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ABSTRACT OF THE THESIS

A Decentralized Content-based Communication

Framework for Supporting Decoupled Grid Interactions

by ANDRES QUIROZ HERNANDEZ

Thesis Director: Professor Manish Parashar

This work presents a decentralized and content-based communication framework based

on Web Services Notification (WSN) to enable monitoring and loosely-coupled inter-

actions in distributed and particularly Grid systems. Web services have emerged as

one of the key enabling technologies for Grid systems, providing platform-independent

interactions between distributed applications and resources. The WSN specification is

a set of web service standards that define protocols for realizing the publish/subscribe

communication pattern. Existing implementations of WSN fail to address key issues

particular to large-scale Grid systems, such as the dynamic participation of distributed

computing nodes, the heterogeneous services provided by nodes across physical and

organizational domains, and the need for efficient messaging mechanisms.

The specific contributions of this work are as follows: 1) Design and development

of a notification service implementing the WSN specifications based on a decentralized

content-based addressing and messaging infrastructure; 2) Design and evaluation of

self-optimization mechanisms for message exchanges within the notification system; 3)

Design and analysis of a novel two-level overlay structure that extends the messaging

infrastructure for efficiently interconnecting separate individual physical or organiza-

tional groups of computation nodes without resorting to designated nodes that can

become bottlenecks or single points of failure; 4) Development of a mechanism for self-

monitoring of peer-to-peer systems that is able to detect anomalies and/or trends in
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system behavior as a direct application of the notification service.

The experimental evaluations presented demonstrate the performance and scalabil-

ity of the infrastructure as well as the effectiveness of the self-monitoring mechanism.
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Chapter 1

Introduction

1.1 Motivation

The goal of the Grid infrastructure is to combine intellectual and physical resources

spanning multiple organizations and disciplines, and provide vastly more effective solu-

tions to scientific, engineering, business and government problems [37]. The realization

of this goal requires the meaningful exchange of information that enables interactions

and coordination between these distributed resources. We observe that there are differ-

ent degrees of coupling among Grid resources at which this information exchange takes

place, made evident by the concept of virtual organizations, discussed in [17]. Virtual

organizations are organizations that arise opportunistically for a particular purpose and

that combine resources provided by multiple concrete organizations. Thus, interactions

within virtual organizations are loosely-coupled and driven by the events that must be

exchanged to coordinate the execution of tightly-coupled resources that perform clearly

defined tasks within concrete organization domains.

As a simple example, consider a corporate environment in which interactions may

be defined between the sales and production departments, and with providers to co-

ordinate delivery and production schedules. Each department defines tightly-coupled

workflows for their particular operation. Depending on different situations or events,

these workflows may be invoked and exchange information. An unexpected event or

error may trigger the execution of contingency workflows that may involve other de-

partments. Figure 1.1 illustrates this example.

Because of the close and frequent interactions of the tasks that make them up, re-

sources that are more tightly-coupled can use application-specific communication pro-

tocols and interfaces. Loosely-coupled interactions across organizational domains, on

the other hand, require standard communication protocols and interfaces. Web ser-

vices have emerged as one of the key enabling technologies for Grid systems, providing
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Production Scheduling

Order placement

Place order

Order placed

Scheduling error

Sales

Alternate provider

Figure 1.1: Example of two-levels of workflow coupling in a production environment

platform-independent interactions between distributed applications and resources. The

WS-Notification (WSN) specification [35] is a set of web service standards that define

protocols for realizing the publish/subscribe communication pattern. If implemented

to address the key issues of dynamism and scale in Grid systems, an implementation

of the WSN standard is a suitable solution for realizing loosely-coupled, event-driven

communication in Grids.

1.2 Problem Description

Most existing implementations of the emerging WSN standard are essentially bindings

to programming languages that include extensible API’s for application developers, and

are thus not meant to address system specific issues. This work addresses the problem

of designing a suitable implementation of the WSN standard as a platform for efficient

loosely-coupled communication in Grid systems. This design must thus deal with is-

sues and challenges specific to Grid environments, leveraging available technologies if

possible. Below, we describe the key design aspects as they relate to these issues.

• Dynamism and Scale: Dynamism in Grid systems is evident in 1) the availability

of resources (referred to henceforth as nodes), as some nodes are made available

and other leave the system at runtime, and 2) the alternative provision of the
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same sets of tasks by different nodes. This makes it infeasible for nodes that must

execute and interact in the execution of different tasks to keep track of the names

or addresses of the all the other nodes with which this interaction may take place.

The decoupling of interactions provided by the publish/subscribe communication

pattern is meant to deal with this issue, but the potentially many interacting

entities and types of interactions mean that the communication system must be

distributed and decentralized to provide a scalable service. It also means that the

addressing scheme used to establish interactions must be flexible and expressive

enough to encompass and distinguish this potential number of interactions with-

out being fixed like a name or absolute address, but it must conform as closely as

possible to the notification standard.

• Infrastructure Support for Inter and Intra-domain Communication: As we have

previously discussed, tasks, and the nodes that execute them, tend to be grouped

logically or physically within different interacting virtual or concrete organiza-

tions. Within these groups, nodes will tend to interact more closely and frequently

than they do between them. It is thus desirable for the underlying infrastructure

that interconnects these nodes to reflect and take advantage of this grouping

to optimize communication. Grid applications are often built on top of an ab-

straction of a physical network called a network overlay, which basically provides

an addressing scheme and routing mechanisms for the overlay nodes. Given this

grouping of nodes, it is not very reasonable to assume that a communication plat-

form for a large dynamic Grid will be built on a single overlay structure. Instead

of a single overlay that does not incorporate group knowledge and can thus be

inefficient as messages arbitrarily traverse group boundaries, a Grid system can

be composed of several interconnected overlays. This structure may be seen as an

overlay of overlays or, similarly, as a hierarchical overlay. Although some solutions

have been proposed for the design of hierarchical overlays, most of them depend

on specialized nodes that can become bottlenecks or single points of failure.
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Finally, we consider the importance of the problem of monitoring in distributed sys-

tems, including peer-to-peer and Grid systems, which consists of detecting anomalies

and/or failures of system components, so that corrective measures can be applied in a

timely and effective manner. Recognizing that a solution to this problem requires an

effective and efficient notification infrastructure, and that most components in these

systems possess the communication and computation capability to share and process

data online, we explore the problem of in-network, decentralized data analysis for self-

monitoring as a direct application of notification and as a useful service that can be

leveraged across Grid applications. Self-monitoring, especially of distributed systems,

is challenging because all possible problems or causes of failure are not known before-

hand and thus cannot be directly encoded into an automated monitoring mechanism.

Existing self-monitoring techniques rely on the centralized processing of monitoring

data to produce models that can then be deployed for automated application in real

time. The derivation of these models often requires sophisticated processing and data

mining techniques. However, for systems such as distributed peer-to-peer networks,

the amount of monitoring data that must be analyzed may make the application of

centralized techniques infeasible.

1.2.1 Objectives

In order to achieve the main goal of developing an efficient distributed platform to pro-

vide a scalable notification and monitoring service for Grid systems, this work addresses

the following specific objectives:

• Design a content-based addressing scheme that can be adapted for an implemen-

tation of the WS-Notification specification.

• Develop an efficient distributed notification service that implements the WS-

Notification interfaces using the content-based addressing scheme and leveraging

a content-based communication platform.

• Design and evaluate mechanisms for optimizing message flows generated by the

notification service.
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• Devise and test a hierarchical overlay structure that allows logical and/or physical

grouping of nodes and that does not rely on designated nodes for inter-group

communication to avoid bottlenecks and single points of failure.

• Build a decentralized solution for self-monitoring on top of the notification infras-

tructure.

1.3 Approach and Contributions

For our distributed and decentralized implementation of the WS-Notification standard,

we leverage a messaging framework called Meteor [28], which is based on a rendezvous

messaging model and content-based addressing scheme. In order to more closely reflect

the physical and logical grouping of interacting nodes, we adapt the framework with

a hierarchical overlay design. We then apply our notification infrastructure to pro-

vide a solution for self-monitoring of peer-to-peer systems. Specifically, the following

contributions result from this approach:

• Design and development of a distributed content-based WS-Notification service

based on the the Meteor rendezvous-based messaging platform.

• Incorporation of optimization mechanisms for message exchanges within the no-

tification system.

• Design and evaluation of a two-level structured overlay that does not rely on

designated nodes for communication between groups of nodes, and that uses a

novel mechanism to obtain efficiency in inter-group routing.

• Adaptation of the Meteor platform to the two-level overlay.

• Development of a mechanism for distributed system self-monitoring and a decen-

tralized clustering analysis engine based on the distributed content-based notifi-

cation platform.

Figure 1.2 shows our basic system architecture. The white boxes show particular

contributions of this work.
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Two-level Overlay

WS-Notification Service

Monitoring

    Service

Meteor Framework

Figure 1.2: Architectural overview of the system

1.4 Thesis Overview

This thesis is organized as a bottom-up description of the components of the notification

insfrastructure. Chapter 2 examines the background and related work in distributed

publish/subscribe systems and WS-Notification. It also covers the details of the content-

based communication infrastructure around which this work is developed.

Chapter 3 describes the two-level structured peer-to-peer overlay, which divides

nodes into communicating groups of local peers. Inter-group connectivity is maintained

without resorting to the use of group heads. The chapter further analyzes the benefits

of such a structure, and shows and evaluates its efficient routing and search properties.

The design of the notification service, centered around the Web Services Notification

standards, is then described in Chapter 4. This design is based on a content-based

addressing scheme that extends the topic-based addressing scheme described by the

WS-Notification specification, and the definition of notification operations in terms of

rendezvous-based communication. The messaging optimizations meant to reduce the

flows of messages within the system are also described and evaluated.

Chapter 5 describes a mechanism for self-monitoring of peer-to-peer systems that

directly takes advantage of the content-based notification infrastructure. Besides us-

ing the notification service to enable selective subscriptions to situations of interest in

a monitored system, the self-monitoring mechanism leverages the clustering proper-

ties of the content-based routing mechanism of the communication infrastructure for
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supporting a novel in-network, decentralized data analysis scheme.

Finally, Chapter 6 presents our conclusions and considerations for future work.

Implementation details are included as Appendix A.
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Chapter 2

Background and Related Work

In this chapter, we review key concepts for publish/subscribe, as well as existing dis-

tributed publish/subscribe systems. We focus on a specific subset of these systems,

those which are based on Distributed Hashtables (DHTs), because of their decentral-

ized and self-organizing nature. We then give a brief overview of the WSN standard and

its existing implementations, and also give an architectural and functional description

of the Meteor framework, as it is the principal enabling technology used in this work.

Other specific related work is covered in subsequent chapters.

2.1 Publish/Subscribe

2.1.1 Types of Publish/Subscribe

The publish/subscribe paradigm enables many-to-many communication between senders

and receivers without requiring these entities to explicitly know each other’s iden-

tity and/or contact information. In other words, it decouples the interaction between

senders and receivers by introducing common abstract identifiers to which senders pub-

lish and from which receivers obtain data. The shared knowledge of the identifiers

includes the type of data that is expected to be exchanged over them. Eugster [16] dis-

tinguishes three types of publish/subscribe patterns or addressing schemes depending

on the type and level of the common knowledge that entities use to interact. These are:

• Channel-based : In channel-based publish/subscribe, a (finite) number of channels

or addresses identify different groups of communicating entities. Usually, this type

of publish/subscribe system corresponds to network-level technologies, such as IP

Multicast, and can be assigned, either statically or dynamically, to applications or

data flows. However, there is no defined semantic association between a channel

and the data transmitted over it.
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• Topic-based : Topic-based publish/subscribe is similar to its channel-based coun-

terpart, but is considered at a higher (application) level abstraction. Here, each

one of a fixed number of syntactic tags (topics) identifies a certain type of data,

according to their semantic interpretation. Although topic spaces can be hierar-

chical, so that subscriptions can be done at different resolutions to control the

amount and specificity of data, all topics must be defined a-priori.

• Content-based : Content-based publish/subscribe is also an application-level ab-

straction in which the shared knowledge between senders and receivers consists of

a fixed number of semantic criteria that are used to determine the distribution of

data. In theory, these criteria take the form of boolean functions fi = Σ∗ → {0, 1}
that take a message as input and output 1 if the message matches criteria i and 0

otherwise. The fact that messages themselves (their content) are used to classify

data and determine subscription groups is the reason the pattern is called content-

based. The advantage of this pattern is that while the amount of shared knowledge

that must be known a-priori (the evaluating criteria) is relatively small, the pos-

sible classifications for data can be as varied and specific as messages themselves.

However, since arbitrary functions fi may be too specific, complex, or costly to

implement, content-based systems often define a set of semantic attributes and

their value ranges that can be combined to classify and identify data. While

not as flexible as generic criteria, these attribute/value pairs still constitute a

relatively small amount of shared knowledge and can be combined to produce a

geometrically large set of identifiers for message flows.

2.1.2 DHT-based Distributed Publish/Subscribe Systems

Foundations: Overlays and DHTs

A network overlay is an abstraction of a physical network that provides an identifier or

addressing scheme for a subset of network nodes, maintains a set of logical links between

them, and provides routing mechanisms to traverse these links to enable node interac-

tion. Overlays are essential for distributed systems because the addressing abstraction
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that they provide decouples participating nodes from actual physical addresses, so that

different entities may fulfill a single role at different times without forcing other enti-

ties to explicitly keep track of addressing changes that occur because of dynamic node

participation.

Network overlays can be either structured or unstructured, depending on whether

or not they maitain a strict topology (i.e. fixed properties for the number and layout

of the physical links between nodes). Unstructured systems [33] do not rely on any

specific topology, and thus use flooding techniques to process requests. Their strength

is that they can support complex content-based searches, since requests can be evaluated

against the content at each node as the search advances. However, the high overhead

of flooding forces these systems to limit the scope of the searches, and as a result,

they cannot guarantee that all corresponding matches for a search will be found. Since

most publish/subscribe systems (at least those intended for scientific or commercial

applications) require better search guarantees, unstructured overlays are not generally

used as a basis for them. While a number of techniques have been proposed to reduce

the overhead of searches in unstructured networks [13, 33] in order to produce better

search results, the fundamental lack of search guarantees remains for a reasonable sized

system.

Publish/subscribe systems are usually built using some sort of structured overlay

network because they provide search guarantees, bounds on the number of hops for

message delivery within the network, and some degree of self-management and fault

tolerance with respect to the addition/removal of nodes. Though they are not as scal-

able as unstructured overlays due to the overhead that results from maintaining the

required structure, the most well-known designs scale reasonably well, especially, as has

been mentioned, with respect to search. Structured overlays such as Chord [47], Pastry

[40], and CAN [39] are often used as the basis for the Distributed Hashtables (DHTs)

used to implement publish/subscribe systems.

A DHT is a system that associates objects identified with a set of keys with nodes

in a distributed system and that provides the mechanisms to store or retrieve these

objects transparently through a put/get interface. DHTs are generally used as the
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backbone of a distributed publish/subscribe system, as they provide the means for

storing and retrieving subscriptions. DHTs implemented directly using the structured

overlays mentioned above typically use consistent hashing functions to assign node

identifiers to unique content identifiers. This means that they are guaranteed to find all

subscriptions that exactly match a given query, but they do not support the complex

queries necessary for content-based search.

Content-based Publish/Subscribe

With this foundation, designing content-based publish/subscribe systems requires an

efficient mapping between complex content descriptors and node identifiers in the over-

lay network, as well as efficient techniques for routing and matching based on these

content descriptors. This is formalized in [6] as it applies to the problem of content-

based publish/subscribe. In this work, the authors discuss a generic model of mappings

from the content-based keyword space to the overlay’s index space and from this index

space to overlay nodes. They distinguish between the mappings used for subscriptions

and events, and establish that the necessary condition that these mappings must meet

is the “mapping intersection rule”, which states that the intersection of the sets of nodes

returned by a subscription mapping and an event mapping of an event satisfying that

subscription must be non-empty. We will discuss some approaches to content-based

publish/subscribe that basically differ in the type of mappings used.

In [48], a method is proposed for building topic strings from the content descriptors

of subscriptions and event messages by concatenating attributes and values based on

predefined classifications of keys called schema. These topics are then used as keys

for any DHT (the Scribe system [9] built on Pastry is used). Attribute ranges in

subscriptions are handled by predefining range intervals that are added to the domain

of attribute values. The definition of the schema, which further limits the flexibility of

content-based indexing by constraining the combinations of attributes used for indexing,

and which requires fine-tuning of the range intervals for load balancing, limits the

practicality of this approach.
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Aekaterinidis and Triantafillou also proposed a DHT-based system that is indepen-

dent of DHT design and implementation and that can handle subscriptions based on

partial strings [1]. Their approach is based on decomposing subscriptions per attribute

according to whether they have equality, prefix, or suffix constraints. For each attribute,

the available value is then mapped to a DHT node and stored in separate lists accord-

ing to this classification. Event matching is done by mapping all possible prefixes and

suffixes of attribute values and finding matches in the corresponding lists. This could

be improved if the mapping of subscriptions preserved the locality of attribute values

(for example, the mapping of “comp*” and “comput*” will have completely unrelated

values, so that the mapping has to be applied to all prefixes). Also, since it is designed

for string matching, this approach cannot handle numeric attributes.

The Meghdoot system [23] and Meteor use DHT-dependent mappings that do pre-

serve the locality of content descriptors, thus reducing the overhead of search. They

also support partial string as well as numeric range queries. Meghdoot directly builds a

multidimensional key space for CAN from an adaptation of the multidimensional space

obtained from the attributes, so that locality in both is the same. Meteor relies on a

one-dimensional overlay, namely Chord, and thus relies on a more complex mapping to

preserve locality. Because Chord generally outperforms CAN in terms of the number of

nodes involved in routing (O(log n) vs O(dn
1
d ), where d in this case is twice the number

of attributes) and its one-dimensional topology is less costly to maintain, Meteor is

considered better suited to support the present work. Further details of the Meteor

framework are included below in Section 2.3.

To our knowledge, none of these systems are as yet used to implement the WSN

standards, which are briefly described in the next section.

2.2 Web Services Notification

The WSN specification consists of 3 interrelated standards: WS-BaseNotification (WSBN)

[21], WS-BrokeredNotification (WSBrN) [11], and WS-Topics (WST) [49]. WSBN spec-

ifies the basic elements of the notification pattern: the NotificationConsumer (NC) that
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accepts notification messages, the NotificationProducer (NP) that formats and gener-

ates these messages, and the Subscription, a consumer-side initiated relation between

a producer and a consumer. The only fixed field in a subscription is the consumer

reference, which by itself indicates the consumer’s interest in all of the notifications

generated by the producer to which the subscription was made. Optionally, a subscrip-

tion can contain a filter, specified as a FilterType element, that forces a producer to

send only those notifications that pass (match) the filter. WSBN does not regulate the

syntax or use of the FilterType element, but suggests three basic types: topic filters,

message content filters, and producer properties filters. WSBN also regulates subscrip-

tion management, which the consumer can perform given the reference it receives in

response to a subscription. This reference is meant to contain enough information to en-

able it to contact and interact directly with the subscription as a resource, as defined by

WSRF. Thus, subscription operations (unsubscribe, renew, pause, and resume) do not

include a subscription reference as a parameter. In addition to the push-style pattern of

notification, where producers send notifications directly to consumers, WSBN defines

a pull-style pattern, where messages are stored at a pre-defined location (a pull-point)

until they are retrieved by the consumer.

WSBrN defines the NotificationBroker (NB) entity and its expected functionality. A

notification broker is an intermediary Web service that decouples NC’s from NP’s [11].

A broker is capable of subscribing to notifications on behalf of consumers and is capable

of disseminating notifications on behalf of producers. Consumers and producers thus

interact dynamically and anonymously through the NB without the need for explicit

knowledge of each other’s identities or locations. Management of this knowledge is

delegated to the broker. A NB essentially implements the NC, NP, and other interfaces

defined in WSBN. As a specific functionality, a notification broker can accept producer

registrations, in order to realize the demand-based publishing pattern. Using this pat-

tern, publishers avoid the (possibly expensive) task of creating notifications when no

subscriptions (and, thus, no consumers) exist for them. To this end, a NP must register

with the NB, providing a set of topics. When subscriptions are made that correspond

to or include topics in a particular producer’s registration, the NB subscribes to the
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Topic Space (TS)

TS:t1/t2 TS:t1/t3
TS:t1/t4

TS:t5 TS:t6

TS:t6/t7

TS:t6/t7/t8

Topic trees

Topic Set:
TS:t1/*

TS:t1

Figure 2.1: Example topic space and topic expression. The darkened topics are those
represented by the expression on the right.

producer for those topics. Only then does the producer start sending notifications.

Finally, WST tries to standardize the way in which topics are defined, related,

and expressed. It defines the notion of a topic space, where all of the topics for an

application domain should be defined and organized, possibly in a hierarchical way. A

topic expression is the representation of a particular topic or range of topics. The syntax

of a topic expression is identified by the topic expression’s dialect. WST defines three

dialects: Simple, Concrete, and Full. A simple topic expression is just the qualified topic

name. A concrete topic expression is used for hierarchical topic spaces, and is given in a

path notation, such as in myNamespace:news/tv/cnn. Here myNamespace identifies the

topic space, and each of the subsequent identifiers belong to successively deeper levels in

the hierarchy. A full topic expression is the same as a concrete expression, except that

it uses special operators and wildcard sequences for spanning multiple topics within the

topic hierarchy. Figure 2.1 shows an example of a hierarchical topic space and a full

topic expression that spans a group of topics.

2.2.1 WSN Implementations

To date, there are several implementations of WSN, including Apache’s Pubscribe [4],

for Java, WSRF.NET from the University of Virginias Grid Computing Group [50],

for Microsoft’s development platform, pyGridWare [38], a Python-based implemen-

tation, and GT4 from the Globus Toolkit [22], with bindings for both Java and C.
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Apache’s project is derived from GT4-Java. The primary focus of these implementa-

tions is WSRF, and, as a result, they provide different levels of functionality for WSN.

For example, the pyGridWare and GT4 implementations of WSN are meant primarily

for providing notifications about the state of resource properties. Pubscribe extends

these capabilities and fully supports both WS-BaseNotification and WS-Topics, but

does not implement WS-BrokeredNotification. WSRF.NET, which was developed us-

ing ASP.NET and the IIS infrastructure, supports all of the specifications. A thorough

comparison of these implementations can be found in [25].

The above implementations are meant to be development tools, providing technology-

specific bindings of the standards and extensible API’s. Like the standards themselves,

they do not address the issues that arise when actually composing systems that make

use of the notification protocols and standards, such as service discovery, and efficient

and scalable routing of requests and messages. These issues have been addressed in the

context of messaging infrastructures such as the Enterprise System Bus (ESB) architec-

ture [34] [45], which mediates the interactions of different web services, including WSN

service implementations, by service virtualization. An ESB hides implementation and

location details of the services that register to it and is capable of spanning wide area

networks and involving multiple infrastructure servers. However, as its name suggests,

an ESB is an enterprise-level solution and there is no reference implementation for it.

NaradaBrokering [36] is a distributed middleware framework that supports peer-to-

peer systems and message-oriented interactions. It implements a variety of messaging

technologies and is currently working on an implementation of WSN. The objectives

and approach of the NaradaBrokering framework are essentially the same as those that

underlie the present work; it manages a network of brokers through which end systems

can interact, providing scalability, location independence, and efficient routing. The

difference is that Narada brokers are organized in a structure which must be main-

tained through tighter coupling and control mechanisms that do not allow uncontrolled

connections and disconnections.
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Meteor
Communication Service

Squid
Content-based Routing

Chord
Overlay Network

Physical Network

Figure 2.2: The Meteor framework

2.3 The Meteor Framework

Meteor [28] is a content-based communication platform for peer-to-peer systems based

on a rendezvous messaging model [46]. The Meteor framework is composed of the

Meteor service itself and a content-based routing infrastructure built on a structured

peer-to-peer overlay. Figure 2.2 shows the framework architecture and each of the

component technologies, described below.

2.3.1 Squid: Content-based Routing Engine

Squid [44] implements a dynamic mapping between a content-based identifier space and

a dynamic set of peer nodes. It is built as a distributed system on top of the indexed

peers, which are organized using the Chord [47] overlay network. Its key innovation

is a dimension reducing indexing scheme and routing mechanism that effectively maps

descriptors in a content-based information space to physical peers in the overlay net-

work. Squid dynamically divides the identifier space among the peer nodes, so that

disjoint continuous subspaces of the identifier space are assigned to each participating

peer node. Squid guarantees that all existing peers to which a given identifier corre-

sponds can be reached with bounded costs in terms of the number of messages and the

number of nodes involved.

As stated, the key of Squid’s functionality is the indexing scheme that enables it to

preserve locality while mapping the content-based data elements to the overlay’s one-

dimensional index space, so that elements that are close in the information space will
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Figure 2.3: Mapping from a multidimensional keyword space to a node in the overlay
network

be close in the index space. This enables Squid to efficiently handle complex content-

based identifiers with partial keywords, wildcards, and ranges, as these queries map to

a reduced number of peer nodes.

The mapping of keywords to the index space, shown in Figure 2.3 is accomplished

by using a locality preserving mapping called a Hilbert Space Filling Curve (SFC) [41].

An SFC is a continuous, recursively generated mapping from a d-dimensional space to

a one-dimensional space. In the figure, the Hilbert SFC traverses a two-dimensional

information space used to index some computation resource with regard to bandwidth

and storage (Figure 2.3 (a)). The values of these attributes for a particular resource

correspond to a coordinate in this two-dimensional space, and, consequently, to a point

on the SFC (Figure 2.3 (b)). The dimension of the SFC maps to Chord’s m-bit identifier

space, so that this point corresponds to a Chord identifier (Figure 2.3 (c)).

Nodes in the Chord overlay have identifiers in this same identifier space, assigned to

them randomly upon joining, and each node is responsible for the identifiers between

its predecessor (the node with the immediately preceding id) and itself. Chord provides

a lookup operation by which the node responsible for a given identifier (its successor)

can be determined. Beside predecessor and successor links, Chord nodes maintain

strategically chosen references, in a structure called a finger table, of other nodes in the

ring, so that lookup operations can be resolved in O(log n) number of messages (hops),

where n is the number of nodes in the system.

Notice that, because of the locality preserving quality of the SFC, data elements that

are close (in this case, lexicographically close) in the multidimensional index space will

likely be mapped to indices that are local in the one-dimensional index space. Because
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of this, close indices will likely be mapped to nodes that are close in the overlay, or

even to the same node. Figure 2.4 illustrates the search process using complex queries

(e.g. ranges and wildcards). As Figure 2.4 (a) shows, these queries are translated into

a collection of segments (called clusters) in the one-dimensional space. The appropriate

nodes are contacted using the lookup mechanism provided by the overlay.

The Squid decentralized routing engine is optimized to distribute the identifier res-

olution at multiple nodes in the system, ideally the nodes to which the identifier cor-

responds, minimizing the communication and computational costs. The optimization

takes advantage of the recursive nature of the SFC-based mapping scheme and generates

the minimum number of index clusters for each query, such that all the corresponding

nodes are identified. Details about this optimization can be found in [44].

2.3.2 Meteor Associative Rendezvous Communication Service

The Meteor communication service is a kind of DHT based on associative rendezvous,

a paradigm for content-based decoupled interactions [28]. The peers that implement

the service function act as rendezvous points (RPs), which, like in typical rendezvous-

based communication [16], serve as meeting places that link communicating nodes.

Associative rendezvous simply means that the choice of particular RPs by a node at

some point in time, and thus the set of nodes with which that node will interact at that

time, is transparently and dynamically determined based on its interests, expressed as

a content-based profile. In other words, nodes are dynamically associated with each
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other via RPs based on common profiles.

Instead of a DHT put/get interface, Meteor exposes a single symmetric post prim-

itive, which accepts message triples of the form (header, action, data). An entity that

wishes to communicate through Meteor will invoke the post primitive on a Meteor

peer, specifying in the header its profile as a set of attribute values, ranges, or wild-

cards, an appropriate action defined as a Meteor reactive behavior (see below), and a

data payload. The header also contains credentials and other information. A Meteor

peer runs on top of a Squid peer, and, correspondingly, is responsible for a portion of

the content-based identifier space from which profiles are drawn. The Meteor peer uses

Squid’s routing engine to deliver a message to corresponding RPs based on the profile

included in the message header. Squid will ensure that the message is delivered to the

RP(s) responsible for the given profile, as described in the previous section.

Meteor’s reactive behaviors define the way that a RP handles the messages that it

receives via the routing mechanism, differentiating the results obtained with different

calls to the post primitive. The Meteor service has the following predefined behaviors,

the functionality of which is illustrated in Figure 2.5. Notice that the predefined be-

haviors implement a pull-style system, in which receivers explicitly retrieve messages

from the rendezvous point, possibly after being notified of its existence. Extensions of

the Meteor service may redefine these behaviors or define new behaviors to implement

other messaging patterns, such as a push-style publish/subscribe.

• store: The RP stores the profile and executes matching profiles that contain a

notify data action.

• retrieve: The RP matches the received profile with existing profiles with store

action and sends the data associated with the matched profile(s) to the requester.

• notify data: The RP stores the received profile and executes matching profiles

that contain a notify interest action.

• notify interest: The RP stores the profile, matches this profile with existing

profiles with notify data action, and sends a message to the requester if any

such matches exist.
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post(<p1, *>, notify_data(C2) )

post (<p1, p2>, notify_interest(C1))

notify(C1)

post (<p1, p2>, store, data)

notify(C2, data)
C1

C2

C1

C2

post (<p1, p2>, delete_data(C1))

(1)

(3)

C1

C1

C2
C2

(a) (b)

(c)
(d)

(2)

(4)

(5)

retrieve(C2, data)(7)

(8)

post(<p1, *>, retrieve(C2))

post(<p1, *>,  delete_interest(C2))

(6)

(9)

AR: Associative Rendezvous

ARAR

AR
AR

Figure 2.5: An example illustrating Meteor’s associative rendezvous and reactive be-
haviors

• delete data: The RP deletes matching profiles that contain the store action.

• delete interest: The RP deletes matching interest profiles.
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Chapter 3

Two-level Overlay

3.1 Analysis and Justification

We saw in Section 2.1.2 how structured overlays generally provide the basis of DHT

implementations and distributed publish/subscribe systems. An important problem of

many structured overlay designs in terms of performance and scalability is that they do

not take locality into account. This means that the neighbor relationship upon which

overlay links are based does not necessarily correspond to the actual physical links

connecting the neighbor nodes. While in unstructured overlays this problem tends

to be minimized because of the ad-hoc way in which nodes join the network, usually

through searches for local peers, in structured overlays nodes are generally assigned a

place in the topology randomly, by hashing, or by some balance-preserving function.

Physical locality is not the only type of locality that can be considered. In effect, the

concept of virtual organizations that underlies Grid systems denotes logical groups that

are formed for a particular purpose or under a particular administrative, organizational,

or application domain. Such locality should be reflected in the topology of overlays used

for Grid systems because most communication will tend to take place between nodes in

these local groups, so that exchanging these messages through nodes outside of these

groups is wasteful or even contrary to policy. However, the existence of these groups

should not preclude communication between nodes in different groups, and furthermore,

this communication should still be made efficient and, in the case of structured overlays,

provide similar guarantees as regular overlay deployments.

A straightforward way to build an overlay structure that incorporates locality is

by building an overlay for each local group and interconnecting these overlays to form

a higher level structure, or overlay of overlays. This structure, which is essentially

hierarchical, fits nicely into the context of virtual organizations in Grids, where each

organization can build and maintain its own overlay and communicate via inter-overlay
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links.

We have devised a method for constructing a two-level structured peer-to-peer over-

lay, which has advantages over existing designs under specific assumptions. The de-

signed overlay is composed of groups of local peers, within which most interactions,

including routing, indexing, and data placement, take place. Inter-group connectivity

is maintained without resorting to the use of specialized nodes, referred to as group

heads. The key idea in this overlay design is the use of a uniform identifier space for

all groups that allows any node to find its place and perform operations in the remote

group with an operation called a virtual join. Nodes that perform virtual joins in remote

groups learn but do not modify the overlay structure of the remote group to exploit

search locality in remote operations, thus improving their efficiency.

Before explaining the details of the overlay design, the next sections provide some

references of related work, as well as further theoretical and practical motivation for a

hierarchical, and particularly two-level overlay.

3.1.1 Hierarchical Overlays

Typically, designs for hierarchical overlays use the concept of group head or super-

peer, so that one node or subset of nodes in each group are used to form the higher

level overlay(s) that connect the lower level groups [20, 43]. Depending on the design of

higher level overlays and routing protocols, these nodes can become bottlenecks or single

points of failure. However, different techniques, such as voting, rotation, replication,

etc. can be used to minimize this potential for group head(s).

Several structures do maintain hierarchies without group heads. In [10], hierarchy is

introduced by using hierarchical identifiers for the overlay nodes. Routing in this design

is prefix-based, but it requires specialized root nodes as in DNS routing, which in a way

are like group heads. The structure described in [15] also uses specialized identifiers

that preserve locality when ordered. Efficient routing is performed in a similar way to

Chord by maintaining a list of references, known as skip lists, to progressively more

distant nodes. Ganesan et al. [19] describe Canon, in which links are constructed

between nodes in different groups as if constructing a single layer cluster, but keeping
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intra-cluster and inter-cluster links separate and limiting the number of inter-cluster

links to bound the average number of links per node. The Cyclone overlay [42] is

similar, but claims to provide more flexible routing through multiple paths. The main

problem with these overlays is that they are designed and evolve as a whole, and all

changes propagate throughout the structure much as they would in a flat overlay. The

context considered here rather favors designs in which individual structures can evolve

and then be combined opportunistically to form a single hierarchical overlay.

3.1.2 Analysis of Communication Costs

When hierarchy is introduced into an overlay design by grouping nodes at a low level

according to some locality metric, the links between these nodes can be implicitly

differentiated as local (those between nodes in the same group) and remote (those

between nodes in different groups). It can be assumed, according to the metric of

locality used for grouping, that the cost of using local links is less than that of using

remote links. The following analysis shows how a two-level overlay has better average

search times than a flat overlay, where a search is defined as the act of routing to a

node that can respond to (resolve) a particular query.

Let the average communication cost between two nodes in the same group be t,

and that between two nodes in different groups be T , such that t << T . Let f(x)

be the average number of overlay hops to resolve a query in an overlay with x nodes.

Assuming n nodes per group and k groups (N = nk total nodes) and that all groups

are connected, the average search costs in a one level and two level overlay are obtained

as follows, given that the query can be resolved in only one group:

One-level overlay

The probability that a particular hop is to a node on the same group is

n− 1
N − 1

≈ 1
k

Based on this probability, the average cost per hop (h) is the sum of the cost for

each kind of hop (local or remote), weighted by the probability of that hop. This is:
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h =
(

1
k

)
t +

(
1− 1

k

)
T

Thus, the average search cost for the overlay is given by the product of the average

cost per hop and the average number of hops per search, which in this case is in the

full overlay of N nodes:

h · f(N) =
t · f(N)

k
+

(k − 1) · T · f(N)
k

(3.1)

Two-level overlay

In the worst case, we consider a sequential search, where each group is queried until the

required data is found. In this case, we need the probability that a query is resolved in

the jth group. Since for this analysis any group is equally likely to contain the result

1, this probability is 1/k. Now, the search cost if the query is resolved in the jth group

(lj) is given by:

lj = j · t · f(n) + (j − 1)T

The above was obtained from j searches within local groups and the remote jumps

between them. Finally, the probability of each cost is used to obtain the average search

cost:

(
1
k

)
·
∑

j

lj =
t(k + 1) · f(n)

2
+

T (k − 1)
2

(3.2)

If the number of groups k is constant, then the search cost given by (3.1) is dom-

inated by the product of the large remote hop cost T and the average search cost for

the total number of nodes N , whereas for (3.2) the term for T is linear and the search

cost is dominated by the search cost within groups given by t · f(n).

1This is a conservative assumption, since in practice nodes will be grouped so that the local group
will be most likely to contain the result of a given query.
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3.1.3 Application Context

An organization such as a large corporation is a good example of a context for which our

two-level overlay is especially well-suited. In such a context, a relatively large number of

networked computation elements (nodes) can be interconnected as a structured overlay

for the exchange and self-management of data and services. Also, a relatively small

and stable number of organizational or geographical divisions exist, such as different

departments, buildings, or campuses. Within these divisions, node interactions are

frequent, but less frequent interactions between divisions are also necessary. The size of

the organization and the relative independence of different divisions make centralized

control or knowledge of the behavior of nodes across divisions unsuitable; however, it

is reasonable to assume that a common structure, such as the same overlay topology

and node ID space is maintained across divisions (however, this assumption can be

relaxed, see Section 6.2). Our approach allows for the independent evolution and local

management of the overlays (which constitute node groups) in each division, while

exploiting the common structure between them to optimize remote interactions.

3.2 Design Principles

The analysis in Section 3.1.2 does not consider how groups are interconnected, but this

will significantly affect the functionality and performance of a particular design. The

following sections describe our overlay design and analyze its particular characteristics

and mechanisms, starting with the mechanism of virtual joins, by which lower level

overlays are interconnected and which is the key concept of our design. Some descrip-

tions will be done in terms of the Chord overlay. However, any structured overlay

topology can in principle be used for this construction.

3.2.1 Virtual joins

The idea of a virtual join is simple. When a node joins a self-organizing structured

overlay, it receives information that allows it to find its place in the given overlay

structure. Particularly, it obtains a set of neighbor addresses, which become the links of
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the joining node within the overlay. In a “real” join operation, the contact information

of the joining node would also be disseminated among other overlay nodes and included

in their neighbor sets. In a virtual join, however, a node obtains its set of neighbors

in the remote overlay, but other nodes’ neighbor lists are not updated. Therefore, the

virtually joined node knows its place in the overlay structure, but does not modify this

structure upon joining.

Virtual joins can be used to link separately constructed and maintained overlays to

form a two-level structure. Each overlay is a local group whose structure and behavior

does not differ from a regular flat overlay with a given topology. However, nodes can

perform virtual joins in remote groups so that, if need be, they can relay messages to

those groups by sending these messages to their remote neighbors. The advantages of

these group-level interconnections using virtual joins are the following:

• Because any node can perform a virtual join in any group, inter-group links need

not go through designated group heads, thus avoiding potential bottlenecks and

single points of failure.

• Messages are relayed according to a common overlay topology, so that the prop-

erties of the routing and search mechanisms designed for the original overlay

topologies can still be exploited by inter-group communication. This means that

routing between groups will be expected to be better (less costly) in the average

case than if messages were sent to arbitrary nodes in the remote groups.

• Groups’ local overlay structures are not affected by virtually joining nodes, so

that any number of nodes may perform virtual joins in a particular group.

Of course, there are limitations to the virtual join mechanism. While any number of

nodes may virtually join a particular group, a particular node is limited in the number

of groups that it can join. This is because it must keep references to all its neighbors

in all of these remote groups. Since for the context we consider (Section 3.1.3), the

number of nodes is expected to be much larger than the number of groups, this is not a

significant problem, and nodes can join every remote group to create a fully connected

high-level overlay.
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Figure 3.1: Two-level overlay organization for Chord rings. a) Shows the fully connected
high-level network of three groups A, B, C, and the individual lower-level groups A and
B, as well as some of the successor relations between nodes in these groups that realize
the high-level link. b) Shows an integrated view of the network, where for each different
shape there is a directly connected group.

Virtual joins in Chord

In Chord’s ring-based topology, a node joins by contacting any other node already in

the overlay, from which it obtains references to its successor and predecessor in the ring,

as well as a number of extra references (chords or fingers) to allow for faster traversal

of the ring. References are kept in a data structure called a finger table. Successor

and predecessor references are enough for successful routing in Chord. In our two-level

overlay design for Chord, local groups are organized into independent Chord rings. For

each group, nodes’ finger tables contain only local nodes. Using a single identifier space

for all nodes (that is, all nodes obtain their identifier in the same range), any node in

one group can perform a virtual join in other groups, querying the remote group for

its successor in that group (in practice, we use the predecessor, for reasons explained

in Section 3.3; for now, assume the successor is used for explanation purposes). Figure

3.1 shows the configuration of a three group overlay and the intra and inter-group

successor-predecessor links.

When a new node joins the system, it will normally obtain its identifier and join its

local group (assigning nodes to groups is a system specific issue, and must be defined

beforehand, either by a system administrator or by some automated mechanism). It

will then perform virtual joins with this same identifier in each of the other groups that

make up the system. As in normal Chord joins, a virtual join only requires knowledge

of one existing node in each ring. Each node will then store its own finger table as
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well as its successors in each of the remote groups it has virtually joined. Since we

are working under the assumption that the number of groups is small compared to the

number of nodes within each group, and is relatively stable or static, the additional

space needed for the external references (one per remote group) will be smaller than

the local finger table.

3.2.2 Inter-group Routing and Search

Given the dynamic nature of existing overlay routing protocols, we assume that, given

a message addressed to an overlay identifier i, the node responsible for this identifier

within a particular group g (sg(i)) will always exist and can be reached by the routing

mechanism. In order for search to make sense, however, the overlay must support a

higher layer abstraction that will evaluate i, or the message associated with i, and

decide whether or not this message can be handled at sg(i). For example, if the overlay

supports a DHT, as is commonly the case, i will be the hash value of a key. Node sg(i)

will be able to resolve a query for a particular key if an object or objects with that

particular key are stored at the node.

The basic idea behind search in the two-level overlay is the following. Normally,

routing is done within local groups only, that is, the routing protocol will find sl(i),

the local node that is responsible for i. Only if sl(i) is unable to handle the message

delivered to it will a remote group be queried, via the remote neighbor(s) of sl(i). This

justifies the intuition of the earlier claim that search between groups will be expected to

be less costly in the average case using the virtual join links as compared with arbitrary

links: local routing uses the overlay structure, so that the destination node is the closest

node in the local group to the message identifier i. Thus, its neighbors are likely to be

sr(i), the node directly responsible for i in the remote group, since they are expected

to be close to i in the structure.

The two-level overlay network provides a simple abstraction to the layers above to

enable routing and search, through the operation resolve(identifier, group). Given a

data identifier i, this operation returns sgroup(i). If the group parameter is omitted,

the lookup will take place in the local group. Two wildcard values are accepted for
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Figure 3.2: Routing example in two-level Chord overlay

this parameter for inter-group routing: ANY, which is used to route to a node on any

group, starting with the local group, and ALL, which is used to route to nodes on all

groups. Both values first initiate routing normally to sl(i). For ANY, a message is

propagated further only if it cannot be handled on that node. For ALL, the query

is sent in parallel to every other group. Note that in both cases, because the access

point to remote groups is a neighbor of sl(i), routing in remote groups is expected to

be resolved in better than average number of hops, as explained above.

Figure 3.2 shows an example of routing between two Chord rings. The query for

id 4 is routed to sA(4) = 5. If the corresponding query cannot be handled there, it is

routed to sB(5) = 8, which in this case is also sB(4), and is thus responsible for it in

this group.

3.2.3 Overlay Maintenance

Most existing structured overlays are self-maintaining, in the sense that they are de-

signed to autonomously deal with node departures and failures, in addition to node

joins. In Chord, failures are recognized by periodically probing the entries of the finger

table to find if the referenced nodes are still up, or if others have recently joined to take

their place. Chord has self-repair mechanisms that allow it to fix broken finger table

entries by queries to successive neighbors.

The state of remote links obtained by virtual joins in the two-level overlay can also
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become outdated and require repair. However, because of the high cost that we assume

for inter-group communication, and because of the redundancy in inter-group links, our

design does not prescribe periodically checking remote neighbors. Instead, the state of

a particular link will only be checked when an actual message needs to be sent to a

remote group via that link. There are two cases in which a node’s remote links become

outdated:

• If the remote neighbor of a node has left the overlay or failed, the node will no

longer have a link to the remote group. The node can then simply use the remote

neighbor of one of its local neighbors (say, its predecessor) to relay the message.

Notice that in this case, the remote node may not be as close to the destination

as expected for normal inter-group routing, but this only affects the performance

and not the result of the search. The node can then perform a new virtual join

to update its remote link.

• If new remote nodes have joined so that the link stored at some node no longer

corresponds to its actual remote neighbor, effective communication may still take

place, though performance will be affected. When a message is sent to a remote

neighbor, that neighbor can respond with its local neighbors. That way, the sender

may check if any new neighbors exist which can replace its existing entries. In

Chord, for example, each time a message is sent to a remote successor, it can reply

with its local predecessor, which may be a better remote successor for the sender.

This is the same mechanism used in Chord’s stabilization protocol, except that it

is not meant to be executed periodically as in Chord.

3.3 Evaluation

We conducted experiments aimed at verifying the intuition that our two-level overlay

with virtual joins has a better than average inter-group search overhead, measured in

number of hops, than a two-level overlay with group heads. The experiments were run

on 64 nodes, which were divided randomly into two chord rings. The probability for

each node to be in a particular group was chosen from among the values of 0.5, 0.7,
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Figure 3.3: Average number of hops in remote group searches for group-head (CH) and
virtual join (VJ) connections

and 0.9. The reason for this was to examine the effect of the relative size of the groups

on the results.

Each node stored a unique value, and each of these values was the subject of an

inter-group query. The number of hops of each query in the destination group (where

the two structures differ) was measured. Figure 3.3 summarizes the result for the

average number of hops on all queries for both structures, with the different relative

group sizes. Notice that the number of hops is small in both cases, since search in Chord

is O(log n), and precisely because of this, the difference is significant: a difference of 1

in the number of search hops means an order of magnitude difference in the number of

nodes for which this search efficiency is achieved.

Figure 3.4 more directly confirms the intuition that inter-group searches will be

started close to their required destination when using virtual joins. The lines plot

the percentage of queries that were resolved in up to one hop (which means the first

remote node queried either resolved the query directly or was the predecessor of the

resolving node). For groups of roughly equal size, this is equivalent to about half of

the queries. The percentage drops as the relative difference between the group sizes

increases because, when searching from the smaller group, the number of entry points

to the larger group decreases. Figure 3.5 clearly shows how this metric improves for

searches from large to small groups, rather than the other way around. For the structure
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that uses group heads, this percentage is constant, because the only queries that can be

resolved in up to one hop are those that can be resolved by the group heads themselves

or by their immediate successors.

One important observation gathered from the tests is that using a nodes’ remote

predecessors as inter-group links instead of their successors produced better results.

This is due to the unidirectional routing used by Chord and the fact that it is possible

for there to be remote nodes between the key value i being sought and sr(sl(i)). In

this case, the remote neighbor will not be responsible for the key and must route the

query practically all the way around the ring to come back to the required node. By

using the predecessor as the remote neighbor, the likelihood of the above to happen is
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reduced because either the remote node precedes key i and routing can be concluded

in a few hops, or the node is a closer successor to i than is sr(sl(i)).
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Chapter 4

Content-based Notification Service

This chapter describes the design and implementation of the notification service for sub-

scription management and notification dissemination targetting highly dynamic Grid

environments. The design is centered around the Web Services Notification standards,

which provide a common platform independent interface for communication, and is

based on the Meteor distributed and decentralized architecture that supports content-

based, loosely coupled communication. The self-managing two-level Chord overlay de-

scribed in Chapter 3 supports the whole system infrastructure, providing separate lev-

els of coupling within and between separately communicating node groups for enacting

different kinds of tasks or workflows. To further support the efficiency and scalability

of our approach, we design self-optimization mechanisms for reducing the number of

messages transmitted by the system. These optimizations are meant to alleviate the

overhead of notification flows.

4.1 Service Design

The notification service is designed as a distributed and descentralized notification bro-

ker. Each of the nodes within the system is a peer that implements the NotificationBro-

ker (NB) interface (see Section 2.2), so that an external client can interact with any of

them. Thus, the whole system acts as a single NB, as illustrated in Figure 4.1. This is

important because the interface is not a bottleneck, and the system has no single point

of failure. Service providers participate by making nodes available to the notification

system, and can in turn make use of the system through these nodes. A peer-to-peer de-

sign avoids the need for centralized control and gives the service providers the flexibility

to join or leave the system at will.

Through this interface, clients and brokers realize the message exchanges defined
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Figure 4.1: Layout of the broker network. Matching subscriptions and notifications will
be routed to the same rendezvous node, which will perform the matching and relay the
notification.

in the WSN specifications, using XML messages that represent subscriptions, notifica-

tions, etc. Topic expressions are used by the notification service as identifiers for these

messages, and provide the means for matching between them. The following chapter

further explains the use of topics in our system.

4.1.1 Content-based Topic Expressions

Unlike a purely topic-based system, such as WSN with topic filtering, topics in the

notification service are meant to be content-based. The notification service uses topic

expressions that extend the concrete dialect of WST (see Section 2.2) to encode content-

based descriptors that correspond to attribute/value pairs. This means that a topic

expression is no longer an atomic unit that corresponds to a path in a hierarchical topic

space definition, but a sequence of identifiers, each of which is taken as an attribute

value from a multidimensional information space.

To observe the difference, consider a weather monitoring application that subscribes

to sensor data. In this example, the application may define the information space

with three dimensions: state, city, and temperature. A topic for a notification in this

system might then be weatherService:NJ/Piscataway/80, while a subscription could
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Figure 4.2: Construction of a topic expression from a) a hierarchical topic space; and
b) a multidimensional information space

be weatherService:NJ/*/>75. As Figure 4.2 shows, defining a hierarchical topic space

for this type of topic expression would not be practical, since individual topic identifiers

would be needed for each geographic location, and, worse still, for each possible numeric

value. By encoding content-based identifiers in topic expressions, our approach seeks to

remain as close as possible to the notation defined in WS-Topics for topic expressions,

both to support applications that implement this standard and to simplify content-

based indexing while still taking advantage of the latter’s expressive power. We avoid

the use of content filtering as defined in WSN (see Section 2.2), which is more powerful

and flexible, but also more costly to implement, as it requires parsing of the payload

content.

4.1.2 Messaging Model

The system uses Meteor’s rendezvous-based messaging model in which matching mes-

sages “meet” at some node within the network, referred to as a rendezvous node. The

matching and routing of messages to service nodes is done by parsing topic expressions

and using Squid to map their constituent values to the node identifier space, as de-

scribed in Section 2.3.1. Squid ensures that matching topics will be routed to at least

one common rendezvous node. We use Meteor’s reactive behaviors embedded in mes-

sage requests to encode the operations defined by the notification interfaces (subscribe,

notify, etc.). The application of this model to these operations is described below:
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Subscribe and Notify

As a notification producer (NP), the distributed broker accepts subscriptions from

clients. Subscriptions handled by the notification service must contain a topic expres-

sion within the FilterType element, as explained in Section 2.2. When a subscription

message is received by any one of the broker peers, its topic expression is decomposed

into its constituent values and mapped to the node identifier space. Since a subscrip-

tion topic can contain wildcards or ranges, the subscription may span multiple topics,

which may correspond to one or several nodes. Each one of these nodes stores the sub-

scription, keeping it until a termination time that may be included in the subscription

message is reached, or until the subscription is cancelled by the client.

To produce a unique identifier for the subscription, the entire topic is hashed, along

with the consumer endpoint reference. This ensures the differentiation of subscriptions

for the same topic or topics from different consumers. The unique identifier is appended

to the topic expression, which is returned to the client as the subscription reference to

be used for subscription management.

Notifications are handled by brokers, acting as notification consumers (NC’s), upon

invocation of the Notify method. The procedure is similar to that of a subscription.

If the notification’s topic expression is singular, in the sense that it contains neither

wildcards nor ranges that span multiple topics, then the notification maps to a single

rendezvous node within the network. If a subscription for that topic exists at the ren-

dezvous node, then the consumer reference is extracted from the subscription record

stored at the node and used to connect to the client and relay the message. Figure 4.1

also illustrates this rendezvous process. If a notification is identified by a topic expres-

sion that spans mutliple topics, then the notification isn’t routed to a rendezvous node

as above. The reason for this is that there might exist multiple rendezvous nodes for

it, a number of which may store the same matching subscription, resulting in the same

notification being relayed to a consumer multiple times. Instead, the interface node

that received the notification queries the network for subscriptions, and then directly

relays the notification only to each different consumer reference from the subscriptions
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it receives. A similar procedure is also used for demand-based publishing.

Subscription Management

As was mentioned above, a subscription reference in the notification service consists

of a topic expression and a unique identifier. The functions defined by WSN for the

SubscriptionManager and PausableSubscriptionManager interfaces depend on this

subscription reference because, given that nodes can enter and leave the system at

any time, subscriptions should not be tied to a particular rendezvous node. Recall

from Section 2.2 that in WSRF an endpoint reference can be used to interact with a

subscription resource directly. However, because of the above and the fact that we do

not assume that subscriptions are WSRF resources (as this is optional in the standard),

such endpoint references are not used. Thus, the topic expression is always used to route

the requests to the node(s) at which the corresponding subscription is currently stored.

Once at these nodes, the subscription’s unique identifier is used to quickly obtain the

particular subscription and execute the appropriate action.

Pull-Style Notification

Pull-style notification in the notification service is done in a very similar way to the

way regular subscriptions are handled. The only difference is that, when a pull-point

creation request is made to a broker, a message repository is also created at each

rendezvous node where the subscription is stored. Notifications are stored in these

repositories rather that being relayed directly to the consumers. Finally, when a con-

sumer invokes the GetMessages command on a broker, it queries the network with the

subscription reference to obtain the notifications stored at the repositories, constructs

a single response with all of these notifications, and sends them back to the client.

Demand-based Publishing

Publisher registration occurs in the notification service in exactly the same way as a

subscription. The registration topic is used to route a registration message to a node

or nodes in the network. In order to accommodate demand-based publishing, however,
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Figure 4.3: Publisher registration and subsequent subscription. Notice that a subscrip-
tion and registration do not necessarily span the same nodes, but as long as they overlap
at some node, the registration will be retrieved.

the procedure for a subscription detailed above must now include a query for publisher

registrations that match (or, rather, overlap with) the subscription’s topic expression. If

such registrations exist, then the NB that received the original subscription subscribes

in turn to the producer(s) for the topic(s) given in the registration(s). Figure 4.3

illustrates this mechanism.

4.1.3 Messaging Optimization Mechanisms

The number of messages sent within the system can be reduced at the notifications level,

which is important because any reduction in the number of messages leads to a reduction

in the overhead involved in packaging and delivering each individual message, and to

an improvement in scalability. In the case of Web Services, this overhead is incurred

mainly by XML and SOAP headers. In addition, the messaging within the JXTA peer-

to-peer framework [30] that supports our current overlay implementation also adds

considerable overhead. To see how much bandwidth is actually consumed by overhead

in one implementation, a sniffer program was used to capture the packet flows between

the nodes in the network for notifications. For messages between network nodes, the

combined overhead of XML and JXTA for each message is just over 3.5 KB, which
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amounts to about 28 Kbps in a message flow of one message per second. The following

mechanisms are used by the system to reduce the number of individual messages in the

network.

Grouping of Notifications by Buffering

This optimization is meant to reduce the flows of small and frequent notifications. A

simple way to deal with these notification flows is to buffer and group several notifi-

cations within a single notification message, a mechanism provided by the WSN XML

schema. This way, the headers that would have been transmitted with every individual

message are reduced to a single header on a grouped message. The optimum time and

degree to apply buffering, however, will be different for different message flows, and thus

it is worthwhile to equip the system with logic that allows it to autonomously determine

the most appropriate level of message aggregation based on high-level constraints.

Without application-specific considerations, messages can be grouped based on two

criteria. The first is on messages that correspond to the same topic, and the second is on

messages that match the same subscription. These criteria are not necessarily the same,

since, depending on how broad a subscription is made (with wildcards or ranges), several

different topics may match a single subscription. The system can benefit from applying

both criteria, since grouping based on topic equality can be done when messages enter

the system at an interface node, which doesn’t necessarily know about subscriptions for

that topic, and then subscription-based grouping can be determined at the rendezvous

nodes. The mechanism, however, is the same in both cases, so we will describe grouping

based on topic equality.

The mechanism for grouping and packaging of notifications is as follows. Each

interface node keeps a separate buffer of messages for every topic it receives (garbage

collection can be employed to eliminate buffers for which no messages arrive for a period

of time). Each buffer is configurable by setting the length of the period during which

messages are accumulated. This buffering level is determined by managers associated

with each buffer, the design of which is described below.

If the buffering period is determined only with respect to bandwidth utilization
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(the number of messages), then the solution is trivial because a higher buffering level

(more messages grouped together) always increases the saving achieved. If a limit

is set on the buffering period, according to the maximum latency allowed for each

individual message, then the solution would always be set to this limit. However, a

more balanced solution should consider the tradeoff between bandwidth utilization and

message latency. An optimal point can be found between a buffering period of zero

(minimum latency, maximal bandwidth consumption) and one equal to the maximum

allowed latency (highest buffering level, minimal bandwidth consumption). This is the

range used in Equation 4.1 below, although the reciprocal of the incoming rate is used

as a lower bound instead of zero (any period set smaller than the incoming message

period would result in no buffering). Instead of manually assigning a weight to each

extreme, a dynamic solution is determined based on the relative size of the payload

with respect to the total message size (Equation 4.2 below). The rationale behind

this is that the relative saving in bandwidth is greater for small messages because the

overhead constitutes a larger fraction of the total data sent, whereas for large messages

the overhead becomes relatively insignificant. In the former case, there is greater payoff

for sacrificing latency, and thus buffering should have a larger weight. For the latter

case, the reverse is true. Finally, the buffering period is calculated by obtaining a value

within the range determined by the weight, using Equation 4.3. If the incoming rate

is very low, with a period higher than the maximum latency, then Equation 4.3 is not

used, and rather the period is set directly to zero.

range = maxLatency − avgIncomingRate−1 (4.1)

weight =
avgPayload

overhead + avgPayload
(4.2)

period = maxLatency − weight× range (4.3)

Demand-based Notification Relay

Ideally, notifications should not be relayed by the notification service if no subscribers

exist for them. Demand-based publishing, explained in Section 4.1.2, is WSN’s provision
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for dealing with this issue. However, demand-based publishing depends on producers

registering their topics with the notification broker, which particular publishers may not

choose to do or may not be able to do if they do not implement the NP interface. To

further optimize messaging, the system implements a mechanism which is similar to that

of demand-based publishing but that is based on the topics of individual notifications.

The idea is that interface nodes should determine when not to relay notifications to

rendezvous nodes based on the existing subscriptions.

Unlike publisher registrations that define the topics that will be produced before-

hand, an interface node has no way of knowing which topics it will have to handle.

Registering for every topic received would also be inefficient. Thus, the mechanism

devised is implemented as follows. Each interface node keeps subscription caches asso-

ciated with particular topics. If there is no cache associated to a particular topic when

a notification for it is received, the interface node queries the network for subscriptions

for that topic. If any are found, they are placed in the subscription cache, which is

marked as empty otherwise. Subsequent notifications with the same topic will only be

relayed if the corresponding subscription cache is not empty. To avoid making a query

for every topic received, locality is exploited by checking a topic against all cached

subscriptions. New queries are only made if no subscriptions exist in these caches (note

that for these topics, the notification is relayed in any case).

Meanwhile, at the rendezvous nodes that responded to the query, a temporary

registration is kept of the interface nodes and their corresponding queries. This ensures

that if a subscription did not exist at the time of the query, a matching subscription

made thereafter can be made known to the interested nodes, so that a notification for

which a subscription exists is not dropped. The same happens for the cancellation of

subscriptions. Because they are potentially more numerous than publisher registrations,

rather than keeping these registrations indefinitely, they are deleted once they are used.

Thus, interface nodes must requery the network once a cache for a particular topic

becomes empty.

The messaging overhead of this mechanism for each topic are the query and its cor-

responding response (2 messages), as well as one message per update of a subscription
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Figure 4.4: Results for buffering with different incoming rates and payload sizes. Lines
correspond to the different payload sizes, bracketed by the minimum and maximum
values for each measure. Left: Overhead bandwidth, grows with payload size. Right:
Buffering period set, decreases with payload size.

or its cancellation. New queries are only triggered after cancellations. Thus, the over-

head is small and can easily be made up when large notification flows are not relayed

while no subscriptions exist, unless rates of subscriptions and cancellations are in the

same order as the rate of notifications.

4.2 Evaluation

As a proof-of-concept of the optimization mechanisms, experiments were conducted

to observe the buffering behavior and resulting overhead for message flows of different

incoming rates and payload sizes. The experiments were set up with a maximum latency

allowed for messages at each node of 1 second. Figure 4.4 plots the results. Notice that

savings in bandwidth utilization are substantial, even though buffering periods are

distributed within the range of allowable latencies. The lowest buffering period set in

this case is 373 seconds for the message rate of 20 messages per second and 10000 bytes

per message.

For irregular notification flows, possibly originating from several producers publish-

ing notifications on the same topic at different time intervals, several complications

are possible, such as short bursts of notifications at high rates, high variability in the

incoming rate, and concurrency. A number of mechanisms were used to reduce the

sensitivity of the system to these conditions. To emphasize the self-managing aspect of

the system, the use of fixed low level parameters was avoided. For example, instead of
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Figure 4.5: Change in the buffering period with highly variable incoming periods

using a fixed threshold for the minimum change allowed for the buffering period, the

threshold is calculated dynamically based on whether or not the change in buffering

would cause at least one message more or less to be buffered at the current estimated

incoming message rate. This new parameter (the change in the number of messages for

which a change in period is allowed) is at a higher level and is more meaningful than

the period alone.

To test the behavior of the system under these conditions, an interface node was set

to receive messages with the same topic from 32 different producers, each one of which

sent messages of random payload size between 10 and 500 bytes at random intervals of

up to 5 seconds. The combined effect of these notifications produces a high message

rate, with high variability. Figure 4.5 shows the changes in the buffering period during

the time of the test.
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Chapter 5

Decentralized Clustering Analysis for Self-Monitoring

5.1 Motivation

In Chapter 1.2, we introduced the problem of self-monitoring of distributed systems as

an immediate application of the content-based notification infrastructure, for several

reasons. First, the content-based publish/subscribe communication pattern allows for

selective subscriptions to situations of interest in a monitored system, given a mean-

ingful representation of monitored attributes. Second, the content-based routing mech-

anism itself (described in Section 2.3), used to deliver messages based on attribute

profiles, exhibits clustering properties that can support in-network, decentralized data

analysis for proactive monitoring (the detection of indicators or patterns that precede

and point to a failure or other event of interest). Additionally, the application of moni-

toring can be conceived as a generic service that runs on top of the notification service.

Proactive monitoring involves in some way online data collection from the target

system and an online analysis of this data, which is typically centralized and offline.

However, decentralized, in-network analysis is desirable for several reasons. First, online

analysis can produce results in a timely manner, so that corrective actions can be

more responsive to the events in the network. Also, offline analysis requires storage,

communication, and computation resources that are external to the peer network and

that can be costly to operate and maintain. Data loss during transmission to the central

analysis engine can be another concern. It is more difficult to recover from the loss of

raw data after it has been transmitted to the central repository than it is for data that

has been processed in the network, since processed data is more readily identifiable and

can be saved for a longer time. Finally, data privacy is an important issue, especially

when raw data may convey information that individual stakeholders in the system do

not want to share outside their local scope. Processed data can hide this information

and only convey information that is relevant to the monitoring task.
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This chapter describes a decentralized and online mechanism for the proactive self-

monitoring of large peer-to-peer systems such as device networks (e.g. networked ap-

pliances, document processing devices, network routers, wireless devices), server farms,

and compute clusters, where the peers have similar components and operational behav-

iors. It is assumed that peers in the system represent their behavior and operational

status using commonly known attributes and periodically report this information as

semantic events over the content-based messaging and notification substrate. Exter-

nal entities (management systems or meta-workflows that depend on monitoring infor-

mation) can subscribe to these low-level events or to high-level events that notify of

anomalies or system trends obtained from our decentralized in-network analysis engine.

5.2 Other Self-Monitoring Systems

In general, methods for self-monitoring are based on characterizing normal system be-

havior and then detecting deviations from this normal behavior. A number of different

approaches have been proposed and developed, most of them specialized to different ap-

plication contexts. These include system-specific approaches that exploit the particular

characteristics of the data acquired during monitoring.

For example, in [31], a method for analyzing the correctness of the Windows registry

based on extrapolating from samples of known bad registry entries is described and used

for detecting real errors in existing registries. Other more general approaches include

learning decision trees from system logs that are then used for diagnosing system fail-

ures, i.e. finding the causes of failures, as described in [12]. Automata constructed from

normal user request traces in web applications are used in [26] to recognize abnormal

interactions of application components that are the result of or lead to faults. The

work described in [27] also models normal application component interactions based on

user requests, but does so indirectly by measuring the intensities of data flows between

components and modeling invariant relationships between input and output flows at

each component. Note that all of these methods depend on offline training to develop

the respective models used for runtime monitoring.
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Figure 5.1: Data flow for decentralized monitoring and analysis

The approach in [8] gathers data from HTTP access logs of web applications online

and keeps track of page access frequencies to identify and report anomalies to admin-

istrators using special visualization tools. Administrators can then interpret and deal

with these anomalies using application-specific knowledge. Our monitoring mechanism

also uses data collected online to recognize and report anomalies. However, unlike the

approaches described above, data analysis is carried out in-network by peer nodes in a

decentralized manner.

5.3 System Description

Figure 5.1 shows the elements of the monitoring service within the workflow manage-

ment framework. Peers publish semantic status events through the notification service,

and these events are received by the analysis engine, along with any external subscribers

that are interested in specific events or event types. The analysis engine makes use of

the status events to detect anomalies in the behavior/state of peers by finding the

clustering of these events, in space and time, based on the values of their attributes.

Clustering analysis is a well-known data mining technique. In this type of analysis,

the similarity of data points in a coordinate space is established by grouping them into

clusters, where points in each cluster are relatively close together, according to some

notion of distance. Anomalies are detected as singular data points or isolated clusters.

For example, if a measure of peer load is encoded into the events reported by peers,
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these events should exhibit high clustering if the network is load-balanced. Underloaded

or overloaded nodes will show up as anomalies in this analysis. Multiple dimensions

can be analyzed simultaneously, so that, for example, unusual resource consumption

under similar workloads can be detected as an anomaly.

There are two types of events that result from the clustering analysis: status up-

dates that are recognized as anomalous (points that don’t belong to detected clusters)

and cluster centroids (points with minimum average distance to the points in their

cluster). These events are also published using the notification service to be received

by external subscribers. These subscribers can respond to anomalies as well as further

analyze centroid data. The idea with the latter is that the cluster centroids represent

a significant reduction of status data with respect to the raw data and can be more

easily analyzed for trends and correlations between the different monitored attributes,

without significantly reducing the accuracy of this analysis.

5.3.1 Monitoring Information Spaces

The common attribute sets that respresent peers’ monitored operational status can be

viewed as one or more multidimensional information spaces, as illustrated in Figure

5.2. Each dimension in such an information space corresponds to an attribute that can

be monitored and reported by a peer node. Consequently, an event that represents the

status of a peer at some point in time corresponds to a point in the information space.

Further, it is assumed that the value ranges of the attributes are defined so that values

that are close together along that dimension of the space represent states that are similar

in terms of the corresponding attribute. This is normally the case with quantitative

attributes, and can be made so with an appropriate encoding for non-quantitative

attributes as well (in the case of completely unrelated attribute values, two values are

only considered close if they are equal). Given this assumption, points that are close

in the multidimensional space will also correspond to similar status descriptions.

Using the representation described above, if the status events of all the peers are

plotted as data points in their corresponding information space, clusters of data points

will indicate peers with similar states, while outliers will indicate possible anomalies,
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and thus, possible precursors of violations or other conditions (failures) that may need

attention. A similar analysis can also be made across data points generated at different

times, to analyze similarities, differences, or trends in the behavior/status of peers over

time.

5.3.2 Decentralized Clustering Analysis

Cluster recognition and analysis of the type described above is a well-known problem

in the field of data mining, and k -means clustering is a widely-used procedure for which

distributed algorithms have been devised [7, 14]. Traditional k -means is an iterative

process that calculates the coordinates of k centroids (points with minimum average

distance to the points in their cluster) for a number of data points. Both k and an

initial estimate for the centroids must be given as input, and the algorithm successively

associates data points to their nearest centroid and recalculates centroids until they do

not change significantly from one iteration to the next.

The distributed procedures cited above partition data points uniformly among pro-

cessing nodes, each of which runs the k -means procedure on their subset of points.

Nodes then repeatedly exchange centroids with neighbors and rerun the algorithm un-

til a consensus is reached. Note that these approaches do not consider locality while

distributing data points to nodes, and as a result, convergence can be slow and cause

the algorithms to be unsuitable for online clustering.

The decentralized clustering algorithm used here is similar to the distributed al-

gorithms described above in that it also partitions data points across the processing

nodes. However, this formulation exploits spatial locality in the information during

distribution to facilitate the clustering analysis. The key aspect of our decentralized

clustering formulation, as illustrated in Figure 5.3, is a dynamic one-to-one mapping

of distinct continuous regions of the multidimensional information space to processing

nodes. This mapping is achieved using the SFC mapping described in Section 2.3.1.

The correspondence of a region to a node implies that any point within the region must

also be mapped to that node. The continuity of the regions ensures that each node

will handle similar data points, as explained above. Finally, the mapping is dynamic
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Figure 5.2: Example of an information space with three attributes. Points x and y in
the space are close and thus considered similar, while point z is considered different.

because the peer network intended to host the processing nodes is itself dynamic. As

a result, regions assigned to nodes may be split or merged over the course of time, and

not all regions will be of equal size.

Cluster recognition and anomaly detection is based on the principle illustrated in

Figure 5.4. The key idea is that, given a fixed number of data points with a perfectly

uniform (or random) distribution, the point density (the total number of points divided

by the volume of the information space) would be constant throughout the space (see

Figure 5.4a). Thus, there is an expected number of points per region of the information

space that can be calculated based on the size of the region and this constant point

density. Clustering is recognized when a region has a relatively larger point count than

what is expected for that region (see Figure 5.4b). Conversely, if the point count is

smaller than expected, the points in the region are not part of a cluster (which must

exist elsewhere) and can thus be treated as anomalies. Appropriate threshold values

can be set to fine tune the sensitivity of cluster and anomaly recognition, depending on

the degree of clustering expected in the status updates of a particular system.

Region boundaries can affect analysis results. For example, a particular region may

contain a few points from a cluster that lies in a contiguous region, so that they are

falsely labeled as anomalies. This can be seen in the lower left quadrant of Figure 5.4b.

Because of these boundary conditions, nodes need to be aware of their neighbors in the
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Figure 5.3: A division of the information space, where each region corresponds to a
different node.

information space (nodes responsible for neighboring regions). We approach this in the

following way. When a node recognizes that its region contains a cluster, it calculates a

centroid for that cluster. We assume a minimum distance d exists such that two points

are considered similar if their distance from the centroid is less than or equal to d. If a

region boundary is found within this distance d of a centroid, then the node responsible

for the neighboring region will be notified of the existence of the cluster and sent the

location of the centroid. Using this information, nodes can associate their points with

nearby centroids in remote regions, if possible.

Because the size of the region of a particular node is dynamic and depends on the

total number of nodes across which the information space is divided, there may be

more than one cluster in a given region. The distance d is used to estimate the number

of individual clusters (k) that could be recognized in a region of a particular size. If

k > 1 for a particular cluster, then the k -means procedure is applied locally to find the

relevant centroids.

5.4 System Operation

Self-monitoring peers within the framework go through three phases: setup phase, data

generation/collection phase, and analysis phase. Each peer runs the setup phase first

when it joins the system, and then every time that the joining or leaving of a neighboring
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Figure 5.4: (a) Uniform distribution of data points in the information space. (b) Point
clustering among regions; the circled points are recognized anomalies.

peer affects the mapping of data points to it. Once the setup phase has been completed,

the data generation/collection phase runs continuously, and is only interrupted when

the analysis phase is triggered. The specific tasks in each phase are described below.

When a peer joins the system, it becomes a processing node for the clustering

algorithm and must thus be assigned the region of the information space for which

it will be responsible. This assignment constitutes the setup phase of the monitoring

algorithm. The algorithm depends on the specific mechanisms used by the underlying

DHT abstraction to map the information space to peer nodes. In Squid, for example,

a joining node is assigned a specific ID in the Chord index space using the Chord join

protocol. Since this node will be responsible for the span of the index space between its

ID and the ID of its predecessor, the corresponding region of the information space can

be computed using a reverse SFC mapping. The node will then receive all messages

(events, subscriptions, notifications) that correspond to this region of the information

space. Note that the successor of the joining node will also have to rerun the setup

phase because the region previously assigned to it is now split between itself and its

new predecessor.

Each node in the system calculates its expected data point count during the setup

phase. In addition to the size of its region, the node must have an estimate of the total

number of peers in the system in order to approximate the total number of updates

that will be generated by the peers during the data generation/collection phase. In
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a dynamic peer-to-peer network this is not trivial, but there are existing methods for

obtaining peer counts, even in the face of high churn [5]. Futhermore, we assume that

churn in the device and server networks that our approach targets is low (a relatively

constant or slowly changing total number of peers is maintained), so that the overhead

in obtaining and maintaining an estimate of the peer count at each node will be low.

Once a peer has joined the system and is operating normally, it will periodically

generate and transmit status updates as semantic events that represent data points in

the information space. The content-based messaging substrate will route these events

to the peer nodes responsible for the regions of the space that contain these data points.

The node receiving an event will store it locally, increment its counter of events received,

and generate any relevant notifications if it has any matching subscriptions. The count

will be used in the analysis phase for clustering.

Since the clustering analysis uses data point counts, the synchronization of event

generation/collection periods becomes an issue. We assume that all peers in the system

use the same period length for generating events. Because generating periods will

nonetheless be staggered, a receiving node will listen for at least two periods before

examining its point count. As a result, a particular node will receive at least one

update from peers with status mapping to it before each analysis phase.

The analysis phase is essentially the execution of the decentralized clustering al-

gorithm presented in Section 5.3.2. Once a peer has found a cluster or an anomaly,

it uses the notification infrastructure to publish this data, so that interested peers or

other entities can use this information to trigger appropriate corrective actions, analyze

trends, etc.

5.5 Functionality and Effectiveness

The proactive self-monitoring framework and the decentralized clustering algorithm

presented in this paper have been experimentally evaluted using simulations. In the ex-

periments presented in this section, the status updates of a given network of peers were

simulated by generating semi-random points in a two-dimensional information space.



54

This could correspond to, for example, a device network that produces measurements

of load (processed documents, transactions, serviced web pages) and resource consump-

tion (toner, CPU cycles, bandwidth) for each peer. Note that the evaluations in this

section focuses on the effectiveness of the clustering-based analysis engine.

In the experiments, each peer was set up as described in Section 5.4, and gener-

ated status update events, which were routed to the corresponding peer nodes using

the content-based messaging substrate. Each node ran the cluster analysis algorithm.

Networks of 100, 500, and 1000 peers were used, and each peer was set to generate

5 events during the data generation/collection phase. As in a real system, the value

range for each attribute was normalized in order to conform to the dimensions of the

information space. In this simulation, each attribute could take values between 0 and

255, and d was set with a value of 10.

The objective of the first set of experiments was to test for centralized (point)

clusters, which occur when there are fixed configurations shared by all peers. In our ex-

ample, certain types of peers can be recognized and characterized by specific attributes

such as load, efficiency, etc. Ninetyfive percent of updates were generated around three

fixed points — each update was a random perturbation of a given point, each of which

had an approximately equal probability of being chosen. The remaining five percent of

points were generated randomly. Figures 5.5a - d show the results for tests for different

network sizes and cluster widths (produced by limiting the maximum perturbation of

the central points). Anomalies are shown as circled points, while cluster centroids are

shown as crosses.

The second set of experiments was similar to the first, except that instead of gener-

ating updates around fixed points, they were generated around a fixed line. This can

occur when there is a fixed relationship between the monitored attributes, but the val-

ues of certain attributes, such as load, are highly variable. Again, a small percentage of

updates was generated completely at random. Figures 5.6a - d show particular results

for these tests.

The figures show how the distributed algorithm effectively identifies cluster and

non-cluster points for clusters of different size, number, and shape. Notice that clusters
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Figure 5.5: Analysis of point clusters for a) and b) 100 node network with different
cluster sizes; c) 500 node network; and d) 1000 node network
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Figure 5.6: Analysis of line clusters for a) and b) 100 node network with different cluster
widths; c) 500 node network; and d) 1000 node network
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Network size Point Line
100 0.9% 0.4%
500 0.8% 1.6%
1000 1.3% 3.5%

Table 5.1: False positive rates for tests. The value is an average of the different tests
done for different cluster widths (maximum perturbation).

are identified by differences in point density rather than by particular distances from

cluster centers, so that different clustering behavior can be detected. To verify the

accuracy of anomaly detection, we checked for points identified as anomalies when they

were in fact close (within distance d) to an identified centroid. These false positive

rates are listed in Table 5.1 as percentages of the total number of data points, and are

due to boundary conditions. Although node communication deals with this problem as

described in Section 5.3.2, it is possible that all neighbors may not be identified for a

given region. This also explains why the rates increase with network size, since with

more nodes the information space is divided into more regions, which means a greater

number of region boundaries. However, the false positive rate is quite small and can be

further reduced by increasing the communication between peers, but this will increase

the cost of the algorithm.

An important observation is the relatively many centroids, shown as crosses in the

figures, identified within each cluster. This is because each node with a region within

the cluster will produce at least one centroid calculation. Thus, the number of centroids

found is directly proportional to the number of nodes and inversely proportional to the

distance d. In order to reduce this number and further consolidate notifications sent

outside the network, the same neighbor communication used to deal with boundary

conditions for anomalies can be used to aggregate cluster centroids from multiple nodes.

Other aggregation techniques for peer-to-peer networks, such as those described in [29],

can also be used.

Still, the cluster centroids represent a significant reduction of the information with

respect to the raw data that can be more easily analyzed for trends and correlations

between the different monitored attributes, without significantly reducing the accuracy

of this analysis. In the experiments, the ratios of centroids to raw data points ranged
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from the order of 10:1 for the line cluster on the 100 node network to 160:1 for the

point cluster on the 1000 node network. These reduction ratios will depend on the size

of the network and the sizes of clusters present in the data.

As to performance, it is evident that the bulk of the complexity of the clusterin

process is due to the mapping of data points to nodes which occurs prior to the analysis

phase — the clustering itself is largely a local operation at each peer node. Each peer

requires at most O(n) messages, where n is the number of nodes in the network, and

given that the Chord routing mechanism is O(log n), the messaging cost per peer node

is O(n log n) [44]. Note that peer nodes exchange messages asynchronously. In contrast,

the messaging cost of existing distributed implementations of k -means mentioned above

depends on the number of synchronous iterations required to reach consensus among

nodes for all centroids.

One tradeoff of this performance gain is load balancing. While other implementa-

tions distribute data points uniformly among nodes, in our design a small fraction of

nodes, those responsible for regions that contain clusters, will handle a large fraction

of data points. Our previous work has effectively addressed this load-balancing issue,

basically by dividing single regions among multiple nodes [44]. However, the impact

of these solutions on the self-monitoring applications has not been assessed and is an

issue for future work.
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Chapter 6

Conclusions

6.1 Thesis Summary

This research was motivated by two main factors: the importance of loosely-coupled

communication in Grid systems and the emergence of Web Services for enabling stan-

dardized, platform-independent interactions between distributed resources in the grow-

ing infrastructure of distributed computing systems and particularly the Grid infrastruc-

ture. Recognizing that the Web Services Notification standard defines protocols for the

publish/subscribe communication pattern, which is a suitable model for loosely-coupled

communication, we presented a decentralized and content-based communication frame-

work implementing this standard. This implementation was designed to address the

main issues and challenges of large-scale and dynamic Grid systems.

Our approach leveraged the Meteor messaging framework, based on a rendezvous

messaging model and content-based addressing scheme, and provided specific solutions

to realize the interactions defined in the WSN standard, as well as optimizations for

reducing the flow of messages exchanged within the system. To further support system

decoupling and scalability, and reflecting the logical grouping of nodes that results

from the interaction of virtual organizations in Grids, we designed a two-level overlay

structure that interconnects groups of nodes without resorting to designated group

heads that can become bottlenecks or single points of failure.

Finally, we explored the problem of in-network, decentralized data analysis for self-

monitoring of peer-to-peer systems. We devised a mechanism for distributed clustering

analysis that receives content-based status updates from monitored peers via our noti-

fication service and in turn generates notifications of anomalies and system trends. Our

analysis approach takes advantage of the clustering properties of the mapping used by

the routing mechanism of the communication infrastructure.
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The experimental evaluations presented demonstrate the performance and scalabil-

ity of the infrastructure as well as the effectiveness of the self-monitoring mechanism.

6.2 Observations and Future Work

While the functionality of the notification service has been analyzed and evaluated,

the system is yet to be tested in a real application scenario. As described in [25],

compatibility with other WSN implementations must be ascertained due to differences

in the tools and development platforms used. Furthermore, real data and application

contexts will test the flexibility and comprehensiveness of information space definition

(e.g. in terms of dimensionality and resolution), for notification content descriptors as

well as for monitoring attributes.

Our assumptions about the organizational divisions of computation resources that

supported our two-level overlay design must also be challenged. Insofar as we extend

our scope beyond the scenarios considered to a more global view of the Grid, such as

those presented in [37, 18, 2], we must either consider further levels of hierarchy or

generalize our high-level topology. Currently, all overlay groups are connected to each

other and are identified using simple identifiers. It should be possible to extend this

scheme by using content-based addressing at this level as well, and leverage content-

based discovery services such as that which our framework can provide to determine

the connections established between overlay groups.

The work presented here is part of an ongoing effort to develop a comprehensive

set of middleware services for large-scale, dynamic distributed systems [37]. Besides

the problems of communication and monitoring that have been addressed here, prob-

lems of information and resource discovery [44], task and workflow composition and

coordination [32], and pervasive data aggregation [29] have and are being addressed

by related work. The solutions that this and other work provide can be a basis for a

generic workflow management and Grid application development platform.
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Appendix A

Framework Implementation

This chapter presents some of the implementation details of the notification and mon-

itoring framework, focusing on class organization and runtime procedures. The imple-

mentation of the framework is based on Java, though some of the components have

been implemented in C++ and have not yet been ported to the Java platform. We first

show, in Figure A.1, a high-level class diagram of the framework, identifying each archi-

tecture layer. The remaining sections give further details about each of the framework

components.

A.1 Overlay

To define the overlay service, we first designed a generic interface that overlay imple-

mentations must realize. This gives the framework the flexibility to modify or change

the overlay as necessary, though it does not completely make the framework indepen-

dent of the overlay implementation. This is because, for the purpose of implementation,

an overlay is considered to provide an addressing and routing scheme based on its par-

ticular topology. Users must be aware of the addressing scheme in order to effectively

make use of the overlay. The OverlayID object provides an abstraction for this ad-

dressing scheme, but contains no specific functionality. All attributes and functionality

are defined in its concrete subclasses, which are created for each overlay type.

OverlaySe rvice

<<Interface>>

Meteor

Me teorNotifica tionServiceClus te ringAna lys isEngine

Overlay

Content-based

Communication

Notification

Figure A.1: High-level framework class diagram corresponding to architectural design
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Figure A.2: Overlay layer class diagram

Notice that Squid is defined, along with the two-level Chord (TLChord) implemen-

tation, as a realization of the overlay service interface, because it is effectively provides

its own addressing and routing scheme, relying to do so on the two-level Chord over-

lay. The TLChordID class encapsulates the m-bit Chord identifier, as well as a string

that represents a group identifier, which were shown in Section 3.2.2 to be necessary

to resolve an address in this overlay. The SquidID class in turn holds the sequence of

key values that functions as a content-based address in Squid. As explained in Section

2.3.1, each Squid address will be mapped to one or more addresses from the Chord

address space.

The functionality of the overlay service interface is defined as follows:

• OverlayID join(url): Called when the node is initialized. The URL corre-

sponds to the machine on which the node is running. Returns the overlay ID

assigned to the node, or rather a concrete extension of the abstract OverlayID

class that depends on the specific overlay’s addressing scheme.

• leave(): Called when the node is terminated. Specific overlay implementations

should handle these departures to maintain routing capability within the overlay.

• routeTo(peers, tag, payload): Called to send a particular message to one or
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more nodes responsible for the given IDs. peers is a list of IDs, tag is an identifier

for a listener of the overlay, and payload is the message to be sent.

• url[] resolve(ID): Calls for the overlay to find the physical address of the node

or nodes responsible for the given ID.

• url[] getNeighborSet(): An application may want to override an overlay’s

default routing scheme to implement different routing schemes (e.g. gossip) on

the given overlay topology, for which the set of neighbors of a node is needed.

• subscribe(listener, tag): Registers a listener to receive messages sent using

the routeTo method to the given tag.

The implementation of the join method in the two-level Chord works in two ways.

First, a node can be configured with a fixed address for a bootstrap node that can

handle the join message. However, if such an address is not known, the joining node

can broadcast the join message so that a node in the local network can act as the

bootstrap node. If multiple nodes exist on the local network, a random backoff timer

can be used to ensure that a single node acts as the bootstrap. If no node exists on the

local network, the joining node assumes it is the first and completes the join operation

accordingly. This mechanism replaces that of previous implementations of the overlay

that relied on JXTA [30]. JXTA has the advantage that peers can be found even

outside the local network, but it introduces overhead that can increase the latency of

message exchanges (see Section 4.1.3; also see [3, 24] for a more thorough performance

evaluation). Given the design of the two-level overlay, in which physical proximity plays

an important role in group organization, the simple bootstrap mechanism is adequate.

Upper layers that make use of the overlay can receive messages sent through the

overlay by subscribing as listeners with the subscribe method described above. A

listener will also receive structural events for the given overlay (joining, failure, or

departure of neighbor nodes), in case the higher-level service needs to be aware of and

handle these changes (e.g. a DHT that needs to replicate the data stored on it at its

neighboring nodes). Several different applications can share the overlay by subscribing
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with different tags, which are analogous to ports in the sockets API. The events received

as a listener are handled by implementing the OverlayListener interface, which has

the following methods:

• messageArrived(MessageCallback): Called when a message is received destined

for the listener.

• serviceErrorOcurred(url, errorMsg): Called when a remote error correspond-

ing to a message previously sent using the listener’s tag is received.

• leaving(): Called after the leave() method for the overlay is invoked. Gives

the listener a chance to perform tasks (e.g. offload data to another peer) when

its node leaves the overlay.

• newNeighbor(OverlayID, url): Called when a node joins and becomes a new

neighbor of the listener’s node. Gives the listener a chance to perform tasks (e.g.

load balancing) to account for this new node.

• neighborDown(OverlayID): Called when a neighbor node leaves or has been de-

tected by the overlay to fail. Gives the listener a chance to perform tasks (e.g.

repair and recovery) to account for the node absence.

The message callback object that is created and passed to listeners when messages

arrive plays an important role in the design of the overlay API. In addition to the

message that is being passed to the listener, the message callback object encapsulates

the contact information of the source of the message. This allows it to provide a

reply method, whereby receivers can reply directly to particular messages without a

separate call to the overlay’s routeTo method. The difference between the two is that

the routeTo method may cause the message to be delivered in multiple hops as the

overlay’s routing protocol is invoked, whereas the callback’s reply method sends the

message directly through the underlying network.

More important than direct replies, however, is the ability to report back to the

message source higher-level errors triggered by the reception of the message. Encapsu-

lating error reporting along with the message that generated the error allows different
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Figure A.3: Sequence for a message sent on the two-level overlay destined for a local
node (lc2). The message is passed to a listener (lis2) within a MessageCallback object,
which is used by the listener to report an error associated with the message. The error
is sent back to the message source (lis1) through its corresponding overlay node (lc1).
The dotted arrows represent asynchronous and possibly multihop messages.

overlay implementations to handle these errors in different ways, providing different

implementations of the callback class. For example, recall from Section 3.2.2 that a

message that is sent using the ANY group identifier over the two-level overlay is de-

livered first to a local destination and then is propagated further (to a corresponding

node in a remote group) only if it cannot be handled on the local node. To keep imple-

mentation independence, only a higher-level service running on the overlay, such as a

DHT, can determine whether or not a message can be handled. However, once an error

is reported, the message callback object can determine the appropriate action. This

behavior is illustrated in figures A.3 and A.4. Figure A.3 shows the default behavior

of the callback object defined by the two-level overlay, in which the error message is

directly returned to the source node after the error for a message is reported. However,

when the ANY group identifier is used, the message is sent to a node in a remote group,

which may be able to handle the message instead, as shown in Figure A.4. The error

message is only sent back to the source if the message triggers errors in all groups, which

is determined by the message callback implementation. Notice that, in order for this

behavior to be possible, the error must be associated to the original message, which

is why the callback object is used for error reporting instead of providing a method

directly in the overlay service interface.
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lc1 : TLChord
Ove rlay

lc2 : TLChord
Ove rlay

 lis2: Ove rlay
Lis tene r

rc : TLChord
Ove rlay

m : Mes s age
Ca llback

ms g m = new Mes s age
Ca llback(lc1, m s g)

mes s ageArrived(m)
s e rviceError()

ms g

Figure A.4: Sequence for a message sent on the two-level overlay destined for any node
and delivered first to a local node (lc2). The message is passed to a listener (lis2) using
a MessageCallback object, which is used by the listener to report an error associated
with the message. The original message is then resent to a node in a remote group (rc)
that may be able to handle it. The dotted arrows represent asynchronous and possibly
multihop messages.

A.2 Meteor Implementation

The implementation of the Meteor communication service consists of a single class that

implements the post primitive described in Section 2.3.2. Each Meteor node stores

messages with associated reactive behaviors and matches them based on the profiles of

messages received. Figure A.5 shows the relationship between a meteor node and other

system elements. Each node is responsible for messages with profiles that correspond

to a particular region of the common information space, and only these messages are

stored in the nodes local storage. The node relies on the mechanisms provided by the

Squid overlay to route messages to the nodes that are responsible for them.

A.3 Notification Service

The Web Service interface for the notification broker was implemented in Java using the

JWSDP 2.0 API and development tools. First, the XML schema for base notification

and brokered notification, provided in [35], were transformed into Java objects using

the JAXB binding tools, modifying some optional elements to conform to both the Java

platform and our own implementation architecture, as follows:



66

Meteor

pos t(Profile , ms g)
ma tch(Profile)

Ove rlayLis tene r

Squid

Profile

SquidID
action

Figure A.5: Class diagram for the Meteor communication layer

• The FilterType element from the WSBN schema was redefined to contain a topic

expression because topics are used for defining subscriptions.

• The TopicExpressionType element was redefined to contain a xsd:string element

for holding topic strings as defined in WST.

• The Message element in the NotificationMessageHolderType definition was rede-

fined to be of type xsd:string. This is not a limitation, since the message is

application specific data that can be encoded as and interpreted from a string.

This is mainly to facilitate its manipulation in Java.

• A SubscriptionReference element was added to the messages defined for subscrip-

tion management (Renew, Unsubscribe, etc.), which is required to find particular

subscriptions.

After the Java objects were created from the schema, the WSDL documents were

used to create the Java service interfaces and implementing classes, which were then

deployed as a service endpoint for a notification broker, shown in Figure A.6 as the

BrokerWSEndpoint class. This endpoint can then be run on an Apache or similar web

service container to receive and respond to client requests, which it transforms into

method calls for the Meteor platform, extended by the MeteorNotificationPeer class

to relay notifications and other WSN messages back to users through the endpoint

interface. The current implementation is based on the JXTA deployment of Meteor,

but can be easily extended to run on the two-level overlay implementation.
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Notifica tionBroke r

Notifica tionProducer Notifica tionConsumer

Subs criptionManage r Publis he rRegis tra tionManage r PullPoint

Broke rWSEndpoint

Me teorNotifica tionPee r

Me teor

Figure A.6: Class diagram for the Notification Service

A.4 Monitoring Service

An implementation of the monitoring service must be split into two main parts. The

first is an application-specific module that must run on every monitored node in order to

obtain measurements of the monitored attributes and encode status updates according

to a particular information space definition. The second is the clustering analysis engine,

which receives these updates and runs the algorithm described in Section 5.3.2. The

only implementation detail worth pointing out in this case is that the analysis engine

cannot run directly on the notification service as any application that subscribes to

notification events. Instead, it must intercept status updates directly from the overlay

service (Squid, in this case), as shown in Figure A.1. This is because the analysis

engine must receive all status updates received on the node, and, in order to do so as

a subscriber to the notification service, would need to issue multiple subscriptions as

the region assigned to the node changes with changes in the overlay. So, the analysis

engine subscribes directly to Squid, at the same level as Meteor, but does publish its

anomaly and centroid notifications via the notification service.
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