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ABSTRACT OF THE DISSERTATION

The Physics of Chromatin Silencing: Bi-stability

and Front Propagation

by Mohammad Sedighi

Dissertation Director: Anirvan Sengupta

A mean-field dynamical model of chromatin silencing in budding yeast is provided

and the conditions giving rise to two states: one silenced and another un-silenced,

is studied. Based on these conditions, the space of control parameters is divided

into two distinct regions of mono-stable and bi-stable solutions (the bifurcation

diagram). Then, considering both the discrete and continuous versions of the

model, the formation of a stable boundary between the silenced and un-silenced

areas on DNA is investigated. As a result, a richer phase diagram is provided.

The dynamics of the boundary is also studied under different conditions. Con-

sequently, assuming negative feedback due to possible depletion of silencing pro-

teins, the model explains a paradoxical epigenetic behavior of yeast that happens

under some mutation. A stochastic treatment of the model is also considered to

verify the results of the mean-field approximation and also to understand the role

of intrinsic noise at single cell level. This model could be used as a general guide

to discuss chromatin silencing in many organisms.
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Chapter 1

Introduction

This chapter is mainly devoted to the preliminary biological knowledge required to

understand the phenomenon of chromatin silencing. As a matter of fact, most of

the material in the following sections, can be found in any introductory molecular

biology text book [1, 2] unless otherwise referenced.

1.1 Biological Background

1.1.1 DNA and Proteins

The genetic information in living cells is stored in a long double-stranded helical

macromolecule called DNA. This information, or the genome, is encoded along

each strand of DNA in a language of four letters represented by four alternating

units called nucleotides. In a more detailed perspective, each strand of DNA is a

chain consisting of a repeating sugar/phosphate backbone and a base attached to

each sugar unit. The base is chosen from only four different organic compounds:

adenine (abbreviated A), cytosine (C), guanine (G) and thymine (T). Base is

the only part of each block of DNA that changes along this sequential structure.

Then each strand is attached to its complementary strand through Hydrogen

bonds between bases. Note that, hydrogen bonds happen between base pairs of

(A,T) and (C, G) only. In the common stable double helical conformation of DNA

the length between successive base pairs is 1 bp=.34 nm, which is also used as

unit of length. As a consequence of this complimentary base pairing the genetic
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information kept in each of the strands is doubled in DNA.

This genetic information is mainly used to build proteins, the molecules re-

sponsible for vital interactions inside the cell. The part of genome that contains

the information is referred to as the gene of the protein. Proteins are governing

all the interactions inside the cell which include, but are not limited to, extracting

genetic information from DNA, building other proteins from their genetic code

and also mutual interactions leading the cell to behave in a desired way. As an

example, when a particular protein is produced, an agent protein called RNA-

polymerase, with the help of other proteins locates the corresponding gene among

the whole genome, attaches to the specified sequence on DNA and start making a

single stranded copy of the gene called RNA. However RNA is not just the exact

copy of some section of the single stranded DNA. There are two main differences

in their structures: sugar/phosphate backbone of RNA uses a different type of

sugar and uracil (U), replaces thymine (T) for the bases. RNA molecule is then

used directly to build the required protein. The process of producing a RNA copy

of the gene by RNA-polymerase is called transcription.

There are several mechanisms inside the cell to control interactions among pro-

teins during different stages of cell’s life or to respond to changes in environment.

One of the known mechanisms is regulation of gene transcription. This is done

by employing proteins that may aid or stop the attachment of RNA-polymerase

to the desired site on DNA. This can totally depend on the environment and the

same cell may then demonstrate various behaviors as a consequence of different

states of gene activity.

1.1.2 Higher Degrees of DNA Configuration

The double helical configuration of DNA is how genetic material is kept inside

single celled species like bacteria. In most of the multi cellular species, how-

ever, the DNA is kept inside an enveloped structure called nucleus (about 10
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Figure 1.1: Hierarchy of DNA configuration in eukaryotic cells.

micrometers in diameter). A cell that contains a nucleus is called an eukaryotic

cell, and the species with this form of cells are called eukaryotes. In order to

compactify the long DNA inside nucleus, eukaryotic cells employ structural and

configurational proteins such as histones. Eight histone proteins make a cylin-

drical complex, simply called the histone-octamer (11nm in diameter). In the

very basic level, eukaryotic DNA is wrapped around cylindrical histone-octamers

like a thread around spools, each for about 146 base pairs. Each histone-octamer

along with the DNA around it, is then called a nucleosome. At this level, under

the microscope these nucleosomes on DNA look like beads on a string (Fig.1.1)1.

However, there are also several higher levels of eukaryotic DNA condensation uti-

lizing different structural proteins. Biologists use the word chromatin when they

refer to the highly complex mixture of DNA and structural proteins (particularly

histones). Note that, higher order organisms like human being have more than

one linear DNA molecule, where each single DNA macro-molecule exhibits its

own hierarchy of compactification and is called a chromosome.

The degree of DNA packaging varies as the cells goes through different stages

1Courtesy of Richard Wheeler (Zephyris), wikipedia.com; the creator of this work, hereby
grants the permission to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.
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of its life cycle. Moreover, different regions of DNA inside nucleus may exhibit

different degrees of complexity and condensation. As a matter of fact, during cell

divisions, chromatin is in its utmost level of compactification (Fig.1.1). However,

during interphase, the period between nuclear divisions, eukaryotic chromatin can

be divided into two distinct regions based on their degree of condensation. Hete-

rochromatin, which refers to highly condensed and packed areas and euchromatin

referring to lightly condensed and dispersed parts.

1.2 Gene Silencing

In condensed heterochromatin domains, nucleosomes are so packed in high order

structures that they are not normally accessible to proteins for transcription, thus

not transcriptionally active. The size of these regions can be from several kilo

bases to several hundred kilo bases and can even cover the whole chromosome.

In contrast, euchromatin regions are less compact and transcriptionally active.

Therefore, the formation of heterochromatin can be also considered as a way

of silencing the expression of a number of adjacent genes. In particular, although

all cells in a multi-cellular organism contain the same copy of DNA and the exact

same genetic information, since variant regions of genome may be silenced in

different cells, distinct functional identities exist throughout the body of organism.

It is said in this case that, all the cells are of the same genotype but different

phenotypes. Genotype refers to the genetic makeup, whereas phenotype points to

the appearance of the organism such as color, size, behavior, etc.

Furthermore, in many circumstances, the structural organization of chromatin

will be inherited to new cells generated through cell divisions. As a result, silenc-

ing also plays a crucial role in multi-cellular development by stabilizing gene
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expression patterns in specialized cells at early stages and maintaining their iden-

tities throughout their life. One example of this, is the cell type dependent si-

lencing of Hox genes, important in development of body plans, by the Polycomb

group of proteins [4].

As it was discussed above, one of the interesting aspects of developmental

processes is that one could get multiple heritable cell fates without irreversible

changes to the genetic information. Heritable differences in cellular behavior or

phenotype, despite having the same genetic information, is called epigenetic phe-

nomenon. Apart from its fundamental role in development, epigenetic effects are

of great importance in certain diseases like cancer [3]. Note that there are several

mechanisms that lead to epigenetic effects and only one of these mechanisms is

transcriptional silencing.

1.2.1 Position Effect Variegation

As we discussed, whether a gene is expressed or silenced, depends on its position

along the DNA in eukaryotic cells. In other words, if one relocates an active

gene, experimentally, from euchromatin regions to heterochromatin regions, it

gets silenced. The opposite also holds when a gene is moved from a silenced

region to an un-silenced region.

Since the position effects, mentioned above, play a crucial rule in the behavior

and epigenetic identity of a cell; it is important to understand how the boundaries

between euchromatin and heterochromatin regions are determined on DNA. It is

known, that in many cases this boundary is pinpointed by some boundary elements

along chromosome. The boundary element is therefore, any structural factor

that hinders the spreading of silencing at the desired position on DNA. In some

cases, however, there are no special boundary elements to precisely determine the

border between two regions. In these circumstances, the boundary is not fixed

and silenced region can expand into or retract from active region on a seemingly
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random basis. However when the formation of boundaries has been settled at

early stages of development it will be preserved during the cell’s life and through

cell divisions. Note that, there is always a low chance of random shift in the

boundary in either direction at any point of cells life.

As a consequence of this dynamical behavior of boundary, it is observed that

genes that are located near the boundary can switch states from active to silenced

and vice versa at small frequencies. This phenomenon is called position effect

variegation. This effect has been detected in many organisms such as Drosophila,

the fruit fly. There is a gene in Drosophila which is responsible for the red color of

its eyes. In other words, if this gene is not active, the eyes will look white. Now,

for flies when this gene is active but has been positioned near heterochromatin,

the eyes include patches of both red and white colors rather than being entirely

red. The red regions represent cells with the active pigment gene and white spots

represent cells with silenced pigment gene. In other words, when the boundary

between chromatin regions is first being formed, there is a chance for the boundary

to shift and heterochromatin covers the pigment gene. This configuration then

will be inherited stably through many generations resulting in contiguous patches

of red or white.

1.2.2 Silencing In Budding Yeast, S. Cerevisiae

Observations on silenced areas of DNA in budding yeast, Saccharomyces Cere-

visiae have played an important role in understanding how chromatin silencing

works. We devote this section to an introduction on S. Cerevisiae, since our

research is based on a model of gene silencing in this organism.

Budding yeast can be found in two forms: haploid or diploid. Haploid cells

simply contain only one set of chromosomes. There are two types of haploid cells,

type a and type α. Diploids, on the other hand, are made by conjugation of the

two different types of haploid cells; hence contain two sets of chromosomes. Types
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Figure 1.2: The life cycle of budding yeast, S. Cerevisiae.

a and α of haploid cells can also be considered as two opposite sex types; and

their fusion is also called mating. Wild-type haploid cells have a high probability

of switching their mating type after each cell division (via budding), from a to α

and vice versa. In starving situation, haploid cells usually die, but diploid cells

sporulate and generate four spores. Spores are dormant state of haploid cells

and resistant to harsh conditions. When there is availability of nutrients, spores

germinate and grow to normal haploid cells (Fig.1.2)2.

There are three sections on chromosome III in yeast which are responsible for

switching and stabilizing mating types. Two of these sections, each located near

one end of the chromosome, are always silenced. They are called silent mating

2Courtesy of wikipedia.com; the creator of this work, hereby grants the permission to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
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loci and noted as HML and HMR loci and contain copies of genes that decide α-

type and a-type identity, respectively. There is a locus in the middle, called MAT

(mating type locus), which is always active and decides the mating type identity

of the haploid cell. Through generations of yeast, the genes from HMLα and

HMRa loci are alternatively transferred to the MAT locus, causing the change

in its mating type. In other words, when MAT locus contains HMLα genetic

sequence, yeast acts as an α-type cell and when it contains HMRa sequence,

it behaves as an a-type cell. This process happens through a recombination

mediated process called mating type switching.

It is believed that the silencing of HML and HMR loci originates from DNA

sequences next to them called, silencers. So if the silencer sequences are exper-

imentally removed, both HMLα and HMRa genes are active. In this case, the

haploid cells behave like an α/a diploid cell and are not able to mate. This de-

fective behavior can be used in experiments to detect any deficiency in repression

of HML and HMR sequences on yeast DNA.

Other than the silent mating loci, there are other types of regions on DNA that

are silenced. These regions include the telomeres, which are the highly condensed

ends of the chromosome. Both the telomeres and mating-type loci demonstrate

the same features as one expects from the silenced heterochromatin in higher

eukaryotes.

1.3 A Stepwise Model for Silencing

Many mechanisms has been proposed for silencing in diverse organisms [5], how-

ever, one can always find similar features between these models. In the general

model, there is usually a region that nucleates silencing by recruiting a silenc-

ing complex incorporating a histone modifying enzyme. Modification of histones
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Figure 1.3: A model for nucleation and spreading of silencing in budding yeast,
S. cerevisiae.

makes that region of chromosome more prone to binding to components of silenc-

ing complex, which, in turn, recruits further histone modifying enzymes. That

is how the process propagates till it meets some boundary element (or the sys-

tem reaches a stationary state due to exhaustion of one of the components of the

silencing complex, as will be discussed later) (Fig. 1.3).

The mechanism by which silencing nucleates and spreads in budding yeast is

relatively well investigated [5, 6] and provides a concrete example of the more
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general model mentioned above. It is known that the Silenced Information Regu-

lator (SIR) proteins are the main players in gene silencing at telomeres and silent

mating loci in yeast. There are four Sir proteins involved in this process, simply

called Sir1, Si2, Sir3 and Sir4. The role of Sir1 is different as it only cooperates

in nucleation of silencing at the silent mating loci, however the rest of Sir family

have also important roles in spreading of silencing at both the telomeres and at

silent mating loci.

To be concrete, from now on we focus our discussion to the silencing at the

silent mating loci. As it was discussed, the model for step-wise gene silencing in

S. cerevisiae, also posits that silencing happens in two distinct steps: nucleation

and spreading. In nucleation, with the help of site-specific DNA binding proteins

(like Rap1) and with Sir1 as a tether, Sir2, Sir3 and Sir4 will form a Sir Complex

on the nucleation site (Fig. 1.3.A.). Sir2, a crucial member of this process, works

as a de-acetylase enzyme. In other words, it can help removing acetyl groups from

certain parts of nearby histones. Consequently, de-acetylation of the neighboring

histones will make binding of Sir3/Sir4 sub-complex easier in the neighborhood

of the original nucleation site. Sir3/Sir4 sub-complex, in turn, would recruit

more Sir2. Hence, the spreading starts. More de-acetylation of histones improves

the recruitment of other Sir proteins and formation of more stable complexes on

neighboring sites. If histone de-acetylation is transferred further on, it will result

in spreading of silencing to even distal sites (Fig. 1.3.B.). Note that, although the

nucleation step is different in telomeric silencing, the process of spreading seems

to be very similar [8].
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1.4 Experimental Observations

1.4.1 Bi-stability and Epigenetic Inheritance in Budding

Yeast

In the wild type budding yeast, the regions that are silenced are, typically, always

silenced. As it was discussed in last section, Sir1 proteins are some of the main

elements in nucleation of silencing at HMR/HML loci. As a matter of fact, if

Sir1 is missing, nucleation effect at the silent mating loci is either absent or very

weak. In an experiment in 1989 by L. Pillus and J. Rine [9], it was found that

in sir1 mutants (where the nucleation effect is defective if not absent), there is

still a chance for HMR/HML loci to be repressed. In other words, silencing can

also happen without efficient nucleation. Then, the individual yeast cells would

represent two distinguishable type of cells (phenotypes). In this case, in a large

number of yeast cells, on average 20% of the cells exhibit repression and can

mate like a normal haploid cell, whereas the other 80% cells are de-repressed at

HMR/HML loci and behave like diploids. It was also found that, both epigenetic

states are stable to small fluctuations and are conserved through many generations

of yeast. In fact, it was observed that switching from un-silenced to silenced state

occurs approximately once in every 250 consecutive cell divisions, or with the

small probability of 4 × 10−3 [9]. The observation and results suggest that the

system is actually in a bi-stable regime, where two opposite stable states can exist

under the same conditions.

This kind of epigenetic switches between bi-stable states has received much

scientific attention in prokaryotes. Multiple phenotypes are usually represented as

multiple stable equilibrium points in deterministic descriptions of the biochemical

dynamics. For instance, computational modeling of lambda phage [10] has played

a crucial role in the development of systems biology [11, 12]. From the response

of lac operon in the presence of TMG [13, 14, 15] to synthetic genetic networks
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like the toggle switch [16], mathematical analysis has been an integral part of

understanding such phenomena. In particular, the biological model, in each of

these examples, provides a mechanism of positive feedback. However, positive

feedback is not sufficient to guarantee multi-stability, but essential for giving rise

to non-trivial epigenetic states.

1.4.2 The Effect of Low Acetylation

As it was discussed in the stepwise model of silencing in section 1.2, Sir2 has de-

acetylating enzymatic activity. This is a crucial part of the silencing process since

less acetylated nucleosomes are better places for Sir complex to attach. Then,

apparently, the presence of acetyl groups on parts of histones in nucleosomes

makes DNA less amenable to binding of Sir proteins. It is observed that near the

silenced regions in yeast, because of Sir2 activity, more histones are de-acetylated

as opposed to distal nucleosomes which are more acetylated. As a matter of fact,

there is an increasing gradient of acetylation as one moves along DNA, away from

the heterochromatin region [25, 26]. The acetylation activity, however, is referred

to an acetylase protein called, Sas2 protein. In particular, Sas2 along with Sas4

and Sas5 proteins comprise a protein complex called SAS-I which is linked to

histone acetylation in yeast [27]. Note that, Sas4 and Sas5 proteins are both

required for maximal SAS-I acetylation activity.

One would normally expect that when SAS2 gene is mutated (where acety-

lation is defective or absent) the silencing process should prevail. However, re-

searchers have observed many different and opposing effects of sas2 mutations.

In particular, deletion of SAS2 gene from DNA decreases the silencing process

at regions near telomere and at silent mating loci rather than helping it [28].

In contrast, when SAS-I acetylation activity is eliminated, the cell loses its bi-

stability at mating-type loci and demonstrates an intermediate state which is not

either silenced or un-silenced [22]. This intermediate state, can be considered as
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a porous heterochromatin, where there are many random un-silenced spots inside

a silenced region on DNA. This is especially interesting when we compare it to

SIR1 gene mutants when the cells can exhibit only one of the two stable states,

silenced or un-silenced.

1.5 The Mathematical Analysis

The crucial aspect of analysis of a mathematical model of epigenetic switches is

computing the bifurcation diagram, which tells us what region in the space of

control parameters is actually associated with bi-stability. The bifurcation dia-

gram also indicates the qualitative behavior of the system when perturbed (or

mutated) in a particular manner as in the low acetylation cases discussed before.

In contrast to prokaryotic epigenetic switches mentioned at the end of section

1.3.1, modeling eukaryotic epigenetic silencing involves studying a spatially ex-

tended bi-stable system. Hence, the system shows interesting phenomena, like

front propagation, allowing for a richer bifurcation diagram.

In this dissertation, we introduce a mathematical model of step-wise hete-

rochromatin silencing. A mean-field description of the dynamics explains many

features of the real system. Epigenetic states, in the absence of nucleation, can

be explained as a consequence of the existence of two stable uniform static solu-

tions: the un-silenced/hyper-acetylated state and silenced/hypo-acetylated states

on DNA. Studying the conditions under which the positive reinforcement inherent

in the proposed silencing mechanism is strong enough to give rise to bi-stability

and to cause stable inheritance of chromatin configurations of the two phenotypes

is one of the main goals of this dissertation. In addition, the conditions required

for static fronts will set additional constraints on the model.

Moreover, a stochastic treatment of the model is also considered. Fluctua-

tions in bio-molecular networks has been the subject of many research activities
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recently [31]. To analyze single cell data, one needs not only how the determin-

istic model behaves but also how noise in various quantities affects expression.

A stochastic version of the model, a lattice model with local states of acetyla-

tion, and Sir occupancy, will be studied by direct simulation. However, as seen in

studies of yeast gene expression [36, 37], extrinsic noise, equivalent to fluctuations

in the parameters themselves, often dominates over intrinsic fluctuations of the

processes described here with fixed parameters. Hence, to study this properly,

we will need to add a free parameter each characterizing the slow noise in the

control parameters (such as concentrations) for modeling the effect of cell to cell

variation of Sir proteins and acetylases. Instead, we will discuss the effect of

these fluctuations at the limit when the extrinsic part of noise is much slower and

stronger than the intrinsic part. At this regime, one can average over the intrinsic

noise and use the mean-field approximation. At the end, we propose experiments

designed to test the ideas discussed in this dissertation.
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Chapter 2

Bifurcation Analysis of a Model for Silencing

2.1 Dynamical Equations

The purpose of this section is to formulate a quantitative version of the conven-

tional biological model of step-wise formation of silenced chromatin (Fig. 1.3),

which was discussed in section 1.2. The main parameters involved in final equa-

tions are A, the local degree of acetylation of histones and S, the local probability

of occupation by Sir complex (Sir2, Sir3 and Sir4), both of which could depend

on time, as well as on their position on DNA. DNA is represented as a one-

dimensional lattice, where each site on the lattice represents either one or more

nucleosomes. So in other words, Si(t) on this lattice, is a number between 0 and 1,

representing fractional number of Sir complexes at site i at time t. Fractional de-

gree of acetylation, Ai(t), is defined in the same way. Writing chemical equations,

in the mean-field treatment of the system, we get,

dSi(t)

dt
= ρi(t)(1 − Si(t))f(1 − Ai(t)) − ηSi(t) (2.1)

dAi(t)

dt
= α(1 − Ai(t))(1 − Si(t)) − (λ +

∑

j

γijSj(t))Ai(t) (2.2)

Note that all the parameters in the above equations are non-negative numbers.

In equation (2.1), on the right hand side, the first term is the creation term and

the next one is degradation term. The 3-D concentration of ambient Sir complex

at site i is denoted by ρi(t), which may change as the system evolves. Since free

Sir proteins in the environment do not form Sir complexes by themselves, this
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quantity actually represents a function of concentrations of all components (Sir2,

Sir3 and Sir4) that are ready to make a Sir complex on the site. For example, in

the simplest case, when each protein is in low abundance, this function would be

proportional to the product of the three concentrations. However, throughout this

dissertation we will never need to go into these kind of details. The function f(x)

dictates the cooperativity in Sir complex binding and should be a monotonically

increasing function of x, 0 ≤ x ≤ 1. As the simplest case, we use f(x) = xn, where

n is the degree of cooperativity between de-acetylated histones in recruiting Sir

proteins. At last, η is the degradation rate of bound Sir complexes. In equation

(2.2), the same as equation (2.1), on RHS, the first term advocates creation and

next one degradation. α represents the constant acetylation rate1. In the second

term, the summation accounts for the contribution of adjacent Sir complexes in

de-acetylation of site i. Since Sir complex is only capable of de-acetylation of sites

in its neighborhood, γij is assumed to drop significantly as |i − j| gets large. In

addition, γij is assumed to be symmetric with respect to i and j, i.e. γij = γji.

Finally, λ is the rate of de-acetylation from the rest of de-acetylase proteins. This

rate is assumed to be a constant both in time and position.

In a more general model, all rates can be position dependent. We neglected

this effect for η, α and λ by assuming homogeneous concentration of participating

enzymes and no drastic conformational changes in DNA that can affect these

chemical rates.

2.2 Uniform Solutions

One could analyze the uniform static solutions of these equations and study the

stability. Dropping all i indices and replacing the non-local term
∑

j γijSj with

1To be more general, the acetylation term could be α(1−Ai)(1+σ−Si) allowing acetylation
of histones in silencing complex bound nucleosomes. However, as will be discussed in appendix
A, adding this process does not make much of a qualitative difference.
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γS, we can rewrite equations as:

dS(t)

dt
= ρ(t)(1 − S(t))f(1 − A(t)) − ηS(t) (2.3)

dA(t)

dt
= α(1 − A(t))(1 − S(t)) − (λ + γS(t))A(t) (2.4)

The stationary states are obtained by solving the algebraic equations produced

by setting time derivatives to zero. We analyze first the case where available SIR

concentrations are kept at a constant level (for example, if creation and degra-

dation rates of SIR proteins are high), meaning ρ(t) in equation (2.3) is assumed

to be a given time independent number, ρ. So in terms of scaled parameters

ρ̄ = ρ/η, ᾱ = α/λ and γ̄ = γ/λ, we have:

ρ̄(1 − S)f(1 − A) − S = 0 (2.5)

ᾱ(1 − A)(1 − S) − (1 + γ̄S)A = 0 (2.6)

For f(x) = xn, we plot the graph of above nullcline equations for different

values of n and chemical parameters. The intersections of two curves represent the

fixed points. We find that for n > 1 depending on values of chemical parameters

we can get either one or three fixed points (Fig.2.1). There is a possibility of

having two fixed point when at one of the points two curves are tangent to each

other. We will not discuss this case since it is not a physical possibility and will

only treat it as a transient state between two physical cases. For n = 1, no matter

how one chooses chemical parameters, there can be only one fixed point (Fig.2.2).

In the three fixed point regime, as it is shown in the Fig.2.3, always the middle

one is an unstable saddle point. The other two are stable, or in other words, we

are at a bi-stable regime as it could be seen by local analysis (appendix A). One

of the two stable states has a lower acetylation and a higher chance of repression,

which represents a silenced state (heterochromatin), while the other one with a
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higher degree of acetylation and higher chance of de-repression represents an un-

silenced state (euchromatin) (Fig.2.1). A more complete mathematical discussion

of fixed points and their stability is given in appendix A.

From here on, in our discussion we assume f(x) = xn, n > 1 to guarantee

possibility of bi-stability in the chemical parameters space. Now, in the bi-stable

parameter regime, we have two stable fixed points, silenced(heterochromatin)

and un-silenced(euchromatin). If ᾱ, the rate of acetylation, is kept constant,

as the value of ρ̄, the rate of Sir recruitment, increases the un-silenced (euchro-

matin) point and middle transient state move towards each other and at some

limit value of ρ̄, they become one single point where two curve are tangent to

each other. Pushing ρ̄ to even higher values, leads to a single silenced (hete-

rochromatin) regime i.e. at some upper limit the systems falls from bi-stability

to mono-stability (Fig.2.1). In contrast, if ρ̄ decreases, the heterochromatin point

and middle transient point approach each other and after dropping below a limit

the systems becomes mono-stable, the euchromatin state (Fig.2.1). The same

behavior can be seen for different values of ᾱ when ρ̄ is kept constant.

Now, suppose that we have decreased ᾱ to a value where there is only one

fixed point, which is a silenced state. Now, if we decrease the value of ρ̄ too, we

may again fall back into a three fixed point (bi-stable) regime. However, this will

not happen when ᾱ is very small. For small values of ᾱ, if we scan over different

values of ρ̄, the system will keep showing only one fixed point. In other words,

the system transforms from a heterochromatin fixed point to a euchromatin fixed

point continuously without crossing the three fixed point regime (Fig.2.4). This

behavior, as will be discussed later, can provide us with an explanation to results

of SAS-I elimination experiment in section 1.3.2.
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Figure 2.1: The intersections of nullcline curves, three representing static “SIR
binding” (dashed lines) and the other one static “Acetylation” (solid line), show
fixed points of the system. All graphs are plotted with f(x) = x4, γ̄ = 4 and
ᾱ = 6.67. Ambient Sir complex concentration acts as a switch for the bi-stable
system. This graph shows how low concentration of Sir complex pushes the
system towards euchromatin and high concentration of Sir complex pushes it
towards heterochromatin solution. For high, intermediate, low concentrations of
Sir complex respectively ρ̄ = 125, 20 and 10.
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Figure 2.2: The intersections of nullcline curves, two representing static “SIR
binding” (dashed lines) and the other one static “Acetylation” (solid line), show
fixed points of the system. All graphs are plotted with γ̄ = 4, ᾱ = 6.67 and
ρ̄ = 20. When there is no de-acetylation cooperativity in Sir complex binding,
f(x) is linear and there is no bi-stability (only one fixed point solution). But for
f(x) = x4 curve, as a result of cooperativity there can be bi-stability (three fixed
point solutions).
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ρ̄ value increases.



23

2.3 The Hysteresis Behavior

One might ask which of the two stable fixed points is actually chosen by system in

the bi-stable regime. In order to answer this question and also to understand the

behavior of the system in this regime, we need to employ a dynamical simulation

of the system. Going back to equations (2.3) and (2.4) and keeping ᾱ at some high

constant value, we start from some initial value of ρ̄. By gradually increasing and

decreasing ρ̄, at each point we check the final equilibrium state chosen by system.

Not very surprisingly, the system demonstrates a hysteresis behavior. In other

words, the behavior of the system depends on its history i.e. it always keeps the

same fixed point from which it entered the bi-stable region. For instance, if we

start from a small value of ρ̄ at which there is only one un-silenced (euchromatin)

fixed point and start increasing ρ̄, when the system moves into the bi-stable region

it still keeps staying in the un-silenced state. This will be the case no matter how

ρ̄ changes and even works for discontinuous jumps. However, if ρ̄ gets so large

that we pass the bi-stable region, the only possible fixed point becomes a silenced

(heterochromatin) state and the system abruptly transforms to a silenced state.

This discontinuous switch of states is in direct contrast to the continuous change

of states that we mentioned for very low values of ᾱ. Now, if we reverse the

direction of movement and start decreasing ρ̄, as we move back into the bi-stable

region, the system keeps staying in silenced state until we exit from the other end

and enter the un-silenced region where we suddenly observe a sharp change in the

state of system.

To clarify this behavior, one can make a plot of equilibrium value of S versus

ρ̄ for constant values of ᾱ. Using equation (2.6), we can solve 1 − A in terms of

the other variables as follows:

1 − A =
1 + γ̄S

ᾱ + 1 + (γ̄ − ᾱ)S
(2.7)
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Figure 2.5: Sir occupancy, S as a function of Sir availability, ρ. The S shaped
curve indicates multiple solutions as is common with a bifurcation diagram in
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Now plugging this value into equation (2.5), we will have the following formula

for ρ̄ in terms of S and ᾱ:

ρ̄ =
S[ᾱ + 1 + (γ̄ − ᾱ)S]n

(1 − S)(1 + γ̄S)n
(2.8)

Using equation 2.8, we will make a graph of S versus ρ̄ at different values

of ᾱ (Fig.2.5). For small values of ᾱ the graph is monotonically increasing and

therefore there is a one to one correspondence between S and ρ̄ values, dictat-

ing that the transition from un-silenced euchromatin state (low values of S) to

silenced heterochromatin state (high values of S) happens continuously along the

monotonic curve (Fig.2.5, solid/red and dashed/green curves). However for large

values of ᾱ the graph looks like a sharp ”S-curve” where at some values of ρ̄ there

are two corresponding values of high and low S i.e. a bi-stable regime (Fig.2.5,

dash-dotted/blue curve). If one increases the value of ρ̄ from zero and follows S

on this curve, S increases continuously until point (A), where the curve does not

allow further continuous increase. Therefore, at this point the value of S jumps

to its value at the higher section of the curve (sharp transition from un-silenced

to silenced state). For further increase in ρ̄, there will be again a one to one

correspondence between ᾱ and S and the system continuously follows the curve.

Now if we reverse the direction of the change and start decreasing ρ̄, S continu-

ously decreases until point (B), where it jumps to the lower portion of the curve

and we get a sharp transition from silenced heterochromatin back to un-silenced

euchromatin.

2.4 The Bifurcation Diagram

The interesting behavior of system, motivates the depiction of a phase diagram,

indicating regions in the parameter space of ρ̄ and ᾱ leading to mono-stability

and to bi-stability. In order to do so, we seek the boundary between the three
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fixed-point (bi-stable) region and single fixed-point (mono-stable) region inside

the ρ̄ and ᾱ space. We have already learned from previous discussions, that

when system moves from bi-stable region to mono-stable region, at this limit two

nullcline curves (2.5) and (2.6) in Fig.2.1 are tangent to each other. We use this

condition to find the boundary between the two regions in phase space. The

values of S and A at fixed points are given by the solution of (2.5) and (2.6), so

we take the derivative of both equations with respect to A:

nρ̄(1 − S)(1 − A)n−1 = −
dS

dA
(1 + ρ̄(1 − A)n) (2.9)

ᾱ(1 − S) + (1 + γ̄S) = −
dS

dA
(γ̄A + ᾱ(1 − A)) (2.10)

We should then equate dS/dA in above equations. By using equations (2.5)

and (2.6), we can finally solve A in terms of S and get the simplified equation

below:

A(S) =
1 + γ̄S

nS(1 + γ̄)
(2.11)

Combining the above equation with equations (2.5) and (2.6) and writing ᾱ

and ρ̄ in terms of parameter S; we have:

ᾱ(S) =
(1 + γ̄S)2

(1 − S)[(γ̄ + 1)(n − 1)S − (1 − S)]
(2.12)

ρ̄(S) =
S

(1 − S)

(

n(γ̄ + 1)S

(γ̄ + 1)(n − 1)S − (1 − S)

)n

(2.13)

Finally, using above equations, we will be able to graph the pair of parameters

(ρ̄, ᾱ) at the boundary between bi-stable and mono-stable region (Fig.2.6). The

diagram shows that the bi-stable region in parameter space is a wedge-like region

with a pointed critical point. Note that, in our graph the horizontal axis is ρ̄ and

the vertical axis is ᾱ. The mono-stable silenced (heterochromatin) state exists
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degree of cooperativity n was set to 4 and γ̄ = 4.
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below the bi-stable region, whereas mono-stable un-silenced (euchromatin) state

exists above this region. Because of its special shape, we also call this diagram

the bifurcation diagram.

2.4.1 The Critical Point

The critical point (the cusp point in bifurcation diagram) corresponds to the

minimum values of ρ̄ = ρ̄c and ᾱ = ᾱc in bi-stabile region. In other words, if

either ρ̄ < ρ̄c or ᾱ < ᾱc there will be impossible to have two opposite un-silenced

and silenced states existing at the same time. From equations (2.12) and (2.13),

we have ρ̄(S) and ᾱ(S) both as functions of S, then taking their derivatives with

respect to S and equating them to zero will give us the value of S at the critical

point, Sc:

Sc =
n + 1

2n + γ̄(n − 1)
(2.14)

Note that both dρ̄
dS

(Sc) = 0 and dᾱ
dS

(Sc) = 0 give us the same value for Sc, as

they should. If we call the corresponding value of A(Sc), Ac; from equation (2.11)

we will get:

Ac =
2

n + 1
(2.15)

Using these values in equations (2.5) and (2.6) will result in critical values of

ρ̄ and ᾱ:

ρ̄c =
(n + 1)n+1

(n − 1)n+1(1 + γ̄)
(2.16)

ᾱc =
4n

(n − 1)2
(2.17)

Note that, as it can easily be seen from above equations, n 6= 1 is a necessary

condition for the existence of the critical point. It is also worth to restate that
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Figure 2.7: The corresponding behavior of system in bifurcation diagram for
change of Sir occupancy, S as a function of Sir availability, ρ in Fig.2.5.

the critical point is at low availability silencing factors, ρ̄ coupled with low rate of

acetylation, ᾱ. This feature will have an important implication when we will later

consider the result of experiments involving mutants lacking particular acetylases

(discussed in section 1.3.2).

2.4.2 The Hysteresis Behavior in Phase Space

We can now return to the previous discussion on the behavior of the system at

different values of ρ̄ and ᾱ. Particularly, let us look at the plot of S versus ρ̄ for

three constant values of ᾱ and the hysteresis behavior (Fig.2.5) one more time.

The corresponding values of ᾱ will give us three horizontal lines on the phase



30

diagram, (Fig.2.7). For low value of ᾱ the horizontal line (dashed/green line)

is under the critical point and as the value of ρ̄ increases the system smoothly

goes from un-silenced state to silenced state. However, for large values of ᾱ the

horizontal line (dash-dotted/blue line) is above the critical point and to go from

un-silenced to silenced region the system has to pass the bi-stability region. If the

system enters the bi-stability region from left, i.e. un-silenced region, it keeps its

un-silenced state until value of ρ̄ increases to point (A) at the boundary. Further

increase in ρ̄ means entering the silenced region and therefore forcing the system

to sharply transform from un-silenced to silenced state. On the other hand, if

we enter bi-stability region from right, the system keeps its silenced state until ρ̄

decreases to the value at point (B) where we will again have a sharp transition

of the system’s state, this time from silenced to un-silenced. Finally, the middle

horizontal line passes through the critical point and therefore it is at the boundary

between two behaviors (The solid/red line in Fig.2.5 and 2.7) .

2.4.3 The Role of Non-local Interaction Factor, γ and De-

gree of Cooperativity, n

One might ask how the bifurcation diagram discussed above depends on parameter

γ in equation (2.4). γ is the parameter that controls the average rate of de-

acetylation by Sir complex. In other words, the larger the γ the more chance of

de-acetylation, hence more silencing. Therefore, we expect that when γ is large,

only large values of α give rise to hyper-acetylated/un-silenced states. Moreover,

even moderate values of ρ can cause silencing in this regime. So as it is depicted

in Fig. 2.8, the un-silenced euchromatin region of the parameter space will be

squeezed and the critical point shifts both towards left for higher γ values. As a

result, the bifurcation diagram becomes wider.

The same question rises for, n, the degree of cooperation of de-acetylation in
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Figure 2.8: The effect of γ on the shape of bifurcation diagram.

recruiting silencing proteins, equation (2.3). As the parameter n increases, the

role of cooperation of de-acetylation becomes more accentuated i.e. to get the

same silencing effect the system requires more cooperating de-acetylated DNA

sites or higher probability of de-acetylation (lower degrees of acetylation) at the

corresponding sites. In other words, it will be more difficult to get silenced het-

erochromatin states than before. Consequently, the un-silenced region in param-

eter space prevails, squeezing the bifurcation diagram down (Fig. 2.9). The role

of non-linear cooperation in dynamical equations of the system will be discussed

in more details in chapter 5.
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Chapter 3

Non-uniform Solutions and Front Propagation

In this chapter, we go beyond analyzing the uniform solutions and consider stable

non-uniform spatial solutions. In the region of parameter space where the system

is bi-stable, it is possible to study how fronts between a silenced state and an

un-silenced state form and move on the lattice. In a system with a well defined

free energy function, the average motion of a front or interface is determined by

the difference of free energies of the two states across the front (Fig. 3.1). As

it is shown in Fig. (3.1.A.), the lower free energy state S2 (usually called the

stable state) invades into the meta-stable state with higher free energy S1, i.e.

as the front moves to the left the sites on the left of the boundary transform

from S1 to S2. The opposite happens in Fig. (3.1.C.) when free energy of S1 is

lower and causes the front to move in reverse direction. At the points where the

two free energies are the same, the average front velocity is zero (Fig. 3.1.B.).

Although, in non-equilibrium systems like the one at hand, there is no useful free

energy to be defined, one might still explore the region of parameter space where

silenced state invades into the un-silenced ones and vice versa (and the boundary

in between where the front becomes stationary).

We study the motion of boundary between the two stable phases in the bi-

stable parameter region both in the current discrete model and the continuum

version of the model where the lattice is replaced by a continuous 1-D system.
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Figure 3.1: Front propagation in a system with a well defined free energy

3.1 The Continuum Limit

The continuum versions of equations (2.1) and (2.2) are given by discrete param-

eter i and j replaced by continuous parameters x and y, and the sum replaced by

an integral; as follows:

∂S(x, t)

∂t
= ρ(1 − S(x, t))f(1 − A(x, t)) − ηS(x, t) (3.1)

∂A(x, t)

∂t
= α(1 − A(x, t))(1 − S(x, t)) − (λ +

∫

γ(x − y)S(y, t)dy)A(x, t)

(3.2)

Similar to the discrete case, function γ(x−y) is an even function that sharply

falls to zero as |x − y| gets large compared to a length scale ξ, say, making the

integrand negligible in this region |x − y| >> ξ. Since we are only interested in

qualitative nature of the bifurcation diagram, we can make a further approxima-

tion restricted to the situation where S(x, t) changes slowly over the distance of

the order of ξ. Thus we Taylor expand S(y, t) = S(x + (y − x), t) = S(x + u, t)
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around x, keep up to the second order in |u| = |y−x| and disregard higher orders.

Equation 3.2 reduces to:

∂A(x, t)

∂t
= α(1 − A(x, t))(1 − S(x, t)) −

(

λ + Γ0S(x, t) + Γ2
∂2S(x, t)

∂x2

)

A(x, t)

(3.3)

where Γ0 =
∫

γ(u)du and Γ2 = 1/2
∫

γ(u)u2du. Note that we set Γ1 =
∫

γ(u)udu equal to zero since γ(u) is an even function. Equations (3.1) and

(3.3) are then the continuous forms of set of principal equations (2.1) and (2.2).

3.1.1 Wave Solutions and Zero Velocity Line

The analysis of the continuum system follows the standard route [17, 18, 19].

Seeking for front moving solutions, we assume wave solutions A(x, t) = A(x− ct)

and S(x, t) = S(x − ct), and if z = x − ct:

0 = c
dS(z)

dz
+ ρ(1 − S(z))f(1 − A(z)) − ηS(z) (3.4)

0 = c
dA(z)

dz
+ α(1 − A(z))(1 − S(z)) −

(

λ + Γ0S(z) + Γ2
d2S(z)

dz2

)

A(z)

(3.5)

For each set of parameters, there is a front velocity, c, for which there is

only “one” (or none) continuous solution that represents a transition between the

stationary states representing un-silenced euchromatin and silenced heterochro-

matin.

For the purpose of this dissertation, we would focus on the part of the param-

eter space where the front velocity is zero. This analysis of problem for c = 0 is

considerably simpler, above equations will become:

0 = ρ̄(1 − S(z))f(1 − A(z)) − S(z) (3.6)
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Γ̄2
d2S(z)

dz2
= ᾱ

(1 − A(z))(1 − S(z))

A(z)
− 1 − Γ̄0S(z) (3.7)

where Γ̄0 = Γ0/λ and Γ̄2 = Γ2/λ. Now, since equation (3.6) is an algebraic

equation, allowing A to be expressed in terms of S, we can define a potential

V (S) as follows:

V (S) = −S − 1/2Γ̄0S
2 + ᾱ

∫ S

0
dS

(1 − A(S))(1 − S)

A(S)
(3.8)

So that other equation, namely equation (3.7), could be written as

Γ̄2
d2S

dz2
=

dV (S)

dS
(3.9)

The values of parameters, for which the potential V (S) has two local minima

with equal potential values, correspond to existence of a zero velocity front (Fig.

3.1.B.). Note that, we were able to use this potential only to describe zero velocity

fronts, and not for the general traveling solution. This is because only at zero

velocity, the system is at equilibrium and therefore free energy can be well defined.

To find out the zero velocity line in parameters space, one needs to find the

relationship between ρ̄ and ᾱ resulting in having two local minima with equal

values in function V (S). At these minima dV/dS = 0 and therefore d2S/dz2 = 0

from equation (3.9). Applying this condition to equation (3.7) reduces the pair of

equations (3.6) and (3.7) to nullcline equations (2.5) and (2.6) with γ̄ ≈ Γ̄0. This

simply means that as one would have expected the local minima in continuous

equations coincide with two uniform solutions found from nullclines in chapter 2.

So if S1 and S2 correspond to two stable uniform solutions in bi-stable region, we

need to have V (S1) = V (S2) or:

ᾱ
∫ S2

S1

dS
(1 − A(S))(1 − S)

A(S)
= S2 − S1 + 1/2Γ̄0(S2

2 − S1
2) (3.10)

Since A(S) is given by algebraic equation (3.6), it is a function of ρ̄. Therefore,

ᾱ can be easily found as a function of ρ̄ by above equation. For the case of
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region of phase diagram. The degree of cooperativity n was set to 4 and γ̄ = 4.
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f(x) = xn, we solved the integral numerically using MATLAB and plot zero

velocity line inside the bi-stability region in phase diagram (represented by the

dashed/green line in Fig.3.2).

According to the diagram, zero velocity line starts from the critical point and

divides the bi-stable region into two sections. The upper section, which is next to

mono-stable un-silenced regime corresponds to invasion of un-silenced state into

the silenced areas. The opposite happens in the lower section. Therefore, each

section of the bi-stable region just mentioned, points to a different direction of

the movement of front, similar to what happens in Fig.3.1.A and 3.1.C.

3.2 The Discrete Model

We also need to study the formation of boundary in the discrete model i.e. solve

equations (2.1) and (2.2) directly, using numerical methods. For this means, an

explicit finite difference method was employed (a more detailed description of the

method is given in appendix B).

By scanning different values of parameters ρ̄ and ᾱ, inside the bi-stability re-

gion one finds a band-like region (as opposed to the zero velocity line in continuum

case) where a stable zero velocity boundary between the silenced and un-silenced

states can form (in the rest of the phase space either the silenced region shrinks

to zero or it covers all the sites). This result actually has been very well studied

for front propagation failure in lattice models as in [20]. The boundaries of the

band are represented by the dashed/red lines in Fig.3.3. This band shrinks to

the zero velocity line as one takes the continuum limit. We will call this region

in phase space the zero velocity band.

Now, One might ask which of these descriptions, the continuous or the discrete

case, are closer to reality. If we count each nucleosome as a unit and expect one

silencing complex per nucleosome, then that provides us with a natural lattice
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spacing. However, the nucleosomes are not quite static. They could move around

or disappear (if the histone-octamer falls off DNA). If the time scale of nucleosome

dynamics is much slower than that of the silencing process, then we are justified

in taking the nucleosome array as a lattice to operate upon. If the time scales are

the other way around, we might average out the nucleosome fluctuations and get

an effective continuum description. The truth probably is somewhere in between,

leading to a fuzzy region of low front mobility crossing over to high front mobility

regions, above and below zero velocity line in the bifurcation diagram.

3.3 Front Dynamics

As it was discussed in section 1.3.2 lowering acetylation rate, α as in the sas2

mutant case [25, 26], may result in the counter-intuitive behavior of reducing

silencing rather than helping it. This is a question of dynamics, so to find an

answer we need to study the movement of the front by starting from some initial

configuration of silenced and un-silenced areas at equilibrium, then change the

chemical parameters, and let the system evolve until it reaches equilibrium again.

Since in the bi-stability parameter region there is no unique stable configuration,

there is no trivial answer to above problem if the final parameters sit in this

region.

In particular, we are interested to see if the initial nucleation necessarily re-

sults in spreading of the silencing. Suppose we are in the bi-stable region of the

parameter space and start from the locally stable uniform un-silenced solution,

i.e. all sites of our 1-D lattice are hyper-acetylated/un-silenced. We want to

know what happens if we nucleate a small region of silencing, say, by tethering

a protein that recruits the silencing factors locally. So we force nucleation at a

site in the middle of lattice, i.e. we keep a site silenced all the time. With ini-

tial parameters inside the zero velocity band and by utilizing numerical methods
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in appendix B, we let the system evolve until it reaches the equilibrium. Not

surprisingly, there will be no spreading and the final configuration will not be

very different. The spreading will be limited only to the neighborhood of the

nucleation site. The system needs only to conform to the desired shape of the

boundary to reach equilibrium and this does not take more than a few sites at

vicinity (case A: solid/black curve, Fig. 3.4). Then if one decreases α, say, by

knocking off an acetylase protein; nothing changes unless we move out of the zero

velocity band. For a α under the zero velocity band yet inside bi-stability area,

since there will be no stable boundary between two states the silencing spreads

and covers all the space (case B: Dash-dotted/blue curve, Fig. 3.4). It is obvious

that, the same thing would happen independent of the initial configuration, if

final value of α was under the bi-stability region inside the silenced state territory

(case C: Dashed/red curve and case D: dotted/magenta curve, Fig. 3.4). Note

that in particular, lowering the value of α in no way reduces the silencing effect.

In search of an answer to that paradoxical phenomenon, in the next section we

will study the effect of finite supply of Sir proteins.

3.4 The Role of Finite Supply of Sir Proteins

So far, it was assumed that the available ambient concentrations of Sir proteins

is fixed, reflected in ρ (or ρ̄) being held constant. We could use our insights, into

the bifurcation diagram, to infer what would happen if the total number of Sir

proteins (the sum of those in solution and those bound to DNA) were fixed. This

is particularly interesting in the bi-stable region.

Our treatment is very similar to studying phase equilibrium with a fixed num-

ber of particles. For example, consider a liquid gas mixture at a constant tem-

perature in a fixed volume with fixed number of particles, and imagine that there

is an interface between the two states. The interface moves, and the fractions
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of particles in the different states change till chemical potential of the two states

become equal. Under this final condition, the interface does not move anymore,

apart from thermal fluctuations around the average position. As we noted be-

fore, in our problem, we may not define a free energy, but we could indeed talk

about average movement of interface between two states, namely the front, and

the condition under which the interface stops moving.

Going back to original equations (2.1) and (2.2), we need to replace the con-

stant ρi(t) by a ρ(t) which is given as follows:

ρ(t) = κ(Stotal −
∑

k

Sk(t)) = ρ0(1 −

∑

k Sk(t)

Stotal

) (3.11)

where Stotal, the total number of functional Sir complexes in the system, and

ρ0 are both constants.

Depending upon the size of the silenced region and Stotal, one would get in-

teresting titration effects in this model. So we actually consider two cases; case

I, with Stotal large enough to cover the whole lattice and case II, with not suffi-

cient value of Stotal (it can only cover a limited area of lattice). Now, suppose we

employ the same experiment we began in last section and start with a nucleation

center at the middle of entirely hyper-acetylated/un-silenced lattice. If we are

above the zero velocity band, no stable boundary can form and high acetylation

rate makes it impossible for silenced patch to spread into the un-silenced region.

Even inside the zero velocity band, as with the previous case of infinite supply of

Sir protein, the spreading will only be limited to the vicinity of nucleation and it

stops as soon as stable boundary can form. Therefore, in both cases silencing is

going to remain localized around the region of recruitment.

However if the acetylation rate, α, is tuned down further; we go into the region

where the silencing can spread into un-silenced area i.e. below the zero velocity

band. Naively, one would always expect more silencing as in the infinite Stotal

case. However, since ρ is no longer fixed, as silencing spreads, ρ(t) reduces. At
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this point one of the two following things may happen. The front could stop

because ρ(t) reduces enough to reach a point on bifurcation diagram where the

propagation velocity is zero i.e. inside the zero velocity band. Thus the effect of

reducing α would be to effectively reduce ρ as well, so that the system always stays

on the zero velocity region. This result can happen in both case I and II (case

B, Fig.3.5 and cases B, C & D, Fig.3.6). However, in case I there is a possibility

that before reaching the zero velocity band, silencing has covered all the lattice.

So in this case the final state can be any point inside the bi-stability region, or

inside mono-stable silenced region and not necessarily in the zero velocity band

(cases C & D, Fig.3.5).

In conclusion, Fig.3.5 and 3.6 show how the simulation results agree with the

predictions above. In all the cases we started with an initial stable nucleation

region inside the zero velocity band, then jumped to lower values of α (black

triangles) and let the system evolve until it reaches its final stable configuration

(colored triangles). As it is shown in Fig.3.6 for limited supply of Sir proteins

the system always stops on the zero velocity band, silencing a limited area on the

lattice. In Fig.3.5, however, Stotal is large enough to cover the whole space; so

silencing of limited patches of DNA only happens when α is not too small.

The importance of the results from this simulation is not limited to the above

discussion on spreading and front propagation. Comparing results of case C and

D in Fig.3.6 reveals that lowering α can actually reduce the silencing effect. This

effect can be explained intuitively as follows; since with limited supply of Sir

proteins and decreasing α system has to stay on the zero velocity band, the value

of ρ also decreases, consuming more ambient Sir proteins. In other words, more

free Sir proteins sit on the lattice and expand the silenced area. However, the

decrease in both parameters α and ρ moves the system closer to the critical point,

where the values of S and A for two opposite states converge. In other words,

the average probability of Sir binding, S, decreases and the average probability
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of acetylation, A, increases and both get closer to their critical values.

In addition, around the critical point, the bi-stability region is very narrow

and by small fluctuations the system may cross bi-stable line and switch states.

So lowering acetylation rate, α as in the mutants of sas2 which code for acetylases

[25, 26], not only can reduce average silencing but also move the system closer

to the critical point and results in very sharp changes in silencing under the

small changes in Sir availability. So we believe that the resulting system becomes

extremely susceptible to cellular noise and would display a wide distribution of

expression. Thus, as opposed to the naive expectation that SAS2 deletion will

just make everything more transcriptionally silent, one should find individual cells

that show good expression from the ”silent” loci.

In addition, the mono-stable intermediate silencing state in SAS-I elimination

experiment (section 1.3.2) may correspond to the case where α has dropped to a

value lower than the critical value, αc. In this case, the system follows the same

behavior and consumes ambient Sir proteins until ρ decreases to a value close to

the critical point. However, since α is smaller than αc, the final state will be in

the mono-stable region of phase space at a point between un-silenced and silenced

regions, where there is no distinction between two states. This point very well

describes the porous heterochromatin configuration of this state.

Note that, as discussed in chapter 1, in reality the silencing could also stop at

special boundary elements on DNA where some other process stops the spread of

silencing [21, 24]. Alternatively, if there are more than one region in DNA where

silencing spreads by the same mechanism and if at least one of these regions

does not possess a boundary element, then we are led to the same situation,

namely ρ reducing enough to stop front movement. We will explore the biological

consequence of this observation in the chapter 6.
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Chapter 4

The Role of Stochasticity

An important aspect of biochemical interactions inside cell is that they all show

some degree of stochasticity. Numerous studies on gene expression in living cells

have shown the intrinsic stochasticity in transcription and translation [32]. For

instance, one can look at the bactriophage λ switching phenomenon, which is a

good example of noise in cellular processes as the switching between the bi-stable

lysis and lysogenic states happens randomly [33]. Basically the underlying reason

to this intrinsic noise is that, most of the time only a few constituent protein

molecules are present to participate in interactions, so the interactions happen

like sudden bursts at random times [34, 35]. Thus, in practice, cellular interactions

are very susceptible to thermodynamic fluctuations. As a result, the mean-field

approaches like what we took with equations (2.1) and (2.2) in previous chapters

are generally far from reality and just demonstrate the average behavior of cell in

these circumstances. However, as it was discussed at the end of chapter 1, studies

show that extrinsic noise (the fluctuations in the chemical parameters themselves)

is often slower and prevails intrinsic fluctuations described above [36, 37]. So one

might still be able to learn a lot about the effect of extrinsic fluctuations at the

mean-field approximation of the system.

In contrast, we also mentioned many observations on epigenetic inheritance

that show a very robust inheritance of chromatin configuration to the decedent

cells. One might ask, despite all the noise involved, how cells can behave with such

robustness. Unfortunately, an exact answer to that question requires a detailed

knowledge of chromatin configuration and molecular processes during cell division
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which, because of the physical constraints in probing them, it has not yet been

available to us.

Our model can actually provide us with some insights regarding the robustness

of the average chromatin configuration to extrinsic fluctuations, sudden changes

in chemical constants. We will discuss the results of our simulation to explain

this average configurational robustness in the first section of this chapter. In the

next section, however, we will actually consider the intrinsic noise in a stochastic

treatment of our model and will see that the model can still show the same form

of bifurcation diagram under thermodynamic fluctuations and thus the similar

bi-stable/mono-stable behavior persist.

4.1 Extrinsic Fluctuations and Front Robustness

Going back to discrete equations (2.1) and (2.2); so far the main chemical param-

eters of the model α and ρ (or ρ0, in the case with limited supply of Sir), have

been treated as constants, ignoring any fluctuations in their value. We will show

that, in the mean-field approach, depending on the intensity of α and ρ variation,

the system can still display the same average silencing configuration and maintain

the same position of the barrier. Assume that we are in the middle of the zero

velocity band and some contiguous part of DNA lattice is silenced (Solid/black

curve in Fig. 4.1.A & Fig. 4.2.A). The borders between two states are very well

defined and the system is at equilibrium. Now keeping ρ fixed (The supply of

Sir proteins is un-limited), we shift the value of α to either of its value at the

boundaries of zero velocity band and using the numerical method in appendix B,

we let the system evolve (Dashed/green curve, Fig. 4.1). The result as it is shown

in the picture, exhibits no shift in the position of the boundary. The only thing is

the degree of silencing that slightly changes inside the silenced patch. Clearly, if α

moves out of the zero velocity band, the front will move until either of the regions
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shrinks to zero. Now if one does the same simulation with ρ changing instead

of α, the result will still demonstrate persistence in the position of the boundary

between two states (Dash-dotted/magenta curve, Fig. (4.2)). For the case with

limited supply of ambient Sir proteins, one would still expect the same behavior,

although now the sudden shift is assumed to be in ρ0 (Fig. 4.3). However, in this

case, when the value of ρ0 crosses the upper/lower bounds, the average shift in

the position of boundary will be limited since the value of ρ always returns inside

the zero velocity band to maintain a stable boundary (Dashed/blue curve, upper

diagram, Fig. 4.3). In other word, when the supply of Sir proteins is limited, the

position of boundary is even more robust to changes in chemical parameters.

In conclusion, depending on the location of our system inside the parame-

ter space or more precisely inside the zero velocity band, there is some degree

of persistency in the average position of the boundary after it is settled. This

will provide us with some insights on why chromatin which is subject to differ-

ent extrinsic fluctuations during the cell life cycle can still maintain the similar

configuration.

4.2 The Intrinsic Stochastic Treatment of the System

So far, we assumed a mean-field approximation of the system by introducing chem-

ical equations (2.1) and (2.2) as the principal equations governing the silencing

phenomenon. As it was discussed at the beginning of this chapter, stochastic

nature of cellular interactions demands a stochastic approach to withhold a more

realistic perspective of the system’s behavior. The intrinsic stochastic nature of

the interactions can be treated in equations (2.1) and (2.2) when the parameters

Ai and Si are not considered average values anymore and only acquire a few dis-

crete values on a random basis, e.g. Si can only take 1 for Sir complex sitting at

site i or 0 for Sir complex not sitting there.
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The mean-field treatment of the system can only be equal to the average of its

stochastic version when all terms in equations (2.1) and (2.2) are linear or when

there is no cooperativity. More precisely, the average value of any non-linear

function f of the stochastic variable x is not in general equal to function f of the

average value of stochastic variable x; or < f(x) >6= f(< x >). So we need to

check if the average stochastic treatment of the system actually agrees with our

qualitative results from the mean-field approach or not.

One of the big drawbacks to the mean-field approach is that when one consid-

ers a stable fixed point as silenced to un-silenced, it only represents the average

behavior of the system. In contrast, when one studies single cell data, there are

no stable fixed points because of stochastic deviations. Therefore to be more con-

crete, one is required to check if the stochastic deviation from the average value

is small enough that they can actually be considered a stable point in stochastic

regime. So the stochastic simulation of the system is necessary, not just to exam-

ine the average qualitative results from mean-field approach but also to see if the

fixed points in the mean-field model can represent any stable points in the real

stochastic behavior of chromatin.

For the principal equations (2.1) and (2.2), with f(x) = xn, we assumed a

digital variable Si and n digital variables A
(m)
i , m = 1, 2, .., n at each site of the

1-D lattice. Therefore, we have the following rates between opposite digital states:

Si = 0
ρ
∏

m=1,2,..,n(1 − A
(m)
i )

�����������������������������������������������������
�

�������������������������������������������������������

η
Si = 1 (4.1)

A
(m)
i = 0

α(1 − Si)
�	�����������������������

�

�
�����������������������	�

λ +
∑

j γijSj

A
(m)
i = 1 (4.2)

where all the chemical parameters are kept constant. Then we employed

a Monte Carlo simulation on a lattice of length L = 10 with periodic boundary

conditions. Two opposite initial conditions was chosen for each set of parameters:
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an entirely hypo-acetylated/silenced lattice and an entirely hyper-acetylated/un-

silenced lattice. We also assumed the parameter γij to fall off exponentially with

a length scale ξ. For a more detailed description of the method please refer

to appendix C. By scanning on different values of ρ and α, we could distinguish

different points of the phase space according to the average behavior of the system

and the time scale of convergence towards the average state. As a matter of fact,

the qualitative shape of the bifurcation diagram will be similar to the bifurcation

diagram of the mean-field approach, verifying that the mean-field approach does

actually provide a good qualitative description of the average behavior of the

stochastic system. Moreover, results from the histograms clearly show that in

some regions of phase space the stable points can be very robust to noise and the

system stays in silenced and un-silenced states for a comparatively long time (Fig.

4.4).

However, as it is seen in Fig.4.5, at some points of the parameter space one

might get intermediate solutions that do not correspond to either of the known
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Figure 4.5: Histogram of the natural logarithm of number of silenced sites in a
L=10 site lattice, starting from two opposite initial conditions. The corresponding
values of chemical parameters are indicated at the top of each graph. Note that,
the degree of cooperativity n equals 2 and total number of samplings is more than
109. The diagrams exhibit the possibility of an intermediate state in stochastic
regime.

stable solutions, i.e. entirely silenced or un-silenced states (Fig.4.4). These kind

of solutions can represent either a uniform intermediate solution between entirely

silenced and un-silenced lattice states (a point outside the bi-stable parameter

regime) or they can correspond to a bi-stable system switching back and forth

between two stable states (a point inside the bi-stable parameter regime). These

two type of solutions have the same average behavior. However, if we keep one

of the parameters constant and change the other one, we may be able to see

the difference in the behavior of two cases (Fig.4.6 and Fig.4.7). As it is seen

in Fig.4.7, in the mon-stable regime, convergence to a final average state could

always be observed during our screening time. Where as, for the bi-stable regime

(Fig.4.6), convergence to a final average state is much longer and may not happen

during the screening time. One might say that, both systems may eventually

converge to the same average behavior in a very long screening time. It may be

true; but at least we can be sure that in time periods not too long the cell exhibits

totally different regimes: bi-stable or mono-stable.
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Figure 4.6: Histogram of the natural logarithm of number of silenced sites in a
L=10 site lattice, starting from two opposite initial conditions. The corresponding
values of chemical parameters are indicated at the top of each graph. Note that,
the degree of cooperativity n equals 2 and total number of samplings is more
than 109. The transition from the average intermediate state, inside bi-stable
regime of parameter space, to one of the average stable states takes a longer time
comparing to a mono-stable system, Fig.4.7.
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Figure 4.7: Histogram of the natural logarithm of number of silenced sites in a
L=10 site lattice, starting from two opposite initial conditions. The corresponding
values of chemical parameters are indicated at the top of each graph. Note that,
the degree of cooperativity n equals 2 and total number of samplings is more than
108. The transition from average intermediate state, inside mono-stable region of
parameter space, to a different average state trough changing parameters, happens
faster comparing to a bi-stable system, Fig.4.6
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Figure 4.8: Histogram of the natural logarithm of number of silenced sites in a
L=10 site lattice, starting from two opposite initial conditions. The corresponding
values of chemical parameters are indicated at the top of each graph. Note that,
the degree of cooperativity n equals 2 and total number of samplings is more than
108. The diagrams show that, in shorter time scales the system in Fig.4.5 acually
exhibits bi-stable states.

Note that, we can also check the difference between two cases above by as-

suming a shorter screening time. As a result, one observes that, in a shorter time

scale the bi-stable system actually falls into either of the stable states and it stays

there for some time until it switches to the other state (Fig. 4.8). In contrast,

the mono-stable system converges to the same final state very fast. In conclusion,

as it was said earlier, by differentiating between the systems according to the

time of their convergence, one will be able to find qualitatively the same shape of

bifurcation diagram as we discovered in mean-field approach.
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Chapter 5

Alternative Possible Non-linearity in the System

In the model discussed so far, we assumed f(x) = xn in the main equations (2.1)

and (2.2) and bi-stability demands that that n > 1, meaning that we need a

certain degree of cooperativity in how de-acetylated histones recruit the silencing

complex. This might very well be the case. However, the cooperativity in that

particular interaction is not absolutely essential when we have other non-linear

effects in play.

One rather plausible effect is as follows. Transcription of a gene is often

associated with a higher rate of acetylation of histones. It is believed to be one

of the reasons why highly transcribed genes are hard to silence. For example, a

tRNA gene, usually producing a large amount of RNA, has been found to have

an important role in a silencing boundary [24]. One might therefore imagine

that silencing, which affects local transcription rates, indirectly affects the local

acetylation rate. One way to model this is to introduce an additional function

g(1−Si) in the local acetylation rate making it α(1−Ai(t))(1−Si(t))g(1−Si(t)).

If there is no such feedback from silencing, we could have g(y) = 1. We will

consider g(y) = ym−1, m = 1 being the case of no feedback, where as the simplest

models of feedback would lead to m = 2. For a general value of m (and n) our

model now would be given by the following equations.

dSi(t)

dt
= ρi(t)(1 − Si(t))(1 − Ai(t))

n − ηSi(t) (5.1)

dAi(t)

dt
= α(1 − Ai(t))(1 − Si(t))

m − (λ +
∑

j

γijSj(t))Ai(t) (5.2)
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Thus, the nature of non-linearity in these models is characterized by a number

doublet (m, n). We discussed (1, n) models in the previous chapters and found

that we need n to be greater than one for these subclass of models. So to study the

general (m, n) models, we can follow the same routine. Thus, to find a bifurcation

diagram, generalized nullcline equations are as follows:

ρ̄(1 − S)(1 − A)n − S = 0 (5.3)

ᾱ(1 − A)(1 − S)m − (1 + γ̄S)A = 0 (5.4)

We also need to find the general form of equation (2.11) to hold at the bound-

ary of the bi-stability region:

A =
1 + γ̄S

nS [(m − 1)γ̄S + m + γ̄]
(5.5)

Using above equations, we can use S as a parameter and plot (ᾱ(S), ρ̄(S))

to get the phase diagram for (m, n) models (Fig.5.1). As a result we found that

for (m, 1), m > 1 the shape of the bi-stability region is qualitatively the same

wedge-like band. In general, for any m ≥ 1 and n ≥ 1 excluding m = n = 1

the (m, n) model will result in a bifurcation diagram with essentially the same

structure (Fig.5.1). As a consequence, many of the qualitative results we provided

for (1, n) models is also true for the general case (m, n) models, provided that m

and n are never both less than or equal to 1.

In other words, both kinds of models, those with Sir binding depending

strongly non-linearly on the degree of de-acetylation as well as those where the

effect of silencing on local transcription feeds back on the acetylation rate, show

qualitatively similar behavior needed to describe silencing in nucleus. Hence we

will continue using the results of the (1, n) models, fully keeping in mind that

there is a broader class of models leading to the same qualitative predictions.
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Chapter 6

Biological Consequences of the Model

The bifurcation diagram presents a classification of qualitatively different kinds of

dynamics possible within the model. It provides us with a more precise vocabulary

for discussing qualitative consequences of alternative models. Combining this with

experimental facts, we should be able to place the wild type yeast and various

mutants in this diagram.

Outside the bi-stable region, in the un-silenced region, the dynamics decides

a self-consistent level of silencing. Recruitment of silencing complex at one place

only affects a small region around it, with the effects dying off exponentially with

distance from the nucleation center. The upper part of the bi-stable region, with

higher values of α (Region I in Fig.6.1), is not qualitatively very different in that

regard. The only difference comes in, when one considers stochastic dynamics,

which allows for occasional formation of silencing in the whole region.

In the lower half of the region, Region II in Fig.6.1, and also in the silenced

region of phase space, nucleation leads to spreading. This is the region where the

naive expectation from the popular biological model matches the results of math-

ematical analysis. We have argued, that under some conditions, the dynamics

of Sir depletion would lead the systems starting in this region into the border of

the two regions (zero front velocity curve, Fig.6.1). A locus of DNA, described

by parameters of region II, and the silenced region could possibly see non-specific

silencing induced by stochastic nucleation of silencing.

But in this bifurcation diagram, where is the point corresponding to silencing
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dynamics in silent mating loci in wild type yeast? The fact that the silent loci

in the sir1 mutants could be in either state, suggests that one is in the region

allowing bi-stability. A tougher question to answer is which part of the bi-stable

region it is in. In Region II, there is quite some chance of getting undesirable

non-specific silencing. On the other hand, in Region I, typically, the silencing

spreads very little from the nucleation center, unless the system is very close to

the cusp point (or critical point, Fig.6.1). In fact, if one defines a length scale by

how far the effect of silencing local nucleation spreads, that length scale diverges

exactly at the cusp point. The system could operate at a point where this length

scale is large.

The dynamics represented in the popular cartoon model of silencing, reviewed

in [3], corresponds the behavior in Region II. Such models come with explicit

requirement of boundary elements to stop the spreading. On top of that, there

should be an argument why the chance of nucleation in somewhere else in the

genome does not cause spontaneous non-specific silencing. Alternatively, one

could possibly argue why the probability of accidental nucleation is low. However,

if the system is in Region I, then one could observe a reduction in silencing with

increasing the distance from the nucleation center, namely the silencer. Such a

claim has been made by some researchers [22]. Although one could argue for both

options, we would side with the second option, namely, that the operating point

of wild type silencing loci is in Region I, but not too far from the cusp point to

have a large spreading length scale.

We could now discuss the consequences of lowering the acetylation rate as it

happens in, say, the sas2 mutant [25, 26]. We argued that if there are fronts

of silencing that are not pinned down by boundary elements somewhere in the

genome, then our argument about ρ (Sir binding rate) reducing and moving the

system back to the zero velocity line/region, applies. This is indeed a possibility

in yeast. Although the silent mating loci have well defined boundary elements,
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the same may not be true of all the telomeric regions. This result might explain

certain counterintuitive features of mutants of certain genes like sas2 which code

for acetylases. If the reduced acetylation rate in sas2 mutant is close to a certain

level, the system will flow back to close to the cusp point at tip of the bi-stable

region. Near the cusp point, the degree of silencing changes very sharply with

the changes of Sir availability. We believe that the resulting system becomes

extremely susceptible to cellular noise and would display a wide distribution of

expression. Thus, as opposed to the naive expectation that SAS2 deletion will

just make everything more transcriptionally silent, one should find individual cells

that show good expression from the “silent” loci. We speculate, whether this is the

reason why the SAS genes may have been picked up in an assay looking for defects

in silencing. Recent single cell measurements observation for GFP expression from

sir1sas2 gene mutant cells show a wide but uni-modal distribution of expression

in a cell population, where as sir1 cell population show bimodal distribution,

characteristic of epigenetic states [39].

Another simple consequence the bifurcation diagram that one could say qual-

itative things about the epigenetic switching rate in different parts of the bifur-

cation diagram. For example, we expect the switching rate to get faster near the

cusp point. We expect as the level of Sas2 is lowered continuously (decreasing α),

we will see a rise in switching rate, as the system would move toward the cusp

point.
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Chapter 7

Discussion

We have formulated a mathematical version of the model of silencing and com-

puted the bifurcation diagram of the system. This diagram is consistent with

several observations about mutants. It is, in principle, possible to explore the

whole two dimensional control parameter space experimentally. For example, one

could study single cell GFP fluorescence from a reporter in HMR while modifying

ρ by regulating Sir proteins, and modulating α via changing the level of Sas2.

In addition to the sas2 mutant, which we discussed extensively, one of the

mutants that we want to understand is dot1. Part of the reason to study this

mathematical model is the apparent paradox: if the Sir2,3,4 system itself can

propagate further from region with stochastic nucleation of silencing, why many

other regions, not contiguous to silencing at nucleation sites, do not show oc-

casional heritable silencing in manner . In fact, a screen high copy disruptors

of telomeric silence [29], produced, among others, a gene called DOT1 whose

deletion cause nonspecific silencing. Understanding how Dot1 affects silencing re-

quires us to consider additional states like methylation of histones [30]. Based on

our preliminary study of a full model of the system with additional states it seems

that the simpler model studied in this paper, with some change of parameters,

could effectively capture the effect of Dot1. This is one future direction that we

are pursuing.

We finally mention two issues not dealt at all within this dissertation that

needs further attention. One is that our model of DNA, as a one dimensional
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system, may be called into question if the heterochromatin formation happens

very fast (compared to the speed with which silencing spreads), making the DNA

fold up into higher order organization quickly. The other interesting issue is in-

heritance of silencing. Could we have our model capture inheritance in a coarse

grained manner, or do we stand to gain something by modeling the probable si-

lencing of duplicated DNA explicitly? Of course, for any biological model, there

are many ways of making it more realistic. However, not many of these ‘im-

provements’ change the qualitative properties of the bifurcation diagram. We

believe our model includes enough features of the biological phenomena to be a

good starting point for more refined discussion of the qualitative behavior of this

system.



69

Chapter 8

Appendix A: Uniform Fixed Points and Their

Stability

In this appendix, we consider a more general form of the equations (2.3) and (2.4)

and discuss the mathematical methods which can be used to find the stable fixed

points of the system. Consider the following uniform dynamical equations:

dS(t)

dt
= ρ(1 − S(t))f(1 − A(t)) − ηS(t) (8.1)

dA(t)

dt
= α(1 − A(t))g(1 − S(t)) − (λ + γS(t))A(t) (8.2)

where all the Greek letters are positive constant variables. S and A are real

parameters that can only take values between 0 and 1, inclusive. f(x) and g(y)

are non-negative, monotonically increasing function in the interval 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1. Note that, uniform version of both the set of non-linear equations

(5.1) and (5.2) and the general form of acetylation term mentioned in foot notes of

section 2.1, are special cases of above equations. Assume the change of variables,

X = 1 − A and Y = 1 − S; rewriting the above equations in X and Y :

dY

dt
= η − Y (ρf(X) + η) (8.3)

dX

dt
= (λ + γ − γY ) − X [αg(Y ) + (λ + γ − γY )]

= (λ + γ − γY )

[

1 − X(
αg(Y )

λ + γ − γY
+ 1)

]

(8.4)

Now, define functions f̃(X) and g̃(Y ) as follows:
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f̃(X) = ρ̄f(X) (8.5)

g̃(Y ) =
ᾱg(Y )

1 + γ̄ − γ̄Y
(8.6)

where ᾱ = α/λ, ρ̄ = ρ/η and γ̄ = γ/λ. Both f̃(X) and g̃(Y ) follow the

same property we assumed for f(x) and g(y), i.e. non-negative, monotonically

increasing functions in the interval 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1. So, in terms of

these new functions we have:

dY

dt
= η

[

1 − Y (f̃(X) + 1)
]

= F (X, Y ) (8.7)

dX

dt
= (λ + γ − γY ) [1 − X(g̃(Y ) + 1)] = G(X, Y ) (8.8)

Then, the fixed points for above equations satisfy following nullclines:

Yf =
1

f̃(Xf) + 1
= f̂(Xf) (8.9)

Xf =
1

g̃(Yf) + 1
= ĝ(Yf) (8.10)

where Xf and Yf denote the fixed point values. Note that f̂(X) and ĝ(Y ) are

monotonically decreasing functions inside the interval 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1,

which themselves are confined between 0 and 1. For the special cases being studied

in this dissertation, the general shape of f̂ and ĝ is given in Fig.8.1; i.e. either

they decrease with a positive curvature (positive second derivative) or decrease

like an S-curve. The solution to above equations is then given by the intersection

of one such curve with another one reflected at the x = y line. Therefore, it

is easy to see that for all cases in this dissertation, there is either one or three

answers to above equations.

One can investigate the stability of the fixed points by Taylor expansion of

equations (8.7) and (8.8) around the fixed points. So if X = Xf + δX and

Y = Yf + δY , for small δX and δY , keeping up to the first non-zero term:
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d

dt





δY

δX



 =





∂F
∂Y

∂F
∂X

∂G
∂Y

∂G
∂X









δY

δX



 (8.11)

In order to have stability at (Xf , Yf), the above Jacobian matrix has to have

negative eigenvalues. The two eigenvalues satisfy the below quadratic equation:

Z2 − (
∂F

∂Y
+

∂G

∂X
)Z + (

∂F

∂Y

∂G

∂X
−

∂G

∂Y

∂F

∂X
) = 0 (8.12)

So to have negative solutions, we should have:

∂F

∂Y
+

∂G

∂X
< 0 (8.13)

∂F

∂Y

∂G

∂X
−

∂G

∂Y

∂F

∂X
> 0 (8.14)

According to equations (8.7) and (8.8), both ∂F
∂Y

and ∂G
∂X

are negative when

0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1, hence the condition (8.13) is always satisfied. Since

this condition means that the sum of eigenvalues is negative, we can either have

two negative eigenvalues or one negative and the other positive. In other words,

each fixed point can either be a stable point or an unstable saddle point. In

the three fixed point regime then, we can either have two stable points flanking

the middle saddle point or two saddle points flanking the middle stable point.

However since for small Y , dY/dt is always positive (equation (8.7)) and it only

changes sign when Y passes its nullcline value (equation 8.9) and also since the

same holds for X; one can find that the middle fixed point is always the saddle

point. Hence the flanking points are actually stable. One can also draw the vector

field of the flow (dX
dt

, dY
dt

), using softwares such as MATLAB, to investigate the

stability of the points (Fig. 2.3).

Note that, now in order to find the numerical values of stable fixed points, we

can always start from either X = 0 or Y = 0 and by recursively plugging X and

Y inside equations (8.9) and (8.10) and obtaining new values approach the stable

fixed point answers.
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Chapter 9

Appendix B: Numerical Methods in Discrete

Model Approach

We use an array of variable length L = 10 to 200 sites, setting the value of S and

A at each boundary equal to either one of the two stable uniform solutions. Two

forms of γij is considered. First, γij is assumed to be non-zero only for nearest

neighbors (|i−j| = 1) and be zero elsewhere. Second, γij = γ0exp(−|i−j|/ξ) with

a positive length scale, ξ. For the initial condition, we assume a configuration

with a very sharp transition in the middle of the lattice i.e. half of the sites

on one side are set to hypo-acetylated/silenced uniform solution and the rest of

the lattice which are on the other side are set to hyper-acetylated/un-silenced

uniform solution. Then an explicit finite difference method is employed to find

the numerical answers of equations 2.1 and 2.2:

Sij+1 = ∆t [ρ(1 − Sij)f(1 − Aij) − ηSij] + Sij (9.1)

Aij+1 = ∆t

[

α(1 − Aij)(1 − Sij) − (λ +
∑

k

γikSkj)Aij

]

+ Aij (9.2)

where j indicates the number of steps in time, and ∆t is the time step. Con-

vergence to a stable state was very fast and in most cases with only slight change

from the initial configuration.

At the end, to check that our answer has actually converged to the stable

solution, we can apply the time independent form of equations (2.1) and (2.2)

recursively on the answer:
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Si =
ρf(1 − Ai)

ρf(1 − Ai) + η
(9.3)

Ai =
α(1 − Si)

α(1 − Si) + λ +
∑

k γikSk

(9.4)
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Chapter 10

Appendix C: Monte Carlo Simulation of the

Stochastic Model

In order to employ a stochastic simulation of equations (4.1) and (4.2), one can

take a Monte Carlo approach. Assume that we have a lattice of size L and at

each site i of this lattice n digital parameters A
(m)
i , m = 1, 2, .., n and one digital

parameter Si. Si and A
(m)
i can take only be 0 or 1. We also choose the parameter

γij to fall off exponentially with a length scale ξ and apply periodic boundary

condition. Then, at each step of the simulation, one picks a random site i and

also one of the parameters {Si, A
(m)
i } at random; then follows the rules below:

1. for A
(m)
i ;

(a) if A
(m)
i = 1

i. if (λ +
∑

j γijSj) ≥ α(1 − Si), switch to A
(m)
i = 0

ii. else, switch to A
(m)
i = 0 with the rate

λ+
∑

j
γijSj

α(1−Si)
.

(b) if A
(m)
i = 0

i. if (λ +
∑

j γijSj) ≤ α(1 − Si), switch to A
(m)
i = 1

ii. else, switch to A
(m)
i = 1 with the rate α(1−Si)

λ+
∑

j
γijSj

.

2. for Si;

(a) if Si = 1

i. if η ≥ ρ
∏

m(1 − A
(m)
i ), switch to Si = 0
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ii. else, switch to Si = 0 with the rate η

ρ
∏

m
(1−A

(m)
i

)
.

(b) if Si = 0

i. if η ≤ ρ
∏

m(1 − A
(m)
i ), switch to Si = 1

ii. else, switch to Si = 1 with the rate
ρ
∏

m
(1−A

(m)
i

)

η
.

For each set of control parameters, we run the simulation twice i.e. for op-

posite initial configurations: uniformly silenced/hypo-acetylated and uniformly

un-silenced/hyper-acetylated lattice. As a result, we avoid getting stuck in only

one of the two local minima (fixed points) by choosing each opposite fixed point

once.
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