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ABSTRA CT OF THE DISSER TATION
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by Mohammad Sedighi

Dissertation Director: Anirv an Sengupta

A mean- eld dynamicalmodel of chromatin silencingin budding yeastis provided
and the conditions giving riseto two states: onesilencedand another un-silenced,
is studied. Basedon these conditions, the spaceof cortrol parametersis divided
into two distinct regionsof mono-stableand bi-stable solutions (the bifurcation
diagram). Then, consideringboth the discrete and cortinuous versionsof the
model, the formation of a stable boundary betweenthe silencedand un-silenced
areason DNA is investigated. As a result, a richer phasediagram is provided.
The dynamics of the boundary is also studied under di erent conditions. Con-
sequetly, assumingnegative feedba& due to possibledepletion of silencingpro-
teins, the model explainsa paradaical epigeneticbehavior of yeastthat happens
under somemutation. A stochastic treatment of the model is also consideredto
verify the results of the mean- eld approximation and alsoto understandthe role
of intrinsic noiseat singlecell level. This model could be usedas a generalguide

to discusschromatin silencingin marny organisms.
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Chapter 1

In tro duction

This chapter is mainly dewtedto the preliminary biologicalknowledgerequiredto
understandthe phenomenonof chromatin silencing As a matter of fact, most of
the material in the following sections,can be found in any intro ductory molecular

biolagy text book [1, 2] unlessotherwisereferenced.

1.1 Biological Background

1.1.1 DNA and Proteins

The geneticinformation in living cellsis storedin a long double-strandedhelical
macromoleculecalled DNA. This information, or the genome is encaled along
eadt strand of DNA in a languageof four letters represeted by four alternating
units called nucleotides In a more detailed perspective, ead strand of DNA is a
chain consistingof a repeating sugar/phosphatebadkbone and a base attached to
eadt sugarunit. The baseis chosenfrom only four di erent organiccompounds:
adenine (abbreviated A), cytosine (C), guanine (G) and thymine (T). Baseis
the only part of eat block of DNA that changesalongthis sequetial structure.
Then ead strand is attached to its complememary strand through Hydrogen
bonds betweenbases. Note that, hydrogenbonds happen betweenbasepairs of
(A,T) and(C, G) only. In the commonstable doublehelical conformationof DNA
the length between successi® basepairs is 1 bp=.34 nm, which is also usedas

unit of length. As a consequencef this complimertary basepairing the genetic



information kept in ead of the strandsis doubledin DNA.

This geneticinformation is mainly usedto build proteins, the moleculesre-
sponsiblefor vital interactions inside the cell. The part of genomethat cortains
the information is referredto asthe geneof the protein. Proteins are governing
all the interactionsinsidethe cell which include, but are not limited to, extracting
geneticinformation from DNA, building other proteins from their genetic code
and also mutual interactions leading the cell to behave in a desiredway. As an
example,when a particular protein is produced, an ager protein called RNA-
polymerase with the help of other proteinslocatesthe correspnding geneamong
the whole genome attachesto the speci ed sequencen DNA and start making a
single stranded copy of the genecalled RNA. However RNA is not just the exact
copy of somesectionof the singlestranded DNA. There are two main di erences
in their structures: sugar/phosphatebadkbone of RNA usesa di erent type of
sugarand uracil (U), replacesthymine (T) for the bases.RNA moleculeis then
useddirectly to build the required protein. The processof producinga RNA copy
of the geneby RNA-polymeraseis called transcription.

There are se\eral metanismsinsidethe cell to cortrol interactionsamongpro-
teins during di erent stagesof cell's life or to respond to changesin ervironmert.
One of the known medanismsis regulation of genetranscription. This is done
by employing proteins that may aid or stop the attachmert of RNA-polymerase
to the desiredsite on DNA. This cantotally depend on the environmert and the
samecell may then demonstratevarious behaviors as a consequencef di erent

statesof geneactivity.

1.1.2 Higher Degrees of DNA Con guration

The double helical con guration of DNA is how genetic material is kept inside
single celled specieslike bacteria. In most of the multi cellular species, how-

ewer, the DNA is kept inside an enveloped structure called nucleus (about 10



Figure 1.1: Hierarchy of DNA con guration in eukaryotic cells.

micrometersin diameter). A cell that contains a nucleusis called an eukaryotic
cell, and the specieswith this form of cells are called eukaryotes In order to
compactify the long DNA inside nucleus, eukaryotic cellsemploy structural and
con gurational proteins sud as histones Eight histone proteins make a cylin-
drical complex, simply called the histone-acctamer (11nm in diameter). In the
very basiclevel, eukaryotic DNA is wrapped around cylindrical histone-actamers
like a thread around spools, ead for about 146 basepairs. Each histone-actamer
alongwith the DNA around it, is then called a nucleosome At this level, under
the microscope thesenucleosome®n DNA look like beadson a string (Fig.1.1)™.
Howe\er, there are alsose\eral higher levels of eukaryotic DNA condensationuti-
lizing di erent structural proteins. Biologists usethe word chromatin whenthey
referto the highly complexmixture of DNA and structural proteins (particularly
histones). Note that, higher order organismslike human being have more than
one linear DNA molecule, where ead single DNA macro-moleculeexhibits its
own hierarchy of compacti cation and is called a chromosome

The degreeof DNA padaging variesasthe cellsgoesthrough di erent stages

1Courtesy of Richard Wheeler (Zephyris), wikip edia.com;the creator of this work, hereby
grants the permission to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.



of its life cycle. Moreover, di erent regionsof DNA inside nucleusmay exhibit
di erent degreesf complexity and condensation.As a matter of fact, during cell
divisions, chromatin is in its utmost level of compacti cation (Fig.1.1). Howeer,
during interphase the period betweennucleardivisions, eukaryotic chromatin can
be divided into two distinct regionsbasedon their degreeof condensation.Hete-
rochromatin, which refersto highly condensedand paded areasand euchiomatin

referring to lightly condensedand dispersedparts.

1.2 Gene Silencing

In condensecdheterochromatin domains,nucleosomesre so padked in high order
structuresthat they are not normally accessibléo proteinsfor transcription, thus
not transcriptionally active. The size of theseregionscan be from se\eral kilo
basesto seeral hundred kilo basesand can even cover the whole chromosome.
In cortrast, eudiromatin regionsare lesscompactand transcriptionally active.

Therefore, the formation of heterochromatin can be also consideredas a way
of silencing the expressiornof a number of adjacent genes.In particular, although
all cellsin a multi-cellular organismcortain the samecopy of DNA and the exact
same genetic information, since variant regions of genomemay be silencedin
di erent cells,distinct functional idertities exist throughout the body of organism.
It is said in this casethat, all the cells are of the samegenotyg but di erent
phenotygs Genotype refersto the geneticmakeup, whereasphenotype points to
the appearanceof the organismsud as color, size,behavior, etc.

Furthermore, in many circumstancesthe structural organizationof chromatin
will be inherited to new cellsgeneratedthrough cell divisions. As a result, silenc-

ing also plays a crucial role in multi-cellular dewelopmen by stabilizing gene



expressiorpatterns in specializedcellsat early stagesand maintaining their iden-
tities throughout their life. One example of this, is the cell type dependen si-
lencing of Hox genes,jmportant in dewvelopmen of body plans, by the Polycomb
group of proteins [4].

As it was discussedabove, one of the interesting aspects of dewelopmernal
processess that one could get multiple heritable cell fates without irreversible
changesto the geneticinformation. Heritable di erences in cellular behavior or
phenotype, despitehaving the samegeneticinformation, is called epigeneticphe-
nomenon Apart from its fundamertal role in dewelopmen, epigenetice ects are
of greatimportancein certain diseasesike cancer[3]. Note that there are se\eral
medanismsthat lead to epigenetice ects and only one of these mehanismsis

transcriptional silencing.

1.2.1 Position Eect Variegation

As we discussedwhether a geneis expressedr silenced,dependson its position
along the DNA in eularyotic cells. In other words, if one relocates an active
gene, experimertally, from eudiromatin regionsto heterochromatin regions, it
gets silenced. The opposite also holds when a geneis moved from a silenced
regionto an un-silencedregion.

Sincethe position e ects, merntioned above, play a crucial rule in the behavior
and epigeneticidentit y of a cell; it isimportant to understandhow the boundaries
betweeneudiromatin and heterachromatin regionsare determinedon DNA. It is
known, that in many caseghis boundaryis pinpointed by someboundary elements
along chromosome. The boundary elemen is therefore, any structural factor
that hindersthe spreading of silencingat the desiredposition on DNA. In some
caseshowe\er, there are no special boundary elemeits to preciselydeterminethe
border betweentwo regions. In these circumstances,the boundary is not xed

and silencedregion can expandinto or retract from active region on a seemingly



random basis. Howewer when the formation of boundarieshas been settled at
early stagesof dewelopmert it will be presened during the cell's life and through
cell divisions. Note that, there is always a low chance of random shift in the
boundary in either direction at any point of cellslife.

As a consequencef this dynamical behavior of boundary, it is obsened that
geneghat arelocatednearthe boundary canswitch statesfrom active to silenced
and vice versaat small frequencies. This phenomenonis called position e ect
variegation. This e ect hasbeendetectedin many organismssud as Drosophilg
the fruit y. Thereis a genein Drosophilawhich is responsiblefor the red color of
its eyes. In other words, if this geneis not active, the eyeswill look white. Now,
for ies whenthis geneis active but has beenpositioned near heterochromatin,
the eyesinclude patchesof both red and white colorsrather than being ertirely
red. The red regionsrepresen cellswith the active pigmert geneand white spots
represen cellswith silencedpigmert gene. In other words, when the boundary
betweenchromatin regionsis rst beingformed,thereis a chancefor the boundary
to shift and heterochromatin covers the pigmert gene. This con guration then
will beinherited stably through many generationsresulting in cortiguous patches

of red or white.

1.2.2 Silencing In Budding Yeast, S. Cerevisiae

Obsenations on silencedareasof DNA in budding yeast, Sacharomyces Cere-
visiae have played an important role in understanding how chromatin silencing
works. We dewte this sectionto an introduction on S. Cerevisiag since our
researb is basedon a model of genesilencingin this organism.

Budding yeast can be found in two forms: haploid or diploid. Haploid cells
simply cortain only onesetof chromosomes.There aretwo typesof haploid cells,
type a and type . Diploids, on the other hand, are made by conjugation of the

two di erent typesof haploid cells;hencecortain two setsof chromosomes.Types



Figure 1.2: The life cycle of budding yeast, S. Cerevisiae

a and of haploid cells can also be consideredas two opposite sex types; and
their fusionis alsocalled mating. Wild-t ype haploid cells have a high probability
of switching their mating type after eat cell division (via budding), from a to
and vice versa. In starving situation, haploid cells usually die, but diploid cells
sporulate and generatefour spores. Spores are dormarnt state of haploid cells
and resistart to harsh conditions. When there is availability of nutrients, spores
germinate and grow to normal haploid cells (Fig.1.2)>.

There are three sectionson chromosomel || in yeastwhich are responsiblefor
switching and stabilizing mating types. Two of thesesections,eat located near

one end of the chromosome,are always silenced. They are called silent mating

2Courtesy of wikip edia.com;the creator of this work, hereby grants the permissionto copy,
distribute and/or modify this documert under the terms of the GNU Free Documentation
License Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections,no Front-Cover Texts, and no Back-Cover Texts.



loci and noted asHML and HMR loci and cortain copiesof genesthat decide -

type and a-type identit y, respectively. Thereis alocusin the middle, called MAT

(mating type locus), which is always active and decidesthe mating type idertity

of the haploid cell. Through generationsof yeast, the genesfrom HML and

HMRa loci are alternatively transferred to the MAT locus, causingthe change
in its mating type. In other words, when MAT locus cortains HM L genetic
sequenceyeast acts as an -type cell and when it cortains HMRa sequence,
it behaves as an a-type cell. This processhappens through a reconbination

mediated processcalled mating type switching

It is believed that the silencingof HML and HMR loci originates from DNA
sequencesiext to them called, silencers. Soif the silencersequencesire exper-
imentally removed, both HML and HMRa genesare active. In this case,the
haploid cells behave like an =adiploid cell and are not able to mate. This de-
fective behavior canbe usedin experimerts to detectany de ciency in repression
of HML and HMR sequence®n yeast DNA.

Other than the silert mating loci, there are other typesof regionson DNA that
are silenced. Theseregionsinclude the telomeres which are the highly condensed
endsof the chromosome. Both the telomeresand mating-type loci demonstrate
the same features as one expects from the silencedheterochromatin in higher

eularyotes.

1.3 A Stepwise Mo del for Silencing

Many medanismshas beenproposedfor silencingin diverseorganisms[5], how-
ewver, one can always nd similar featuresbetweenthese models. In the general
model, there is usually a region that nucleates silencing by recruiting a silenc-

ing complexincorporating a histone modifying enzyme. Modi cation of histones
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(B) Spreading

Figure 1.3: A model for nucleation and spreadingof silencingin budding yeast,
S. cerevisiae
makesthat regionof chromosomemore proneto binding to componerts of silenc-
ing complex, which, in turn, recruits further histone modifying enzymes. That
is how the processpropagatestill it meetssomeboundary elemen (or the sys-
tem readesa stationary state due to exhaustionof one of the componerts of the
silencingcomplex,aswill be discussedater) (Fig. 1.3).

The medanism by which silencingnucleatesand spreadsin budding yeastis

relatively well investigated [5, 6] and provides a concrete example of the more
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generalmodel mertioned above. It is known that the Silencd Information Regu-
lator (SIR) proteins are the main playersin genesilencingat telomeresand silert
mating loci in yeast. There are four Sir proteins involved in this process,simply
called Sirl, Si2, Sir3 and Sir4. The role of Sirl is di erent asit only cooperates
in nucleation of silencingat the silert mating loci, howewer the rest of Sir family
have alsoimportant rolesin spreading of silencingat both the telomeresand at
silet mating loci.

To be concrete,from now on we focus our discussionto the silencingat the
silet mating loci. As it was discussedthe model for step-wisegenesilencingin
S. cerevisiaealso posits that silencinghappensin two distinct steps: nucleation
and spreading In nucleation, with the help of site-speci c DNA binding proteins
(like Rapl) and with Sirl asa tether, Sir2, Sir3 and Sir4 will form a Sir Complex
on the nucleation site (Fig. 1.3.A.). Sir2, a crucial member of this processworks
asade-aectylaseenzyme.In other words, it canhelp removing acetyl groupsfrom
certain parts of nearby histones. Consequetly, de-aceylation of the neighboring
histoneswill make binding of Sir3/Sir4 sub-complexeasierin the neighborhood
of the original nucleation site. Sir3/Sir4 sub-complex,in turn, would recruit
more Sir2. Hence,the spreadingstarts. More de-aceylation of histonesimproves
the recruitment of other Sir proteins and formation of more stable complexeson
neighboring sites. If histone de-aceylation is transferredfurther on, it will result
in spreadingof silencingto evendistal sites(Fig. 1.3.B.). Note that, althoughthe
nucleation stepis di erent in telomeric silencing, the processof spreadingseems

to be very similar [8].
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1.4 Exp erimental Observ ations

1.4.1 Bi-stabilit y and Epigenetic Inheritance in Budding

Y east

In the wild type budding yeast,the regionsthat are silencedare, typically, always
silenced. As it was discussedn last section, Sirl proteins are someof the main
elemens in nucleation of silencingat HMR/HML loci. As a matter of fact, if
Sirl is missing, nucleation e ect at the silert mating loci is either absen or very
weak. In an experimert in 1989by L. Pillus and J. Rine [9], it was found that
in sirl mutants (where the nucleation e ect is defectiwe if not abser), there is
still a chancefor HMR/HML loci to be repressed.In other words, silencing can
also happen without e cient nucleation. Then, the individual yeast cells would
represen two distinguishabletype of cells (phenotypes). In this case,in a large
number of yeast cells, on average 20% of the cells exhibit repressionand can
mate like a normal haploid cell, whereasthe other 80% cells are de-repressedt
HMR/HML loci and behave like diploids. It wasalsofound that, both epigenetic
statesarestableto small uctuations and areconsenedthrough many generations
of yeast. In fact, it wasobsened that switching from un-silencedto silencedstate
occurs approximately oncein ewery 250 consecutie cell divisions, or with the
small probability of 4 10 2 [9]. The obsenation and results suggestthat the
systemis actually in a bi-stableregime,wheretwo opposite stable statescan exist
under the sameconditions.

This kind of epigeneticswitches between bi-stable states has received much
scierti ¢ attention in prokaryotes. Multiple phenotypesare usually represeted as
multiple stable equilibrium points in deterministic descriptionsof the biochemical
dynamics. For instance,computational modeling of lambda phage[10] hasplayed
a crucial role in the dewlopmen of systemsbiology [11, 12]. From the response

of lac operonin the presenceof TMG [13 14, 15]to syrthetic genetic networks



12

like the toggle switch [16], mathematical analysis has been an integral part of
understanding sudh phenomena. In particular, the biological model, in eat of
these examples, provides a medanism of positive feedbak&. Howewer, positive
feedbak is not su cient to guarartee multi-stabilit y, but essetial for giving rise

to non-trivial epigeneticstates.

1.4.2 The Eect of Low Acet ylation

As it wasdiscussedn the stepwise model of silencingin section1:2, Sir2 hasde-
acelylating enzymaticactivity. This is a crucial part of the silencingprocesssince
lessacelylated nucleosomesare better placesfor Sir complexto attach. Then,
apparerly, the presenceof acetyl groups on parts of histonesin nucleosomes
makesDNA lessamenableto binding of Sir proteins. It is obsened that nearthe
silencedregionsin yeast, becauseof Sir2 activity, more histonesare de-aceylated
asopposedto distal nucleosomesvhich are more acetylated. As a matter of fact,
there is an increasinggradiert of acelylation asonemovesalong DNA, away from
the heterachromatin region[25, 26]. The acelylation activity, howeer, is referred
to an acet/lase protein called, Sas2protein. In particular, Sas2along with Sas4
and Sasb5proteins comprise a protein complex called SAS-I which is linked to
histone acetylation in yeast [27]. Note that, Sas4and Sas5proteins are both
required for maximal SAS-I acetylation activity.

One would normally expect that when SAS2 geneis mutated (where acety-
lation is defective or abser) the silencing processshould prevail. However, re-
searters have obsened many di erent and opposing e ects of sas2mutations.
In particular, deletion of SAS2 genefrom DNA decreaseshe silencing process
at regions near telomere and at silert mating loci rather than helping it [28].
In cortrast, when SAS-I acetylation activity is eliminated, the cell losesits bi-
stability at mating-type loci and demonstratesan intermediate state which is not

either silencedor un-silenced[22]. This intermediate state, can be consideredas
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a porous heterochromatin, wherethere are many random un-silencedspots inside
a silencedregion on DNA. This is especially interesting when we compareit to
SIR1 genemutants when the cells can exhibit only one of the two stable states,

silencedor un-silenced.

1.5 The Mathematical Analysis

The crucial aspect of analysisof a mathematical model of epigeneticswitchesis
computing the bifurcation diagram, which tells us what region in the spaceof
cortrol parametersis actually asse@iated with bi-stability. The bifurcation dia-
gram also indicates the qualitative behavior of the systemwhen perturbed (or
mutated) in a particular mannerasin the low acelylation casesdiscussedefore.
In cortrast to prokaryotic epigenetic switches mertioned at the end of section
1:3:1, modeling eukaryotic epigeneticsilencing involves studying a spatially ex-
tended bi-stable system. Hence, the system shaws interesting phenomena,like
front propagation, allowing for a richer bifurcation diagram.

In this dissertation, we introduce a mathematical model of step-wisehete-
rochromatin silencing. A mean- eld description of the dynamics explains many
featuresof the real system. Epigenetic states, in the absenceof nucleation, can
be explainedas a consequencef the existenceof two stable uniform static solu-
tions: the un-silenced/typer-aceylated state and silenced/hypo-aceylated states
on DNA. Studying the conditionsunder which the positive reinforcemen inherert
in the proposedsilencingmedanism is strong enoughto give rise to bi-stability
andto causestableinheritance of chromatin con gurations of the two phenotypes
is one of the main goalsof this dissertation. In addition, the conditions required
for static fronts will setadditional constrairts on the model.

Moreover, a stochastic treatment of the model is also considered. Fluctua-

tions in bio-molecularnetworks has beenthe subject of many researt activities
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recerly [31]. To analyzesingle cell data, one needsnot only how the determin-
istic model behares but also how noisein various quartities a ects expression.
A stochastic version of the model, a lattice model with local states of acetla-
tion, and Sir occupancy will be studied by direct simulation. Howewer, asseenin
studiesof yeastgeneexpression36, 37], extrinsic noise,equivalert to uctuations
in the parametersthemseles, often dominatesover intrinsic uctuations of the
processeglescribed here with xed parameters. Hence,to study this properly,
we will needto add a free parameter ead characterizing the slonv noisein the
cortrol parameters(such asconcetrations) for modeling the e ect of cell to cell
variation of Sir proteins and acelylases. Instead, we will discussthe e ect of
these uctuations at the limit whenthe extrinsic part of noiseis much slower and
strongerthan the intrinsic part. At this regime,onecanaverageover the intrinsic
noiseand usethe mean- eld appraximation. At the end, we proposeexperimerts

designedto test the ideasdiscussedn this dissertation.
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Chapter 2

Bifurcation Analysis of a Mo del for Silencing

2.1 Dynamical Equations

The purposeof this sectionis to formulate a quartitativ e version of the corven-
tional biological model of step-wiseformation of silencedchromatin (Fig. 1.3),
which was discussedn section1.2. The main parametersinvolved in nal equa-
tions are A, the local degree of acetylation of histonesand S, the local prokability
of occupation by Sir complex(Sir2, Sir3 and Sir4), both of which could depend
on time, as well as on their position on DNA. DNA is represeted as a one-
dimensionallattice, where ead site on the lattice represets either one or more
nucleosomesSoin other words, S;(t) onthis lattice, is a number between0 and 1,
represeting fractional number of Sir complexesat site i at time t. Fractional de-
greeof acewlation, A;(t), is de ned in the sameway. Writing chemicalequations,

in the mean- eld treatment of the system,we get,

B - v sora Aam  so 1)
dﬁgt(t) = (1 AMQ Si(1) (+x i S (D)AI(Y) (2.2)

j

Note that all the parametersin the above equationsare non-negative numbers.
In equation (2.1), on the right hand side,the rst term is the creation term and
the next oneis degradationterm. The 3-D conceltration of ambient Sir complex
at site i is denotedby (t), which may changeasthe systemewlves. Sincefree

Sir proteins in the ervironment do not form Sir complexesby themselhes, this
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guartity actually represets a function of concertrations of all componerts (Sir2,
Sir3 and Sir4) that are ready to make a Sir complexon the site. For example,in
the simplestcase,when ead protein is in low abundance this function would be
proportional to the product of the three concenrations. Howewer, throughout this
dissertationwe will never needto gointo thesekind of details. The function f (x)
dictates the cooperativity in Sir complexbinding and should be a monotonically
increasingfunction ofx, 0 x 1. Asthe simplestcasewe usef (x) = x", where
n is the degreeof cooperativity betweende-aceylated histonesin recruiting Sir
proteins. At last, is the degradationrate of bound Sir complexes.In equation
(2.2), the sameas equation (2.1), on RHS, the rst term advocatescreation and
next onedegradation. represets the constart aceylation rate!. In the second
term, the summation accours for the cortribution of adjacert Sir complexesin
de-aceylation of sitei. SinceSir complexis only capableof de-aceylation of sites
in its neighborhood, j is assumedto drop signi cantly asji jj getslarge. In
addition, j is assumedto be symmetric with respectto i andj, i.e. j = ;.
Finally, isthe rate of de-aceylation from the rest of de-aceylaseproteins. This
rate is assumedo be a constart both in time and position.

In a more generalmodel, all rates can be position dependen. We neglected
thiseect for , and by assuminghomogeneousoncetration of participating
enzymesand no drastic conformational changesin DNA that can a ect these

chemical rates.

2.2 Uniform Solutions

One could analyzethe uniform static solutions of theseequationsand study the

. . S . P .
stability. Dropping all i indicesand replacing the non-local term ~ ; ; S with

1To be more general,the acetylation term couldbe (1 A;)(1+ Si) allowing acetylation
of histonesin silencing complex bound nucleosomes.Howewer, aswill be discussedin appendix
A, adding this processdoesnot make much of a qualitativ e di erence.
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S, we canrewrite equationsas:

% = ()@ S)f(@ A() S(t) (2.3)
PO = @ ama s+ sWAQ 2.4)

The stationary statesare obtained by solvingthe algebraicequationsproduced
by setting time derivativesto zero. We analyze rst the casewhereavailable SIR
concerrations are kept at a constart level (for example,if creation and degra-
dation rates of SIR proteins are high), meaning (t) in equation (2.3) is assumed
to be a given time independert number, . Soin terms of scaled parameters

==, = = and = =, wehave:

(1 Sf@ A S

1
o

(2.5)

(1 AL S) (1+ S)A

1
o

(2.6)

For f (x) = x", we plot the graph of above nulicline equationsfor di erent
valuesof n and chemicalparameters. The intersectionsof two curvesrepresem the
xed points. We nd that for n > 1 depending on valuesof chemical parameters
we can get either one or three xed points (Fig.2.1). There is a possibility of
having two xed point when at one of the points two curvesare tangert to eadh
other. We will not discussthis casesinceit is not a physical possibility and will
only treat it asatransient state betweentwo physical cases.For n = 1, no matter
how onechooseschemical parameters,there canbe only one xed point (Fig.2.2).
In the three xed point regime,asit is shavn in the Fig.2.3, always the middle
oneis an unstable saddlepoint. The other two are stable, or in other words, we
are at a bi-stable regimeasit could be seenby local analysis(appendix A). One
of the two stable stateshasa lower acelylation and a higher chanceof repression,

which represets a silencedstate (heterochromatin), while the other one with a
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higher degreeof acetylation and higher chanceof de-repressiomrepresets an un-
silencedstate (eudhromatin) (Fig.2.1). A more completemathematical discussion
of xed points and their stability is givenin appendix A.

From here on, in our discussionwe assumef (x) = x", n > 1 to guarartee
possibility of bi-stability in the chemical parametersspace.Now, in the bi-stable
parameter regime, we have two stable xed points, silenced(heterchromatin)
and un-silenced(eucromatin). If , the rate of acetlation, is kept constart,
asthe value of , the rate of Sir recruitment, increaseshe un-silenced(eudro-
matin) point and middle transiernt state move towards ead other and at some
limit value of , they becomeone single point where two curve are tangert to
eat other. Pushing to ewen higher values, leadsto a single silenced (hete-
rochromatin) regimei.e. at someupper limit the systemsfalls from bi-stability
to mono-stability (Fig.2.1). In cortrast, if decreasesthe heterochromatin point
and middle transient point approat ead other and after dropping below a limit
the systemsbecomesmono-stable,the eudiromatin state (Fig.2.1). The same
behavior can be seenfor di erent valuesof when is kept constan.

Now, supposethat we have decreased to a value where there is only one
xed point, which is a silencedstate. Now, if we decreasehe value of too, we
may againfall badk into athree xed point (bi-stable) regime. Howeer, this will
not happen when is very small. For small valuesof , if we scanover di erent
valuesof , the systemwill keepshowning only one xed point. In other words,
the systemtransformsfrom a heterochromatin xed point to a eudiromatin xed
point cortinuously without crossingthe three xed point regime (Fig.2.4). This
behavior, aswill be discussedater, can provide us with an explanationto results

of SAS-I elimination experimert in section1:3:2.
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Figure 2.1: The intersectionsof nullcline curves, three represeting static \SIR
binding" (dashedlines) and the other one static \Acetylation" (solid line), show

xed points of the system. All graphs are plotted with f (x) = x*,

= 4 and

= 6:67. Ambient Sir complex concerration acts as a switch for the bi-stable
system. This graph shovs how low concetration of Sir complex pushesthe
system towards eudiromatin and high concettration of Sir complex pushesit
towards heterachromatin solution. For high, intermediate, low concettrations of

Sir complexrespectively

= 125,20 and 10.
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= 4, = 6:67 and

= 20. When there is no de-aceylation cooperativity in Sir complex binding,
f (x) is linear and there is no bi-stability (only one xed point solution). But for
f (x) = x* curve, asa result of cooperativity there can be bi-stability (three xed
point solutions).
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xed points of the system. The graphs are plotted with f(x) = x* = 4,
= 6:67and = 20. The ow diagram, demonstratesclearly why the system
is bi-stable when there are three xed point solutions. The middle xed point is
always an unstable saddlepoint while the other two are stable xed points.
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and exhibits a cortinuous changefrom euciromatin to heterochromatin state as
value increases.
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2.3 The Hysteresis Behavior

Onemight askwhich of the two stable xed points is actually chosenby systemin
the bi-stable regime. In order to answer this questionand alsoto understandthe
behavior of the systemin this regime,we needto employ a dynamical simulation
of the system. Going badk to equations(2.3) and (2.4) and keeping at somehigh
constart value, we start from someinitial valueof . By gradually increasingand
decreasing , at ead point we chedk the nal equilibrium state chosenby system.
Not very surprisingly, the system demonstratesa hysteesis behavior. In other
words, the behavior of the systemdependson its history i.e. it always keepsthe
same xed point from which it entered the bi-stable region. For instance, if we
start from a small value of at which there is only one un-silenced(euchromatin)
xed point and start increasing , whenthe systemmovesinto the bi-stableregion
it still keepsstaying in the un-silencedstate. This will be the caseno matter how
changesand even works for discortinuous jumps. Howewer, if getsso large
that we passthe bi-stable region, the only possible xed point becomesa silenced
(heterochromatin) state and the systemabruptly transformsto a silencedstate.
This discontinuous switch of statesis in direct cortrast to the cortinuouschange
of statesthat we mertioned for very low valuesof . Now, if we reversethe
direction of movemen and start decreasing , aswe move bad into the bi-stable
region, the systemkeepsstaying in silencedstate until we exit from the other end
and erter the un-silencedregionwherewe suddenlyobsene a sharp changein the
state of system.
To clarify this behavior, one can make a plot of equilibrium value of S versus
for constant valuesof . Using equation (2.6), we cansolve 1 A in terms of
the other variablesas follows:
1+ S

1 A= + 1+ ( )S 2.0
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Now pluggingthis valueinto equation(2.5), we will have the following formula

for in termsof S and

_S[ +1+( )S

1 S)r+ 9s)n (2.8)

Using equation 2.8, we will make a graph of S versus at di erent values
of (Fig.2.5). For small valuesof the graph is monotonically increasingand
therefore there is a one to one correspndencebetweenS and values, dictat-
ing that the transition from un-silencedeudiromatin state (low valuesof S) to
silencedheterachromatin state (high valuesof S) happenscortinuously alongthe
monotonic curve (Fig.2.5, solid/red and dashed/greencurves). Howewer for large
valuesof the graphlookslike a sharp"S-curve" whereat somevaluesof there
are two correspnding valuesof high and low S i.e. a bi-stable regime (Fig.2.5,
dash-dotted/blue curve). If oneincreaseshe value of from zeroand follows S
on this curve, S increasesortinuously until point (A), wherethe curve doesnot
allow further cortinuousincrease. Therefore, at this point the value of S jumps
to its value at the higher section of the curve (sharp transition from un-silenced
to silencedstate). For further increasein , there will be again a one to one
correspndencebetween and S and the systemcortinuously follows the curve.
Now if we reversethe direction of the changeand start decreasing , S cortinu-
ously decreasesintil point (B), whereit jumps to the lower portion of the curve
and we get a sharp transition from silencedheterochromatin bad to un-silenced

eudromatin.

2.4 The Bifurcation Diagram

The interesting behavior of system, motivatesthe depiction of a phasediagram,
indicating regionsin the parameter spaceof and leadingto mono-stability

and to bi-stability. In order to do so, we seekthe boundary betweenthe three
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xed-p oint (bi-stable) region and single xed-p oint (mono-stable) region inside
the and space. We have already learned from previous discussions,that
when systemmovesfrom bi-stable regionto mono-stableregion, at this limit two
nullcline curves(2.5) and (2.6) in Fig.2.1 are tangert to eat other. We usethis
condition to nd the boundary betweenthe two regionsin phasespace. The
valuesof S and A at xed points are given by the solution of (2.5) and (2.6), so

we take the derivative of both equationswith respectto A:

n(@ S)1 A)"1?

ds ]
R+ @ AN (2.9)

(1 S)+(1+ 9

ds
R(A+ (1 A) (2.10)

We should then equatedS=dA in above equations. By using equations(2.5)
and (2.6), we can nally solwe A in terms of S and get the simpli ed equation
below:

1+ S

AS)= 5Ty (2.11)

Combining the above equation with equations(2.5) and (2.6) and writing

and in terms of parameterS; we have:

(1+ S)?
@ S +Hn s @ ),
S n( +1)S "
@ S) (+1)(n 1S (1 S

(S) (2.12)

(S) (2.13)

Finally, usingabove equations,we will be ableto graphthe pair of parameters
(; ) at the boundary between bi-stable and mono-stableregion (Fig.2.6). The
diagram shows that the bi-stable regionin parameterspaceis a wedge-lile region
with a pointed critical point. Note that, in our graph the horizontal axisis and

the vertical axisis . The mono-stablesilenced(heterochromatin) state exists
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28

below the bi-stable region, whereasmono-stableun-silenced(euchiromatin) state
exists above this region. Becauseof its special shape, we also call this diagram

the bifurcation diagram.

2.4.1 The Critical Point

The critical point (the cusp point in bifurcation diagram) correspnds to the
minimum valuesof = .and = . in bi-stabile region. In other words, if
either < .or < . therewill beimpossibleto have two opposite un-silenced
and silencedstates existing at the sametime. From equations(2.12) and (2.13),
we have (S) and (S) both asfunctions of S, then taking their derivativeswith
respect to S and equatingthem to zerowill give usthe value of S at the critical

point, S.:

n+1

C

Note that both S—S(SC) = 0 and g—S(SC) = 0 give us the samevalue for S, as
they should. If we call the correspnding value of A(S.), Ac; from equation(2.11)

we will get:

Ac = (2.15)

Using thesevaluesin equations(2.5) and (2.6) will result in critical valuesof

and

(n+ 1)+t
e e N (2.16)

Note that, asit can easilybe seenfrom above equations,n 6 1 is a necessary

condition for the existenceof the critical point. It is alsoworth to restate that
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Figure 2.7: The correspnding behavior of systemin bifurcation diagram for
changeof Sir occupancy S as a function of Sir availability, in Fig.2.5.

the critical point is at low availability silencingfactors, coupledwith low rate of
acelylation, . This featurewill have an important implication whenwe will later
considerthe result of experimerts involving mutants lacking particular acelylases

(discussedn section1:3:2).

2.4.2 The Hysteresis Behavior in Phase Space

We can now return to the previous discussionon the behavior of the systemat
di erent valuesof and . Particularly, let uslook at the plot of S versus for
three constart valuesof and the hysteresisbehavior (Fig.2.5) one more time.

The correspnding valuesof  will give us three horizontal lines on the phase
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diagram, (Fig.2.7). For low value of the horizontal line (dashed/greenline)
is under the critical point and as the value of increasesthe system smaothly
goesfrom un-silencedstate to silencedstate. Howeer, for large valuesof the
horizontal line (dash-dotted/blue line) is above the critical point and to go from
un-silencedto silencedregionthe systemhasto passthe bi-stability region. If the
systemerters the bi-stability region from left, i.e. un-silencedregion, it keepsits
un-silencedstate until value of increasedo point (A) at the boundary. Further
increasein meansenering the silencedregion and thereforeforcing the system
to sharply transform from un-silencedto silencedstate. On the other hand, if
we erter bi-stability regionfrom right, the systemkeepsits silencedstate until

decreasedo the value at point (B) wherewe will again have a sharp transition
of the system’'sstate, this time from silencedto un-silenced.Finally, the middle
horizontal line passeghrough the critical point and thereforeit is at the boundary

betweentwo behaviors (The solid/red line in Fig.2.5and 2.7) .

2.4.3 The Role of Non-lo cal Interaction Factor, and De-

gree of Cooperativit y, n

Onemight askhow the bifurcation diagramdiscussedbove dependson parameter

in equation (2.4). is the parameter that cortrols the averagerate of de-
acelylation by Sir complex. In other words, the larger the the more chanceof
de-aceylation, hencemore silencing. Therefore,we expect that when is large,
only largevaluesof giveriseto hyper-aceylated/un-silenced states. Moreover,
even moderate valuesof can causesilencingin this regime. Soasit is depicted
in Fig. 2.8, the un-silencedeuciromatin region of the parameter spacewill be
squeezedand the critical point shifts both towards left for higher values. As a
result, the bifurcation diagram becomeswider.

The samequestionrisesfor, n, the degreeof cooperation of de-aceylation in
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recruiting silencing proteins, equation (2.3). As the parameter n increasesthe
role of cooperation of de-aceylation becomesmore acceruated i.e. to get the
samesilencing e ect the system requires more cooperating de-aceylated DNA
sites or higher probability of de-aceylation (lower degreesof aceylation) at the
correspnding sites. In other words, it will be more di cult to get silencedhet-
erochromatin statesthan before. Consequetly, the un-silencedregionin param-
eter spaceprevails, squeezinghe bifurcation diagram down (Fig. 2.9). The role
of non-linear cooperation in dynamical equationsof the systemwill be discussed

in more details in chapter 5.
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Chapter 3

Non-uniform  Solutions and Front Propagation

In this chapter, we go beyond analyzingthe uniform solutionsand considerstable
non-uniform spatial solutions. In the region of parameterspacewherethe system
is bi-stable, it is possibleto study how fronts between a silencedstate and an
un-silencedstate form and move on the lattice. In a systemwith a well de ned
free energyfunction, the averagemotion of a front or interfaceis determined by
the di erence of free energiesof the two states acrossthe front (Fig. 3.1). As
it is showvn in Fig. (3.1.A.), the lower free energy state S, (usually called the
stable state) invadesinto the meta-stable state with higher free energy S, i.e.
as the front movesto the left the sites on the left of the boundary transform
from S; to S,. The opposite happensin Fig. (3.1.C.) when free energyof S; is
lower and causeghe front to move in reversedirection. At the points wherethe
two free energiesare the same,the averagefront velocity is zero (Fig. 3.1.B.).
Although, in non-equilibrium systemslike the oneat hand, there is no usefulfree
energyto be de ned, onemight still explorethe region of parameterspacewhere
silencedstate invadesinto the un-silencedonesand vice versa(and the boundary
in betweenwherethe front becomesstationary).

We study the motion of boundary betweenthe two stable phasesin the bi-
stable parameter region both in the current discrete model and the cortinuum

version of the model wherethe lattice is replacedby a cortinuous 1-D system.
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Figure 3.1: Front propagationin a systemwith a well de ned free energy

3.1 The Contin uum Limit

The cortinuum versionsof equations(2.1) and (2.2) are given by discrete param-
eteri andj replacedby cortinuousparametersx andy, and the sumreplacedby

an integral; asfollows:

G - 1 s Ax) St (3.1)

@ z
@\(@X)’t) = @ AKDA sy +  x y)Sy:Ddy)A(XT)
(3.2)

Similar to the discretecase function (x Yy) isanevenfunction that sharply
falls to zeroasjx yj getslarge comparedto a length scale , say, making the
integrand negligible in this regionjx yj >> . Sincewe are only interestedin
gualitativ e nature of the bifurcation diagram, we can make a further approxima-
tion restricted to the situation where S(x; t) changesslowly over the distance of

the order of . Thuswe Taylor expand S(y;t) = S(x + (y Xx);t) = S(x + u;t)
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around x, keepup to the secondorderin juj = jy xj anddisregardhigher orders.

Equation 3.2 reducesto:

@\(x;t) _

o= (@ AKDL SKY)  + oSkiD+ ,8806 Y

@2

A(x; 1)
(3.3)
R R
where o = (uydu and , = 1=2 (u)u?du. Note that we set ; =
R _ . . .
(Wudu equal to zero since (u) is an ewen function. Equations (3.1) and

(3.3) are then the cortinuous forms of set of principal equations(2.1) and (2.2).

3.1.1 Wave Solutions and Zero Velocity Line

The analysis of the cortinuum system follows the standard route [17, 18, 19.
Seekingfor front moving solutions, we assumewave solutionsA(x;t) = A(x ct)

and S(x;t) = S(x «ct),andif z=x ct:

0 = cd(Sj(ZZ)+ 1 S@)f@l A®@) S@ (3.4)
N
0= U4 @ A s@)  + s@+ TP A
(3.5)

For eath set of parameters, there is a front velocity, c, for which there is
only \one" (or none)cortinuoussolution that represets a transition betweenthe
stationary statesrepreseting un-silencedeuciromatin and silencedheterochro-
matin.

For the purposeof this dissertation, we would focuson the part of the param-
eter spacewherethe front velocity is zero. This analysisof problemfor c= 0 is

considerablysimpler, above equationswill become:

0= (1 S@)@ A@®) S©@ (3.6)
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#S(z) _ (1 A@)1 S(2)
dz2 A(2)

2 1 oS(2) (3.7)

where o= (o= and , = ,=. Now, sinceequation (3.6) is an algebraic
eqguation, allowing A to be expressedn terms of S, we can de ne a potertial

V (S) asfollows:

Zs (1 A(S)L S)

V(S)= S 1=2 ,S*+ ds 3.8
() 0 i AS) (38)
Sothat other equation, namely equation (3.7), could be written as
d’S _ dV(S)
d2 - dS (3:9)

The valuesof parameters,for which the potertial V (S) hastwo local minima
with equal potertial values,correspnd to existenceof a zerovelocity front (Fig.
3.1.B.). Note that, we wereableto usethis potertial only to descrike zerovelocity
fronts, and not for the generaltraveling solution. This is becauseonly at zero
velocity, the systemis at equilibrium and thereforefreeenergycanbe well de ned.
To nd out the zero velocity line in parameters space,one needsto nd the
relationship between and resulting in having two local minima with equal
valuesin function V(S). At theseminima dV=dS= 0 and therefored?S=dZ = 0
from equation (3.9). Applying this condition to equation(3.7) reducesthe pair of
equations(3.6) and (3.7) to nullcline equations(2.5) and (2.6) with o- This
simply meansthat as one would have expected the local minima in cortinuous
equationscoincidewith two uniform solutionsfound from nuliclines in chapter 2.
Soif S; and S, correspnd to two stable uniform solutionsin bi-stable region, we
needto have V(S;) = V(S,) or:

Zs (1 A(S)AS)_

S1 dS A(S)

SinceA(S) is given by algebraicequation(3.6), it is a function of . Therefore,

S, S +1=2 0(522 812) (3.10)

can be easily found as a function of by above equation. For the caseof
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f(x) = x", we solwed the integral numerically using MATLAB and plot zero
velocity line inside the bi-stability region in phasediagram (represened by the
dashed/greenline in Fig.3.2).

According to the diagram, zerovelocity line starts from the critical point and
dividesthe bi-stable regioninto two sections. The upper section,which is next to
mono-stableun-silencedregime correspndsto invasion of un-silencedstate into
the silencedareas. The opposite happensin the lower section. Therefore, eat
section of the bi-stable region just mertioned, points to a di erent direction of

the movemern of front, similar to what happensin Fig.3.1.A and 3.1.C.

3.2 The Discrete Mo del

We alsoneedto study the formation of boundary in the discretemodeli.e. solve
equations(2.1) and (2.2) directly, using numerical methods. For this means,an
explicit nite di erence method wasemployed (a more detailed description of the
method is given in appendix B).

By scanningdi erent valuesof parameters and , inside the bi-stability re-
gionone nds aband-like region(asopposedto the zerovelocity line in cortinuum
case)wherea stable zerovelocity boundary betweenthe silencedand un-silenced
states can form (in the rest of the phasespaceeither the silencedregion shrinks
to zeroor it coversall the sites). This result actually hasbeenvery well studied
for front propagation failure in lattice modelsasin [20]. The boundariesof the
band are represeted by the dashed/red lines in Fig.3.3. This band shrinks to
the zero velocity line as one takesthe cortinuum limit. We will call this region
in phasespacethe zer velaity band.

Now, Onemight askwhich of thesedescriptions,the cortinuousor the discrete
case,are closerto reality. If we court eat nucleosomeas a unit and expect one

silencing complex per nucleosome then that provides us with a natural lattice
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spacing. Howewer, the nucleosomesre not quite static. They could move around
or disappear (if the histone-actamerfallso DNA). If the time scaleof nucleosome
dynamicsis much slower than that of the silencingprocess,then we are justi ed
in taking the nucleosomearray asa lattice to operate upon. If the time scalesare
the other way around, we might averageout the nucleosomeuctuations and get
an e ective cortinuum description. The truth probably is somewheren between,
leadingto a fuzzy region of low front mobility crossingover to high front mobility

regions,above and below zerovelocity line in the bifurcation diagram.

3.3 Front Dynamics

As it was discussedin section 1.3.2 lowering acelylation rate, asin the sas2
mutant case[25, 26], may result in the courter-intuitiv e behavior of reducing
silencing rather than helping it. This is a question of dynamics,soto nd an
answver we needto study the movemer of the front by starting from someinitial
con guration of silencedand un-silencedareasat equilibrium, then changethe
chemical parameters,and let the systemewlve until it readesequilibrium again.
Sincein the bi-stability parameterregionthere is no unique stable con guration,
there is no trivial answer to above problem if the nal parameterssit in this
region.

In particular, we are interestedto seeif the initial nucleation necessarilyre-
sults in spreadingof the silencing. Supposewe are in the bi-stable region of the
parameter spaceand start from the locally stable uniform un-silencedsolution,
i.e. all sites of our 1-D lattice are hyper-aceylated/un-silenced. We want to
know what happensif we nucleate a small region of silencing, say, by tethering
a protein that recruits the silencingfactors locally. So we force nucleation at a
site in the middle of lattice, i.e. we keepa site silencedall the time. With ini-

tial parametersinside the zerovelocity band and by utilizing numerical methods
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in appendix B, we let the system ewlve until it readesthe equilibrium. Not
surprisingly, there will be no spreadingand the nal con guration will not be
very di erent. The spreadingwill be limited only to the neighborhood of the
nucleation site. The systemneedsonly to conform to the desiredshape of the
boundary to read equilibrium and this doesnot take more than a few sites at
vicinity (caseA: solid/black curve, Fig. 3.4). Then if one decreases , sa, by
knocking o an acelylaseprotein; nothing changesunlesswe move out of the zero
velocity band. For a  under the zerovelocity band yet inside bi-stability area,
sincethere will be no stable boundary betweentwo statesthe silencing spreads
and coversall the space(caseB: Dash-dotted/blue curve, Fig. 3.4). It is obvious
that, the samething would happen independert of the initial con guration, if

nal valueof wasunderthe bi-stability regioninside the silencedstate territory

(caseC: Dashed/red curve and caseD: dotted/magenta curve, Fig. 3.4). Note
that in particular, lowering the value of in no way reducesthe silencinge ect.

In seard of an answer to that paradaical phenomenon,in the next sectionwe

will study the e ect of nite supply of Sir proteins.

3.4 The Role of Finite Supply of Sir Proteins

Sofar, it was assumedthat the available ambient concetrations of Sir proteins
is xed, re ected in (or ) beingheld constart. We could useour insights, into
the bifurcation diagram, to infer what would happen if the total number of Sir
proteins (the sum of thosein solution and thosebound to DNA) were xed. This
is particularly interesting in the bi-stable region.

Our treatmert is very similar to studying phaseequilibrium with a xed num-
ber of particles. For example,considera liquid gasmixture at a constart tem-
peraturein a xed volumewith xed number of particles, and imaginethat there

is an interface betweenthe two states. The interface moves, and the fractions
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of particlesin the di erent stateschangetill chemical potertial of the two states
becomeequal. Under this nal condition, the interface doesnot move anymore,
apart from thermal uctuations around the averageposition. As we noted be-
fore, in our problem, we may not de ne a free energy but we could indeedtalk
about averagemovemert of interface betweentwo states, namely the front, and
the condition under which the interface stops moving.

Going badk to original equations(2.1) and (2.2), we needto replacethe con-

stant i(t) by a (t) which is given asfollows:

p
(t) = (Swotal X Sk(t)) = o(1 %k(t)
k otal

where Sia , the total number of functional Sir complexesin the system,and

) (3.11)

o are both constarts.

Depending upon the size of the silencedregion and S; , ONe would get in-
teresting titration e ects in this model. Sowe actually considertwo cases;case
I, with Sioia) large enoughto cover the whole lattice and casell, with not su -
ciert value of Siia (it canonly cover a limited areaof lattice). Now, supposewe
employ the sameexperimert we beganin last sectionand start with a nucleation
certer at the middle of ertirely hyper-acetlated/un-silenced lattice. If we are
above the zerovelocity band, no stable boundary can form and high acetlation
rate makesit impossiblefor silencedpatch to spreadinto the un-silencedregion.
Even inside the zerovelocity band, aswith the previouscaseof in nite supply of
Sir protein, the spreadingwill only be limited to the vicinity of nucleation and it
stops as soon as stable boundary can form. Therefore,in both casessilencingis
going to remain localizedaround the region of recruitmert.

Howe\er if the acetylation rate, , istuned down further; we gointo the region
wherethe silencingcan spreadinto un-silencedareai.e. belowv the zero velocity
band. Naively, one would always expect more silencingas in the in nite Sigy

case. Howewer, since is no longer xed, assilencingspreads, (t) reduces. At
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this point one of the two following things may happen. The front could stop
because (t) reducesenoughto read a point on bifurcation diagram wherethe
propagation velocity is zeroi.e. inside the zerovelocity band. Thus the e ect of
reducing would beto e ectively reduce aswell, sothat the systemalways stays
on the zerovelocity region. This result can happen in both casel and Il (case
B, Fig.3.5and casesB, C & D, Fig.3.6). Howeer, in casel there is a possibility
that beforereading the zerovelocity band, silencinghas covered all the lattice.
Soin this casethe nal state can be any point inside the bi-stability region, or
inside mono-stablesilencedregion and not necessarilyin the zero velocity band
(casesC & D, Fig.3.5).

In conclusion,Fig.3.5 and 3.6 shov how the simulation results agreewith the
predictions above. In all the caseswe started with an initial stable nucleation
region inside the zero velocity band, then jumped to lower valuesof (black
triangles) and let the systemewlve until it readesits nal stable con guration
(colored triangles). As it is shovn in Fig.3.6 for limited supply of Sir proteins
the systemalways stopson the zerovelocity band, silencinga limited areaon the
lattice. In Fig.3.5, howewer, Syt IS large enoughto cover the whole space;so
silencingof limited patchesof DNA only happenswhen is not too small.

The importance of the results from this simulation is not limited to the above
discussionon spreadingand front propagation. Comparing results of caseC and
D in Fig.3.6revealsthat lowering canactually reducethe silencinge ect. This
e ect can be explained intuitiv ely as follows; since with limited supply of Sir
proteins and decreasing systemhasto stay on the zerovelocity band, the value
of alsodecreasesgconsumingmore ambient Sir proteins. In other words, more
free Sir proteins sit on the lattice and expand the silencedarea. Howe\er, the
decreasen both parameters and movesthe systemcloserto the critical point,
where the valuesof S and A for two opposite states corverge. In other words,

the averageprobability of Sir binding, S, decreasesand the averageprobability
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of aceylation, A, increasesand both get closerto their critical values.

In addition, around the critical point, the bi-stability region is very narrow
and by small uctuations the systemmay crossbi-stable line and switch states.
Solowering aceylation rate, asin the mutants of sas2which code for acet/lases
[25, 26], not only can reduce averagesilencing but also move the system closer
to the critical point and results in very sharp changesin silencing under the
small changesin Sir availability. Sowe beliewe that the resulting systembecomes
extremely susceptibleto cellular noiseand would display a wide distribution of
expression. Thus, as opposedto the naive expectation that SAS2 deletion will
just make everything moretranscriptionally silert, oneshould nd individual cells
that shov good expressionfrom the "silent” loci.

In addition, the mono-stableintermediate silencingstate in SAS-I elimination
experimert (section 1:3:2) may correspnd to the casewhere hasdroppedto a
value lower than the critical value, . In this case,the systemfollows the same
behavior and consumesambient Sir proteinsuntil  decreases$o a value closeto
the critical point. Howewer, since is smallerthan ., the nal state will bein
the mono-stableregion of phasespaceat a point betweenun-silencedand silenced
regions, where there is no distinction betweentwo states. This point very well
descrikesthe porous heterochromatin con guration of this state.

Note that, asdiscussedn chapter 1, in reality the silencingcould alsostop at
special boundary elemeints on DNA wheresomeother processstopsthe spreadof
silencing[21, 24]. Alternativ ely, if there are more than oneregionin DNA where
silencing spreadsby the same medanism and if at least one of these regions
does not possessa boundary elemen, then we are led to the same situation,
namely reducingenoughto stop front movemen. We will explorethe biological

consequencef this obsenation in the chapter 6.
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Chapter 4
The Role of Stochasticit y

An important aspect of biochemical interactions inside cell is that they all shav
somedegreeof stochasticity. Numerousstudieson geneexpressionin living cells
have shavn the intrinsic stochasticity in transcription and translation [32]. For
instance, one can look at the bactriophage switching phenomenon,which is a
good exampleof noisein cellular processessthe switching betweenthe bi-stable
lysis and lysogenicstateshappensrandomly [33]. Basically the underlying reason
to this intrinsic noiseis that, most of the time only a few constituert protein
moleculesare preser to participate in interactions, so the interactions happen
like suddenbursts at randomtimes|[34, 35. Thus,in practice, cellular interactions
are very susceptibleto thermodynamic uctuations. As a result, the mean- eld
approateslike what we took with equations(2.1) and (2.2) in previouschapters
are generallyfar from reality and just demonstratethe averagebehavior of cell in
thesecircumstances.However, asit wasdiscussedat the end of chapter 1, studies
show that extrinsic noise (the uctuations in the chemicalparametersthemsehes)
is often slover and prevails intrinsic uctuations descriked above [36, 37]. Soone
might still be able to learn a lot about the e ect of extrinsic uctuations at the
mean- eld appraoximation of the system.

In cortrast, we also mertioned marny obsenations on epigeneticinheritance
that shav a very robust inheritance of chromatin con guration to the decedeh
cells. Onemight ask,despiteall the noiseinvolved, how cellscanbehave with sud
robustness. Unfortunately, an exact answer to that questionrequiresa detailed

knowledgeof chromatin con guration and molecularprocessesluring cell division
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which, becauseof the physical constrairts in probing them, it has not yet been
available to us.

Our model canactually provide uswith someinsights regardingthe robustness
of the averagechromatin con guration to extrinsic uctuations, suddenchanges
in chemical constarts. We will discussthe results of our simulation to explain
this averagecon gurational robustnessin the rst sectionof this chapter. In the
next section,however, we will actually considerthe intrinsic noisein a stochastic
treatment of our model and will seethat the model can still shov the sameform
of bifurcation diagram under thermodynamic uctuations and thus the similar

bi-stable/mono-stablebehavior persist.

4.1 Extrinsic Fluctuations and Front Robustness

Going bad to discreteequations(2.1) and (2.2); sofar the main chemical param-
etersof the model and (or o, in the casewith limited supply of Sir), have
beentreated as constarts, ignoring any uctuations in their value. We will show
that, in the mean- eld approad, dependingon the intensity of and variation,
the systemcanstill display the sameaveragesilencingcon guration and maintain
the sameposition of the barrier. Assumethat we are in the middle of the zero
velocity band and somecortiguous part of DNA lattice is silenced(Solid/black
curve in Fig. 4.1.A & Fig. 4.2.A). The bordersbetweentwo statesare very well
de ned and the systemis at equilibrium. Now keeping xed (The supply of
Sir proteins is un-limited), we shift the value of to either of its value at the
boundariesof zerovelocity band and using the numerical method in appendix B,
we let the systemewlve (Dashed/greencurve, Fig. 4.1). The result asit is shavn
in the picture, exhibits no shift in the position of the boundary. The only thing is
the degreeof silencingthat slightly changesinsidethe silencedpatch. Clearly, if

movesout of the zerovelocity band, the front will move until either of the regions
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shrinks to zero. Now if one doesthe samesimulation with  changing instead
of , the result will still demonstratepersistencen the position of the boundary
betweentwo states (Dash-dotted/magerta curve, Fig. (4.2)). For the casewith
limited supply of ambient Sir proteins, onewould still expect the samebehavior,
although now the suddenshift is assumedo bein o (Fig. 4.3). Howeer, in this
case,when the value of ( crosseghe upper/lower bounds, the averageshift in
the position of boundary will be limited sincethe value of always returns inside
the zerovelocity band to maintain a stable boundary (Dashed/blue curve, upper
diagram, Fig. 4.3). In other word, whenthe supply of Sir proteins is limited, the
position of boundary is even more robust to changesin chemical parameters.

In conclusion, depending on the location of our systeminside the parame-
ter spaceor more preciselyinside the zero velocity band, there is somedegree
of persistencyin the averageposition of the boundary after it is settled. This
will provide us with someinsights on why chromatin which is subject to di er-
ernt extrinsic uctuations during the cell life cycle can still maintain the similar

con guration.

4.2 The Intrinsic Stochastic Treatment of the System

Sofar, we assumeda mean- eld approximation of the systemby intro ducing chem-
ical equations(2.1) and (2.2) as the principal equationsgoverning the silencing
phenomenon. As it was discussedat the beginning of this chapter, stochastic
nature of cellular interactions demandsa stochastic approad to withhold a more
realistic perspective of the system'sbehavior. The intrinsic stochastic nature of
the interactions can be treated in equations(2.1) and (2.2) whenthe parameters
A; and S; are not consideredaveragevaluesanymore and only acquirea few dis-
crete valueson a random basis,e.g. S; can only take 1 for Sir complexsitting at

site i or O for Sir complexnot sitting there.
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The mean- eld treatment of the systemcan only be equalto the averageof its
stochastic versionwhen all terms in equations(2.1) and (2.2) are linear or when
there is no cooperativity. More precisely the averagevalue of any non-linear
function f of the stochastic variable x is not in generalequalto function f of the
averagevalue of stochastic variable x; or < f(x) >6 f (< x >). Sowe needto
ched if the averagestochastic treatment of the systemactually agreeswith our
gualitativ e results from the mean- eld approad or not.

One of the big drawbadks to the mean- eld approad is that whenoneconsid-
ersa stable xed point as silencedto un-silenced,it only represets the average
behavior of the system. In cortrast, when one studies single cell data, there are
no stable xed points becauseof stochastic deviations. Thereforeto be more con-
crete, oneis requiredto ched if the stochastic deviation from the averagevalue
is small enoughthat they can actually be considereda stablepoint in stochastic
regime. Sothe stochastic simulation of the systemis necessarynot just to exam-
ine the averagequalitativ e results from mean- eld approad but alsoto seeif the
xed points in the mean- eld model can represemh any stable points in the real
stochastic behavior of chromatin.

For the principal equations(2.1) and (2.2), with f (x) = x", we assumeda
digital variable S; and n digital variablesAi(m), m = 1;2;:;;n at ead site of the

1-D lattice. Therefore,we have the following ratesbetweenoppositedigital states:

Q
m=1;2;:;;n (1 Ai(m))
S =0 S =1 (4.1)

1 S)
AM =9 P | AM =1 4.2)
+ . .S
| B
where all the chemical parametersare kept constart. Then we employed

a Monte Carlo simulation on a lattice of length L = 10 with periodic boundary

conditions. Two oppositeinitial conditionswaschosenfor eat set of parameters:
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Figure 4.4: Histogram of the natural logarithm of number of silencedsitesin a
L=10 site lattice, starting from two oppositeinitial conditions. The correspnding
valuesof chemical parametersare indicated at the top of ead graph. Note that,
the degreeof cooperativity n equals2 and total number of samplingsis morethan
10°. The diagramsexhibit the possibility of two sharp stable xed points in the
stochastic model.
an entirely hypo-acet/lated/silenced lattice and an entirely hyper-aceylated/un-
silencedlattice. We alsoassumedhe parameter j to fall o exponertially with
a length scale . For a more detailed description of the method pleaserefer
to appendix C. By scanningon di erent valuesof and , we could distinguish
di erent points of the phasespaceaccordingto the averagebehavior of the system
and the time scaleof corvergencetowards the averagestate. As a matter of fact,
the qualitativ e shape of the bifurcation diagram will be similar to the bifurcation
diagram of the mean- eld approad, verifying that the mean- eld approad does
actually provide a good qualitative description of the average behavior of the
stochastic system. Moreover, results from the histograms clearly showv that in
someregionsof phasespacethe stable points can be very robust to noiseand the
systemstays in silencedand un-silencedstatesfor a comparatively long time (Fig.
4.4).

Howeer, asit is seenin Fig.4.5, at somepoints of the parameter spaceone

might get intermediate solutions that do not correspnd to either of the known
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Totally un'sil enced iritial condition ( r~107, a~10%,, g1 & x~10) Totally silenced initial condition ( r~107, a~10%,, g1 &x~10)

25

25

201

151

101

0O 1 2 3 4 5 6 7 8 9 10 0O 1 2 3 4 5 6 7 8 9 10
Number of silenced sites Number ofsilenced stes

Figure 4.5: Histogram of the natural logarithm of number of silencedsitesin a
L=10 site lattice, starting from two oppositeinitial conditions. The correspnding
valuesof chemical parametersare indicated at the top of ead graph. Note that,

the degreeof cooperativity n equals2 and total number of samplingsis morethan

10°. The diagramsexhibit the possibility of an intermediate state in stochastic
regime.

stable solutions, i.e. ertirely silencedor un-silencedstates (Fig.4.4). Thesekind

of solutionscanrepresen either a uniform intermediate solution betweenertirely

silencedand un-silencedlattice states (a point outside the bi-stable parameter
regime) or they can correspnd to a bi-stable system switching badk and forth

betweentwo stable states (a point inside the bi-stable parameterregime). These
two type of solutions have the sameaveragebehavior. However, if we keep one
of the parametersconstart and change the other one, we may be able to see
the di erence in the behavior of two cases(Fig.4.6 and Fig.4.7). As it is seen
in Fig.4.7, in the mon-stableregime, corvergenceto a nal averagestate could
always be obsened during our screeningtime. Where as, for the bi-stable regime
(Fig.4.6), convergenceo a nal averagestate is much longerand may not happen
during the screeningtime. One might say that, both systemsmay ewertually

convergeto the sameaveragebehavior in a very long screeningtime. It may be

true; but at leastwe canbe surethat in time periods not too long the cell exhibits

totally di erent regimes:bi-stable or mono-stable.
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Totally unisil enced initial condition ( r~10%, a~10%,, g1 & x~10) Totally silenced initial condition ( r~10%, a~10%, g1 & x~10)
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Figure 4.6: Histogram of the natural logarithm of number of silencedsitesin a
L=10 site lattice, starting from two oppositeinitial conditions. The correspnding
valuesof chemical parametersare indicated at the top of ead graph. Note that,
the degreeof cooperativity n equals2 and total number of samplingsis more
than 1. The transition from the averageintermediate state, inside bi-stable
regimeof parameterspace,to oneof the averagestable statestakesa longertime
comparingto a mono-stablesystem, Fig.4.7.
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Totally unisil enced initial condition ( r ~500, a~30, , g~1 & x~1) Totally silenced initial condition ( r~500, a~30, , g~1 & x~1)
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Figure 4.7: Histogram of the natural logarithm of number of silencedsitesin a
L=10 site lattice, starting from two oppositeinitial conditions. The correspnding
valuesof chemical parametersare indicated at the top of ead graph. Note that,

the degreeof cooperativity n equals2 and total number of samplingsis morethan

10°. The transition from averageintermediate state, inside mono-stableregion of
parameterspaceo adi erent averagestate trough changingparameters,happens
faster comparingto a bi-stable system,Fig.4.6
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Totally unisil enced iritial condition ( r ~107, a~104, , g1 & x~10) Totally silenced initial condition ( r~107, a~104‘ . g1 & x~10)
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Figure 4.8: Histogram of the natural logarithm of number of silencedsitesin a
L=10 site lattice, starting from two oppositeinitial conditions. The correspnding
valuesof chemical parametersare indicated at the top of ead graph. Note that,
the degreeof cooperativity n equals2 and total number of samplingsis morethan
10°. The diagramsshaow that, in shorter time scalesthe systemin Fig.4.5 acually
exhibits bi-stable states.

Note that, we can also ched the di erence betweentwo casesabove by as-
suming a shorter screeningtime. As aresult, oneobsenesthat, in a shorter time
scalethe bi-stable systemactually falls into either of the stable statesand it stays
there for sometime until it switchesto the other state (Fig. 4.8). In corrast,
the mono-stablesystemconvergesto the same nal state very fast. In conclusion,
as it was said earlier, by di erentiating betweenthe systemsaccordingto the

time of their corvergenceponewill be ableto nd qualitativ ely the sameshape of

bifurcation diagram aswe discoveredin mean- eld approad.
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Chapter 5

Alternativ e Possible Non-linearit y in the System

In the model discussedsofar, we assumed (x) = x" in the main equations(2.1)
and (2.2) and bi-stability demandsthat that n > 1, meaningthat we needa
certain degreeof cooperativity in how de-aceylated histonesrecruit the silencing
complex. This might very well be the case. Howewer, the cooperativity in that
particular interaction is not absolutely essetial when we have other non-linear
e ects in play.

One rather plausible e ect is as follows. Transcription of a geneis often
assaiated with a higher rate of acetlation of histones. It is believed to be one
of the reasonswhy highly transcribed genesare hard to silence. For example,a
tRNA gene,usually producing a large amourt of RNA, has beenfound to have
an important role in a silencing boundary [24]. One might therefore imagine
that silencing, which a ects local transcription rates, indirectly a ects the local
acellation rate. One way to model this is to introduce an additional function
g(1 S) inthe local aceylation rate makingit (1 A;i(t))(1 Si(t))g(l Si(t)).
If there is no sud feedba& from silencing, we could have g(y) = 1. We will
considerg(y) = y™ 1, m = 1 beingthe caseof no feedba&, whereasthe simplest
models of feedba& would leadto m = 2. For a generalvalue of m (and n) our

model now would be given by the following equations.

B = e sma Ao s (5.1)
NG - A SO+ SOAD  (2)

dt J.
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Thus, the nature of non-linearity in thesemodelsis characterizedby a number
doublet (m; n). We discussed(1;n) modelsin the previous chapters and found
that we needn to be greaterthan onefor thesesubclassof models. Soto study the
general(m; n) models,we canfollow the sameroutine. Thus,to nd a bifurcation

diagram, generalizednulicline equationsare as follows:

I
o

@l s A" s (5.3)

I
o

1 A S)™ @1+ SA (5.4)

We alsoneedto nd the generalform of equation(2.11) to hold at the bound-
ary of the bi-stability region:
1+ S

A= nS[(m 1) S+ m+ ] (5.5)

Using above equations, we can use S as a parameter and plot ( (S); (9))
to get the phasediagram for (m; n) models (Fig.5.1). As a result we found that
for (m;1), m > 1 the shape of the bi-stability region is qualitatively the same
wedge-lile band. In general,forany m landn 1excludngm=n=1
the (m;n) model will result in a bifurcation diagram with essetially the same
structure (Fig.5.1). As a consequenceanany of the qualitativ e resultswe provided
for (1;n) modelsis alsotrue for the generalcase(m; n) models, provided that m
and n are newer both lessthan or equalto 1.

In other words, both kinds of models, those with Sir binding depending
strongly non-linearly on the degreeof de-aceylation as well as those where the
e ect of silencingon local transcription feedsbad on the acetylation rate, show
qualitativ ely similar behavior neededto descrike silencingin nucleus. Hencewe
will cortinue using the results of the (1;n) models, fully keepingin mind that

there is a broader classof modelsleadingto the samequalitativ e predictions.
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Chapter 6

Biological Consequences of the Mo del

The bifurcation diagram preselts a classi cation of qualitativ ely di erent kinds of
dynamicspossiblewithin the model. It providesuswith a moreprecisevocabulary
for discussinggualitativ e consequencesf alternative models. Combining this with
experimenrtal facts, we should be able to place the wild type yeast and various
mutants in this diagram.

Outside the bi-stable region, in the un-silencedregion, the dynamics decides
a self-consisten level of silencing. Recruitmert of silencingcomplexat one place
only a ects a small regionaround it, with the e ects dying o exponertially with
distancefrom the nucleation certer. The upper part of the bi-stable region, with
higher valuesof (Regionl in Fig.6.1), is not qualitatively very di erent in that
regard. The only di erence comesin, when one considersstochastic dynamics,
which allows for occasionalformation of silencingin the whole region.

In the lower half of the region, RegionlIl in Fig.6.1, and alsoin the silenced
region of phasespace,nucleation leadsto spreading. This is the regionwherethe
naive expectation from the popular biological model matchesthe results of math-
ematical analysis. We have argued, that under some conditions, the dynamics
of Sir depletion would lead the systemsstarting in this regioninto the border of
the two regions(zero front velocity curve, Fig.6.1). A locus of DNA, descriked
by parametersof regionll, and the silencedregion could possibly seenon-speci ¢
silencinginduced by stochastic nucleation of silencing.

But in this bifurcation diagram, whereis the point correspnding to silencing
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Figure 6.1. Changesin the rate of silencing, in responseto decreasingof the
rate of acetylation, , when the total supply of Sir complexesare limited. The
systemapproadesthe zerovelocity line closeto the critical point.
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dynamicsin silert mating loci in wild type yeast? The fact that the silert loci
in the sirl mutants could be in either state, suggeststhat oneis in the region
allowing bi-stability. A tougher questionto answer is which part of the bi-stable
regionit is in. In Regionll, there is quite somechance of getting undesirable
non-speci ¢ silencing. On the other hand, in Region |, typically, the silencing
spreadsvery little from the nucleation certer, unlessthe systemis very closeto
the cusppoint (or critical point, Fig.6.1). In fact, if onede nes a length scaleby
how far the e ect of silencinglocal nucleation spreads,that length scalediverges
exactly at the cusppoint. The systemcould operate at a point wherethis length
scaleis large.

The dynamicsrepreseted in the popular cartoon model of silencing,reviewed
in [3], correspnds the behavior in Region Il. Sudr models come with explicit
requiremen of boundary elemens to stop the spreading. On top of that, there
should be an argumert why the chance of nucleation in somewhereelsein the
genomedoes not cause spontaneous non-speci ¢ silencing. Alternativ ely, one
could possiblyarguewhy the probability of acciderial nucleationis low. Howeer,
if the systemis in Regionl, then one could obsene a reduction in silencingwith
increasingthe distance from the nucleation certer, namely the silencer. Sud a
claim hasbeenmadeby someresearbers[22]. Although onecould arguefor both
options, we would side with the secondoption, namely that the operating point
of wild type silencingloci is in Regionl, but not too far from the cusp point to
have a large spreadinglength scale.

We could now discussthe consequencesf lowering the aceylation rate asit
happensin, say, the sas2mutant [25, 26]. We arguedthat if there are fronts
of silencingthat are not pinned down by boundary elemens somewheren the
genome,then our argumern about (Sir binding rate) reducingand moving the
systembadk to the zerovelocity line/region, applies. This is indeeda possibility

in yeast. Although the silet mating loci have well de ned boundary elemetts,
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the samemay not be true of all the telomeric regions. This result might explain
certain courterintuitiv e featuresof mutants of certain genedike sas2which code
for acelylases.If the reducedacetylation rate in sas2mutant is closeto a certain
level, the systemwill ow badk to closeto the cusppoint at tip of the bi-stable
region. Near the cusp point, the degreeof silencing changesvery sharply with
the changesof Sir availability. We beliewe that the resulting system becomes
extremely susceptibleto cellular noiseand would display a wide distribution of
expression. Thus, as opposedto the naive expectation that SAS2 deletion will
just make ewverything moretranscriptionally silert, oneshould nd individual cells
that show good expressiorfrom the \silent" loci. We speculate,whetherthis isthe
reasonwhy the SAS genesmnay have beenpicked up in an assg looking for defects
in silencing. Recen singlecell measuremets obsenation for GFP expressiorfrom
sirlsas2genemutant cellsshav a wide but uni-modal distribution of expression
in a cell population, where as sirl cell population shav bimodal distribution,
characteristic of epigeneticstates[39].

Another simple consequencéhe bifurcation diagram that onecould say qual-
itativ e things about the epigeneticswitching rate in di erent parts of the bifur-
cation diagram. For example,we expect the switching rate to get faster near the
cusppoint. We expect asthe level of Sas2is loweredcontinuously (decreasing ),
we will seea rise in switching rate, as the systemwould move toward the cusp

point.
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Chapter 7

Discussion

We have formulated a mathematical version of the model of silencingand com-
puted the bifurcation diagram of the system. This diagram is consisten with
seeral obsenations about mutants. It is, in principle, possibleto explore the
wholetwo dimensionalcortrol parameterspaceexperimenally. For example,one
could study singlecell GFP uorescencefrom areporter in HMR while modifying
by regulating Sir proteins, and modulating via changingthe level of Sas2.

In addition to the sas2mutant, which we discussedextensiely, one of the
mutants that we want to understandis dotl. Part of the reasonto study this
mathematical model is the apparent paradok: if the Sir2,3,4 systemitself can
propagatefurther from regionwith stochastic nucleation of silencing, why many
other regions, not cortiguous to silencing at nucleation sites, do not shov oc-
casional heritable silencingin manner. In fact, a screenhigh copy disruptors
of telomeric silence[29], produced, among others, a genecalled DOT1 whose
deletion causenonspeci ¢ silencing. Understandinghow Dotl a ects silencingre-
quiresusto consideradditional stateslike methylation of histones[30]. Basedon
our preliminary study of a full model of the systemwith additional statesit seems
that the simpler model studied in this paper, with somechange of parameters,
could e ectively capture the e ect of Dotl. This is onefuture direction that we
are pursuing.

We nally mertion two issuesnot dealt at all within this dissertation that

needsfurther attention. One is that our model of DNA, as a one dimensional
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system, may be called into question if the heterachromatin formation happens
very fast (comparedto the speedwith which silencingspreads),making the DNA
fold up into higher order organization quickly. The other interesting issueis in-
heritance of silencing. Could we have our model capture inheritance in a coarse
grained manner, or do we stand to gain somethingby modeling the probable si-
lencing of duplicated DNA explicitly? Of course,for any biological model, there
are many ways of making it more realistic. Howewer, not many of these 'im-
provemens' changethe qualitative properties of the bifurcation diagram. We
believe our model includes enoughfeaturesof the biological phenomenato be a
good starting point for more re ned discussionof the qualitative behavior of this

system.
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Chapter 8

App endix A: Uniform Fixed Points and Their
Stabilit y

In this appendix, we considera more generalform of the equations(2.3) and (2.4)
and discussthe mathematical methods which canbe usedto nd the stable xed

points of the system. Considerthe following uniform dynamical equations:

B = a sora A sw ©.1)
dA(t)
5T @ AL Sm) ( + SMAW (82)

whereall the Greek letters are positive constart variables. S and A are real
parametersthat can only take valuesbetweenO and 1, inclusive. f (x) and g(y)
are non-negatiwe, monotonically increasingfunction in the interval 0 x 1and
0 vy 1. Note that, uniform version of both the set of non-linear equations
(5.1) and (5.2) and the generalform of acelylation term mertioned in foot notesof
section2:1, are special casesof above equations. Assumethe changeof variables,

X =1 AandY =1 §S;rewriting the above equationsin X and Y:

dy

2= Y(f (X)+ ) (8.3)
dt
D=+ V) XLam+(+ V]
" o) g
= ( o+ )1 X2 (8.4)

Now, de ne functions f{X) and g(Y) asfollows:
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fX) = f(X) (8.5)
_ g (Y)
oY) = 15 v (8.6)
where = =, = = and = = . Both f{X) and ¢(Y) follow the

sameproperty we assumedfor f (x) and g(y), i.e. non-negative, monotonically
increasingfunctions in the interval 0 X l1land0 Y 1. So,in terms of

thesenew functions we have:

O('j_\t( - Y (F(X) + 1)i=F(><;Y) (8.7)
%( = (+  Y)I X(gY)+ 1]= GX;Y) (8.8)

Then, the xed points for above equationssatisfy following nuliclines:

— 1 —
YT Rk en (X0 89)
— 1 —

whereX; and Y; denotethe xed point values. Note that f(X ) and §(Y) are
monotonically decreasingunctionsinsidethe interval0 X landO0 Y 1,
which themsehesare con ned between0O and 1. For the specialcasedeingstudied
in this dissertation, the generalshape of f* and @ is given in Fig.8.1; i.e. either
they decreasewith a positive curvature (positive secondderivative) or decrease
like an S-curve The solution to above equationsis then given by the intersection
of one suth curve with another onere ected at the x = y line. Therefore, it
is easyto seethat for all casesin this dissertation, there is either one or three
answersto above equations.

One can investigate the stability of the xed points by Taylor expansionof
equations (8.7) and (8.8) around the xed points. Soif X = X; + X and

Y=Y+ Y,forsmall X and Y, keepingup to the rst non-zeroterm:
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0 1 04

d Y @

el A=@ A@ A (8.11)
d  x @
@

In order to have stability at (Xs;Y;), the above Jacobianmatrix hasto have

negative eigervalues. The two eigervaluessatisfy the belonv quadratic equation:

CaCE & GaEF

2
Z e @()Z CACS @@()—0 (8.12)
Soto have negative solutions, we should have:
.o g@;% < 0 (8.13)
A X @ > 0 (8.14)

According to equations(8.7) and (8.8), both % and % are negative when
0 X landO Y 1, hencethe condition (8.13) is always satis ed. Since
this condition meansthat the sum of eigervaluesis negative, we can either have
two negative eigervaluesor one negative and the other positive. In other words,
eathh xed point can either be a stable point or an unstable saddle point. In
the three xed point regimethen, we can either have two stable points anking
the middle saddle point or two saddle points anking the middle stable point.
Howeer sincefor small Y, dY=dt is always positive (equation (8.7)) and it only
changessign when Y passesdts nulicline value (equation 8.9) and also sincethe
sameholds for X ; onecan nd that the middle xed point is always the saddle
point. Hencethe anking points areactually stable. One canalsodraw the vector
eld of the ow (dd—f; dd—f), using softwares suc as MATLAB, to investigate the
stability of the points (Fig. 2.3).

Note that, now in orderto nd the numerical valuesof stable xed points, we
can always start from either X = 0 or Y = 0 and by recursiwly plugging X and
Y inside equations(8.9) and (8.10) and obtaining new valuesapproad the stable

xed point answers.
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Chapter 9

App endix B: Numerical Metho ds in Discrete
Mo del Approac h

We usean array of variable length L = 10to 200sites, setting the value of S and
A at ead boundary equalto either one of the two stable uniform solutions. Two
forms of j is considered.First, j is assumedto be non-zeroonly for nearest
neighbors(ji jj = 1) andbezeroelsewhereSecond, j = oexp(j i jj=) with
a positive length scale, . For the initial condition, we assumea con guration
with a very sharp transition in the middle of the lattice i.e. half of the sites
on one side are set to hypo-acetlated/silenced uniform solution and the rest of
the lattice which are on the other side are set to hyper-aceylated/un-silenced
uniform solution. Then an explicit nite di er ene methal is employed to nd

the numerical answers of equations2.1 and 2.2:

Si+1 = t[@ )@ Ay)  Sil+ S ) (9.1)

X
Ay =t (1 AA S) (+ ik Sk A+ Aj (9.2)
k

wherej indicatesthe number of stepsin time, and t is the time step. Con-
vergenceto a stable state wasvery fast and in most caseswith only slight change
from the initial con guration.

At the end, to ched that our answer has actually convergedto the stable
solution, we can apply the time independent form of equations(2.1) and (2.2)

recursiely on the answver:



f(1 A)
f(1 A)+
1 S)

1 s)+ +

K ik Sk
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(9.3)

(9.4)
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Chapter 10

App endix C: Monte Carlo Simulation of the
Sto chastic Mo del

In order to employ a stochastic simulation of equations(4.1) and (4.2), one can
take a Monte Carlo approad). Assumethat we have a lattice of sizeL and at
ead site i of this lattice n digital parametersAi(m), m = 1;2;::;n and onedigital
parameterS;. S; and Ai(m) cantake only be 0 or 1. We alsochoosethe parameter

j to fall o exponertially with a length scale and apply periodic boundary
condition. Then, at ead step of the simulation, one picks a random site i and

alsoone of the parametersf Si;Ai(m)g at random; then follows the rules below:

1. for A™;
@ if A™ =1
. P .
i if ( + i SJ) (1 Si), switch to Ai(m) =0
P
ii. else,switch to A{™ = 0 with the rate +(l'7s”)s'
() if A™ =0
. P .
i. if ( + i SJ) (1 Si), switch to Al(m) =
ii. else,switch to A!™ = 1 with the rate —J%
o
2. for §;;
@) ifS =

i if Q (1 A™) switchto S = 0



76

ii. else,switch to S; = 0 with the rate s -
o (@A™

(b) if S =0

i if R (1 A™) switchto S = 1
Q

.. . _ . @ AlMy
ii. else,switch to S; = 1 with the rate —»———,

For ead set of cortrol parameters,we run the simulation twice i.e. for op-
posite initial con gurations: uniformly silenced/hypo-aceylated and uniformly
un-silenced/typer-aceylated lattice. As a result, we avoid getting stuck in only

one of the two local minima ( xed points) by choosingead opposite xed point

once.
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