 18 10 12.7686 14.8786 47.1278
24 7 32 14 18 10 9 11 5.6235 12.7706 14.8824 13.2955 46.572

32 14 18 10 12.7706 14.8824 46.572
24 7 32 14 18 10 9 10 5.6235 12.7706 14.8824 12.8041 46.0806

32 14 18 10 12.7706 14.8824 46.0806
24 7 32 14 18 10 10 9 5.6235 12.7706 14.8824 12.3552 45.6317

33 13 20 11 12.8941 15.5159 46.3887
24 7 33 13 20 11 10 8 5.6295 12.8941 15.5668 11.7954 45.8858

33 13 20 11 12.8941 15.5668 45.8858
24 7 33 13 20 11 11 7 5.6253 12.8957 15.5688 11.4978 45.5877

35 13 22 12 13.0681 16.4192 46.6105
24 7 35 13 22 12 11 6 5.6308 13.0681 16.4225 11.0076 46.129

35 13 22 12 13.0681 16.4225 46.129
24 7 35 13 22 12 12 5 5.6269 13.0694 16.4233 10.934 46.0536

37 13 24 10 13.2807 17.1542 46.9957
24 7 37 13 24 1 11 5 5.6318 13.2806 12.1918 10.724 41.8282

35 13 22 1 13.0694 12.1063 41.5314
24 7 35 13 22 1 12 5 5.6235 13.0704 12.1491 10.9353 41.7783

37 13 24 1 13.2816 12.2211 42.0616
C.S.L

24 7 37 13 24 1 12 5 5.6281 13.2817 12.194 10.7338 41.8376 94.34%

24 7 35 13 22 1 11 5 5.6268 13.0694 12.1462 10.9535 41.7959 93.01%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

I.B. O.B. DC Retailer Cost

Table 4.6: Convergence path of the optimization procedure with optimized steps (medium
production rate)
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holding costs. In addition, the optimal RDC value is always close to zero. Consequently, it is

suggested to operate the DC with low safety stock levels resulting in lower operational costs.

Similarly, our results indicate that Q = R−r is always a multiple of QDC . At first glance,

this may be surprising. However, while the production set-up cost tries to increase the value

of Q = R − r, holding cost tries to reduce it. A trade-off is achieved when Q = R − r is

a multiple of QDC . If Q = R − r is not a multiple of QDC , the output buffer will incur

unnecessary holding costs.

We have observed that parameters RR and r mainly depend on local cost parameters.

For instance, RR decreases as the holding cost at the retailer increases, and increases as the

backorder and shortage cost at the retailer increases. The value of r shows a similar behavior.

Although the above results guide planning and operational issues, further modeling, analysis

and numerical studies required to set-up solid rules of thumb. For instance it is possible to

restructure the optimization procedure to exploit the above observations.

4.4 Impact of Cost on System Parameters

In this section, we examine the attributes that drive the overall performance of the supply

chain. The attributes are mainly the cost parameters, that is, set-up, holding, backorder,

and shortage costs in different echelons.

Figure 4.1 shows the impact of cost parameters on the overall system performance, that

is, on customer service level at the retailer. In the upper left part of the graph, the impact of

input buffer’s ordering cost on the customer service level can be seen. As the input buffer’s

ordering cost increases, the customer service level decreases. This is because higher ordering

cost results in larger order quantities and lower reorder points in the input buffer, which in

turn results in lower customer service level at the retailer. In the upper right part of the

graph, the impact of plant’s shortage cost on the customer service level can be seen. The

graph indicates that increasing shortage cost has a positive effect on the customer service

level. In fact, this is true for the other echelon’s shortage cost as well. Interestingly, there

is no effect of DC’s backorder cost on the customer service level (middle left part of the

graph). Even, we see that the DC’s cost values only effect its own operating characteristics.
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An expected impact of retailer’s holding cost on the customer service level can be seen in

the middle right part of the graph. Finally, it is seen that as the demand rate increases, the

customer service level decreases (lower part of the graph). Appendix B includes the impact

of individual echelons’ cost parameters on the overall system performance.
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Figure 4.1: Attributes that drive the overall performance of the supply chain
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Chapter 5

Analysis of Multi-Echelon Distribution Inventory

Systems

In this chapter, we consider a distribution inventory system with one warehouse (W) and N

retailers, as illustrated in Figure 5.1. The retailers face independent, stationary unit Poisson

demand and have their own operating characteristics. They follow a continuous review

(R, Q) inventory control policies, that is, when the inventory position (inventory on hand plus

outstanding orders minus backorders) at a retailer down-crosses R, it orders a replenishment

batch size of Q from the central warehouse. The order arrives after a transportation lead-time

delay, if the warehouse has sufficient on-hand inventory. Otherwise, it experiences additional

delays due to stockouts at the warehouse. Any excess demand at a retailer is backlogged

and filled as soon as the replenishment orders arrive in a first-in first-out manner.12
N

Warehouse
Retailers

Figure 5.1: A two-echelon distribution inventory system

We assume that it is possible to have several outstanding backorders at a retailer at

any point in time. The effective lead-time between the warehouse and a retailer is the
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time between the placement and receipt of the order by the retailer. This includes the

transportation lead-time as well as the delay in the warehouse due to the stockouts.

Demand at the warehouse are orders from the retailers and satisfied immediately if there

is available stock on-hand. The unsatisfied demand is backordered. The warehouse, in turn,

orders from an outside supplier with infinite inventories based on an (R, Q) inventory control

policy. The effective lead-time includes only the transportation time.

We assume that all replenishment batch quantities are multiples of a batch size q. In ad-

dition, we assume that all transportation times between facilities are phase-type distributed.

In fact, we assume that the units are processed sequentially in the transportation system.

In other words, no overtaking is possible and orders are received in the same order they

were placed. In contrast, assuming independent, identically distributed random variables

represents parallel processing of replenishment orders and allows orders to cross in time.

Zipkin [108], and Svoronos and Zipkin [97] utilize same concept of transportation times.

We assume, in particular, all transportation times follow a k’th order Erlang distribution.

Erlang distribution is a special case of phase-type distributions. See Appendix A for a brief

introduction to the phase-type distributions.

Performance evaluation of the system above is quite difficult because of the underlying

complexities and large state-space. Indeed, we next present a decomposition procedure,

which uses single-location models as building blocks to analyze the entire distribution system.

The performance measures of interest are the long-run average number of inventories, the

number of backorders, and the customer service levels in each facility.

Note that, the distribution system with one-for-one replenishment policies is a special case

of this system and easily solved, since the demand process at the warehouse is a superposition

of N independent Poisson processes and still a Poisson process. General solution procedures

for this system are given in [31, 97]. On the other hand, the distribution system with

(R, Q) inventory control policies is quite difficult to solve, because the demand process at

the warehouse is a superposition of N Erlang processes. In the following sections, we also

present a characterization of the demand process at the warehouse.
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5.1 Modeling Approach

It is possible that the entire system can be modeled using a Markovian approach. However,

it is easily seen that exact analysis of the above system is computationally impractical due

to the fast growing state space of the underlying Markov chain. Hence, the only viable

approach, other than simulation, is approximation. Widely used approximation techniques

decomposes the system into several subsystems, which can be analyzed in isolation. Then,

the subsystems are linked to each other. Here, we will implement a similar procedure.

Let us consider the distribution inventory system shown in Figure 5.1. We will decompose

the system in such a way that each subsystem consists of an inventory holding buffer with

its own stock keeping policy. Consequently, we treat each subsystem as a single-location

inventory system, which can be analyzed with a modest computational effort. Finally, we

relate the subsystems to each other. In summary, it includes constructing each subsystem,

deriving input parameters to link the subsystems to each other. Now, let us introduce the

following notation:

N number of retailers,

QW batch size at warehouse,

RW reorder level at warehouse,

λi : demand rate at retailer i, i = 1, 2, . . . , N ,

Qi batch size at retailer i, i = 1, 2, . . . , N ,

Ri reorder level at retailer i, i = 1, 2, . . . , N ,

q largest common factor of QW , Q1, Q2, . . . , QN ,

TTW : transportation time between supplier and warehouse,

TTi : transportation time between warehouse and retailer i, i = 1, 2, . . . , N ,

Ω(W ) : subsystem involving warehouse,

Ω(i) : subsystem involving retailer i, i = 1, 2, . . . , N ,

M
′
j : node modeling procurement to facility j, j = W, 1, 2, . . . , N ,

M
′′
j : node modeling demand arrival process to facility j, j = W, 1, 2, . . . , N ,

Nj : inventory level in Ω(j), j = W, 1, 2, . . . , N .

We develop a decomposition as shown in Figure 5.2. The first subsystem, Ω(W ), includes
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the warehouse in the distribution system. An (RW , QW ) inventory control policy is used to

control replenishment process at the warehouse. Node M
′
W models the effective procurement

process and M
′′
W models the effective demand inter-arrival process at the warehouse. Simi-

larly, the subsystems, Ω(i), include retailer i, i = 1, 2, . . . , N . An (Ri, Qi) policy is used to

control inventory level. Node M
′
i represents the procurement process and node M

′′
i repre-

sents the demand arrival process. In the following sections, we explain how we construct the

nodes M
′
j and M

′′
j ’s and their respective processing times U

′
j and U

′′
j ’s for j = W, 1, 2, . . . , N .µ1 µ1MW''(UW'')a1-aTTW W(RW,QW)

Retaileri λi(Ri,Qi)
Ω(W)
Ω(i), i=1,2,…,NMW'(UW')

Mi'(Ui') Mi''(Ui'')TTi UW'UW' UW'

⋯

ωi(0) ωi(1)ωi(2)ωi(j)
µ1

Figure 5.2: Subsystems Ω(W ) and Ω(i), i = 1, 2, . . . , N

5.1.1 Analysis of Procurement Times

In this section, we analyze the effective procurement times at each subsystem. For subsystem

Ω(W ), the random variable U
′
W represents the effective procurement time at the warehouse.
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Since, the supplier has always sufficient raw material to replenish the warehouse, the ef-

fective procurement time consists only of the transportation lead-time from supplier to the

warehouse. That is,

U
′
W = TTW .

For subsystems Ω(i), the random variable U
′
i represents the effective procurement time

at retailer i, i = 1, 2, . . . , N . The retailer order is filled as soon as it is received, if the

warehouse has sufficient stock on hand. Otherwise, it is delayed until sufficient number of

units arrive in the warehouse. Let ωi(0) be the conditional probability that there are no

units missing in the warehouse at the point a replenishment order arrives from retailer i.

Similarly, let ωi(j), j = 1, 2, . . . be the conditional probability that there are, for any j,

(j − 1) ∗QW + 1, (j − 1) ∗QW + 2, . . . , j ∗QW units missing in the warehouse at the point a

demand arrives from the retailer. Then, the effective lead time to the retailer is given by:

U
′
i =





TTi w.p. ωi(0),

TTi +
∑j

k=1 U
′
W w.p. ωi(j).

It is clear that, with probability ωi(0), there is enough stock at the warehouse and retailer i’s

order experiences no delays. On the other hand, with probability ωi(j), the warehouse does

not have sufficient inventories resulting in delay in the replenishment process. This delay,

however, is approximately j procurement lead times from the supplier to the warehouse.

5.1.2 Analysis of Demand Inter-Arrival Times

In this section, we analyze the effective demand inter-arrival times at each subsystem. The

retailers face customer demand according to a Poisson process with rate λi, i = 1, 2, . . . , N .

Equivalently, the effective demand inter-arrival times at retailer i are independent and follow

an exponential distribution with rate λi, i = 1, 2, . . . , N .

Demand to the DC are replenishment orders from the retailers. Since the retailers re-

plenish their stock according to an (R,Q) policy, the inter-arrival time of the orders from

the retailers follow an Erlang distribution. As a result, the demand arrival process at the

warehouse is a superposition of N independent Erlang processes.
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5.1.3 Superposition of Erlang Processes

In this section, we consider an arrival process that is the superposition of N independent

Erlang processes. Such an arrival process arises as the stream of replenishment orders in a

distribution inventory system. The inventory system consists of many retailers replenishing

their stock from a central warehouse where the retailers face independent, stationary Poisson

demand and follow a continuous review (R,Q) inventory control policy. Another example is

a queue to which the arrival process is the superposition of separate arrival streams, each of

whose inter-arrival times is of Erlang distribution.

An important characteristic of the superposed process is that although the individual

processes are independent from each other, the superposed process may be no longer inde-

pendent. Here, we present a methodology to characterize such arrival streams as Markovian

processes. We, then, extend the methodology to phase-type arrival streams as well. Our

methodology exactly describes the superposed process, however the state-space of the pro-

posed Markovian process increases considerably. We, in addition, develop a three-moment

approximation scheme to efficiently use the methodology in practice. We illustrate the ac-

curacy of the methodology in a number of test problems.

Preliminaries

In this section, we give some definitions and theorems that are repeatedly used in the sequel.

A k-phase Erlang (Erlang-k) distribution is the sum of k exponential random variables. A

phase diagram of the Erlang-k distribution with rate λ is shown in Figure 5.3. The Erlang-k

distribution has also the following (α, T ) phase-type distribution representation:

αT = (1, 0, . . . , 0), T =




−λ λ

−λ λ

−λ
. . .

. . . λ

−λ




.

An important property of the Erlang-k distribution is that the residual, or remaining time

has a mixture of generalized Erlang-k (MGE-k) distribution. This is due to the following
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Figure 5.3: Phase diagram of the Erlang-k distribution

arguments. At any point in time, the Erlang-k distribution, with probability 1/k, is in any

one of its exponential phases. Hence, the residual time has one exponential phase with

probability 1/k. Similarly, the residual time has two exponential phases with probability

1/k, and so on. The resulting MGE-k distribution has a graphical representation shown in

Figure 5.4 with corresponding probabilities. The MGE-k distribution has also the following

(α, T ∗) phase-type distribution representation:

αT = (1, 0, . . . , 0), T ∗ =




−λ k−1
k

λ

−λ k−2
k−1

λ

−λ
. . .

. . . 1
2
λ

−λ




.

k2 ⋯1λ λλ(k-1)/k1/k (k-2)/(k-1)1/(k-1)
Figure 5.4: Phase diagram of remaining time of an Erlang-k distribution

We borrow the following definition and theorems from Neuts [86].

Definition 5.1 If L and M are rectangular matrices of dimensions k1×k2 and k
′
1×k

′
2, their

Kronecker product L⊗M is the matrix of dimensions k1k
′
1×k2k

′
2, written in block-partitioned

form as 


L11M L12M . . . L1k2M

...
...

...

Lk11M Lk12M . . . Lk1k2M


 .
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If X and Y are independent random variables with phase-type distributions F (·) and

G(·), then the distribution H = 1− [1−F (·)][1−G(·)], corresponding to min(X, Y ), is also

phase-type.

Theorem 5.1 Let F (·) and G(·) have representations (α, T ) and (β, S) of orders m and n

respectively, then H(·) has the representation [α⊗ β, T ⊗ I + I ⊗ S].

Theorem 5.2 A finite mixture of phase-type distributions is a phase-type distribution. If

(p1, . . . , pk) is the mixing density and Fj(·) has representation [α(j), T (j)], 1 ≤ j ≤ k, then

the mixture has the representation α = [p1α(1), . . . , pkα(k)], and

T =




T (1) 0 . . . 0

0 T (2) . . . 0

...
...

...

0 0 . . . T (k)




.

Superposition of Two Erlang Processes

We start from the simplest case, an arrival process that is the superposition of two indepen-

dent Erlang processes. We characterize the arrival stream of two and then generalize to N

independent Erlang processes. Let us denote by F (·) and G(·) two Erlang distributions with

representations (α, T ) and (β, S) of orders m and n, respectively.

Consider the superposed process at an arrival instance, that is, an instance at which

an arrival just happened. Without loss of generality, let us assume that the arrival is from

the first process. The amount of time for the next arrival from the first process follows an

Erlang-m distribution. On the other hand, the amount of time for the next arrival from

the second process follows an MGE-n distribution, since the remaining time of an Erlang-n

distribution is an MGE-n distribution. In fact, the amount of time for the next arrival is

distributed as the minimum of Erlang-m and MGE-n distributions. From Theorem 5.1, this

distribution has a representation [α⊗ β, T ⊗ I + I ⊗ S∗] where (β, S∗) is the corresponding

representation of MGE-n distribution. In a similar vein, if we assume that the arrival is

from the second process, the amount of time for the next arrival from the first process
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follows an MGE-m distribution, and the amount of time for the next arrival from the second

process follows an Erlang-n distribution. Consequently, the amount of time for the next

arrival is distributed as the minimum of MGE-m and Erlang-n distributions, and has a

representation [α ⊗ β, T ∗ ⊗ I + I ⊗ S] where (α, T ∗) is the corresponding representation of

MGE-m distribution.

If we denote by p(1) the probability of an arrival from the first stream and by p(2) the

probability of an arrival from the second stream, the superposed process is going to be a

mixture of phase-type distributions. By Theorem 5.2, it is again a phase-type distribution

with corresponding representation, α = [p(1)(α⊗ β), p(2)(α⊗ β)], and

T =


 T ⊗ I + I ⊗ S∗ 0

0 T ∗ ⊗ I + I ⊗ S


 .

Example 5.1 Consider an arrival process that is the superposition of an Erlang-2 and an

Erlang-3 processes with respective rates λ1 and λ2. Let us denote by F (·) and G(·) the

respective phase-type distributions with representations (α, T ) and (β, S) of orders 2 and 3,

respectively. The (α, T ) and (β, S) are given as α = (1, 0), β = (1, 0, 0), and

T =


 −λ1 λ1

0 −λ1


 , S =




−λ2 λ2 0

0 −λ2 λ2

0 0 −λ2


 .

Let us assume that an arrival just happened from the first process. The amount of time for the

next arrival from the first process follows an Erlang-2 distribution with (α, T ) representation.

On the other hand, the amount of time for the next arrival from the second process follows

an MGE-3 distribution with the following (β, S∗), β = (1, 0, 0), and

S∗ =




−λ2
2
3
λ2 0

0 −λ2
1
2
λ2

0 0 −λ2


 .

In fact, the amount of time for the next arrival has a representation α(1) = (α ⊗ β) =
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(1, 0, 0, 0, 0, 0), and T (1) = T ⊗ I + I ⊗ S∗ is given as



−λ1 − λ2
2
3
λ2 0 λ1 0 0

0 −λ1 − λ2
1
2
λ2 0 λ1 0

0 0 −λ1 − λ2 0 0 λ1

0 0 0 −λ1 − λ2
2
3
λ2 0

0 0 0 0 −λ1 − λ2
1
2
λ2

0 0 0 0 0 −λ1 − λ2




.

If we assume that the arrival is from the second process, the amount of time for the next

arrival from the first process follows an MGE-2 distribution with the following (α, T ∗) rep-

resentation, α = (1, 0), and

T ∗ =


 −λ1

1
2
λ1

0 λ1


 .

The amount of time for the next arrival from the second process follows an Erlang-3 distri-

bution with (β, S) representation. Consequently, the amount of time for the next arrival has

a representation α(2) = (α⊗ β) = (1, 0, 0, 0, 0, 0), and T (2) = T ∗ ⊗ I + I ⊗ S is given as



−λ1 − λ2 λ2 0 1
2
λ1 0 0

0 −λ1 − λ2 λ2 0 1
2
λ1 0

0 0 −λ1 − λ2 0 0 1
2
λ1

0 0 0 −λ1 − λ2 λ2 0

0 0 0 0 −λ1 − λ2 λ2

0 0 0 0 0 −λ1 − λ2




.

It remains to calculate the probabilities p(1) and p(2), the probabilities of an arrival from

the first and second streams, respectively. The total rate of the superposed process is given

by nλ1+mλ2

mn
, and p(1), p(2) are given by p(1) = nλ1

nλ1+mλ2
, p(2) = mλ2

nλ1+mλ2
. The superposed

process, By Theorem 5.2, has a (α, T ) representation α = [p(1), 0, 0, 0, 0, 0, p(2), 0, 0, 0, 0, 0],

and

T =


 T (1) 0

0 T (2)


 .

The moments of the superposed process is calculated by

E[Xn] = (−1)nn!(αT T−ne), n ≥ 1. (5.1)
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If λ1 = 1.5 and λ2 = 1, first three moments of the superposed process are E[X1] = 0.9231,

E[X2] = 1.3499, and E[X3] = 2.6277. In addition, its squared coefficient of variation is

Cv2 = 0.5843.

Superposition of N Erlang Processes

In this section, we generalize the methodology presented in the previous section to N in-

dependent Erlang processes. We first extend Theorem 5.1 to accommodate N phase-type

distributions. If X1, X2, . . ., XN are independent random variables with phase-type distribu-

tions F1(·),F2(·), . . ., FN(·), then the distribution H = 1− [1−F1(·)][1−F2(·)] . . . [1−FN(·)],
corresponding to min(X1, X2 . . . XN), is also phase-type.

Theorem 5.3 Let F1(·), F2(·), . . ., FN(·) have representations (α1, T1), (α2, T2), . . ., (αN , TN)

of orders n1, n2, . . ., nN , respectively. Then, H(·) has the representation [α1 ⊗ α2 ⊗ . . . ⊗
αN , T1 ⊗ I2 ⊗ . . .⊗ IN + I1 ⊗ T2 ⊗ I3 ⊗ . . .⊗ IN + . . . + I1 ⊗ I2 ⊗ . . .⊗ IN−1 ⊗ TN ].

Now, consider the superposed process at an arrival instance, that is, an instance at which

an arrival just happened. Without loss of generality, let us assume that the arrival is from

the first process. The amount of time for the next arrival from the first process follows an

Erlang-n1 distribution. On the other hand, the amount of time for the next arrival from

the second process follows an MGE-n2 distribution, the amount of time for the next arrival

from the third process follows an MGE-n3 distribution, and so on. In fact, the amount of

time for the next arrival is distributed as the minimum of Erlang-n1, MGE-n2, . . ., MGE-

nN distributions. The distribution is defined by Theorem 5.3 and has the representation

[α1⊗α2⊗ . . .⊗αN , T1⊗I2⊗ . . .⊗IN +I1⊗T ∗
2 ⊗I3⊗ . . .⊗IN + . . .+I1⊗I2⊗ . . .⊗IN−1⊗T ∗

N ]

where (αi, T
∗
i ) is the corresponding representation of MGE-ni distribution.

Similarly, if we assume that the arrival is from the second process, the amount of time for

the next arrival from the first process follows an MGE-n1 distribution, the amount of time

for the next arrival from the second process follows an Erlang-n2 distribution, the amount

of time for the next arrival from the third process follows an MGE-n3 distribution, and so

on. Consequently, the amount of time for the next arrival is distributed as the minimum of

MGE-n1, Eralng-n2, . . ., MGE-nN distributions. The distribution is defined by Theorem 5.3



78

and has the representation [α1⊗α2⊗ . . .⊗αN , T ∗
1 ⊗ I2⊗ . . .⊗ IN + I1⊗T2⊗ I3⊗ . . .⊗ IN +

. . . + I1⊗ I2⊗ . . .⊗ IN−1⊗T ∗
N ]. We continue this analysis for the remaining streams as well.

If we denote by p(1) the probability of an arrival from the first stream, by p(2) the

probability of an arrival from the second stream, and so on, the superposed process is going

to be a mixture of phase-type distributions. By Theorem 5.2, it is again a phase-type

distribution with corresponding representation, α = [p(1)α(1)⊗p(2)α(2)⊗ . . .⊗p(N)α(N)],

and

T =




T (1) 0 . . . 0

0 T (2) . . . 0

...
...

...

0 0 . . . T (N)




.

Although the above methodology exactly characterizes the superposed process, it has limited

practical utility because of the fast growing state-space. In the next sections, we present an

approximation scheme to use it in practice.

Superposition of MGE Random Variables

We can easily extend the above methodology to MGE random variables. We just need to

substitute (α, T ) of an Erlang random variable appropriately with (α, T ) of an MGE random

variable. We only need to present a way to find residual time of an MGE random variable.

Let X be an independent random variable with MGE distribution F (·). Let F (·) has (α, T )

representation of order m. The long-run probabilities are defined as the limiting probabilities

of being in a state at any point in time. Let us illustrate the residual time analysis in an

example.

Example 5.2 Consider the MGE-2 distribution illustrated in Figure 5.5. The long-run

probabilities, limiting probabilities of being in state one or two, are obtained using

π1 = (1− λ1a)π1 + λ2π2,

π2 = λ1aπ1 + (1− λ2)π2,

π1 + π2 = 1.

From these π1 = λ2/(λ2 + λ1a) and π2 = λ1a/(λ2 + λ1a). So, with probability π1 = λ2/(λ2 +
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Figure 5.5: Phase diagram of an MGE-2 distribution

λ1a), the MGE-2 distribution is in phase 1 and the remaining time is same as the initial

MGE-2 distribution. On the other hand, with probability π2 = λ1a/(λ2 + λ1a), the process is

in phase 2 and the remaining time includes only the second exponential phase. The resulting

phase-type distribution is illustrated in Figure 5.6. The (α, T ) representation of the residualλ2λ1 a1-aλ2λ2/(λ2+λ1a)λ1a/(λ2+λ1a)
Figure 5.6: Phase diagram of remaining time of an MGE-2 distribution

time of an MGE-2 distribution is given by α = (λ2/(λ2 + λ1a), λ1a/(λ2 + λ1a)) and

T =




−λ1 λ1a 0

0 −λ2 0

0 0 −λ2


 .

We calculate the moments of the process by using Equation 5.1.

Approximating the Superposition Process

The methodology we described in the previous section exactly characterizes the superposed

process. However, it has limited practical utility because of the fast growing state-space.

In this section, we are mainly concerned with approximating the superposed process. We
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identify a subset of phase-type random variables that are used in the development of ap-

proximations. We facilitate both two-moment and three-moment approximation schemes in

our procedures.

The idea of the approximation procedure is that we superpose individual arrival steams

one by one avoiding the state-space getting larger. Initially, we superpose first two individual

arrival streams. We approximate the resulting stream by using two-moment or three-moment

approximation schemes. Then, we superpose the resulting arrival stream with the third

arrival stream. Again, we use two-moments or three-moments to approximate the resulting

process. We continue this way until all the arrival streams exhausted. In fact, we avoid

state-space getting larger at the expense of loosing some degree of accuracy.

In general, the squared coefficient of variation, Cv2, of the arrival process is less than one.

This is due to the fact that individual superposed processes are Erlang distributions with

low variability. We facilitate both two-moment and three-moment approximation schemes

in our procedures. The two-moment approximation scheme is due to Altiok [5, 7] and the

three-moment approximation scheme is due to Osogami and Harchol-Balter [87].

For Cv2 < 1, two-moment approximation scheme in [7] utilizes the generalized Erlang

distribution shown in Figure 5.7. Given the first moment of the superposed process, m1,

and the squared coefficient of variation, Cv2, the number of phases, k, is determined from

1/k ≤ Cv2 ≤ 1/(k − 1), and the parameters a and λ are given respectively by

1− a =
2kc + k − 2−√k2 + 4− 4kc

2(c + 1)(k − 1)
,

and

λ =
1 + (k − 1)a

m1

. k2 ⋯1λ λλa1-a
Figure 5.7: Phase diagram of generalized Erlang-k distribution

On the other hand, three-moment approximation scheme in [87] utilizes Erlang-Coxian
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(EC) distributions and its variants shown in Figure 5.8. The EC distribution is simply an

MGE-2 distribution appended to an Erlang distribution. It also allows positive probability

to mass at point zero. EC distribution has six parameters to estimate and a closed-form

solution is derived in [87]. Empirical studies suggest that using two-moments is sufficient for

the domain Cv2 < 1, though using three-moments captures the skewness of the distribution

and brings more accuracy to the approximation. N2 ⋯1λ λλ 21λ1 λ2a11-a1 a21-a2
Figure 5.8: Phase diagram of Erlang-Coxian distribution

Let us illustrate the approximation concept in an example.

Example 5.3 Consider a distribution inventory system with three identical retailers. The

retailers face Poisson demand with rate one and follow a continuous review (R, Q) = (5, 10)

inventory control policy. Hence, the demand arrival process at the warehouse is a superpo-

sition of three Erlang-10 distributions with rate one. In order to characterize the demand

arrival process at the warehouse, we superpose the first two Erlang-10 distributions, ap-

proximate it by using both two-moment and three-moment approximation schemes, and then

superpose the resulting stream with the third Erlang-10 distribution.

We superpose the first two arrival streams using the methodology given in the previous

sections. The resulting process has first moment, E[X] = 5, second moment, E[X2] =

34.2334, third moment, E[X3] = 273.5516, and the squared coefficient of variation, Cv2 =

0.3693. We approximate it by using both two-moment and three-moment approximation

schemes. Two-moment approximation scheme results in first moment, E[X] = 5, second

moment, E[X2] = 34.2334, third moment, E[X3] = 294.5875, and the squared coefficient of

variation, Cv2 = 0.3693. On the other hand, three-moment approximation scheme results

in first moment, E[X] = 5, second moment, E[X2] = 34.2351, third moment, E[X3] =

273.5927, and the squared coefficient of variation, Cv2 = 0.3694.

Then we superpose the approximate resulting stream with the third arrival process. The
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final process, which used two-moment approximation scheme results in first moment, E[X] =

3.3314, second moment, E[X2] = 16.4271, third moment, E[X3] = 101.7050, and the squared

coefficient of variation, Cv2 = 0.4802. On the other hand, the final process, which used three-

moment approximation scheme results in first moment, E[X] = 3.3334, second moment,

E[X2] = 16.8486, third moment, E[X3] = 102.9705, and the squared coefficient of variation,

Cv2 = 0.5163.

If we directly employ the methodology given in the previous sections to the three arrival

streams, which requires significant computational effort, we get first moment of E[X] =

3.3333, second moment of E[X2] = 16.8363, third moment of E[X3] = 103.8908, and the

squared coefficient of variation, Cv2 = 0.5153.

We conclude that using three-moment approximation schemes results in more accuracy,

especially when the number of superposed arrival streams increases.

5.1.4 Steady-State Analysis of the Subsystems

In this section, we calculate the steady-state probabilities of the underlying Markovian

chains in the subsystems Ω(j), j = W, 1, 2, . . . , N . Each of the subsystems, Ω(j), for

j = W, 1, 2, . . . , N , is a two-node subsystem with its own stock keeping policy, and phase-type

procurement and demand inter-arrival times. The use of the phase-type random variables

gives rise to a Markovian analysis, and matrix-recursive procedures based on [29, 64, 86] are

used to obtain steady-state probabilities. For numerical convenience, we assume all trans-

portation times follow a second order Erlang distribution (Erlang-2). Let βj denote the

phase rate of (Erlang-2) transportation time, β
′
j denote the processing rate of U

′
j , and β

′′
j

denote the processing rate of U
′′
j , j = W, 1, 2, . . . , N .

Analysis of Subsystem involving Warehouse

Let us start with the analysis of subsystem Ω(W ), the subsystem involving the warehouse.

Here, the effective procurement time has an Erlang-2 distribution (the phase rate of the

(Erlang-2) is βW ). An important aspect of this subsystem is that the procurement orders

and demand arrivals are both in batches. Still, we utilize the matrix recursive schemes to

solve for the probabilities. Let {It, Jt, Nt, t ≥ 0} is a Markov chain where It represents the
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phase of U
′
W , Jt represents the phase of U

′′
W , Nt denotes the number of inventories in the

warehouse where It = 1, 2, B, Jt = 1, 2, and Nt = QW +RW , QW +RW −q,QW +RW −2q . . ..

The Markov chain has infinite number of states, and yet we truncate the state-space at a

state with negligible holding probability. The state-space and the transitions of the Markov

chain for one warehouse and two retailers (where QW = 2q, Q1 = 2q, and Q2 = q) are

presented in Figure 5.9. Let the probabilities of the subsystem be:

P̃(n)|2n=1 =




P (1, n, RW − kq)

P (2, n, RW − kq)
...

P (1, n, RW )

P (2, n, RW )

P (B, n, RW + q)

P (B, n, RW + QW )




.

Here, k is a number that ensures a state with negligible holding probability. The flow-balance

equations of the system in compact form are:

AP̃(1) = BP̃(3), (5.2)

CP̃(2) = aµP̃(1),

CP̃(3) = µP̃(2).

The matrices A, B, and C are given as:

A =




µ1 + β
′′
W 0 −(1− a)µ1p1 0 −(1− a)µ1p2 0 . . .

−βW µ1 + β
′′
W 0 −(1− a)µ1p1 0 −(1− a)µ1p2 . . .

...
...

. . . . . .
...

...
...

0 −βW . . . µ1 + β
′′
W 0 −(1− a)µ1p1 . . .

0 0 . . . −βW µ1 + β
′′
W 0 . . .

...
...

...
...

...
. . . . . .




,

B =




0 0 µ1p1 0 µ1p2 0 . . .

0 0 0 µ1p1 0 µ1p2 . . .

...
...

. . . . . . . . .
...

...




,
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(1-a)µ1p2(1-a)µ1p2
µ1p2µ1p1

µ1p1µ1p2
µ1p2

βWβW
B,1,Qw+Rw -q B,2,Qw+Rw -q
1,1,RW 1,2,RW

2,1,RW 2,2,RWaµ1βW
1,1,RW-q 1,2,RW-q

2,1,RW-q 2,2,RW-q

B,1,QW+RW B,2,QDC+RDCaµ1 µ1p1
βW

βW βW

βW βW
(1-a)µ1p1(1-a)µ1p2 aµ1

aµ1
aµ1

aµ1

µ1p1(1-a)µ1p1
µ1

βW
B,3,Qw+Rw -q
1,3,RW

2,3,RW
1,3,RW-q

2,3,RW-q

B,3,QDC+RDC

βW
βW

µ1
µ1
µ1

µ1
µ1

µ1p2
µ1p1 µ1p2

µ1p2µ1p1

(1-a)µ1p1
(1-a)µ1p1(1-a)µ1p1

(1-a)µ1p1 (1-a)µ1p2(1-a)µ1p2
(1-a)µ1p2

βW
βW βWβW

βW βW βW
βW βW βW

βW βWβW

Figure 5.9: Transition diagram for subsystem Ω(W )



85

C =




µ1 + β
′′
W 0 0 0 0 0 . . .

−βW µ1 + β
′′
W 0 0 0 0 . . .

...
...

. . . . . .
...

...
...

0 −βW . . . µ1 + β
′′
W 0 0 . . .

0 0 . . . −βW µ1 + β
′′
W 0 . . .

...
...

...
...

...
. . . . . .




.

After, representing P̃(2) and P̃(3) in terms of P̃(1), and utilizing Equation 5.2, we get

P× P̃(1) = 0 where

P = A− aµ2B(C−1)2.

Finally, normalization is achieved by the equation

p = e(1×t) × (I + aµC−1 + aµ2(C−1)2).

Replacing the first row of matrix P with row vector p, we solve for

P× P̃(1) = [1, 0, . . . , 0]Tt .

Rest of the probabilities are given by:

P̃(2) = aµC−1P̃(1),

P̃(3) = aµ2(C−1)2P̃(1).

Analysis of Subsystems involving Retailers

The subsystems, Ω(i), i = 1, 2, . . . , N model the behavior of the retailers where demand

arrives in single units and according to a Poisson process, and the replenishment process

takes place in batches. A queuing analogy of the above model is the system M/PHk/1

where arrivals are from a Poisson process, and the service time distribution is of phase-type

and in exact batches of k. Although general solution procedures for the above queuing system

are given in [31], we will again use the matrix-recursive technique utilized in the previous

subsystem. Typical approaches use the generating function of the steady-state distribution.

Inverting this function to compute the probabilities may be problematic and may require

more computational effort than our approach.

Let {It, Nt, t ≥ 0} be a Markov chain where It represents the phase of U
′
i , and Nt denotes

the level of inventories at retailer i where It = 1, 2, B, and Nt = Qi + Ri, Qi + Ri − 1, . . ..
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The effective procurement time has a complex phase structure. However, we use a three-

moment MGE-2 approximation (the parameters are γ1, γ2 and b). The Markov chain has

infinite number of states, and we truncate the state-space for the sake of tractability. The

state-space and the transitions of the Markov chain are presented in Figure 5.10. Let us

denote the steady-state probabilities of the Markov chain by:

P̃w(n)|2n=1 =




P (n,Ri)

P (n, Ri − 1)
...

P (n,Ri − kQi)




(kQi+1)×1

, P̃(B) =




P (B,Ri + Qi)
...

P (B, Ri + 1)




Qi×1

.

Then, the flow-balance equations are given below:

AP̃(B) = BP̃w(1) + CP̃w(2),

DP̃w(1) = EP̃w(2) + FP̃(B), (5.3)

GP̃w(2) = γ1bP̃w(1),

where

A =




λ

−λ λ

. . .

−λ λ




Qi×Qi

,B =




γ1(1− b)

γ1(1− b)
. . . . . .

γ1(1− b)




Qi×(kQi+1)

,

C =




γ2

γ2

. . . . . .

γ2




Qi×(kQi+1)

,D =




λ + γ1 . . . −γ1(1− b)

−λ λ + γ1
. . .

. . .

−λ λ + γ1

−λ γ1




,

E =




−γ1(1− b)
. . .




, G =




λ + γ2

−λ λ + γ2

. . .

−λ λ + γ2

−λ γ2




,

and D, E, G are (kQi + 1)× (kQi + 1) matrices. Additionally,

F = [fij ] =





λ, if i = 1, j = Qi

0, otherwise,
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B,Qi+Riλi 1,Ri 2,RiB,Qi+Ri-1 1,Ri-1 2,Ri-1
B,1+Ri 1,Ri-Qi+1 2,Ri-Qi+11,Ri-Qi 2,Ri-Qi1,Ri-Qi-1 2,Ri-Qi-1

1,Ri-2Qi 2,Ri-2Qi

λiλi λi

λi
λiλiλiλiλiλiλiλi λiλi
λi
λi

λi λiλiγ1b γ1b

γ1b

γ1(1-b)γ1(1-b
)
γ1(1-b)

γ2γ2
γ2 γ2γ2

γ2

γ1(1-b) γ1(1-b)
γ1(1-b)

Figure 5.10: Transition diagram for subsystems Ω(i), i = 1, 2, . . . , N
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is a (kQi + 1)× (Qi) matrix.

After, representing P̃(B) and P̃w(2) in terms of P̃w(1), and by utilizing Equation 5.3,

we obtain P× P̃w(1) = 0 where

P = D− γ1bEG−1 − FA−1B− γ1bFA−1CG−1.

In addition, we have the normalization equation

p = e(1×(kQR+1)) × (I + γ1bG−1) + e(1×(QR)) × (A−1B + γ1bA−1CG−1).

Replacing the first row of matrix P by the row vector p, we solve for

P× P̃w(1) = [1, 0, . . . , 0]T(kQi+1)×1.

The rest of the probabilities are obtained using

P̃w(2) = γ1bG−1P̃w(1),

P̃(B) = (A−1B + γ1bA−1CG−1)P̃w(1).

5.1.5 An Aggregation Algorithm

The nature of the decomposition algorithm requires subsystems to supply information to

each other. This is achieved by utilizing a fixed-point algorithm. The unknown parameters

of the subsystems are µ1, a, and ωi(j), j = 0, 1, 2, . . . for i = 1, 2, . . . , N . As part of the

algorithm, µ1, a are used in the analysis of Ω(W ). Similarly, ωi(j), j = 0, 1, 2, . . .’s are used

in the analysis of Ω(i) for i = 1, 2, . . . , N . Yet, we have to assign values to these unknown

probabilities.

Here, µ1, a are obtained using the superposition approximation technique described in

the previous section, and ωi(j)’s, j = 0, 1, 2, . . . for i = 1, 2, . . . , N are evaluated

ωi(0) = Pr(NW ≥ Qi\Ni = Ri),

ωi(j) =

jQW∑

k=(j−1)QW +1

Pr(NW = Qi − k\Ni = Ri), j = 1, 2, . . . .

where NW and Ni represent the inventory level at the warehouse and the retailers for i =

1, 2, . . . , N , respectively. The ωi(j)’s are arrival-point probabilities. In this setting, it is
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difficult to compute the arrival rate probabilities. Instead, we use arbitrary time probabilities

in the algorithm. The throughput of the subsystems are obtained using

ξ̄j =
Utilization of M

′′
j

E[U
′′
j ]

, j = W, 1, 2, . . . , N.

Due to backordering practice in the system, the throughput of the warehouse is known to

be λ =
∑N

i=1 λi, and the throughput of the retailers are λi, for i = 1, 2, . . . , N .

A summary of the algorithm is given in Table 5.1.

1. Initialize: Obtain µ1, a using the superposition approximation technique.
2. Analyze Ω(W ), obtain its steady-state probabilities, update ωi(j), j = 0, 1, 2, . . .,

for i = 0, 1, 2, . . . , N .
3. Analyze Ω(i), obtain its steady-state probabilities, for i = 0, 1, 2, . . . , N .
4. Obtain customer service level at retailer i, for i = 0, 1, 2, . . . , N .

Table 5.1: The approximation algorithm for multi-echelon distribution inventory system

5.2 Computational Accuracy

We test the accuracy of our approximation algorithm by comparing its results against sim-

ulation in a number of examples. The purpose of numerical examples is to see the ranges

of the system parameters where the approximation is accurate and where it is not. The

approximation procedure described above and the discrete-event simulation model runs are

implemented on a Pentium IV PC operating at 2.80 GHz. The simulation model is de-

veloped using the Arena1 simulation software. Each simulation run consists of 50,000,000

job departures to provide point estimates and 95% confidence intervals for key performance

measures.

In this study, we focus on average inventory levels, average backorder levels, and customer

service levels. Here, we define the customer service level as the probability of fully satisfying

the demand of an arriving customer.

The approximation and the simulation results are given in Tables 5.2-5.9 for different

1Arena is a trademark of Rockwell Software.
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systems and for different system parameters. Warehouse buffer capacity is chosen propor-

tional to the retailer buffer capacities. In some settings, demand rate is varied while keeping

other parameters constant.

We have three major experimental settings: a serial system (Table 5.2), a system with

one warehouse and three retailers (Tables 5.3, 5.4), and a system with one warehouse and

five retailers (Tables 5.5, 5.6, 5.7, 5.8, 5.9). We further differentiate the last two systems

by assuming identical and non-identical retailers. In particular, Tables 5.3 and 5.5 refer to

identical retailers whereas Tables 5.4, 5.6, 5.7, 5.8, and 5.9 refer to non-identical retailers.

Warehouse Retailer
R W  = 10 R 1 = 5

Parameters: Q W  = 20 Q 1 = 10β S = 1 βW  = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 24.0000 0.0000 1.00% 23.0000 0.0000 100.00%
Simulation 24.0012 0.0000 1.00% 23.0012 0.0000 100.00%
Rel. Error 0.00% 0.00% 0.00% -0.01% 0.00% 0.00%

Analytic 9.5006 0.0007 99.89% 8.5104 0.0174 98.58%
Simulation 9.4998 0.0006 99.89% 8.5094 0.0175 98.57%
Rel. Error 0.01% 0.88% 0.00% 0.01% -0.57% 0.01%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 21.9997 0.0003 99.98% 20.9974 0.0027 99.88%
Simulation 22.0009 0.0003 99.98% 20.9986 0.0027 99.88%
Rel. Error -0.01% 0.00% 0.00% -0.01% 0.00% 0.00%

Analytic 7.5332 0.0941 95.12% 6.5538 0.2960 89.32%
Simulation 7.5320 0.0942 95.10% 6.5532 0.2961 89.29%
Rel. Error 0.02% -0.11% 0.02% 0.01% -0.03% 0.03%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 19.9886 0.0125 99.57% 18.9669 0.0388 98.91%
Simulation 19.9898 0.0125 99.57% 18.9717 0.0382 98.92%
Rel. Error -0.01% 0.00% 0.00% -0.03% 1.57% -0.01%

Analytic 5.5505 0.7368 81.01% 4.4988 1.6621 69.92%
Simulation 5.5530 0.7350 81.00% 4.5150 1.6321 70.11%
Rel. Error -0.05% 0.24% 0.01% -0.36% 1.84% -0.27%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 17.9252 0.0947 97.79% 16.8566 0.1983 96.10%
Simulation 17.9274 0.0937 97.80% 16.8562 0.1975 96.11%
Rel. Error -0.01% 1.07% -0.01% 0.00% 0.41% -0.01%

Analytic 3.3705 3.7330 55.53% 2.1303 9.4627 37.07%
Simulation 3.4313 3.5194 56.43% 2.2960 7.9471 39.87%
Rel. Error -1.77% 6.07% -1.59% -7.22% 19.07% -7.02%

Retailer

λ=1.50 λ=2.0λ=2.50

Warehouse λ=3.0

λ=0.5

λ=4.00

Warehouse

λ=1.0

Warehouse

λ=3.50

Warehouse

Retailer

Retailer

Retailer

Table 5.2: Accuracy of the approximation algorithm for 1 Warehouse and 1 Retailer
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In the serial system, the retailer follows a continuous review (R1, Q1) = (5, 10) inventory

control policy and the warehouse follows a continuous review (RW , QW ) = (10, 20) inventory

control policy. We assume, in particular, the transportation time from supplier to warehouse

and from warehouse to retailer follow a 2’nd order Erlang (Erlang-2) distribution with rate

1. We vary the demand rate while keeping other parameters constant. The relative error of

the performance estimates varies from -7.22% to 0.02% for average inventory levels, -0.57%

to 19.07% for backorder levels, and -0.03% to 0.02% for customer service levels. This shows

that our approximation algorithm is a strong alternative to the exact solution procedures,

which require significant computational effort. In addition, it is clear from the results that

the relative error gradually increases as the demand rate (system load) increases, which is

expected.

In the one warehouse three identical retailer system, the relative error of the performance

estimates varies from -7.53% to -0.02% for average inventory levels, 3.86% to 84.06% for

backorder levels, and -8.62% to -0.01% for customer service levels. It is clear from the results

that the percentage deviation gradually increases as the demand rate (system load) increases.

Here, the accuracy in the backorder levels is somehow surprising. This is because backorder

levels are low and approximating small probabilities does not seem to be quite successful.

In addition, we use arbitrary time probabilities as surrogate of arrival rate probabilities and

this results in less accurate results in retailers. Other tables can be interpreted accordingly.

As a final note, while the number of retailers increases, the accuracy of the results at

warehouse also increases. This is because, the magnitude of autocorrelation of the demand

arrival process decreases as there are more channels to send replenishment orders. In fact, we

observe the highest negative autocorrelation at the superposed process when we consider two

identical retailers. However, the negative lag-1 autocorrelation decreases as the number of

superposed individual processes increases. This is, also, why our estimates are more accurate

in a system with non-identical retailers than in a system with identical retailers. To give

an idea of the magnitude of the lag-1 autocorrelation, we first consider a one warehouse

and two identical retailers with Erlang-10 distributions with rate one. While the lag-1

autocorrelation is -0.5901 in a two retailer system, it is -0.3972 in a three retailer system.

The lag-1 autocorrelation is expected to converge to zero as the number of superposed
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Warehouse Retailer 1 Retailer 2 Retailer 3
R W  = 10 R 1 = 5 R 2 = 5 R 3 = 5

Q W  = 30 Q 1 = 10 Q 2 = 10 Q 3 = 10β S = 1 βW  = 1 βW  = 1 βW  = 1

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 27.0069 0.1078 99.01% 24.0632 0.5883 95.29%
Simulation 27.0131 0.0099 99.50% 24.0720 0.0866 97.81%
Rel. Error -0.02% N/A -0.49% -0.04% N/A -2.58%

Analytic 9.4916 0.0007 99.88% 8.4302 0.0223 98.31%
Simulation 9.4983 0.0007 99.89% 8.4830 0.0187 98.51%
Rel. Error -0.07% 3.86% -0.01% -0.62% 19.25% -0.20%

Analytic 9.4916 0.0007 99.88% 8.4302 0.0223 98.31%
Simulation 9.4958 0.0007 99.89% 8.4807 0.0188 98.50%
Rel. Error -0.04% 4.48% -0.01% -0.60% 18.62% -0.19%

Analytic 9.4916 0.0007 99.88% 8.4302 0.0223 98.31%
Simulation 9.4970 0.0007 99.89% 8.4825 0.0187 98.50%
Rel. Error -0.06% 6.71% -0.01% -0.62% 19.25% -0.19%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 21.1720 1.5666 89.22% 18.2986 3.2192 81.22%
Simulation 21.2075 0.3320 94.42% 18.3687 0.9136 88.88%
Rel. Error -0.17% N/A -5.51% -0.38% N/A -8.62%

Analytic 7.2511 0.1541 93.26% 5.8221 0.7090 82.16%
Simulation 7.4300 0.1096 94.59% 6.2950 0.3848 87.30%
Rel. Error -2.41% 40.60% -1.41% -7.51% 84.25% -5.89%

Analytic 7.2511 0.1541 93.26% 5.8221 0.7090 82.16%
Simulation 7.4336 0.1093 94.59% 6.2952 0.3844 87.32%
Rel. Error -2.46% 40.99% -1.41% -7.52% 84.44% -5.91%

Analytic 7.2511 0.1541 93.26% 5.8221 0.7090 82.16%
Simulation 7.4315 0.1096 94.59% 6.2959 0.3852 87.33%
Rel. Error -2.43% 40.60% -1.41% -7.53% 84.06% -5.92%

λ=1.0

λ=1.5 λ=2.0

Warehouse

Retailer 1

Retailer 2

Retailer 3

Parameters:

Retailer 3

Retailer 2

Warehouse

Retailer 1

λ=0.5

Table 5.3: Accuracy of the approximation algorithm for 1 Warehouse and 3 identical Retailers
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Warehouse Retailer 1 Retailer 2 Retailer 3
R W  = 10 R 1 = 5 R 2 = 5 R 3 = 5

Q W  = 30 Q 1 = 10 Q 2 = 5 Q 3 = 15β S = 1 βW  = 1 βW  = 1 βW  = 1

Retailer 1 Retailer 2 Retailer 3 Retailer 1 Retailer 2 Retailer 3λ=1.0 λ=1.0 λ=1.0 λ=1.5 λ=1.0 λ=1.0

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 21.6804 0.2778 89.99% 20.7490 0.4180 87.49%
Simulation 21.7106 0.2385 93.33% 20.7809 0.3347 92.04%
Rel. Error -0.14% 16.48% -3.58% -0.15% 24.89% -4.94%

Analytic 8.3406 0.0270 98.05% 7.2168 0.1532 93.23%
Simulation 8.4239 0.0219 98.34% 7.3881 0.1164 94.36%
Rel. Error -0.99% 23.29% -0.29% -2.32% 31.62% -1.20%

Analytic 5.7345 0.0690 95.53% 5.6981 0.0748 95.27%
Simulation 5.7850 0.0595 95.94% 5.7692 0.0611 95.85%
Rel. Error -0.87% 15.97% -0.43% -1.23% 22.42% -0.61%

Analytic 10.7152 0.0228 98.45% 10.6625 0.0251 98.34%
Simulation 10.8145 0.0180 98.69% 10.7697 0.0198 98.60%
Rel. Error -0.92% 26.67% -0.24% -1.00% 26.77% -0.26%

Retailer 1 Retailer 2 Retailer 3 Retailer 1 Retailer 2 Retailer 3λ=1.0 λ=1.5 λ=1.0 λ=1.0 λ=1.0 λ=1.5

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 20.7282 0.3655 89.15% 20.7938 0.4323 87.83%
Simulation 20.7675 0.3391 92.13% 20.8068 0.3556 91.03%
Rel. Error -0.19% 7.79% -3.23% -0.06% 21.57% -3.52%

Analytic 8.3113 0.0288 97.96% 8.2970 0.0297 97.91%
Simulation 8.4038 0.0228 98.28% 8.3824 0.0237 98.23%
Rel. Error -1.10% 26.32% -0.33% -1.02% 25.32% -0.33%

Analytic 4.1298 0.6871 79.84% 5.6900 0.0761 95.22%
Simulation 4.2922 0.5317 82.32% 5.7536 0.0631 95.76%
Rel. Error -3.78% 29.23% -3.01% -1.11% 20.60% -0.56%

Analytic 10.6645 0.0250 98.35% 9.5581 0.1172 94.98%
Simulation 10.7701 0.0195 98.60% 9.7719 0.0872 95.89%
Rel. Error -0.98% 28.21% -0.25% -2.19% 34.40% -0.95%

Retailer 1 Retailer 2 Retailer 3 Retailer 1 Retailer 2 Retailer 3λ=1.5 λ=1.0 λ=1.5 λ=1.5 λ=1.5 λ=1.5

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 19.9304 0.6065 85.48% 18.9155 0.8480 82.64%
Simulation 19.9031 0.4901 89.42% 18.9526 0.6629 87.82%
Rel. Error 0.14% 23.75% -4.41% -0.20% 27.92% -5.90%

Analytic 7.1511 0.1675 92.82% 7.0825 0.1834 92.37%
Simulation 7.3355 0.1250 94.06% 7.2973 0.1307 93.87%
Rel. Error -2.51% 34.00% -1.32% -2.94% 40.32% -1.60%

Analytic 5.6508 0.0828 94.93% 3.9118 0.8894 76.71%
Simulation 5.7399 0.0641 95.70% 4.2160 0.5681 81.44%
Rel. Error -1.55% 29.17% -0.80% -7.22% 56.56% -5.81%

Analytic 9.4851 0.1275 94.68% 9.3963 0.1407 94.31%
Simulation 9.7038 0.0943 95.65% 9.6320 0.1021 95.39%
Rel. Error -2.25% 35.21% -1.01% -2.45% 37.81% -1.13%

Retailer 3

Warehouse

Retailer 1

Retailer 2

Retailer 3

Parameters:

Warehouse

Retailer 1

Retailer 2

Retailer 3

Retailer 2

Warehouse

Retailer 1

Table 5.4: Accuracy of the approximation algorithm for 1 Warehouse and 3 Retailers
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Warehouse Retailer 1 Retailer 2 Retailer 3 Retailer 4 Retailer 5
R W  = 10 R 1 = 5 R 2 = 5 R 3 = 5 R 4 = 5 R 5 = 5

Q W  = 30 Q 1 = 10 Q 2 = 10 Q 3 = 10 Q 4 = 10 Q 5 = 10β S = 1 βW  = 1 βW  = 1 βW  = 1 βW  = 1 βW  = 1λ=0.75 λ=1.00
Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L

Analytic 22.6320 1.1996 91.59% 20.2293 2.3328 85.69%
Simulation 22.6508 0.2848 94.39% 20.2449 0.6643 90.30%
Rel. Error -0.08% N/A -2.97% -0.08% N/A -5.11%

Analytic 8.8915 0.0077 99.25% 8.2437 0.0372 97.58%
Simulation 8.9475 0.0058 99.39% 8.3795 0.0236 98.22%
Rel. Error -0.63% 32.76% -0.14% -1.62% 57.63% -0.65%

Analytic 8.8915 0.0077 99.25% 8.2437 0.0372 97.58%
Simulation 8.9454 0.0059 99.38% 8.3826 0.0238 98.22%
Rel. Error -0.60% 30.51% -0.13% -1.66% 56.30% -0.65%

Analytic 8.8915 0.0077 99.25% 8.2437 0.0372 97.58%
Simulation 8.9487 0.0058 99.39% 8.3822 0.0238 98.23%
Rel. Error -0.64% 32.76% -0.14% -1.65% 56.30% -0.66%

Analytic 8.8915 0.0077 99.25% 8.2437 0.0372 97.58%
Simulation 8.9455 0.0059 99.38% 8.3815 0.0237 98.22%
Rel. Error -0.60% 30.51% -0.13% -1.64% 56.96% -0.65%

Analytic 8.8915 0.0077 99.25% 8.2437 0.0372 97.58%
Simulation 8.9469 0.0059 99.38% 8.3795 0.0238 98.22%
Rel. Error -0.62% 30.51% -0.13% -1.62% 56.30% -0.65%λ=1.25 λ=1.50

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic 17.8252 4.0308 78.57% 15.4045 6.5446 70.35%
Simulation 17.8469 1.3426 84.94% 15.4622 2.4930 78.18%
Rel. Error -0.12% N/A -7.50% -0.37% N/A -10.02%

Analytic 7.4758 0.1360 94.00% 6.4981 0.4532 86.97%
Simulation 7.7664 0.0704 96.08% 7.0796 0.1727 92.60%
Rel. Error -3.74% 93.18% -2.16% -8.21% 162.42% -6.08%

Analytic 7.4758 0.1360 94.00% 6.4981 0.4532 86.97%
Simulation 7.7672 0.0696 96.09% 7.0880 0.1712 92.64%
Rel. Error -3.75% 95.40% -2.18% -8.32% 164.72% -6.12%

Analytic 7.4758 0.1360 94.00% 6.4981 0.4532 86.97%
Simulation 7.7648 0.0698 96.08% 7.0839 0.1729 92.62%
Rel. Error -3.72% 94.84% -2.16% -8.27% 162.12% -6.10%

Analytic 7.4758 0.1360 94.00% 6.4981 0.4532 86.97%
Simulation 7.7682 0.0694 96.10% 7.0835 0.1727 92.63%
Rel. Error -3.76% 95.97% -2.19% -8.26% 162.42% -6.11%

Analytic 7.4758 0.1360 94.00% 6.4981 0.4532 86.97%
Simulation 7.7703 0.0695 96.10% 7.0816 0.1740 92.58%
Rel. Error -3.79% 95.68% -2.19% -8.24% 160.46% -6.06%

Retailer 4

Retailer 5

Retailer 4

Retailer 5

Warehouse

Retailer 1

Retailer 2

Retailer 3

Parameters:

Retailer 3

Retailer 2

Warehouse

Retailer 1

Table 5.5: Accuracy of the approximation algorithm for 1 Warehouse and 5 identical Retailers
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Parameters Inv. Level BO Level C.S.L Parameters Inv. Level BO Level C.S.L
Analytic R W  = 10 17.9942 1.1042 84.16% R W  = 10 18.0339 1.2652 79.88%

Simulation Q W  = 30 17.9915 0.8923 86.76% Q W  = 30 18.0596 1.0533 83.27%

Rel. Error β S = 1 0.02% 23.75% -3.00% β S = 1 -0.14% 20.12% -4.07%

Analytic R 1 = 5 8.1669 0.0392 97.45% R 1 = 5 8.1406 0.0414 97.35%

Simulation Q 1 = 10 8.2947 0.0285 97.96% Q 1 = 10 8.2548 0.0306 97.85%

Rel. Error βW  = 1 -1.54% 37.54% -0.52% βW  = 1 -1.38% 35.29% -0.51%

Analytic R 2 = 5 5.5528 0.1015 94.18% R 2 = 5 5.5290 0.1067 93.98%

Simulation Q 2 = 5 5.6843 0.0720 95.34% Q 2 = 5 5.6718 0.0738 95.25%

Rel. Error βW  = 1 -2.31% 40.97% -1.22% βW  = 1 -2.52% 44.58% -1.33%

Analytic R 3 = 5 10.4910 0.0340 97.93% R 3 = 5 10.4836 0.0347 97.90%

Simulation Q 3 = 15 10.6199 0.0249 98.32% Q 3 = 15 10.6146 0.0251 98.31%

Rel. Error βW  = 1 -1.21% 36.55% -0.40% βW  = 1 -1.23% 38.25% -0.42%

Analytic R 4 = 5 5.5528 0.1015 94.18% R 4 = 5 8.1406 0.0414 97.35%

Simulation Q 4 = 5 5.6854 0.0708 95.36% Q 4 = 10 8.2575 0.0309 97.84%

Rel. Error βW  = 1 -2.33% 43.36% -1.24% βW  = 1 -1.42% 33.98% -0.50%

Analytic R 5 = 5 5.5528 0.1015 94.18% R 5 = 5 8.1406 0.0414 97.35%

Simulation Q 5 = 5 5.6866 0.0711 95.37% Q 5 = 10 8.2582 0.0306 97.85%

Rel. Error βW  = 1 -2.35% 42.76% -1.25% βW  = 1 -1.42% 35.29% -0.51%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic R W  = 10 18.0730 1.4697 77.03% R W  = 10 18.0141 1.1860 82.29%

Simulation Q W  = 30 18.1161 1.2933 79.96% Q W  = 30 18.0250 0.9691 85.17%

Rel. Error β S = 1 -0.24% 13.64% -3.66% β S = 1 -0.06% 22.38% -3.38%

Analytic R 1 = 5 8.1234 0.0433 97.27% R 1 = 5 8.1548 0.0403 97.40%

Simulation Q 1 = 10 8.2384 0.0322 97.78% Q 1 = 10 8.2775 0.0293 97.91%

Rel. Error βW  = 1 -1.40% 34.47% -0.52% βW  = 1 -1.48% 37.54% -0.52%

Analytic R 2 = 5 5.4878 0.1158 93.64% R 2 = 5 5.5393 0.1044 94.07%

Simulation Q 2 = 5 5.6277 0.0794 94.96% Q 2 = 5 5.6724 0.0729 95.27%

Rel. Error βW  = 1 -2.49% 45.84% -1.39% βW  = 1 -2.35% 43.21% -1.26%

Analytic R 3 = 5 10.4735 0.0358 97.86% R 3 = 5 10.4872 0.0344 97.91%

Simulation Q 3 = 15 10.6032 0.0259 98.27% Q 3 = 15 10.6178 0.0247 98.32%

Rel. Error βW  = 1 -1.22% 38.22% -0.42% βW  = 1 -1.23% 39.27% -0.42%

Analytic R 4 = 5 10.4735 0.0358 97.86% R 4 = 5 5.5393 0.1044 94.07%

Simulation Q 4 = 15 10.6070 0.0256 98.28% Q 4 = 5 5.6757 0.0724 95.30%

Rel. Error βW  = 1 -1.26% 39.84% -0.43% βW  = 1 -2.40% 44.20% -1.29%

Analytic R 5 = 5 10.4735 0.0358 97.86% R 5 = 5 8.1548 0.0403 97.40%

Simulation Q 5 = 15 10.6068 0.0258 98.28% Q 5 = 10 8.2744 0.0295 97.91%

Rel. Error βW  = 1 -1.26% 38.76% -0.43% βW  = 1 -1.45% 36.61% -0.52%

λ=1.0 λ=1.0

λ=1.0λ=1.0

Warehouse

Retailer 1

Retailer 2

Retailer 3

Retailer 4

Retailer 5

Warehouse

Retailer 1

Retailer 2

Retailer 3

Retailer 4

Retailer 5

Table 5.6: Accuracy of the approximation algorithm for 1 Warehouse and 5 Retailers
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Parameters Inv. Level BO Level C.S.L Parameters Inv. Level BO Level C.S.L
Analytic R W  = 10 18.0354 1.3051 80.95% R W  = 10 18.0354 1.3051 80.95%

Simulation Q W  = 30 18.0569 1.1000 83.55% Q W  = 30 18.0894 1.1736 81.65%

Rel. Error β S = 1 -0.12% 18.65% -3.11% β S = 1 -0.30% 11.20% -0.86%

Analytic R 1 = 5 8.1465 0.0412 97.36% R 1 = 5 8.1465 0.0412 97.36%

Simulation Q 1 = 10 8.2652 0.0301 97.88% Q 1 = 10 8.2468 0.0317 97.80%

Rel. Error βW  = 1 -1.44% 36.88% -0.53% βW  = 1 -1.22% 29.97% -0.45%

Analytic R 2 = 5 5.5192 0.1088 93.90% R 2 = 5 5.5192 0.1088 93.90%

Simulation Q 2 = 5 5.6537 0.0756 95.15% Q 2 = 5 5.6520 0.0765 95.13%

Rel. Error βW  = 1 -2.38% 43.92% -1.31% βW  = 1 -2.35% 42.22% -1.29%

Analytic R 3 = 5 10.4813 0.0350 97.89% R 3 = 5 10.4813 0.0350 97.89%

Simulation Q 3 = 15 10.6109 0.0253 98.30% Q 3 = 15 10.6114 0.0256 98.28%

Rel. Error βW  = 1 -1.22% 38.34% -0.42% βW  = 1 -1.23% 36.72% -0.40%

Analytic R 4 = 5 5.5192 0.1088 93.90% R 4 = 5 8.1465 0.0412 97.36%

Simulation Q 4 = 5 5.6528 0.0759 95.14% Q 4 = 10 8.2493 0.0313 97.82%

Rel. Error βW  = 1 -2.36% 43.35% -1.30% βW  = 1 -1.25% 31.63% -0.47%

Analytic R 5 = 5 10.4813 0.0350 97.89% R 5 = 5 10.4813 0.0350 97.89%

Simulation Q 5 = 15 10.6108 0.0253 98.29% Q 5 = 15 10.6104 0.0255 98.29%

Rel. Error βW  = 1 -1.22% 38.34% -0.41% βW  = 1 -1.22% 37.25% -0.41%

λ=1.0 λ=1.0

Retailer 4

Retailer 5

Warehouse

Retailer 1

Retailer 2

Retailer 3

Table 5.7: Accuracy of the approximation algorithm for 1 Warehouse and 5 Retailers

processes increases. We conclude that even using a three-moment approximation scheme

does not guarantee a good approximation of the inherited autocorrelation in the superposed

processes.
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Parameters Inv. Level BO Level C.S.L Parameters Inv. Level BO Level C.S.L
Analytic R W  = 10 18.9204 0.8910 85.51% R W  = 10 18.9449 0.9681 82.17%

Simulation Q W  = 30 18.9479 0.6861 88.05% Q W  = 30 18.9778 0.8036 85.32%

Rel. Error β S = 1 -0.15% 29.86% -2.88% β S = 1 -0.17% 20.47% -3.69%

Analytic R 1 = 5 9.3490 0.0016 99.78% R 1 = 5 9.3387 0.0016 99.78%

Simulation Q 1 = 10 9.3859 0.0012 99.82% Q 1 = 10 9.3725 0.0013 99.82%

Rel. Error βW  = 1 -0.39% 33.33% -0.04% βW  = 1 -0.36% 23.08% -0.04%

Analytic R 2 = 5 5.5973 0.0928 94.52% R 2 = 5 5.5825 0.0957 94.41%

Simulation Q 2 = 5 5.7062 0.0687 95.48% Q 2 = 5 5.6946 0.0706 95.39%

Rel. Error βW  = 1 -1.91% 35.08% -1.01% βW  = 1 -1.97% 35.55% -1.03%

Analytic R 3 = 5 9.3931 0.1416 94.29% R 3 = 5 9.3886 0.1429 94.26%

Simulation Q 3 = 15 9.6374 0.1022 95.40% Q 3 = 15 9.6306 0.1018 95.39%

Rel. Error βW  = 1 -2.53% 38.55% -1.16% βW  = 1 -2.51% 40.37% -1.18%

Analytic R 4 = 5 5.5973 0.0928 94.52% R 4 = 5 8.1927 0.0373 97.54%

Simulation Q 4 = 5 5.7055 0.0682 95.48% Q 4 = 10 8.2991 0.0285 97.97%

Rel. Error βW  = 1 -1.90% 36.07% -1.01% βW  = 1 -1.28% 30.88% -0.44%

Analytic R 5 = 5 6.8876 0.0026 99.63% R 5 = 5 9.3387 0.0016 99.78%

Simulation Q 5 = 5 6.9149 0.0021 99.68% Q 5 = 10 9.3731 0.0013 99.81%

Rel. Error βW  = 1 -0.39% 23.81% -0.05% βW  = 1 -0.37% 23.08% -0.03%

Inv. Level BO Level C.S.L Inv. Level BO Level C.S.L
Analytic R W  = 10 18.9761 1.0874 79.83% R W  = 10 18.9268 0.9080 84.60%

Simulation Q W  = 30 18.9946 0.9710 82.64% Q W  = 30 18.9399 0.7374 87.06%

Rel. Error β S = 1 -0.10% 11.99% -3.40% β S = 1 -0.07% 23.14% -2.83%

Analytic R 1 = 5 9.3328 0.0017 99.77% R 1 = 5 9.3464 0.0016 99.78%

Simulation Q 1 = 10 9.3610 0.0014 99.80% Q 1 = 10 9.3789 0.0012 99.82%

Rel. Error βW  = 1 -0.30% 21.43% -0.03% βW  = 1 -0.35% 33.33% -0.04%

Analytic R 2 = 5 5.5516 0.1019 94.16% R 2 = 5 5.5927 0.0937 94.49%

Simulation Q 2 = 5 5.6594 0.0751 95.17% Q 2 = 5 5.6983 0.0696 95.43%

Rel. Error βW  = 1 -1.90% 35.69% -1.06% βW  = 1 -1.85% 34.63% -0.99%

Analytic R 3 = 5 9.3812 0.1451 94.21% R 3 = 5 9.3922 0.1419 94.28%

Simulation Q 3 = 15 9.6234 0.1035 95.35% Q 3 = 15 9.6234 0.1026 95.37%

Rel. Error βW  = 1 -2.52% 40.19% -1.20% βW  = 1 -2.40% 38.30% -1.14%

Analytic R 4 = 5 10.5391 0.0319 98.03% R 4 = 5 5.5927 0.0937 94.49%

Simulation Q 4 = 15 10.6566 0.0237 98.39% Q 4 = 5 5.6972 0.0704 95.41%

Rel. Error βW  = 1 -1.10% 34.60% -0.37% βW  = 1 -1.83% 33.10% -0.96%

Analytic R 5 = 5 11.7561 0.0015 99.80% R 5 = 5 9.3464 0.0016 99.78%

Simulation Q 5 = 15 11.7941 0.0011 99.84% Q 5 = 10 9.3828 0.0012 99.82%

Rel. Error βW  = 1 -0.32% 36.36% -0.04% βW  = 1 -0.39% 33.33% -0.04%

Warehouse

Retailer 1

Warehouse

Retailer 1

Retailer 2

Retailer 3

Retailer 4

Retailer 5

Retailer 2

Retailer 3

Retailer 4

Retailer 5

Table 5.8: Accuracy of the approximation algorithm for 1 Warehouse and 5 non-identical
Retailers
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λ1=0.5 λ2=1.0 λ3=1.5 λ4=1.0 λ5=0.5

Parameters Inv. Level BO Level C.S.L Parameters Inv. Level BO Level C.S.L
Analytic R W  = 10 18.9374 0.9567 83.87% R W  = 10 18.9547 1.0067 81.43%

Simulation Q W  = 30 18.9498 0.8045 86.17% Q W  = 30 18.9922 0.8663 84.45%

Rel. Error β S = 1 -0.07% 18.92% -2.67% β S = 1 -0.20% 16.21% -3.58%

Analytic R 1 = 5 9.3446 0.0016 99.78% R 1 = 5 9.3368 0.0017 99.77%

Simulation Q 1 = 10 9.3797 0.0013 99.81% Q 1 = 10 9.3702 0.0013 99.81%

Rel. Error βW  = 1 -0.37% 23.08% -0.03% βW  = 1 -0.36% 30.77% -0.04%

Analytic R 2 = 5 5.5829 0.0956 94.41% R 2 = 5 5.5731 0.0976 94.33%

Simulation Q 2 = 5 5.6860 0.0711 95.36% Q 2 = 5 5.6853 0.0716 95.33%

Rel. Error βW  = 1 -1.81% 34.46% -1.00% βW  = 1 -1.97% 36.31% -1.05%

Analytic R 3 = 5 9.3890 0.1428 94.26% R 3 = 5 9.3862 0.1436 94.24%

Simulation Q 3 = 15 9.6254 0.1029 95.37% Q 3 = 15 9.6306 0.1028 95.37%

Rel. Error βW  = 1 -2.46% 38.78% -1.16% βW  = 1 -2.54% 39.69% -1.18%

Analytic R 4 = 5 5.5829 0.0956 94.41% R 4 = 5 8.1891 0.0376 97.53%

Simulation Q 4 = 5 5.6872 0.0711 95.37% Q 4 = 10 8.2907 0.0289 97.95%

Rel. Error βW  = 1 -1.83% 34.46% -1.01% βW  = 1 -1.23% 30.10% -0.43%

Analytic R 5 = 5 11.7592 0.0015 99.81% R 5 = 5 11.7581 0.0015 99.81%

Simulation Q 5 = 15 11.7916 0.0011 99.85% Q 5 = 15 11.7924 0.0011 99.84%

Rel. Error βW  = 1 -0.27% 36.36% -0.04% βW  = 1 -0.29% 36.36% -0.03%

Warehouse

Retailer 1

Retailer 2

Retailer 3

Retailer 4

Retailer 5

Table 5.9: Accuracy of the approximation algorithm for 1 Warehouse and 5 non-identical
Retailers
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Chapter 6

Forecasting Using TES Processes

Improving decision making practices in a supply chain is a major source of competitive ad-

vantage in today’s uncertain business environments. Resolving uncertainty in early phases

of the decision making process will result in better planning and accuracy of supply chain

activities, and improved customer service levels, lesser inventories and lower costs. Fore-

casting is one of the key ingredients necessary to handle uncertainties in the early stages of

planning. It is a crucial driver for procurement, manufacturing and distribution activities in

a supply chain.

Improving the quality of forecasts has been a challenging problem. Failure to account for

large autocorrelations, trend, and seasonality in data sets is key ingredient contributing to

lack of accuracy in forecasting. Time series models such as Winters exponential smoothing,

Box-Jenkins auto regressive integrated moving average (ARIMA), and multiple regression

have been widely used to account for these type of patterns. Likewise, TES (Transform-

Expand-Sample) models were utilized to generate forecasts for correlated data sets [73].

Melamed [81] introduced TES processes to model autocorrelated time series in Monte Carlo

simulation.

The primary objective of time series modeling (TSM) is to draw inferences from past

data. It relies on the argument that data points taken through time may have an underlying

structure (such as autocorrelation, trend or seasonal variation) and this structure may persist

over time. The approach consists of establishing a mathematical model to represent a given

data set. Then, the model is employed to describe and analyze the sample data, and make

forecasts for the future. The main advantage of time series models is that they can handle

any persistent patterns in data [25, 28].

TES is a methodology [71, 72] to model empirical time series from a stationary probability

law. Its merit is to capture both the empirical distribution and autocorrelation function,
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simultaneously. It can model a wide variety of autocorrelation functions (e.g. monotone,

oscillating, alternating etc.) and is suitable for Monte Carlo simulation of autocorrelated time

series. The analytical formulas of TES processes provide calculation of autocorrelations as

well as its transition structure. Forecasts for the future can be calculated by utilizing the

known transition structure of TES processes [73].

This chapter reports on an experimental study that compares TES process forecasting to

traditional Box-Jenkins ARIMA models. Similar comparative studies exist in the literature.

Among the recent ones, Alon et al. [4] presents a study that compares artificial neural net-

works to time series forecasting methods in predicting US aggregate retail sales. Thomakos

and Guerard [99] compare naive, ARIMA, nonparametric and transfer function models on

several data sets. Zou and Yang [111] suggest combining several time series models to get

forecasts that are more accurate and compare them to individual methods. Our study differs

from others since it exploits TES forecasting procedure. Jagerman and Melamed [73] also

implement the TES forecasting methodology based on the use of mixture of uniform random

variables as the innovation density. This chapter contains an extensive computational study

of TES forecasting, and exploits phase-type random variables as the innovation density.

The remainder of the chapter is organized as follows. The next section gives an overview

of TSM methodology. The second section explains TES processes and its empirical modeling.

The third section illustrates the numerical implementation. The fourth section contains a

comparison study of TES forecasting to general ARIMA models and final comments.

6.1 Time Series Models

Time series models are used to draw inferences from past data. In these models, data is

analyzed in order to identify patterns recurring over time. Then, forecasts for future periods

are developed based on such underlying patterns. The applications of time series models

include forecasting future values of the series, testing hypothesis, monitoring and simulation,

among others.

A discrete time series {Xt}, t = 0, 1, 2, . . . is a sequence of observations recorded at

time t, correspondingly, a continuous time series is the one where observations recorded
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continuously. The autocorrelation function of a stationary time series, {Xt}, with common

mean µX < ∞ and variance σ2
X < ∞ is defined at lag τ as

ρx(τ) =
E[(Xt+τ − µX)(Xt − µX)]

σ2
X

, τ = 1, 2, 3, . . . . (6.1)

Box and Jenkins [25] provides a methodology for fitting a model to an empirical data set.

The systematic approach identifies a class of models appropriate for empirical data sequence

at hand and estimates its parameters. A general class of Box and Jenkins models includes

ARIMA models that can model a large class of autocorrelation functions [25, 28]. The model

is a combination of auto regressive (AR) and moving average (MA) models for differenced

data. An AR model is simply a regression of the current observation to the previous ones.

On the other hand, an MA model is a regression of the current value against the previous

white noise.

6.2 TES Processes

TES is a modeling methodology [71, 72, 81, 82] of empirical time series that captures a very

strong statistical signature such as the marginal distribution as well as the autocorrelation

function. In addition, its analytical background makes it a viable tool to forecast future

values of empirical time series data [73].

The TES modeling procedure satisfies three important requirements of fitting a model

to an empirical data set. The first one is to match the marginal distribution of the model to

the marginal distribution of the time series, which is a first-order characteristic of the data.

The second one is to approximate the autocorrelation function of the data, a second-order

statistics. Finally, the third requirement is that the sample paths generated by the TES

model should resemble their empirical counterparts.

A TES process utilizes background and foreground schemes in the sequence genera-

tion procedure. That is, an auxiliary sequence is generated from a stationary process by

a recursive relationship. Then, the target foreground sequence is obtained by making a

transformation using the background sequence.

There are two types of TES processes, namely TES+ and TES−. The former can generate

positive lag-1 autocorrelations while the latter can generate negative lag-1 autocorrelations,



102

respectively. In this paper, we are mainly interested in TES+ processes. We will append

proper superscripts (plus or minus) wherever it is necessary to distinguish between TES+

and TES−. A TES+ process is generated as follows. First, a background variate, U+
n , is

generated by utilizing the following recursive relationship:

U+
n = 〈U+

n−1 + Vn〉, n > 0 (6.2)

where U0 is a uniform random number in (0, 1), Vn is an i.i.d. random sequence (called the

innovation sequence since they bring added randomness at each step) with a common density

function, fv, independent of U+
0 , . . . U+

n−1, and 〈〉 is the modulo-1 arithmetic operator, i.e.,

〈x〉 = x−max{integer n : n ≤ x}, resulting in the fractional part of n. U+
n turns out to have

Uniform (0, 1) marginal distribution. Then, the foreground sequence X+
n is obtained using

a transformation (called distortion) from U+
n , i.e.,

X+
n = D(U+

n ), n > 0. (6.3)

In order to smooth the sample paths generated by TES models, an intermediary stitching

transformation is applied to the background sequence. It is a piecewise linear transformation

and it preserves the uniformity of the original sequence. The transformation is given by

Sξ(y) =





y
ξ
, 0 ≤ y < ξ

1−y
1−ξ

, ξ ≤ y < 1

(6.4)

where ξ ∈ [0, 1).

6.2.1 The Autocorrelation Function of TES Processes

The autocorrelation function of a foreground TES+ sequence X+
n is given by

ρ+
x (τ) =

2

σ2
X

∞∑
ν=1

Re[f̃ τ
v (i2πν)]|D̃(i2πν)|2 (6.5)

where Re[] denotes the real part of a complex number, and f̃v and D̃ are the Laplace

transforms of the innovation density and the distortion, respectively. Details of 6.5 can be

found in [71].
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6.2.2 The Empirical TES Modeling Methodology

Given an empirical time series {Yn}N
n=0, TES modeling methodology aims to fit TES mod-

els whose marginal distribution matches the marginal distribution of the time series, and

whose autocorrelation function, ρX(τ), approximates its empirical counterpart, ρ̂Y (τ). The

methodology consists of selecting the TES model, TES+ or TES−, a transformation (distor-

tion), D, a stitching parameter, ξ, and an innovation density, fv.

Initially, TES model is selected by investigating the empirical autocorrelations. Then,

the general practice is to express data sequence as an empirical density (histogram) since a

mixture of uniform distributions can approximate any general density function [8]. Let ĤY

denote the associated cumulative distribution function of the empirical density. In particular,

the construction of the distortion of the form D = Ĥ−1
Y (Sξ) makes sure that the random

sequence {Xn} has the same marginal distribution as the empirical histogram, (due to the

inversion transformation method [8, 27]). A formulation of empirical density function is given

in Appendix C. It remains to select an appropriate stitching parameter and an innovation

density. This selection requires an extensive search procedure. In fact, the choice of (fv, ξ)

determines the model’s autocorrelation structure.

Successful applications of the TES models consist of machine failures, financial time series

models, MPEG-compressed VBR video, texture synthesis, and H.261-Compressed video [65,

66]. An algorithmic empirical TES model fitting methodology using mixture of uniform

innovation sequences is described in [8, 74].

6.3 Forecasting Using TES Processes

In order to use TES models in forecasting, one first needs to model the data set using a TES

process. As part of the empirical TES modeling methodology, choosing a proper innovation

density requires extensive computational effort. However, it is possible to limit the search

to a subset of innovation densities. Among the candidate densities are mixture of uniform

innovations as well as phase-type distributions because of their generality and versatility.

Earlier work on TES modeling used mixture of uniform random variables as the innovation
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variables. In this study, we propose using phase-type random variables [7, 86]. Using phase-

type random variables as the innovation density substantially reduces the search space since

they are more likely to have fewer parameters than mixtures of uniform random variables.

Below, we show how to calculate the autocorrelation function 6.5 of TES processes using

different innovation densities.

6.3.1 The Innovation Variables

In the current implementation of TES modeling [82], mixtures of uniform distributions have

been used as innovation variables, having the density function

fv(x) =
K∑

k=1

Pk

Rk − Lk

1[Lk,Rk)(x) (6.6)

where K is the number of Uniform (Lk, Rk) variates with mixing probabilities Pk.

In this study, we have implemented a subset of phase-type distributions as innovation

variables consisting of mixtures of generalized Erlang (MGE) distributions that have been

widely used in the analysis of manufacturing and communication systems [7, 86]. A special

case is the MGE-2 distribution consisting mixtures of two exponential phases with respective

rates µ1 and µ2 and a density function

fv(x) = c1µ1e
−µ1x + c2µ2e

−µ2x (6.7)

with mixing probabilities c1 = (µ1(1− a1)− µ2)/(µ1 − µ2) and c2 = 1− c1, where µ1 6= µ2,

and a1 being the conditional probability of going to phase 2 given that phase 1 is completed.

Additionally, its Laplace transform is given by

f̃v(s) =
sµ1(1− a1) + µ1µ2

s2 + s(µ1 + µ2) + µ1µ2

. (6.8)

6.3.2 Computation of f̃v(i2πν)

For the innovation density 6.6, f̃v(i2πν) is given by

f̃v(i2πν) =
K∑

k=1

Pk
e−i2πναkφk sin (πναk)

πναk

(6.9)
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where αk = Rk − Lk and φk = (Rk + Lk)/αk, and for the innovation density 6.7, it is given

by

f̃v(i2πν)

=

√
µ2

1µ2
2+4π2ν2µ2

1(1−a1)2√
(µ1µ2−4π2ν2)2+(2πν(µ1+µ2))2

e
i(tan−1(

2πνµ1(1−a1)
µ1µ2

)−tan−1(
2πν(µ1+µ2)

µ1µ2−4π2ν2 ))

(6.10)

Computation of |D̃(i2πν)|2 is given in [71, 72] and summarized in Appendix C.

6.3.3 TES Model Fitting Methodology

TES modeling guarantees fitting of the empirical distribution function by utilizing distor-

tions of the form D = Ĥ−1
Y (Sξ). However, fitting the empirical autocorrelation function

requires an extensive search procedure over the candidate pairs of (fv, ξ). As a result, the

problem is to find TES models whose autocorrelation function, ρfv ,ξ, determined by the pair

(fv, ξ) approximates its empirical counterpart, ρ̂Y (τ). Formally, for a fixed histogram in-

verse distribution, Ĥ−1
Y , the problem is to find an optimal innovation density and stitching

parameter, (f ∗v , ξ∗), such that

(f ∗v , ξ∗) = arg min
(fv ,ξ)

{
T∑

t=1

[ρfv ,ξ − ρ̂Y (τ)]2} (6.11)

where T is the maximal autocorrelation lag to be approximated. The problem is similar to

one described in [74]. Recall that, we use a subset of phase-type distributions as innovation

variables consisting of mixtures of generalized Erlang (MGE) distributions, and ξ is in [0, 1).

6.3.4 Outline of the Fitting Methodology

A brief outline of the empirical TES model fitting methodology is:

• Select the TES model, TES+ or TES−.

• Construct the empirical distribution function, ĤY , from which Ĥ−1
Y is easily con-

structed.

• Discretize the parameter space of ξ into a number of equidistant values (ξ is in [0, 1)).
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• Start with an initial value of ξ, solve the optimization problem 6.11 with using MGE

distributions.

Now, a TES model is fitted to the empirical data. If ρX(τ) sufficiently approximates

ρ̂Y (τ), and simulated sample paths of the TES model resembles its empirical counterpart, the

model is accepted. Otherwise, the search continues with different ξ values until a satisfactory

model is found.

6.3.5 The TES Forecasting Methodology

TES-based forecasting is described in detail in [73]. However, because of its importance, we

summarize it here. The forecast for τ periods ahead (τ = 0, 1, 2, . . .) given the current value

of the background sequence is given by the following formula

F+
X (u, τ) = E[X+

n+τ |U+
n = u] =

∞∑
ν=−∞

¯̃fv(i2πν)
τ
sv(ξ)e

i2πνu (6.12)

where ¯̃fv is the complex conjugate of f̃v, and

qν(ξ) = ξ

∫ 1

0

e−i2πνξvD(v)dv, (6.13)

rν(ξ) = (1− ξ)

∫ 1

0

ei2πν(1−ξ)vD(v)dv, (6.14)

sν(ξ) = qν(ξ) + rν(ξ) (6.15)

are the Fourier coefficients, with

s0(ξ) =

∫ 1

0

D(v)dv = E[X+
n ]. (6.16)

Here, the computation of conditional expectations, E[X+
n+τ |U+

n = u], used to forecast

future values, is based on the current background event U+
n = u. The problem is how to

obtain un from the foreground sequence, xn. Since a stitching transformation is usually

2-to-1, it follows that the mapping from xn to un is 1-to-2, and one has to select between

two possible values, as explained in [73]. This is done by retrograde forecasting, taking

advantage of the fact that both a background TES sequence and its time-reversed version

are both Markovian with known transition densities. One chooses that un whose use provides

better retrograde forecasts.
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6.3.6 Testing methodology

After we fit a TES model to an empirical data set using phase-type innovation variables, all

the autocorrelations and transition densities of the model can be calculated using accurate

analytical formulas. Utilizing the transition structure of the TES model, forecasts for future

periods can be obtained as conditional expectations of the process given a current value.

TES point estimation can be found in [73] and is summarized above.

We have implemented the TES forecasting procedure using the data from Dow Jones

Utilities Index (DJUI), recorded between August 28 and December 18, 1972 [28, 80] A TES

model was constructed by matching the empirical distribution and autocorrelation function,

simultaneously. We have used mixtures of generalized Erlang (MGE) random variables in

the construction of the TES model (as the innovation variables).

Here, it is important to comment on the innovation variables. In phase-type modeling of

the innovations, it is desirable to have small K (number of phases) values, since smaller K

values reduces computational burden (computation of f̃v(i2πν)). In the procedure, we have

started with small K values and incremented it successively. The case of K = 1 (exponential

distribution) has yielded unsatisfactory TES models. However, we have achieved satisfactory

models with K = 2. Larger values of K did not yield much better models whereas they

increased the computational burden considerably. Consequently, we decided K = 2 is the

minimal K value that yields satisfactory models.

Matlab Optimization Toolbox was utilized to solve problem 6.11. Although the toolbox

uses standard algorithms for nonlinear optimization problems, there is no guarantee that the

global minimum is achieved. These algorithms have been chosen for their robustness and

efficiency.

Here, the search requires an additional parameter, Nξ, where Nξ is the number of equidis-

tant values which ξ can take. Increasing Nξ increases the computational requirements. On

the other hand, smaller Nξ values yield unsatisfactory TES models. It is critical to decide on

the value of Nξ where satisfactory TES models can be identified. In general, with Nξ = 10,

we were able to identify satisfactory TES models. Nevertheless, it is easy to increase Nξ

whenever it is necessary. The procedure described above is highly heuristic and the effort

needed depends on the data set as well as the modeler.
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Below, we have included the autocorrelation functions of the empirical data set and the

candidate TES model. We can see the almost exact match between the autocorrelation

functions of the empirical observations and the TES model from Figure 6.1.
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Figure 6.1: Autocorrelation functions of the DJUI data and the TES model

The DJUI data set has 78 points. We split the data into fit and test periods in order to

check the accuracy of the forecasting method rigorously. The TES model was identified by

using the first 68 points. Using the model, we estimated values of these 68 data points, which

we refer to as validation. Then, we used the model for forecasting the values of the remaining

10 data points called test-period. Recall that, the computation of conditional expectations,

E[X+
n+τ |U+

n = u], used to forecast future values, is based on the current background event

U+
n = u. Since the mapping from xn to un is 1-to-2, we have to select between two possible

values. In choosing the un, we forecast past ten values of the data series depending on both

possible values. We choose that un whose use provides better retrograde forecasts.

Forecasts generated by the TES model using DJUI data are presented in Figure 6.2.

The forecasts are calculated using expectations conditioned on the current value of the time

series. Therefore, for a given data point, both one-period-ahead and multiple-period-ahead

predictions can be computed. In order to show the goodness of fit of the TES model to the

validation period data, we have started conditioning on the first data point and computed

an estimate for the second period, conditioned on the second data point and computed an

estimate for the third period, and so on. In Figure 6.2, the actual data and the one-period-

ahead forecasts at every point are presented.

In addition, we have illustrated the accuracy of the one-period-ahead forecasts in the
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Figure 6.2: In-sample and out-of-sample forecasting for DJUI

test-period. In the last 10 data points in Figure 6.2, we have forecasted only at the out-

of-sample period using the model developed based on the in-sample period. For forecasting

performance, we have used the last 10 points of the data, and calculated the error mea-

sures such as the root mean squared error (RMSE) and the mean absolute percentage error

(MAPE) given below. The forecasting error is obtained by et = Yt−Ft where Yt is the time

series data, and Ft is its forecast at time t as described above. RMSE is given by

RMSE =

√∑n
i=1 e2

i

n
, (6.17)

and MAPE is given by

MAPE =

∑n
i=1 |Yi − Fi|/Yi

n
100. (6.18)

The resulting RMSE and MAPE for out-of-sample data are 0.4820 and 0.32%, respec-

tively for DJUI data. A comparison of this result to traditional ARIMA models is given in

next section.

6.4 Comparison of TES Forecasting to ARIMA Models

In this section, we compare the accuracy of TES forecasting methodology with the traditional

ARIMA models using several empirical data sets. We have first utilized the TES modeling

methodology to fit a model to an empirical data set and then generated forecasts using the

fitted model. Then, we have developed ARIMA models using the same data set, generated

forecasts, and finally, compared with TES forecasting using the error measures above.
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Most of the data sets are borrowed from [28] and for all of them; we have specified part

of the data except the last ten points as the validation period and the remaining as the

test period. After fitting the models, forecasts were computed and the error measures were

calculated using the test points.

The “Lake Huron” data shows the water level at Lake Huron in feet (reduced by 570),

between 1875 and 1972 [28, 80]. Data set “Sales” is sales data from [25]. “Appc” represents

private housing units started in the U.S.A. (monthly, from the Makridakis competition,

series 922). Data set “Petroleum” is from Monthly Energy Review database and represents

monthly total domestic field petroleum production from January 1984 to December 2003

(URL: http://www.eia.doe.gov/emeu/mer/petro.html). The “Sbl” data is the number of

car drivers killed or seriously injured monthly in Great Britain for ten years beginning in

January 1975. The “Deaths” data is monthly accidental deaths in the U.S.A. between 1973

and 1978 (National Safety Council). All the computations were conducted by using Matlab

Release 12.1. Matlab Optimization Toolbox was utilized to fit the TES models. Forecasts

generated by the TES model using above data sets are presented in Figure 6.3.

Table 6.1 shows the computational results for both forecasting methods. In the first row,

we have used the DJUI data to compare the two forecasting procedures. TES forecasting

procedure yields RMSE = 0.4820 and MAPE = 0.32%. In the meantime, ARIMA model

yields RMSE = 0.4366 and MAPE = 0.29%. Other rows are interpreted accordingly. The

table also shows the detail in the fitted ARIMA model. For DJUI data, the identified ARIMA

model is an AR model of order 1 to the transformed data (differenced at lag 1).

DATA SET TES ARIMA
RMSE MAPE RMSE MAPE MODEL

DJUI 0.4820 %0.32 0.4366 %0.29 (1,1,0)
Lake Huron 0.7441 %7.65 0.7466 %7.6 (1,0,1)

Sales 1.4561 %0.45 0.9861 %0.31 (1,1,1)
Appc 149.27 %6.81 169.89 %7.42 (1,1,3)

Petroleum 125.31 %1.49 106.03 %0.95 (3,1,3)
Sbl 155.11 %9.50 142.82 %7.76 (5,1,4)

Deaths 452.21 %3.57 296.10 %2.43 (1,1,1)

Table 6.1: Square root of MSE and MAPE for TES and ARIMA models
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Figure 6.3: In-sample and out-of-sample forecasting for Lake Huron, Sales, Appc, Petroleum,
Sbl, Deaths data sets
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As can be seen from the computational results, TES forecasting methodology yields

forecasts as accurate as ARIMA models. This makes TES forecasting procedure an attractive

complement to time series models, especially when data exhibits high autocorrelations.

However, as the values of the autocorrelations decrease, the accuracy of the forecasts

generated by the TES model decreases. The underlying reason is that identifying a satis-

factory TES model for a given data set becomes more difficult and time consuming (but yet

doable) as the value of the empirical autocorrelations decreases.

The data sets included were highly autocorrelated, which is appropriate for TES model-

ing. Our analysis suggests that in addition to its analytical modeling of autocorrelated time

series and Monte Carlo simulation, use of TES models as a forecasting tool yields forecasts

as accurate as other time series models. Furthermore, using phase-type random variables

as the innovation density considerably decreases the search effort for model fitting, which in

turn makes it possible to frequently update the fitted model as new data arrive. In addition,

TES processes are extremely useful in modeling empirical data series, especially in capturing

autocorrelations.
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Chapter 7

Conclusion and Future Research

In this thesis, we have studied a typical supply chain consisting of a supplier, a plant, a

DC, and a retailer. We have used batch ordering inventory policies to control material flow

between stages. The supply chain is capacitated in the sense that it has a finite production

rate, and transit times between echelons are random variables. We have presented an effi-

cient decomposition technique to obtain long-run performance measures of the system: time

averages of inventory and backorder levels as well as the customer service levels. The model

was validated against simulation, yielding good agreement in robust performance metrics.

The metrics were then used within an optimization framework to help design the supply

chain. The objective of optimization in our problem is to determine appropriate production

and inventory policy parameters. We have employed a cost-minimizing objective function

that assigns penalties for holding inventory and shortages to solve the optimization problem.

In addition, a penalty per set-up or ordering is charged to avoid excessive set-ups or replen-

ishment orders, respectively. The outcome of the optimization framework specifies not only

how much and where to hold inventory but also how to move inventory across the supply

chain, i.e., reorder levels and replenishment batch sizes.

The proposed model takes into account the interactions between the echelons, especially

the demand process that propagates backward to the upstream stages and the lead time

process that propagates forward to the downstream stages. Moreover, it requires limited

computational requirements, which in turn helps update the performance measures and

optimal system parameters frequently so as to be more responsive to short-term changes

in demand or supply. In addition, it can be used as a decision support system for effective

decision making as opposed to using simplistic inventory models, which results in significantly

higher operating costs. Also, the model accommodates both backordering and partial lost

sales assumptions. Modeling difference between backorder and lost sales cases is that analysis
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of the effective demand inter-arrival and procurement times is different. The procurement

times are simpler; however, the demand inter-arrival times are more involved. We assume

that the actual demand is lost only at the retailer.

In a similar vein, we have considered a distribution inventory system with one warehouse

and several retailers. The challenge in this system is to describe the demand arrival process

at the warehouse. We have proposed a procedure to characterize the demand arrival process

at the warehouse as a superposition of several independent Erlang processes. This charac-

terization can also be applied to a queue to which the arrival process is the superposition

of separate arrival streams, each of whose inter-arrival times is of Erlang distribution. We

have presented a methodology to characterize such arrival streams as Markovian processes

which have been extended to phase-type arrival streams as well. Our methodology exactly

describes the superposed process, however the state-space of the proposed Markovian pro-

cess increases considerably. We, in addition, have developed a three-moment approximation

scheme to efficiently use the methodology in practice.

Finally, we have reported an experimental study that compares TES process forecast-

ing to traditional Box-Jenkins ARIMA models. TES is a methodology [71, 72] to model

empirical time series from a stationary probability law. Its merit is to capture both the

empirical distribution and autocorrelation function, simultaneously. Our analysis suggests

that in addition to its analytical modeling of autocorrelated time series and Monte Carlo

simulation, use of TES models as a forecasting tool yields forecasts as accurate as other time

series models. Furthermore, using phase-type random variables as the innovation density

considerably decreases the search effort for model fitting, which in turn makes it possible

to frequently update the fitted model as new data arrive. In addition, TES processes are

extremely useful in modeling empirical data series, especially in capturing autocorrelations.

Several extensions to this study are as follows. An important issue is to investigate the

stability of the supply chain. Most studies assume an unlimited capacity for the plants.

Here, we have assumed a finite production rate. Thus, an ineffective policy may lead to

high backorder levels. An exception was [59] in which they have investigated the stability

of a multi-echelon system under a base-stock policy. We will look for conditions where the

inventory and backorder levels are stable.
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For both the backorder and the lost sales case, the Poisson demand assumption does not

model the real world problem accurately. A compound Poisson process is a more general

assumption. Therefore, we will investigate this problem as well. In addition, the optimization

procedure can very well be applied to inventory distribution system as well.
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Appendix A

Phase-Type Distributions

Consider a Markov chain with state space 1, 2, . . . , k, k + 1 where k + 1 being the absorbing

state with infinitesimal generator

Q =


 T T 0

0 0




where the m×m matrix T satisfies Tii < 0, for 1 ≤ i ≤ m, Tij ≥ 0 for i 6= j, and Te+T 0 = 0,

where e is the unit column vector. States 1, 2, . . . , k are transient, so that absorption into

state k + 1, from any initial state, is certain. The initial probability vector of the Markov

chain is given by (α, αk+1), with α e + αk+1 = 1. Then, the distribution of the random

variable representing the time until absorption in the above Markov chain is said to be of

phase-type with an (α,T) representation. It is a probability distribution on [0,∞).

Let X be a phase-type random variable with an (α,T) representation. The moments of

X are all finite, and are given by

E[Xn] = (−1)nn!(αT−ne)

for n ≥ 1. In addition, the density function of X is

fX(x) = αe(Tx)T 0

for x ≥ 0.

Phase-type distributions are dense on [0,∞). They are closed under some operations.

The convolution of phase-type distributions is also a phase-type distribution. In addition, a

finite mixture of phase-type distributions is also a phase-type distribution
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Appendix B

Impact of Cost on System Parameters

Customer Service Level vs. Shortage 
Cost At Input Buffer

0.00%

25.00%

50.00%

75.00%

100.00%

0 100 200

Shortage Cost At Input Buffer

C
.S

.L
.

Customer Service Level vs. Ordering 
Cost At Input Buffer

80.00%

85.00%

90.00%

95.00%

100.00%

0 30 60

Ordering Cost At Input Buffer

C
.S

.L
.

Customer Service Level vs. Holding Cost 
At Input Buffer

80.00%

85.00%

90.00%

95.00%

100.00%

0 0.2 0.4

Holding Cost At Input Buffer

C
.S

.L
.

Figure B.1: Input buffer attributes that drive the performance of the supply chain
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Figure B.2: Output buffer attributes that drive the overall performance of the supply chain
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Figure B.3: Distribution center attributes that drive the overall performance of the supply
chain
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 30 25 20 15λ=1.4 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 6.2957 10.8764 14.5133 9.6983 41.3837 95.99%
14 9 29 9 19 9 11 4 6.0535 10.8199 12.578 9.8177 39.2691

21 1 13 10 6.5424 12.2547 34.6683
15 8 21 1 12 10 11 4 6.1106 6.5426 11.8733 9.7805 34.3071

19 1 12 10 6.1977 11.8733 33.9621
16 7 19 1 12 10 11 4 5.9572 6.2113 11.7797 9.7687 33.7169

19 1 12 10 6.2113 11.7797 33.7169
17 7 19 1 12 10 11 4 5.8713 6.2094 11.7781 9.7685 33.6273

19 1 12 10 6.2094 11.7781 33.6273
18 7 19 1 12 10 11 4 5.8063 6.2076 11.7767 9.7684 33.559

19 1 12 10 6.2076 11.7767 33.559
19 7 19 1 12 10 11 4 5.7587 6.2061 11.7754 9.7682 33.5084

19 1 12 10 6.2061 11.7754 33.5084
20 7 19 1 12 10 11 4 5.7259 6.2047 11.7743 9.7681 33.4729

19 1 12 10 6.2047 11.7743 33.4729
21 7 19 1 12 10 11 4 5.7057 6.2034 11.7733 9.7679 33.4504

19 1 12 10 6.2034 11.7733 33.4504
22 6 19 1 12 10 11 4 5.6899 6.2143 11.7821 9.769 33.4553

19 1 12 10 6.2143 11.7821 33.4553
23 6 19 1 12 10 11 4 5.6817 6.2127 11.7808 9.7689 33.4441

19 1 12 10 6.2127 11.7808 33.4441
23 6 19 1 12 10 11 4 5.6817 6.2127 11.7808 9.7689 33.4441

19 1 12 10 6.2127 11.7808 33.4441
C.S.L

23 6 19 1 12 10 11 4 5.6817 6.2127 11.7808 9.7689 33.4441 94.12%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table B.1: Convergence path of the optimization procedure with single steps (medium pro-
duction rate, λ = 1.4)
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 30 25 20 15λ=1.45 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 6.4032 11.5507 14.3726 9.905 42.2315 95.56%
14 9 30 10 19 9 10 5 6.1571 11.5969 13.0914 10.1169 40.9624

30 10 20 1 11.5969 9.0222 36.8931
15 8 30 10 20 1 10 5 5.979 11.6641 9.0102 9.9056 36.5589

30 10 20 1 11.6641 9.0102 36.5589
16 8 30 10 20 1 10 5 5.8687 11.6491 9.0128 9.9055 36.4362

30 10 20 1 11.6491 9.0128 36.4362
17 7 30 10 20 1 10 5 5.7799 11.7418 8.9967 9.906 36.4244

30 10 20 1 11.7418 8.9967 36.4244
18 7 30 10 20 1 10 5 5.7041 11.7234 8.9998 9.9059 36.3333

30 10 20 1 11.7234 8.9998 36.3333
19 7 30 10 20 1 10 5 5.6478 11.7068 9.0027 9.9058 36.2632

30 10 20 1 11.7068 9.0027 36.2632
20 7 30 10 20 1 10 5 5.6072 11.692 9.0053 9.9057 36.2102

30 10 20 1 11.692 9.0053 36.2102
21 7 30 10 20 1 10 5 5.58 11.6787 9.0076 9.9057 36.172

30 10 20 1 11.6787 9.0076 36.172
22 7 30 10 20 1 10 5 5.5644 11.6667 9.0097 9.9056 36.1464

30 10 20 1 11.6667 9.0097 36.1464
23 7 30 10 20 1 10 5 5.5588 11.6559 9.0116 9.9056 36.1319

30 10 20 1 11.6559 9.0116 36.1319
23 7 30 10 20 1 10 5 5.5589 11.6559 9.0117 9.9056 36.132

30 10 20 1 11.6559 9.0117 36.132
C.S.L

23 7 30 10 20 1 10 5 5.5589 11.6559 9.0117 9.9056 36.132 95.55%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

I.B. O.B. DC Retailer Cost

Table B.2: Convergence path of the optimization procedure with single steps (medium pro-
duction rate, λ = 1.45)
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I.B. O.B. DC Retailer
µ 1  = 2 β S = 1 K 30 25 20 15λ=1.55 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 6.6193 15.7386 29.6206 29.1049 81.0834 46.82%
14 9 31 11 20 11 11 6 6.3657 15.7494 23.9241 26.0196 72.0589

40 18 22 12 15.1269 21.937 69.4493
15 8 41 19 22 12 12 7 6.1891 15.3813 19.8488 14.4812 55.9004

42 18 24 13 15.5231 19.8269 56.0203
16 8 42 18 24 13 13 6 6.0641 15.4692 19.895 13.5162 54.9445

43 17 26 14 15.6432 20.2277 55.4513
17 8 43 17 26 14 14 5 5.9666 15.5951 20.2546 12.9668 54.7831

45 17 28 15 15.7874 20.8429 55.5638
18 8 45 17 28 15 14 5 5.891 15.7514 20.8025 12.4623 54.9072

45 17 28 15 15.7514 20.8025 54.9072
19 7 46 18 28 15 15 5 5.8237 16.042 21.1513 12.7809 55.7979

47 17 30 16 16.2396 21.8799 56.7241
20 7 47 17 30 16 14 5 5.7736 16.1861 21.8485 12.5054 56.3136

45 17 28 15 15.9922 21.1358 55.4069
21 7 45 17 28 15 15 5 5.7323 15.9432 21.0633 12.7912 55.53

47 17 30 16 16.1333 21.7917 56.4485
22 7 47 17 30 16 14 5 5.7124 16.1347 21.7616 12.3844 55.9931

45 17 28 15 15.897 21.0082 55.002
23 7 45 17 28 15 15 5 5.6943 15.86 20.9476 12.6494 55.1513

47 17 30 16 16.0663 21.7176 56.1276
24 7 47 17 30 16 14 5 5.6948 16.0373 21.6973 12.2683 55.6978

45 17 28 15 15.8221 20.9028 54.688
24 7 45 17 28 15 14 5 5.6903 15.8255 20.9006 12.5921 55.0085

45 17 28 15 15.8255 20.9006 55.0085
24 7 45 17 28 15 14 5 5.6923 15.8255 20.8992 12.5905 55.0075

45 17 28 15 15.8255 20.8992 55.0075
C.S.L

24 7 45 17 28 15 14 5 5.6923 15.8132 20.8847 12.5716 54.9617 90.38%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table B.3: Convergence path of the optimization procedure with single steps (medium pro-
duction rate, λ = 1.55)



122

I.B. O.B. DC Retailer
µ 1  = 3 β S = 1 K 30 25 20 15λ=1.9 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 7.8487 12.6389 15.1333 12.9898 48.6108 90.61%
14 11 30 10 20 9 11 6 7.5749 12.4962 14.4187 12.1765 46.6663

32 10 22 7 12.6874 13.6487 46.0875
15 10 32 10 22 6 12 6 7.3696 12.7608 13.1107 12.0222 45.2633

34 10 24 4 12.9893 12.4533 44.8344
16 10 34 10 24 3 13 6 7.1913 12.9704 11.859 11.9749 43.9955

35 9 26 1 13.2233 11.2979 43.6874
17 10 35 9 26 1 13 6 7.0464 13.2042 11.2901 11.9642 43.5048

35 9 26 1 13.2042 11.2901 43.5048
18 10 35 9 26 1 13 6 6.9186 13.1874 11.2867 11.9629 43.3556

35 9 26 1 13.1874 11.2867 43.3556
19 10 35 9 26 1 13 6 6.8207 13.1704 11.2836 11.9617 43.2364

35 9 26 1 13.1704 11.2836 43.2364
20 9 35 9 26 1 13 6 6.7355 13.2533 11.3011 11.968 43.2578

35 9 26 1 13.2533 11.3011 43.2578
21 9 35 9 26 1 13 6 6.6638 13.2353 11.2967 11.9665 43.1623

35 9 26 1 13.2353 11.2967 43.1623
22 9 35 9 26 1 13 6 6.6093 13.2173 11.2929 11.9652 43.0846

35 9 26 1 13.2173 11.2929 43.0846
23 9 35 9 26 1 13 6 6.5682 13.2031 11.2896 11.964 43.025

35 9 26 1 13.2031 11.2896 43.025
24 9 35 9 26 1 13 6 6.539 13.1867 11.2868 11.9629 42.9754

35 9 26 1 13.1867 11.2868 42.9754
25 9 35 9 26 1 13 6 6.5201 13.1758 11.2844 11.962 42.9422

35 9 26 1 13.1758 11.2844 42.9422
26 8 35 9 26 1 13 6 6.5094 13.2623 11.3035 11.9688 43.0439

35 9 26 1 13.2623 11.3035 43.0439
27 8 35 9 26 1 13 6 6.4989 13.2479 11.2998 11.9676 43.0143

35 9 26 1 13.2479 11.2998 43.0143
28 8 35 9 26 1 13 6 6.4981 13.2336 11.2965 11.9664 42.9946

35 9 26 1 13.2336 11.2965 42.9946
28 8 35 9 26 1 13 6 6.4983 13.2331 11.2965 11.9664 42.9943

35 9 26 1 13.2331 11.2965 42.9943
C.S.L

28 8 35 9 26 1 13 6 6.4983 13.2331 11.2965 11.9664 42.9943 95.05%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table B.4: Convergence path of the optimization procedure with single steps (high produc-
tion rate)
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Figure B.4: Retailer attributes that drive the overall performance of the supply chain

I.B. O.B. DC Retailer
µ 1  = 3 β S = 1 K 30 25 20 15λ=1.9 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 7.8487 12.6389 15.1333 12.9898 48.6108 90.61%
28 8 30 10 20 11 11 6 6.4843 12.5576 14.7393 12.1938 45.975

32 10 22 9 12.745 14.8382 46.2613
28 8 32 10 22 1 12 6 6.4981 12.7443 10.216 12.0193 41.4777

34 10 24 1 12.9737 10.6983 42.1894
28 8 34 10 24 1 13 6 6.5018 12.9761 10.695 11.9755 42.1484

35 9 26 1 13.2301 11.2989 43.0064
28 8 35 9 26 1 13 6 6.5049 13.231 11.2961 11.9663 42.9983

35 9 26 1 13.231 11.2961 42.9983
C.S.L

28 8 35 9 26 1 13 6 6.4983 13.2331 11.2965 11.9664 42.9943 95.05%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

I.B. O.B. DC Retailer Cost

Table B.5: Convergence path of the optimization procedure with optimized steps (high
production rate)
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I.B. O.B. DC Retailer
µ 1  = 3 β S = 1 K 30 25 20 15λ=1.9 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
22 20 15 12 10 15 5 20 8.1495 25.0978 18.504 142.7724 194.5237 93.44%
27 8 22 12 10 16 6 19 6.438 12.9765 15.4515 20.8737 55.7396

23 11 12 14 12.5533 14.5769 54.4418
27 8 23 11 12 13 7 18 6.4586 12.557 14.0476 18.0478 51.1111

25 11 14 11 12.3685 13.7692 50.6441
27 8 25 11 14 8 8 17 6.4714 12.3781 12.0205 17.3436 48.2135

27 11 16 9 12.3451 12.6054 48.7654
27 8 27 11 16 9 8 16 6.4808 12.3518 12.602 16.6948 48.1294

27 11 16 9 12.3518 12.602 48.1294
28 8 27 11 16 9 8 15 6.4731 12.343 12.598 16.0145 47.4286

27 11 16 9 12.343 12.598 47.4286
28 8 27 11 16 9 9 14 6.4732 12.3429 12.598 15.362 46.7761

29 11 18 7 12.4157 13.1776 47.4284
28 8 29 11 18 1 9 13 6.488 12.4156 9.7943 14.7095 43.4074

29 11 18 1 12.4156 9.7943 43.4074
28 8 29 11 18 1 9 12 6.4804 12.4193 9.8011 14.1007 42.8014

29 11 18 1 12.4193 9.8011 42.8014
28 8 29 11 18 1 10 11 6.4803 12.4193 9.8011 13.5479 42.2486

30 10 20 1 12.5537 9.8513 42.4332
28 8 30 10 20 1 10 10 6.4936 12.5537 9.9366 13.0214 42.0053

30 10 20 1 12.5537 9.9366 42.0053
28 8 30 10 20 1 11 9 6.4862 12.5568 9.9406 12.6092 41.5928

32 10 22 1 12.7443 10.2287 42.0683
28 8 32 10 22 1 11 8 6.4981 12.7443 10.216 12.2417 41.7001

32 10 22 1 12.7443 10.216 41.7001
28 8 32 10 22 1 12 7 6.4909 12.7467 10.2179 12.0441 41.4997

34 10 24 1 12.976 10.6994 42.2105
28 8 34 10 24 1 13 6 6.5018 12.9762 10.695 11.9755 42.1484

35 9 26 1 13.2301 11.2989 43.0063
28 8 35 9 26 1 13 6 6.5049 13.2313 11.2961 11.9663 42.9986

35 9 26 1 13.2313 11.2961 42.9986
C.S.L

28 8 35 9 26 1 13 6 6.4983 13.2331 11.2965 11.9664 42.9943 95.05%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

I.B. O.B. DC Retailer Cost

Table B.6: Convergence path of the optimization procedure with optimized steps (high
production rate)
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I.B. O.B. DC Retailer
µ 1  = 3 β S = 1 K 30 25 20 15λ=1.8 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 7.5939 11.6896 14.6055 11.9622 45.8512 91.50%
14 10 29 9 20 9 11 6 7.343 11.5781 14.0149 11.5321 44.4681

29 7 22 7 11.7369 13.4542 44.0661
15 10 29 7 22 6 12 6 7.155 11.7177 12.8356 11.499 43.2073

31 7 24 4 11.9573 12.3172 42.9284
16 10 31 7 24 3 12 6 6.9949 11.9444 11.7331 11.4893 42.1618

31 7 24 1 11.9444 10.55 40.9786
17 10 31 7 24 1 12 6 6.8523 11.9328 10.5509 11.489 40.8249

31 7 24 1 11.9328 10.5509 40.8249
18 9 31 7 24 1 12 6 6.7419 11.9906 10.5469 11.4906 40.77

31 7 24 1 11.9906 10.5469 40.77
19 9 31 7 24 1 12 6 6.6436 11.9762 10.5477 11.4901 40.6577

31 7 24 1 11.9762 10.5477 40.6577
20 9 31 7 24 1 12 6 6.5665 11.9629 10.5486 11.4898 40.5678

31 7 24 1 11.9629 10.5486 40.5678
21 9 31 7 24 1 12 6 6.5064 11.951 10.5495 11.4894 40.4962

31 7 24 1 11.951 10.5495 40.4962
22 9 31 7 24 1 12 6 6.4608 11.9402 10.5503 11.4891 40.4404

31 7 24 1 11.9402 10.5503 40.4404
23 9 31 7 24 1 12 6 6.4279 11.9305 10.5511 11.4889 40.3983

31 7 24 1 11.9305 10.5511 40.3983
24 9 31 7 24 1 12 6 6.406 11.9215 10.5518 11.4887 40.368

31 7 24 1 11.9215 10.5518 40.368
25 8 31 7 24 1 12 6 6.3863 11.9795 10.5475 11.4902 40.4036

31 7 24 1 11.9795 10.5475 40.4036
26 8 31 7 24 1 12 6 6.3743 11.9694 10.5482 11.49 40.3818

31 7 24 1 11.9694 10.5482 40.3818
27 8 31 7 24 1 12 6 6.372 11.9598 10.5488 11.4897 40.3703

31 7 24 1 11.9598 10.5488 40.3703
27 8 31 7 24 1 12 6 6.3722 11.9598 10.5488 11.4897 40.3705

31 7 24 1 11.9598 10.5488 40.3705
C.S.L

27 8 31 7 24 1 12 6 6.3722 11.9598 10.5488 11.4897 40.3705 95.40%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table B.7: Convergence path of the optimization procedure with single steps (high produc-
tion rate, λ = 1.8))
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I.B. O.B. DC Retailer
µ 1  = 3 β S = 1 K 30 25 20 15λ=1.85 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 7.7209 12.0727 14.718 12.4042 46.9158 91.27%
14 10 29 9 20 9 11 6 7.4595 12.0207 14.1595 11.8331 45.4728

31 9 22 7 12.2265 13.4989 45.0181
15 10 31 9 22 6 12 6 7.2612 12.2056 12.9083 11.7337 44.1088

32 8 24 4 12.4359 12.3512 43.782
16 10 32 8 24 3 12 6 7.0929 12.4192 11.7508 11.7235 42.9864

32 8 24 1 12.4192 10.5752 41.8108
17 10 32 8 24 1 12 6 6.9439 12.4044 10.5736 11.7227 41.6446

32 8 24 1 12.4044 10.5736 41.6446
18 10 32 8 24 1 12 6 6.8291 12.3894 10.572 11.7218 41.5123

32 8 24 1 12.3894 10.572 41.5123
19 9 32 8 24 1 12 6 6.7319 12.4583 10.5804 11.7258 41.4964

32 8 24 1 12.4583 10.5804 41.4964
20 9 32 8 24 1 12 6 6.648 12.442 10.5781 11.7248 41.3929

32 8 24 1 12.442 10.5781 41.3929
21 9 32 8 24 1 12 6 6.583 12.427 10.5762 11.7239 41.3101

32 8 24 1 12.427 10.5762 41.3101
22 9 32 8 24 1 12 6 6.533 12.4135 10.5746 11.7232 41.2442

32 8 24 1 12.4135 10.5746 41.2442
23 9 32 8 24 1 12 6 6.4961 12.4012 10.5732 11.7225 41.193

32 8 24 1 12.4012 10.5732 41.193
24 9 32 8 24 1 12 6 6.4707 12.3901 10.5721 11.7219 41.1547

32 8 24 1 12.3901 10.5721 41.1547
25 8 32 8 24 1 12 6 6.4544 12.4625 10.5811 11.7261 41.224

32 8 24 1 12.4625 10.5811 41.224
26 8 32 8 24 1 12 6 6.4389 12.4499 10.5792 11.7253 41.1933

32 8 24 1 12.4499 10.5792 41.1933
27 8 32 8 24 1 12 6 6.4335 12.4377 10.5776 11.7246 41.1734

32 8 24 1 12.4377 10.5776 41.1734
27 8 32 8 24 1 12 6 6.4337 12.4378 10.5776 11.7246 41.1737

32 8 24 1 12.4378 10.5776 41.1737
C.S.L

27 8 32 8 24 1 12 6 6.4337 12.4377 10.5776 11.7246 41.1736 94.98%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

I.B. O.B. DC Retailer Cost

Table B.8: Convergence path of the optimization procedure with single steps (high produc-
tion rate, λ = 1.85))
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I.B. O.B. DC Retailer
µ 1  = 3 β S = 1 K 30 25 20 15λ=1.95 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 7.9771 13.4709 16.1915 14.1409 51.7804 90.00%
14 11 31 11 20 11 11 6 7.6853 13.1901 14.7511 12.7002 48.3267

33 11 22 9 13.3534 15.2801 49.019
15 10 34 12 22 8 12 7 7.4769 13.4475 14.7028 12.3549 47.9821

35 11 24 6 13.6585 13.9105 47.4008
16 10 35 11 24 5 13 6 7.2901 13.6311 13.3589 12.3191 46.5993

37 11 26 3 13.8696 12.6724 46.1512
17 10 37 11 26 2 13 6 7.1378 13.8459 12.082 12.2369 45.3027

37 11 26 1 13.8459 11.5025 44.7232
18 10 37 11 26 1 13 6 7.0046 13.8244 11.4881 12.2333 44.5503

37 11 26 1 13.8244 11.4881 44.5503
19 10 37 11 26 1 13 6 6.9011 13.8051 11.4747 12.2299 44.4109

37 11 26 1 13.8051 11.4747 44.4109
20 9 37 11 26 1 13 6 6.8175 13.9062 11.5235 12.2768 44.5239

37 11 26 1 13.9062 11.5235 44.5239
21 9 37 11 26 1 13 6 6.7409 13.8823 11.5146 12.2702 44.408

37 11 26 1 13.8823 11.5146 44.408
22 9 37 11 26 1 13 6 6.682 13.8611 11.5087 12.2502 44.302

37 11 26 1 13.8611 11.5087 44.302
23 9 37 11 26 1 13 6 6.637 13.8423 11.4998 12.2363 44.2153

37 11 26 1 13.8423 11.4998 44.2153
24 9 37 11 26 1 13 6 6.604 13.8252 11.4882 12.2333 44.1507

37 11 26 1 13.8252 11.4882 44.1507
25 9 37 11 26 1 13 6 6.5818 13.81 11.478 12.2307 44.1004

37 11 26 1 13.81 11.478 44.1004
26 9 37 11 26 1 13 6 6.5689 13.7946 11.4687 12.2283 44.0605

37 11 26 1 13.7946 11.4687 44.0605
27 8 37 11 26 1 13 6 6.5628 13.8971 11.5202 12.2748 44.2548

37 11 26 1 13.8971 11.5202 44.2548
28 8 37 11 26 1 13 6 6.5572 13.8792 11.514 12.2695 44.2199

37 11 26 1 13.8792 11.514 44.2199
28 8 37 11 26 1 13 6 6.5575 13.8817 11.5141 12.2696 44.2229

37 11 26 1 13.8817 11.5141 44.2229
C.S.L

28 8 37 11 26 1 13 6 6.5575 13.8807 11.5141 12.2696 44.2218 94.50%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table B.9: Convergence path of the optimization procedure with single steps (high produc-
tion rate, λ = 1.95))
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I.B. O.B. DC Retailer
µ 1  = 1 β S = 1 K 30 25 20 15λ=0.85 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 5.0343 11.2897 18.1491 10.5687 45.0419 99.16%
14 9 31 11 20 11 11 4 4.8046 11.2667 15.8899 9.8906 41.8518

33 11 22 12 11.433 16.3394 42.4676
15 8 33 11 22 12 11 3 4.6042 11.4477 16.383 9.1468 41.5818

33 11 22 12 11.4477 16.383 41.5818
16 7 33 11 22 12 12 2 4.4295 11.4751 16.4192 9.1271 41.4509

35 11 24 13 11.6683 17.1445 42.3694
17 6 35 11 24 13 11 2 4.2975 11.7154 17.2022 8.7957 42.0108

33 11 22 12 11.5257 16.5016 41.1205
17 5 34 12 22 12 12 2 4.2126 11.6318 16.6003 9.2323 41.677

35 11 24 13 11.8166 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
C.S.L

17 5 34 12 22 12 11 2 4.2136 11.6316 16.6 9.2596 41.7047 83.96%

17 5 35 11 24 13 12 2 4.214 11.8167 17.2913 9.0125 42.3344 86.70%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

CostI.B. O.B. DC Retailer

Table B.10: Convergence path of the optimization procedure with single steps (low produc-
tion rate)
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I.B. O.B. DC Retailer
µ 1  = 1 β S = 1 K 30 25 20 15λ=0.85 µ 2  = 1 β P = 1 h 0.2 0.4 0.6 0.8

a = 0.1 β DC = 1 g 0.6 0.4 0.2
p 100 10 50 25

Q I R I R r Q DC R DC Q R R R I.B. O.B. DC Retailer TC C.S.L
13 10 30 10 20 10 10 5 5.0343 11.2897 18.1491 10.5687 45.0419 99.16%
17 5 32 12 20 11 11 4 4.2139 11.4644 16.2015 10.1472 42.0271

34 12 22 12 11.631 16.5693 42.5614
17 5 34 12 22 12 11 3 4.2153 11.6312 16.5994 9.3174 41.7633

34 12 22 12 11.6312 16.5994 41.7633
17 5 34 12 22 12 12 2 4.2136 11.6316 16.6 9.2318 41.6769

35 11 24 13 11.8163 17.2891 42.5508
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
17 5 34 12 22 12 12 2 4.2122 11.6319 16.6004 9.2325 41.677

35 11 24 13 11.8167 17.2893 42.5507
17 5 35 11 24 13 11 2 4.2155 11.8163 17.291 9.0075 42.3303

34 12 22 12 11.6316 16.6644 41.519
C.S.L

17 5 34 12 22 12 11 2 4.2136 11.6316 16.6 9.2596 41.7047 83.96%

17 5 35 11 24 13 12 2 4.214 11.8167 17.2913 9.0125 42.3344 86.70%

I.B.: Input Buffer O.B.: Output Buffer DC: Distribution Center

I.B. O.B. DC Retailer Cost

Table B.11: Convergence path of the optimization procedure with optimized steps (low
production rate)
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Appendix C

TES Model Fitting Formulas

C.0.1 The empirical density function

A histogram is a mixture of uniform random variables. Formally, let X be a mixture of N

Uniform (ln, rn) variates with mixing probabilities pn and let Cn be the cumulative distribu-

tion function of pn, i.e., Cn =
∑n

j=1 pj, with C0 = 0. Also, let us denote wn = rn − ln and

1A(x) is the indicator function. Then, the histogram has the step function density

fX(x) =
N∑

n=1

1[ln,rn)(x)
pn

wn

(C.1)

and the corresponding cumulative distribution function

FX(x) =
N∑

n=1

1[ln,rn)(x)[Cn−1 + (x− ln)
pn

wn

]. (C.2)

To be able to generate random variates for X, the distortion function is defined as the inverse

of FX(x) given by

D(x) =
N∑

n=1

1[Cn−1,Cn)(x)[ln + (x− Cn−1)
wn

pn

]. (C.3)

C.0.2 Computation of |D̃(i2πν)|2

In this part, only the stitched distortions are considered. Let Dξ(x) = D(Sξ(x)). Then,

|D̃ξ(i2πν)|2 = a2
ξ,ν + b2

ξ,ν where a2
ξ,ν and b2

ξ,ν are given by

a2
ξ,ν =

∑N
n=1

rn[sin (2πνξCn)+sin (2πν(1−ξ)Cn)]
2πν

− ∑N
n=1

ln[sin (2πνξCn−1)+sin (2πν(1−ξ)Cn−1)]
2πν

+
∑N

n=1
wn

pn

{
cos (2πνξCn)−cos (2πνξCn−1)

ξ(2πν)2

+ [cos (2πν(1−ξ)Cn)−cos (2πν(1−ξ)Cn−1)]
(1−ξ)(2πν)2

}

(C.4)
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b2
ξ,ν =

∑N
n=1

rn[cos (2πνξCn)−cos (2πν(1−ξ)Cn)]
2πν

− ∑N
n=1

ln[cos (2πνξCn−1)−cos (2πν(1−ξ)Cn−1)]
2πν

− ∑N
n=1

wn

pn

{
sin (2πνξCn)−sin (2πνξCn−1)

ξ(2πν)2

− [sin (2πν(1−ξ)Cn)−sin (2πν(1−ξ)Cn−1)]
(1−ξ)(2πν)2

}
.

(C.5)

where ξ is known as the stitching parameter with typical values in (0, 1).
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1994-1999 Koç University, Istanbul, Turkey
B.S. in Mathematics

TEACHING EXPERIENCE

2001-2005 Rutgers University, New Brunswick, NJ
Teaching Assistant, Industrial and Systems Engineering

RESEARCH EXPERIENCE

2005-2006 Rutgers University, New Brunswick, NJ
Research Assistant, Industrial and Systems Engineering

WORK EXPERIENCE

2006-Present marketRx, Bridgewater, NJ
Analyst, Professional Services


