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Sensor nodes are very weak computers that get distributed atrandom on a surface in order to

achieve a large-scale sensing task. Once deployed, they must wake up and form a radio network.

Given the extremely limited resources of sensor nodes, finding efficient solutions even for basic

problems is very challenging. The results in this thesis concern the initialization from scratch,

or Bootstrapping, of a Sensor Network. More precisely, we seek efficient-provable solutions to

the most fundamental problem in Sensor Networks, its self organization. At the same time, we

study lower bounds on the time complexity of such a problem.

The first set of results in this thesis address the three partsthat Sensor Network bootstrap-

ping research has: to model the restrictions on sensor nodes; to prove that the sensors connec-

tivity graph has a subgraph that would make a good network; and to give a distributed protocol

for finding such a network subgraph that can be implemented onsensor nodes.

A study of the Sensor Network Bootstrapping problem would not be complete without a

study of lower bounds on the time complexity of solving it. Strikingly, the most basic problem

in a Radio Network, i.e. to achieve a successful transmission, can be proved to be as difficult as

other more complex problems under the constraints of a sensor node. The second set of results

of this thesis shows new lower bounds for collision-free transmissions in Radio Networks. The

main lower bound is tight for a variety of problems. An extension of this result gives the first

lower bound for Sensor Network Bootstrapping. A lower boundon the expectation for fair
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protocols is also shown.

Another contribuition of this thesis is a survey of researchin Radio Networks. The survey

includes two parts that have received extensive study: upper bounds for Sensor Network for-

mation, and upper and lower bounds for non-colliding transmissions in Radio Networks proved

under the broader context of more complex problems.
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whom I also had the privilege of engaging in useful discussions about topics beyond this thesis.

Fellow students and friends such as Matı́as Cuenca, Carlos Diuk, Rohan Fernandes, Michal
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lunches organized by Michal Koucký. A particularly fruitful experience was to attended the

Dagstuhl Seminar on Cache-Oblivious Data Structures. I thank my advisor for inviting me to

that event.

I can not stress enough how important it is for me to work with others. In that regard, I want

to specially thank my friend, fellow student and collaborator Rohan Fernandes for months

of useful joint work and exciting discussions. Most of the results in Chapters 6 and 8 and

in Section 3.2.2 are joint work with him and our advisor and have appeared in [FCFM05]

and [FCFM06].

I want also to thank my friends and teachers at UBA: Willy, Marcelo, Irene, Vı́ctor, Mar-

iano, Pablo and many others for helping me to prepare for thisexperience. I specially want

to thank my number-theory teacher there, Juan Sabia, for many inspiring lectures. A special

thank you to my Galician family for their love and support while I was touring Spain during

my job hunt. I am very grateful also to my friends in New Jersey: Matı́as & Cecilia, Carlos
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Chapter 1

Introduction

Advances in technology have made it possible to integrate sensing, processing and communica-

tion capabilities in a low-cost multi-function device, popularly known as asensor node. Sensor

nodes are randomly deployed over an area and must self-organize as a radio-communication

network called asensor network. Even though communication among sensor nodes is through

radio broadcast, it is useful to set up explicit links between nodes in order to establish routing

paths and prevent flooding.

A Sensor Network is capable of achieving large tasks throughthe coördinated effort of

sensor nodes, but individual nodes have severe limitationson memory size, life cycle, range

of communication, etc. Due to these harsh limitations, classical solutions from the Radio Net-

works and other areas can not be straightforwardly applied making the area of Sensor Networks

very attractive. Furthermore, although problems and even results can be easily understood with

little knowledge of mathematics or computer science, to findefficient solutions to basic prob-

lems is not a trivial task.

Problems in sensor networks are twofold: related to geometric properties and related to

network protocols. Sensor nodes have limited range and are deployed at random over a large

area. Therefore, geometric properties like path length, coverage and connectivity need to be

understood. Thus, sensor networks are modeled asrandom geometric graphs. On the other

hand, node limitations, shared communication channel and lack of additional infrastructure at

deployment impose limitations on network protocols. Usually for parallel and distributed com-

puting, there are many differences among computing models used in Radio Networks due to

diverse technical details that may have immense impact on algorithmic issues in communica-

tion. The different models explicit or implicit in many results are incomplete or inadequate in

order to reflect the various limitations under which sensor nodes operate.
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The most fundamental problem in Sensor Networks is to establish efficiently the network

among sensor nodes from scratch right after deployment, or theSensor Network Bootstrapping

problem. Sensor Network bootstrapping research has three parts: one must formally model

the restrictions on sensor nodes; one must prove that the connectivity graph of the deployed

sensor nodes has a subgraph that would make a good network; and one must give a distributed

protocol for finding such a network subgraph that can be implemented on sensor nodes.

In this thesis, all of the three parts of Sensor Network bootstrapping research are addressed

in detail: a formal Weak Sensor Model that summarizes the literature on sensor node restric-

tions, taking the most restrictive choices when possible, is elucidated in Section 3.2.2; in Chap-

ter 6 it is shown that sensor connectivity graphs have low-degree subgraphs with asymptoti-

cally optimalhop-stretch, as required by the Weak Sensor Model; and a Weak Sensor Model-

compatibleO(log2 n) 1 protocol for finding such graphs with high probability (w.h.p.), i.e. with

probability 1 − n−γ for some constantγ > 02, is given in the same chapter. This is the first

network initialization algorithm that is implementable onsensor nodes.

Given the absence of provable upper bounds for Sensor Network initialization in the pre-

vious literature, it is not surprising that lower bounds forthis problem where not known until

recently. Any network where transmissions may collide, such as a Sensor Network, needs a

protocol to achievecollision-free transmissions. The narrow gap between the lower bound for

achieving something so simple as a clear transmission in Radio Networks and upper bounds for

more complicated problems such as Maximal Indepent Set, motivates the study of this problem

in order to obtain lower bounds for Sensor Network initialization.

In Chapter 8, new lower bounds for collision-free transmissions in Radio Networks are

shown. More precisely, the main result is a tight lower boundof Ω(log n log(1/ε)) on the time

required by a randomized protocol to achieve a clear transmission with success probability1−ε

in a one-hop setting. The main result is tight for a variety ofproblems. The first lower bound

for clear transmissions in the Sensor Network setting, i.e., when the topology is model by a

connected random geometric graph, is obtained as an extension of that result. Finally, a lower

1Notation: throughout this thesis,log indicates logarithm base2 unless otherwise stated

2Notation: throughout this thesis, we usewith high probability, w.h.p., or with probability1 − n−γ for some
constantγ > 0 indistinctively
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bound on the expectation for fair protocols is also shown.

Another contribution of this thesis is a survey of research in upper bounds for Sensor Net-

work initialization, and bounds for non-colliding transmissions in Radio Networks, which is

included in Chapters 5 and 7 respectively. The latter results are proved under the broader

context of other problems such as broadcast, wake-up and leader election. In addition to the

detailed description of our Weak Sensor Model, in Chapter 3 asurvey of models frequently used

in Radio Networks is given. Frequent terminology used in communication networks in general

and Sensor Networks in particular, and definition of problems studied in Radio Networks are

included in Chapters 2 and 4 respectively.
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Chapter 2

Terminology

Radio Networks is a vast and active area of research in both the applied and theory communities.

In order to analyze the various problems present in Radio Networks in general and Sensor

Networks in particular, we summarize in this section the terminology usually adopted in the

literature. Given that this terminology is mostly borrowedfrom the more general computer

networks area, we begin with definitions for general networks, narrowing down later to our

specific area of interest.

A computer communication networkis a collection of entities with information process-

ing and communication capabilities. In order to achieve some distributed computation, these

entities, usually callednodes, need to exchange information among them and perhaps share

distributed resources. To that extent, protocols to establish, maintain and use such a network

have to be carefully designed, according with the constraints of each application.

The different classification criteria are as varied as the applications of such networks. One

popular classification is based on the size and distance among nodes. Although there are other

intermediate categories, we distinguish here two main ones: local area networksandwide area

networks.

The communication among nodes is achieved through entitiescalled links. These entities

are implemented as electromagnetic links either through wires (copper, fiber optics, etc.), in

which case the network is calledwired, or through non-wired links (radio waves, infrared light,

etc.) normally calledwireless networks.

Given the existance of wireless networks, we can consider different classifications accord-

ing with the stability of the topology of the network. Depending on the mobility of nodes,

networks can bestationaryor mobile. In cases such as Sensor Networks, even if the nodes

are static, the lack of reliability can be modelled as mobilenodes. Changes in topology due to
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link changes are not used in the literature to classify networks but as additional constraints in

problems were this issue is present.

Given that nodes are information processing devices, a standard assumption is that they

all have their own clock. Each clock cycle is called astepor time slot. 1 Regarding syn-

chronicity in the execution of the distributed protocols, networks can beasynchronous, locally

synchronous, i.e., all clocks have the same frequency but perhaps different starting times, or

globally synchronous, i.e., all clocks start at the same time and have the same frequency.

Nodes communicate among them by means of finite strings of bits usually calledmessages.

These messages are padded with additional information suchas origin, destination, etc. in

order to facilitate the transmission of the message throughthe network. A message formatted

in this way is called apacket. It is assumed that the transmission of one packet from one node

to a neighboring node incurs in no delay and it is transmittedin one time step or time slot.

Protocols that work under this assumption are calledslotted. If a nodea transmits a message

to some other nodeb, we say thata sendsa message andb receivesa message. According with

the application, in order to analyze message routing and scheduling protocols it is sometimes

assumed the existance of an adversarial mechanism that generates messages to be transmitted

and assigns these messages to nodes. Such mechanism may workeither in advance or online.

When online assignment of messages is assumed we say that a message hasarrived to a node

at a given time slot if it was assigned to such a node in that time slot.

In networks where all nodes share the communication channel, a message sent by a given

node can be received by all the other nodes, either because nodes are directly connected to the

transmitter or by message forwarding of the intermediate nodes. This type of configuration

where a node sends a message to all its neighbors simultaneously is usually calledbroadcast

network. On the other hand, inpoint-to-point networks, messages are sent from the originator

to a recipient node, once again either directly or by messageforwarding.

Another useful classification regarding the topology of thenetwork is based on connectivity.

If every node is connected directly to every other node, i.e., the underlying graph modelling the

topology is a clique, the network is calledsingle-hop. On the other hand, if there are pairs of

1In fact, a time slot will be the cost unit of protocols unless otherwise stated.
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nodes which are not connected by a single link, the network iscalledmulti-hop.

The size of the network is defined to be the number of nodesn. Nodes are assumed to

have been assigned a uniqueidentifying number(ID) in the range[1..Θ(n)] and that they know

their own ID as well as the size of the network or an upper boundof that size given by the

range of ID numbers. Distributed protocols have to be robustenough to handle at least the

initialization of the network, when nodes ignore the ID numbers of their neighbors. Networks

where protocols do not have this topology information available are calledunknown-topology

networksor ad-hoc networks.

We now focus our atention on how nodes handle messages concurrently. Depending on the

type of network, a node may be able to send a message to a subsetof neighboring nodes in a

given time slot as well as receive messages from a subset of neighboring nodes simultaneously

in a given time slot. In certain networks, in order to receivea message successfully the size

of the subset of adjacent transmitting nodes has to be exactly one. In fact, this is the case for

Radio Networks where only one channel of communication is available.

In a given time slot, nodes may operate in receiver mode, transmitter mode or perhaps both.

If in a given time slot a node that is operating as a receiver does not receive any message, it

receives what we callnoisewhich is some kind of signal different from any known message.

If during such a time slot, no adjacent node has transmitted any message, we say that the

noise received isbackground noise. Whereas, if more than one adjacent node has transmitted

a message during that time slot, we say that acollision has ocurred and the signal received is

interference noise. We call a network where nodes can distinguish between background and

interference noise a networkwith collision detection(with CD) andwithout collision detection

(without CD) otherwise.

In shared-channel networks, nodes compete to gain access tothe channel. In many cases,

deterministic protocols to share the channel are not suitable due to various factors, e.g., lack of

knowledge of the topology. If no centralized control is available then conflicts among nodes

while trying to access the channel are unavoidable. Randomized distributed protocols intended

to resolve such conflicts are calledcontention resolution protocols.

Networks are also classified depending on the type of feedback that nodes receive from

the channel. As explained before, nodes might be able to distinguish between 3 states of the
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channel, namely, silence (background noise), transmission, and collision (interference noise).

When this information is available it is said that the channel hasternary feedback. Whereas in

the case that nodes can only distinguish between a meaningful message or a meaningless one,

we say that the channel hasbinary feedback.

Regarding feedbak there is an special case depending on wether a node is able to transmit

and receive in the same time slot. There are networks, specially Radio Networks, where a

node can not receive while transmitting because the strength of the signal transmitted is much

higher than the signal coming from neighboring nodes due to signal decay. However, when

such a simultaneous reception is possible, nodes may be ableto detect the collision of their

own transmission.

Notice however that this type of feedback does not imply collision detection in the strong

sense, because nodes would not be able to detect collisions of transmissions of other nodes.

Furthermore, when the network under consideration is multi-hop, nodes would only be able

to detect a collision at their location. More specifically, consider three nodesA, B andC,

connected by two links onlyAB andBC. If A andC transmit in the same time slot, there

will be a collision atB but neitherA nor C will be able to detect such a collision even if they

are able to receive in the same time slot. This issue is popularly known as thehidden terminal

problem.

Regarding the information available to protocols, in single-hop networks with collision

detection and simultaneous transmission and reception capabilities nodes may store the channel

history and the sequence of their own attempts. Protocols that rely in such information are

calledfull sensingprotocols.

In some networks, nodes may be in different states accordingwith their ability to participate

in the distributed computation. When a node is fully functional, i.e., it can transmit, receive and

process information, we say that the node isactive. A node instandbymode is assumed that

is not able to transmit or process information but it may be able to receive a message, which

perhaps will put it in the active mode. Finally, when a node isnot able to transmit, receive or

process information is said to beinactive. Although at this point the later mode seems strange,

nodes in Sensor Network applications are assumed to be frequently in this state due to lack of

a continuous power supply.
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In some randomized protocols, a node transmits a message in time slott with some prob-

ability pt, independently of the history of transmissions. These protocols are usually called

randomly obliviousbecause the sequence of probabilities of transmission is fixed in advance.

On the other hand, when protocols change the probability of transmission online, either as a

function of their own transmissions or as a function of theirsuccessfultransmissions if that

information is available, they are calledrandomly adaptiveprotocols.

As explained before, in shared-channel networks conflicts among nodes to access the chan-

nel are unavoidable and a protocol for contention resolution has to be used. Regarding the

arrival of messages to be transmitted, the problem of contention resolution can be addressed

under two different assumptions. Namely, either the messages are allocated to nodes before be-

ginning the execution of the protocol or messages are assigned to nodes as they are generated

while the protocol is being executed. These scenarios are called staticanddynamicrespectively.

In both cases the generation and assignment of messages is assumed to be adversarial.

There is also another classification depending on the numberof nodes in the network. Al-

though there are very interesting problems in scenarios where there are countably infinitely

many nodes, we concentrate here in the case where there are a finite numbern of them, al-

though we analyze protocol efficiency asn→∞.

In the static model, the number of nodes isn and it is assumed that some numberd ≤ n

of nodes are assigned messages before starting the execution of the protocol. In general, it is

assumed that all nodes know an upper bound on the number of nodes but they have no informa-

tion regarding the magnitude ofd. This is a reasonable assumption given that, in general, nodes

know at least the length in bits of an ID number, information that gives an upper bound on the

size of the network, and given thatd ≤ n due to different startup times or lack of reliability.
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Chapter 3

Models

In this chapter, we review models used in Radio Networks thatare usually found in the lit-

erature. As explained before, not always is the case in RadioNetworks that every node is

connected directly to every other node. Furthermore, in many cases this connection is not even

symmetrical. Therefore, a model for the topology of the network needs to be defined. Also, de-

pending on the application, Radio Networks have very different node constraints. E.g., in some

networks nodes have ternary feedback but in others the feedback is just binary. Therefore, a

detailed model of the constraints present in the nodes forming the network also is needed. We

summarize in this chapter models of topology and node constraints used in the Radio Networks

area and in Section 3.2.2 we focus in Sensor Networks describing in detail our harsh Weak

Sensor Model [FCFM05]. More details about Sensor Networks classification and taxonomies

can be found in [TAGH02].

3.1 Topology Models

Regarding the topology of a network, a well known specification is given by adirected graph.

A directed graph is a pair of sets{V,E}, whereV is a set ofpointsor nodesandE is a set of

ordered pairs of distinct points taken fromV . Any such pair is called anarc or anedge. In our

context, the points model the nodes of the network and the arcs represent the ability to send

messages directly (in one hop) from one node to another. If the communication in a network

is achieved through wires, an edgeAB in the graph represents the link that facilitates the

communication fromA to B. If on the other hand the communication in a network is wireless,

an edgeAB in the graph implies thatB is in the range of transmission ofA. Whenever this

relation is symmetric, anundirected graphcan be used as a model. For example, in a wireless

network where all nodes have the same range of transmission,an undirected graph is a suitable
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model because if a nodeB is reachable from a nodeA, A is also reachable fromB.

3.1.1 Topology in Radio Networks

The connectivity model widely used in Radio Networks where all nodes have the same range

of transmission is theGeometric Graph(GG). The specification of a GG includes a pair of sets

{V,E} and a numberr ∈ R
+. The set of nodes are points inR2 and an edgeAB ∈ E if and

only if A andB are separated by an Euclidean distance of at mostr. As mentioned before, the

graph is undirected because the range of transmission of allnodes is the same. If this is not the

case, more sophisticated models are needed.

There are also some variations of a GG in the literature. Whenthe distancer, modelling

the range of transmission is normalized to1, the graph is calledUnit Disk Graph (UDG).

For cases in which the connectivity beyond some distancer ∈ (0, 1] is uncertain, there is

a generalization of a GG in the literature calledQuasi-Unit Disk Graph(QUDG). The later

model can be extended with a distribution on the probabilityof being connected when the

separation distance is bigger than the uncertainty threshold. Also, the uncertainty threshold can

be defined as a function of the angle with respect to some direction of reference for cases where

directional antennas are used.

Of course, any of these models can be also extended with node sets in higher dimensional

spaces and with threshold distances under different metrics. The particular extension depending

on the setting we are modelling. A usual simple extension is to consider the points inR3

to model the deployment of the network in the real world. Another possible extension is to

consider a distribution on the probability of two nodes being connected. Such an extension

would imply a combination of the classical random graph model of Erdos and Rènyi [ER59]

with a GG. A more appropriate application of randomness to the GG model in the specific area

of Sensor Networks is explained in the next section.

3.1.2 Topology in Sensor Networks

In addition to a comprehensive model for the various constraints present in Sensor Networks,

a formal model of the potential connectivity of the network needs to be defined. In the past,
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computer networks have been modelled by means of classical random graphs. Starting in 1959

with a paper by Erdös and Renyi [ER59], the field of random graphs has been widely explored.

The classicalBernoulli random graph model is denoted asGn,p wheren is the number of nodes

andp is the probability of existence of each edge. Random graph models have been used for

instance to model the web-graph [ACGL02,KKR+99] where the structure of the random graph

gives insight into the behavior of the web-graph. However, the classical random graph model

is not adequate for the Sensor Network setting because the probability of having an edgeAB

is either0 or 1 depending on the Euclidean distance betweenA andB.

Regarding the deployment of nodes in a Sensor Network,deterministic deployment, i.e.,

the placement of nodes at specific locations, is only possible for small networks in a friendly

environment. However, this scenario is not reallistic for most of the intended applications of

Sensor Networks where a large area is expected to be covered and the environment is expected

to be either hostile or remote. Two models ofrandom deploymentof nodes are used. In one

model,n nodes are assumed to be distributed uniformly at random so that each node is equally

likely to fall in any location of the area of interest, independently of the other nodes. The other

model is a stationary Poisson point process with intensityn where the number of nodes in

disjoint regions is Poisson distributed and mutually independent.

Thus, Sensor Networks are best modelled byRandom Geometric Graphs(RGG) inR
2 [Pen03].

In the Random Geometric Graph ModelGn,r,`, n nodes are distributed uniformly at random in

[0, `]2, and nodes are connected by an edge if and only if they are at anEuclidean distance of

at mostr ≤ `, theconnectivity radius(Figure 3.1). The node density depends on the relative

values ofn,r and`. A specific instance ofGn,r,` is aRandom Geometric Graph (RGG), also

referred to asG(n, r, `). A popular instance of this model isGn,r,1 or simplyGn,r. Of course,

sometimes, a two dimensional model may be inadequate when the terrain in which the sen-

sors are positioned is uneven. In this case an extension to three dimensional random geometric

graphs may be needed.

Some properties commonly studied for random geometric graphs within the context of

sensor networks are

• Physical Coverage: For the region in question, what fraction of the region is covered by

balls of radiusr, centered on the points thrown randomly into the region withuniform
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`

Figure 3.1: A Random Geometric Graph.

distribution? More specifically we are interested in the number of nodes we must throw

such that the fraction of the region covered is1− o(1).

• Graph Connectivity: What is the relation amongn, r and` when a graphG(n, r, `) be-

comes connected? In keeping with the random nature of the model we say thatG(n, r, `)

is connected when it is connectedwith high probability.

• Route Stretch: Given two nodesu, v in a graphG(n, r, `), stretch(u, v) is defined as

the ratio of the shortest distance betweenu andv in the graph to the normed distance

between the two points in the plane. Thestretchof G(n, r, `) is the maximum of the

stretchover all pairs of points(u, v) in G(n, r, `).

The theory of random geometric graphs is a key tool to study some of the underlying prop-

erties in Sensor Networks such as connectivity or coverage.However, the results obtained

in this field can not be directly applied to Sensor Networks due to the additional constraints

present in them.

3.2 Node Constraints Models

Radio Networks is a vast area and there is a myriad of applications of such a technology,

e.g., cellular phones, wireless computer networks, ad-hocnetworks, etc. Depending on the

specific application the nodes forming the network have verydifferent constraints on their
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processing and communication capabilities, i.e., range oftransmission, life cycle, storage size,

etc. In addition to formal models of the topology or the potential connectivity among nodes, an

appropriate model of the constraints of the nodes in the network has to be defined, in order to

properly design and analyze protocols. We summarize here some of the models used in Radio

Networks and Sensor Networks.

3.2.1 Radio Networks

In a seminal paper [BYGI92], Bar-Yehuda, Goldreich and Itaipresented a formal model of

a radio network that specifies many of the important restrictions on sensor nodes, including,

e.g., limits on contention resolution, but they make no mention of computational limits, such as

small memory. More precisely, the model consists of an arbitrary multihop undirected network.

The nodes are assumed to be locally synchronous, i.e., they all have the same clock frequency

but perhaps different starting times. Each node either receives or transmits within each time

slot, but not both. A node receives a message successfully ina time slot if exactly one of its

neighboring nodes transmits in that time slot. If more than one neighboring node transmits in

the same time slot, the messages are garbled and the node receives noise. It is not possible

to detect collisions, hence, a node can not distinguish the case in which no neighboring node

transmits from the case in which more than one transmit in thesame time slot. The topology of

the network is not known a priori. The main difficulty in this model, as well as in most of the

models in Radio Networks, is the possibility of message collision, therefore, any protocol for

this model has to include contention resolution in order to be useful.

After this model was introduced, some papers [NO00a,KMPS04] have added more restric-

tions, although often such restrictions are implicit in thetext or algorithms rather than fully

specified. In the following section we elucidate a complete and comprehensive model for Sen-

sor Networks.

3.2.2 The Weak Sensor Model

As explained before, nodes in Sensor Networks are designed with the goal of obtaining a de-

vice as small as possible and at a very low cost. Therefore, sensor nodes have very harsh con-

straints in each of its main capabilities, processing, communication and sensing. These strong



14

constraints are the main reason why problems in Sensor Networks are challenging, because the

typical solutions utilized in computer networks are not suitable in such a harsh scenario. There-

fore, in order to approach any problem in Sensor Networks, and in addition of formal models

of the connectivity of the network, a formal model of the various sensor node constraints has to

be defined.

There is a vast body of literature on sensor networks, however most of it does not suffi-

ciently handle all aspects of the problem. All random geometric graph results related to ad-hoc

wireless networks requireω(1) degree (see e.g. [MP05]). All proposed protocols for sensor

network formation include some inappropriate hardware assumptions. For example, the sen-

sor network formation protocol in [SWLF04] builds a constant-degree network, but relies on

positional information hardware. The protocol proposed in[BLRS03] also builds a constant

degree network, but relies on the preëxistence of a scheme for channel-contention resolution.

The different models implicit in such results are inadequate and do not reflect all the limitations

under which sensor nodes operate.

Given the various limitations of sensor nodes and the absence of a reliable communication

structure after deployment, any sensor network protocol must work under difficult conditions.

In this section, we specify the formal Weak Sensor Model thatsummarizes the literature on

sensor node restrictions, taking the most restrictive choices when possible. The protocol for

Sensor Network formation presented in Chapter 6 is designedunder this model, whereas the

lower bounds in Chapter 8 are proved for the more general model of Radio Networks.

• MEMORY SIZE: Sensor nodes may have limited memory size. In fact, asymptotically

speaking, if we assume that the memory size is any function inω(1) we would be assum-

ing that nodes can have a memory of infinite size. Therefore, in the Weak Sensor Model

sensor nodes may store only a constant number ofO(log n) bit words.

• SHORT TRANSMISSION RANGE: Due to costs and size restrictions, sensor nodes may

not have a large range of transmission. Consequently, not all nodes are reachable from

a given node leading to the well known hidden-terminal problem. This limitation has an

impact on the density of sensor node deployment.

• DISCRETE TRANSMISSION RANGE: Some of the extant literature [SWLF04] assumes
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that nodes can vary their power of transmission. However, assuming that any number of

levels can be reached is unrealistic–in particular to analyze the asymptotic behavior of

the algorithm. In this model, sensor nodes can adjust their power of transmission to only

aO(1) number of levels.

• ONE CHANNEL OF COMMUNICATION: although it is assumed in some papers thatω(1)

channels are available in order to avoid collisions, this assumption is unrealistic–specially

in order to analyze the asymptotic behavior of protocols. Weconstraint the number of

channels of communication to exactly one.

• LOCALITY : Sensor nodes are distributed over a large area and may not bereachable

by a central controller. Hence, each sensor node must be capable of configuring itself

automatically.

• LOW-INFORMATION CHANNEL CONTENTION:

– SHARED CHANNEL OF COMMUNICATION: Given that this is a Radio Network and

that there is only one channel available, the communicationwith neighboring nodes

is through broadcast in a shared channel.

– CONTENTION-RESOLUTION MECHANISM: If more than one message is placed on

a multiple-access communication channel at the same time, acollision occurs and

no message is delivered. Hence, sensor nodes have to implement a contention-

resolution mechanism to access the channel.

– NO INITIAL INFRASTRUCTURE: Right after deployment, the nodes of a Sensor

Network have no communication infrastructure available (MAC layer). Therefore,

before that any exchange of information can be carried out, nodes have to self-

organize a medium access scheme bringing structure to the network.

– NO COLLISION DETECTION: Although in many Radio Networks it is possible to

detect a collision, it has been also argued that a collision can not be detected in

the presence of noisy channels [BYGI92]. In this model, onlytwo channel states

are feasible, single transmission and silence/collision.This scenario is popularly

known asbinary channelor it is said that nodes havebinary feedback.
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– NON-SIMULTANEOUS RECEPTION AND TRANSMISSION: A sensor node may not

be able to receive while transmitting because, in its vicinity, its own signal over-

whelms any signal transmitted by other nodes. Therefore, transmitters also cannot

detect collisions.

• ASYNCHRONICITY: No global clock or other synchronizing mechanism is assumed, but

all sensor nodes have the same clock frequency. We assume that time is divided into

slots. The use of a slotted scenario instead of a more realistic unslotted one was justified

in [Rob75], where it was shown that they differ only by a factor of 2 because a packet

can interfere in no more than 2 time-slots. This type of synchronicity is usually called

local synchronism.

• L IMITED LIFE CYCLE: Sensor nodes may be powered by sources such as solar energy.

These sensors may go down from time to time to recharge. This necessitates simpler and

fast computations and energy-efficient protocols.

• NO POSITION INFORMATION: Due to cost and size restrictions, sensor nodes may not

have position information obtained using a global or local positioning system, directional

antenna or other specialized hardware.

• ADVERSARIAL NODE WAKE-UP SCHEDULE: Given that the sensor nodes are deployed

over large areas and given the lack of a centralized controller, we can not expect all

sensor nodes to start the execution of protocols in the same time slot. Therefore, in

order to analyze these protocols in a worst case scenario, weassume the existance of an

adversary that determines the wake-up schedule.

• UNRELIABILITY : In addition to the lack of guarantees of a constant power supply, due

to low cost sensor nodes are unreliable. Hence, sensor network protocols have to be

designed to be robust in the case of failures of one or more sensors.
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Chapter 4

Problems

4.1 Radio Networks

We summarize in this section some of the problems commonly studied within the Radio Net-

works area. Although these problems emerge from different motivations, they are all due to

the main constraint present in Radio Networks, the communication channel is shared among

many nodes. The models under which these problems are studied include various assumptions

and constraints, the strongest being the harsh Weak Sensor Model detailed in Section 3.2.2. Of

course, protocols designed under stronger models are more robust, however, weaker models

are valuable in certain applications in order to achieve more efficient solutions. In any case, all

models include the following assumption due to the shared use of the communication channel:

In Radio Networks, a node receives successfully a message ina time slot if and only if exactly

one of its adjacent neighbors has transmitted in that time slot. If many neighbors send messages

simultaneously the messages are received garbled.

A fundamental problem in Radio Networks is to achieve a successful, i.e. non-colliding,

transmission of at least one node. If the network is a single-hop one, this problem is called in

the literature theselectionproblem. However, in multi-hop networks we will distinguish two

variants of this problem. If in a given time slot exactly one of the adjacent neighbors of a node

transmit, we say that there was aclear receptionin that time slot. Whereas, in the case where a

node transmits a message in a given time slot, and no other node within two hops of the trans-

mitter transmits in the same time slot, we say that there was aclear transmission. Of course,

in a one-hop network both problems are identical. Due to lackof global synchronization nodes

may become active at different times. In order to analyze protocols for clear transmissions

in a worst case scenario, the nodes-startup schedule is assumed to be adversarial. The time

complexity of protocols for clear transmissions is computed from the time that the first node
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becomes active until the time slot in which the clear transmission is achieved. More details on

these problems can be found in [Wil86,BYGI92,KM98,KG85,Mar94,GW85,CMS01,Kow05].

In the dynamic model messages to be transmitted are allocated to nodes as the protocol is

executed. Therefore, in addition to define the number of participating nodesn, the way that

messages arrive has to be specified. One popular model is to assume that in each time slot a

new message arrives to a node with some probabilityp, independently of other nodes and time

slots – a Bernoulli process. In this case, each node has a queue of messages to be transmitted.

In the dynamic model the most important problem is to give astableprotocol, i.e., a protocol

that schedules transmissions so that no queue overflows.

The problem of stability under dynamic allocation of messages has originated a very active

area of research calledAdversarial Queueing Theory(AQT). The introduction of an adversarial

model in communication networks is due to Cruz [Cru91a,Cru91b]. In this model, each packet

to be transmitted belongs to asessionand has a predefined route. The adversary gets to define

what are the active sessions in the network, what are their routes, the arrival rate and the bursti-

ness. The AQT model was later introduced in [BKR+01]. In this model, the network traffic

is not grouped in sessions but still the adversary gets to define the route to be followed by a

packet and the arrival rate. Therefore, nodes can only choose a scheduling policy. While in the

model of Cruz links with different delays and packets of different sizes were allowed, in the

AQT model this is not possible since the system is assumed to be synchronous. More recently,

Calzada, Fernández, López, Martı́nez and Santos in [CFL+04] have proposed a generalization

of the AQT model to allow links with different delays and packets of differents sizes. The

model proposed has been termedContinuous Adversarial Queueing Theory(CAQT).

A problem widely studied in Radio Networks isbroadcast. In one-hop Radio Networks the

broadcast problem is as follows. A non-empty set ofsourcenodes is allocated a message to be

transmitted and the message has to be delivered to all the other nodes in the network. Given

that it is a single-hop setting, one non-colliding transmission is enough to solve the problem. In

multi-hop Radio Networks broadcast goes beyond nodes sending a message to their neighbors.

Since some nodes might not be in range of any source node, the solution of this problem relies

in message forwarding. There are also a few well-studied variants of the broadcast problem.

If the source nodes expect to receive an acknowledgement theproblem is calledbroadcasting
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with acknowledgement. If different source nodes are allocated different messages and all nodes

have to receive all messages for the problem to be solved the problem is calledgossipingor

all-broadcast. An important constraint of the channel for the gossiping problem is what is the

maximum length of a message that can be transmitted in one time slot. Although for most of

the problems in Radio Networks a message is supossed to have alength ofO(log n) bits, in

some literature related to the gossiping problem it is assumed that links have enough capacity

as to allow many messages to be combined. In the broadcast problem it is customary to assume

the existance of an adversary that gets to decide which is theset of source nodes. Interesting

results and further details on the broadcast problem can be obtained from [BYGI92, KM98,

BYII93,BP97,CGOR00,CGR00,CGG+02,CMS01,CR03,KP03,KP04b,KP04a,LP02].

Another problem of interest in Radio Networks is theleader electionproblem. In the leader

election problem the participating nodes have to choose a leader among themselves. That

is, at the end of the protocol exactly one node has status of leader and all the other nodes

have status of non-leader and know the identity of the leader. Leader election is a central

problem in Radio Networks because many other more complex problems rely on the existance

of a leader or distinguished node in the network. In the deterministic case the lack of ID

numbers makes this problem unsolvable so it is customary in the literature to assume that

nodes have ID numbers. For randomized solutions it is commonto assume that no ID numbers

are available therefore an initialization phase assigns different ID numbers to every node. The

leader election problem has been studied in the scenario where the number nodes is known

and where it is unknown. Like for the broadcast problem, the leader election problem in a

single-hop network is reduced to achieve a succesful transmission. The node that achieves

such a transmission first becomes the leader. However, in themulti-hop setting other ways of

breaking the symmetry are necessary. For more details on theleader election problem, we refer

the reader to [HNO99,JKZ02,NO02a,NO00b,NO02b,KR03,BIN06].

A fundamental problem in Radio Networks is then to establisha mechanism of accessing

the shared communication-channel in order to avoid or efficiently resolve contention. The prob-

lem is easier to resolve if the nodes are permanently active.However, due to energy constraints,

it is often desirable to let the nodes become inactive in the communication channel whenever

there is no ongoing communication. In other words, after some session of communication is
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completed, nodes should enter astandbyor sleepstate and stop being alert until a new session

begins. Unfortunately, this mechanism entails the loss of synchronization, if there was any.

The problem of regaining synchronization or induce a changeto an active state to all nodes in

a Radio Network after entering a sleeping mode is usually called thewakeupproblem. More

specifically, the wakeup problem is defined as follows. Initially, all nodes are in sleep mode.

Any node can wake up either spontaneously or by receiving a wake-up signal from an awake

node. Nodes can wake up spontaneously in any time slot. Once anode is in awake mode, it

starts running the wake-up protocol in order to wake up othernodes that are still in sleep mode.

The problem is solved after all nodes in the network are in awake mode. The time complexity

of a protocol that solves this problem is computed from the time slot that the first node wakes

up spontaneously until the time slot when the last node is woken up. Assuming that not all

nodes wake up spontaneously, otherwise there is no problem to solve, the wakeup problem in

one-hop Radio Networks is the same as the clear transmissionproblem. However, in multi-hop

Radio Networks, similarly to the leader election and broadcast problems, one clear transmis-

sion is not enough. An interesting observation is that the wakeup problem can be seen as a

generalization of the broadcast problem. That is, if we havea protocol that solves the wakeup

problem we can solve the broadcast problem by waking up spontaneously the source nodes

only in the first time slot. More details and relevant resultsfor the wakeup problem can be

found in [CGK04,CK04,GPP01, Ind02,JS05].

4.2 Sensor Networks

We concentrate now in the most stringent setting in Radio Networks, the Sensor Network.

Although the problems here described are also apply to otherRadio Networks, they are partic-

ularly challenging in Sensor Networks.

Even though communication among sensor nodes in a Sensor Network is through radio

broadcast, it is useful to set up explicit links between nodes in order to establish routing

paths and prevent flooding. A Sensor Network is capable of achieving large tasks through

the coördinated effort of sensor nodes, but individual nodes have severe limitations on memory

size, life cycle, range of communication, etc. We specify these and other limitations in the
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Weak Sensor Model in Section 3.2.2. Given these difficult conditions, i.e. a group of weak

sensor nodes deployed in a geometric random distribution, anatural question is how to orga-

nize such a network. Therefore, theSensor Network Bootstrappingproblem, also calledSensor

Network Initialization, Sensor Network Formationor Topology Controlin some literature, has

emerged as the most fundamental problem in the Sensor Networks area. Any sensor network

initialization algorithm must be fast and distributed, andmust resolve channel contention is-

sues. The network constructed by such an algorithm must be connected and, according with

the Weak Sensor Model, must have low degree and diameter. Thelimitations on individual

sensors nodes make this problem non-trivial, and its adequate resolution is crucial for making

sensors useful.

There are two main types of issues in sensor network formation: those relating to geo-

metric properties and those relating to network protocols;and any solution achieved for either

must be compatible with an accurate model of sensor nodes. Onthe one hand, coverage and

connectivity in sensor networks are dependent on the distribution of nodes in an area and the

range of transmission of each node. Additionally, the density of nodes in an area determines

the minimum path length between any two nodes in the induced connectivity graph. The lim-

ited range of transmission makes these properties geometric. On the other hand, protocols for

sensor network formation are limited by the fact that sensornodes share a common channel of

communication and that they do not typically have access to directional or positional informa-

tion. Memory limitations in sensor nodes also impose the restriction that a node can only keep

track ofO(1) neighbors.

As it is customary in Radio Networks, the analysis of protocols for Sensor Network initial-

ization is done under the assumption of the existance of an adversary that knows the protocol

and gets to define which nodes are active in each time slot. Given the unreliability and the lack

of a constant power supply that characterizes the sensor nodes, the time complexity can not be

analyzed for the network as a whole but for each individual node. I.e., if we define the running

time of a protocol as the time that takes to establish all links among nodes after the first node

becomes active, an adversary could potentially define a wake-up schedule that would make any

protocol never build the network. Instead, the time complexity is analyzed for each node. In

other words, for any nodei, the running time of a Sensor Network initialization protocol is the
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time that takes fori to join the network after it becomes active, unlessi is turned off. Given the

energy constraints of a sensor node, protocol efficiency is sometimes analyzed in terms of the

energy consumed. It is well known that the transmission costis a polynomial of degreeα ≥ 2

in the distance covered. In the most general setting where nodes have more than one range of

transmissionr available, a frequent metric of the cost of sending a messagebetween two nodes

is to consider the sum of the energy cost of each hop in the pathbetween them. If we consider

the total energy consumed in the network as the sum over all links in the network, it has been

proven that to find the optimal subgraph of the connectivity graph that minimizes the energy

cost is NP-hard [KKKP00]. More details on the sensor networkinitialization problem can be

found in Chapter 5.

The other key problem in Sensor Networks isrouting messages through the network. In

fact, the meaning of routing messages in Sensor Networks differs according with the applica-

tion. Some Sensor Networks are designed to monitor some physical variable such as tempera-

ture. In this application nodes may transmit continuously their measurements or only transmit

whenever a significant change is observed. In any case, thereare distinguished nodes in the

network calledsinksand all nodes forward their messages to them. In other applications nodes

may accept queries from any node in the network which might identify itself with its ID or even

with its geographical position.

Due to the harsh restrictions under which sensor nodes operate, solving the routing prob-

lem using the techniques frequently used in communication networks is not possible. Routing

is particularly challenging when the following two restrictions are present at the same time,

constant memory size and lack of position information. Under the first restriction is not possi-

ble to maintain routing tables. Under the second one is not possible to use geographic routing.

Therefore, in some settings the lack of position information constraint is relaxed tolack of ac-

curate position information. In this case, it is assumed that nodes canestimatedistances based

on measurements of transmission delays.

The low cost and low reliability requires in general redundant deployment of sensor nodes.

Therefore, the importance of the idendity of a node is reduced compared to traditional com-

munication networks. In this case the routing paradigm usedis calleddata-centric. In the

data-centric paradigm the objective is the retrieval of data keyed on an event where the identity
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of the nodes or their position is irrelevant. An event is an abstraction that may model a set of

sensor measurements, the frequency or speed of change of a variable, etc. We refer the reader

to [ASSC02,KW03,PB03,EGHK99,GGSE01, IGE00,BE02] for more details about routing in

Sensor Networks.

Another problem of interest in Sensor Networks ispositioning. Although in most of the

applications specialized hardware for positioning is not available due to cost, sometimes the

absolute position of a node is not necessary and its relativeposition with respect to its neighbors

is enough. Furthermore, in some applications may be enough to determine the topology of the

underlying graph because this information gives an upper bound on the distances between any

pair of nodes. In general, no matter what is the method used todetermine position, errors are

introduced and the resulting distance matrix is not embbedable even in three dimensions. The

problem of embbeding a distance matrix in the minimum numberof dimensions is a vast area

of research in engineering and other areas and it is usually called rigidity [JJ03, Sax03, LY82,

Hen92,Lam70].

There are a number of closely related well-known graph problems whose efficient solution

would be a promising approach to give structure to a Sensor Network. Namely,Clustering,

Dominating Set, Maximal Independent Set(MIS), Vertex Coloring, Edge Coloring, etc. Unfor-

tunately, many of the solutions included in the literature for these problems [WAF04, Bas99,

ACS94, Lub86, FPS02] assume an underlying medium access scheme or contention resolution

mechanism.
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Chapter 5

Survey: the Sensor Network Initialization Problem

Given that Sensor Network initialization is a fundamental problem and its solution is non-

trivial due to all the constraints present in sensor nodes, we concentrate in this chapter in the

Sensor Network initialization problem. The extant literature related to Sensor Networks is vast

and includes both theoretical and empirical research work.Although many of the solutions

proposed do not sufficiently handle all the aspects of the problem, we summarize here some of

the most relevant results for Sensor Network initialization and related problems. This chapter

is not intended to provide afull overview of the existing body of work in Sensor Network

initialization–a task beyond the scope of this thesis, but to give some detail on previous work

before we give an optimal initialization protocol in Chapter 6.

A protocol calledSelf-Organizing Medium Access Control for Sensor Networkswas pre-

sented in [SGAP00]. This protocol builds a flat topology withno local or global masters. The

model for this protocol is as follows. Due to the short transmission range of the sensor nodes,

it is assumed that a reception consumes the same energy as thetransmission. Therefore, nodes

can not have their radios on permanently. There are enough channels as to accomodate each

link among neighbors in a different frequency in order to avoid collisions. Furthermore, the

number of available channels is assumed to be big enough so that if two nodes choose a chan-

nel at random the probability of choosing the same channel islow. Another key assumption

is that nodes have memory of sizeΩ(∆) where∆ is the maximum degree in the connectivity

graph. Finally, nodes are assumed to start running the protocol (wake up) at random times

under some distribution such that the probability of two nodes being synchronized is low.

Under these assumptions, the protocol works as follows. Upon waking up, nodes start

running a discovery phase. The discovery phase starts with alistening period. If a nodeA

receives a discovery message from some neighboring nodeB, A sends a reply message with its
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current schedule of transmissions/receptions. Then, the nodeB finds a time slot available in the

schedules of both and sends back toA that information. After the discovery phase nodes enter

the normal communication phase. In the communication phase, each node repeatedly follows

its own schedule of transmissions/receptions so that from now on the system is synchronous.

The discovery phase length is chosen according with the application and it is assumed to

be long enough so that the probability of not discovering a neighboring node is small. Also,

collisions will not occur because all links are establishedin different channels. If two nodes do

not find a time slot available in their schedules during the discovery phase, simply give up and

the link is not established. The period of the communicationphase is chosen according with the

application and it is long enough as to handle most of the links of a node and the probability of

having an isolated node is low. This work is empirical and does not include any running time or

energy consumption analysis. However, as we will see in the analysis of the protocol below, the

inclusion of a phase long enough to ensure a low probability of collisions introduces a factor

of at leastΩ(nγ log2 n), γ > 0 in the overall running time of the protocol. The requirementof

Ω(∆) different channels and memory size makes it infeasible froma theorical standpoint.

The protocolK-Neigh[BLRS03] builds a network where every node has at mostk neigh-

boring nodes, wherek is tuned to ensure connectivity w.h.p. The model under whichthis

protocol works includes the following assumptions. Nodes are deployed in the plane uniformly

at random. Although the transmission power can be adjusted,all nodes are constrained to the

same maximumP . P is a function ofn and it is chosen so that the network is connected w.h.p.

The protocol also relies in some distance estimation mechanism such as measuring the radio

signal strength received or comparing the time of arrival ofdifferent kinds of signals. Given

that information about all neighboring nodes is collected,the memory size is assumed to be

in ω(1). Although the synchronization is local, the difference between node wake up times is

upper bounded by a constant∆. The protocol is as follows.

Upon waking up at timeti ∈ [0,∆], nodei waits for∆ time slots and chooses a time slot

within the nextδ time slots to transmit its ID number at the maximum power.δ is chosen big

enough so that the probability of collision is low. From every message received,i stores the

ID number and the estimated distance to that node. At timeti + 2∆ + δ, i ends its discovery
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phase, sorts the list of neighbors by distance and selects thek closest discarding the rest.1 At a

time slot randomly chosen among the nextδ steps, nodei broadcasts its list at maximum power.

Based on the lists received during the next∆ time steps, at timeti + 3∆ + 2δ nodei removes

from its list all nodes that do not includei in their lists, and adjust its transmission power to the

power needed to reach the farthest node in its list.

It is easy to see that the total running time of this protocol is 4∆ + 2δ. Given that∆

is assumed to be a constant, the dominating factor isδ which is tuned to guarantee that the

probability of collisions is low. The probability can be bounded as follows. Ifd is the number

of nodes in a one-hop neighborhood, the probability of not having a collision is

Pr =

d−1
∏

i=1

(

1− i

δ

)

≈
d−1
∏

i=1

e−i/δ

= exp

(

−
d−1
∑

i=1

i

δ

)

= exp

(

−d(d− 1)

2δ

)

≈ exp

(

−d2

2δ

)

∈ Ω

(

1− 1

nγ

)

, γ > 0 for δ ∈ Ω(d2nγ).

It was proved in [XK04] that in an RGG the minimum number of neighbors needed to en-

sure connectivity w.h.p. isd ∈ Ω(log n). Therefore the overall running time isΘ(nγ log2 n), γ >

0.

As in the previous protocol, the assumption of anω(1) memory size makes this protocol

infeasible asymptotically speaking. Also, the assumptionof having the capability of adjusting

the power of transmission toany level is too strong. In particular, given that the energy cost

is at least quadratic in the distance of each link, the optimal path might include sub-constant

distances.

1Although the authors included here an aditional time delay for the computation of the list, for the sake of clarity
we do not take it into account based on the standard assumption for analytical purposes that in Radio Networks
nodes have unbounded processing power.
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An energy efficient topology control scheme calledOrdYaoGGwas presented in [SWLF04].

The assumptions of this model are as usualn nodes distributed uniformly in theR2 plane, each

node with a maximum transmission range normalized to1. Therefore, the connectivity graph

is a UDG. All nodes have different ID numbers and each node knows its position informa-

tion by means of a GPS or other specialized hardware such as a directional antenna and signal

strength measurement capabilities. At a minimum, the assumption is that every node knows

in advance or will collect the position information of all its neighbors. Therefore, the memory

size is assumed to be inω(1). Global synchronization is also necessary given that the proposed

algorithm works in phases. Finally, an underlying contention resolution mechanism is assumed

in order to collect information of neighboring nodes.

The topology obtained by this protocol has optimal power stretch, constant degree and it is

planar. The power stretch is defined to be the ratio between the energy cost of a path connecting

two nodes in the subgraph of the connectivity graph, to the cost in the optimal path in the

connectivity graph. Obtaining a planar topology is a requirement of many routing algorithms

to guarantee message delivery.

A brief description of the protocol can be given as follows. The algorithm consists of three

phases. The first phase constructs a Gabriel subgraph of the connectivity graph. In a Gabriel

graph, two nodesu andv are conected by an edgeuv if and only if there is no other node in

the circle of diameteruv. A Gabriel subgraph has been proven to have optimal power stretch.

However, the degree can be as big asn − 1 and one of the goals of the protocol is to obtain

a constant degree topology. The second phase establishes anordering among neighbors in the

Gabriel graph, and in the third phase the node with the higherpriority among its neighbors

in the ordering splits the neighborhood in a constant numberof slices and chooses the closest

neighbor in each slice. Therefore, the resulting topology has constant degree.

Once again, as in the previous protocols, assumptions such as non-constant memory size or

non-constant number of levels of transmission power, make this protocol infeasible from a the-

oretical perspective. Also, in practice, it is assumed in general that specialized hardware such

as GPS or directional antennas is too costly for this application. Regarding the running time

analysis, we omit the details here since the protocol does not include any contention resolution

mechanism.
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More general information about sensor networks can be obtained from the surveys [RMSG,

ASSC02,KW03,PB03,YKR06].
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Chapter 6

Bootstrapping a Hop-optimal Network in the Weak Sensor Model

The most fundamental problem in Sensor Networks is to efficiently establish the network

among sensor nodes from scratch right after deployment. As explained before, its solution

is non-trivial due to all the constraints present in sensor nodes. Previous work does not suffi-

ciently handle all aspects of the problem because all solutions include some strong assumptions

that yield to an inaccurate efficiency analysis or even make some solutions non-implementable

in sensor nodes. The protocols detailed in this chapter are the first network initialization algo-

rithms that are implementable on sensor nodes.

Problems in sensor networks are twofold: related to geometric properties and related to

network protocols. Sensor nodes have limited range and are deployed at random over a large

area. Therefore, geometric properties like path length, coverage and connectivity need to be

understood. Thus, sensor networks are modeled as RGGs. On the other hand, node limitations,

shared communication channel and lack of additional infrastructure at deployment impose lim-

itations on network protocols. We specified these and other limitations in Section 3.2.2 where

the harsh Weak Sensor Model is defined.

Until recently, the existing literature on sensor network initialization did not sufficiently

handle all aspects of the problem. All random geometric graph results related to ad-hoc wireless

networks requiredω(1) degree (see e.g. [MP05]). All proposed protocols for sensornetwork

formation included some inappropriate hardware assumptions such as the availability of posi-

tional information hardware [SWLF04] or the preëxistenceof a scheme for channel-contention

resolution [BLRS03]. The different models implicit in suchresults are inadequate and poorly

reflect the various limitations under which sensor nodes operate, and indeed, there seems to be

considerable confusion in the literature as to what are or are not reasonable assumptions about

the capabilities of sensor nodes.
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Sensor Network initialization research has three parts: (i) to specify a comprehensive model

that captures all the restrictions present in sensor nodes;(ii) given that under those restrictions

is not possible to establish all the links of the connectivity graph, to show that there exists a

subgraph of the connectivity graph that would make a connected network without asymptoti-

cally increasing the cost of delivering messages; and (iii) to give a fast distributed protocol that

works under the constraints of the specified model. We have already adressed the first part in

Section 3.2.2 where the Weak Sensor Model is detailed. We concentrate in this chapter in the

other two parts. Given the formal Weak Sensor Model, we show that a good Sensor Network

must have constant degree and lowhop-stretch. We also show that any appropriate RGG has

such a subgraphwith high probability. In other words, given any connected RGG, we show

that, with high probability, there exists a subgraph, wherethe path length between any two

nodes in terms of number of edges is asymptotically optimal even if the degree is restricted to a

constant number of neighbors. Finally, we also give aO(log2 `) localized algorithm that builds

the network modelled by such a graph, under the Weak Sensor Model.

Throughout this chapter, our node constraints model is the Weak Sensor Model detailed in

Section 3.2.2 and the potential connectivity of the nodes ismodelled by a random geometric

graph. As explained in Section 3.1.2, the deployment of nodes in a random geometric graph

can also be interpreted as a Poisson process in the plane where the number of points in[0, `]2 is

given by the Poisson distribution with meann. In our proofs, we assume the uniform deploy-

ment, i.e., each of the sensors is equally likely to fall at any location in [0, `2] independently

of the other sensors, although the results hold for the Poisson model as well with almost no

change in the proof techniques.

6.1 Related Work

The Sensor Networks area is very active and includes a vast body of theoretical and empirical

research work impossible to completely include here. Before describing the hop-optimal boot-

strapping protocol, we summarize in this section some of themost closely related work. The

details of some of this work are given in Chapter 5.
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6.1.1 Threshold properties inGn,r and Gn,r,`

Gupta and Kumar [GK98], in a seminal paper in the field of random geometric graphs computed

the minimum radius needed to obtain a large connected component with high probability. This

and other results [Pen03] give us a critical radius such thateach node will have many neighbors.

Of course, sometimes, a two dimensional model may be inadequate when the terrain in which

the sensors are positioned is uneven. In this case an extension to three dimensional random

geometric graphs may be needed.

In theGn,r,` model, tight thresholds for connectivity, coverage and route stretch, were shown

by Muthukrishnan and Pandurangan [MP05] using an overlapping dissection technique called

bin-covering. More recently, Goel, Rai and Krishnamachari[GKR04] showed that in fact

all monotone graph properties have a sharp threshold for random geometric graphs. Other

properties of random geometric graphs such as vertex degreeor k-connectivity were studied

in [AR97a,AR97b,Pen99].

6.1.2 Sensor Networks initialization

A protocol for bootstrapping sensor networks was presentedin [SGAP00]. In order to avoid

collisions, the number of channels needed is a function of the density, which makes it infea-

sible. A network formation protocol, where node degreek is a constant tuned to ensure con-

nectivity w.h.p., is given in [BLRS03]. This protocol relies on expensive distance estimation

hardware such as GPS. Recently, an energy efficient topologycontrol scheme was presented

in [SWLF04]. This algorithm requires the use of a directional antenna and distance estima-

tion hardware. In all these schemes, no contention resolution mechanism is given, andω(1)

memory size is assumed. Refer to Chapter 5 for further details.

6.1.3 Bluetooth

Bluetooth [BS01, Blu, MB00],which also limits the local connectivity of nodes, is a local area

wireless technology designed to enable voice and data communication between various elec-

tronic devices. In these networks the nodes have less restrictive constraints (like power supply,

range of transmission, memory capacity, etc.) than in sensor networks. In Bluetooth, a group
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of devices sharing a common channel is called a piconet. Eachpiconet has a master unit that

selects a frequency hopping sequence for the piconet and controls the access to the channel.

Other participants of the group known as slave units are synchronized to the hopping sequence

of the piconet master. The maximum number of slaves that can simultaneously be active in a pi-

conet is seven. A slave in one piconet can be a master or slave in another piconet. Piconets can

also be interconnected via bridge nodes to form a bigger ad hoc network known as a scatternet.

There has been considerable work on schemes for the formation of scatternets. Barrière et

al. [BFNO03] proposed a distributed construction technique for Bluetooth scatternets of low

degree and fixed diameter. This technique is useful even in the dynamic case where nodes are

assumed to come alive and drop dead from time to time. Howeverthis technique is restricted to

networks where all nodes are within transmission range of each other and hence is unrealistic

for the purpose of sensor network formation. Salonidis et al. [SBTL01] earlier proposed an

algorithm for constructing scatternets, but this technique suffers from the same limitations as

above and further is restricted to 32 nodes and static layout. Schemes proposed for scatternet

formation in [LS01, SBTL01, WTH02, ZBC01, FMPC04] are designed to work in the more

general case where all nodes may not be within transmission range of each other. Techniques

proposed in these are strictly heuristic or do not fit in theweak sensor model.

6.1.4 Cellular Systems

There are various reasons why medium access control protocols used in cellular systems can

not be used in Sensor Networks. In a cellular system, mobile nodes are a single hop away

from distinguished nodes calledbase stationsand the base stations form a wired backbone.

The primary goal of a medium access scheme in a cellular system is to guarantee quality of

service and efficient bandwith use, but power efficiency has asecondary rol given that the

base stations have constant power supply and the users can replenish the batteries of the mobile

nodes. In Sensor Networks there is no central control such asa base station and power efficiency

dominates the life cycle of the network, therefore existentsolutions for cellular systems can not

be applied.
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6.2 Geometric Analysis of Sensor Networks

Recall that sensor nodes may only set up links with a constantnumber of neighbors, a con-

sequence of the memory size limitation in the Weak Sensor Model, and since sensor nodes

are distributed uniformly at random, the potential connectivity relation defines aRandom Geo-

metric Graph(RGG). Hence, any protocol for network formation must set uplinks defining a

constant-degree spanning subgraph of the RGG. However, ignoring potential links may result

in an increase in path lengths in the subgraph. This increasein path length can be measured in

two ways: in terms of increase in the number ofhopsor increase in route stretch.

In applications where the propagation delay is significant,route stretch is an appropriate

measure of optimality. However, sensor networks have smallinter-node distances, and propa-

gation delay is low. One of our primary concerns in the Weak Sensor Model is that we should

minimize energy consumption at each node so as to maximize the life cycle. Thus, a Sensor

Network is optimal when it minimizes the number of transmissions, which is to say, minimizes

the number of hops in each path, rather than the weighted pathlength. Note that schemes have

been proposed that attempt to minimize energy consumption [SWLF04], and these favor many

short hops over a few long ones. However, any such scheme requires anω(1) number of trans-

mission power levels and, furthermore, ignores the contention resolution overhead of the extra

hops. A formal definition of stretch in terms of hops follows.

Let the length of a path connecting two nodes in a given graph be the number ofedges

of such a path. Letdmin(u, v) be the shortest path between two nodesu andv in the RGG

G(n, r, `). Let D(u, v) be the Euclidean distance betweenu andv in the plane. Note that in

G(n, r, `), dD(u, v)/re is a lower bound ondmin(u, v). Call this lower bound,dopt(u, v). The

hop-stretchof (u, v) is defined as the ratiodmin(u, v)/dopt(u, v). Thehop-stretchof G(n, r, `)

is the maximum of thehop-stretchof (u, v) over all pairs of points(u, v) in G(n, r, `). In the

rest of this section we will outline a scheme to obtain a constant degree hop-optimal subgraph

from a sufficiently dense random geometric graph.
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6.2.1 Disk Covering Scheme for Sensor Network Formation

The Disk Covering Scheme presented in this section shows theexistence of a bounded degree,

bounded stretch subgraph of a RGG. The description and analysis of a distributed algorithm is

presented in later sections 6.3.1,6.3.2 and 6.3.3. Before describing the scheme, we introduce

some necessary terminology.

Definition 1. A Random Geometric Graphor G(n, r, `) is an instance ofGn,r,` wherer is the

connectivity radius.

Given a sufficiently denseG(n, r, `) = 〈V,E〉, the goal of the disk covering scheme is to

produce as output a spanning subgraph〈V ′, E′〉 such thatV ′ = V , E′ ⊂ E, the maximum

degree is bounded by a constant and the path length is asymptotically optimal. The precise

nature of the path length optimality is given in the proof of Theorem 11.

Definition 2. The graph obtained as a result of the disk covering scheme is called theConstant-

degree Hop-optimal Spanning Graph(CHSG)

The following definitions will be relevant here and their meaning will be clear after the disk

covering scheme is fully described.

Definition 3. All nodes covered by the same disk at the end of the disk covering scheme are

connected to each other in the RGG and will be referred to as adisk-clique.

Definition 4. Some (possibly all) of the nodes covered by the same disk at the end of the disk

covering scheme are connected to each other by a spanner in the CHSG and will be referred to

as adisk-spanner.

Definition 5. A bridge is a node, lying at the center of a disk, that is designated to communicate

between two or more disk-cliques.

The following pseudocode summarizes the Disk Covering Scheme. a and b are tunable

parameters that affect the maximum degree and hop-stretch of the CHSG. Figure 6.1 illustrates

this protocol.

1. Add all nodes from the RGG to the CHSG.
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(a) The connectivity graph (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5 (partially)

Figure 6.1: Illustration of the Disk Covering Scheme

2. Lay downsmalldisks of radiusar/2, 0 < a < 1 centered on nodes, such that no central

node is covered by more than one small disk and no node is left uncovered. We call each

central node abridge. Note that the bridges form a Maximal Independent Set (MIS) of

the spanning subgraphG(n, ar/2, `) ⊆ G(n, r, `).

3. Add to the CHSG all edges from the RGG that connect bridges.

4. Expand the small disks intobig disks of radiusbr/2, a < b ≤ 1.

5. Add to the CHSG the necessary edges to form a spanner of constant degree among nodes

covered by the same big disk. We call this spanner adisk-spanner.

6.2.2 Analysis of the Disk Covering Scheme

In this section the Disk Covering Scheme described in Section 6.2.1 is proved to produce a

CHSG with asymptotically optimal path length. In Section 6.2.2 we establish a bound on the
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maximum degree of a node in the CHSG. In Section 6.2.2 two useful results for a connected

G(n, r, `) are established: A bound on hop-stretch and bounds on the node density. Finally, in

Section 6.2.2 we prove a theorem on the hop-optimality of theCHSG.

Degree Bound

Lemma 6. At the end of the Disk Covering Scheme, each edge of length at most(b−a)r/c has

both endpoints within a single big disk w.h.p, for any constant c > 1.

Proof. For the sake of contradiction, assume there exists such an edgee of lengthl ≤ (b−a)r/c

not covered completely by one big disk. All nodes are coveredby small disks. Each endpoint

of e has to be covered by a different big disk, otherwisee is already covered. CallC the center

of e. Call D the center of any big disk partially coveringe. Sincee has at least one point

outside the big disk, the distanced(D,C) > br/2− l/2 as shown in figure 6.2.

ar/2

br/2

D
C

> br/2− l/2
≤ (b− a)r/2c
> (b− a)(c− 1)r/2c

Figure 6.2: Illustration for Lemma 6

Therefore, all centers of big disks that partially covere are located outside a circle of radius

(r − l)/2 centered onC. Then, the corresponding small disks leave an uncovered area bigger

than the area of a circle of radiusr′ > br/2 − l/2 − ar/2 ≥ (b − a)(c − 1)r/2c. Since there

is no small disk in this area, there is no node in this area, otherwise it would be a disk center.

But, as proved in Lemma 9, in any circle of radiusΘ(r) there areΘ(log l) nodes w.h.p. This is

a contradiction.

Lemma 7. The degree of any node in the CHSG is inO(1).
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(a) Bridge nodes (b) Non-bridge nodes

Figure 6.3: Illustration of the upper bound on the degree.

Proof. All bridges are separated by a distance of at leastar/2. Connected bridges are at a

distance of at mostr. In figure 6.3(a) consider the smallest regular hexagon whose side is a

multiple ofar/2 and covers completely a circle of radiusr. Consider a tiling of such hexagon

with equilateral triangles of sidear/2. As proved by Fejes-Tóth in 1940 [FT40], the hexagonal

lattice is indeed the densest of all possible plane packings. Therefore, the number of vertices in

such a tiling is an upper bound on the number of bridges that connect to a bridge located in the

center of such a hexagon. That number is:

3
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+ 1

)

(6.1)

There is an extra edge that is needed to connect a bridge with its disk-spanner. Sincea is any

constant such that0 < a < 1, the degree of any bridge is inO(1).

Using a simple geometric packing argument, it can be proved that a non-bridge node, is

covered by at mostπ/ arcsin(a/2b) big disks. By construction, a non-bridge node is connected

to a constant number of neighbors within the same big disk (see figure 6.3(b)). Therefore, the

degree of any node is inO(1).

Hop Stretch and Density inG(n, r, `)

Theorem 8 demonstrates the existence of a path with an asymptotically optimal hop-stretch.

The proof of the theorem uses an overlapping dissection technique, called bin-covering, pre-

sented by Muthukrishnan and Pandurangan [MP05].
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u

v

s

r′/2

r′/2

αr′/2

slices

Figure 6.4: Strip between nodes u and v showing bin covering and slices.

Theorem 8. Given aG(n, r, `) where the following conditions are satisfied:r2n = k`2 ln `,

r = θ(`εf(`)), f(`) ∈ o(`γ), γ > 0, 0 ≤ ε < 1, and0 < α ≤ 1 is a fixed constant. For any

constantk > 54+α2

α , the hop-stretch is1 +
√

α2 + 4 w.h.p.

Proof. It is enough to show that for any pair of nodes(u, v), there is a pathP defined by a

sequence of nodes〈u = x0, x1, . . . , xm = v〉 such that the ratio between the length ofP and

the number of hops,m is bounded upwards by1 +
√

α2 + 4 w.h.p.

For a given pair of nodes(u, v), the bin covering technique is applied as follows. Letr′

be the shortest horizontal projection of a segment of lengthr contained in the strip, i.e.r′ =

r/
√

1 + (α/2)2. The line connectingu andv is covered with overlapping bins of dimension

r′/2 × αr′/2 with a spacing parameters, as shown in figure 6.4. This bin layout will be

referred to as astrip.

The coordinate system is rotated such that the line segmentu, v is parallel to thex axis.

In what follows all distances are specified within this rotated frame of reference. LetDh(x, y)

andDv(x, y) be the horizontal and vertical distances respectively between the nodesx andy.

Given a nodexj in the pathP the nodexj+1 is selected using the following criteria:

• The nodexj+1 lies within the strip.

• Dh(xj , xj+1) ≤ r′.

• The horizontal distanceDh(xj+1, v) is minimized.
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A hole is a rectangle of dimensionr′/2× αr′/2, within a strip, that is devoid of nodes and

adjoins a node on the side closest tou.

Consider any 3 consecutive nodes along the pathxi−1, xi, xi+1 where0 < i < m, and

assume that along any strip there is no hole, thenDh(xi−1, xi) ≥ r′/2. To see that this

claim is true, assume for the sake of contradiction thatDh(xi−1, xi) < r′/2. The distance

Dh(xi−1, xi+1) > r′, otherwisexi+1 would have been selected as the successor ofxi−1.

Thus, the distanceDh(xi, xi+1) > r′/2. Since there cannot be any hole in the strip, there

exists a nodey such thatDh(xi, y) < r′/2. This implies thatDh(xi−1, y) < r′. Note that

Dh(y, v) < Dh(xi, v), thereforey should have been chosen as the successor ofxi−1 by the

construction criteria, which is a contradiction. The initial assumption ofDh(xi−1, xi) < r′/2

is thus proven false which proves the truth of the claim.

SinceDh(xi−1, xi) ≥ r′/2 for 0 < i < m− 1, the number of hops in the pathP is

m ≤
⌈

D(u, v)

r′/2

⌉

=

⌈

√

α2 + 4
D(u, v)

r

⌉

.

If D(u, v) ≤ r the path is simply the edge connectingu andv and the hop-stretch is trivially1.

Otherwise,D(u, v) > r and so, the hop-stretch is1 +
√

α2 + 4.

It remains to show that there is no holew.h.p.

To bound the probability that there is a hole in any strip, consider the sequence of small

rectangles (call themslices) defined by the spacing parameter, of sizes×αr′/2. The slices are

numbered in ascending order fromu to v.

For any nodexi that is contained in some slicej, let Ei be the event that the nodexi+1 is

contained in the slicej − 1 + dr′/2se at a horizontal distance greater thanr′ from xi. Then,

Pr[Ei] ≤
(

n− 1

1

)

αr′s
2`2

(

1− αr′2

4`2

)n−2

.

If xi+1 is contained in a slice closer toxi then there is no hole. Ifxi+1 is contained in a slice

farther thanj − 1 + dr′/2se then there is at least one empty bin in the strip. The probability

that some bin is empty is bounded by

Pr[EmptyBin] ≤
max(u,v) D(u, v)

s

(

1− αr′2

4`2

)n

.
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Therefore, the probability that there is a hole within any strip is

Pr[Hole] ≤
(

n

2

)

(

n(n− 1)
αr′s
2`2

(

1− αr′2

4`2

)n−2

+
max(u,v) D(u, v)

s

(

1− αr′2

4`2

)n
)

≤ n2 1

enαr′2/4`2

(

n2αr′s
2`2

eαr′2/2`2 +

√
2`

s

)

.

This expression is minimized when

s =

(

2
√

2`3

n2αr′eαr′2/2`2

)1/2

.

Then,

Pr[Hole] ≤ 2k3`6 ln3 `

r6`1+(kα/(4+α2))

(

αr′eαr′2/2`2

2
√

2`

)1/2

∈ O(`−γ) for k > 5
4 + α2

α
.

A simpler proof of theorem 8 is also possible and follows, though the constant obtained is

worse.

Proof. Consider a stripSj , the probability that a nodexi is contained inSj is at mostαr′/
√

2`.

The probability that there is a hole withinSj adjoiningxi is at most(1− αr′2/4`2)n−1. Then,

the probability that there is a hole in any strip is

Pr[Hole] ≤
(

n

2

)

n
αr′√
2`

(

1− αr′2

4`2

)n−1

∈ O(`−γ) for k > 6
(4 + α2)

α

Lemma 9. In a G(n, r, `) satisfying the parameter conditions of Theorem 8, the number of

nodes contained in a circle of radiusΘ(r) is Θ(log `) w.h.p.

Proof. To prove this lemma it is enough to show that the probability that the number of nodes,

within any circle of radiusβr for some constantβ, deviates fromlog ` by more than a constant

factor, is polynomially small. Consider the random processof dropping nodes in a square of
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side length̀ . Define the random variableX as the number of nodes contained in that circle.

For a given node, the probability of falling in the circle isπβ2r2/`2. Using Chernoff bounds

Pr(X ≥ (1 + ε)
πβ2r2

`2
n) ≤ e−

ε2

3
n πβ2r2

`2

Pr(X ≤ (1− ε)
πβ2r2

`2
n) ≤ e−

ε2

2
n πβ2r2

`2

Using the parameter conditions

Pr(X ≥ (1 + ε)πβ2k ln `) ≤ `−
ε2πβ2k

3

Pr(X ≤ (1− ε)πβ2k ln `) ≤ `−
ε2πβ2k

2

Hop Optimality of the CHSG

Lemma 10. Consider the RGGG(n, r, l), wheren satisfies the parameter conditions of Theo-

rem 8 for a reduced connectivity radius ofr′ = (b− a)r/c. For any pair of nodes(u, v) in the

RGG at Euclidean distanceD(u, v), there exists a path between them in the CHSG of at most

dc
√

α2 + 4D(u, v)/(b − a)re − 1 + O(log `) edges w.h.p.

Proof. Theorem 8 states that: In the RGG that satisfies the parameterconditions of Theorem 8,

there exists a path ofd
√

α2 + 4D(u, v)/re edges w.h.p. We can thus imply that: If the RGG

satisfies the same parameter conditions for a reduced connectivity radius of r′ = (b − a)r/c,

there exists a path betweenu andv usingdc
√

α2 + 4D(u, v)/(b−a)re edges of length at most

(b− a)r/c. Let p be such a path ande1, e2, . . . , em be its sequence of edges.

In the description of the Disk Covering Scheme, two kinds of disks were defined for clarity:

big disks and small disks. In order to prove hop-optimality of the CHSG, we only refer to big

disks and simply call them disks. The rest of the proof is illustrated in figure 6.5.

Lemma 6 states that every edge in the pathp is completely covered by one disk. Therefore,

there exists a sequenced1, d2, . . . , dm′ of overlapping disks, where any edgeei in p is covered

by some diskdj in this sequence. A disk may completely cover more than one edge, hence

m′ ≤ m. Let Di be the bridge (center) of diskdi.

Define a pathp′ using only edges of the CHSG as follows. Connectu and the bridgeD1

with a pathp1 of disk-spanner edges defined by the diskd1. For each edgei, 1 ≤ i ≤ m,
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u v

Figure 6.5: Illustration for Lemma 10

replace the edgeei in p with the nodeDi. Connect all consecutive bridgesDi andDi+1 within

the path of overlapping disks with edgeDiDi+1. Consecutive bridges are adjacent to each other

in the RGG, because their disks overlap and the radius of eachdisk isbr/2 with b ≤ 1. Finally,

connect the bridgeDm andv with a pathpm of disk-spanner edges defined by the diskdm. The

length ofp′ is given by:length(p′) ≤ length(p1) + (m− 1) + length(pm). Using the stretch

bound,length(p′) ≤ dc
√

α2 + 4D(u, v)/(b − a)re − 1 + length(p1) + length(pm) w.h.p.

Only disk-spanner edges are used inp1 andpm. It is shown in Lemma 9 that the number of

nodes within a disk isO(log `) w.h.p. Therefore,length(p1) + length(pm) = O(log `) w.h.p.

completing the proof.

The following theorem shows the main result.

Theorem 11. For every pair of nodes in an RGG, there is a path in the CHSG, whose length is

asymptotically optimal w.h.p.

Proof. The optimal path between any pair of nodes(u, v) separated by a distanceD(u, v) has

at leastdD(u, v)/re edges. Iflog ` is also an asymptotic lower bound on the length of such a

path w.h.p., then(D(u, v)/r+log `)/2 is also an asymptotic lower bound, and the result proved

in Lemma 10 is a constant factor approximation. It remains toshow thatlog ` is an asymptotic

lower bound on the length of an optimal path in a constant-degree random geometric graph

w.h.p.

In a δ-regular graph, the expected distance between any pair of nodes randomly chosen is

at leastlogδ−1 n. A Θ(1) degree random geometric graph is a subgraph of some regular graph.

Hence, in aΘ(1) degree random geometric graph, the expected distance between any pair of

nodes randomly chosen is inΩ(log n). The previous result is true w.h.p. because for some
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constantβ

Pr(D(u, v) < β log n) ≤ 1

n− 1

β log n−2
∑

i=0

δ(δ − 1)i

∈ O(n−γ) .

Using the union bound, under the parameter conditions of Lemma 10,D(u, v) ∈ Ω(log `)

for all pairs of nodes(u, v) w.h.p.

6.3 Distributed Algorithm

In this section we describe how to distributedly implement the steps of the Disk Covering

Scheme for network formation. Step 2 of the Disk Covering Scheme can be achieved distribut-

edly by means of a Maximal Independent Set (MIS) computationwith nodes transmitting in a

range ofar/2. An algorithm to compute an MIS in a weak model is presented in[MW05]. This

algorithm can be tailored to our setting and can be shown to have a running time ofO(log2 `).

The details are presented in Section 6.3.1

Steps 3 and 4 of the Disk Covering Scheme require uncollidingtransmissions of each bridge

in a radius ofr andbr/2 respectively. All nodes assigned to the same bridge will participate

in a common spanner construction. Additionally bridge nodes must set up links with all bridge

nodes at a distance of at mostr. The details are presented in Sections 6.3.2 and 6.3.3. Finally,

the constant-degree spanner construction is described in Section 6.3.3.

6.3.1 MIS Computation (Step 2)

Algorithm

Step 2 of the Disk Covering Scheme can be achieved distributedly by means of an MIS com-

putation with nodes transmitting in a range ofar/2. The algorithm detailed in this section is

the firstO(log2 `) MIS distributed algorithm with contention resolution in a one-channel envi-

ronment for application to nodes in a connected random geometric graph and borrows heavily

from the algorithm in [MW05] for arbitrary graphs. In the algorithm that follows,δ1, δ2, δ3 and

δ4 are constants.
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1. Transmit the local counter with probability1/δ1 log `.

2. If not transmitting in the current time slot then:

(a) If a neighbor’s counter is received and the difference between the local and neigh-

bor’s counter is≤ bδ2 log `c then set local counter to−bδ2 log `c.

(b) Else if a neighbor’s ID is received then set the local state tocoveredand stop.

3. Increase counter if transmitted at least once.

4. If the counter isdδ3 log2 `e then set the local state toMIS memberand transmit ID forever

with probabilityq = 1/δ4.

5. Goto step 1 at end of time slot.

Analysis

The analysis of the MIS algorithm turns out to be difficult because nodes running different

phases interfere with each other. Hence, necessary assumptions regarding bounds on the total

probability of transmission of nodes in other phases cannotbe made leading to a circular argu-

ment. In order to break the circularity we prove the following lemmas by induction on the time

slots in which a given node joins the MIS.

Before the analysis, we recall the following basic fact [MR95]:

Fact 12. For all n ≥ 1 and |x| ≤ n

ex

(

1− x2

n

)

≤
(

1 +
x

n

)n
≤ ex.

Lemma 13. Given any node that joins the MIS in a given time slot, the counter of all neigh-

boring nodes is at mostdδ3 log2 `e − bδ2 log `c in the same time slot w.h.p.

Lemma 14. Every MIS node transmits its MIS status message successfully in the bδ2 log `c

time slots after it joins the MIS w.h.p.

Proof. We prove both preceding lemmas simultaneously by employinginduction on the order

in which the nodes join the MIS, with ties broken arbitrarily.
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Base case:Consider the first node within the whole network, call itµ1, that joins the MIS

at timet1.

For the sake of contradiction, assume that there is a nodex contained inµ1’s neighborhood

whose counter is greater thanL = dδ3 log2 `e − bδ2 log `c at t1. By the definition of the

algorithm,µ1 has first transmitted at timet1−dδ3 log2 `e andx has first transmitted within the

next bδ2 log `c time slots. Afterwards, neitherµ1 nor x have sent without collision otherwise

one of their counters would have been reset. LetE(k) denote the event that neitherµ1 nor x

have sent without collision withink time slots. Using the fact that there are at mostδ6 log `

nodes within the 2-hop neighborhood ofµ1 w.h.p., for some constantδ6 > 0, as shown in

Lemma 9:

Pr[E(L)] ≤
[

1− 2
1

δ1 log `

(

1− 1

δ1 log `

)δ6 log `
]dδ3 log2 `e−bδ2 log `c

∈ O(`−γ1) (Using fact 12, for someδ3,δ1 >
√

δ6/ log `).

Now we must additionally prove that withinbδ2 log `c time slots ofµ1joining the MIS, all

nodes within range of it receive a message declaring its MIS status. For at leastbδ2 log `c time

slots after the nodeµ1 joins the MIS, no other nodes in its neighborhood join the MISw.h.p.

as shown. If in this time its MIS status message is received byall its neighbors, then they will

all stop counting and transition into thecoveredstate. We will now show that this message is

received by all its neighbors w.h.p. LetE(k) denote the event thatµ1 does not transmit without

collision in k consecutive time slots. The probability of failure inbδ2 log `c consecutive time

slots is:

Pr[E(bδ2 log `c)] =

[

1− 1

δ4

(

1− 1

δ1 log `

)δ6 log `
]bδ2 log `c

∈ O(`−γ2) (Using fact 12 and for someδ2).

This shows thatµ1 sends its MIS status message without collision successfully in bδ2 log `c

time slots w.h.p.

Inductive Step:Consider theith nodeµi, i > 1, that joins the MIS at timeti.

Inductive hypothesis:For all nodesµj such thatj < i, joining the MIS at timetj , the

counters of all nodes in the neighborhood ofµj are at mostdδ3 log2 `e − bδ2 log `c at time
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tj w.h.p. Additionally all nodesµj transmit their MIS status message successfully within the

intervaltj . . . tj + bδ2 log `c w.h.p.

Therefore by timetj + bδ2 log `c all nodes in the range of all MIS nodesµ1 . . . µi−1 will be

in thecoveredstate. From the previous statements of the inductive hypothesis we can conclude

that none of the MIS nodesµj (wherej < i) are neighbors of each other w.h.p.

We want to show that the counters of all nodes in the neighborhood of µi are at most

dδ3 log2 `e − bδ2 log `c at timeti w.h.p. and that all neighbors ofµi are in thecoveredstate by

time ti + bδ2 log `c w.h.p.

If µi is out of the two-hop neighborhood of all the previous MIS members, the claim can be

easily proved using the same argument as in the base case. Otherwise,µi is within a two-hop

neighborhood of some MIS members. Since all nodes that previously joined the MIS are not in

range of each other,µi is within the two-hop neighborhood of at most12 other MIS members.

This is true because a regular polygon with side of length at leastr and distance from the center

to the vertices at most2r has at most 12 sides.

For the sake of contradiction, assume that there is a nodey contained inµi’s neighborhood

whose counter is greater thanL = dδ3 log2 `e − bδ2 log `c at ti. By the definition of the

algorithm,µi has first transmitted at timeti − dδ3 log2 `e andy has first transmitted within the

next bδ2 log `c time slots. Afterwards, neitherµi nor y have sent without collision otherwise

one of their counters would have been reset. LetE(k) be the event that neitherµi or y send

without collision fork consecutive time slots.

Pr[E(L)] ≤
[

1− 2
1

δ1 log `

(

1− 1

δ1 log `

)δ6 log `(

1− 1

δ4

)12
]dδ3 log2 `e−bδ2 log `c

∈ O(`−γ3) (Using fact 12,for someδ3,δ1 >
√

δ6/ log `).

Now we will show that all neighbors of MIS nodeµi will be in the covered state by time slot

ti + bδ2 log `c. Any neighbor of an MIS node has a counter that lags the MIS node’s counter

by at leastbδ2 log `c. Additionally no MIS node can be within range of any other. Hence

every MIS node can be subjected to interference by at most18 other MIS nodes (by a simple

geometric packing argument). LetE(k) denote the event that a neighbor of an MIS node does

not receive its MIS status message fork consecutive time slots. Thus the probability that a MIS
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node does not transmit its MIS status message without collision is given by:

Pr[E(bδ2 log `c)] ≤
[

1−
(

1

δ4

)(

1− 1

δ4

)18(

1− 1

δ1 log `

)δ6 log `
]bδ2 log `c

∈ O(`−γ4) (Using fact 12 and for someδ2).

Lemma 15. No two nodes belonging to the MIS are within transmission range of each other

w.h.p.

Proof. This is a direct conclusion of Lemmas 13 and 14.

Lemma 16. For any node running the MIS algorithm with radiusr, there is at least one node,

in its immediater/2 neighborhood, that transmits without collision withindδ5 log2 `e steps

w.h.p., for some constantδ5 > 0.

A
C

D

3r/2
r/2

Figure 6.6: Illustration for Lemma 16

Proof. Consider a nodeA running the MIS algorithm (refer to figure 6.6). SinceA is awake,

there is at least one node awake inC at timet. From Lemma 15 it can be seen that no MIS

nodes can be within range of each other, therefore there can be at most 9 MIS nodes withinD

(If there were more then one of them would be in range ofA). Let E(k) denote the event that

no node inA’s r/2 neighborhood (includingA) transmits without collision ink consecutive

time slots. Lemma 9 shows that there are at mostδ6 log ` nodes inD w.h.p., for some constant
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δ6 > 0.

Pr[E(dδ5 log2 `e)] ≤
[

1−
(

1

δ1 log `

)(

1− 1

δ1 log `

)δ6 log ` (

1− 1

δ4

)9
]dδ5 log2 `e

∈ O(`−γ5) (Using fact 12,δ1 >
√

δ6/ log `, for someδ5).

Theorem 17. For a given node running the MIS algorithm, at least one node within its trans-

mission range joins the MIS inO(log2 `) time slots and no two MIS nodes are within range of

each other w.h.p.

x1

x2

x3

≤ 3r/2≤ 3r/2

> r

Figure 6.7: Illustration for Theorem 17

Proof. The proof is illustrated in figure 6.7. In Lemma 16, it was shown that within a circle

of radiusr/2 centered on any nodex1, there will be a nodex2, transmitting without collision,

in less thandδ5 log2 `e steps w.h.p. After this single transmission, there is at least one node,

namelyx2, within the neigborhood ofx1 increasing its counter. Ifx2 joins the MIS after its

counter reaches the valuedδ3 log2 `e, then the statement of the theorem is proved. Otherwise,

some other node, call itx3, within range ofx2, reaches this value and joins the MIS before. If

x3 is within range ofx1, then the statement of the theorem is proved. Otherwise,x3 covers at

least one node within ther/2 neighborhood ofx1, namelyx2, within the nextdδ2 log `e time

slots w.h.p. (as shown in Lemma 14).

Note that the distance betweenx1 andx3 satisfies the following relation :

r < D(x1, x3) ≤ 3r/2 . (6.2)
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All uncovered active nodes within ther/2 neighborhood ofx1 are still counting. Hence,

the same argument can be repeatedly applied with the restriction that the next MIS node is at

least at a distance ofr from x3 (by Lemma 15). There can be at most9 MIS nodes aroundx1

beforex1 or one of its neighbors joins the MIS, as explained in Lemma 16. Thus, this process

terminates in at most10(dδ3 log2 `e+ dδ5 log2 `e+ bδ2 log `c) time slots.

6.3.2 Broadcast (Steps 3 and 4)

After a node is covered by some neighboring MIS node, it needsto be assigned to that MIS

node. All nodes assigned to the same MIS node will participate in a common spanner construc-

tion. Additionally MIS nodes must set up links with all MIS nodes at a distance of at mostr.

Any of these steps only require each MIS node to achieve an uncolliding transmission. In this

section an algorithm for achieving this is detailed and a time bound is proved.

Algorithm

The algorithm is simple to describe:

With probability1/β1, each MIS node transmits its ID, within rangeβ2r.

Whereβ1 andβ2 are constants whose values depend on which of the aforementioned steps

is implemented. For informing the non-MIS nodes about assignment, the transmission is made

with β2 = b/2. For setting up connections with neighboring MIS nodes, thetransmission is

made withβ2 = 1.

Analysis

Lemma 18. Any MIS node running the broadcast algorithm achieves a transmission without

collision withinO(log `) steps w.h.p.

Proof. Let ∆ denote the maximum number of interfering MIS neighbors (which depends on

β2). Let Pr[fail] denote the probability that any node fails to transmit without collision after

β3 log ` steps for some constantβ3. For appropriate values ofβ2 andβ3, using the parameter

conditions of theorem 8 and the union bound,
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Pr[fail] = n

(

1− 1

β1

(

1− 1

β1

)∆
)β3 log `

∈ O(`−γ) For someγ > 0

6.3.3 Spanner Construction (Step 5)

After nodes are covered by one or more bridges (MIS members),they have to connect locally

to neighboring nodes covered by the same bridge, i.e. withinthe same disk. Nodes can be

covered by more than one bridge. Hence, interference of transmissions not only from the local

disk but also from neighboring disks must be taken into account to analyze the performance

of any spanner construction algorithm. However, any node iscovered by at most a constant

number of disks as explained in Lemma 7, then the number of interfering transmissions with

respect to the local disk is increased only by a constant factor that we fold into the constants

involved in this analysis.

Algorithm

Our goal here is to construct a constant-degree spanner graph on the set of nodes assigned to a

given bridge node. Since the diameter is not constrained, weadopt the simplest topology, i.e., a

linked list. In order to minimize the running time, we avoid handshaking among nodes and all

the construction is done by broadcasting. We start with every node choosing an integer index

uniformly at random from the interval[1, `]. Since there areO(log `) nodes within the same

range w.h.p. as shown before, no two nodes choose the same index w.h.p.

Analysis

Lemma 19. Any node running the spanner algorithm joins the spanner within O(log2 `) steps

w.h.p.

Proof. In order to prove this lemma it is enough to show that every node covered by the same

bridge that is running the spanner algorithm achieves at least one single (i.e. uncolliding)
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for each non-bridge node in paralleldo1

predecessor.ID← bridge.ID;2

successor.ID← bridge.ID;3

choose an integer index uniformly at random from the interval [1, `];4

while true do5

transmit←
{

true with probabilityp = 1/β4 log `
false with probability1− p6

if transmitthen broadcast〈index,ID〉;7

else ifan index is receivedthen8

updatepredecessor.IDor successor.IDaccordingly;9

end10

end11

end12

Algorithm 1 : Spanner construction.β4 is a constant.

transmission withinO(log2 `) steps w.h.p. It was shown in lemma 9 that there areΘ(log `)

nodes within any disk of radiusO(r). Hence, it is enough to show that within any disk with

at mostβ4 log ` nodes there areβ4 log ` different single transmissions withinβ5 log2 ` steps

w.h.p., whereβ4 andβ5 are constants.

To show that, we use the following balls and bins analysis. Let each node be represented by

a bin and each transmission step be represented by a ball. A node achieving a single transmis-

sion at a given step is modeled with the ball representing that step falling in the bin representing

that node. If at a given transmission step there is no single transmission, we say that the ball falls

outside the bins. Now, to prove this lemma it is enough to showthat after droppingβ5 log2 `

balls inβ4 log ` bins, no bin is empty w.h.p.

For a given ball, the probability of falling in a given bin is the probability of achieving a

single transmission, i.e.

Pr =
1

β4 log `

(

1− 1

β4 log `

)β4 log `−1

Hence, the probability of some empty bin is

Pr(fail) ≤
β4 log `
∑

i=1

(

β4 log `

i

)

(

1− i
1

β4 log `

(

1− 1

β4 log `

)β4 log `−1
)β5 log2 `

≤
(

1− 1

β4 log `

(

1− 1

β4 log `

)β4 log `−1
)β5 log2 ` β4 log `

∑

i=1

(

β4 log `

i

)

.
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Using the binomial theorem,

Pr(fail) ≤
(

1− 1

β4 log `

(

1− 1

β4 log `

)β4 log `−1
)β5 log2 `

2β4 log `

∈ O(`−γ), γ > 0 (using fact 12, for a large enoughβ5 > eβ4).

A small-diameter spanner

In the previous construction, the distance between any two nodes is at most the number of nodes

within the disk, i.e.O(log `). Although a diameter ofΘ(log `) for the disk spanner is optimal

(theorem 11) for a constant-degree random geometric graph,a constant-degree spanner with

diametero(log log `) is also possible as shown in this section.

The structure we utilize, is popularly known as abutterfly network. Butterfly networks are

used in many parallel computers to provide paths of lengthlog m connectingm inputs tom

outputs. A labeled instance of a butterfly network withm = 8 is shown in figure 6.8. The

inputs of the network are on the left and the outputs are on theright. In our case, all nodes have

the same role and a message between any pair of nodes can be sent in O(log m) hops. Then,

given that there areΘ(log `) nodes in any disk, the diameter obtained iso(log log `). Notice

that, once unique consecutive labels are assigned to all nodes, each node can easily compute to

which nodes is connected. Then, our goal is to assign unique consecutive indexes to all nodes

within the disk.

The distributed algorithm for non-bridge nodes to construct such a network within one disk

consists of three phases, as follows. First, every node chooses an index uniformly at random

from the interval[1, `]. As explained before, no two nodes will choose the same indexw.h.p.

Then, every node broadcasts its index and ID as in algorithm 1, but in this case they keep track

of the ID of its predecessor only and the process runs for justO(log2 `) steps. As shown in

lemma 19, at this point all nodes have achieved at least one transmission without collision so,

all nodes know who is their predecessor.

To obtain consecutive indexes, the nodes now have to pack theindexes one by one as

follows. Upon receiving the new indexi of its predecessor, a node redefines its index asi + 1
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Figure 6.8: A butterfly network with 32 nodes

and broadcasts its new index and ID with constant probability for O(log `) steps. As shown in

lemma 6.3.2, there will be at least one transmission withoutcollision w.h.p. Obviously, the first

node in this ordering will not have any predecessor and will start this phase of the algorithm

redefining its index as1. At this point, all nodes have consecutive indexes and have to connect

as a butterfly accordingly but, they do not know yet the ID’s oftheir butterfly neighbors with

smaller index so, a final round broadcasting the new index andID is necessary. The details can

be seen in Algorithm 2

The first and third phase takeO(log2 `) time by definition of the algorithm. In the second

phase, each ofΘ(log `) nodes in turn transmit forO(log `) steps. Hence, the overall running

time of this algorithm isO(log2 `).

6.3.4 Overall analysis

The bootstrapping protocol described in this chapter, builds a hop-optimal constant-degree Sen-

sor Network under the constraints of the Weak Sensor Model inO(log2 `) time w.h.p. The time

bounds are for the MIS algorithmO(log2 `), for the broadcast algorithmO(log `), and for the

spanner algorithmO(log2 `). Hence, the total running time is upper bounded byO(log2 `).
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for each non-bridge node in paralleldo1

predecessor.ID← NULL;2

choose an integer index uniformly at random from the interval [1, `];3

for β6 log2 ` stepsdo4

transmit←
{

true with probabilityp = 1/β7 log `
false with probability1− p5

if transmitthen broadcast〈index, ID〉;6

else ifan index is receivedthen7

updatepredecessor.IDaccordingly;8

end9

end10

index← 0;11

if predecessor.ID6=NULL then12

wait until an index frompredecessor.IDis received;13

end14

index← index + 1;15

for β8 log ` stepsdo16

broadcast〈index, ID〉 with probability1/β9;17

end18

for β6 log2 ` stepsdo19

transmit←
{

true with probabilityp = 1/β7 log `
false with probability1− p20

if transmitthen broadcast〈index,ID〉;21

else ifan index is receivedthen22

store ID’s of butterfly neighbors according with the index;23

end24

end25

end26

Algorithm 2 : A small-diameter spanner construction.β4 is a constant.
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There is a trade-off among the maximum degree, the length of the optimal path and the

density given by

There is a path of≤
⌈

D(u,v)
r

c
√

4+α2

b−a

⌉

− 1 + O(log `) hops w.h.p.

The degree of any bridge is≤ 3d 4
a
√

3
e
(

d 4
a
√

3
e+ 1

)

+ 1 w.h.p.

The density of nodes isn
`2

> 54+α2

α

(

c
b−a

)2
ln `
r2 .

Where0 < a < 1, a < b ≤ 1, c > 1 and0 < α ≤ 1.

The longer the edges covered, the lower density and smaller number of hops in the optimal

path but, the degree is bigger.

Notice that in our construction, only three ranges of transmission are used, namelyar/2,

br/2 andr. Hence, the specific values ofa andb are hardware dependent.

Notice that for any of the various parts of the bootstrappingalgorithm no synchronicity

assumption is needed. Furthermore, neighboring disks do not need to be running the same

phase of the algorithm. Regarding failures, the MIS algorithm and its final broadcast algorithm

as well as the linked list spanner construction algorithm are also maintenance algorithms since

both bridge and non-bridge nodes keep broadcasting forever. If a bridge node fails, after some

time non-bridge nodes will detect the absence of their bridge broadcast and will restart the MIS

algorithm to obtain a new bridge. On the other hand, if a non-bridge node fails, its successor

and predecessor will interconnect within the next round of the spanner construction. If the

butterfly network spanner is used instead and a link is lost, the butterfly network can be simply

rebuilt locally from scratch.

6.4 Extensions

In this section we briefly describe how to extend this protocol in order to achieve load balance

and to work in settings where the density of nodes is non-uniform and the area of coverage of

a node is not a circle.
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6.4.1 Load Balance

The topology obtained by the protocol detailed in this chapter is not homogeneous because

the node set is partitioned into two subsets, the bridge nodes and the non-bridge nodes. Given

that the bridge nodes handle the communication of all the nodes covered by them, the load of

work is not uniform among the different nodes in the network.Furthermore, given that the

disk spanner is implemented as a linked list, nodes closer tothe bridge within the list have to

handle messages of all nodes behind them in the list. This issue can be addressed distribut-

edly by simply resetting the bridge status at a random time. As explained in Section 6.3.4,

given the unreliable nature of sensor nodes, the bootstrapping algorithm has to be extended to

a network maintenance algorithm. More specifically, every bridge node transmits its bridge

status periodically and every non-bridge node transmits its ID periodically in order to maintain

the disk spanner. Therefore, non-bridge nodes can handle status resets as they handle bridge

failures, i.e., re-running the algorithm. Given that re-running the bootstrapping algorithm in-

troduces extra cost, the periodicity of this status reset gives a trade-off between load balance

and throughput.

6.4.2 Non-uniform Radius

A frequent assumption in Radio Networks is that the area of coverage of a node is not a perfect

circle. More precisely, it is assumed that nodes are connected with probability1 if they are

at a distance of at mostrmin, beyond that and up to a distance ofrmax the connectivity is

uncertain, and beyond a distance ofrmax the nodes are assumed not to be connected. We

term such a modelG(n, rmin, rmax, `). Nevertheless, the main goal for any network formation

protocol is to obtain a connected network. Therefore, the conditions on the minimum range of

transmissionrmin are still the same as for the case in which the radius is assumed to be unique.

The following theorem, that establishes such conditions was proved in [MP05].

Theorem 20( [MP05],Theorem 3.5). Given aG(n, r, `) where the following conditions are

satisfied:r2n = k`2 ln `, r = θ(`εf(`)), f(`) ∈ o(`γ), γ > 0, 0 ≤ ε < 1, andn ∈ Ω(1). For

any constantk > 2− 2ε, the graph is connected w.h.p.

Under these conditions, the following lemma shows a lower bound on the density of nodes.
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Lemma 21. In a G(n, rmin, rmax, `) satisfying the parameter conditions of Theorem 20, the

number of nodes contained in a circle of radiusΘ(rmin) is Ω(log `) w.h.p.

Proof. Same as in Lemma 9.

However, since we do not have any upper bound on the maximum radiusrmax, we can not

give an upper bound on the number of neighbors of any node better thann, the total number

of nodes. Therefore, in order to use the bootstrapping algorithm as detailed in this chapter, we

have to add an initial phase that upper bounds the number of neighbors of any node toO(log `).

Such a phase can be easily implemented using the Increase From Square algorithm presented

in [JS05] and detailed in Section 7.1.3. As in [MW05], instead of running the algorithm forever,

every node stops running the first phase upon receiving some transmission. Nodes that transmit

at least once during the first phase (successfully or not) go ahead and run the bootstrapping

algorithm as a second phase. The rest of the nodes enter a waiting period ofdδ1 log2 `e for a

constantδ1 > 0. If none of their neighbors become a bridge within the waiting period, they

simply re-run the protocol. The details of the algorithm forthe first phase are included here for

completeness. In this algorithm,δ1, δ2 andδ3 are constants.

- For dδ1 log2 `e steps:

- If a bridge node transmission is received then stop and proceed to the disk spanner

formation step of the Disk Covering Scheme.

- Else If a non-bridge node transmission is received then re-start.

- For i = 0 to dlog `e:

- Repeat fordδ3 log `e steps:

- Transmit ID with probability2i/`δ2.

- If transmitting in the current time step then stop and proceed to the Disk Cov-

ering Scheme.

- Else If a bridge node transmission is received then stop andproceed to the disk

spanner formation of the Disk Covering Scheme.

- Else If a non-bridge node transmission is received then re-start.
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The analysis showing that the number of nodes running the bootstrapping algorithm in any

circle of radiusΘ(r) is O(log `) w.h.p., can be done assuming that the first phase uses a differ-

ent channel of communication in the presence of some source of interference that produces a

transmission with constant probability. This source of noise models the interference of nodes

running the bootstrapping algorithm in a one-channel setting given that due to lack of global

synchronization different nodes may be running different phases. The analysis of the boot-

strapping algorithm can be easily re-done with a similar assumption for the interference of the

first phase. Choosing the constants involved in both phases of the algorithm (probabilities,

counters, number of rounds, etc.) adequately, the sum of probabilities of transmission of neigh-

boring nodes in the same phase is in fact a constant. This analysis can be done as a simple

generalization to this assumption of the analysis in [MW05].

6.4.3 Non-uniform Distribution of Nodes

Another feasible assumption in Radio Networks is that the deployment of nodes is not uniform.

Although some papers analyze problems in Radio Networks under the assumption of arbitrary

distribution of nodes, this assumption is unreallistic since the layout of nodes is not a result of

an uncontrolled random experiment where the probability ofsome highly undesirable outcome

is positive. However, a uniform distribution of nodes in theplane in situations where the envi-

ronment is hostile or remote may be difficult to achieve. An example of a feasible model for

the distribution of nodes that reflects the random nature of the deployment leaving aside highly

unlikely arbitrary distributions is a multiple bivariate normal distribution. In other words, the

node density is described as a composition of normal distributions in the plane.

Notice that, independently of the model of the non-uniform distribution of nodes chosen, in

order to guarantee connectivity a minimum density of nodes has to be ensured. Furthermore,

the problem analyzed in the previous section, i.e., find the minimum radius in order to achieve

connectivity, can be easily stated as the problem of finding the minimum number of nodes to

ensure connectedness given a fixed transmission range. In fact, the conditions on the minimum

density proved in Lemma 21 still hold but, as before, we can not give an upper bound on the

number of neighbors of any node better thann, the total number of nodes. In order to address

this issue, we follow the same approach as in the previous section.
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Chapter 7

Survey: the Clear Transmission Problem

Any network where transmissions may collide needs a protocol for collision-free transmissions.

The problem of achieving a successful transmission of at least one node is fundamental since,

indeed, to solve any problem in a communication network at least one successful transmission

is necessary. In some networks, such as a Radio Network, a node receives succesfully a message

only if exactly one of its adjacent neighbors has transmitted in that time slot. If many neighbors

send messages simultaneously messages collide and the nodereceives only noise.

We recall from Chapter 4 the definition of the problem. Aclear receptionat a nodeA

is achieved if in a given time slot exactly one of the adjacentneighbors ofA transmits. On

the other hand, we say that a nodeB has achieved aclear transmissionif B transmits and no

other two-hop neighboring node ofB transmits in a given time slot. Notice that although both

problems look similar they are not the same in a multi-hop network. When a clear transmission

occurs, all the adjacent nodes of the transmitter receive the message. Whereas if a clear recep-

tion occurs only the receiver is guaranteed to get the message because other nodes adjacent to

the receiver may be receiving at the same time the transmission of some other node which is not

in the range of the receiver (hidden-terminal problem). Of course, both problems are identical

in a one-hop network since for a given node to receive a message exactly one node in the whole

network has to transmit.

Algorithms for achieving a clear transmission have been studied in several shared-channel

contention settings. We summarize here related work in clear transmissions and clear recep-

tions, and we give the details of our results in this area in Chapter 8. In a one-hop Radio

Network, the clear transmission problem is equivalent to the so-calledbroadcast, wake-upand

leader electionproblems (refer to Chapter 4). These problems differ in multi-hop networks

because, although a clear transmission is still necessary,it may not be sufficient. Therefore,
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while considering lower bounds, we will cite bounds for the clear transmission problem, even

when the bounds were originally stated for the other problems.

7.1 Randomized Upper Bounds in One-hop Networks

The clear transmission problem in a one-hop network is also called theselectionproblem.

Recall that in the most general version of the selection problem the number of nodes in the

network isn but only some subset of nodes participate in the protocol. There are many models

under which protocols for this problem can be studied, depending on the knowledge of the

size of the networkn, the number of active nodes orparticipantsin the protocold, the type of

synchronization (global or local), the availability of collision detection, etc. In the following

sections we summarize some protocols under these various conditions.

7.1.1 Active-Nodes-Set Size Known and Global Synchronization

If the number of participating nodesd is known, a simple approach is to use controlled-

Aloha [Met75]. That is, each participating node transmits in each time slot with probability

1/d.

Theorem 22. Given a one-hop network where the number of participating nodesd is known,

the protocol controlled-Aloha [Met75] achieves a clear transmission w.h.p. inO(log n) steps.

Proof. The probability of not achieving a transmission int steps is

Prfail ≤
(

1−
(

1− 1

d

)d−1
)t

≤ 1

nγ
, γ > 0, for anyt ∈ Ω(log n).

7.1.2 Active-Nodes-Set Size Unknown and Global Synchronization

Unfortunately, the number of participating nodes is not known in general and smarter solutions

are needed. The lack of such information makes a big difference in order to obtain fast pro-

tocols. A common observation in literature is that afair protocol, i.e., a protocol where all
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nodes are assumed to use the same probability of transmission p in the same time step (global

synchronization), has a high probability of achieving a successful transmission whenp and

the number of participating nodesd agree up to a constant factor and this probability is low

otherwise. Therefore, a main challenge for any protocol is to estimated accurately and fast.

Network Size Known with Collision Detection

In [Wil86] Willard presented randomized protocols to achieve a successful transmission in a

one-hop network when collision detection is available. When the size of the networkn is

known, the protocol calledsuper exponential binary search(SEBS) works as follows. In a first

phase, nodes guess the number of participating neighbors. To that extent, the protocol works

in rounds. Nodes transmit in each round with probability2−i. The value ofi for each round

is chosen by binary search in the space[1, dlog ne]. The decision regarding the value of the

exponent for the next round is taken based on the feedback from the channel in the current

round. More precisely, if there is silence the probability is increased, if there is collision the

probability is reduced, and if there is a successful transmission nodes stop running the protocol.

Upon completion of the first phase, nodes use controlled Aloha with the guessed density of

participating nodes as a parameter until they achieve a successful transmission.

Theorem 23( [Wil86],Theorem 2.10). Given a one-hop network with collision detection where

the size of the networkn is known by the nodes, the protocol SEBS achieves a clear transmission

in logdlog ne+ O(1) expected time slots.

It is easy to see that the running time of the first phase is at most logdlog ne time steps. So,

the proof goes mainly about proving that the probability of guessing a density of participating

nodes away from the actual value for more than a constant in the first phase is sufficiently

low as to guarantee that the second phase runs in expectedO(1) time. We refer the reader

to the original paper for details. For protocols where all nodes are assumed to use the same

probability of transmission, Willard proved in the same paper a matching lower bound in the

expected running time, showing the optimality of SEBS underthat assumption.
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Network Size Unknown with Collision Detection

For the case in which the size of the networkn is unknown, the protocol proposed in [Wil86],

called QSEBS, uses a first phase that guesses the number of participating nodes using the search

algorithm of Bentley and Yao [BY76], and the same second phase of SEBS. The algorithm

of B-Y is based on a progression of binary search algorithms.More precisely, consider the

standard unbounded binary search of a numberd ∈ N that sucessively evaluates2i, for each

i = 1, 2, . . . , until an interval such thatd ∈ [2i−1, 2i] is found so that a bounded binary search

can be applied. Notice that, in this algorithm, the appropriate value ofi is found by exhaustive

search. Performing an unbounded binary search of the appropriate value ofi, we can obtain

a faster algorithm calleddouble binary search. The algorithm of B-Y applies recursively this

idea, choosing the depth of the recursion appropriately depending on the magnitude ofn. B-Y

proved in that paper that in order to determined, when no upper bound ond is known, their

algorithm incurs in
∑log∗ d

j=2 log(j) d comparisons, wherelog(j) d is thejth iterated logarithm of

d andlog∗ d is the least integerk such thatlog(k) d ≤ 1. This result combined with the analysis

of the second phase used to prove Theorem 23 results in a totalrunning time ofO(log log d).

Network Size Known without Collision Detection

Although in many Radio Networks it is possible to detect a collision, it has been also argued

that a collision can not be detected in the presence of noisy channels [BYGI92]. We briefly

review now previous work in clear transmissions under the assumption of a binary channel,

i.e., only two channel states are feasible, single transmission and silence/collision.

Hayashi, Nakano and Olariu [HNO99] presented the firstO(log2 n) algorithm for clear

transmission with high probability in one-hop Radio Networks without collision detection. The

protocol given, calledElection-with-no-CD, is intended to solve the problem of leader election

which, as mentioned before, in the one-hop scenario is the same as the clear transmission prob-

lem. The approach is simple, for each non-negative integeri starting withi = 0, nodes transmit

with probability2−j for all j ∈ [0, i]. If any of the nodes achieve a successful transmission all

nodes stop running the protocol. The intuition behind this protocol is that, as explained before,

the probability of achieving a successful transmission is high when the number of participating
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nodes and the probability agree up to a constant factor. So the approach consists in repeatedly

try all possible values of1/d as probabilities of transmission.

Theorem 24 ( [HNO99],Corollary 3.2). Given a one-hop network without collision detec-

tion where the size of the networkn is known by the nodes, the protocol Election-with-no-CD

achieves a clear transmission w.h.p. inO(log2 n) time slots.

A sketch of the proof follows. Observing that the probability of a successful transmission

in a given round isPrsucc ≥ dp (1− p)d−1. It is easy to see that whenever the probability of

transmission is within[1/2d, 2/d] the probability of success is at leastPrsucc ≥ (1− p)p−1 ≥

1/e2. Then if we have at leastΩ(log n) rounds with such probability of transmission, we have

a success w.h.p. By a simple observation of the algorithm, the number of rounds needed is

O(log2 n).

In [GPP01], Gasieniec, Pelc and Peleg presented algorithmsto wake up a one-hop Radio

Network in different scenarios such as global or local synchronism and known or unknown

network size. Recall that in the wakeup problem the goal is towakeup all nodes in the network

and nodes can be woken up by a successful transmission or spontaneously. Given that this

is a single-hop network, and that in the worst case nodes do not wakeup spontaneously after

time t = 0, this problem is the same as the clear transmission problem.Whenn is known

and the synchronism is global, the algorithm proposed, called repeated-decay, is based on the

algorithm decayof [BYGI92]. The algorithm decay works in rounds up to a maximum of

2dlog ne rounds. In each round, each node transmits a wakeup message and continues the

protocol with probability1/2. The algorithm repeated-decay just executes phases of decay

repeatedly until a successful transmission is achieved. Ifa node wakes up spontaneously waits

to the beginning of the next phase to start running the protocol.

Theorem 25( [GPP01],Theorem 2.3). Given a one-hop Radio Network wheren is known by

all nodes and global synchronization is available, the algorithm repeated-decay achieves a

clear transmission with probability1− ε in timeO(log n log(1/ε))

The algorithm decay achieves a clear transmission with probability Ω(1/2) as proved in [BYGI92].

Therefore, the probability of failing forlog(1/ε) rounds is at most1−1/2log 1/ε. Given that the

algorithm decay works in rounds up to a maximum of2dlog ne rounds, the theorem follows.
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7.1.3 Active-Nodes-Set Size Unknown and Local Synchronization

Network Size Known without Collision Detection

Unfortunately, given the lack of synchronization we can notguarantee a number of participants

in a series of rounds, i.e., in a given time step the number of participants can be any integer in

[1, n]. Of course, this number can not decrease in this model. A simple approach, also included

in [GPP01], is to follow the approach of controlled-Aloha being conservative, i.e., assuming

that all nodes participate and transmitting in each round with probability1/n.

Theorem 26. Given a one-hop Radio Network wheren is known by all nodes and only local

synchronization is available, if all nodes transmit with probability 1/n a clear transmission is

achieved with probability1− ε in timeΘ(n log(1/ε)).

Proof. The probability of failing to have a successful transmission in t steps is

Prfail ≤
(

1− d
1

n

(

1− 1

n

)d−1
)t

≤
(

1− 1

n

(

1− 1

n

)n)t

≤
(

1− 1

2en

)t

≤ ε, for anyt ∈ Θ(d2en log 1/εe).

As proved in [FCFM06], there is a lower bound ofΩ(log n log(1/ε)) time to achieve a clear

transmission with probability1 − ε, so the previous upper bound would imply an exponential

gap between the upper and lower bounds in this model. However, this upper bound is not tight

as shown in the next section.

Network Size Unknown without Collision Detection

Recall that a protocol where all nodes transmit with probability p has a high probability of

achieving a successful transmission whenp and the number of participating nodesd agree up

to a constant factor, and this probability is low otherwise.However, we consider in this section
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protocols whered is not known. A simple approach, if all nodes use the same probability,

would be to try with each possible probability for enough number of steps so that whenever the

probability isp ∈ Θ(1/d) a successful transmission is achieved. More specifically, the algo-

rithm would consist indlog ne rounds. In roundr, a node transmits with probabilityp = 2−r.

However, due to lack of global synchronization, the protocol is not a fair one, i.e., nodes may

be using different probabilities. Nevertheless, it can be proved that the protocol still achieves a

clear transmission fast. The intuition behind such a proof is as follows. The goal is to reach a

round where some node transmits successfully but to achievethis we do not need all the nodes

to use the same probability, it is enough if the summation of the probabilities of transmission of

all nodes is inΘ(1) during one complete round. In order to achieve that, nodes should transmit

with a small probabilityΘ(1/n) in the first round and increase the probability for each new

round, though this would imply that nodes know the size of thenetworkn. Nevertheless, as

shown in [JS05] the labels of processors can be used as local approximations of the size of the

network yielding the algorithm 3 calledIncrease From Square.

while true do1

p← 1/2dlog(π2(i+1)2/3)e;2

if p ≤ 1/2 then3

transmit with probabilityp for δ log(1/ε) steps;4

end5

p← 2p;6

end7

Algorithm 3 : Algorithm Increase From Square [JS05]

Theorem 27( [JS05],Theorem 7.1). Given a one-hop Radio Network wheren is not known

and only local synchronization is available, the algorithmIncrease From Square achieves a

clear transmission with probability1− ε in timeO(log n log(1/ε)).

Proof. Let V be the set of nodes and letpi be the probability of transmission of nodei. Con-

sider the first time slott when the sum of the probabilities of transmission of all nodes becomes
∑

i∈V pi ∈ Θ(1). Such a time slot exists because nodes increase the probability until reaching

a constant. Given that nodes duplicate their probability oftransmission everyδ log 1/ε steps,

the sum of probabilities of the nodes participating at timet will still be a constant at time

t + δ log 1/ε. Due to lack of global synchronization, nodes may begin to participate in the
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protocol during this period, however, their sum of probabilities of transmission during the first

δ log 1/ε time steps is at most a constant. Therefore, after the time stept, the sum of probabil-

ities of transmission of all nodes is
∑

i∈V pi ∈ Θ(1) for at least the nextδ log 1/ε time steps.

Now it is easy to see that under these conditions the probability of not having a successful

transmission is low.

Prfail ≤



1−
∑

i∈V

pi

∏

j∈V,j 6=i

(1− pj)





δ log 1/ε

≤



1−
∑

i∈V

pi

∏

j∈V

(1− pj)





δ log 1/ε

.

Observing that(1− p) ≥ (1/4)p for every0 < p ≤ 1/2,

Prfail ≤



1−
∑

i∈V

pi

∏

j∈V

(1/4)pj





δ log 1/ε

=

(

1−
∑

i∈V

pi

(

1

4

)

P

j∈V pj

)δ log 1/ε

≤ ε, for someδ > 0.

Given the lower bound shown in Chapter 8, this algorithm is optimal. Obviously, the same

upper bound holds for the case wheren is known by simply ignoring such information.

7.2 Randomized Upper Bounds in Multi-hop Networks

Recall that in a multi-hop network the clear reception problem and the clear transmission prob-

lem are not the same. When a clear transmission occurs, all the adjacent nodes of the transmitter

receive the message. However, if a clear reception occurs only the receiver is guaranteed to get

the message due to the hidden-terminal problem. Therefore,in this section we will analyze

these problems separately.
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Much of the research in shared-channel contention settingsis not specific for the clear trans-

mission problem but for more general problems such as broadcast, wake-up, leader election,

etc. Although a solution for any of these problems implies a solution for the clear reception

problem, it is not clear that solving the clear transmissionproblem is a necessary condition to

solve any of the aforementioned problems. For instance, in the broadcast problem a non-empty

subset of nodes are allocated messages and the goal is that all nodes receive some message.

To that extent it is enough that all nodes receive a message but it may not be necessary that all

nodes in each one-hop neighborhood have received the message in the same time slot. In the

worst case of the wake-up problem a non-empty subset of nodeswakes up spontaneously at

some initial timet0 and the rest of the nodes have to be woken up by a successful reception so

the same argument holds. Nevertheless, some solutions in the literature actually solve also the

clear transmission problem or can be used to solve it withoutextra cost asymptotically. We will

survey some of these results in this section that obviously solve the clear reception problem

too.

In a seminal paper [BYGI92], Bar-Yehuda, Goldreich and Itaigave aO((D+log(n/ε)) log n)

randomized algorithm to broadcast a message with probability at least1− ε in a multi-hop Ra-

dio Network with diameterD, when the nodes know an upper bound onn and an upper bound

on the maximum degree∆. This protocol is based on an algorithm calledDecaythat resolves

contention by randomly eliminating half of the transmitters. The process is repeated enough

number of times in order to achieve the desired probability of success. This process of cutting

by half can be implemented distributedly by letting each node to eliminate itself after tossing

a fair coin. The protocol relies in some form of synchronicity which can be achieved by as-

suming that there is a unique source node and taking timet = 0 when the source transmits the

message. Therefore, in the most general model where only local synchronization is allowed,

a protocol for clear transmission or reception based on Decay relies on actually solving the

broadcast problem which implies the same time bound.

The Algorithm 3, Increase From Square, shown before can be used to solve the clear re-

ception problem in a multi-hop Radio Network efficiently. Infact, there is only one minor

modification to be introduced. Namely, instead of running the algorithm forever, every node

stops running the protocol upon receiving some transmission. Furthermore, the time bound is
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still the same as shown in the following theorem.

Theorem 28. Given a multi-hop Radio Network wheren is not known and only local synchro-

nization is available, the algorithm Increase From Square solves the clear reception problem

with probability1− ε in timeO(log n log(1/ε)).

The proof for each one-hop neighborhood is the same as in Theorem 27. Interference

among one-hop neighborhoods is not a problem. To deal with it, induction in the sequence

of time slots in which the sum of probabilities of transmission of some one-hop neighborhood

reach a constant can be used. The base case is the first time slot t0 when such an event occur.

Recall that in the algorithm Increase From Square nodes double the probability of transmission

in each round. Therefore, if such an event does not occur within O(log n) steps is only because

every node has received some transmission. Hence, the problem is solved.

As explained in Chapter 6, whenε = 1/n, aO(log2 n) time bound can be obtained for the

much more complicated problem of computing a Maximal Independent Set (MIS) in the multi-

hop Weak Sensor Model w.h.p. This algorithm can be used to solve the clear transmission

problem without extra cost as follows. In a first phase the MISis computed using aO(log2n)

MIS algorithm and in a second phase all MIS nodes repeatedly transmit with constant proba-

bility. Although due to lack of global synchronization different nodes may be running different

phases, as shown in Chapter 6 this is not a problem if we do the analysis under the assumption

of the existance of a source of noise that transmits with constant probability.

Theorem 29.Given a multi-hop Radio Network without collision detection where the size of the

networkn is known, and the synchronization is local, the algorithm ofthe previous paragraph

solves the clear transmission problem inO(log2 n) time slots w.h.p.

Proof. By definition of an MIS, there is a constant number of MIS nodesin any two-hop

neighborhood. Therefore, if the probability of transmission is p, the number of MIS nodes

in any two-hop neighborhood is at mostδ, and the probability of transmission of the source of

noise isq, the probability that a given MIS node does not achieve a clear transmission is

Prfail ≤
(

1− p(1− p)δ(1− q)
)t

≤ 1

n2
, for somet ∈ Ω(log n)
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Using the union bound, the probability that any MIS node doesnot achieve a clear transmission

is O(1/n). Given that there exists exactly one MIS node in every one-hop neighborhood w.h.p.,

the clear transmission problem is solved.

Bar-Yehuda, Goldreich and Itai showed in [BYGI91] that the algorithms developed for one-

hop Radio Networks with collision detection can be emulatedin multi-hop Radio Networks

without collision detection. Each round of the one-hop network can be emulated byO((D +

log(n/ε)) log ∆) rounds of the multihop network and succeeds with probability at least1 − ε,

whereD is the diameter of the network and∆ is the maximum degree. Thus, algorithmic

results concerning single-hop radio networks may have someimpact on the multi-hop model.

7.3 Lower Bounds

Kushilevitz and Mansour [KM98] proved the first lower bound of Ω(log n) on the expectation

of the running time of any randomized algorithm for clear transmissions in Radio Networks.

Notice that the algorithm of Willard [Wil86] gives an expected O(log log n) running time to

achieve a clear transmission in a single-hop radio network with collision detection. Hence, the

lower bound of Kushilevitz and Mansour shows also an exponential gap between both models.

The specific problem for which the lower bound is proved is broadcast. In a one-hop Radio

Network the broadcast problem is the same as the clear transmission problem. To see this, it is

enough to assume in the broadcast problem that there is an adittional node calledthe originator

that it is connected only to a non-empty subset of sized of then nodes forming the network.

In a first time slot the originator broadcasts its message andonly its d neighbors receive it.

From now on we have the same setting as in the clear transmission problem, i.e., a subset of

d participating nodes trying to achieve a non-colliding transmission. However, nodes know

neither which are the participating nodes nor the magnitudeof d.

The lower bound is proved under the assumption that all nodesexecute the same protocol.

If the protocol is non-uniform, i.e., nodes may run different protocols, a simple reduction as

the one used in Section 8.2 from the non-uniform case to the uniform one shows that the same

lower bound holds.

The goal is to show that for every clique ofn nodes, there existssomenon-empty subset
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of size d such that, if the nodes in this subset try to transmit, the expected number of time

steps until exactly one of them transmits isΩ(log n). To that extent it is enough to take the

expectation over all choices ofd of the form2i wherei ∈ [1, log n] of the expected running

time when2i nodes transmit, because then there existssomechoice ofd for which it is not

possible to do it faster.

Theorem 30( [KM98],Lemma 1). Given a one-hop Radio Network of sizen without collision

detection where the number of participating nodesd is unknown and with global synchroniza-

tion, any randomized uniform protocol requires at leastΩ(log n) time steps in expectation to

achieve a clear transmission. More precisely,Ei[E[Ti]] ∈ Ω(log n). WhereE[Ti] is the ex-

pected running time of the protocol when the number of participating nodes isd = 2i andEi

is the expectation over the uniform choices of an integeri ∈ [1, log n].

Sketch of the proof. First we observe that the decisions made by participating nodes are

independent since before achieving a successful transmission they do not exchange any infor-

mation. Therefore, each participating node can decide to transmit or not in a given time slot

based only in its own history of transmissions. Therefore, w.l.o.g., we can assume that partic-

ipating nodes make their decisions in advance before running the protocol. Thus, at a given

time step the probability of transmission of any node is the same for all participating nodes.

Under these assumptions, we can simply compute the expectation as follows. LetPr(t, i) be

the probability of achieving the first non-colliding transmission at the time stept when2i nodes

participate in the protocol. Then,
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Ei[E[Ti]] =

log n
∑

i=1

1

log n

∞
∑

t=1

tṖ r(t, i)

≥ T

log n

log n
∑

i=1

∞
∑

t=T

Pr(t, i)

=
T

log n

log n
∑

i=1

(

T−1
∑

t=1

Pr(t, i)

)

≥ T

log n

log n
∑

i=1

(

T−1
∑

t=1

2ip(t)(1− p(t))2
i−1

)

≥ T

log n

(

log n−
T−1
∑

t=1

log n
∑

i=1

2ip(t)(1− p(t))2
i−1

)

≥ T

log n

(

log n−
T−1
∑

t=1

2

)

=
T

log n
(log n− 2(T − 1))

≥ 1

8
log n +

1

2
, for T =

1

4
log n.

A lower bound ofΩ(log n log(1/ε)/(log log n + log log(1/ε)) for achieving a clear trans-

mission with probability1− ε in a one-hop, globally-synchronized Radio Network was proved

in [JS05] by Jurdzinski and Stachowiak. The lower bound of Jurdzinski-Stachowiak is tighter

than the previous one of Kushilevitz-Mansour ifε ∈ o(1/ log n).

The specific problem for which the lower bound is proved is wakeup. In a one-hop Radio

Network the wakeup problem is the same as the clear transmission problem. Nodes waking up

spontaneously at different time steps in the wakeup problemare the same as nodes starting a

clear-transmission protocol. Also, at any time step, nodesknow neither which are the partici-

pating nodes (awake nodes) nor the number of themd. In order to solve the wakeup problem

all nodes need to be woken up either spontaneously or by a successful reception. Given that

this is a single-hop Radio Network a successful reception requires a clear transmission.

Theorem 31( [JS05],Theorem 5.2). Given a one-hop Radio Network of sizen without collision

detection where the number of participating nodesd is unknown and with global synchroniza-

tion, any randomized uniform protocol requires at leastΩ
(

log n log(1/ε)
log(log n log(1/ε))

)

time steps in order

to achieve a clear transmission with probability at least1− ε.
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Sketch of the proof. We assume that all the participating nodes begin running the protocol

at the same time slot and that no new nodes start afterwards. Let us call alost stepto a time step

when the probability of achieving a successful transmission Prsucc is below some thresholdp`

to be defined later. Ifp is the probability of transmission of the participating nodes in a time

step, using thatPrsucc = dp(1 − p)d−1 and with some algebra, it is easy to show that the

step is lost unlessp` ≤ dp ≤ 1/p` as long asd ≥ max{10, log(1/p`)}. Therefore, for a given

probability of transmissionp, we can givelog n/2 log(1/p`) different values tod such that only

one of them produces a non-lost step. We now bound the minimumnumber of non-lost steps

that are needed in order to achieve the clear transmission with probability1−ε. The probability

of not achieving a succesful transmission int non-lost steps is

Prfail =
(

1− dp(1− p)d−1
)t

≤
(

1

e

)t
p`

e
p`

≤ ε , for t ∈ Ω

(

ep`

p`
log(1/ε)

)

.

So, the overall running time is at least

T ∈ Ω

(

ep`

p`
log(1/ε)

log n

log(1/p`)

)

∈ Ω

(

log n log(1/ε)

log(log n log(1/ε))

)

.

This lower bound was proved for uniform protocols, i.e., allnodes run the same algorithm.

A simple reduction from the non-uniform case to the uniform one as the one used in Section 8.2

is enough to extend this result to the non-uniform case.

Both lower bounds summarized in this section were proved under the assumption of global

synchronization which implies bounds for the worse case of local synchronization. In Chapter 8

we improve these lower bounds showing the optimality of the Increase From Square algorithm

and we also show lower bounds for the well-studied case of multi-hop Radio Networks where

nodes are deployed as a Random Geometric Graph.
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Chapter 8

Lower Bounds for Clear Transmissions in Radio Networks

Any network where transmissions may collide needs a protocol for collision-free transmissions.

Different networks provide different information about collisions. For example, on some hard-

ware, transmitters can distinguish amongst three states ateach time step: no transmission,

single transmission, and collision, whereas on other hardware, transmitters can not distinguish

between no transmission and collisions. In some networks, transmitters know an upper bound

on their number. Sometimes, transmitters may notsnoop, i.e., listen to the channel when not

transmitting; whereas at the other extreme, transmitters may only snoop, i.e., they get no infor-

mation on the channel when they are transmitting. In some networks collisions are transitive.

The properties of a shared channel have a profound impact on the protocols usable on such a

channel.

Sensor Networks are a heavily studied example of a shared-channel network. A Sensor

Network consists of small devices with processing, sensingand communication capabilities.

Thesesensor nodesare randomly deployed over an area in order to achieve sensing tasks after

self-organizing as a wireless radio network. Sensor nodes have strong limitations and operate

under harsh conditions. Some of the important limitations of sensor nodes include: lack of

collision detection hardware, non-simultaneous transmission and reception, and one channel of

communication. We call any such network a Radio Network. Additionally, nodes in sensor

networks wake up at arbitrary times. Sensor networks are even more restricted in various

ways that will not concern us here. The Radio Network restrictions, along with these further

restrictions, are part of the Weak Sensor Model described inChapter 3.

The gap between the lower bound for achieving something so simple as a clear transmis-

sion and upper bounds for more complicated problems such as MIS was tantalizingly narrow:

respectivelyΩ(log2 n/ log log n) andO(log2 n), whenε is Θ(1/nc). In this chapter we prove a
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stronger lower bound: it takes timeΩ(log n log(1/ε)) to solve the problem of achieving a clear

transmission with probability1 − ε in a one-hop setting, closing that gap. This result implies,

for example, theΩ(log n) lower bound on the expectation of any randomized algorithm for

clear transmission. These lower bounds go beyond the context of Sensor Networks and apply

to any network with the following characteristics:

• Shared channel of communication:All nodes communicate with their neighbors using

broadcasts that are transmitted on a shared channel.

• Lack of a collision detection mechanism:Nodes do not have the ability to distinguish

between a collision on the channel or lack of a transmission.

• Non-simultaneous transmission and reception:Nodes cannot snoop on the channel while

transmitting.

• Local synchronization:Time is assumed to be divided into slots and all nodes have the

same clock frequency.

• Adversarial wake-up schedule:Nodes are woken up by an adversary.

Indeed, we prove the lower bound with the following weak adversary: the adversary may chose

an i ∈ [1, log n], and2i nodes wake up at time 0. These techniques also give a lower bound

of Ω(log log n log(1/ε)) on clear transmissions in the well-studied case of sensor nodes dis-

tributed uniformly at random with enough nodes to ensure connectivity, and thus for more

complicated problems such as MIS. There was no non-trivial lower bound known for this prob-

lem, and the best upper bound known isO(log2 n) with high probability, proved for the more

complicated problem of sensor network initialization in Chapter 6.

8.1 Randomized Uniform Protocols in One-Hop Radio Networks

In this section, we prove a lower bound on randomized uniformprotocols and we extend this

result to nonuniform protocols in Section 8.2.

We first define what the clear transmission problem is in the one-hop setting. The nodes are

all connected to a common broadcast channel and each transmission is available for snooping
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to all non-transmitting nodes. The connectivity of the nodes can be modelled as a clique. In

this case we assume that all nodes know an upper bound on the number of their neighbors. In

this setting, a clear transmission is achieved if exactly one node transmits in a time slot.

As explained before, we prove our lower bounds under the assumption of the existence of

a weak adversary that, at a given time, wakes up (i.e. turns on) some subset of nodes. We

call themactivenodes. Upon waking up, the active nodes start the execution of a protocol to

achieve a clear transmission. All non-active nodes do not participate in the protocol.

We define arandomized uniform protocolfor clear transmission to be a sequencep1, p2, . . .

where each node transmits with probabilityp` in the`th time step after waking up. Given our

adversary, this means that all active nodes transmits with same probability as each other in each

time slot.

We seek a lower bound on the number of time-slots required to achieve a clear transmission

with probability (1 − ε). We simplify the analysis in two ways. First, we further weaken the

adversary by requiring that the number of nodes participating can only be one of{2i|0 ≤ i ≤

log2 n}. Secondly, we assume that allp` ∈ {2−j |1 ≤ j ≤ log2 n}. If this assumption is not

true of a particular algorithmA, we can always produce an algorithmA′ from A by replacing

one attempt inA by a constant number of attempts inA′ where the probabilities of transmission

in A′ have been rounded off to the closest power of1/2.

One of the principal benefits of our weak adversary is that, the probabilityP` of a clear

transmission by timè is the same for any permutation ofp1, p2, . . . , p`. Therefore, we need

not bother with what order the steps are taken in, but only howmany times the protocol fires

with each probability.

Let tj be the number of time-slots that nodes are transmitting withprobability2−j . Let pij

denote the probability that2i nodes fail to clear when they all transmit with probability2−j .

Thus we know that:

pij = 1− 2i 1

2j

(

1− 1

2j

)2i−1

= 1− 2i−j(1− 2−j)2
i−1
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The total probability of failure for any number of active nodes,2i, needs to be bounded by:

∏

j

p
tj
ij ≤ ε

⇐⇒
∑

j

tj ln(pij) ≤ ln(ε).

A lower bound is achieved by minimizing the total number of time-slots needed to satisfy the

previous constraints. This can be formulated as the following primal linear program:

Minimize 1
T
t,

subject to:

Pt ≥ ε

t ≥ 0

where:

t , [tj ],

ε , [− ln(ε)],

P , [− ln(pij)],

which yields the followingdual:

Maximizeε
T
u,

subject to:

P
T
u ≤ 1

u ≥ 0.

The primal linear program has a finite minimum solution, and hence its dual has a finite

maximum solution. The value of the objective function for every feasible solution of the dual is

a lower bound on the minimum value of the objective function for the primal. Thus any feasible

solution for the dual will give a lower bound on the number of time-slots required to achieve a

clear transmission with failure probabilityε.

Suppose that thejth row, PT
j , of PT has the maximum row sum, and letr(PT ) = P

T
j 1.

Now we setu = [1/r(PT )]. This value ofu satisfies all constraints of the dual. The value of
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the objective function of the dual is simplyεT
u. To obtain the value of the objective function

of the dual we need to find the row ofPT with the largest row sum which is the same as the

column ofP with the largest column sum.

Lemma 32. The trace of every column vector of the constraint matrixP of the primal is in

O(1).

Proof. We begin by stating the following useful inequality [Mit64,§2.68]:

e−x/(1−x) ≤ 1− x ≤ e−x, 0 < x < 1. (8.1)

The sum of the elements of a columnj of P is:

Sj ≤
∑

i

− ln(1− 2i−j(1 − 2−j)2
i−1)

≤
∑

i

− ln

(

e−2i−j(1−2−j)2
i
−1/(1−2i−j (1−2−j)2

i
−1)

)

(By Inequality 8.1)

=
∑

i

2i−j(1− 2−j)2
i−1

1− 2i−j(1− 2−j)2i−1
.

Let yij , 2i−j(1− 2−j)2
i−1.

Sj =
∑

i

yij

1− yij

≤
∑

i

yij

1− ymax
(whereymax = max

ij
{yij}).

Now we derive an upper bound onymax:

ymax = max
ij

yij

= max
ij

2i−j(1− 2−j)2
i−1

≤ max
ij

2i−je−2i−j+2−j

(By Inequality 8.1)

≤ max
ij

√
e

2i−j

e2i−j
(∵ j ≥ 1)

≤ 1√
e

(The function is maximized, wheni = j).

Therefore:

Sj ≤
√

e√
e− 1

∑

i

yij



78

We derive an upper bound on the right hand side sum.

∑

i

yij =
∑

i

2i−j(1− 2−j)2
i−1

≤
∑

i

2i−j(e−2−j

)2
i−1 (By Inequality 8.1)

=
∑

i

2i−je−2i−j+2−j

≤
√

e





∑

i≥j

2i−je−2i−j

+
∑

i<j

2i−je−2i−j



 (∵ j ≥ 1)

≤
√

e





∑

k≥0

2ke−2k

+
∑

k≥1

2−ke−2−k





≤
√

e





∑

k≥0

2ke−2k

+
∑

k≥1

2−k





∈ O(1) (Because both the sums are bounded by a constant)

=⇒ Sj ∈ O(1).

Theorem 33. Every uniform randomized algorithm to achieve a clear transmission with prob-

ability 1− ε in a one-hop Radio Network requiresΩ(log n log(1/ε)) time-slots.

Proof. From lemma 32, we know thatr(P T ) ∈ O(1), thenε
T
u = [− ln(ε)] · [1/PT

max1] ∈

O(log n log(1/ε)). From this we can conclude that the dual linear program has a feasible

solution with objective function evaluating toΩ(log n log(1/ε)). Since we showed earlier that

the solution to the primal linear program gives a lower boundon the number of time-slots

required to achieve a clear transmission with probability1 − ε, the statement of the theorem

holds.

8.2 Randomized Non-uniform Protocols in One Hop Radio Networks

In this section we prove our lower bound for the case in which processors may run different

algorithms using their unique ID’s to break symmetry. We call this a nonuniform protocol.

Recall that we model a randomized protocol to achieve a cleartransmission as a schedule,
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or temporal sequence, of probabilities of transmission such that, at time sloti an active node

transmits with probabilitypi. In the case of the randomized uniform protocols, we assume that

nodes either have no ID or the protocol does not make use of it to break symmetry. Then,

given that no information can be obtained from a shared-channel before a clear transmission,

all active nodes transmit with the same probability in the same time slot. On the other hand, if

nodes have unique ID’s, they may use different schedules of probabilities of transmission and

achieve a clear transmission faster. We prove in this section that in fact having unique ID’s does

not help.

As in [KM98], we prove our lower bound by showing a reduction from a nonuniform pro-

tocol to a uniform one. We first state our result formally.

Theorem 34. Every randomized nonuniform protocol to achieve a clear transmission with

probability 1− ε in a one-hop Radio Network requiresΩ(log n log(1/ε)) time slots.

Proof. For the sake of contradiction, assume that there exists a randomized nonuniform pro-

tocolA that achieves a clear transmission with probability1 − ε in T time slots, whereT ∈

o(log n log(1/ε)). Then, we can define a randomized uniform protocolA′ that achieves the

same running time as follows.

For each node

Choose uniformly at random an integeri ∈ [1, n2/ε]. 1

Simulate protocolA usingi as ID.

Each node running the protocolA′ obtains a unique ID with probability at least1 − ε.

This is true because the probability that some pair of nodes chooses the same ID isε/n2 and

there are
(n
2

)

possible pairs. Given that the random choice of the ID can be done in constant

time, the protocolA′ is a randomized uniform protocol that achieves a clear transmission with

probability 1 − 2ε in o(log n log 1/ε) = o(log n log 1/2ε) time slots, which is a contradiction

with Theorem 33.

1Under the assumptions of the Weak Sensor Model, nodes have only O(log n) bits of memory. Therefore, this
lower bound applies also to sensor networks whenε ≥ 1/nγ , for some constantγ > 0.
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8.3 Randomized Protocols for Geometrically Distributed Nodes

Here, we consider the problem of achieving a clear transmission under the following conditions:

The nodes are connected by a broadcast channel to some subsetof nodes and each transmis-

sion made by a node is available to its neighbors only, but it can interfere with all transmissions

originating in a two-hop neighborhood. The specific case we will derive a lower bound for is

the case of nodes consistent with the Weak Sensor Model distributed randomly in the plane

with limited transmission range but adequate density to ensure connectivity. The connectivity

of the nodes can be modelled as aRandom Geometric Graph (RGG)(see Section 3.1.2) where

the parameter conditions to ensure connectivity are alwayssatisfied. In this case, we assume

that nodes know an upper bound on the number of their neighbors with a probability given by

the parameter conditions for connectivity.

In this setting, we say that a clear transmission occurred ifexactly one node is transmitting

and no other nodes within two hops of it are transmitting. Then, the clear transmission problem

in a multi-hop setting is solved after every node either produces or receives a clear transmission.

In a G(n, r, `) satisfying the connectivity conditions explained previously, the number of

nodes contained in any circle of radiusΘ(r) is Θ(log n) with high probability, as proved in

Lemma 9. Then, we complete our lower bounds with the following corollary, which can be

obtained as a simple application of Theorems 33 and 34 to thissetting.

Corollary 35. Every randomized protocol to solve the clear transmission problem with proba-

bility 1−ε in a Radio Network with geometrically distributed nodes requiresΩ(log log n log(1/ε))

time slots, whereε ≥ 1/nγ for some constantγ > 0.

Proof. Replacing the appropriate density for any one-hop neighborhood in this setting, i.e.

Θ(log n) instead ofn, in theorem 34 the corollary follows.

8.4 Randomized Fair Protocols for Geometrically Distributed Nodes

In this section we prove lower bounds on the time required by any fair protocol to solve the

Clear Transmission problem in Radio Networks where the nodedeployment is modelled by

an RGG, i.e. nodes are deployed uniformly at random in the plane with limited transmission
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range but adequate density to ensure connectivity. A fair protocol is a protocol in which the

probability of transmission of every node in the same execution step is the same. The difference

between fair and uniform protocolos is that, in uniform protocols, nodes may use messages

received to break symmetry. Notice that for the Clear Transmission problem in single-hop

networks a uniform protocol is a fair protocol because the problem is solved when a message is

received, but this is not the case in multi-hop networks. Given that the nodes are assumed to be

unreliable, the density ofactivenodes can be upper bounded as shown in Lemma 9 but it can

not be lower bounded. Hence, the probability that a node transmits after a message is received

in an non-fair protocol may not be the same for all nodes running the same execution step.

We exploit the unreliability assumption to obtain our lowerbounds assuming the existence

of a weak adversary that, at a given time, wakes up (i.e. turnson) some subset of nodes. We

call them active nodes. Upon waking up, the active nodes start the execution of a protocol to

achieve a Clear Transmission. All non-active nodes do not participate in the protocol.

We define a randomized fair protocol to be a sequencep1, p2, . . . where each node transmits

with probability pt in the tth time step after waking up. Given our adversary, this means that

all active nodes transmit with the same probability as each other in each time slot.

The topology of active nodes chosen by the adversary consists of a set of disjoint pairs

of cliques connected by a single node. One clique of the pair has node density inΘ(1), the

other inΘ(log n) and the intermediate node connects to all nodes in both cliques as depicted in

figure 8.1. We call this construction aclique-pair. In order to be disjoint, nodes are woken up so

the resulting clique-pairs are separated by a distance ofr, the maximum range of transmission

of any node.

We first give the intuition of why this structure gives a good lower bound on the number

of time steps needed to solve the Clear Transmission problem. Recall that in a multi-hop

setting a transmission is a Clear Transmission if no node within two hops of the transmitter

transmits in the same time slot. To solve the Clear Transmission problem every node has to

receive or produce a Clear Transmission so, in order to solvethe Clear Transmission problem

an uncolliding transmission in the low density clique or from the intermediate node with silence

in the neighboring high-density clique has to occur. Given the different densities and that

the protocol is fair, when the sum of probabilities of transmission in the low density clique
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Θ(log n) Θ(1)

Figure 8.1: A clique-pair

reaches a constant and therefore the probability of having asuccesful transmission in that clique

is constant, the sum of probabilities of transmission in the2-hop neighboring high density

clique is asimptotically more than a constant and the probability of silence is low. On the

other hand, when the sum of probabilities of transmission inthe whole clique-pair reaches a

constant and the probability of having an uncolliding transmission is high, the probability that

the transmitting node is in the low-density clique or it is the intermediate node is low. Then, the

probability that nodes in the low density clique produce or receive a Clear Transmission fast is

low.

Lemma 36. Given a Radio Network with nodes deployed as a connected RGG,the total number

of clique-pairs activated by the adversary is inΘ(n/ log n) w.h.p.

Proof. It follows from Lemma 9.

Theorem 37. Every fair randomized algorithm takesΩ(log2 n) expected time in order to solve

the Clear Transmission problem in a multi-hop Radio Networkwhere nodes are deployed uni-

formly at random.

Proof. The probability of failing to achieve a Clear Transmission in a low-density clique in one

time slot is

Pfail = 1− δp(1 − p)δ+∆−1,
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whereδ and∆ are the low and high node densities respectively andp is the probability of

transmission of a node. Letδ = c and∆ = c log n for some constantc > 0. We now compute

a lower bound on such probability of failure as follows

Pfail = 1− cp(1− p)c+c log n−1

≥ 1− cp(1− p)c(1+log n)

≥ 1− cpe−cp(1+log n)

= 1− cp

(e1+log n)cp
.

Using calculus, we find the value ofp = 1/c(1 + log n) that minimizes this expression.

Replacing,

Pfail ≥ 1− 1

(1 + log n)e

≥ 1− 1

1 + log n

≥ e−1/ log n.

Then, the probability of a failure in a low-density clique after t time slots is

Pfail(t) ≥ e−t/ log n.

Therefore, the probability of failure in one of thew low-density cliques aftert time slots is

Pfail(w, t) ≥ 1−
(

1− e−t/ log n
)w

. (8.2)

The time stept can be seen as a discrete random variable that takes only non-negative

values, then
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E[t] =
∞
∑

i=1

Pr(t ≥ i), replacing 8.2

≥
∞
∑

i=1

(

1−
(

1− e−(i−1)/ log n
)w)

≥
1+log n ln w
∑

i=1

(

1−
(

1− e−(i−1)/ log n
)w)

≥ (1 + log n ln w)

(

1−
(

1− 1

w

)w)

≥ (1 + log n ln w)

(

1− 1

e

)

, using Lemma 36,

∈ Ω(log2 n).

Thus, the expected time is inΩ(log2 n) with probability at least1−n−γ for some constant

γ > 0. Then,

E[t] ∈ Ω

(

log2 n(1− 1

nγ
) +

1

nγ

)

∈ Ω

(

log2 n− 1 + log2 n

nγ

)

∈ Ω(log2 n).

Finally, we show a lower bound on the time needed to solve the problem with probability

at least1− ε.

Theorem 38. Every fair randomized algorithm requiresΩ(log n log(n/ε)) time-slots in order

to solve the Clear Transmission problem with probability atleast1 − ε in a multihop Radio

Network where nodes are deployed uniformly at random.

Proof. We compute the minimum number of steps needed to reduce the probability of failure

to ε, even if nodes transmit in each and every step with the probability p = 1/c(1 + log n) that

minimizes that probability. More precisely, using 8.2, we want to findt such that
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1−
(

1− e−t/ log n
)w
≤ ε

1− e−t/ log n ≥ e−ε/w

t ≥ log n ln
w

ε
+ 1

t ∈ Ω (log n log(n/ε)) .
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