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ABSTRACT OF THE DISSERTATION

Modeling Human Motion Using Manifold Learning and Factorized
Generative Models

by Chan-Su Lee

Dissertation Director: Ahmed Elgammal

Modeling the dynamic shape and appearance of articulated moving objects is essential for

human motion analysis, tracking, synthesis, and other computer vision problems. Modeling

the shape and appearance of human motion is challenging due to the high dimensionality of

the articulated human motion, variations of shape and appearance from different views and in

different people, and the nonlinearity in shape and appearance deformations in the observed

sequences. Recent interest in modeling human motion is originated from the various potential

real-world applications such as visual surveillance, human-computer interaction, video analy-

sis, computer animation, etc.

We present a novel framework to model dynamic shape and appearance using nonlinear

manifold embedding and factorization. We investigate different representations to embed high-

dimensional human motion sequences in low dimensional spaces by supervised and unsuper-

vised manifold learning techniques to achieve representations that capture the intrinsic structure

of the motion. Nonlinear dimensionality reduction techniques based on visual data and kine-

matic data are applied to discover low dimensional intrinsic manifold representation for body

configuration. Also, we investigate the use of supervised manifold learning from a known man-

ifold topology to model deformation of manifolds from an ideal case. By learning nonlinear

mapping from the embedding space to the input shape or appearance, we can generate shape
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and appearance sequences according to the motion state on the embedded manifold.

We present a decomposable generative model to analyze shape and appearance variations by

different factors such as person’s style, motion type, and view point. We use multilinear anal-

ysis in the nonlinear mapping coefficient space to factorize shape and appearance variations.

Also, we investigate learning generative models to represent continuous body configuration

and continuous view manifolds in a product space (i.e. body configuration manifold × view

manifold). The proposed factorized generative models provide rich models for the analysis of

dynamic shape and appearance of human motion. We applied the model in computer vision

problems such as inferring 3D body pose from 2D images, tracking human motion with con-

tinuous view variations within the Bayesian framework, and gait recognition. We also applied

our model for facial expression analysis, tracking, recognition and synthesis.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, extensive research has been performed to analyze, understand and recog-

nize human motion from image sequences and from motion captured data. This wide interest

originated from various potential real-world applications such as visual surveillance, human-

machine interface, video archival and retrieval, computer graphics animation, autonomous driv-

ing, virtual reality, etc. The focus of the research covered a wide range of problems related to

the analysis and synthesis of human motion including detection and tracking humans and their

body parts, recovering body pose, understanding human motion and activities, recognizing

gestures, and recognizing and synthesizing facial expressions. The analysis also addressed hu-

man identification based on face recognition, gait analysis, and other biometrics. Researchers

have actively explored many computational models and machine-learning techniques for better

understanding and modeling of human motions. However, state of the art computer vision sys-

tems can capture, analyze, and understand very limited motions in constrained environments.

Still, variations of style in different people, view changes, and different motion complexity and

dynamics cause a significant performance degradation in real-world applications.

1.1.1 Dimensionality of Articulated Human Motion

The human body is an articulated object with high degrees of freedom. The human body

moves through the three-dimensional world and such motion is constrained by body dynamics

and projected by lenses to form the visual input we capture through our cameras. Therefore, the

changes (deformation) in appearance (texture, contours, edges, etc.) in the visual input (image

sequences) corresponding to performing certain actions, such as facial expression or gesturing,
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are well constrained by the 3D body structure and the dynamics of the action being performed.

Despite the high dimensionality of the configuration space, many human motion activities

lie intrinsically on low dimensional manifolds. This is true if we consider the body kinematics,

as well as if we consider the observed motion through image sequences. Let us consider the

observed motion. The shape of the human silhouette walking ( e.g., Fig. 1.1) or performing

a gesture is an example of a dynamic shape where the shape deforms over time based on the

action performed. These deformations are constrained by the physical body constraints and

the temporal constraints posed by the action being performed. If we consider these silhouettes

through the walking cycle as points in a high dimensional visual input space, then, given the

spatial and the temporal constraints, it is expected that these points will lay on a low dimen-

sional manifold.

Similarly, the appearance of a face performing facial expressions is an example of a dy-

namic appearance that lies on a low dimensional manifold in the visual input space. In fact,

if we consider certain classes of motion such as gait, a single gesture, or a single facial ex-

pressions, and if we factor out all other sources of variability, each of these motions lies on

a one-dimensional manifold, i.e., a trajectory in the visual input space. Such manifolds are

nonlinear and non-Euclidean.

1.1.2 Biological Motivation

Researchers have tried to exploit the manifold structure as a constraint in tasks, such as tracking

and activity recognition, in an implicit way. While the role of manifold representations is still

unclear in perceptions, it is clear that images of the same objects lie on a low dimensional mani-

fold in the visual space defined by the retinal array. On the other hand, neurophysiologists have

found that neural population activity firing is typically a function of a small number of vari-

ables, which implies that population activity also lie on low dimensional manifolds [114]. On

the other hand, human visual perception shares representation with a motor control signal like

mirror neurons [15]. Researchers also found that complicated motions can be described based

on basic motion primitives [59]. Therefore, a manifold-based representation that connects kine-

matics with the visual input through learning some activity primitives is a biologically justified

approach.
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1.2 Our Approach: Nonlinear Factorized Generative Models

Considering an example of dynamic shape of human motion, we examine characteristics of dy-

namic shape and appearance of human motion. Then, we propose nonlinear factorized genera-

tive models using manifold embedding and factorization to achieve robust modeling of dynamic

shape and appearance.

1.2.1 Characteristics of Dynamic Shape in Walking Sequence

The shape of the human silhouette through a walking cycle is an example of a dynamic shape

where the shape deforms over time based on the action performed. These deformations are

constrained by the physical body constraints and the temporal constraints posed by the action

being performed. Dynamic shape can be considered as a special form of dynamic appearance

where other factors (texture, illumination, etc.) are already factored out. If we consider the

human silhouettes through the walking cycle as points in a high dimensional visual input space,

then, given the spatial and the temporal constraints, it is expected that these points will lay

on a low dimensional manifold. Intuitively, the gait is a one-dimensional manifold which is

embedded in a high dimensional visual space. This was also shown in [17]. Such manifold

can be twisted- and self-intersect in such a high dimensional visual space. Similarly, if we

consider other human activities such as gesturing, most of the gestures are also one-dimensional

manifolds. One question we aim to answer is: what is the geometric structure and properties of

this manifold?

Can we decompose the configuration using linear models? Linear models, such as PCA [61],

have been widely used in appearance modeling to discover subspaces for appearance variations,

for example, extensively for face recognition such as in [133, 6, 148, 82, 115] and to model

the appearance manifold and view manifold for 3D object recognition as in [95, 96, 49]. Such

subspace analysis can be further extended to decompose other factors using bilinear models and

multi-linear tensor analysis [128, 138]. In most of these cases, the object is stationary (rigid)

or the motion is local (as in facial expressions).

In our case, the object is dynamic. So, can we decompose the configuration from the shape
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Figure 1.1: Twenty sample frames from a walking cycle from a side view. Each row represents
half a cycle. Notice the similarity between the two half cycles. The right part shows the similar-
ity matrix: each row and column corresponds to one sample. Darker means closer distance and
brighter means larger distances. The two dark lines parallel to the diagonal show the similarity
between the two half cycles

(appearance) using linear embedding? For our case, the shape temporally undergoes deforma-

tions and self-occlusion which result in the points lying on a nonlinear, twisted manifold. This

can be illustrated if we consider the walking cycle in Fig. 1.1. The two shapes in the middle

of the two rows correspond to the farthest points in the walking cycle kinematically and are

supposedly the farthest points on the manifold in terms of the geodesic distance along the man-

ifold. In the Euclidean visual input space, these two points are very close to each other, as can

be noticed from the distance plot on the right of Fig. 1.1. Because of such nonlinearity, global

linear model, PCA, will not be able to discover the underlying manifold. For the same reason,

multidimensional scaling (MDS) [31] also fails to recover such manifold.

1.2.2 Our Goals

In spite of significant progress in human motion analysis, tracking and synthesis, there are

several limitations in the current approaches. The goals of our research for modeling of human

motion are as follows:

Modeling the intrinsic structure of motion: Embedding manifolds to low dimensional Eu-

clidian spaces provides a way to explicitly model their intrinsic structure. Learning mo-

tion manifolds can be achieved through linear subspace approximation (PCA) as in [38].

PCA have been widely used in appearance modeling to discover subspaces for appear-

ance variations and modeling view manifolds as in [95, 133, 6, 30]. Linear subspace

analysis can achieve a linear embedding of the motion manifold in a subspace. How-

ever, the dimensionality of the subspace depends on the variations in the data and not

in the intrinsic dimensionality of the manifold. If we know the intrinsic structure of the
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dynamic shape and appearance in human motion, we can utilize such intrinsic structure

to achieve representations that can be much lower dimensionality. Recent advances in

nonlinear manifold learning and dimensionality reduction shows the potential to find the

intrinsic structure of nonlinear manifolds to achieve representations in low dimensional

spaces.

Human motion is continuous movements of body joints; however, observations are dis-

crete when we capture motions using a digital camera. Many approaches modeling dy-

namic sequence of human motion like hidden Markov models (HMM) describe body

configuration by discrete key poses or linear combination of selected key poses. In con-

trast, a continuous representation of body configuration is favorable since we can esti-

mate intermediate body configurations more accurately and synthesize motions which

preserve nonlinear characteristics.

Generative model for dynamic shape and appearance without a 3D model: Accurate syn-

thesis of facial expressions and human motions is required in computer animations for

digital entertainment like films. Analysis and tracking of human motion in images also

requires the ability to synthesize shape and appearance (as in Bayesian tracking). There-

fore, we need to build accurate generative models for the dynamic shape and appearance.

Factorization of multiple components: The shape and appearance of human motion varies

with different people, with other observation conditions such as view point and lighting.

The human perceptual system routinely separates the content and style factors of their

observations and the decomposition can be used for visual image analysis [128]. How-

ever, previous work focuses on static images such as several discrete static poses and

person styles, and facial expression analysis in peak expression images [138, 140]. How

can we extend this style and content decomposition to dynamic human motion? Where

the content is the intrinsic motion and style is the way the motion is observed such as

variations in shape and appearance.

Modeling two continuous manifolds (view and posture manifold): We consider tracking and

inferring view and body configuration of human motion from a single monocular camera

where the person can change his/her view with respect to the camera while being tracked



6

(or equivalently the camera can be moving). Modeling both the view and body con-

figuration manifolds for human motion jointly in the visual space is a very challenging

task and is useful for tracking, posture estimation, and view estimation. The observa-

tion for a given body posture lies on a one-dimensional manifold (view manifold) in the

visual input space. Obviously, each body posture will have it’s own view manifold. If

we consider a sequence of postures, making up a motion, the resulting visual manifold

will become complicated as it becomes a product of the motion manifold and the view

manifold. Therefore, we aim to develop a framework for modeling data laying on a two

dimensional manifold (e.g. posture × view).

There are mainly three tasks we consider here using our proposed model:

Inferring body configuration and view from observation: Given a shape instance, we need to

recover the body configuration and view using the learned model. This is a harder problem.

Solving such problems is essential to initialize a tracker. Since the proposed model is genera-

tive, this task involves searching the model parameter space for optimal parameter that explain

the data, i.e., minimize some reconstruction error. Since this involves a search over the param-

eter space, it is desired that the parameter space be as low dimensional and well constrained as

possible.

Tracking: The proposed model can be used as a state representation. Since, in a Bayesian

tracking setting, a model of the state posterior given the observation is maintained using sam-

pling methods, it is desired that the state space be as low dimensional as possible for effective

sampling. Since transition between frames is expected to be smooth both in terms of body con-

figuration and view variations, the model provides a well behaved, dynamic model for tracking.

In summation, the proposed model provides in a direct way: a low dimensional state represen-

tation, a constrained dynamic model, and an observation model.

Synthesis: The proposed model is generative and, therefore, can be used to synthesize shapes

and appearances at different configurations and at different view points, and for different peo-

ple, without 3D body model.
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Figure 1.2: Style and content factors: Content: gait motion or facial expression. Style: different
silhouette shapes or face appearance.

1.2.3 Factorized Nonlinear Generative Models Using Manifold Learning

We propose manifold-based factorized nonlinear generative models that support our goals for

modeling dynamic shape and appearance in articulated human motions; the proposed model

represents intrinsic structure in continuous low dimensional embedding space with decompo-

sition of multiple factors affecting the observation.

Although the intrinsic body configuration manifolds might be very low in dimensionality,

the resulting appearance manifold is challenging to model, given various aspects that affect

the appearance. Examples of such aspects include the shape and appearance of the person

performing the motion, or variation in the view point, or illumination. Such variability makes

the task of learning visual manifold very challenging because we are dealing with data points

that lies on multiple manifolds on the same time: body configuration manifold, view manifold,

shape manifold, illumination manifold, etc.

The question we address is how to separate the style and content on a manifold representing

a dynamic object. To illustrate our point we consider the human silhouette through the walk-

ing cycle (gait), such as shown in Fig. 1.2. For example, given several sequences of walking

silhouettes, as in Fig. 1.2, with different people walking, how can the intrinsic body configura-

tion be decomposed through the action (content) from the appearance (or shape) of the person

performing the action (style)? In other words, given such sequences, how can we learn a gener-

ative model that explicitly factorizes the intrinsic body configuration, as a function of time that
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is invariant to style variations, from the personalized style of the person performing the action

as a time-invariant parameter.

Manifold Embedding

In order to model intrinsic structure of dynamic shape and appearance, we utilize low dimen-

sional embedding from the collection of shape and appearance sequence data. Unsupervised

nonlinear manifold learning techniques, such as locally linear embedding (LLE) [111] and

Isomap [127], are used to find intrinsic low dimensional representation of dynamic shapes and

appearances. We use multiple manifold embedding to achieve decomposition of style param-

eters in the space of nonlinear mapping functions learned between a unified representation of

the embedded manifold and visual input in style variations.

When multiple variant factors exist on the data set, data-driven manifold embedding will be

quite different. These variations pose a challenge if we would like to use motion manifolds as

constraints for the motion, for example, in tracking or for body pose recovery. But, conceptu-

ally, all these manifolds are the same. They are all topologically equivalent, i.e., homeomorphic

to each other and we can establish a bijection between any pair of them. So, given conceptual

knowledge about the topology of the manifold, we can use such knowledge in modeling real

motion manifolds with different sources of variability such as different people, different views,

etc. Therefore, we propose and investigate supervised manifold learning to utilize known man-

ifold structure or idealistic topological structure.

We further investigate the role of different manifolds, such as input visual manifold, and

output kinematic manifold, for embedding articulated human motion in low dimensional space.

Most manifold-based approaches from visual data are limited so far to simple kinds of motion

such as walking, simple gestures, or golf swings, which are mainly one dimensional in nature.

For approaches which aim to model the visual manifold, as in [36, 23, 92], there is another

fundamental limitation of being view-based. The problem stems from the complexity of the

visual manifolds, if continuous view variations are considered. We introduce a model that ties

together the body configuration (kinematics) manifold and the visual manifold (observations)

in a way that facilitates tracking the 3D configuration with continued relative view variability.

The model exploits the low dimensionality nature of both the body configuration manifold and
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the view manifold where each of them are represented separately.

Figure 1.3: Nonlinear Mapping from Embedding Manifold

Nonlinear Mapping

In any motion sequence, there is a corresponding manifold point for every input shape and/or

appearance. The relation between the intrinsic configuration state and the observed shape

and/or appearance is nonlinear, since we utilize nonlinear manifold embedding. Therefore,

we learn nonlinear mapping between the embedding space and the observations. Such map-

ping facilitates the generation of the original motion sequence accurately from the embedded

representation. Fig. 1.3 shows nonlinear mapping from one-dimensional circular manifold em-

bedding to the observation silhouette. For each sequence of motion, we have unique nonlinear

mapping that can generate the original sequence of motion in any intermediate points from a

continuous manifold embedding.

Any nonlinear mapping that minimizes the regularized risk can be represented in the form [70]:

f(x) =
m∑

i=1

αik(xi, x), (1.1)
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given a set of patterns {xi}, empirical kernel k(xi,x), and target values yi = f(xi). The

solutions lie on the linear span of kernels centered on data points, xi’s. That is, any nonlinear

mapping is equivalent to a linear projection from a kernel map space. In our case, any nonlinear

mapping from the embedding space to the dynamic shape and appearance can be represented

by a kernel map from the embedding manifold and a linear projection from the kernel space.

Given a unified manifold representation of different sequences of motion, we can have a unique

kernel map. This kernel map allows modeling of each motion sequence of a different number

of frames with the same form of linear projection from the kernel space.

Factorization

Given several sequences of dynamic shapes from different people, the nonlinear mapping for

each person’s sequence will be different due to shape style variations in different sequence. By

factorizing this nonlinear mapping, we can represent the dynamic shape and appearance using

decomposable generative models. We utilize multilinear analysis to decompose the nonlinear

mapping coefficients of the dynamic shape and appearance mapping into orthogonal factors.

Multilinear analysis can be achieved by higher-order singular value decomposition (HOSVD),

which is a generalization of SVD [72][139]. Multilinear analysis for the linear projection from

the same kernel map provides factorized nonlinear generative models for the observed dynamic

motions.

1.3 Contributions

Contributions of this dissertation are summarized in the following;

Generative Models for Dynamic Shape and Appearance Models Using Manifold Embed-

ding

We introduce a framework that aims to learn a landmark-free, correspondence-free global rep-

resentation of dynamic appearance manifolds. The framework is based on using nonlinear

dimensionality reduction to achieve an embedding of the global deformation manifold that pre-

serves the geometric structure of the manifold. Given such embedding, a nonlinear mapping
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is learned from such embedded space into visual input space. We use Radial Basis Function

(RBF) interpolation framework for such nonlinear mapping. Therefore, any visual input is rep-

resented by a linear combination of nonlinear bases functions centered along the manifold in

the embedded space. We also show how approximate solution for the inverse mapping can

be obtained in a closed form, which facilitates the recovery of the intrinsic body configura-

tion. We use the framework to learn a representation of the gait manifold as an example of a

dynamic shape manifold and show how the learned representation can be used to interpolate

intermediate body poses, as well as in recovery and reconstruction of the input. As a direct ap-

plication of learning the gait manifold, we present a framework for recovery of 3D body pose

and view point from silhouettes. We also show examples of using the framework in learning the

manifolds for some simple gestures and facial expressions as examples of dynamic appearance

manifolds.

New Framework for Separating Style and Content on Nonlinear Manifolds

We introduce a novel framework for separating style and content on manifolds representing

dynamic objects. We learn a factorized generative model that explicitly decomposes the in-

trinsic body configuration (content) as a function of time from the appearance (style) factor(s)

of the person performing the action as time-invariant parameters. The framework is based

on decomposing the style parameters in the space of nonlinear functions that map between a

learned unified nonlinear embedding of multiple content manifolds and the visual input space.

The learned model supports tasks such as synthesis, body configuration recovery, recovery of

other aspects such as view, person parameters, etc. As direct and important applications of the

introduced framework, we consider the case of gait and also show results for facial expressions.

Decomposition of Multiple Factors

Using a manifold embedding invariant to the observation variability, we achieve decomposition

of multiple factors that affect the observation. The empirical kernel space from the embedded

manifold allows us to analyze multiple factors by projection matrices, where we can apply mul-

tiple linear analysis. Still, the overall generative model preserves the nonlinear characteristics

of dynamic shape and appearance.
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In our experiments, we learn generative models that can generate walking silhouettes for

different people from different view points. Given a single image or a sequence of images, we

can use the model to solve for the body configuration, view and person shape style parameters.

As a result we can directly infer 3D body pose, view point, and person shape style from the

visual input. We also apply the model for facial expressions as an example of a dynamic

appearance. In this case we learn a generative model that can generate different dynamic facial

expressions in different people. The model can successfully be used to recognize expressions

performed by a new person never seen in the training.

Style Adaptive Tracking

We can find compact, low dimensional representation of body configuration for tracking by ap-

plying explicit nonlinear manifold learning and its parametric representation. Then, we achieve

adaptive tracking of a person shape by estimating style parameters according to observed vi-

sual input. The adaptive style parameter estimation allows not only tracking of any new person

contour but also identification of the person during tracking. As a result, we achieve robust,

adaptive tracking with simultaneous style estimation from a cluttered environment.

Modeling Continuous View and Body Pose Manifold

We can deal with both body configuration and view points as continuous variables in a product

space (one dimensional view manifold × one dimensional body configuration manifold) using

torus manifold. This facilitates tracking subjects with varying view points due to camera mo-

tion or changing subject view with respect to the camera. In addition, we propose a framework

for modeling both the configuration and view manifolds using kinematics manifold. We use

kinematics manifold as a representation of the configuration invariant to view. Given the kine-

matic manifold, the view manifold is then explicitly modeled in the nonlinear mapping space

between the kinematics manifold embedding and the view-variant observations. The result is

two low-dimensional embeddings: one for configuration and one for the view. This model pro-

vides another product manifold that can generate observation given the two manifolds’ state

parameters. This fits perfectly into the Bayesian tracking as it provides in a direct way: 1)

low dimensional state representation for both view and configuration, 2) a constrained dynamic
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model since the manifolds are modeled explicitly, and 3) an observation model, which comes

directly from the generative model used.
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Chapter 2

Related Work

2.1 Human Motion Analysis

In the last decade there has been extensive research in human motion analysis. We refer the

reader to [40, 3, 90] for a comprehensive survey of the broad subject. In this chapter, we

review three directly related areas: inferring 3D body pose, manifold-based tracking, and gait

recognition.

2.1.1 Inferring 3D Body Pose

Recovery of 3D body pose is a fundamental problem for human motion analysis in many appli-

cations such as motion capture, vision interface, visual surveillance, and gesture recognition.

The human body is an articulated object that moves through the three-dimensional world. This

motion is constrained by 3D body kinematics and dynamics, as well as the dynamics of the

activity being performed. Such constraints are explicitly exploited to recover the body configu-

ration and motion in model-based approaches, such as [62, 54, 107, 106, 42, 64, 119], through

explicitly specifying articulated models of the body parts, joint angles and their kinematics (or

dynamics), as well as models for camera geometry and image formation. Recovering body

configuration in these approaches involves searching high dimensional spaces (body configu-

ration and geometric transformation), which is typically formulated deterministically as a non-

linear optimization problem, e.g. [106], or probabilistically as a maximum likelihood problem,

e.g. [119]. Such approaches achieve significant success when the search problem is constrained

as in a tracking context. However, initialization remains the most challenging problem, which

can be partially alleviated by sampling approaches. Partial recovery of body configuration can

also be achieved through intermediate view-based representations (models) that may or may not
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be tied to specific body parts [33, 21, 146, 63, 115]. Alternatively, 3D body pose can be directly

inferred from the visual input [55, 18, 109, 110, 94, 45, 116, 2, 123]. We call such approaches

learning-based, since their objective is to directly infer the 3D body pose as a function of the

visual input. Such approaches have great potential in solving the fundamental initialization

problem for model-based vision.

Inferring 3D pose from silhouettes can be achieved by learning mapping functions from

the visual input to the pose space. However, learning such mapping between high dimensional

spaces from examples is fundamentally an ill-posed problem. Therefore, certain constraints

have to be exploited. In [109, 110], learning specialized nonlinear mappings from Hu moment

representation of the input shape and the pose space facilitated successful recovery of the pose

directly from the visual input. In [18], the problem was constrained using nonlinear manifold

learning where the pose is inferred by mapping sequences of the input to paths of the learned

manifold. In [55], the reconstruction was based on 2D tracking of joints and a probabilistic

model for human motion. In [45], 3D structure is inferred from multi-view using a probabilis-

tic model of multi-view silhouettes and key points on the object. The inferring pose can also

be posed as a nearest neighbor search problem where the input is matched to a database of

exemplars with known 3D pose. In [94], pose is recovered by matching the shape of the sil-

houette using shape context. In [116], locality sensitive hashing was used to efficiently match

local models from the input to large exemplar sets. However, in almost all these approaches,

the mapping is learned from a representation of visual input to 3D or other intermediate repre-

sentations, which is highly under-constrained mapping which can lead to poor generalization.

In addition, such discriminative mapping has an inherent ambiguity problem that needs to be

addressed as in [123]

2.1.2 Manifold-based Tracking

Tracking the human body and recovery of 3D body pose is a challenging problem for human

motion analysis with many applications such as visual surveillance, human-machine interface,

and gesture recognition. Traditionally, this problem has been addressed through generative

approaches that map from a 3D body configuration space to the visual observation space,

e.g., [62, 54, 107, 106, 42, 64, 119, 105]. Therefore, the recovery of the 3D configuration
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is formulated as a search problem for the best configuration that minimizes an error metric

given the visual observation, e.g., [106, 119]. Such approaches typically require a body model

and a calibrated camera in order to obtain hypothesis observations from configurations. Simi-

larly, 2D view-based body models can be used [63, 57]; however, this is limited in dealing with

continuous view variability.

Recently, researchers [18, 122, 104, 135, 92, 91, 134], including our work [36, 79], have

increasing interest into constraining the problem by exploiting the fact that despite the high

dimensionality of the body configuration space, many human motion activities lie intrinsically

on low dimensional manifolds. This can be achieved through learning the body configuration

manifold, as in [122, 135], which brings a better dynamic-modeling for tracking. Alternatively,

this can be achieved through learning the visual input manifold, as in [36, 23, 92], which helps

recovery of configuration from the visual input.

2.1.3 Gait Tracking and Recognition

Human gait is a valuable biometric cue that can be used for human identification similar to other

biometrics, such as faces and fingerprints. Gait has significant advantages compared to other

biometrics since it is easily observable in an unintrusive way and is difficult to disguise [32].

Therefore, gait recognition has a great potential for human identification in public spaces for

surveillance and for security [32, 60, 112, 56]. A fundamental challenge in gait recognition

is to develop robust recognition algorithms that can extract gait features that are invariant to

the presence of various conditions which affect people’s appearance. As a challenging prob-

lem in gait recognition, different conditions such as view, clothing, walking surface, and shoe

type were presented in the NIST dataset [112]. Many gait recognition algorithms assume con-

strained conditions to reduce various sources that influence recognition accuracy. Two typical

assumptions are fixed view (especially side view), and constant speed. It is challenging to

develop a gait recognition system invariant to a different view and different speed.

The appearance of gait in image sequences is a spatiotemporal process that characterizes

the walker. Gait recognition algorithms, generally, aim to capture discriminative spatiotempo-

ral features from image sequences in order to achieve human identification. We can categorize

gait-recognition approaches into model-based approaches and appearance-based approaches
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according to the features used for classification. Model-based approaches [32, 80, 60, 13] fit

models or intermediate body representations in order to extract proper features (parameters)

that describe the dynamics of the gait. Appearance-based approaches aim to capture a spa-

tiotemporal gait characteristic directly from input sequences.

For robust recognition of gait, several different features are used. Murase [96] used para-

metric eigenspace representation to represent a moving object using Principle Component

Analysis (PCA). Huang et al. [56] extended the method using Canonical space transformation

(CST) based on Canonical Anaylsis (CA), with eigenspace transformation for feature extrac-

tion. BenAbdelkader et al. [9] used self-similarity measurements to capture spatiotemporal

characteristics using PCA analysis. Hayfron-Acquah et al. [52] used symmetric information to

capture gait motion. Little et al. [85] computed phase vector from extracted optical flow. Shut-

ler et al. [118] used higher order moments. In [53], HMM was used to capture gait dynamics

from quantized Hu moments of silhouettes. HMM was also used in [65] with features repre-

senting silhouette width distribution. Still, it was difficult to extract good features to capture

gait characteristics of individual people. The proposed approach based on bilinear and multilin-

ear analysis of gait in different people after temporal normalization provides a new good feature

to distinguish individuals for gait recognition. Extracting a new gait feature that is invariant to

temporal variations and other factors is challenging.

2.2 Representation of Dynamic Shape and Appearance

2.2.1 Linear Models

Applying linear models are landmark-based approaches where correspondences are established

between these landmarks. Examples of such approaches include active shape models and active

appearance models [30], where deformations in the shape and appearance are modeled through

linear models of certain landmarks through a correspondence frame. A fundamental problem

is that such correspondences are not always feasible (has no meaning). For example, if there

are changes in the topology over time (as in our gait example), correspondences between land-

marks are not always feasible because of self occlusion and self similarity. For these reasons,

correspondence-free vector representations (global) have the advantage of implicitly imposing
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a correspondence frame, as well as not requiring explicit landmarks (feature extraction) to be

identified. Therefore, vectorial representations have been attractive in modeling appearance

such as in [133, 95, 14]. Recovering global geometric transformations for such appearance

representations has been addressed in [14, 39]. In case of dynamic shape and appearance like

gait, the class of deformation cannot be modeled using such global geometric transformations.

So, how can global, landmark-free, correspondence-free vectorial representation be used

for dynamic objects where, obviously, the implicit correspondences between individual vec-

tor components do not hold because of the motion? We argue that explicit modeling of the

manifold will make this possible. Although, globally (in time) the implicit correspondences

enforced by the vectorial representation do not hold, locally (along the manifold) such implicit

correspondences are quite valid between each point and its manifold neighbors. Because of the

nonlinearity of the dynamic shape and appearance manifolds, we need to use a framework that

is able to recover the underlying nonlinear manifold.

2.2.2 Learning Visual Manifolds

Learning nonlinear deformation manifolds is typically performed in the visual input space or

through intermediate representations. Learning motion manifolds can be achieved through lin-

ear subspace approximation, as in [38, 43]. Alternatively, exemplar-based approaches such

as [131, 39] implicitly model nonlinear manifolds through points (exemplars) along the mani-

fold. Such exemplars are represented in the visual input space. HMM models provide a prob-

abilistic piecewise linear approximation of the manifold, which can be used to learn nonlinear

manifolds as in [20] and in [18].

Recently, increasing research interest has focused on explicitly modeling motion manifolds

and exploring how that can be useful in constraining the task of tracking or recovering body

configurations. In our work [36], which is a part of this dissertation, the visual manifolds

of human silhouette deformations, due to motion, have been learned explicitly and used for

recovering 3D body configuration from silhouettes in a closed-form. In that work, knowing

the motion provided a strong prior to constrain the mapping from the shape space to the 3D

body configuration space. Simultaneously in [122], manifold learned from the body configu-

ration space is used to provide constraints for tracking. Later, in [136, 134], learning the body
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configuration manifold provided a way to learn nonlinear dynamic models through Gaussian

processes which constrains the tracking. In [91], models that coupled learning dynamics with

embedding were introduced. It was also shown in [93] that learning the motion manifolds pro-

vides ways to establish correspondences between subjects observed from different cameras. In

contrast to learning the motion manifolds, as in [36, 122, 136], learning the shape manifold, as

in [129], provides a way to constrain the recovery of body pose from visual input.

Deformation in shape has been studied in various scientific disciplines. In computer vision,

both variational approaches [68, 99, 100, 124] and statistical approaches are used to model

shape deformations. Statistical approaches model shape deformations as statistical variations

within the shape population [69, 16, 30, 81]. Modeling shape deformation is a key issue for

several related problems such as shape matching, shape classification, contour tracking, and

image segmentation. Landmark-free deformable templates have been introduced in [47, 147]

2.3 Factorized Models

Subspace analysis by linear model such as PCA can be extended to decompose multiple orthog-

onal factors using bilinear models and multilinear tensor analysis [128, 138]. The pioneering

work of Tenenbaum and Freeman [128] formulated the separation of style and content using

a bilinear model framework [87]. In this work, a bilinear model was used to decompose face

appearance into two factors: head pose and different people as style and content interchange-

ably. They presented a computational framework for model fitting using SVD. Bilinear models

have been used earlier in other contexts [87, 88]. In [138], multilinear tensor analysis was used

to decompose face images into orthogonal factors controlling the appearance of the face in-

cluding geometry (people), expressions, head pose, and illumination. They employed n-mode

SVD [72] to fit multilinear models. Tensor representation of image data was used in [117] for

video compression and in [137] for motion analysis and synthesis. N-mode analysis of higher-

order tensors was originally proposed and developed in [132, 67, 87] and others. See details

of multilinear analysis in Appendix A. The applications of bilinear and multilinear models,

as in [128, 138], to decompose variations into orthogonal factors are mainly for static image

ensembles.
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2.3.1 Limitations of Bilinear and Multilinear Factorization

The question we address is how to separate the style and content on a manifold representing a

dynamic object. Why don’t we just use a bilinear model to decompose the style and content in

our case where certain body poses can be denoted as content and different people as style? The

answer is that in the case of dynamic (e.g., articulated) objects, the resulting visual manifold

is nonlinear. This can be illustrated if we consider the walking cycle example in Fig. 1.1. In

this case, the shape temporally undergoes deformations and self-occlusion, which result in the

points lying on a nonlinear, twisted manifold. The two shapes in the middle of the two rows cor-

respond to the farthest points in the walking cycle kinematically and are supposedly the farthest

points on the manifold in terms of the geodesic distance along the manifold. In the Euclidean

visual input space, these two points are very close to each other as can be noticed from the

distance plot on the right of Fig. 1.1. Because of such nonlinearity, PCA, bilinear, multilinear

models will not be able to discover the underlying manifold and decompose orthogonal factors.

Another limitation of bilinear and multilinear analysis, as presented in [128, 138], is that it

is mainly a supervised procedure where the image ensemble needs to be arranged into various

style, content or orthogonal factor classes beforehand. Such requirement makes it hard if we

try to use bilinear or multilinear models with image sequences to decompose orthogonal factors

on a manifold. Typically, input sequences can be of different lengths, with different sampling

rates, and with people performing the same activity with different dynamics. So we aim to have

an unsupervised procedure with minimal human interaction.

2.4 Manifold Learning

Embedding nonlinear manifolds to low dimensional Euclidian spaces provides a way to explic-

itly model such manifolds. Learning motion manifolds can be achieved through linear subspace

approximation (PCA), as in [38]. PCA have been widely used in appearance modeling to dis-

cover subspaces for appearance variations and modeling view manifolds, as in [95, 133, 6, 30].

Linear subspace analysis can achieve a linear embedding of the motion manifold in a subspace.

However, the dimensionality of the subspace depends on the variations in the data and not in

the intrinsic dimensionality of the manifold.
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Recently some promising frameworks for nonlinear dimensionality reduction have been

introduced including isometric feature mapping (Isomap) [126] and locally linear embedding

(LLE) [111]. Related nonlinear dimensionality reduction work also includes [19, 7, 74, 145].

Such approaches can achieve embedding of nonlinear manifolds through changing the metric

from the original space to the embedding space based on local structure of the manifold. While

there are various such approaches, they mainly fall into two categories: Spectral-embedding

approaches and Statistical approaches. Spectral embedding includes approaches such as iso-

metric feature mapping (Isomap) [126], Local linear embedding (LLE) [111], Laplacian eigen-

maps [7], and Manifold Charting [19]. Spectral-embedding approaches in general construct an

affinity matrix between data points that reflects local manifold structure. Embedding is then

achieved through solving an eigen-value problem on such matrix. It was shown in [11, 51]

that these approaches are all instances of kernel-based learning, in particular kernel principle

component analysis KPCA[113]. In [10], an approach for embedding out-of-sample points is

proposed to complement such approaches. Along the same line, our work introduces a general

framework for mapping between input and embedding spaces and to factorize style factors in

this mapping space.

Nonlinear dimensionality reduction approaches are able to embed image ensembles nonlin-

early into low dimensional spaces where various orthogonal perceptual aspects can be shown to

correspond to certain directions or clusters in the embedding spaces. In this sense, such nonlin-

ear dimensionality reduction frameworks present an alternative solution to the decomposition

problems. However, the application of such approaches is limited to embedding of a single

manifold, and it is not clear how to factorize orthogonal factors in the embedding space or how

to model multiple manifolds.
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Chapter 3

Nonlinear Manifold Learning for Dynamic Shape and Dynamic
Appearance

We introduce a framework that aim to learn a landmark-free correspondence-free global rep-

resentations of dynamic appearance manifolds. We use nonlinear dimensionality reduction to

achieve an embedding of the global deformation manifold that preserves the geometric structure

of the manifold. Given such embedding, a nonlinear mapping is learned from the embedding

space into the visual input space. Therefore, any visual input is represented by a linear combi-

nation of nonlinear bases functions centered along the manifold in the embedding space. We

also show how approximate solution for the inverse mapping can be obtained in a closed form

which facilitate recovery of the intrinsic body configuration. We use the framework to learn the

gait manifold as an example of a dynamic shape manifold, as well as to learn the manifolds for

some simple gestures and facial expressions as examples of dynamic appearance manifolds.

3.1 Motivation

Our objectives is to learn representations for the shape and the appearance of moving (dynamic)

objects that supports tasks such as synthesis, pose recovery, reconstruction and tracking. Such

learned representation will serve as view-based generative models for dynamic appearance in

the form

yt = Tαγ(xt;a) (3.1)

where the appearance, yt, at time t is an instance driven from a generative model where the

function γ is a mapping function that maps body configuration xt at time t into the image

space. i.e., the mapping function γ maps from a representation of the body configuration space

into the image space given mapping parameters a that are independent from the configuration.

Tα represents a global geometric transformation on the appearance instance.
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3.2 Embedding Nonlinear Manifolds

3.2.1 Representation

Shape Representation

We represent each shape instance as an implicit function y(x) at each pixel x such that y(x) = 0

on the contour, y(x) > 0 inside the contour, and y(x) < 0 outside the contour. We use a signed-

distance function such that

y(x) =





dc(x) x inside c

0 x on c

−dc(x) x outside c

where the dc(x) is the distance to the closest point on the contour c with a positive sign inside

the contour and a negative sign outside the contour. Such representation impose smoothness on

the distance between shapes. Given such representation, the input shapes are points

boldsymbolyi ∈ Rd, i = 1, · · · , N where d is the same as the dimensionality of the input space

and N is the number of points. Implicit function representation is typically used in level-set

methods.

Appearance Representation

Appearance is represented directly in a vector form, i.e., each instance of appearance is repre-

sented as points yi ∈ Rd, i = 1, · · · , N where d is the dimensionality of the input space.

3.2.2 Embedding

Because of the nonlinearity of the dynamic shape and appearance manifolds we need to use a

framework that is able to recover the underlying nonlinear manifold. We adapt the LLE frame-

work [111]. Given the assumption that each data point and its neighbors lie on a locally linear

patch of the manifold [111], each point (shape or appearance instance) yi can be reconstructed

based on a linear mapping
∑

j wijyj that weights its neighbors contributions using the weights

wij . In our case, the neighborhood of each point is determined by its K nearest neighbors

based on the distance in the input space. The objective is to find such weights that minimize
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the global reconstruction error,

E(W ) =
∑

i

|yi −
∑

j

wijyj |2 i, j = 1 · · ·N. (3.2)

The weights are constrained such that wij is set to 0 if point yj is not within the K nearest

neighbors of point yi. This will guarantee that each point is reconstructed from its neighbors

only. The weights obtained by minimizing the error in Eq. 3.2 are invariant to rotations and

re-scalings. To make them invariant to translation, the weights are also constrained to sum

up to one across each row, i.e., the minimization is subject to
∑

j wij = 1. Such symmetric

properties are essential to discover the intrinsic geometry of the manifold independent of any

frame of reference. Optimal solution for such optimization problem can be found by solving a

least-squares problem as was shown in [111].

Since the recovered weights W reflects the intrinsic geometric structure of the manifold,

an embedded manifold in a low dimensional space can be constructed using the same weights.

This can be achieved by solving for a set of points X = {xi ∈ Re, i = 1 · · ·N} in a low

dimension space, e ¿ d, that minimizes

E(X) =
∑

i

|xi −
∑

j

wijxj |2 i, j = 1 · · ·N, (3.3)

where in this case the weights are fixed. Solving such problem can be achieved by solving an

eigenvector problem as was shown in [111].

One point that need to be emphasized is that we do not use the temporal relation to achieve

the embedding, since the goal is to obtain an embedding which preserves the geometry of the

manifold. Temporal relation can be used to determine the neighborhood of each shape but that

would lead to erroneous embedding if there is no enough samples on the manifold.

3.3 Nonlinear Mapping: Learning Generative Model

Given a visual input, the objective is to recover the intrinsic body configuration by finding

the point on the manifold in the embedding space corresponding to this input. Recovering

such embedded representation will facilitate reconstruction of the input and detection of any

spatial or temporal outliers. In other words, we aim to simultaneously solve for the pose and

reconstruct the input. To achieve this goal, two steps are required:
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1. we need to model the appearance manifold given the Euclidean space embedding achieved

in the previous section.

2. we need to learn a mapping between the embedding space and the visual input space.

The manifold in the embedding space can be modeled explicitly in a function form or implicitly

by points along the embedded manifold (embedded exemplars). The embedded manifold can

be also modeled probabilistically using Hidden Markov Models and EM. Clearly, learning

manifold representations in a low-dimensional embedding space is advantageous over learning

them in the visual input space. However, our emphasize is on learning the mapping between

the embedding space and the visual input space.

Since the objective is to recover body configuration from the input, it might be obvious that

we need to learn mapping from the input space to the embedding space, i.e., mapping from

Rd to Re. However, learning such mapping is not feasible since the visual input is very high-

dimensional so learning such mapping will require large number of samples in order to be able

to interpolate. Instead, we learn the mapping from the embedding space to the visual input

space with a mechanism to directly solve for the inverse mapping.

It is well know that learning a smooth mapping from examples is an ill-posed problem

unless the mapping is constrained since the mapping will be undefined in other parts of the

space [103]. We Argue that, explicit modeling of the visual manifold represents a way to con-

strain any mapping between the visual input and any other space. Nonlinear embedding of the

manifold, as was discussed in the previous section, represents a general framework to achieve

this task. Constraining the mapping to the manifold is essential if we consider the existence of

outliers (spatial and/or temporal) in the input space. This also facilitates learning mappings that

can be used for interpolation between poses as we shall show. In what follows we explain our

framework to recover the pose. In order to learn such nonlinear mapping we use Radial basis

function (RBF) interpolation framework. The use of RBF for image synthesis and analysis

has been pioneered by [103, 12] where RBF networks were used to learn nonlinear mappings

between image space and a supervised parameter space. In our work we use RBF interpola-

tion framework in a novel way to learn mapping from unsupervised learned parameter space to

the input space. Radial basis functions interpolation provides a framework for both implicitly
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modeling the embedded manifold as well as learning a mapping between the embedding space

and the visual input space. In this case, the manifold is represented in the embedding space

implicitly by selecting a set of representative points along the manifold.

Let the set of representative input instances (shape or appearance) be Y = {yi ∈ Rd i =

1, · · · , N} and let their corresponding points in the embedding space be X = {xi ∈ Re, i =

1, · · · , N} where e is the dimensionality of the embedding space (e.g. e = 3 in the case of

gait). We can solve for multiple interpolants fk : Re → R where k is k-th dimension (pixel) in

the input space and fk is a radial basis function interpolant, i.e., we learn nonlinear mappings

from the embedding space to each individual pixel in the input space. Of particular interest are

functions of the form

fk(x) = pk(x) +
N∑

i=1

wk
i φ(|x− xi|), (3.4)

where φ(·) is a real-valued basic function, wi are real coefficients, | · | is the norm on Re (the

embedding space). Typical choices for the basis function includes thin-plate spline (φ(u) =

u2log(u)), the multiquadric (φ(u) =
√

(u2 + c2)), Gaussian (φ(u) = e−cu2
), biharmonic

(φ(u) = u) and triharmonic (φ(u) = u3) splines. pk is a linear polynomial with coefficients ck,

i.e., pk(x) = [1 x>] · ck. This linear polynomial is essential to achieve approximate solution

for the inverse mapping as will be shown.

The whole mapping can be written in a matrix form as

f(x) = B · ψ(x), (3.5)

where B is a d×(N+e+1) dimensional matrix with the k-th row [wk
1 · · ·wk

N ckT
] and the vector

ψ(x) is [φ(|x− x1|) · · ·φ(|x− xN |) 1 x>]>. The matrix B represents the coefficients for d

different nonlinear mappings, each from a low-dimension embedding space into real numbers.

To insure orthogonality and to make the problem well posed, the following additional con-

straints are imposed
N∑

i=1

wipj(xi) = 0, j = 1, · · · ,m (3.6)

where pj are the linear basis of p. Therefore the solution for B can be obtained by directly

solving the linear systems
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
 A P

P> 0


B> =


 Y

0(e+1)×d


 , (3.7)

where Aij = φ(|xj − xi|), i, j = 1 · · ·N , P is a matrix with i-th row [1 x>i ], and Y is

(N × d) matrix containing the representative input images, i.e., Y = [y1 · · ·yN ]>. Solution

for B is guaranteed under certain conditions on the basic functions used.

Similarly, mapping can be learned using arbitrary centers in the embedding space (not nec-

essarily at data points) [103]. In this case, given Nt centers {tj ∈ Re, j = 1, · · · , Nt} and

given a set input images Y = {yi, i = 1, · · · , N} where their corresponding embedding are

X = {xi, i = 1, · · · , N}, we can learn interpolants in the form

fk(x) = pk(x) +
Nt∑

i=1

wk
i φ(|x− ti|), (3.8)

that satisfies the interpolation condition

yk
i = fk(xi) (3.9)

which yields a system of equation


 A P x

P>
t 0


B> =


 Y

0(e+1)×d


 , (3.10)

where A is N × Nt matrix with Aij = φ(|xi − tj |), i = 1 · · ·N, j = 1 · · ·Nt, P x is a

N × (e + 1) matrix with i-th row [1 x>i ], P t is a Nt × (e + 1) matrix with i-th row [1 t>i ].

Given such mapping, any input is represented by a linear combination of nonlinear func-

tions centered in the embedding space along the manifold. Equivalently, this can be interpreted

as a form of basis images (coefficients) that are combined nonlinearly using kernel functions

centered along the embedded manifold.

3.3.1 Solving For the Embedding Coordinates

Given a new input y ∈ Rd, it is required to find the corresponding embedding coordinates

x ∈ Re by solving for the inverse mapping. There are two questions that we might need to

answer
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1. What is the coordinates of point x ∈ Re in the embedding space corresponding to such

input.

2. What is the closest point on the embedded manifold corresponding to such input.

In both cases we need to obtain a solution for

x∗ = argmin
x

||y −Bψ(x)|| (3.11)

where for the second question the answer is constrained to be on the embedded manifold. In

the cases where the manifold is only one dimensional, (for example in the gait case, as will be

shown) only one dimensional search is sufficient to recover the manifold point closest to the

input. However, we show here how to obtain a closed-form solution for x∗.
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Figure 3.1: Embedded gait manifold for a side view of the walker. Left: sample frames from
a walking cycle along the manifold with the frame numbers shown to indicate the order. Ten
walking cycles are shown. Right: three different views of the manifold.

Each input yields a set of d nonlinear equations in e unknowns (or d nonlinear equations

in one e-dimensional unknown). Therefore a solution for x∗ can be obtained by least square

solution for the over-constrained nonlinear system in 3.11. However, because of the linear

polynomial part in the interpolation function, the vector ψ(x) has a special form that facilitates
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a closed-form least square linear approximation and therefore, avoid solving the nonlinear sys-

tem. This can be achieved by obtaining the pseudo-inverse of B. Note that B has rank N since

N distinctive RBF centers are used. Therefore, the pseudo-inverse can be obtained by decom-

posing B using SVD such that B = USV > and, therefore, vector ψ(x) can be recovered

simply as

ψ(x) = V S̃UT y (3.12)

where S̃ is the diagonal matrix obtained by taking the inverse of the nonzero singular values

in S the diagonal matrix and setting the rest to zeros. Linear approximation for the embedding

coordinate x can be obtained by taking the last e rows in the recovered vector ψ(x). Recon-

struction can be achieved by re-mapping the projected point.

3.4 Learning the gait manifold

3.4.1 Embedding

In this section we show an example of learning the nonlinear manifold of the gait as an example

of a dynamic shape. We used data sets of walking people from multiple views. Each data set

consists of 300 frames and each containing about 8 to 11 walking cycles of the same person

from a certain view points1. We applied the LLE frameworks to discover the geometric struc-

ture of the gait manifold as well as to establish a low dimensional embedding of such manifold.

We also applied Isomap [127] framework on the same data to validate the results. Both Isomap

and LLE resulted in qualitatively similar manifold embedding.

As a result of nonlinear dimensionality reduction we can reach an embedding of the gait

manifold in a low dimension Euclidean space. Fig. 3.1 illustrates the resulting embedded man-

ifold for a side view of the walker. Fig. 3.2 illustrates the embedded manifolds for five different

view points of the walker. For a given view point, the walking cycle evolves along a closed

curve in the embedded space, i.e., only one degree of freedom controls the walking cycle

which corresponds to the constrained body pose as a function of the time. Such conclusion

is conforming with the intuition that the gait manifold is one dimensional.

1The data used are from the CMU Mobo gait data set which contains 25 people from six different view points.
The walkers were using treadmill which might results in different dynamics from the natural walking.
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Figure 3.2: Embedded manifolds for 5 different views of the walkers. Frontal view manifold
is the right most one and back view manifold is the leftmost one. We choose the view of the
manifold that best illustrates its shape in the 3D embedding space

The question is what is the least dimensional embedding space we can use to embed the

walking cycle in a way that discriminate different poses through the whole cycle. The answer

depends on the view point. The manifold twists in the embedding space given the different view

points which impose different self occlusions. The least twisted manifold is the manifold for

the back view as this is the least self occluding view (left most manifold in Fig. 3.2). In this case

the manifold can be embedded in a two dimensional space. For other views the curve starts to

twist to be a three dimensional space curve. This is primarily because of the similarity imposed

by the view point which attracts far away points on the manifold closer. The ultimate twist

happens in the side view manifold where the curve twists to be a figure eight shape where each

cycle of the eight (half eight) lies in a different plane. Each cycle of the eight figure corresponds

to half a walking cycle. The cross point represents the body pose where it is totally ambiguous

from the side view to determine from the shape of the contour which leg is in front as can be

noticed in Fig. 3.1. Therefore, in a side view, three-dimensional embedding space is the least

we can use to discriminate different poses. Embedding a side view cycle in a two-dimensional

embedding space results in an embedding similar to that shown in top left of Fig. 3.1 where the

two half cycles lies over each other.
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Figure 3.3: Left: Learned mapping coefficients for each of 24 cluster centers along the man-
ifold. The last row represent the learned polynomial coefficients. Right: embedded manifold
and cluster centers.

3.4.2 Learning

Given the embedded representation of the manifold in a 3-dimensional Euclidean space, K-

means clustering is used to obtain representative points along the embedded manifold. The

representative points were used to learn nonlinear mapping from the embedding space to the

input space in the form of Eq. 3.5 using TPS kernels. Since the cluster centers do not necessarily

coincide with actual data points, generalized RBF interpolation were used, i.e., in the form of

Eq. 3.8. Fig. 3.3 shows the learned mapping coefficients and the cluster centers.

Figure 3.4: Example pose-preserving reconstruction results. Six noisy and corrupted silhou-
ettes and their reconstructions next to them.

Synthesis, Recovery and Reconstruction

Fig. 3.4 shows examples of the reconstruction given corrupted silhouettes as input. In this

example, the manifold representation and the mapping were learned from one person data and

tested on other people date. Given a corrupted input, after solving for the global geometric

transformation, the input is projected to the embedding space using the closed-form inverse

mapping approximation in Sec. 3.3.1. The nearest embedded manifold point represents the

intrinsic body configuration. A reconstruction of the input can achieved by projecting back to
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the input space using the direct mapping in Eq. 3.5. As can be noticed from the figure, the

reconstructed silhouettes preserve the correct body pose in each case which shows that solving

for the inverse mapping yields correct points on the manifold. Notice that no mapping is learned

from the input space to the embedded space.

Figure 3.5: Shape synthesis for three different people. First, third and fifth rows: samples
used in learning. Second, fourth, sixth rows: interpolated shapes at intermediate configurations
(never seen in the learning)

Fig. 3.5 shows an example of shape synthesis and interpolation. Given a learned generative

model in the form of Eq. 3.5, we can synthesize new shapes through the walking cycle. In these

examples only 10 samples were used to embed the manifold for half a cycle on a unit circle in

2D and to learn the model. Silhouettes at intermediate body configurations were synthesized

(at the middle point between each two centers) using the learned model. The learned model

can successfully interpolate shapes at intermediate configurations (never seen in the learning)

using only two-dimensional embedding. The figure shows results for three different peoples.
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3.5 Inferring 3D Body Pose from Silhouettes

In this section we show a direct application of the proposed framework for learning nonlin-

ear motion manifolds in the recovery of 3D body pose. Recovery of 3D body pose is a fun-

damental problem for human motion analysis in many applications such as motion capture,

vision interface, visual surveillance, and gesture recognition. Human body is an articulated

object that moves through the three-dimensional world. This motion is constrained by 3D

body kinematics and dynamics as well as the dynamics of the activity being performed. Such

constraints are explicitly exploited to recover the body configuration and motion in model-

based approaches. Alternatively, 3D body pose can be directly inferred from the visual in-

put [55, 18, 110, 109, 94, 45, 116]. We call such approaches learning-based since their objec-

tive is to directly infer the 3D body pose as a function of the visual input. Such approaches

have great potentials in solving the fundamental initialization problem for model-based vision.

The approach we present in this section is inline with the learning-based approaches for pose

recovery.
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Figure 3.6: Block diagram for the framework. a: Leaning components. b: 3D pose estimation.

Given a visual input (silhouette), the objective is to recover the intrinsic body configuration,

recover the view point, reconstruct the input and detect any spatial or temporal outliers. In other
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words, we aim to simultaneously solve for the pose, view point, and reconstruct the input.

The framework is based on learning three components as shown in Fig. 3.6-a:

1. Learning Manifold Representation: using nonlinear dimensionality reduction we achieve

an embedding of the global deformation manifold that preserves the geometric structure

of the manifold as described in Sec. 3.2. Given such embedding, the following two

nonlinear mappings are learned.

2. Manifold-to-input mapping: a nonlinear mapping from the embedding space into visual

input space as described in Sec. 3.3.

3. Manifold-to-pose: a nonlinear mapping from the embedding space into the 3D body pose

space.

3.5.1 Determining Intrinsic Configuration

Given a visual input y ∈ Rd (silhouette) and given learned manifold representation and manifold-

to-input mapping, we can obtain the embedding coordinate x ∈ Re corresponding to the input

in a closed-form as was shown in Sec. 3.3.1. The recovered point x is typically enough to

recover the pose. However to enhance the result and constrain the solution, we need to find the

closest manifold point, which can also be obtained efficiently. For the gait case, the manifold is

one dimensional, and therefore, only one dimensional search is sufficient to recover the man-

ifold point closest to the input. To obtain such point, the embedded manifold is fitted with a

cubic spline m(t) as a function of the time variable t ∈ [0, 1] where each cycle of the activity is

temporally mapped from 0 to 1. Given such model, a one dimensional search is used to obtain

t∗ that minimizes ‖x − m(t)‖. Reconstruction can be achieved by re-mapping the projected

point using Eq. 3.5.

3.5.2 Determining View Point

Given the learned view-based manifolds M v and the learned view-based mappings Bvψv(x)

for each view v, determining the view point reduces to finding the manifold that minimizes

the inverse-mapping error of an input y or a sequence of inputs yt. Given an input y and its
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projections x∗v into each manifold we chose the manifold that minimizes

‖x∗v −mv(tv∗)‖,

where tv is the corresponding spline parameter. Fig. 3.7 shows five view manifolds and the

projection of a sequence to the five manifolds.

Figure 3.7: Five manifolds for five view points and the projection of a sequences to each mani-
fold.

3.5.3 Learning Mapping: Manifold-to-3D

Similar to the mapping from the embedding space into the visual input, a mapping can be

learned from the embedding space to the 3D body joint space. RBF interpolants in the form

of Eq. 3.4 between the embedding space Re and each degree of freedom of each body joint.

We represent the body using 16 joints model and each joint is represented by its coordinates in

a body centered global coordinate system. Representative points on the manifolds as well as

their corresponding 3D body configurations are used in order to learn the mapping parameters

as was shown in Sec. 3.3.

3.6 Experimental Results

3.6.1 3D Pose Recovery Results

Validation Experiment

In order to validate that our approach can interpolate 3D poses from input silhouettes, we used

a sequence from Georgia tech gait data with ground truth provided by motion capture data. the

sequence contains 72 frames where we learn the model using the odd numbered frames and

evaluated on the even numbered frames. The resulted 3D reconstruction is compared to the
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ground truth and is plotted in Fig. 3.8 for four of the sixteen joint angles (right foot, left foot,

lower right leg, lower left leg).

Figure 3.8: Evaluation of 3D reconstruction with ground truth for four joints (right foot, left
foot, Lower right leg, lower left leg). Each row represents a joint angle x,y,z. (units in foot)

Generalization

In order to show that the approach generalizes to different people, we used the CMU MoboGait

database to train and evaluate the proposed approach. Each sequence of the database contains

about 300 frames (8-11 walking cycles). The database contains 6 views of each walking person.

We used five of them. The used views are shown in Fig. 3.7.

In each experiment, we used one person sequences to learn the manifolds of the five views

and the mappings from the manifolds to the input sequences. The mappings from each of

the manifolds to 3D body configuration were also learned. For the evaluation we use other

people’s sequences to evaluate the 3D reconstruction 2. Fig. 3.9 shows the view classification

2For the experiment we show here we use person 37 for the learning and evaluate on persons 15 in Fig. 3.10 and
on 70, 86, 76, 79 in Fig. 3.11



37

Figure 3.9: View classification: a- classification from single frames. b- classification with
boosting multiple frames

results for five evaluation sequences (five people) and five views. Overall correct classification

rate is 93.05%. Obviously the view classification from a single frame can be erroneous because

of self occlusion and therefore boosting several frames would lead to better results which is

shown in Fig. 3.9-b where majority vote were used over view classification results for each

sequence of five frames which results in a correct classification rate of 99.63%.

Figure 3.10: 3D reconstruction for five views.

Fig. 3.10 shows the 3D reconstruction for one person for each of the five views. Since the

input sequences are synchronized, the reconstructed 3D poses from each view are supposed to
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be the same. The 3D reconstructions are always shown from the side view point. The recon-

struction shows qualitatively correct reconstruction from all views. Unfortunately, there are no

ground truth to evaluate the results of this experiment. Fig. 3.11 shows some 3D reconstruction

results for four other people. As can be noticed, the input silhouettes are noisy.

Figure 3.11: 3D reconstruction for 4 people from different views: From top to bottom: person
70 views 1,2; person 86 views 1,2; person 76 view 4; person 79 view 4

Fig. 3.12 shows 3D pose reconstructed from corrupted silhouette which are typical in

surveillance applications due to errors in background subtraction, shadows, fragmentation, and

carried objects. Reconstruction of the input silhouettes can be achieved by mapping back to the

input space.
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Figure 3.12: 3D reconstruction from corrupted inputs

3.6.2 Dynamic Appearance Examples

In this section we show two examples for learning manifolds of dynamic appearance. In the first

example, we learn the model for two arm gestures (raising arm up and down in two different

way) as shown in Fig. 3.13 . Four cycles for each of the two gestures (total of 402 frames) were

used to embed the manifold and learn a model in the form of Eq. 3.5 using centers set at approx-

imately equal distance along the embedded manifolds. As expected, each of these gestures is

1-dimensional manifold and a 2-dimensional embedding space is enough to discriminate them.

Fig. 3.13 show the embedding and the centers. Given the learned model, recovery of the em-

bedding coordinate was achieved using the closed-form inverse mapping approximation as was

shown in Sec. 3.3.1. Fig. 3.13 also shows the recovered embedding coordinates.

Fig. 3.14 shows the results for learning the manifold for face motion during a smile. The

sequence contains 44 frames from the CMU facial expression dataset. Obviously this is a

one dimensional manifold. Embedding in this case was done in a one dimensional space, i.e.,

samples were embedded on a line. The model was learned using approximately equally-spaced

center on the manifold. The embedding and the centers is shown in Fig. 3.14-c. The learned

model was used to synthesize faces at intermediates points along the manifold. The results are

shown in Fig. 3.14-a using both Gaussian kernels and TPS kernels. Notice that this result is

obtained with only one-dimensional embedding of the manifold and the face is parameterized

with only one parameter and still we can reconstruct the original faces.
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Figure 3.13: Learning two arm gestures. Top: centers. Bottom: Embedding in 2D and inverse
mapping results

3.7 Summary

In this chapter we introduced a framework for learning a landmark-free correspondence-free

global representations of dynamic shape and dynamic appearance manifolds. The framework

is based on using nonlinear dimensionality reduction to achieve an embedding of the global

deformation manifold which preserves the geometric structure of the manifold. Given such

embedding, a nonlinear mapping is learned from such embedded space into visual input space

using RBF interpolation. Given this framework, any visual input is represented by a linear

combination of nonlinear bases functions centered along the manifold in the embedded space.

In a sense, the approach utilizes the implicit correspondences imposed by the global vector

representation which are only valid locally on the manifold through explicit modeling of the

manifold and RBF interpolation where closer points on the manifold will have higher contribu-

tions than far away points. We also showed how approximate solution for the inverse mapping

can be obtained in a closed form which facilitates recovery of the intrinsic body configuration.

The framework was applied to learn a representation of the gait manifold as an example of a

dynamic shape manifold. We showed how the learned representation can be used to interpolate

intermediate body poses as well as in recovery and reconstruction of the input. We extended

the approach to learn mappings from the embedded motion manifold to 3D joint angle rep-

resentation which yields an approximate closed-form solution for 3D pose recovery. We also

showed examples of using the framework in learning manifolds for some simple gestures and

facial expressions as examples of dynamic appearance manifolds. In Chapter 4, we extended
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Figure 3.14: Learning a facial expression. Left-top, centers equally spaced on the manifold.
Center & bottom: interpolated faces at intermediate points. Right-top, Learned mapping coef-
ficients for the eight centers (the last two are the linear polynomial coefficients). Right-bottom:
One dimensional embedding.

the framework to learn a decomposable generative model that separates appearance variations

from the intrinsics underlying dynamics manifold though introducing a framework for separa-

tion of style and content on a nonlinear manifold.
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Chapter 4

Generalized Separation of Style and Content on Motion Manifolds

The problem of separation of style and content is essential task in visual perception and is a

fundamental mystery of perception. Such problem appears extensively in different computer

vision applications. The problem we address in this chapter is the separation of style and con-

tent when the content lies on low dimensional nonlinear manifold representing dynamic object.

We show that such setting appears in many human motion analysis problems and therefore we

introduce a framework for learning parameterization of style and content in such settings. The

framework we present in this paper is based on decomposing the style parameters in the space

of nonlinear functions which map between a learned unified embedding of multiple content

manifolds and the visual input space. We show the application of the framework in synthesis,

recognition, and tracking of certain human motions that follow this setting such as gait and

facial expressions.

4.1 Factorized Generative Models

Our objectives is to learn representations for the shape and/or the appearance of moving (dy-

namic) objects that supports tasks such as synthesis, pose recovery, view recovery, input re-

construction, and tracking. Such learned representation will serve as decomposable generative

models for dynamic appearance where we can think of the image appearance (similar argument

for shape) of a dynamic object as instances driven from such generative model. In general, the

appearance of a dynamic object is a function of the intrinsic body configuration as well as other

factors such as the object appearance, the view point, illumination, etc. In this paper, we refer

to the intrinsic body configuration as the content and all other factors as style factors.
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4.1.1 Style and Content Decomposition

We start with the case of factorizing one style factor. Given a set of image sequences, similar to

the ones in Fig. 1.2, representing certain motion such as gesture, facial expression, or activity,

where each sequence is performed by one subject, we aim to learn a generative model that

explicitly decomposes the following two factors:

1. Content (body pose): A representation of the intrinsic body configuration through the

motion as a function of time that is invariant to the person, i.e., the content characterizes

the motion or the activity.

2. Style (people) : Time-invariant person parameters that characterize the person appear-

ance or shape.

Fig. 1.2 shows an example of such data where different people are performing the same activity

as gait or smile motion. The content in this case is the gait motion or the smile motion while

the style is the person shape or face appearance, respectively. On the other hand, given an

observation of a certain person at a certain body pose and given the learned generative model,

we aim to be able to solve for both the body configuration representation (content) and the

person parameter (style).

We learn a view-based generative model in the form

yt = γ(xc
t ; a, bs) , (4.1)

where the image, yt, at time t is an instance driven from a generative model where the function

γ(·) is a mapping function that maps from a representation of body configuration xc
t (content) at

time t into the image space given mapping parameters a and style dependent parameter bs that

is time invariant. In our case the content is a continuous domain while style is represented by

the discrete style classes which exist in the training data where we can interpolate intermediate

styles and/or intermediate contents.

Suppose that we can learn a unified, style-invariant, nonlinearly embedded representation

of the motion manifold M in a low dimensional Euclidean embedding space, Re, then we

can learn a set of style-dependent nonlinear mapping functions from the embedding space into

the input space, i.e., functions γs(xc
t) : Re → Rd that maps from embedding space with
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dimensionality e into the input space (observation) with dimensionality d for style class s.

Since we consider nonlinear manifolds and the embedding is nonlinear, the use of nonlinear

mapping is necessary. In this paper we consider mapping functions of the form

yt = γs(xc
t) = Cs · ψ(xc

t) , (4.2)

where Cs is a d × N linear mapping and ψ(·) : Re → RN is a nonlinear mapping where N

basis functions are used to model the manifold in the embedding space, i.e.,

ψ(·) = [φ1(·), · · · , φN (·)]T (4.3)

Given learned models of the form of Eq. 4.2, the style can be decomposed in the linear mapping

coefficient space using bilinear model in a way similar to [128]. Therefore, an input instance

yt can be written as asymmetric bilinear model in the linear mapping space as

yt = A×3 bs ×2 ψ(xc
t) (4.4)

where A is a third order tensor (3-way array) with dimensionality d × N × J , bs is a style

vector with dimensionality J , and ×n denotes mode-n tensor product.

A challenging task to achieve such decomposition is to learn a unified and style-invariant

embedded representation of the motion manifold. Several approaches can be used to achieve

such representation. We used LLE to obtain manifold embedding for each individual sequence

as described in Sec. 3.4.1. A mean manifold is computed as a unified representation through

nonlinear warping of manifold points in Sec. 4.2.

4.1.2 Multiple Style Factor Decomposition

We extend the style and content factorization to the general case of factorizing multiple style

factors given a content manifold. Let yt ∈ Rd be the appearance of the object at time instance t

represented as a point in a d-dimensional space. This instance of the appearance is driven from

a model in the form

yt = γ(xt; b1, b2, · · · , bn) (4.5)

where the appearance, yt, at time t is an instance driven from a generative model where the

function γ(·) is a mapping function that maps body configuration xt at time t into the image
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Figure 4.1: Multiple views and multiple people generative model for gait. (a) Examples of
training data from different views. (b) Examples of training data for multiple people from the
side view.

space. i.e., the mapping function γ maps from a representation of the body configuration space

into the image space given mapping parameters b1, · · · , bn each representing a set of concep-

tually orthogonal factors. Such factors are independent of the body configuration and can be

time variant or invariant. The general form for the mapping function γ(·) that we use is

γ(xt; b1, b2, · · · , bn) = A×1 b1 × · · · ×n bn · ψ(xt) (4.6)

where ψ(x) is a nonlinear kernel map from a representation of the body configuration to a

kernel induced space and each bi is a vector representing a parameterization of orthogonal

factor i, A is a core tensor, ×i is mode-i tensor product as defined in [72]. In the model

in Eq. 4.6, the relation between body configuration and the input is nonlinear where other

factors are approximated linearly through high-order tensor analysis. The model in Eq. 4.6

is a generalization over the style and content model in Eq. 4.4, where only one factor can be

decomposed. In the model in Eq. 4.6, the relation between body configuration and the input is

nonlinear where other factors are approximated linearly through multilinear high-order tensor

analysis.

For example, for the gait case (as shown in Fig. 4.1), if we consider multiple views in

addition to multiple people, the data set have three components: style, view, in addition to body



46

configuration. A generative model for walking silhouettes for different people from different

view points will be in the form

yt = γ(xt; v, s) = A× v × s× ψ(xt) (4.7)

where v is a parameterization of the view, which is independent of the body configuration but

can change over time, and s is a parameterization of the shape style of the person performing

the walk which is independent of the body configuration and time invariant. The body config-

uration xt evolves along a representation of the manifold that is homeomorphic to the actual

gait manifold.

In the following sections we describe the details for fitting such models and estimation

of the parameters. Section 4.2 describes how to obtain a unified nonlinear embedding of the

motion manifold for style analysis. Section 4.3 describes model learning and solving for style

and content factors. Sections 4.4 and 4.5 describe the generalized model and solving for

multiple factors.

4.2 Content Manifold Embedding:Embedding Multiple Manifolds

4.2.1 Embedding Multiple Manifolds

Given sequences for multiple people, we need to obtain a unified embedding for the un-

derlying body configuration manifold. Nonlinear dimensionality reduction approaches such

as [126, 111, 19] are not able to embed multiple people manifolds simultaneously. Although

such approaches try to capture the manifold geometry, typically, the distances between in-

stances of the same person (within the same manifold) is much smaller than distances between

corresponding points on different people’s manifolds. Therefore, they tend to capture the in-

trinsic structure of each manifold separately without generalizing to capture inter-manifolds

aspects. This is shown in Fig. 4.2 (a) where LLE is used to embed three people’s manifolds

where all the inputs are spatially registered. As a result, the embedding shows separate man-

ifolds (e.g., in the left figure one manifold is degenerate to a point because the embedding

is dominated by the manifold with largest intra-distance.). Even if we force LLE to include

corresponding points on different manifolds to each point’s neighbors, this results in artifi-

cial embedding that does not capture the manifold geometry. Another fundamental problem is
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that different people will have different manifolds because the appearance (shape) is different,

which imposes different twists to the manifolds and therefore different geometry. This can be

noticed in Fig. 4.2 (b).
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Figure 4.2: Multiple manifold embedding: (a) Embedding obtained by LLE for three people
data with two different K values. Inter-manifold distance dominates the embedding. (b) Sep-
arate embedding of three manifolds for three people data. (c) Unified manifold embedding
X̃k

To achieve a unified embedding of a certain activity manifold from multiple people data,

each person’s manifold is embedded separately using LLE. Each manifold points are temporal-

mapped from 0 to 1. For the case of periodic motion, such as gait, each cycle on the manifold is

time warped from 0 to 1 given a corresponding origin point on the manifold, where the cycles

can be computed from the geodesic distances to the origin. Given the embedded manifold

Xk for person k, a cubic spline mk(t) is fitted to the manifold as a function of time, i.e.,

mk(t) : t → Re where t = 0 → 1 is the time variable. The manifold for person k is sampled

at N uniform time instances mk(ti) where i = 1 · · ·N .

Given multiple manifolds, a mean manifold Z(ti) is learned by warping mk(ti) using non-

rigid transformation using an approach similar to [25]. We solve for a mean manifold Z(ti)

and a set of non-rigid transformations f(.; αk) where the objective is to minimize the energy

function

E(f) =
∑

k

∑

i

||Z(ti)− f(mk(ti);αk)||2 + λ||Lf ||2 (4.8)

where λ is a regularization parameter and ||Lf ||2 is a smoothness term. In particular thin-plate

spline (TPS) is used for the nonrigid transformation. Given the transformation parameters αk,
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the whole data sets are warped to obtain a unified embedding X̃
k

for the k manifolds where

X̃
k

= f(Xk; αk), k = 1 · · ·K. (4.9)

Fig. 4.2 (b),(c) shows an example of three different manifolds and their warping into a unified

manifold embedding. When there are multiple variant factors, however, the data driven each

individual manifold is quite different and hard to find unified representation using non-rigid

transformation.

4.3 Decomposition

4.3.1 Learning Style Dependent Mappings

Let the sets of input image sequences be Yk = {yk
i ∈ Rd i = 1, · · · , Nk} and let their

corresponding points on the unified embedding space be Xk = {xk
i ∈ Re, i = 1, · · · , Nk}

where e is the dimensionality of the embedding space (e.g. e = 3 in the case of gait) and k =

1 · · ·K is the person (style) index. Let the set of N centers representing the mean manifold be

Z = {zj ∈ Re, j = 1, · · · , N}. We can learn nonlinear mappings between the centers Z and

each of the input sequence using generalized radial basis function interpolation (GRBF) [103],

i.e., one mapping for each style class k. We can solve for multiple interpolants f l : Re → R as

described in Sec. 3.3.

f l(x) = pl(x) +
N∑

i=1

wl
jφ(|x− zj |), (4.10)

where φ(·) is a real-valued basic function, wj are real coefficients, | · | is the norm on Re (the

embedding space). The whole mapping can be written in a matrix form as

fk(x) = Ck · ψ(x), (4.11)

where Ck is a d×(N+e+1) dimensional matrix with the l-th row [wl
1 · · ·wl

N cl> ] and the vector

ψ(x) is [φ(|x−z1|) · · ·φ(|x−zN |) 1 x>]>. The matrix Ck represents the coefficients for d

different nonlinear mappings for style class k.The solution for Ck can be obtained by directly

solving the linear systems as explained in Sec. 3.3.
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4.3.2 Separating Style

Given learned nonlinear mapping coefficients C1, C2, · · · , CK for each person, the style pa-

rameters can be decomposed by fitting an asymmetric bilinear model [128] to the coefficient

tensor. Let the coefficients be arranged as a d ×M ×K tensor C, where M = (N + e + 1).

Therefore, we are looking for a decomposition in the form

C = Ac ×3 Bs

where Ac is d×M×J tensor containing content bases for the RBF coefficient space and Bs =

[b1 · · · bK ] is a J ×K style coefficients. This decomposition can be achieved by arranging the

mapping coefficients as a dM ×K matrix as

C =




c1
1 · · · cK

1

...
. . .

...

c1
M · · · cK

M




(4.12)

where [ck
1, · · · , ck

M ] are the columns for RBF coefficients Ck. Given the matrix C style vectors

and contents bases can be obtained by singular value decomposition as C = USV T where

the content bases are the columns of US and the style vectors are the rows of V .

4.3.3 Solving for Style and Content

Given a model fitted as described in the previous section and given a new image or a sequence

of images, it is desired to efficiently solve for each of the orthogonal factors as well as body

configuration. We first present EM-like iterative solution for estimation of style and content

factors.

Given a new input y ∈ Rd, it is required to find both the content, i.e., the corresponding

embedding coordinates x ∈ Re on the manifold, and the person style parameters bs. These

parameters should minimize the reconstruction error defined as

E(xc, bs) = ||y −A× bs × ψ(xc)||2 (4.13)
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Solving for content

If the style vector, bs, is known, we can solve for the content xc. Note that, in our case,

the content is a continuous variable in a nonlinearly embedded space. A solution for x∗

can be obtained by least square solution for the over-constrained nonlinear system x∗ =

argx min ||y − Bψ(x)||2 where B = A × bs. We show here how to obtain a closed-form

solution for xc in Sec. 3.3.1.

Solving for style

If the embedding coordinate (content) is known, we can solve for style vector bs. Given style

classes bk, k = 1, · · · , K learned from the training data and given the embedding coordinate

x, the observation can be considered as drawn from a Gaussian mixture model centered at

A × bk × ψ(x) for each style class k. Therefore, observation probability p(y|k, x) can be

computed as

p(y|k, x) ∝ exp−||y −A× bk × ψ(x)||2/(2σ2). (4.14)

Style conditional class probabilities can be obtained as

p(k|x, y) = p(y|k, x)p(k|x)/p(y|x) (4.15)

where p(y|x) =
∑

k p(y|x, k)p(k). A new style vector can then be obtained as a linear com-

bination of the K class style vectors as

bs =
∑

k

wkb
k (4.16)

where the weights wk are set to be p(k|x, y). Given the two steps described above we can

solve for both style bs and content xc in an EM-like iterative procedure where in the E-step we

calculate the content xc given the style parameters and in the M-step we calculate new style

parameters bs given the content. The initial content can be obtained using a mean style vector

b̃
s
.

4.4 Generalized Style factorization

In Sec. 4.3 it was shown how to separate a style factor when learning a generative model for

data lying on a manifold. Here we generalize this concept to factorize several style factors.
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For example, consider the walking motion observed from multiple view points (as silhouettes).

The resulting data lie on multiple subspaces and/or multiple manifolds. There is the underling

motion manifold, which is one dimensional for the gait motion. Besides the motion, there is

the view manifold and the space of different people’s shapes. Another example we consider is

facial expressions. Consider face data of different people performing different facial dynamic

expressions such as sad, smile, surprise, etc. The resulting face data posses several dimension-

ality of variability: the dynamic motion, the expression type and the person face. So, how to

model such data in a generative manner. We follow the same framework of explicitly modeling

the underlying motion manifold and over that we decompose various style factors.

We can think of the image appearance (similar argument for shape) of a dynamic object as

instances driven from such generative model. Let yt ∈ Rd be the appearance of the object at

time instance t represented as a point in a d-dimensional space. This instance of the appearance

is driven from a model in the form

yt = A×1 b1 × · · · ×n bn · ψ(xt) (4.17)

where ψ(x) is a nonlinear kernel map from a representation of the body configuration to a

kernel induced space and each bi is a vector representing a parameterization of orthogonal

factor i, A is a core tensor, ×i is mode-i tensor product as defined in [72].

For example for the gait case, a generative model for a walking silhouettes for different

people from different view points will be in the form

yt = γ(xt;v, s) = A× v × s× ψ(xt) (4.18)

where v is a parameterization of the view, which is independent of the body configuration but

can change over time, and s is a parameterization of the shape style of the person performing the

walk which is independent of the body configuration and time invariant. The body configuration

xt evolves along a representation of the gait manifold. The question is how to obtain such

representation of the gait manifold that is invariant to different people shape styles and different

views.

Another example is modeling the manifolds of facial expression motions. Given a dynamic

facial expression such as sad, surprise, happy, etc., where each expression start from neutral and
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evolve to a peak expression; each of these motions evolves along a one dimensional manifold.

However, the manifold will be different for each person and for each expression. Therefore, we

can use a generative model to generate different people faces and different expressions using a

model in the form be in the form

yt = γ(xt;e, f) = A× e× f × ψ(xt) (4.19)

where e is an expression vector (happy, sad, etc.) that is invariant of time and invariant of the

person face, i.e., it only describes the expression type. Similarly, f is a face vector describing

the person face appearance which is invariant of time and invariant of the expression type. The

motion content is described by x which denotes the motion phase of the expression, i.e., starts

from neutral and evolves to a peak expression depending on the expression vector, e.

4.4.1 Homeomorphic Manifold Analysis

The model in Eq. 4.17 is a generalization over the model in Eq. 4.4. However, such general-

ization is not obvious. In Sec. 4.2, LLE was used to obtain manifold embeddings, and then

a mean manifold is computed as a unified representation through nonlinear warping of mani-

fold points. However, since the manifolds twists very differently given each factor (different

people or different views, etc.), it is not possible to achieve a unified configuration manifold

representation independent of other factors. These limitations motivate the use of a concep-

tual unified representation of the configuration manifold that is independent of all other factors.

Such unified representation would allow the model in Eq. 4.17 to generalize to decompose as

many factors as desired. In this model, the relation between body configuration and the input is

nonlinear where other factors are approximated linearly through multilinear analysis. The use

of nonlinear mapping is essential since the embedding of the configuration manifold is nonlin-

early related to the input. Since the model is generative (from embedding to visual input) and

nonlinear mapping is used, any representation can be used to model the content manifold as

long as it is homeomorphic to the actual manifold.

For example for the gait case in Eq. 4.18, the body configuration xt can evolve along a

conceptual representation of the manifold that is homeomorphic to the actual gait manifold.

The question is what conceptual representation of the manifold we can use. Since the gait is
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one dimensional closed manifold embedded in the input space, it is homeomorphic to a unit

circle embedded in 2D. In general, all closed 1D manifolds are topologically homeomorphic to

a unit circle. We can think of it as a circle twisted and stretched in the space based on the shape

and the appearance of the person under consideration or based on the view. So we can use a

unit circle as a unified representation of all gait cycles for all people for all views. Given that

all the manifolds under consideration are homeomorphic to unit circle, the actual data is used

to learn nonlinear warping between the conceptual representation and the actual data manifold.

Since each manifold will have its own mapping, we need to have a mechanism to parameterize

such mappings and decompose all these mappings to parameterize variables for views, different

people, etc.

4.4.2 Separating Multiple Factors

Without lose of generality, we will use the gait model in Eq. 4.18 as an example in this section,

while fitting more factors are straight forward generalization.

The input is a set of image sequences each represents a full cycle of the motion, e.g., a

full walking cycle captured from different view points. Each image sequence is of certain

person and certain view. We assume that the view does not change within any sequence. Each

person can have multiple image sequences. The image sequences are not necessarily of the

same length. We denote each sequence by Y sv = {ysv
1 · · ·ysv

Nsv
} where v denotes the view

class index and s is style index. Let Nv and Ns denote the number of views and number of

styles respectively, i.e., there are Ns ×Nv sequences. Each sequence is temporally embedded

at equidistance on a unit circle such that xsv
i = [cos(2πi/Nsv + δsv) sin(2πi/Nsv + δsv)], i =

1 · · ·Nsv where the displacement parameter δ is used to align all the embedded sequences.

Notice that by temporal embedding on a unit circle we do not preserve the metric in input

space. Rather, we preserve the topology of the manifold.

Given a conceptual content manifold embedding obtained, we can learn nonlinear style-

dependent mappings for each of the style factors. Given a set of distinctive representative

and arbitrary points {zi ∈ R2, i = 1 · · ·N} we can define an empirical kernel map [113] as
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ψN (x) : R2 → RN where

ψN (x) = [φ(x, z1), · · · , φ(x, zN )]T, (4.20)

given a kernel function φ(·). For each input sequence Y sv and its embedding Xsv we can learn

a nonlinear mapping function fsv(x) that satisfies fsv(xi) = yi, i = 1 · · ·Nsv and minimizes

a regularized risk criteria. From the representer theorem, such function admits a representation

of the form

f(x) =
N∑

i=1

wiφ(x, zi),

i.e., the whole mapping can be written as

f sv(x) = Csv · ψ(x) (4.21)

where C is a d×N coefficient matrix. As described in Sec. 3.3, the mapping coefficients can

be obtained by solving the linear system

[ysv
1 · · ·ysv

Nsv
] = Csv[ψ(xsv

1 ) · · ·ψ(xsv
Nsv

)]

.

To align the sequences we use the model learned for a prototype cycle as a reference. Given

a prototype cycle coefficients C∗, any new cycle embedding coordinate is aligned to it by

searching for the displacement parameter δ that minimizes the reconstruction error

E(δ) =
∑

i

‖yi −C∗ · ψ(xi(δ))‖ (4.22)

Higher-order tensor analysis decomposes multiple orthogonal factors as an extension of

principal component analysis (PCA) (one factor), and bilinear model (two orthogonal factors).

Singular value decomposition (SVD) can be used for PCA analysis and iterative SVD with

vector transpose for bilinear analysis [128]. Higher-order tensor analysis can be achieved by

higher-order singular value decomposition (HOSVD) with matrix unfolding, which is a gen-

eralization of SVD [72] (See details in Appendix A Matrix unfolding is an operation to re-

shape high order tensor array into matrix form. Given an r-order tensor A with dimensions

N1 ×N2 × · · · ×Nr, the mode-n matrix unfolding, denoted by A(n) = unfolding(A, n), is

flattening A into a matrix whose column vectors are the mode-n vectors [72]. Therefore, the

dimension of the unfolded matrix A(n) is Nn × (N1 ×N2 × · · ·Nn−1 ×Nn+1 × · · ·Nr).
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Each of the coefficient matrices Csv can be represented as a coefficient vector csv by col-

umn stacking (stacking its columns above each other to form a vector). Therefore, csv is an

Nc = d · N dimensional vector. All the coefficient vectors can then be arranged in an order-

three gait coefficient tensor C with dimensionality Ns×Nv×Nc corresponding to people shape

styles, views, and, content basis, respectively. The coefficient tensor is then decomposed as

C = D̃ ×1 S̃ ×2 Ṽ ×3 F̃

where S̃ is the mode-1 basis of C, which represents the orthogonal basis for the style space.

Similarly, Ṽ is the mode-2 basis representing the orthogonal basis of the view space and F̃

represents the basis for the mapping coefficient space. The dimensionality of these matrices are

Ns×Ns, Nv×Nv, Nc×Nc for S̃,Ṽ and F̃ respectively. D is a core tensor, with dimensionality

Ns ×Nv ×Nc which governs the interactions among different mode basis matrices.

Similar to PCA, it is desired to reduce the dimensionality for each of the orthogonal spaces

to retain a subspace representation. This can be achieved by applying higher-order orthogonal

iteration for dimensionality reduction [73]. Final subspace representation is

C = D ×1 S ×2 V ×3 F (4.23)

where the reduced dimensionality for D, S, V , and F are ns × nv × nc, Ns × ns, Nv × nv,

and Nc × nc where ns, nv and nc are the number of basis retained for each factor respectively.

Using tensor multiplication we can obtain coefficient eigenmodes which is a new core tensor

formed by Z = D ×3 F with dimension ns × nv ×Nc.

Given this decomposition and given any ns dimensional style vector s and any nv dimen-

sional view vector v, we can generate coefficient matrix Csv by unstacking the vector csv

obtained by tensor product csv = Z ×1 s ×2 v. Therefore we can generate any specific in-

stant of the motion by specifying the body configuration parameter xt through the kernel map

defined in Eq. 4.20. Therefore, the whole model for generating image ysv
t can be expressed as

ysv
t = unstacking(Z ×1 s×2 v) · ψ(xt)

This can be expressed abstractly also in the form of Eq. 4.7 by arranging the tensor Z into a

order-four tensor A with dimensionality d× ns × nv ×N .
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4.5 Solving for Multiple Factors

Given a model fitted as described in the previous section and given a new image or a sequence

of images, it is desired to efficiently solve for each of the orthogonal factors as well as body

configuration. We discriminate here between two cases: 1: Input is a whole motion cycle. 2:

Input is a single image. For the first case, since we have a whole motion manifold, we can

obtain a closed form analytical solution for each of orthogonal factors by aligning the input

sequence manifold to the model conceptual manifold representation. For the second case, we

introduce an iterative solution. Without lose of generality, and similar to the previous section,

we will use the gait model in Eq. 4.18 as an example in this section, while solving for more

factors are straight forward generalization.

Solving View and Style Given a Whole Sequence

Given a sequence of images representing a whole motion cycle, we can solve for the view

parameter, v, and shape style parameter, s. First the sequence is embedded to a unit circle and

aligned to the model as described in Sec. 4.4.1. Then, mapping coefficients C is learned from

the aligned embedding to the input. Given such coefficients, we need to find the optimal s and

v factors which can generate such coefficients given the learned model. i.e., we need to find s

and v which minimizes the error

E(s, v) = ‖c−Z ×1 s×2 v‖ (4.24)

where c is the column stacking of C. If the style vector, s is known we can obtain a closed

form solution for v. This can be achieved by evaluating the product G = Z ×1 s to obtain

tensor G. Solution for c can be obtained by solving the system c = G ×2 v for v which can be

written as a typical linear system by unfolding G as a matrix. Therefore, estimate of v can be

obtained by

v = (G2)†c (4.25)

where G2 is the matrix obtained by mode-2 unfolding of G and † denotes the pseudo-inverse

using SVD. Similarly we can analytically solve for s if the view, v, is known by forming a

tensor H = Z ×2 v and therefore

s = (H1)†c (4.26)
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where H1 is the matrix obtained by mode-1 unfolding of H

Iterative estimation of v and s using Eq. 4.25 and Eq. 4.26 would lead to a local minima

for the error in Eq. 4.24. We start with a mean style estimate s̃ since we don’t know styles at

the beginning. Since the view classes are discrete, we can find the closest view class and use it

to estimate s.

Solving for Body Configuration, View and Style from a Single Image

In this case the input is a single image and it is desired to estimate body configuration and each

of the decomposable factors. For the gait case, given an input image y, we need to estimate

body configuration x , view v, and person shape style s which minimize the reconstruction

error E(x, v, s)

E(x, v, s) =|| y −A× v × s× ψ(x) || (4.27)

We can instead use a robust error metric and in both cases we end up with a nonlinear opti-

mization problem.

We assume optimal style can be written as a linear combination of style classes in the train-

ing data. i.e., we need to solve for linear regression weights α such that s =
∑Ks

k=1 αks
k where

each sk is a mean of one of Ks style classes in the training data. Similarly for the view, we

need to solve for weights β such that v =
∑Kv

k=1 βkv
k where each vk is a mean of one of Kv

view classes. If the style and view factors are known, then Eq. 4.27 reduced to a nonlinear

1-dimensional search problem for body configuration x on the embedded manifold represen-

tation that minimizes the error. On the other hand, if the body configuration and style factor

are known, we can obtain view conditional class probabilities p(vk|y, x, s) which is propor-

tional to observation likelihood p(y | x, s,vk). Such likelihood can be estimated assuming a

Gaussian density centered around A× vk × s× ψ(x), i.e.,

p(y | x, s, vk) ≈ N (A× vk × s× ψ(x), Σvk
).

Given view class probabilities, we can set the weights to βk = p(vk | y, x, s). Similarly, if the

body configuration and view factor are known, we can obtain style weights by evaluating image

likelihood given each style class sk assuming a Gaussian density centered at A×v×sk×ψ(x).
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This setting favors an iterative procedures for solving for x,v, s. However, wrong esti-

mation of any of the factors would lead to wrong estimation of the others and leads to a local

minima. For example wrong estimation of the view factor would lead to a totally wrong es-

timate of body configuration and therefore wrong estimate for shape style. To avoid this we

use a deterministic annealing like procedure where at the beginning the view weights and style

weights are forced to be close to uniform weights to avoid hard decisions about view and style

classes. The weights are gradually become discriminative thereafter. To achieve this, we use

a variable view and style class variances which are uniform to all classes and are defined as

Σv = Tvσ
2
vI and Σs = Tsσ

2
sI respectively. The parameters Tv and Ts start with large values

and are gradually reduced and in each step and a new body configuration estimate is computed.

We summarize the solution framework in Fig. 4.3

Input: image y, view class means vk, style class means sk, core tensor A
Initialization :

• initialize Tv and Ts

• initialize αk and βk to uniform weights

• Compute initial s =
∑Ks

k=1 αksk

• Compute initial v =
∑Kv

k=1 βkvk

Iterate :

• Compute coefficient C = A× s× v

• Estimate body configuration: 1-D search for x that minimizes E(x) = ||y −Cψ(x)||
• Estimate new view factor

– Compute p(y|x, s,vk)
– Update view weights βk = p(vk|y, x, s)

– Estimate new view factor as v =
∑Kv

k=1 βkvk

• Update coefficient C = A× s× v

• Estimate body configuration: 1-D search for x that minimizes E(x) = ||y −Cψ(x)||
• Estimate new style factor

– Compute p(y|x, sk,v)
– Update style weights αk = p(sk|y,x,v)

– Estimate new style factor as s =
∑Ks

k=1 αksk

• reduce Tv , Ts

Figure 4.3: Iterative estimation of style factors

One important aspect that needs to be mentioned for the case of gait is that there is a high
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similarity between silhouette shapes in each of the half cycles for certain views. In fact, if

orthographic projection is used, side view silhouettes will look identical in both halves of the

walking cycle. But since perspective imaging is actually used, there is slight differences in

silhouette shapes between the two half cycles which are enough to discriminate body config-

uration throughout the cycle. However, such similarity can cause a confusion in estimating

x, s, v. This motivates a modification of the above algorithm for the spacial case of gait where

we use dual hypotheses for body configuration and view and style factors. At initialization we

solve for body configuration x given the mean style and mean view factors then we initial-

izes dual body configuration hypotheses as x and its antipodal point on the circle which we

call x̃. The iterations above proceed with two sets of estimates (x, s, v) and (x̃, s̃, ṽ). The

two sets typically either converge to the same solution or they diverge to two antipodal body

configurations where one of them will lead to less error.

4.6 Experimental Results

4.6.1 Dynamic Shape: Generative Model for Gait

In this section we show an example of learning the nonlinear manifold of gait as an example

of a dynamic shape. We used CMU Mobo gait data set [48] which contains walking people

from multiple synchronized views. The CMU Mobo gait data set contains 25 people, about 8

to 11 walking cycles captured from six different view points. Each subject walks on treadmill

to capture gait sequences with consistent view using fixed cameras.

Gait Style and Content Analysis

We used side view gait sequences from CMU Mobo gait dataset for gait style and content

analysis from a single view.

Dynamic Shape Interpolation In this experiment we use three people’s silhouettes during a

half walking cycle to separate the style (person shape) from the content (body pose). The input

is three sequences containing only 10, 11, 9 frames respectively. The input silhouettes are

shown in Fig. 4.4 (a). Note that the three sequences are not of equal length and the body poses

are not necessarily in correspondence. Since the input size in this case is too small to be able to
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discover the manifold geometry using LLE, we arbitrary embed the data points on a circle as

a topologically homeomorphic manifold (as an approximation of the manifold of half a cycle)

where each sequence is equally spaced along the circle. Embedding is shown in Fig. 4.4 (b).

We selected 8 RBF centers at 8 quadrics on the circle. The model is then fitted to the data in

the form of Eq. 4.4 using TPS kernels. Fig. 4.4 (d) shows the RBF coefficients for the three

people (one in each row) where the last three columns are the polynomial coefficients. Fig. 4.4

(c) shows the style coefficients for the three people and Fig. 4.4 (e) show the content bases.

Given the fitted model we can show some interesting results. First we can interpolate in-

termediate silhouettes for each of the three people’s styles. This is shown in Fig. 4.5 where 16

intermediate poses were rendered. Notice that the input contained only 9 to 11 data points for

each person. A closer look at the rendered silhouettes shows that model can really interpolate

intermediate silhouettes that were never seen as inputs (e.g., person 1 column 4 and person 3

columns 5, 15). We can also interpolate half walking cycles at new styles. This is shown in

Fig. 4.5 where intermediate styles and intermediate contents were used.

(a) Input Sequences
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Person 3
RBF centers

1 2 3
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(b) Embedding (c) Style parameters bs

(d) Nonlinear mapping coefficients

(e) Content basis Ac

Figure 4.4: Learning style and content for a gait example

Style-Preserving Pose-Preserving Reconstruction: We can use the learned model to recon-

struct noisy and corrupted input instances in a way that preserve both the body pose and the

person style. Given an input silhouette we solve for both the embedding coordinate and the
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Interpolated walks:
Person 1 style

Person 2 style

Person 3 Style

Interpolated walks at intermediate styles:
0.5 person 1 + 0.5 person 2

0.5 person 2 + 0.5 person 3

0.5 person 1 + 0.5 person 3

Reconstruction:

(a) input noisy silhouettes

(b) reconstructions
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(c) style probabilities

Figure 4.5: Left: Interpolated walks at different people shape styles. Right: Reconstruction
example. (a) Input noisy silhouettes. (b) Pose-preserving style-preserving reconstruction. (c)
estimated style probabilities.

style as was described in Sec. 4.3.3 and use the model to reconstruct a corrected silhouette

given the recovered pose and person parameters. Fig. 4.5 shows such reconstruction where we

used 48 noisy input silhouettes from CMU Mobogait database were used (16 for each person

shown at each row). The resulting people’s probabilities are shown in Fig. 4.5 (c) and the result-

ing reconstructions are shown in Fig. 4.5 (b) in the same order. Notice that the reconstruction

preserves both the correct body pose as well as the correct person shape. Only two errors can

be spotted which are for inputs number 33, 34 (last row, columns 2,3) where the probability for

person 2 was higher than the person 3 and therefore the reconstruction preserved the second

person style. Fig. 4.6 shows another reconstruction example where the learned model was used

to reconstruct corrupted inputs for person 3. The reconstruction preserve the person style as

well as the body pose.

Manifold Embedding and Style Classification:

In this experiment we used five sequences for five different people each containing about

300 frames which are noisy. The learned manifolds are shown in Fig. 4.8 (a) which shows

a different manifold for each person. The learned unified manifold is also shown in Fig. 4.8
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Figure 4.6: Pose and style preserving reconstruction. Right: style probabilities for each input

Figure 4.7: Interpolated walks. Last row is interpolated walk at intermediate style between row
1 and 4.

(d). Fig. 4.7 shows interpolate walking sequences for the five people generated by the learned

model. The figure also shows the learned style vectors. We evaluated style classifications using

40 frames for each person and the result is shown in the figure with correct classification rate

of 92%. We also used the learned model to interpolate walks in new styles. The last row in the

figure shows interpolation between person 1 and person 4.

Multiple Factors Model for Gait

For learning decomposable dynamic shape models with multiple views in addition to style

difference and body configuration change, we selected five people, five cycles each from four
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Figure 4.8: Style estimation

different views. i.e., the total number of cycles for training is 100 = 5 people × 5 cycles ×
4 views. Note that the number of frames in each cycle is different within the same person’s

cycles as well as in different people. Fig. 4.1 show examples of the sequences with different

views (only half cycles are shown in the figure).

We learned a generative model with three decomposable factors from the collected 100

cycle sequences as described in Sec. 4.4.2. Images are normalized to 60 × 100 (width ×
height) i.e., d = 6000. Each cycle is considered to be a style by itself, i.e., there are 25 styles

and 4 views. Therefore, Ns = 25, Nv = 4 in the collected data. 18 equidistance points on the

unit circle are used to obtain the nonlinear mapping defined in Eq. 4.11, i.e., Nc = 6000× 18.

After coefficient decomposition and dimensionality reduction as in Eq. 7.6 the dimension for

A, S, V, F are 5× 4× 120, 25× 5, 4× 4, (18× 6000)× 120 respectively. Fig. 4.9 (b) shows

an example of unit circle embedding of three cycles after alignment of cycles using Eq. 4.22.

Fig. 4.9 (a) shows the obtained style subspace where each of the 25 points corresponding to

one of the 25 cycles used. An important result to notice, is that the style vectors are clustered

in the subspace such that each person style vectors (corresponding to different cycles of the

same person) are clustered together which indicates that the model preserves the similarity in

the shape style between different cycles of the same person. Fig. 4.9 (c) shows the mean style
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Figure 4.9: Learned style and view vector. (a) style subspace: each person cycles have the same
label. (b) unit circle embedding for three cycles. (c) Mean style vectors for each person cluster.
(d) View vectors.

vector for each of the five clusters. Fig. 4.10 shows the four view vectors.

Gait Pose, Style, and View Estimation: In this experiment, we used the learned model given

the training data described above to evaluate the recovery of body configuration, view, and

person shape style given test data of the same people in the training but with different cycles,

which are not used in the training. We used two new cycles for each of the five people from

the four views, i.e., 40 cycles with a total of 1344 frames in all the test sequences. If we

use a whole cycle for recovery of view and person style parameter as described in 4.5, we

obtain 100% correct view classification. For style classification, we get 36 out of 40 correct

classification using nearest style mean and 40 out of 40 using nearest neighbor classifier. If

we use single frames for recovery, as described in Sec. 4.5, we get 7 frame errors among

1344 test frames for body configuration and style estimation, i.e., 99.5% accuracy with 100%

correct view estimation. In our experiment, a body configuration is considered an error if the

angle between correct and estimated embedding is more than π/8, which is about 2 to 4 frame

difference in the original sequence.
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Figure 4.10: Example pose recovery. From top to bottom: input shapes, implicit function,
recovered 3D pose.

Fig. 4.10 shows example of using the model to recover the pose, view and style. The figure

shows samples of a one full cycle and the recovered body configuration at each frame. Notice

that despite the similarities between the first half and the second half of a cycle, the model

exploits the subtle differences to recover the correct pose. The recovery of 3D joint angles is

achieved by learning a mapping from the manifold embedding and 3D joint angle from motion

captured data using GRBF in a way similar to Eq. 4.20. Fig. 4.11 (a),(b) shows the recovered

style weights (class probabilities) and view weights respectively for each frame of the cycle

which shows correct person and view classification. Fig. 4.11 (c) visualizes the progress of the

error, style weights, view weights through the iterations used to obtain the results for frame 5.

As can be noticed, the weights start uniformly and then smoothly converge to the correct style

and view as the error is reduced and the correct body configuration is recovered.

Generalization to New Subject: In this experiment we used the learned model to evaluate

the recovery of body configuration and view given test data of people which have not seen

before in the training. We used 8 people sequences, 2 cycles each, from 4 views where none
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Figure 4.11: Estimated weights during a cycle. (a) Style weights. (b) View weights. (c)
Iterative style and view estimations for each frame. Left: error. Center: style weights. Right:
view weights

of these people were used in the training. Overall there are 2476 frames in the test sequences.

The recovery of the parameters was done on a single frame basis as described in Sec. 4.5.

We obtained 111 errors in the recovery of the body configuration, i.e., body configuration

accuracy is 95.52%. For view estimation we get 7 frame errors, i.e., view estimation accuracy

99.72%. This result shows that the model generalizes and we can recover the view and body

configuration with very high accuracy for unseen people. Fig. 4.12 shows examples recovery

of the 3D pose and view class for different people non of them was seen in training. More

examples can be seen in the attached video clips.

4.6.2 Dynamic Appearance: Generative Model for Facial Expressions

We used CMU-AMP facial expression database where each subject has 75 frames of varying

facial expressions.

Learning Smile Manifold and Style Analysis: In this experiment the proposed model was
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Figure 4.12: Examples of pose recovery and view classification for four people.

used to learn the manifold of a smile and separate the appearance (style) for 4 people1. The

input sequences contain 27,31,29,27 frames respectively for the smile motion. All the input

sequences were temporally scaled from 0 to 1 then LLE were used to obtain a one-dimensional

embedding of the manifolds and a unified embedding is obtained as was described in Sec. 4.2.

The model was fitted using 8 equally spaced RBF centers along the mean manifold. The first

four rows of Fig. 4.13 show interpolation of 10 intermediate faces at each of the learned styles.

As can be noticed, the model is able to correctly interpolate the facial motion of the smile for

the four people. It is hard to prove in this case that the model is actually interpolating new

intermediate faces but we can easily show interpolating smiles at new styles. This is shown in

the last three rows where the model is used to render smiles at intermediate styles.

Multiple Factors: Modeling Multiple Facial Expressions and Multiple People Appear-

ance: We used the model to learn facial expression manifolds for different people. We chose

four people with three expressions each (smile, anger, surprise) where corresponding frames

are manually segmented from the whole sequence for training. The resulting training set con-

tained 12 sequences of different lengths. Fig. 4.14 shows the training data. All sequences are

embedded to unit circles and aligned. A model in the form of Eq. 4.6 is fitted to the data where

we decompose two factors: person facial appearance style factor and expression factor, besides

the body configuration which is nonlinearly embedded on a unit circle. Fig. 4.14 shows the

resulting person style vectors and expression vectors.

We used the learned model to recognize facial expression, and person identity at each frame

of the whole sequence. Fig. 4.15-Left shows an example of a whole sequence and the different

expression probabilities obtained on a frame per frame basis using the algorithm described in

Sec. 4.5. The figure also shows the final expression recognition after thresholds along manual

1The images are from the CMU facial expression data set
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Interpolated smiles for four different people

Interpolated smiles at intermediate (new) people styles.
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Figure 4.13: Learning a smile manifold. bottom: manifold embedding and style parameters

expression labeling. We used the learned model to recognize facial expressions for sequences

of people not used in the training. Fig. 4.15-Right shows an example of a sequence of a person

not used in the training. The model can successfully generalizes and recognize the three learned

expression for this new subject.

4.7 Summary

We introduced a framework for separating style and content on manifolds representing dynamic

objects. The framework is based on decomposing the style parameters in the space of nonlinear

functions that maps between a learned unified nonlinear embedding of multiple content mani-

folds and the visual input space. The framework yields an unsupervised procedure that handles
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Figure 4.15: Expression recognition and appearance style: Left: Person with known style.
Right: Unknown Person. From top to bottom: Samples of the input sequences; Expression
probabilities; Expression classification; Style probabilities

dynamic, nonlinear manifolds. It also improves on past work in nonlinear dimensionality re-

duction by being able to handle multiple manifolds. The proposed framework was shown to be

able to separate

various factors such as body configuration, view, and shape style. Since the framework

is generative, it fits well in a Bayesian tracking framework and it provides separate low di-

mensional representations for each of the modeled factors. Moreover, a dynamic model for

configuration is well defined since it is constrained to the 1D manifold representation. The

framework also provides a way to initialize a tracker by inferring about body configuration,

view point, body shape style from a single or a sequence of images.
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Chapter 5

Style Adaptive Contour Tracking Using Decomposable Generative
Models

Characteristics of the shape deformation in human motion contain rich information and can

be useful for human identification, gender classification, 3D pose reconstruction and so on.

In this paper we introduce a new framework for dynamic contour tracking of human motion

using an explicit modeling of the motion manifold and learning a decomposable generative

model. We use nonlinear dimensionality reduction to embed the motion manifold in a low

dimensional configuration space utilizing the constraints imposed by the human motion. Given

such embedding, we learn an explicit representation of the manifold, which reduces the problem

to a one-dimensional tracking problem and also facilitates linear dynamics on the manifold.

Person-dependent global shape deformations are modeled using a nonlinear generative model

with kinematic manifold embedding and kernel mapping. A person shape style factor as well as

geometric transformation and body pose are estimated within a Bayesian framework using the

generative model of global shape deformation. Experimental results show person-dependent

synthesis of global shape deformation, gait recognition from extracted silhouettes using person

shape style parameters, and simultaneous gait contour tracking and recognition from image

edges.

5.1 Overview: Contour Tracking

Vision-based human motion tracking and analysis systems have promising potentials for many

applications such as visual surveillance in public area, activity recognition, and sport analysis.

Human motion involves not only geometric transformations but also deformations in shape and

appearance. Characteristics of the shape deformation in a person motion contain rich informa-

tion such as body configuration, person identity, gender information [34], and even emotional
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states of the person. Gait recognition has become attractive for surveillance and for security in

public areas [32, 56, 9] as it is easily observable and difficult to disguise than other biometrics.

Gait involves spatiotemporal deformations in shape and appearance. Such spatiotemporal

shape deformation are investigated in many appearance-based gait recognition systems [9, 86,

130, 65, 80, 142, 76] (See detailed related work for gait recognition in Sec. 2.1.3). On the

other hand, there have been a lot of work on contour tracking from cluttered environment,

without the need for background subtraction, such as active shape models (ASM) [30], active

contours [58], and exemplar-based tracking [131]. Spatiotemporal models are also used for

contour tracking [5]. However, it is difficult to achieve tracking of dynamic contour that is

accurate enough to distinguish individual differences from articulated human motion. There

are no spatiotemporal models for contour tracking to describe person-specific variations of

shape for gait recognition.

Modeling dynamics of shape and appearance is essential for tracking human motion. The

observed human shape and appearance in video sequences goes through complicated global

nonlinear deformation between frames. If we consider the global shape, there are two factors

affecting the shape of the body contour through the motion: global dynamics factor and person

shape style factor. The dynamic factor is constrained because of dynamics of the motion and

the physical characteristics of human body configuration [98, 17]. The person shape style is

time-invariant factor characterizing distinguishable features in each person shape depending on

body built(big, small, short, tall, etc.). These two factors can summarize rich characteristics of

human motion and identity.

Our objective is to achieve trackers that can track global deformation in contours and can

adapt to different people shapes automatically. There are several challenges to achieve this

goal. First, modeling the human body shape space is hard, considering both the dynamics and

the shape style. Such shapes lie on a nonlinear manifold. Also, in some cases there are topo-

logical changes in contour shapes through motion which makes establishing correspondences

between contour points unfeasible. Second, modeling dynamics of global shape is important

for tracking. Can we learn a dynamic model for body configuration that is low in dimensionality

and exhibits linear dynamics? For certain classes of motion like gait, facial expression and ges-

tures, the deformation might lie on a low dimensional manifold if we consider a single person.
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Nonlinear manifold learning can be used to find intrinsic body configuration space [143, 37].

We utilized generative models for simultaneous tracking and recognition of gait. As the

generative model is represented by a configuration state and a shape style state, the shape style

state is a compact representation of variations in shape contours independent of body pose (the

configuration state). We use the estimated style for gait recognition. When the extracted silhou-

ette is provided (e.g. using background subtraction), we can directly estimate the contour style

state and recognize gait based on the estimated contour style parameters. On the other hand, if

extracted silhouette is not available, we use contour tracking where the tracing problem is for-

mulated as estimation of body configuration state as well as contour style state using Bayesian

framework. Style estimation gradually get discriminative using deterministic annealing like

procedure in order to estimate contour style state, which can be high dimensional, robustly

without trapping to local minima. Experimental results using University of Southampton gait

database [118] shows potential for simultaneous gait recognition and contour tracking.

st−1

bt−1

yt−1

αt−1

st

bt

yt

αt

zt−1 zt

Figure 5.1: Graphic model for decomposed generative model

5.2 Framework: Tracking Using Decomposable Generative Models

We can think of the shape of a dynamic object as instances driven from a generative model. Let

zt ∈ Rd be the shape of the object at time instance t represented as a point in a d-dimensional

space. This instance of the shape is driven from a model in the form

zt = Tαtγ(bt, st;a), (5.1)
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where the γ(·) is a nonlinear mapping function that maps from a representation of the body

configuration bt and a representation of the shape space st into the observation space given

mapping parameters denoted by a. Tαt represents a geometric transformation on the shape

instance.

Fig. 5.1 shows a graphical model illustrating the relation between these variables where

yt is a contour instance generated from model given body configuration bt and shape style st

and transformed in the image space through Tαt to form the observed contour. The mapping

γ(bt, st;a) is a nonlinear mapping from the body configuration state bt and the shape state st

in the form

yt = A× st × ψ(bt), (5.2)

where ψ(bt) is a kernel induced space, A is a third order tensor and × is appropriate tensor

product as well be defined in Sec. 5.3.2. The tensor A characterizes the model parameters and

controls the correlation between the configuration state and the shape state.

Given this generative model, we can fully describe observation instance zt by state param-

eters αt,bt, and st. The challenges to achieve learning and tracking using such model include:

How to represent the body configuration in a low dimensional space? How to represent the

shape space? How to estimate the parameters? How to deal with heterogenous state represen-

tation in tracking? We use a low dimensional embedded representation of the motion manifold

to represent the body configuration. In this paper, since we focus on gait tracking, the dimen-

sionality of the body configuration space reduces to an one-dimensional space and we show

that the resulting dynamics using such representation is a constant speed linear dynamics.

The shape style is represented using a linear combination of learned shape style classes.

The shape variable st characterizes the person shape style in a way independent from the con-

figuration and specific to the person being tracked. Therefore, ideally, the shape style variable

should be time invariant. However, since in tracking, the person shape style is unknown, we

need to deal with it as a stochastic variable that changes with time in a way that allows the

tracker to adapt to the person shape. Once, the person is tracked for few frames, the shape

style is determined and need to be stabilized to be a time-invariant factor. That motivates a

deterministic annealing-like procedure that we introduce for the estimation of the shape style

variable.
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The tracking problem is then an inference problem where at time t we need to infer the

body configuration representation bt and the person specific style parameter st and the ge-

ometric transformation Tαt given the observation zt. The Bayesian tracking framework en-

ables a recursive update of the posterior P (xt|zt) over the object state xt given all observation

Zt = z1, z2, .., zt up to time t:

P (xt|Zt) ∝ P (zt|xt)
∫

xt−1

P (xt|xt−1)P (xt−1|Zt−1). (5.3)

Observation zt is the captured image instance at time t. The state xt is [αt, bt, st], which

uniquely describes the state of the tracking object, is decomposed into three sub-states αt, bt, st.

These three random variables are conceptually independent since we can combine any body

configuration with any person shape style with any geometrical transformation to synthesize a

new contour. However, they are dependent given the observation zt. It is hard to estimate joint

posterior distribution P (αt, bt, st|zt) for its high dimensionality. The decomposable feature

of our generative model enables us to estimate each state by its marginal density distribution

P (αt|Zt), P (bt|Zt), and P (st|Zt). We approximate marginal density estimate of each state

variable along representative values of the other state variables. For example, in order to esti-

mate marginal density of P (bt|Zt), we estimate P (bt|α∗t , s∗t , Zt), where α∗t , s∗t are represen-

tative values such as maximum posteriori estimates.

5.3 Learning Style Adaptive Shape Models with Body Configuration Manifold

Embedding

Our objective is to establish a generative model for the shape in the form of Eq. 5.1 where the

intrinsic body configuration is decoupled from the shape style. The generative model consists

of three components: embedded body configuration ( bt ), factorized style ( st ), and geometric

transformation ( αt. In order to model body configuration in a low dimensional space inde-

pendent of shape style variability. We introduce two alternatives to achieve this goal: visual

manifold embedding, and kinematics manifold embedding.
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5.3.1 Modeling Body Configuration Using Manifold Embedding

Given training sequences of different people performing the same motion (gait in our case), we

propose two approaches to model body configuration manifold invariant of shape variability.

One is driven by finding a unified representation from the different visual manifolds of each

individual. The other is driven by using an invariant kinematic manifold from motion captured

data, where we can model purely body configuration manifold regardless to changes of visual

input.

Embedding Visual Manifolds

(a) individual manifolds
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Figure 5.2: Individual manifolds and their unified manifold

We apply Locally Linear Embedding (LLE) [111] to find low dimensional representation of

body configuration for each person manifold. As a result of nonlinear dimensionality reduction,

an embedding of the visual gait manifold can be obtained in a low dimensional Euclidean space.

Fig. 5.2-a shows low dimensional representation of side-view walking sequences for different

people. Generally, the walking cycle evolves along a closed curve in the embedded space, i.e.,

only one degree of freedom controls the walking cycle which corresponds to the constrained

body pose as a function of the time. Such manifold can be used as intrinsic representation of
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the body configuration. The use of nonlinear manifold embedding to obtain intrinsic repre-

sentation for tracking was previously reported in [143]. In [36], it was shown that for gait, a

three-dimensional embedded space is enough to represent the gait where all body postures are

distinguishable through the walking cycle.

Body configuration manifold is parameterized using a spline fitted to the embedded man-

ifold representation. First, cycles are detected given an origin point on the manifold by com-

puting geodesics along the manifold. Second, a mean-manifold for each person is obtained by

averaging difference cycles. Obviously, each person will have a different manifold based on

his spatio-temporal characteristics. Third, non-rigid transformation, using an approach similar

to [25], is performed to find a unified manifold representation as in Fig. 5.2-b . Correspon-

dences between different subjects are accomplished by selecting a certain body pose as the

origin point in different manifolds and equal sampling in the parameterized representation. Fi-

nally, we parameterized the unified mean manifold by spline fitting.

The unified mean-manifold can be parameterized by a one-dimensional parameter βt ∈ R

and a spline fitting function f : R → R3 that satisfies bt = f(βt) which is used to map from

the parameter space into the three dimensional embedding space. bt ∈ R3 denotes the embed-

ded coordinate of body configuration at time t. Such parameterization, along with the style

parameterization enables generation of contours at different phases of the walking cycles and

at different shape styles. Fig. 5.2-c shows three sequences generated using the same equidistant

body configuration parameter [β1, β2, · · · , β16] along the unified mean manifold with different

style.

Embedding Kinematic Manifold

An alternative approach to reach a representation of the motion manifold invariant from visual

variability is to use motion captured data to obtain an embedding of the kinematics manifold.

We obtain a low dimensional representation of the kinematic manifold for gait by applying

nonlinear dimensionality reduction techniques for motion-captured data. We first convert joint

angles of motion-captured data into joint locations in a three-dimensional human-centered co-

ordinate system. We aligned global transformation in advance in order to count motion only due

to body configuration change. In order to find a low dimensional intrinsic representation from
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Figure 5.3: Kinematics manifold embedding and its mean manifold: two different views in 3D
space

the high dimensional data (collection of joint location) we applied nonlinear dimensionality

reduction procedure like Locally linear embedding (LLE) [111]. In order to find intrinsic man-

ifold representation using nonlinear dimensionality reduction, dense sampling from the mani-

fold points is required. Therefore, we used multiple cycles to find kinematics intrinsic manifold

representation by LLE. Fig. 5.3 shows the kinematic manifold embedding based on three walk-

ing cycles of motion-captured data and their mean manifold representation. As with the case

of visual data, the manifold is one-dimensional twisted closed manifold in three-dimensional

spaces.

From multiple cycles, mean-manifold is computed and is parameterized by fitting a spline

with an one-dimensional parameter βt ∈ R. A spline fitting function f : R→ R3 that satisfies

bt = f(βt) is used to map from the parameter space into the three dimensional embedding

space as shown in Fig.5.3. Given such parameterization, any sequence of visual data (silhou-

ettes), can be aligned to the kinematic manifold by finding cycles from the visual data and

uniformly sampling the parameterized kinematic manifold according to the number of frames

in each cycle.

5.3.2 Modeling Shape Style Space

Given a unified manifold embedding (whether obtained using visual or kinematic data), indi-

vidual variations of the shape deformation can be discovered in the nonlinear mapping space

between the embedding and the visual observation (silhouettes) for different people.

We learn a set of person dependent nonlinear mappings between the unified embedding
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space and shape sequences using Generalized Radial Basis Function (GRBF) [103]. The map-

ping has the form yk
t = γk(bt) = Ck · ψ(bt), where yk

t ∈ RD is person k shape at time t, and

bt is the corresponding point on the embedded manifold. Ck is a D ×N mapping coefficients

matrix which depends on particular person’s shape. The nonlinear function ψ(·) : R3 → RN

defines an empirical kernel map [113] defined using N RBF kernel functions fitted to model

the manifold in the embedding space (See details in Sec. 4.3. Here we gives brief summary.).

Given the learned nonlinear mapping coefficients C1, C2, · · · , CK , for training people

1, · · · ,K, the shape style parameters are decomposed by fitting an asymmetric bilinear model [128]

to the coefficient space such that

[c1 · · · cK ] = AS, (5.4)

where each ck is a DN -dimensional vector representation of the matrix Ck using column

stacking. The matrix A is an DN × K matrix containing the style basis for the coefficient

space. The style matrix, S = [s1s2 · · · sk]T, is an orthonormal matrix containing style vectors.

Such decomposition can be obtained using Singular Value Decomposition. Therefore, the k-th

person coefficient matrix Ck can be obtained from style vector sk by restacking the vector

ck = Ask.

As a result, we can generate contour instance yk
t for particular person k at any body con-

figuration bt using

yk
t = A×1 sk ×2 ψ(bt), (5.5)

where A is a D×K ×N third order tensor (obtained by restacking the matrix A). ×1 and ×2

are mode 1 and 2 tensor products as defined in [72]

Ultimately the style parameter s should be independent of the configuration and therefore

should be time invariant and can be estimated at initialization. However, we don’t know the

person style initially and, therefore, the style needs to fit to the correct person style gradually

during the tracking. So, we formulated style as a time variant factor that should stabilize after

some frames from initialization. This will be described in Sec. 5.4.3.

Shape style vector s is a linear combination of the orthonormal basis of the style space.

The dimension of the style vector depends on the number of people × cycles used for training

and, therefore, can be high. The tracking of the high dimensional style vector st itself will
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be hard as it can fit local minima easily. Therefore, we represent any new style as a convex

linear combination of style classes learned from the training data. A new style vector s is

represented by linear weighting of each of the style classes sq, q = 1, · · · , Q using linear

weight λ = [λ1 · · ·λQ]:

s =
Q∑

q=1

λqsq,

Q∑

q=1

λq = 1, (5.6)

where Q is the number of style classes used to represent new styles which are obtained by

clustering the training data in the style space.

The overall generative model can be expressed as

zt = Tαt


A×




Q∑

q=1

λq
ts

q


× ψ(f(βt))


 . (5.7)

We parameterize the geometric transformation α by four parameters, scaling Sx, Sy and trans-

lation Tx, Ty. The tracking problem using this generative model is the estimation of parameter

αt, βt, and λt at each new frame given the observation zt.

5.4 Shape Style Adaptive Bayesian Tracking in Factorized Models

Given the shape generative model introduced above, the tracking problem is an inference prob-

lem where at time t we need to infer the body configuration bt and the shape style st and the

geometric transformation Tαt given the observation zt. The Bayesian tracking framework en-

ables a recursive update of the posterior P (xt|zt) over the object state xt given all observations

Zt = z1,z2, ..,zt up to time t:

P (xt|Zt) ∝ P (zt|xt)
∫

xt−1

P (xt|xt−1)P (xt−1|Zt−1)dxt−1 (5.8)

Where state xt is the three sub-states, [αt, bt, st], which uniquely describes the state of the

tracking object. We represent three dimensional body configuration parameters bt as a one-

dimensional parameter βt as explained in Sec. 5.3.1. The shape style is also parameterized by

style class weighting parameters λt as in Sec. 5.4.3. For global transformation, we estimate

geometric transformation parameters αt in the image space. So, using the generative model in

Eq. 5.7, the tracking problem is to estimate αt, λt, and βt for given observations zt.
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5.4.1 Modeling Dynamics

We can model state dynamics by modeling the dynamics of each sub-states: dynamics of

body configuration, dynamics of style state, and dynamics of global transformation. With

the Bayesian framework in Eq. 5.8, and the graphical model in Fig. 5.1 the dynamic model

P (xt|xt−1) can be represented by

P (αt, bt, st|αt−1, bt−1, st−1) = P (αt|αt−1)P (bt|bt−1)P (st|st−1). (5.9)

For body configuration, since we parameterize embedding configuration manifold by a one-

dimensional spline parameter βt as in Sec. 5.3, the parameter βt will change in a constant

speed if the subject walks in a constant speed (because it corresponds to a constant frame rate

used in the learning). However, the resulting manifold point representing body configuration

bt = f(βt) will move along the manifold at different step sizes. That is a fundamental reason

why we use βt, rather than bt, to model the dynamics since it results in a one-dimensional

constant-speed linear dynamic system. In general, the walking speed can change gradually.

So, the body configuration in each new state will move from the current state with a filtered

speed, ṽ, that can be adaptively estimated during tracking. Therefore, the new frame body

configuration βt is modeled as one dimensional Gaussian around βt−1 + ṽ with variance σ2
b .

The dynamic model of the style sub-state is approximated by a random walk since the style

may change smoothly around a specific person style. Given the parameterization of style space

introduced in Sec. 5.3.2, the style at time t is modeled as multivariate Gaussian around λt−1

with covariance Σs, i.e.,

P (st|st−1) ∝ P (λt|λt−1) = N(λt−1, Σs)

The global transformation αt captures global contour motion in the image plane (translation

and scaling).

5.4.2 Particle Filtering

The objective is to estimate the state posterior given observations. The decomposable feature of

our generative model enables us to estimate each substate by a marginal posterior distribution,

i.e., we keep three state posteriors P (αt|zt), P (bt|zt), and P (st|zt).
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We approximate the marginal density of each sub-state using maximum a posteriori (MAP)

of the other sub-states, i.e.,

P (αt|zt) ∝ P (αt|bt
∗, st

∗, zt), P (bt|zt) ∝ P (bt|αt
∗, st

∗, zt), P (st|zt) ∝ P (st|αt
∗, bt

∗, zt),

where αt
∗, bt

∗, and st
∗ are MAP estimate of each approximated marginal density.

We represent state densities using particle filters since such densities can be non-Gaussian

and the observation is nonlinear. Given the parameterization of the sub-states in terms of

αt,βt,λt, the marginalized posterior densities are approximated by three particle systems.

{α(i)
t , απ

(i)
t }Nα

i=1, {β(j)
t , βπ

(j)
t }Nb

j=1, {λ(k)
t , λπ

(k)
t }Ns

k=1, (5.10)

where Nα,Nb, and Ns are the numbers of particles used for each sub-states and απ
(i)
t ,βπ

(i)
t ,λπ

(i)
t

are their corresponding weights.

5.4.3 Style Estimation with Constraints and Annealing Procedure

There are two factors to be considered in shape style estimation: First the high dimensionality

of the style representation. The parameterization of the style space in terms of convex linear

weights of a small number of style classes, as in Eq. 5.6, reduces the dimensionality of the style

space.

Second, the style estimation needs to become more discriminative as tracking progresses.

At the beginning, we don’t know the correct style. To avoid being trapped in local minima,

we start from the mean style, which is the style with uniform weights for all the representative

shape style classes. As additional evidence (frames) becomes available, the estimated style

vector can gradually be more discriminative so that weighting particles become more sensitive

to observations.

To achieve this progressive discrimination, we use a deterministic annealing like proce-

dure: estimated style weights are forced to be close to uniform weights at the beginning to

avoid hard decisions about style classes and gradually become discriminative thereafter using a

temperature parameter. We controlled the variance of style from large to small value to control

discrimination in the weighting estimation of styles.

To achieve this, the re-weighting of the style particle is controlled by a temperature parame-

ter that controls how the weights are influenced by the observation. We assume the observation
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distribution given the style particle s, global transformation α∗t and body configuration b∗t , can

be approximated by a Gaussian distribution.

λπ
(k)
t ∝ P (zt|α∗t , b∗t , s(k)

t ) ∝ exp

(
−d(zt, z

(k)
t )2

Σ2
t

)
= exp

(
−d(zt, Tα∗t A× s

(k)
t × ψ(b∗t ))2

Σ2
t

)
,

where d(·) is distance measure as described in Sec. 5.4.5, z(k)
t is the contour from the generative

model using α∗t , b
∗
t , s

(k)
t . When the variance Σ2

t is very big (Σ2
t >> d(zt, z

(k)
t )2), the weight

sπ
(k)
t will be assigned similar value regardless to d(·). When the variance is small (Σ2 <

d(zt,z
(k)
t )2), the likelihood is sensitive to the distance value and corresponding weights in the

particle update will be discriminative. To achieve annealing-like procedure, we use style class

variances, which are uniform to all classes and are defined by Σs = Tsσ
2
s + σo respectively

as time variant parameters. The parameters Ts start with large values at the first frame and are

gradually reduced and in each step and a new body configuration estimate is computed.

5.4.4 Tracking Algorithm

We perform tracking by sequential update of the marginalized sub-densities utilizing the pre-

dicted densities of the other sub-states. These densities are updated with current observation zt

by updating weighting values of each sub-state particle approximations given observations. We

estimate global transformation αt using predicted estimates ŝ∗t , b̂
∗
t . Then body configuration bt

is estimated using estimate global transformation α∗t , and predicted style estimate ŝ∗t . Finally

style st is estimated with given the estimates for α∗t , and b∗t . The following table summarizes

the state estimation procedure using time t− 1 estimation.

1. Importance-sampling with re-sampling at t− 1:
For given t−1 state density estimation: {α(i)

t−1,
απ

(i)
t−1}Nα

i=1, {β(j)
t−1,

bπ
(j)
t−1}Nb

j=1, {λ(k)
t−1,

sπ
(k)
t−1}Ns

k=1.

Re-sampling: {ὰ(i)
t−1, 1/Nα}, {β̀(j)

t−1, 1/Nb}, and {λ̀(k)
t−1, 1/Ns}.

2. Predict current state densities using dynamic models:
α

(i)
t = Hὰ

(i)
t−1 + N(0, σ2

α)

β
(j)
t = β̀

(j)
t−1 + ṽt + N(0, σb

2), b
(j)
t = f(β(j)

t )

λ
(k)
t = λ̀

(k)
t−1 + N(0, σs

2
t−1), λ

(k)
t = λ

(k)
t∑Ns

i=1 λ
(k)
i t

,

3. Force style particle to satisfy constraints of Eq. 5.6:

If λ
(k)
i ≤ 0 then, λ

(k)
i = 0 for all i,k , λ

(k)
t = λ

(k)
t∑Ns

i=1 λ
(k)
i t

,.

4. Sequential update of state weights using current observation:



83

Global transformation αt with b̂t, ŝt:
P (α(i)

t |b̂∗t , ŝ∗t , zt) ∝ P (zt|α(i)
t , b̂∗t , ŝ∗t )P (α(i)

t )
απ

(i)
t = P (zt|α(i)

t , b̂∗t , ŝ∗t ), απ
(i)
t =

απ
(i)
t∑Nα

j=1
απ

(j)
t

Body pose bt with αt, ŝt:
α∗t = α

(i∗)
t , where i∗ = arg maxi

απ
(i)
t

P (b(j)
t |α∗t , ŝ∗t , zt) ∝ P (zt|α∗t , b(j)

t , ŝ∗t )P (b(j)
t ) bπ

(j)
t = P (zt|α∗t , b(j)

t , ŝ∗t ), bπ
(j)
t =

bπ
(j)
t∑Nb

i=1
bπ

(i)
t

Style st with αt, bt:
b∗t = b

(j∗)
t , where j∗ = arg maxj

bπ
(j)
t

P (s(k)
t |α∗t , b∗t , zt) ∝ P (zt|α∗t , b∗t , s(k)

t )P (s(k)
t )

sπ
(k)
t = P (zt|α∗t , b∗t , s(k)

t ), sπ
(k)
t =

sπ
(k)
t∑Ns

i=1
sπ

(i)
t

5. Reducing style variance:

5.4.5 Observation Models

In our multi-state representation, we update weights απ
(i)
t , bπ

(j)
t , and sπ

(k)
t by marginalized

likelihood P (zt|α(i)
t , b∗t , s∗t ), P (zt|α∗t , b(j)

t , s∗t ), and P (zt|α∗t , b∗t , s(k)
t ) which can be measures

given observation zt. Each sub state captures different characteristics of the dynamic motion

and affects different variations in the observation. For example, body contour shape changes

according to body configuration state. Different body configurations show significant changes

in edge direction at the legs. However, for case of style, the variation is subtle and changes

along the global contours. Therefore, we use three different observation models for each of

the marginalized likelihoods above based on suitable distance measure for each component.

We use three distance measures: Chamfer distance, weighted Chamfer distance, and oriented

Chamfer distance.

Representation

We represent the generated contours by an implicit functions where the contour is the zero level

of such function. From each new frame zt, we extracted edge using Canny edge detector and

distance field is computed which is used to compare implicit shape representation of model

generated contours. Fig. 5.4 shows an example of edge detection and distance transformation

for detected edge.
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(a) Input gray image (b) Detected edges (c) Distance transformation

Figure 5.4: An example of edge detection and corresponding distance transformation for an
input image

Weighted Chamfer distance for geometric transformation estimation

For geometric transformation estimation, the predicted body configuration, and style estimate

from the previous frame are used. Therefore, we need to find similarity measurement which is

robust to the deviation of body pose and style estimation and sensitive to global transformation.

Typically the shape or the silhouette of upper body part in walking sequence are relatively

invariant to the body pose and style. By giving different weight to different contour points in

Chamfer matching, we can emphasize upper body part and de-emphasize lower body part in

the distance measurement. Weighted chamfer distance can be computed as

dw(T, F, W ) =
1
N

N∑

i

min
fi∈F

ρ(ti, fi)wi, (5.11)

where ti is i’th feature location, fi template feature and wi i’th feature weight. Practically,

weighted chamfer distance achieved more robust estimation of the geometric transformation.

Fig. 5.5 shows efficiency of weighted chamfer matching even inaccurate body pose estimation.

We applied known style and added offset to known body configuration parameter in global

transformation estimation. In case of equal weighting, it failed to accurate tracking. However,

it shows robust tracking even in accurate body pose when we weighted only upper body part in

Chamfer matching.
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(a) equal weighting
1st frame: 5th frame: 10th frame: 20th frame: 30th frame:

(b) high weight on upper body
1st frame: 5th frame: 10th frame: 20th frame: 30th frame:

Figure 5.5: Geometric transformation estimation :Inaccurate shape style value and body config-
uration value with offset from true value are used in order to evaluate robustness on inaccurate
body configuration estimation

Oriented Chamfer distance for body pose

Different body poses through walking can be characterized by the orientation of legs. There-

fore, oriented edge based similarity measurement is useful in case of the body configuration

estimation. Oriented chamfer distance matching was used in [41]. We use a linear filter [44] to

detect oriented edge efficiently after edge detection. After applying the linear filter to the con-

tour and the observation, we applied chamfer matching for each oriented distance transform

and oriented contour template. The final result is the sum of each of the oriented chamfer dis-

tance. We used multiplication of chamfer distance measurement and oriented chamfer distance

as distance measure in the body configuration estimation. For style estimation, simple Cham-

fer distance is used. Fig. 5.6 shows four different oriented edge detection and corresponding

distance transformation result.

5.5 Experimental Results

We evaluated the performance of proposed style adaptive gait tracking algorithm using CMU

Mobo gait data set, M. Black’s walking sequence, and Southampton gait database.
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vertical 45o horizontal −45o

Figure 5.6: Oriented edge detection and corresponding distance transformation

5.5.1 Gait Tracking Using Visual Manifold Embedding

We used CMU Mobo data set for learning the generative model, the dynamics, and for testing

the tracker. Six subjects are used in learning the model. The tracking performance is evaluated

for people used in training and for unknown people, which were not used in the learning. We

initialize the tracker by giving a rough estimate of initial global transformation parameter. The

body configuration is initialized by random particles along the manifold. In case of style, as

we don’t know the subject style from the initial frame, the tracker is initialized by mean style,

which means equal weights are applied for every style class.

Tracking for trained subjects

For subjects in the training data, i.e. the shape style has been seen before in training, the

tracker shows very good tracking results. It shows accurate tracking of body configuration

parameter βt and correct estimation of shape style st. Fig. 5.7 (a) shows several frames during

tracking known subject. In each sub-figure the left column shows tracking contours. The red

color contour shows predicted contour from previous frame after geometric transformation and

the green color shows after updating the style using current observation and estimated body
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(b) style weights
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(c) body configuration βt
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Figure 5.7: Tracking for known person

configuration. The middle column shows the posterior body configuration density. The right

column is the estimated style weights in each frame. Fig. 5.7 (b) shows tracking results for

style weights. The figure shows that the style estimate converges to the subject’s correct style

and it becomes the major weighting factor after about 10 frames. The style weighting shows

accurate identification of the subject as a result of tracking and it has many potential for human

identification and others. Fig. 5.7 (c) shows estimated body configuration β value. Even though

the two strides making each gait cycle are very similar and hard to differentiate in visual space,

the body configuration parameter accurately finds out the correct configuration. The figure

shows that the body configuration correctly exhibits constant speed linear dynamics. As we

have one to one mapping between body configuration on the manifold and 3D body pose, we
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can directly recover 3D body configuration using the estimated β or using manifold points bt

similar to [36].

(a) Tracking of unknown subject
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(b) Style weights
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(c) Body configuration βt
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Figure 5.8: Tracking for unknown person

Tracking for unknown subjects

Tracking for new subjects can be hard as we used small number of people for learning style

parameters in the generative model. Such subjects’ shape styles will be linear combination of

trained subjects’ styles It takes more frames to converge to accurate contour fitting as shown in

Fig. 5.8 (b). However, after some frames it accurately fit to the subject contour even though we

did not do any local deformation to fit the model to the subject. There is no one dominant style

class weight during the tracking and sometimes the highest weight are switched depend on the
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observation. In case of the body configuration βt, you can see sometimes it jumps about half

cycle due to the similarity in the observation since the style is not accurate enough. Still, the

result shows accurate estimation of body pose.

We also tested the tracker in normal walking situation using an out door sequence 1 based on

the model trained from CMU Mobo gait data. Even though our system learned the generative

model from treadmill walking data, proposed system can perform accurate contour tracking

in normal walking. Fig. 5.9 shows contour tracking results for 40 frames. Fig. 5.9 (c) shows

estimated body configuration parameters. It confused in some intervals at the beginning but it

recovers within the cycle.

5.5.2 Gait Tracking and Recognition Using Kinematic Manifold Embedding

We evaluated the performance of the proposed algorithms on University of Southampton (UoS)

gait database [118]. The database provides well-extracted silhouette images under controlled

environments for walking sequence of more than 100 people. We used provided silhouette

sequences to learn our nonlinear generative model. We collected 10 subjects to learn the global

shape deformations dependent on individual style and embeddings. Four cycles from each

person are used to learn the style variations in each person. Total 40 cycles are used to learn

the generative model (Ns = 40) after kinematics manifold embedding.

Table 5.1: Gait recognition confusion matrix:():percentage (%)
Person Id P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 1(3.3) 0 25 (83.3) 0 3(10) 1(3.3) 0 0 0 0
P2 0 30(100) 0 0 0 0 0 0 0 0
P3 0 0 30(100) 0 0 0 0 0 0 0
P4 0 0 0 23(76.7) 0 3(10) 0 2(6.7) 0 2(6.7)
P5 0 0 0 1(3.3) 28(93.3) 0 0 1(3.3) 0 0
P6 1(3.3) 1(3.3) 14(46.7) 0 0 0 3(10) 0 0 0
P7 0 0 0 0 0 0 24(80.0) 5(16.7) 0 1(3.3)
P8 0 0 1(3.3) 0 0 0 1(3.3) 28(93.3) 0 0
P9 1(3.3) 0 25(83.3) 0 0 0 1(3.3) 2(6.7) 0 1(3.3)

P10 0 0 11(36.7) 0 0 0 1(3.3) 3(10) 0 15(50)

Synthesis of new dynamic shapes

We tested the performance of synthesis of shape deformation according to shape style vector

in our nonlinear generative model by changing style parameter and its dimension. Fig. 5.10 (a)

1http://www.cs.brown.edu/people/black/
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Figure 5.9: Tracking straight walking

shows collected original sequence of three different people. When we use reduced number of

style basis, we lost details of the person. However, we are still able to generate sequences show-

ing body pose changes even with one basis as shown in the first row of Fig. 5.10 (b). When we

used corresponding person style vectors with full dimension, the new sequence preserves detail

difference of individual shape deformation. Fig. 5.10 (c) shows linear interpolation of style

vector and corresponding shape interpolation. This capability allows tracking of new people

adaptively as shown in the following experiments. In addition, although the original silhouette

sequences have different number of frame in each cycle, we can control the synthesized shapes

to be aligned as we used the same manifold points to synthesize body configurations.
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(a) Original silhouettes (b) Synthesis in different style dimension

(c) Style combined synthesis

Figure 5.10: Style dependent dynamic shape synthesis: (a) Row 1: P1, Row 2: P2, Row 3:
P3 original silhouette, (b) Synthesis of P1 silhouettes using Row 1: 1 style basis, Row 2: 25%
style basis, Row 3: full style basis, (c) Synthesis by style combination: Row 1: 0.5P1+0.5P2,
Row 2: 0.5P1+0.5P3, Row 3: combinations of all style vectors equally (mean style vector)

Recognition using shape style

We tested the performance of gait recognition in two situations. First, we perform gait recogni-

tion during tracking using edge information without any background subtraction. Gait recog-

nition is performed by selecting the style with highest weighted particle. We tested the gait

recognition performance for indoor sequences. The indoor sequences have relatively simple

background. However, when we use just edge information, it is not easy to estimate the whole

shape and identify the person as it has many missed edge in the corresponding contours and

additional edge inside desired contour, which causes confusion in the estimation of shape us-

ing edge-based distance transformation (DT). Fig. 5.11 shows change of style weights for two

people gait sequences. In both of the case, the weights begin from equal weights and gradually

fit to one of the shapes. In case of person 2, the person style get dominant quickly. In the case
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Figure 5.11: Simultaneous gait recognition and tracking:Left: person 2 style weights and con-
tour tracking at 5th, 10th, 20th, 30h, and 40th frames. Right: person 4 style weights and contour
tracking at 5, 10, 20, 30, 40th frame

of person 4, the style estimate fails to find correct style when the geometric transformation mis-

aligned contours around 30th frame. But, overall for most of the sequence, the tracker adapted

to the subject shape correctly. Table 5.1 shows gait recognition results from each person se-

quence. We did not count style weights of the initial 10 frames as style weights are not reliable

at the beginning.

Second, we tested the gait recognition when extracted silhouette sequences are given. We

selected 4 cycles from 37 people and learn the generative model. In this case, the style dimen-

sion becomes 148 (37 × 4) dimension. We collected another 3 cycles which are not used for

model learning from the same database and estimated style vector in closed form using pseudo
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Figure 5.12: Performance of gait recognition using style vector

inverse. For each estimated 148 dimensional vector, we compute similarity by inner product

S ·sest, which gives cosine value of two vector since the style basis are orthonomal. We classi-

fied gait by maximum similarity value and we get 83.8% recognition rate from 37 subjects by

recognizing 93 sequence correctly at rank 1 among 111 (3×37) sequences. Further experiment

shows cumulative matching characteristics(CMC) as in Fig. 5.12.

5.6 Summary

We presented new framework for human motion tracking and recognition using decompos-

able generative models. Using manifold embedding and parameterization, we can perform

tracking body pose on a one-dimensional manifold. By representing variations in spatiotem-

poral contour deformation among different people using style vectors, we can achieve person

identification using gait simultaneously with person-adaptive contour tracking. For accurate

estimation of high dimensional style vector, we added constraints in the shape style particles

and employed annealing-like gradual increase of discrimination. As a result of our tracking,

we not only find accurate contour from cluttered environment without background learning or

appearance model, but also get parameters for body configuration and shape style.

In this chapter, we assumed fixed view in learning the generative model and tracking hu-

man motion. We need to extend the model to continuous view variant situations. We used

marginalized density approximation instead of full joint distribution of the state. Sampling
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based on Markov Chain Monte Carlo (MCMC) can be used for more accurate estimation of

the marginal density. We performed gait recognition with simple similarity measurement and

relatively small dataset that showed promising results. More advanced classification algorithms

can be performed using style vectors as feature vectors.
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Chapter 6

Modeling View and Posture Manifold

We model shape deformations corresponding to both view point and body configuration changes

through the motion. Such observed shapes present a product space (different configurations ×
different views) and lie on a low dimensional manifold in the visual input space. The approach

we introduce here is based on learning both the visual observation manifold and the kinematic

manifold of the motion in a supervised manner. We learn the geometric deformation between

an ideal manifold (conceptual equivalent topological structure) and a twisted version of the

manifold (the data). We use a torus manifold to represent such data for both periodic and non-

periodic motions. Experimental results show accurate estimation of 3D body pose and view

from a single camera using the torus manifold. In addition, We propose modeling a manifold

within the mapping space of another manifold. We utilize both the observation manifold and the

3D kinematics manifold to learn a generative model with two independent continuous manifold

parameterizations, one for the body configuration and one for the view variations. The resulting

representation is used for tracking complex motions within a Bayesian framework where the

model provides a low dimensional state representation as well as a constrained dynamic model

for both body configuration and view variations.

6.1 Overview: Learning Continuous View Manifold

Despite the high dimensionality of the body configuration space, many human motion activ-

ities lie intrinsically on low dimensional manifolds. Exploiting such property is essential to

constrain the solution space for many problems such as tracking, posture estimation, and activ-

ity recognition. For many motions, such as gait, kicking, golf swing, gestures, etc., the body

configuration changes along a one dimensional manifold, which can be closed for periodic mo-

tion as walking or running, or it can be open trajectory in motions such as golf swing or kicking.
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It follows that, the observed motion, in terms of body shape contour and/or appearance lie on a

low dimensional manifold as well. However, the observed motion manifold changes given the

view point.

We consider tracking and inferring view and body configuration of human motion from a

single monocular camera where the person can change his/her view with respect to the camera

while bing tracked (or equivalently the camera can be moving). Modeling both the view and

body configuration manifolds for human motion jointly in the visual space is a very challenging

task and is useful for tracking, posture estimation, and view estimation. On the other hand, we

assume a simple setting for view variations. We consider the motion being observed from

different view points along a view circle at a fixed camera height, i.e, we restrict the view

manifold to be one dimensional.

The approach we introduce here is based on learning the visual observation manifold in a

supervised manner. Traditional manifold learning approaches are unsupervised where the goal

is to find a low dimensional embedding of the data. However, if the manifold topology is known

the manifold learning can be formulated in a different way. Manifold learning is then the task

of learning a mapping from/to a topological structure to/from the data where that topological

structure is homeomorphic to the data. In this paper we argue that this supervised setting is

suitable to model human motions that lie intrinsically on a one dimensional manifolds whether

closed and periodic such as walking, jogging, running, etc., or open such as golf swing, kicking,

tennis serve, etc. We show that we can model the visual manifold of such motions (in terms of

shape) as observed from different view points by mapping such manifold to a torus manifold.

We also consider this problem for general motions, i.e., we do not restrict ourselves to one

dimensional motion manifold as in [92]. So, fundamentally, the approach can handle complex

motions.

We propose a framework for modeling both the configuration and view manifolds. We use

kinematics manifold as a representation of the configuration invariant to view. Given an embed-

ding of the kinematic manifold, the view manifold is then explicitly modeled in the nonlinear

mapping space between the kinematics manifold embedding and the view-variant observations.

The result is two low-dimensional embeddings: one for configuration and one for the view, as
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well as a generative model that can generate observation given the two manifolds’ parameter-

izations. This fits perfectly into the Bayesian tracking as it provides in a direct way: 1) low

dimensional state representation for both view and configuration, 2) a constrained dynamic

model since the manifolds are modeled explicitly, 3) an observation model, which comes di-

rectly from the generative model used.

6.2 Framework

Figure 6.1: Graphical Model

Consider a motion observed from a camera (stationary or moving). Such motion can be

represented as a kinematic sequence ZT = z1, · · · ,zT and observed as a sequence of obser-

vation Y T = y1, · · · , yT . In this paper, by observation, we mainly mean shape contours. With

an accurate 3D body model, camera calibration, and geometric transformation information, we

can explain Y T as a projection of an articulated model. The dynamic sequence ZT lies on

a manifold, let’s call it kinematic manifold. Also, the observations lie on a manifold, visual

manifold. In fact, observations are lying on a product manifolds, the body configuration and

the view manifolds.

What is the relation between the kinematic manifold and the visual input manifold. We can

think of a graphical model connecting the two manifolds through two latent variables: body

configuration variable, bt and a view point variable, vt. The body configuration variable is

shared between both the kinematic manifold and the visual manifold. The view point variable
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represents the relative camera location to a human centered coordinate system. Another vari-

able affecting the observation is the shape variability among different subjects.We denote this

variable by s, which is time invariant variable.

We can summarize our goals as follows:

1) We need to relate the kinematic manifold with the visual input manifold in order to be

able to infer configuration from input

2) We need model the visual manifold with all its variabilities due to the motion, the view

point, and shape style. In particular, we need to be able to deal with both body configuration

and view points as a continuous variables. This facilitates tracking subjects with varying view

points due to camera motion or changing subject view w.r.t. the camera.

3) We need the tracking state space to be low dimensional and continuous. Moreover, and

despite the nonlinearity in dynamics in both the kinematics and the observations, we need the

model to exhibits simple dynamics, i.e., linear dynamics or even constant speed dynamics

So, let us start with a simple periodic motion such as a simple aerobic exercise or gait,

observed from a view circle around the person. Later we show how to deal with more complex

motions and also extend to the whole view sphere. Given a set of observed shapes representing

a product space of two one-dimensional manifolds representing body configuration and view,

how can we learn a useful representation. Nonlinear manifold learning techniques, such as

LLE [111], Isomap [127], etc., have been popular recently in learning low dimensional repre-

sentations of both visual and kinematic data. Unfortunately such techniques are limited when

dealing with complex manifolds such as joint motion and view manifolds and will not neces-

sarily lead to useful representations. This can be observed in Fig. 6.2 (d),(e) where LLE and

Isomap are used to embed data with continuous view and configuration variability as shown in

Fig. 6.2 (a). The resulting embedding, although reflects the actual manifold local structure, is

not useful as a representation for tracking. Moreover, if we consider different people, the joint

manifold is expected to twist differently depending on the shape of the person performing the

motion. Therefore, the resulting representation will not be useful to generalize to other people.

The conclusion is the data-driven embedding of the joint view-configuration manifold is not

practical to be used in tracking, synthesis, or analysis tasks.

Supervised Generative Manifold Learning:
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Figure 6.2: Data-driven view and body configuration manifolds:(a) Examples of sam-
ple data with view and configuration. Rows: body pose at 0, 1

5T, 2
5T, 3

5T, 4
5T .

Cols:view 0, 30, 60, · · · , 330. (b) Intrinsic configuration manifold when view angle is
0, 60, 120, 180, and240. (c) View manifold for five different fixed body pose. (d) (e) Com-
bined view and body configuration manifold by LLE and Isomap.

Traditional manifold learning approaches are unsupervised where the goal is to find a low

dimensional embedding of the data which preserve the manifold topological structure. How-

ever, if the manifold topology is known, manifold learning can be formulated in a different

way. Manifold learning is then the task of learning the deformation of the manifold from an

ideal case. For example, for the gait case, observed from the same view point, as shown in

the examples in Fig. 6.2 (b), the gait manifold is a one dimensional closed manifold which is

topologically equivalent to a unit circle. So, we can think of the gait manifold as a twisted or

deformed circle in the visual input space. Since we already know the topology, the task of man-

ifold learning can be viewed as: how to deform a unit circle to reach the actual data manifold.

Or, in other words, how to generate the data knowing an equivalent “idealistic” topological

structure. In fact, this view can be even extended if the data manifold does not share the exact

topology from the ideal manifold. For example, the gait manifold can intersect itself in the vi-

sual space but still, we can learn the deformation from a unit circle to the data. Similarly, if we

consider the view manifold for a certain body posture, the resulting manifolds are topologically

equivalent to unit circle as can be seen in Fig. 6.2 (c).

For the case of joint configuration and view manifold where the view varies along a view
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circle, this is a product space and ideally is equivalent to the produce of two circles, i.e., torus

manifold. i.e., the data in Fig. 6.2 (a) lies on a deformed torus in the input space. So we need to

learn deformation from the torus to the data. If we consider the full view sphere, the resulting

manifold is a deformed order-3 torus or S1× S1× S1 structure.

On the other hand, the kinematic manifold, which is invariant to view point, is also a de-

formed circle in the kinematic space. Starting from a torus, the kinematic manifold can be

achieved through collapsing the torus along one of its axis to form a circle and then deform that

circle. Therefore, a torus manifold acts as an “ideal” manifold to represent both the latent body

configuration and view variables, bt, vt. In one side, the torus can deform to form the visual

manifold, yt, and on the other side, it can deform to form the kinematic manifold zt.

Configuration and View Manifold:

In a complex motion, such as aerobics or dance routines, the body configuration cannot

be represented in one dimensional manifold as in the torus manifold. In order to solve this

problem, we consider two separate manifolds: 1) the body configuration manifold during the

motion in the kinematics space 2) the visual input manifold (the observations) of the same

motion observed from different view points along a view circle at a fixed camera height. It is

clear that the kinematics manifold can be embedded using nonlinear dimensionality reduction

techniques to achieve a low dimension representation of the manifold which can be used for

tracking. For example, Gaussian Process Dynamic Models (GPDM) [141] can achieve such

embedding as well as learn dynamic model for such manifold. The challenge is the visual man-

ifold since it involves both body configuration and view variability. Embedding such complex

manifold will not result in useful representation and definitely will not facilitate inference about

the configuration and view separately.

In fact, giving camera setting, the observation for a given body posture lies on a one di-

mensional manifold (view manifold) in the visual input space. Obviously, each body posture

will have it’s own view manifold. If we consider a sequence of postures, making up a motion,

the resulting visual manifold well become complicated as it becomes a product of the motion

manifold and the view manifold.
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6.3 Torus Manifold: View and Configuration Joint Representation

6.3.1 Torus Manifold Embedding

Torus Manifold

A torus manifold, a two dimensional manifold embedded in three dimensional space with a sin-

gle hole, is useful to represent both periodic and non-periodic dynamic human motion observed

from a viewing circle.

The torus manifold can be constructed from a rectangle, which can be represented by two

orthogonal coordinates with range [0 1] × [0 1], by gluing both pairs of opposite edges

together with no twists [46]. Therefore, the torus surface can be parameterized by two variables

u, v ∈ [0 1] .

As justified in Sec. 6.2 the torus can be used as a conceptual embedding for the joint view

(along one viewing circle) and configuration manifold. The view and body configuration man-

ifold can be parameterized in the rectangle coordinate with the two orthogonal axis of the torus

manifold. Any manifold point in the torus can have two circles: one is in the plane of the

torus, which we use to model the view variable and parameterized with µ, and the other is

perpendicular to it which we use to represent the body configuration and parameterized by ν.

Generalization to the full view sphere around the person is straight forward. In this case

the joint configuration and view manifold can be mapped to a family of tori, which is a subset

of the product space of three circles S1 × S1 × S1, one for the body configuration, one for

the horizontal view circle and one for the vertical view circle. In practice, only small range

of the vertical view circle is considered, therefore, this can be modeled as a set of rectangles

each representing a torus manifold for a given view circle, i.e., can be parameterized by three

parameters µ, ν, ξ for body configuration, view angle and elevation view angle.

How to embed points on the torus

Given a sequence of kinematic data Z representing a motion, we can use graphics software

to render body silhouettes from different view points along a given viewing circle. We denote

this data by Y . It is desired to embed this data on the torus in a conceptual way that does not
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necessarily reflect their Euclidean distance in the kinematic space nor in the visual input space,

instead the objective is to embed them on the torus in a way to simplify the tracking. There are

two ways we can achieve such embedding.

Constant Speed Dynamics: For tracking, we not only know the topology of the manifold but

we may also know the desired dynamics in the state space. For example, for periodic motion

such as walking and running, although the nonlinearity in dynamics in both the kinematic and

the visual input manifolds, we need the latent state variable to reflect a constant speed on the

latent manifold. The nonlinear mapping in Eq. 6.1 should transform this linear dynamics to

nonlinear dynamics. This can be achieved by embedding the points on equidistance points

along the configuration axis of the torus.

Geodesics-based Embedding: For non-periodic motion, such as golf swing, where data might

exhibit different acceleration along the course of the motion, it is desired to embed the data on

the torus in a way that preserves their kinematic manifold structure. This can be achieved

through embedding the points such that the geodesic distance on the torus is proportional

to the geodesics on the kinematic manifold. Another constraint stems from the fact that in

non-periodic motion, the manifold is an open trajectory and therefore, configuration manifold

should be mapped to a part of the torus configuration axis.

To achieve this, we first embed the kinematic manifold using LLE or any other nonlinear

embedding techniques. This leads to an open trajectory embedding. Such embedding is used

for 1) measuring the gab between the beginning and end pose of the motion in order to map the

manifold to a proportional part of the torus. 2) to measure the geodesics along the kinematic

manifold. The points are embedded on the torus in such a way that only a part of the torus

ν axis is used proportional to the embedded manifold length. Let xi, i = 0, · · · , N be the

embedding coordinate of the kinematic sequence zi, i = 0, · · · , N . The coordinate of point

zi on the torus ν-axis is denoted by νzi and is set to be νzi = Si/S where Si is the geodesic

distance of point xi to the starting point, xo, i.e., Si =
∑N

j=1 ||xj − xj−1|| and S is defined

to be S = SN + ||xN − xo||. The gap between the beginning body pose embedding point

and final body pose embedding points on the torus will be Gap = ||xN−x0||
S . Fig. 6.3 (a)

shows an example a golf swing motion from three different view points and it low dimensional

embedding of the kinematics using LLE is shown in (b). Fig. 6.3 (c) shows a torus manifold
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with a gap between the start and the end body pose embedding for the case of a golf swing.
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Figure 6.3: Torus manifold with gap. (a) Example sequence of a golf swing from three differ-
ent views µ = 0, 0.2, 0.3. (b) Embedding of golf swing motion capture data. (c) Visualization
of a torus manifold with gap with trajectories of the three different views used for synthesis in
(a)

6.3.2 Learning Manifold Deformation

Learning a mapping from a topological structure to the data, where that topological structure is

homeomorphic to the data, can be achieved through learning a regularized nonlinear warping

function. Let T denotes the torus manifold and M denotes a data manifold where T and

M share the same topology. Given a set of point xi ∈ Rd, i = 1 · · · ,K on T and their

corresponding points yi ∈ RD, i = 1 · · · ,K on a manifold M, we can learn a nonlinear

mapping function g : Rd → RD from T to M. According to the representer theorem [71],

such function admits a representation in the form of y =
∑

j bik(x, zj) where zj are a finite

set of points in the input space, not necessarily data points, and k(., .) is a kernel function. If

radial basis kernels are used then this is a form of radial basis function interpolation. Given

the data embedded on the torus as described above, we can learn the deformation between the

torus and both the visual manifold and the kinematic manifold. This can be achieved through

learning two regularized nonlinear mapping functions in the form of Eq. 6.1 as follows:
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Torus to Visual Manifold: Deforming the torus to the visual manifold can be achieved through

learning a nonlinear mapping in the form of Eq. 6.1. Given the embedding coordinates on the

torus, (µv, νb) and their corresponding visual data (silhouettes), yvb ∈ RD, for discrete pose b

and view v, we can fit the mapping function g : R2 → RD which map from the torus to the

shape space in the form

y = g(µ, ν) = D · ψ(µ, ν) (6.1)

satisfying yvb = g(µv, νb). In this case, we need a set N of basis functions covering the torus

surface which are set uniformly across the surface. Using this model, for any view v and body

configuration b sequence, we can generate a new observations where µv is view representation

in µ axis, and νb is body configuration representation in ν axis of the torus manifold.

Torus to Kinematic Manifold:

Deforming the torus to the kinematic manifold can be achieved through learning a nonlinear

mapping from the torus configuration axis to the kinematic manifold. Given the embedding

on the torus, (µv, νb) and their corresponding kinematic points zb ∈ Rd we fit the mapping

function f : R→ Rd in the form

z = f(ν) = B · ψ(ν) (6.2)

stratifying that zb = f(νb). Given this mapping, any point on the torus (µ, ν) can be directly

mapped to a 3D joint position configuration.

Learning Different People Manifolds from Partial Views

Our goal is to be able to achieve adaptive tracking where the tracker can adapt to the person

contour shape. We presented an approach for decomposing “style” variations in the space of

nonlinear mapping coefficients from an embedded manifold to the observation space in Chap-

ter 4. Similar approach can be used here to learn style dependent mappings in the form of

Eq. 6.1 from the torus to each person’s data. The torus represents a unified manifold represen-

tation invariant to the person.

Given different people sequences from different sparse view points, each sequence can be

embedded on the torus as described in Sec. 6.3.1. Let Y s
vk

be sequences of visual data for

person s from view points vk, we can embed such sequences on the torus which leads to a set
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of torus coordinates (µvk
, νb). The view points do not need to be the same across subjects and

the sequences do not need to be the same length; only the beginning and end of the motion is

needed to be aligned on the torus ν-axis. Given the embedding points and their corresponding

contours, person-specific mapping functions in the form of Eq. 6.1 can be fitted which leads to

an D ×N coefficient matrix Ds. Notice that the kernel space defined by ψ(·) in Eq. 6.1 is the

same across all subjects since the same RBF basis are used on the torus. Given the coefficient

matrices, we can fit a model in the form of

ys
vb = A×1 as ×2 ψ(µv, νb) (6.3)

where as is a vector characterizing the person shape style and A is third order tensor with di-

mensions D × S × N where S is the dimensionality of the shape space and ×n is the tensor

multiplication as defined in [72]. The model proposed here, provides a continuous representa-

tion of the view point and the body configuration in one latent representation space.

6.4 Posture-Invariant View Manifold Using Kinematic Manifold

6.4.1 Learning Configuration and View Manifold

Learning View-invariant Configuration Manifold

As a common representation of body configuration invariant to view point, we use an em-

bedding of the kinematic manifold, which represents body configuration in a low dimensional

space. Such kinematic manifold embedding is also invariant to different people shapes and

appearances. We can obtain a low dimensional representation of the kinematic manifold by

applying nonlinear dimensionality reduction for motion capture data using approaches such as

LLE [111], Isomap [127], GPLVM [75], etc. In particular, we used LLE in this paper.Since

we need to achieve embedding of the kinematics invariant to the person transformation with

respect to the world coordinate system, we represent the kinematics using joints’ location in a

human-centered coordinate system. We aligned for global transformation in advance in order

to only count motion due to body configuration changes.

Fig. 6.4(a) shows the embedded kinematic manifold for gait motion. As expected, for a
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periodic motion as in the gait case, the embedding shows the kinematic manifold as one di-

mensional twisted closed manifold which can be embedded free of intersections in a three

dimensional embedding space. However, for more complex motion, the manifold is not nec-

essarily be one dimensional. However, we can always achieve an embedding of the kinematic

manifold in a low dimensional Euclidean space. Fig. 6.5 shows example embedding for the

ballet dance routine data which is shown in Fig. 6.2.

Learning Posture-invariant View Manifold

Given the kinematic manifold embedding, we can achieve a representation of different views

by analyzing the coefficient space of nonlinear mappings between the kinematic manifold em-

bedding and view-dependent observation sequences.

Here, we can consider the kinematic manifold embedding as “content” manifold and the

view can be thought as the “style” factor, where, such “style” variations are decomposed in

the space of nonlinear mapping coefficients from an embedded manifold to the observation

space. Unlike Chapter 4 where the content manifolds were view-dependent, the use of the

kinematic manifold provides a view invariant content representation and therefore, differences

between view-dependent observed data will be preserved in the nonlinear mapping of each

view-dependent input sequences.

Given a set of N body configuration embedding coordinates on the kinematic manifold,

X = {x1 · · ·xN} and their corresponding view-dependent shape observations (silhouettes)

Y k = {yk
1 · · ·yk

N} for each view k where k = 1, · · · , V , we can fit view-dependent regular-

ized nonlinear mapping functions on the form of generalized radial basis function

yk = Bkψ(x), (6.4)

for each view k. Here, each observation y is represented as D dimensional vector and we

denote the embedding space dimensionality by e. ψ(·) is an empirical kernel map [113]

ψNc(x) : Re → RNc defined using Nc kernel functions centered around arbitrary points

{zi ∈ Re, i = 1 · · ·Nc} along the kinematic manifold embedding where

ψNc(x) = [φ(x, z1), · · · , φ(x, zNc)]
T. (6.5)
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Each D ×Nc matrix Bk is a view-dependent coefficient matrix which encodes the view vari-

ability. Given such view-dependent mapping coefficients, we can fit a model in the form

yk
i = A×1 vk ×2 ψ(xi), (6.6)

where A is a third-order tensor with dimensionality D × V ×Nc and ×j is the mode-j tensor

multiplication [72]. This equation represents a generative model to synthesize observation

vector yk
i ∈ RD of view k and configuration i given a view vector vk, and body configuration

represented by embedding coordinate xi ∈ Re on the kinematic manifold embedding.

To fit such model, the view-dependent coefficient matrices Bk, k = 1, · · · , V are stacked

as columns in a (DNc) × V matrix C and then the view factors are decomposed by fitting an

asymmetric bilinear model [128]. i.e., C = A·[v1 · · ·vV ]. The third-order (D×V ×Nc) tensor

A in Eq. 6.6 is the tensor representation of the matrix A which can be obtained by unstacking

its columns.

The resulting representation of the view variations is discrete and high dimensional. The di-

mensionality of the view vector in Eq. 6.6 depends on the number of views, i.e., V dimensional.

This high dimensional representation is not desirable as a state representation for tracking. The

dimensionality can be reduced when fitting the asymmetric model by finding fewer number of

view bases. Fig. 6.4 (b) and Fig. 6.5 (b) show the embedded posture-invariant view manifold

in the mapping coefficient space for gait and ballet dance motion respectively, which clearly

shows a one dimension manifold that preserves the proximity between near by views. Here, the

first three dimensions are shown. The actual view manifold can then be explicitly represented

as will be shown in Sec. 6.4.2.

Learning Observation Variability

The model in Eq. 6.6 can be further generalized to include variable for shape style variability

between different people, i.e., to model different people shapes. The use of the kinematic

manifold provides an invariant representation to observation variabilities which allows us to

generalize the model. Given view-dependent shape observations for different people, we can

fit view-dependent, person-dependent mapping functions in the form of Eq. 6.4 which yields a

set of coefficient matrices Bkl for each person l and view k. Given such coefficient matrices,
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Figure 6.4: Configuration and view manifold for gait:(a) Embedded kinematics manifold. (b)
Posture invariant view manifold (The first three dimensions are shown).

we can fit a generalized model in the form

ykl
i = D ×1 sl ×2 vk ×3 ψ(xi), (6.7)

where D is a forth-order tensor with dimensionality D×S×V ×Nc. This equation represents

a generative model to synthesize observation vector ykl
i ∈ RD of view k, shape style l and

configuration i given a view vector vk ∈ RV , a shape style vector vk ∈ RS , and body config-

uration represented by embedding coordinate xi ∈ Re on the kinematic manifold embedding.

Fitting such model can be achieved using HOSVD [72, 138]

6.4.2 Parameterizations of View and Configuration Manifolds

Parameterizing the View Manifold

Given the view space defined by the decomposition in Eq. 6.6, different view vectors is expected

to lie on a low dimensional nonlinear manifold. Obviously, linear combination of view vectors

in Eq. 6.6 will not result in valid view vectors. We need to explicitly model the view manifold in

the coefficient space to be able to predict and synthesize new views. Therefore, we model view

variations as a one dimensional nonlinear manifold by one dimensional continuous variable

using spline fitting with C2 connectivity constraints between the last sample and the first sample

view, since the view manifold is closed one dimensional manifold. As a result, we represent

the view manifold by one dimensional view configuration parameter θ where certain view vt
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can be represented as vt = gv(θt). Fig. 6.4 (b) and 6.5 (b) show spline parameterized one

dimensional view manifold in three dimensional space.
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Figure 6.5: Configuration and view manifold for Ballet: (a) Embedded kinematics manifold in
2D for ballet sequence. (b) One dimensional view manifold embedded in the kinematic mani-
fold mapping space (The first three dimensions are shown). (c) Velocity field on the manifold
for ballet. (d) Interpolation of the velocity field value for any points on the manifold

Parameterizing the Configuration Manifold

In general, we make no assumption about the dimensionality of the motion manifold. However,

here we discriminate between two cases: 1) the case of an one-dimensional motion, whether

periodic, such as walking, running, etc., or non periodic open trajectory, such as golf swings,

tennis serves, etc. 2) the case of a general motion where the actual motion manifold dimension-

ality is not know, e.g., dance or aerobics, etc.

Parameterizing One-Dimensional Motion Manifold

Since, in this case, the kinematic manifold is one dimensional, it can be represented using a

one-dimensional parameter by spline fitting. we can represent view manifold and body con-

figuration manifold using two continuous parameters θt and βt and generate new observations

jointly as:

yvb
t = A×1 gv(θt)×2 ψ(gb(βt)) (6.8)

where βt ∈ R is the spline parameter (one-dimensional) and gb : R → Re is a spline fitting

function which maps from the parameter space into the embedding space and satisfies xt =

gb(βt). Any combination of view manifold parameter θt and body configuration manifold

parameter βt can generate new image using Eq. 6.8.
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For one dimensional representation of the multiple cycles, we use mean-manifold repre-

sentation for parameterization. The mean-manifold is parameterized by spline fitting by a

one-dimensional parameter βt ∈ R and a spline fitting function gb : R → Re that satisfies

xt = gb(βt) is used to map from the parameter space into the embedding space, where e is

the dimension of embedding space and xt ∈ Re is the embedding coordinate. We use a three

dimensional space (e = 3) for the embedding of the kinematic manifold in this case.

Parameterizing General Motion Manifold:

For complex motions such as aerobics, dance, etc., where the manifold dimensionality is

not known, a two-dimensional embedding space is used to represent the manifold. In such

case, the kernel functions centers in Eq. 6.5 are fit to the embedded manifold through fitting

a Gaussian mixture model. To learn the dynamics in such case, we learn a flow field in the

embedding space.

Given a sequence of N body configuration embedding coordinates on the kinematic mani-

fold, X = {x1 · · ·xN}, xt ∈ R2 we can directly get flow vectors, representing the velocity in

the embedding space, as v(xt) = xt − xt−1. Given this set of flow vectors, we can estimate a

smooth flow field over the whole embedding domain where the flow v(x) at any point x in the

space can be estimated as v(x) =
∑N

i=1 bik(x, xi) using Gaussian kernels k(·, ·) and linear

coefficients bi ∈ R2 which can be obtained by solving a linear system. The smooth flow field

is used to estimate the how the body configuration will change in the embedding space which

is used in tracking to propagate the particles. Fig. 6.5 (d) shows an example of the motion flow

field for a ballet dance motion.

6.5 Experimental Results

We tested performance of our approach with different kinds of motion using synthetic data and

real data. In order to learn view and configuration manifold, we used synthesized shapes ren-

dered from real motion capture data. Typically, motion sequence from 12 discrete views are

rendered to learn the view manifold. To evaluate the approach we used both synthesized and

real data. synthesized data facilitates quantitative analysis of configuration and view estima-

tion. In the experiments shown here we mainly used silhouettes to represent the observations.
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However, the approach provides a generative model for contours and can easily integrated with

edge based observations with proper observation model. To evaluate the 3D configuration esti-

mation, the embedded body configuration is mapped to 3D joint angles position space through

learning a RBF mapping from the embedding space to the kinematic space. The error for

a given body configuration xi is computed by average absolute distance between individual

markers and the recovered 3D joint location similar to Brown HUMANEVA-I dataset [120].

6.5.1 Tracking on the Torus

Brown HUMANEVA-I dataset Evaluation

We measured 3D reconstruction error using Brown HUMANEVA-I dataset [120]. We gener-

ated synthetic training data of walking silhouette from motion capture data using animation

software Poser R©. 12 different views (10o, 30o, · · · , 360o) are collected for walking on a circle

motion. We extracted silhouettes using background subtraction. Joint locations of the val-

idation set and of one cycle of training sequence are extracted and normalized to represent

normalized pose which is invariant to subject’s rotation and translation. We achieved this pose

normalization by computing joint location after rotating each joint transformation into body

centered coordinate and re-centering translation based on mean node location in each frame.

We collected three subjects’ validation sequences to estimate the performance of inferring 3D

body pose.

We estimate body pose from the maximum a posterior (MAP) estimation of body config-

uration from the particle filtering. We used 900 particles (Nβ = 900) in the experiment to

represent view and body configuration on the torus manifold. We reconstructed 3D body pose

from estimated body configuration parameter and one 3D body pose cycle from training se-

quence for each subject. We learned mapping between body configuration parameter and 3D

body pose from the selected training sequence. After that, we can infer 3D body pose for any

estimated body configuration parameter. We measured errors in estimated body pose by aver-

age absolute distance between individual markers as in [120] Fig. 6.6 (d) shows average error

in each frame.
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Figure 6.6: 3D body pose reconstruction using torus manifold for walking sequence
(HUMANEVA-I): X-axis: frame number, Y-axis: joint location value (unit:mm). (a) In-
put silhouettes. (b) Reconstructed silhouette based on estimated view and body configuration.
(c) Reconstructed 3D body pose. (d) Average errors in joint locations in each frame. (e)(f)
True and estimated joint location x and z values for Lower left leg distal and Upper right arm
proximal.

Comparison to Other Representations

We compared the torus representation with other embedding approaches for the task of body

pose estimation. Since we used a torus as a two-dimensional manifold embedding for view

and body configuration representation, we also used two-dimensional embedded representa-

tion obtained from LLE [111] and Isomap [127]. We used the same number of particles in the

two-dimensional embedding space for all approaches. We also compared nearest neighborhood

search to see the best result we can get from the collected data itself. Table 6.1 shows average

error for the different approaches. For the case of nearest neighbor ( NN ), we searched for
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the nearest silhouette from training sequence and used its corresponding 3D joint location as

reconstruction. Torus embedding shows much better performance than other manifold repre-

sentation.

Table 6.1: Average error in normalized 3D body pose estimation in different embedding

Embedding Type LLE Isomap NN Torus
Average Error in mm 62.19 61.08 49.52 24.08

Shape Style Adaptation:
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Figure 6.7: Style adaptive circular gait sequence tracking: (a) Original test silhouettes. (b)
Estimated silhouettes with style adaptation. (c) Measured shape contour error in each frame
in style adaptation. (d) Measured 3D reconstruction error (Average errors in joint locations in
each frame in different embedding). (e) True and estimated joint location x and z values for
Lower left leg distal

As we can model shape variations in different people as style change, we can adapt to

observed shape by estimating the style factor as in Eq. 6.3 to explain observed shape. New

person’s style can be represented by combination of training person style. In our experiment,

we captured people walking sequence on the treadmill with multiple camera. For our experi-

ment, we collected sequences from 4 different people with 7 different views using synchronized

camera. We started from mean style. As style adaptation goes on, the 3D reconstruction errors

and 2D image reconstruction errors are decreased. Fig. 6.7 shows experiment results for the

HUMANEVA-I dataset we used in the previous experiment. At the beginning, shape contour
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error (c) are large but it decrease as the style estimation get more accurate parameters. Simi-

larly, the estimated 3D body pose shows decrease in error as time passes after large errors at

the beginning when we used just mean style.
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Figure 6.8: Outdoor fixed view jump motion. (a) Input image. (b)Input silhouette. (c) Es-
timated view. (d) Estimated body configuration. (e) 3D body pose reconstruction based on
estimated body configuration.

Jump sequences

We evaluated the approach with a jump motion (example of open manifold) where the subject

can rotate in the air while jumping. We used motion captured data to learn the model using

geodesics-based embedding on the torus. Fig. 6.8 shows estimation of view and body con-

figuration in outdoor environment. Despite inaccurate silhouette extraction (Fig. 6.8 (a)), our

model estimate body configuration accurately (Fig. 6.8 (e)).

Fig. 6.9 (a) shows jump motion with body rotation in the air. Estimated view parameter

shows constant view parameter change due to body rotation in Fig. 6.9 (d). Simultaneously the

estimated configuration parameter enables reconstruction of 3D body pose (Fig. 6.9 (f)).

Edge-based Contour Tracking

We tested the approach with real data without background subtracted contours. Instead Cham-

fer matching is used as an observation model given edges extracted from the images.

We tested for a walking sequence along a circle with fixed camera view. Fig. 6.10 (a),(b)
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Figure 6.9: Indoor jump motion with rotation. (a) Input image. (b) Input silhouettes. (c)
Reconstructed silhouettes. (d) Estimated view. (e) Estimated body configuration. (f) 3D body
pose reconstruction based on estimated body configuration.

shows tracking results for walking sequence with view variation. You can see spiral motion on

the torus manifold due to simultaneous change of view and body configuration. The tracking

on the torus manifold can achieve reliable tracking result with prior dynamic constraints on the

manifold even weak edge cues.

Golf Swing Tracking

In this experiment we tested tracking performance of golf swing from unknown camera and

view. In this experiment, we can recover correct view and body configuration. Fig. 6.10 (c),(d)

shows tracking results. Since the view is unknown, we start from a uniform distribution, i.e.,

the particles are spread along the big circle on the torus (the same µ) at the beginning and it

converged to one area.

6.5.2 Estimation Using View Manifold and One-Dimensional Motion Manifold

Brown HUMANEVA-I dataset - Walking in a Elliptical Path

We tested 3D body posture estimation accuracy using Brown HUMANEVA-I dataset [120],

which provides ground truth data for 3D joint locations for different types of motions. We used

a circular walking sequence, which has continuous relative view variations between the subject
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Figure 6.10: Circular gait sequence tracking: (a) Estimated shape contours. (b) View and
configuration particle distributions on torus manifold. Golf swing tracking: (c) Estimated shape
contours (d) View and configuration particle distributions on torus manifold.

and the camera. We normalized original joint location in HUMANEVA-I dataset into body-

centered coordinate system, which is invariant to subject’s body rotation and translation. For

the estimation of 3D body pose, we selected one cycle from the training sequence to learn map-

ping from embedded kinematic manifold to the 3D kinematic space. Fig. 6.11 shows estimated

view, body configuration, and corresponding 3D body pose reconstruction. The estimated pa-

rameters fit very well a constant speed linear dynamic system for both the configuration and

view parameters. The average error in HUMANEVA-I dataset for 512 frames in Subject S1 is

26.294 mm.

Golf swing - one dimensional open manifold: Golf swing is a complicated and non-periodic

motion. Still it can be parameterized by one-dimensional kinematic manifold. The motion

manifold is open as the final body pose is very different from the initial motion (Fig. 6.12 (h)).

We learned view manifold after synthesizing 12 discrete views from motion capture data. For

the test sequence, we controlled camera location in a constant speed to move in a 360o circular

trajectory during the golf swing motion. Fig. 6.12 (e) shows estimated joint pdf using particle

for body configuration β and view configuration θ. Estimated view in Fig. 6.12 (g) correctly

reflects constant change of view.



117

(a)

(b)

(c)

(d) 0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
manual
estimated

(e) 0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
manual
estimated

(f) 0 100 200 300 400
0

20

40

60

80

100

120

140

160

(g)

0 100 200 300 400
−300

−200

−100

0

100

200

300

400

Lower Left Leg Distal X axis

manual
estimated

0 100 200 300 400

−780

−760

−740

−720

−700

−680

−660

−640

−620

Lower Left Leg Distal Z axis

true
estimated

Figure 6.11: Estimation using view manifold and kinematic manifold for walking sequence
(HUMANEVA-I): (a) Input silhouettes. (b) Synthesized silhouettes after view and body con-
figuration estimation. (c) Reconstructed 3D body pose. (d) Estimated view parameters. (e)
Estimated body configuration parameters. (f) Joint location error in each frame. (g) The com-
parison of joint location between estimated value and ground truth value :x and z values for
Lower left leg distal.

Basketball pass motion

The basketball pass action similar to many other sport activities can be embedded on a one

dimensional motion manifold when we count single cycle. Because of many camera motion and

human body rotation in arbitrary view in sport video sequence, modeling actions in arbitrary

view is crucial in general sport activity tracking and recognition. In our experiment,we can

reliably estimate change of body configuration in spite of noisy silhouette inputs as shown in

Fig. 6.13 (d).
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Figure 6.12: Golf swing: (a) Input silhouette sequences. (b) Implicit shape representation of
input silhouettes. (c) Synthesized silhouettes for estimated body pose and view. (d) Recon-
structed 3D body pose. (e) Estimated probability densities for view and body configuration
parameter space. (f) Estimated body configuration. (g) Estimated view configuration. (h)
Kinematics manifold of the golf swing sequence that we used.

6.5.3 Estimation From General Motion Manifolds

Simple sport motions like ball passing, catch/throw can not be parameterized by a one-dimensional

manifold due to variability in body configuration when the motion is repeated. For example,

when we catch and throw a ball repeatedly in the air, the catch action changes according to the

falling ball locations. Moreover, many activities like dancing, aerobics are high dimensional in

their kinematic manifold.

Catch/throw motion

We used catch and throw sequences with variations of motion in each catch and throw cycles,

which is represented as different trajectories in the body configuration embedding. Fig. 6.14

(d) shows the embedding space for configuration. Fig. 6.14 (e) shows the obtained posture-

invariant view manifold. Fig. 6.14 (f) shows estimated view for the test sequence shown in

Fig. 6.14 (b) which exhibits camera motion with constant speed. Fig. 6.14 (g) shows the flow

field for such motion. Recovered body configuration is shown in Fig. 6.14 (c) as reconstructed

silhouettes from recovered configuration and view parameters.



119

(a)

(b)

(c)

(d)

Figure 6.13: Basketball pass: (a) Captured images (frame number: 6, 12, · · · , 96). (b)(c) Ex-
tracted silhouettes and corresponding implicit shape representations. (d) Reconstructed 3D
body pose based on estimated configuration parameters

Aerobic Dancing Sequence

We used locally linear embedding (LLE) [111] to learn nonlinear manifold embedding for

the dancing sequence. Two dimensional manifold embedding is used to represent repetitive

dancing sequence as in Fig 6.15 (b). Then we learned view-dependent dynamic shape con-

tour models from 12 synthetic view. We modeled view manifold after decomposition of the

view dependent nonlinear mapping. Fig. 6.15 (c) shows the learned posture-invariant view

manifold. We tested performance of view and body pose estimation using synthetic rendered

data with two different view settings. For the first test sequence, we used a fixed intermediate

view, which is not used for the view learning. In our training view, we collected view from

0o, 30o, 60o, · · · , 330o and We used 45o views in our test experiment. The other sequence has

continuous view variations from 0o to 90o view. Average joint location error in each frame is

shown in Fig 6.16 (d),(h). We used 30 particles for view estimation and 30 particles for body

pose estimation. Even though these small number of particles like 30 for view ,experimental

results show reliable estimation of view and body configuration in spite of view variations after

initial stage.



120

(a)

(b)

(c)

(d)

−1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(e)

−0.4−0.3−0.2−0.100.10.20.3

−0.4

−0.2

0

0.2

0.4

0.1

0.15

0.2

0.25

0.3

0.35

210210210

240240240

270270270

180180180
150150150

300300300

120120120

330330330

909090
360

606060

303030

(f)

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Estimated view configuration

θ t

Frame number

(g)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 6.14: Catch/throw motion (Evaluation): (a) Rendered image sequence of catch/throw
motion capture data (frame 3, 25, 47, 69, · · · , 333) (b)Test sequence with a moving camera
and corresponding rendered action. (c) Estimated shape sequence after view and configuration
estimation. (d) Two-dimensional motion manifold embedding and selected kernel points. (e)
Posture-invariant view manifold of the catch/throw motion in 3D space (f) Estimated view
configuration. (g) flow field interpolation on the embedding space.
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Figure 6.15: Dancing sequence : (a) Rendered image sequence of dancing data. (b) Body
configuration embedding for dance sequences. (c) View manifold for dancing sequence. (d)(e)
Velocity field and its interpolation.

Ballet Motion

Ballet motion has frequent body rotation and the motion is very complicated since arms and legs

are moving independently. However, the motion is still constrained by the physical dynamics

in the motion and the rules in the ballet dancing. Fig. 6.17 (a),(b),(c) show results for estimated

configuration and view for the ballet motion which was shown in Fig. 6.2 and Fig 6.5.

6.6 Summary

We formulated view variant human motion tracking as tracking on a torus surface. We use the

torus as a state space for both body configuration and view. We learn how the torus deform
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Figure 6.16: Dancing sequences evaluation: (a) Input silhouettes for test from a fixed view.
(b) Reconstructed silhouettes for fixed view. (c) Estimated view parameters for fixed view. (d)
Average joint location error in fixed view. (e) Silhouettes from rotating view. (f) Reconstructed
silhouettes from rotating view. (g) Estimated view parameters for rotation view. (h) Average
joint location error in rotating view.

to the actual visual manifold and to the kinematic manifold through two nonlinear mapping

functions. The torus model is suitable for one dimensional manifold motions, whether periodic,

as walking, running, etc., or non periodic, as golf swings, jumping, etc. The experimental

results showed that such model is superior than other representations for the task of tracking

and pose/view recovery since it provides a low dimensional, continuous, uniformly spaced state

representation. We also show, how the model can be generalized to the full view sphere and

how to adapt to different people shapes.

In addition, we introduced an approach for explicit modeling of body configuration and

view in two separate low dimensional embedded representations. The body configuration is

embedded from kinematic data, i.e., invariant of the view. The view can represented in a
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Figure 6.17: Ballet motion evaluation: (a) Test silhouette sequences. (b) Synthesis of silhou-
ettes based on estimated body pose and view. (c) Reconstruction of 3D body pose based on
estimated body configuration Shown in a body-centered coordinate- without body rotation.

posture-invariant manner. As a result, we have a generative model that parameterize the mo-

tion, the view, and the shape style. The model is appropriate for tracking and pose estimation

of complex motion from un-calibrated stationary or moving camera. We showed several ex-

perimental results and quantitative evaluations for wide varieties of motion including simple

motion such as gait and gold swing to complex motion such as aerobics and ballet dancing.

The model can successfully self initialize, track, and recover the parameters for view and 3D

configurations even with a moving camera.
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Chapter 7

Facial Expression Analysis and Synthesis

Facial expression passes through nonlinear shape and appearance deformations with variations

in different people and expressions. We present nonlinear shape and appearance models for

facial expression analysis and synthesis using nonlinear generative models for different facial

expressions in different people. To achieve accurate shape normalized appearance models, we

utilize nonlinear warping using thin plate spline (TPS). A novel nonlinear generative model

using conceptual manifold embedding and empirical kernel maps for facial expressions pro-

vides facial shape and appearance samples according to the configuration, personal style, and

expression parameters. We can recognize facial expressions based on estimated facial expres-

sion parameters after iterative estimations of facial expression and style. In addition, the model

provides accurate synthesis of facial expression sequences even with high nonlinear deforma-

tions of shape and appearance during facial expressions. In addition, we combine the global

nonlinear appearance estimation and direct local fitting for tracking large facial deformations.

The generative model allows the Bayesian tracking of facial expressions using particle filter

and simultaneous estimation of the expression types. Based on global shape model, we es-

timate global transformation and global deformation that provides a normalized appearance

template. Local fine fitting is achieved by shape parameter estimation based on direct thin plate

spline warping parameter estimation using the normalized appearance template from the global

nonlinear appearance model.

7.1 Overview:Modeling Subtle Facial Motions

People get more interests in modeling and analyzing dynamic human motions for natural hu-

man computer interaction, surveillance system in compute vision, and animation of human

motions for films or computer games. Recently, demands for accurate modeling and analysis
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of facial expressions are growing with new applications of facial motion analysis like decep-

tion detection and affective computing. Recognition of emotional states and synthesis of facial

expressions are one of the key components for intelligent affective human computer interac-

tions [102]. However, it is difficult to model subtle facial motions with current linear subspace-

based models as facial motions pass through nonlinear shape and appearance deformations with

variations in different people and expressions.

Most of current systems for analysis and tracking of facial motions from shape and ap-

pearances are based on linear models. Active shape models (ASM) [30] are well known linear

models for facial motion analysis and tracking using point distribution models in linear sub-

space. By constraining deformation of point distributions into a linear subspace of the training

shapes during local search, it achieves robust fitting of face models [30]. Active appearance

models (AAM) combine the linear shape model of points distributions in ASM and the lin-

ear texture appearance model by aligning appearance models into a normalized shape using

piecewise affine warping [29]. Iterative model refinement algorithms are proposed based on

a prediction model, which is learned as a regression model using observations of linear shape

and appearance model parameter variations after perturbations.

Bilinear and multilinear models are applied to improve accuracy in modeling facial expres-

sion recognitions [1, 140] and facial expression synthesis [24]. All these models are based on

linear shape and appearance models with extensions for multiple factors. In addition, any of

these models do not count dynamics in facial expressions except [77]. Feature-based facial

expression recognition system may overcome the limitation of linear subspace of templates by

directly tracking features like facial action units [83]. Feature based approaches, however, are

hard to model appearance variations in facial expression and may not be able to synthesize

appearance of new facial expressions.

We propose nonlinear shape and appearance models for facial expression analysis and syn-

thesis. When dealing with dynamic facial expressions, image sequences lie on low dimensional

nonlinear manifolds embedded in a high dimensional input space. We model facial expressions

by explicit modeling of configuration manifolds and decomposing variability due to different

people and expression types. Nonlinear generative models using low-dimensional conceptual

manifold embedding and empirical kernel mapping are developed to learn nonlinear shape and
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appearance model in low dimensional spaces. This generative model provides a global shape

and appearance deformation model during facial expressions. Iterative estimation of the model

parameters allows recognition of facial expressions for a given image sequence. To achieve ac-

curate shape-normalized appearance images for learning our models, we employed thin-plate

spline (TPS) warping.

We combine global nonlinear appearance tracking and local fitting of shape models di-

rectly from adaptive appearance templates in order to achieve tracking of large facial shape

and appearance deformations. Tracking provides estimated states of global transformation and

deformation based on our generative model and particle filter within the Bayesian framework.

However, it fails to capture accurately and estimated global transformations are sometimes in-

sensitive to small misalignments and local deformations. When we apply local deformation

for a given template, we can achieve accurate alignment and local fitting for small facial defor-

mations for a given template. The estimation of local deformation based on a single template,

however, fails to track large facial motion deformations. We used estimated global transfor-

mation and deformations as initial state for local fitting. The global model, which supports

large shape deformations, provides shape normalized appearance models for local fitting. By

combining the global appearance model and local fitting, we can achieve accurate estimations

of facial motions in large deformations.

7.2 Dynamic Shape and Appearance Models for Facial Expressions

To develop a nonlinear generative shape and appearance model, we extract normalized shape

and appearance models by shape alignment and nonlinear warping of dynamic appearance to

mean shape using TPS. The normalized shape vector and the appearance vector are combined

as a new shape and appearance vector for the nonlinear generative model. We model facial

motions as configuration variations in time with different facial shape and appearance defor-

mations according to given expression type.
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7.2.1 Shape-Normalized Appearance Models Using Thin-plate Spline Warping

To develop nonlinear generative shape and appearance models, we first represent shapes by

distributions similar to ASM of landmark points and compute a mean shape that is used for

appearance normalization. We describe the ith shape by n landmark points as a vector pi =

(xi1, yi1, xi2, yi2, · · · , xin, yin). From collected landmark points of different people with dif-

ferent expressions, we compute the mean shape after shape alignments by weighted similarity

transformation [30]. As some components, like a nose, are more reliable than other face com-

ponents, like a mouse contour, in facial expressions, we weighted each landmark based on the

reliability of the face components. By shape normalization, appearance vectors will establish

good correspondences between each element of the shape-normalized appearance vectors and,

therefore, meaningful algebraic operations between appearance vectors can be achieved.

To achieve shape normalization, piecewise-affine warping is frequently used in linear ap-

pearance models [125, 89]. However, piecewise-affine warping can cause artifacts around

boundaries for non-rigid shape deformation due to facial motions [28]. We use thin plate spline

(TPS) warping for the non-rigid registration of appearance images to the mean shape. TPS

warping have been widely used in medical image alignments and non-rigid deformations [108,

26] after popularization by Bookstein [16]. Given an image sequence I1, I2, · · · , INK
, where

NK is the number of image frames, with corresponding shape vectors p1, p2, · · · , pNK
, we

can obtain the mean shape p0. We need to warp every image Ij with shape vector pj into new

appearance image by shape landmark points using TPS.

TPS warping leads to smooth deformations and accurate normalization of non-rigid defor-

mations of appearances in facial expressions. In case of backward warping we need to warp

output image coordinates into input image coordinates by TPS warping from p0 to pj and in-

terpolate intensity values based on the warped coordinate. TPS warping specifies a mapping in

the form

f(x, y) = a1 + axx + ayy +
2n∑

i=1

wiU(|p0 − (x, y)|) (7.1)

which minimizes bending energy

Ef =
∫∫

R2

((
∂2f

∂x2

)2

+ 2
(

∂2f

∂x∂y

)2

+
(

∂2f

∂y2

)2)
dxdy

where U(x, y) = r2logr2, r =
√

x2 + y2. When we perform backward warping from the
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(a) Initial (I0) (b) Target (It) (c) PWL (Ipwl
t )

(d) TPS (Itps
t ) (e) It − Ipww

t (f) It − Itps
t

Figure 7.1: Image warping: (a) The original image with shape landmarks. It also shows delau-
nay triangulation [4] result. (b) The target image with its shape landmarks. (c) Piecewise linear
affine transformation based on shape triangulation for shape landmark points. (d) TPS warping
based on shape landmark correspondences. (e) (f) Image difference between target image and
warped image by piecewise warping (PWL) and by TPS warping (TPS)

shape p0 to a shape pj , the coefficients in the mapping function Eq. 7.1 can be computed as

follows:

(w1 · · ·w2n|a1axay)T = L−1Y , (7.2)

where Y =


 xj1 xj2 · · · xjn

yj1 yj2 · · · yjn


, L =




K P

P ᵀ O


, Kij = U(||(x0i, y0i)− (x0j , y0j ||)

and the i-th row of P is (1, x0i, y0i). Computing the coefficients, we need to compute the

inverse of matrix L only once as it only depends on p0. Fig. 7.1 (e) and (f) shows intensity dif-

ferences between target image (b) and warped images (c) and (d) within target shape contour.

When we measure errors between true target image appearance and warped ones by pixel in-

tensity differences, the TPS warped appearance shows 20% less errors than the piecewise linear

one as its warping based on corresponding landmark points describe nonlinear deformation of

appearance more accurately in large shape deformation during facial expressions. The piece-

wise linear warping result may be improved using more dense landmark points and elaborate

triangulation.
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Given an image sequence, the kth image Ik is represented by the aligned shape pk and

shape-normalized appearance ak, where the appearance vector, ak, is the vector representation

of pixels which are inside the mean shape contour after warping the image to the mean shape

by TPS, i.e.,

ak = Ik

ξ ∈ p0

(Wp0
(ξ, pk)). (7.3)

We combine the shape vector and the appearance vector as a new vector yk = [pT
k aT

k ]T for

the facial expression analysis. In this case, the dimension of y is Nas = 2n + Na where the

number of pixels within the mean shape is Na. The combined shape and appearance vectors

are used in modeling facial motions using the nonlinear generative model as will be described

in the next section.

7.2.2 Nonlinear generative models with manifold embedding

Nonlinear dimensionality reduction has been recently exploited to model manifold structures

in face recognition [121] and facial expression analysis [22]. When unsupervised data-driven

manifold embedding techniques are used, resulting embedded manifolds of the same type of

facial expressions performed by different people will be quite different and it is hard to find

a unified representation of the manifolds. But, conceptually all these manifolds are the same

1-dimensional circular curves for expressions, which move from neutral expressions to target

expressions and return back to neutral expressions. Using this conceptual manifold embedding

and nonlinear mapping, we can model dynamics of facial expressions in a low dimensional

space.

A set of image sequences which represent full cycles of the facial expressions are used

for conceptual embedding of facial expressions using a unit circle. The image sequences are

not necessarily to be of the same length. We denote each sequence by Y se = {yse
1 · · · yse

Nse
}

where e denotes the expressions and s is person’s identity. Let Ne and Ns denote the number of

expressions and number of people in the training data respectively. Each sequence is temporally

embedded at equidistance on a unit circle such that xse
i = [cos(2πi/Nse) sin(2πi/Nse)], i =

1 · · ·Nse.

Given a set of distinctive representative points on the unit circle {zi ∈ R2, i = 1 · · ·N},
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we can define an empirical kernel map[113] as ψN (x) : R2 → RN where

ψN (x) = [φ(x, z1), · · · , φ(x, zN )]T, (7.4)

given a kernel function φ(·). For each input sequence Y se and its embedding Xse, we can learn

a nonlinear mapping function f se(x) that satisfies f se(xi) = yi, i = 1 · · ·Nse and minimizes

a regularized risk criteria. The whole mapping can be written as

fse(x) = Bse · ψ(x) (7.5)

where B is a d × N coefficient matrix. We have d simultaneous interpolation functions

each from 2D to 1D. The mapping coefficients can be obtained by solving the linear system

[yse
1 · · ·yse

Nse
] = Bse[ψ(xse

1 ) · · ·ψ(xse
Nse

)]. Using these nonlinear mappings, we can capture

nonlinearity of facial expression in different people and expressions.

The nonlinear mappings are different for different people and for different expressions.

Higher-order singular value decomposition (HOSVD) is applied to decompose the mapping

coefficients into multiple orthogonal factors as described in Sec. 4.3. The coefficient tensor is

then decomposed as

B = Z ×1 S ×2 E ×3 F , (7.6)

where Z is a core tensor, with dimensionality Ns×Ne×Nc which governs interactions among

different mode basis matrices, Bis an order-three facial expression coefficient tensor, S, E, and

F , representing the basis for people, expressions and pixels respectively.

Given this decomposition and given any Ns dimensional person face vector s and any Ne

dimensional expression vector e, we can generate coefficient matrix Bse by unstacking the

vector bse obtained by tensor product bse = Z ×1 s ×2 e. This can be expressed abstractly

also in the generative form by arranging the tensor Z into an order-four tensor C

yse
t = C × s× e× ψ(xt) , (7.7)

where dimensionality of core tensor C is d×Ns×Ne×N . The result of the tensor multiplication

C × s × e is a reconstruction of the coefficient matrix Bse. We can analyze facial expression

image sequences by estimating the state parameters s, e, and xt.
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7.3 Facial Expression Recognition and Synthesis

7.3.1 Facial Expression Recognition

We can recognize facial expressions by the estimated expression vector e. Given an input image

y, we need to estimate configuration x , expression parameter e, and personal face parameter

s which minimize the reconstruction error

E(x, s,e) =|| y − C ×1 s×2 e×3 ψ(x) || (7.8)

We assume an expression vector for a given image can be written as a linear combination of

expression class vectors in the training data, i.e., we need to solve for linear regression weights

α such that e =
∑Ke

k=1 αke
k where each ek is one of expression class vectors in the training

data. Similarly for the personal face, we need to solve for weights β such that s =
∑Ks

k=1 βks
k

where each sk is one of Ks face class vectors.

If the expression vector and the person face vector are known, then Eq. 7.8 is reduced to a

nonlinear 1-dimensional search problem for configuration x on the unit circle that minimizes

the error. On the other hand, if the configuration vector and the person face vector are known,

we can obtain expression conditional class probabilities p(ek|y, x, s) which is proportional to

observation likelihood p(y | x, s,ek). Such likelihood can be estimated assuming a Gaussian

density centered around C ×1 sk ×2 e×3 ψ(x), i.e.,

p(y | x, s, ek) ≈ N(C ×1 sk ×2 e×3 ψ(x), Σek
).

Given expression class probabilities, we can set the weights to αk = p(ek | y, x, s). Simi-

larly, if the configuration vector and the expression vector are known, we can obtain face class

weights by evaluating image likelihood given each face class sk assuming a Gaussian density

centered at C ×1 sk ×2 e ×3 ψ(x). This setting favors an iterative procedure for solving for

x,e, s. We applied deterministic annealing procedure as explained in Sec. 4.5.

Frame-based Facial Expression Recognition

For any given image frame, we can estimate facial expression parameter using iterative esti-

mation of expression, style and configuration parameters. Estimated expression weights can
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(a) Shape normalized happy expression sequence

(b) Estimated expression type (happy)
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Figure 7.2: Frame based facial expression estimation: (a) Shape normalized happy expression
sequence. (b) Estimated weights of expression class types.

be used directly to recognize facial expression type. Most of the facial expression recogni-

tion systems use a peak expression image for learning and recognition of facial expression.

In our model, all the frames can be used for the estimation of facial expression. In addi-

tion, estimated configuration parameter shows how close to peak expression from embedding

coordinate. Fig. 7.2 shows an example facial expression sequence of shape normalized ap-

pearance and its estimated weights of expression classes in every frame of the sequence. As

the expression starts from a neutral expression, which is similar in all different expressions in

the database [66], the estimated expression weights are similar to all four expression classes

at the beginning. As expression sequence progresses to a peak expression configuration in

the sequence, the estimated expression weights become discriminative. From sequence of an

expression, we may recognize expression more robustly by selecting majority of recognized

expression. However, we used peak expression image in testing facial expression classification

in order to be comparable to other recognition systems using only peak expression frames in

facial expression recognition.

The facial expression estimation in peak expression becomes an iterative estimation of ex-

pression vector and style vector as we know the configuration, the low dimensional embedding.
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(a) Expression: surprise
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(b) Expression: happy
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Figure 7.3: Expression class weight changes in iterations:(a) True expression is surprise. (b)
True expression is happy. Here the highest weight changed during iteration as style estimations
also changed from mean style to specific style.

We can embed the peak expression at the opposite location from the neutral (initial) expression

in the unit circle embedding. So, we don’t need to estimate configuration by full search in the

embedding space. The facial expression recognition becomes finding the closest expression

class with the estimated expression parameter. Fig. 7.3 shows typical examples of expression

weight changes through the iterations. Sec. 7.5.1 shows experimental results using peak ex-

pression image from CMU AU coded facial expression database [66].

7.3.2 Facial Expression Synthesis

Our model can synthesize facial expressions by combinations of facial expression parameters

and personal face parameters. As we have decomposed the mapping space that captures non-

linear deformation in facial expressions, the linear interpolation of the face style and facial

expression still captures nonlinearity in the facial expression. A new personal face vector and a

new facial expression vector can be generated by a linear combination of existing personal face

class vectors and expression class vectors using parameter αi as follows:

enew = α1e1 + α2e2 + · · ·+ αNeeNe (7.9)

where
∑

i αi = 1. We can synthesize new personal face snew similarly. A new facial expres-

sion image can be generated using new personal style and expression parameters.

ynew
t = C ×1 snew

t ×2 enew
t ×3 ψ(xt) (7.10)
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7.4 Facial Expression Tracking with Global and Local Fitting

Our tracking routine incorporates three components: global transformations, global deforma-

tions and local deformations. Global transformations explain rigid motion of face due to head

motion. Global deformations capture nonlinear facial deformations in different expression

type and in different temporal state (configuration). We further fit local deformations based

the estimated global appearance model using direct local deformation estimation. If we de-

scribe the global transformation parameters by Tαt , global shape and appearance deformation

as yt(at, pt), and local shape fitting as δt, then the goal of our tracking algorithm for given

image It is to find α∗t , p∗t and a∗t , and δ∗t that minimize:

E(α∗t , p
∗
t , a

∗
t , δ

∗
t ) = min

αt,pt,at,δt

(Υ(It, Tαt · (pt + δt))− at) (7.11)

where a∗t = y∗t (2n + 1 : Nas) is an appearance vector, and p∗t = y∗t (1 : 2n) is a shape vector

from y∗t = C × e∗ × ψ(x∗t ) by Eq. 6.6. e∗, and x∗t are the best fitting global model estimated.

δt is local deformations of shape vector for given global shape and appearance deformation as

described in Sec. 7.4.2.

7.4.1 Bayesian Tracking of Large Facial Deformations Using Decomposable Global

Shape and Appearance Models

Given the nonlinear shape and appearance generative model, we can describe the observation

of shape and appearance instance zt by state parameters αt,xt, and et. The tracking problem

is then an inference problem where at time t we need to estimate the configuration xt, facial

expression type parameter et, and global transformation Tαt given the observation zt. The

Bayesian tracking framework enables a recursive update of the posterior P (Xt|Zt) over the

object state Xt given all the observation Zt = Z1, Z2, ..,Zt up to time t:

P (Xt|Zt) ∝ P (Zt|Xt)
∫

Xt−1

P (Xt|Xt−1)P (Xt−1|Zt−1)

In our generative model, the state Xt is [αt, xt, et], which uniquely describes the state of the

tracking object. Observation Zt is composed of shape vector Zpt and appearance vector Zat

from given image at time t.
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The state Xt can be sub grouped into global transformation parameter αt and states for

global deformations xt, and et. The global transformation parameter is independent to the

global deformation state since we can combine any shape and appearance model with any

geometrical transformation to synthesize a new shape and appearance in the image space.

However, they are dependent given the observation Zt. We approximate the joint posterior

distribution P (αt, xt, et|Zt) = P (αt, yt|Zt) by two marginal distribution P (αt|y∗t , Zt) and

P (yt|α∗t , Zt), where α∗t , and y∗t are representative values like maximum a posteriori estima-

tions.

Observation model measures state Xt by updating the weight π
(i)
t in the particle filter

by measuring the observation likelihood P (Zt|X(i)
t ) = P (Zt|αt, yt). We can estimate the

likelihood by

P (Zt|αt, yt) ∝ exp
(
−||Υ(It, Tαt · pt)− at||

σ

)
(7.12)

where pt = yt(1 : 2n), at = yt(2n + 1 : Nas), and σ is scaling factor for the measured image

distance.

Particle filter for geometric transformation

We estimate global geometric transformation using particle filter based on the predicted global

shape and appearance. The global shape and appearance y
′
t is estimated from previous esti-

mated expression state et−1, and predicted configuration x
′
t. We assume that expression state

change smoothly, and configuration change explains temporal variation given expression state.

This predicted shape and appearance y
′
t is used as representative value y∗t . Geometric trans-

formation state αt represents similarity transformation parameters γt,θt, and τ t for scaling,

rotation, and translation. The marginal probability distribution represented by Nα particles

{α(i)
t , απ

(i)
t }Nα

i=1. We update weights απ
(i)
t , i = 1, 2, · · · , Nα with y

′
t using Eq. 7.12. In the

next time step, we perform important sampling with re-sampling and drifting with random

walk.
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Rao-Blackwellised particle filter for global deformation tracking

For the global deformation state estimation, we utilize Rao-Blackwellised particle filtering. In

order to estimate global deformations using the generative model in Eq. 6.6, we need to esti-

mate state vector xt, and et whose dimensions are 2, and Ne respectively. The dimension of

the expression state Ne is dependent on the number of expression type which can be high di-

mension. When we know the configuration vector xt, we can achieve approximate solution for

expression vector as explained in the followings. Original Rao-Blackwellised particle filtering

for dynamic Bayesian networks [97] assumes accurate solution for the rest of part, which does

not represented by particle state. We utilize the approximate solution to avoid sampling for high

dimensional state density estimation, which requires huge number of particles for appropriate

approximation.

Configuration xt is embedded in 2 dimensional space with one constraints for unit circle

embedding. So, the dimension of embedding is actually one-dimensional and we can represent

the embedding parameter βt as one-dimensional state vector. We represent the distribution of

configuration embedding βt by Nβ particles {β(i)
t , βπ

(i)
t }Nβ

i=1. If we represent the approximate

estimation of expression vector as e∗t , we can approximate the marginal distribution

P (e∗t |yt) =
∑

β

P (e∗t |βt, yt)P (βt|yt)

=
∑

β

P (e∗t |βt, yt)
Nβ∑

i=1

βπ
(i)
t δ(β(i)

t , βt)

=
Nβ∑

i=1

βπ
(i)
t P (e∗t |β(i)

t , yt),

where δ(x, y) = 1 if x = y and 0 otherwise.

We represent estimated expression vector by linear weight sum of known expression vec-

tors. We assume that optimal expression vector can be represented as a linear combination of

expression classes in the training data. i.e., we need to solve for linear regression weights κ

such that enew =
∑Ke

k=1 κke
k where each ek is one of Ke expression classes. As the configura-

tion is estimated already, we can obtain expression conditional class probabilities p(ek|yt,xt)

which is proportional to observation likelihood p(yt | xt, e
k). Such likelihood can be estimated
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assuming a Gaussian density centered around A× ek × ψ(xt), i.e.,

p(yt | xt, e
k) ≈ N (A× ek × ψ(xt), Σek

).

Given expression class probabilities, we can set the weights to κk = p(ek | yt, xt).

7.4.2 Local Facial Motion Tracking

We perform local facial motion tracking in order to estimate local deformations different from

global model used for training and refine inaccurate estimation of the global transformation and

the global deformation. As we approximate the joint state for the global transformation and

the global deformation by sub-state distributions with representative value of the other sub-

state, the actual state estimation using particle filter with limited number of particle samples

shows sometimes misalignment of global transformations and inaccurate estimations of global

deformations. In addition, actual motion in new sequence will variant from the global model

used for learning the model even in the same person with the same expression type. Therefore,

we need local facial motion tracking to refine global tracking result.

Recently, a framework to perform tracking of non-rigid object motion using TPS parameters

and image gradients from a given initial frame was proposed [84]. The framework use a single

initial frame as a template assuming a constant appearance during tracking after the appearance

is warped back to the initial template shape. However, it does not work well in facial expression

tracking when it has large shape and appearance variations. For example, a surprise expression

usually makes a dramatic change of shape and appearance around mouse area, which cause

the failure in fixed template based approaches. In addition, the approach presented in [84] use

regular grid control points, where the tracking is affected by the background image in addition

to the interested facial deformation.

We propose template-adaptive local facial motion tracking using thin-plate spline(TPS)

warping. We utilize landmark points in the facial shape description as control points in TPS.

The shape-normalized appearance is used as a template for local facial motion tracking. We

use shape-normalized appearance as a template for local deformation estimation in facial ex-

pression tracking. The relation between warping coordinate and control points need to be com-

puted only once as we have a unique normalized shape template across different appearance
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templates. The tracking result of global deformation from Our nonlinear shape and appearance

model provides new appearance templates in every frame based on estimated states. The land-

mark shape estimated from global deformation provides initial shape for local facial motion

tracking after applying global transformations to the landmark points.

Let the estimated global shape and appearance is yg
t0, its shape vector is pg

t0, and appearance

vector is ag
t0, and current input image be It, the objective of local fitting is to minimize the

following error function

E(δpt) =
∑

‖Υ(It, p
g
t0 + δpt)− ag

t0‖

=
∑
ξ∈p0

‖It(W (ξ,p0; p
g
t0 + δp))− Ig

t0(ξ)‖2 (7.13)

where Ig
t0 is an image in normalized shape with global appearance vector ag

t0. We use shape

normalized appearance as the template in local tracking, therefore, the TPS warping W (ξ, p0;p
g
t0+

δp) is determined by the coordinate control points pg
t0 + δp in Eq. 7.2. For the given pt0 from

global deformation tracking, the warping function solely determined by the local deformation

δp.

Gradient descent technique is applied to find the local fitting parameter δp which minimize

Eq. 7.13 similar to [84, 50]. Linearization is carried out by expanding It(W (ξ, p0;p
g
t0 + δp))

in a Taylor series about δp,

It(W (ξ, p0; p
g
t0 + δp)) = It(W (ξ,p0;p

g
t0)) + δpTM t + h.o.t, (7.14)

where M t = [ ∂It
∂p1

| ∂It
∂p2

| · · · | ∂It
∂p2n

]. Each term ∂It
∂pk

can be computed using warped image co-

ordinate ξ = W (ξ, p0; p
g
t0) by applying chain rule: ∂It

∂pk
= ∂It

∂ξ
∂ξ
∂pk

. The ∂It
∂ξ is the gradient

of current input image It after TPS warping to the mean shape. The relation between warp-

ing coordinate and control points is described by Eq. 7.1 and the coefficients is computed by

Eq. 7.2 are fixed and can be pre-computed as we use common mean shape in all the appearance

templates. The solution for Eq. 7.13 can be computed when the higher-order terms in Eq. 7.14

is ignored:

δp = (MT
t M t)−1MT

t δIt, (7.15)

where δIt is the image difference between template appearance image and current image

warped to the template shape by Eq. 7.13. By iterative update of the local shape model, we
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achieve better fitting of the shape to local image features. This local fitting provides better

alignment of shape to the given image and better normalized appearance for the given input

image.

Refinement of global state estimation based on local fitting

We update global deformation state based on estimated deformation. We estimate new expres-

sion weight with new appearance vector after local fitting. New estimated expression weight is

updated by linear combination of local expression weight κl and global expression weight κg,

κnew = (1−ε)κg +εκl. The combining parameter εis depend on the reliability of local fitting.

For example, for unknown subject, local fitting is less reliable and we assign small value for ε.

This refined global state estimation helps the estimation of geometry transformation in the next

step.

7.5 Experimental Results

To build nonlinear generative model of facial expressions and to test facial expression recogni-

tion, we selected 40 sequences of 10 female subjects (Ns = 10) with four emotions (Ne = 4:

surprise, happy, angry and sad) from Cohn-Kanade AU coded facial expression database [66].

We manually marked shape landmark for every other frame for normalized dynamic shape

and appearance. As the database have sequences from a neutral expression and to the peak

expression, we embed each frame on the half circle with equal distance for each sequence.

7.5.1 Facial Expression Analysis

We collected shape landmark points for every other frame in each sequence. Collected sequence

data contains 5 to 17 image frames in all the sequences. The total number of frame collected

with landmark points was 399 frames. The landmarks have 38 points in each image (n =

38). The appearance vector was represented by 288328 pixels inside the mean shape (Na =

288328).

For any given sequence, we embed expression frames on the half circle as expression se-

quences in the database start from neutral expression and stop in the peak expression instead of
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returning to the neutral expression. The embedding configuration is parameterized in the range

γ = [0, 1] to cover half unit circle embedding space. So, γ = 0 means neutral configuration

and γ = 1 means peak configuration.

Synthesis of facial expression with personal style and expression type variations

Our generative model can synthesize facial expression while changing the person style and

expression type parameters during performing the expression. Fig. 7.4 shows synthesis ex-

(a) Neutral → smile → surprise → angry

(b) Subject A face → subject B face → subject C face

(c) neutral A → smile A+B → surprise B→ sad+surprise B+C → sad C

Figure 7.4: Facial expression synthesis: First row: Expression transfer. Second row: Personal
face transfer during smile expression. Third row: simultaneous transfer of expressions and
personal faces.

amples of new facial expressions and personal faces. During synthesis of the new images,

we combine control parameter t to embedding configuration γ and interpolation parameter α

and β. In case of Fig. 7.4 (a), the t changed 0 → 1 → 0 and new expression parameter

enew
t = (1 − t)esmile + tesurprise and then enew

t = (1 − t)eangry + tesurprise . As a result,

the facial expression starts from neutral expression of smile and animates new expression as

t changes. When t = 1, the expression becomes a peak expression of surprise, then the ex-

pression t changes to angry and then back to neutral expression again. In the same way, we

can synthesize new faces during smile expressions as in (b). Fig. 7.4 (c) is the simultaneous
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MT Non-GM MLA
ET SP HP AG SD HP AG SD SP
SP 9 0 0 1 9 1 0 0
HP 0 10 0 0 0 10 0 0
AG 0 1 8 1 0 1 7 2
SD 0 0 1 9 0 0 4 6

Table 7.1: Facial expression recognition with a peak expression image: Non-GM: Nonlin-
ear Generative Model (proposed method), MLA: Multilinear Analysis in [140], MT: Applied
recognition method, ET: Expression type, SP: Surprise, HP: Happy, AG: Angry,SD: Sad

control of the personal face and expression parameters. In this case, the embedding changed

from 0 → 1 → 0.5 → 1. As a result, the last synthesized expression is the peak expression of

the target expression instead of a neutral expression.

Facial Expression Recognition

We tested facial expression recognition performance for ten subjects with four expressions:

surprise (SP), happiness (HP), angry (AG), and sadness (SD). Using collected shape normalized

appearance, the performance was tested by leave-one-out method: we learn the model with nine

people and tested the recognition performance with one person whose data are not used for

training. To compare the performance of facial expression in [140], which applied multilinear

model for AAM model of peak expression, we classified facial expressions using maximum

expression weight of the last frame (peak expression frame) in every sequence even though we

estimated expression class weight for every frame as described in Sec. 7.3.1. Table 7.1 shows

recognition results.

The average recognition rate in our method is 90%(36
40), which is better than multilinear

model
(
80%(32

40)
)
, where facial expressions for unknown person are recognized based on cosine

distance of estimated expression vector using one of closest person subspace with the same

shape normalized appearance data. Our model has a better style and expression decomposition

model as our model use all the image sequences with different number of frames for training,

which is impossible in multilinear analysis in [140] as it requires aligned the same number of

frames for training multilinear analysis.
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7.5.2 Facial Expression Tracking

We describe global facial motion deformations by linear combinations of expression classes.

Fig. 7.5 shows tracking a smile expression sequence with template adaptive local fitting. At

each frame, global facial expression tracking estimates expression weights (c) and configu-

rations after global transformation estimation. The best fitting shape appearance parameter

provides the shape normalized appearance template (a) and facial shape tracking after global

shape deformation (b). Results of local fitting in Fig. 7.5 (e) shows better fitting of shape defor-

mation estimation to the input image and better estimation of facial expression type (f). Facial

expression weight only using global deformation estimation has inaccurate similar weights in

’surprise’ and ’happiness (smile)’. Whereas, after local fitting, the estimated expression type

distinguishes two expressions and shows high weights for happy expression correctly. After

updating estimated expression type by a linear combination of the global deformation and the

local deformation as described in Sec. 7.4.2, we achieve better estimation of global facial mo-

tion tracking (i).

Tracking large facial deformations

We compare tracking results with single template and adaptive template in large facial deforma-

tions. Fig. 7.6 (b) is facial motion tracking result based on single frame. It shows good tracking

of facial deformations in small deformations. However, it fails to track large facial deforma-

tions around mouse area. Fig. 7.6 (c) shows tracking result when we use global transformation

result as intimal state of local facial motion tracking in each frame. As global deformation

model provides updated appearance template in addition to initial shape for tracking, it can

cover large facial deformations.

7.6 Summary

We presented a new approach for facial expression recognition and synthesis. The model uti-

lized nonlinear warping of appearance for shape normalized appearance model and kernel

mapping to model nonlinearity of appearance in facial expressions. The dynamics of facial

expressions are also modeled using low dimensional manifold embedding of the expression
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Figure 7.5: Facial expression tracking with global and local fitting: (a) Best fitting global ap-
pearance in normalized shape. (b) Global shape tracking facial motion. (c) Expression weights
in global facial motion estimation. (d) Image error in the local fitting. (e) Local tracking facial
motion with adaptive template provided by global appearance model. (f) Expression weights
in local facial motion estimation. (g) Comparison of tracking result: yellow-global fitting, red-
local fitting. (h) Update of estimated expression weights by combination of local and global
expression estimation. (i) Best fitting global model using updated expression state.
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Figure 7.6: Tracking surprise expression : (a) Error image based on a template after local fitting.
(b) Tracking result by direct local fitting with initial frame as a template. (c) Tracking result
with adaptive template by global shape and appearance model: yellow-global fitting, red-local
fitting. (d) Global estimated expression weights.

configuration. The model shows better performance in facial expression recognition in ad-

dition to accurate synthesis of facial expressions with simultaneous geometry and expression

control. Using the proposed generative model, which has a low dimensional representation

of dynamics with preserving nonlinearity and dynamics, we presented a framework for facial

motion tracking in large facial deformations. Global tracking provides template adapting to

appearance change in large deformation. Local fitting with templates from global deformation

enables accurate fitting from coarse global shape according to local image appearance.
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Chapter 8

Applications

8.1 Scalable View-invariant Gait Recognition

Human identification using gait is a challenging computer vision task due to the dynamic

motion of gait and the existence of various sources of variations such as viewpoint, walking

speed, walking surface, clothing, etc. In this section we present gait recognition system based

on temporal normalization and style analysis. We develop a generative model by embedding

gait sequences into unit circles and learning nonlinear mappings which facilitate synthesis of

temporally-aligned gait sequences. The bilinear analysis of temporally-aligned gait sequences

decompose gait into time-invariant gait style and time-dependent gait content factors. We ex-

tend the bilinear gait model into tensor gait model, multilinear decomposition of gait sequences,

for view-invariant gait style representation. Given walking sequences captured from multiple

views of multiple people, we fit a multilinear model using higher-order singular value decom-

position which decomposes view factors in addition to the body configuration and gait style

factors. Gait style is a view-invariant, time-invariant, and speed-invariant gait signature that

can then be used in recognition. In the recognition phase, a new walking cycle of unknown

person in unknown view is automatically aligned to the learned model after cycle detection

and then iterative procedure is used to solve for both the gait style parameter and the view.

The estimated gait style parameters are used as feature vector for gait recognition. We also

show that the recognition can be generalized to new environment conditions by adapting the

gait content factor to reflect new observation condition and therefore obtain more accurate gait-

styles estimation and recognition. The proposed framework allows scalability to add a new

person to already learned model even if a single cycle of a single view is available. We present

experimental result using CMU Mobo gait database and USF gait challenging database.
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8.1.1 Manifold Embedding and Temporal Normalization of Gait

We explore gait embedding in low dimensional manifold space and achieve temporal normal-

ization based on manifold embedding and resampling.

Manifold Embedding for Gait

In order to achieve a recognition task with the existence of twists in the nonlinear embedded

manifolds, we need to use a standardized embedding that approximates the original manifold.

These variations pose a challenge if we would like to use motion manifolds as constraints for

the synthesis with temporal normalization. But, conceptually all these manifolds are the same.

They are all topologically equivalent, i.e., homeomorphic to each other and we can establish a

bijection between any pair of them. They are all also homeomorphic to the gait manifold in a

kinematic 3D body configuration space. Therefore, we embed each half gait cycle temporally

on a unit circle, i.e. a one dimensional manifold embedded in a two dimensional space. Input

silhouettes corresponding to each half walking cycle are embedded on an equally spaced points

along a unit circle for side view gait analysis. For view variant sequence, we use full one cycle

for the embedding.

Temporal Normalization and Re-Sampling

Given manifold embedding, we need to synthesize new silhouettes at standard time instances

during the cycle to be used for recognition. We define N-synthesized gait poses as a collection

of N synthesized silhouettes at N equally spaced time instances during a cycle which indicates

how the silhouette shape will look like at these N standard intermediate points. These synthe-

sized gait poses achieve temporal normalization from different number of frames, or different

walking speed, in each cycle.

In order to obtain such synthesized gait poses, we learn a nonlinear mapping function from

the manifold embedded on a unit circle into the input silhouettes. Learning nonlinear mapping

is necessary since the manifold is embedded nonlinearly and arbitrary into a unit circle. We

use generalized radial basis function (GRBF) [103] to learn such mapping as a collection of

interpolation functions.
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Input Sequences: Synthesized poses:

Figure 8.1: Original gait image sequences and their normalized gait poses

Let M equally spaced centers along a unit circle be {tj ∈ Re, j = 1, · · · ,M} and given

a set input images Y = {yi, i = 1, · · · , M} and let their corresponding embedding along the

unit circle be X = {xi, i = 1, · · · ,M}, we can learn interpolants in the form

fk(x) = pk(x) +
N∑

i=1

wk
i φ(|x− xi|), (8.1)

that satisfies the interpolation condition yk
i = fk(xi) where yk

i is the k-th pixel of input silhou-

ette yi, φ(·) is a real valued basis function, wk
i are real coefficients, pk(·) is a linear polynomial,

and | · | is the Euclidean distance, L2-norm. The mapping coefficients can be obtained by solv-

ing a linear system of equations as shown in Sec. 3.3. Such mapping can be written in the form

of a generative model as

f(x) = B · ψ(x) (8.2)

that nonlinearly maps any point x from the two dimensional embedding space into the input

space and therefore can be used to synthesize N intermediate silhouettes at N standard time

instances equally spaced along the unit circle. Therefore, Re-sampled gait from the embedding

space enables us to find temporally well aligned gait poses invariant to different walking speed

and frame rate using equally spaced N embedding points. In Fig. 8.1, the left three rows show

original image sequences for three different people and the right three rows show N-normalized

gait poses synthesized using the learned models from each input sequence.

Bilinear Model for Gait

It is well known in psychology that human perceptual systems naturally separate the content

and style factor of their observation in identifying a familiar face or gait seen under unfamiliar
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Figure 8.2: Style format and content format

viewing conditions. In the context of gait we aim to separate two orthogonal factors: gait

style: time-invariant personalized style of the gait which can be used for identification; and gait

content: time-dependent factor representing different body poses during the gait cycle. Gait

content is also dependent on other conditions such as viewpoint, shoe, ground, etc. An input

silhouette can be represented by a bilinear model as

Isc =
N∑

i=1

J∑

j=1

wijcisj (8.3)

using gait style vectors s and gait content vectors c and basis images wij , i.e., the model linearly

combines basis images wij using the style coefficients sj and content coefficient ci. The gait

content vector varies with time through the walking cycle to generate the various body poses

observed through the walking given the time-invariant gait style vector that characterizes the

walker.

Given a training data with different people and multiple gait cycles per person which might

manifest different conditions, the objective is to fit a model in the form of Eq. 8.3. The first step

towards this is to warp the time domain of different cycles to establish correspondences in time

between different cycles. This is done by embedding each cycle on a unit circle and therefore

synthesize intermediate poses at standard time instances to represent each cycle in the training

set.

Given L gait cycles for each of M different people in the training data where each gait

cycle is represented as N synthesized time-aligned poses at N standardized time instances,

where each image is represented as a K dimensional vector, we aim to fit a symmetric bilinear

model in the form of Eq. 8.3.

We arrange the synthesized gait image sequence into two forms: one is style format, Dsf ,



148

the other is content format, Dcf , as shown in Fig. 8.2. In style format, we have LM columns

where each column contains N synthesized gait pose images as one gait cycle vector and the

column vector size is KN . In content format, we have N columns where each column repre-

sents images of the same synthesized gait pose from all of the different gait cycles and different

people gait sequences, i.e., each column is of KLM dimension.

Given such arrangement, the objective is to decompose the style and content vectors, i.e.,

to decompose the matrix Dsf as

Dsf = CW csS (8.4)

or similarly Dcf = SW scC. Such model is called a symmetric bilinear model and it is

necessary in order to adapt the gait styles to new gait contents given new situations as will be

discussed later. In order to achieve such decomposition, asymmetric bilinear model is used to

decompose the data to separate gait style vectors S given content-dependent mapping T c and

to separate gait content vectors C given style-dependent mapping T s as

Dsf = T cS (8.5)

Dcf = T sC (8.6)

to minimize the reconstruction error, i.e., to minimize E = ||Dsf − T cS||2 and similarly for

Dcf . Such decomposition can be achieved by singular value decomposition (SVD) as was

shown in [128]. Given SVD for Dsf as Dsf = UDV T , least square optimal solution is

S = V T and T c = UD. Similarly we can achieve the decomposition in Eq. 8.6. We can

use J-dimensional approximation by choosing first J largest diagonal terms in D and setting

the rest to zeros. Given an asymmetric model fitted in the form of Eq. 8.5 and 8.6, symmetric

model can be fitted iteratively. However, the bilinear model will not works well when there are

multiple variant factors in addition to the gait style.

8.1.2 Multilinear Model for Gait Analysis: TensorGait

Given different people walking sequences from different views, we detect gait cycles using

gait cycle detection algorithm. After cycle detection for every person, each cycle is used to

learn the generative model described by equation 8.2 and re-sampled with the same number of

temporally aligned poses. Therefore, the training data consists of Ns gait cycles, each captured
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from Nv different views, and each consists of Np silhouette images representing aligned body

poses. Each silhouette image is represented as a d dimensional vector using the representation

described in section 8.1.1. The whole collection of aligned cycles for all different people and

views is arranged into order four tensor (4-way array) D with dimensionality Ns×Nv×Np×d.

The data tensor D can be decomposed to parameterize orthogonal style, view, and pose fac-

tors using higher-order singular value decomposition (HOSVD). Higher-order singular value

decomposition (HOSVD) is a generalization of SVD for multilinear model analysis by [72,

138, 137]. Multilinear model is a generalization of linear model (one-factor models) and bi-

linear model (two-factor models) [128] into higher-order tensor decomposition (multi-factor

models). The data tensor D is decomposed to establish forth-order tensor using HOSVD which

yields the decomposition

D = Z ×1 S ×2 V ×3 P ×4 M , (8.7)

where S, V , P , and M are orthogonal matrices with dimensionality Ns × Ns, Nv × Nv,

Np × Np, d × d corresponding to style, view, pose, and image orthogonal bases respectively.

Z is a core tensor with the same dimensionality as the data tensor D which represents the

interaction of the gait style, view, pose, and image pixel subspaces.

The orthogonal Ns × Ns matrix S spans the space of gait style parameters. In the style

basis matrix S = [s1s2 · · · ss]T , each vector si represents a style parameter of person i as an

Ns dimensional vector. This parameterization of the gait style independent of the view and

body configuration is the basic feature we use in the recognition. Fig. 8.3 shows an example of

the decomposition of gait style. We use 4 people from CMU-Mobogait data set with 6 cycles

each from 4 different views to fit the model. As apparent in the figure, gait style parameters

estimated from the different cycles of each person are clustered together in the style space.

Equation 8.7 can be rewritten as a generative model to synthesize gait cycles given any

style vector s and view vector v. This can be achieved by defining a new core tensor B =

Z ×3 P ×4 M. Therefore, gait cycle images can be synthesized as Dsv where

Dsv = B ×1 s×2 v (8.8)
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Figure 8.3: Tensor analysis: 4 people with 6 cycles each from 4 different views. (a) First
three style parameters for 6 gait cycles of each person. Each person’s style shows good clus-
tering within the person and good separation between different persons. (b)Four different view
vectors, which are orthogonal to each others.

8.1.3 Gait Recognition Algorithm

For gait recognition, we need to estimate style factors. We presents how to estimate style

from bilinear gait model and multilinear gait model. For the bilinear model, we used support

vector machine in addition to nearest neighborhood classifier. The recognition algorithm for

bilinear model using style vector can be applicable to multilinear gait model. In order to achieve

accurate style estimation in new environment, we utilized symmetric gait style model with

adaptation of content vectors in new environment. We use tensor gait model and estimate style

from know and unknown view in the view variant data set.

Gait Recognition using Asymmetric Bilinear Model

Given a new probe sequence and given a learned model from the training data, the objective

is to identify the person in the probe sequence, i.e., to recognize the gait style. Each probe

sequence is first segmented into half cycles and each half cycle is embedded into a unit circle.

Then, nonlinear mapping is used to synthesize time-aligned poses to be used in recognition.

Given N-synthesized silhouettes for each cycle of the probe sequence, the data is arranged into

a column vectors Ik
probe of dimensionality KN where K is image size (height×width) for each

probe cycle k. Given the asymmetric model learned from the training data as in Eq. 8.5, we can

solve for style vectors sk
probe using the pseudo-inverse for the content-dependent mapping Tc,

i.e.,

sk
probe = T−1

c Ik
probe = D−1UT Ik

probe (8.9)
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Figure 8.4: Recognition algorithm

The resulting probe style vectors, and the style vectors learned from the training data are

the basic features that can be used in the recognition. Each gait style vector is a point in a

J-dimensional feature space, and general classifiers can be used for classification purpose. We

used both k-NN classifier and SVM classifier to classify any new probe-style vector to one of

the learned people classes. The recognition procedure is shown in Fig. 8.4.

Notice that such recognition procedure uses only the asymmetric model in Eq. 8.5. Why

then we need a symmetric model? The answer is that we need symmetric model to adapt the

model to new environment and situations as will be discussed next.

Gait Recognition Using Symmetric Bilinear Models: Adapting Gait Style to New Situa-

tions

We expect gait style factor to be invariant to different situations such as view point, shoe,

ground, etc. How can that be achieved if we do not see all these different situations in the

training data? Given a learned model using data collected under certain situations, how can

we use such model for recognition under different situations? New situation means new gait

content or simply means new content-dependent mapping. Given a symmetric model in the
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form of Eq. 8.4, if we can adapt the content vector C to a new content vector C
′

for the new

situation we can then solve for the style vectors under the new situation. In other words we

need to extrapolate gait styles given new situations.

Given a probe data set captured under new condition, we show here how to recognize the

people in the probe set by adapting the model to the new condition. The only assumption we

make is that all the people in the probe set are part of the gallery set used for the training.

This is necessary anyway to be able identify the people in the probe set. If we know the

correspondences between people in the probe set and the people in the training set, then, we

can obviously solve for the new content vectors C
′

using the inverse of the style-dependent

mapping Ts. Unfortunately, we do not know such correspondences since we do not know

people class for the probe set.

In order to simultaneously identify people and adapt to new situations we use the fol-

lowing procedure. First, the probe data set is arranged in style-format and content-format,

Dprobe
sf , Dprobe

cf as was shown in Section 8.1.1 after detecting cycles, embedding, and gait syn-

thesis as was shown in Section 8.1.1. We can solve for approximate style vectors S
′

for the

probe set by pseudo-inverse using original W , C as

S
′
= [(W νC)ν ]−1Dprobe

sf (8.10)

where ν is matrix vector-transpose operation as defined in [128]. Given the recovered styles S
′

we can classify each cycle in the probe set to identify corresponding person from the training

data. We call this step pre-classification. Given the pre-classification result we can recover

the original style vectors S̃ by finding closest style vector in the original style vectors for each
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probe cycle. Now, we can adapt content vectors to a new situation by solving for the new

content vectors C
′

using the recovered style vector as

C
′
= [(WS̃)ν ]−1Dprobe

cf (8.11)

This adapted content vectors C
′

are expected to represent new environment better than original

content vectors C. Finally, we can use the adapted content vectors C
′

to obtain new style

vectors S
′′

in the same way as in Eq. 8.10 which is then can be used for final classification

in the new environment. The procedure is shown in Fig. 8.5. This iterative procedure can be

repeated to obtain better results.

Gait Recognition using Multilinear Analysis: Style Estimation for Unknown View

Given images y1, · · · , yk representing a full gait cycle from unknown view with k frames,

estimation of gait style is required for person identification. First, the sequence is used to learn

a generative model in the form of Eq. 8.2 and then the model is used to re-sample p gait images,

i1i2 · · · ip, which are aligned with gait poses used in multilinear analysis. By stacking the gait

images into a matrix D = [i1i2 · · · ip], the estimation of style and view can be formulated as

solving for s and v that minimize error

E(s, v) = ||D −B ×1 s×2 v||, (8.12)

where D is d×Np matrix. If the view vector v is known, we can obtain closed form solution

for s. This can be done by evaluating the product H = B × v and unfolding the tensor H
into a matrix by style-mode, i.e., H(1) = unfolding(H, 1), where unfolding(·) is matrix

unfolding operations defined in Appendix A. The dimensions of H(1) is Ns× (Nv ×Np× d).

Solution for s can be obtained in closed form by solving the linear system D = H(1)
T s.

Therefore estimation of s can be obtained by

s =
(
H(1)

T
)+

D (8.13)

where + is matrix pseudo-inverse operation using singular value decomposition (SVD). Sim-

ilarly, we can analytically solve for v if the style vector s is known by forming a tensor

G = B×1 v and forming its view-mode unfolding G(2). Therefore, we can obtain the view as

v =
(
G(2)

T
)+

D (8.14)
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Figure 8.6: Measurement of distance to style and view

Iterative estimation of s and v using (8.13) and (8.14) leads to local minima for the error in

(8.12). We can start initial style estimation by mean style s = (
∑Ns

i=1 si)/Ns. Fig. 8.6 shows

an example of the iterative estimation of view and gait style parameters. In this experiment we

used 8 people with 4 different views from the Mobogait dataset to learn the model. The figure

shows the change in the Euclidean distance to each mean style vector and mean view vector

with the iterations. In this figure, a side view cycle for the first person was used for testing. It

shows convergence to the correct style and view from the first iteration.

Given the estimated gait style vector s, and different people’s gait style vectors learned in

the training, the recognition is a typical pattern classification problem. We used two simple

classification approaches: Nearest Neighbor and Nearest class mean in multilinear gait model.

Experimental results show good recognition results even this simple classifier using iteratively

estimated style vector. More sophisticated classification methods can be applicable to achieve

even better results.

The proposed framework based on bilinear and multilinear analysis and gait recognition

based on estimated gait style vector can easily scale to include new people. Given a new

person, theoretically, only one cycle from a single view is required to be able to solve for the

person style parameter which can then be added to the trained database.

8.1.4 Experimental Result

Experimental results using CMU Mobo gait database and NIST-USF database [101] are re-

ported in this paper. We use NIST-USF Gait database [101] to test our bilinear approach with
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Figure 8.7: Recognition based on recovered gait style vectors.

adaptation to new environment. We use computed silhouettes for the May-Nov-2001 data. This

data set has probe sets with variation of viewpoint, footwear, walking surface and with/without

briefcase. We tested for the variation of viewpoint, footwear, and walking surface and com-

pared with baseline result [112]. For the gait recognition in multiple view, we tested with CMU

Mobo gait database.

Bilinear Model Test Using USF database

NIST-USF Gait database [101] is used to learn and evaluate our algorithm. We used computed

silhouettes for the May-Nov-2001 data. We arbitrary select 14 peoples for preliminary eval-

uation from grass surface, shoes type A, and right camera sequences as a gallery set (GAR)

and tested seven different conditions by variation of viewpoint (L), footwear (B), and walking

surface (C). Original image size is 128 × 88 and were resized 64 × 44, i.e., each input vector

size is 64 × 44 = 2816. The number of gait poses in synthesized gait is 13 and vector size

for one gait cycle is 36608 = 2816 × 13. The number of style vectors are 112 = 8(cycle per

people)×14 (people). The dimension of the data set Dsf is 36608× 112.

We evaluated identification accuracy with four different approaches: 1) An asymmetric

model with nearest neighbor classifier on the recovered gait styles. 2) A symmetric model with

nearest neighbor classifier. 3) A symmetric model with k-nearest neighbor classifier (k-NN).

4) A symmetric model with support vector machine classifier (SVM). For identification using

gait, we need to determine people based on sequences which might be composed of several
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Figure 8.8: Recognition with/without adaptation to new content vectors

cycles. So the classifiers we used identify people from each available input cycle, and boost the

result of multiple cycles by selecting the majority of individual classification results. Figure 8.7

show classification rates using the different classifiers.

The adaptation of the gait style to new environment helps classification in variant situation.

Figure 8.8 show comparison of human identification accuracy of a symmetric model with-

out adaptation of gait content vector and with adaptation of gait content vector using nearest

neighbor as well as using SVM classifier. In most of the cases, improvement can be noticed

using adaptation of content vector to new situation. In the cases where pre-classification re-

sults are above 50%, the final gait recognition results show improvement because good pre-

classifications make it possible to estimate the original style vectors well and, therefore, the

new situation content vector can be recovered which leads to improvements in the final style

classification results.

View Invariant and Scalable Gait Recognition

We demonstrate proposed view invariant and scalable gait recognition on two databases: one is

CMU mobo database and the other is USF-NIST gait database. In the preprocessing step, we

applied median filter to remove noisy holes and spots. Bounding boxes which cover each person

silhouettes were found and normalized to fixed size. Each silhouette shape is represented by a

signed-distance function.

Experiment 1: Recognition of gait in different speeds and views: In this experiment we
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View class slow walking sequences fast walking sequences Collins[27] (fast walking)
1(profile) 100% 88.9% 76%

2(front-right) 100% 88.9% N/A
3(front) 100% 92.6% 100%

4(front-left) 100% 88.9% N/A
Average 100% 90.0% 88%

Table 8.1: Gait recognition in different view and speed (CMU Data)

used CMU Mobo database, which has slow and fast walking sequences on a treadmill with

six different views [48], to test gait recognition in different speeds and views. We chose a

subset of 18 subjects which provided silhouettes for all different views and allowed finding

proper bounding box for the subjects. Four different views (profile view, front-right view, front

view, front-left view) were selected for multilinear gait analysis. Three cycles of slow walk for

each person are used to learn the multilinear model parameters. In summary, the training data

contains 18 people, 3 cycles each, from 4 views. Each person style is represented by the mean

of the three style vectors obtained from three training cycles.

For evaluation we used three different slow-walk cycles and three fast-walk cycles for each

of the 18 people with 4 views each. Overall there are 216 slow-walk evaluation cycles and 216

fast-walk evaluation cycles. For each evaluation cycle we estimate the view and the style of

parameters of gait as described in Section 8.1.3. Finally, people are identified by finding closest

style class mean. Table 8.1 shows the experiment result. For the slow-walk we achieve 100 %

correct recognitions for all the views. For the fast-walk, we achieve around 90 % accuracy

in average. The results shows fairly consistent recognition for all the different views. In both

cases we achieve 100% view identification. Even though we perform recognition for each cycle

without knowing the view label, our results show better identification than template matching

of key frames by Collins [27], shown in the forth column, which is tested for profile and front

view separately using whole sequences.

Experiment 2: Generalization and Scalability across Different Views: We evaluate the

scalability of the proposed framework, i.e., given a learned model, can we extend it to recognize

a new person from different view given that only one gait cycle from a single view is available

for that person for training?
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View class V1:slow V2:slow V3:slow V4: slow V1:fast V2:fast V3:fast V4:fast
V1(profile) 96.3% 72.2% 53.7% 75.9% 53.7% 55.6% 40.7% 55.6%

V2(front-right) 72.2% 88.9% 59.3% 66.7% 53.7% 64.8% 48.2% 63.0%
V3(front) 51.9% 66.7% 90.9% 57.4% 50.0% 59.3% 92.6% 53.7%

V4(front-left) 59.3% 75.9% 70.7% 98.1% 46.3% 46.3% 55.6% 63.0%
Average(all) 69.9% 75.9% 68.7% 87.5% 50.9% 56.5% 59.3% 58.8%

Table 8.2: Gait recognition across different views(CMU Data)

Difference Probe Set Baseline Nearest Mean Nearest Neighbor Kale [65]
View GAL 73% 86% 96 % 89 %
Shoe GBR 78% 82% 86 % 88 %

Shoe, view GBL 48% 68% 75 % 68 %
Surface CAR 32% 32% 43 % 35 %

Surface, shoe CBR 22% 43% 43 % 28 %
surface, view CAL 17% 25% 21 % 15 %

Surface, shoe, view CBL 17% 25% 29 % 21 %

Table 8.3: Comparison of Recognition with Baseline (USF Data)

To evaluate this, we performed a new experiment by learning the model with a subset

of subjects. Among 18 subjects, we learned the model using only eight subjects’ slow walk

sequences from 4 views. For the rest 10 subjects, only a single cycle data of slow walk from

one view was given. We used this single view cycle to estimate gait style parameters. All

the estimated style parameters are used as a database for recognition. The recognition is then

evaluated using a test set consisting of 3 different slow-walk cycles and 3 fast-walk cycles from

4 views for all the 18 people.

Table 8.2 shows recognition results across different views. We repeated the experiment

by varying the view used in training for the 10 people with each single view cycle. Results

show general identification capability to unknown views using style learned from a specific

view. This clearly shows that the gait-style parameter is invariant to different view point. The

identification performance varies across different views and the view used for training shows

better performance on trained view class than others. Others, which do not learned style at all

for the views,still, shows potentials for gait recognition. The performance can be improved by

using multiple cycles in the style estimation for given views.

Experiment 3: Recognition of Gait with Continuous Variation of Views (USF dataset): In
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Figure 8.9: Recognition result

this experiment we use NIST-USF Gait database [101] to evaluate performance of gait recog-

nition with continuous variation of the view due to the elliptical course that people used in

capturing the database. We arbitrary select 28 people for a preliminary evaluation. We choose

GAR, which is the gait sequence in grass surface, shoes type A, and right camera sequences,

as a gallery set and tested by seven probe sets with variants in view, shoe and surface. Seven

cycles were detected from the gallery sets and the probe sets. Three representative cycles of

different views were selected from each sequence of gallery sets to learn the model.

For recognition we evaluated two classifiers for each estimated gait-style parameter for

each test cycle: nearest style class mean (Model Style) and nearest neighbor style (Gallery

Styles). In both cases, we used majority vote from different test cycles to determine final person

identification. Results are shown in Table 8.3 and Fig. 8.9. Table 8.3 also shows recognition

results reported in baseline evaluation [112] and recognition results reported using HMM by

Kale et al in [65].

8.2 Carrying Object Detection

Iterative procedure to estimate shape style and body pose using pose preserving generative

model allows estimation of outlier in addition to accurate body pose and shape style estimation.

The model is also used for hole filling in the background-subtracted silhouettes using mask

generated from the dynamic shape model. By iterative analysis of outlier and hole filling in the

sequence of visual input, we can detect carry object efficiently.
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8.2.1 Pose Preserving Dynamic Shape Models

When we know the state of the decomposable generative model, we can synthesize the cor-

responding dynamic shapes. For given body pose parameter, we can reconstruct best fitting

shape by estimating style and view parameter with preserving the body pose. Similarly, when

we know body pose parameter and view parameter, we can reconstruct best fitting shape by

estimating style parameter with preserving view and body pose. If we want to synthesize new

shape at time t for a given shape normalized input yt, we need to estimate the body pose xt ,

the view v, and the shape style s which minimize the reconstruction error

E(xt,v, s) =|| yt −A× v × s× ψ(xt) || . (8.15)

We assume that the estimated optimal style can be written as a linear combination of style

vectors in the training data. Therefore, we need to solve for linear regression weights α such

that sest =
∑Ks

k=1 αks
k where each sk is one of the Ks shape style vectors in the training data.

Similarly for the view, we need to solve for weights β such that vest =
∑Kv

k=1 βkv
k where

each vk is one of the Kv view class vectors. This Eq. 8.15 can be solved using deterministic

annealing procedure presented in Sec. 4.5.

8.2.2 Iterative Carrying Object Detection

We can detect carrying object by iterative estimation of outlier using the generative model that

can synthesize pose-preserving shape. In order to achieve better alignment in normalized shape

representation, we performed hole filling and outlier removal for the extracted shape.

Hole Filling

We fill holes in the background-subtracted shape to attain more accurate shape representation.

When the foreground color and the background color are the same, most of the background

subtracted shape silhouette has holes inside the extracted shape. This causes inaccurate de-

scription of shape in signed distance function. Hence holes inside shape result in errors in the

estimation of best fitting model. It can also induce misalignment of shape as the hole can shift

center of gravity for the horizontal axis alignment.
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From the signed distance representation, we can generate a mask to represent inside of the

shape corresponding to estimated style, view, and body pose. We can use the mask to fill holes

for the original shape. The mask can be generated by thresholding generated signed distance

shape representation as

h(x)hole mask =





1 dc(x) ≥ dTHhole
c

0 otherwise
, (8.16)

where dTHhole
c ≥ 0 is threshold value for inner shape to create mask to fill hole. If the threshold

value is zero, the mask will be the same as the silhouette image generated by dynamic shape

model given style, view and configuration. As we don’t know the exact shape style, view and

configuration at the beginning, and the hole causes misalignment, we start from large threshold

value, which generate a small mask of inner shape and robust to misalignment. We reduce

threshold value as parameter estimation gets more accurate. The hole filling operation can be

described by yhole filling = z
(
bin(y)⊕ h(yest)

)
, where⊕ is logical OR operator to combine

extracted foreground silhouette and mask area, bin(·) converts signed distance shape repre-

sentation into binary representation, and z(·) convert binary representation into signed distance

representation with threshold. Fig. 8.11 shows initial shape normalized silhouette with holes

(a), best estimated shape model (b) which is generated from the generative model with style

and view estimation and configuration search, and hole mask (c) when dTHhole
c = 3, and new

hole filled shape (d). We can improve the best matching shape even initial inaccurate shape

extraction for given shape style and view by excluding mask area in the computation of sim-

ilarity measurement for generative samples. By re-alignment of shape and re-computing of

shape representation after hole filling provide better shape description for next step.

Carrying Object Detection

Carrying objects are detected by estimating outlier from best matching normal dynamic shape

and given input shape. Outliers of shape silhouettes in carrying objects are the mismatching

part in input shape compared with best matching normal walking shape. Carrying objects are

the major source of mismatching when we compare with normal walking shape even though

other factors such as inaccurate shape extraction in background subtraction, shape misalign-

ment cause mismatches. For accurate detection of carrying object from outlier, we need to
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(a) (b) (c) (d)

Figure 8.10: Hole filling using mask from best fitting model : (a) Initial normalized shape with
hole. (b) Best matching shape from generative model. (c) Overlapping with initial silhouette
and mask from best matching shape by threshold. (d) New shape with reduced hole.

remove other source of outlier such as hole and misalignment in shape. Hole filling and outlier

removal are performed iteratively to improve hole for better alignment and estimation of shape.

We gradually reduce threshold value for outlier detection to get more precise estimation of

outlier progressively. The mismatching error e(x) is measured by Euclidian distance between

signed distance input shape and best matching shape from dynamic shape model

ec(x) = ||zc(x)− zest
c (x)|| . (8.17)

The error e(x) increase linearly as the outlier goes away from the matching shape contour due

to signed distance representation. By thresholding the error distance, we can detect outlier.

O(x)outlier mask =





1 ec(x) ≥ eTHoutlier
c

0 otherwise
, (8.18)

At the beginning, we start from large eTHoutlier
c value and we reduce the value gradually.

Whenever we detect outlier, we remove the outlier and perform realignment to remove align-

ment artifact due to outlier. For example, given signed distance input shape (e), we measure

mismatching error (f) by comparing with best matching shape (b). Outlier is detected (g) with

given threshold value eTHoutlier
c = 5, and new shape for next iteration is generated by removing

outlier (h) in Fig. 8.11. This outlier detection and removal are combined with hole filling as

both of them help accurate alignment of shape and estimation of best matching style, view and

body pose.
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(a) (b) (c) (d)

Figure 8.11: Outlier detection and removal: (a) Initial normalized shape for outlier detection
with signed distance representation. (b) Euclidian distance between best matching model from
the generative model and input shape with signed distance representation. (c) Detected outlier
with threshold value e(x) ≥ 5. (d) New shape after removing outlier.

Iterative Estimation of Outlier with Hole Filling

An iterative estimation of outlier, hole filling, outlier removal, and estimation of shape style,

view and configuration is performed with threshold value control. The threshold value for hole

filling and the threshold value for outlier detection need to be decreased to get more precise in

the outlier detection and hole filling in each iteration. In addition, we control the number of

sample to search body pose for estimated view and shape style from small number to large num-

ber. At the initial stage, as we cannot reach accurate estimation of body pose due to inaccuracy

of shape style and view, we can use small number of sample along the manifold with equally

distant samples. As the estimation progress, we estimate more accurate estimation of body

pose with increased number of samples to compare with given input shape. We summarize the

iterative estimation as follows:

Input: image y, view class means vk, style class means sk, core tensor A

Initialization: • initialize Tv and Ts

• initialize α and β to uniform weights

• Compute initial s =
∑Ks

k=1 αksk, v =
∑Kv

k=1 βkvk

• initialize sample num Nsp

• initialize d
THhole
c , e

THoutlier
c

Iterate: • Compute coefficient B = A× s× v
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• Estimate body configuration: 1-D search for x that minimizes E(x) = ||y −Bψ(x)||

• estimate new view factor

– Compute p(y|x, s, vk)

– Update view weights βk = p(vk|y, x, s)

– Estimate new v as v =
∑Kv

k=1 βkvk

• Update coefficient B = C × s× v

• Estimate body configuration: 1-D search for x that minimizes E(x) = ||y −Bψ(x)||

• estimate new style factor

– Compute p(y|x, sk, v)

– Update style weights αk = p(sk|y, x, v)

– Estimate new s as s =
∑Ks

k=1 αksk

• Generate Nsp samples ysp
i bi, i = 1, · · · , Nsp

– Coefficient C = A× s× v

– embedding bi = g(βi), βi = i
Msp

• Generate hole filling mask hi = h(ysp
i )

• Update input with hole filling yhole filling = z
(
bin(y)⊕ hi(y

est)
)

• Estimate best fitting shape with hole filling mask: 1-D search for yest that minimizes E(bi) =

||yhole filling − hi (Cψ(bi)) ||

• Compute outlier error ec(x) = ||yhole filling − yest(x)||

• Estimate outlier ooutlier(x) = ec(x) ≥ e
THoutlier
c

Update: • reduce d
THhole
c , e

THoutlier
c

• increase Nsp

• reduce Tv , Ts

At the end of the iteration we reach best estimation of body pose with view and shape style

estimation. Based on the best matching shape, we compute the outlier from the initial source

after re-centering initial source based on history of pose alignment.

8.2.3 Experimental Results

We evaluated our method using two gait-database. One is from CMU Mobo dataset and the

other is our own dataset for multiple view gait sequence. Robust outlier detection in spite
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8.12: Outlier detection in different view: (a) Initial normalized shape for outlier detec-
tion. (b) The best fitting model from the generative model. (c) Overlapping initial input and
hole filling mask at the last iteration. (d) Detected outlier. (e) (f) (g) (h) : Another view in
different person

of hole in the silhouette images was shown clearly in CMU database. We collected our own

dataset to show carrying object detection in continuous view variations.

Carrying Ball Detection from Multiple Views

The CMU Mobo database contains 25 subjects with 6 different views walking on the treadmill

to study human locomotion as a biometric [48]. The database provides silhouette sequence ex-

tracted based on one background image. Most of the sequences have holes in the background

subtracted silhouette sequences. We collected 12(= 4× 3) cycles to learn dynamic shape mod-

els with view and style variations from normal slow walking sequences of 4 subjects with 3

different views. For the training sequences, we corrected holes manually. Fig. 8.12 shows

detected carrying objects in two different views from different people. The initial normalized

shape has holes with a carrying ball (a)(e). Still the best fitting shape models recover cor-

rect body pose after iterative estimations of view and shape style with hole filling and outlier

removal (b)(f). Fig. 8.12 (c)(g) show examples of generated masks during iteration for hole

filling. Fig. 8.12 shows example outlier detected at the end. In Fig. 8.12 (h), the outlier in bot-

tom right corner comes from the inaccurate background subtraction outside the subject, which

cannot be managed by hole filling. The verification routine based on temporal characteristics

of the outlier similar to [8] can be used to exclude such a outlier from detected carrying objects.
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Frame 1 Frame 15 Frame 30 Frame 45

Frame 60 Frame 75 Frame 90 Frame 105

Figure 8.13: Outlier detection in continuous view variations: First row: Input image. Second
row: Extracted silhouette shape. Third row: Best matching shape. Fourth row: Detected
carrying object

Carrying Object Detection with Continuous View Variations

We collected 4 people with 7 different views to learn the pose preserving shape model of normal

walking for detection of carrying object in continuous view variations. In order to achieve rea-

sonable multiple views interpolation, we captured normal gait sequence on the treadmill with

the same height camera position in the lab. The test sequence is captured separately in outdoor

using commercial camcorder. Fig. 8.13 and Fig. 8.13 shows an example sequence of carrying

object detection in continuous change of walking direction. The first row shows original input

images from the camcorder. The second row shows normalized shape after background sub-

traction. We used the nonparametric kernel density estimation method for per-pixel background

models, which is proposed in [35]. The third row shows best matching shape estimated after

hole filling and outlier removal using dynamic shape models with multiple views. The fourth

row shows detected outlier. Most of the dominant outlier comes from the carrying object.
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8.3 High Resolution Facial Expression Control from Video Sequence

Human faces can express not only basic emotions such as anger, surprise, or happiness, but

also subtle thoughts or emotions. If we take the variations of a smile as an example, they com-

municate not only happiness but many other cognitive/emotional states: a smile of enjoyment,

a scornful smile, a pleased smile, a flirtatious smile, a heart-warming smile, a smirk, and so on.

In order to analyze the subtle differences between individuals, decomposable nonlinear gener-

ative models are proposed to model subtle motions and dynamic texture changes of different

people. For this purpose, an empirical kernel map along with an embedded manifold and a pro-

jection, is introduced to represent the nonlinear mapping for each cycle of facial motions. The

subtle differences of facial motions across different persons and expressions are represented in

the projection. Through a multi-linear analysis of these linear projections, we can decompose

the nonlinear mappings into two main factors: the personal style, individual characteristics of

expressions, and the expression type, subtle variations in expressions. Consequently, new fa-

cial expressions can be generated by using different personal style and expression type factors,

along with the common embedded manifold, which encodes the temporal information of facial

expressions. We also present a performance-driven approach to create high resolution facial

expressions based on an exemplar video sequence.

8.3.1 System Overview

Our high resolution facial expression synthesis system includes five main components: data

acquisition, facial motion tracking, modeling facial expressions with decomposable generative

models, estimation of facial expression control parameters, and synthesis of high resolution

facial expressions. In the data acquisition stage, we collect both high resolution dynamic range

data of facial expressions and 2D video sequences separately for each subject. Both 2D and 3D

facial expression sequences are captured at high frame rates from multiple people with several

expression types. In order to establish correspondences between different frames within one

sequence and between different sequences, we employed a high resolution 3D tracking method

using harmonic maps [144] to extract detailed facial motions with subtleties from dynamic

range data, while low resolution facial motions are extracted from video sequences using a 2D
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Figure 8.14: Components of high resolution facial expression synthesis system from video
sequences

tracking method based on 2D contours and 3D deformable models.

Because the tracking results extracted from 2D video sequences and from dynamic range

data have different levels of detail, we derive from these two sources of facial motion data, two

generative models with different resolutions and the same kinds of state decomposition. In or-

der to analyze the subtle differences between individuals, we propose decomposable nonlinear

generative models that model subtle motions of different people. For this purpose, an empir-

ical kernel map, along with the embedding manifold and the linear projection, is introduced

to represent the nonlinear mapping for each cycle of facial motions. However, since both 2D

and 3D tracking data are extracted from similar facial expressions, the same conceptual motion

manifold can be applied to both data. Consequently, the differences in high resolution facial

motions with subtleties and low resolution facial motions are encoded in the linear projections

following the same empirical kernel map. In order to decompose the nonlinear mapping into

multiple expression factors, a multi-linear analysis is performed on high resolution and low

resolution tracking data separately. This analysis provides a decomposition of each personal

style and expression type using multiple expression bases. Although these expression bases

associated to high resolution facial motions with subtleties and low resolution facial motions

are different from each other because of different levels of detail, an important observation is

that a new expression vector estimated from different resolution tracking data shares a similar
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distance to each expression basis in all levels of detail. It also implies that the normalized ex-

pression bases provided by our nonlinear decomposition algorithm are invariant to the levels of

detail and different vector dimensions after the kernel mapping.

Finally, new high resolution stylized facial expressions can be generated using the non-

linear generative models with two main factors: “personal style” and “expression type”. In

particular, new facial expressions can be synthesized by two approaches: (1) by changing di-

rectly the weighting of personal style and expression type or (2) by estimating the weighting of

personal style and expression type from an exemplar video sequence of a target subject’s facial

expression.

8.3.2 Modeling and Analyzing Facial Expressions

A major issue in creating facial expression animation is how to model and control the dynamics

in facial motions, which often include nonlinear deformations. In addition, the facial motions

usually do not take place in uniform speed and depend on both personal styles and expression

types. We represent facial motions by motion fields of a high dimensional generic model to

capture detailed expression motion, and each frame is formed in a high dimensional vector by

collecting the vertex displacements. To begin with, a low dimensional representation of facial

motions is derived using conceptual motion manifold embedding. Then, kernel mappings are

utilized to capture nonlinear characteristics in the facial motions. Multilinear analysis of the

nonlinear mapping coefficients, which encode different personal styles and expression types,

provides decomposable nonlinear generative models for the facial motions with compact state

parameterizations.

Based on sample data collected for tracking facial expressions with expression change from

a neutral to a specific target expression and to neutral again from each person and expres-

sion type, we can learn a nonlinear generative mapping between the embedding space and the

original facial motion. Given a facial motion sequence Y se = [yse
1 yse

2 · · ·yse
Nse

]T , where

Nse is the number of captured motion frames for the sequence with style s and expression

e, we can embed such sequence temporally at equidistance points on a unit circle such that

xse
i = [cos(2πi/Nse) sin(2πi/Nse)], i = 1 · · ·Nse. With each entire sequence and its em-

bedding Xse = [xse
1 xse

2 · · ·xse
Nse

]T , we can learn a nonlinear mapping function fse(x) that
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satisfies fse(xi) = yse
i , i = 1 · · ·Nse. Using empirical kernel map as described in Sec. 3.3, we

learn nonlinear mapping of the form

fse(x) = Bse · ψ(x), (8.19)

where B is a d×N coefficient matrix and ψ(·) : Rl → RN is a kernel mapping.

For a given kernel ψ(x), the matrix Bse captures the facial motion characteristics for ex-

pression style s and type e. Given facial motion sequences with Ns personal styles and Ne

expression types, we obtain Ns × Ne mappings. By converting each mapping matrix B into

the corresponding mapping coefficient vector bse, by column stacking, the collection of map-

ping coefficients can arranged into a high order tensor of personal styles and expression types.

Modeling Facial Expressions

Facial motion can be described by vertex movements in each frame from high resolution 3D

tracking and from low resolution video sequence tracking as we preserve one-to-one intra-

frame correspondences in model-based tracking. Let vt ∈ R3N×1 be locations of 3D points

at time instance t representing N facial nodal points in a 3-dimensional space, where N is the

number of nodal points in a dense generic facial model. The trajectory of the 3D nodal points

is the combination of global transformation and facial motion and varies for each person and

expression. The captured vertex data is a combination of global transformation, person face

geometry, and facial motion. It can be described for the personal style s and the expression

type e as

vse
t = Tαty

se
t = Tαt(y

se
t0 + mse

t ), (8.20)

where Tαt is the global transformation due to head motion at time t, yse
t is the face nodal point

location at time t after normalization for global transformation with dimension d, including

motion and geometry, yse
t0 is the facial geometry at the initial frame mt is the displacement

of vertex points from initial geometry. Since for each person, the expression sequence was

collected to start from neutral expressionwe assume that the initial frame yse
t0 is the person

geometry. yt is the combination of person geometry and facial motion at time t. If we need to

model only facial motion, we can use mt. When we are interested in both facial motion and

person geometry, we use vertex movement yt after normalizing global transformation Tαt .
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8.3.3 Estimations of Personal Style, Expression Type, and Motion Configuration

When we know the state of the decomposable facial expression model, we can synthesize

the corresponding facial expressions. For a given tracking data yt, we need to estimate the

motion configuration xt , the expression type e, and the personal style s which minimize the

reconstruction error

E(xt, e, s) =|| yt − C × e× s× ψ(xt). || (8.21)

in order to know the control parameter for the given data. We assume that the estimated optimal

personal style can be written as a linear combination of style vectors in the training data. The

personal style vectors are orthogonal to each other (as are the expression type vectors) thus any

expression style can be uniquely represented by their combination. Therefore, we need to solve

for linear regression weights α such that sest =
∑Ks

k=1 αks
k where each sk is one of the Ks

personal style vectors in the training data. Similarly for the expression type, we need to solve

for weights β such that eest =
∑Ke

k=1 βke
k where each ek is one of the Ke expression type

vectors. An iterative procedure described in Sec. 4.5, is used to estimate xt,e, s from given

input yt similar to [78]. We applied the estimation procedure to low resolution video sequence

tracking to estimate the state of high resolution 3D model.

8.3.4 Control Parameter Estimation from Video Sequence

We can achieve approximate estimation of the personal style and the expression type parameters

for low resolution facial motion model from a 2D video sequence. There estimates can then

be applied to the control of the corresponding high resolution 3D facial motions. The low

resolution tracking results from video sequences show distinguishable variations in different

people and in different expressions even though it does not capture subtle expression details

in the expression such as wrinkles. The nonlinear decomposable model for low resolution

tracking from 2D texture images, which are corresponding to every range data used for high

resolution tracking, establishes new basis for the low resolution 3D tracking from video for

the same person and expression with the same number of sequence used for decomposition

of dense 3D tracking. Even though the basis for the personal style and the expression type is

different between high resolution facial motion model and low resolution facial motion model,
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the relative distances in the basis for the estimated personal style and the expression type are

preserved. Therefore, we can use the weighting factor, which represents the similarity of the

estimated expression by the known personal style and expression type, which is proportional

to the exponential of distance from estimated style vector and expression vector to the known

style and expression vector, to control high resolution facial expression generative models with

estimated weight parameters.

8.3.5 Experimental Results

We demonstrate the performance of our framework through analysis and synthesis of several

types of smiles that often happen on human faces. In order to acquire a small database of

facial expressions, we invited two actors and one actress to perform three different types of

smile: a) soft affectionate (SA) smile, b) coy flirtatious (CF) smile, and c) devious smirk(DS).

In addition the same instructions are provided to achieve relatively consistent facial expressions

across actors/actresses. Afterwards, we learned a nonlinear generative model for three subjects

(Ns = 3) with three different types of smile expressions (Ne = 3) based on high resolution

tracking results from range data.

To synthesize high resolution stylized facial motions in different expressions, we only need

to estimate the weighting of personal styles and expression types, which allow us to generate

new facial motions from the decomposable nonlinear generative model. Given certain personal

style and expression type vectors, we can generate new facial expressions from generative

models by tensor multiplications. We provide two methods to synthesize new stylized facial

expressions: (1) direct control of the weighting parameters and (2) a video-driven approach.

Direct control of the weighting parameters

We can generate new personal styles and expression types by a weighted linear combination of

the existing personal style and expression type vectors that are provided by the decomposable

generative model learned from the collected sequences. i.e.

enew = we1e1 + we2e2 + · · ·+ weNe
eNe , (8.22)
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where
∑Ne

1 wi = 1. As each weight of expression type is proportional to the conceptual sim-

ilarity of new expression to each given expression type used for modeling facial motions, a

user can turn the expression weight efficiently to generate new type of expression. The user

can tune the person style parameter similarly based on similarity of the new sequence to the

people used for modeling. The new personal style and expression type vector will define a new

linear projection Bnew and generate nonlinear facial motions after kernel mapping. The linear

combination can be adjusted intuitively even by non-expert user based on similarity weight-

ing of the target sequence and the basis personal styles and expression types. In addition, as

the proposed model represent facial motions in decomposable generative framework, the style

weight, the expression weight, and dynamic factor (configuration embedding) can be controlled

independently.

Figure 8.15: Comparison of configuration interpolation on embedding manifold and linear
interpolation: Rows: 1

5T and 2
5T , where T is the total frame number. Left column: original

facial motions. Middle column: linear interpolation of intermediate expression based on the
beginning and peak expression frame. Right column: synthetic results from the embedding
manifold.

Fig. 8.15 compares the synthetic results of our method to the results by the linear interpo-

lation. As we can see, the linear combination of the beginning and the peak expression frame

cannot generate subtle motions in the intermediate state captured using high resolution track-

ing (in the middle column). However, our proposed nonlinear generative model with manifold
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embedding and kernel map counting dynamics can synthesize subtle details in the intermedi-

ate expressions (right column) closer to the original motions (left column). Fig. 8.16 shows a

example of morphing on both the personal style and the expression type. It starts with one sub-

ject’s soft affectionate smile with certain expression type and personal style and then changes

to another subject’s devious smirk with a smooth transition in the middle frames. Fig. 8.17

shows an example of transferring personal styles. Even in the same face geometry, you can still

see the different subtleties caused by different personal style.

Figure 8.16: An example of morphing on both the personal style and the expression type: A
morphing from the soft affectionate (SA) smile of one subject to the devious smirk (DS) of
another subject.

Figure 8.17: Synthesizing new facial personal styles: First column: Subject A’s soft affectionate
smile, Forth column: Subject B’s soft affectionate smile, Second column: 75% style A + 25%
style B, and Third column: 25% style A + 75% style B.
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Video-driven approach

Another scheme to control high resolution facial expressions is a video-driven approach, by

estimating the weighting of personal styles and expression types from an exemplar video

sequence of a target subject’s facial expression. The 2D contour tracking can be done 60

frames/sec and low resolution 3D facial motion tracking from the 2D contour and captured

image by 5 frames/sec in C++ implementation. Using the low resolution 3D tracking data, we

estimate the personal styles, expression type, and motion configuration parameters for every

frame. Then, we synthesize new facial expressions based on the estimated parameters using

the high resolution facial expression models.
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Figure 8.18: A synthetic facial expression of a subject in the training database, based on a video
sequence of an expression that was not used in the training stage.
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Fig. 8.18 shows a synthetic dense 3D facial expression sequence based on an input 2D video

sequence. Even though the new expression has different temporal characteristics compared to

the sequences used for facial motion modeling, the estimated configuration parameters can

capture the temporal differences by the new configuration sequences. Fig. 8.19 shows the esti-

mation of the personal style and the expression type of a new subject. The new subject’s style is

represented by a weighted combination of training subjects’ styles. Expression type parameters

are accurately estimated for a correct devious smirk. In addition, the head motions extracted

from the low resolution 3D tracking are integrated in the resulting global transformation Tα,

which makes the synthesized facial expression more realistic.
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Figure 8.19: Performance-driven animation of the high resolution facial expression motion
from video sequence tracking: From the input video sequence with low resolution tracking (in
the first row), we can estimate the weighting of expression types (second row) and personal
styles (third row). Using the estimated weighting, we can synthesize high resolution facial
expression animation (in the forth row).

Fig. 8.20 shows synthesized high resolution images from two different subtle expressions.

Even though the images are similar, the estimated personal style and expression type parameters
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distinguish subtle difference and we can generate high resolution facial expressions with subtle

differences. In video sequence, we compare two generated motions. On the left column, we

see the original low resolution video sequence, which is used to capture the motion. On the

middle column we see the expression that was generated using only the low-resolution captured

motion. On the right column we see the same sequence enhanced by subtle details generated

by our high resolution decomposable generative model.
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Figure 8.20: Synthesis of expressions with subtle differences: First row : an input video se-
quence with low resolution tracking. Second row : Estimated expression type weight (right)
and style weight (left) for each video image. Third row : Synthesized high resolution expres-
sions (left) and details around mouth corner(right) using estimated style and expression type
from each video image.
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Chapter 9

Conclusion

We presented a novel framework for modeling dynamic shape and appearance of articulated

human motions. We introduced a framework for learning global representations of dynamic

shape and dynamic appearance manifolds. The framework is based on using nonlinear man-

ifold learning to achieve an embedding of the global deformation manifold, which preserves

its the geometric structure. Given such embedding, a nonlinear mapping is learned from such

embedded space into visual input space using RBF interpolation. Given this framework, any

visual input is represented by a linear combination of nonlinear bases functions centered along

the manifold in the embedded space. In a sense, the approach utilizes the implicit correspon-

dences imposed by the global vector representation, which are only valid locally on the mani-

fold, through explicit modeling of the manifold and the RBF interpolation where closer points

on the manifold will have higher contributions than far away points.

We showed how to learn a factorized generative model that separates appearance variations

from the intrinsics underlying dynamics manifold though introducing a framework for separa-

tion of style and content on a nonlinear manifold. The framework is based on decomposing

the style parameters in the space of nonlinear functions that maps between a learned unified

nonlinear embedding of multiple content manifolds and the visual input space. The framework

yields an unsupervised procedure that handles dynamic, nonlinear manifolds. It also improves

on past work on nonlinear dimensionality reduction by being able to handle multiple mani-

folds. The proposed framework was shown to be able to separate style and content on both the

gait manifold and a simple facial expression manifold. We further extend the model to cover

multiple factor variations, such as view and motion type, using multilinear tensor analysis and

conceptual manifold embedding.
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To model the continuous view manifold as well as the continuous body configuration mani-

fold, we used a product manifold representation using both supervised and unsupervised mani-

fold learning techniques. We explicitly model view manifold and body pose manifold with two

orthogonal components on a torus manifold for one dimensional human motion such as gait and

golf swings. As an alternative approach, we model the continuous view manifold invariant to

body configuration based on an embedding of the kinematics’ manifold. View manifold is pa-

rameterized by factorization of the nonlinear mapping coefficients from a common kinematics

embedding to view variant sequences captured along a view circle.

We demonstrated the advantages of our generative model for high dimensional dynamic

human motion analysis, tracking and synthesis by applying to several applications. Using shape

style, or expression type parameters within our factorized generative models, we parameterize

the characteristics of dynamic shape and appearance variations by static feature vectors such as

shape style and expression type, which are invariant to body poses (dynamic components). As

a result, we achieve robust gait recognition and facial expression recognition from sequences

of motion or from a single image frame.

Utilizing low dimensional body configuration embedding, we formulate the human motion

tracking problem as body configuration estimation on the low dimensional manifold embed-

ding, as well as, a style factor estimation among different people. Since the framework is gen-

erative, it fits well in the Bayesian tracking framework and it provides separate low dimensional

representations for each of the modeled factors. Moreover, a dynamic model for configuration

is well defined since it is constrained to the low dimensional manifold representation. The low

dimensional nonlinear manifold embedding preserves intrinsic constraints of human motion

and achieves robust tracking results. Additionally, as we estimate variations of shape in the

factorized shape style during tracking, we achieve simultaneous estimation of person identity

as well as body configuration from gait video sequence.

We showed how the learned representation can be used to interpolate intermediate body

poses as well as in recovery and reconstruction of the input. We extended the approach to learn

mappings from the embedded motion manifold to 3D joint angle representation which yields

an approximate closed-form solution for 3D pose recovery. The dynamic shape and appearance

model is also applied for modeling shape deformation during facial expressions. The dynamic
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shape and appearance model of facial expressions combined the global shape and appearance

deformation and local deformation using appearance templates, which are updated through the

global shape appearance model. Proposed models are also applied for carrying object detection,

emotion recognition and synthesis, high-resolution facial expression synthesis, inferring body

pose, and tracking articulated human motion in video sequences.

Modeling complicated human motion is still a challenging problem even though some of

our approach is directly applicable to complicated motion. One-dimensional manifolds can be

explicitly modeled in a straight forward way. The complicated human motion may be repre-

sented by a combination of primitive motions. Finding primitive motions automatically, and

segmenting a complicated motion into a combination of motion primitives, and analyzing and

synthesizing the complicated motion based on motion primitives are challenging problems for

modeling general human motion. The generalization of factorized decomposable generative

model to such a complicated human motion can be useful for arbitrary action recognition,

tracking for intelligent surveillance, sport video analysis and retrieval, emotion recognition and

human computer interaction.

In case of multiple sequences from different people, the data lie on multiple manifolds.

Given multiple motion sequences from the same type of motion in different people, an under-

lying common manifold among the different data sets might exist. Current manifold learning

techniques fail in finding common manifold representation from multiple manifolds. In our

work, we presented two manifold embedding techniques to overcome such problems: one is

a unified manifold embedding learned from individual manifolds of individual sequences; and

the other is a visual observation invariant manifold such as a conceptual representation, or a

kinematic manifold. However, our current approach may not be optimal to represent a com-

mon manifold from multiple manifolds. Extension to simultaneous modeling of multiple man-

ifolds is very challenging. A better representation might be found from multiple manifolds by

analyzing the inter- and the intra-manifold distances.

Visual learning based on manifold embedding contributes to the fundamental research of

human cognitive system and representation of dynamic motions in artificial intelligence, and is

also applicable to other related domains such as medical image analysis and sequence compar-

ison in bio-informatics.
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Appendix A

Higher-order Tensor Analysis

Multilinear model is a generalization of linear model (one-factor models) and bilinear model

(two-factor models) [128] into higher-order tensor decomposition (multi-factor models). It

is called n-mode analysis, multimode component analysis [87], Tucker3 model, which was

originally proposed and developed in [132, 67]. Higher-order singular value decomposition

(HOSVD) is a generalization of SVD for higher-order tensor analysis by [72] and extended for

lower dimensional approximation by higher-order orthogonal iteration method [73]. There are

three important extensions of linear algebra for higher order tensor analysis using HOSVD.

First, matrix unfolding is defined to represent higher-order tensor into matrix form. Higher-

order tensor can be expressed as a collection of regular two-dimensional matrix. Matrix un-

folding of a given N th-order tensor D ∈ CI1×I2×···×IN can be defined as a two-dimensional

matrix D(n) ∈ CIn×(In+1In+2···IN I1I2···In−1), which contains element ai1i2···iN at the position

with row number in and column number jn
1.

Second, matrix multiplication of higher-order tensor is defined. The n-mode multiplication

of a higher-order tensor D ∈ CI1×I2×···×IN by a matrix U ∈ CJn×In , can be defined as an

(I1 × I2 × · · · × In−1 × Jn × In+1 · · · × IN )-tensor [72] whose entries are given by

(D ×n U)i1i2···in−1jnin+1···iN
def
=

∑

in

ai1i2···in−1inin+1···iN ujnin (A.1)

Using this definition, we can express a matrix SVD decomposition H = UFV T by tensor

multiplication notation H = F ×1 U ×2 V .

1jn = (in+1 − 1)In+2In+3 · · · INI1I2 · · · In−1 + (in+2 − 1)In+3In+4 · · · INI1I2 · · · In−1 + · · · + (iN −
1)I1I2 · · · In−1 + (i1 − 1)I2I3 · · · In−1 + (i2 − 1)I3I4 · · · In−1 + · · ·+ in−1
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Finally, Nth-order SVD of (I1 × I2 × · · · × IN )-tensor D is defined as the product

D = Z ×1 U (1) ×U (2) · · · ×N U (N) (A.2)

, where U (n) =
(
U

(n)
1 U

(n)
2 · · ·U (n)

In

)
is a unitary (In× In)-matrix and Z is a (I1× I2× · · ·×

IN )-tensor whose subtensors satisfies all-orthogonality 2and ordering 3. The Nth-order SVD

can be computed by

1. For n = 1, · · · , N , compute matrix U (n) in Eq. A.2 by computing the SVD of the

unfolded matrix D(n) and setting U (n) to the left matrix of the SVD.

2. Solve for the core tensor by

Z = D ×1 U (1)T ×2 U (2)T · · · ×N U (N)T
(A.3)

We used this HOSVD in multiple component analysis in kernel space for dynamic human

motion analysis.

2two subtensors Zin=α and Zin=β are orthogonal for all possible values of n, α, and β: 〈Zin=α, Zin=β〉 = 0
when α 6= β

3||Zin=1|| ≥ ||Zin=2|| ≥ ||Zin=In || ≥ 0
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