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ABSTRACT OF THE DISSERTATION

Algorithmic Developments and Complexity Results for

Finding Maximum and Exact Independent Sets in Graphs

by Martin Milanič

Dissertation Director: Professor Vadim V. Lozin

We consider the maximum independent set and maximum weight independent set

problems in graphs. As these problems are generally NP-hard, we study their complexity

in hereditary graph classes, that is, in graph classes defined by a set F of forbidden induced

subgraphs.

We describe a condition on the set F , which guarantees that the maximum indepen-

dent set problem remains NP-hard in the class of F-free graphs. The same hardness

result remains valid even under the additional restriction that the graphs are planar and of

maximum degree at most three.

We exhibit several cases where the condition is violated, and the problem admits a

polynomial-time solution. More specifically, we present polynomial-time algorithms for the

maximum independent set problem in:

• two graph classes that properly contain claw-free graphs (thus generalizing the clas-

sical result for claw-free graphs);

• various subclasses of planar and more general graphs;

• weighted graphs in certain subclasses of graphs of bounded vertex degree.
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Our algorithms are based on various approaches. In particular, we develop an extension

of the method of finding augmenting graphs. We also make extensive use of some other

well-known graph decompositions.

We also introduce and study the exact version of the problem, where, instead of finding

an independent set of maximum weight, the goal is to find an independent set of given

weight. Determining the computational complexity of this problem for line graphs, or for

line graphs of bipartite graphs would resolve long standing open problems. Here, we show

that:

• The exact weighted independent set problem is strongly NP-complete for cubic

bipartite graphs.

• The problem is solvable in pseudo-polynomial time for any of the following graph

classes:

mK2-free graphs, interval graphs and their generalizations k-thin graphs, circle graphs,

chordal graphs, AT-free graphs, (claw, net)-free graphs, distance-hereditary graphs,

and graphs of bounded tree- or clique-width.

Finally, we show how modular decomposition can be applied to the exact weighted

independent set problem. As a corollary, we obtain pseudo-polynomial solutions for the

problem in certain subclasses of P5-free and fork-free graphs.
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Chapter 1

Introduction

Graphs are mathematical structures that model binary relations. As such, they are ex-

tremely useful to model problems from such varied areas as computer science, operations

research, social networks, biology, etc. In these problems, it is often desirable to find a

particular substructure of a graph that is optimal with respect to some optimality criterion.

Most of these graph optimization problems can be described within the following framework.

Given a graph, find a subset of its vertices (or edges) of minimum or maximum cardinality,

subject to additional constraints (requirements). For example, the maximum independent

set problem asks for a maximum subset of pairwise non-adjacent (“independent”) vertices.

Another important framework is given by the exact versions of graph optimization prob-

lems: Given a graph with weights on its vertices (or edges), find a subset of its vertices (or

edges) whose total weight equals to some given bound (or determine that there is no such

subset, if this is the case). For example, the exact perfect matching problem asks

whether a given edge-weighted graph contains a perfect matching of given weight.

Most of such problems are computationally intractable; they are among the many NP-

hard problems [55]. There are several ways of dealing with an NP-hard problem. Since

solving an optimization problem to optimality may be prohibitive in terms of computational

time, we can instead try to obtain an approximate solution in reasonable time: this brings us

into the area of approximation algorithms [111]. Also, even though a problem may be hard

in general, it is often possible to reveal restrictions on the input instances under which the

problem can be solved efficiently, that is, in polynomial time. Of course, what’s interesting

here is to identify cases for which polynomial-time solutions require new algorithmic ideas.

In this thesis, we focus on four problems related to finding independent sets in graphs:

the maximum independent set problem (MIS), the maximum weight independent
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set problem (MWIS), the exact weighted independent set problem (EWIS) and the

exact weighted maximum independent set problem (EWISα).

1.1 Maximum Independent Sets

The maximum independent set problem is a fundamental problem in algorithmic graph

theory. Closely related to the maximum clique and minimum vertex cover problems,

this is one of the central problems of combinatorial optimization and has numerous ap-

plications [18]. The problem is well-known to be NP-hard [55], and also hard to approxi-

mate [69].1 The problem remains NP-hard even under substantial restrictions, for instance,

for triangle-free graphs [100], K1,4-free graphs [90], and planar graphs of degree at most

three [54].

More generally, let X be the class of graphs defined by a set F of forbidden induced

subgraphs. Can we draw the line between the polynomial and the NP-hard side, in terms

of the set F? That is, under what conditions on F does the maximum independent set

problem remain NP-hard in X? On the other hand, when does it become polynomially

solvable?

A partial answer to these questions was given in 1982 by Alekseev [1], who proved the

following theorem.

Theorem 1.1.1 ([1]). Let X be the class of graphs defined by a set F of forbidden induced

subgraphs. If F is finite and contains no graph whose each connected component is of the

form Si,j,k (see Figure 1.1), then the maximum independent set problem is NP-hard in

X.

Alekseev’s result can only be applied to finite F . After giving the necessary preliminaries,

we show in section 1.3.3 that the result of Garey and Johnson [54] who showed NP-hardness

of the MIS problem for planar graphs of vertex degree at most three, and Alekseev’s result

admit a common strengthening (Theorem 1.3.1). More specifically, we describe a condition

1As the reader will witness in Chapter 2, an indication of the inherent intractability of the problem is
provided by the great variety of techniques that have been designed in order to develop polynomial-time
solutions to the problem in particular graph classes.
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Figure 1.1: Graph Si,j,k

on the set F (which can be infinite) such that the maximum independent set problem

remains NP-hard in the class of F-free graphs that are planar and of maximum degree at

most 3.

In Chapters 3 and 4 we exhibit several cases where this condition is violated, and the

maximum independent set problem or its weighted counterpart admit a polynomial-

time solution. Our algorithms are based on various approaches. For example, we develop

an extension of the method of finding augmenting graphs. We also make extensive use of

the well-known graph decompositions such as modular decomposition and decomposition by

clique separators, as well as other reductions, and combinations thereof. All these techniques

are described in Chapter 2.

With the exception of one approximation algorithm with performance ratio 2, all of our

algorithms are exact, that is, they compute optimal solutions. As these polynomial results

will be best appreciated in view of the hardness theorem (Theorem 1.3.1 in Section 1.3.3),

we postpone their detailed formulation until Section 1.4, where an overview of the main

contributions of this thesis is given.

1.2 Perfect Matchings and Independent Sets of Exact Weight

Let us now turn our attention to the exact versions of graph optimization problems. Suppose

we have a well-solved optimization problem, such as minimum spanning tree, maximum cut

in planar graphs, minimum weight perfect matching, or maximum weight independent set

in a bipartite graph. How hard is it to determine whether there exists a solution with a

given weight?
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As noted by Papadimitriou and Yannakakis in [99], many exact versions of polynomially

solvable optimization problems are NP-complete when the weights are encoded in binary.

The question is then, what happens if the weights are “small,” that is, encoded in unary?

Contrary to the binary case, the answer to this question depends on the problem.

• The exact spanning tree problem, and more generally, the exact arborescence

problem are solvable in pseudo-polynomial time [10].

• The exact cut problem is solvable in pseudo-polynomial time for planar and toroidal

graphs [10].

• The exact perfect matching problem is solvable in pseudo-polynomial time for

planar graphs [10], and more generally, for graphs that have a Pfaffian orientation

(provided one is given). Karzanov [75] gives a polynomial-time algorithm for the

special case of the exact perfect matching problem, when the graph is either com-

plete or complete bipartite, and the weights are restricted to 0 and 1. Papadimitriou

and Yannakakis show in [99] that the problem for general (or bipartite) graphs with

weights encoded in unary is polynomially reducible to the one with 0-1 weights. Mul-

muley, Vazirani and Vazirani [93] show that the exact perfect matching problem has

a randomized pseudo-polynomial-time algorithm.

The exact perfect matching problem is of great practical importance. It has applica-

tions in such diverse areas as bus-driver scheduling, statistical mechanics (see [76]), DNA

sequencing [12], and robust assignment problems [37]. The problem consists in determining

whether a given edge-weighted graph contains a perfect matching of a given weight. (A

matching in a graph is a set of pairwise disjoint edges. A matching is perfect if every vertex

of the graph is contained in some edge from the matching.) Despite polynomial results for

special cases, the deterministic complexity of the exact perfect matching problem remains

unsettled for general graphs, and even for bipartite graphs. Papadimitriou and Yannakakis

conjectured that the problem is NP-complete [99].

This open problem motivates us to introduce and study the exact weighted independent

set problem and a restricted version of it, both closely related to the exact perfect matching
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problem. The exact weighted independent set problem (EWIS) consists in determin-

ing whether a given vertex-weighted graph contains an independent set of a given weight.

The exact weighted maximum independent set problem (EWISα) is the restriction

of EWIS where we require the independent set to be a maximum independent set of the

graph.

The connection between the exact perfect matching problem and the exact weighted

independent set problem is best understood through line graphs. The line graph L(G)

of a graph G = (V,E) is the graph whose vertex set is E, and whose two vertices are

adjacent if and only if they share a common vertex as edges of G. Clearly, there is a one-

to-one correspondence between the matchings of a graph and the independent sets of its

line graph. The exact matching problem, that is, the problem of determining whether a

given edge-weighted graph contains a matching of a given weight, is then precisely the exact

weighted independent set problem, restricted to the class of line graphs. Similarly, under

the (polynomially verifiable) assumption that the input graph has a perfect matching, the

exact perfect matching problem is precisely the exact weighted maximum independent set

problem, restricted to the class of the line graphs of graphs with a perfect matching.

Thus, in terms of independent sets, the above open problems translate to the following

two.

Open Problem 1. Determine the complexity of the exact weighted maximum inde-

pendent set problem in line graphs.

Open Problem 2. Determine the complexity of the exact weighted maximum inde-

pendent set problem in line graphs of bipartite graphs.

Here, we do not answer these questions. However, we present in Chapter 5 several

complexity results for the problems EWIS and EWISα, when restricted to particular graph

classes. We also show how modular decomposition can be applied to the exact weighted

independent set problem. Again, we refer to Section 1.4 for a more detailed formulation of

the results.

The remainder of this introductory chapter is organized as follows. In Section 1.3, we
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give necessary preliminaries: formal definitions of the problems, a short discussion on graph

classes, and a general NP-hardness result for the maximum independent set problem in

hereditary graph classes. Section 1.4 presents an overview of the main contributions of the

thesis. We conclude the chapter with basic graph-theoretic definitions and terminology.

1.3 Preliminaries

1.3.1 Formal Definitions of Problems

An independent set (sometimes called stable set) in a graph G is a subset of pairwise non-

adjacent vertices. The maximum independent set problem is that of finding in a graph

a maximum independent set, that is, an independent set of maximum cardinality (which

is denoted by α(G) and referred to as the independence number of the graph). If each

vertex of G is assigned a positive integer, the weight of the vertex, then we say that G is a

weighted graph. The maximum weight independent set problem consists in finding in

a weighted graph an independent set of maximum total weight. Sometimes, we will refer to

the maximum weight independent set problem as the “maximum independent set problem

in weighted graphs.”

The decision versions of these problems can be formally expressed as follows:

Maximum Independent Set (MIS)

Instance: A pair (G, k), where G = (V,E) is a graph, k is an integer.

Question: Is there an independent set I in G such that |I| ≥ k?

Maximum Weight Independent Set (MWIS)

Instance: A triple (G, w, k), where G = (V,E) is a graph, w : V → Z and k is an integer.

Question: Is there an independent set I in G such that
∑

v∈I w(v) ≥ k?

The exact weighted independent set problem (EWIS) consists in determining

whether a given weighted graph (G, w) with G = (V,E) and w : V → Z contains an

independent set whose total weight (i.e., the sum of the weights of its members) equals a

given integer b. The exact weighted maximum independent set problem (EWISα) is

the restriction of the EWIS problem where we require the independent set to be a maximum
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independent set of the graph. Thus, given a weighted graph (G, w) and an integer b, the

EWISα problem asks about the existence of an independent set I of G with w(I) = b and

|I| = α(G).

Formally:

Exact weighted independent set (EWIS)

Instance: A triple (G, w, b), where G = (V,E) is a graph, w : V → Z and b is an integer.

Question: Is there an independent set I in G such that
∑

v∈I w(v) = b?

Exact weighted maximum independent set (EWISα)

Instance: A triple (G, w, b), where G = (V,E) is a graph, w : V → Z and b is an integer.

Question: Is there a maximum independent set I in G such that
∑

v∈I w(v) = b?

1.3.2 Graph Classes

We will restrict our attention to graph classes with the following nice property: when-

ever they contain a graph G, they contain all induced subgraphs of G. Such classes are

called hereditary. Many classes of theoretical or practical importance are hereditary, which

includes, among others,

1. planar graphs;

2. bipartite graphs;

3. graphs of bounded vertex degree;

4. forests, i.e., graphs without cycles;

5. graphs of bounded treewidth;

6. graphs of bounded clique-width;

7. chordal graphs, i.e., graphs in which every cycle of length at least four has a chord;

8. perfect graphs;

9. interval graphs, i.e., intersection graphs of intervals on a real line;

10. circle graphs, i.e., intersection graphs of chords on a circle;

11. distance-hereditary graphs;
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12. line graphs, i.e., graphs G such that there is a graph H satisfying G = L(H).

Graph classes 5, 6, and 11 from the list will be defined in Sections 2.5 and 5.3.1. For a

comprehensive survey on graph classes, we refer the reader to [24].

A representative family of hereditary classes are those containing with every graph G all

subgraphs of G (not necessarily induced). Such classes are called monotone. In the above

list, only the first five classes are monotone. An important and well studied subfamily of

monotone classes are minor-closed classes, i.e., those containing with every graph G all

minors of G. Among classes listed above only 1, 4 and 5 are minor closed.

An important property of hereditary classes is that these and only these classes admit a

uniform description in terms of forbidden induced subgraphs, which provides a systematic

way to investigate various problems associated with graph classes. Let F be a set of graphs.

If a graph G does not contain induced subgraphs from F , we say that G is F-free. The set of

all F-free graphs will be denoted by Free(F). With this notation the above statement about

induced subgraph characterization of hereditary classes can be reformulated as follows: a

class of graphs X is hereditary if and only if X = Free(F) for some set F .

1.3.3 A Hardness Result

Let Ci and Hi denote the cycle of length i and the graph in Figure 1.2, respectively.

� � � � � �� �

�

�

�

�

1 2 i

Figure 1.2: Graph Hi

We associate to every graph G a parameter κ(G), which is the minimum value of i ≥ 1

such that G contains an induced copy of either Ci or Hi. If G is an acyclic graph with no

induced graphs of the form Hi, we let κ(G) =∞. For a (possibly infinite) nonempty set of

graphs F , we define

κ(F) = sup {κ(G) : G ∈ F } .
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Finally, for a set of graphs X, let X3 denote the set of graphs of degree at most 3 in X.

With these definitions in mind, one can use the result of Garey and Johnson about the

NP-hardness of the MIS problem in planar graphs of degree at most three [54], and the

reduction typically used for the MIS problem (see e.g. [94, 100]), to derive the following

hardness result.

Theorem 1.3.1 ([83]). Let F be a set of graphs and let X be the class of F-free planar

graphs. If κ(F3) < ∞, then the maximum independent set problem is NP-hard in X3.

Proof. For k ≥ 3, let Sk be the class of all (C3, . . . , Ck,H1, . . . , Hk)-free planar graphs of

vertex degree at most 3. To prove the theorem, we first show that for any k ≥ 3, the

MIS problem is NP-hard for graphs in Sk. To this end, we use the operation of edge

subdivision, i.e., the operation of introducing a new vertex on the edge. It is not difficult to

see that the double subdivision of an edge increases the independence number by exactly

one, preserves planarity and the maximum vertex degree (except for the trivial case when

the maximum degree is one). Applying this operation repeatedly to each edge of the input

graph, we eliminate small cycles, as well as small graphs of the form Hi. Therefore, by

means of double subdivisions of edges any planar graph of maximum degree at most 3 can

be transformed in polynomial time into a graph in the class Sk for any k ≥ 3, which proves

the NP-hardness of the problem in this class.

To complete the proof, we show that there is a k such that Sk ⊆ X3. Denote k :=

max{3, κ(F3)} and let G belong to Sk. Clearly, G is a planar graph of degree at most 3.

Assume that G does not belong to X3. Then G contains a graph A ∈ F as an induced

subgraph. Since G is of degree at most 3, A ∈ F3. From the choice of G we also know that

A belongs to Sk, but then k < κ(A) ≤ κ(F3) ≤ k, a contradiction. Therefore, G ∈ X3 and

hence Sk ⊆ X3.

Let us now fix a set of graphs F , and let X denote the class of all (either general, or

planar) F-free graphs. Theorem 1.3.1 implies that, unless P = NP , one can only hope for

a polynomial-time solution to the maximum independent set problem in the class X if

κ(F3) =∞. In other words, the problem is polynomially solvable only if at least one of the

following conditions is satisfied:
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(i) F contains a graph from the class S, the class of all graphs whose each connected

component is of the form Si,j,k (see Figure 1.1), or

(ii) F contains graphs of maximum degree at most 3 with arbitrarily large girth (i.e., the

size of a smallest cycle), or

(iii) F contains graphs of maximum degree at most 3 with arbitrarily large size of a smallest

induced copy of Hi.

1.4 Main Contributions of The Thesis

Besides the general hardness result just described, the main contributions of this thesis are

the following.

1.4.1 Extension of the Augmenting Graph Approach

The method of augmenting graphs is a general approach to the maximum independent set

problem. In Section 2.1, we develop an extension of this method by introducing the notion of

a redundant set of vertices. Results from Sections 3.2 and 3.4.2 are based on this extension.

1.4.2 Graph Classes With Polynomially Solvable Maximum Independent

Set Problem

Chapters 3 and 4 are devoted to polynomial-time solutions to the maximum independent

set problem and its weighted version in particular graph classes. Chapter 3 discusses classes

of graphs, defined by finitely many forbidden induced subgraphs, while in Chapter 4 the set

of forbidden induced subgraphs is infinite.

• In Section 3.1, we describe the first polynomial-time algorithm that solves the problem

for weighted fork-free graphs (Theorem 3.1.4), thus generalizing a classical result for

claw-free graphs [90, 95]. The claw is the graph S1,1,1, and the fork is the graph S1,1,2.

• In Section 3.2, we show that the method of finding augmenting graphs leads to

an efficient solution to the maximum independent set problem in the class of
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Figure 1.3: The claw (left) and the fork

(S1,2,5, banner)-free graphs (Theorem 3.2.19), where a banner is a graph with ver-

tices a, b, c, d, e and edges ab, bc, cd, de, eb.

• Several results deal with graphs of bounded vertex degree, that is, when there is a

constant Δ associated to the set of input instances such that the maximum degree of

every input graph is bounded above by Δ. In Sections 3.3 and 4.1, we show that for any

fixed integer Δ, the maximum weight independent set problem is polynomially

solvable for graphs with maximum degree at most Δ that are:

– mS1,k,k-free, for any fixed m ≥ 1 and k ≥ 1 (Corollary 3.3.2);

– (Ak, Ak+1, . . .)-free, for any fixed k ≥ 3, where Ak is the apple of order k, that

is, the graph obtained from a cycle of length k by introducing a new vertex and

joining it by an edge to exactly one vertex of the cycle (Theorem 4.1.1);

– (Hk,Hk+1, . . .)-free, for any fixed k ≥ 1 (Theorem 4.1.4).

• In Sections 3.4 and 4.2, we describe polynomial-time solutions to the maximum inde-

pendent set problem in subclasses of planar graphs and more generally, subclasses

of graphs that exclude a fixed apex graph as a minor. Under these assumptions, we

show the following results:

– The maximum independent set problem admits a polynomial-time solution

for S1,2,k-free graphs, for any fixed k ≥ 2 (Theorem 3.4.8).

– The maximum weight independent set problem admits a polynomial-time

2-approximation algorithm for (Hk,Hk+1, . . .)-free graphs, for any fixed k ≥ 1

(Theorem 4.2.4).

– The maximum weight independent set problem admits a linear-time solution
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for (S, L(S′))-free graphs, where S, S′ ∈ S, and L(S′) denotes the line graph of

S′ (Corollary 3.4.7).

– The maximum weight independent set problem admits a linear-time solution

for (Ck, Ck+1, . . .)-free graphs, for any fixed k ≥ 3 (Corollary 4.2.2).

The latter two results are obtained by showing that the treewidth of graphs in such

classes is bounded above by a constant, thus giving linear-time solutions to many

other optimization problems too [7].

1.4.3 Complexity Results for the Exact Weighted Independent Set Prob-

lem

Chapter 5 is devoted to complexity results for the exact weighted independent set problem,

when the input graphs are restricted to particular graph classes.

The exact weighted independent set and the exact weighted maximum independent set

problems are strongly NP-complete for:

• cubic bipartite graphs (Theorem 5.2.1 and Corollary 5.1.2);

• F-free bipartite graphs of degree at most 3, whenever κ(F3) < ∞ (Theorem 5.2.2).

The exact weighted independent set and the exact weighted maximum independent set

problems are solvable in pseudo-polynomial time for any of the following graph classes:

• mK2-free graphs (Theorem 5.3.4),

• interval graphs (Theorem 5.3.5) and their generalizations k-thin graphs (Theorem 5.3.6),

• circle graphs (Theorem 5.3.7),

• chordal graphs (Theorem 5.3.8),

• AT-free graphs (Theorem 5.3.16),

• (claw ,net)-free graphs (Corollary 5.3.17),

• distance-hereditary graphs (Theorem 5.3.18),
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• graphs of bounded treewidth (Theorem 5.3.19),

• graphs of bounded clique-width (Theorem 5.3.20),

• certain subclasses of P5-free and fork-free graphs (Theorem 5.3.24).

The results of Theorem 5.3.24 are derived by means of modular decomposition. The

application of modular decomposition to the exact weighted independent set problem is

described in Section 5.3.2 and may be of independent interest.

Note that in view of the relation between the exact perfect matching problem and

the exact weighted maximum independent set problem, as pointed out in Section 1.2,

each of the above polynomial results also gives a polynomial result to the exact per-

fect matching problem. Whenever exact weighted maximum independent set problem is

(pseudo-)polynomially solvable for a class of graphs X, the exact perfect matching problem

is (pseudo-)polynomially solvable for graphs in the set {G : L(G) ∈ X}. For example,

• The exact perfect matching problem is solvable in pseudo-polynomial time for

graphs of bounded treewidth (Corollary 5.3.22).

1.5 Notations

All graphs considered are finite, simple and undirected. Unless otherwise stated, n and

m will denote the number of vertices and edges, respectively, of the graph considered.

For a graph G, we will denote by V (G) and E(G) the vertex-set and the edge-set of G,

respectively. An edge {u, v} of a graph will be also denoted uv. For a vertex x in a graph

G, we denote by NG(x) the neighborhood of x in G, i.e., the set of vertices adjacent to x,

and by NG[x] the closed neighborhood of x, i.e., the set NG(x) ∪ {x}. We will write N(x)

and N [x] instead of NG(x) and NG[x] if no confusion can arise. The degree of v, denoted

deg(v), is |N(v)|. The maximum degree of a graph G is Δ(G) = max{deg(v) : v ∈ V (G)}.

For a subset U ⊂ V (G), we will denote by N(U) the neighborhood of U , i.e., the set of

vertices of G outside U that have at least one neighbor in U . Also, NU (v) := N(v)∩U , and

if W is another subset of V (G) then NW (U) := N(U) ∩W . For a nonnegative integer n
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and a graph G, we denote by nG the graph consisting of n disjoint copies of G. Pn and Cn

denote the chordless path (also called a chain) and the chordless cycle on n vertices.

We say that a graph H is

– an induced subgraph of G if H can be obtained from G by deletion of some (possibly

none) vertices; the subgraph of G induced by U ⊆ V (G) is the graph obtained from

G by deleting the vertices from V (G)\U and it will be denoted by G[U ];

– a subgraph of G if H can be obtained from G by applying a (possibly empty) sequence

of vertex and edge deletions;

– a minor of G if H can be obtained from G by applying a (possibly empty) sequence

of vertex deletions, edge deletions and edge contractions (an edge contraction is the

operation of substituting two adjacent vertices u and v by a new vertex adjacent to

every vertex in (N(u) ∪N(v)) \ {u, v});

– a subdivision of G if H can be obtained from G by applying a (possibly empty)

sequence of edge subdivisions (an edge subdivision is the operation of removing an edge

{u, v} from a graph G and adding to G a new vertex w and two edges {u, w}, {w, v}).

Let F be a set of graphs. Similarly as for F-free graphs, F-minor-free graphs are defined

as those graphs G such that no graph from F is a minor of G. If a graph H is a minor of

G, we also say that G contains H as a minor.

A graph G is bipartite if its vertex set admits a bipartition V (G) = L ∪ R such that

E(G) ⊆ {{u, v} : u ∈ L, v ∈ R}. If a bipartite graph G is given together with such a

partition, we write G = (L,R; E). (Note that a disconnected bipartite graph may admit

several essentially different bipartitions.) By Kn we denote the complete graph on n vertices,

and by Ks,t the complete bipartite graph with parts of size s and t. A clique in a graph

is a subset of vertices that induces a complete graph. A weighted graph is a pair (G, w),

where G is a graph and w : V (G) → Z. When a weighted graph is part of the input to

the maximum weight independent set problem, we will always assume that the weights are

positive. (Vertices with nonpositive weights are irrelevant for maximum weight independent

sets.)
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For a graph G, we denote by co-G (also G) the edge-complement of G. By component

we will always mean a connected component. The distance between two vertices u and v in

a connected graph G is the length (i.e., the number of edges) of a shortest path connecting

them. Connected components of G will be called co-components of G. Given two disjoint

subsets U ⊂ V (G) and W ⊂ V (G), we will say that U dominates W if every vertex of U

is adjacent to every vertex of W . A graph is 2-connected if it remains connected after the

removal of any vertex. A 2-connected component of a graph G is a maximal 2-connected

subgraph of G. For graph-theoretical terms not defined here, we refer the reader to [19].

For a subset of vertices V ′ ⊆ V in a weighted graph (G, w), we let w(V ′) =
∑

v∈V ′ w(v).

For a positive integer k, we write [k] for the set {1, . . . , k}.
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Chapter 2

Techniques For Finding Maximum Independent Sets:

An Overview and Extensions

In this chapter, we provide an overview of techniques and algorithmic tools that have been

used in order to tackle the maximum independent set problem in particular graph classes:

• In Section 2.1, we describe the method of augmenting graphs. We also introduce the

notion of a redundant set to develop an extension of the existing method.

• Section 2.2 is devoted to modular decomposition.

• In Section 2.3, we discuss the decomposition by clique separators.

• In Section 2.4, we show that it suffices to solve the problem after the deletion of

constantly many vertices from the graph.

• We conclude in Section 2.5 with a brief overview of other techniques.

We remark that the method of augmenting graphs can in general only be applied to

unweighted graphs, decomposition by clique separators works for both weighted and un-

weighted graphs, while modular decomposition is only applicable to weighted graphs.

Most of these algorithmic tools will be exploited in Chapters 3 and 4 where we present

polynomial-time solutions to the maximum independent set problem in particular graph

classes.

2.1 Augmenting Graphs

It is well-known that finding a maximum matching in a given graph can be done in poly-

nomial time. This is due to Berge’s idea of augmenting (alternating) chains [11] and the
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celebrated algorithm of Edmonds [45] that finds augmenting chains.1 This result immedi-

ately translates into a polynomial solution to the maximum independent set problem in the

class of line graphs.

Rephrasing Berge’s idea in terms of independent sets, we can say that in a line graph an

independent set is maximum if and only if there are no augmenting chains with respect to

this set. This idea can be extended to a general approach for finding maximum independent

sets, the method of finding augmenting graphs.

Let G be a graph and I an independent set in G. We will call the vertices of I white

and the remaining vertices of G black.

Definition 2.1.1. An augmenting graph for I in G is an induced bipartite subgraph H =

(W,B; E) of G, where W ∪B is a bipartition of its vertex set and E its edge set, such that:

• W ⊆ I,

• B ⊆ V (G)\I,

• |B| > |W |, and

• N(B) ∩ I ⊆ W .

If a bipartite subgraph H of G is augmenting for I, we also say that I admits the

augmenting graph. Clearly if H = (W,B; E) is an augmenting graph for I, then I is not a

maximum independent set in G, since the set I ′ = (I−W )∪B is independent and |I ′| > |I|.

We will say that the set I ′ is obtained from I by H-augmentation.

Conversely, if I is not a maximum independent set, and I ′ is an independent set such

that |I ′| > |I|, then the subgraph of G induced by the set (I − I ′) ∪ (I ′ − I) is augmenting

for I. Therefore, the following key result holds.

Theorem of augmenting graphs. An independent set I in a graph G is maximum if

and only if there are no augmenting graphs for I.

1Lovász and Plummer observed in [77] that Edmonds’ solution is “among the most involved of combina-
torial algorithms.”
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This theorem suggests the following general approach to find a maximum independent

set in a graph G: begin with any independent set I in G and, as long as I admits an

augmenting graph H, apply H-augmentation to I. This approach has proven to be a

useful tool to develop approximate solutions to the problem [65], to compute bounds on the

independence number [40], and to solve the problem in polynomial time for graphs in special

classes [90, 3]. Here, we focus on efficient implementations of the approach for graphs in

particular classes. To this end, let us introduce some more definitions.

Definition 2.1.2. A bipartite graph H = (W,B; E) will be called augmenting if there is a

graph G and an independent set I in G such that H is augmenting for I in G.

Clearly not every bipartite graph is augmenting. For instance, a bipartite cycle cannot

be augmenting, since it has equally many vertices in both parts. Moreover, without loss of

generality we may exclude from our consideration those augmenting graphs which are not

minimal.

Definition 2.1.3. An augmenting graph H for a set I is called minimal if no proper induced

subgraph of H is augmenting for I.

Some bipartite graphs that could be augmenting are never minimal augmenting. To

give an example, consider the claw K1,3 = S1,1,1. If it is augmenting for an independent set

I, then its subgraph obtained by deleting any vertex of degree 1 is also augmenting for I.

The following lemma characterizes minimal augmenting graphs.

Lemma 2.1.4. An augmenting graph H = (W,B; E) is minimal if and only if

(i) |W | = |B| − 1;

(ii) for every nonempty subset A ⊆ W , |A| < |N(A)|.

(iii) H is connected.

Proof. Let H = (W,B; E) be a minimal augmenting graph. To show (i), it is enough to

observe that if |W | < |B| − 1, then the graph induced by W ∪ (B\{v}) for some v ∈ B

is augmenting too, contradicting minimality. To show (ii), assume |A| ≥ |N(A)| for some
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nonempty subset A of W . Then the vertices in (W\A)∪(B\N(A)) induce a proper subgraph

of H which is augmenting too. Condition (iii) easily follows from (i) and (ii).

Conversely, let H = (W,B; E) be an augmenting graph for an independent set I of a

graph G, satisfying (i)− (iii). Assume that H ′ = (W ′, B′; E′) is a proper induced subgraph

of H which also is augmenting for I. Then W ′ is a proper subset of W (since otherwise

|B′| ≥ |W | + 1 = |B| and B′ = B, implying H ′ = H). Therefore, the set A := W\W ′ is

nonempty. Moreover, since H ′ is augmenting, it follows that N(A) ⊆ B\B′, which in its

turn implies that |N(A)| ≤ |A|, contradicting (ii).

For a polynomial-time implementation of the augmenting graph approach in a class of

graphs X, one has to

(a) find a complete list of (minimal) augmenting graphs in X,

(b) develop a polynomial-time procedure for detecting augmenting graphs from the list.

For instance, for the class of claw-free graphs, question (a) has a simple answer. Indeed,

by definition, augmenting graphs are bipartite, and each vertex in a claw-free bipartite

graph clearly has degree at most two. Therefore, every connected claw-free bipartite graph

is either an even cycle or a chain. Cycles of even length and chains of odd length are not

augmenting. Thus, every connected claw-free augmenting graph is a chain of even length.

In general, augmenting chains are not the only type of augmenting graphs. For instance,

Mosca showed in [92] that in the class of (P6, C4)-free graphs every augmenting graph is a

simple augmenting tree (the graph T1 represented in Figure 3.4, Section 3.2). Many more

types of augmenting graphs have been revealed in [3, 5, 17, 57]. With each of them, one

can associate the problem of finding augmenting graphs of the given type. The number of

various types of augmenting graphs is generally growing with each extension of the class

under review. In order to simplify the problem of finding augmenting graphs, we introduce

in the following section the notion of a redundant set of vertices, which often allows us to

reduce this problem to finding some “basic” types of augmenting graphs.
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2.1.1 The Problem of Finding Augmenting Graphs

In its most general form, the problem of finding augmenting graphs can be formulated as

follows:

Augmentation

Instance: A graph G, and a maximal independent set I in G.

Problem: Find an augmenting graph for I whenever I admits one.

From NP-hardness of the independent set problem and the Theorem of augmenting

graphs we conclude that

Claim 2.1.5. The problem Augmentation is NP-hard.

Since in its whole generality the problem is intractable, we introduce a hierarchy of sub-

problems and study the computational complexity of the problems in this hierarchy. For a

class A of augmenting graphs, let us consider the following problem:

Augmentation(A)

Instance: A graph G, and a maximal independent set I in G.

Problem: Find an augmenting graph for I whenever I admits an augmenting graph fromA.

Note that we do not require the output graph to belong to A. If A is the class of

all augmenting graphs, then the problem Augmentation(A) coincides with the problem

Augmentation and hence is intractable. However, it becomes polynomial-time solvable,

for instance, if A contains only finitely many graphs. Between these two extremes there are

infinitely many intermediate classes of augmenting graphs and respective problems.

For example, if the set A consists of augmenting chains, then, by Edmonds’ algorithm,

the problem is polynomial-time solvable for line graphs. In 1980, independently Minty [90]

and Sbihi [105] extended the solution of Edmonds to claw-free graphs, a class properly

containing the line graphs. In conjunction with the fact that in the class of claw-free

graphs augmenting chains constitute the only type of augmenting graphs this has led to a
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polynomial-time solution to the maximum independent set problem in that class. Recently,

the problem of finding augmenting chains has been solved for some extensions of claw-free

graphs [58, 71].

The following notion is a helpful tool for establishing reducibility among these problems.

Definition 2.1.6. In an augmenting graph H = (W,B; E) a subset of vertices U will be

called redundant if

• |U ∩W | = |U ∩B|,

• H contains no edges between black vertices of U and vertices of H − U .

Theorem 2.1.7 ([80]). Let A1 and A2 be two classes of augmenting graphs. If there is a

constant k such that for every graph H = (W,B; E) ∈ A2 there is a redundant subset U of

size at most k such that H−U ∈ A1, then the problem Augmentation(A2) is polynomially

reducible to the problem Augmentation(A1).

Proof. Let Augment1(G, I) be a procedure that solves the problem Augmentation(A1)

for a graph G and an independent set I. We assume that the procedure outputs a subset

V ′ of V (G) such that G[V ′] is augmenting for I whenever I admits an augmenting graph

from A1 (and perhaps even if this is not the case). If no augmenting graph is found, then

V ′ = ∅.

To prove the theorem we present procedure Augment2(G, I) that solves the problem

Augmentation(A2):
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Procedure Augment2(G, I)

Input: A graph G and an independent set I in G.

Output: A subset V ′ of V (G) such that G[V ′] is augmenting for I whenever I admits an

augmenting graph from A2. If no augmenting graph is found, then V ′ = ∅.

begin

for all (U ⊆ V (G) of size at most k such that

B0 := U ∩ (V (G)\I) is an independent set in G,

|B0| = |U ∩ I| and NG(B0) ∩ (I\U) = ∅)

do

[remove the neighbors of B0 in V (G)\I]

let G′ = G−NG(B0) ∩ (V (G)\I);

[try to solve the problem Augmentation(A1)]

let T = Augment1(G′ − U , I\U);

if (T �= ∅) [we have an augmenting graph for I ]

then return U ∪ T ;

return ∅;

end;

Suppose I admits an augmenting graph H = (W,B; E) ∈ A2. Then, according to the

theorem’s assumption, H contains a redundant set U of size at most k such that H−U ∈ A1.

It is not difficult to see that the graph H −U is augmenting for I\U in G′ −U . Therefore,

procedure Augment1 must output a nonempty set T . Consequently, procedure Augment2

also outputs a nonempty set U∪T . Obviously, G[U∪T ] is a bipartite graph. Moreover, since

U is a redundant set, the graph G[U ∪T ] is augmenting for I even if G[T ] does not coincide

with H − U . Therefore, whenever I admits an augmenting graph from A2, procedure

Augment2 finds an augmenting graph. To this end, it inspects polynomially many subsets

of vertices of the input graph, which results in polynomially many calls of the procedure

Augment1. Therefore, the problem Augmentation(A2) is polynomially reducible to the

problem Augmentation(A1).
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Remark. Note that if in the definition of a redundant set we drop the second condition,

then the procedure in the above theorem may fail to work: it may happen that even though

T from the procedure induces an augmenting graph for I\U in G′−U , the graph induced by

T ∪ U may not be augmenting for I. In particular, if I ′ denotes the set of white neighbors

of black vertices of U in the graph G′ − U and if T is augmenting for I\U in G′ − U , then

T ∪ U is augmenting for I if and only if I ′ ⊆ V (T ).

Applications of Theorem 2.1.7 will be discussed in Sections 3.2 and 3.4.2.

2.2 Modular Decomposition

The idea of modular decomposition has been first described in the 1960s by Gallai [53],

and also appeared in the literature under various other names such as prime tree decom-

position [46], X-join decomposition [63], or substitution decomposition [91]. This technique

allows one to reduce many graph problems from arbitrary graphs to so-called prime graphs.

In this subsection, we show how to apply modular decomposition to the maximum weight

independent set problem.

Let G = (V,E) be a graph, U a subset of V and x a vertex of G outside U . We will

say that x distinguishes U if x has both a neighbor and a non-neighbor in U . A subset

U ⊂ V (G) is called a module in G if it is indistinguishable for the vertices outside U . A

module U is nontrivial if 1 < |U | < |V |, otherwise it is trivial. A graph each module of

which is trivial is called prime.

An important property of maximal modules is that if G and co-G are both connected,

then the maximal modules of G are pairwise disjoint. Moreover, from the above definition

it follows that if U and W are maximal modules, then either U dominates W or there

are no edges between them. This property provides a reduction of the maximum weight

independent set problem (and many other problems) from the graph G to a graph G0

obtained from G by contracting each maximal module to a single vertex. We formally

describe this reduction in the recursive procedure Alpha(G, w) below.
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Algorithm Alpha(G, w)

Input: a weighted graph (G, w)

Output: an independent set I of maximum weight in G.

1. If |V (G)| = 1, set I = V (G) and go to 7.

2. If G is disconnected, partition it into connected components M1, . . . ,Mk.

3. If co-G is disconnected, partition G into co-components M1, . . . ,Mk.

4. If G and co-G are connected, partition G into maximal modules M1, . . . ,Mk.

5. Construct a weighted graph G0 from G by contracting each Mj (j = 1, . . . , k) to a

single vertex and assigning to that vertex the weight w(Alpha(G[Mj ])).

6. Find in G0 an independent set I0 of maximum weight, and set I =
⋃

j∈I0

Alpha(G[Mj ]).

7. Return I and STOP.

Observe that the graph G0 constructed in step 5 of the algorithm is either an edgeless

graph, a complete graph, or a prime graph. Therefore, the modular decomposition approach

reduces the problem from a graph to its prime induced subgraphs. The following theorem

answers the question on the complexity of such a reduction.

Theorem 2.2.1. Let X be a class of graphs and X∗ the class of all prime induced subgraphs

of the graphs in X. If there is a constant p ≥ 1 such that the maximum weight independent

set problem can be solved for graphs in X∗ in time O(np), then this problem can be solved

for graphs in X in time O(np + m).

Proof. Let G be a graph in X with n vertices and m edges. The recursive decomposition

of G produced by Algorithm Alpha can be implemented in time O(n + m) [87]. This

decomposition associates with G a tree T (G) whose leaves correspond to the vertices of

G, while the internal nodes of T (G) represent induced subgraphs of G with at least two

vertices.
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Consider an internal node U of T (G), and let GU denote the induced subgraph of G cor-

responding to U . Then the children of GU correspond to the subgraphs G[M1], . . . , G[Mk],

where {M1, . . . ,Mk} is the partition of GU defined in steps 2–4 of the algorithm. If GU

(GU ) is disconnected, then G0
U is an edgeless (complete) graph, and the problem can be

trivially solved for G0
U in time O(|V (G0

U )|). If both G and G are connected, then G0
U is a

prime induced subgraph of G, and the problem can be solved for G0
U in time O(|V (G0

U )|p)

with p ≥ 1 by our assumption. Summing up over all internal nodes of T (G), we conclude

that the total time complexity of the problem on G is bounded by O(
∑
U

|V (G0
U )|p). It is not

difficult to see that the total number of vertices in all graphs G0
U corresponding to internal

nodes U ∈ V (T (G)) equals to the number of edges of T (G), i.e., |V (T (G))| − 1. Since the

number of leaves of T (G) is n and the number of internal nodes is at most n−1, we conclude

that ∑
U

|V (G0
U )|p ≤ (

∑
U

|V (G0
U )|)p ≤ (2n− 2)p = O(np).

Adding the term O(n + m) needed to obtain the decomposition tree, we obtain the desired

time complexity. The theorem is proved.

An example of a graph class where modular decomposition provides a polynomial-time

solution to the maximum weight independent set problem is the class of P4-free graphs, also

known as cographs. Every graph in this class is either disconnected, or the complement to

a disconnected graph [33]. Therefore, every prime P4-free graph is the graph on a single

vertex.

Application of modular decomposition to the maximum weight independent set prob-

lem has been extended from P4-free graphs to several subclasses of P5-free and fork-free

graphs [15, 27, 49, 59, 72]. In Section 3.1, we will show that modular decomposition leads

to a polynomial-time solution to the maximum weight independent set problem in the whole

class of fork-free graphs.
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2.3 Decomposition by Clique Separators

A clique separator in a connected graph G is a subset K of vertices of G which induces a

complete graph, such that the graph G−K is disconnected. It is well-known that the max-

imum (weight) independent set problem can be reduced in polynomial-time to graphs

without clique separators. The corresponding divide-and-conquer approach providing such

a reduction is known as decomposition by clique separators. It was originally developed

by Whitesides [113], and adapted for the weighted, and unweighted case of the maximum

independent set problem by Tarjan [108] and Alekseev [4], respectively.

More specifically, decomposition by clique separators can be used to efficiently solve the

maximum weight independent set problem for a class of graphs X, once we know how

to solve it on certain subgraphs of the atoms (i.e., induced subgraphs of the input graph

which contain no clique separators). Here, we recall this recursive method, as described by

Tarjan [108].

Procedure Alpha-dcs(G, w)

Input: a weighted graph (G, w)

Output: an independent set I of maximum weight in G.

Step 1. Let {A,B, C} be a vertex partition such that C is a clique, no edge joins a vertex

from A and a vertex in B, and G[A ∪ C] is an atom. We denote by w(I) the total

weight of a vertex set I.

Step 2. For each vertex v ∈ C, determine a maximum-weight independent set I(v) in

G[A−N(v)]. Determine a maximum-weight independent set I ′ in G[A].

Step 3. For each vertex v ∈ C, redefine the weight of v to be w(v) + w(I(v))−w(I). Find

a maximum-weight independent set I ′′ in G[B ∪ C] with respect to the new weights.

Step 4. Define

I =

⎧⎨
⎩ I(v) ∪ I ′′, if v ∈ I ′′ ∩ C;

I ∪ I ′′, if I ′′ ∩ C = ∅.
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Decomposition by clique separators gives a direct solution to the maximum weight in-

dependent set problem in chordal graphs. As shown by Dirac [41], every chordal graph has

a simplicial vertex, that is, a vertex whose neighborhood is a clique. Therefore, the only

chordal graphs without separating cliques are the complete graphs.

In Section 3.4.2, we will combine the decomposition by clique separators with the aug-

menting graph approach to solve the maximum independent set problem in S1,2,2-free K3,3-

minor-free graphs.

Recently, Brandstädt and Hoàng [26] combined decomposition by clique separators with

modular decomposition into a more general decomposition scheme.

Theorem 2.3.1 ([26]). Let X be a class of graphs. If the maximum weight independent

set problem can be solved in polynomial time for those induced subgraphs of graphs in X

which are prime and have no clique separators, then the maximum weight independent

set problem is solvable in polynomial time for graphs in X.

This decomposition scheme has been used in developing polynomial-time solutions to

the maximum weight independent set problem in subclasses of P5-free graphs [26, 28]. We

will present another application of this result in Section 4.1.1.

2.4 Removal of Constantly Many Vertices

We continue with a technical lemma that provides a general reduction of the maximum

weight independent set problem between graph classes and will be used in Sections 3.3

and 4.1.2.

Theorem 2.4.1. Let X be a class of graphs such that there is a constant p and a hereditary

class of graphs Y such that:

• maximum weight independent set problem can be solved in polynomial time for

graphs in Y , and

• for each G ∈ X, we can find in polynomial time a subset U of its vertex set of

cardinality at most p such that G− U ∈ Y .
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Then, the maximum weight independent set problem can be solved in polynomial time

for graphs in X.

Proof. We describe a polynomial time procedure which solves the maximum weight in-

dependent set problem for graphs in X. Given a (weighted) graph G ∈ X, we first find

a subset U of its vertex set of cardinality at most p such that G′ = G − U ∈ Y . Then,

we enumerate in constant time all the independent sets {I1, . . . , IN} of G[U ]. For each

i = 1, . . . , N , we find a maximum-weight independent set I ′i in the graph obtained from G′

by deleting the neighbors of vertices in Ii. Clearly, the solution to the maximum weight

independent set problem for G is then given by a set of the form Ii ∪ I ′i of maximum

total weight.

2.5 Other Techniques

Graphs of treewidth at most k, also known as partial k-trees, generalize trees and are very

important from an algorithmic viewpoint, since many graph problems that are NP-hard for

general graphs are solvable in linear time when restricted to graphs of treewidth at most

k [7]. In particular, showing that a graph class is of uniformly bounded treewidth implies

that the maximum weight independent set problem is solvable in linear time (in the

number of vertices) for graphs in such a class. We will make use of this fact in Sections 3.4.1,

3.4.2, 4.1.1 and 4.2.

Treewidth has been introduced by Robertson and Seymour [103, 104] as a graph pa-

rameter that roughly measures how tree-like the graph is. For completeness, we give here

a definition of treewidth. A tree decomposition of a graph G = (V,E) is a pair (T,X )

consisting of a tree T = (I, F ) and X = {Xi : i ∈ I, Xi ⊆ V } such that

• ⋃
i∈I Xi = V ,

• for every e = {u, v} ∈ E, there is an i ∈ I such that u, v ∈ Xi, and

• for every v ∈ V , the subgraph of T induced by {Xi ∈ X : v ∈ Xi} is a tree.

The width of a tree decomposition (T,X ) is w((T,X )) = max{|Xi| : i ∈ I}−1. The treewidth

of a graph G is tw(G) := min{w((T,X )) : (T,X ) is a tree decomposition of G}. Graphs
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of treewidth 0 are precisely the edgeless graphs, and graphs of treewidth at most 1 are

trees, or more generally, forests. We refer to [14] for an excellent tutorial on treewidth. A

generalization of graphs of bounded treewidth is provided by graphs of bounded clique-width

(cf. Section 5.3.1).

We conclude this chapter by mentioning several other ways of tackling the maximum

(weight) independent set problem in particular graph classes:

• In bipartite graphs, the maximum weight independent set problem can be solved

by network flow techniques.

• In perfect graphs, the maximum weight independent set problem can be solved

by semi-definite programming [61].

• Techniques based on Boolean identities have been developed. Struction [6], for exam-

ple, can be used to solve the maximum independent set problem in circular-arc

graphs [60], and in subclasses of claw-free graphs [66, 67].

• Other graph transformations:

– Clique reduction has solved the maximum independent set problem in claw-

free graphs [77], AH-free graphs [70], and (bull, fork)-free graphs [36].

– Conic reduction has solved the maximum independent set problem in

(fork, parachute, butterfly, kite)-free graphs [79].

– Removal of simplicial vertices has solved the maximum independent set prob-

lem in (fork, banner, K1,4, P5)-free graphs [22].

• Dynamic programming. Special dynamic programming approaches have been designed

for graphs in particular classes, based on their structural properties and character-

izations. Example include interval graphs [102], distance-hereditary graphs [9], and

AT-free graphs [31]. We will return to these graph classes in Chapter 5, where we will

extend these results to pseudo-polynomial time solutions to the exact weighted

independent set problem.



30

Chapter 3

Polynomial Cases of Finding Maximum Independent Sets:

Finitely Many Forbidden Induced Subgraphs

We partition our results about polynomial-time solvable cases of the maximum independent

set problem and its weighted version into two types, according to whether the set of for-

bidden induced subgraphs is finite, or infinite. In this chapter, we deal with the first case.

The case where infinitely many subgraphs are forbidden will be the topic of Chapter 4.

Let F be a finite set of graphs, and let X denote the class of all (either general, or

planar) F-free graphs. Recall that Alekseev’s result (Theorem 1.1.1) implies that, unless

P = NP , one can only hope for a polynomial-time solution to the maximum independent

set problem in the class X if the set F contains a graph from S. That is, at least one of

the forbidden induced subgraphs has to consist of the disjoint union of Si,j,k’s (where the

values of i, j and k may depend on component).
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Figure 3.1: Graph Si,j,k

A fundamental example of this type where the maximum independent set problem

admits a polynomial-time solution is provided by the class of claw-free graphs, when F =

{claw} = {S1,1,1} [90, 105, 77, 95]. We start by presenting two extensions of this classical

result:
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• In Section 3.1, we describe the first polynomial-time algorithm that solves the problem

for weighted fork-free graphs.

• In Section 3.2, we show that the method of finding augmenting graphs leads to

an efficient solution to the maximum independent set problem in the class of

(S1,2,5, banner)-free graphs. A banner is a graph with vertices a, b, c, d, e and edges

ab, bc, cd, de, eb.

In Section 3.3, we show that in the case of bounded maximum degree, forbidding a graph

from S whose each connected component is of the form Si,j,k with i = 1 (and arbitrary

values of j and k, depending on the component) results in an “easy” class as well. Finally,

in Section 3.4 we present subclasses of planar and more general graphs where the problem

is solvable in polynomial-time.

3.1 Fork-free Graphs

For a long time, the class of claw-free graphs remained one of the only three maximal

graph classes defined by a single forbidden induced subgraph where the maximum weight

independent set problem was known to be solvable in polynomial time, the other two being

P4-free graphs [33] and mK2-free graphs [48]. Recently, Alekseev [3] found a polynomial-

time solution for fork-free graphs, extending both claw-free and P4-free graphs. A fork

(also called a chair) is the graph S1,1,2, that is, the graph obtained from a claw by a single

subdivision of one of its edges (see Figure 3.2).

Figure 3.2: The claw (left) and the fork

Alekseev’s solution only works for the unweighted version of the problem. Besides, his

algorithm has a high time complexity and uses a sophisticated approach which is difficult
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to implement.1 Here, we propose the first polynomial-time algorithm to solve the problem

for weighted fork-free graphs. Our algorithm not only generalizes Alekseev’s solution, but

also improves on the time complexity.

At the same time, our result extends previously known subclasses of fork-free graphs

where the weighted version of the problem was known to be polynomial-time solvable. For

example, Brandstädt, Hoàng and Le have developed a polynomial-time solution for weighted

(fork, bull)-free graphs [23]. To this end, they exploited the idea of modular decomposition,

which had led to efficient solutions to the maximum weight independent set problem in some

other subclasses of fork-free graphs as well [27, 29]. Modular decompositions will play a key

role in our algorithm too.

3.1.1 The Solution

For a graph G and a vertex x ∈ V (G), let us denote by Gx the graph obtained from G by

deleting x and every vertex adjacent to x. Our solution to the maximum weight independent

set problem for fork-free graphs is based on two general tools: modular decomposition and

the following obvious identity

αw(G) = max
x∈V (G)

{w(x) + αw(Gx)}.

An immediate consequence of this identity is the following proposition.

Proposition 3.1.1. If for every vertex x ∈ V (G), the maximum weight independent set

problem can be solved for Gx in time T , then it can be solved for G in time nT .

Now we prove the main result that leads to an efficient solution of the problem in the

class of fork-free graphs.

Theorem 3.1.2. Let G be a fork-free graph, x an arbitrary vertex of G, and G̃ an induced

subgraph of Gx. If both G and G̃ are prime, then G̃ is claw-free.

Proof. Assume by contradiction that G̃ contains an induced claw. Then it must contain

one of the minimal prime extensions of the claw. The complete list of such extensions can

1Our rough analysis showed that his solution requires O(n10) time.
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be found in [25]. It consists of 12 graphs, 7 of which contain a fork, and the remaining 5

are represented in Figure 3.1.1.
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Figure 3.3: Minimal fork-free prime extensions of the claw

Let H ∈ {H1, . . . , H5} denote an induced copy of one of the minimal prime extensions

of the claw in the graph G̃.

Claim 3.1.3. No neighbor of x distinguishes V (H).

The proof of this claim is a rather tedious case analysis. For the purpose of readability

of our current proof, we postpone it to the next section. The statement of the claim allows

us to partition the set of neighbors of x into two sets Y and Z such that no vertex in Y has

a neighbor in V (H), while Z dominates V (H).

Let W be an (inclusionwise) maximal subset of vertices of Gx with the following prop-

erties:

(i) W ⊇ V (H),

(ii) G[W ] is connected,

(iii) co-G[W ] is connected,

(iv) Z dominates W ,

(v) there are no edges between W and Y .
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Note that such a set W exists since V (H) satisfies all these properties. By definition,

|W | < |V (G)|. In addition, |W | ≥ |V (H)| > 1. Therefore, in order to be prime, G

must contain a vertex u ∈ V (G)\W that distinguishes W . We will now show that the set

W ′ := W ∪ {u} also enjoys the five stated properties.

Firstly, properties (iv) and (v) for W imply that u ∈ V (Gx), which yields W ′ ⊆ V (Gx).

W ′ trivially satisfies property (i).

Since W enjoys properties (ii) and (iii) and since u has both a neighbor and a non-

neighbor in W , we conclude that the same two properties still hold for W ′.

To see that W ′ satisfies (iv), i.e., that Z dominates W ′, assume to the contrary that

u has a non-neighbor z in Z. Since u distinguishes W and the complement of G[W ] is

connected, u distinguishes a pair of non-adjacent vertices w1, w2 ∈ W . But now, a fork

arises on {u, w1, z, w2, x}, contradicting the fork-freeness of G.

Finally, let us show that there are no edges between W ′ and Y . Indeed, suppose u is

adjacent to a vertex y ∈ Y . Let P = (v0, . . . , vk) be a shortest path connecting V (H) to u

in the graph G[W ′], i.e., v0 ∈ V (H) and vk = u. Also, denote vk+1 := y, vk+2 := x. Since

v2 has no neighbors in V (H), we conclude by analogy with Claim 3.1.3 that v1 dominates

V (H). But now any two non-adjacent vertices of V (H) together with v1, v2 and v3 induce

a fork.

Therefore, the subset W ′ of V (Gx) satisfies all the above properties, thus contradicting

the maximality of W . This completes the proof of Theorem 3.1.2.

Combining Theorems 2.2.1 and 3.1.2 with Proposition 3.1.1, we conclude that

Theorem 3.1.4 ([81]). The maximum weight independent set problem in the class of fork-

free graphs can be solved in polynomial time. In particular, it can be solved in time nT ,

where T is the time to solve the same problem for claw-free graphs.

Proof. Let X be the class of fork-free graphs, and X∗ the class of prime graphs in X. Also,

define Y := {Gv : G ∈ X∗ and v ∈ V (G)} and let Y ∗ denote the class of all prime induced

subgraphs of the graphs in Y . By Theorem 3.1.2, every graph in Y ∗ is claw-free. According

to [90, 95], the maximum weight independent set problem in the class of claw-free graphs
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can be solved in polynomial time T . Therefore, by Theorem 2.2.1, the problem can be

solved for graphs in Y also in time T . This implies an nT solution for graphs in X∗ (by

Proposition 3.1.1) and an nT solution for graphs in X (again by Theorem 2.2.1).

The solution for claw-free graphs is based on a reduction to line graphs, where the

problem is equivalent to finding a maximum matching in general graphs. We summarize

these steps (separately for weighted and unweighted graphs) in the table below, along with

corresponding techniques and time complexities. Unfortunately, we can reliably report the

complexity only for the line graphs. For the remaining classes, we give rough estimates of

the running time based on the information available in the literature.

Line graphs Claw-free graphs Fork-free graphs

unweighted augmenting graphs augmenting graphs augmenting graphs

O(
√

nm) O(n3) [90, 105] O(n10) [3]

[13, 52, 88, 110] graph transformations

O(n4) [77]

weighted augmenting graphs augmenting graphs modular decomposition

O(nm + n2 log n) [51] O(n7) [90, 95] O(n8)

As seen from the table, in most cases, to implement the reduction to a smaller class, the

authors borrowed the idea of augmenting graphs developed for the solution of the problem

in the class of line graphs. Here, we used an entirely different approach, and the additional

time required for our reduction is not critical. To improve the overall time complexity, one

needs a better reduction from claw-free to line graphs.

3.1.2 Proof of Claim 3.1.3

Let y be a neighbor of x. We present the proof for each of the cases H = Hi for i ∈ {1, . . . , 5}.

We denote the vertices of H as depicted in Figure 1.

I. H = H1.
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Case 1: y has a non-neighbor among the vertices of degree 2 in H. Taking into account

the symmetry, we may assume without loss of generality that y is not adjacent to a. We

consider two subcases.

1.1: y is adjacent to c. Then

• y is not adjacent to f (otherwise a fork arises on {a, f, y, c, x}),

• y is not adjacent to e (otherwise a fork arises on {f, e, y, c, x}),

• y is not adjacent to b (otherwise a fork arises on {x, y, b, a, e}),

• y is not adjacent to d (otherwise a fork arises on {y, d, e, b, f}).

But now a fork arises on {x, y, c, b, d}, a contradiction.

1.2: y is not adjacent to c. Then

• y is not adjacent to b (otherwise a fork arises on {x, y, b, a, c}),

• y is not adjacent to e (otherwise a fork arises on {y, e, b, a, c}),

• y is not adjacent to d (otherwise a fork arises on {x, y, d, c, e}), and, by symmetry,

to f .

Case 2: y is adjacent to every vertex of degree 2 in H. Then y is adjacent to b, since

otherwise a fork would arise on {x, y, a, d, b}. By symmetry, y is adjacent to e.

Therefore, every neighbor of x is adjacent either to all vertices of H (Case 2) or to none

of them (Case 1.2), and the claim for the case H = H1 follows.

II. H = H2.

Case 1: y is adjacent to a vertex of degree 2 in H. Taking into account the symmetry,

we may assume without loss of generality that y is adjacent to c. We consider two subcases.

1.1: y is adjacent to f . Then

• y is adjacent to d (otherwise a fork arises on {d, c, y, f, x},
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• y is adjacent to e (otherwise a fork arises on {e, f, y, c, x},

• y is adjacent to b (otherwise a fork arises on {b, c, y, e, x}),

• y is adjacent to a (otherwise a fork arises on {a, b, y, e, x}).

1.2: y is not adjacent to f . Then

• y is not adjacent to a (otherwise a fork arises on {f, a, y, c, x}),

• y is not adjacent to e (otherwise a fork arises on {f, e, y, c, x}),

• y is not adjacent to d (otherwise a fork arises on {x, y, d, a, e}).

But now, a fork arises on {y, c, d, a, e}, a contradiction.

Case 2. y has no neighbor among the vertices of degree 2 in H. Then

• y is not adjacent to d (otherwise a fork arises on {x, y, d, c, e}),

• y is not adjacent to a (otherwise a fork arises on {y, a, d, c, e}),

• y is not adjacent to b (otherwise a fork arises on {x, y, b, a, c}), and, by symmetry,

to f .

Therefore, every neighbor of x is adjacent either to all vertices of H (Case 1.1) or to

none of them (Case 2), and the claim for the case H = H2 follows.

III. H = H3.

Case 1: y is adjacent to d. We consider two subcases.

1.1: y is adjacent to f . Then

• y is adjacent to a (otherwise a fork arises on {a, f, y, d, x}),

• y is adjacent to c (otherwise a fork arises on {c, d, y, f, x}),

• y is adjacent to b (otherwise a fork arises on {b, c, y, f, x}),

• y is adjacent to e (otherwise a fork arises on {e, c, y, a, x}).
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1.2: y is not adjacent to f . Then

• y is not adjacent to a (otherwise a fork arises on {f, a, y, d, x}),

• y is not adjacent to b (otherwise a fork arises on {a, b, y, d, x}),

• y is not adjacent to e (otherwise a fork arises on {x, y, e, b, f}).

But now, a fork arises on {y, d, e, b, f}, a contradiction.

Case 2. y is not adjacent to d. We consider two subcases.

2.1: y is adjacent to f . Then

• y is not adjacent to c (otherwise a fork arises on {d, c, y, f, x}),

• y is not adjacent to b (otherwise a fork arises on {c, b, y, f, x}).

• y is not adjacent to e (otherwise a fork arises on {x, y, e, b, d}).

But now, a fork arises on {y, f, e, b, d}, a contradiction.

2.2: y is not adjacent to f . Then

• y is not adjacent to e (otherwise a fork arises on {x, y, e, d, f}),

• y is not adjacent to b (otherwise a fork arises on {y, b, e, d, f}),

• y is not adjacent to a (otherwise a fork arises on {x, y, a, b, f}),

• y is not adjacent to c (otherwise a fork arises on {x, y, c, b, d}).

Therefore, every neighbor of x is adjacent either to all vertices of H (Case 1.1) or to

none of them (Case 2.2), and the claim for the case H = H3 follows.

IV. H = H4.

Case 1. y is adjacent to c. We consider two subcases.

1.1: y is adjacent to e. Then

• y is adjacent to b (otherwise a fork arises on {b, c, y, e, x}),
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• y is adjacent to f (otherwise a fork arises on {f, e, y, c, x}),

• y is adjacent to a (otherwise a fork arises on {a, b, y, e, x}),

• y is adjacent to d (otherwise a fork arises on {d, e, y, b, x}).

1.2: y is not adjacent to e. Then

• y is not adjacent to f (otherwise a fork arises on {e, f, y, c, x}),

• y is not adjacent to a (otherwise a fork arises on {f, a, y, c, x}),

• y is not adjacent to d (otherwise a fork arises on {x, y, d, a, e}).

But now, a fork arises on {y, c, d, a, e}, a contradiction.

Case 2: y is not adjacent to c. We consider two subcases.

2.1: y is adjacent to e. Then

• y is not adjacent to b (otherwise a fork arises on {c, b, y, e, x}),

• y is not adjacent to a (otherwise a fork arises on {b, a, y, e, x}),

• y is not adjacent to d (otherwise a fork arises on {x, y, d, a, c}).

But now, a fork arises on {y, e, d, a, c}, a contradiction.

2.2: y is not adjacent to e. Then

• y is not adjacent to d (otherwise a fork arises on {x, y, d, c, e}),

• y is not adjacent to a (otherwise a fork arises on {y, a, d, c, e}),

• y is not adjacent to b (otherwise a fork arises on {x, y, b, a, c}),

• y is not adjacent to f (otherwise a fork arises on {x, y, f, a, e}).

Therefore, every neighbor of x is adjacent either to all vertices of H (Case 1.1) or to

none of them (Case 2.2), and the claim for the case H = H4 follows.

V. H = H5.



40

Case 1: y is adjacent to c. We consider two subcases.

1.1: y is adjacent to f . Then

• y is adjacent to d (otherwise a fork arises on {d, c, y, f, x}), and, by symmetry, to e,

• y is adjacent to b (otherwise a fork arises on {b, d, y, f, x}),

• y is adjacent to g (otherwise a fork arises on {g, d, y, f, x}),

• y is adjacent to a (otherwise a fork arises on {a, b, y, g, x}).

1.2: y is not adjacent to f . Then

• y is not adjacent to e (otherwise a fork arises on {f, e, y, c, x}),

• y is not adjacent to b (otherwise a fork arises on {e, b, y, c, x}),

• y is not adjacent to g (otherwise a fork arises on {e, g, y, c, x}),

• y is not adjacent to d (otherwise a fork arises on {x, y, d, b, g}).

But now, a fork arises on {y, c, d, b, g}, a contradiction.

Case 2. y is not adjacent to c. We may assume that y is not adjacent to f , since

otherwise we are in a case symmetric to the case 1.2. Then

• y is not adjacent to a (otherwise a fork arises on {x, y, a, c, f}),

• y is not adjacent to b (otherwise a fork arises on {y, b, a, c, f}),

• y is not adjacent to d (otherwise a fork arises on {x, y, d, b, c}), and, by symmetry, to

e,

• y is not adjacent to g (otherwise a fork arises on {y, g, d, b, c}).

Therefore, every neighbor of x is adjacent either to all vertices of H (Case 1.1) or to

none of them (Case 2), and the claim for the case H = H5 follows. This completes the

proof of the claim.
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3.2 (S1,2,5, banner)-free Graphs

In this section, we show that the maximum independent set problem is polynomial-time solv-

able for yet another extension of claw-free graphs, the class of (S1,2,5, banner)-free graphs.

The presentation follows the one in [80].

The duplication of a vertex v in a graph G is the operation of adding a new vertex v′ to

G with N(v′) = N(v). The graph obtained from a path on four vertices P4 by duplicating

one of its middle vertices will be called a banner. Notice that a banner contains a claw as

an induced subgraph. Therefore, banner-free graphs constitute a generalization of claw-free

graphs. However, unlike claw-free graph, the class of banner-free graphs is difficult with

respect to the independent set problem, which is an immediate corollary of Theorem 1.1.1.

The class of (S1,2,5, banner)-free graphs generalizes not only claw-free graphs but also

(S1,2,4, banner)-free and (P8, banner)-free graphs studied in [57], as well as (S1,2,3, banner)-

free, (P7, banner)-free graphs, (P6, C4)-free and (P5, banner)-free graphs studied earlier in

[5, 92, 78].

The key approach in our solution is the method of finding augmenting graphs. In

particular, we will apply results developed in Section 2.1.

Let us recall that for a polynomial-time implementation of the augmenting graph ap-

proach in a class of graphs X, one has to

(a) find a complete list of (minimal) augmenting graphs in X,

(b) develop a polynomial-time procedure for detecting augmenting graphs from the list.

We have already seen that in some cases (for example in the case of claw-free graphs),

question (a) has a simple answer. Extending the class under consideration leads to more

complicated structure of augmenting graphs. For instance, it has been shown in [5] that in

the class of (S1,2,3, banner)-free graphs (a proper extension of claw-free graphs) a minimal

augmenting graph is either

• a chain of even length or

• a complete bipartite graph or
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• a simple augmenting tree (graph T1 in Fig. 3.4) or

• an augmenting plant (graph T3 with r = 0 and s = 1 in Fig. 3.4).

Further extension to the class of (S1,2,4, banner)-free graphs adds only finitely many

new minimal augmenting graphs to this list [57]. From the point of view of existence of a

polynomial-time algorithm to find augmenting graphs, any finite collection of augmenting

graphs can be neglected. Moreover, we do not even need any description of such a collection.

As an example exploiting this observation we prove Theorem 3.2.1 below.

We introduce two families of graphs generalizing paths and cycles. Recall that the

duplication of a vertex v of a graph G results in a graph obtained from G by introducing

a new vertex v′ with N(v′) = N(v). Let us call a strip any finite graph obtained from a

path by repeatedly performing the duplication of vertices, and a bracelet any finite graph

obtained in the same manner from a cycle.

Theorem 3.2.1. For any positive integers k and Δ, there are only finitely many S1,2,k-free

connected bipartite graphs of maximum degree at most Δ, different from strips and bracelets.

Proof. Let l = (d + 1)(n + 2). There are only finitely many connected graphs of vertex

degree at most d which are Pl-free. Therefore, we assume that a connected bipartite graph

G of degree at most d contains a longest induced path P = (v1, . . . , vr) with r ≥ l.

If G = P , then G is a strip. If G is different from P , it must contain a vertex v outside

P , which has a neighbor on P .

First, suppose that v has at least three neighbors on P . Since the degree of v is at

most d, the neighbors of v divide P into at most d + 1 edge-disjoint paths, at least one of

which has many edges. Then an induced S1,2,n can be easily found.

Second, suppose that every vertex outside P has at most one neighbor on P . If v /∈ V (P )

has a neighbor vi on P , then either i = 2 or i = r − 1, since otherwise either P is not a

longest path or G contains an induced S1,2,n. Suppose that i = 2. To avoid an induced

S1,2,n, we conclude that v2 is the only neighbor of v. By symmetry, the same argument

holds for neighbors of vr−1. Therefore, G is a strip in this case.
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Third, assume that v has two neighbors on P , say vi, vj with i < j. Then either

|i− j| = 2 or i = 1 and j = r, since otherwise (similarly as above) an induced S1,2,n arises.

The above discussion allows us to conclude that every vertex of G outside P has a

neighbor on P , since otherwise one can find an induced S1,2,n in G. To complete the proof,

we distinguish between the two following cases.

Case 1. A vertex v �∈ V (P ) is adjacent to v1 and vr, i.e., P together with v induce a cycle

C. To see that G must be a bracelet, consider an induced bracelet Q in G that contains C

and has as many vertices as possible. For a vertex z of the bracelet, let us denote by Q(z)

the set of all vertices w of Q satisfying NQ(w) = NQ(z). If G �= Q, then there is a vertex u

of G outside Q that has a neighbor in Q, say x. Let C ′ be a cycle in Q through x such that

|V (C ′)| = |V (C)|. Let y be a neighbor of x on C ′, and let z be the neighbor of y on C ′,

different from x. From our previous observations, we can conclude without loss of generality

that the only two neighbors of u on C ′ are x and z, and further that NQ(u) ⊆ Q(x)∪Q(z).

The vertex u is adjacent to all vertices of Q(x), since otherwise G would contain an

induced S1,2,n, centered at z (and containing u, y and x′ ∈ Q(x)\N(u)). By the same

token, u is adjacent to all vertices of Q(z). Therefore, NQ(u) = Q(x)∪Q(z). However, the

set V (Q) ∪ {u} then induces a bracelet Q′ with |V (Q′)| > |V (Q)|, contradicting our choice

of Q.

Case 2. Every vertex v of G outside P is adjacent either to v2 or to vr−1 or to two

vertices at distance 2 in P . In other words, v is a duplicate of a vertex of P . To see that G

must be a strip, consider an induced strip Q in G that contains P and has as many vertices

as possible. Similarly as above, for a vertex z of Q we denote by Q(z) the set of all vertices

w of Q satisfying NQ(w) = NQ(z). If G �= Q, then Q has a neighbor u ∈ V (G)\V (Q).

Clearly, all the longest paths in Q appear symmetrically in Q. We may therefore assume

that the neighbors of u in Q appear only among duplicates of neighbors of u on P (or we

are in one of the previously considered cases). That is, NQ(u) ⊆ ∪v∈NP (u)Q(v). It follows

that NQ(u) = ∪v∈NP (u)Q(v), since otherwise it is easy to find an induced S1,2,n, in each of

the possible cases: NP (u) = {v2}, NP (u) = {vr−1} or NP (u) = {vi, vi+2} for some i. But

now V (Q) ∪ {u} induces a strip Q′ with |V (Q′)| > |V (Q)|, contradicting the choice of Q.

This contradiction completes the proof of the theorem.
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The following simple lemma can be found in [5].

Lemma 3.2.2. A connected bipartite banner-free graph containing a C4 is complete bipar-

tite.

According to this lemma, the problem of finding augmenting graphs in the class under

consideration splits into two subproblems:

(A) finding (S1,2,5, C4)-free augmenting graphs;

(B) finding complete bipartite augmenting graphs.

A solution to problem (B) in the class of banner-free graphs has been proposed in [5].

In the rest of this section we analyze problem (A). To this end, we further decompose it

into two subproblems:

(A.1) finding (S1,2,5, C4)-free augmenting graphs of bounded vertex degree;

(A.2) finding (S1,2,5, C4)-free augmenting graphs containing a vertex of high degree.

From Theorem 3.2.1 we derive the following conclusion.

Corollary 3.2.3. In the class of (S1,2,5, C4)-free graphs there are finitely many minimal

augmenting graphs of bounded vertex degree different from chains.

Proof. Let H be an (S1,2,5, C4)-free minimal augmenting graph. According to Theorem 3.2.1,

we can assume without loss of generality that H is either a strip or a bracelet. Notice that

a cycle cannot be an augmenting graph and the duplication of any vertex of a cycle leads

to an induced C4. Therefore, H is a strip. We assume that H is obtained from a path P by

duplicating some (possibly none) vertices of P . As before, no vertex of degree 2 on P can

be duplicated, since otherwise a C4 would arise. And if an endpoint of P was duplicated,

then H is not a minimal augmenting graph. Therefore, H = P is an augmenting chain.

Finding augmenting chains in (S1,2,k, banner)-free graphs is a polynomially solvable task

for any fixed k [71]. Therefore, we proceed to subproblem (A.2). First of all, let us show

that without loss of generality we may restrict ourselves to augmenting graphs containing

a black vertex of high degree.
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Let us point out that in order to check that a bipartite C4-free graph induced by vertices

a, b, c, d, e, f, g, h, i with edges (a, b), (b, c), (c, d), (d, e), (e, f), (f, g), (g, h), (f, i) is an S1,2,5,

one only needs to check that (a, f), (a, h), (b, g), (b, i), (c, h) are non-edges.

Lemma 3.2.4. If a minimal augmenting (S1,2,5, C4)-free graph H contains no black vertex

of degree more than k, then the degree of each white vertex is at most 2k + 1.

Proof. Assume that H contains a white vertex a of degree more than 2k + 1. Denote by

Aj the set of vertices of H at distance j from a. Since H is minimal, at most one vertex of

A1 has no neighbors in A2, and because of C4-freeness, every vertex of A2 has exactly one

neighbor in A1. Therefore |A2| ≥ 2k + 1. Again by the minimality of H, every vertex of A2

has a neighbor in A3. If H contains no black vertex of degree more than k, then |A3| ≥ 3.

Suppose A4 contains a (white) vertex x and let y be its neighbor in A3. Due to the

minimality of H, x has at least one more black neighbor, say z. If deg(y), deg(z) ≤ k, then

A2 contains a vertex non-adjacent both to y and z, and hence there is an induced S1,2,5 in

H. Therefore, A4 is empty.

Let x ∈ A3. By Lemma 2.1.4 and Hall’s theorem [64] we know that the subgraph H −x

has a perfect matching M . For a subset U ⊂ V (H − x) of vertices of the same color, we

denote by m(U) the set of vertices of the opposite color matched with vertices of U with

respect to M . Denote A := A1, B := m(A), C := A2 − B, D := m(C). If deg(x) ≤ k, B

contains at least k + 1 vertices each of which has a neighbor in D.

Consider a vertex d1 ∈ D such that m(a1) �= a, where a1 is the only neighbor of m(d1)

in A. If deg(d1) ≤ k, there is a vertex b ∈ B such that b is not adjacent to d1, b has a

neighbor d2 in D, and m(b) is not adjacent to m(d1).

Assume now that there is an edge m(d2)d1. Then obviously m(d1) is not adjacent to d2.

If deg(d1), deg(d2) ≤ k, then vertices d1, d2 have at most 2k−2 neighbors in B, while vertices

m(d1),m(d2) have at most 2 neighbors in A. Thus, there is a couple of vertices a2, a3 ∈ A

such that m(a2) �= a, m(a2) is non-adjacent to d1, d2 and there are no edges between a2, a3

and m(d1),m(d2). But now the vertices d2,m(d2), d1,m(d1), a1, a, a2,m(a2), a3 induce an

S1,2,5 in H. This contradiction shows that m(d2) cannot be adjacent to d1.

An analogous argument shows that m(d1) is not adjacent to d2. But now, the vertices
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Figure 3.4: “Basic” families of augmenting (S1,2,5, banner)-free graphs

m(d2), d2, b,m(b), a, a1,m(d1), d1,m(a1) induce an S1,2,5. This contradiction completes the

proof of the lemma.

The above lemma permits us to restrict ourselves to augmenting graphs containing a

black vertex x of “sufficiently large” degree k. Figure 3.4 represents all “basic” families of

augmenting graphs of this type. The meaning of the word “basic” in the above sentence is

specified in the following theorem.

Theorem 3.2.5. Let G be an (S1,2,5, banner)-free graph. The problem of finding in G a



47

minimal augmenting (S1,2,5, C4)-free graph with a black vertex of degree at least 6 can be

reduced in polynomial time to the problem of finding in G one of the augmenting graphs

T1, . . . , T6 represented in Figure 3.4.

3.2.1 Proof of Theorem 3.2.5

Throughout the section we shall denote by H a minimal augmenting (S1,2,5, C4)-free graph

with a black vertex x of degree k ≥ 6, by A = {a1, . . . , ak} the neighborhood of x and by

C the remaining white vertices of H, i.e., those that are not in A. Note that, due to the

C4-freeness of H, every neighbor of A except x has exactly one neighbor in A.

According to Lemma 2.1.4 and Hall’s theorem [64], the subgraph H − x has a perfect

matching. For a subset of vertices U ⊆ V (H − x) of the same color, we shall denote by

m(U) the set of vertices of the opposite color matched with the vertices in U . In particular,

B := m(A), and D := m(C). Also, let C1 denote the set of vertices in C that have at least

one and at most k−1 neighbors in B, and C0 the set of vertices in C that have no neighbors

in B. Finally, D0 := m(C0) and D1 := m(C1). Since H is C4-free, we know that

(0) C− (C0∪C1) contains at most one vertex, and any vertex of D is adjacent to at most

one vertex of A.

Lemma 3.2.6. If H contains a vertex y ∈ C which is adjacent to every vertex of B, then

either H = T5 or H = T6 or H contains a redundant set U of size at most 10 such that

either H − U = T1, H − U = T4 or H − U = T6.

Proof. Assume first that C1 �= ∅. Since H is C4-free we know that

(1) y has no neighbors in D1, and m(y) has no neighbors in A ∪ C1;

(2) every vertex of C1 has exactly one neighbor in B.

Also, from S1,2,5-freeness of H we can derive that

(3) Any two vertices of C1 have different neighbors in B. Indeed, c1, c2 ∈ C1 both are

adjacent to b ∈ B, then for any a1, a2 ∈ A different from m(b) and non-adjacent to

m(c1), the subgraph induced by vertices a1, x, a2,m(a2), y, b, c1,m(c1), c2 is isomorphic

to S1,2,5.
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(4) H[C1∪D1] is an induced matching. Indeed, if for a couple of vertices c1, c2 ∈ C1 there

is an edge c1m(c2), then for the neighbor b1 ∈ B of c1 and a vertex b2 ∈ B such that

b2 is non-adjacent to c1, c2 and m(b2) is non-adjacent to m(c1),m(c2), the subgraph

induced by vertices b2,m(b2), x,m(b1), b1, c1,m(c1), c2,m(c2) is isomorphic to S1,2,5.

(5) No vertex of C0 has a neighbor in D1. Indeed, if c ∈ C0 is adjacent to d ∈ D1, then

for the vertex b ∈ B adjacent to m(d) and any two vertices a1, a2 ∈ A different from

m(b) and non-adjacent to d, the subgraph induced by vertices c, d,m(d), b,m(b), x, a1,

m(a1), a2 is isomorphic to S1,2,5.

(6) No vertex of C1 has a neighbor in D0. Indeed, if c ∈ C1 is adjacent to d ∈ D0, then for

the vertex b ∈ B adjacent to c and any two vertices a1, a2 ∈ A different from m(b) and

non-adjacent to d, the subgraph induced by vertices m(d), d, c, b,m(b), x, a1,m(a1), a2

is isomorphic to S1,2,5.

(7) |C0| ≤ 1. Indeed, assume |C0| ≥ 2. Due to the minimality of H and (5), C0 must

have a vertex z adjacent to m(y). Then no other vertex of C0 is adjacent to m(y) by

analogy with (3).

Since C1 �= ∅, we may consider a vertex c1 ∈ C1 and its neighbor b ∈ B.

If z has a neighbor d ∈ D0 different from m(z), then H contains an S1,2,5 induced by

vertices m(c1), c1, b, y,m(y), z, d, m(d),m(z). Therefore, m(z) is the only neighbor of

z in D0.

If no vertex of C0 other than z is adjacent to m(z), then |C0−z| = |N(C0−z)|, which

contradicts the minimality of H. Therefore, there is a vertex c0 ∈ C0 different from z

which is adjacent to m(z).

If m(z) is not adjacent to m(b), then H contains an S1,2,5 induced by vertices c0,m(z),

z,m(y), y, b, c1,m(c1),m(b). Therefore, m(z) is adjacent to m(b), which, together with

the C4-freeness of H implies that |C1| ≤ 1.

If m(c0) is not adjacent to y, then H contains an S1,2,5 induced by vertices m(c0), c0,

m(z), z, m(y), y, b′,m(b′), b where b′ ∈ B such that m(b′) is non-adjacent to m(z) and

m(c0). Therefore, m(c0) is adjacent to y.
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If m(c0) has a neighbor c′ ∈ C0 different from c0, then H contains an S1,2,5 induced

by vertices a, x,m(b′), b′, y,m(c0), c0,m(z), c′, where b′ ∈ B such that m(b′) is non-

adjacent to m(z) and m(c0), and a ∈ A is different from m(b′). Therefore, c0 is the

only neighbor of m(c0) in C0.

These observations, together with the minimality of H, imply that m(z) is adjacent

to all vertices of C0. Indeed, if the set C ′0 := C0 − N(m(z)) is nonempty, then

N(C ′0) = m(C ′0), and consequently |N(C ′0)| = |C ′0|, contradicting the minimality

of H.

If m(c1) has a neighbor in A, say a, then H contains an S1,2,5 induced by vertices

m(z), z, m(y), y,m(a), a, m(c1), c1, x. Therefore, m(c1) has no neighbors in A. It is

now not hard to verify that the set U := {c1,m(c1)} is a redundant subset of size 2

such that H − U = T6.

(8) If |C1| ≥ 2, then no vertex of D1 has a neighbor in A. To the contrary, assume a

vertex d ∈ D1 has a neighbor a ∈ A, and let c ∈ C1 be a vertex different from m(d).

Also, denote by b1 ∈ B the neighbor of m(d) and by b2 ∈ B the neighbor of c. Then

vertices x, a, d,m(d), b1, y, b2, c, m(y) induce an S1,2,5 in H.

From the above list of claims we conclude that if |C1| ≥ 2, then U1 := {y, m(y)} ∪C0 ∪

D0∪NA(D0)∪m(NA(D0))∪NC1(m(NA(D0)))∪m(NC1(m(NA(D0)))) is a redundant subset

of size at most 8 such that H − U1 = T4. If |C1| ≤ 1, then U2 := U1 ∪ C1 ∪D1 ∪NA(D1) ∪

m(NA(D1)) is a redundant subset of size at most 10 such that H − U2 = T1.

Now assume that C1 = ∅. If in addition C0 = ∅, then H − {y, m(y)} = T1.

If C0 �= ∅, then due to the minimality of H there must exist a vertex z ∈ C0 adjacent to

m(y). Then

• no other vertex of C0 is adjacent to m(y) by analogy with (3).

• y is not adjacent to m(z).

Denote by C ′0 the set of vertices of C0−{z} adjacent to m(z) and let C ′′0 := C0− (C ′0∪{z}).

Then y is adjacent to every vertex in m(C ′0), since otherwise for any vertex d ∈ m(C ′0) non-

adjacent to y, any vertex a ∈ A non-adjacent both to m(z) and d, and any vertex b ∈ B



50

different from m(a), we have H[d, m(d),m(z), z,m(y), y,m(a), a, b] = S1,2,5. Consequently,

no vertex of m(C ′0) has a neighbor in A, since otherwise a C4 arises.

If C ′′0 �= ∅, then it must contain a vertex c that has a neighbor d ∈ m(C ′0), since otherwise

|N(C ′′0 )| = |C ′′0 |. But then for any two vertices a1, a2 ∈ A non-adjacent to d and m(c), we

have H[a1, x, a2,m(a2), y, d, c,m(c),m(d)] = S1,2,5. Therefore, C ′′0 = ∅. Now if m(z) has no

neighbors in A then H = T6, and if m(z) has a neighbor in A then H = T5.

From now on, we assume that C = C0 ∪ C1, i.e., every vertex of C has a non-neighbor

in B. This implies

Claim 3.2.7. Every vertex of D1 has at most one neighbor in C0.

Proof. Assume a vertex d1 ∈ D1 has at least two neighbors c′0, c′′0 ∈ C0. Denote c1 :=

m(d1), B′ := N(c1) ∩ B and B′′ := B − B′. By definition, B′ �= ∅ and B′′ �= ∅. Let

a1 ∈ m(B′) and a2, a3 be any two other vertices of A non-adjacent to d1. Without loss

of generality assume that a2 is not adjacent to m(c′0). If in addition a1 is not adjacent to

m(c′0), then H[a2, x, a1,m(a1), c1, d1, c
′
0,m(c′0), c′′0] = S1,2,5. If a1 is adjacent to m(c′0), then

H[c′′0, d1, c
′
0,m(c′0), a1, x, a2,m(a2), a3] = S1,2,5. This contradiction shows that every vertex

of D1 has at most one neighbor in C0.

Claim 3.2.8. Every vertex of C0 has at least one neighbor in D1.

Proof. Denote by C ′0 the vertices of C0 that have neighbors in D1 and C ′′0 := C0 − C ′0.

If C ′′0 is not empty, it must contain a vertex c′′0 that has a neighbor d′0 ∈ m(C ′0), since

otherwise |C ′′0 | = |N(C ′′0 )| contradicting the minimality of H. Denote c′0 := m(d′0), d1 ∈ D1

a neighbor of c′0, c1 := m(d1), B′ := N(c1) ∩ B and B′′ := B − B′. If d1 has a neighbor

a1 ∈ A, then for any two vertices a2, a3 ∈ A different from a1 and non-adjacent to d′0,

H[c′′0, d′0, c′0, d1, a1, x, a2,m(a2), a3] = S1,2,5. If d1 has no neighbors in A, then for any a1 ∈

m(B′), a2 ∈ m(B′′) and a3 ∈ A different from a1, H[c′0, d1, c1,m(a1), a1, x, a2,m(a2), a3] =

S1,2,5. Therefore, C ′′ = ∅ and the claim is proved.

A natural consequence of the two preceding claims is the following corollary.

Corollary 3.2.9. |C0| ≤ |C1|.
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Lemma 3.2.10. If |C1| ≤ 3, then H contains a redundant set U of size at most 24 such

that H − U = T1.

Proof. Let |C1| ≤ 3. The above corollary then implies |C| ≤ 6, and therefore also |D| ≤ 6.

Due to the C4-freeness of H, every vertex of D has at most one neighbor in A, so that

|NA(D)| ≤ 6. Now it is easy to see that the set U := C ∪ D ∪ NA(D) ∪ m(NA(D)) is a

redundant set of size at most 24 such that H − U = T1.

From now on we assume that |C1| ≥ 4.

Lemma 3.2.11. Let |C1| ≥ 4 and C0 = ∅.

(a) If there are vertices y, z ∈ C1 such that NB(y) ∩NB(z) �= ∅, then H = T2 or H = T5

or H contains a redundant set U of size at most 2 such that H − U = T2.

(b) If for any two vertices y, z ∈ C1, NB(y) ∩NB(z) = ∅, then H = T3 or H contains a

redundant set U of size at most 4 such that H − U = T3.

Proof. To prove (a), denote by b1 the common neighbor of y and z in B.

Case 1. Assume first that y has one more neighbor in B, say b2. Suppose B contains a

vertex b3 non-adjacent both to y and z. Then m(b3) is adjacent to m(y), since otherwise

H[b3,m(b3), x,m(b2), y, b1, z, m(y)] = S1,2,5. This implies that m(b3) is adjacent to m(z),

since otherwise H[m(z), z, b1, y,m(y),m(b3), x, a, b3] = S1,2,5, where a ∈ A is a vertex non-

adjacent to b1,m(y),m(z). Therefore, B contains at most one vertex adjacent neither to

y nor to z, since otherwise a C4 arises. From this and the fact that |B| ≥ 6 we conclude

without loss of generality that y has at least three neighbors in B. But now the vertices

b3,m(b3),m(z), z, b1, y, b2,m(b2), b4 induce an S1,2,5 in H, where b4 is one more neighbor of

y. This contradiction shows that NB(y) ∪NB(z) = B.

Let c ∈ C1\{y, z}. Then c is not adjacent to b1. Suppose the converse, and let b ∈ B

be a vertex adjacent to y but not to z such that m(b) is not adjacent to m(c). Then, H

contains an S1,2,5 induced by vertices a, x,m(b), b, y, b1, c, m(c), z where a ∈ A is a vertex

non-adjacent to m(c) and different from m(b),m(b1).
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By symmetry, we may assume that c is adjacent to a vertex b ∈ B that is adjacent to y

but not to z. For every vertex b′ ∈ NB(z)−NB(y) that is not adjacent to c, m(y) must be

adjacent to m(b′), since otherwise H[b′,m(b′), x,m(b1), b1, y, b, c, m(y)] = S1,2,5. Due to the

C4-freeness of H, this implies that c is non-adjacent to at most one vertex in NB(z)−NB(y).

The C4-freeness of H also implies that c is adjacent to at most one vertex in NB(z)−NB(y).

Therefore, |NB(z)−NB(y)| ≤ 2, and consequently |NB(y)−NB(z)| ≥ 3.

Let b′ ∈ B be a non-neighbor of y. Then b′ ∈ NB(z) − NB(y). Let b′′ ∈ B denote a

neighbor of y different from b and b1 such that m(b′′) is non-adjacent to m(z). (Such a

vertex exists since |NB(y)−NB(z)| ≥ 3 and since m(z) is adjacent to at most one neighbor

of x.) If b′ is adjacent to c, then H[b′′,m(b′′), x,m(b1), b1, z, b′, c, m(z)] = S1,2,5, and if b′ is

non-adjacent to c, then H[z, b′,m(b′), x,m(b), b, y, b′′, c] = S1,2,5. This contradiction implies

that y is adjacent to all vertices of B, which in turn contradicts the fact that y ∈ C1.

Case 2. Now we assume that NB(c) = {b1} for any vertex c ∈ C1 adjacent to b1. Then

for any such a vertex, m(c) has no neighbors in A. Indeed, if a1 ∈ A is a neighbor of m(c),

then for any vertices a2, a3 ∈ A different from m(b1) and non-adjacent to m(c), we have

H[c′, b1, c, m(c), a1, x, a3,m(a3), a2] = S1,2,5, where c′ is another vertex of C1 adjacent to b1.

Therefore, if every vertex of C1 is adjacent to b1, then H = T2.

Suppose now that C1 has a vertex c′ non-adjacent to b1, and let b2 denote a neigh-

bor of c′ in B. Then c′ is adjacent to m(y) (and similarly to m(c) for every vertex

c ∈ C1 adjacent to b1), since otherwise H[c′, b2,m(b2), x,m(b1), b1, y,m(y), z] = S1,2,5.

Consequently, c′ is adjacent to every vertex b ∈ B different from b1, since otherwise

H[b, m(b), x,m(b2), b2, c
′,m(y), y,m(z)] = S1,2,5. Together with C4-freeness of H this im-

plies that c′ is the only vertex of C1 non-adjacent to b1. If in addition m(c′) has no neighbors

in A, then {c′,m(c′)} is a redundant set in H and H − {c′,m(c′)} = T2. If m(c′) has a

neighbor in A, then this neighbor must be m(b1), in which case H = T5.

Now we proceed to the proof of (b). If for each vertex d ∈ D1, the vertex m(d) is the

only neighbor of d, then H = T3. Therefore, we assume that a vertex d ∈ D1 has a neighbor

y �= m(d).

Let first y belong to C1. Since |C1| ≥ 4, there is a vertex a ∈ A such that a is
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not adjacent to d, and m(a) is adjacent neither to m(d) nor to y. But then for any

neighbor b ∈ B of m(d) and any vertex a′ ∈ A − {a,m(b)} non-adjacent to d, we have

H[y, d, m(d), b,m(b), x, a,m(a), a′] = S1,2,5.

Now assume that y ∈ A. Let first y be the only neighbor of m(y), i.e., let {y, m(y)} be

a redundant set. If there is a vertex d′ ∈ D1 non-adjacent to y, then H contains an S1,2,5

induced by vertices d′,m(d′), b,m(b), x, y, d,m(d),m(y), where b ∈ B is a neighbor of m(d′).

If every vertex of D1 is adjacent to y, then they have no other neighbors in A and hence

H − {y, m(y)} = T3.

Now suppose that m(y) is adjacent to a vertex c ∈ C1. Then every vertex d′ of D1

(different from m(c)) also is adjacent to y, since otherwise for any neighbor b ∈ B of m(d′),

we have H[d′,m(d′), b,m(b), x, y, d,m(d),m(y)] = S1,2,5. Therefore, if {y, m(y), c, m(c)} is

a redundant set in H, then H − {y, m(y), c, m(c)} = T3. In order to show that the set

{y, m(y), c, m(c)} is redundant, assume by contradiction that m(c) has a neighbor a ∈ A.

Without loss of generality let m(a) be non-adjacent to m(d). But then H[m(a), a,m(c), c,

m(y), y, d,m(d), d′] = S1,2,5, where d′ is any vertex of D1 different from d and m(c).

Lemma 3.2.12. Let |C1| ≥ 4 and C0 �= ∅. Then, the set U := C0 ∪D0 is a redundant set

of size 2 such that H − U = T5.

Proof. Assume that C0 �= ∅. Then it must contain a vertex c which has a neighbor d in

D1, since otherwise |N(C0)| = |C0|. Let b ∈ B be a non-neighbor and b′ ∈ B a neighbor of

m(d). If d is not adjacent to m(b), then for any vertex a ∈ A different from m(b),m(b′) and

non-adjacent to d, we have H[c, d,m(d), b′,m(b′), x,m(b), b, a] = S1,2,5.

Now assume that for any non-neighbor b ∈ B of m(d), the vertex d is adjacent to m(b).

Since d may have at most one neighbor in A, we conclude that m(d) is adjacent to all but

one vertex b in B.

This implies that |C0| ≤ 1. Indeed, suppose C0 contains one more vertex, say c′. Then

due to the minimality of H, either c′ has a neighbor in D1 or we can assume without loss

of generality that c′ is adjacent to m(c). If c′ has a neighbor d′ ∈ D1 different from d, then

analogously m(d′) is adjacent to all but one vertex of B, which leads to an induced C4, since

|B| ≥ 6. If c′ is adjacent to d, then for any two vertices a1, a2 ∈ A non-adjacent to d and m(c)
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such that m(a2) is adjacent to m(d), we have H[a1, x, a2,m(a2),m(d), d, c,m(c), c′] = S1,2,5.

Finally, if c′ is adjacent to m(c), then for a vertex a1 ∈ A non-adjacent to m(c),m(c′) and

such that m(a1) is adjacent to m(d), we have H[m(c′), c′,m(c), c, d, m(d),m(a1), a1, b
′] =

S1,2,5, where b′ ∈ B is adjacent to m(d). This contradiction shows that C0 = {c}.

Assume m(c) has a neighbor c1 ∈ C1. Obviously c1 �= m(d) and c1 is not adjacent to

d. In addition, c1 has a neighbor y �= m(c) non-adjacent to m(d). Indeed, if c1 is adjacent

to b then y = b, and if c1 is not adjacent to b then it has a neighbor in B − {b}, in which

case y = m(c1). But then H[y, c1,m(c), c, d, m(d), b′,m(b′), b′′] = S1,2,5, where b′ and b′′ are

two vertices in B −{b} non-adjacent to c1 (observe that c1 may have at most one neighbor

in B − {b}) such that m(b′) is not adjacent to y and m(c). This contradiction shows that

m(c) has no neighbors in C1.

Assume now that m(c) is adjacent to a vertex a ∈ A different from m(b). Since

|C1| ≥ 4, we may consider three vertices c1, c2, c3 ∈ C1 different from m(d). Remem-

ber that cj (j = 1, 2, 3) must have a neighbor in B, but it cannot have more than one

neighbor in B − {b}. To avoid an induced C4 we conclude that m(cj) cannot be ad-

jacent both to c and a. If m(cj) is adjacent to a, then for any vertex b′′ ∈ B − {b}

non-adjacent to cj we have H[b′′,m(d), d, c,m(c), a, m(cj), cj , x] = S1,2,5. If m(cj) is adja-

cent to c, then for any vertex a′ ∈ A − {a,m(b)} such that a′ is non-adjacent to m(cj)

and m(a′) is not adjacent to cj we have H[m(a′), a′, x, a,m(c), c, m(cj), cj , d] = S1,2,5.

Therefore, we conclude that m(cj) is adjacent neither to a nor to c. If in addition cj

has a neighbor b′ ∈ B − {b, m(a)}, then H[c,m(c), a,m(a),m(d), b′, cj ,m(cj),m(b′)] =

S1,2,5. If two vertices ci and cj are both adjacent to b, then for any vertex a′ ∈ A −

{m(b)} such that m(a′) is not adjacent to ci, cj and a′ is not adjacent to m(ci) we have

H[m(d),m(a′), a′, x,m(b), b, ci,m(ci), cj ] = S1,2,5. The only case is left is when two vertices

ci and cj are both adjacent to m(a). Then for any two vertices a1, a2 ∈ A − {a,m(b)}

non-adjacent to m(ci) we have H[a1, x, a2,m(a2),m(d),m(a), ci,m(ci), cj ] = S1,2,5. This

contradiction shows that the only possible neighbor of m(c) in A is m(b).

Due to the C4-freeness of H, m(c) cannot be adjacent to m(b). Therefore, we conclude

that c is the only neighbor of m(c).
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Assume now that there is a vertex c1 ∈ C1 such that c1 and m(d) have a com-

mon neighbor in B, say b1. Then c1 is not adjacent to b, for otherwise the vertex set

{m(c), c, d, m(b), b, c1, b1,m(b1),m(c1)} would induce an S1,2,5 in H. Also, m(c1) is not ad-

jacent to m(b), since otherwise H[b, m(b),m(c1), c1, b1,m(d), b2,m(b2), b3] = S1,2,5 for any

two distinct vertices b2, b3 ∈ B − {b, b1} such that m(b2) is not adjacent to m(c1). But

now, an S1,2,5 arises on the vertex set {m(c1), c1, b1,m(d), d,m(b), x, a1, b}, where a1 ∈ A is

any vertex different from m(b1) and non-adjacent to m(c1). This contradiction shows that

NB(c1) = {b} for every vertex c1 ∈ C1 − {m(d)}.

Now, observe that for every vertex c1 ∈ C1−{m(d)}, m(c1) is adjacent to m(d). Indeed,

if this is not the case, we have H[m(d),m(a), a, x, m(b), b, c1,m(c1), c2] = S1,2,5 for any

vertex a ∈ A different than m(b) and non-adjacent to m(c1) and any c2 ∈ C1 − {m(d), c1}.

Therefore, we conclude that H − {c,m(c)} = T5.

3.2.2 Finding Augmenting Graphs T1, . . . , T6

Now we present polynomial-time algorithms for finding augmenting graphs from the six

basic families represented in Figure 3.4. To this end, we first check whether G contains a

certain small induced subgraph (a so-called initial structure) which is contained in every

large enough graph from a family Ti under consideration, and then try to extend it to the

whole augmenting graph. For clarity of the proofs, we shall use the labeling of vertices of

augmenting graphs T1, . . . , T6 as represented in Figure 3.4.

Given a black vertex b, we will denote by W (b) = N(b)∩S the set of white neighbors of

b. For a nonnegative integer i, we denote by Bi the set of all black vertices having exactly i

white neighbors. The independence number of G (i.e., the size of a maximum independent

set in G) is denoted α(G).

Lemma 3.2.13. If G contains no augmenting P3, then a simple augmenting tree T1 (if

any) can be found in polynomial time.

Proof. If G contains no augmenting P3 but contains an augmenting T1, then r ≥ 2, where

r is the number of leaves in T1 (see Figure 3.4). Therefore, we first have to check if G

contains an induced P5 = (b1, a1, x, a2, b2) with {b1, b2} ⊆ B1. If G contains no such an



56

initial structure, then it contains no augmenting T1. If such a structure exists, then we

proceed as follows.

Let us denote A = W (x)\{a1, a2}, and for a ∈ A, let K(a) denote the set of black

neighbors of a which are in B1, and which are not adjacent to any of {x, b1, b2}. Notice

that a desired simple augmenting tree exists only if K(a) �= ∅ for all a in A. Finally, let

V ′ = ∪a∈AK(a).

Consider any vertex a in A. If K(a) contains two non-adjacent vertices b and b′, then b,

a and b′ induce an augmenting P3 in G, a contradiction. Hence, each K(a) induces a clique

in G. It follows that a desired simple augmenting tree exists if and only if α(G[V ′]) = |A|.

It is easy to see that G[V ′] must be P5-free. Indeed, consider an induced P4 = (p1, p2,

p3, p4) in G[V ′], and let a ∈ A be such that p1 ∈ K(a). None of the vertices p3 and

p4 is adjacent to a, since K(a) is a clique. But now, p2 ∈ K(a), since otherwise the

vertex set {p4, p3, p2, p1, a, x, a2, b2, a1} induces an S1,2,5 in G. Hence, if G[V ′] contains a

P4 = (p1, p2, p3, p4), then p1 and p2 have a common white neighbor, while p2 and p3 do not

have a common white neighbor. This implies that G[V ′] is P5-free.

Since the independence number of a (P5, banner)-free graph can be computed in poly-

nomial time (see e.g. [78, 57]), we can efficiently compute α = α(G[V ′]). If α < |A|, we

conclude that G contains no simple augmenting tree containing the above initial structure.

Otherwise, we may choose one vertex from each clique K(a) to obtain a simple augmenting

tree.

Lemma 3.2.14. If G contains no augmenting P3 or P7, then an augmenting T2 (if any)

can be found in polynomial time.

Proof. We may restrict ourselves to finding a T2 with r, s ≥ 2, since any T2 with, say, r = 1

either equals to P7 or contains a redundant subset U = {a1, b1} such that T2 − U = T1.

As an initial structure, consider the subgraph of T2 (see Figure 3.4) induced by vertices

a1, a2, b1, b2, c1, c2, d1, d2, x, y, z such that {b1, b2, d1, d2} ⊆ B1.

Let us denote A = (W (x) ∪ W (z))\{a1, a2, c1, c2, y}, and for a ∈ A, let K(a) denote

the set of black neighbors of a which are in B1, and which are not adjacent to any of

{x, z, b1, b2, d1, d2}. Note that due to the C4-freeness of the augmenting graph, (W (x) ∩
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A) ∩ (W (z) ∩A) = ∅, and that a desired augmenting T2 exists only if K(a) �= ∅ for all a in

A. Finally, let V ′ = ∪a∈AK(a).

Consider any vertex a in A. If K(a) contains two non-adjacent vertices b and b′, then b,

a and b′ induce an augmenting P3 in G, a contradiction. Hence, each K(a) induces a clique

in G. It follows that a desired augmenting T2 exists if and only if α(G[V ′]) = |A|.

We now show that G[V ′] is P3-free. Suppose, to the contrary, that (p1, p2, p3) is an

induced P3 in G[V ′]. Let a ∈ A be such that p1 ∈ K(a). Since K(a) is a clique, p3 is not

adjacent to a. This implies that a2 is not adjacent to a, since otherwise p2 and p3 should

have a common white neighbor different from a, which is impossible since p2 ∈ B1. Without

loss of generality we may assume that a is adjacent to x, but not to z. But now the vertex

set {p2, p1, a, x, y, z, a2, b2, a1} induces an S1,2,5 in G, a contradiction.

Hence, G[V ′] is a disjoint union of cliques, and the independence number α = α(G[V ′])

can be trivially computed. If α < |A|, we conclude that G contains no augmenting T2

containing the above initial structure. Otherwise, we may choose one vertex from each

clique K(a) to obtain an augmenting T2.

Lemma 3.2.15. If G contains no augmenting P3, then an augmenting T3 (if any) can be

found in polynomial time.

Proof. We may restrict ourselves to finding a T3 with s ≥ 2, since any T3 with s ∈ {0, 1}

is either a simple augmenting tree T1 or contains a redundant subset U of size 2 such that

T3 − U = T1.

As an initial structure, consider the subgraph of T3 (see Figure 3.4) induced by vertices

d1, c1, b
1
1, a

1
1, x, a2

1, b
2
1, c2, d2 such that {b1

1, b
2
1} ⊆ B2 and {d1, d2} ⊆ B1.

Let us denote A = W (x)\{a1
1, a

2
1}, and for a ∈ A, let K(a) denote the set of black

neighbors b of a which are in B1 ∪ B2, which are not adjacent to any of {x, b1
1, b

2
1, d1, d2},

and such that if b ∈ B2 then G contains a pair of adjacent vertices c(b) and d(b) such that

W (b) = {a, c(b)}, d(b) ∈ B1, and d(b) is not adjacent to any of {x, b1
1, b

2
1, d1, d2, b}.

Note that due to the C4-freeness of the augmenting graph, the sets K(a1) and K(a2)

are disjoint for any two distinct a1, a2 ∈ A, and that a desired augmenting T3 exists only if

K(a) �= ∅ for all a in A. Finally, let V ′ = ∪a∈AK(a).
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Consider any vertex a in A. Suppose K(a) contains two non-adjacent vertices b and b′.

If b, b′ ∈ B1, then b, a and b′ induce an augmenting P3 in G, a contradiction. Now assume

b ∈ B2, and let {c(b), d(b)} be a pair of adjacent vertices such that W (b) = {a, c(b)},

d(b) ∈ B1, and d(b) is not adjacent to any of {x, b1
1, b

2
1, d1, d2, b}. Since b ∈ B2, it cannot be

adjacent to both c1 and c2; without loss of generality we may assume that b is not adjacent

to c1, i.e., c(b) �= c1. But now the vertex set {d1, c1, b
1
1, a

1
1, x, a, b, c(b), b′} induces an S1,2,5

in G, a contradiction.

Therefore, each K(a) induces a clique in G. It follows that α(G[V ′]) = |A| is a necessary

condition for the existence of an augmenting T3 extending the initial structure.

Let us now show that G[V ′] must be P5-free. Indeed, consider an induced P4 =

(p1, p2, p3, p4) in G[V ′], and let a ∈ A be such that p1 ∈ K(a). None of the vertices p3

and p4 is adjacent to a, since K(a) is a clique. But now, p2 ∈ K(a), since otherwise the

vertex set {p4, p3, p2, p1, a, x, a2
1, b

2
1, a

1
1} induces an S1,2,5 in G. Hence, if G[V ′] contains a

P4 = (p1, p2, p3, p4), then p1 and p2 have a common white neighbor, while p2 and p3 do not

have a common white neighbor. This implies that G[V ′] is P5-free.

Since the stability number of a (P5, banner)-free graph can be computed in polynomial

time, we can efficiently compute α = α(G[V ′]). If α < |A|, we conclude that G contains no

augmenting T3 containing the above initial structure.

If α = |A|, let B denote a maximum independent set in G[V ′] (in particular, B contains

precisely one vertex b from each clique K(a)), and let C = {c(b) : b ∈ B ∩ B2} and

D = {d(b) : b ∈ B ∩ B2}. Consider the induced subgraph H of G, obtained by adding

to the initial structure all the vertices from A ∪ B ∪ C ∪ D. Now, to see that H is an

augmenting T3 we only need to show that B ∪ D is an independent set. The set B was

chosen to form an independent set in G. By definition of d(b), no b ∈ B ∩ B2 is adjacent

to d(b). Suppose there is an edge connecting a vertex b from B to a d(b′) for some b′ ∈

B ∩B2. Let a′ denote the unique common white neighbor of x and b′. Now, the vertex set

{b, d(b′), c(b′), b′, a′, x, a1
1, b

1
1, a

2
1} induces an S1,2,5 in G, a contradiction. Similarly, if there

is an edge connecting vertices d, d′ ∈ D, then the vertex set {d, d′, c(b′), b′, a′, x, a1
1, b

1
1, a

2
1}

(where d′ = d(b′) and a′ is the unique common white neighbor of x and b′) induces an S1,2,5

in G. This contradiction completes the proof of the lemma.
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Lemma 3.2.16. If G contains no augmenting P3, then an augmenting T4 (if any) can be

found in polynomial time.

Proof. This follows immediately from the fact that every T4 is a special case of a T3, and

from the proof of Lemma 3.2.15.

Lemma 3.2.17. An augmenting T5 (if any) can be found in polynomial time.

Proof. We may restrict ourselves to finding a T5 with r, s > 0 and r ≥ 2, since a T5 with

r = 0 contains a redundant set U of size 4 such that T5 − U = T1, and a T5 with r = s = 1

can be found in polynomial time.

As an initial structure, consider the subgraph of T5 (see Figure 3.4) induced by vertices

a1, a2, b1, b2, c1, d1, u, v, x, y, z such that {b1, b2, v, d1} ⊆ B2.

Let us denote Ax = W (x)\{a1, a2, u}, Ay = W (y)\{u, c1}, and for a ∈ A := Ax ∪ Ay,

let K(a) denote the set of common neighbors of a and z which are in B2, and which are

not adjacent to any of {x, y, b1, b2, v, d1}.

Note that it follows from the C4-freeness of the augmenting graph that the sets Ax and

Ay are disjoint, and that for every a ∈ A, K(a) is a clique. Finally, let V ′x = ∪a∈AxK(a),

V ′y = ∪a∈AyK(a), and V ′ = V ′x ∪ V ′y . From the definition of the sets K(a) it follows that

V ′x ∩ V ′y = ∅. Moreover, a desired augmenting T5 exists if and only if α(G[V ′]) = |A|.

Let us show that G[V ′] is a disjoint union of cliques. First, we observe that each of G[V ′x]

and G[V ′y ] is a disjoint union of cliques. Indeed, suppose that (p1, p2, p3) is an induced P3 in

G[V ′x]. Let a ∈ Ax be such that p1 ∈ K(a). Since K(a) is a clique, p3 is not adjacent to a.

This implies that p2 is not adjacent to a, since otherwise p2 and p3 should have a common

white neighbor different from a, which is impossible since p2 ∈ B2 and W (p2) = {a, z}. But

now the vertex set {p3, p2, p1, a, x, u, v, y, c1} induces an S1,2,5 in G, a contradiction. Also,

there are no edges between V ′x and V ′y , for if there are vertices a ∈ Ax and a′ ∈ Ay with

bb′ ∈ E for some b ∈ K(a) and b′ ∈ K(a′), then the vertex set {y, a′, b′, b, a, x, a1, b1, a2}

induces an S1,2,5 in G.

Hence, the independence number α = α(G[V ′]) can be trivially computed. If α <

|A|, we conclude that G contains no augmenting T5 containing the above initial structure.
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Otherwise, we may choose one vertex from each clique K(a) to obtain an augmenting T5.

Lemma 3.2.18. If G contains no augmenting P3 or P7, then an augmenting T6 (if any)

can be found in polynomial time.

Proof. We may restrict ourselves to finding a T6 with r ≥ 2, since a T6 with r = s = 1 is a

P7.

As an initial structure, consider the subgraph of T6 (see Figure 3.4) induced by vertices

a1, a2, b1, b2, c1, d1, x, y, z such that {b1, b2, c1} ⊆ B2 and such that x and z have no common

white neighbors.

Let us denote Ax = W (x)\{a1, a2}, Az = W (z)\{d1} and for a ∈ A := Ax ∪ Az, let

K(a) denote the set of common neighbors of a and y which are in B2, and which are not

adjacent to any of {x, b1, b2, c1, z}.

Note that Ax ∩ Az = ∅ by assumption. Also, due to the C4-freeness of the augmenting

graph, each K(a) for a ∈ A is a clique. Finally, let V ′x = ∪a∈AxK(a), V ′z = ∪a∈AzK(a), and

V ′ = V ′x ∪ V ′z . It follows that a desired augmenting T6 exists only if α(G[V ′]) = |A|.

Let us show that G[V ′] is a S1,1,2-free graph. Indeed, suppose that {p1, p2, p3, p4, p5}

induces an S1,1,2 in G[V ′] (with a P4 on {p1, p2, p3, p4} and an additional edge p2p5), and let

a ∈ A be such that p1 ∈ K(a). Since K(a) is a clique, none of p3, p4, p5 is adjacent to a. Now,

p2 must be adjacent to a, or an S1,2,5 arises on the vertex set {b1, a1, x, a, p1, p2, p3, p4, p5}

(if a ∈ Ax) or on the vertex set {d1, c1, z, a, p1, p2, p3, p4, p5} (if a ∈ Az). By symmetry, p2

and p5 also share a common white neighbor a′ ∈ A different from a. This means that p2

has at least three white neighbors y, a, a′, contradicting the assumption that p2 belongs to

B2.

Since the independence number of an S1,1,2-free graph can be computed in polynomial

time (see e.g. [3]), we can efficiently compute α = α(G[V ′]). If α < |A|, we conclude that

G contains no augmenting T6 containing the above initial structure. Otherwise, we may

choose one vertex from each clique K(a) to obtain an augmenting T6.

As a consequence of the above lemmas and the results from Section 2.1.1, we obtain the

following conclusion.
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Theorem 3.2.19 ([80]). The maximum independent set problem can be solved in polynomial

time in the class of (S1,2,5, banner)-free graphs.

3.3 mS1,k,k-free Graphs of Bounded Vertex Degree

In this section, we assume that the input graphs are of maximum degree at most Δ, for

some fixed Δ ≥ 3. Forbidding what graphs of the form Si,j,k will result in an “easy” class?

One of the simplest examples of graphs of the form Si,j,k is a chordless path. Trivially, in

a class of graphs of bounded vertex degree excluding a path Pk (for any natural k), the

maximum weight independent set problem is solvable in polynomial time, as every

such class contains only finitely many connected graphs. Moreover, from Theorem 4.1.1

from Section 4.1.1 we can conclude that the problem is solvable in polynomial time also for

S1,k,k-free graphs of bounded vertex degree, since S1,k,k is contained in every apple of order

more than 2k + 1.

The case of Pk-free graphs can be easily generalized to mPk-free graphs (for any natural

m), as mPk is an induced subgraph of Pl with l ≥ m(k + 1)− 1. However, a generalization

of S1,k,k-free graphs to mS1,k,k-free graphs is not so obvious. More generally, we are not

aware of any argument showing that whenever the maximum weight independent set

problem is polynomial-time solvable for F -free graphs, where F is a graph different from

a chordless path, the same conclusion holds for mF -free graphs. For graphs of bounded

vertex degree, however, this is always the case.

Theorem 3.3.1 ([82]). Let F be a graph and let Δ,m be positive integers. If the maximum

weight independent set problem is solvable in polynomial time for F -free graphs of

vertex degree at most Δ, then it is also solvable in polynomial time for mF -free graphs of

vertex degree at most Δ.

Proof. We prove the theorem by induction on m. The basis of the induction is obvious.

Let m > 1 and G be an mF -free graph of vertex degree at most Δ. If G is F -free, then

we are done. Otherwise, let G contain an induced copy of F . By deleting the vertices of F

together with their neighbors, we obtain an induced subgraph G′ of G which is (m− 1)F -

free. Since the vertex degree in G is at most Δ, the number of deleted vertices does not
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exceed |V (F )|(Δ + 1). By the induction hypothesis, the maximum weight independent

set problem can be solved in polynomial time for (m − 1)F -free graphs. Therefore, by

Theorem 2.4.1, the problem admits a polynomial-time solution for G too.

Therefore, the following corollary holds.

Corollary 3.3.2 ([82]). For every fixed k, m and Δ, the maximum weight independent

set problem is solvable in polynomial time for mS1,k,k-free graphs of maximum degree at

most Δ.

3.4 Planar and More General Graphs

In this section, we turn our attention to the maximum independent set problem in planar

graphs and more generally, graphs that exclude a fixed apex graph as a minor. An apex

graph is a graph that becomes planar after deleting one vertex. By Wagner’s Theorem [112],

planar graphs are characterized by the absence of two apex graphs K3,3 or K5 as minors.

Therefore, for every nonplanar apex graph H, the class of H-minor-free graphs strictly

contains planar graphs.

3.4.1 Forbidding a Graph from S and a Line Graph of a Graph from S

Let T = {L(G) : G ∈ S} denote the set of all line graphs of graphs in S. The goal of this

section is to show Theorem 3.4.6, the analogue of the following theorem from [85] obtained

by replacing the requirement on bounded maximum degree with the property “excludes H

as a minor,” where H a fixed apex graph.

Theorem 3.4.1 ([85]). For any positive integer Δ and any two graphs H1 ∈ S and H2 ∈ T

there is a number N such that every graph of vertex degree at most Δ with no induced

subgraphs isomorphic to H1 or H2 has treewidth at most N .

In fact, many results valid for graphs of bounded degree remain true for planar graphs.

Consider, for instance, the following obvious observation: connected graphs of bounded

degree and bounded diameter have bounded treewidth (as there are only finitely many such
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graphs).2 The same is true for planar graphs: planar graphs of bounded diameter have

bounded treewidth.

A class of graphs is said to have the diameter-treewidth property if there is a function

associated with the class such that the treewidth of any graph from the class is bounded

above by the function of its diameter. Clearly, for any such class, bounded diameter implies

bounded treewidth. It has been shown by Eppstein [47] that among minor-closed graph

classes, the diameter-treewidth property is enjoyed precisely by the classes excluding an

apex graph.

Theorem 3.4.2 ([47], [38]). Let X be a minor-closed graph family. Then X has the

diameter-treewidth property if and only if X does not contain all apex graphs.

The proof found by Eppstein has been substantially simplified by Demaine and Haji-

aghayi in [38]. The key tool for this simplification is Lemma 3.4.3 below. An n × n grid

Gn is the graph with the vertex set {1, . . . , n} × {1, . . . , n} such that (i, j) and (k, l) are

adjacent if and only if |i − k| + |j − l| = 1. An augmented grid is a grid Gn augmented

with additional edges (and no additional vertices). Vertices (i, j) with {i, j} ∩ {1, n} �= ∅

are boundary vertices of the grid; the other ones are nonboundary.

Lemma 3.4.3. Let H be an apex graph, let G be H-minor-free graph, let r = 14|V (H)|−22,

and let m > 2r be the largest integer such that tw(G) ≥ m4|V (H)|2(m+2). Then G be can be

contracted into an augmented grid R, that is, an (m− 2r)× (m− 2r) grid augmented with

additional edges (and no additional vertices) such that each vertex v ∈ V (R) is adjacent to

less than (r + 1)6 nonboundary vertices of the grid.

From this lemma we can conclude that if H is an apex graph, and a subclass X of H-

minor-free graphs is closed under edge contractions and vertex deletions, then the treewidth

of graphs in X is bounded if and only if it is bounded for graphs of bounded vertex degree

in X. More formally:

Corollary 3.4.4 ([74]). Let H be an apex graph and X a subclass of H-minor-free graphs.

Denote by Y the class of all graphs that can be obtained from graphs in X by applying

2The diameter of a connected graph G is the maximum distance between two vertices in G. The distance
between two vertices u and v in G is the length of a shortest u-v path in G.
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a sequence of (zero or more) edge contractions and vertex deletions. Suppose that the

treewidth of graphs in Y is bounded above by a function of their maximum degree: there

exists a function f such that

tw(G) ≤ f(Δ(G)), for all G ∈ Y . (3.1)

Then, there is a number N such that every graph in X has treewidth at most N .

Proof. For Δ ≥ 0, let YΔ := {G ∈ Y : Δ(G) ≤ Δ}. Let r = 14|V (H)| − 22, and consider

a graph G ∈ X with tw(G) ≥ (2r + 1)4|V (H)|2(2r+3). (If there is no such graph, then the

treewidth of graphs in X is bounded and we are done.)

Lemma 3.4.3 implies that G can be contracted into an (m− 2r)× (m− 2r) augmented

grid R such that each vertex v ∈ V (R) is adjacent to less than (r+1)6 nonboundary vertices

of the grid, where m > 2r is the largest integer such that tw(G) ≥ m4|V (H)|2(m+2). Let R0

denote the subgraph of R induced by the nonboundary vertices of R. Since R0 ∈ Y(r+1)6 ,

it follows from (3.1) that the treewidth of R0 is at most f((r + 1)6). As the tree-width

of a minor of a graph never exceeds the treewidth of the graph, and since the treewidth

of an n × n grid is n, we conclude that m − 2r − 1 ≤ tw(R0) ≤ f((r + 1)6), implying

m+1 ≤ f((r + 1)6)+2r +2 =: C. This inequality and the choice of m then imply that the

treewidth of G is bounded above by the constant C4|V (H)|2(C+2).

In order to obtain an analog of Theorem 3.4.1, we have to prove that for any H1 ∈ S and

H2 ∈ T , the class of (H1,H2)-free graphs is closed under edge contractions. Unfortunately,

this is not generally true. However, we have the following result, where by nT we denote

the graph consisting of n disjoint copies of a graph T .

Lemma 3.4.5. Let G be an (nSk,k,k, nTk,k,k)-free graph, and let G′ be a graph, obtained

from G by a sequence of (zero or more) edge contractions or vertex deletions. Then, G′ is

((2n− 1)Sk+1,k+1,k+1, (2n− 1)Tk+1,k+1,k+1)-free.

Proof. If we apply a sequence of edge contractions or vertex deletions to a graph, the iso-

morphism type of the obtained graph does not depend on the order of operations. Moreover,

the class of ((2n − 1)Sk+1,k+1,k+1, (2n − 1)Tk+1,k+1,k+1)-free graphs is closed under vertex
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deletions. Therefore it suffices to show that the graphs obtained from an (nSk,k,k, nTk,k,k)-

free graph by applying a sequence of edge contractions are ((2n − 1)Sk+1,k+1,k+1, (2n −

1)Tk+1,k+1,k+1)-free.

Suppose not. Let {Gi}m
i=0 be a shortest sequence of graphs with G0 ∈ Free(nSk,k,k, nTk,k,k)

such that for each i ∈ {1, . . . ,m}, Gi is obtained from Gi−1 by contracting an edge, and

Gm /∈ Free((2n− 1)Sk+1,k+1,k+1, (2n− 1)Tk+1,k+1,k+1).

Suppose that Gm contains an induced copy S of (2n − 1)Sk+1,k+1,k+1. Since Gm was

obtained from G0 by a sequence of edge contractions, there exist pairwise disjoint subsets

{Vx ⊆ V (G0) : x ∈ V (S)} of V (G0) such that each Vx induces a connected graph in G0,

and, for all pairs of distinct vertices x, x′ ∈ V (S), there is an edge in G0 joining a vertex

from Vx and a vertex from Vx′ if and only if {x, x′} is an edge of S.

For each i ∈ {1, . . . , 2n − 1}, let S(i) denote the i-th copy of Sk+1,k+1,k+1 in S, let x(i)

be the vertex of degree 3 in S(i), let R(i) = V (S(i))\{x(i)}, and finally let R = ∪2n−1
i=0 R(i).

Then, |Vx| = 1 for all x ∈ R. Indeed, assume that |Vx| ≥ 2 for some x ∈ R. As Gm is

(up to isomorphism) independent of the order of edge contractions, we may assume that a

contraction corresponding to x occurred in the last step. Let {x′, x′′} be the edge of Gm−1

which was contracted into x. Then, as NGm−1({x′, x′′}) = NGm(x), a simple consideration

shows that Gm−1 contains an induced copy of (2n − 1)Sk+1,k+1,k+1. But this contradicts

the minimality of m.

So we can simply assume that R ⊆ V (G0). Consider now an arbitrary copy S′ of a

Sk+1,k+1,k+1 in S, say S′ = S(1). Let {a, b, c} = NS′(x(1)), let P be an induced b–c path in

G0[{b, c}∪Vx(1) ], and let Q be a shortest a–P path in G0[{a}∪Vx(1) ]. Note that such paths

exist since Gm[{b, x(1), c}] contains a b–c path P ′ = (b, x(1), c), and Gm[{a, x(1)}] contains

an a–P ′ path Q′ = (a, x(1)).

Let Q = (v0, v1, . . . , vr1) with v0 = a and vr1 ∈ V (P ). By minimality of |Q|, the only

vertex of Q which has a neighbor on P is vr1−1. If vr1 is the only neighbor of vr−1 on P ,

then G0[Vx(1) ∪ R] contains an induced Sk,k,k, centered at vr1 . If vr1 has two nonadjacent

neighbors on P , then G0[Vx(1) ∪ R] contains an induced Sk,k,k, centered at vr1−1. Finally,

if vr1−1 has precisely two neighbors on P , which are adjacent in G0, then G0[Vx(1) ∪ R]

contains an induced Tk,k,k.
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The above arguments apply to S(i) for i > 1 as well. Therefore, each G0[Vx(i) ∪ R(i)]

contains either an induced Sk,k,k or an induced Tk,k,k. As there are no edges between

Vx(i) ∪R(i) and Vx(j) ∪R(j) for i �= j, this implies that G0 contains either an induced nSk,k,k

or an induced nTk,k,k. This contradiction shows that Gm is (2n− 1)Sk+1,k+1,k+1-free.

Therefore, Gm must contain an induced copy T of (2n − 1)Tk+1,k+1,k+1. Similarly as

before, there exist pairwise disjoint subsets {Vx ⊆ V (G0) : x ∈ V (T )} of V (G0) such that

each Vx induces a connected graph in G0, and, for all pairs of distinct vertices x, x′ ∈ V (T ),

there is an edge in G0 joining a vertex from Vx and a vertex from Vx′ if and only if {x, x′}

is an edge of T .

For each i ∈ {1, . . . , 2n − 1}, let T (i) denote the i-th copy of Tk+1,k+1,k+1 in T , let

x(i), y(i), z(i) be the vertices of degree 3 in T (i), let R(i) = V (T (i))\{x(i), y(i), z(i)}, and

finally let R = ∪2n−1
i=0 R(i).

As before, |Vx| = 1 for all x ∈ R (for otherwise Gm−1 would contain an induced copy of

(2n− 1)Tk+1,k+1,k+1, contradicting the minimality of m).

So we can simply assume that R ⊆ V (G0). Again, assume for the moment that i = 1.

Let a, b, c be the respective neighbors of degree 2 of x(1), y(1), z(1) in T (1), let P be an

induced b–c path in G0[{b, c} ∪ Vy(1) ∪ Vz(1) ], and let Q be a shortest a–P path in G0[{a} ∪

Vx(1) ∪Vy(1) ∪Vz(1) ]. Note that such paths exist since Gm[{b, y(1), z(1), c}] contains a b–c path

P ′ = (b, y(1), z(1), c), and Gm[{a, x(1), y(1), z(1)}] contains an a–P ′ path Q′ = (a, x(1), y(1)).

Let Q = (v0, v1, . . . , vr1) with v0 = a and vr1 ∈ V (P ). By minimality of |Q|, the only

vertex of Q which has a neighbor on P is vr1−1. If vr1 is the only neighbor of vr−1 on P ,

then G0[Vx ∪ R] contains an induced Sk,k,k, centered at vr1 . If vr1 has two nonadjacent

neighbors on P , then G0[Vx ∪ R] contains an induced Sk,k,k, centered at vr1−1. Finally, if

vr1−1 has precisely two neighbors on P , which are adjacent in G0, then G0[Vx ∪R] contains

an induced Tk,k,k.

Therefore, each G0[Vx(i) ∪ R(i)] contains either an induced Sk,k,k or an induced Tk,k,k.

As there are no edges between Vx(i) ∪ R(i) and Vx(j) ∪ R(j) for i �= j, this implies that G0

contains either an induced nSk,k,k or an induced nTk,k,k. This contradiction completes the

proof of the lemma.
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Obviously, every graph H1 ∈ S is an induced subgraph of nSk,k,k for some n and k,

and every graph H2 ∈ T is an induced subgraph of nTk,k,k for some n and k. Therefore,

summarizing the above discussion we conclude that

Theorem 3.4.6 ([74]). For any apex graph H and any two graphs H1 ∈ S and H2 ∈ T there

is a number N such that every H-minor-free graph with no induced subgraphs isomorphic

to H1 or H2 has treewidth at most N .

Clearly, this implies the following corollary.

Corollary 3.4.7. For any apex graph H and any two graphs H1 ∈ S and H2 ∈ T , the

maximum weight independent set problem admits a linear-time solution in the class of

H-minor-free graphs with no induced subgraphs isomorphic to H1 or H2.

3.4.2 S1,2,k-free K3,3-minor-free Graphs

In this section, we provide an increasing family of subclasses of planar graphs where the

maximum independent set problem admits a polynomial-time solution. More generally, for

every fixed value of k, we show that the maximum independent set problem is polynomially

solvable in the class of K3,3-minor-free graphs with no induced subgraphs isomorphic to

S1,2,k.

Theorem 3.4.8 ([83]). For any positive integer k, the maximum independent set problem

is polynomially solvable for S1,2,k-free K3,3-minor-free graphs.

The rest of this section is devoted to the proof of this result. The solution combines

the technique of finding augmenting graphs, reduction to 2-connected components, and

boundedness of the treewidth. First, we reduce the problem in polynomial time from the

class under consideration to the smaller class of S1,2,2-free graphs excluding K3,3 as a minor.

Then we develop a polynomial-time algorithm for the maximum independent set problem

in S1,2,2-free K3,3-minor-free graphs.

Reduction to S1,2,2-free K3,3-minor-free Graphs

Recall from Section 2.3 that the maximum (weight) independent set problem can be reduced

in polynomial-time to graphs without clique separators. In the special case when the graph
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is decomposed by cliques of size 1, the problem reduces to 2-connected graphs. Thus,

without loss of generality we consider only 2-connected graphs in our class. The following

auxiliary result will prove useful for our reduction.

Lemma 3.4.9. For any integer k ≥ 2, there exists a constant Dk such that for every 2-

connected S1,2,k-free K3,3-minor-free graph G that contains an induced copy of S1,2,2, one

has

diam(G) ≤ Dk .

Proof. Consider an induced copy H of S1,2,2 in a 2-connected S1,2,k-free K3,3-minor-free

graph G. Let V (H) = {a, b, c, d, e, f} and E(H) = {ab, ac, ad, ce, df}. We will show that no

vertex in G has distance greater than k from V (H). Assume, by contradiction, that there

is a vertex v at distance k + 1 from V (H), and let P be a shortest path connecting v to H.

If one of the following three cases occurs

• the vertex of P closest to H is not adjacent to b,

• the vertex of P closest to H is not adjacent to c and e,

• the vertex of P closest to H is not adjacent to d and f ,

then by simple inspection one can easily find an S1,2,k induced by some vertices of H and

P . If none of these cases occurs, then due to 2-connectivity of G we may consider a path P ′

from v to H avoiding the vertex of P closest to H. Again, if one of the above three cases

occurs with respect to P ′, then G contains an induced S1,2,k. Otherwise, the vertices of H

together with two vertices of P and P ′ closest to H induce a subgraph containing K3,3 as

a minor.

This contradiction shows that the eccentricity of a, i.e., of the vertex of degree 3 in H,

is bounded:

ecc(a) = max
v∈V (G)

d(v, a) ≤ k + 2 .

By triangle inequality, this implies diam(G) ≤ 2 · ecc(a) ≤ 2k + 4.

As the treewidth of a K3,3-minor-free graph is bounded above by a function of its

diameter (c.f. Section 3.4.1), it follows from Lemma 3.4.9 that the treewidth of 2-connected
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S1,2,k-free K3,3-minor-free graphs that contain an induced copy of S1,2,2 is bounded above

by some constant ck. Therefore, the maximum independent set problem can be solved

efficiently for such graphs. These observations immediately imply the following conclusion.

Corollary 3.4.10. For any k ≥ 2, the maximum independent set problem for S1,2,k-

free K3,3-minor-free graphs is polynomially equivalent to the maximum independent set

problem for S1,2,2-free K3,3-minor-free graphs.

S1,2,2-free K3,3-minor-free Graphs

In this subsection, we present a polynomial-time solution for the maximum independent

set problem in the class of S1,2,2-free K3,3-minor-free graphs. We start with an informal

description of the solution.

The main tool in our solution is the technique of augmenting graphs. In order to

apply this technique, we characterize minimal augmenting graphs in our class. To this

end, we first show that minimal augmenting graphs in this class cannot contain vertices of

arbitrarily high degree (Lemma 3.4.11). Then, with the exception of finitely many graphs,

we provide a complete characterization of minimal augmenting graphs in the class: these

are graphs that arise from paths and cycles by duplication of some vertices (Theorem 3.2.1

from Section 3.2 and Lemma 3.4.15). Next, we show that all such graphs, except for so-

called minimal augmenting strips with an inner twin, contain a redundant set of constant

size whose deletion results in a path (Lemma 3.4.17). Together with the polynomial-time

algorithm for finding augmenting paths in S1,2,3-free graphs [58], this allows to solve the

problem by means of augmentation, unless the input graph contains a minimal augmenting

strip with an inner twin.

To get rid of minimal augmenting strips with inner twins, we apply a double trans-

formation of the input graph G as follows. First, we transform G into a weighted graph

G′ by identifying vertices that share the same neighborhood, and so map the problem to

that of finding a maximum weighted independent set in G′. Next, we decompose G′ into

2-connected components, and then apply the inverse transformation to the resulting com-

ponents. It turns out that each 2-connected component of G′ transforms in this way into a

graph that does not contain minimal augmenting strips with an inner twin. Moreover, as
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this graph is isomorphic to an induced subgraph of the original graph, it is again S1,2,2-free

and does not contain K3,3 as a minor.

Now we turn to a formal description of the above procedure. We begin by showing that

minimal augmenting graphs in our class cannot contain vertices of arbitrarily high degree.

Lemma 3.4.11. The maximum degree of minimal augmenting S1,2,2-free K3,3-minor-free

graphs is bounded by a constant.

Proof. Let H = (W,B; E) be a minimal augmenting S1,2,2-free K3,3-minor-free graph with

the set of white vertices W and the set of black vertices B. The proof consists of two parts.

1. No black vertex of H has degree more than 9.

Assume that H contains a black vertex x of degree at least 10. By Lemma 2.1.4 and

Hall’s Theorem [64], we know that the subgraph H − x has a perfect matching M . For a

vertex v ∈ V (H − x), we denote by m(v) the unique vertex such that {v,m(v)} is an edge

in M . Also, let A denote the set of neighbors of x, and A′ = {m(v) : v ∈ A}.

Since H does not contain a K3,3 as a subgraph, we have

|NA(u) ∩NA(v)| ≤ 2 (3.2)

for all pairs of distinct vertices u, v ∈ A′.

Assume that A′ contains two distinct vertices u′, v′ each of which has at least 5 neighbors

in A. Then, according to (3.2), the set NA(u′)\(NA(v′) ∪ {m(u′)}) contains at least one

vertex, say u; the set NA(v′)\(NA(u′) ∪NA(m(u))) contains at least one vertex, say v; the

set NA(u′)\(NA(v′) ∪ NA(m(u))) contains at least one vertex, say w. But now an S1,2,2

arises on {x,w, u,m(u), v, v′}, contradicting our assumption.

Therefore, A′ contains a subset A′′ of at least 9 vertices, each of which has at most 4

neighbors in A. Let u, v ∈ A′′. Clearly A contains a vertex nonadjacent both to u and v.

To avoid an induced S1,2,2, we conclude that either NA(u) ⊆ NA(v) or NA(v) ⊆ NA(u).

Therefore, the vertices of A′′ admit an ordering u1, u2, . . . , u|A′′| such that NA(ui+1) ⊆

NA(ui) for each i. But then NA(u1) ∩NA(u2) ⊇ {m(u2),m(u3),m(u4)}, which leads to an

induced K3,3 in H. This contradiction completes the first part of the proof.
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2. If H contains no black vertex of degree more than k ≥ 2, then the degree of each white

vertex is at most 4k − 3.

Assume that H contains a white vertex x of degree more than 4k − 3, while no black

vertex of H has degree more than k ≥ 2. Fix an arbitrary neighbor b of x. As before,

the subgraph H − b has a perfect matching M . For a subset U ⊂ V (H − b) of vertices of

the same color, we denote by m(U) the set of vertices of the opposite color matched with

vertices of U with respect to M . For a vertex a ∈ V (H − b), let m(a) := m({a}). Denote

A1 := N(x)\{b, m(x)} and A2 := m(A1)\N(m(x)).

Since m(x) has at most k − 1 neighbors in the set m(A1), it follows that |A2| ≥ 3k − 3.

Now, fix an arbitrary vertex a ∈ A2, and let A3 = A2\N(m(a)). We see that |A3| ≥ 2k− 2.

Note that a is adjacent to all vertices in m(A3), since otherwise the vertices x,m(x),m(a), a

together with any vertex v ∈ m(A3) non-adjacent to a and its neighbor m(v) induce an

S1,2,2 in H.

Since H does not contain an induced K3,3, every vertex of A3 has at most two neighbors

in m(A3). Now, fix an arbitrary vertex a′ ∈ A3. In particular, given |A3| ≥ 2k − 2 and

the bound on the degree of black vertices, this implies that there is a vertex a′′ ∈ A3 which

shares no neighbor with a′ in the set m(A3). But now an S1,2,2 arises on the vertex set

{x,m(x),m(a′), a′,m(a′′), a′′}. This contradiction completes the proof of the lemma.

Now we proceed to characterizing of minimal augmenting graphs in our class that are

of bounded vertex degree. Recall from Section 3.2 that a strip is any finite graph, obtained

from a path by repeatedly performing the duplication of vertices (zero or more times), and

a bracelet any finite graph obtained in the same manner from a cycle.

Remark. To avoid confusion in the definitions we will introduce later on, let us agree that

we consider graphs of the form K2,n (for n ≥ 2) as bracelets, but not as strips.

It follows from Theorem 3.2.1 that for any positive integer Δ, there are only finitely

many S1,2,2-free connected bipartite graphs of maximum degree at most Δ different from

strips and bracelets. Together with Lemma 2.1.4, this leads to the following observation.

Corollary 3.4.12. There are only finitely many minimal augmenting S1,2,2-free K3,3-

minor-free graphs different from strips and bracelets.
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Thus, the problem of finding augmenting graphs in the class under consideration reduces

to finding augmenting strips and bracelets. Now we provide a further specification of the

structure of augmenting graphs in our class. To this end, let us introduce some more

notations and definitions.

Definition 3.4.13. Let us call two vertices in a graph G similar if they have the same

neighborhood in G. A couple of similar vertices will be also called a twin in G.

Clearly, similarity is an equivalence relation. Note that every equivalence class is an

independent set. For a vertex v ∈ V (G), we denote by Cv the equivalence class containing

v.

Definition 3.4.14. Given a graph G and a vertex v ∈ V (G),

• the thickness of v is the cardinality of Cv;

• the thickness of G is the maximum thickness of any vertex of G.

The following lemma specifies the structure of minimal augmenting strips and bracelets

in our class in terms of their thickness.

Lemma 3.4.15. Let H = (W,B; E) be a minimal K3,3-minor-free augmenting strip or

bracelet. Then H is either

- a strip of thickness at most 2, or

- a bracelet obtained from an even cycle by the duplication of exactly one vertex.

Proof. If H = K2,3 (in which case we consider H as a bracelet), the lemma is trivially true.

Assume now that H �= K2,3.

Suppose that the thickness of H is at least 3. By Lemma 2.1.4, no subset of white

vertices A with the same neighborhood can have cardinality more than 2 (else A ∪ N(A)

would induce a K3,4). Therefore, there is a subset B′ of black vertices with the same

neighborhood such that |B′| ≥ 3. By the K3,3-minor-freeness and connectedness, we have

1 ≤ |N(B′)| ≤ 2. Denote A = W\N(B′). If A is nonempty, then |A| ≥ |W | − 2 and

|N(A)| ≤ |B|−3, which together with Lemma 2.1.4 implies |A| ≥ |N(A)|, contradicting the
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minimality of H. If A is empty, then H = K1,3, contradicting the minimality of H again.

Thus, we conclude that thickness of H is at most two, which proves the lemma in case when

H is a strip.

Assume now that H is a bracelet. Since no cycles are augmenting, H must contain a

vertex x of thickness 2. Since H has no minor isomorphic to K3,3, no neighbor of x has

thickness 2 (else H contain a subdivision of K3,3). Therefore, x has exactly 2 neighbors,

both of thickness 1. Next, observe that x must be black, since otherwise A := C(x) would

violate the inequality |N(A)| > |A|. Hence, all white vertices have thickness 1, and since

|B| = |W | + 1, there can only be one black vertex of thickness more than 1. The lemma

follows.

Our next step is to show that some of the augmenting graphs revealed in the above

lemma can be neglected, as they contain redundant sets. Again, we start with definitions.

Definition 3.4.16. In a strip H,

• an endpoint is a vertex that belongs to a longest induced path P in H and has degree 1

in P ;

• an inner twin is a pair of similar vertices at distance at least 4 from every endpoint

of H.

Lemma 3.4.17. Let H be a minimal augmenting K3,3-minor-free strip or bracelet satisfying

|V (H)| ≥ 19. Then either H is a strip containing an inner twin, or H contains a redundant

set U ⊆ V (H) of size at most 18 such that H − U is an augmenting chain.

Proof. If H is a bracelet, then it follows from Lemma 3.4.15 that H contains a redundant

set U ⊆ V (H) of size 4 such that H − U is an augmenting chain.

Now let H be a strip and let P = (v1, . . . , vl) be a longest induced path in H. Also, let

ai denote the thickness of vi, for i ∈ {1, . . . , l}. By Lemma 3.4.15, ai ≤ 2 for any i. Thus,

if l ≤ 9 then |V (H)| ≤ 18, and therefore, in what follows we assume that l ≥ 10.

If ai = 2 for some i ∈ {5, . . . , l − 4}, the H contains an inner twin. Now assume ai = 1

for 5 ≤ i ≤ l− 4. Denote by x = vi the black vertex satisfying i = min{i′ : 1 ≤ i′ ≤ 6, ai′ =
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ai′+1 = · · · = a6 = 1}. Note that such a vertex exists since l ≥ 10. Symmetrically, let y = vj

denote the black vertex satisfying j = max{j′ : l−5 ≤ j′ ≤ l : al−5 = al−4 = · · · = aj′ = 1}.

Also, denote by H ′ the path connecting x to y in H, and by U the remaining vertices of

H. It is not difficult to see that U is a redundant set of size at most 18 and H − U is an

augmenting chain.

Combining the results of Corollary 3.4.12, Theorem 2.1.7 and Lemma 3.4.17, we conclude

that the problem of finding minimal augmenting graphs in an S1,2,2-free K3,3-minor-free

graph polynomially reduces to that of finding augmenting chains and minimal augmenting

strips containing an inner twin. According to a recent result of Gerber, Hertz and Lozin [58],

the problem of finding augmenting chains is polynomially solvable in the class of S1,2,3-free

graphs. Therefore:

Lemma 3.4.18. A maximum independent set in an S1,2,2-free K3,3-minor-free graph that

contains no minimal augmenting strips with inner twins can be computed in polynomial

time.

Hence, the only unsolved case in our quest for a polynomial-time solution to the max-

imum independent set problem for S1,2,2-free K3,3-minor-free graphs is the case when the

input graph contains a strip with an inner twin. As mentioned at the beginning of this

subsection, this case can be reduced to the previously studied case by means of a double

transformation of the input graph. Informally, this transformation can be descibed as fol-

lows. First, in a graph G we shrink every class of similar vertices C to a single vertex

and assign to this vertex the weight equal |C|, obtaining in this way a weighted graph G′.

Obviously, a maximum independent set in G corresponds to a maximum-weight indepen-

dent set in G′ and vice versa. To solve the problem for G′, we first decompose it into

2-connected components, and then for each 2-connected component of G′ we implement a

reverse transformation by expanding every vertex with weight w to a class of similar vertices

of cardinality w. It turns out that every 2-connected graph transforms in this way into an

unweighted graph without stips with inner twins.

We now describe these transformations in detail. For the input graph G, we denote by

C the set of all similarity classes, i.e., classes of vertices with the same neighborhood. For
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each similarity class C ∈ C, we fix an arbitrary member of C and denote it by vC .

Transformation 1 (From unweighted to weighted).

φ1 : Ḡ �→ (Ĝ, ŵ)

Input: An induced subgraph Ḡ of G.

Output: The ordered pair (Ĝ, ŵ), where

• Ĝ is the subgraph of G, induced by the set {vC : C ∈ C, C ∩ V (Ḡ) �= ∅}, and

• ŵ is the collection of vertex weights of Ĝ, given by ŵ(vC) = |C ∩ V (Ḡ)| for all vC ∈ V (Ĝ).

Transformation 2 (From weighted to unweighted).

φ2 : (Ĝ, ŵ) �→ Ḡ

Input: An ordered pair (Ĝ, ŵ), where

• Ĝ is an induced subgraph of G of the form Ĝ = G[{vC : C ∈ C′}] for some nonempty

subset of equivalence classes C′ ⊆ C, and

• ŵ is the collection of integer vertex weights of Ĝ satisfying 1 ≤ ŵ(vC) ≤ |C| for all

C ∈ C′.

Output: The subgraph Ḡ of G, induced by the vertex set F =
⋃

C∈C′ FC where, for each

C ∈ C′, FC is an arbitrary subset of C of cardinality ŵ(vC). (For definiteness, we do the

following for each equivalence class C ∈ C: we fix, once and for all, a numbering of vertices

of C, and then put into FC the first ŵ(vC) vertices of C.)

Up to isomorphism, these two transformations are inverse to each other. More specifi-

cally:

Lemma 3.4.19. (i) For every input Ḡ to φ1, the graph φ2(φ1(Ḡ)) is isomorphic to Ḡ.

(ii) φ1 ◦ φ2 = id, i.e., for every input (Ĝ, ŵ) to φ2, we have φ1(φ2(Ĝ, ŵ)) = (Ĝ, ŵ).



76

The following result will be of crucial importance for our solution.

Lemma 3.4.20. Let Ḡ be an induced subgraph of G that contains a minimal augmenting

strip with an inner twin, and let (Ĝ, ŵ) = φ1(Ḡ). Then Ĝ contains a cut-vertex.3

Proof. Let H = (W,B; E) be a minimal augmenting strip with an inner twin {u, u′} in Ḡ.

By definition, H is an induced subgraph of Ḡ and hence of G.

First, we notice that u has a neighbor of thickness 2 in H. If not, then, according to

Lemma 2.1.4, we conclude that u, u′ ∈ B. Deleting the vertices {u, u′} from H results in

two disjoint strips, say Hi = (Wi, Bi, Ei) for i = 1, 2. Since {u, u′} is an inner twin of H,

the sets Ai := Wi\N(u) (for i = 1, 2) are nonempty. But now, it follows from Lemma 2.1.4

that

|B| = |N(A1)|+|N(A2)|+2 ≥ (|A1|+1)+(|A2|+1)+2 = |W1|+|W2|+2 = |W |+2 = |B|+1 ,

a contradiction.

Therefore, there is a twin {v, v′} in H such that uv, uv′, v′u, v′u′ ∈ E(G). Consider

the 4-cycle C induced by the vertices {v, v′, u, u′}. We claim that C is a separating set

of G. Indeed, since {u, u′} is an inner twin in H, we may consider two vertices x ∈

V (H) ∩ (N(u)\N(v)) and y ∈ V (H) ∩ (N(v)\N(u)). Then, C separates x from y: if x

and y belonged to the same connected component of G− C, the graph G would contain a

subdivision of K3,3, contradicting the assumption.

Next, we show that {u, u′} is a twin in G. Assume there is a vertex a ∈ N(u)\N(u′).

Let Cx, Cy denote the connected components of G − C containing x and y, respectively,

and let x′ and x′′ denote vertices in V (H)∩V (Cx) at distance 1 and 2 from x, respectively.

Similarly we define y′, y′′. To avoid an induced S1,2,2 on {x, u′, u, a, x′, x′′}, we see that a has

a neighbor in {x, x′, x′′}. Therefore, a ∈ Cx. Next, we observe that a is adjacent to v, since

otherwise an S1,2,2 arises on the vertex set {v, u′, u, a, y, y′}. By symmetry, we conclude

that a is adjacent to v′. However, this leads to a contradictory K3,3-minor contained in the

3A cut-vertex is a vertex of a graph such that removal of the vertex causes an increase in the number of
connected components. In particular, if the graph is connected, then a cut-vertex is a vertex whose removal
disconnects the graph.
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vertex set {a, u, u′, v, v′, x, x′, x′′}. A symmetric argument shows that {v, v′} is also a twin

in G.

Now, we show that {u, u′} separates x from v in G. Assume that there is a path

P = (v1, . . . , vr) in G−{u, u′} from x to v (with v1 = x and vr = v). Then r ≥ 3 and since

{v, v′} is a twin in G, vr−1 is adjacent to v′ too. But now, a subdivision of K3,3 arises on

V (P ) ∪ V (C), a contradiction.

Therefore, {u, u′} is a twin in G that separates a pair of vertices of H with different

neighborhoods in G. As can be seen from the above proof, {u, u′} separates x from v in Ḡ

as well. Since x and v belong to different equivalence classes of C, the vertex vCu separates

vCy from vCv in Ĝ. Thus, vCu is a cut-vertex of Ĝ and the proof is complete.

We now summarize all the above arguments in the following procedure that finds a

maximum independent set in an S1,2,2-free K3,3-minor-free graph G.

Procedure Alpha

Input: An S1,2,2-free K3,3-minor-free graph G.

Output: An independent set I of G of maximum cardinality.

Step 0. (Preprocessing)

0.1. Determine the connected components C1, . . . , Cr of G. If r = 1, go to Step 0.2.

Else return I = ∪r
i=1Alpha(Ci) and halt.

0.2. Compute C, the partition of V (G) into classes of vertices with the same neigh-

borhood.

Step 1. Compute (G′, w) = φ1(G).

Step 2. Compute a maximum-weight independent set I ′ of G′. To this end, first reduce

the problem to the 2-connected components of G (e.g., by applying decomposition by

clique separators, see Section 2.3). To compute a maximum-weight independent set

of a 2-connected component Ĝ, with vertex weights ŵ, perform the following steps:

2.0. Remove vertices of Ĝ with non-positive weights.
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2.1. Compute Ḡ = φ2(Ĝ, ŵ).

2.2. Compute a maximum independent set Ī of Ḡ (by augmentation).

2.3. Compute Î = {vC : C ∈ C, C ∩ Ī �= ∅}, a maximum-weight independent set of

Ĝ.

Step 3. Return I := ∪v∈I′Cv, a maximum independent set in G, and halt.

Based on this algorithm, we can now prove the main result of this subsection.

Theorem 3.4.21. The maximum independent set problem is polynomially solvable for

S1,2,2-free K3,3-minor-free graphs.

Proof. The correctness of the algorithm follows from the following observations:

In step 2.1, the weighted graph (Ĝ, ŵ) is a legitimate input to φ2. To see this, we remark

that as the vertex weights are redefined in the decomposition into 2-connected components,

their integrality is preserved and the new weights are never larger than the previous ones

(cf. Section 2.3). After the removal of vertices with non-positive weights (they can never

appear in a maximum-weight independent set!), the graph Ĝ becomes an induced subgraph

of G′ with integer vertex weights ŵ satisfying 1 ≤ ŵ(v) ≤ w(v) for all v ∈ V (Ĝ). Since

(G′, w) is an input to φ2 (by Lemma 3.4.19(i)), so is (Ĝ, ŵ).

Ḡ is an induced subgraph of G. Indeed, as observed above, Ĝ is an induced subgraph of G′

with integer vertex weights ŵ satisfying 1 ≤ ŵ(v) ≤ w(v) for all v ∈ V (Ĝ). Clearly, the

graph Ḡ = φ2(Ĝ, ŵ) is an induced subgraph of φ2(G′, w) = φ2(φ1(G)) = G.

The set Î in step 2.3 is a maximum-weight independent set of Ĝ. The output set I is a

maximum independent set of G. For the first statement, note that by Lemma 3.4.19(ii), we

have (Ĝ, ŵ) = φ1(Ḡ). Both statements then easily follow from the following observations:

• Every maximal independent set in an arbitrary induced subgraph G̃ of G is a union

of equivalence classes C ∈ C.

• Let φ1(G̃) = (G̃′, w̃). If I is maximal independent set in G̃, then the set I ′ := {vC :

C ∈ C, C∩I �= ∅} is a independent set in G̃′ with w̃(I ′) = |I|. Conversely, if I ′ ⊆ V (G̃′)
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is a independent set in G̃′, then the set I := ∪v∈I′Cv is an independent set in G̃ with

|I| = w̃(I ′).

To determine the time complexity of the algorithm, observe that Steps 0, 1 and 3 can be

implemented to run in polynomial time. For Step 2, we conclude from Lemma 3.4.20 that the

graph Ḡ = φ2(Ĝ, ŵ) contains no minimal augmenting strips with an inner twin. Since Ḡ is

an induced subgraph of G, it is also an S1,2,2-free K3,3-minor-free graph. By Lemma 3.4.18,

a maximum independent set can be computed efficiently in Ḡ. A polynomial-time bound

for Step 2 and hence polynomial-time complexity of the algorithm ensue.

Theorem 3.4.21 and Corollary 3.4.10 together provide a proof of Theorem 3.4.8.
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Chapter 4

Polynomial Cases of Finding Maximum Independent Sets:

Infinitely Many Forbidden Induced Subgraphs

In this chapter, we discuss polynomial-time solution to the maximum independent set

problem in classes defined by forbidding infinitely many induced subgraphs.

Recall that our hardness result from Section 1.3.3 implies that, unless P = NP , one can

only hope for a polynomial-time solution to the maximum independent set problem in

the class of F-free graphs if at least one of the following conditions is satisfied:

(i) F contains a graph from the class S, or

(ii) F contains graphs of maximum degree at most 3 with arbitrarily large girth (i.e., the

size of a smallest cycle), or

(iii) F contains graphs of maximum degree at most 3 with arbitrarily large size of a smallest

induced copy of Hi.

We will say that a graph class Free(F) is of type (i) (type (ii), type (iii), respectively), if

the set F satisfies condition (i) (condition (ii), (iii), respectively). Graph classes of type (i)

have been the subject of Chapter 3. Here, we turn our attention to the other two cases.

The literature contains many examples of classes of type (ii) for which maximum

weight independent set problem is solvable in polynomial time. Perhaps the most

remarkable example of this type is the class of perfect graphs [61]. The list of minimal

forbidden subgraphs for this class contains odd cycles of length at least 5. A particular sub-

class of perfect graphs is the class of chordal, or triangulated, graphs [56]. This is precisely

the class of graphs of chordality at most 3. Chordality of a graph is the length of a longest

induced cycle. Therefore, graphs of chordality at most k are precisely F-free graphs, where
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F = {Ck+1, Ck+2, . . .}.

For any k > 3, the complexity of the maximum independent set problem in graphs of

chordality at most k is unknown. However, with some additional restrictions, the maximum

weight independent set problem can be solved for graphs of bounded chordality in

polynomial time. This is the case for AT-free graphs [31] (a subclass of graphs of chordality

at most 5), and graphs where both the chordality and the maximum degree are bounded.

For the latter class, polynomial-time solvability of the maximum weight independent

set problem follows readily from the following two facts:

• the maximum weight independent set problem is solvable in linear time for graphs

of bounded treewidth [7];

• graphs of bounded degree and bounded chordality have bounded treewidth [16].

More formally:

Theorem 4.0.22 ([16]). For any positive integers k and Δ there is a number N such that

every graph of maximum degree at most Δ and chordality at most k has treewidth at most

N .

Classes of type (iii) seem to have appeared less frequently in the literature. We are

aware of only one example of this type, which, however, also belongs to the second type.

This example is due to Hertz and de Werra [70] and is known under the name of AH-free

graphs.

By analogy of graphs of bounded chordality, a natural example of classes of type (iii) is

obtained by forbidding all large Hi’s, that is, F = {Hk,Hk+1, . . .} for some k ≥ 1. For every

k ≥ 1, the class of (Hk,Hk+1, . . .)-free graphs properly contains fork-free graphs. However,

while the maximum (weight) independent set problem is polynomially solvable for

fork-free graphs (cf. Section 3.1), the complexity status of the maximum independent

set problem in (Hk,Hk+1, . . .)-free graphs is still unsettled (for every k ≥ 1).

In Section 4.1, we extend polynomial-time solvability of the maximum weight inde-

pendent set problem for graphs of bounded degree and bounded chordality to graphs of
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bounded degree without so-called large induced apples. We also show that the maximum

weight independent set problem is solvable in polynomial time for (Hk,Hk+1, . . .)-free

graphs of bounded degree.

Section 4.2 is devoted to planar graphs and their extensions. We show that the treewidth

of planar graphs and, more generally, graphs excluding a fixed apex graph as a minor, is

bounded above by their chordality, which results in an analogue of Theorem 4.0.22. We

also provide a simple 2-approximation algorithm for maximum weight independent set

problem in (Hk,Hk+1, . . .)-free graphs excluding a fixed apex graph as a minor, for every

value of k ≥ 1.

4.1 Graphs of Bounded Vertex Degree

In this section, we assume that there is a constant upper bound Δ ≥ 3 on the maximum

vertex degree of input graphs. We start with graphs that do not contain large induced

apples.

4.1.1 Graphs Without Large Apples

An apple of order k, denoted by Ak, is a graph obtained from a chordless cycle of length k

by adding a new vertex and connecting it to exactly one vertex of the cycle. Clearly, graphs

without induced apples of order more than k generalize graphs of chordality at most k. The

goal of this section is to show the following result.

Theorem 4.1.1 ([82]). For every fixed k and Δ, the maximum weight independent set

problem is solvable in polynomial time for (Ak, Ak+1, . . .)-free graphs of maximum vertex

degree at most Δ.

Let X denote the class of (Ak, Ak+1, . . .)-free graphs of maximum vertex degree at

most Δ. By Theorem 2.3.1 from Section 2.3, it is enough to show that maximum weight

independent set problem is solvable in polynomial time for those induced subgraphs of

graphs in X which are prime and have no clique separators.

The following lemma provides the key structural result toward a proof of Theorem 4.1.1.
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Lemma 4.1.2 ([82]). Let k and Δ be positive integers and G a prime (Ak, Ak+1, . . .)-

free graph without clique separators of maximum vertex degree at most Δ. Then there is a

constant f(k,Δ) such that G is either (Cf(k,Δ), Cf(k,Δ)+1, . . .)-free or claw-free.

Assuming the validity of this lemma, we can now easily prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let G be an (Ak, Ak+1, . . .)-free graph of maximum degree at

most Δ which is prime and have no clique separators. By Lemma 4.1.2, there is a con-

stant f(k,Δ) such that G is either (Cf(k,Δ), Cf(k,Δ)+1, . . .)-free or claw-free. One can verify

in polynomial time if G is claw-free. If this is the case, then an independent set of maximum

weight can be found in polynomial time. Otherwise, G is a graph of bounded chordality and

of maximum degree at most Δ. According to [16], its treewidth is bounded by a constant

(depending only on Δ and f(k,Δ)), and an independent set of maximum weight can again

be found in polynomial time.

Combining these observations with Theorem 2.3.1 proves the theorem.

The rest of this subsection is devoted to the proof of Lemma 4.1.2.

Proof of Lemma 4.1.2. The proof is based on case-by-case analysis and involves quite a few

technical details.

Suppose for contradiction that G contains an induced claw K = (a; b, c, d), as well as a

long induced cycle C. Assume that |C| ≥ kΔ and let v be a vertex outside C. Clearly, v

cannot be adjacent to exactly one vertex on C. Also, it is not difficult to see that v cannot

have more than four neighbors on C, since otherwise an induced apple of order at least k

arises. Therefore, all vertices outside C can be partitioned into four types according to the

number of neighbors on the cycle (type i standing for the vertices with exactly i neighbors

on C). In order to avoid big apples, we also must conclude that

• every vertex of type 2 has two consecutive neighbors on C,

• every vertex of type 3 has three consecutive neighbors on C,

• every vertex of type 4 has two pairs of consecutive neighbors on C,

• no vertex of type 0 can be adjacent to a vertex of type 3 or 4.



84

All of the above statements can be checked by direct inspection, except for the case when

a vertex v of type 2 is adjacent to vertices i − 1 and i + 1 on the cycle. In order to prove

that this is not possible, let us consider the set A of all vertices of G adjacent to exactly

two vertices of C − {i}, namely to i− 1 and to i + 1. In particular, i, v ∈ A. Let B be the

connected component of the complement of G[A] containing i and v, and let z be a vertex

of G distinguishing B. Without loss of generality, we may assume that z is adjacent to v

and non-adjacent to i (obviously, B contains two non-adjacent vertices distinguished by z).

To avoid a big induced apple, we must conclude that z is adjacent to i− 1 and i + 1 and to

no other vertex of C. But then z belongs to A and consequently to B, which contradicts

the choice of z.

From the above discussion, we know that if a vertex v has a neighbor i on C, the v

must also be adjacent to i− 1 or i + 1. In particular, no claw in G can have more than two

vertices on C. The rest of the proof is partitioned into several cases according to the size

of the intersection of a claw and a long cycle. In these cases, we assume that the length of

C is at least ckΔ for some constant c depending on the case considered.

Case 1: K ∩ C = {a, d}. Let y be the other neighbor of a on C. To avoid a claw with

three vertices on C, we conclude that y is adjacent both to b and to c. Denote by z a vertex

adjacent to b, but not to c. Without loss of generality we may assume that N(z)∩C �= {a, y}

(otherwise, as before, denote A := {x : N(x) ∩ C = {a, y}}, B the connected component

of G[A] containing a and y, and z a vertex of G distinguishing B).

If z belongs to C, then the reader can easily find an induced apple of order at least

|C|/4. From now on, we may assume that no vertex on C distinguishes b and c, i.e., that

N(b) ∩ C = N(c) ∩ C. If z has a neighbor on C, then we may assume without loss of

generality that N(z) ∩ C �= N(b) ∩ C, and an induced apple of order at least |C|/4 can

easily be found. If z does not belong to C and has no neighbor on C, then z is of type 0

and hence b and c are of type 2. Let U denote the vertex set of that connected component

of the complement of G[{v ∈ V : N(v) ∩ C = {a, y}}] which contains b and c, and let K0

denote a maximal clique of G satisfying {a, y} ⊆ K0 ⊆ V \U . Suppose that there is a z-C

path avoiding K0 ∪U , and let P be a shortest such path. By minimality, every vertex of P

except the last one (which has a neighbor on C) is of type 0. Also, the vertex c must have



85

a neighbor on P , since otherwise a long apple arises. But now, a long apple can be formed

with the portion of P from the last neighbor of c on P till the end, a part of C, and one of

the edges connecting b to C.

We may now assume that every z-C path avoiding K0 intersects U . Let P be a shortest

such path, say P = (v0, . . . , vr) with v0 = z, and let x be the last vertex on P with

N(x) ∩ C = {a, y}, say x = vi. If x belongs to U , then xi+1 dominates U (otherwise

we could replace z by xi+1), and no vertex of P following xi+1 has a neighbor in U . By

minimality of P , we may assume that z = xi−1, and a long induced apple in G can easily

be found. If x /∈ U , then either x has no neighbors in U , or x dominates U . But now, a

long apple can be formed that includes either the last vertex of P on U (in the former case)

or a non-neighbor of x in K0 (in the latter case).

Case 2: K ∩ C = {b, c}. Then a is of type 3 or 4, and hence d has a neighbor on C.

Analyzing all possible types of neighborhoods of vertices a and d on the cycle, we conclude

that G contains an apple of order at least |C|/4.

Case 3: K ∩C = {a}. Then each of the vertices {b, c, d} has at least one more neighbor

on C. Assuming that no claw in G has more than one vertex on C, we conclude that no

common neighbor of b and c on C is adjacent to a common non-neighbor of b and c on C.

Analyzing the possible neighborhoods of b, c and d on C, we can either find a long induced

apple, or a claw intersecting a long cycle in more than one vertex.

Case 4: K ∩ C = {d}. As in Case 3, we see that no common neighbor of b and c on C

can be adjacent to a common non-neighbor of b and c on C. Analyzing the possible types

of vertices a, b and c, we conclude that the only case that does not immediately reduce to

finding a long apple or one of the already proved cases, is the case when the vertex a is of

type 2, while b and c are of type 0. In this case, we proceed similarly as in Case 1. Letting

y be the other neighbor of a on C, we define

• U as the vertex set of that connected component of the complement of

G[N(a)\(C ∪N(C))] which contains b and c,

• K0 as a maximal clique of G satisfying {a, d, y} ⊆ K0 ⊆ W , where W is the set of

vertices that are either have no neighbors in U or dominate U ,
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• z as a vertex outside U that is adjacent to b, but not to c.

Note that no vertex of K0 is adjacent to both d′ and y′, the respective neighbors of d

and y on C (since otherwise a long apple containing a would arise). Suppose that there

is a z-C path avoiding K0 ∪ U , and let z and P be chosen so that P is a shortest such

path, say P = (v0, . . . , vr) with v0 = z. If every vertex of P except the last one (which

has a neighbor on C) is of type 0, then a long apple arises. So let x be the last vertex of

P adjacent to {d, y}, say x = vi. Then x is necessarily adjacent to precisely one vertex

among {d′, y′}. (If it is adjacent to none of them, the case reduces to Case 1, forming a claw

(d; d′, x, w) (say), where w is a non-neighbor of x in K0. If it is adjacent to both of them,

then G contains a long apple through the vertices x = vi, d′, y′ and vi−1.) We conclude,

without loss of generality, that N(x)∩C = {d′, d, y}, and N(w)∩C = {d, y, y′}, where w is

a non-neighbor of x in K0. To avoid a long induced apple, we conclude that x is adjacent

to a, and moreover that x is not adjacent to b (and hence, by minimality of P , x has no

neighbors in U). However, the case now reduces to Case 1, with the claw (a; b, c, x), and

the cycle through the vertices {d′, x, a, w, y′}.

We may now assume that every z-C path avoiding K0 intersects U . Let P be a shortest

such path, say P = (v0, . . . , vr) with v0 = z, and let x be the last vertex on P that belongs

to U , say x = vi. Then vi+1 dominates U , and, similarly as above, we conclude that no

internal vertex of P following vi is adjacent to {d, y}. Also, it is easy to see that P∩U = {x},

since otherwise vi+1 would distinguish U and we could replace z by vi+1. By minimality of

P , we may assume that z = vi−1. Now, either a long induced apple in G can be found (if

vi+1 is adjacent to {d, y}), or there is a long induced cycle C ′ and a vertex outside C ′ with

precisely two neighbors on C ′ at distance 2 (if vi+1 is not adjacent to any of {d, y, a}), or

the case reduces to Case 3. Contradiction.

Case 5: K ∩C = ∅ and a vertex of K has a neighbor on C. If at least two vertices of K

have a neighbor on C, then it is easy to find either a big chordless cycle C ′ intersecting K,

or an induced claw intersecting C. If exactly one vertex of K has a neighbor on C, then,

to avoid a claw intersecting C, we conclude that this vertex is not the center of K, say it

is b. Then b is of type 2 and a is of type 0. Let us denote the neighborhood of b on C by

{x, y}. We proceed similarly as in Cases 1 and 4. We define
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• U as the vertex set of that connected component of the complement of

G[N(a)\(C ∪N(C))] which contains c and d,

• K0 as a maximal clique of G satisfying {b, x, y} ⊆ K0 ⊆ W , where W is the set of

vertices that are either have no neighbors in U or dominate U ,

• z as a vertex outside U that is adjacent to c, but not to d.

To avoid Case 4 and a large induced apple, we conclude that z is either of type 0 or

N(z) ∩ C = {x, y}.

If N(z)∩C = {x, y}, then, in order to avoid Case 1, we conclude that z is adjacent to b.

Again, to avoid Case 1, or a long induced apple, we conclude that z dominates K0.

Suppose that there is a z-C path avoiding K0 ∪ U ∪ {a}, and let z and P be chosen so

that P is a shortest such path, say P = (v0, . . . , vr) with v0 = z. Observe that all internal

vertices of P are of type 0 (by definition of K0 and to avoid previous cases), which implies

that no internal vertex of P is adjacent to b. Next, note that c must be adjacent to v1

(or we are in Case 4), and that, in order to avoid a long apple, the last neighbor of a on

P − {v1} (if any) coincides with the last neighbor of c on P − {v1}. Now, in each of the

cases corresponding to the position of the last neighbor of a on P (if any), we can find a

long chordless cycle and an induced claw intersecting it.

We may now assume that every z-C path avoiding K0 intersects U ∪ {a}. Let P be

a shortest such path. Then P is disjoint from U (else we can apply a similar analysis as

the one in Case 4 and either conclude that G contains a long apple, or the case reduces to

Case 4 or the subcase of the previous paragraph). Assuming that a belongs to P , we again

conclude that all the internal vertices of P following a are of type 0, and a long apple arises.

The case when z is of type 0 (and then also non-adjacent to b) can be handled in a

similar manner.

Case 6: K ∩C = ∅ and no vertex of K has a neighbor on C. Since G is connected, there

must exist a chordless path X = (x1, . . . , xs) such that x1 is the only vertex of X adjacent

to a, while xs is the only vertex of X that has a neighbor on C. The set of all such paths

connecting a to C will be denoted by P. Observe in every path X ∈ P the vertex with

maximum index is of type 2, while the remaining vertices of X are of type 0. Given a vertex
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xj on X ∈ P, we define X-distance from xj to a or to C to be the number of edges of X

connecting xj to a or to C, respectively. In what follows, all distances will be measured

according to this definition.

Since G is 2-connected, P must contain a pair of paths X = (x1, x2, . . . , xs) and Y =

(y1, y2, . . . , yt) such that xi �= yj for all i, j. If additionally N(xs) ∩ C �= N(yt) ∩ C, we call

XY a disjoint pair. If XY is not disjoint, then P must contain one more path Z which

avoids the clique N(xs)∩C = N(yt)∩C, since otherwise this clique is separating. It is not

difficult to see that Z can be chosen in such a way that

(∗) either XZ or Y Z is a disjoint pair.

If XY is a disjoint pair, any edge of the form xiyj will be called a XY -chord. If no

such an edge exists, the pair will be called chordless. If G contains a chordless pair, then it

obviously contains a big chordless cycle intersecting the claw. Therefore, we assume in the

rest of the proof that

(∗∗) for every claw and every large cycle satisfying conditions of Case 6, any disjoint pair

connecting the claw to the cycle contains a chord.

If XY is a disjoint pair with a chord xiyj , we denote by XxiyjY the path (x1, . . . , xi,

yj , . . . , yt). Let î be the largest index such that xî has a neighbor on Y . Similarly, let ĵ be

the largest index such that yĵ has a neighbor on X. If xî is adjacent to yĵ , we call XY a

good pair and xîyĵ the lowest XY -chord. If XY is not good, we can associate to it a good

pair as follows. Let xī ∈ X be the neighbor of yĵ closest to C. Without loss of generality

we may assume that xī is not adjacent to xî, i.e., ī < î−1, since otherwise the claw induced

by xī, xī−1, xî, yĵ does not satisfy condition (∗∗). Denote X ′ = XxīyĵY . Clearly, X ′ ∈ P.

Symmetrically, we can define a path Y ′. Then X ′Y ′ is a disjoint pair with fewer chords

than XY . Repeated applications of this construction result in a good pair. This observation

allows us to assume in the rest of the proof that

(∗ ∗ ∗) every disjoint pair is good.

Let XY be a good pair with the lowest chord xîyĵ . The neighbors of xs and yt on C

partition C into two parts the largest of which together with the vertices xî, xî+1, . . . , xs
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and yĵ , yĵ+1, . . . , yt create a new chordless cycle C ′ of length at least |C|/2. To avoid Case

5 with respect to C ′, we conclude that a is not adjacent to xî and yĵ . Also, to avoid a

claw intersecting C ′, we conclude that the vertices xî, yĵ , xî−1yĵ−1 create a clique. Denote

X0 = (x1, . . . , xî−1), X1 = (xî, . . . , xs), and Y 0 = (y1, . . . , yĵ−1), Y1 = (yĵ , . . . , yt). Also,

XY = X0 ∪Y 1 and YX = Y 0 ∪X1. Observe that the pair XY YX is also good and its lowest

chord coincides with xîyĵ .

Since the clique xî, yĵ , xî−1yĵ−1 is not separating, there must exist a path Z = (z1, . . . , zu)

avoiding this clique. Moreover, it is not difficult to see that the path Z can be chosen in

such a way that is creates a disjoint (and hence good) pair with one of the four paths

X, Y,XY , YX . Without loss of generality we will assume that XZ is good pair and will

denote its lowest chord by xīzk̄. Let us show that the path Z can be chosen so that

(****) xī ∈ X0, i.e., ī < î.

To this end, observe that the pair X0Y 0 is not disjoint with respect to C ′, as N(xî−1)∩C ′ =

N(yĵ−1) ∩ C ′. According to (∗) and (∗ ∗ ∗), there must exist a path Z ′ such that either

X0Z ′ or Y 0Z ′ is a good pair with respect to C ′. Without loss of generality, we assume that

X0Z ′ is a good pair with respect to C ′. If Z ′ meets C ′ at some vertices belonging to C,

then XZ ′ is a good pair with respect to C, in which case defining Z := Z ′ gives us a pair

XZ satisfying (****). If Z ′ meets C ′ at some vertices of Y , we can extend Z ′ by means of

vertices of Y to a path Z ′′ that meets C, in which case defining Z := Z ′′ gives us a pair XZ

satisfying (****). Finally, if Z ′ meets C ′ at some vertices of X, then we extend Z ′ by means

of vertices of X to a path Z ′′ that meets C, in which case defining X := XY and Z := Z ′′

gives us a pair XZ satisfying (****). Therefore, in what follows, without loss of generality

we will assume that the path Z avoiding the clique xî, yĵ , xî−1yĵ−1 is chosen so that XZ is

a good pair with the lowest chord xīzk̄ such that xī ∈ X0. We denote Z0 = (z1, . . . , zk̄−1),

Z1 = (zk̄, . . . , zu).

With the above notations in mind, assume now that XY is a good pair such that its

lowest chord xîyĵ is as close to a as possible. If Y 0∩Z1 = ∅, we consider a neighbor x ∈ X0

of zk̄ closest to a and a neighbor y ∈ Y 0 of xî closest to a and two paths X∗ = Xxzk̄Z and

Y ∗ = Y yxîX. It is not difficult to see that X∗Y ∗ is a good pair and the lowest X∗Y ∗-chord
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is closer to a than xîyĵ , which contradicts the choice of XY . If Y 0 ans Z1 have a non-empty

intersection, we consider any chordless path Y ∗ starting at y1 and ending at zu, all vertices

of which belong to Y 0∪Z1. Clearly XY ∗ is a good pair and the lowest XY ∗-chord is closer

to a than xîyĵ . This contradiction completes the proof of the lemma.

4.1.2 Graphs Without Large Induced Hi’s

In this section, we deal with (Hk,Hk+1, . . .)-free graphs, a class of type (iii). Notice that

(Hk,Hk+1, . . .)-free graphs generalize claw-free graphs. We will show that graphs of bounded

vertex degree in this class are not too different from claw-free graphs.

Lemma 4.1.3 ([82]). For every fixed positive integers k and Δ, there is a constant ρ =

ρ(k,Δ) such that any connected (Hk,Hk+1, . . .)-free graph G of maximum vertex degree at

most Δ contains an induced claw-free subgraph with at least |V (G)| − ρ vertices.

Proof. To prove the lemma, we will show that for any two induced copies K and K ′ of a

claw in G, the distance between them does not exceed k +1. Suppose by contradiction that

a shortest path P joining a claw K = (x; a, b, c) to another claw K ′ = (x′; a′, b′c′) consists

of r ≥ k + 2 edges. Let us write P = (v0, v1, . . . , vr−1, vr) where v0 ∈ V (K), vr ∈ V (K ′),

and the only edges of P are vivi+1 for 0 ≤ i ≤ r − 1.

Observe that vertex v1 may belong to another claw induced by some vertices of V (K)∪

{v1, v2}, in which case we denote this claw by K̃; otherwise let K̃ := K. Analogously,

by K̃ ′ we denote either a claw containing vertex vr−1 and induced by some vertices of

V (K ′) ∪ {vr−1, vr−2} (if such a claw exists) or K ′ otherwise. But now the two claws K̃

and K̃ ′ together with the vertices of P connecting them induce a graph Hl with l ≥ k.

Contradiction.

To conclude the proof, assume that G contains an induced claw K. According to the

above discussion, the distance from the center of K to the center of any other claw in G (if

any) is at most k +3. Since G is a connected graph of maximum degree at most Δ, there is

a constant ρ = ρ(k,Δ) bounding the number of vertices of G of distance at most k +3 from

the center of K. Deletion of all these vertices leaves a subgraph of G which is claw-free.
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It follows from the proof of Lemma 4.1.3 that the class X of all connected (Hk,Hk+1, . . .)-

free graph G of maximum vertex degree at most Δ satisfies the hypotheses of Theorem 2.4.1

from Section 2.4. Indeed, for a graph G ∈ X, the set U of centers of induced claws in G

can clearly be computed in polynomial time. Moreover, a polynomial-time solution to the

maximum weight independent set problem for connected graphs in some class implies

a solution to the problem for the whole class.

Theorem 4.1.4 ([82]). For every fixed positive integers k and Δ, the maximum weight

independent set problem is solvable in polynomial time for (Hk,Hk+1, . . .)-free graphs of

maximum vertex degree at most Δ.

4.2 Planar and More General Graphs

Recall Corollary 3.4.4 from Section 3.4.

Corollary. Let H be an apex graph and X a subclass of H-minor-free graphs. Denote by Y

the class of all graphs that can be obtained from graphs in X by applying a sequence of (zero

or more) edge contractions and vertex deletions. Suppose that the treewidth of graphs in Y

is bounded above by a function of their maximum degree: that is, there exists a function f

such that tw(G) ≤ f(Δ(G)), for all G ∈ Y . Then, the treewidth of graphs in X is bounded.

Trivially, any class of bounded chordality is closed under edge contractions and vertex

deletions. Together with Theorem 4.0.22, this implies the following result.

Theorem 4.2.1. For any apex graph H and any positive integer k, there is a number N

such that every H-minor-free graph of chordality at most k has treewidth at most N .

Corollary 4.2.2. For any apex graph H and any positive integer k ≥ 3, the maximum

weight independent set problem is solvable in linear time for (Ck, Ck+1, . . .)-free H-

minor-free graphs.

Let us now consider (Hk,Hk+1, . . .)-free graphs excluding a fixed apex graph as a minor.

We will show that any graph in such a class can be partitioned into a claw-free graph, and a

graph of bounded treewidth. In particular, this will give a polynomial-time approximation
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algorithm for maximum weight independent set problem with performance ratio 2.

The existence of such an approximation algorithm also follows from a PTAS for the MWIS

problem in any minor-closed family [39]. Nevertheless, we believe that it is worth mentioning

our approach, mainly because it is so simple: one part of the bipartition in the lemma below

is given by V1 = {v ∈ V (G) : v is the center of an induced claw in G}.

Lemma 4.2.3 ([83]). For any positive integer k and any apex graph H, there is a constant

ρ = ρ(k, H) such that the vertex set V of every connected (Hk,Hk+1, . . .)-free graph G with

no minor isomorphic to H can be partitioned (in polynomial time) into sets V1 and V2 such

that:

(i) the treewidth of G[V1] is at most ρ, and

(ii) the graph G[V2] is claw-free.

Proof. To prove the lemma, we will show that for any two induced copies K and K ′ of a

claw in G, the distance between them does not exceed k + 1. Suppose by contradiction

that there is a (shortest) path P = (v0, v1, . . . , vr−1, vr) with v0 ∈ V (K), vr ∈ V (K ′) and

r ≥ k + 2.

Observe that vertex v1 may belong to another claw induced by some vertices of V (K)∪

{v1, v2}, in which case we denote this claw by K̃; otherwise let K̃ := K. Analogously,

by K̃ ′ we denote either a claw containing vertex vr−1 and induced by some vertices of

V (K ′) ∪ {vr−1, vr−2} (if such a claw exists) or K ′ otherwise. But now the two claws K̃

and K̃ ′ together with the vertices of P connecting them induce a graph Hl with l ≥ k.

Contradiction.

To conclude the proof, fix the center x of an induced claw in G (if G is claw-free, then

V1 = ∅ and V2 = V provides a desired partition). According to the above discussion, the

distance from x to the center of any other claw in G (if any) is at most k +3. Let V1 denote

the set of all vertices of G that are at distance at most k + 3 from x. Then, the diameter of

V1 is at most 2k+6. Therefore, by the diameter-treewidth property of H-minor-free graphs

(cf. Theorem 3.4.2), the treewidth of G[V1] is bounded. Also, if we let V2 = V \V1, we see

that the graph G[V2] is claw-free.

Using the partition V = V1 ∪ V2 of the vertex set of G as in the Lemma 4.2.3, we
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get a 2-approximation algorithm for the maximum weight independent set problem as

follows. We solve the problem exactly in each of the parts G[Vi], for i = 1, 2, and output the

better of the two solutions. Clearly, this can be done in polynomial time, and the output

solution is at least half as heavy as a maximum-weight independent set of G. So, we have

a polynomial-time approximation algorithm with performance ratio 2.

Theorem 4.2.4 ([83]). For any apex graph H and any positive integer k, there is a 2-

approximation polynomial-time algorithm to solve the maximum weighed independent

set problem in the class of (Hk,Hk+1, . . .)-free graphs with no minor isomorphic to H.
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Chapter 5

The Exact Weighted Independent Set Problem

In this chapter, we address complexity issues for the exact versions of the maximum weight

independent set problem: the exact weighted independent set (EWIS) problem,

and the exact weighted maximum independent set (EWISα) problem. Recall that the

exact weighted (maximum) independent set problem is the problem of determining

whether a given weighted graph contains a (maximum) independent set of a given weight.

The results in this chapter are from [89].

We first discuss in Section 5.1 some relations between the complexities of the problems

MWIS, EWIS and EWISα. In Section 5.2, we present the first hardness results. Finally,

Section 5.3 is devoted to pseudo-polynomial time solutions. The algorithms mostly resemble

those for the MWIS problem in respective graph classes, and are based either on a dynamic

programming approach (Section 5.3.1), or on modular decomposition, whose application to

the exact weighted independent set problem is developed in Section 5.3.2.

The triple (G, w, b) will always represent an instance of EWIS (or EWISα), i.e., G =

(V,E) is a graph, w : V → Z are vertex weights, and b ∈ Z is the target weight. If H is

an induced subgraph of G, we will also consider triples of the form (H,w, b) as instances

of EWIS, with the weights w representing the restriction of w to V (H). We will denote

by EWIS(G, w, b) the solution to the instance (G, w, b) of EWIS, that is, EWIS(G, w, b)

is yes if there is an independent set I in G with w(I) = b, and no otherwise. Similarly,

EWISα(G, w, b) is yes if there is a maximum independent set I in G with w(I) = b, and no

otherwise.
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5.1 Preliminary Observations

The exact weighted independent set problem is (weakly) NP-complete for any class of graphs

containing the edgeless graphs {nK1 : n ≥ 0}. There is a direct equivalence between the

exact weighted independent set problem on {nK1 : n ≥ 0} and the subset sum problem, a

well-known NP-complete problem [55]. The subset sum problem is the following: given n

integers a1, . . . , an and a bound b, determine whether there is a subset J ⊆ [n] such that∑
j∈J aj = b.

Therefore, for a given class of graphs X, the question of interest is whether the EWIS

problem is strongly NP-complete for graphs in X, or is it solvable in pseudo-polynomial

time.

First, it is easy to see that we can assume without loss of generality that all weights are

positive:

Remark. The EWIS problem with arbitrary integer weights is polynomially equivalent to

the EWIS problem, restricted to instances (G, w, b) such that b ≤ w(V (G)) and 1 ≤ w(v) ≤ b,

for all v ∈ V . The same equivalence holds true for the EWISα problem.

Proof. Solving the EWIS problem for any particular instance reduces to solving n problems

EWISk, in which the independent sets are restricted to be of size k, for all k ∈ [n] (unless

b = 0, in which case the solution is trivial, as the empty set is an independent set of weight

0). The weights in EWISk can be assumed to be positive: otherwise, we can add a suitably

large constant N to each vertex weight and replace b by b+kN to get an equivalent EWISk

problem with positive weights only. Finally, applying the same transformation again with

N = w(V )+1 reduces the problem EWISk to a single EWIS problem with positive weights.

Repeating this for all values of k ∈ [n], the result follows.

Finally, if all vertex weights are positive, we can delete from the graph all vertices whose

weight exceeds b, as they will never appear in a solution. The solution is trivial if b > w(V ).

The same assumption on vertex weights as for the EWIS problem can also be made for

the instances (G, w, b) of its restricted counterpart EWISα. Again, if some of the weights

are negative, we can modify the weights and the target value as we did above for EWISk.
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Now we only do it for k = α(G). Note that we can compute α(G) as that only p ∈ [n] such

that EWISα(G,1, p) is yes, where 1 denotes the unit vertex weights.

We now discuss some relations between the complexities of the problems MWIS, EWIS

and EWISα, when restricted to particular graph classes.

Lemma 5.1.1. Let X be a class of graphs. The following statements are true.

(i) If the EWISα problem is solvable in pseudo-polynomial time for graphs in X, then so

is the MWIS problem.

(ii) If the EWIS problem is solvable in pseudo-polynomial time for graphs in X, then so is

the EWISα problem.

(iii) Let X ′ = {G′ : G ∈ X} where G′ = (V ′, E′) is the graph, obtained from a graph

G = (V,E) ∈ X, by adding pendant vertices, as follows: V ′ = V ∪ {v′ : v ∈ V }, E′ =

E ∪ {{v, v′} : v ∈ V }. If the EWISα problem is solvable in pseudo-polynomial time for

graphs in X ′, then the EWIS problem is solvable in pseudo-polynomial time for graphs in

X.

Proof. (i) Let (G, w, k) be an instance of the decision version of the weighted independent

set problem. As we can assume positive weights, G contains an independent set of total

weight at least k if and only if G contains a maximum independent set of total weight

at least k. By testing values for b from w(V ) down to k and using an algorithm for the

EWISα problem on the instance (G, w, b), we can decide whether G contains a maximum

independent set of total weight at least k.

(ii) Let (G, w, b) be an instance of the EWISα problem. It is easy to see that the following

algorithm solves EWISα.

Step 1. Compute α(G), which is equal to the maximum k ∈ [n] such that EWIS(G,1, k) is

yes, where 1 denotes the unit vertex weights.

Step 2. Let N = w(V ) + 1. For every vertex v ∈ V (G), let w′(v) = w(v) + N . Let

b′ = b + α(G)N . Then it is easy to verify that EWISα(G, w, b) = EWIS(G, w′, b′).

(iii) Let (G, w, b) with G = (V,E) ∈ X be an instance of EWIS. Let G′ be the graph,

defined as in the lemma. Let n = |V | and let w′(v) = (n + 1)w(v) for all v ∈ V and
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w′(v) = 1 for v ∈ V ′. Then, it is easy to verify that EWIS(G, w, b) is yes if and only if

EWISα(G′, w′, b′) is yes for some value b′ in the set {(n + 1)b, . . . , (n + 1)b + n− 1}.

The problem EWIS is clearly in NP, and so is EWISα for any class of graphs X where

MIS is polynomially solvable. Therefore, Lemma 5.1.1 implies the following result.

Corollary 5.1.2. Let X be a class of graphs. The following statements are true.

(i) If the MWIS problem is strongly NP-complete for graphs in X, then the EWISα problem

is strongly NP-hard for graphs in X. If, in addition, the MIS problem is polynomial for

graphs in X, then EWISα is strongly NP-complete for graphs in X.

(ii) If the EWISα problem is strongly NP-hard for graphs in X, then the EWIS problem

is strongly NP-complete for graphs in X.

(iii) Let X ′ be as in Lemma 5.1.1. If the EWIS problem is strongly NP-complete for graphs

in X, then the EWISα problem is strongly NP-hard for graphs in X ′. If, in addition, the

MIS problem is polynomial for graphs in X ′, then EWISα is strongly NP-complete for

graphs in X ′.

Therefore, we are mainly interested in determining the complexity (strong NP-complete

or pseudo-polynomial results) of the exact weighted independent set problem in those

classes of graphs where the maximum weight independent set problem is solvable in

pseudo-polynomial time. Moreover, combining parts (ii) and (iii) of the lemma shows that

when X ∈ {forests, bipartite graphs, chordal graphs}, the problems EWIS and EWISα

are equivalent (in the sense that, when restricted to the graphs in X, they are either both

solvable in pseudo-polynomial time, or they are both strongly NP-complete).

We conclude this subsection by showing that a similar equivalence remains valid for the

class of line graphs. More precisely, if L, L(Bip), L(K2n) and L(Kn,n) denote the classes

of line graphs, line graphs of bipartite graphs, line graphs of complete graphs with an even

number of vertices, and line graphs of complete balanced bipartite graphs, respectively, we

have the following result.

Lemma 5.1.3. The EWIS problem is strongly NP-complete for graphs in L (resp., L(Bip))

if and only if the EWISα problem is strongly NP-complete for graphs in L(K2n) (resp.,
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L(Kn,n)).

Proof. The backward implication is given by part (ii) of Lemma 5.1.1. The forward impli-

cation follows from a reduction of the exact matching problem to the exact perfect matching

problem which we show now. Given an instance G = (V,E) with edge weights w and a

target b for the exact matching problem, construct an instance (Kn′ , w′, b′) for the exact

perfect matching problem as follows. If n = |V | is odd, we add a new vertex and we com-

plete the graph G. For an edge e of G, let w′(e) = Nw(e) where N = w(E) + 1, for an

edge e /∈ E let w′(e) = 1. The transformation is clearly polynomial, and G has a matching

of weight b if and only if Kn′ has a perfect matching of weight NM + k for some value of

k ∈ {0, . . . , n− 1}. Also, it is easy to see that in the case of bipartite graphs G = (L,R; E)

with |L| ≤ |R|, we can add |R \ L| vertices to L to balance the bipartition.

5.2 Hardness Results

The maximum weight independent set problem is solvable in polynomial time for bipartite

graphs by network flow techniques. However, as we show in this section, the exact version

of the problem is strongly NP-complete even for cubic bipartite graphs.

The strong NP-completeness of the EWIS problem in bipartite graphs follows from a

straightforward reduction from the balanced biclique problem which is known to be NP-

complete [55]. The balanced biclique problem consists in determining whether, given a

bipartite graph G = (L,R; E) where L ∪R is a bipartition of its vertex set, and an integer

k, there exist subsets L′ ⊆ L and R′ ⊆ R with |L′| = |R′| = k such that the subgraph

induced by L′ ∪R′ is a complete bipartite subgraph (also called biclique) of size k. From an

instance G and k of balanced biclique, we introduce weight 1 on each vertex of L, weight

B = max{|L|, |R|} + 1 on each vertex of R, and we set b = k + Bk. It is clear that there

exist an independent set in (L,R; (L × R) \ E) with weight b if and only if there exists a

balanced biclique in (L,R; E) of size k.

We now strengthen this result by proving that the EWISα problem is strongly NP-

complete even for cubic bipartite graphs. By contrast, for graphs of maximum degree 2,
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Figure 5.1: The gadget H(v).

EWIS and EWISα are pseudo-polynomially solvable problems.1

Theorem 5.2.1. The exact weighted maximum independent set problem is strongly

NP-complete in cubic bipartite graphs.

Proof. The problem is clearly in NP, as the maximum independent set problem is solvable

in polynomial time for bipartite graphs. The hardness reduction is made from the decision

version of the clique problem in regular graphs which is known to be NP-complete, see [55].

Let (G, k) be an input to the clique problem, where G = (V,E) is a Δ-regular graph on n

vertices and k is an integer. Without loss of generality, assume that 0 < k < Δ < n − 1,

since otherwise the problem is easy. We build the instance I = (G′, w) of EWISα where

G′ = (L,R; E′) is a bipartite graph as follows:

• For each vertex v ∈ V , we construct a gadget H(v) which is a cycle of length 2Δ.

Thus, it is a bipartite graph where the left set is Lv = {l1,v, . . . , lΔ,v} and the right

set is Rv = {r1,v, . . . , rΔ,v}. The weights are w(li,v) = 1 and w(ri,v) = nΔ(2+nΔ
2 ) for

i ∈ [Δ]. The gadget H(v) is illustrated in Fig. 5.1.

• For each edge e ∈ E, we construct a gadget H(e) which is also a cycle of length 4.

Thus, it is a bipartite graph where the left set is Le = {l1,e, l2,e} and the right set

1Every connected graph in this class is either a cycle or a path, and the treewidth of such graphs is
at most 2. By Corollary 5.3.1 and Theorem 5.3.19 from Section 5.3, the problem is solvable in pseudo-
polynomial time in this class.
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Figure 5.2: The gadget H(e).

is Re = {r1,e, r2,e}. The weights are w(li,e) = (nΔ)
2 and w(ri,e) = (nΔ)2

2 (2+nΔ
2 ) for

i = 1, 2. The gadget H(e) is illustrated in Fig. 5.2.

• We interconnect these gadgets by iteratively applying the following procedure. For

each edge e = {u, v} ∈ E, we add two edges {ri,u, l1,e} and {li,u, r1,e} where li,u is a

neighbor of ri,u in H(u) between gadgets H(u), H(e) and two edges {rj,v, l2,e} and

{lj,v, r2,e} where lj,v is a neighbor of rj,v in H(v) between gadgets H(v), H(e) such

that the vertices ri,u, li,u, rj,v and lj,v have degree 3.

It is clear that G′ is bipartite and the weights are polynomially bounded. Moreover,

since G is a Δ-regular graph, we conclude that G′ is 3-regular.

We claim that there exist a clique V ∗ of G with size at least k if and only if EWISα(G′, w, b)

is yes with

b = kΔ + nΔ
k(k − 1)

2
+ nΔ(

2 + nΔ
2

)
(

(n− k)Δ + (
nΔ
2
− k(k − 1)

2
)nΔ

)
.

Let I be a maximum independent set of G′ with w(I) = b. Since G′ is cubic and

bipartite, G′ has a perfect matching (for instance, take a perfect matching in each gadget

H(v) and H(e)), and we conclude that α(G) = |I| = |R| = |L|. This implies in particular

that for any vertex v ∈ V , either Lv or Rv is a subset of I. Moreover, the same property

holds for any e ∈ E (i.e., either Le or Re is a subset of I). Moreover, by construction of

the weights, the quantity kΔ of b must come from vertices li,v, ri,v or li,e. Since k < n,

this quantity cannot come from ri,v. Moreover, since li,e ∈ I if and only if Le ⊆ I, the

contribution of Le in I is nΔ. In this case, the contribution of kΔ must come from li,v.

Thus, we obtain:
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|I ∩ LV | = kΔ , |I ∩RV | = (n− k)Δ. (5.1)

where LV = ∪v∈V Lv and RV = ∪v∈V Rv. Thus, using (5.1) we must obtain:

w (I ∩ (LE ∪RE)) = nΔ
k(k − 1)

2
+ nΔ(

2 + nΔ
2

)(
nΔ
2
− k(k − 1)

2
)nΔ. (5.2)

where LE = ∪e∈ELe and RE = ∪e∈ERe. Now, we prove that there are exactly k(k−1
2 )

gadgets H(e) with Le ⊆ I. Assume the reverse; then, |I ∩ LE | = k(k − 1) − 2p and

|I ∩ RE | = nΔ − k(k − 1) + 2p for some p �= 0 (p can be negative). Combining these

equalities with equality (5.2), we deduce that p = 0, contradiction.

Thus, if we set V ∗ = {v ∈ V : Lv ⊆ I}, we deduce from previously |V ∗| = k and we will

have necessarily that V ∗ is a clique of G.

Conversely, let V ′ be a clique of G with |V ′| ≥ k and consider a subclique V ∗ ⊆

V ′ of size exactly k. We set S = SL ∪ SR with SL = ∪v∈V ∗Lv ∪e∈E(V ∗) Le and SR =

∪v∈V \V ∗Rv ∪e∈E\E(V ∗) Re. One can easily verify that w(I) = b and that I is a maximum

independent set of G′. Indeed, let us assume the converse; thus, there exist ri,v ∈ I (and

thus Rv ⊆ I), lj,e ∈ I (with j = 1, 2) and {ri,v, lj,e} ∈ E′. By construction of I, we deduce

that e = {u, v} ∈ E(V ∗) and then Lv ⊆ I, contradiction. The proof is complete.

As corollary of Theorem 5.2.1, we can derive that the biclique problem remains NP-

complete when the minimum degree of G = (L,R; E) is n− 3 where |L| = |R| = n. In this

case, we replace any gadget H(e) of Theorem 5.2.1 by a cycle of length 2nΔ and we delete

edges {li,u, r1,e} and {lj,v, r2,e}.

We also remark that Theorem 5.2.1 implies the strong NP-completeness of EWISα for

perfect graphs, a well-known class where maximum weight independent set problem is

solvable in polynomial time.

Let us now strengthen the result of Theorem 5.2.1 to a more general setting: for hered-

itary subclasses of bipartite graphs of maximum degree 3. By analogy with Theorem 1.3.1,

we obtain the following result.
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Theorem 5.2.2. Let X be the class of F-free bipartite graphs. If κ(F3) < ∞, then the

exact weighted maximum independent set problem is strongly NP-complete in the

class X3.

Proof. The problem is clearly in NP. We show completeness in two steps. First, for k ≥ 3,

let Sk be the class of all bipartite (C3, . . . , Ck,H1, . . . , Hk)-free graphs of vertex degree at

most 3, and let us show that for any fixed k, the problem is strongly NP-complete for graphs

in Sk. Let (G, w, b) be an instance of the EWISα problem where G is a bipartite graph of

maximum degree at most 3.

We can transform the graph G in polynomial time to a weighted graph G′, as follows.

Let k′ = �k
2�. We replace each edge e of G by a path P (e) on 2k′ + 2 vertices. Let

N = w(V ) + 1. We set the weights w′ of the endpoints of P (e) equal to the weights of the

corresponding endpoints of e, while each internal vertex of P (e) gets weight N . It is easy

to verify that G′ belongs to Sk.

We claim that EWISα(G, w, b) is yes if and only if EWISα(G′, w′, b + mk′N) is yes,

where m = |E(G)|.

One direction is immediate, as each maximum independent set of G can be extended

to a maximum independent set of G′, by simply adding k′ internal vertices of each newly

added path. Doing so, the weight increases by mk′N .

Suppose now that EWISα(G′, w′, b + mk′N) is yes. Let I ′ be a maximum independent

set of G′ of weight b + mk′N . Since I ′ is independent, it can contain at most k′ internal

vertices of each newly added path. Therefore, for each e ∈ E(G), the set I ′ must contain

exactly k′ internal vertices of P (e) – otherwise its weight would be at most W +(mk′−1)N ,

contradicting our choice of N .

Let I denote the set, obtained from I ′ by deleting the internal vertices of newly added

paths. Then, I is an independent set of G. Indeed, if e = {u, v} ∈ E(G) for some u, v ∈

I, then I ′ can contain at most k′ − 1 internal vertices of P (e), contradicting the above

observation. Also, it is easy to see that I is a maximum independent set of G. Finally, as

the weight of I is exactly b, we conclude that EWISα(G, w, b) is yes.

This shows that the EWISα problem is strongly NP-complete in the class Sk. To prove
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strong NP-completeness of the problem in the class X, we now show that the class X

contains all graphs in Sk, for k := max{3, κ(F3)}. Let G be a graph from Sk. Assume

that G does not belong to X. Then G contains a graph A ∈ F3 as an induced subgraph.

From the choice of G we know that A belongs to Sk, but then k < κ(A) ≤ κ(F3) ≤ k, a

contradiction. Therefore, G ∈ X3 and the theorem is proved.

5.3 Polynomial Results

In this section, we present pseudo-polynomial solutions to the exact weighted independent

set problem, when the input graphs are restricted to particular classes. Our algorithms

mostly resemble those for the MWIS problem in respective graph classes, and are based

either on a dynamic programming approach (Section 5.3.1), or on modular decomposition

(Section 5.3.2).

First, we observe that when developing polynomial-time solutions to the EWIS problem,

we may restrict our attention to connected graphs.

Lemma 5.3.1. Let (G, w, b) be an instance of the EWIS problem, and let C1, . . . , Cr

be the connected components of G. Suppose that for each i ∈ [r], the set of solutions

(EWIS(Ci, w, k) : k ∈ [b]) for Ci is given. Then, we can compute the set of solutions

(EWIS(G, w, k) : k ∈ [b]) for G in time O(rb2).

In order to show Lemma 5.3.1, we consider the following generalization of the subset

sum problem.

Generalized Subset Sum (GSS)

Instance: Nonempty sets of positive integers A1, . . . , An and a positive integer b.

Question: Is there a nonempty subset J of [n] and a mapping a : J → ∪j∈JAj such that

a(j) ∈ Aj for all j ∈ J , and
∑

j∈J a(j) = b?

By generalizing the dynamic programming solution to the subset sum problem, it is easy

to show the following.

Lemma 5.3.2. Generalized subset sum can be solved in time O(nb2) by dynamic program-

ming.
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In fact, in the stated time, not only we can verify if there is a J ⊆ [n] and a mapping a

as above such that
∑

j∈J a(j) = b for the given b, but we can answer this question for all

values b′ ∈ [b].

Proof. Let B denote the set of all values b′ ∈ [b] such that there a nonempty subset S of

[n] and a mapping a : S → ∪i∈SAi such that a(i) ∈ Ai for all i ∈ S, and
∑

i∈S a(i) = b′.

Let us show by induction on n that we can generate B in time O(nb2). The statement

is trivial for n = 1.

Suppose now that n > 1. Let I = (A1, . . . , An; b) be an instance of the GSS problem.

Let B′ be the inductively constructed set of all possible values of b′ ∈ [b] such that the

solution to the GSS problem on the instance (A1, . . . , An−1; b′) is yes. By induction, the set

B′ was constructed in time O((n− 1)b2).

Let β ∈ [b]. Then, β will belong to B, i.e., the solution to the GSS problem, given

(A1, . . . , An; β), will be yes, if and only if either β ∈ B′, or we can write β as β = b′ + an

for some b′ ∈ B′ and an ∈ An. In other words, B = B′ ∪ B′′, where B′′ denotes the set of

all such sums: B′′ = {b′ + an : b′ ∈ B′, an ∈ An, b′ + an ≤ b}.

The set B′′ can be constructed in time O(b2). Adding this time complexity to the time

O((n− 1)b2) needed to construct B′ proves the above statement and hence the lemma.

Lemma 5.3.1 now follows immediately.

Lemma 5.3.1. It is enough to observe that for every k ∈ [b], EWIS(G, w, k) is yes if and

only if the solution to the GSS problem on the instance (A1, . . . , Ar; k) is yes, where Ai

denotes the set of all values k′ ∈ [b] such that EWIS(Ci, w, k′) is yes.

5.3.1 Dynamic Programming Solutions

We can summarize the results of this subsection in the following theorem.

Theorem 5.3.3. The exact weighted independent set problem and the exact weighted

maximum independent set problems admit pseudo-polynomial-time solutions in each of
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the following graph classes: mK2-free graphs, interval graphs and their generalizations k-

thin graphs, circle graphs, chordal graphs, AT-free graphs, (claw ,net)-free graphs, distance-

hereditary graphs, graphs of treewidth at most k, and graphs of clique-width at most k.

The rest of this subsection is devoted to proving this result. By part (ii) of Lemma 5.1.1,

it suffices to develop pseudo-polynomial solutions for the exact weighted independent

set problem. The algorithms mostly resemble those for the maximum weight indepen-

dent set problem and exploit the special structure of graphs in the classes.

mK2-free Graphs

Our first example deals with graphs with no large induced matchings. Recall that K2

denotes the graph consisting of two adjacent vertices. The disjoint union of m copies of K2

is denoted by mK2. Thus, graphs whose largest induced matching consists of less than m

edges are precisely the mK2-free graphs.

Theorem 5.3.4. For every positive integer m, the exact weighted independent set

problem admits a pseudo-polynomial algorithm for mK2-free graphs.

Proof. All maximal independent sets I1, . . . , IN in an mK2-free graph can be found in

polynomial time [2, 8, 101, 109]. Since every independent set is contained in a maximal

one, EWIS(G, w, k) will take the value yes if and only if there is an i ∈ [N ] such that

EWIS(G[Ii], w, k) is yes. Thus, the EWIS problem in mK2-free graphs reduces to solving

polynomially many instances of the subset sum problem.

Interval Graphs

Interval graphs are one of the most natural and well-understood classes of intersection

graphs. They are intersection graphs of intervals on the real line, and many optimization

problems can be solved by dynamic programming on these graphs.

Formally, given a collection I = ([ai, bi] : i ∈ I) of intervals on the real line, its inter-

section graph G(I) is defined by V (G(I)) = I, and there is an edge connecting [ai, bi] and

[aj , bj ] if and only if [ai, bi]∩ [aj , bj ] �= ∅. The collection I is said to be an interval model of
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G(I). A graph G is said to be an interval graph if it admits an interval model, i.e., if there

is a collection I of intervals on the real line such that G = G(I).

A representation of interval graphs that is particularly suitable for the EWIS problem

is the following. It was shown by Ramalingam and Pandu Rangan [102] that a graph

G = (V,E) is interval if and only if it admits a vertex ordering (v1, . . . , vn) such that for all

triples (r, s, t) with 1 ≤ r < s < t ≤ n, the following implication is true:

if {vr, vt} ∈ E then {vs, vt} ∈ E .

Moreover, such an ordering of an interval graph can be found in time O(n + m). Based on

this ordering, we can prove the following statement.

Theorem 5.3.5. The exact weighted independent set problem admits an O(bn+m)

algorithm for interval graphs.

Proof. Let (v1, . . . , vn) be a vertex ordering such that {vs, vt} ∈ E, whenever {vr, vt} ∈ E,

for all triples (r, s, t) with 1 ≤ r < s < t ≤ n.

For every i ∈ [n], let Gi denote the subgraph of G induced by {v1, . . . , vi} (also, let

G0 be the empty graph). Then, for every i ∈ [n], either there is a j = j(i) such that

NGi(vi) = {j, j + 1, . . . , i − 1}, or NGi(vi) = ∅ (in which case let us define j(i) = i). Now,

if I is an independent set of Gi, then either vi ∈ I (in which case I\{vi} is an independent

set of Gj(i)−1), or vi /∈ I (in which case I is an independent set of Gi−1). This observation

is the key to the following simple O(bn + m) dynamic programming solution to the EWIS

problem on interval graphs.

Step 1. Find a vertex ordering (v1, . . . , vn) as above.

Step 2. Set EWIS(G0, w, k) to no for all k ∈ [b].

Step 3. For i = 1, . . . , n, do the following:

3.1. Find j ∈ [i] such that NGi(vi) = {j, j + 1, . . . , i− 1}.

3.2. For k ∈ [b], do the following:

If k = w(vi), set EWIS(Gi, w, k) to yes.
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If k < w(vi), set EWIS(Gi, w, k) to EWIS(Gi−1, w, k).

If k > w(vi), set EWIS(Gi, w, k) to yes if at least one of the solutions to

EWIS(Gj(i)−1, w, k − w(vi)) and EWIS(Gi−1, w, k) is yes, and to no otherwise.

Step 4. Output EWIS(Gn, w, b).

k-thin Graphs

The property used in the above characterization of interval graphs has been generalized by

Mannino et al. in [86], where they define the class of k-thin graphs. A graph G = (V,E)

is said to be k-thin if there exist an ordering (v1, . . . , vn) of V and a partition of V into k

classes such that, for each triple (r, s, t) with 1 ≤ r < s < t ≤ n, if vr, vs belong to the same

class and {vr, vt} ∈ E, then {vs, vt} ∈ E.

Let us mention at this point that finding a feasible frequency assignment of a given cost

can be modeled as the EWIS problem on a k-thin graph, where the parameter k depends

on the input to the frequency assignment problem. For further details, we refer the reader

to the paper [86].

Based on the same idea as for interval graphs, a dynamic programming solution for

k-thin graphs can be obtained, provided we are given an ordering and a partition of the

vertex set.

Theorem 5.3.6. Suppose that for a k-thin graph G = (V,E), k ≥ 2, an ordering (v1, . . . , vn)

of V and a partition of V into k classes are given such that, for each triple (r, s, t) with

1 ≤ r < s < t ≤ n, if vr, vs belong to the same class and {vr, vt} ∈ E, then {vs, vt} ∈ E.

Then, the exact weighted independent set problem admits an O(bnk) algorithm for

G.

Proof. The proof is a straightforward extension of the proof of Theorem 5.3.5. Let V1, . . . , Vk

be the classes of the partition. Instead of the graphs Gi, induced by the first i vertices,

we now consider all graphs G(i1, . . . , ik), induced by the “first” ir vertices of each class

(according to the ordering on V restricted to the class), for all r ∈ {1, . . . , k}, and for all

O(nk) choices of such k-tuples (i1, . . . , ik) ∈ {1, . . . , |V1|} × . . .× {1, . . . , |Vk|}.
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Circle Graphs

Besides intervals on the real line, chords on a circle provide another popular intersection

model. The intersection graphs of chords on a circle are called circle graphs. In this subsec-

tion, we present a O(b2n2) dynamic-programming algorithm for the EWIS problem in circle

graphs. Our algorithm for EWIS on circle graphs is based on the dynamic programming

solution for the maximum independent set problem, developed by Supowit in [107].

Theorem 5.3.7. The exact weighted independent set problem admits an O(b2n2)

algorithm for circle graphs.

Proof. Consider a finite set of N chords on a circle. We may assume without loss of

generality that no two chords share an endpoint. Number the endpoints of the chords

from 1 to 2N in the order as they appear as we move clockwise around the circle (from an

arbitrary but fixed starting point).

The idea is simple. For 1 ≤ i < j ≤ 2N , let G(i, j) denote the subgraph of G induced by

chords whose both endpoints belong to the set {i, i + 1, . . . , j}. Obviously G = G(1, 2N).

Let 1 ≤ i < j ≤ 2N . If j = i + 1 then EWIS(G(i, j), w, k) is yes if and only if either

k = 0, or (i, i + 1) is a chord and k = w((i, i + 1)).

Otherwise, let r be the other endpoint of the chord whose one endpoint is j. If r <

i or r > j, then no independent set of the graph G(i, j) contains the chord (r, j), so

EWIS(G(i, j), w, k) is yes if and only if EWIS(G(i, j − 1), w, k) is yes. Suppose now that

i ≤ r ≤ j − 1 and let I be an independent set of G(i, j). The set I may or may not contain

the chord (r, j). If I does not contain (r, j), then I is an independent set of of G(i, j − 1)

as well. If I contains (r, j), then no other chord in I can intersect the chord (r, j). In

particular, this implies that I is of the form I = {(r, j)}∪I1∪I2 where I1 is an independent

set of G(i, r − 1) and I2 is an independent set of G(r + 1, j − 1).

Therefore, EWIS(G(i, j), w, k) is yes if and only if either EWIS(G(i, j−1), w, k) is yes,

or EWIS(G′, w, k) is yes, where G′ is the graph whose connected components are G[{(r, j)}],

G(i, r−1) and G(r+1, j−1). Assuming that the solutions for G(i, r−1) and G(r+1, j−1)

have already been obtained recursively, we can apply Corollary 5.3.1 in this case.
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The above discussion implies an obvious O(b2n2) algorithm that correctly solves the

problem.

Chordal Graphs

Chordal (or triangulated) graphs are graphs in which every cycle of length at least four has a

chord. They strictly generalize interval graphs and provide another class where the MWIS

problem is polynomially solvable. Unfortunately for our purpose, the usual approaches for

the MWIS problem in chordal graphs ([50, 108]) heavily rely on the maximization nature

of the problem, and generally do not preserve the overall structure of independent sets.

As such, they do not seem to be directly extendable to the exact version of the problem.

Instead, we develop a pseudo-polynomial time solution to the EWIS problem in chordal

graphs by using one of the many characterizations of chordal graphs: their clique tree

representation.

Theorem 5.3.8. The exact weighted independent set problem admits an O(b2n(n+

m)) algorithm for chordal graphs.

Proof. Given a chordal graph G, we first compute a clique tree of G. This can be done in

time O(n + m) [73]. A clique tree of a chordal graph G is a tree T whose nodes are the

maximal cliques of G, such that for every vertex v of G, the subgraph Tv of T induced by

the maximal cliques containing v is a tree. Furthermore, we fix an arbitrary node Kr in the

clique tree in order to obtain a rooted clique tree. For a maximal clique K, we denote by

G(K) the subgraph of G induced by the vertices of K and all vertices contained in some

descendant of K in T .

The algorithm is based on a set of identities developed by Okamoto, Uno and Uehara

in [97], where a clique tree representation was used to develop linear-time algorithms to

count independent sets in a chordal graph. Let IS(G) be the family of independent sets in

G. For a vertex v, let IS(G, v) be the family of independent sets in G that contain v. For

a vertex set U , let IS(G, U) be the family of independent sets in G that contain no vertex

of U . Consider a maximal clique K of G, and let K1, . . . ,Kl be the children of K in T .

(If K is a leaf of the clique tree, we set l = 0.) Then, as shown in [97], for every distinct
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i, j ∈ [l], the sets V (G(Ki))\K and V (G(Kj))\K are disjoint. Moreover, if � denotes the

disjoint union, the following relations hold:

IS(G(K)) = IS(G(K),K) �⊔
v∈K IS(G(K), v) ;

IS(G(K), v) =

⎧⎨
⎩I ∪ {v}

∣∣∣ I =
⋃l

i=1 Ii, Ii ∈

⎧⎨
⎩ IS(G(Ki), v), if v ∈ Ki;

IS(G(Ki),K ∩Ki), otherwise.

⎫⎬
⎭ ;

IS(G(K),K) =
{

I
∣∣∣ I =

⊔l
i=1 Ii, Ii ∈ IS(G(Ki),K ∩Ki)

}
;

IS(G(Ki),K ∩Ki) = IS(G(Ki),Ki)) �
⊔

u∈Ki\K IS(G(Ki), u) for each i ∈ [l] .

We extend our usual Boolean predicate EWIS(H,w, k) to the following two: for a vertex

v of a weighted graph (H,w) and in integer k, let EWIS(H,w, k, v) denote the Boolean

predicate that is yes if and only if in H there is an independent set I of total weight k that

contains v. Also, for a set of vertices U let EWIS(H,w, k, U) take the value yes if and only

if in H there is an independent set of total weight k that contains no vertex from U . Based

on the above equations, we can develop the following recursive relations for EWIS:

EWIS(G(K), w, k) = EWIS(G(K), w, k,K) ∨
∨

v∈K:w(v)≤k

EWIS(G(K), w, k, v) (5.3)

where ∨ denotes the usual Boolean OR function (with the obvious identification yes ↔ 1,

no ↔ 0). That is, its value is yes if at least one of its arguments is yes, and no otherwise.

EWIS(G(K), w, k, v) = GSS(A1, . . . , Al, k − w(v)) (5.4)

where GSS(A1, . . . , Al, k) denotes the solution to the generalized subset sum problem on
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the input instance (A1, . . . , Al, k), where the sets Ai for i ∈ [l] are given by

Ai =

⎧⎨
⎩ {k′ − w(v) : w(v) ≤ k′ ≤ k, EWIS(G(Ki), w, k′, v) = yes}, if v ∈ Ki;

{k′ : 1 ≤ k′ ≤ k, EWIS(G(Ki), w, k′,K ∩Ki) = yes}, otherwise.

Note that if Ii ∈ IS(G(Ki), v) and Ij ∈ IS(G(Kj), v) for some distinct indices i, j ∈ [l],

then we have Ii ∩ Ij = {v}. Moreover, since this is the only possible nonempty intersection

of two independent sets from
⋃l

i=1 Ii in the equation for IS(G(K), v), it follows that the

sum of the weights of the sets Ii\{v} (over all i ∈ [l]) equals to the weight of
(⋃l

i=1 Ii

)
\{v},

thus justifying Equation (5.4).

Similarly, we have

EWIS(G(K), w, k,K) = GSS(A1, . . . , Al, k) (5.5)

where, for each i ∈ [l], the set Ai is given by

Ai = {k′ : 1 ≤ k′ ≤ k, EWIS(G(Ki), w, k′,K ∩Ki) = yes} ,

and, finally, for each i ∈ [l], we have:

EWIS(G(Ki), w, k,K∩Ki) = EWIS(G(Ki, w, k,Ki))∨
∨

u∈Ki\K
EWIS(G(Ki), w, k, u) . (5.6)

Given the above equations, it is now easy to develop a pseudo-polynomial dynamic

programming algorithm. Having constructed a rooted tree T of G, we traverse it in a

bottom-up manner. For a leaf K, we have

EWIS(G(K), w, k,K) =

⎧⎨
⎩ yes, if k = 0;

no, otherwise.

and

EWIS(G(K), w, k, v) =

⎧⎨
⎩ yes, if w(v) = k;

no, otherwise.
.
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For every other node K, we compute the values of EWIS(G(K), w, k,K) and EWIS(G(K), w,

k, v) by referring to the recursive relations (5.6), (5.5) and (5.4) in this order. Finally, the

value of EWIS(G, w, k) is given by EWIS(G(Kr), w, k), which can be computed using Equa-

tion (5.3).

The correctness of the procedure follows immediately from the above discussion. To

justify the time complexity, observe that in a node K of the tree with children K1, . . . ,Kl,

the number of operations performed is O(
∑l

i=1 |Ki| + lM2 + |K|lM2). Summing up over

all the nodes of the clique tree, and using the fact that a chordal graph has at most n

maximal cliques, which satisfy
∑

K∈V (T ) |K| = O(n + m) [97], the claimed complexity

bound follows.

AT-free Graphs

The class of AT-free graphs is another class that contains the interval graphs. Moreover,

AT-free graphs contain other well-known subclasses of perfect graphs, for instance permu-

tation graphs and their superclass, the class of co-comparability graphs.

A triple {x, y, z} of pairwise non-adjacent vertices in a graph G is an asteroidal triple if

for every two of these vertices there is a path between them avoiding the closed neighborhood

of the third. Formally, x and y are in the same component of G−N [z], x and z are in the

same component of G−N [y], and y and z are in the same component of G−N [y]. A graph

is called AT-free if it has no asteroidal triples.

Our dynamic programming algorithm that solves EWIS for AT-free graphs is based on

the dynamic programming approach to the MWIS problem in AT-free graphs, developed

by Broersma, Kloks, Kratsch and Msüller in [31]. Let us start with a definition.

Definition 5.3.9. Let x and y be two distinct nonadjacent vertices of an AT-free graph G.

The interval I(x, y) is the set of all vertices z of V (G)\{x, y} such that x and z are in one

component of G−N [y], and z and y are in one component of G−N [x].

Now, we recall some structural results from [31].

Theorem 5.3.10 ([31]). Let I = I(x, y) be a nonempty interval of an AT-free graph G, and

let s ∈ I. Then there exist components Cs
1 , . . . , C

s
t of G−N [s] such that the components of
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I\N [s] are precisely I(x, s), I(s, y), and Cs
1 , . . . , C

s
t .

Theorem 5.3.11 ([31]). Let G be an AT-free graph, let C be a component of G−N [x], let

y ∈ C, and let D be a component of the graph C −N [y]. Then N [D] ∩ (N [x]\N [y]) = ∅ if

and only if D is a component of G−N [y].

Theorem 5.3.12 ([31]). Let G be an AT-free graph, let C be a component of G−N [x], let

y ∈ C, and let C ′ be the component of G−N [y] that contains x. Let B1, . . . , Bl denote the

components of the graph C −N [y] that are contained in C ′. Then I(x, y) = ∪l
i=1Bi.

We will also need the following simple observation.

Proposition 5.3.13. Let (G, w) be a weighted graph. Then, EWIS(G, w, k) is yes if and

only if there is a vertex x ∈ V (G) such that EWIS(G−N(x), w, k) is yes.

Combining Proposition 5.3.13 with Theorems 5.3.11 and 5.3.12, we obtain the following

lemma.

Lemma 5.3.14. Let (G, w) be a weighted AT-free graph, G = (V,E). Let x ∈ V and let C

be a component of G−N [x]. For a vertex y of C, let Cy denote the subgraph of G induced

by C −N(y). Then, EWIS(C,w, k) is yes if and only if there is a vertex y ∈ C such that

EWIS(Cy, w, k) is yes. Moreover, the connected components of such a Cy are precisely {y},

I(x, y), and the components of G−N [y] contained in C.

Similarly, using Theorem 5.3.10 we obtain the following conclusion.

Lemma 5.3.15. Let (G, w) be a weighted AT-free graph, G = (V,E). Let I = I(x, y) be an

interval of G. If I = ∅, then EWIS(G[I], w, k) is yes if and only if k = 0. Otherwise, let

us denote by Is the subgraph of G induced by I −N(s), for all s ∈ I. Then, EWIS(I, w, k)

is yes if and only if there is a vertex s ∈ I such that EWIS(Is, w, k) is yes. Moreover, the

connected components of such an Is are precisely {s}, I(x, s), I(s, y), and the components

of G−N [s] contained in I.

Theorem 5.3.16. The exact weighted independent set problem admits a pseudo-

polynomial algorithm for AT -free graphs.
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Proof. It follows from the above discussion that the following pseudo-polynomial algorithm

correctly solves the problem.

Step 1. For every x ∈ V compute all components of G−N [x].

Step 2. For every pair of nonadjacent vertices x, y ∈ V (G) compute the interval I(x, y).

Step 3. Sort all the components and intervals according to nonincreasing number of vertices.

Step 4. In the order of Step 3, compute the solutions to EWIS(C,w, k), for each component

C (for all k ∈ {0, 1, . . . , w(C)}) and the solutions to EWIS(I, w, k) for each interval I (for all

k ∈ {0, 1, . . . , w(I)}). To compute the solutions to EWIS(C,w, k) for a component C, first

compute the solutions to EWIS(C −N(y), w, k), for all y ∈ C, by applying Lemma 5.3.14

and Corollary 5.3.1. Similarly, to compute the solutions to EWIS(I, w, k) for an interval I,

first compute the solutions to EWIS(I−N(s), w, k), for all s ∈ I, by applying Lemma 5.3.15

and Corollary 5.3.1.

Step 5. Compute EWIS(G, w, k) using Observation 5.3.13 and Corollary 5.3.1.

In [21], it is shown that for every vertex v of a (claw ,net)-free graph G, the non-

neighborhood of v in G is AT-free.2 Thus, Theorem 5.3.16 immediately implies the following

result.

Corollary 5.3.17. The exact weighted independent set problem admits a pseudo-

polynomial algorithm for (claw ,net)-free graphs.

Distance Hereditary Graphs

A graph is distance-hereditary if the distance between any two connected vertices (that is,

vertices in the same connected component) is the same in every induced subgraph in which

they remain connected. Bandelt and Mulder provided in [9] a pruning sequence characteri-

zation of distance-hereditary graphs: whenever a graph contains a vertex of degree one, or

a vertex with a twin (another vertex sharing the same neighbors), remove such a vertex. A

graph is distance-hereditary if and only if it the application of such vertex removals results

in a single-vertex graph.

2A net is the graph obtained from a triangle by attaching one pendant edge to each vertex.
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More formally, a pruning sequence of a distance-hereditary graph G is a sequence of

the form σ = (x1R1y1, x2R2y2, . . . , xn−1Rn−1yn−1) where (x1, . . . , xn) is a total ordering of

V (G) such that for all i ∈ {1, . . . , n− 1}, the following holds:

• Ri ∈ {P, T, F}.

• If we denote by Gi the subgraph of G induced by {xi, . . . , xn}, then:

– If Ri = P then xi is a pendant vertex, that is, a vertex of degree one in the graph

Gi, with NGi(xi) = {yi}.

– If Ri = T then xi and yi are true twins in Gi, that is, NGi [xi] = NGi [yi].

– If Ri = F then xi and yi are false twins in Gi, that is, NGi(xi) = NGi(yi).

A pruning sequence of a distance-hereditary graph can be computed in linear time [35]

and can be useful for algorithmic developments on distance-hereditary graphs. A solution

to the MWIS problem in distance-hereditary graphs based on the pruning sequence charac-

terization has been developed by Cogis and Thierry in [32]. It turns out that their approach

can be generalized in order to solve the exact version of the problem.

Theorem 5.3.18. The exact weighted independent set problem admits an O(b2n +

m) algorithm for distance-hereditary graphs.

Proof. We first define an auxiliary problem:

P1(G, b, p, q)

Instance: A graph G, a positive integer b, and two functions

p, q : V × {0, 1, . . . , b} → {0, 1} .

Question: Is there an independent set I of G, and a mapping w : V → {0, 1, . . . , b} such

that the following holds:

• ∑
x∈V w(x) = b,

• p(x,w(x)) = 1 whenever x ∈ I,

• q(x,w(x)) = 1 whenever x /∈ I?
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Let us show that the EWIS problem is polynomially reducible to P1. Let (G, w, b) be

an instance to the EWIS problem. Define p, q, : V (G) × {0, 1, . . . , b} → {0, 1} as follows.

For each x ∈ V (G) and each k ∈ {0, 1, . . . , b}, let

p(x, k) =

⎧⎨
⎩ 1, if k = w(x);

0, otherwise,

and

q(x, k) =

⎧⎨
⎩ 1, if k = 0;

0, otherwise.

Then, it is easy to see that EWIS(G, w, b) is yes if and only if P1(G, b, p, q) is yes.

In what follows, we will present an O(b2n + m) to solve the problem P1 on an instance

(G, b, p, q), if G is a distance-hereditary graph. For two functions f, g : {0, 1, . . . , N} →

{0, 1}, we denote their convolution f ∗ g as the function f ∗ g : {0, 1, . . . , N} → {0, 1}, given

by the following rule: for every k ∈ {0, 1, . . . , N}, we have

(f ∗ g)(k) =

⎧⎨
⎩ 1, if there is a k′ ∈ {0, 1, . . . , k} such that p(k′) = q(k − k′) = 1;

0, otherwise.

Procedure P1-DH

Input: A distance-hereditary graph G, a positive integer b, and two functions

p, q : V × {0, 1, . . . , b} → {0, 1} .

Output: The answer to the question in P1(G, b, p, q).

Step 1. Compute the pruning sequence σ = (x1R1y1, x2R2y2, . . . , xn−1Rn−1yn−1) for G.

To each vertex x ∈ V (G), associate a pair of functions px, qx : {0, 1, . . . , b} → {0, 1}, by

px(·) = p(x, ·) and qx(·) = q(x, ·).

Step 2. Check if the pruning sequence is empty. If yes, there is only one vertex x left. If

max{px(b), qx(b)} = 1, then output yes. Else, output no.

Else, let xRy be the head of the pruning sequence. Update the pruning sequence by remov-

ing xRy from it. Update py and qy as follows.
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• If R = P then let

py(k) ← (py ∗ qx)(k) ,

qy(k) ← max{(px ∗ qy)(k), (qx ∗ qy)(k)} ,

for each k ∈ {0, 1, . . . , b}.

• If R = T then let

py(k) ← max{(py ∗ qx)(k), (px ∗ qy)(k)} ,

qy(k) ← (qx ∗ qy)(k) ,

for each k ∈ {0, 1, . . . , b}.

• If R = F then let

py(k) ← max{(px ∗ qy)(k), (px ∗ py)(k), (qx ∗ py)(k)} ,

qy(k) ← (qx ∗ qy)(k) ,

for each k ∈ {0, 1, . . . , b}.

Go to Step 2.

The correctness of the algorithm can be easily proved by induction on n. We leave this

routine proof to the reader. Clearly, the algorithm can be implemented so that it runs in

time O(b2n + m).

Graphs of Treewidth at most k

It is easy to see that on trees, the EWIS problem admits a simple dynamic programming

solution. With some care, the same approach can be generalized to graphs of bounded

treewidth.

Theorem 5.3.19. For every fixed k, the exact weighted independent set problem

admits an O(b2n) algorithm for graphs of treewidth at most k.

A detailed description of the algorithm and its analysis can be found in [89].
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Graphs of Clique-width at most k

The clique-width of a graph G is defined as the minimum number of labels needed to

construct G, using the following four graph operations:

(i) Create a new vertex v with label i (denoted by i(v)).

(ii) Take the disjoint union of two labeled graphs G and H (denoted by G⊕H).

(iii) Join by an edge each vertex with label i to each vertex with label j (i �= j, denoted

by ηi,j).

(iv) Rename label i to j (denoted by ρi→j).

An expression built from the above four operations is called a clique-width expression. A

clique-width expression using k labels is called a k-expression. Each k-expression t uniquely

defines a labeled graph lab(t), where the labels are integers {1, . . . , k} associated with the

vertices and each vertex has exactly one label. We say that a k-expression t defines a graph

G if G is equal to the graph obtained from the labeled graph lab(t) after removing its

labels. The clique-width of a graph G is equal to the minimum k such that there exists a

k-expression defining G.

The clique-width of a graph of treewidth k is bounded above by 3·2k−1 [34]. This implies

that a class of graphs with uniformly bounded treewidth is also of bounded clique-width.

The complete graphs show that converse is generally not true. In this sense, showing that

a problem can be efficiently solved for graphs of bounded clique-width is more general than

showing the same statement for graphs of bounded treewidth.

Many graph problems that are NP-hard for general graphs are solvable in linear time

when restricted to graphs of clique-width at most k, if a k-expression is given as part of the

input.3 The EWIS problem is no exception.

Theorem 5.3.20. For every fixed k, the exact weighted independent set problem

admits an O(2kb2l) algorithm for graphs of clique-width at most k, where l is the number

of operations in a given k-expression for G.

3If only a graph G of clique-width at most k is given, then an O(26k)-expression defining G can be
computed in O(n3) time, as shown by Oum in [98].
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Proof. Suppose that the labels are integers {1, . . . , k} = [k]. For every subset of labels

S ⊆ [k], let EWIS(G, w, S, m) denote the answer to the following question: “Is there an

independent set of G with total weight m that contains exactly the labels from S?”

Given a k-expression t defining the input graph G, we can solve EWIS(G, w, b) by first

computing all the values for EWIS(G, w, S, m), for every subset of labels S ⊆ [k], and every

m ∈ [b]. It is easy to see that this can be performed in time O(b2l) by the following dynamic

programming algorithm.

If |V | = 1 then let v ∈ V . For all S ⊆ [k], and for all m ∈ [b], let

EWIS(G, w, S, m) =

⎧⎨
⎩ yes, if S = {label(v)} and m = w(v);

no, otherwise.

If G = G1 ⊕G2 then let for all S ⊆ [k], and for all m ∈ [b]:

EWIS(G, w, S, m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yes, if EWIS(G1, w, S,m) =yes;

yes, if EWIS(G2, w, S,m) =yes;

yes, if there is an m′ ∈ [m− 1] such that

EWIS(G1, w, S,m′) =EWIS(G2, w, S,m−m′) =yes;

no, otherwise.

This can be computed in time O(b2), similarly as in Corollary 5.3.1.

If G = ηi,j(G1) then let for all S ⊆ [k], and for all m ∈ [b]:

EWIS(G, w, S, m) =

⎧⎨
⎩ EWIS(G1, w, S,m), if {i, j} � S;

no, otherwise.

If G = ρi→j(G1) then let for all S ⊆ [k], and for all m ∈ [b]:

EWIS(G, w, S, m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EWIS(G1, w, S,m), if S ∩ {i, j} = ∅;

EWIS(G1, w, S ∪ {i},m), if S ∩ {i, j} = {j};

no, otherwise.
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Having computed all the values EWIS(G, w, S, m), the value of EWIS(G, w, b) is clearly

given by

EWIS(G, w, b) =

⎧⎨
⎩ yes, if there is an S ⊆ [k] such that EWIS(G, w, S, b) =yes;

no, otherwise.

Note that the same algorithm runs in pseudo-polynomial time whenever the clique-width

of the input graph is of the order O(log n).

Due to the unknown complexity of the exact perfect matching problem, the problem of

determining the complexity of the EWIS problem is of particular interest for line graphs

of bipartite graphs, and their subclasses and superclasses. Line graphs of bipartite graphs

form a hereditary class of graphs. Their characterization in terms of forbidden induced

subgraphs has been obtained in [106], as follows. A graph G is the line graph of a bipartite

graph if and only G is F-free, where F = {claw , diamond , C5, C7, . . .}. A diamond is the

graph obtained by deleting a single edge from a complete graph on 4 vertices.

Keeping in mind this characterization of line graphs of bipartite graphs, it is interesting

to consider the following immediate consequence of Theorem 5.3.20.

Corollary 5.3.21. The exact weighted independent set problem admits a pseudo-

polynomial solution in each of the following graph classes:

• (claw , co-claw)-free graphs,

• (gem, fork , co-P)-free graphs (see Figure 5.3 in Section 5.3.2) and their subclass (claw ,

diamond , co-P)-free graphs,

• (P5, diamond)-free graphs.

Proof. Each of the above subclasses is of bounded clique-width (see [30, 29, 20]).
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Also, we can derive from Theorem 5.3.20 a particular complexity result for the exact

perfect matching problem.

Corollary 5.3.22. For every fixed k, the exact perfect matching problem admits a

pseudo-polynomial algorithm for graphs of treewidth at most k.

Proof. As shown by Gurski and Wanke [62], a set X of graphs has bounded treewidth if

and only if L(X) := {L(G) : G ∈ X} has bounded clique-width. Since the exact perfect

matching problem in X is polynomially equivalent to the problem EWISα in the set L(X),

the statement follows from Theorem 5.3.20 and part (ii) of Lemma 5.1.1.

5.3.2 Modular Decomposition

Recall that in Section 2.2 we have seen how modular decomposition can be applied to the

maximum weight independent set problem. In this subsection, we show how to apply

modular decomposition to the EWIS problem.

We formally describe this reduction for the EWIS problem in the recursive procedure

Modular ewis(G, W, b) below. It turns out that in order to apply this decomposition to

the EWIS problem, we need to relax the problem so that each vertex of the input graph

is equipped with a nonempty set of possible weights (instead of just a single one). For

simplicity, we still name this problem EWIS. When all sets are singletons, the problem

coincides with the original EWIS problem.

Exact weighted independent set (EWIS)

Instance: An ordered triple (G, W, b), where G = (V,E) is a graph, b is a positive integer

and W = (Wv : v ∈ V ) with Wv ⊆ [b] for all v ∈ V is the collection of possible weights for

each vertex of G.

Question: Is there an independent set I of G and a mapping w : I → [b] such that

w(v) ∈Wv for all v ∈ I, and
∑

v∈I w(v) = b?

In graph classes that are closed under duplicating vertices, this extended version is

pseudo-polynomially equivalent to the original one: given an input (G, W, b) to the extended

version, we can construct a weighted graph (G′, w′) from (G, W ) by replacing each vertex
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v of G with a clique Kv on |Wv| vertices, assigning different weights from Wv to different

vertices of Kv, and joining a vertex from Ku with a vertex from Kv by an edge if and

only if {u, v} was an edge of G. Then, it is clear that EWIS(G, W, b) = yes if and only if

EWIS(G′, w′, b) = yes. However, working with the extended version enables us to apply

modular decomposition to arbitrary graph classes.
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Algorithm Modular ewis(G, W, b)

Input: An ordered triple (G, W, b), where G = (V,E) is a graph, b is a positive integer

and W = (Wv : v ∈ V ) with Wv ⊆ [b] for all v ∈ V is the collection of possible weights for

each vertex of G.

Output: (EWIS(G, W, k) : k ∈ [b])

1. If |V | = 1, say V = {v}, set, for each k ∈ [b],

EWIS(G, W, k) =

⎧⎨
⎩ yes, if k ∈Wv;

no, otherwise

and stop.

2. If G is disconnected, partition it into connected components M1, . . . ,Mr, and go to

step 5.

3. If co-G is disconnected, partition G into co-componentsM1, . . . ,Mr, and go to step 5.

4. If G and co-G are connected, partition G into maximal modules M1, . . . ,Mr.

5. For all j ∈ [r], let

(EWIS(G[Mj ], W, k) : k ∈ [b]) = Modular ewis(G[Mj ], W, b) .

Construct a graph G0 from G by contracting each Mj (for j ∈ [r]) to a single vertex,

and assign to that vertex the set of weights

WMj = {k ∈ [b] : EWIS(G[Mj ], W, k) = yes} .

6. For each k ∈ [b], let

EWIS(G, W, k) = EWIS(G0, (WMj : j ∈ [r]), k)

and stop.
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We remark that for each input graph, at most one of the steps 2-4 is performed. (At most

one among {G, co-G} is disconnected; moreover, if G and co-G are both connected, then

the maximal modules of G are pairwise disjoint.) Observe that the graph G0 constructed

in step 5 of the algorithm is either an edgeless graph, a complete graph, or a prime graph.

Therefore, the modular decomposition approach reduces the problem from a graph to its

prime induced subgraphs.

The correctness of the procedure is straightforward: every independent set I of G con-

sists of pairwise disjoint independent sets in the subgraphs of G induced by M1, . . . ,Mr;

moreover, thoseMi’s that contain a vertex from I form an independent set in G0. And con-

versely, for every independent set I0 in G0 and every choice of independent sets {Ij : j ∈ I0}

with Ij independent in G[Mj ], the set ∪j∈[r]Ij is independent in G.

The following theorem answers the question on the complexity of such a reduction.

Theorem 5.3.23. Let X be a class of graphs and X∗ the class of all prime induced subgraphs

of the graphs in X. If there is a p ≥ 1 and a q ≥ 2 such that the exact weighted

independent set problem can be solved for graphs in X∗ in time O(bqnp), then the exact

weighted independent set problem can be solved for graphs in X in time O(bqnp + m).

The proof of this theorem is a slight modification of the proof of Theorem 2.2.1, taking

into account that:

• If GU is disconnected, then G0
U is an edgeless graph, and the problem can be solved for

G0
U in time O(b2|V (G0

U )|), since it is a generalized subset sum problem (cf. Lemma 5.3.2).

• If GU is disconnected, then G0
U is a complete graph, and the problem can be solved

trivially for G0
U in time O(b|V (G0

U )|).

Just like for the weighted independent set problem, modular decomposition is the key to

pseudo-polynomial-time solutions to the EWIS problem in several subclasses of P5-free and

fork-free graphs. The results are summarized in the following theorem; all graphs mentioned

in the theorem or its proof are depicted in Figure 5.3.

Theorem 5.3.24. The exact weighted independent set problem is solvable in pseudo-

polynomial time for each of the following classes:
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Figure 5.3: Some 5- and 6-vertex graphs

• (P5, double-gem, co-domino)-free graphs (and their subclass, (P5, co-P)-free graphs),

• (bull, fork)-free graphs,

• (co-P, fork)-free graphs,

• (P5, fork)-free graphs.

Proof. This theorem essentially follows from Theorem 5.3.23 and the results in [27] and [72].

We briefly summarize the main ideas.

Every prime (P5, double-gem, co-domino)-free graph is 2K2-free (the complementary

version of this statement is proved in [72]). Since we can easily extend Theorem 5.3.4 to

the extended version of EWIS, this implies the result for (P5, double-gem, co-domino)-free

graphs.

The (extended) EWIS problem can be solved in pseudo-polynomial time for co-gem-free

graphs. Indeed, for every vertex v of a co-gem-free graph G, the non-neighborhood of v in

G is P4-free. So the problem reduces to solving O(nb) subproblems in P4-free graphs, which

can be done by modular decomposition. Every P4-free graph is either disconnected, or its

complement is disconnected. Thus, the only prime P4-free graph is the graph on a single

vertex.

In [27], it is shown that prime graphs that contain a co-gem and are either (bull , fork)-

free, (co-P, fork)-free or (P5, fork)-free have a very simple structure. The (extended) EWIS
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problem can be solved in pseudo-polynomial time for such graphs. Together with the above

observation about co-gem-free graphs and Theorem 5.3.23, this concludes the proof.

5.4 A Final Remark

As we saw in the introduction, motivation for studying the exact weighted independent set

problem comes from the fact that the complexity of the exact perfect matching problem is

still unknown, even for bipartite graphs. Hence, the problem of determining the complexity

of the EWISα problem is of particular interest for line graphs of bipartite graphs, and

their subclasses and superclasses. We will now show that the class L(Bip) of line graphs of

bipartite graphs is sandwiched between two graph classes for which the complexity of the

EWISα problem is known, and whose (infinite) sets of forbidden induced subgraphs differ

only in two graphs.

Recall that the line graphs of bipartite graphs are precisely the (claw , diamond , C5, C7, . . .)-

free graphs. Replacing the diamond in the above characterization by its subgraph C3 results

in a smaller class of (claw , C3, C5, C7, . . .)-free graphs. It is easy to see that this is precisely

the class of bipartite graphs of maximum degree 2. Every connected graph in this class is

either an even cycle or a path, and the treewidth of such graphs is at most 2. By Corol-

lary 5.3.1 and Theorem 5.3.19, the problem is solvable in pseudo-polynomial time in this

class.

On the other hand, if we replace the claw = K1,3 with K1,4 in the above character-

ization of L(Bip), we obtain a class of graphs that properly contains line graphs of bi-

partite graphs. This class of (K1,4, diamond , C5, C7, . . .)-free graphs contains the class of

(K1,4, C3, C5, C7, . . .)-free graphs, which is precisely the class of bipartite graphs of maximum

degree at most 3. The results of Section 5.2 imply that the problem is strongly NP-complete

for this class, and hence also for the larger class of (K1,4, diamond , C5, C7, . . .)-free graphs.

To summarize, the class L(Bip) of line graphs of bipartite graphs is sandwiched between

two graph classes for which the complexity of the EWISα problem is known, as the following
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diagram shows.

Free({claw , C3, C5, C7, . . .}) ⊂ L(Bip) ⊂ Free({K1,4, diamond , C5, C7, . . .})

pseudo-polynomial ??? strongly NP-complete
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Chapter 6

Conclusion

In this thesis, we have presented several complexity results for the interrelated problems of

finding independent sets of maximum cardinality, maximum weight, or of given weight in a

graph. The common natural assumption was that the input graphs belong to a hereditary

class of graphs.

Several open-ended questions and challenges are left for future research.

6.1 Open Complexity Questions

First, let us informally observe how widely open remains the gap between the polynomial

and the NP-hard side of the maximum independent set problem in hereditary graph

classes. The areas of unknown complexity status of the problem in F-free graphs occur

already when F consists of a single graph on 5, 6, or 7 vertices. More specifically, there

are four minimal classes defined by a single forbidden induced subgraph for which the

complexity status of the maximum independent set problem is unknown. These are the

P5-free graphs (P5 is the unique minimal connected graph for which this question is open),

P4 + P2-free graphs, P3 + P3-free graphs, and P3 + 2P2-free graphs.1 The complexity of the

problem is unknown even for (P5, C5)-free graphs.

For hereditary classes defined by infinitely many forbidden induced subgraphs, let us

emphasize that the complexity of the maximum independent set problem is unknown

for (Ck, Ck+1, Ck+2, . . .)-free graphs, for every k ≥ 5, as well as for (Hk,Hk+1,Hk+2, . . .)-free

graphs, for every k ≥ 1 (cf. Chapter 4).

On a more general note, recall that Alekseev’s result (Theorem 1.1.1) provides sufficient

1This observation follows from Theorem 1.1.1 and polynomial-time solvability of the problem in the
classes of P4-free graphs [33], mK2-free graphs [48] and S1,1,1 + K2-free graphs [84].
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conditions for the set F which guarantee that the maximum independent set problem

remains NP-hard for F-free graphs. Interestingly, it is not known whether the converse of

Alekseev’s theorem holds true: to the best of our knowledge, no graph S ∈ S is known such

that the maximum independent set problem is NP-hard in the class of S-free graphs.2

Regarding the exact version of the problem, we recall that the complexity status of

the exact weighted (maximum) independent set problem remains unsettled for line

graphs of bipartite graphs, and for its superclasses line graphs, claw-free graphs, and fork-

free graphs.

6.2 The Augmenting Graph Method

As described in Section 2.1, the method of augmenting graphs can generally be applied only

to unweighted graphs. However, this approach has proved useful in designing polynomial-

time algorithms to some weighted cases as well (for instance for claw-free graphs [90, 95]).

More generally, we ask: To what extent can the method of augmenting graphs be applied

to weighted graphs (either to the maximization, or to the exact versions of the problem)?

By analogy with the work done for the weighted matching problem [43, 44], a natural

question related to augmenting graphs is the following. Let X be a hereditary class of graphs

where the maximum (weight) independent set problem is polynomially solvable. Can

the method of augmenting graphs help in designing fast (say, linear-time) approximation

algorithms for the maximum (weight) independent set problem for graphs in X?

6.3 Further Algorithmic Improvements

The results from Chapters 3 and 4 can be summarized in the following table:

2 By contrast, it is easy to see that the converse of the extension to the infinite case (Theorem 1.3.1) is
false. Indeed, the maximum independent set problem is NP-hard in the class of F-free planar graphs of
degree at most 3, where F = {C3k+1 : k = 1, 2, . . .}. This follows from the NP-hardness of the maximum

independent set problem in planar graphs of degree at most 3: by performing the double subdivision of
each edge of the input graph, we obtain a graph that can only contain induced cycles of orders that are
multiples of 3.
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Polynomial results for the maximum weight independent set

problem in F-free graphs

F additional restriction method(s)

{S1,1,2} = {fork} MD

{S1,2,5, banner} unweighted AG

{S1,2,k} K3,3-minor-free, unweighted AG, DCS, BT

{S, L(S′)} with S, S′ ∈ S H-minor-free, H apex BT

{mS1,k,k} bounded degree other

{Ak, Ak+1, . . .} bounded degree MD, DCS

{Hk,Hk+1, . . .} bounded degree other

{Ck, Ck+1, . . .} H-minor-free (H apex) BT

{Hk,Hk+1, . . .} H-minor-free (H apex; 2-approx.) other

AG = augmenting graphs, MD = modular decomposition, DCS = decomposition by

clique separators, BT = bounded treewidth

Except for the first two results in the above table, all of them depend on a set of param-

eters, either integers (m, k,Δ), or graphs (S, S′,H). Let K denote the set of parameters to

the problem. An algorithm is said to be fixed-parameter tractable (FPT) if it runs in time

O(f(|K|)nO(1)) for a function f [42, 96] (rather than in time O(ng(|K|)) for some function g).

It can be easily verified that, except for the case of mS1,k,k-free graphs of bounded degree,

all of the algorithms from the above table are FPT. We leave the development of an FPT

algorithm for the maximum weight independent set problem in mS1,k,k-free graphs of

maximum vertex degree at most Δ as an open problem. We remark that it would suffice to

develop an FPT algorithm for the problem of finding an induced copy of S1,k,k in graphs

from this class.

Another area where further improvement should be possible is the reduction of the maxi-

mum weight independent set problem from claw-free graphs to line graphs. (Recall from

Section 3.1 that the currently fastest algorithm for the maximum weight independent
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set problem in line graphs is of time complexity O(nm+n2 log n), while for claw-free graphs

this time complexity is O(n7).) The resolution of this challenging research problem would

result in better complexities of the maximum weight independent set problem for the

claw-free and fork-free graphs.

We believe that modular decomposition may be useful for such a reduction, since most

of the forbidden graphs characterizing the class of line graphs are not prime (see e.g. [68]

for the complete list of minimal non-line graphs). Moreover, many of them contain a clique

separator. This suggests the idea of combining the modular decomposition technique with

finding clique separators. If a reduction based on this approach is possible for claw-free

graphs, it would probably improve the time complexity greatly.
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[22] A. Brandstädt and P.L. Hammer. On the stability number of claw-free P5-free and
more general graphs. Proceedings of the Conference on Optimal Discrete Structures
and Algorithms—ODSA ’97 (Rostock), Discrete Appl. Math. 95 (1999) 163–167.

[23] A. Brandstädt, T.C. Hoàng and V.B. Le, Stability number of bull- and chair-free
graphs revisited, Discrete Appl. Math. 131 (2003) 39–50.
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[26] A. Brandstädt and C. Hoàng, On Clique Separators, Nearly Chordal Graphs, and
the Maximum Weight Stable Set Problem, Proceedings IPCO 2005, 265–275, Lecture
Notes in Comput. Sci. 3509, Springer, Berlin, 2005.
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