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Sensor nodes are very weak computers that get distributeshédm on a surface in order to
achieve a large-scale sensing task. Once deployed, theywakis up and form a radio network.
Given the extremely limited resources of sensor nodes rinelificient solutions even for basic
problems is very challenging. The results in this thesisceamthe initialization from scratch,
or Bootstrapping of a Sensor Network. More precisely, we seek efficient-gids solutions to
the most fundamental problem in Sensor Networks, its sghization. At the same time, we
study lower bounds on the time complexity of such a problem.

The first set of results in this thesis address the three ffatsSensor Network bootstrap-
ping research has: to model the restrictions on sensor nwpsove that the sensors connec-
tivity graph has a subgraph that would make a good netwowki@give a distributed protocol
for finding such a network subgraph that can be implementesknsor nodes.

A study of the Sensor Network Bootstrapping problem woultllv@ complete without a
study of lower bounds on the time complexity of solving ittil8hgly, the most basic problem
in a Radio Network, i.e. to achieve a successful transnmissian be proved to be as difficult as
other more complex problems under the constraints of a seisie. The second set of results
of this thesis shows new lower bounds for collision-fre@sraissions in Radio Networks. The
main lower bound is tight for a variety of problems. An exiensof this result gives the first

lower bound for Sensor Network Bootstrapping. A lower bowmdthe expectation for fair



protocols is also shown.

Another contribuition of this thesis is a survey of resedrcRadio Networks. The survey
includes two parts that have received extensive study: rupmends for Sensor Network for-
mation, and upper and lower bounds for non-colliding trassions in Radio Networks proved

under the broader context of more complex problems.
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Chapter 1

Introduction

Advances in technology have made it possible to integratsiisg, processing and communica-
tion capabilities in a low-cost multi-function device, poarly known as aensor nodeSensor
nodes are randomly deployed over an area and must selfipegas a radio-communication
network called aensor networkEven though communication among sensor nodes is through
radio broadcast, it is useful to set up explicit links betweedes in order to establish routing
paths and prevent flooding.

A Sensor Network is capable of achieving large tasks thrahghcoordinated effort of
sensor nodes, but individual nodes have severe limitabonsiemory size, life cycle, range
of communication, etc. Due to these harsh limitations,sita solutions from the Radio Net-
works and other areas can not be straightforwardly appliekimy the area of Sensor Networks
very attractive. Furthermore, although problems and egsults can be easily understood with
little knowledge of mathematics or computer science, to éffidient solutions to basic prob-
lems is not a trivial task.

Problems in sensor networks are twofold: related to geamptoperties and related to
network protocols. Sensor nodes have limited range andepieykd at random over a large
area. Therefore, geometric properties like path lengthemme and connectivity need to be
understood. Thus, sensor networks are modeledir@dom geometric graphsOn the other
hand, node limitations, shared communication channel aclddf additional infrastructure at
deployment impose limitations on network protocols. Usufalr parallel and distributed com-
puting, there are many differences among computing modsd in Radio Networks due to
diverse technical details that may have immense impactgarigimic issues in communica-
tion. The different models explicit or implicit in many rd&uare incomplete or inadequate in

order to reflect the various limitations under which sengates operate.



The most fundamental problem in Sensor Networks is to astabfficiently the network
among sensor nodes from scratch right after deploymente@dnsor Network Bootstrapping
problem. Sensor Network bootstrapping research has ttags: ppne must formally model
the restrictions on sensor nodes; one must prove that theectwity graph of the deployed
sensor nodes has a subgraph that would make a good netwdr&nammust give a distributed
protocol for finding such a network subgraph that can be implged on sensor nodes.

In this thesis, all of the three parts of Sensor Network hompping research are addressed
in detail: a formal Weak Sensor Model that summarizes tleeditire on sensor node restric-
tions, taking the most restrictive choices when possible|ucidated in Section 3.2.2; in Chap-
ter 6 it is shown that sensor connectivity graphs have logrele subgraphs with asymptoti-
cally optimalhop-stretch as required by the Weak Sensor Model; and a Weak Sensor Model
compatibleO(log? n) * protocol for finding such graphs with high probability (wob, i.e. with
probability 1 — n~7 for some constant > 02, is given in the same chapter. This is the first
network initialization algorithm that is implementable sensor nodes.

Given the absence of provable upper bounds for Sensor Netiwitialization in the pre-
vious literature, it is not surprising that lower bounds tlaiis problem where not known until
recently. Any network where transmissions may collide hsas a Sensor Network, needs a
protocol to achieveollision-free transmissionsThe narrow gap between the lower bound for
achieving something so simple as a clear transmission ifoR&tworks and upper bounds for
more complicated problems such as Maximal Indepent Setyates the study of this problem
in order to obtain lower bounds for Sensor Network initiatian.

In Chapter 8, new lower bounds for collision-free transiniss in Radio Networks are
shown. More precisely, the main result is a tight lower boah(log n log(1/¢)) on the time
required by a randomized protocol to achieve a clear tressam with success probability— e
in a one-hop setting. The main result is tight for a varietypfblems. The first lower bound
for clear transmissions in the Sensor Network setting, when the topology is model by a

connected random geometric graph, is obtained as an exteofthat result. Finally, a lower

INotation: throughout this thesikg indicates logarithm baskunless otherwise stated

2Notation: throughout this thesis, we usith high probability w.h.p, or with probability 1 — n~" for some
constanty > 0 indistinctively



bound on the expectation for fair protocols is also shown.

Another contribution of this thesis is a survey of researchpper bounds for Sensor Net-
work initialization, and bounds for non-colliding transsions in Radio Networks, which is
included in Chapters 5 and 7 respectively. The latter resalé proved under the broader
context of other problems such as broadcast, wake-up addrledection. In addition to the
detailed description of our Weak Sensor Model, in Chaptesigeey of models frequently used
in Radio Networks is given. Frequent terminology used in gmmication networks in general
and Sensor Networks in particular, and definition of proldestudied in Radio Networks are

included in Chapters 2 and 4 respectively.



Chapter 2

Terminology

Radio Networks is a vast and active area of research in betfytplied and theory communities.
In order to analyze the various problems present in Radiavdlés in general and Sensor
Networks in particular, we summarize in this section thenianlogy usually adopted in the
literature. Given that this terminology is mostly borrowiedm the more general computer
networks area, we begin with definitions for general netwporiarrowing down later to our
specific area of interest.

A computer communication netwoik a collection of entities with information process-
ing and communication capabilities. In order to achieve ealistributed computation, these
entities, usually callechodes need to exchange information among them and perhaps share
distributed resources. To that extent, protocols to estabinaintain and use such a network
have to be carefully designed, according with the congsafheach application.

The different classification criteria are as varied as thdiegtions of such networks. One
popular classification is based on the size and distance gmates. Although there are other
intermediate categories, we distinguish here two main:dpoeal area networksndwide area
networks

The communication among nodes is achieved through entiéibsd links. These entities
are implemented as electromagnetic links either througlksajcopper, fiber optics, etc.), in
which case the network is calledred, or through non-wired links (radio waves, infrared light,
etc.) normally calledvireless networks

Given the existance of wireless networks, we can considfarent classifications accord-
ing with the stability of the topology of the network. Depémgl on the mobility of nodes,
networks can betationaryor mobile In cases such as Sensor Networks, even if the nodes

are static, the lack of reliability can be modelled as mobidées. Changes in topology due to



link changes are not used in the literature to classify netgvbut as additional constraints in
problems were this issue is present.

Given that nodes are information processing devices, alatdrassumption is that they
all have their own clock. Each clock cycle is callegtepor time slot * Regarding syn-
chronicity in the execution of the distributed protocolsfworks can basynchronoudocally
synchronousi.e., all clocks have the same frequency but perhaps diftestarting times, or
globally synchronous.e., all clocks start at the same time and have the samedney.

Nodes communicate among them by means of finite strings®tibitally calleanessages
These messages are padded with additional information asiarigin, destination, etc. in
order to facilitate the transmission of the message thrahgmetwork. A message formatted
in this way is called gacket It is assumed that the transmission of one packet from ode no
to a neighboring node incurs in no delay and it is transmittedne time step or time slot.
Protocols that work under this assumption are cadletted If a nodea transmits a message
to some other nodk we say that: sendsa message aridreceivesa message. According with
the application, in order to analyze message routing anedsdimg protocols it is sometimes
assumed the existance of an adversarial mechanism thatteheessages to be transmitted
and assigns these messages to nodes. Such mechanism majtherkn advance or online.
When online assignment of messages is assumed we say thasagadiaarrived to a node
at a given time slot if it was assigned to such a node in that shat.

In networks where all nodes share the communication chaamakssage sent by a given
node can be received by all the other nodes, either becadss aoe directly connected to the
transmitter or by message forwarding of the intermediatdeno This type of configuration
where a node sends a message to all its neighbors simulspeswsually callecbroadcast
network On the other hand, ipoint-to-point networksmessages are sent from the originator
to a recipient node, once again either directly or by mesgagerding.

Another useful classification regarding the topology ofrthevork is based on connectivity.
If every node is connected directly to every other node, the. underlying graph modelling the

topology is a clique, the network is callsthgle-hop On the other hand, if there are pairs of

1n fact, a time slot will be the cost unit of protocols unlesseswise stated.



nodes which are not connected by a single link, the netwotklisdmulti-hop

The size of the network is defined to be the number of nodedlodes are assumed to
have been assigned a unigdentifying numbe(ID) in the rangg1..©(n)] and that they know
their own ID as well as the size of the network or an upper boointhat size given by the
range of ID numbers. Distributed protocols have to be robasiugh to handle at least the
initialization of the network, when nodes ignore the ID nuwrsbof their neighbors. Networks
where protocols do not have this topology information aldé are calledinknown-topology
networksor ad-hoc networks

We now focus our atention on how nodes handle messages cenityir Depending on the
type of network, a node may be able to send a message to a sfilmsghboring nodes in a
given time slot as well as receive messages from a subseigtthwring nodes simultaneously
in a given time slot. In certain networks, in order to recavmessage successfully the size
of the subset of adjacent transmitting nodes has to be g@od. In fact, this is the case for
Radio Networks where only one channel of communication éslalle.

In a given time slot, nodes may operate in receiver modesitngter mode or perhaps both.
If in a given time slot a node that is operating as a receivesduwt receive any message, it
receives what we catlioisewhich is some kind of signal different from any known message
If during such a time slot, no adjacent node has transmittgdnaessage, we say that the
noise received ibackground noiseWhereas, if more than one adjacent node has transmitted
a message during that time slot, we say thablision has ocurred and the signal received is
interference noise We call a network where nodes can distinguish between backd and
interference noise a networkith collision detectior{with CD) andwithout collision detection
(without CD) otherwise.

In shared-channel networks, nodes compete to gain accéss thannel. In many cases,
deterministic protocols to share the channel are not daithie to various factors, e.g., lack of
knowledge of the topology. If no centralized control is #aalie then conflicts among nodes
while trying to access the channel are unavoidable. Rarmhirdistributed protocols intended
to resolve such conflicts are calledntention resolution protocals

Networks are also classified depending on the type of feédtheat nodes receive from

the channel. As explained before, nodes might be able timgigssh between 3 states of the



channel, namely, silence (background noise), transnmissind collision (interference noise).
When this information is available it is said that the chamasternary feedbackWhereas in
the case that nodes can only distinguish between a meahmgisage or a meaningless one,
we say that the channel hamary feedback

Regarding feedbak there is an special case depending oemwgtiode is able to transmit
and receive in the same time slot. There are networks, dlyeBladio Networks, where a
node can not receive while transmitting because the stiesfghe signal transmitted is much
higher than the signal coming from neighboring nodes duegioas decay. However, when
such a simultaneous reception is possible, nodes may bdadktect the collision of their
own transmission.

Notice however that this type of feedback does not implyisiolh detection in the strong
sense, because nodes would not be able to detect collisidrenemissions of other nodes.
Furthermore, when the network under consideration is palti, nodes would only be able
to detect a collision at their location. More specificallgnsider three noded, B and C,
connected by two links onl B and BC'. If A andC transmit in the same time slot, there
will be a collision atB but neitherA nor C' will be able to detect such a collision even if they
are able to receive in the same time slot. This issue is pdplaown as théhidden terminal
problem

Regarding the information available to protocols, in sialgbp networks with collision
detection and simultaneous transmission and receptiabddigs nodes may store the channel
history and the sequence of their own attempts. Protocalsrédy in such information are
calledfull sensingprotocols.

In some networks, nodes may be in different states accowditmgheir ability to participate
in the distributed computation. When a node is fully funeéb i.e., it can transmit, receive and
process information, we say that the nodadtive A node instandbymode is assumed that
is not able to transmit or process information but it may ble &b receive a message, which
perhaps will put it in the active mode. Finally, when a nodadsable to transmit, receive or
process information is said to liactive Although at this point the later mode seems strange,
nodes in Sensor Network applications are assumed to beeinélgun this state due to lack of

a continuous power supply.



In some randomized protocols, a node transmits a messagedrsiot: with some prob-
ability p;, independently of the history of transmissions. Theseggas are usually called
randomly obliviousbecause the sequence of probabilities of transmissiondd fixadvance.
On the other hand, when protocols change the probabilityapisiission online, either as a
function of their own transmissions or as a function of theiccessfutransmissions if that
information is available, they are callegndomly adaptiveprotocols.

As explained before, in shared-channel networks conflitisrey nodes to access the chan-
nel are unavoidable and a protocol for contention resalutias to be used. Regarding the
arrival of messages to be transmitted, the problem of ctiotemesolution can be addressed
under two different assumptions. Namely, either the messsace allocated to nodes before be-
ginning the execution of the protocol or messages are assiggnnodes as they are generated
while the protocol is being executed. These scenarios deslstaticanddynamicrespectively.

In both cases the generation and assignment of messagssiisaasto be adversarial.

There is also another classification depending on the nuofh@rdes in the network. Al-
though there are very interesting problems in scenariogevtiere are countably infinitely
many nodes, we concentrate here in the case where there aiteanfimbern of them, al-
though we analyze protocol efficiency as— oc.

In the static model, the number of nodesuignd it is assumed that some numlex n
of nodes are assigned messages before starting the exeofitiee protocol. In general, it is
assumed that all nodes know an upper bound on the number e$ thodl they have no informa-
tion regarding the magnitude df This is a reasonable assumption given that, in generaésod
know at least the length in bits of an ID number, informatibattgives an upper bound on the

size of the network, and given that< n due to different startup times or lack of reliability.



Chapter 3
Models

In this chapter, we review models used in Radio Networks @natusually found in the lit-

erature. As explained before, not always is the case in Riddiavorks that every node is

connected directly to every other node. Furthermore, inyncases this connection is not even
symmetrical. Therefore, a model for the topology of the mekwneeds to be defined. Also, de-
pending on the application, Radio Networks have very dffiénode constraints. E.g., in some
networks nodes have ternary feedback but in others the &e&db just binary. Therefore, a
detailed model of the constraints present in the nodes fayriie network also is needed. We
summarize in this chapter models of topology and node caingtrused in the Radio Networks
area and in Section 3.2.2 we focus in Sensor Networks désgrib detail our harsh Weak

Sensor Model [FCFMO05]. More details about Sensor Netwolkssification and taxonomies

can be found in [TAGHO02].

3.1 Topology Models

Regarding the topology of a network, a well known specifaais given by airected graph

A directed graph is a pair of se{d’, E'}, whereV is a set ofpointsor nodesand £ is a set of
ordered pairs of distinct points taken frdm Any such pair is called aarc or anedge In our
context, the points model the nodes of the network and the reqresent the ability to send
messages directly (in one hop) from one node to another.elEtimmunication in a network

is achieved through wires, an edge3 in the graph represents the link that facilitates the
communication fromA to B. If on the other hand the communication in a network is wigle

an edgeAB in the graph implies thaB is in the range of transmission &f. Whenever this
relation is symmetric, anndirected grapttan be used as a model. For example, in a wireless

network where all nodes have the same range of transmissiamdirected graph is a suitable
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model because if a nodg is reachable from a nod4, A is also reachable from.

3.1.1 Topology in Radio Networks

The connectivity model widely used in Radio Networks whdt@ades have the same range
of transmission is th&eometric Grapi{GG). The specification of a GG includes a pair of sets
{V, E} and a number € R*. The set of nodes are pointsR¥ and an edgelB ¢ E if and
only if A andB are separated by an Euclidean distance of at mo&t mentioned before, the
graph is undirected because the range of transmission wda@ds is the same. If this is not the
case, more sophisticated models are needed.

There are also some variations of a GG in the literature. Whertdistance:, modelling
the range of transmission is normalized ltothe graph is calledJnit Disk Graph(UDG).
For cases in which the connectivity beyond some distanee (0, 1] is uncertain, there is
a generalization of a GG in the literature call@gdiasi-Unit Disk Graph(QUDG). The later
model can be extended with a distribution on the probabditypeing connected when the
separation distance is bigger than the uncertainty thiéshdso, the uncertainty threshold can
be defined as a function of the angle with respect to sometidineaf reference for cases where
directional antennas are used.

Of course, any of these models can be also extended with meslénshigher dimensional
spaces and with threshold distances under different rseffite particular extension depending
on the setting we are modelling. A usual simple extensior isansider the points iR3
to model the deployment of the network in the real world. Awmotpossible extension is to
consider a distribution on the probability of two nodes lgefonnected. Such an extension
would imply a combination of the classical random graph nhedé&rdos and Rényi [ER59]
with a GG. A more appropriate application of randomness&d3dfs model in the specific area

of Sensor Networks is explained in the next section.

3.1.2 Topology in Sensor Networks

In addition to a comprehensive model for the various comgggresent in Sensor Networks,

a formal model of the potential connectivity of the netwodeds to be defined. In the past,
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computer networks have been modelled by means of clasalmdbm graphs. Starting in 1959
with a paper by Erdds and Renyi [ER59], the field of randonplysehas been widely explored.
The classicaBernoullirandom graph model is denoted@s, wheren is the number of nodes
andp is the probability of existence of each edge. Random graptheilsdhave been used for
instance to model the web-graph [ACGL02, KK89] where the structure of the random graph
gives insight into the behavior of the web-graph. Howeuss, dlassical random graph model
is not adequate for the Sensor Network setting because thalgitity of having an edgel B

is either0 or 1 depending on the Euclidean distance betwdend B.

Regarding the deployment of nodes in a Sensor Netwiekerministic deployment.e.,
the placement of nodes at specific locations, is only pas$dsl small networks in a friendly
environment. However, this scenario is not reallistic farstnof the intended applications of
Sensor Networks where a large area is expected to be coveddti@environment is expected
to be either hostile or remote. Two modelsrahdom deploymentf nodes are used. In one
model,n nodes are assumed to be distributed uniformly at randomas@#th node is equally
likely to fall in any location of the area of interest, indepently of the other nodes. The other
model is a stationary Poisson point process with intensityhere the number of nodes in
disjoint regions is Poisson distributed and mutually iretegent.

Thus, Sensor Networks are best modelled®Riaypdom Geometric GrapiRGG) inR? [Pen03].
In the Random Geometric Graph Modg] ,. ,, » nodes are distributed uniformly at random in
[0,4]2, and nodes are connected by an edge if and only if they are Btididean distance of
at mostr < /¢, theconnectivity radiugFigure 3.1). The node density depends on the relative
values ofn,r and/. A specific instance of,, , , is aRandom Geometric Graph (RGGIso
referred to as+(n,r,£). A popular instance of this model &, ,.; or simplyG,, ,. Of course,
sometimes, a two dimensional model may be inadequate wietettain in which the sen-
sors are positioned is uneven. In this case an extensiomge tiimensional random geometric
graphs may be needed.

Some properties commonly studied for random geometrichgragithin the context of

sensor networks are

e Physical CoverageFor the region in question, what fraction of the region igered by

balls of radiusr, centered on the points thrown randomly into the region witiorm
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Figure 3.1: A Random Geometric Graph.

distribution? More specifically we are interested in the banof nodes we must throw

such that the fraction of the region covered is o(1).

e Graph Connectivity What is the relation among, » and? when a graptG(n,r, ¢) be-
comes connected? In keeping with the random nature of themadsay that (n, r, ¢)

is connected when it is connectedth high probability

e Route StretchGiven two nodes:, v in a graphG(n, /), stretch(u,v) is defined as
the ratio of the shortest distance betweeandwv in the graph to the normed distance
between the two points in the plane. Tsetchof G(n,r,¢) is the maximum of the

stretchover all pairs of point§u, v) in G(n,r,{).

The theory of random geometric graphs is a key tool to studyesof the underlying prop-
erties in Sensor Networks such as connectivity or coverdgewever, the results obtained
in this field can not be directly applied to Sensor Networke thuthe additional constraints

present in them.

3.2 Node Constraints Models

Radio Networks is a vast area and there is a myriad of apjitatof such a technology,
e.g., cellular phones, wireless computer networks, adrsteorks, etc. Depending on the

specific application the nodes forming the network have \different constraints on their
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processing and communication capabilities, i.e., rangeaoEmission, life cycle, storage size,
etc. In addition to formal models of the topology or the ptitdrconnectivity among nodes, an
appropriate model of the constraints of the nodes in the or&tivas to be defined, in order to
properly design and analyze protocols. We summarize hene £ the models used in Radio

Networks and Sensor Networks.

3.2.1 Radio Networks

In a seminal paper [BYGI92], Bar-Yehuda, Goldreich and pi@sented a formal model of
a radio network that specifies many of the important regbnst on sensor nodes, including,
e.g., limits on contention resolution, but they make no ieendf computational limits, such as
small memory. More precisely, the model consists of anyitmultinop undirected network.
The nodes are assumed to be locally synchronous, i.e., thegva the same clock frequency
but perhaps different starting times. Each node eitheriveser transmits within each time
slot, but not both. A node receives a message successfudlytime slot if exactly one of its
neighboring nodes transmits in that time slot. If more thaa peighboring node transmits in
the same time slot, the messages are garbled and the nodessegeise. It is not possible
to detect collisions, hence, a node can not distinguish #ise @ which no neighboring node
transmits from the case in which more than one transmit irsémee time slot. The topology of
the network is not known a priori. The main difficulty in thisodel, as well as in most of the
models in Radio Networks, is the possibility of messageisioh, therefore, any protocol for
this model has to include contention resolution in orderdageful.

After this model was introduced, some papers [NOOOa, KMPBave added more restric-
tions, although often such restrictions are implicit in tegt or algorithms rather than fully
specified. In the following section we elucidate a completg eomprehensive model for Sen-

sor Networks.

3.2.2 The Weak Sensor Model

As explained before, nodes in Sensor Networks are desigitbdive goal of obtaining a de-
vice as small as possible and at a very low cost. Therefonspseodes have very harsh con-

straints in each of its main capabilities, processing, camination and sensing. These strong
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constraints are the main reason why problems in Sensor Metvaoe challenging, because the
typical solutions utilized in computer networks are notaiie in such a harsh scenario. There-
fore, in order to approach any problem in Sensor Networkd,ia@mddition of formal models
of the connectivity of the network, a formal model of the wais sensor node constraints has to
be defined.

There is a vast body of literature on sensor networks, howesst of it does not suffi-
ciently handle all aspects of the problem. All random geoimetraph results related to ad-hoc
wireless networks require(1) degree (see e.g. [MPO5]). All proposed protocols for sensor
network formation include some inappropriate hardwareragsions. For example, the sen-
sor network formation protocol in [SWLFO04] builds a congtdegree network, but relies on
positional information hardware. The protocol proposedBhRS03] also builds a constant
degree network, but relies on the preéxistence of a schemeh&nnel-contention resolution.
The different models implicit in such results are inadequatd do not reflect all the limitations
under which sensor nodes operate.

Given the various limitations of sensor nodes and the aleseha reliable communication
structure after deployment, any sensor network protocatmoark under difficult conditions.

In this section, we specify the formal Weak Sensor Model shehmarizes the literature on
sensor node restrictions, taking the most restrictive adwivhen possible. The protocol for
Sensor Network formation presented in Chapter 6 is designeér this model, whereas the

lower bounds in Chapter 8 are proved for the more general hoddRadio Networks.

e MEMORY SIZE Sensor nodes may have limited memory size. In fact, asyinally
speaking, if we assume that the memory size is any functiarf ifnwe would be assum-
ing that nodes can have a memory of infinite size. Therefarthd Weak Sensor Model

sensor nodes may store only a constant numbeér(afg n) bit words.

e SHORT TRANSMISSION RANGE Due to costs and size restrictions, sensor nodes may
not have a large range of transmission. Consequently, hobdés are reachable from
a given node leading to the well known hidden-terminal pgobl This limitation has an

impact on the density of sensor node deployment.

e DISCRETE TRANSMISSION RANGE: Some of the extant literature [SWLF04] assumes
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that nodes can vary their power of transmission. Howevsyragg that any number of
levels can be reached is unrealistic—in particular to amathe asymptotic behavior of
the algorithm. In this model, sensor nodes can adjust tloswep of transmission to only

aO(1) number of levels.

e ONE CHANNEL OF COMMUNICATION: although it is assumed in some papers thit)
channels are available in order to avoid collisions, thésiagption is unrealistic—specially
in order to analyze the asymptotic behavior of protocols. ddfestraint the number of

channels of communication to exactly one.

e LocaLiTY: Sensor nodes are distributed over a large area and may neabkable
by a central controller. Hence, each sensor node must bdleapiconfiguring itself

automatically.

e LOW-INFORMATION CHANNEL CONTENTION:

— SHARED CHANNEL OF COMMUNICATION: Given that this is a Radio Network and
that there is only one channel available, the communicatitmneighboring nodes

is through broadcast in a shared channel.

— CONTENTION-RESOLUTION MECHANISM If more than one message is placed on
a multiple-access communication channel at the same tiroal)ision occurs and
no message is delivered. Hence, sensor nodes have to imlenu®ntention-

resolution mechanism to access the channel.

— NO INITIAL INFRASTRUCTURE: Right after deployment, the nodes of a Sensor
Network have no communication infrastructure availablé@®Aayer). Therefore,
before that any exchange of information can be carried cades have to self-

organize a medium access scheme bringing structure to tiverke

— No coLLIsiON DETECTION Although in many Radio Networks it is possible to
detect a collision, it has been also argued that a colliseom reot be detected in
the presence of noisy channels [BYGI92]. In this model, dnlg channel states
are feasible, single transmission and silence/collisidhis scenario is popularly

known ashinary channebr it is said that nodes havenary feedback
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— NON-SIMULTANEOUS RECEPTION AND TRANSMISSION A sensor node may not
be able to receive while transmitting because, in its vigjrits own signal over-
whelms any signal transmitted by other nodes. Therefaaastnitters also cannot

detect collisions.

e ASYNCHRONICITY: No global clock or other synchronizing mechanism is assijrhet
all sensor nodes have the same clock frequency. We assuténtbas divided into
slots The use of a slotted scenario instead of a more realistiotied one was justified
in [Rob75], where it was shown that they differ only by a faadb 2 because a packet
can interfere in no more than 2 time-slots. This type of syoitity is usually called

local synchronism

e LIMITED LIFE CYCLE: Sensor nodes may be powered by sources such as solar energy.
These sensors may go down from time to time to recharge. Eaisssitates simpler and

fast computations and energy-efficient protocols.

e NO POSITION INFORMATION Due to cost and size restrictions, sensor nodes may not
have position information obtained using a global or locaipponing system, directional

antenna or other specialized hardware.

e ADVERSARIAL NODE WAKE-UP SCHEDULE Given that the sensor nodes are deployed
over large areas and given the lack of a centralized coatrolle can not expect all
sensor nodes to start the execution of protocols in the sameedlot. Therefore, in
order to analyze these protocols in a worst case scenariasstene the existance of an

adversary that determines the wake-up schedule.

e UNRELIABILITY : In addition to the lack of guarantees of a constant poweplsudue
to low cost sensor nodes are unreliable. Hence, sensor repwotocols have to be

designed to be robust in the case of failures of one or morsosgn
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Chapter 4

Problems

4.1 Radio Networks

We summarize in this section some of the problems commoabjied within the Radio Net-
works area. Although these problems emerge from differartiviations, they are all due to
the main constraint present in Radio Networks, the comnatioic channel is shared among
many nodes. The models under which these problems are dtindiede various assumptions
and constraints, the strongest being the harsh Weak Serxtel Metailed in Section 3.2.2. Of
course, protocols designed under stronger models are rabustr however, weaker models
are valuable in certain applications in order to achieveenadficient solutions. In any case, all
models include the following assumption due to the sharedfithe communication channel:
In Radio Networks, a hode receives successfully a messagtgnme slot if and only if exactly
one of its adjacent neighbors has transmitted in that tioe $ many neighbors send messages
simultaneously the messages are received garbled

A fundamental problem in Radio Networks is to achieve a ss&fody i.e. non-colliding,
transmission of at least one node. If the network is a sihgle-one, this problem is called in
the literature theselectionproblem. However, in multi-hop networks we will distingiswvo
variants of this problem. If in a given time slot exactly orféhe adjacent neighbors of a node
transmit, we say that there waslaar receptionn that time slot. Whereas, in the case where a
node transmits a message in a given time slot, and no otherwibicin two hops of the trans-
mitter transmits in the same time slot, we say that there wasaa transmission Of course,
in a one-hop network both problems are identical. Due to tdaiobal synchronization nodes
may become active at different times. In order to analyzd¢opmids for clear transmissions
in a worst case scenario, the nodes-startup schedule imadsio be adversarial. The time

complexity of protocols for clear transmissions is comdut®m the time that the first node
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becomes active until the time slot in which the clear tragsion is achieved. More details on
these problems can be found in [Wil86,BYGI92,KM98,KG85 k GW85,CMS01,KowO05].

In the dynamic model messages to be transmitted are altbtateodes as the protocol is
executed. Therefore, in addition to define the number ofgipating nodes:, the way that
messages arrive has to be specified. One popular model isumaghat in each time slot a
new message arrives to a node with some probabilitpdependently of other nodes and time
slots — a Bernoulli process. In this case, each node has & quienessages to be transmitted.
In the dynamic model the most important problem is to giwtableprotocol, i.e., a protocol
that schedules transmissions so that no queue overflows.

The problem of stability under dynamic allocation of megsalgas originated a very active
area of research callektiversarial Queueing TheofQT). The introduction of an adversarial
model in communication networks is due to Cruz [Cru91a, Ch]9In this model, each packet
to be transmitted belongs tosassiorand has a predefined route. The adversary gets to define
what are the active sessions in the network, what are thatespthe arrival rate and the bursti-
ness. The AQT model was later introduced in [BK®]. In this model, the network traffic
is not grouped in sessions but still the adversary gets to@dfie route to be followed by a
packet and the arrival rate. Therefore, nodes can only ehassheduling policy. While in the
model of Cruz links with different delays and packets of efifnt sizes were allowed, in the
AQT model this is not possible since the system is assumed sytchronous. More recently,
Calzada, Fernandez, Lopez, Martinez and Santos in {OBLhave proposed a generalization
of the AQT model to allow links with different delays and patk of differents sizes. The
model proposed has been tern@ohtinuous Adversarial Queueing ThedGAQT).

A problem widely studied in Radio Networksligoadcast In one-hop Radio Networks the
broadcast problem is as follows. A non-empty sesafircenodes is allocated a message to be
transmitted and the message has to be delivered to all tlee ntides in the network. Given
that it is a single-hop setting, one non-colliding transiue is enough to solve the problem. In
multi-hop Radio Networks broadcast goes beyond nodesmgradinessage to their neighbors.
Since some nodes might not be in range of any source nodeltht®a of this problem relies
in message forwarding. There are also a few well-studiethnes of the broadcast problem.

If the source nodes expect to receive an acknowledgememitrditidem is calledbroadcasting
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with acknowledgemenif different source nodes are allocated different message all nodes
have to receive all messages for the problem to be solvedrtidem is calledgossipingor
all-broadcast An important constraint of the channel for the gossipingfem is what is the
maximum length of a message that can be transmitted in orediot. Although for most of
the problems in Radio Networks a message is supossed to Hamgth of O(log n) bits, in
some literature related to the gossiping problem it is agslithat links have enough capacity
as to allow many messages to be combined. In the broadcdéprd is customary to assume
the existance of an adversary that gets to decide which isdéhef source nodes. Interesting
results and further details on the broadcast problem carbtaned from [BYGI92, KM98,
BY1193,BP97, CGOR00, CGR00, CG®2, CMS01, CR03,KP03, KP04b, KP04a, LP02].

Another problem of interest in Radio Networks is thader electiorproblem. In the leader
election problem the participating nodes have to chooseadeleamong themselves. That
is, at the end of the protocol exactly one node has statusaditeand all the other nodes
have status of non-leader and know the identity of the leadeader election is a central
problem in Radio Networks because many other more complabigms rely on the existance
of a leader or distinguished node in the network. In the ddt@stic case the lack of ID
numbers makes this problem unsolvable so it is customarhénliterature to assume that
nodes have ID numbers. For randomized solutions it is combmassume that no ID numbers
are available therefore an initialization phase assigffierdnt ID numbers to every node. The
leader election problem has been studied in the scenarioevthe number nodes is known
and where it is unknown. Like for the broadcast problem, daelér election problem in a
single-hop network is reduced to achieve a succesful tressgon. The node that achieves
such a transmission first becomes the leader. However, imthiihop setting other ways of
breaking the symmetry are necessary. For more details dadtler election problem, we refer
the reader to [HNO99, JKZ02, NO02a, NO0Ob, NO02b, KR0O3, EINO

A fundamental problem in Radio Networks is then to estaldishechanism of accessing
the shared communication-channel in order to avoid or effity resolve contention. The prob-
lem is easier to resolve if the nodes are permanently adiweiever, due to energy constraints,
it is often desirable to let the nodes become inactive in tiraraunication channel whenever

there is no ongoing communication. In other words, afteresggssion of communication is



20

completed, nodes should entestandbyor sleepstate and stop being alert until a new session
begins. Unfortunately, this mechanism entails the lossyntisronization, if there was any.
The problem of regaining synchronization or induce a chaoga active state to all nodes in
a Radio Network after entering a sleeping mode is usuallieddahewakeupproblem. More
specifically, the wakeup problem is defined as follows. #flifj all nodes are in sleep mode.
Any node can wake up either spontaneously or by receivinglewga signal from an awake
node. Nodes can wake up spontaneously in any time slot. Onoée&is in awake mode, it
starts running the wake-up protocol in order to wake up atleeles that are still in sleep mode.
The problem is solved after all nodes in the network are inkawaode. The time complexity
of a protocol that solves this problem is computed from theetslot that the first node wakes
up spontaneously until the time slot when the last node isewakp. Assuming that not all
nodes wake up spontaneously, otherwise there is no prololesmive, the wakeup problem in
one-hop Radio Networks is the same as the clear transmigsdatem. However, in multi-hop
Radio Networks, similarly to the leader election and bre@stiproblems, one clear transmis-
sion is not enough. An interesting observation is that thkemp problem can be seen as a
generalization of the broadcast problem. That is, if we h@peotocol that solves the wakeup
problem we can solve the broadcast problem by waking up apenusly the source nodes
only in the first time slot. More details and relevant reséitsthe wakeup problem can be

found in [CGK04, CK04, GPPO01, Ind02, JS05].

4.2 Sensor Networks

We concentrate now in the most stringent setting in Radioviieds, the Sensor Network.
Although the problems here described are also apply to &®bdio Networks, they are partic-
ularly challenging in Sensor Networks.

Even though communication among sensor nodes in a Sensaof¥eis through radio
broadcast, it is useful to set up explicit links between sode order to establish routing
paths and prevent flooding. A Sensor Network is capable ofegicly large tasks through
the coordinated effort of sensor nodes, but individualesdtave severe limitations on memory

size, life cycle, range of communication, etc. We specifgsthand other limitations in the
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Weak Sensor Model in Section 3.2.2. Given these difficultdtions, i.e. a group of weak
sensor nodes deployed in a geometric random distributiomtaral question is how to orga-
nize such a network. Therefore, tBensor Network Bootstrappimgoblem, also calle&ensor
Network Initialization Sensor Network Formatioor Topology Controin some literature, has
emerged as the most fundamental problem in the Sensor Netwoga. Any sensor network
initialization algorithm must be fast and distributed, andst resolve channel contention is-
sues. The network constructed by such an algorithm must tveected and, according with
the Weak Sensor Model, must have low degree and diameter.limittations on individual
sensors nodes make this problem non-trivial, and its adegeaolution is crucial for making
sensors useful.

There are two main types of issues in sensor network formatibose relating to geo-
metric properties and those relating to network protocarel any solution achieved for either
must be compatible with an accurate model of sensor hodegsh®nne hand, coverage and
connectivity in sensor networks are dependent on the hligioin of nodes in an area and the
range of transmission of each node. Additionally, the dgrefinodes in an area determines
the minimum path length between any two nodes in the induoedextivity graph. The lim-
ited range of transmission makes these properties ge@mé@rn the other hand, protocols for
sensor network formation are limited by the fact that sensales share a common channel of
communication and that they do not typically have acces#éatibnal or positional informa-
tion. Memory limitations in sensor nodes also impose theiction that a node can only keep
track of O(1) neighbors.

As itis customary in Radio Networks, the analysis of protedor Sensor Network initial-
ization is done under the assumption of the existance of aersary that knows the protocol
and gets to define which nodes are active in each time sloenGhe unreliability and the lack
of a constant power supply that characterizes the sensasntie time complexity can not be
analyzed for the network as a whole but for each individuaend.e., if we define the running
time of a protocol as the time that takes to establish alklialnong nodes after the first node
becomes active, an adversary could potentially define aswplsehedule that would make any
protocol never build the network. Instead, the time comipfeis analyzed for each node. In

other words, for any nodg the running time of a Sensor Network initialization praibis the
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time that takes fof to join the network after it becomes active, unléssturned off. Given the
energy constraints of a sensor node, protocol efficiencgrizetimes analyzed in terms of the
energy consumed. It is well known that the transmission isostpolynomial of degrea > 2

in the distance covered. In the most general setting whetesnbave more than one range of
transmission available, a frequent metric of the cost of sending a medsatyeeen two nodes
is to consider the sum of the energy cost of each hop in theleatheen them. If we consider
the total energy consumed in the network as the sum ovené# In the network, it has been
proven that to find the optimal subgraph of the connectivitgpd that minimizes the energy
cost is NP-hard [KKKP0O]. More details on the sensor netwbitialization problem can be
found in Chapter 5.

The other key problem in Sensor Networksasiting messages through the network. In
fact, the meaning of routing messages in Sensor Networfersliiccording with the applica-
tion. Some Sensor Networks are designed to monitor someqgathygriable such as tempera-
ture. In this application nodes may transmit continuoukbirtmeasurements or only transmit
whenever a significant change is observed. In any case, #nerdistinguished nodes in the
network calledsinksand all nodes forward their messages to them. In other atiglits nodes
may accept queries from any node in the network which migdntifly itself with its ID or even
with its geographical position.

Due to the harsh restrictions under which sensor nodes tepes@lving the routing prob-
lem using the techniques frequently used in communicat@waorks is not possible. Routing
is particularly challenging when the following two restions are present at the same time,
constant memory size and lack of position information. Urtte first restriction is not possi-
ble to maintain routing tables. Under the second one is nsgiple to use geographic routing.
Therefore, in some settings the lack of position infornrationstraint is relaxed tack of ac-
curate position informationin this case, it is assumed that nodes estimatedistances based
on measurements of transmission delays.

The low cost and low reliability requires in general reduntddeployment of sensor nodes.
Therefore, the importance of the idendity of a node is reduzmampared to traditional com-
munication networks. In this case the routing paradigm usezhlleddata-centric In the

data-centric paradigm the objective is the retrieval ohdatyed on an event where the identity
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of the nodes or their position is irrelevant. An event is astiztion that may model a set of
sensor measurements, the frequency or speed of change rihlaleaetc. We refer the reader
to [ASSCO02,KW03,PB03,EGHK99, GGSEOQ1, IGEQO, BEQZ2] for endetails about routing in
Sensor Networks.

Another problem of interest in Sensor Networkgissitioning Although in most of the
applications specialized hardware for positioning is n@ilable due to cost, sometimes the
absolute position of a node is not necessary and its relpgisgion with respect to its neighbors
is enough. Furthermore, in some applications may be enaugitermine the topology of the
underlying graph because this information gives an uppent@n the distances between any
pair of nodes. In general, no matter what is the method usddtermine position, errors are
introduced and the resulting distance matrix is not embiedaven in three dimensions. The
problem of embbeding a distance matrix in the minimum nundbelimensions is a vast area
of research in engineering and other areas and it is usualgdaigidity [JJO3, Sax03, LY82,
Hen92, Lam70].

There are a number of closely related well-known graph groklwhose efficient solution
would be a promising approach to give structure to a Sensowdtk. Namely,Clustering
Dominating SetMaximal Independent S&¥1S), Vertex Coloring Edge Coloring etc. Unfor-
tunately, many of the solutions included in the literatuve these problems [WAF04, Bas99,
ACS94, Lub86, FPS02] assume an underlying medium accesmgchr contention resolution

mechanism.
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Chapter 5

Survey: the Sensor Network Initialization Problem

Given that Sensor Network initialization is a fundamentedglem and its solution is non-
trivial due to all the constraints present in sensor nodescencentrate in this chapter in the
Sensor Network initialization problem. The extant literatrelated to Sensor Networks is vast
and includes both theoretical and empirical research waédkhough many of the solutions
proposed do not sufficiently handle all the aspects of thblpro, we summarize here some of
the most relevant results for Sensor Network initializatemd related problems. This chapter
is not intended to provide #&ull overview of the existing body of work in Sensor Network
initialization—a task beyond the scope of this thesis, bugite some detail on previous work
before we give an optimal initialization protocol in Chape

A protocol calledSelf-Organizing Medium Access Control for Sensor Netwaks pre-
sented in [SGAPOO]. This protocol builds a flat topology withlocal or global masters. The
model for this protocol is as follows. Due to the short traission range of the sensor nodes,
it is assumed that a reception consumes the same energytesrtbmission. Therefore, nodes
can not have their radios on permanently. There are enougynels as to accomodate each
link among neighbors in a different frequency in order toidwwllisions. Furthermore, the
number of available channels is assumed to be big enouglasi thvo nodes choose a chan-
nel at random the probability of choosing the same channlelws Another key assumption
is that nodes have memory of siZ€A) whereA is the maximum degree in the connectivity
graph. Finally, nodes are assumed to start running the gobfavake up) at random times
under some distribution such that the probability of twoesmdeing synchronized is low.

Under these assumptions, the protocol works as follows. nUgaking up, nodes start
running a discovery phase. The discovery phase starts withheaing period. If a noded

receives a discovery message from some neighboring Bodiesends a reply message with its
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current schedule of transmissions/receptions. Then,dtle B finds a time slot available in the
schedules of both and sends backitthat information. After the discovery phase nodes enter
the normal communication phase. In the communication phesssh node repeatedly follows
its own schedule of transmissions/receptions so that froman the system is synchronous.

The discovery phase length is chosen according with thacagpioin and it is assumed to
be long enough so that the probability of not discovering ight®ring node is small. Also,
collisions will not occur because all links are establisiredifferent channels. If two nodes do
not find a time slot available in their schedules during tisealery phase, simply give up and
the link is not established. The period of the communicapibase is chosen according with the
application and it is long enough as to handle most of theslwflka node and the probability of
having an isolated node is low. This work is empirical andsdogt include any running time or
energy consumption analysis. However, as we will see inrlagyais of the protocol below, the
inclusion of a phase long enough to ensure a low probabifityotiisions introduces a factor
of at least(n" log? n),y > 0 in the overall running time of the protocol. The requiremeht
Q(A) different channels and memory size makes it infeasible fadtreorical standpoint.

The protocolK-Neigh[BLRSO03] builds a network where every node has at nioseigh-
boring nodes, wheré is tuned to ensure connectivity w.h.p. The model under witiii$
protocol works includes the following assumptions. Nodesdeployed in the plane uniformly
at random. Although the transmission power can be adjustedpdes are constrained to the
same maximun®. P is a function ofn and it is chosen so that the network is connected w.h.p.
The protocol also relies in some distance estimation méstmaauch as measuring the radio
signal strength received or comparing the time of arrivatlifferent kinds of signals. Given
that information about all neighboring nodes is collectind, memory size is assumed to be
in w(1). Although the synchronization is local, the differencevien node wake up times is
upper bounded by a constafit The protocol is as follows.

Upon waking up at time; € [0, A], node: waits for A time slots and chooses a time slot
within the nexté time slots to transmit its ID number at the maximum powgeis chosen big
enough so that the probability of collision is low. From gvenessage received stores the

ID number and the estimated distance to that node. At time2A + 4, i ends its discovery
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phase, sorts the list of neighbors by distance and seleztsdlvsest discarding the reSit a
time slot randomly chosen among the nésteps, nodeé broadcasts its list at maximum power.
Based on the lists received during the né&xtime steps, at time¢; + 3A + 26 nodei removes
from its list all nodes that do not includen their lists, and adjust its transmission power to the
power needed to reach the farthest node in its list.

It is easy to see that the total running time of this protosolA + 26. Given thatA
is assumed to be a constant, the dominating factérviich is tuned to guarantee that the
probability of collisions is low. The probability can be bawled as follows. It is the number

of nodes in a one-hop neighborhood, the probability of netritaa collision is

XY (1— %) v > 0ford € Q(d*nY).

It was proved in [XK04] that in an RGG the minimum number ofgiéiors needed to en-
sure connectivity w.h.p. ié € Q(logn). Therefore the overall running time®n" log?n),y >
0.

As in the previous protocol, the assumption ofuafl) memory size makes this protocol
infeasible asymptotically speaking. Also, the assumptibhaving the capability of adjusting
the power of transmission tany level is too strong. In particular, given that the energytcos
is at least quadratic in the distance of each link, the optpath might include sub-constant

distances.

IAlthough the authors included here an aditional time deteiytfe computation of the list, for the sake of clarity
we do not take it into account based on the standard assumfoti@nalytical purposes that in Radio Networks
nodes have unbounded processing power.
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An energy efficient topology control scheme cal@adlYaoGGwvas presented in [SWLFO04].
The assumptions of this model are as usuabdes distributed uniformly in th&? plane, each
node with a maximum transmission range normalized. td herefore, the connectivity graph
is a UDG. All nodes have different ID humbers and each nodevknits position informa-
tion by means of a GPS or other specialized hardware suchiaescii@hal antenna and signal
strength measurement capabilities. At a minimum, the ag8amis that every node knows
in advance or will collect the position information of alsiheighbors. Therefore, the memory
size is assumed to bein(1). Global synchronization is also necessary given that thpqsed
algorithm works in phases. Finally, an underlying contamtiesolution mechanism is assumed
in order to collect information of neighboring nodes.

The topology obtained by this protocol has optimal poweststr, constant degree and it is
planar. The power stretch is defined to be the ratio betweeartargy cost of a path connecting
two nodes in the subgraph of the connectivity graph, to ttet tothe optimal path in the
connectivity graph. Obtaining a planar topology is a reguient of many routing algorithms
to guarantee message delivery.

A brief description of the protocol can be given as followseTalgorithm consists of three
phases. The first phase constructs a Gabriel subgraph obtimectivity graph. In a Gabriel
graph, two nodes andwv are conected by an edge if and only if there is no other node in
the circle of diameter.w. A Gabriel subgraph has been proven to have optimal powetichtr
However, the degree can be as bignas 1 and one of the goals of the protocol is to obtain
a constant degree topology. The second phase establisloedesing among neighbors in the
Gabriel graph, and in the third phase the node with the highierity among its neighbors
in the ordering splits the neighborhood in a constant nurobslices and chooses the closest
neighbor in each slice. Therefore, the resulting topology ¢onstant degree.

Once again, as in the previous protocols, assumptions suthraconstant memory size or
non-constant number of levels of transmission power, miikgorotocol infeasible from a the-
oretical perspective. Also, in practice, it is assumed inegal that specialized hardware such
as GPS or directional antennas is too costly for this apjidica Regarding the running time
analysis, we omit the details here since the protocol doemalnde any contention resolution

mechanism.
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More general information about sensor networks can bemdaddrom the surveys [RMSG,

ASSCO02, KW03, PB03, YKRO06].
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Chapter 6

Bootstrapping a Hop-optimal Network in the Weak Sensor Modé

The most fundamental problem in Sensor Networks is to effiljieestablish the network
among sensor nodes from scratch right after deployment. xpigieed before, its solution
is non-trivial due to all the constraints present in sensmwlas. Previous work does not suffi-
ciently handle all aspects of the problem because all swigtinclude some strong assumptions
that yield to an inaccurate efficiency analysis or even makeessolutions non-implementable
in sensor nodes. The protocols detailed in this chaptetharérst network initialization algo-
rithms that are implementable on sensor nodes.

Problems in sensor networks are twofold: related to geamptoperties and related to
network protocols. Sensor nodes have limited range andepieykd at random over a large
area. Therefore, geometric properties like path lengthemme and connectivity need to be
understood. Thus, sensor networks are modeled as RGGse@th#tr hand, node limitations,
shared communication channel and lack of additional itrivature at deployment impose lim-
itations on network protocols. We specified these and othétations in Section 3.2.2 where
the harsh Weak Sensor Model is defined.

Until recently, the existing literature on sensor netwarkialization did not sufficiently
handle all aspects of the problem. All random geometriclyrapults related to ad-hoc wireless
networks requiredy(1) degree (see e.g. [MPO05]). All proposed protocols for senstwork
formation included some inappropriate hardware assumgtsoich as the availability of posi-
tional information hardware [SWLFO04] or the preéxistenta scheme for channel-contention
resolution [BLRSO03]. The different models implicit in sucdsults are inadequate and poorly
reflect the various limitations under which sensor nodesaipeand indeed, there seems to be
considerable confusion in the literature as to what are@nat reasonable assumptions about

the capabilities of sensor nodes.
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Sensor Network initialization research has three paif$o 6pecify a comprehensive model
that captures all the restrictions present in sensor ndéig@gjiven that under those restrictions
is not possible to establish all the links of the connegtigtaph, to show that there exists a
subgraph of the connectivity graph that would make a comglecetwork without asymptoti-
cally increasing the cost of delivering messages; aiijitp give a fast distributed protocol that
works under the constraints of the specified model. We haeady adressed the first part in
Section 3.2.2 where the Weak Sensor Model is detailed. Weertrate in this chapter in the
other two parts. Given the formal Weak Sensor Model, we shavd good Sensor Network
must have constant degree and lbap-stretch We also show that any appropriate RGG has
such a subgraptvith high probability In other words, given any connected RGG, we show
that, with high probability, there exists a subgraph, whbee path length between any two
nodes in terms of number of edges is asymptotically optimehéf the degree is restricted to a
constant number of neighbors. Finally, we also give(3g? ¢) localized algorithm that builds
the network modelled by such a graph, under the Weak SensdelMo

Throughout this chapter, our node constraints model is thek/$ensor Model detailed in
Section 3.2.2 and the potential connectivity of the nodenaslelled by a random geometric
graph. As explained in Section 3.1.2, the deployment of adde random geometric graph
can also be interpreted as a Poisson process in the plane thleerumber of points iff), £]? is
given by the Poisson distribution with mean In our proofs, we assume the uniform deploy-
ment, i.e., each of the sensors is equally likely to fall at lcation in [0, £2] independently
of the other sensors, although the results hold for the Boissodel as well with almost no

change in the proof techniques.

6.1 Related Work

The Sensor Networks area is very active and includes a vdst difctheoretical and empirical
research work impossible to completely include here. Beflascribing the hop-optimal boot-
strapping protocol, we summarize in this section some ofitbst closely related work. The

details of some of this work are given in Chapter 5.
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6.1.1 Threshold properties inG, . and G,, ..,

Gupta and Kumar [GK98], in a seminal paper in the field of randgometric graphs computed
the minimum radius needed to obtain a large connected coampavith high probability. This
and other results [Pen03] give us a critical radius suchghelh node will have many neighbors.
Of course, sometimes, a two dimensional model may be inadequhen the terrain in which
the sensors are positioned is uneven. In this case an extetwsthree dimensional random
geometric graphs may be needed.

Intheg, ,.» model, tight thresholds for connectivity, coverage andeatretch, were shown
by Muthukrishnan and Pandurangan [MPO05] using an oventapgissection technique called
bin-covering. More recently, Goel, Rai and Krishnamach&ikR04] showed that in fact
all monotone graph properties have a sharp threshold fatorangeometric graphs. Other
properties of random geometric graphs such as vertex degreeonnectivity were studied

in [AR97a, AR97b, Pen99].

6.1.2 Sensor Networks initialization

A protocol for bootstrapping sensor networks was preseim¢8GAPOQ]. In order to avoid
collisions, the number of channels needed is a function efdégnsity, which makes it infea-
sible. A network formation protocol, where node degkeis a constant tuned to ensure con-
nectivity w.h.p., is given in [BLRSO03]. This protocol redi@n expensive distance estimation
hardware such as GPS. Recently, an energy efficient topaogirol scheme was presented
in [SWLFO04]. This algorithm requires the use of a directioaatenna and distance estima-
tion hardware. In all these schemes, no contention resalutiechanism is given, ana(1)

memory size is assumed. Refer to Chapter 5 for further detalil

6.1.3 Bluetooth

Bluetooth [BS01, Blu, MBOO],which also limits the local auoectivity of nodes, is a local area
wireless technology designed to enable voice and data cooation between various elec-
tronic devices. In these networks the nodes have lessateéstrconstraints (like power supply,

range of transmission, memory capacity, etc.) than in semstworks. In Bluetooth, a group
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of devices sharing a common channel is called a piconet. g@cmet has a master unit that
selects a frequency hopping sequence for the piconet arttbtthe access to the channel.
Other participants of the group known as slave units aretspmized to the hopping sequence
of the piconet master. The maximum number of slaves thatinantaneously be active in a pi-
conet is seven. A slave in one piconet can be a master or slaremther piconet. Piconets can
also be interconnected via bridge nodes to form a bigger adhétwork known as a scatternet.
There has been considerable work on schemes for the fommaftiecatternets. Barriere et
al. [BFNOO3] proposed a distributed construction techeifpr Bluetooth scatternets of low
degree and fixed diameter. This technique is useful evereidyhamic case where nodes are
assumed to come alive and drop dead from time to time. Howhigetechnique is restricted to
networks where all nodes are within transmission range cf ether and hence is unrealistic
for the purpose of sensor network formation. Salonidis efSBTLO1] earlier proposed an
algorithm for constructing scatternets, but this techaiquffers from the same limitations as
above and further is restricted to 32 nodes and static lay®ctiemes proposed for scatternet
formation in [LS01, SBTLO1, WTHO02, ZBC01, FMPC04] are desd to work in the more
general case where all nodes may not be within transmisaiogerof each other. Techniques

proposed in these are strictly heuristic or do not fit inweak sensor model

6.1.4 Cellular Systems

There are various reasons why medium access control ptstased in cellular systems can
not be used in Sensor Networks. In a cellular system, moluitles are a single hop away
from distinguished nodes calldzhse stationsand the base stations form a wired backbone.
The primary goal of a medium access scheme in a cellular myistdéo guarantee quality of
service and efficient bandwith use, but power efficiency hae@ndary rol given that the
base stations have constant power supply and the userspteniseé the batteries of the mobile
nodes. In Sensor Networks there is no central control sualibase station and power efficiency
dominates the life cycle of the network, therefore exisgahations for cellular systems can not

be applied.



33

6.2 Geometric Analysis of Sensor Networks

Recall that sensor nodes may only set up links with a constamber of neighbors, a con-
sequence of the memory size limitation in the Weak Sensordljahd since sensor nodes
are distributed uniformly at random, the potential conivégtrelation defines &andom Geo-
metric Graph(RGG). Hence, any protocol for network formation must setinis defining a
constant-degree spanning subgraph of the RGG. Howeveriimgnpotential links may result
in an increase in path lengths in the subgraph. This incriegs&th length can be measured in
two ways: in terms of increase in the numbeihopsor increase in route stretch.

In applications where the propagation delay is significemije stretch is an appropriate
measure of optimality. However, sensor networks have simak-node distances, and propa-
gation delay is low. One of our primary concerns in the WeaksBeModel is that we should
minimize energy consumption at each node so as to maximeéfthcycle. Thus, a Sensor
Network is optimal when it minimizes the number of transnoigs, which is to say, minimizes
the number of hops in each path, rather than the weightedgragth. Note that schemes have
been proposed that attempt to minimize energy consumpB@i_F04], and these favor many
short hops over a few long ones. However, any such schemeeasa@unw(1) number of trans-
mission power levels and, furthermore, ignores the coitiemesolution overhead of the extra
hops. A formal definition of stretch in terms of hops follows.

Let thelength of a path connecting two nodes in a given graph be the numbedgds
of such a path. Letl,,;,(u,v) be the shortest path between two nodesnd v in the RGG
G(n,r,0). Let D(u,v) be the Euclidean distance betweemandv in the plane. Note that in
G(n,r,?), [D(u,v)/r] is a lower bound o@,,,;, (u, v). Call this lower boundd,,: (u, v). The
hop-stretclof (u, v) is defined as the rati@,,, (v, v)/dopt (v, v). Thehop-stretchof G(n, r, ¢)
is the maximum of thénop-stretchof (u, v) over all pairs of point§u, v) in G(n,r,¢). In the
rest of this section we will outline a scheme to obtain a camstlegree hop-optimal subgraph

from a sufficiently dense random geometric graph.
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6.2.1 Disk Covering Scheme for Sensor Network Formation

The Disk Covering Scheme presented in this section showexibtence of a bounded degree,
bounded stretch subgraph of a RGG. The description andsisallya distributed algorithm is
presented in later sections 6.3.1,6.3.2 and 6.3.3. Befeseribing the scheme, we introduce

some necessary terminology.

Definition 1. A Random Geometric Grapir G(n, r, £) is an instance o§,, ., wherer is the

connectivity radius.

Given a sufficiently densé&'(n,r,¢) = (V, E), the goal of the disk covering scheme is to
produce as output a spanning subgraph, E’) such thatV’ = V, £’ C FE, the maximum
degree is bounded by a constant and the path length is asyrafijooptimal. The precise

nature of the path length optimality is given in the proof diebrem 11.

Definition 2. The graph obtained as a result of the disk covering schenaledtheConstant-

degree Hop-optimal Spanning GrafftHSG)

The following definitions will be relevant here and their miegy will be clear after the disk

covering scheme is fully described.

Definition 3. All nodes covered by the same disk at the end of the disk ogvecheme are

connected to each other in the RGG and will be referred to disle-clique.

Definition 4. Some (possibly all) of the nodes covered by the same disk &inth of the disk
covering scheme are connected to each other by a spannez DH$G and will be referred to

as adisk-spanner.

Definition 5. Abridge is a hode, lying at the center of a disk, that is designateatoraunicate

between two or more disk-cliques.

The following pseudocode summarizes the Disk Covering ®ehe: andb are tunable
parameters that affect the maximum degree and hop-stréthe €HSG. Figure 6.1 illustrates

this protocol.

1. Add all nodes from the RGG to the CHSG.
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Figure 6.1: lllustration of the Disk Covering Scheme

2. Lay downsmalldisks of radiusir /2,0 < a < 1 centered on nodes, such that no central
node is covered by more than one small disk and no node isrleftvered. We call each
central node dridge Note that the bridges form a Maximal Independent Set (MIS) o

the spanning subgraghi(n, ar/2,¢) C G(n,r, ().
3. Add to the CHSG all edges from the RGG that connect bridges.
4. Expand the small disks intag disks of radiugr/2,a < b < 1.

5. Add to the CHSG the necessary edges to form a spanner dhobdegree among nodes

covered by the same big disk. We call this spanndisk-spanner

6.2.2 Analysis of the Disk Covering Scheme

In this section the Disk Covering Scheme described in Sedi@.1 is proved to produce a

CHSG with asymptotically optimal path length. In Sectio.8.we establish a bound on the
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maximum degree of a node in the CHSG. In Section 6.2.2 twaulises$ults for a connected
G(n,r, () are established: A bound on hop-stretch and bounds on tredesity. Finally, in

Section 6.2.2 we prove a theorem on the hop-optimality ofZH&G.

Degree Bound

Lemma 6. At the end of the Disk Covering Scheme, each edge of lengtbsatim- a)r /c has

both endpoints within a single big disk w.h.p, for any consta> 1.

Proof. For the sake of contradiction, assume there exists suchggeedlengthl < (b—a)r/c
not covered completely by one big disk. All nodes are covéredmall disks. Each endpoint
of e has to be covered by a different big disk, otherwise already covered. Call' the center
of e. Call D the center of any big disk partially covering Sincee has at least one point

outside the big disk, the distandéD, C') > br/2 — 1/2 as shown in figure 6.2.

> br/2—-1/2
< (b—a)r/2c

j > (b—a)(c—1)r/2c

Figure 6.2: lllustration for Lemma 6

Therefore, all centers of big disks that partially cog@re located outside a circle of radius
(r —1)/2 centered orC. Then, the corresponding small disks leave an uncoveredagger
than the area of a circle of radiu§ > br/2 — 1/2 — ar/2 > (b — a)(c — 1)r/2¢. Since there
is no small disk in this area, there is no node in this arearatise it would be a disk center.
But, as proved in Lemma 9, in any circle of radigér) there ared(log /) nodes w.h.p. This is

a contradiction. O

Lemma 7. The degree of any node in the CHSG i€l ).
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Figure 6.3: lllustration of the upper bound on the degree.

Proof. All bridges are separated by a distance of at leagR. Connected bridges are at a
distance of at most. In figure 6.3(a) consider the smallest regular hexagon wisae is a
multiple of ar /2 and covers completely a circle of radiisConsider a tiling of such hexagon
with equilateral triangles of sider /2. As proved by Fejes-Toth in 1940 [FT40], the hexagonal
lattice is indeed the densest of all possible plane packiflgsrefore, the number of vertices in
such a tiling is an upper bound on the number of bridges thatext to a bridge located in the

center of such a hexagon. That number is:

JEAED

There is an extra edge that is needed to connect a bridgetwitlisk-spanner. Sinaeis any
constant such th&t < a < 1, the degree of any bridge is ®(1).

Using a simple geometric packing argument, it can be prokeatla non-bridge node, is
covered by at most/ arcsin(a/2b) big disks. By construction, a non-bridge node is connected
to a constant number of neighbors within the same big disk figere 6.3(b)). Therefore, the

degree of any node is if(1). O

Hop Stretch and Density inG(n,r, ¢)

Theorem 8 demonstrates the existence of a path with an asyogtlly optimal hop-stretch.
The proof of the theorem uses an overlapping dissectiomigel, called bin-covering, pre-

sented by Muthukrishnan and Pandurangan [MPO5].
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slices

Figure 6.4: Strip between nodes u and v showing bin covemigstices.

Theorem 8. Given aG(n,r, £) where the following conditions are satisfiecfn = k¢*In ¢,

r=00fl)), f(£) €o(f7),y>0,0<e<1 and0 < o < 1is afixed constant. For any

constantt > 5222 the hop-stretch i + v/a2 + 4 w.h.p.

«

Proof. It is enough to show that for any pair of nodes v), there is a pathP defined by a
sequence of nodgs = g, 1, ..., x, = v) such that the ratio between the lengthfofind
the number of hopsy is bounded upwards by+ v/a2 + 4 w.h.p.

For a given pair of node&u, v), the bin covering technique is applied as follows. ket
be the shortest horizontal projection of a segment of lengtbntained in the strip, i.ex’ =
T/W. The line connecting: andv is covered with overlapping bins of dimension
r'/2 x ar’/2 with a spacing parameter, as shown in figure 6.4. This bin layout will be
referred to as atrip.

The coordinate system is rotated such that the line segmenis parallel to ther axis.
In what follows all distances are specified within this rethframe of reference. Léd;, (x, y)
andD,(z,y) be the horizontal and vertical distances respectively éetwthe nodes andy.

Given a noder; in the pathP the noder; . is selected using the following criteria:
e The noder; lies within the strip.
) Dh(wj,xjH) S T'/

e The horizontal distanc®, (1, v) is minimized.
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A holeis a rectangle of dimensiori/2 x ar’/2, within a strip, that is devoid of nodes and
adjoins a node on the side closesuto

Consider any 3 consecutive nodes along the path, z;, z;11 where0 < i < m, and
assume that along any strip there is no hole, thgfiz; 1,x;) > r'/2. To see that this
claim is true, assume for the sake of contradiction tBafx;_1,2;) < r’/2. The distance
Dy(wi—1,mi+1) > r', otherwisex;,; would have been selected as the successat;of.
Thus, the distanc®y, (z;, z;+1) > r'/2. Since there cannot be any hole in the strip, there
exists a nodey such thatDy,(z;,y) < r’/2. This implies thatDy,(z;_1,y) < r’. Note that
Dy (y,v) < Dp(z;,v), thereforey should have been chosen as the successor_gfby the
construction criteria, which is a contradiction. The @itassumption oDy, (x;_1, ;) < r'/2
is thus proven false which proves the truth of the claim.

SinceDy,(x;—1,x;) > r'/2for 0 < i < m — 1, the number of hops in the pathis

s [P [ gt

/2

If D(u,v) < rthe path is simply the edge connectimgndv and the hop-stretch is trivially.
Otherwise,D(u,v) > r and so, the hop-stretch ist+ va2 + 4.

It remains to show that there is no haeleh.p.

To bound the probability that there is a hole in any strip,sider the sequence of small
rectangles (call thersliceg defined by the spacing parameter, of sizear’/2. The slices are
numbered in ascending order framo v.

For any nodez; that is contained in some slige let E; be the event that the nodg, ; is

contained in the slicg — 1 + [r//2s] at a horizontal distance greater thédrrom z;. Then,

/ 12\ n—2
PriE) < (n | 1)% (1 - %) .
If ;1 is contained in a slice closer tq then there is no hole. If;,, is contained in a slice
farther thanj — 1 4 [r//2s] then there is at least one empty bin in the strip. The proiabil
that some bin is empty is bounded by

maX(u,U)D(u,fu) (1 Oﬁ,/2>n |
S
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Therefore, the probability that there is a hole within ampss

n oﬂ"s oﬂ"2 n—2 maX(u v) D(u, ’U) a’r’z "
< _ - P ? P
Pr[Holg < <2> (n(n 1) Y2 (1 i > + . <1 e )

<2 1 (nzar/seara/zﬂ n \/55) .
S

=N enarfz/4g2 202

This expression is minimized when

2 /308 1/2
5= n2ar! eor’? /262 ’

Then,

Pr[Hole| < 61+ (ka/(44+a2))

2V/2¢

2
60@”Hmk>54za.

2k3¢6 1n3 ¢ <ar’earl2/2£2 ) V2

O

A simpler proof of theorem 8 is also possible and follows uidfio the constant obtained is

worse.

Proof. Consider a strify;, the probability that a node; is contained irS; is at mosir’ //2¢.
The probability that there is a hole withy adjoiningz; is at most(1 — ar?/4¢%)"~1. Then,

the probability that there is a hole in any strip is

n\ ar ar2\"!
< _ =
Pr[Holg < <2>n\/§€ (1 e >

2
ceOoW ) fork > 6(4+a )

g

Lemma 9. In a G(n,r, () satisfying the parameter conditions of Theorem 8, the nurobe

nodes contained in a circle of radiw(r) is ©(log ¢) w.h.p.

Proof. To prove this lemma it is enough to show that the probabiligt the number of nodes,
within any circle of radiugir for some constant, deviates fromog ¢ by more than a constant

factor, is polynomially small. Consider the random procefsdropping nodes in a square of
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side length?. Define the random variabl& as the number of nodes contained in that circle.

For a given node, the probability of falling in the circlerig?r?/¢2. Using Chernoff bounds

2,.2 2 2.2
Pr(X > (1+ e)ﬂiTrn) <e 3"

2.2 2 rp2p2
PrX<(1- e)ﬂiTrn) <e TVE

Using the parameter conditions

e2ﬂﬁ2k

Pr(X > (14 e)nBkint) <™ 3

ﬂﬁ2k

€2
Pr(X <(1—enfklnl) <t~ =2

Hop Optimality of the CHSG

Lemma 10. Consider the RGG-(n, r, ), wheren satisfies the parameter conditions of Theo-
rem 8 for a reduced connectivity radiusiSf= (b — a)r/c. For any pair of nodesu, v) in the

RGG at Euclidean distancB(u, v), there exists a path between them in the CHSG of at most
[evVa? +4D(u,v)/(b—a)r] — 1+ O(log £) edges w.h.p.

Proof. Theorem 8 states that: In the RGG that satisfies the parasurtditions of Theorem 8,
there exists a path div/a2 + 4D(u,v)/r] edges w.h.p. We can thus imply that: If the RGG
satisfies the same parameter conditions for a reduced dbntyeradius of ' = (b — a)r/c,
there exists a path betweerandv using[cv/a? + 4D(u,v)/(b—a)r] edges of length at most
(b —a)r/c. Letp be such a path and , e,, . . ., e, be its sequence of edges.

In the description of the Disk Covering Scheme, two kindsisikslwere defined for clarity:
big disks and small disks. In order to prove hop-optimalitghe CHSG, we only refer to big
disks and simply call them disks. The rest of the proof istilated in figure 6.5.

Lemma 6 states that every edge in the pathcompletely covered by one disk. Therefore,
there exists a sequende, d, . . . , d,,,» Of overlapping disks, where any edggen p is covered
by some diskd; in this sequence. A disk may completely cover more than oge,eldence
m/ < m. Let D; be the bridge (center) of disk.

Define a pathy’ using only edges of the CHSG as follows. Conneeind the bridgeD,

with a pathp; of disk-spanner edges defined by the disk For each edge, 1 < i < m,
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Figure 6.5: lllustration for Lemma 10

replace the edge in p with the nodeD;. Connect all consecutive bridgés and D;; within

the path of overlapping disks with ed@g D, . Consecutive bridges are adjacent to each other
in the RGG, because their disks overlap and the radius ofdiaklisbr /2 with b < 1. Finally,
connect the bridg®,,, andv with a pathp,,, of disk-spanner edges defined by the digsk The
length ofp’ is given by:length(p') < length(p1) + (m — 1) + length(p,,). Using the stretch
bound,length(p’) < [ev/a® +4D(u,v)/(b — a)r] — 1 + length(p) + length(py,) wW.h.p.
Only disk-spanner edges are useghinandp,,. It is shown in Lemma 9 that the number of
nodes within a disk i® (log ¢) w.h.p. Thereforelength(p:) + length(p,,) = O(log ¢) w.h.p.

completing the proof. O
The following theorem shows the main result.

Theorem 11. For every pair of nodes in an RGG, there is a path in the CHSGsslength is

asymptotically optimal w.h.p.

Proof. The optimal path between any pair of nodesv) separated by a distande(u, v) has
at least] D(u,v)/r| edges. Iflog/ is also an asymptotic lower bound on the length of such a
path w.h.p., thefiD(u, v)/r+log ¢) /2 is also an asymptotic lower bound, and the result proved
in Lemma 10 is a constant factor approximation. It remainshimw thatiog ¢ is an asymptotic
lower bound on the length of an optimal path in a constantetegandom geometric graph
w.h.p.

In ad-regular graph, the expected distance between any pairdgsni@andomly chosen is
at leastog;_, n. A ©(1) degree random geometric graph is a subgraph of some regafzr.g
Hence, in a©(1) degree random geometric graph, the expected distance dretavy pair of

nodes randomly chosen is {d(logn). The previous result is true w.h.p. because for some
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constants

1 Blogn—2
< . _ Z'
Pr(D(u,v) < Blogn) < m— Zz:; 36 —-1)

€eO(n™).

Using the union bound, under the parameter conditions ofrharh0,D(u,v) € 2 (log ¢)

for all pairs of nodesu, v) w.h.p. O

6.3 Distributed Algorithm

In this section we describe how to distributedly implemeére steps of the Disk Covering
Scheme for network formation. Step 2 of the Disk Coveringeboh can be achieved distribut-
edly by means of a Maximal Independent Set (MIS) computatith nodes transmitting in a
range ofar /2. An algorithm to compute an MIS in a weak model is presentdMiWO05]. This
algorithm can be tailored to our setting and can be shownwe haunning time of (log? ¢).
The details are presented in Section 6.3.1

Steps 3 and 4 of the Disk Covering Scheme require uncollistanmgsmissions of each bridge
in a radius ofr andbr/2 respectively. All nodes assigned to the same bridge wiligpate
in a common spanner construction. Additionally bridge roaheist set up links with all bridge
nodes at a distance of at mostThe details are presented in Sections 6.3.2 and 6.3.3llyrina

the constant-degree spanner construction is describeekcting 6.3.3.

6.3.1 MIS Computation (Step 2)
Algorithm

Step 2 of the Disk Covering Scheme can be achieved distdlyuly means of an MIS com-
putation with nodes transmitting in a range«f/2. The algorithm detailed in this section is
the firstO(log? ) MIS distributed algorithm with contention resolution in meschannel envi-
ronment for application to nodes in a connected random geangeaph and borrows heavily
from the algorithm in [MWO5] for arbitrary graphs. In the alighm that followsé:, -, d3 and

é4 are constants.
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1. Transmit the local counter with probability 5, log ¢.
2. If not transmitting in the current time slot then:

(a) If a neighbor’s counter is received and the differendsvben the local and neigh-

bor’s counter is< |43 log £| then set local counter te |d; log 4.

(b) Else if a neighbor’s ID is received then set the localestatoveredand stop.
3. Increase counter if transmitted at least once.

4. Ifthe counter igd3 log? /] then set the local state kIS membeand transmit ID forever

with probabilityg = 1/4,.

5. Goto step 1 at end of time slot.

Analysis

The analysis of the MIS algorithm turns out to be difficult &ese nodes running different
phases interfere with each other. Hence, necessary assumpgarding bounds on the total
probability of transmission of nodes in other phases cabhaahade leading to a circular argu-
ment. In order to break the circularity we prove the follogviemmas by induction on the time

slots in which a given node joins the MIS.

Before the analysis, we recall the following basic fact [MiR9
Fact12. Foralln > 1 and|z| <n

2
ex<1—w—> < (1+£)n§e“ﬂ
n n

Lemma 13. Given any node that joins the MIS in a given time slot, the tauof all neigh-

boring nodes is at mos®; log? ¢] — |d2 log ] in the same time slot w.h.p.

Lemma 14. Every MIS node transmits its MIS status message succgssfithe |, log /]

time slots after it joins the MIS w.h.p.

Proof. We prove both preceding lemmas simultaneously by employidgction on the order

in which the nodes join the MIS, with ties broken arbitrarily
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Base caseConsider the first node within the whole network, callit that joins the MIS
at timet.

For the sake of contradiction, assume that there is a mastained inu,’s neighborhood
whose counter is greater thdn = [d3log®¢] — |d2log/] att;. By the definition of the
algorithm, ;1 has first transmitted at ting — [d5 log? ¢] andz has first transmitted within the
next |2 log ¢] time slots. Afterwards, neither; nor z have sent without collision otherwise
one of their counters would have been reset. Eét) denote the event that neithgf nor
have sent without collision withit time slots. Using the fact that there are at mggig ¢
nodes within the 2-hop neighborhood @f w.h.p., for some constad > 0, as shown in
Lemma 9:

1 ( 1 > 86 log e] [03 log? £]—| 62 log ¢
1

PriE(L)] < |1—2— (1—- ——
rE( )]—[ 5, log ¢ 5, log ¢

€ O(¢~") (Using fact 12, for somés,d; > +/dg/ log £).

Now we must additionally prove that withifds log ¢| time slots ofu;joining the MIS, all
nodes within range of it receive a message declaring its Mi®is. For at least); log /| time
slots after the nodg, joins the MIS, no other nodes in its neighborhood join the Mi8.p.

as shown. If in this time its MIS status message is receivedllais neighbors, then they will
all stop counting and transition into tlweveredstate. We will now show that this message is
received by all its neighbors w.h.p. LE{ k) denote the event that; does not transmit without

collision in k& consecutive time slots. The probability of failure iy, log ] consecutive time

66 lOgZ L(;Q log ZJ
P
(54 (51 log€

€ O(¢£77?) (Using fact 12 and for som®).

slots is:

Pr(E([d21og/])] =

This shows thaj; sends its MIS status message without collision succegsful|ds log /|
time slots w.h.p.

Inductive StepConsider theth nodey;, ¢ > 1, that joins the MIS at time;.

Inductive hypothesisFor all nodesy:; such thatj < 4, joining the MIS at timet;, the

counters of all nodes in the neighborhoodgf are at mostds log? ¢] — |2 log ¢] at time
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t; w.h.p. Additionally all nodeg:; transmit their MIS status message successfully within the
intervalt; ...t; + |2 log €] w.h.p.

Therefore by time; + | 62 log ¢| all nodes in the range of all MIS nodgs . . . p1;—1 will be
in thecoveredstate. From the previous statements of the inductive hysidtwe can conclude
that none of the MIS nodgs; (where;j < i) are neighbors of each other w.h.p.

We want to show that the counters of all nodes in the neigtdmattof 1; are at most
[651og? £] — |0, log ¢] at timet; w.h.p. and that all neighbors pf are in thecoveredstate by
timet; + |02 log ¢] w.h.p.

If u; is out of the two-hop neighborhood of all the previous MIS hens, the claim can be
easily proved using the same argument as in the base caserw@ih 1; is within a two-hop
neighborhood of some MIS members. Since all nodes thatqusli joined the MIS are not in
range of each othey; is within the two-hop neighborhood of at mdst other MIS members.
This is true because a regular polygon with side of lengtbagtt and distance from the center
to the vertices at mogt- has at most 12 sides.

For the sake of contradiction, assume that there is a patatained inu;’s neighborhood
whose counter is greater thdn = [d3log? /] — |d2log?] att;. By the definition of the
algorithm, z1; has first transmitted at timg — [d3 log? ¢] andy has first transmitted within the
next [d2 log ¢| time slots. Afterwards, neither; nor y have sent without collision otherwise
one of their counters would have been reset. Eét) be the event that neither; or y send

without collision fork consecutive time slots.

d¢ log £ 12
oot (1_ ! ) (1_i>
61 logt 61 logt 04

€ O(¢~) (Using fact 12,for somés,d; > +/dg/ log ¢).

[63 log? £]— |02 log £]

Pr[E(L)] <

Now we will show that all neighbors of MIS noge will be in the covered state by time slot

t; + |92 1log £|. Any neighbor of an MIS node has a counter that lags the MIS®satbunter

by at least|d2 log ¢]. Additionally no MIS node can be within range of any other. nee
every MIS node can be subjected to interference by at fitbsther MIS nodes (by a simple
geometric packing argument). LEY %) denote the event that a neighbor of an MIS node does

not receive its MIS status message faronsecutive time slots. Thus the probability that a MIS
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node does not transmit its MIS status message without icwllis given by:

18 b6 log ¢
1-— i 1-— i 1-— 1
04 04 1 log £

€ O(¢™") (Using fact 12 and for some).

|62 log ¢|

Pr{E(|:10g¢))] <

g

Lemma 15. No two nodes belonging to the MIS are within transmissiorgeaaf each other

w.h.p.
Proof. This is a direct conclusion of Lemmas 13 and 14. O

Lemma 16. For any node running the MIS algorithm with radiusthere is at least one node,
in its immediater/2 neighborhood, that transmits without collision withiéi; log® /] steps

w.h.p., for some constang > 0.

o \'
- N
/ r/2
3r/2 ’ \}
v =
AN - B y
— =D

Figure 6.6: lllustration for Lemma 16

Proof. Consider a nodel running the MIS algorithm (refer to figure 6.6). Sindeis awake,
there is at least one node awake(inat time¢. From Lemma 15 it can be seen that no MIS
nodes can be within range of each other, therefore thereeahmost 9 MIS nodes withify

(If there were more then one of them would be in rangelpfLet E(k) denote the event that
no node inA’s r/2 neighborhood (includingd) transmits without collision irk consecutive

time slots. Lemma 9 shows that there are at Mgsig ¢ nodes inD w.h.p., for some constant
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(56>O.

Pr(E([8510g% £])] < [1_ (@) <1_51172g€>5610gz (1_5_14>9]

€ O(¢775) (Using fact 120, > +/dg/ log ¢, for someds).

[65 log? €]

O

Theorem 17. For a given node running the MIS algorithm, at least one nodthiwits trans-
mission range joins the MIS i@ (log? ¢) time slots and no two MIS nodes are within range of

each other w.h.p.

o

"VQ\

Figure 6.7: lllustration for Theorem 17

Proof. The proof is illustrated in figure 6.7. In Lemma 16, it was shalat within a circle

of radiusr /2 centered on any node, there will be a node:,, transmitting without collision,

in less than[ds log? ¢] steps w.h.p. After this single transmission, there is atleae node,
namelyzo, within the neigborhood of; increasing its counter. s joins the MIS after its
counter reaches the val(ig; log? ¢], then the statement of the theorem is proved. Otherwise,
some other node, call it3, within range ofz,, reaches this value and joins the MIS before. If
x3 is within range ofz1, then the statement of the theorem is proved. Otherwigsepvers at
least one node within the/2 neighborhood of:;, namelyzo, within the next[ds log £] time
slots w.h.p. (as shown in Lemma 14).

Note that the distance betweenandz; satisfies the following relation :

r < D(:L'l,l’g) < 37‘/2 . (62)
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All uncovered active nodes within the’2 neighborhood of:; are still counting. Hence,
the same argument can be repeatedly applied with the testrihat the next MIS node is at
least at a distance effrom x3 (by Lemma 15). There can be at mOsWIS nodes around;
beforez; or one of its neighbors joins the MIS, as explained in LemmaTltus, this process

terminates in at mosto([d3 log? £] + [d5 log? ¢] + |2 log £]) time slots. O

6.3.2 Broadcast (Steps 3 and 4)

After a node is covered by some neighboring MIS node, it néedse assigned to that MIS
node. All nodes assigned to the same MIS node will partieipat common spanner construc-
tion. Additionally MIS nodes must set up links with all MIS ehes at a distance of at mast
Any of these steps only require each MIS node to achieve aglliding transmission. In this

section an algorithm for achieving this is detailed and atbound is proved.

Algorithm

The algorithm is simple to describe:
With probability 1/3;, each MIS node transmits its ID, within ranger.

Where; and g, are constants whose values depend on which of the aforemedtsteps
is implemented. For informing the non-MIS nodes about asa&nt, the transmission is made
with 3, = b/2. For setting up connections with neighboring MIS nodes,ttarsmission is

made withG, = 1.

Analysis

Lemma 18. Any MIS node running the broadcast algorithm achieves astmigsion without

collision within O(log ¢) steps w.h.p.

Proof. Let A denote the maximum number of interfering MIS neighbors ¢ivhdepends on
(2). Let Pr[fail] denote the probability that any node fails to transmit witheollision after
03 log £ steps for some constang. For appropriate values ¢k and s, using the parameter

conditions of theorem 8 and the union bound,
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. 1 B
Prifaill =n <1 ~ 5 <1 - E) >

€ O(¢7) For somey > 0

6.3.3 Spanner Construction (Step 5)

After nodes are covered by one or more bridges (MIS membtiiesy,have to connect locally
to neighboring nodes covered by the same bridge, i.e. witiénsame disk. Nodes can be
covered by more than one bridge. Hence, interference ofrmesions not only from the local
disk but also from neighboring disks must be taken into actétm analyze the performance
of any spanner construction algorithm. However, any nodmigred by at most a constant
number of disks as explained in Lemma 7, then the number efféring transmissions with
respect to the local disk is increased only by a constanbfdbtit we fold into the constants

involved in this analysis.

Algorithm

Our goal here is to construct a constant-degree spanndn graghe set of nodes assigned to a
given bridge node. Since the diameter is not constraineddept the simplest topology, i.e., a

linked list. In order to minimize the running time, we avoidridshaking among nodes and all
the construction is done by broadcasting. We start withyemede choosing an integer index

uniformly at random from the intervdl, ¢]. Since there aré(log ¢) nodes within the same

range w.h.p. as shown before, no two nodes choose the samevitiulp.

Analysis

Lemma 19. Any node running the spanner algorithm joins the spannemiwib (log? ¢) steps

w.h.p.

Proof. In order to prove this lemma it is enough to show that everyermalered by the same

bridge that is running the spanner algorithm achieves &t leae single (i.e. uncolliding)
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1 for each non-bridge node in parallelo
2 predecessor.IBD— bridge.ID,
3 successor.|D— bridge.ID;
4 choose an integer index uniformly at random from the intefe];
5 while true do
. true  with probabilityp = 1/34 log ¢
6 transmat < { false with probability 1 — p/
7 if transmitthen broadcastindex,|D);
8 else ifan index is receivethen
9 \ updatepredecessor.Ir successor.laccordingly;
10 end
11 end
12 end

Algorithm 1: Spanner constructiorf, is a constant.

transmission withinD(log? ¢) steps w.h.p. It was shown in lemma 9 that there @(tg ()
nodes within any disk of radiu®@(r). Hence, it is enough to show that within any disk with
at most(, log ¢ nodes there arg, log ¢ differentsingle transmissions withifs log? ¢ steps
w.h.p., where3, and 35 are constants.

To show that, we use the following balls and bins analysi$.ebeh node be represented by
a bin and each transmission step be represented by a balldé\auhieving a single transmis-
sion at a given step is modeled with the ball representinigstiea falling in the bin representing
that node. If at a given transmission step there is no singiesimission, we say that the ball falls
outside the bins. Now, to prove this lemma it is enough to stiaw after dropping3s log? ¢
balls in 34 log ¢ bins, no bin is empty w.h.p.

For a given ball, the probability of falling in a given bin iset probability of achieving a

] |\ Pulogt1
Pr=— (1-——
Balogt By log £

Hence, the probability of some empty bin is

single transmission, i.e.

Balogt Balogl—1 85 log? ¢
. B4 log ¢ o1 1
P )< 1—-f— (1 - —
rifail) < 3 ( i "Bilog? " Bilogt

i=1

s log? £ o
= Bylog ¢ By log ¢ i)

1=1
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Using the binomial theorem,

1 1 Balog —1\ Pslog? ¢
_ 1— 254 log ¢
Balogt Balog?

Pr(fail) < (1

€ O(L™7),~ > 0 (using fact 12, for a large enough > ef3,).

A small-diameter spanner

In the previous construction, the distance between any telesiis at most the number of nodes
within the disk, i.e.O(log ¢). Although a diameter 0®(log ¢) for the disk spanner is optimal
(theorem 11) for a constant-degree random geometric gepbnstant-degree spanner with
diametero(log log /) is also possible as shown in this section.

The structure we utilize, is popularly known asuterfly network Butterfly networks are
used in many parallel computers to provide paths of lemgthn connectingm inputs tom
outputs. A labeled instance of a butterfly network with= 8 is shown in figure 6.8. The
inputs of the network are on the left and the outputs are onigh& In our case, all nodes have
the same role and a message between any pair of nodes cart Ibe G¢log m) hops. Then,
given that there aré(log ¢) nodes in any disk, the diameter obtained (kg log ¢). Notice
that, once unique consecutive labels are assigned to aknedch node can easily compute to
which nodes is connected. Then, our goal is to assign unigasecutive indexes to all nodes
within the disk.

The distributed algorithm for non-bridge nodes to condtsuch a network within one disk
consists of three phases, as follows. First, every nodesgsoan index uniformly at random
from the interval[l, ¢]. As explained before, no two nodes will choose the same indip.
Then, every node broadcasts its index and ID as in algorithbatlin this case they keep track
of the ID of its predecessor only and the process runs forQustg? ¢) steps. As shown in
lemma 19, at this point all nodes have achieved at least ansrtrission without collision so,
all nodes know who is their predecessor.

To obtain consecutive indexes, the nodes now have to pacinttexes one by one as

follows. Upon receiving the new indexof its predecessor, a node redefines its indek-ad
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Figure 6.8: A butterfly network with 32 nodes

and broadcasts its new index and 1D with constant probgtidit O (log ¢) steps. As shown in
lemma 6.3.2, there will be at least one transmission witbollision w.h.p. Obviously, the first
node in this ordering will not have any predecessor and walttghis phase of the algorithm
redefining its index a$. At this point, all nodes have consecutive indexes and faeernect
as a butterfly accordingly but, they do not know yet the ID’'stddir butterfly neighbors with
smaller index so, a final round broadcasting the new indeX@risinecessary. The details can
be seen in Algorithm 2

The first and third phase take(log® ¢) time by definition of the algorithm. In the second
phase, each d®(log ¢) nodes in turn transmit foP (log ¢) steps. Hence, the overall running

time of this algorithm iD(log? /).

6.3.4 Overall analysis

The bootstrapping protocol described in this chapterdbsudl hop-optimal constant-degree Sen-
sor Network under the constraints of the Weak Sensor Mod@(lng? ¢) time w.h.p. The time
bounds are for the MIS algorithi®?(log? ¢), for the broadcast algorithi@(log ¢), and for the

spanner algorithn® (log? ¢). Hence, the total running time is upper boundedtfyog? ¢).



1 for each non-bridge node in parallelo

2 predecessor.ID— NULL;

3 choose an integer index uniformly at random from the intefg];
4 | for fglog? ¢ stepsdo

. true  with probabilityp = 1/87 log ¢

5 transmit < { false with probability 1 — p/

6 if transmitthen broadcastindex, ID);

7 else ifan index is receivethen

8 \ updatepredecessor.Iaccordingly;

9 end

10 end

11 index < O;
12 if predecessor.lRNULL then
13 \ wait until an index fronpredecessor.IDs received;
14 end

15 index < index + 1;

16 for B log ¢ stepsdo
17 | broadcastindex, D) with probability 1/y;

18 end

19 | for Bglog? ¢ stepsdo

. true  with probabilityp = 1/87 log ¢
2 transmit < { false with probability 1 — p/
21 if transmitthen broadcastindex,|D);
22 else ifan index is receivethen
23 \ store ID’s of butterfly neighbors according with the index;
24 end
25 end
26 end

Algorithm 2: A small-diameter spanner constructigh. is a constant.
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There is a trade-off among the maximum degree, the lengtheobptimal path and the

density given by

There is a path ok [M Lg‘jﬁ} — 1+ O(log ¢) hops w.h.p.

T

The degree of any bridge is 3(%1 ([%1 + 1) + 1 w.h.p.

b—a r

2
The density of nodes i > 5% ( c ) Int,

Where0 <a<1l,a<b<1l,c>1land0 < a<1.

The longer the edges covered, the lower density and smaifeber of hops in the optimal
path but, the degree is bigger.

Notice that in our construction, only three ranges of trassion are used, nameby/2,
br/2 andr. Hence, the specific values @fandb are hardware dependent.

Notice that for any of the various parts of the bootstrapmigprithm no synchronicity
assumption is needed. Furthermore, neighboring disks tmeexd to be running the same
phase of the algorithm. Regarding failures, the MIS alhamitand its final broadcast algorithm
as well as the linked list spanner construction algorithenadso maintenance algorithms since
both bridge and non-bridge nodes keep broadcasting foraebridge node fails, after some
time non-bridge nodes will detect the absence of their leriolgpadcast and will restart the MIS
algorithm to obtain a new bridge. On the other hand, if a nadge node fails, its successor
and predecessor will interconnect within the next roundhef $panner construction. If the
butterfly network spanner is used instead and a link is Ibstptitterfly network can be simply

rebuilt locally from scratch.

6.4 Extensions

In this section we briefly describe how to extend this protacorder to achieve load balance
and to work in settings where the density of nodes is noneamifand the area of coverage of

a node is not a circle.
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6.4.1 Load Balance

The topology obtained by the protocol detailed in this chajg not homogeneous because
the node set is partitioned into two subsets, the bridgesiadd the non-bridge nodes. Given
that the bridge nodes handle the communication of all thesadvered by them, the load of
work is not uniform among the different nodes in the netwoHRurthermore, given that the
disk spanner is implemented as a linked list, nodes clostretdridge within the list have to
handle messages of all nodes behind them in the list. Thig isan be addressed distribut-
edly by simply resetting the bridge status at a random time.e®plained in Section 6.3.4,
given the unreliable nature of sensor nodes, the bootstg@igorithm has to be extended to
a network maintenance algorithm. More specifically, eveigde node transmits its bridge
status periodically and every non-bridge node transnstiitperiodically in order to maintain
the disk spanner. Therefore, non-bridge nodes can haratiesstesets as they handle bridge
failures, i.e., re-running the algorithm. Given that resming the bootstrapping algorithm in-
troduces extra cost, the periodicity of this status resetgya trade-off between load balance

and throughput.

6.4.2 Non-uniform Radius

A frequent assumption in Radio Networks is that the area wéi@ge of a node is not a perfect
circle. More precisely, it is assumed that nodes are cordegith probability1 if they are

at a distance of at most,;,, beyond that and up to a distanceqf,, the connectivity is
uncertain, and beyond a distancergf,, the nodes are assumed not to be connected. We
term such a mode¥ (n, 7in, Tmaz, £). Nevertheless, the main goal for any network formation
protocol is to obtain a connected network. Therefore, thwlitimns on the minimum range of
transmissiorn,,,;,, are still the same as for the case in which the radius is agtort® unique.

The following theorem, that establishes such conditions pvaved in [MPO05].

Theorem 20( [MPO05],Theorem 3.5) Given aG(n,r,¢) where the following conditions are
satisfied:r?n = k2 Int, r = 0(¢<f(£)), f(£) € o(£7),7 > 0,0 < e < 1,andn € Q(1). For

any constank > 2 — 2¢, the graph is connected w.h.p.

Under these conditions, the following lemma shows a low&nicon the density of nodes.
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Lemma 21. In a G(n, Tmin, "maz, £) Satisfying the parameter conditions of Theorem 20, the

number of nodes contained in a circle of radi@$r,,:, ) is (log ¢) w.h.p.
Proof. Same as in Lemma 9. O

However, since we do not have any upper bound on the maximdiusrg,, ..., we can not
give an upper bound on the number of neighbors of any noderktetnn, the total number
of nodes. Therefore, in order to use the bootstrapping iéfgoeras detailed in this chapter, we
have to add an initial phase that upper bounds the numbeigiflmars of any node t@(log ¢).
Such a phase can be easily implemented using the IncreaseS€oare algorithm presented
in [JS05] and detailed in Section 7.1.3. As in [MWO05], ingtefrunning the algorithm forever,
every node stops running the first phase upon receiving s@ngmission. Nodes that transmit
at least once during the first phase (successfully or not)hgac and run the bootstrapping
algorithm as a second phase. The rest of the nodes enteriagnaétiod of[§; log? /] for a
constantd; > 0. If none of their neighbors become a bridge within the wgitgeriod, they
simply re-run the protocol. The details of the algorithmtiue first phase are included here for

completeness. In this algorithrd,, 62 andds are constants.

- For [§, log? ¢] steps:
- If a bridge node transmission is received then stop andegato the disk spanner
formation step of the Disk Covering Scheme.

- Else If a non-bridge node transmission is received thestas:
- Fori = 0to [log ¢]:

- Repeat forfd3 log /] steps:
- Transmit ID with probability2? / /5.

- If transmitting in the current time step then stop and peoc® the Disk Cov-

ering Scheme.

- Else If a bridge node transmission is received then stoppeamtked to the disk

spanner formation of the Disk Covering Scheme.

- Else If a non-bridge node transmission is received thestad:
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The analysis showing that the number of nodes running thestsapping algorithm in any
circle of radiusO(r) is O(log ¢) w.h.p., can be done assuming that the first phase uses a differ
ent channel of communication in the presence of some sotiricgéetference that produces a
transmission with constant probability. This source ofseainodels the interference of nodes
running the bootstrapping algorithm in a one-channelragtyiiven that due to lack of global
synchronization different nodes may be running differdmages. The analysis of the boot-
strapping algorithm can be easily re-done with a similauaggion for the interference of the
first phase. Choosing the constants involved in both phak#secaalgorithm (probabilities,
counters, number of rounds, etc.) adequately, the sum bhpilities of transmission of neigh-
boring nodes in the same phase is in fact a constant. Thigsasaan be done as a simple

generalization to this assumption of the analysis in [MWO05]

6.4.3 Non-uniform Distribution of Nodes

Another feasible assumption in Radio Networks is that th@ajenent of nodes is not uniform.
Although some papers analyze problems in Radio Networksruhe assumption of arbitrary
distribution of nodes, this assumption is unreallisticcsitthe layout of nodes is not a result of
an uncontrolled random experiment where the probabilityoofie highly undesirable outcome
is positive. However, a uniform distribution of nodes in filane in situations where the envi-
ronment is hostile or remote may be difficult to achieve. Aaregle of a feasible model for
the distribution of nodes that reflects the random naturbefieployment leaving aside highly
unlikely arbitrary distributions is a multiple bivariatemmnal distribution. In other words, the
node density is described as a composition of normal digtabs in the plane.

Notice that, independently of the model of the non-unifoiistribution of nodes chosen, in
order to guarantee connectivity a minimum density of nodesth be ensured. Furthermore,
the problem analyzed in the previous section, i.e., find thémum radius in order to achieve
connectivity, can be easily stated as the problem of findegnhinimum number of nodes to
ensure connectedness given a fixed transmission rangect|thfa conditions on the minimum
density proved in Lemma 21 still hold but, as before, we cangi@ an upper bound on the
number of neighbors of any node better thanhe total number of nodes. In order to address

this issue, we follow the same approach as in the previoumgeec
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Chapter 7

Survey: the Clear Transmission Problem

Any network where transmissions may collide needs a profocaollision-free transmissions
The problem of achieving a successful transmission of at le@e node is fundamental since,
indeed, to solve any problem in a communication networkagtlene successful transmission
is necessary. In some networks, such as a Radio Network garaoeives succesfully a message
only if exactly one of its adjacent neighbors has transiahittethat time slot. If many neighbors
send messages simultaneously messages collide and thesgedes only noise.

We recall from Chapter 4 the definition of the problem. clkar receptionat a nodeA
is achieved if in a given time slot exactly one of the adjagegigghbors ofA transmits. On
the other hand, we say that a naBehas achieved alear transmissiorif B transmits and no
other two-hop neighboring node &f transmits in a given time slot. Notice that although both
problems look similar they are not the same in a multi-hogvodt. When a clear transmission
occurs, all the adjacent nodes of the transmitter receenthssage. Whereas if a clear recep-
tion occurs only the receiver is guaranteed to get the medsacpuse other nodes adjacent to
the receiver may be receiving at the same time the transsmissisome other node which is not
in the range of the receiver (hidden-terminal problem). Qfrse, both problems are identical
in a one-hop network since for a given node to receive a messeaartly one node in the whole
network has to transmit.

Algorithms for achieving a clear transmission have beedistlin several shared-channel
contention settings. We summarize here related work irr ¢teasmissions and clear recep-
tions, and we give the details of our results in this area iapglér 8. In a one-hop Radio
Network, the clear transmission problem is equivalent &odtrcalledoroadcast wake-upand
leader electionproblems (refer to Chapter 4). These problems differ in ridp networks

because, although a clear transmission is still necesisangy not be sufficient. Therefore,
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while considering lower bounds, we will cite bounds for theac transmission problem, even

when the bounds were originally stated for the other problem

7.1 Randomized Upper Bounds in One-hop Networks

The clear transmission problem in a one-hop network is a#dled the selectionproblem.
Recall that in the most general version of the selection |prolthe number of nodes in the
network isn but only some subset of nodes participate in the protocabrd hre many models
under which protocols for this problem can be studied, dépgnon the knowledge of the
size of the networlu, the number of active nodes participantsin the protocold, the type of
synchronization (global or local), the availability of tision detection, etc. In the following

sections we summarize some protocols under these varioditions.

7.1.1 Active-Nodes-Set Size Known and Global Synchronizan

If the number of participating nodes is known, a simple approach is to use controlled-
Aloha [Met75]. That is, each participating node transmiteach time slot with probability
1/d.

Theorem 22. Given a one-hop network where the number of participatindesa is known,

the protocol controlled-Aloha [Met75] achieves a clearrigmission w.h.p. i@ (log n) steps.
Proof. The probability of not achieving a transmissiontisteps is

1\4-1 t
Prigg < |1-(1==
7afazl_< < d> >

1
< —=7> 0, for anyt € Q(logn).
n

7.1.2 Active-Nodes-Set Size Unknown and Global Synchroration

Unfortunately, the number of participating nodes is notinan general and smarter solutions
are needed. The lack of such information makes a big difterém order to obtain fast pro-

tocols. A common observation in literature is thatair protocol, i.e., a protocol where all
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nodes are assumed to use the same probability of transmjsgiadhe same time step (global
synchronization), has a high probability of achieving acessful transmission whemand
the number of participating nodelsagree up to a constant factor and this probability is low

otherwise. Therefore, a main challenge for any protoca sstimatef accurately and fast.

Network Size Known with Collision Detection

In [Wil86] Willard presented randomized protocols to ackier successful transmission in a
one-hop network when collision detection is available. Wiige size of the network is
known, the protocol calleduper exponential binary sear¢BEBS) works as follows. In a first
phase, nodes guess the number of participating neighborthal extent, the protocol works
in rounds. Nodes transmit in each round with probability. The value ofi for each round
is chosen by binary search in the spatglogn|]. The decision regarding the value of the
exponent for the next round is taken based on the feedbaok thhe channel in the current
round. More precisely, if there is silence the probabilgyiricreased, if there is collision the
probability is reduced, and if there is a successful traasimn nodes stop running the protocol.
Upon completion of the first phase, nodes use controlled &leith the guessed density of

participating nodes as a parameter until they achieve asafid transmission.

Theorem 23( [Wil86], Theorem 2.10) Given a one-hop network with collision detection where
the size of the networkis known by the nodes, the protocol SEBS achieves a cleariggion

inlog[log n] + O(1) expected time slots.

It is easy to see that the running time of the first phase is atlog[log n| time steps. So,
the proof goes mainly about proving that the probability oégsing a density of participating
nodes away from the actual value for more than a constanterfitst phase is sufficiently
low as to guarantee that the second phase runs in expéxtedtime. We refer the reader
to the original paper for details. For protocols where alfie® are assumed to use the same
probability of transmission, Willard proved in the same grap matching lower bound in the

expected running time, showing the optimality of SEBS urniiat assumption.
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Network Size Unknown with Collision Detection

For the case in which the size of the netwarks unknown, the protocol proposed in [Wil86],
called QSEBS, uses a first phase that guesses the numbeticippting nodes using the search
algorithm of Bentley and Yao [BY76], and the same second @ltdsSEBS. The algorithm
of B-Y is based on a progression of binary search algorithiiere precisely, consider the
standard unbounded binary search of a number N that sucessively evaluatgs, for each
i=1,2,..., until an interval such that € [2i~! 2] is found so that a bounded binary search
can be applied. Notice that, in this algorithm, the apptprivalue of is found by exhaustive
search. Performing an unbounded binary search of the apg®walue ofi, we can obtain

a faster algorithm calledouble binary searchThe algorithm of B-Y applies recursively this
idea, choosing the depth of the recursion appropriatelgudipg on the magnitude of B-Y
proved in that paper that in order to determifyavhen no upper bound adhis known, their
log* d

algorithm incurs iny_ :

2%, %1og!?) d comparisons, wherdeg?) d is the;jth iterated logarithm of

d andlog* d is the least integek such thatog®) d < 1. This result combined with the analysis

of the second phase used to prove Theorem 23 results in auotahg time ofO(log log d).

Network Size Known without Collision Detection

Although in many Radio Networks it is possible to detect disioh, it has been also argued
that a collision can not be detected in the presence of ndiaprels [BYGI92]. We briefly
review now previous work in clear transmissions under trei@ption of a binary channel,
i.e., only two channel states are feasible, single trar@orisand silence/collision.

Hayashi, Nakano and Olariu [HNO99] presented the fidglog® n) algorithm for clear
transmission with high probability in one-hop Radio Netlswithout collision detection. The
protocol given, calledlection-with-no-CDis intended to solve the problem of leader election
which, as mentioned before, in the one-hop scenario is tine s& the clear transmission prob-
lem. The approach is simple, for each non-negative integgarting with; = 0, nodes transmit
with probability 2= for all j € [0,4]. If any of the nodes achieve a successful transmission all
nodes stop running the protocol. The intuition behind thatqrol is that, as explained before,

the probability of achieving a successful transmissiorigh when the number of participating
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nodes and the probability agree up to a constant factor. &agproach consists in repeatedly

try all possible values of /d as probabilities of transmission.

Theorem 24 ( [HNO99],Corollary 3.2) Given a one-hop network without collision detec-
tion where the size of the networkis known by the nodes, the protocol Election-with-no-CD

achieves a clear transmission w.h.p.(fflog? n) time slots.

A sketch of the proof follows. Observing that the probabibif a successful transmission
in a given round isPrgy.. > dp (1 — p)d_l. It is easy to see that whenever the probability of
transmission is withiril /2d, 2/d] the probability of success is at ledt .. > (1 —p)P " >
1/e%. Then if we have at least(log n) rounds with such probability of transmission, we have
a success w.h.p. By a simple observation of the algorithm ntimber of rounds needed is
O(log®n).

In [GPPO01], Gasieniec, Pelc and Peleg presented algorithmske up a one-hop Radio
Network in different scenarios such as global or local syoslsm and known or unknown
network size. Recall that in the wakeup problem the goal y8akeup all nodes in the network
and nodes can be woken up by a successful transmission oragponsly. Given that this
is a single-hop network, and that in the worst case nodes Hwakeup spontaneously after
time ¢ = 0, this problem is the same as the clear transmission probl&finenr is known
and the synchronism is global, the algorithm proposededadipeated-decayis based on the
algorithm decayof [BYGI92]. The algorithm decay works in rounds up to a maeim of
2[logn] rounds. In each round, each node transmits a wakeup messdgeatinues the
protocol with probabilityl/2. The algorithm repeated-decay just executes phases oy deca
repeatedly until a successful transmission is achievealntide wakes up spontaneously waits

to the beginning of the next phase to start running the pobtoc

Theorem 25( [GPPO01],Theorem 2.3)Given a one-hop Radio Network wherés known by
all nodes and global synchronization is available, the aion repeated-decay achieves a

clear transmission with probability — ¢ in time O (log n log(1/¢))

The algorithm decay achieves a clear transmission withgiitity 2(1/2) as proved in [BYGI92].
Therefore, the probability of failing fdbg(1/¢) rounds is at most— 1/2!°¢ /<, Given that the

algorithm decay works in rounds up to a maximun®@og n| rounds, the theorem follows.
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7.1.3 Active-Nodes-Set Size Unknown and Local Synchronitzan
Network Size Known without Collision Detection

Unfortunately, given the lack of synchronization we cangudrantee a number of participants
in a series of rounds, i.e., in a given time step the numbeadfgipants can be any integer in
[1,n]. Of course, this number can not decrease in this model. Alsiapgproach, also included

in [GPPO01], is to follow the approach of controlled-Alohairme conservative, i.e., assuming

that all nodes participate and transmitting in each rourttl priobability 1 /7.

Theorem 26. Given a one-hop Radio Network wherds known by all nodes and only local
synchronization is available, if all nodes transmit wittopability 1/» a clear transmission is

achieved with probability — € in time©(n log(1/¢)).

Proof. The probability of failing to have a successful transmissiot steps is

d—1\t
prfaﬂg(l_dz(l_g )
n n
(5 (-2))
<(1-=(1-=
n n

<, foranyt € ©([2enlogl/e]).
U

As proved in [FCFMO6], there is a lower bound(@flog n log(1/¢)) time to achieve a clear
transmission with probability — ¢, so the previous upper bound would imply an exponential
gap between the upper and lower bounds in this model. Howagmupper bound is not tight

as shown in the next section.

Network Size Unknown without Collision Detection

Recall that a protocol where all nodes transmit with prolitghp has a high probability of
achieving a successful transmission wiegnd the number of participating nodésgree up

to a constant factor, and this probability is low otherwidewever, we consider in this section
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protocols wherei is not known. A simple approach, if all nodes use the samegtibty,
would be to try with each possible probability for enough twemof steps so that whenever the
probability isp € ©(1/d) a successful transmission is achieved. More specificéiéyatgo-
rithm would consist inlog n] rounds. In round:, a node transmits with probability = 27".
However, due to lack of global synchronization, the protasmot a fair one, i.e., nodes may
be using different probabilities. Nevertheless, it can tmer@d that the protocol still achieves a
clear transmission fast. The intuition behind such a preafs follows. The goal is to reach a
round where some node transmits successfully but to actiévave do not need all the nodes
to use the same probability, it is enough if the summatiomefirobabilities of transmission of
all nodes is in©(1) during one complete round. In order to achieve that, nodesldhransmit
with a small probability©(1/n) in the first round and increase the probability for each new
round, though this would imply that nodes know the size ofrthvorkn. Nevertheless, as
shown in [JS05] the labels of processors can be used as lgoadx@amations of the size of the

network yielding the algorithm 3 callddcrease From Square

1 while true do

2 p— 1/2(log(7r2(i+1)2/3)1;

3 if p <1/2then

4 \ transmit with probabilityp for § log(1/¢) steps;
5 end

6

7

D < 2p;
end

Algorithm 3: Algorithm Increase From Square [JS05]

Theorem 27( [JS05],Theorem 7.1)Given a one-hop Radio Network wherds not known
and only local synchronization is available, the algoritintrease From Square achieves a

clear transmission with probability — ¢ in time O(log nlog(1/¢)).

Proof. Let V' be the set of nodes and lgt be the probability of transmission of nodeCon-
sider the first time slat when the sum of the probabilities of transmission of all reddecomes
> icv Pi € ©(1). Such atime slot exists because nodes increase the piigpabtil reaching
a constant. Given that nodes duplicate their probabilityraxismission everylog 1/e steps,
the sum of probabilities of the nodes participating at timeill still be a constant at time

t + 0log1/e. Due to lack of global synchronization, nodes may begin tigpate in the
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protocol during this period, however, their sum of probiéibs of transmission during the first
dlog 1/e time steps is at most a constant. Therefore, after the tiepet sthe sum of probabil-
ities of transmission of all nodes Js,,.,, p; € ©(1) for at least the nexilog 1/¢ time steps.
Now it is easy to see that under these conditions the pratyabil not having a successful

transmission is low.

dlogl/e
Prragg < [1=> i [] (1—py)
i€V jEV, i
dlogl/e
<|1->m]la-»)
i€V jev
Observing that1 — p) > (1/4)? for every0 < p < 1/2,
dlogl/e
Priag < [ 1= pi [T (1/4)P
i€V jev
dlogl/e

-z (i) )

< ¢, for somesd > 0.

O

Given the lower bound shown in Chapter 8, this algorithm isneg@l. Obviously, the same

upper bound holds for the case wheres known by simply ignoring such information.

7.2 Randomized Upper Bounds in Multi-hop Networks

Recall that in a multi-hop network the clear reception peablnd the clear transmission prob-
lem are not the same. When a clear transmission occursealtflacent nodes of the transmitter
receive the message. However, if a clear reception occlyglenreceiver is guaranteed to get
the message due to the hidden-terminal problem. Therefotdjs section we will analyze

these problems separately.
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Much of the research in shared-channel contention sefsngs specific for the clear trans-
mission problem but for more general problems such as basadwake-up, leader election,
etc. Although a solution for any of these problems implieslatgn for the clear reception
problem, it is not clear that solving the clear transmisgiooblem is a necessary condition to
solve any of the aforementioned problems. For instancégitoadcast problem a non-empty
subset of nodes are allocated messages and the goal islthatle$ receive some message.
To that extent it is enough that all nodes receive a messagerbay not be necessary that all
nodes in each one-hop neighborhood have received the necisstige same time slot. In the
worst case of the wake-up problem a non-empty subset of nedkes up spontaneously at
some initial timety and the rest of the nodes have to be woken up by a successptimt so
the same argument holds. Nevertheless, some solutions Ilitdfature actually solve also the
clear transmission problem or can be used to solve it withrui cost asymptotically. We will
survey some of these results in this section that obvioudlyesthe clear reception problem
too.

In a seminal paper [BYGI192], Bar-Yehuda, Goldreich anddtaie a0 ((D+log(n/e)) log n)
randomized algorithm to broadcast a message with probahtlieastl — ¢ in a multi-hop Ra-
dio Network with diameteD, when the nodes know an upper boundnoand an upper bound
on the maximum degreA. This protocol is based on an algorithm calledcaythat resolves
contention by randomly eliminating half of the transmiteiThe process is repeated enough
number of times in order to achieve the desired probabilityugcess. This process of cutting
by half can be implemented distributedly by letting eachentwleliminate itself after tossing
a fair coin. The protocol relies in some form of synchromigithich can be achieved by as-
suming that there is a unique source node and taking#ism® when the source transmits the
message. Therefore, in the most general model where ordy $yachronization is allowed,
a protocol for clear transmission or reception based on Pegliies on actually solving the
broadcast problem which implies the same time bound.

The Algorithm 3, Increase From Square, shown before can &é wssolve the clear re-
ception problem in a multi-hop Radio Network efficiently. farct, there is only one minor
modification to be introduced. Namely, instead of running #iigorithm forever, every node

stops running the protocol upon receiving some transmisdtairthermore, the time bound is
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still the same as shown in the following theorem.

Theorem 28. Given a multi-hop Radio Network whetds not known and only local synchro-
nization is available, the algorithm Increase From Squawks/as the clear reception problem

with probability 1 — € in time O(log n log(1/¢)).

The proof for each one-hop neighborhood is the same as inréime@7. Interference
among one-hop neighborhoods is not a problem. To deal withdtiction in the sequence
of time slots in which the sum of probabilities of transmssof some one-hop neighborhood
reach a constant can be used. The base case is the first tingwlen such an event occur.
Recall that in the algorithm Increase From Square nodesledd probability of transmission
in each round. Therefore, if such an event does not occumd¥ilog n) steps is only because
every node has received some transmission. Hence, theeprablsolved.

As explained in Chapter 6, when= 1/n, aO(log? n) time bound can be obtained for the
much more complicated problem of computing a Maximal Indeleat Set (MIS) in the multi-
hop Weak Sensor Model w.h.p. This algorithm can be used teedblke clear transmission
problem without extra cost as follows. In a first phase the MISomputed using & (log?n)
MIS algorithm and in a second phase all MIS nodes repeateaihsmit with constant proba-
bility. Although due to lack of global synchronization @ifent nodes may be running different
phases, as shown in Chapter 6 this is not a problem if we dondlgsis under the assumption

of the existance of a source of noise that transmits withteomgrobability.

Theorem 29. Given a multi-hop Radio Network without collision detegtwhere the size of the
networkn is known, and the synchronization is local, the algorithnthef previous paragraph

solves the clear transmission problem(xtlog? n) time slots w.h.p.

Proof. By definition of an MIS, there is a constant number of MIS nodesny two-hop
neighborhood. Therefore, if the probability of transnossis p, the number of MIS nodes
in any two-hop neighborhood is at mdstand the probability of transmission of the source of
noise isq, the probability that a given MIS node does not achieve a ¢ttaasmission is

Priay < (1-p0-p)’ (1))’

IN

1
—5, for somet € Q(logn)
n
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Using the union bound, the probability that any MIS node dussachieve a clear transmission
isO(1/n). Given that there exists exactly one MIS node in every onereghborhood w.h.p.,

the clear transmission problem is solved. O

Bar-Yehuda, Goldreich and Itai showed in [BYGI191] that thgooaithms developed for one-
hop Radio Networks with collision detection can be emulatechulti-hop Radio Networks
without collision detection. Each round of the one-hop refncan be emulated b ((D +
log(n/e€))log A) rounds of the multihop network and succeeds with probghaliteastl — e,
where D is the diameter of the network amil is the maximum degree. Thus, algorithmic

results concerning single-hop radio networks may have sompact on the multi-hop model.

7.3 Lower Bounds

Kushilevitz and Mansour [KM98] proved the first lower bourfdtt{log n) on the expectation
of the running time of any randomized algorithm for cleansmissions in Radio Networks.
Notice that the algorithm of Willard [Wil86] gives an expedtO(loglogn) running time to
achieve a clear transmission in a single-hop radio netwadaitk @ollision detection. Hence, the
lower bound of Kushilevitz and Mansour shows also an expimalegap between both models.

The specific problem for which the lower bound is proved isabiaast. In a one-hop Radio
Network the broadcast problem is the same as the clear tissismproblem. To see this, it is
enough to assume in the broadcast problem that there istiiomali node calledhe originator
that it is connected only to a non-empty subset of gizd the n nodes forming the network.
In a first time slot the originator broadcasts its messagecsiyl its d neighbors receive it.
From now on we have the same setting as in the clear transmipsoblem, i.e., a subset of
d participating nodes trying to achieve a non-colliding saission. However, nodes know
neither which are the participating nodes nor the magnitaide

The lower bound is proved under the assumption that all negesute the same protocol.
If the protocol is non-uniform, i.e., nodes may run diffar@notocols, a simple reduction as
the one used in Section 8.2 from the non-uniform case to tiferomone shows that the same
lower bound holds.

The goal is to show that for every cliqgue nfnodes, there existsomenon-empty subset
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of sized such that, if the nodes in this subset try to transmit, theeetqu number of time
steps until exactly one of them transmits(i¢log ). To that extent it is enough to take the
expectation over all choices dfof the form2? wherei € [1,logn] of the expected running
time when2’ nodes transmit, because then there exést®echoice ofd for which it is not

possible to do it faster.

Theorem 30( [KM98],Lemma 1) Given a one-hop Radio Network of sizevithout collision
detection where the number of participating hodds unknown and with global synchroniza-
tion, any randomized uniform protocol requires at le@log n) time steps in expectation to
achieve a clear transmission. More precisely[F[T;]] € Q(logn). WhereE[T;] is the ex-
pected running time of the protocol when the number of pigdting nodes isi = 2¢ and E;

is the expectation over the uniform choices of an intéger1, log n].

Sketch of the proofFirst we observe that the decisions made by participatodes are
independent since before achieving a successful transmiggey do not exchange any infor-
mation. Therefore, each participating node can decideattsinit or not in a given time slot
based only in its own history of transmissions. Thereforépwy., we can assume that partic-
ipating nodes make their decisions in advance before rgnthie protocol. Thus, at a given
time step the probability of transmission of any node is thme for all participating nodes.
Under these assumptions, we can simply compute the exjpectat follows. LetPr(¢,i) be
the probability of achieving the first non-colliding tranission at the time stepwhen2? nodes

participate in the protocol. Then,
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A lower bound ofQ2(log nlog(1/€)/(log log n + loglog(1/¢)) for achieving a clear trans-
mission with probabilityl — e in a one-hop, globally-synchronized Radio Network was pdbv
in [JS05] by Jurdzinski and Stachowiak. The lower bound ofldinski-Stachowiak is tighter
than the previous one of Kushilevitz-Mansout i o(1/logn).

The specific problem for which the lower bound is proved is &gk In a one-hop Radio
Network the wakeup problem is the same as the clear transmigsoblem. Nodes waking up
spontaneously at different time steps in the wakeup prolalethe same as nodes starting a
clear-transmission protocol. Also, at any time step, ndawsv neither which are the partici-
pating nodes (awake nodes) nor the number of tHerm order to solve the wakeup problem
all nodes need to be woken up either spontaneously or by &ssfat reception. Given that

this is a single-hop Radio Network a successful receptiquires a clear transmission.

Theorem 31( [JS05], Theorem 5.2)Given a one-hop Radio Network of sizevithout collision
detection where the number of participating hodds unknown and with global synchroniza-
tion, any randomized uniform protocol requires at Ieﬁs@%) time steps in order

to achieve a clear transmission with probability at ledst e.
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Sketch of the proofWe assume that all the participating nodes begin runniagthtocol
at the same time slot and that no new nodes start afterwaetsislcall dost stepto a time step
when the probability of achieving a successful transmissio,,,.. is below some thresholay
to be defined later. If is the probability of transmission of the participating redn a time
step, using thaPr,,.. = dp(1 — p)?~! and with some algebra, it is easy to show that the
step is lost unlesg, < dp < 1/p, as long asl > max{10,log(1/p,)}. Therefore, for a given
probability of transmissiop, we can givdog n/2log(1/p,) different values tal such that only
one of them produces a non-lost step. We now bound the minimumber of non-lost steps
that are needed in order to achieve the clear transmissibrpwabability1 — e. The probability

of not achieving a succesful transmissiornt mon-lost steps is

Prigi = <1 —dp(1 — p)d_l)t

1\ e
< (=
e
epé

<e,forteQ (— log(l/e)> .
be

So, the overall running time is at least

ePt logn
)

log nlog(1/€)
(s

This lower bound was proved for uniform protocols, i.e.ates run the same algorithm.
A simple reduction from the non-uniform case to the uniforme as the one used in Section 8.2
is enough to extend this result to the non-uniform case.

Both lower bounds summarized in this section were prove@utiee assumption of global
synchronization which implies bounds for the worse casedadllsynchronization. In Chapter 8
we improve these lower bounds showing the optimality of titmdase From Square algorithm
and we also show lower bounds for the well-studied case ofinop Radio Networks where

nodes are deployed as a Random Geometric Graph.
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Chapter 8

Lower Bounds for Clear Transmissions in Radio Networks

Any network where transmissions may collide needs a profocaollision-free transmissions
Different networks provide different information aboutlgons. For example, on some hard-
ware, transmitters can distinguish amongst three statesdt time step: no transmission,
single transmission, and collision, whereas on other haréwransmitters can not distinguish
between no transmission and collisions. In some networ&ssinitters know an upper bound
on their number. Sometimes, transmitters maysmaiop i.e., listen to the channel when not
transmitting; whereas at the other extreme, transmitterg anly snoop, i.e., they get no infor-
mation on the channel when they are transmitting. In someaorks collisions are transitive.
The properties of a shared channel have a profound impadteoprbtocols usable on such a
channel.

Sensor Networks are a heavily studied example of a sharaaheh network. A Sensor
Network consists of small devices with processing, senaimd) communication capabilities.
Thesesensor nodeare randomly deployed over an area in order to achieve gptesiks after
self-organizing as a wireless radio network. Sensor nodes &trong limitations and operate
under harsh conditions. Some of the important limitatiohsemsor nodes include: lack of
collision detection hardware, non-simultaneous transimisand reception, and one channel of
communication. We call any such network a Radio Network. ifddally, nodes in sensor
networks wake up at arbitrary times. Sensor networks ara ewvare restricted in various
ways that will not concern us here. The Radio Network re#bns, along with these further
restrictions, are part of the Weak Sensor Model describé&hapter 3.

The gap between the lower bound for achieving somethingrsplsias a clear transmis-
sion and upper bounds for more complicated problems suchl&sads tantalizingly narrow:

respectively(log® n/ log log n) andO(log? n), whene is ©(1/n). In this chapter we prove a
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stronger lower bound: it takes tinf&log n log(1/¢)) to solve the problem of achieving a clear
transmission with probability — e in a one-hop setting, closing that gap. This result implies,
for example, the?2(log n) lower bound on the expectation of any randomized algoritbm f
clear transmission. These lower bounds go beyond the dooft&ensor Networks and apply

to any network with the following characteristics:

e Shared channel of communicatioAll nodes communicate with their neighbors using

broadcasts that are transmitted on a shared channel.

e Lack of a collision detection mechanismtodes do not have the ability to distinguish

between a collision on the channel or lack of a transmission.

e Non-simultaneous transmission and receptiblodes cannot snoop on the channel while

transmitting.

e Local synchronizationTime is assumed to be divided into slots and all nodes have the

same clock frequency.
e Adversarial wake-up scheduldtodes are woken up by an adversary.

Indeed, we prove the lower bound with the following weak adagy: the adversary may chose
ani € [1,logn], and2’ nodes wake up at time 0. These techniques also give a lowadbou
of Q(loglognlog(1/e€)) on clear transmissions in the well-studied case of sensdesdis-
tributed uniformly at random with enough nodes to ensureneotivity, and thus for more
complicated problems such as MIS. There was no non-trigiget bound known for this prob-
lem, and the best upper bound knowrgog? n) with high probability, proved for the more

complicated problem of sensor network initialization inapter 6.

8.1 Randomized Uniform Protocols in One-Hop Radio Networks

In this section, we prove a lower bound on randomized unifprotocols and we extend this
result to nonuniform protocols in Section 8.2.
We first define what the clear transmission problem is in tleetoop setting. The nodes are

all connected to a common broadcast channel and each tssismis available for snooping
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to all non-transmitting nodes. The connectivity of the reodan be modelled as a clique. In
this case we assume that all nodes know an upper bound oniigenof their neighbors. In
this setting, a clear transmission is achieved if exactly wode transmits in a time slot.

As explained before, we prove our lower bounds under thengsison of the existence of
a weak adversary that, at a given time, wakes up (i.e. turhsame subset of nodes. We
call themactivenodes. Upon waking up, the active nodes start the executiarpootocol to
achieve a clear transmission. All non-active nodes do ndiciizate in the protocol.

We define aandomized uniform protocdbr clear transmission to be a sequepgep,, . . .
where each node transmits with probabilityin the ¢t time step after waking up. Given our
adversary, this means that all active nodes transmits w&itiegprobability as each other in each
time slot.

We seek a lower bound on the number of time-slots requiredHtizee a clear transmission
with probability (1 — €). We simplify the analysis in two ways. First, we further weakhe
adversary by requiring that the number of nodes partigigatian only be one of2¢|0 < i <
logyn}. Secondly, we assume that gl € {277|1 < j < logyn}. If this assumption is not
true of a particular algorithmi, we can always produce an algorith# from A by replacing
one attempt iM by a constant number of attemptsdhwhere the probabilities of transmission
in A’ have been rounded off to the closest powet .

One of the principal benefits of our weak adversary is that,ptobability P, of a clear
transmission by timé is the same for any permutation pf, po, ..., p,. Therefore, we need
not bother with what order the steps are taken in, but only hmamy times the protocol fires
with each probability.

Lett; be the number of time-slots that nodes are transmitting pritability 2. Let p;;

denote the probability tha nodes fail to clear when they all transmit with probability’.

1 1\2-1
pij =1-2 57 (1 2j>

=1-27(1—27)%1!

Thus we know that:
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The total probability of failure for any number of active msR?, needs to be bounded by:
14 <«
J

— th In(pi;) < In(e).

A lower bound is achieved by minimizing the total number aidislots needed to satisfy the

previous constraints. This can be formulated as the fotigyrimal linear program:

Minimize 17t,
subject to:

Pt >e€

which yields the followingdual:

Maximize e’ u,
subject to:
PTu <1

u> 0.

The primal linear program has a finite minimum solution, aedde its dual has a finite
maximum solution. The value of the objective function foesrfeasible solution of the dual is
a lower bound on the minimum value of the objective functiontiie primal. Thus any feasible
solution for the dual will give a lower bound on the numberiofd-slots required to achieve a
clear transmission with failure probability

Suppose that thg™ row, P7, of P” has the maximum row sum, and letP”) = P71.

Now we setu = [1/7(P7)]. This value ofu satisfies all constraints of the dual. The value of
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the objective function of the dual is simpéf u. To obtain the value of the objective function
of the dual we need to find the row 8’ with the largest row sum which is the same as the

column of P with the largest column sum.

Lemma 32. The trace of every column vector of the constraint maRif the primal is in

O(1).
Proof. We begin by stating the following useful inequality [Mit64.68]:
e /=) <1 gz <e®0<a<l. (8.1)
The sum of the elements of a columnf P is:
S; < —In(1— 27771 — 279y
<§Z:—ln< ~2I (127 2 ) 1)> (By Inequality 8.1
Z 2i=i(1 — 279)'~1
121 - 27

Lety;; £ 2079 (1 —279)2'-1,

(Wherey,az = maX{yzg})

Now we derive an upper bound @,

Ymax = MaAXY;4
)
s i i_
= max 2"/ (1 - 277)* !
)

< max 272774277 (By Inequality 8.1
ij

2'~J
< max /e DY (-j=1)
v e
1

Therefore:
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We derive an upper bound on the right hand side sum.
Sy = Y2 -2
<> 2i=7(e~2"7)2'~1 (By Inequality 8.1

(]
_ i—j —2079 4279
= 2" e

i

N D [T
(2] 1<j

<+e Z oke=2" | Z 9ke=27"
k>0 k>1

< Ve[S s e
k>0 k>1

€ O(1) (Because both the sums are bounded by a corjstant

— Sj € O(l)
O

Theorem 33. Every uniform randomized algorithm to achieve a clear trarssion with prob-

ability 1 — e in a one-hop Radio Network requir€glog n log(1/¢)) time-slots.

Proof. From lemma 32, we know that P*) € O(1), thene’u = [~In(¢)] - [1/PL . 1] €
O(lognlog(1/€)). From this we can conclude that the dual linear program hasasilfle
solution with objective function evaluating f®(log nlog(1/¢)). Since we showed earlier that
the solution to the primal linear program gives a lower boondthe number of time-slots
required to achieve a clear transmission with probability ¢, the statement of the theorem

holds. O

8.2 Randomized Non-uniform Protocols in One Hop Radio Netwiks

In this section we prove our lower bound for the case in whiakt@ssors may run different
algorithms using their unique ID’s to break symmetry. Wd tgis a nonuniform protocal

Recall that we model a randomized protocol to achieve a d¢teasmission as a schedule,



79

or temporal sequence, of probabilities of transmissior gbat, at time slot an active node
transmits with probability;. In the case of the randomized uniform protocols, we asshate t
nodes either have no ID or the protocol does not make use ofbtdak symmetry. Then,
given that no information can be obtained from a shared+oflabefore a clear transmission,
all active nodes transmit with the same probability in thesdime slot. On the other hand, if
nodes have unique ID’s, they may use different schedulesotfgbilities of transmission and
achieve a clear transmission faster. We prove in this settiat in fact having unique ID’s does
not help.

As in [KM98], we prove our lower bound by showing a reductiooni a nonuniform pro-

tocol to a uniform one. We first state our result formally.

Theorem 34. Every randomized nonuniform protocol to achieve a cleansraission with

probability 1 — € in a one-hop Radio Network requir€Xlog n log(1/¢)) time slots.

Proof. For the sake of contradiction, assume that there existsdomized nonuniform pro-
tocol A that achieves a clear transmission with probability € in T time slots, wherd” €
o(lognlog(1/e€)). Then, we can define a randomized uniform protadbithat achieves the

same running time as follows.

For each node

Choose uniformly at random an integee [1,n2/¢].

Simulate protocold using: as ID.

Each node running the protocal’ obtains a unique ID with probability at least— .
This is true because the probability that some pair of notlesses the same ID ign? and
there are(}}) possible pairs. Given that the random choice of the ID candre dn constant
time, the protocold’ is a randomized uniform protocol that achieves a clear misson with
probability 1 — 2¢ in o(lognlog 1/¢) = o(lognlog1/2¢) time slots, which is a contradiction

with Theorem 33. O

'Under the assumptions of the Weak Sensor Model, nodes hiw®©(@ng n) bits of memory. Therefore, this
lower bound applies also to sensor networks when1/n”, for some constang > 0.



80

8.3 Randomized Protocols for Geometrically Distributed Nales

Here, we consider the problem of achieving a clear transomissder the following conditions:

The nodes are connected by a broadcast channel to some sibseés and each transmis-
sion made by a node is available to its neighbors only, buaritinterfere with all transmissions
originating in a two-hop neighborhood. The specific case wederive a lower bound for is
the case of nodes consistent with the Weak Sensor Modeibdistd randomly in the plane
with limited transmission range but adequate density tai@nsonnectivity. The connectivity
of the nodes can be modelled aRandom Geometric Graph (RG@ee Section 3.1.2) where
the parameter conditions to ensure connectivity are alsatisfied. In this case, we assume
that nodes know an upper bound on the number of their neighlaith a probability given by
the parameter conditions for connectivity.

In this setting, we say that a clear transmission occurregdttly one node is transmitting
and no other nodes within two hops of it are transmitting. il hiee clear transmission problem
in a multi-hop setting is solved after every node either poas or receives a clear transmission.

In aG(n,r /) satisfying the connectivity conditions explained prewiguthe number of
nodes contained in any circle of radi@gr) is ©(logn) with high probability, as proved in
Lemma 9. Then, we complete our lower bounds with the follgn@orollary, which can be

obtained as a simple application of Theorems 33 and 34 teéting.

Corollary 35. Every randomized protocol to solve the clear transmissiailpm with proba-
bility 1—e in a Radio Network with geometrically distributed nodesuiees (2 (log log n log(1/¢))

time slots, where > 1/n" for some constant > 0.
Proof. Replacing the appropriate density for any one-hop neididmmt in this setting, i.e.

©(logn) instead ofn, in theorem 34 the corollary follows. O

8.4 Randomized Fair Protocols for Geometrically Distributed Nodes

In this section we prove lower bounds on the time required yyfair protocol to solve the
Clear Transmission problem in Radio Networks where the ramf#oyment is modelled by

an RGG, i.e. nodes are deployed uniformly at random in theeplaith limited transmission
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range but adequate density to ensure connectivity. A faitogol is a protocol in which the
probability of transmission of every node in the same exenstep is the same. The difference
between fair and uniform protocolos is that, in uniform poals, nodes may use messages
received to break symmetry. Notice that for the Clear Trassion problem in single-hop
networks a uniform protocol is a fair protocol because ttloblam is solved when a message is
received, but this is not the case in multi-hop networks.eBithat the nodes are assumed to be
unreliable, the density ddctivenodes can be upper bounded as shown in Lemma 9 but it can
not be lower bounded. Hence, the probability that a nodestnits after a message is received

in an non-fair protocol may not be the same for all nodes mmttie same execution step.

We exploit the unreliability assumption to obtain our lov®unds assuming the existence
of a weak adversary that, at a given time, wakes up (i.e. tonisome subset of nodes. We
call them active nodes. Upon waking up, the active nodes thtarexecution of a protocol to
achieve a Clear Transmission. All non-active nodes do niticijizate in the protocol.

We define a randomized fair protocol to be a sequence,, . .. where each node transmits
with probability p, in the t*" time step after waking up. Given our adversary, this meaais th
all active nodes transmit with the same probability as edlebran each time slot.

The topology of active nodes chosen by the adversary censisa set of disjoint pairs
of cliqgues connected by a single node. One clique of the marrtode density i®(1), the
other in©(log n) and the intermediate node connects to all nodes in bothedigs depicted in
figure 8.1. We call this constructioncéique-pair. In order to be disjoint, nodes are woken up so
the resulting clique-pairs are separated by a distaneetbE maximum range of transmission
of any node.

We first give the intuition of why this structure gives a gooevér bound on the number
of time steps needed to solve the Clear Transmission problRecall that in a multi-hop
setting a transmission is a Clear Transmission if no nodbimitvo hops of the transmitter
transmits in the same time slot. To solve the Clear Transomgzoblem every node has to
receive or produce a Clear Transmission so, in order to sblvé€lear Transmission problem
an uncolliding transmission in the low density clique omfrthe intermediate node with silence
in the neighboring high-density clique has to occur. Givea tlifferent densities and that

the protocol is fair, when the sum of probabilities of trafssion in the low density cliqgue
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==

O(logn) (1)

Figure 8.1: A clique-pair

reaches a constant and therefore the probability of haveugeesful transmission in that clique
is constant, the sum of probabilities of transmission in 2Hgop neighboring high density
clique is asimptotically more than a constant and the prdibabf silence is low. On the
other hand, when the sum of probabilities of transmissiothéwhole clique-pair reaches a
constant and the probability of having an uncolliding traission is high, the probability that
the transmitting node is in the low-density clique or it is thtermediate node is low. Then, the
probability that nodes in the low density clique produceemeive a Clear Transmission fast is

low.

Lemma 36. Given a Radio Network with nodes deployed as a connected R@&®tal number

of clique-pairs activated by the adversary isdrin/logn) w.h.p.
Proof. It follows from Lemma 9. O

Theorem 37. Every fair randomized algorithm takélog? n) expected time in order to solve
the Clear Transmission problem in a multi-hop Radio Netwehlere nodes are deployed uni-

formly at random.

Proof. The probability of failing to achieve a Clear Transmissinmilow-density clique in one

time slot is

Ppaig = 1 —p(1 — p)°T8~1
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whered and A are the low and high node densities respectively iargithe probability of
transmission of a node. Lét= c andA = clogn for some constant > 0. We now compute

a lower bound on such probability of failure as follows

Pfail -1— Cp(l _p)c+clogn—1

>1- cp(l _ p)c(l—l-logn)
>1- Cpe—cp(l-i-logn)

cp

=1- (el—l-logn)cp'

Using calculus, we find the value pf= 1/¢(1 + log n) that minimizes this expression.

Replacing,

1
Prgy>1— —no
fail = (1+logn)e
S L
- 1+ logn
>e—1/logn.

Then, the probability of a failure in a low-density cliquaeaft time slots is

Pfail(t) > e—t/ logn'

Therefore, the probability of failure in one of thelow-density cliques after time slots is

Prag(w,t) > 1 — (1 - e_t/log”>w. (8.2)

The time stept can be seen as a discrete random variable that takes onlpayative

values, then
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E[t] = > Pr(t > 1), replacing 8.2
=1

S50 ()
ognne

(- ()

i=1

> (1+lognlnw) <1_ <1 - $>w>

1 .
> (1+lognlnw) <1 — —> , using Lemma 36
€

€ Q(log?n).

Thus, the expected time is f2(log? n) with probability at least — n " for some constant

~ > 0. Then,

Et] € 0 <log2n(1 _ Ly, L)

ny ny
1 + log?
nYy
€ Q(log?n).

O

Finally, we show a lower bound on the time needed to solve tbblem with probability

at leastl — e.

Theorem 38. Every fair randomized algorithm requiré(log n log(n/¢)) time-slots in order
to solve the Clear Transmission problem with probabilitylesist1 — ¢ in a multihop Radio

Network where nodes are deployed uniformly at random.

Proof. We compute the minimum number of steps needed to reduce dbalgtlity of failure
to ¢, even if nodes transmit in each and every step with the pilityap = 1/¢(1 + log n) that

minimizes that probability. More precisely, using 8.2, wanwto findt such that



1— (1 _e—t/logn>w <e
1— e—t/logn > e—e/w

t ZlognlnE +1
€

t € Q (lognlog(n/e)) .
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