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 With the objective to improve our understanding of soil moisture and its long 

term changes, I analyzed and compared climate model simulations with in situ soil 

moisture observations.  Three studies were conducted to investigate soil moisture 

variations on seasonal to interannual scales and its long term changes. 

 To investigate soil moisture evolutions on seasonal to interannual scales and the 

capacity of reanalysis systems to capture the observed characteristics, I analyzed newly 

updated 19 yr of Chinese soil moisture data and evaluated ERA40, NCEP/NCAR 

reanalysis (R-1), and NCEP/DOE reanalysis 2 (R-2).  Over this region, soil moisture 

seasonality is in general not strong.  Seasonal cycles and interannual variations exhibit 

considerably spatial diversity.  R-2 generally exhibits improved interannual variability 

and better seasonal patterns of soil moisture than R-1 as a result of incorporating 

observed precipitation.  ERA40 produces a better mean value of soil moisture for most 

Chinese stations and good interannual variability.  In terms of temporal scale – an 
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indicator of anomaly persistence, R-2 has a memory about twice that of the observations 

for the growing season.  The unrealistic long temporal scale of R-2 can be attributed to 

the deep layer of the land surface model, which is too thick and dominates the soil 

moisture variability.  The analysis highlights the importance of correct soil parameters to 

land surface processes and points out possible directions in which the reanalysis can be 

continuously improved to provide more realistic soil moisture outputs. 

 Observations from Ukraine and Russia show significant increases in summer for 

the period from 1958-1999 that seem contradictory to the classic summer drying issue 

from early modeling studies.  To see whether the latest climate models can capture the 

observed patterns, I calculated trends in soil moisture simulations from 

Intergovernmental Panel on Climate Change Fourth Assessment climate models.  The 

upward trends in observations, which cannot be explained by precipitation and 

temperature changes alone, were found to be much larger than most trends in model 

realizations.  Solar dimming is proposed to have played an important role in modulating 

soil moisture variations for these two regions. 

 Further, a series off-line sensitivity experiments with a sophisticated land surface 

model were conducted to investigate possible contribution from solar dimming and 

elevated CO2 to the observed soil moisture trends for Ukraine and Russia.  I demonstrate, 

by imposing a downward trend to shortwave radiation forcing to mimic the dimming, the 

observed soil moisture pattern can be essentially reproduced.  On the other hand, the 

effects of elevated CO2 are relatively small for the study period.  The results support the 

hypothesis that solar dimming may have played an important role in regional soil 

moisture changes. 
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1 Introduction 

 This dissertation consists of three separate studies with central objectives to 

improve our understanding of soil moisture climatology and its long term changes by 

using the newly updated in situ observations from the Global Soil Moisture Data Bank 

(GSMDB) and climate modeling results.  Specifically it is intended to address the 

following scientific questions: 1) How does soil moisture vary on seasonal to interannual 

scales? 2) How has soil moisture changed for the past several decades? and 3) What are 

the likely reasons for such changes? 

1.1 Literature Review 

 Soil moisture is usually defined as the water content in the soil above the water 

table.  Its importance has long been recognized in the field of agriculture, water resources 

management, hydrology, and soil science.  Monitoring of soil moisture, especially the 

occurrence of hydrologic drought (soil moisture deficiency) and flooding (soil moisture 

excess), is crucial for successful agriculture practices and water resources management.  

Variations of soil moisture modulate the water balance by affecting partition of 

precipitation falling on the surface into infiltration and runoff.  Bioavailability of organic 

matters in soil, largely controlled by soil water content, is an important indicator for pest 

detection and control for soil microbiologists. 

 In the climate context, soil moisture is involved in both mass transport and energy 

transport.  In addition to serving as source by providing moisture to the atmosphere and 

sink by storing precipitation from the atmosphere, soil wetness is also responsible for the 

partitioning of incoming radiation into sensible and latent heat.  The Bowen ratio (the 



 2

ratio of sensible heat to latent heat) is generally smaller for wet surface in contrast with 

dry surface where more energy is released via latent heat that cools the surface.  Latent 

heat release accounts for about half of the surface cooling that balances the heating by 

absorption of solar radiation [Hartmann, 1994].  The role of soil moisture has been 

recognized in climate communities, mainly due to its long meteorological memory, active 

role in land-atmosphere interaction and contribution to atmospheric predictability.  

Meteorological memory of soil moisture 

 Over the ocean, the tropical atmosphere large-scale circulation and rainfall are 

mainly determined by the boundary conditions of sea surface temperatures and it is 

possible to predict large-scale circulation and rainfall over tropics provided ocean 

temperature can be predicted over this region [Shukla, 1998].  Over the continents, soil 

moisture is the most important component of meteorological memory, along with snow 

cover [Delworth and Manabe 1988, 1993].  Especially in the extratropics, with relative 

large seasonal changes, soil moisture plays a role analogous to that of the ocean [Shukla 

and Mintz, 1982].  Delworth and Manabe [1988] proposed that soil moisture variations in 

time be approximated as a first-order Markov process from an analysis of GFDL AGCM 

outputs.  Vinnikov et al. [1996, 1999a, 1999b] and Entin et al. [2000] validated this idea 

by investigating soil moisture observations collected from about two hundred ground-

based stations in the extratropics.  They found the temporal scale of soil moisture 

associated with atmospheric forcing was about 1-3 months.  Such memory is estimated to 

be much longer for drier conditions than moist environments with sufficient rainfall in 

warm climates [Wu and Dickinson, 2004].  Eltahir [1998] proposed that this memory be 

provided by the land surface through a positive feedback between soil moisture and 
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rainfall.  Using a standard water balance method, Koster and Suarez [2001] further 

characterized that soil moisture memory in an AGCM was controlled by four distinct 

factors: (i) seasonality in the atmospheric forcing, such as precipitation and net radiation; 

(ii) the effect of evapotranspiration on reducing soil moisture persistence (memory); (iii) 

the analogous dependence of runoff; and (iv) correlation between initial soil moisture and 

the subsequent atmospheric forcing.  It is expected such memory has profound 

implications for weather prediction that will be discussed next.  

Soil moisture and atmosphere predictability 

 In spite of the chaotic property of our climate system [Lorenz 1963, 1993], 

climate predictability, as pointed out by Lorenz, is still possible if based on forcing by 

slowly changing boundary conditions (climate predictability of the second kind).  As 

atmospheric anomalies dissipate quickly, seasonal prediction of meteorological 

conditions has to rely on the response of atmosphere to those components of the earth 

system that can be predicted months in advance [Koster et al., 2000a] such as sea surface 

temperature (SST) and continental water storage [Betts and Ball, 1996].  Knowledge of 

slowly varying SSTs has been demonstrated capable of improving atmospheric 

predictions [e.g., Lau and Nath 1990; Stern and Miyakoda 1995].  Similarly, soil 

moisture might be a source of forecast skill for summer precipitation over midlatitude 

continents [Koster et al., 2000a].  Dirmeyer [2000] found that the simulation of boreal 

summer precipitation and near-surface air temperature was improved with specified soil 

moisture boundary condition (the soil moisture in their experiment was from the Global 

Soil Wetness Project which was thought to be realistic in many ways).  Analyzing a 

dozen of AGCM boreal summer simulations in the Global Land-Atmosphere Coupling 
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Experiment (GLACE), Koster et al. [2004] found that such predictability was particularly 

high in transition zones between dry and humid climates where soil moisture anomalies 

have a substantial impact on precipitation.  

Land-atmosphere interaction 

 As the basic elements between land and atmosphere interaction, fluxes of 

moisture and heat (energy) from the land surface determine the overlying atmospheric 

conditions, such as temperature, water vapor, precipitation, cloud properties, and hence 

the downward radiative fluxes at the surface [Dickinson, 1995].  The two-way land-

atmosphere interaction takes place at rather broad scales.  The turbulent heat fluxes near 

the ground surface, closely related to planetary boundary layer (PBL) development, are 

strongly affected by the ability of the surface to partition net incoming radiation into 

sensible and latent heat [Avissar, 1995], which is largely dependent on moisture 

availability for evapotranspiration.  Therefore, soil moisture plays an important role in 

boundary layer development [Betts et al., 1993, 1994; Li and Avissar, 1994; Lynn et al., 

1995; Quinn et al., 1995].  Surface heterogeneity creates favorable conditions for the 

development of mesoscale circulations [e.g., McCumber and Pielke, 1981; Avissar and 

Pielke, 1989; Pielke et al., 1991; Lynn et al., 1995; Pielke, 2001].  Pielke et al. [1991] 

demonstrated that mesoscale fluxes of heat generating from surface heterogeneity were of 

the same order of magnitude found for the turbulent fluxes.  Large-scale atmospheric 

circulation model simulations indicate that changes of land-surface characteristics, for 

example soil parameterizations, can affect evapotranspiration, surface albedo, and 

convective instability [e.g., Milly and Dunne, 1994; Milly, 1997; Koster et al., 2000b; 

Ducharne et al., 2000].  Milly [1997] demonstrated that a 14% decrease of plant-available 
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water holding capacity in a bucket model was equivalent to summer dryness induced by 

doubling of atmospheric carbon dioxide.  

 Since the first land surface model [the bucket model, Manabe 1969] with only 

three prognostic variables (soil moisture, snow mass and surface temperature) and 

uniform prescriptions of surface parameters, there are a lot of developments in land 

models for the past decades.  Representations of leaves, root distributions, soil types, 

especially stomatal conductance have been incorporated in schemes developed in 1980s, 

such as the Simple Biosphere Model (SiB) [Sellers et al., 1986] and Biosphere-

Atmosphere Transfer Scheme (BATS) [Dickinson et al., 1986].  Avissar and Pielke [1989] 

advanced the mosaic approach to address the issue of parameterizations of heterogeneous 

surface.  In comparison with the big leaf approach in earlier models, the mosaic approach 

approximates land heterogeneity with a mosaic of patches, each patch consisting of a 

single land use [Avissar and Pielke, 1989].  A similar approach has been implemented in 

GCMs [e.g., Koster and Suarez, 1992].  Models developed later [e.g., Bonan et al., 1995; 

Sellers et al., 1996a] incorporate the physiological effects of plants by relating 

photosynthesis and plant water relations.  All in all, descriptions of land surface processes, 

including hydrology, soil respiration, and ecological responses to climate change, are 

becoming more realistic [Sellers et al., 1997]. 

 On the other hand, although the physical principles are essentially the same, a 

variety of ways exists to parameterize the land surface conditions, which may cause 

significant disparities in the simulated land surface climate.  Koster and Suarez [1994] 

showed that the treatment of land in climate models had significant impacts on the model 

climate.  Robock et al. [1995] demonstrated that the energy partitioning in a bucket model 
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and the Simplified SiB (SSiB) can be quite different even forced by the same 

observations.  Such differences in energy partitioning would have large effects on 

simulations when coupled to GCM since two-way feedbacks between land and 

atmosphere do not dampen land-surface climate differences [Irannejad et al., 1995].  

Several international cooperated research projects have been developed to address and 

understand model differences.  One of the excellent examples is the project for 

Intercomparison of Land-Surface Parameterization Schemes (PILPS) [Henderson-Sellers 

et al., 1995a] initialized in early 1990s.  PILPS aims to understand surface and near-

surface processes through intercomparisons of land surface schemes (LSSs) either forced 

by model outputs [Phase 1: Pitman et al., 1993, 1998; Koster and Milly, 1997] or by 

actual observations from different climates [Phase 2: Henderson-Sellers et al., 1995a, 

1996; Chen et al., 1997; Qu et al., 1998; Luo et al., 2003a].  Pitman and Henderson-

Sellers [1998] summarized that considerable model differences existed in the partitioning 

of available energy and partitioning of precipitation in phase 1 and phase 2.  Similar 

results were found in the first phase of Atmospheric Model Intercomparison Project 

[AMIP 1: Gates 1992; Irannejad et al., 1995; Love et al., 1995; Qu and Henderson-

Sellers, 1998], the Diagnostic Subproject 12 (DSP12) of PILPS.  Robock et al. [1998] 

evaluated the soil moisture simulations in AMIP 1 with observations from Illinois and 

Former Soviet Union.  They found that observed interannual variations of soil moisture 

were not captured by any single model and the winter soil moisture variations in high 

latitudes were not simulated well.  Srinivasan et al. [2000] later analyzed revisit 

simulations contributed by six of the AMIP 1 participating model groups.  They found 

that there was no systematic improvement in the revised models.  In the current AMIP 
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[Phase 2: Henderson-Sellers et al., 2003], the simulation period has been extended by 7 

years (from 1979–1988 to 1979–1995).  This may help resolve the spin-up problem in 

some participating models. 

 Based on the review presented above, before drawing any conclusion about how 

soil moisture varies in the current/past climate and may change in future, we should first 

have a clear picture about how good model simulated soil moisture is and try to 

understand why models fail at some aspects, preferably compared with available 

observations.  

 Over the past several years, there are several important updates to the existing soil 

moisture data sets archived at GSMDB, the Chinese soil moisture (1981-1999), the 

Ukrainian soil moisture (1958-2004), the Mongolian data (1970-2002), the Illinois 

measurements (1981-2004), and data for Western Russia (1958-1999).  These 

observations, though still limited in space and time, are invaluable for climate model 

evaluations and understanding of soil moisture variations at seasonal and longer scales, 

which is the central theme of my dissertation. 

1.2 Summary of dissertation work 

 To attempt to partially answer the scientific questions posed at the beginning of 

this chapter, I conducted the following studies.  I collected, quality controlled, and 

provided the scientific community with new soil moisture data sets.  I evaluated current 

model simulations of soil moisture.  And I improved a state-of-the-art land surface model 

and used it to evaluate soil moisture trends using the longest available soil moisture 

records. 
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 By using newly updated 19 yr Chinese soil moisture observations, the first study 

evaluates soil moisture simulations from three reanalyses, namely the European Centre 

for Medium Range Weather Forecasting (ECMWF) 40-year reanalysis [ERA40, Simmons 

and Gibson, 2000], the National Centers for Environmental Prediction/National Center 

for Atmospheric Research (NCEP/NCAR) [Reanalysis 1 (R-1), Kalnay et al., 1996, 

Kistler et al., 2001], and the follow-up NCEP/Department of Energy [Reanalysis 2 (R-2), 

Kanamitsu et al., 2002].  Specifically, I evaluate the model simulated soil moisture with 

respect to seasonal cycles, interannual variations and soil moisture memories at point 

scale.  The motivation for this study comes from the contradictory facts that no 

operational reanalysis systems actually assimilate soil moisture but reanalysis soil 

moisture probably is the most widely used product for model initialization or even for 

model evaluation.  Unfortunately, there are very limited studies devoted to identifying the 

potential deficiencies in reanalysis soil moisture.  Subsection 2 presents the updated 

Chinese soil moisture for 1981-1999.  Subsection 3 discusses land surface schemes used 

in reanalyses and the nudging techniques employed.  In subsection 4, the soil moisture 

reanalysis is evaluated in terms of the seasonal cycle, interannual variability and temporal 

scale.  First, how reanalysis soil moisture is rescaled to be comparable with observations 

is given, followed by detailed analysis.  Discussions and conclusions are presented in 

subsection 5. 

 The second study is a voluntary diagnostic project intended for IPCC AR4.  The 

model analysis activity is organized by Joint Scientific Committee /Climate Variability 

and Predictability (JSC/CLIVAR) Working Group on Coupled Modeling and their 

Coupled Model Intercomparison Project and Climate Simulation Panel.  Having 
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recognized that no soil moisture evaluation works have been done for the previous three 

IPCC reports, this study is intended to provide quantitative evidences about the quality of 

IPCC model simulated soil moisture.  Soil moisture simulations from a number of state-

of-the-art climate models are evaluated by using in situ soil moisture measurements 

collected from over 140 stations or districts in mid-latitudes of the Northern Hemisphere, 

with respect to seasonal cycles, interannual variations and the long term soil moisture 

changes in summer.  Subsection 2 describes the data sets used in this study, detailing the 

criteria for observations and model output selection, and the preprocessing techniques 

used to rescale observations and model output so that they are comparable.  Subsection 3 

presents the evaluation results for seasonal cycles and interannual variability.  Seasonal 

trends and validation of summer drying issue are presented in subsection 4.  A summary 

is followed in subsection 5. 

 The third study, a follow-up study for the second one, tests the hypothesis in the 

second study that solar dimming may have important contribution to soil moisture 

changes for Ukraine and Russia.  Additionally, I investigate possible contributions from 

carbon fertilization effects.  To understand the contributions from solar dimming and 

carbon fertilizations, I conduct a series offline sensitivity experiments with a 

sophisticated land surface model, and validate the idea by comparing the model 

simulations to observed soil moisture.  Subsection 2 presents the experimental design, 

including the model developments for hydrology module and soil moisture control on 

photosynthesis.  Subsection 3 describes the forcing data.  Modeling results and analysis is 

presented in subsection 4.  Subsection 5 gives a short discussion. 
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1.3 My contribution to the work 

 All these studies utilized soil moisture observations from the GSMDB and 

showed how these observations could be used to help us understand climate changes and 

identify model deficiencies.  The first study is part of my work related to Chinese soil 

moisture.  After updating the old Chinese soil moisture in our data bank to 19 yr 

homogenous data sets for 40 stations, I was looking for a research topic about how to use 

the data.  Dr. Alan Robock, who previously evaluated ERA15, suggested I take a look at 

soil moisture in ERA40 and other reanalysis products to see whether I can find some 

interesting topics.  I found the temporal scale, a very important soil moisture property, 

was not addressed yet for reanalysis soil moisture.  So I added this aspect into my work in 

addition to addressing the seasonal cycles and interannual variations.  My contribution to 

this work is to identify target reanalyses, collect soil moisture outputs, specify scientific 

questions and do the analysis.  Dr. Pedro Viterbo provided the finer resolution ERA40 

soil moisture after I identified several problems with the coarse resolution soil moisture 

close to the coast areas.  During this study, I had numerous communications with 

reanalysis experts to understand the existing reanalysis problems and discussed our 

findings with them.  The paper based on this work was published by Journal of 

Hydrometeorology. 

 As finishing the first study, Dr. Alan Robock noticed an advertisement in EOS 

soliciting voluntary diagnostic projects to analyze state-of-the-art climate model 

simulations for the forthcoming IPCC AR4, and recommended that it be a potential topic 

for another study.  I also realized there was no soil moisture related evaluation work at all 

in previous three IPCC reports.  I felt it was my responsibility as a climatologist to test 
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how these state-of-the-art models can reproduce the past soil moisture climate now that 

we have the observations in hand.  Around that time, I just updated the Ukrainian soil 

moisture through 2004 and identified 42 yr Russian soil moisture (1958-1999) sitting in 

our data bank.  These data sets can then be used to investigate whether summer drying 

really occurs in observations and in models on decadal-scale.  My responsibility for this 

study is to collect model simulated soil moisture and other related variables (precipitation, 

temperature, radiation), and then to compare the model outputs with quality-controlled 

observations.  During this project, I identified several obvious errors related to 

postprocessing and informed the model developers so that they could send the 

reprocessed correct data to PCMDI which is responsible for the data distribution and 

maintenance.  Based on the analysis and previous work by others, Dr. Alan Robock and I 

proposed solar dimming may have important contribution to regional soil moisture 

changes for the past decades.  The resulted work was accepted for publishing by Journal 

of Geophysical Research – Atmospheres. 

 The third study was inspired by a comment of Dr. Alan Robock for our IPCC 

draft paper, saying we may use an offline approach to further test the dimming hypothesis 

proposed in the second study.  I extended the idea to include the physiological effects of 

CO2 by selecting the Community Land Model (CLM3.0) that couples the stomatal-

photosynthesis modules.  My responsibility is to locate a good model, find reliable 

atmospheric forcing data sets, design the experiments, and conduct the data analysis.  To 

ensure the quality of the forcing data we will use, I compared several forcings from 

different modeling groups to the observed quantities.  I also reprocessed the forcings 

(over 50 GB in size) so that they can be used for limited-domain simulations.  After 
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finding several problems related to model hydrology, I incorporated hydrology module 

improvements to CLM with the help of Dr. Gui-yue Niu who happened to work on the 

improvement of hydrology module with an old version of CLM (CLM2.0).  I further 

modified the soil moisture control on photosynthesis according to several recent studies.  

Over 30,000 data files and 160 GB model outputs were produced as the experiments were 

continuously improved and modified.  Prof. Robock and I summarized our findings in a 

journal article that was published by Geophysical Research Letters. 
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2 Evaluation of Reanalysis Soil Moisture Simulations Using 

Updated Chinese Soil Moisture Observations  

2.1 Introduction 

 Our climate system is chaotic, such that a small perturbation in initial conditions 

may produce dramatically different weather patterns after a finite amount of time [Lorenz 

1963, 1993], and this property of the climate system makes a precise weather forecast 

beyond a few weeks nearly impossible.  However, as pointed out by Lorenz, climate 

predictability is possible if based on forcing by slowly changing boundary conditions 

(climate predictability of the second kind).  Over the ocean, the tropical atmosphere 

large-scale circulation and rainfall are mainly determined by the boundary conditions of 

sea surface temperatures and it is possible to predict large-scale circulation and rainfall 

over tropics provided ocean temperature can be predicted over this region [Shukla 1998].  

Over the continents, soil moisture is the most important component of meteorological 

memory, along with snow cover [Delworth and Manabe 1988, 1993].  Especially in the 

extratropics, with its large seasonal changes, the soil plays a role analogous to that of the 

ocean [Shukla and Mintz, 1982].  This idea has been validated by various studies.  For 

example, Durre et al. [2000] found a memory of past precipitation existing in the interior 

of continents at least during summers.  Eltahir [1998] proposed that this memory is 

provided by the land surface through a positive feedback between soil moisture and 

rainfall.  GCM simulations also indicate soil moisture contributes to precipitation 

predictability [Dirmeyer, 2000], especially in transition zones between dry and humid 

climates [Koster et al., 2000, Koster et al., 2004]. 
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 Since soil moisture observations are limited both in time and space, model 

produced soil moisture often serves as an alternative in research work [Robock et al., 

2000].  Reanalyses are the most widely used substitutes, as they have the advantages of 

global coverage and long time series.  Three most widely-known soil moisture reanalysis 

come from the European Centre for Medium Range Weather Forecasting (ECMWF) 40-

year reanalysis [ERA40, Simmons and Gibson, 2000] and the National Centers for 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

[Reanalysis 1 (R-1), Kalnay et al., 1996; Kistler et al., 2001] and the follow-up 

NCEP/Department of Energy [Reanalysis 2 (R-2), Kanamitsu et al., 2002].  These 

reanalysis products are widely used in model initializations and climatology research. 

However evaluations with in situ observations or model intercomparisons are 

indispensable for a better understanding of parameterization systems and improving 

reanalyses.  Roads et al. [1999] compared surface water terms in R-1 to the NCEP global 

spectral model, and they found the variability of surface water in R-1 is less than that in 

the global spectral model, mainly due to the nudging term.  Maurer et al. [2001] 

evaluated the surface water characteristics in R-1 and R-2 with model simulated surface 

fluxes, and they reported that evapotranspiration in R-2 shows less biases than R-1.  

However, these works are not based on observed fluxes.  Recently, Dirmeyer et al. [2004] 

compared ERA40, R-1 and R-2 along with other 5 soil moisture products with observed 

soil moisture.  They concluded that no single product was obviously superior in all 

climates, and that the mean annual cycle is generally better simulated than interannual 

variations. 
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 In this study, we take advantage of newly updated soil moisture observations from 

China to evaluate the soil moisture simulations from ERA40, R-1 and R-2.  In subsection 

2, we describe our updated Chinese soil moisture, which is followed by a short review of 

soil moisture reanalysis products in subsection 3.  In subsection 4, the soil moisture 

reanalysis is evaluated in terms of the seasonal cycle, interannual variability and temporal 

scale.  Subsection 5 presents discussion and conclusions.   

2.2 Updated Chinese Soil Moisture for 1981-1999 

 The Global Soil Moisture Data Bank archived a Chinese soil moisture data set for 

43 stations for 1981-1991 [Robock et al., 2000].  These data sets have been extensively 

used to investigate the scales of soil moisture variations [e.g., Entin et al., 2000; Liu et al., 

2001] or for land surface model evaluation and have proved to be very helpful for model 

improvements [e.g., Entin et al., 1999].  Recently we updated the Chinese soil moisture 

observations through 1999.  Figure 2.1 shows the distributions of the stations, which are 

listed in Table 2.1.  Soil moisture in China was measured 3 times each month on the 8th, 

18th and 28th at 11 vertical layers – 5-cm layers from 0 cm down to 10 cm and 10-cm 

layers from 10 cm down to 1 m.  The soil moisture is originally recorded as mass 

percentage by the gravimetric technique, and this has two major advantages: no auxiliary 

calibration is necessary and relatively small errors.  The soil moisture then is converted to 

volumetric soil moisture: 

 
w

b
mv ρ
ρ

θθ =   (2.1) 

where ρb is the bulk density of soil, ρw is the density of water, θm is the mass percent of 

measured soil moisture and θv is volumetric soil moisture.  For evaluation purposes, 
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volumetric soil moisture usually is converted to total soil water by multiplying by the 

corresponding layer thickness or plant available soil moisture by subtracting the wilting 

level from the total.  Figure 2.2 gives a sample plot of total soil moisture for the top 10 

cm, 50 cm and 1 m layers for station 9 (a northern station) and station 15 (a western 

station).  Station 9 shows greater interannual variations than station 15 under the control 

of a different climate and both stations have a homogenous record over the 19 years.  

 We did quality control for the data sets in terms of the homogeneity and 

measuring frequency (the ratio of available observations to the entire period).  The 

resulting 40 homogeneous stations are unevenly distributed and most of the stations are 

located in Northern or Central China, mainly in Yellow River basin and Song-Liao River 

basin (Figure 2.1).  There are only three stations in less populated Western China and two 

stations in Southern China.  

 We also calculated the measuring frequency for the period from May to October, 

which generally covers the growing season, and we classified it into three categories: 

more than 80% of the time, between 60% and 80%, and less than 60%.  There are 9 

stations with measuring frequencies of more than 80% (Figure 2.1).  Generally fewer 

measurements are available for Northern China due to the comparatively long frozen 

seasons when soil moisture is hard to measure.  As for the top 10 cm, 28 out of 40 

stations have a measuring frequency over 85%, which highlights the potential for remote 

sensing evaluations. 

2.3 Soil moisture and nudging in reanalysis 

 Bengtsson and Shukla [1988] and Trenberth and Olson [1988] were pioneers who 

proposed the idea of reanalysis.  Since then, several reanalysis projects have been 
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conducted and three of the most well known global reanalyses are ERA40, R-1 and R-2.  

Recognizing the importance of soil moisture, these reanalyses archived model-calculated 

soil moisture at grid points.  ERA40 produced soil moisture starting in 1957, and 

provided the values at a horizontal resolution of T159 (about 125 km) with global 

coverage.  R-1 has soil moisture back to 1950 at a horizontal resolution of T62 (about 

210 km) and recently R-2, an updated version of R-1, became available with the major 

advantages of reduced human errors and improved soil wetness [Kanamitsu et al., 2002], 

but it only started in 1979.  

 The soil moisture calculated by reanalyses depends on the land surface scheme 

used, the forcing (particularly precipitation and solar insolation), and the nudging 

employed.  In terms of land surface, ERA40 uses a scheme called TESSEL [Tiled 

ECMWF Scheme for Surface Exchanges over Land, Van Der Hurk et al., 2000].  The 

scheme has 4 prognostic layers for temperature and soil moisture with layer thicknesses 

of 7 cm, 21 cm, 72 cm and 189 cm going down from the top. There are some basic 

differences from the old scheme [Viterbo and Beljaars 1995, VB95] employed in ERA15, 

especially the treatment of snow and vegetation, an added prognostic snow layer on top 

of the soil, and reduced infiltration over frozen soils.  Offline validation showed cold 

season processes are more realistic in TESSEL than in VB95.  The uniform vegetation 

over land in VB95 was replaced by a 20-type vegetation map, with land surface 

parameters, such as root distribution and leaf area index, varying according to vegetation 

type.  Van Der Hurk et al. [2000] pointed out that “model performance becomes 

increasingly dependent on a proper choice of vegetation dependent model parameters.” 
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 R-1 and R-2 used the OSU LSM [Pan and Mahrt, 1987; Pan 1990] with two layer 

thicknesses of 10 cm and 190 cm separately.  It was designed to model the essential 

characteristics of the land interactions with the atmosphere primarily for partitioning of 

net radiation into latent and sensible heat [Mahrt and Pan 1984].  Vegetation types were 

from Simple Biosphere model (SiB) climatology [Dorman and Sellers 1989], while many 

parameters like soil properties (type, wilting point, critical point and porosity) and 

vegetation canopy cover were fixed globally.  

 Because model-generated precipitation and insolation are not perfect in reanalyses, 

soil moisture tends to drift to a too dry or too wet state.  To prevent this, the soil moisture 

is nudged based on different criteria.  For ERA40, soil moisture increments were 

provided by a linear combination of the screen level relative humidity and temperature 

increments each 6 hr [Douville et al., 2000; Mahfouf et al., 2000].  This nudging 

technique is more reliable than the old nudging scheme in ERA15, which only 

assimilated specific humidity [Douville et al., 2000]. 

 In R-1, soil moisture was nudged to the Mintz and Serafini [1992] climatology 

with a 60-day time scale.  This nudging term is quite large [Maurer et al., 2001] so 

interannual variations are suppressed [Srinivasan et al., 2000; Kistler et al., 2001].  

Another concurrent problem is the nonclosure of the water budget.  In R-2, soil moisture 

is constrained more elegantly in that the difference between model precipitation and 

observed pentad (5-day) precipitation is used to correct soil moisture [Kanamitsu et al., 

2002].  This provides an opportunity for us to detect possible model deficiencies 

previously obscured by the strong nudging in R-1. 
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2.4 Comparison of soil moisture observations with reanalyses 

 Srinivasan et al. [2000] used soil moisture observations for Illinois [Hollinger and 

Isard 1994] and central China [Robock et al., 2000] for 1981-1988 to evaluate R-1 and an 

earlier version of the ECMWF reanalysis [ERA-15, Gibson et al., 1997].  They found that 

the reanalyses were able to capture some of the observed seasonal cycles, and the 

interannual variations in Illinois, but that the variations were damped out by the soil 

moisture nudging.  Kanamitsu et al. [2002] compared R-2 to Illinois soil moisture, and 

found a better agreement than for R-1, in terms of mean, amplitude of seasonal cycle, and 

interannual variations.  They cautioned about using R-2 for the first several years of the 

reanalysis due to spinup problems and because of problematic pentad precipitation 

(missing data were mistakenly reported as zero in the earlier period).  We address the 

spinup issue later, showing that this anomalously long spinup period for R-2 is due to the 

too large moisture reservoir in the land surface model.  This was also found by Robock et 

al. [1998] in some of the Atmospheric Modeling Intercomparison Project climate models 

based on the simplified simple biosphere model [Xue et al., 1991].  Xue et al. [1996] and 

Robock et al. [1997] have shown that this long time scale is due to the slow exchange of 

soil moisture between the deep third layer and the upper 2 layers in these models.  

 To take full advantage of our long time records, we compared the reanalyses to 10 

stations with relatively high measuring frequency (Figure 2.1), one station from Western 

China, four from Northern China and the other five from Central China.  We used the 

values from the 28th of each month from each station and the corresponding daily value 

from the model grid point nearest the station.  We used the original reduced Gaussian 
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grid output from ERA40 to correct for ocean influences in the lower-resolution gridded 

data publicly available.  

 Missing data in observations is one of the major concerns when performing data 

analysis.  Interpolation techniques can be used to fill data gaps but may introduce errors, 

which would make the quality of the analysis questionable.  Thus we have not adjusted 

the missing data in the observations to avoid introducing artificial relationships.  When 

we compare to reanalyses, we only use model output from the reanalyses for times when 

observations exist, and treat the other reanalysis output as missing, unless otherwise 

explicitly specified. 

 Since the land surface scheme in R-1 and R-2 only has two soil layers (0-10 cm 

and 10-200 cm), we used the following equation to scale the soil moisture to the top 1 m 

for R-1 and R-2 to compare with observations and ERA40, 

 W = 100 (0.10 × θ1 + 0.90 × θ2)  (2.2) 

where W represents the soil moisture (cm) in the top 1 m and θi is the fractional 

volumetric soil moisture for layer i.  The fraction of each layer accounting for the 

contribution to the top 1 m was used as the weighing factor.  Although other methods, 

such as extracting the unavailable soil moisture or simply summing up the soil moisture 

in the top 2 m and dividing by 2 would result in different amounts of soil moisture, they 

would tend to only shift the time series up or down along the vertical axes of the figures 

and the variations in time would not be very different.  Estimating the top 1-m soil 

moisture via equation (2) does not consider the possible difference in temporal dynamics 

between 1-m and 2-m soil moisture profile.  This is likely to exacerbate the discrepancies 

between modeled and observed 1-m soil moisture. 



 21

 As first explained by Vinnikov et al. [1996], the scale of soil moisture variations 

includes a very small scale related to local soil, root, and topographic features and a much 

larger scale driven by the atmosphere.  The atmospheric-driven spatial scale of soil 

moisture, which represents most of the variance, is about 500 km [Entin et al., 2000; Liu 

et al., 2001].  As the resolution of ERA40 is about 215 x 275 km2 over China, and that of 

R-1 and R-2 is about 160 x 210 km2, the mismatch of scale between point observations 

and reanalysis grid will not present a problem.  However, for those stations that have 

strong local effects, the results might be biased toward local effects (i.e., more 

representative of local effects instead of atmospheric forcing control). 

2.4.1 Time series and correlations 

 Figure 2.3 shows comparisons of observed soil moisture for three stations with 

the three reanalyses.  Generally, R-1 has very large amplitude of seasonal variation but 

very small interannual variability, the only exception being for Station 15, which has 

nearly constant soil moisture and small amplitudes of variation for both R-1 and ERA40.  

At the same time the amplitude of variations in R-2 is also comparable to observations, 

but R-2 underestimates the soil moisture most of the time for 8 out of our 10 stations, and 

such systematic biases do not exist in ERA40 or R-1.  Other soil moisture indices, such as 

plant-available soil moisture, may not necessarily give the same result.  However our 

results are in agreement with the analysis of Dirmeyer et al. [2004], who used a soil 

wetness index for Illinois (see their Figure 14). 

 We have also calculated the correlation coefficients of monthly soil moisture 

(28th day of each month) between models and observations (Figure 2.4).  Generally, R-2 

had a higher correlation than R-1 (7 out of 10 stations).  The correlation of ERA40 is 
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smaller, but still comparable to that of R-2.  For station 23, both R-1 and R-2 had 

negative correlations.  Removal of the seasonal cycle generally improved the correlations 

for ERA40 and R-1 but not for R-2, discussed next.  

2.4.2 Seasonal Cycle 

 Figure 2.5 gives the seasonal cycles of soil moisture for our three representative 

stations.  Station 15 has nearly constant soil moisture estimates for both R-1 and ERA40, 

which do not reproduce the observed seasonal cycle.  For ERA40, the value is virtually 

constant at the wilting point, while for R-1 it is constant at the saturation value.  In both 

cases, the seasonal cycle of precipitation and evapotranspiration are so much out of 

balance that soil moisture cannot change as observed.  For most stations, R-2 has a good 

climatology and patterns of seasonal variation similar to observations, but underestimates 

the mean soil moisture amount.  This is in contrast with R-1, which has quite a strong 

seasonal variation, because it is nudged to the Mintz and Serafini [1992] climatology, as 

also pointed out by Kanamitsu et al. [2002].  In terms of monthly average values, ERA40 

is closest to observations.  For the non-western stations, all models produce the soil 

moisture peak correctly around late summer due to the arrival of the summer monsoon 

precipitation.  

Spring Snow Melt 

 Melting snow is an important source of moisture for northern and western 

agricultural regions since it can recharge the soil and produce runoff.  Whether the 

melting snow will recharge the soil or run off as streamflow depends on the soil 

conditions.  In the case of saturated soil, there is no extra space for water to infiltrate 

[Robock et al., 1998, 2003], and thus it is very likely the melting snow produces spring 
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runoff.  Generally, ERA40 has a small soil moisture peak in early spring due to snow 

melting recharging, while such a soil moisture peak is basically missing in R-1, 

especially for northern China where the soil is pretty wet in winter.  Although the soil in 

R-2 is not as wet as in R-1, the spring soil moisture peak is still missing or too weak.  Our 

speculation is that this may be attributed to the physical configuration of R-1 and R-2, 

since the deep layer in R-1 and R-2 is too thick (190 cm) and the water holding capacity 

is unrealistically too large.  Although missing observations in the cold season inhibit a 

deeper investigation for spring snow melting events, limited observations from stations in 

central China in cold seasons confirm the existence of a soil moisture peak in early spring.  

This may be similar to the observations in Russia [Robock et al., 1998] where the water 

table intrudes into the top 1 m, a phenomenon which is not included in the R-1 and R-2 

reanalysis land surface schemes. 

2.4.3 Monthly and Interannual Variability 

 Figure 2.6 shows the monthly and interannual variations of soil moisture for 

selected stations and the reanalyses, and Figure 2.7 shows the soil moisture anomalies.  

R-1 shows a rather small interannual variation, especially during winter.  Since snow 

melting is mainly responsible for soil moisture changes in cold season, and a unit error 

for snow melt in R-1 wets the ground excessively [Kanamitsu, personal communication], 

this is especially evident for Northern stations.  R-2 shows a larger interannual and 

seasonal variations than R-1 although the soil generally is too dry.  Drier soil in R-2 may 

partly be attributed to warmer soil and 2-m air temperature as well as to a better albedo 

algorithm than R-1 [Kanamitsu et al., 2002].  The variability of ERA40 is closest to the 

observations.  Models generally did a pretty good job of reproducing the anomalous wet 
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and dry years, such as the wet years of 1984 at Station 33 and the dry year of 1982 at 

Station 23 (Figure 2.7).  In a test of how closely the interannual variability of reanalyses 

matches the observations, we calculated the anomaly correlation between the models and 

observations for the summer months (JJA).  Generally ERA40 has the best interannual 

variability with respect to observations (Figure 2.8).  

 In Figure 2.7 it is quite obvious that the soil moisture does not change in the 

winter for R-2.  This means that the time scale of soil moisture anomaly in R-2 is 

comparatively large.  Delworth and Manabe [1988] developed a theory that soil moisture 

variations can be approximated as a first-order Markov process, 
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t
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where r is the autocorrelation, t  is the time lag, and T  is the time scale.  This theory has 

been extensively used to investigate the scales of soil moisture variations using 

observations [Vinnikov et al., 1996, 1999a, 1999b].  Using this theory, Entin et al. [2000] 

calculated the temporal scale of Chinese soil moisture to be 1.6-2.4 months, which 

increases from south to north. 

 Here we adapt the same theory and assume that the soil moisture variation is 

stationary.  We removed the seasonal cycle and calculated the temporal scale for all the 

10 stations.  Two groups of calculations are carried out.  One considers the missing 

values in observations by taking out the corresponding data in reanalyses, thus making 

the results comparable.  To investigate the possible influence of the cold season on 

temporal scale (because missing values in observations are generally in winter), we did 

another set of calculations for the full data sets for the reanalyses.  Figure 2.9 shows the 
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temporal autocorrelation results and Table 2.2 gives the numeric values.  The slopes of 

the lines in Figure 2.9 correspond to the temporal scales. 

 ERA40 shows the highest variability between stations.  The soil moisture 

increments were set to be zero when the air temperature is below freezing or the snow 

covers the ground in ERA40 (ECMWF 2003), so this should increase the temporal scale 

(about 1 month in general, see Table 2.2) for the northern stations. 

 Station 15 exhibits a much lower autocorrelation than the other stations in R-1 

and R-2, which must be related to the parameters for the land surface model at that point.  

The calculated temporal scale for R-1 shows the largest similarity between stations and 

between full data and only data that correspond to the observations.  This must be the 

effect of relaxing the values to the Mintz and Serafini climatology.  R-2 has a temporal 

scale longer than 6 months for all nonwestern stations.  The mean temporal scale of R-1 

and ERA40 is comparable to observations, which is consistent with the results of Entin et 

al. [2000], while R-2 has an unrealistically long mean time scale of about 8 months.  

Thus these calculations support that the deep layer in R-2 is too thick and dominates the 

overall variability of soil moisture [Roads et al., 1999].  This could further impact the 

evaporation and precipitation.  

 Since R-1 uses the same land surface scheme as R-2, this brings up the question 

of why its temporal scale is so much smaller.  This is to a large extent because R-1 

nudges soil moisture to the Mintz and Serafini [1992] climatology with a 60-day time 

scale while nudging in R-2 is based on observed precipitation.  However this advantage 

of R-2 is compromised by its use of a model with a very large soil moisture reservoir, 

which produces an unrealistically large time scale.  To most clearly separate nudging 
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effects from other influences, since other improvements in R-2 also contribute to soil 

moisture simulations, would require additional experiments that keep all other physics 

exactly the same but with different nudging schemes. 

2.5 Conclusions 

 An updated Chinese soil moisture data set has proven valuable to evaluate 

reanalysis simulations of soil moisture.  This new data set is available without restriction 

at the Global Soil Moisture Data Bank (http://climate.envsci.rutgers.edu/soil_moisture). 

 Using 19 years soil moisture observations from a monsoon-dominated region; we 

evaluated three prominent soil moisture reanalysis data sets: ERA40, R-1 and its updated 

counterpart R-2.  Kanamitsu et al. [2002] in their studies found improved soil moisture 

fields from R-2 when validating with Illinois soil moisture observations [Hollinger and 

Isard, 1994].  Our analysis supports their conclusions with soil moisture observations 

from a different climate, where R-2 also exhibits the highest correlation with 

observations among the three soil moisture reanalyses.  But this is a result of R-2 having 

a good mean climate.  A reanalysis product with good mean state but poor year-to-year 

variations may not be a good choice for use in climate modeling.  ERA40 is also 

generally highly correlated with observations after removing seasonal cycle, and 

produces less bias and a time scale closer to observations.  Although Kanamitsu et al. 

[2002] argued that direct comparison between observed soil moisture and model 

simulations could be misleading, negative R-2 biases exist when comparing the Illinois 

soil moisture observations with R-2 even after removing the unavailable soil moisture 

[see Figure 1 of Kanamitsu et al., 2003].  Whether these results are universal would 
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require further investigation for different regions.  In terms of interannual variability, 

ERA40 is the best among the three reanalyses products.  

 The temporal scale of soil moisture anomalies in ERA40 (disregarding stations 9 

and 23) and R-1 are comparable to that of observations, but the scale of R-2 is 

extraordinarily long, about 2 times of that of observations in growing season, and cold 

season tends to prolong soil moisture memory around 1 month in ERA40 and 3 months 

for R-2.  This prolonged memory may further propagate into evaporation and 

precipitation.  Our suspicion is that R-2 has a too thick deep layer which has a dominant 

influence on the soil moisture variability of the whole soil column.  Clearly it is 

responsible for the long spinup problems found by Kanamitsu et al. [2002].  An improved 

land surface scheme is capable of resulting in a much better precipitation prediction [e.g., 

Betts et al., 1996; Beljaars et al., 1996], which will be beneficial to weather forecasting.  

We expect that improved land surface models in future reanalyses combined with actual 

precipitation forcing will produce an excellent soil moisture product.  The new regional 

reanalysis [Mitchell et al., 2004], which uses a descendant of OSU LSM – the Noah 

model [Chen et al., 1996; Chen et al., 1997; Ek et al., 2003], which performed well in 

North American Land Data Assimilation System experiments [Robock et al., 2003] and 

which assimilates actual precipitation observations, has the potential to produce such 

excellent soil moisture simulations. 
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3 Evaluation of Intergovernmental Panel on Climate Change 

Fourth Assessment Soil Moisture Simulations for the 

Second Half of the Twentieth Century 

3.1 Introduction 

 Global-warming-induced climate changes are experienced from regional to global 

scales.  How components of the hydrological cycle changed in the past and will evolve in 

a warming climate will have strong impacts on human society.  Higher temperature will 

accelerate the global hydrological cycle in general [e.g., Milly et al., 2002; Bosilovich et 

al., 2005].  However, model studies with increased amounts of absorbing aerosol tend to 

show a slow down of the hydrological cycle [e.g., Liepert et al., 2004].  Unlike other 

terms in the water budget, however, soil moisture (the water residual) has been relatively 

less studied due to paucity of available observations, in spite of its importance.   

 Soil moisture is crucial to agriculture and is an important part of the agricultural 

drought outlook in many areas of the world.  From the perspective of water balance, soil 

moisture directly influences the rate of evaporation, groundwater recharge and runoff 

generation.  Soil moisture, along with other land surface conditions, also determines the 

partitioning of available energy at the surface between sensible heat and latent heat.  

Since there are no global in situ observations, model-simulated soil moisture (usually 

outputs from physically based land surface schemes driven by observed near surface 

atmospheric variables) has been used as a substitute for observations in climate change 

studies [e.g., Zhu et al., 2004].  A general drying in mid-latitude summer was reported in 
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several model simulations [e.g., Manabe and Wetherald, 1987; Gregory et al., 1997; 

Manabe et al., 2004], which, if correct, poses a great threat to future food security.  The 

drying was attributable to earlier snow melting and higher evaporation in winter and 

spring and lower precipitation during summer [IPCC, 2001].  However, other models 

presented quite an opposite scenario [e.g., Meehl and Washington, 1988; Seneviratne et 

al., 2002].  These model-dependent predictions cannot be a reliable reference point in 

explaining the direction of future changes yet [IPCC, 2001]. 

 Vegetation plays an important role in the climate system.  In response to 

increasing atmospheric CO2 concentration, many plant species tend to reduce stomatal 

openings to reduce water loss through transpiration [Field et al., 1995].  Such a 

mechanism has profound implication for the hydrological cycle since it potentially leads 

to an increase for water storage and streamflow [Gedney et al., 2006].  Wigley and Jones 

[1985] analytically illustrated the strong dependence of changes in streamflow on the 

direct CO2 effect on plant evapotranspiration which is controlled by stomata.  Modeling 

results suggested that the climatic impact of doubling stomatal resistance could be as 

large as the effect of doubling atmospheric CO2 [Henderson-Sellers et al., 1995].  On the 

other hand, there also exists a compensating mechanism, namely the structural response, 

which may offset the physiological effects.  Increased CO2 uptake by plants with elevated 

CO2 can stimulate plant growth (i.e., increase in root depth and foliage), thus boosting 

transpiration.  This may further enhance the resultant surface cooling through a series of 

feedbacks in the planetary boundary layer [Pitman, 2003].  However, given that our 

knowledge of these physical processes is rather limited and the parameterizations of these 

features in climate models are still rather simple, uncertainties concerning the net effect 
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of these two mechanisms on the hydrological cycle remain high.  In terms of root-growth 

feedbacks, Milly [1997] demonstrated a 14% decrease of plant accessible water in soil 

column would generate the same summer dryness comparable to a doubling of 

atmospheric CO2. 

 The ability to calculate accurate soil moisture in a climate model depends on 

several factors: a good land surface model, and good precipitation and radiation forcing.  

Both off-line experiments [e.g., Guo et al., 2005] and coupled simulations [e.g., 

Kanamitsu et al., 2002] demonstrate that realistic lower atmospheric conditions are 

extremely important for accurate soil moisture simulations.  By adopting a more realistic 

radiation scheme, Wild et al. [1996] demonstrated that the resultant improvements in 

radiation and precipitation could attenuate simulated summer desiccation in a climate 

model.  Soil with low field capacity is more prone to reach field capacity in late winter or 

spring, which ensures that much of the extra precipitation in winter is lost as runoff.  

Without proper accounting for cold season soil dynamics, models in the Atmospheric 

Model Intercomparison Project [Gates, 1992] were unable to capture the observed 

month-to-month changes in winter [Robock et al., 1998].  Including soil-water freezing in 

a model can also improve the simulation of the soil thermal state [Luo et al., 2003a].   

 In July 2004, the Working Group on Coupled Models Climate Simulation Panel 

invited voluntary groups to analyze climate model outputs [Meehl et al., 2004].  These 

analyses will lead to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC).  These coupled models represent the latest model developments 

with improved parameterizations of physical processes of the climate system.   
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 Recent updates at the Global Soil Moisture Data Bank, especially several long 

term observations from the Former Soviet Union (FSU), make it possible to use these 

benchmark observations to evaluate the soil-moisture-related climate change in these 

models.  In this study, I focus on the second half of the 20th century when most 

observations are available.  I will address the following scientific questions with an 

emphasis on the second one: 1) How realistic are the seasonal cycle and interannual 

variations of the model simulated soil moisture? and 2) Can IPCC models capture 

observed soil moisture trends in the summer?  The data sets are described in subsection 2.  

Comparisons between observations and model outputs in terms of seasonal cycle and 

interannual variations are presented in subsection 3.  Analysis of long-term soil moisture 

in summer is given in subsection 4, with a summary in subsection 5. 

3.2 Data Sets 

 Soil moisture observations from FSU, China, Mongolia, and Illinois (Figure 3.1, 

Table 3.1) from the Global Soil Moisture Data Bank [Robock et al., 2000] were used in 

this study.  We used a subset of the FSU soil moisture (now called Russian and Ukrainian 

data), measured separately for winter cereal crops and spring cereal crops, composed of 

66 district averages at 0-20 cm and 0-100 cm depth.  There is a good agreement between 

these two independent observations taken in winter cereal and spring cereal crop fields 

[Entin et al., 1999; Robock et al., 2005].  Since the data for winter cereal crops contain 

fewer missing values, we only used soil moisture for winter cereal crops in our analysis.  

Measurements for top 1 m soil moisture began in 1958 and started in the 1970s for the 

top 0-20 cm.  We recently updated the Ukrainian data through 2004.  The Chinese soil 

moisture consists of 40 stations and spans the period of 1981-1999 [Li et al., 2005].  
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There are 17 stations for Mongolia for the period of 1970-2002; a few of them started in 

the 1960s.  The state of Illinois has been measuring soil moisture since 1981 at 19 

stations [Hollinger and Isard, 1994].  The data for the first three years are 

inhomogeneous with the rest of the data so were excluded from our analysis.  The data 

sets are describe in great detail by Hollinger and Isard [1994], Vinnikov et al. [1996, 

1997], Robock et al. [2000, 2005], and Li et al. [2005].  These quality-controlled data sets 

have been widely used in various aspects of model evaluation [e.g., Robock et al., 1998; 

Entin et al., 1999; Srinivasan et al., 2000; Schlosser et al., 2000; Luo et al., 2003a; 

Dirmeyer et al., 2004].  Monthly mean observations were calculated to be compatible 

with model outputs.  In addition to soil moisture, monthly mean precipitation and 

temperature from the Climate Research Unit at the University of East Anglia [New et al., 

1999, 2000] and monthly precipitation data from the University of Delaware [Legates 

and Willmott, 1990] were utilized to evaluate corresponding model fields. 

 Eighteen modeling groups sent their latest IPCC results to the Program for 

Climate Model Diagnosis and Intercomparison of Lawrence Livermore Laboratory.  Each 

group was asked to report soil moisture in the top 10 cm and in the total soil column.  

Due to large inter-model differences, not all models produced top 10 cm values and the 

depth of the total soil column varied from model to model.  To ensure consistence, we 

selected nine models that had multiple simulations and outputs for the top 10 cm and 

seven models for the top 1 m for this study (Table 3.2).  For the 20th century runs, 

models were initialized from conditions derived from pre-industrial control runs.  Each 

realization differed only in initial conditions.  Thus, ensemble averages from multiple 

simulations can better detect signal from noise.  The models differed not only in land 
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surface schemes but also in resolution.  The only exception was the two Goddard Institute 

for Space Studies models that had identical atmosphere model and resolution but 

different oceans.  We calculated regional averaged soil moisture to account for the scale 

of soil moisture variances and the differences in model resolutions (see Figure 3.1 for the 

domain and Table 3.1 for details).   

  Meanwhile, surface layer Russian soil moisture data was archived for the 0-20 

cm top layer.  Some conversion was needed to get top 0-10 cm soil moisture.  By 

analyzing the data from other places where soil moisture at both levels is available, we 

found that top 10 cm soil moisture is highly correlated with that in 0-20 cm with a mean 

correlation coefficient of 0.98.  This might be explained by strong vertical interaction in 

the near surface zone.  Moreover, the magnitude of top 20 cm soil moisture was roughly 

twice that in the 0-10 cm layer.  Thus, we divided the 0-20 cm soil moisture by 2 to 

approximate the value for the 0-10 cm layer.  As our focus was on the seasonal pattern 

and interannual changes that are not dependent on absolute values, this procedure will not 

affect our analysis in general.     

3.3 Seasonal cycle and interannual variability 

 Figure 3.2 gives the soil moisture seasonal cycles for the top 0-10 cm and top 0-1 

m for the models and observations.  As models tended to have their own climatology or 

effective range [Koster and Milly, 1997], we adjusted soil moisture simulations from each 

model according to the difference between the averages of monthly mean values of that 

model and observations.  In terms of correlation coefficient, model-simulated seasonal 

patterns are in better agreement with those of observations for Ukraine, Russia, and 

Illinois where seasonal cycles are qualitatively reproduced by the models, particularly for 
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the 0-1 m depth where the signal-to-noise ratio is larger.  For the other locations, there 

were relatively large inter-model differences and model-to-observation differences.  

Another conspicuous feature is that the warm season climatology shows less inter-model 

disparity than that for cold season, with large spread between the models, particularly for 

top layer soil moisture of Russia and Illinois.  The variety of schemes for frozen soil 

treatment in land surface models, even driven by identical meteorological forcing in 

stand-alone mode, can bring about large disparities of simulated soil temperature and 

snow water equivalent [Luo et al., 2003].  Spread of the duration and extent of global 

snow cover in climate models may further exacerbate differences in simulated soil 

moisture.  Detailed analysis about the cold season soil moisture is of special interest but 

is beyond the scope of this paper. 

 To quantitatively understand how good model simulations were compared to 

observations, we utilized Taylor Diagrams [Taylor, 2001], which nicely summarize 

several important statistical quantities in just one plot.  In Figure 3.3, the azimuthal angle 

(clockwise angle from north) represents the correlation coefficient between monthly 

mean values of models and observations, and the radial distance from the origin is the 

standard deviation normalized by that of observations.  Correlation coefficients were 

generally higher for the Russian regions and Illinois where the models also showed a 

better and strong climatology.  In terms of interannual variability, the two UK models had 

variability comparable to observations for all six regions.  The Canadian model exhibited 

stronger interannual variability in all climates.  To investigate whether precipitation has a 

similar pattern to soil moisture, we plotted the Taylor Diagram for monthly precipitation 

(Figure 3.4).  The precipitation fields for China and Mongolia actually were better, 
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probably due to the strong seasonality of the Asian monsoon and that we did not have 

winter soil moisture observations for comparison to models.  In Russia and Illinois, 

precipitation was not simulated well.  Further analysis of the precipitation climatology 

indicates that models capture the seasonal changes better for Mongolia and China, where 

relatively strong (and simple) seasonal precipitation changes are primarily driven by 

Asian monsoon (Figure 3.5).  Similar to soil moisture analysis, this suggests a better 

climatology to a large extent explains higher correlation coefficients between models and 

observations (for soil moisture and precipitation).  Better precipitation forcing does not, 

however, always guarantee more realistic soil moisture in coupled models. 

 The spatial pattern of interannual variations, defined as the coefficient of variance 

(standard deviation divided by mean), was plotted in Figure 3.6.  Observations show that 

dry regions usually had stronger interannual variations and moist regions tended to have 

weak variations.  There were large model-to-observation differences and model-to-model 

differences.  For example, MRI and HADGEM1 models showed very strong interannual 

variability for Northern Africa but GISS and FGOALS and CCSM3 had rather weak 

variability there.  The greatest discrepancy areas were for tropical Africa and the Indian 

monsoon area.  The interannual variability of soil moisture usually follows that of 

precipitation, which suggests possible large discrepancies for precipitation in those 

locations.   

3.4 Trends 

 Because soil moisture simulations were more realistic for the two FSU regions 

and those two regions had relatively long measurements available (over 40 years), we 

chose Russia and the Ukraine for long-term trend analysis.  We used the least squares 
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method for trend detection.  An additional analysis by the nonparametric Mann-Kendall 

method [Hirsch et al., 1982] showed similar results.  We calculated the monthly trends 

for Ukraine and Russia (Figure 3.7).  There was a general increase in April, June, July, 

August, and September for observations for both regions (10% significance level).  The 

mean trends of models showed a slight increase for Ukraine but a small decrease for 

Russia.  The number of realizations that show an increase is roughly equal to that 

exhibiting a decrease.  The observed trends in April and May are relatively well captured 

by models.  However, in the warm months of July and August, less than 8% of model 

realizations have trends comparable to the observed patterns. 

 To see whether similar patterns exist in precipitation and temperature, we 

analyzed the monthly trends for precipitation and temperature, too (Figs. 3.8-3.9).  In 

general, there are small upward trends in the observed precipitation, which is 

characterized by large interannual variations.  Mean trends from models indicate a weak 

increase, relatively larger in spring and late winter.  The observed temperature increased 

slightly in the warm season.  Models simulated an almost ubiquitous increase of 

temperature for all seasons, larger in winter and smaller in summer.  There was a good 

agreement between models and observations for summer months.  Observed temperature 

trends lay within model predictions fairly well from July to October (Figure 3.9), which 

validates the model-predicted warming.  In terms of solar irradiance, there was an overall 

small decrease for the model ensemble.  Models tended to agree with each other well in 

winter but there was a large spread in the warm seasons (not shown).  We do not have 

observations for these regions, but the downward model trends of insolation are an order 

of magnitude lower than those observed for nearby regions in Europe [Wild et al., 2005]. 
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 Robock et al. [2005] reported an increase in summer soil moisture for Ukraine 

from 1960s to 1990s but this pattern started to level off at the end of the period.  Here we 

extend their study to both Ukraine and Russia, using these Russian data for the first time.  

Figure 3.10 gives the soil moisture anomaly time series (JJA average) for observations 

and each model, and the linear trend estimations.  The amplitude of the upward trends in 

top 0-1 m observations is about 8.0 mm/decade for Ukraine and 8.6 mm/decade for the 

Russia.  The IPCC models, however, simulated a very small upward trend for Ukraine 

and essentially no trend for Russia in terms of mean trends.  In both cases, the observed 

trends were larger than most trends of the model simulations.  Only two out of 25 model 

realizations have trends comparable to those of observations.  These two realizations 

come from different climate models and other realizations from those two models do not 

show similar patterns.  Thus the two trends are due to internal model variability as 

different realizations for the same model only differ in initial conditions.  Similar to the 

model trends discussed earlier, there was a slight increase in both precipitation and 

temperature (Figures 3.11-3.12).  Again, the observed temperature pattern is well 

constrained in model results, highlighting the reliability of the model-simulated warming. 

 An interesting question remains about what drives the observed pattern in soil 

moisture.  Precipitation and solar radiation are the driving forces for the water cycle.  A 

phenomenon called “from dimming to brightening” has been observed for solar radiation 

data from both ground stations [Wild et al., 2005] and satellite measurements [Pinker et 

al., 2005] for many places around the world.  A widespread decrease for shortwave 

radiation for 1950s to 1990s was observed and followed by a gradual recovery since 

1990s.  Such a pattern (solar dimming) may well explain the observed soil moisture 
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change for FSU regions.  Peterson et al. [1995] reported a decrease in pan evaporation in 

FSU around the same period.  Showing evidence from the observed decreases in solar 

irradiance and associated changes in diurnal temperature range and vapor pressure deficit, 

Roderick and Farquhar [2002] suggested that the decrease in pan evaporation was in line 

with the change of evaporation.  The upward trend in soil moisture is consistent with 

these results, as suggested by Liepert et al. [2004] and Robock et al. [2005]. 

 Another line of supportive evidence can also be found in independently measured 

streamflow.  I collected monthly river discharge data of several stations from the Global 

River Discharge that were compiled and prepared by scientists of University of New 

Hampshire, distributed by data center of Oak Ridge National Lab [see Figure 3.13a for 

station locations].  Although the river discharge data for the data center are only available 

to mid of 1980s, there is a good correspondence between river discharge and soil 

moisture for the overlapping period (Figure 3.13b).  For Ukraine there was a general 

increase for river discharge.  A decline to mid of 1970s and then a gradual recovery 

afterwards were found for Russia. 

 Using a sophisticated land surface model, Robock and Li [2006] demonstrated 

that changes in precipitation and temperature are not enough to explain the amplitude of 

the observed soil moisture increases.  They further quantitatively showed that solar 

dimming from tropospheric pollutions is the main cause for the soil moisture trends.  In 

other words, soil moisture increases for Ukraine and Russia are likely externally forced 

rather than due to model internal variability as suggested by the IPCC models we 

analyzed here.  The lack of solar dimming in the IPCC models explains their inability to 

model the soil moisture trends. 
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 The failure to capture the observed dimming effects for many models might be 

partly attributable to the lack of an adequate representation of aerosol.  Scientists at the 

Max Planck Institute recently developed a special version of the ECHAM5 model that 

incorporates a sophisticated treatment of aerosol effects based on a flexible microphysical 

approach [ECHAM5-HAM, Stier et al., 2005].  Sulfate aerosols, black carbon, particulate 

organic matter, sea salt, and mineral dust are included in the aerosol scheme.  By 

comparing the special version to the standard ECHAM5 model [Roeckner et al., 2003], 

which only prescribes direct and the first indirect effect of sulfate aerosols, the soil 

moisture sensitivity to changes in solar radiation caused by aerosol might be understood. 

 Figure 3.14 gives the JJA soil moisture from 1958-2002 for both models and the 

observations for Russia and Ukraine.  Soil moisture decreased slightly for both models in 

contrast to the general increases found in observations.  Measurements from a nearby 

station indicate that solar radiation decreased until 1980 and began to gradually recover 

afterwards [Wild et al., 2005].  Accordingly, we split the data into two equal periods to 

investigate how soil moisture evolved.  We found an increase in observations for both 

regions from 1958-1980.  The standard ECHAM5 model also had an increase in soil 

moisture.  However, the special version showed a drying pattern.  For the second period 

from 1980 to 2002, observed soil moisture started to level off for Ukraine but continued 

to increase for Russia.  There was a downward trend for the special version but an 

upward pattern for the standard model for Ukraine.  An increase was found for the special 

version but a decline in the standard model for Russia. 

 We further analyzed the clear-sky shortwave radiation and precipitation fields for 

both models to explore probable causes of the differences between the models and 
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observations.  Clear-sky shortwave radiation for both models exhibited the process from 

dimming to brightening but the special version showed a much stronger signal and more 

closely resembled the observations.  At the same time, the clear-sky shortwave radiation 

for the special version is noticeably higher than that of the standard one (Figure 3.15a).  

However, in terms of precipitation, simulated precipitation decreased over the entire 

period of 1958-2002 for both models for Ukraine.  Also, there was a conspicuous dry bias 

for the special version (Figure 3.15b).  We conclude that these unfavorable conditions 

simulated by the special version may create a more water-limited rather than energy-

limited climate in which precipitation plays a dominant role.  Therefore, the simulated 

soil moisture patterns more closely follow those of precipitation.  The same reasoning can 

be used to explain the pattern of simulated soil moisture by the special version for Russia, 

too.  To conclude, neither the special version model nor the standard version model can 

simulate the precipitation well.  This explains the disparity between simulated soil 

moisture patterns and the observed ones to large extent. 

3.5 Summary 

 To investigate how realistic the soil moisture simulations in IPCC models are, we 

compared the seasonal cycle, interannual variability, and long-term pattern in summer for 

observations and model outputs.  Generally, IPCC models have limited capacity to 

reproduce observed seasonal cycle and interannual variability, although better 

simulations are found for Russia, Ukraine and Illinois than for Mongolia and China with 

respect to seasonal cycle. 

 To capture the observed soil moisture trends, we need realistic forcings, 

particularly both precipitation and radiation, in addition to a good land surface scheme.  
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Regarding water balance, either precipitation increase or evaporation decrease may result 

in soil moisture increase, and the latter is closely related to available energy.  The 

observed solar dimming can dampen the evaporative demand of atmosphere and lead to 

water storage increase, which may explain the observed soil moisture patterns for 

Ukraine and Russia.  Our analysis of the ECHAM5 model simulations supports the 

argument that including a comprehensive representation of aerosol effects may exert 

considerable impacts on hydrological cycle [Liepert et al., 2004].  Through incorporating 

a sophisticated aerosol scheme, the special ECHAM5 model showed promising results 

with respect to the simulated radiation fields.  But the explicit treatment of aerosol-cloud 

interactions remains a challenge [Stier et al., 2005].  

 Wang [2005] analyzed soil moisture in IPCC models in a future scenario.  

Interestingly, her results showed that FSU regions were the places where models 

disagreed most, highlighting the sophisticated nature of sensitivity of land hydrology to 

elevated CO2 concentrations in models.  In response to elevated CO2 concentrations, 

many plant species reduce their stomatal openings [Field et al., 1995], leading to a 

reduction in evaporation to the atmosphere.  More water is likely to be stored in the soil 

or run off consequently.  Figure 3.16 shows the relative change of summer soil moisture 

for a future scenario from our IPCC models.  The relative change is defined as the 

difference between the mean of 2060-2099 (scenario SRESA1B) and that of 1960-1999 

normalized by the average of 1960-1999.  In spite of large spatial differences, many 

models did not produce summer desiccation.  The response of plants to elevated CO2 

concentrations might explain why some models project wetter land surface for some 
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regions1.  Recent modeling results also demonstrated the direct carbon dioxide effects on 

continental river runoff [Gedney et al., 2006].  These results are encouraging and 

underlining the nature that global climate models should better integrate the biological, 

chemical, and physical components of the Earth system [Karl and Trenberth, 2003].  On 

the other hand, the effects of CO2 fertilization on soil moisture vary substantially from 

model to model.  In view of photosynthesis-stomatal coupling in climate models, such 

disparities arise from parameterizations of (1) stomatal function (e.g., using the Jarvis’ 

formulation or the Leuning’s physiological formulation or other types), (2) partitioning of 

transpiration in total evapotranspiration, (3) scaling (of photosynthesis and stomatal 

conductance) from leaves to canopy level (e.g., using leaf area index or the nitrogen 

contents). 

 To our knowledge, no soil moisture evaluation using observations has been done 

in the previous IPCC reports.  We attempt to provide quantitative evidence for the 

forthcoming IPCC AR4 about the observed and model simulated soil moisture patterns.  

We hope our analysis will assist modelers to identify model deficiencies and further 

improve model performances.  With better parameterization systems implemented in the 

next generation models, we expect to see more realistic soil moisture products. 

                                                 
1 In Figure 3.16, seven out of nine models include carbon fertilization effects.  
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4 Relative contribution of solar dimming and CO2 effects on 

soil moisture trends 

4.1 Introduction 

 Understanding soil moisture variation is crucial to modeling and understanding 

climate changes due to its long meteorological memory [Vinnikov et al., 1996], active 

role in land-atmosphere interactions [Koster et al., 2004], and contribution to atmospheric 

predictability [Dirmeyer, 2000].  Potential soil moisture changes from global warming, 

especially desiccation in growing seasons, are a grave threat to food security on which 

human society relies.  Numerical models have been utilized to explore how water storage 

will change with global warming.  Many models predict a decline of soil moisture over 

the midlatitudes of the Northern Hemisphere [Manabe and Wetherald, 1987; Gregory et 

al., 1997].  These analyses highlight possible climatic consequences, with an emphasis on 

the radiative effects of increased CO2.   

 Many plant species tend to reduce stomatal openings with increasing atmospheric 

CO2.  The concurrent higher canopy resistance reduces water loss through plant 

transpiration and thus may have profound impacts on the hydrological cycle [e.g., 

Henderson-Sellers et al., 1995; Sellers et al., 1996].  A recent study suggests such CO2 

effects are to a large extent responsible for the continental runoff increases for the 20th 

century [Gedney et al., 2006]. 

 On the other hand, as the driving forces for land surface hydrology, precipitation 

and net radiation impose a first order control on evaporation and runoff at annual or 

longer timescales [Koster et al., 2001].  In terms of soil moisture, more realistic 
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simulations can be obtained by assimilating observed precipitation into climate models 

[Kanamitsu et al., 2002; Li et al., 2005].  In short-term field experiments, an artificial 

increase in downward heat flux has been shown to cause a significant reduction in 

summer soil moisture [Harte et al., 1995].  Both ground-based observations [Abakumova 

et al., 1996; Gilgen et al., 1998; Stanhill and Cohen, 2001; Liepert, 2002; Wild et al., 

2005] and satellite measurements [Pinker et al., 2005] reveal a widespread reduction of 

solar irradiance from 1950s to 1990s and a gradual recovery [Wild et al., 2005; Pinker et 

al., 2005] afterwards, known as the “global dimming” phenomenon.  Increasing 

atmospheric aerosol loading from rapid industrialization is believed to be the culprit.  

Aerosols can affect solar irradiance reaching the Earth’s surface through scattering and 

absorbing radiation (direct aerosol effect), and modifying cloud properties (indirect 

aerosol effects).  The net effect of the mechanisms is a reduction in downward surface 

solar radiation [Ramanathan et al., 2001].  In the context of the hydrological cycle, the 

reported decline of shortwave radiation over such a long period may potentially increase 

water storage over land by damping evaporative demand from the atmosphere [Liepert et 

al., 2004; Wild et al., 2004].  Recent studies [Robock et al., 2005; Li et al., 2006] show no 

summer desiccation based on analysis of over 40 yr of gravimetrically-measured soil 

moisture observations for Ukraine and Russia during a period when surface air 

temperature rose.  Rather, observations for Ukraine and Russia show an upward soil 

moisture trend.  While Robock et al. [2005] suggested that solar dimming may have been 

responsible, this has not been tested before with a theoretical model.  The reported 

upward summer soil moisture trends for many Former Soviet Union stations are 

consistent with the decrease of pan evaporation around the same period for the same 
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region [Peterson et al., 1995] as pan evaporation can be thought as a direct measurement 

of the atmospheric evaporative demand. 

4.2 Experiment Design 

 To understand the relative contribution of solar dimming and physiological effects 

of CO2 on the observed soil moisture pattern for Ukraine and Russia (Figure 4.1), we 

conduct a series offline sensitivity experiments with the Community Land Model [CLM3, 

Oleson et al., 2004].  A unique advantage of offline experiments is that the model can be 

forced with realistic precipitation and temperature, so the sensitivity of soil moisture can 

be better sorted out.  We set the land cover type to “agricultural” for all grid points in the 

study regions, so we could compare the results to observations, which were made in 

agricultural fields.  We evaluate the results with the longest available observational data 

sets of soil moisture, from the Ukraine [1958-2004, Robock et al., 2005] and Russia 

[1958-1998, Li et al., 2006]. 

4.2.1 Modified Community Land Model 

 The CLM approximates land surface heterogeneity through a nested sub-grid 

hierarchy in which grid cells are composed of multiple land units, snow/soil columns, and 

plant functional types (PFTs).  Each grid cell can have a different number of land units 

(to capture the broadest spatial patterns of subgrid heterogeneity: glacier, lake, wetland, 

urban and vegetated), each land unit can have a different number of columns (to capture 

potential variability in the soil and snow state variables), and each column can have 

multiple PFTs (to capture the biogeophysical and biogeochemical differences between 

broad categories of plants).  Figure 4.2 gives a schematic representation of the key land 
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biogeophysical and hydrologic processes simulated by CLM.  Biogeophysical processes 

are simulated for each sub-grid land unit, column, and PFT independently and each sub-

grid land unit maintains its own prognostic variables.  The grid-averaged atmospheric 

forcing is used to force all sub-grid units within a grid cell.  The surface variables and 

fluxes required by the atmosphere are obtained by taking the weighted averages of the 

subgrid quantities by their corresponding fractional areas.  

4.2.1.1 Land surface hydrology module 

    A number of land model deficiencies have been found over various regions 

[Bonan et al., 2002].  Two problems related to hydrology are that the model has too much 

interception and too much surface runoff so that the simulated soil moisture is usually too 

low (infiltration is calculated as the residual of surface water flux minus evaporation and 

surface runoff).  Correspondingly, we made improvements to the land surface hydrology 

of CLM, following Niu et al. [2005] and Niu and Yang [2006].  In the CLM, the 

interception is expressed as: 
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where P represents precipitation.  fp is the ratio of precipitation intercepted by canopy.  

L/SAI represents leaf/stem area index.  Such expression was found to produce an excess 

of canopy interception loss and therefore was partially responsible for a too dry soil.  Niu 

et al. [2005] scaled fp by a factor fpi based on the precipitation characteristics: 
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where subscripts C and L represent convective and large-scale precipitation separately.    

If purely convective precipitation, the ratio will be 0.1 and if stratiform precipitation only, 

the ratio will be 1.  Forcing data sets prepared for offline simulations usually only 

provides total amount (i.e., the sum of convective precipitation and large-scale 

precipitation), so the following formula is used to reduce interception: 

   (4.3) )1 ,2.0min( )(5.0 SAILAI
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(4.2) and (4.3) actually work very similarly since the CLM assumes an equal partitioning 

between convective and stratiform precipitation for the offline configuration.  

 To improve the runoff scheme, Niu et al. [2005] developed a scheme called a 

simplified TOPMODEL-based runoff scheme (SIMTOPR) in which the surface runoff is 

rewritten as:   
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where Rs is the surface runoff, Qwat is the water input to the soil, Fsat is the saturated 

fraction of the soil.  Fmax, the maximum saturated fraction for a grid cell, is defined as the 

cumulative distribution function (CDF) of the topographic index when the grid cell mean 

water table depth is zero.  z▽ is the grid cell mean water table depth. Cs, used globally as 

0.6, is a coefficient that can be derived by fitting the exponential function to the discrete 

CDF of the topographic index.  f, a dimension index, is fixed as 2.0 m-1.  A major 

departure from the original CLM runoff scheme is the removal of infiltration excess 

runoff (Hortonian flow) which is negligible for TOPMODEL-based approaches [Niu and 

Yang 2003].  For the subsurface runoff, 

   (4.5) ∇−= fZ
sbsb eRR max,
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where Rsb,max is the maximum subsurface runoff when the grid cell mean water table 

depth is zero. (See Niu et al., 2005 for details about the calibrations and optimizations of 

these parameters).  Sensitivity experiments and validation against observations suggest 

SIMTOPR lead to more realistic runoff and much better and wetter soil moisture.  NCAR 

scientists currently are in the process of implementing these changes into the next version 

of CLM which is expected to be released soon. 

4.2.1.2 Stomatal-photosynthesis module 

 The CLM uses the coupled stomata-photosynthesis model developed by Collatz et 

al. [1991, 1992] with further modifications (C3 plants: Farquhar et al., 1980 and Collatz 

et al., 1991; C4 plants: Collatz et al., 1992 and Dougherty et al., 1994).  The response of 

gs (leaf conductance) to the rate of CO2 uptake and other environmental factors can be 

written as: 
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where A is leaf photosynthesis, m is a plant type dependent parameter, Cs is the CO2 

concentration at the leaf surface, es and ei are vapor pressure at the leaf surface and the 

saturation vapor pressure inside the leaf at the vegetation temperature Tv, Patm is the 

atmospheric pressure, and b is the minimum stomatal conductance when there is no 

photosynthesis (A = 0).  This formulation differs from the original proposal of Ball [1988] 

in that the CLM used gross photosynthesis instead of net photosynthesis (i.e., 

photosynthesis minus respiration).  Leaf area index then is used to scale up the leaf 

conductance to get the canopy-level one. 
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 The potential photosynthesis (defined as no soil moisture stress), according to the 

Liebig’s Law of the Minimum, is calculated in terms of three limiting factors:  

 ),,min( SCEp JJJA =  (4.7) 

where JE, JC and JS are separate expressions for photosynthetic CO2 uptake in terms of a 

different rate-limiting step in the overall process of photosynthesis (JE, light; JC, Rubisco; 

JS sucrose synthesis) [Collatz et al., 1991, 1992] (refer to Chpt. 8 of Oleson et al. [2004] 

for details about these factors).  Photosynthesis is related to atmospheric CO2 

concentration by: 
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where subscripts a, i and s for term C represent atmospheric, internal and leaf surface 

CO2 concentrations.  rb is leaf boundary layer resistance. rs is the leaf resistance (the 

inverse of the leaf conductance).   

 We made changes to the model so that it can accept user specified CO2 values 

instead of using the “hardwared” constant in the original model codes.  We also rewrote 

the beta factor (soil moisture control on photosynthesis) with a formula similar to other 

studies [e.g., Cox et al., 1999; Daly et al., 2004] as: 

 pAA ×= β   (4.9) 

Where A is photosynthesis, Ap is the potential photosynthesis calculated by the leaf-

photosynthesis module that is not constrained by water stress. β is the soil moisture 

availability weighted by root distribution: 
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Where r is the root percentage and ψ is matric potential and i represents soil layer, 

subscribe w and c represent wilting point and critical point (specified as 70% of field 

capacity here).  Here we chose the matric potential instead of volumetric soil moisture 

since the former is independent of soil type and is easier to implement in the model.  If 

soil moisture is below wilting level, corresponding W is set to zero.  If some moisture is 

above critical point, W is always one.  (4.6) – (4.10) gives the full stomata-photosynthesis 

model at leaf level which has been widely used. 

4.3 Forcing data 

 Many efforts have been devoted to developing reliable atmospheric forcing data 

suitable for global land simulations.  Such forcings were usually created by either 

adjusting reanalysis products [e.g., Sheffield et al., 2004; Ngo-Duc et al., 2005; Qian et 

al., 2006] or deriving from available observations [e.g., Nijssen et al., 2001; Maurer et al., 

2002].  We chose the forcing data sets recently created by Qian et al. [2006] (hereafter 

Qian) since the forcing is prepared in such a way that it can be easily used to force CLM.  

Other forcing data should produce similar results. 

 The Qian forcing data sets are based on National Center for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis outputs 

[Kalnay et al., 1996] but are adjusted by observations.  The reanalysis values of surface 

air temperature and precipitation were adjusted so the monthly means matched 
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observations.  Downward solar radiation was adjusted based on variations and trends 

from cloud observations, and then for the mean seasonal cycle of observed radiation, but 

not for observed trends in radiation (see table 4.1 for forcing adjustment procedures).  

Downward longwave radiation is calculated as a function of water vapor pressure and 

observed surface temperature.  As such, the greenhouse effect is implicitly included.  

Specific humidity is corrected based on the adjusted temperature field as no direct 

specific humidity observations are available for such long term period.  The adjustment 

implicitly incorporates changes in cloud lifetime but not the indirect aerosol effect that 

involves changes in radiative properties of clouds.  Possible vegetation structural changes 

due to CO2 increases (through land cover change) [e.g., Levis et al., 2000; Eastman et al., 

2001] are not considered here since the study regions are primarily agricultural zones that 

remain quite consistent over the years.  

 The control experiment directly uses the Qian forcing data.  To mimic the 

dimming, we conducted additional experiments that impose linear trends to the shortwave 

radiation field.  For simplicity, we call the experiments with two different degrees of 

imposed trends as -0.5% EXP and -1% EXP respectively.  For the -0.5% EXP, we use the 

following equation to mimic the dimming effect for 1961-1980:   

 ),(),(
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Where SW(s,t) is short wave radiation at every grid point and every time step.  For each 

year from 1961-1980, a cumulative 0.5%/year is subtracted from the corresponding 

radiation field of the control forcings.  After 1980, a constant 10% is subtracted from the 

control forcing to reflect possible transitions since then.  The -1% EXP is similar to that 

of -0.5% EXP except that the denominator in eq. (4.11) is changed to 100 so that a 
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cumulative 1%/year rate is subtracted for 1961-1980 and a constant 20% is maintained 

afterwards, i.e., a much stronger dimming scenario.   

 Figure 4.3 shows that the imposed trends are quite similar for Ukraine and Russia, 

about -0.5wm-2/year decline for the -0.5% EXP and about twice that for the 1% EXP for 

the annual means.  Larger decreases are found for summer (JJA) which can be explained 

by higher radiation during summer (the same percent decrease means much larger 

magnitude).  We use the surface radiation observations from Moscow as the reference, 

the closest long-term radiation station available, where observations are documented for 

the period of 1964 to the mid-1990s [Gilgen and Ohmura, 1999].  The imposed trends for 

-0.5% EXP are comparable to those of observations, although the latter exhibits stronger 

interannual variability.  Both control and NCEP/NCAR reanalysis don not show 

significant trends.  Interestingly, observations also exhibit much larger decrease in 

summer in comparison with annual mean.  The magnitude of real solar dimming over 

these two regions might be larger or lower than that of Moscow, which, while the best 

available, is at one point and may have local urban influences. 

 In addition, to see how CO2 increases may have impacted soil moisture, two 

parallel experiments, one with constant CO2 and another with transient CO2 increases, 

were conducted for each case described above.  For the constant CO2 experiments, CO2 

concentrations are fixed at the 1960 level of the observations from Mauna Loa 

Observatory  (about 315 ppmv) [Keeling et al., 2005].  For the transient CO2 experiments, 

prior to 1961, CO2 concentration is fixed at the 1960 level.  From 1961, the time-

dependent CO2 evolution follows the monthly mean values of Mauna Loa which increase 

to about 374 ppmv in 2002.  The spin-up is done by repeatedly forcing the model with the 



 53

forcing data at 1955 until equilibrium (small year-to-year changes) and then the model is 

run over the 1955-2002 period with a 1°×1° resolution for the land surface.   

 One might have an immediate question about the spin-up issue, e.g., whether 

different model initialization approaches will change the results significantly.  Thus, it is 

worthwhile to take some time to demonstrate that the results are insensitive to model 

initializations.  In theory, the meteorological memory of soil moisture is about a few 

months for mid-latitude regions [Vinnikov et al., 1996] and the autocorrelation between 

precipitation and soil moisture is probably on the same order.  As such, the modeling 

results should not be tied to a particular spin-up method as long as the predefined 

equilibrium conditions are met.  Because dry conditions tend to persist much longer than 

wet conditions for mid-latitudes [Wu et al., 2004], the simulations will be representative 

if results from a dry initialization are similar to those from a wet initialization.  I ran two 

additional experiments with fixed CO2 concentrations for Ukraine, one experiment 

initialized with the forcing data of 1980 (the wettest year, called wet run) and the other 

initialized with the forcing data at 1961 (the driest year, called dry run).  Same as the 

control one, both experiments are run for the entire 1955-2002 after reaching equilibrium. 

 The simulated top 0 - 1 m soil moisture is plotted in Figure 4.4, along with the 

results from the constant CO2 control experiment described earlier.  The results support 

the argument that the modeling results are independent on ways for model initialization 

as the three curves are almost identical.  Interestingly, a wet initialization took less time 

for the model to reach equilibrium.  This is related to the basic nature of the spin-up 

process as explained by Cosgrove et al. [2003].  For the wet initialization, this process 

progresses steadily as the soil column loses excess water through evaporation, drainage 
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and base-flow runoff.  In the case of a dry initialization, this spin-up process proceeds as 

the soil column moistens, and thus can only occur during precipitation events.  With this 

reliance on potentially scarce precipitation events, spin-up from a dry initialization can be 

expected to take longer than spin-up from a wet-initialization – especially in areas where 

precipitation amounts are small over spans of time. 

4.4 Modeling results 

 We evaluate the model simulations with the longest available observational data 

sets of soil moisture, from the Ukraine [1958-2004, Robock et al., 2005] and Russia 

[1958-1998, Li et al., 2006], freely available from the Global Soil Moisture Data Bank 

[Robock et al., 2000].  We focus on the summer soil moisture since it is closely related to 

plant growth.  We analyze soil moisture from the top 0-1 m where most of plant roots 

reside (for the model, 96% of the crop roots are in the top 1 m, too).   

 Figure 4.5 shows the simulated and observed soil moisture in summer.  To 

account for the differences between observations (plant-available soil moisture, i.e., with 

wilting levels subtracted) and model simulations (total soil moisture), we adjust each 

model simulation to the mean of observations for 1958-1960.  The observed soil moisture 

for Ukraine exhibits an increase from 1958 to early 1980s and then starts to level off 

afterwards.  So does the soil moisture in the control but with much smaller magnitude.  

Imposed dimming brings additional soil moisture increase compared to the control.  The 

stronger the dimming, the higher the increase in soil moisture.  Such response in soil 

moisture is a response to evapotranspiration, which serves as the crucial linkage between 

atmosphere and land surface for energy and water exchange.  When energy availability 

becomes limited, evapotranspiration decreases to balance energy reduction.  The 
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simulated evapotranspiration in summer for Ukraine on average decreases about 5% and 

16% for -0.5% EXP and -1% EXP runs respectively for the period of 1961-2000 

compared to the control. The numbers are 6% and 20% for Russia (Figure 4.6).   

 As can be seen in Fig. 4.5, the drier region of Ukraine has a slightly larger 

sensitivity to changes of insolation than Russia, even though the absolute changes in 

radiation are about the same (Fig. 4.3).  This is because of subtle differences in the 

interconnected changes of all the terms in the water budget, including runoff and drainage, 

connected to different specifications of the seasonal cycle of the leaf area index in the 

two regions in CLM.  In the control run for Russia, the combined runoff and drainage is 

almost twice as large as in Ukraine, and in the dimming experiments increases more than 

in the Ukraine, providing a larger compensation for the decreased evapotranspiration. 

 In terms of soil moisture, the -1% EXP essentially reproduces the observed 

pattern for both regions, showing an increase from 1961-1980 and then leveling off for 

Ukraine, and a general increase for soil moisture observations for Russia during the entire 

period.  Although model simulations exhibit weaker interannual variations, the simulated 

soil moisture with dimming included follows that of observations better, especially for 

the -1% EXP.  The correlation coefficients in Fig. 4.5, while not an ideal statistical 

measure, also support the finding that the –1% EXP produces the best simulations. 

 The simulated increases in photosynthesis (Figure 4.7) and decreases in canopy 

conductance (Figure 4.8) with rising CO2 concentrations are in agreement with the 

established theory about CO2 effects.  Interestingly, dimming induced similar plant 

responses as CO2 effects but with much smaller magnitude.  Potential photosynthesis, on 

the other hand, declined with dimming and the extent is proportional to the dimming 
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imposed.  This seeming paradox can be explained by the increase in soil moisture 

availability, i.e., larger beta, from reductions in solar radiation.  The elevated CO2 caused, 

however, very small soil moisture increases in contrast with the constant CO2 scenario.  

This is no surprise since in the elevated CO2 cases, evapotranspiration decreased by only 

about 0.1%.  The lines for the transient CO2 runs are essentially identical to those for the 

constant CO2 runs in Figure 4.5.  Over decadal scale, therefore, this model shows that 

carbon fertilization may have limited influence on regional soil moisture changes.  Such 

effects, however, are not negligible for the past century [Gedney et al., 2006].  Also, 

model-simulated plant transpiration accounts for only about 30% of the total 

evapotranspiration for these two regions.  Over regions where evapotranspiration is 

composed of primarily transpiration (e.g., Amazon rainforest), CO2 effects are likely to 

cause a much larger sensitivity.   

4.5 Final remarks 

 Recent studies [Robock et al., 2005; Li et al., 2006] show that reanalysis systems 

and the latest IPCC AR4 models cannot capture the magnitude of the observed soil 

moisture increase for Ukraine and Russia.  In addition to precipitation and temperature, 

our analysis suggests that solar dimming played a significant role on the regional soil 

moisture variations.  Over aerosol emission source regions, the aerosol effects are 

expected to continue to play a major role unless effective pollution controls are in effect.  

In agreement with our results, Lipert et al. [2004] argued that reduced surface solar 

radiation from increasing anthropogenic aerosols are able to reduce evaporation to the 

extent that it can slow down the water cycling (locally) despite global warming.  Thus, 

the observed intensification of the hydrological cycle over extratropical land is more 
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likely attributable to increased moisture advection from the oceans rather than to 

increased local moisture release through evaporation [Wild et al., 2004].  To capture the 

hydrological cycle and its components more realistically, we need better parameterization 

systems to characterize aerosol effects in climate models.  In spite of the relative small 

CO2 effects as indicated from our study on decadal scale, increasing CO2 may be one of 

the most important modifiers to water cycle for the past century and the effects may 

become more conspicuous if CO2 and other greenhouse gases concentrations keep going 

up.  To that end, these human induced external forcings have to be better understood to 

reduce uncertainties in future predictions and for better water availability assessments. 

 The results presented here use a current state-of-the-art land surface model, but 

should be repeated with other models to test for model dependency on the specifications 

of evapotranspiration, hydrology, and CO2 effects.  As a complementary, estimates based 

on a water-mass balance approach [e.g., Milly and Dunne, 2001] can also be used to infer 

the hydroclimatic changes over these regions.  Our best agreement between model results 

and solar dimming are with a dimming slightly larger than that observed at the one 

available station.  A better agreement awaits testing this hypothesis with better data sets 

and better models. 
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5 SUMMARY AND CONCLUDING REMARKS 

 With the objective of improving our understanding of soil moisture climatology 

and its long term changes, I collected and analyzed ground-based soil moisture 

observations, and used the observations to evaluate climate model simulations.  To 

answer the scientific questions posed at the beginning, three studies were conducted.  

Based on the analysis, I summarize the main findings as follows. 

How does soil moisture vary on seasonal to interannual scales? 

 I analyzed the reanalysis soil moisture for East Asian Monsoon climate at the 

point scale (i.e., point to point comparison) by using 19 yr of Chinese soil moisture 

observations.  Over this region, soil moisture seasonality is not very strong and seasonal 

fluctuations lie within a small range for the representative stations.  A similar pattern is 

also found for Mongolian soil moisture [Robock et al., 2000, Li et al., 2006].  Soil gets 

wet during winter and the following spring while it dries out during warm seasons for 

Central China stations, out of phase with precipitation that mainly pours down in warm 

seasons [Srinivasan et al., 2000].  The soil is very wet in autumn and winter from 1981-

1985.  There are anomalous dry periods for 1994-1995 and 1992-1993.  Interestingly, 

drought seems prone to persist long.  Similar conclusion is suggested by modeling studies 

[Wu and Dickinson, 2004].  Soil moisture observations are limited to growing seasons 

only for Northern China stations, with small peaks in late May, likely due to snowmelt 

recharge.  The seasonal variations for Western China stations are small.  And drought is a 

frequent visitor, i.e., more dry years than wet years in terms of soil moisture anomaly for 

the study period. 
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 With an additional eight years of observations, the results presented here is in 

agreement with early findings of Robock et al. [2000] and Srinivasan et al. [2000], 

indicating the robustness of these analyses.  Meanwhile, the soil moisture observations 

from Western China, though limited to only three stations, give a clue of the soil moisture 

evolutions in a dry climate for the first time.  These observations collectively depict a 

vivid picture of the climate diversity. 

 As discussed in chapter 1, soil moisture has crucial role in the climate system and 

modeling due to its long meteorological memory, contribution to atmospheric 

predictability, and its active role in land-atmosphere interaction.  But the fact is that 

physical processes of the climate system are too complex and can only be treated with 

rough approximations by climate models.  Consequently, the simulated soil moisture 

always exhibits disparities from observations, sometimes quite large, in various ways.  

The reanalysis systems, which assimilate many observed quantities, presumably should 

produce good soil moisture.  Srinivasan et al. [2000] evaluated soil moisture simulations 

in ERA15 and R-1.  They concluded reanalyses do capture some of the observed soil 

moisture variations (better than AMIP models), but the nudging damps out the amplitude 

of the variations.  The weak variability of surface water in R-1 was also found by Roads 

et al. [1999] and they attributed this problem to the nudging term too.  Later 

developments in reanalysis systems, e.g., employing a new land surface scheme in 

ERA40  and using observed precipitation to adjust soil moisture in R-2 (see chapter 2 for 

details), are expected to provide better soil moisture simulations than their ancestors.  

Maurer et al. [2001] evaluated the surface water characteristics in R-1 and R-2 with 

model simulated surface fluxes, and they reported that evapotranspiration in R-2 shows 
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less biases than R-1.  Soil moisture related validations, however, are still too limited to 

explicitly show how much improvements have been achieved and what aspects should be 

further improved.  I hope that my evaluation work can help end users of reanalysis soil 

moisture aware limitations of such outputs and also provide useful feedbacks to 

reanalysis groups for future reanalysis system improvements. 

 Compared to the Chinese soil moisture observations, R-2 generally shows better 

interannual variability and better seasonal patterns of soil moisture than R-1 as the result 

of incorporation of observed precipitation and the removal of nudging term.  R-1 has 

rather small year-to-year changes primarily due to the nudging to a fixed climatology that 

dominates the interannual variations.  Kanamitsu et al. [2002] found improved soil 

moisture simulations in R-2 compared to R-1 for Illinois.  My results support their 

conclusions showing evidence from a different region. 

 ERA40 produces a better mean value of soil moisture for most Chinese stations 

and good interannual variability.  ERA40 is also generally highly correlated with 

observations after removing seasonal cycle, and produces less bias to observations.  This 

might be attributable to the new land surface scheme employed and using screen-level 

information to constrain soil moisture errors.  

 Dirmeyer et al. [2004] compared ERA40, R-1 and R-2 with observed soil 

moisture.  They concluded that the mean annual cycle is generally better simulated than 

interannual variations, particularly where there are pronounced wet and dry seasons.  My 

recent evaluation of IPCC models also suggest models generally capture the observed 

seasonal cycles better if the observed soil moisture exhibits strong seasonal changes.  The 

exact reasons are unknown yet but this issue definitely deserves further studies. 
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 Limited observations in the spring indicate a spring soil moisture peak for most of 

the stations.  ERA40 generally reproduced this event, while R-1 or R-2 generally did not 

capture this feature, either because the soil was already saturated or the deep soil layer is 

too thick and damps such a response.  This feature should be further investigated 

preferably in a cold climate where snowmelt has significant contribution to spring runoff 

and soil moisture recharge.  Because higher temperature with global warming can lead to 

a shift in peak river runoff to winter and early spring and result in a shortage of water in 

summer and autumn when the demand is highest [Barnett et al., 2005], particularly for 

mid to high latitudes and over mountainous areas where snow is an important water 

source.  

 The persistence of soil moisture anomalies, or the temporal scale, has significant 

impact on land-atmosphere interaction and atmospheric predictability.  We estimated the 

temporal scale of soil moisture in reanalyses.  We found the soil moisture memory in R-2 

is far too large compared to observations and to R-1 and ERA40.  Our calculations are 

complementary to the findings of Roads et al. [1999] suggesting that the deep layer in R-

2 is too thick and dominates the overall variability of soil moisture.  This also highlights 

the importance of vertical resolution of soil column in the land surface scheme which can 

be improved by using, e.g., a simple geometric progression approach that is used in many 

modern land surface models as recognition of stronger gradient and activities near the 

surface. 

 As many other aspects of reanalysis systems are being continuously improved, I 

suggest a complete update/replacement of the current land surface model used in R-1 and 

R-2 with a more physically realistic model, e.g., its descendant, the Noah model that has 
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been extensively assessed and has been implemented in Eta data assimilation system and 

in NCEP’s 25-year North American Regional Reanalysis [Mitchell et al., 2005]. 

 For future reanalysis projects or improvements, it is desirable to directly 

assimilate precipitation forcing and drop the soil moisture adjustment, or even directly 

assimilate satellite soil moisture [Lu et al., 2005] which is currently in an experimental 

stage [e.g., Reichle and Koster, 2005].  This can close the water budget and is expected to 

provide more physically realistic soil moisture simulations.  Moreover, to provide 

realistic past climate analysis, the reanalysis systems should also allow the greenhouse 

gases to change, which means the vegetation dynamics should be incorporated into the 

current land surface schemes. 

 Lu et al. [2005] recently evaluated R-2 and R-1 with extensive soil moisture 

observations from GSMDB.  They argued “because of the lack of large-scale, long-term, 

and continuous observations of soil moisture, it remains very challenging to evaluate 

model generated soil moisture fields.”  This is true, but some high quality data sets are 

emerging, e.g., soil moisture observations from Oklahoma Mesonet and data sets from 

Gravity Recovery and Climate Experiment.  The former is extremely useful to understand 

hydrometeorology on sub-daily to daily scales as demonstrated in NLDAS projects [e.g., 

Robock et al., 2003; Luo et al., 2003b; Schaake et al., 2004] and the latter can be used to 

investigate the water storage changes at continental scale.  Also, outputs from the 

NCEP’s 25-year North American Regional Reanalysis might be utilized to understand 

hydroclimate and to improve the hydroclimatic simulations in reanalyses.  The 

prerequisite, of course, is that such regional reanalysis products, presumably better than 

the global reanalysis, are validated with available observations.  These data sets together 
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should be able to provide more insights and improve our understanding of the 

hydrological aspects of climate system.   

How has soil moisture changed for the past several decades? 

 Robock et al. [2005] showed summer soil moisture for Ukraine increased for the 

past 45 years.  Such changes are not captured by ERA40 and R-1.  I further extended 

their analysis by including 42 yr observations for Russia and found the patterns are 

similar.  This seems contradictory to the classic summer drying issue.  However, we 

should be aware that Russia and Ukraine are the only places on the planet that we have 

such long soil moisture observations, so my results may not necessarily apply elsewhere, 

in different climate regimes. 

 To see whether the IPCC models can capture the observed features, I analyzed 

soil moisture simulations from a few state-of-the-art models.  Soil moisture observations 

from Russia and Ukraine show significant increases in summer for the period from 1958-

1999, which were much larger than most (92%) trends in the model realizations.  Those 

two model realizations that have comparable trends to those of observations are due to 

internal model variability other than external forced response that is suggested by the 

sensitivity experiments detailed in Chapter 4.  Given model’s fidelity to reproduce 

temperature changes even for small regions with an area of about 1.0 x 106 km2 (the 

Ukrainian box), my analysis highlights the fact that models are capable of reproducing 

climate changes but not in every aspect.  There is still a long way for climate modelers to 

realistically represent the hydrological cycle in climate modeling systems. 

 Sun et al. [2005] recently evaluated daily precipitation in IPCC models.  They 

found IPCC models are able to simulate the land precipitation amount well but most of 
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them are unable to capture precipitation frequency and intensity correctly.  Most models 

overestimate the frequency for light precipitation (1–10 mm/day) but produce patterns of 

the intensity similar to observations.  On the contrary, most models considerably 

underestimate the intensity but simulate the frequency relatively well for heavy 

precipitation (>10 mm/day).  Similar findings are suggested by Dai [2005] who also 

discovered the newest generation of coupled models rains too frequently, mostly within 

the 1-10 mm/day category.  Future studies should try to investigate how such distorted 

precipitation features may affect soil moisture on daily to monthly scales. 

What are the likely reasons for such changes? 

 Changes in precipitation and temperature alone are not enough to explain the 

magnitudes of the observed increases, which implies that other factors might have a 

significant contribution.  We propose that changes in solar irradiance (the dimming effect) 

and resultant evaporative demand explain most of the observed soil moisture trends.  To 

test this hypothesis, we analyzed soil moisture outputs in a special version of the 

ECHAM5 model that was capable of capturing the observed radiation pattern as a result 

of incorporating a sophisticated aerosol scheme.  While the radiation pattern was fairly 

well simulated, precipitation was still quite different from observations, so the model was 

not able to reproduce the observed soil moisture trends.  Results suggest that both 

radiation and precipitation patterns are required to be adequately simulated to reproduce 

the observed soil moisture trends realistically. 

 To further validate the hypothesis of solar dimming effects on regional soil 

moisture, I conducted a series offline sensitivity experiments with a sophisticated land 

surface model, forced by realistic precipitation and temperature.  This avoids problematic 
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precipitation in coupled models that may cause difficulties in explaining the results.  I 

also examined possible contribution from CO2 effects, mainly the physiological 

responses of plants.  I demonstrate, by imposing a downward trend to shortwave radiation 

forcing to mimic the dimming, the observed soil moisture pattern can be essentially 

reproduced.  On the other hand, the effects of elevated CO2 are relatively small for the 

past 40 yrs.  The results suggest solar dimming plays an important role in land water 

storage at regional scale and thus support our hypothesis. 

 The answer is not fully satisfactory yet due to lack of observations to validate the 

exact magnitude of solar dimming.  Observations from a single ground station are not 

enough to derive regional solar radiation changes.  Satellite data sets are available but are 

too short to tell us what happened before 1980s.  Models then probably are the best tools 

we have (until we are confident they are good enough).  I am also aware that important 

aspects of structural changes (more LAI and more roots) from plant growth under rising 

CO2 are not considered in this study.  So the idea should be further validated with other 

models including these features.  To fully account for land and atmosphere interactions, it 

is desirable to use coupled models.  In this case, observed precipitation probably should 

be assimilated so that the sensitivity of soil moisture and/or water storage to other 

changes can be better sort out. 

 In spite of a high likelihood of cause and effect relationship between solar 

dimming and soil moisture increases for Ukraine and Russia, this study by no means tried 

to rule out other possibilities that might also contribute to the observed soil moisture 

increase.  For example, changes in soil physical properties (e.g., field capacity, wilting 

point), resulting from natural environmental changes or human management, might also 
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have played a role.  Unfortunately, these properties are usually treated to be time 

invariant constants, and thus are not available for attribution study.  But a simple scenario 

calculation might provide some insights.  The area averaged wilting level for Ukraine is 

about 20 % (volumetric percent) 40 years ago.  Let’s assume half of the observed soil 

moisture increases are attributable to changes in wilting level.  Wilting level for top 0-1 

m soil will be around 22% now, roughly 2 cm increase – a rather noticeably increase.  

Greater share of historical/existing observational records and freer exchange of data 

among scientists across political boundaries in future should help a better and 

comprehensive understanding of climatic changes. 

Final remark 

 Just taking a glimpse of the statistics in the subject of soil moisture and climate, I 

am glad to find the science community is increasingly aware of the importance of soil 

moisture to climate.  A total of 2,132 papers have been published in science citation 

index journals since 1993 (source: www.isiknowledge.com).  And the trend is that more 

papers are published every year.  In 1993, there are only nine papers appeared in this field.  

This number increased to 256 in 2005, and 151 papers were published already this year 

(as of July 21, 2006) (Figure 5.1). 

 The soil moisture observations archived at GSMDB are far more useful than I 

showed in my graduate work.  Since the GSMDB website update on June 9, 2004 (see 

Figure 5.2 for a snapshot of the website), there are 7,265 visits to the data bank as of July 

22, 2006 (same day repeated visits from the identical IP not accounted).  These visits 

themselves already suggest the importance of in situ soil moisture observations.  I am 

sure the users are not just climate scientists.  These ground-based observations, together 
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with other emerging products from satellites and other instruments, eventually can help 

us for a better understanding of hydroclimate. 
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Table 2.1.  List of soil moisture stations.  Stations with “§”were selected in this study. “-” 
means that different types of vegetation were planted together and “/” means the 
vegetation changes from year to year.  The elevation data with “*” were extracted from a 
1 km x 1 km digital elevation map of China (USGS, 2004).  Soil types are based on a 
1°×1° soil type map of China (FAO, 1970-78), thus providing only the dominant soil type 
for that particular grid box, which may not be representative of the actual station soil type. 

Station ID Name Elevation (m) Soil type Vegetation Record Period
1 Huma 177 Silt clay wheat/bean 1981-1999
2 Jiayin 90 Loam wheat/bean 1981-1999
3 Fuyu 167 Loam Not Available 1981-1999
4 Hailun 239 Loam Not Available 1981-1999
5 Qinggang 205 Loam wheat 1981-1999
6 Bayan 135 Loam maize/bean 1981-1999
7 Jiamusi 81 Loam cabbage-maize-bean 1981-1999
8 Baoqing 83 Loam bean/wheat 1981-1999
§9 Fuyu2 *134 Loam maize 1981-1999
10 Haerbin *154 Silt clay bean/maize 1981-1999
11 Boli 217 Clay loam cabbage/beet 1981-1999
12 Hulin 100 Silt clay wheat-bean 1981-1999
13 Wulanwusu 468 Sand wheat 1981-1999
14 Tulufan -49 Clay loam cotton 1981-1999
§15 Shache 1231 Silt clay wheat 1981-1999
16 Xilinguole *1231 Clay loam grass 1981-1999
17 Yongning 1117 Silt clay wheat 1981-1999
18 Guyuan 1753 Silt clay Not Available 1981-1999
19 Huanxian *1302 Silt clay wheat 1981-1999
§20 Tongwei 1768 Silt clay Not Available 1981-1999
§21 Xifengzhen 1421 Silt clay wheat 1981-1999
22 Xinxiang 79 Clay loam wheat-maize 1981-1999
§23 Changling 189 Loam Not Available 1981-1999
§24 Dunhua 524 Silt clay maize/maize-bean 1981-1999
25 Hainong *336 Silt clay maize/millet 1981-1999
26 Chaoyang 169 Loam Not Available 1981-1999
27 Jianping *454 Loam rice-maize-bean-potato 1981-1999
28 Xinmin 31 Loam vegetables/bean/maize 1981-1999
§29 Jinzhou *22 Silt clay Not Available 1981-1999
30 Jinxian 27 Silt clay maize/potato/bean/vegetables 1981-1999
§31 Tianshui 1083 Silt clay wheat 1981-1999
32 Lushi 569 Silt clay wheat-maize 1981-1999
§33 Nanyang 129 Sand wheat-maize 1981-1999
34 Zhumadian 83 Loam maize-wheat 1981-1999
35 Nanchong 309 Sand Not Available 1981-1999
§36 Xuzhou *46 Clay loam wheat-potato-bean 1981-1999
37 Suxian *30 Loam wheat-bean/sesame 1981-1999
38 Zhenjiang *15 Clay loam vegetables-bean-wheat 1981-1999
39 Jinjiang 54 Loam peanut-sweet potato 1981-1992
40 Baise 174 Clay loam maize 1981-1999
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Table 2.2.  Temporal scale of soil moisture variation (months) for observations and each 
reanalysis for each station, and the mean values.  Calculations for reanalyses were done 
only for the times when data existed for the observations, and for the complete time series 
(rows with * and in italics).  Also shown in parenthesis is 1 standard deviation from the 
mean. 

 West North Center  

Station 15 9 23 24 29 20 21 31 33 36 Mean 

OBS 2.9 3.6 0.7 0.8 5.2 3.5 2.8 2.3 3.6 3.0 2.8 (± 1.4) 
ERA40 6.1 11.5 4.2 2.7 2.7 1.2 1.2 2.8 5.5 8.0 4.6 (± 3.3) 
ERA40* 6.3 10.5 6.9 12.9 4.0 2.1 2.0 2.8 3.7 3.4 5.4 (± 3.7) 

R-1 4.4 2.2 2.1 2.0 1.8 2.9 1.6 2.0 2.8 2.1 2.4 (± 0.8) 
R-1* 6.1 1.8 1.9 1.8 1.8 1.8 1.8 1.8 2.6 2.0 2.3 (± 1.3) 
R-2 2.0 4.0 3.2 4.0 6.5 2.9 4.6 6.0 8.4 6.7 4.8 (± 2.0) 
R-2* 2.8 8.9 7.2 6.2 13.6 7.1 8.0 8.0 8.4 7.9 7.8 (± 2.7) 
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Table 3.1.  Soil moisture data sets. 

Region Domain           Record length   
    (0-1 m)        (0-10 cm) 

No. of 
stations 

Ukraine 46.0-52.0ºN, 22.0-40.0ºE 1958-1999 1976-1999 26* 
Russia 51.0-59.0ºN, 32.0-57.0ºE 1958-1999 1970-1999 29* 

Mongolia 46.5-50.5ºN, 101.0-107.0ºE 1970-1999 1970-1999 5 
Northern China 43.0-48.0ºN, 123.5-128.5ºE 1981-1999 1981-1999 8 
Central China 34.0-37.0ºN, 104.5-108.5ºE 1981-1999 1981-1999 5 

Illinois 37.5-42.0ºN, 88.0-91.0ºW 1984-1999 1984-1999 18 

*District data are derived from 3-6 stations each. 
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Table 3.2.  IPCC AR4 climate models analyzed. IPCC AR4 climate models analyzed.  

Model Name Organization Land surface model, 
resolution 

Number of 
ensemble 
members 

Reference 

MIROC3.2 
(medres)a,b

MATSIRO (no tiling), 
~2.8º 3 

MIROC3.2 (hires)b

CCSR (Univ. of 
Tokyo), NIES, 
and FRCGC 
(JAMSTEC), 

Japan 
MATSIRO (2x2 tiling), 

~0.56º 1 
Takata et al. [2003]

GISS – EHa,d 5 

GISS – ERa,d

NASA / GISS, 
USA 

Land Surface Model, 
4ºx5º 

9 

Rosenzweig and 
Abramopoulos 

[1997], Friend and 
Kiang [2005] 

MRI-CGCM2.3.2a,b,d MRI, Japan SiB L3, ~2.8º 5 Sellers et al. [1986], 
Sato et al. [1989] 

FGLOALS-g1.0a,d LASG/IAP, 
China CLM2.0, ~2.8º 3 Bonan et al. [2002]

CGCM3.1 (T47)a CCCMA, 
Canada CLASS, ~3.75 º 5 Verseghy et al. 

[1991] 
CCSM3, USAa,b,d NCAR, USA CLM3.0, ~1.4º 6 Oleson et al. [2004]
PCM1, USAb,d NCAR, USA LSM1.0, ~2.8º 4 Bonan [1996] 
GFDL_CM2_0b,c GFDL, USA 
GFDL_CM2_1b,c GFDL, USA 

LM2, 2.0ºx2.5º 3 Milly and Shmakin 
[2002] 

UKMO-HADCM3a,d MOSES-I, 2.5ºx 3.75º 2 Cox et al. [1999] 
UKMO-HADGEM1a,d

Hadley Centre, 
Met Office, UK MOSES-II, 1.25ºx1.875º 2 Essey et al. [2001]

a Model has top 0-10 cm soil moisture output. 
b Model has top 0-1 m soil moisture output. 
c Model reported root-zone level (about 1 m) plant-available soil moisture.   
d Model includes carbon fertilization effects. 



 84

Table 4.1.  Summary of forcing adjustment procedures 
 Forcing Fields Adjustment Method 

Precipitationa

Shortwave Radiationb

Temperaturec rV
V

adjr VV
r

obs ×= )(,  

Specific Humidity Adjusted according to adjusted temperature and pressure

Wind — 

Pressure — 

Vr is reanalysis Variable, Values with an overhead bar represent monthly mean.  The 
ratios between monthly mean observations and monthly mean reanalysis values were 
used to adjust reanalysis fields.  
aused a combination of Chen et al. [2002] for 1948-1996 and Global Precipitation 
Climatology Project (GPCP) V2 data [Adler et al. 2003] for 1997-2002 for precipitation 
observations. 
bused Climate Research Unit (CRU) cloud cover data [New et al. 2002; Mitchell et al. 
2004] for 1948 to 1974 and combination of CRU and Dai et al. cloud observations [2005] 
for 1975-2000 and Dai et al. data [2005] for 2001-2004 to correct anomalies and 
International Satellite Cloud Climatology Project (ISCCP) [Zhang et al. 2004] 
observations to correct mean radiation biases.  
cused CRU temperature observations [Jones and Moberg 2003 and updates]. 
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Figure 2.1.  Chinese soil moisture station map.  The number is the station ID (see Table 
2.1).  The size of the circles indicates the data quality (frequency of available 
observations during the period April-October) and circles with an “X” are the stations 
chosen for comparison with the models. 
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Figure 2.2.  Total soil moisture (cm) at three levels: top 10 cm, top 50 cm and top 1 m 
for two representative stations, Station 9 from Northern China in the left column and 
Station 15 from Western China in the right column. 
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Figure 2.3.  Total top 1 m soil moisture for Station 15 (Western China), Station 23 
(Northern China) and Station 33 (Central China).  R-1 has very little interannual 
variability.  For Station 15, the amplitude of the interannual variability is too small for R-
1 and ERA40.  
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Figure 2.4.  Correlation of monthly (day 28 of each month) soil moisture observations 
for 10 stations indicated in Figure 2.1 with reanalyses.  Top panel includes the seasonal 
cycle and bottom panel has the mean seasonal cycle removed.  The black error bars 
indicate the 95% significance level for the correlation coefficients.  Remarkably, in 
general the correlations are higher with the seasonal cycle removed, except for R-2. 
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Figure 2.5.  Seasonal cycle of top 1 m total soil moisture for three stations (see Figure 
2.1) and reanalyses. The error bars are ±1 standard deviations from the means. 
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Figure 2.6.  Month-year plots of top 1 m total available soil moisture evolution for three 
stations and reanalyses. 
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Figure 2.7.  Same as Figure 2.6, but for anomalies with respect to the mean for 1990-
1998.  Thick line is 0, and contour interval is 1 cm. 
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Figure 2.8.  Soil moisture summer interannual variability.  (a) Top 1 m soil moisture 
anomaly for Station 15 (Western China), Station 23 (Northern China) and Station 33 
(Central China).  Anomaly was calculated as the mean value for summer months (JJA) in 
every year based on climatology of 1990-1998.  (b) Soil moisture anomaly correlation 
between models and observations for JJA.  ERA40 generally exhibits the best interannual 
variability as compared to observations among three models.  
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Figure 2.9.  Temporal autocorrelations of observations and reanalyses for all 10 stations 
indicated in Figure 2.1, plotted as natural logarithm of the correlation coefficients.  The 
slope of the best fit line gives the temporal scale.  Top 4 panels are results when taking 
out the corresponding data from reanalyses if there have missing values in observations.  
Bottom 3 panels are calculations based on full data sets in reanalyses.  The thick lines in 
black show the arithmetic average for all 10 stations. 
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Figure 3.1.  Distribution of soil moisture stations/district centers used in this study.  
District centers are plotted as double circles and stations as solid dots.  Rectangles are 
domains used to derive regional averages (Table 3.1). 
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a) 

  

b) 

Figure 3.2.  Mean soil moisture seasonal cycle: (a) top 10 cm (units: cm), (b) Mean soil 
moisture seasonal cycle for top 1 m (units: cm).  
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Figure 3.3.  Taylor diagrams for top 10 cm soil moisture.  Azimuthal angle represents 
correlation coefficient and radial distance is the standard deviation normalized to 
observations.  
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Figure 3.4.  Taylor diagram for precipitation. 
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Fig 3.5. Same as Figure 3.2 except for precipitation. 
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Figure 3.6.  Interannual variations (coefficient of variance, defined as standard deviation 
divided by mean) of top 0-10 cm soil moisture for observations (Table 3.1) and IPCC 
models (Table 3.2). 



 100

 
Figure 3.7.  Seasonal cycle of top 1 m soil moisture trends for 1958-1999.  Observations 
are circles, 90% confidence intervals are dashed lines, dark gray lines represent mean 
trends for individual model realizations (see Table 3.2 for list of models), and error bars 
show standard deviation for trends.  Light gray symbols are estimated trends for 
individual realizations.  For location of Ukraine and Russia boxes, see Table 3.1 and 
Figure 3.1. 
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Figure 3.8.  Same as Figure 3.7, but for precipitation.  See text for references to CRU and 
UDel data. 
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Figure 3.9.  Same as Figure 3.7, but for temperature.  See text for references to CRU data. 
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Figure 3.10.  Summer (JJA) soil moisture changes for Ukraine and Russia for the period 
of 1958-1999 from observations and model ensembles, expressed as anomalies relative to 
the 1961-1999 means.  Right panel shows linear trends.  Thick solid lines are estimated 
trends for observations and 90% confidence intervals are dashed lines.  Trends from 
individual model realizations (Table 3.2) are plotted as “*” in light gray.  Error bar 
represents the standard deviation of the trends from 25 realizations. 
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Figure 3.11. Same as Figure 3.10 except for precipitation. 
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Figure 3.12. Same as Figure 3.10 except for temperature. 
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(a) 

 
(b)  

Figure 3.13. (a) Streamflow stations (triangle) from Global River Discharge data sets. (b). 
Normalized river discharge time series (light grey lines).  Thick black line represents the 
normalized mean discharge of stations for each district.  Soil moisture is plotted as thick 
red lines.  There is a good correspondence between soil moisture and independent river 
discharge observations. 
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Figure 3.14.  Summer (JJA) plant-available soil moisture for the top 1 m for special 
version of ECHAM5-HAM model (red), standard ECHAM5 model (blue), and 
observations (black).  Also shown are linear and quadratic fitted trend lines.  
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Figure 3.16.  Relative change of soil moisture in summer (JJA) between 2060-2999 and 
1960-1999 for models forced with the SRES A1B scenario, normalized by the average of 
1960-1999.  Units are in percent. 
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Figure 4.1. Soil moisture district distribution.  Each district is an average of 3-6 stations. 
Red rectangles represent the modeling domain for Ukraine (22-40E, 46-52N) and Russia 
(32-57E, 51-59N).  The observed soil moisture for Ukraine spans from 1958-2002 and 
covers 1958-1998 for Russia.  The measurements are taken gravimetrically two to three 
times per month during growing seasons for top 0-20 cm and 0-100 cm. 
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Figure 4.2. Land biogeophysical and hydrologic processes simulated by CLM (adapted 
from Bonan et al. [2002]) 
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Figure 4.3. Estimated linear trends for shortwave radiation field for Ukraine (top panel) 
and Russia (bottom panel). Error bar represents the 95% confidence interval for the 
estimated trends based on linear regression. There is no significant decrease for the 
controls, neither NCEP/NCAR reanalysis. Also shown are the trends estimated from 
nearby station-based observations (Moscow).  
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Figure 4.4.  Top 1 m soil moisture from different spin-up conditions.  The almost 
identical curves suggest that the simulated results are independent from the spin-up 
conditions.  
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Figure 4.5. Observed and simulated JJA plant available soil moisture for 1958-2002.  
The model simulated soil moisture is adjusted to the mean of 1958-1960 observations.  
Top panels are for Ukraine box in Fig. 1 and bottom panels are for Russia box.  For left 
panels, solid lines are simulations with constant CO2 and dashed lines (barely visible) are 
simulations with time-dependent CO2 increase.  Also shown are the correlation 
coefficients between simulations and observations for the time period of the observations.  
Right panels show soil moisture increases due to elevated CO2, plotted as the differences 
between the dashed and solid lines on an expanded vertical axis.  The effects of solar 
dimming are large while the effects of increasing CO2 on soil moisture are negligible in 
this model.     
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Figure 4.6. Partitioning of evapotranspiration (JJA) for 1961-2002. Ground evaporation 
accounts for about 50% of total evapotranspiration, followed by transpiration about 30%. 
CO2 induced reductions in evapotranspiration are negligible compared to the dimming 
effects. 
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Figure 4.7. Same as Figure 4.5 but for photosynthesis. 
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Figure 4.8. Same as Figure 4.5 but for canopy conductance. 
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Figure 5.1. Papers published in the subject of soil moisture and climate.  Y axis shows 
the number of papers published each year.  The figure is created based on statistics from 
www.isiknowledge.com.  The projected number for 2006 is based on the daily 
publication information as of July 21, 2006.  Only papers published in science citation 
index journals are included. 



 119

 

 
Figure 5.2. A snapshot of Global Soil Moisture Data Bank web interface. 
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