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ABSTRA CT OF THE DISSER TATION

The Ph ysics of Chromatin Silencing: Bi-stabilit y

and Fron t Propagation

by Mohammad Sedighi

Dissertation Director: Anirv an Sengupta

A mean-�eld dynamicalmodel of chromatin silencingin budding yeastis provided

and the conditionsgiving rise to two states: onesilencedand another un-silenced,

is studied. Basedon theseconditions, the spaceof control parametersis divided

into two distinct regionsof mono-stableand bi-stable solutions (the bifurcation

diagram). Then, consideringboth the discrete and continuous versionsof the

model, the formation of a stable boundary betweenthe silencedand un-silenced

areason DNA is investigated. As a result, a richer phasediagram is provided.

The dynamics of the boundary is also studied under di�erent conditions. Con-

sequently, assumingnegative feedback due to possibledepletion of silencingpro-

teins, the model explainsa paradoxical epigeneticbehavior of yeast that happens

under somemutation. A stochastic treatment of the model is also consideredto

verify the resultsof the mean-�eld approximation and alsoto understandthe role

of intrinsic noiseat singlecell level. This model could be usedasa generalguide

to discusschromatin silencingin many organisms.
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Chapter 1

In tro duction

This chapter is mainly devoted to the preliminary biologicalknowledgerequiredto

understandthe phenomenonof chromatin silencing. As a matter of fact, most of

the material in the following sections,canbe found in any introductory molecular

biology text book [1, 2] unlessotherwisereferenced.

1.1 Biological Background

1.1.1 DNA and Proteins

The geneticinformation in living cells is stored in a long double-strandedhelical

macromoleculecalled DNA. This information, or the genome, is encoded along

each strand of DNA in a languageof four letters represented by four alternating

units called nucleotides. In a more detailed perspective, each strand of DNA is a

chain consistingof a repeating sugar/phosphatebackboneand a baseattached to

each sugarunit. The baseis chosenfrom only four di�erent organic compounds:

adenine (abbreviated A), cytosine (C), guanine (G) and thymine (T). Base is

the only part of each block of DNA that changesalong this sequential structure.

Then each strand is attached to its complementary strand through Hydrogen

bonds betweenbases.Note that, hydrogenbonds happen betweenbasepairs of

(A,T) and (C, G) only. In the commonstabledoublehelicalconformationof DNA

the length betweensuccessive basepairs is 1 bp=.34 nm, which is also usedas

unit of length. As a consequenceof this complimentary basepairing the genetic
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information kept in each of the strands is doubled in DNA.

This genetic information is mainly used to build proteins, the moleculesre-

sponsible for vital interactions inside the cell. The part of genomethat contains

the information is referred to as the geneof the protein. Proteins are governing

all the interactions insidethe cell which include, but arenot limited to, extracting

genetic information from DNA, building other proteins from their genetic code

and also mutual interactions leading the cell to behave in a desiredway. As an

example, when a particular protein is produced, an agent protein called RNA-

polymerase,with the help of other proteins locatesthe corresponding geneamong

the wholegenome,attachesto the speci�ed sequenceon DNA and start making a

singlestrandedcopy of the genecalled RNA. However RNA is not just the exact

copy of somesectionof the singlestrandedDNA. There are two main di�erences

in their structures: sugar/phosphatebackbone of RNA usesa di�erent type of

sugarand uracil (U), replacesthymine (T) for the bases.RNA moleculeis then

useddirectly to build the requiredprotein. The processof producing a RNA copy

of the geneby RNA-polymeraseis called transcription.

Thereareseveral mechanismsinsidethe cell to control interactionsamongpro-

teins during di�erent stagesof cell's life or to respond to changesin environment.

One of the known mechanismsis regulation of genetranscription. This is done

by employing proteins that may aid or stop the attachment of RNA-polymerase

to the desiredsite on DNA. This can totally depend on the environment and the

samecell may then demonstratevarious behaviors as a consequenceof di�erent

statesof geneactivit y.

1.1.2 Higher Degrees of DNA Con�guration

The double helical con�guration of DNA is how genetic material is kept inside

single celled specieslike bacteria. In most of the multi cellular species,how-

ever, the DNA is kept inside an enveloped structure called nucleus (about 10
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Figure 1.1: Hierarchy of DNA con�guration in eukaryotic cells.

micrometersin diameter). A cell that contains a nucleusis called an eukaryotic

cell, and the specieswith this form of cells are called eukaryotes. In order to

compactify the long DNA inside nucleus,eukaryotic cells employ structural and

con�gurational proteins such as histones. Eight histone proteins make a cylin-

drical complex, simply called the histone-octamer (11nm in diameter). In the

very basic level, eukaryotic DNA is wrapped around cylindrical histone-octamers

like a thread around spools, each for about 146basepairs. Each histone-octamer

along with the DNA around it, is then called a nucleosome. At this level, under

the microscope thesenucleosomeson DNA look like beadson a string (Fig.1.1)1.

However, there are alsoseveral higher levelsof eukaryotic DNA condensationuti-

lizing di�erent structural proteins. Biologists usethe word chromatin when they

refer to the highly complexmixture of DNA and structural proteins (particularly

histones). Note that, higher order organismslike human being have more than

one linear DNA molecule, where each single DNA macro-moleculeexhibits its

own hierarchy of compacti�cation and is called a chromosome.

The degreeof DNA packaging variesasthe cellsgoesthrough di�erent stages

1Courtesy of Richard Wheeler (Zephyris), wikip edia.com; the creator of this work, hereby
grants the permission to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.
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of its life cycle. Moreover, di�erent regionsof DNA inside nucleusmay exhibit

di�erent degreesof complexity and condensation.As a matter of fact, during cell

divisions, chromatin is in its utmost level of compacti�cation (Fig.1.1). However,

during interphase, the period betweennucleardivisions,eukaryotic chromatin can

be divided into two distinct regionsbasedon their degreeof condensation.Hete-

rochromatin, which refersto highly condensedand packed areasand euchromatin

referring to lightly condensedand dispersedparts.

1.2 Gene Silencing

In condensedheterochromatin domains,nucleosomesare sopacked in high order

structures that they arenot normally accessibleto proteins for transcription, thus

not transcriptionally active. The size of these regionscan be from several kilo

basesto several hundred kilo basesand can even cover the whole chromosome.

In contrast, euchromatin regionsare lesscompactand transcriptionally active.

Therefore, the formation of heterochromatin can be alsoconsideredas a way

of silencing the expressionof a number of adjacent genes.In particular, although

all cellsin a multi-cellular organismcontain the samecopy of DNA and the exact

same genetic information, since variant regions of genomemay be silencedin

di�erent cells,distinct functional identities exist throughout the body of organism.

It is said in this casethat, all the cells are of the samegenotype but di�erent

phenotypes. Genotype refersto the geneticmakeup, whereasphenotype points to

the appearanceof the organismsuch as color, size,behavior, etc.

Furthermore, in many circumstances,the structural organizationof chromatin

will be inherited to new cellsgeneratedthrough cell divisions. As a result, silenc-

ing also plays a crucial role in multi-cellular development by stabilizing gene
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expressionpatterns in specializedcellsat early stagesand maintaining their iden-

tities throughout their life. One exampleof this, is the cell type dependent si-

lencing of Hox genes,important in development of body plans, by the Polycomb

group of proteins [4].

As it was discussedabove, one of the interesting aspects of developmental

processesis that one could get multiple heritable cell fates without irreversible

changesto the genetic information. Heritable di�erences in cellular behavior or

phenotype, despitehaving the samegeneticinformation, is calledepigeneticphe-

nomenon. Apart from its fundamental role in development, epigenetice�ects are

of great importancein certain diseaseslike cancer[3]. Note that there are several

mechanismsthat lead to epigenetice�ects and only one of thesemechanismsis

transcriptional silencing.

1.2.1 Position E�ect Variegation

As we discussed,whether a geneis expressedor silenced,dependson its position

along the DNA in eukaryotic cells. In other words, if one relocates an active

gene, experimentally, from euchromatin regions to heterochromatin regions, it

gets silenced. The opposite also holds when a gene is moved from a silenced

region to an un-silencedregion.

Sincethe position e�ects, mentioned above, play a crucial rule in the behavior

and epigeneticidentit y of a cell; it is important to understandhow the boundaries

betweeneuchromatin and heterochromatin regionsare determinedon DNA. It is

known, that in many casesthis boundary is pinpointed by someboundaryelements

along chromosome. The boundary element is therefore, any structural factor

that hinders the spreading of silencingat the desiredposition on DNA. In some

cases,however, there are no specialboundary elements to preciselydeterminethe

border between two regions. In thesecircumstances,the boundary is not �xed

and silencedregion can expandinto or retract from active region on a seemingly
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random basis. However when the formation of boundarieshas been settled at

early stagesof development it will be preserved during the cell's life and through

cell divisions. Note that, there is always a low chance of random shift in the

boundary in either direction at any point of cells life.

As a consequenceof this dynamical behavior of boundary, it is observed that

genesthat are locatednearthe boundary canswitch statesfrom active to silenced

and vice versa at small frequencies. This phenomenonis called position e�ect

variegation. This e�ect hasbeendetectedin many organismssuch asDrosophila,

the fruit 
y . There is a genein Drosophilawhich is responsiblefor the red color of

its eyes. In other words, if this geneis not active, the eyeswill look white. Now,

for 
ies when this geneis active but has beenpositioned near heterochromatin,

the eyes include patchesof both red and white colors rather than being entirely

red. The red regionsrepresent cellswith the active pigment geneand white spots

represent cells with silencedpigment gene. In other words, when the boundary

betweenchromatin regionsis �rst beingformed,there is a chancefor the boundary

to shift and heterochromatin covers the pigment gene. This con�guration then

will be inherited stably through many generationsresulting in contiguous patches

of red or white.

1.2.2 Silencing In Budding Yeast, S. Cer evisiae

Observations on silencedareasof DNA in budding yeast, Saccharomyces Cere-

visiae have played an important role in understandinghow chromatin silencing

works. We devote this section to an introduction on S. Cerevisiae, since our

research is basedon a model of genesilencingin this organism.

Budding yeast can be found in two forms: haploid or diploid. Haploid cells

simply contain only oneset of chromosomes.There are two typesof haploid cells,

type a and type � . Diploids, on the other hand, are madeby conjugation of the

two di�erent typesof haploid cells;hencecontain two setsof chromosomes.Types
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Figure 1.2: The life cycleof budding yeast,S. Cerevisiae.

a and � of haploid cells can also be consideredas two opposite sex types; and

their fusion is alsocalledmating. Wild-t ype haploid cellshave a high probability

of switching their mating type after each cell division (via budding), from a to �

and vice versa. In starving situation, haploid cells usually die, but diploid cells

sporulate and generatefour spores. Spores are dormant state of haploid cells

and resistant to harsh conditions. When there is availabilit y of nutrients, spores

germinateand grow to normal haploid cells (Fig.1.2)2.

There are three sectionson chromosomeII I in yeastwhich are responsiblefor

switching and stabilizing mating types. Two of thesesections,each located near

one end of the chromosome,are always silenced. They are called silent mating

2Courtesy of wikip edia.com;the creator of this work, hereby grants the permission to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections,no Front-Cover Texts, and no Back-Cover Texts.
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loci and noted asHML and HMR loci and contain copiesof genesthat decide� -

type and a-type identit y, respectively. There is a locusin the middle, calledMAT

(mating type locus), which is always active and decidesthe mating type identit y

of the haploid cell. Through generationsof yeast, the genesfrom H M L� and

HMRa loci are alternatively transferred to the MAT locus, causingthe change

in its mating type. In other words, when MAT locus contains H M L� genetic

sequence,yeast acts as an � -type cell and when it contains HMRa sequence,

it behaves as an a-type cell. This processhappens through a recombination

mediatedprocesscalled mating type switching.

It is believed that the silencingof HML and HMR loci originates from DNA

sequencesnext to them called, silencers. So if the silencersequencesare exper-

imentally removed, both H M L� and HMRa genesare active. In this case,the

haploid cells behave like an � =a diploid cell and are not able to mate. This de-

fective behavior can be usedin experiments to detect any de�ciency in repression

of HML and HMR sequenceson yeastDNA.

Other than the silent mating loci, thereareother typesof regionson DNA that

are silenced.Theseregionsinclude the telomeres, which are the highly condensed

endsof the chromosome.Both the telomeresand mating-type loci demonstrate

the samefeatures as one expects from the silencedheterochromatin in higher

eukaryotes.

1.3 A Stepwise Mo del for Silencing

Many mechanismshasbeenproposedfor silencingin diverseorganisms[5], how-

ever, one can always �nd similar featuresbetween thesemodels. In the general

model, there is usually a region that nucleates silencing by recruiting a silenc-

ing complex incorporating a histone modifying enzyme.Modi�cation of histones
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Figure 1.3: A model for nucleation and spreadingof silencing in budding yeast,
S. cerevisiae.

makesthat regionof chromosomemoreproneto binding to components of silenc-

ing complex, which, in turn, recruits further histone modifying enzymes. That

is how the processpropagatestill it meetssomeboundary element (or the sys-

tem reachesa stationary state due to exhaustionof oneof the components of the

silencingcomplex,as will be discussedlater) (Fig. 1.3).

The mechanism by which silencingnucleatesand spreadsin budding yeast is

relatively well investigated [5, 6] and provides a concreteexample of the more
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generalmodel mentioned above. It is known that the Silenced Information Regu-

lator (SIR) proteins are the main players in genesilencingat telomeresand silent

mating loci in yeast. There are four Sir proteins involved in this process,simply

called Sir1, Si2, Sir3 and Sir4. The role of Sir1 is di�erent as it only cooperates

in nucleation of silencingat the silent mating loci, however the rest of Sir family

have also important roles in spreading of silencingat both the telomeresand at

silent mating loci.

To be concrete,from now on we focus our discussionto the silencingat the

silent mating loci. As it was discussed,the model for step-wisegenesilencingin

S. cerevisiae,also posits that silencinghappensin two distinct steps: nucleation

and spreading. In nucleation, with the help of site-speci�c DNA binding proteins

(like Rap1) and with Sir1 asa tether, Sir2, Sir3 and Sir4 will form a Sir Complex

on the nucleation site (Fig. 1.3.A.). Sir2, a crucial member of this process,works

asa de-acetylaseenzyme.In other words, it canhelp removing acetyl groupsfrom

certain parts of nearby histones.Consequently, de-acetylation of the neighboring

histoneswill make binding of Sir3/Sir4 sub-complexeasierin the neighborhood

of the original nucleation site. Sir3/Sir4 sub-complex, in turn, would recruit

more Sir2. Hence,the spreadingstarts. More de-acetylation of histonesimproves

the recruitment of other Sir proteins and formation of more stable complexeson

neighboring sites. If histonede-acetylation is transferred further on, it will result

in spreadingof silencingto even distal sites(Fig. 1.3.B.). Note that, although the

nucleation step is di�erent in telomeric silencing,the processof spreadingseems

to be very similar [8].
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1.4 Exp erimen tal Observ ations

1.4.1 Bi-stabilit y and Epigenetic Inheritance in Budding

Yeast

In the wild type budding yeast,the regionsthat aresilencedare, typically, always

silenced. As it was discussedin last section,Sir1 proteins are someof the main

elements in nucleation of silencing at HMR/ HML loci. As a matter of fact, if

Sir1 is missing,nucleation e�ect at the silent mating loci is either absent or very

weak. In an experiment in 1989by L. Pillus and J. Rine [9], it was found that

in sir1 mutants (where the nucleation e�ect is defective if not absent), there is

still a chancefor HMR/ HML loci to be repressed.In other words, silencingcan

also happen without e�cien t nucleation. Then, the individual yeast cells would

represent two distinguishable type of cells (phenotypes). In this case,in a large

number of yeast cells, on average 20% of the cells exhibit repressionand can

mate like a normal haploid cell, whereasthe other 80% cells are de-repressedat

HMR/ HML loci and behave like diploids. It wasalsofound that, both epigenetic

statesarestableto small 
uctuations andareconservedthrough many generations

of yeast. In fact, it wasobserved that switching from un-silencedto silencedstate

occurs approximately once in every 250 consecutive cell divisions, or with the

small probability of 4 � 10� 3 [9]. The observation and results suggestthat the

systemis actually in a bi-stableregime,wheretwo oppositestablestatescanexist

under the sameconditions.

This kind of epigeneticswitches between bi-stable states has received much

scienti�c attention in prokaryotes. Multiple phenotypesareusually represented as

multiple stableequilibrium points in deterministic descriptionsof the biochemical

dynamics. For instance,computational modeling of lambda phage[10]hasplayed

a crucial role in the development of systemsbiology [11, 12]. From the response

of lac operon in the presenceof TMG [13, 14, 15] to synthetic geneticnetworks
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like the toggle switch [16], mathematical analysis has been an integral part of

understanding such phenomena. In particular, the biological model, in each of

these examples,provides a mechanism of positive feedback. However, positive

feedback is not su�cien t to guarantee multi-stabilit y, but essential for giving rise

to non-trivial epigeneticstates.

1.4.2 The E�ect of Low Acet ylation

As it was discussedin the stepwisemodel of silencingin section1:2, Sir2 hasde-

acetylating enzymaticactivit y. This is a crucial part of the silencingprocesssince

lessacetylated nucleosomesare better placesfor Sir complex to attach. Then,

apparently, the presenceof acetyl groups on parts of histones in nucleosomes

makesDNA lessamenableto binding of Sir proteins. It is observed that near the

silencedregionsin yeast,becauseof Sir2 activit y, morehistonesare de-acetylated

asopposedto distal nucleosomeswhich are more acetylated. As a matter of fact,

there is an increasinggradient of acetylation asonemovesalongDNA, away from

the heterochromatin region[25,26]. The acetylation activit y, however, is referred

to an acetylaseprotein called, Sas2protein. In particular, Sas2along with Sas4

and Sas5proteins comprisea protein complex called SAS-I which is linked to

histone acetylation in yeast [27]. Note that, Sas4and Sas5proteins are both

required for maximal SAS-I acetylation activit y.

One would normally expect that when SAS2 geneis mutated (where acety-

lation is defective or absent) the silencing processshould prevail. However, re-

searchers have observed many di�erent and opposing e�ects of sas2mutations.

In particular, deletion of SAS2 genefrom DNA decreasesthe silencing process

at regions near telomere and at silent mating loci rather than helping it [28].

In contrast, when SAS-I acetylation activit y is eliminated, the cell losesits bi-

stabilit y at mating-type loci and demonstratesan intermediate state which is not

either silencedor un-silenced[22]. This intermediate state, can be consideredas
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a porous heterochromatin, wherethere are many random un-silencedspots inside

a silencedregion on DNA. This is especially interesting when we compareit to

SIR1 genemutants when the cells can exhibit only one of the two stable states,

silencedor un-silenced.

1.5 The Mathematical Analysis

The crucial aspect of analysisof a mathematical model of epigeneticswitches is

computing the bifurcation diagram, which tells us what region in the spaceof

control parametersis actually associated with bi-stabilit y. The bifurcation dia-

gram also indicates the qualitativ e behavior of the system when perturbed (or

mutated) in a particular manneras in the low acetylation casesdiscussedbefore.

In contrast to prokaryotic epigeneticswitches mentioned at the end of section

1:3:1, modeling eukaryotic epigeneticsilencing involves studying a spatially ex-

tended bi-stable system. Hence, the system shows interesting phenomena,like

front propagation, allowing for a richer bifurcation diagram.

In this dissertation, we introduce a mathematical model of step-wisehete-

rochromatin silencing. A mean-�eld description of the dynamics explains many

featuresof the real system. Epigenetic states, in the absenceof nucleation, can

be explainedas a consequenceof the existenceof two stable uniform static solu-

tions: the un-silenced/hyper-acetylated state and silenced/hypo-acetylated states

on DNA. Studying the conditionsunder which the positive reinforcement inherent

in the proposedsilencingmechanism is strong enoughto give rise to bi-stabilit y

and to causestableinheritanceof chromatin con�gurations of the two phenotypes

is oneof the main goalsof this dissertation. In addition, the conditions required

for static fronts will set additional constraints on the model.

Moreover, a stochastic treatment of the model is also considered. Fluctua-

tions in bio-molecularnetworks has beenthe subject of many research activities
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recently [31]. To analyzesinglecell data, one needsnot only how the determin-

istic model behaves but also how noise in various quantities a�ects expression.

A stochastic version of the model, a lattice model with local states of acetyla-

tion, and Sir occupancy, will be studied by direct simulation. However, asseenin

studiesof yeastgeneexpression[36,37], extrinsic noise,equivalent to 
uctuations

in the parametersthemselves, often dominatesover intrinsic 
uctuations of the

processesdescribed here with �xed parameters. Hence, to study this properly,

we will need to add a free parameter each characterizing the slow noise in the

control parameters(such asconcentrations) for modeling the e�ect of cell to cell

variation of Sir proteins and acetylases. Instead, we will discussthe e�ect of

these
uctuations at the limit when the extrinsic part of noiseis much slower and

strongerthan the intrinsic part. At this regime,onecanaverageover the intrinsic

noiseand usethe mean-�eld approximation. At the end, we proposeexperiments

designedto test the ideasdiscussedin this dissertation.
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Chapter 2

Bifurcation Analysis of a Mo del for Silencing

2.1 Dynamical Equations

The purposeof this section is to formulate a quantitativ e versionof the conven-

tional biological model of step-wiseformation of silencedchromatin (Fig. 1.3),

which was discussedin section1.2. The main parametersinvolved in �nal equa-

tions are A, the local degree of acetylation of histonesand S, the local probability

of occupation by Sir complex(Sir2, Sir3 and Sir4), both of which could depend

on time, as well as on their position on DNA. DNA is represented as a one-

dimensional lattice, where each site on the lattice represents either one or more

nucleosomes.Soin other words,Si (t) on this lattice, is a number between0 and 1,

representing fractional number of Sir complexesat site i at time t. Fractional de-

greeof acetylation, A i (t), is de�ned in the sameway. Writing chemicalequations,

in the mean-�eld treatment of the system,we get,

dSi (t)
dt

= � i (t)(1 � Si (t)) f (1 � A i (t)) � � Si (t) (2.1)

dAi (t)
dt

= � (1 � A i (t))(1 � Si (t)) � (� +
X

j


 ij Sj (t))A i (t) (2.2)

Note that all the parametersin the aboveequationsarenon-negativenumbers.

In equation (2.1), on the right hand side, the �rst term is the creation term and

the next oneis degradationterm. The 3-D concentration of ambient Sir complex

at site i is denotedby � i (t), which may changeas the systemevolves. Sincefree

Sir proteins in the environment do not form Sir complexesby themselves, this
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quantit y actually represents a function of concentrations of all components (Sir2,

Sir3 and Sir4) that are ready to make a Sir complexon the site. For example,in

the simplestcase,when each protein is in low abundance,this function would be

proportional to the product of the threeconcentrations. However, throughout this

dissertationwe will never needto go into thesekind of details. The function f (x)

dictates the cooperativit y in Sir complexbinding and should be a monotonically

increasingfunction of x, 0 � x � 1. As the simplestcase,weusef (x) = xn , where

n is the degreeof cooperativit y betweende-acetylated histonesin recruiting Sir

proteins. At last, � is the degradationrate of bound Sir complexes.In equation

(2.2), the sameas equation (2.1), on RHS, the �rst term advocatescreation and

next onedegradation. � represents the constant acetylation rate1. In the second

term, the summation accounts for the contribution of adjacent Sir complexesin

de-acetylation of site i . SinceSir complexis only capableof de-acetylation of sites

in its neighborhood, 
 ij is assumedto drop signi�cantly as ji � j j gets large. In

addition, 
 ij is assumedto be symmetric with respect to i and j , i.e. 
 ij = 
 j i .

Finally, � is the rate of de-acetylation from the rest of de-acetylaseproteins. This

rate is assumedto be a constant both in time and position.

In a more generalmodel, all rates can be position dependent. We neglected

this e�ect for � , � and � by assuminghomogeneousconcentration of participating

enzymesand no drastic conformational changesin DNA that can a�ect these

chemical rates.

2.2 Uniform Solutions

One could analyzethe uniform static solutions of theseequationsand study the

stabilit y. Dropping all i indices and replacing the non-local term
P

j 
 ij Sj with

1To be more general,the acetylation term could be � (1 � A i )(1 + � � Si ) allowing acetylation
of histonesin silencing complex bound nucleosomes.However, as will be discussedin appendix
A, adding this processdoesnot make much of a qualitativ e di�erence.
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 S, we can rewrite equationsas:

dS(t)
dt

= � (t)(1 � S(t)) f (1 � A(t)) � � S(t) (2.3)

dA(t)
dt

= � (1 � A(t))(1 � S(t)) � (� + 
 S(t))A(t) (2.4)

The stationary statesareobtainedby solvingthe algebraicequationsproduced

by setting time derivativesto zero. We analyze�rst the casewhereavailableSIR

concentrations are kept at a constant level (for example, if creation and degra-

dation rates of SIR proteins are high), meaning� (t) in equation (2.3) is assumed

to be a given time independent number, � . So in terms of scaledparameters

�� = �=� , �� = � =� and �
 = 
 =� , we have:

�� (1 � S)f (1 � A) � S = 0 (2.5)

�� (1 � A)(1 � S) � (1 + �
 S)A = 0 (2.6)

For f (x) = xn , we plot the graph of above nullcline equations for di�erent

valuesof n and chemicalparameters.The intersectionsof two curvesrepresent the

�xed points. We �nd that for n > 1 depending on valuesof chemical parameters

we can get either one or three �xed points (Fig.2.1). There is a possibility of

having two �xed point when at oneof the points two curvesare tangent to each

other. We will not discussthis casesinceit is not a physical possibility and will

only treat it asa transient state betweentwo physical cases.For n = 1, no matter

how onechooseschemicalparameters,there canbe only one�xed point (Fig.2.2).

In the three �xed point regime,as it is shown in the Fig.2.3, always the middle

one is an unstable saddlepoint. The other two are stable, or in other words, we

are at a bi-stable regimeas it could be seenby local analysis(appendix A). One

of the two stablestateshasa lower acetylation and a higher chanceof repression,

which represents a silencedstate (heterochromatin), while the other one with a
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higher degreeof acetylation and higher chanceof de-repressionrepresents an un-

silencedstate (euchromatin) (Fig.2.1). A morecompletemathematical discussion

of �xed points and their stabilit y is given in appendix A.

From here on, in our discussionwe assumef (x) = xn , n > 1 to guarantee

possibility of bi-stabilit y in the chemicalparametersspace.Now, in the bi-stable

parameter regime, we have two stable �xed points, silenced(heterochromatin)

and un-silenced(euchromatin). If �� , the rate of acetylation, is kept constant,

as the value of �� , the rate of Sir recruitment, increasesthe un-silenced(euchro-

matin) point and middle transient state move towards each other and at some

limit value of �� , they becomeone single point where two curve are tangent to

each other. Pushing �� to even higher values, leads to a single silenced(hete-

rochromatin) regime i.e. at someupper limit the systemsfalls from bi-stabilit y

to mono-stability (Fig.2.1). In contrast, if �� decreases,the heterochromatin point

and middle transient point approach each other and after dropping below a limit

the systemsbecomesmono-stable, the euchromatin state (Fig.2.1). The same

behavior can be seenfor di�erent valuesof �� when �� is kept constant.

Now, supposethat we have decreased�� to a value where there is only one

�xed point, which is a silencedstate. Now, if we decreasethe value of �� too, we

may again fall back into a three �xed point (bi-stable) regime. However, this will

not happen when �� is very small. For small valuesof �� , if we scanover di�erent

valuesof �� , the systemwill keepshowing only one �xed point. In other words,

the systemtransformsfrom a heterochromatin �xed point to a euchromatin �xed

point continuously without crossingthe three �xed point regime(Fig.2.4). This

behavior, aswill be discussedlater, can provide us with an explanation to results

of SAS-I elimination experiment in section1:3:2.
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Figure 2.1: The intersectionsof nullcline curves, three representing static \SIR
binding" (dashedlines) and the other onestatic \Acet ylation" (solid line), show
�xed points of the system. All graphs are plotted with f (x) = x4, �
 = 4 and
�� = 6:67. Ambient Sir complex concentration acts as a switch for the bi-stable
system. This graph shows how low concentration of Sir complex pushesthe
system towards euchromatin and high concentration of Sir complex pushesit
towards heterochromatin solution. For high, intermediate, low concentrations of
Sir complexrespectively �� = 125,20 and 10.
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binding" (dashedlines) and the other onestatic \Acet ylation" (solid line), show
�xed points of the system. All graphs are plotted with �
 = 4, �� = 6:67 and
�� = 20. When there is no de-acetylation cooperativit y in Sir complex binding,
f (x) is linear and there is no bi-stabilit y (only one �xed point solution). But for
f (x) = x4 curve, asa result of cooperativit y there can be bi-stabilit y (three �xed
point solutions).
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2.3 The Hysteresis Behavior

Onemight askwhich of the two stable�xed points is actually chosenby systemin

the bi-stable regime. In order to answer this questionand alsoto understandthe

behavior of the systemin this regime,we needto employ a dynamical simulation

of the system. Going back to equations(2.3) and (2.4) and keeping�� at somehigh

constant value, we start from someinitial valueof �� . By gradually increasingand

decreasing�� , at each point we check the �nal equilibrium state chosenby system.

Not very surprisingly, the system demonstratesa hysteresis behavior. In other

words, the behavior of the systemdependson its history i.e. it always keepsthe

same�xed point from which it entered the bi-stable region. For instance, if we

start from a small valueof �� at which there is only oneun-silenced(euchromatin)

�xed point and start increasing�� , whenthe systemmovesinto the bi-stableregion

it still keepsstaying in the un-silencedstate. This will be the caseno matter how

�� changesand even works for discontinuous jumps. However, if �� gets so large

that we passthe bi-stable region, the only possible�xed point becomesa silenced

(heterochromatin) state and the systemabruptly transforms to a silencedstate.

This discontinuousswitch of statesis in direct contrast to the continuouschange

of states that we mentioned for very low values of �� . Now, if we reverse the

direction of movement and start decreasing�� , aswe move back into the bi-stable

region, the systemkeepsstaying in silencedstate until we exit from the other end

and enter the un-silencedregionwherewe suddenlyobserve a sharpchangein the

state of system.

To clarify this behavior, onecan make a plot of equilibrium value of S versus

�� for constant valuesof �� . Using equation (2.6), we can solve 1 � A in terms of

the other variablesas follows:

1 � A =
1 + �
 S

�� + 1 + (�
 � �� )S
(2.7)
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Now pluggingthis valueinto equation(2.5), wewill have the following formula

for �� in terms of S and �� :

�� =
S[�� + 1 + (�
 � �� )S]n

(1 � S)(1 + �
 S)n
(2.8)

Using equation 2.8, we will make a graph of S versus �� at di�erent values

of �� (Fig.2.5). For small valuesof �� the graph is monotonically increasingand

therefore there is a one to one correspondencebetween S and �� values, dictat-

ing that the transition from un-silencedeuchromatin state (low valuesof S) to

silencedheterochromatin state (high valuesof S) happenscontinuously alongthe

monotonic curve (Fig.2.5, solid/red and dashed/greencurves). However for large

valuesof �� the graph lookslike a sharp"S-curve" whereat somevaluesof �� there

are two corresponding valuesof high and low S i.e. a bi-stable regime(Fig.2.5,

dash-dotted/blue curve). If one increasesthe value of �� from zero and follows S

on this curve, S increasescontinuously until point (A), wherethe curve doesnot

allow further continuous increase.Therefore,at this point the value of S jumps

to its value at the higher sectionof the curve (sharp transition from un-silenced

to silencedstate). For further increasein �� , there will be again a one to one

correspondencebetween �� and S and the systemcontinuously follows the curve.

Now if we reversethe direction of the changeand start decreasing�� , S continu-

ously decreasesuntil point (B), whereit jumps to the lower portion of the curve

and we get a sharp transition from silencedheterochromatin back to un-silenced

euchromatin.

2.4 The Bifurcation Diagram

The interesting behavior of system,motivates the depiction of a phasediagram,

indicating regions in the parameter spaceof �� and �� leading to mono-stability

and to bi-stabilit y. In order to do so, we seekthe boundary between the three
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�xed-p oint (bi-stable) region and single �xed-p oint (mono-stable) region inside

the �� and �� space. We have already learned from previous discussions,that

whensystemmovesfrom bi-stable region to mono-stableregion,at this limit two

nullcline curves(2.5) and (2.6) in Fig.2.1 are tangent to each other. We usethis

condition to �nd the boundary between the two regions in phasespace. The

valuesof S and A at �xed points are given by the solution of (2.5) and (2.6), so

we take the derivative of both equationswith respect to A:

n �� (1 � S)(1 � A)n� 1 = �
dS
dA

(1 + �� (1 � A)n ) (2.9)

�� (1 � S) + (1 + �
 S) = �
dS
dA

(�
 A + �� (1 � A)) (2.10)

We should then equatedS=dA in above equations. By using equations(2.5)

and (2.6), we can �nally solve A in terms of S and get the simpli�ed equation

below:

A(S) =
1 + �
 S

nS(1 + �
 )
(2.11)

Combining the above equation with equations(2.5) and (2.6) and writing ��

and �� in terms of parameterS; we have:

�� (S) =
(1 + �
 S)2

(1 � S)[( �
 + 1)(n � 1)S � (1 � S)]
(2.12)

�� (S) =
S

(1 � S)

 
n(�
 + 1)S

(�
 + 1)(n � 1)S � (1 � S)

! n

(2.13)

Finally, usingabove equations,we will be able to graph the pair of parameters

( ��; �� ) at the boundary betweenbi-stable and mono-stableregion (Fig.2.6). The

diagram shows that the bi-stable region in parameterspaceis a wedge-like region

with a pointed critical point. Note that, in our graph the horizontal axis is �� and

the vertical axis is �� . The mono-stablesilenced(heterochromatin) state exists
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Figure 2.6: The bifurcation diagram in control parametersspace,( �� ; �� ). The
degreeof cooperativit y n was set to 4 and �
 = 4.
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below the bi-stable region, whereasmono-stableun-silenced(euchromatin) state

exists above this region. Becauseof its special shape, we also call this diagram

the bifurcation diagram.

2.4.1 The Critical Poin t

The critical point (the cusp point in bifurcation diagram) corresponds to the

minimum valuesof �� = �� c and �� = �� c in bi-stabile region. In other words, if

either �� < �� c or �� < �� c there will be impossibleto have two opposite un-silenced

and silencedstatesexisting at the sametime. From equations(2.12) and (2.13),

we have �� (S) and �� (S) both as functions of S, then taking their derivativeswith

respect to S and equating them to zerowill give us the value of S at the critical

point, Sc:

Sc =
n + 1

2n + �
 (n � 1)
(2.14)

Note that both d��
dS (Sc) = 0 and d��

dS (Sc) = 0 give us the samevalue for Sc, as

they should. If we call the corresponding valueof A(Sc), Ac; from equation(2.11)

we will get:

Ac =
2

n + 1
(2.15)

Using thesevaluesin equations(2.5) and (2.6) will result in critical valuesof

�� and �� :

�� c =
(n + 1)n+1

(n � 1)n+1 (1 + �
 )
(2.16)

�� c =
4n

(n � 1)2
(2.17)

Note that, as it can easilybe seenfrom above equations,n 6= 1 is a necessary

condition for the existenceof the critical point. It is also worth to restate that
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Figure 2.7: The corresponding behavior of system in bifurcation diagram for
changeof Sir occupancy, S as a function of Sir availabilit y, � in Fig.2.5.

the critical point is at low availabilit y silencingfactors, �� coupledwith low rate of

acetylation, �� . This featurewill have an important implication whenwe will later

considerthe result of experiments involving mutants lacking particular acetylases

(discussedin section1:3:2).

2.4.2 The Hysteresis Behavior in Phase Space

We can now return to the previous discussionon the behavior of the systemat

di�erent valuesof �� and �� . Particularly, let us look at the plot of S versus�� for

three constant valuesof �� and the hysteresisbehavior (Fig.2.5) one more time.

The corresponding values of �� will give us three horizontal lines on the phase
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diagram, (Fig.2.7). For low value of �� the horizontal line (dashed/greenline)

is under the critical point and as the value of �� increasesthe system smoothly

goesfrom un-silencedstate to silencedstate. However, for large valuesof �� the

horizontal line (dash-dotted/blue line) is above the critical point and to go from

un-silencedto silencedregionthe systemhasto passthe bi-stabilit y region. If the

systementers the bi-stabilit y region from left, i.e. un-silencedregion, it keepsits

un-silencedstate until value of �� increasesto point (A) at the boundary. Further

increasein �� meansentering the silencedregion and thereforeforcing the system

to sharply transform from un-silencedto silencedstate. On the other hand, if

we enter bi-stabilit y region from right, the systemkeepsits silencedstate until ��

decreasesto the value at point (B) where we will again have a sharp transition

of the system'sstate, this time from silencedto un-silenced.Finally, the middle

horizontal line passesthrough the critical point and thereforeit is at the boundary

betweentwo behaviors (The solid/red line in Fig.2.5 and 2.7) .

2.4.3 The Role of Non-lo cal In teraction Factor, 
 and De-

gree of Cooperativit y, n

Onemight askhow the bifurcation diagramdiscussedabovedependson parameter


 in equation (2.4). 
 is the parameter that controls the averagerate of de-

acetylation by Sir complex. In other words, the larger the 
 the more chanceof

de-acetylation, hencemore silencing. Therefore,we expect that when 
 is large,

only large valuesof � give rise to hyper-acetylated/un-silencedstates. Moreover,

even moderate valuesof � can causesilencingin this regime. Soas it is depicted

in Fig. 2.8, the un-silencedeuchromatin region of the parameter spacewill be

squeezedand the critical point shifts both towards left for higher 
 values. As a

result, the bifurcation diagram becomeswider.

The samequestionrisesfor, n, the degreeof cooperation of de-acetylation in
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 on the shape of bifurcation diagram.

recruiting silencing proteins, equation (2.3). As the parameter n increases,the

role of cooperation of de-acetylation becomesmore accentuated i.e. to get the

samesilencing e�ect the system requires more cooperating de-acetylated DNA

sites or higher probability of de-acetylation (lower degreesof acetylation) at the

corresponding sites. In other words, it will be more di�cult to get silencedhet-

erochromatin statesthan before. Consequently, the un-silencedregion in param-

eter spaceprevails, squeezingthe bifurcation diagram down (Fig. 2.9). The role

of non-linear cooperation in dynamical equationsof the systemwill be discussed

in more details in chapter 5.
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Chapter 3

Non-uniform Solutions and Fron t Propagation

In this chapter, we go beyond analyzingthe uniform solutionsand considerstable

non-uniform spatial solutions. In the regionof parameterspacewherethe system

is bi-stable, it is possibleto study how fronts between a silencedstate and an

un-silencedstate form and move on the lattice. In a systemwith a well de�ned

free energyfunction, the averagemotion of a front or interface is determinedby

the di�erence of free energiesof the two states acrossthe front (Fig. 3.1). As

it is shown in Fig. (3.1.A.), the lower free energy state S2 (usually called the

stable state) invadesinto the meta-stable state with higher free energy S1, i.e.

as the front moves to the left the sites on the left of the boundary transform

from S1 to S2. The opposite happens in Fig. (3.1.C.) when free energyof S1 is

lower and causesthe front to move in reversedirection. At the points wherethe

two free energiesare the same,the averagefront velocity is zero (Fig. 3.1.B.).

Although, in non-equilibrium systemslike the oneat hand, there is no useful free

energyto be de�ned, onemight still explorethe region of parameterspacewhere

silencedstate invadesinto the un-silencedonesand vice versa(and the boundary

in betweenwherethe front becomesstationary).

We study the motion of boundary between the two stable phasesin the bi-

stable parameter region both in the current discrete model and the continuum

versionof the model wherethe lattice is replacedby a continuous1-D system.
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Figure 3.1: Front propagation in a systemwith a well de�ned free energy

3.1 The Con tin uum Limit

The continuum versionsof equations(2.1) and (2.2) are given by discreteparam-

eter i and j replacedby continuousparametersx and y, and the sum replacedby

an integral; as follows:

@S(x; t)
@t

= � (1 � S(x; t)) f (1 � A(x; t)) � � S(x; t) (3.1)

@A(x; t)
@t

= � (1 � A(x; t))(1 � S(x; t)) � (� +
Z


 (x � y)S(y; t)dy)A(x; t)

(3.2)

Similar to the discretecase,function 
 (x � y) is an evenfunction that sharply

falls to zero as jx � yj gets large comparedto a length scale� , say, making the

integrand negligible in this region jx � yj >> � . Sincewe are only interested in

qualitativ e nature of the bifurcation diagram, we can make a further approxima-

tion restricted to the situation whereS(x; t) changesslowly over the distanceof

the order of � . Thus we Taylor expand S(y; t) = S(x + (y � x); t) = S(x + u; t)
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aroundx, keepup to the secondorder in juj = jy � xj and disregardhigher orders.

Equation 3.2 reducesto:

@A(x; t)
@t

= � (1 � A(x; t))(1 � S(x; t)) �

 

� + � 0S(x; t) + � 2
@2S(x; t)

@x2

!

A(x; t)

(3.3)

where � 0 =
R


 (u)du and � 2 = 1=2
R


 (u)u2du. Note that we set � 1 =
R


 (u)udu equal to zero since 
 (u) is an even function. Equations (3.1) and

(3.3) are then the continuous forms of set of principal equations(2.1) and (2.2).

3.1.1 Wave Solutions and Zero Velocit y Line

The analysis of the continuum system follows the standard route [17, 18, 19].

Seekingfor front moving solutions,we assumewave solutionsA(x; t) = A(x � ct)

and S(x; t) = S(x � ct), and if z = x � ct:

0 = c
dS(z)

dz
+ � (1 � S(z))f (1 � A(z)) � � S(z) (3.4)

0 = c
dA(z)

dz
+ � (1 � A(z))(1 � S(z)) �

 

� + � 0S(z) + � 2
d2S(z)

dz2

!

A(z)

(3.5)

For each set of parameters, there is a front velocity, c, for which there is

only \one" (or none)continuoussolution that represents a transition betweenthe

stationary states representing un-silencedeuchromatin and silencedheterochro-

matin.

For the purposeof this dissertation,we would focuson the part of the param-

eter spacewherethe front velocity is zero. This analysisof problem for c = 0 is

considerablysimpler, above equationswill become:

0 = �� (1 � S(z))f (1 � A(z)) � S(z) (3.6)
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�� 2
d2S(z)

dz2
= ��

(1 � A(z))(1 � S(z))
A(z)

� 1 � �� 0S(z) (3.7)

where �� 0 = � 0=� and �� 2 = � 2=� . Now, sinceequation (3.6) is an algebraic

equation, allowing A to be expressedin terms of S, we can de�ne a potential

V (S) as follows:

V(S) = � S � 1=2�� 0S2 + ��
Z S

0
dS

(1 � A(S))(1 � S)
A(S)

(3.8)

So that other equation, namely equation (3.7), could be written as

�� 2
d2S
dz2

=
dV(S)

dS
(3.9)

The valuesof parameters,for which the potential V(S) hastwo local minima

with equalpotential values,correspond to existenceof a zerovelocity front (Fig.

3.1.B.). Note that, wewereableto usethis potential only to describezerovelocity

fronts, and not for the general traveling solution. This is becauseonly at zero

velocity, the systemis at equilibrium and thereforefreeenergycanbewell de�ned.

To �nd out the zero velocity line in parametersspace,one needsto �nd the

relationship between �� and �� resulting in having two local minima with equal

valuesin function V(S). At theseminima dV=dS= 0 and therefored2S=dz2 = 0

from equation(3.9). Applying this condition to equation(3.7) reducesthe pair of

equations(3.6) and (3.7) to nullcline equations(2.5) and (2.6) with �
 � �� 0. This

simply meansthat as one would have expected the local minima in continuous

equationscoincidewith two uniform solutions found from nullclines in chapter 2.

Soif S1 and S2 correspond to two stable uniform solutions in bi-stable region,we

needto have V(S1) = V(S2) or:

��
Z S2

S1

dS
(1 � A(S))(1 � S)

A(S)
= S2 � S1 + 1=2�� 0(S2

2 � S1
2) (3.10)

SinceA(S) is givenby algebraicequation(3.6), it is a function of �� . Therefore,

�� can be easily found as a function of �� by above equation. For the caseof
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f (x) = xn , we solved the integral numerically using MATLAB and plot zero

velocity line inside the bi-stabilit y region in phasediagram (represented by the

dashed/greenline in Fig.3.2).

According to the diagram, zerovelocity line starts from the critical point and

divides the bi-stable regioninto two sections.The upper section,which is next to

mono-stableun-silencedregimecorresponds to invasionof un-silencedstate into

the silencedareas. The opposite happens in the lower section. Therefore, each

section of the bi-stable region just mentioned, points to a di�erent direction of

the movement of front, similar to what happensin Fig.3.1.A and 3.1.C.

3.2 The Discrete Mo del

We alsoneedto study the formation of boundary in the discretemodel i.e. solve

equations(2.1) and (2.2) directly, using numerical methods. For this means,an

explicit �nite di�erence method wasemployed (a moredetailed descriptionof the

method is given in appendix B).

By scanningdi�erent valuesof parameters�� and �� , inside the bi-stabilit y re-

gionone�nds a band-likeregion(asopposedto the zerovelocity line in continuum

case)wherea stablezerovelocity boundary betweenthe silencedand un-silenced

statescan form (in the rest of the phasespaceeither the silencedregion shrinks

to zeroor it covers all the sites). This result actually hasbeenvery well studied

for front propagation failure in lattice models as in [20]. The boundariesof the

band are represented by the dashed/red lines in Fig.3.3. This band shrinks to

the zero velocity line as one takes the continuum limit. We will call this region

in phasespacethe zero velocity band.

Now, Onemight askwhich of thesedescriptions,the continuousor the discrete

case,are closerto reality. If we count each nucleosomeas a unit and expect one

silencing complex per nucleosome,then that provides us with a natural lattice
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spacing.However, the nucleosomesare not quite static. They could move around

or disappear(if the histone-octamer falls o� DNA). If the time scaleof nucleosome

dynamics is much slower than that of the silencingprocess,then we are justi�ed

in taking the nucleosomearray asa lattice to operateupon. If the time scalesare

the other way around, we might averageout the nucleosome
uctuations and get

an e�ective continuum description. The truth probably is somewherein between,

leadingto a fuzzy regionof low front mobilit y crossingover to high front mobilit y

regions,above and below zerovelocity line in the bifurcation diagram.

3.3 Fron t Dynamics

As it was discussedin section 1.3.2 lowering acetylation rate, � as in the sas2

mutant case[25, 26], may result in the counter-intuitiv e behavior of reducing

silencing rather than helping it. This is a question of dynamics, so to �nd an

answer we needto study the movement of the front by starting from someinitial

con�guration of silencedand un-silencedareasat equilibrium, then change the

chemicalparameters,and let the systemevolve until it reachesequilibrium again.

Sincein the bi-stabilit y parameterregion there is no unique stable con�guration,

there is no trivial answer to above problem if the �nal parameterssit in this

region.

In particular, we are interested to seeif the initial nucleation necessarilyre-

sults in spreadingof the silencing. Supposewe are in the bi-stable region of the

parameter spaceand start from the locally stable uniform un-silencedsolution,

i.e. all sites of our 1-D lattice are hyper-acetylated/un-silenced. We want to

know what happens if we nucleate a small region of silencing, say, by tethering

a protein that recruits the silencing factors locally. So we force nucleation at a

site in the middle of lattice, i.e. we keepa site silencedall the time. With ini-

tial parametersinside the zerovelocity band and by utilizing numerical methods
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in appendix B, we let the system evolve until it reaches the equilibrium. Not

surprisingly, there will be no spreadingand the �nal con�guration will not be

very di�erent. The spreadingwill be limited only to the neighborhood of the

nucleation site. The system needsonly to conform to the desiredshape of the

boundary to reach equilibrium and this does not take more than a few sites at

vicinit y (caseA: solid/black curve, Fig. 3.4). Then if one decreases� , say, by

knocking o� an acetylaseprotein; nothing changesunlesswe move out of the zero

velocity band. For a � under the zero velocity band yet inside bi-stabilit y area,

sincethere will be no stable boundary between two states the silencingspreads

and coversall the space(caseB: Dash-dotted/blue curve, Fig. 3.4). It is obvious

that, the samething would happen independent of the initial con�guration, if

�nal valueof � wasunder the bi-stabilit y regioninsidethe silencedstate territory

(caseC: Dashed/red curve and caseD: dotted/magenta curve, Fig. 3.4). Note

that in particular, lowering the value of � in no way reducesthe silencinge�ect.

In search of an answer to that paradoxical phenomenon,in the next section we

will study the e�ect of �nite supply of Sir proteins.

3.4 The Role of Finite Supply of Sir Proteins

So far, it was assumedthat the available ambient concentrations of Sir proteins

is �xed, re
ected in � (or �� ) being held constant. We could useour insights, into

the bifurcation diagram, to infer what would happen if the total number of Sir

proteins (the sum of thosein solution and thosebound to DNA) were�xed. This

is particularly interesting in the bi-stable region.

Our treatment is very similar to studying phaseequilibrium with a �xed num-

ber of particles. For example,considera liquid gasmixture at a constant tem-

perature in a �xed volumewith �xed number of particles, and imaginethat there

is an interface between the two states. The interface moves, and the fractions
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of particles in the di�erent stateschangetill chemical potential of the two states

becomeequal. Under this �nal condition, the interface doesnot move anymore,

apart from thermal 
uctuations around the averageposition. As we noted be-

fore, in our problem, we may not de�ne a free energy, but we could indeed talk

about averagemovement of interface betweentwo states, namely the front, and

the condition under which the interfacestopsmoving.

Going back to original equations(2.1) and (2.2), we needto replacethe con-

stant � i (t) by a � (t) which is given as follows:

� (t) = � (Stotal �
X

k

Sk(t)) = � 0(1 �
P

k Sk(t)
Stotal

) (3.11)

whereStotal , the total number of functional Sir complexesin the system,and

� 0 are both constants.

Depending upon the sizeof the silencedregion and Stotal , one would get in-

teresting titration e�ects in this model. So we actually considertwo cases;case

I, with Stotal large enoughto cover the whole lattice and caseI I, with not su�-

cient value of Stotal (it can only cover a limited areaof lattice). Now, supposewe

employ the sameexperiment we beganin last sectionand start with a nucleation

center at the middle of entirely hyper-acetylated/un-silenced lattice. If we are

above the zerovelocity band, no stable boundary can form and high acetylation

rate makesit impossiblefor silencedpatch to spreadinto the un-silencedregion.

Even inside the zerovelocity band, aswith the previouscaseof in�nite supply of

Sir protein, the spreadingwill only be limited to the vicinit y of nucleation and it

stopsas soon as stable boundary can form. Therefore, in both casessilencingis

going to remain localizedaround the region of recruitment.

However if the acetylation rate, � , is tuned down further; wego into the region

where the silencingcan spreadinto un-silencedarea i.e. below the zero velocity

band. Naively, one would always expect more silencing as in the in�nite Stotal

case. However, since� is no longer �xed, as silencingspreads,� (t) reduces. At
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this point one of the two following things may happen. The front could stop

because� (t) reducesenoughto reach a point on bifurcation diagram where the

propagation velocity is zero i.e. inside the zerovelocity band. Thus the e�ect of

reducing� would beto e�ectively reduce� aswell, sothat the systemalways stays

on the zero velocity region. This result can happen in both caseI and I I (case

B, Fig.3.5 and casesB, C & D, Fig.3.6). However, in caseI there is a possibility

that beforereaching the zero velocity band, silencinghas covered all the lattice.

So in this casethe �nal state can be any point inside the bi-stabilit y region, or

inside mono-stablesilencedregion and not necessarilyin the zero velocity band

(casesC & D, Fig.3.5).

In conclusion,Fig.3.5 and 3.6 show how the simulation results agreewith the

predictions above. In all the caseswe started with an initial stable nucleation

region inside the zero velocity band, then jumped to lower values of � (black

triangles) and let the systemevolve until it reachesits �nal stable con�guration

(colored triangles). As it is shown in Fig.3.6 for limited supply of Sir proteins

the systemalways stopson the zerovelocity band, silencinga limited areaon the

lattice. In Fig.3.5, however, Stotal is large enoughto cover the whole space;so

silencingof limited patchesof DNA only happenswhen � is not too small.

The importanceof the results from this simulation is not limited to the above

discussionon spreadingand front propagation. Comparing results of caseC and

D in Fig.3.6 revealsthat lowering � can actually reducethe silencinge�ect. This

e�ect can be explained intuitiv ely as follows; since with limited supply of Sir

proteins and decreasing� systemhasto stay on the zerovelocity band, the value

of � also decreases,consumingmore ambient Sir proteins. In other words, more

free Sir proteins sit on the lattice and expand the silencedarea. However, the

decreasein both parameters� and � movesthe systemcloserto the critical point,

where the valuesof S and A for two opposite states converge. In other words,

the averageprobability of Sir binding, S, decreasesand the averageprobability
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of acetylation, A, increasesand both get closerto their critical values.

In addition, around the critical point, the bi-stabilit y region is very narrow

and by small 
uctuations the systemmay crossbi-stable line and switch states.

Solowering acetylation rate, � asin the mutants of sas2which code for acetylases

[25, 26], not only can reduceaveragesilencing but also move the system closer

to the critical point and results in very sharp changesin silencing under the

small changesin Sir availabilit y. Sowe believe that the resulting systembecomes

extremely susceptibleto cellular noiseand would display a wide distribution of

expression. Thus, as opposedto the naive expectation that SAS2 deletion will

just makeeverything moretranscriptionally silent, oneshould�nd individual cells

that show good expressionfrom the "silent" loci.

In addition, the mono-stableintermediatesilencingstate in SAS-I elimination

experiment (section 1:3:2) may correspond to the casewhere� hasdropped to a

value lower than the critical value, � c. In this case,the systemfollows the same

behavior and consumesambient Sir proteins until � decreasesto a value closeto

the critical point. However, since� is smaller than � c, the �nal state will be in

the mono-stableregionof phasespaceat a point betweenun-silencedand silenced

regions,where there is no distinction between two states. This point very well

describesthe porous heterochromatin con�guration of this state.

Note that, asdiscussedin chapter 1, in reality the silencingcould alsostop at

special boundary elements on DNA wheresomeother processstopsthe spreadof

silencing[21, 24]. Alternativ ely, if there are more than oneregion in DNA where

silencing spreadsby the same mechanism and if at least one of these regions

does not possessa boundary element, then we are led to the same situation,

namely � reducingenoughto stop front movement. We will explorethe biological

consequenceof this observation in the chapter 6.
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Chapter 4

The Role of Sto chasticit y

An important aspect of biochemical interactions inside cell is that they all show

somedegreeof stochasticity. Numerousstudieson geneexpressionin living cells

have shown the intrinsic stochasticity in transcription and translation [32]. For

instance,one can look at the bactriophage� switching phenomenon,which is a

good exampleof noisein cellular processesasthe switching betweenthe bi-stable

lysis and lysogenicstateshappensrandomly [33]. Basically the underlying reason

to this intrinsic noise is that, most of the time only a few constituent protein

moleculesare present to participate in interactions, so the interactions happen

likesuddenburstsat randomtimes [34, 35]. Thus, in practice,cellular interactions

are very susceptibleto thermodynamic 
uctuations. As a result, the mean-�eld

approacheslike what we took with equations(2.1) and (2.2) in previouschapters

are generallyfar from reality and just demonstratethe averagebehavior of cell in

thesecircumstances.However, asit wasdiscussedat the endof chapter 1, studies

show that extrinsic noise(the 
uctuations in the chemicalparametersthemselves)

is often slower and prevails intrinsic 
uctuations described above [36, 37]. Soone

might still be able to learn a lot about the e�ect of extrinsic 
uctuations at the

mean-�eld approximation of the system.

In contrast, we also mentioned many observations on epigeneticinheritance

that show a very robust inheritance of chromatin con�guration to the decedent

cells. Onemight ask,despiteall the noiseinvolved,how cellscanbehavewith such

robustness.Unfortunately, an exact answer to that question requiresa detailed

knowledgeof chromatin con�guration and molecularprocessesduring cell division
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which, becauseof the physical constraints in probing them, it has not yet been

available to us.

Our model canactually provide uswith someinsights regardingthe robustness

of the averagechromatin con�guration to extrinsic 
uctuations, suddenchanges

in chemical constants. We will discussthe results of our simulation to explain

this averagecon�gurational robustnessin the �rst sectionof this chapter. In the

next section,however, we will actually considerthe intrinsic noisein a stochastic

treatment of our model and will seethat the model can still show the sameform

of bifurcation diagram under thermodynamic 
uctuations and thus the similar

bi-stable/mono-stablebehavior persist.

4.1 Extrinsic Fluctuations and Fron t Robustness

Going back to discreteequations(2.1) and (2.2); sofar the main chemicalparam-

eters of the model � and � (or � 0, in the casewith limited supply of Sir), have

beentreated as constants, ignoring any 
uctuations in their value. We will show

that, in the mean-�eld approach, dependingon the intensity of � and � variation,

the systemcanstill display the sameaveragesilencingcon�guration and maintain

the sameposition of the barrier. Assumethat we are in the middle of the zero

velocity band and somecontiguous part of DNA lattice is silenced(Solid/black

curve in Fig. 4.1.A & Fig. 4.2.A). The bordersbetweentwo statesare very well

de�ned and the system is at equilibrium. Now keeping � �xed (The supply of

Sir proteins is un-limited), we shift the value of � to either of its value at the

boundariesof zerovelocity band and using the numerical method in appendix B,

we let the systemevolve (Dashed/greencurve, Fig. 4.1). The result asit is shown

in the picture, exhibits no shift in the position of the boundary. The only thing is

the degreeof silencingthat slightly changesinsidethe silencedpatch. Clearly, if �

movesout of the zerovelocity band, the front will move until either of the regions
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shrinks to zero. Now if one does the samesimulation with � changing instead

of � , the result will still demonstratepersistencein the position of the boundary

betweentwo states (Dash-dotted/magenta curve, Fig. (4.2)). For the casewith

limited supply of ambient Sir proteins, onewould still expect the samebehavior,

although now the suddenshift is assumedto be in � 0 (Fig. 4.3). However, in this

case,when the value of � 0 crossesthe upper/lower bounds, the averageshift in

the position of boundary will be limited sincethe valueof � always returns inside

the zerovelocity band to maintain a stable boundary (Dashed/blue curve, upper

diagram, Fig. 4.3). In other word, when the supply of Sir proteins is limited, the

position of boundary is even more robust to changesin chemical parameters.

In conclusion,depending on the location of our system inside the parame-

ter spaceor more precisely inside the zero velocity band, there is somedegree

of persistencyin the averageposition of the boundary after it is settled. This

will provide us with someinsights on why chromatin which is subject to di�er-

ent extrinsic 
uctuations during the cell life cycle can still maintain the similar

con�guration.

4.2 The In trinsic Sto chastic Treatmen t of the System

Sofar, weassumeda mean-�eld approximation of the systemby introducingchem-

ical equations(2.1) and (2.2) as the principal equationsgoverning the silencing

phenomenon. As it was discussedat the beginning of this chapter, stochastic

nature of cellular interactions demandsa stochastic approach to withhold a more

realistic perspective of the system'sbehavior. The intrinsic stochastic nature of

the interactions can be treated in equations(2.1) and (2.2) when the parameters

A i and Si are not consideredaveragevaluesanymore and only acquirea few dis-

crete valueson a random basis,e.g. Si can only take 1 for Sir complexsitting at

site i or 0 for Sir complexnot sitting there.



54

The mean-�eld treatment of the systemcanonly be equalto the averageof its

stochastic versionwhen all terms in equations(2.1) and (2.2) are linear or when

there is no cooperativit y. More precisely, the averagevalue of any non-linear

function f of the stochastic variable x is not in generalequal to function f of the

averagevalue of stochastic variable x; or < f (x) > 6= f (< x > ). So we needto

check if the averagestochastic treatment of the systemactually agreeswith our

qualitativ e results from the mean-�eld approach or not.

Oneof the big drawbacks to the mean-�eld approach is that whenoneconsid-

ers a stable �xed point as silencedto un-silenced,it only represents the average

behavior of the system. In contrast, when one studiessinglecell data, there are

no stable �xed points becauseof stochastic deviations. Thereforeto be morecon-

crete, one is required to check if the stochastic deviation from the averagevalue

is small enoughthat they can actually be considereda stablepoint in stochastic

regime. Sothe stochastic simulation of the systemis necessary, not just to exam-

ine the averagequalitativ e results from mean-�eld approach but alsoto seeif the

�xed points in the mean-�eld model can represent any stable points in the real

stochastic behavior of chromatin.

For the principal equations (2.1) and (2.2), with f (x) = xn , we assumeda

digital variable Si and n digital variablesA (m)
i , m = 1; 2; ::; n at each site of the

1-D lattice. Therefore,wehave the following ratesbetweenoppositedigital states:

Si = 0
�

Q
m=1 ;2;::;n (1 � A (m)

i )
�����������������������������������������������������

�

�������������������������������������������������������

�
Si = 1 (4.1)

A(m)
i = 0

� (1 � Si )
�	�����������������������

�

�
�����������������������	�

� +
P

j 
 ij Sj

A(m)
i = 1 (4.2)

where all the chemical parameters are kept constant. Then we employed

a Monte Carlo simulation on a lattice of length L = 10 with periodic boundary

conditions. Two opposite initial conditionswaschosenfor each set of parameters:
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Figure 4.4: Histogram of the natural logarithm of number of silencedsites in a
L=10 site lattice, starting from two oppositeinitial conditions. The corresponding
valuesof chemical parametersare indicated at the top of each graph. Note that,
the degreeof cooperativit y n equals2 and total number of samplingsis morethan
109. The diagramsexhibit the possibility of two sharp stable �xed points in the
stochastic model.

an entirely hypo-acetylated/silenced lattice and an entirely hyper-acetylated/un-

silencedlattice. We alsoassumedthe parameter 
 ij to fall o� exponentially with

a length scale � . For a more detailed description of the method pleaserefer

to appendix C. By scanningon di�erent valuesof � and � , we could distinguish

di�erent points of the phasespaceaccordingto the averagebehavior of the system

and the time scaleof convergencetowards the averagestate. As a matter of fact,

the qualitativ e shape of the bifurcation diagram will be similar to the bifurcation

diagram of the mean-�eld approach, verifying that the mean-�eld approach does

actually provide a good qualitativ e description of the averagebehavior of the

stochastic system. Moreover, results from the histograms clearly show that in

someregionsof phasespacethe stablepoints can be very robust to noiseand the

systemstays in silencedand un-silencedstatesfor a comparatively long time (Fig.

4.4).

However, as it is seenin Fig.4.5, at somepoints of the parameter spaceone

might get intermediate solutions that do not correspond to either of the known
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Figure 4.5: Histogram of the natural logarithm of number of silencedsites in a
L=10 site lattice, starting from two oppositeinitial conditions. The corresponding
valuesof chemical parametersare indicated at the top of each graph. Note that,
the degreeof cooperativit y n equals2 and total number of samplingsis morethan
109. The diagramsexhibit the possibility of an intermediate state in stochastic
regime.

stable solutions, i.e. entirely silencedor un-silencedstates (Fig.4.4). Thesekind

of solutionscan represent either a uniform intermediatesolution betweenentirely

silencedand un-silencedlattice states (a point outside the bi-stable parameter

regime) or they can correspond to a bi-stable system switching back and forth

betweentwo stable states(a point inside the bi-stable parameter regime). These

two type of solutions have the sameaveragebehavior. However, if we keepone

of the parametersconstant and change the other one, we may be able to see

the di�erence in the behavior of two cases(Fig.4.6 and Fig.4.7). As it is seen

in Fig.4.7, in the mon-stable regime, convergenceto a �nal averagestate could

always be observed during our screeningtime. Where as, for the bi-stable regime

(Fig.4.6), convergenceto a �nal averagestate is much longerand may not happen

during the screeningtime. One might say that, both systemsmay eventually

convergeto the sameaveragebehavior in a very long screeningtime. It may be

true; but at leastwe canbesurethat in time periodsnot too long the cell exhibits

totally di�erent regimes:bi-stable or mono-stable.
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Figure 4.6: Histogram of the natural logarithm of number of silencedsites in a
L=10 site lattice, starting from two oppositeinitial conditions. The corresponding
valuesof chemical parametersare indicated at the top of each graph. Note that,
the degreeof cooperativit y n equals2 and total number of samplings is more
than 109. The transition from the averageintermediate state, inside bi-stable
regimeof parameterspace,to oneof the averagestablestatestakesa longer time
comparingto a mono-stablesystem,Fig.4.7.
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Figure 4.7: Histogram of the natural logarithm of number of silencedsites in a
L=10 site lattice, starting from two oppositeinitial conditions. The corresponding
valuesof chemical parametersare indicated at the top of each graph. Note that,
the degreeof cooperativit y n equals2 and total number of samplingsis morethan
108. The transition from averageintermediate state, insidemono-stableregionof
parameterspace,to a di�erent averagestate trough changingparameters,happens
faster comparingto a bi-stable system,Fig.4.6
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Figure 4.8: Histogram of the natural logarithm of number of silencedsites in a
L=10 site lattice, starting from two oppositeinitial conditions. The corresponding
valuesof chemical parametersare indicated at the top of each graph. Note that,
the degreeof cooperativit y n equals2 and total number of samplingsis morethan
108. The diagramsshow that, in shorter time scalesthe systemin Fig.4.5 acually
exhibits bi-stable states.

Note that, we can also check the di�erence between two casesabove by as-

suminga shorter screeningtime. As a result, oneobservesthat, in a shorter time

scalethe bi-stable systemactually falls into either of the stablestatesand it stays

there for sometime until it switches to the other state (Fig. 4.8). In contrast,

the mono-stablesystemconvergesto the same�nal state very fast. In conclusion,

as it was said earlier, by di�erentiating between the systemsaccording to the

time of their convergence,onewill be able to �nd qualitativ ely the sameshape of

bifurcation diagram as we discovered in mean-�eld approach.
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Chapter 5

Alternativ e Possible Non-linearit y in the System

In the model discussedso far, we assumedf (x) = xn in the main equations(2.1)

and (2.2) and bi-stabilit y demandsthat that n > 1, meaning that we need a

certain degreeof cooperativit y in how de-acetylated histonesrecruit the silencing

complex. This might very well be the case. However, the cooperativit y in that

particular interaction is not absolutely essential when we have other non-linear

e�ects in play.

One rather plausible e�ect is as follows. Transcription of a gene is often

associated with a higher rate of acetylation of histones. It is believed to be one

of the reasonswhy highly transcribed genesare hard to silence. For example,a

tRNA gene,usually producing a large amount of RNA, has beenfound to have

an important role in a silencing boundary [24]. One might therefore imagine

that silencing,which a�ects local transcription rates, indirectly a�ects the local

acetylation rate. One way to model this is to introduce an additional function

g(1� Si ) in the local acetylation rate making it � (1� A i (t))(1 � Si (t))g(1� Si (t)).

If there is no such feedback from silencing, we could have g(y) = 1. We will

considerg(y) = ym� 1, m = 1 being the caseof no feedback, whereasthe simplest

models of feedback would lead to m = 2. For a generalvalue of m (and n) our

model now would be given by the following equations.

dSi (t)
dt

= � i (t)(1 � Si (t))(1 � A i (t))n � � Si (t) (5.1)

dAi (t)
dt

= � (1 � A i (t))(1 � Si (t))m � (� +
X

j


 ij Sj (t))A i (t) (5.2)
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Thus, the nature of non-linearity in thesemodelsis characterizedby a number

doublet (m; n). We discussed(1; n) models in the previous chapters and found

that weneedn to begreaterthan onefor thesesubclassof models. Soto study the

general(m; n) models,we canfollow the sameroutine. Thus, to �nd a bifurcation

diagram, generalizednullcline equationsare as follows:

�� (1 � S)(1 � A)n � S = 0 (5.3)

�� (1 � A)(1 � S)m � (1 + �
 S)A = 0 (5.4)

We alsoneedto �nd the generalform of equation(2.11) to hold at the bound-

ary of the bi-stabilit y region:

A =
1 + �
 S

nS [(m � 1)�
 S + m + �
 ]
(5.5)

Using above equations, we can use S as a parameter and plot ( �� (S); �� (S))

to get the phasediagram for (m; n) models (Fig.5.1). As a result we found that

for (m; 1), m > 1 the shape of the bi-stabilit y region is qualitativ ely the same

wedge-like band. In general, for any m � 1 and n � 1 excluding m = n = 1

the (m; n) model will result in a bifurcation diagram with essentially the same

structure (Fig.5.1). As a consequence,many of the qualitativ e resultsweprovided

for (1; n) models is also true for the generalcase(m; n) models,provided that m

and n are never both lessthan or equal to 1.

In other words, both kinds of models, those with Sir binding depending

strongly non-linearly on the degreeof de-acetylation as well as those where the

e�ect of silencingon local transcription feedsback on the acetylation rate, show

qualitativ ely similar behavior neededto describe silencing in nucleus. Hencewe

will continue using the results of the (1; n) models, fully keeping in mind that

there is a broaderclassof models leading to the samequalitativ e predictions.
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Chapter 6

Biological Consequences of the Mo del

The bifurcation diagrampresents a classi�cation of qualitativ ely di�erent kinds of

dynamicspossiblewithin the model. It providesuswith a moreprecisevocabulary

for discussingqualitativ econsequencesof alternativemodels. Combining this with

experimental facts, we should be able to place the wild type yeast and various

mutants in this diagram.

Outside the bi-stable region, in the un-silencedregion, the dynamicsdecides

a self-consistent level of silencing. Recruitment of silencingcomplexat oneplace

only a�ects a small regionaround it, with the e�ects dying o� exponentially with

distancefrom the nucleation center. The upper part of the bi-stable region, with

higher valuesof � (Region I in Fig.6.1), is not qualitativ ely very di�erent in that

regard. The only di�erence comesin, when one considersstochastic dynamics,

which allows for occasionalformation of silencingin the whole region.

In the lower half of the region, Region I I in Fig.6.1, and also in the silenced

regionof phasespace,nucleation leadsto spreading.This is the regionwherethe

naive expectation from the popular biologicalmodel matchesthe resultsof math-

ematical analysis. We have argued, that under someconditions, the dynamics

of Sir depletion would lead the systemsstarting in this region into the border of

the two regions(zero front velocity curve, Fig.6.1). A locus of DNA, described

by parametersof regionI I, and the silencedregioncould possiblyseenon-speci�c

silencinginduced by stochastic nucleation of silencing.

But in this bifurcation diagram, whereis the point corresponding to silencing
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dynamics in silent mating loci in wild type yeast? The fact that the silent loci

in the sir1 mutants could be in either state, suggeststhat one is in the region

allowing bi-stabilit y. A tougher questionto answer is which part of the bi-stable

region it is in. In Region I I, there is quite somechanceof getting undesirable

non-speci�c silencing. On the other hand, in Region I, typically, the silencing

spreadsvery little from the nucleation center, unlessthe systemis very closeto

the cusppoint (or critical point, Fig.6.1). In fact, if onede�nes a length scaleby

how far the e�ect of silencinglocal nucleation spreads,that length scalediverges

exactly at the cusppoint. The systemcould operateat a point wherethis length

scaleis large.

The dynamicsrepresented in the popular cartoon model of silencing,reviewed

in [3], corresponds the behavior in Region I I. Such models come with explicit

requirement of boundary elements to stop the spreading. On top of that, there

should be an argument why the chance of nucleation in somewhereelsein the

genomedoes not causespontaneous non-speci�c silencing. Alternativ ely, one

could possiblyarguewhy the probability of accidental nucleation is low. However,

if the systemis in RegionI, then onecould observe a reduction in silencingwith

increasingthe distance from the nucleation center, namely the silencer. Such a

claim hasbeenmadeby someresearchers[22]. Although onecould arguefor both

options, we would sidewith the secondoption, namely, that the operating point

of wild type silencing loci is in Region I, but not too far from the cusp point to

have a large spreadinglength scale.

We could now discussthe consequencesof lowering the acetylation rate as it

happens in, say, the sas2mutant [25, 26]. We argued that if there are fronts

of silencing that are not pinned down by boundary elements somewherein the

genome,then our argument about � (Sir binding rate) reducing and moving the

systemback to the zerovelocity line/region, applies. This is indeeda possibility

in yeast. Although the silent mating loci have well de�ned boundary elements,
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the samemay not be true of all the telomeric regions. This result might explain

certain counterintuitiv e featuresof mutants of certain geneslike sas2which code

for acetylases.If the reducedacetylation rate in sas2mutant is closeto a certain

level, the systemwill 
o w back to closeto the cusp point at tip of the bi-stable

region. Near the cusp point, the degreeof silencing changesvery sharply with

the changesof Sir availabilit y. We believe that the resulting system becomes

extremely susceptibleto cellular noiseand would display a wide distribution of

expression. Thus, as opposedto the naive expectation that SAS2 deletion will

just makeeverything moretranscriptionally silent, oneshould�nd individual cells

that show good expressionfrom the \silent" loci. Wespeculate,whetherthis is the

reasonwhy the SASgenesmay havebeenpickedup in an assay looking for defects

in silencing. Recent singlecell measurements observation for GFP expressionfrom

sir1sas2genemutant cells show a wide but uni-modal distribution of expression

in a cell population, where as sir1 cell population show bimodal distribution,

characteristic of epigeneticstates[39].

Another simpleconsequencethe bifurcation diagram that onecould say qual-

itativ e things about the epigeneticswitching rate in di�erent parts of the bifur-

cation diagram. For example,we expect the switching rate to get faster near the

cusppoint. We expect asthe level of Sas2is loweredcontinuously (decreasing� ),

we will seea rise in switching rate, as the systemwould move toward the cusp

point.
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Chapter 7

Discussion

We have formulated a mathematical version of the model of silencingand com-

puted the bifurcation diagram of the system. This diagram is consistent with

several observations about mutants. It is, in principle, possibleto explore the

wholetwo dimensionalcontrol parameterspaceexperimentally. For example,one

could study singlecell GFP 
uorescencefrom a reporter in HMR while modifying

� by regulating Sir proteins, and modulating � via changing the level of Sas2.

In addition to the sas2mutant, which we discussedextensively, one of the

mutants that we want to understand is dot1. Part of the reasonto study this

mathematical model is the apparent paradox: if the Sir2,3,4 system itself can

propagatefurther from region with stochastic nucleation of silencing,why many

other regions, not contiguous to silencing at nucleation sites, do not show oc-

casionalheritable silencing in manner . In fact, a screenhigh copy disruptors

of telomeric silence [29], produced, among others, a gene called DOT1 whose

deletion causenonspeci�c silencing. Understandinghow Dot1 a�ects silencingre-

quiresus to consideradditional stateslike methylation of histones[30]. Basedon

our preliminary study of a full model of the systemwith additional statesit seems

that the simpler model studied in this paper, with somechangeof parameters,

could e�ectively capture the e�ect of Dot1. This is one future direction that we

are pursuing.

We �nally mention two issuesnot dealt at all within this dissertation that

needsfurther attention. One is that our model of DNA, as a one dimensional



68

system, may be called into question if the heterochromatin formation happens

very fast (comparedto the speedwith which silencingspreads),making the DNA

fold up into higher order organization quickly. The other interesting issueis in-

heritance of silencing. Could we have our model capture inheritance in a coarse

grained manner, or do we stand to gain somethingby modeling the probable si-

lencing of duplicated DNA explicitly? Of course,for any biological model, there

are many ways of making it more realistic. However, not many of these `im-

provements' change the qualitativ e properties of the bifurcation diagram. We

believe our model includesenoughfeaturesof the biological phenomenato be a

good starting point for more re�ned discussionof the qualitativ e behavior of this

system.
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Chapter 8

App endix A: Uniform Fixed Poin ts and Their
Stabilit y

In this appendix, we considera moregeneralform of the equations(2.3) and (2.4)

and discussthe mathematical methods which can be usedto �nd the stable �xed

points of the system. Considerthe following uniform dynamical equations:

dS(t)
dt

= � (1 � S(t)) f (1 � A(t)) � � S(t) (8.1)

dA(t)
dt

= � (1 � A(t))g(1 � S(t)) � (� + 
 S(t))A(t) (8.2)

whereall the Greek letters are positive constant variables. S and A are real

parametersthat can only take valuesbetween0 and 1, inclusive. f (x) and g(y)

are non-negative, monotonically increasingfunction in the interval 0 � x � 1 and

0 � y � 1. Note that, uniform version of both the set of non-linear equations

(5.1) and (5.2) and the generalform of acetylation term mentioned in foot notesof

section2:1, are special casesof above equations. Assumethe changeof variables,

X = 1 � A and Y = 1 � S; rewriting the above equationsin X and Y:

dY
dt

= � � Y(�f (X ) + � ) (8.3)

dX
dt

= (� + 
 � 
 Y ) � X [� g(Y) + (� + 
 � 
 Y)]

= (� + 
 � 
 Y )

"

1 � X (
� g(Y)

� + 
 � 
 Y
+ 1)

#

(8.4)

Now, de�ne functions ~f (X ) and ~g(Y) as follows:
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~f (X ) = ��f (X ) (8.5)

~g(Y) =
��g (Y)

1 + �
 � �
 Y
(8.6)

where �� = � =� , �� = �=� and �
 = 
 =� . Both ~f (X ) and ~g(Y) follow the

sameproperty we assumedfor f (x) and g(y), i.e. non-negative, monotonically

increasingfunctions in the interval 0 � X � 1 and 0 � Y � 1. So, in terms of

thesenew functions we have:

dY
dt

= �
h
1 � Y( ~f (X ) + 1)

i
= F (X ; Y) (8.7)

dX
dt

= (� + 
 � 
 Y ) [1 � X (~g(Y) + 1)] = G(X ; Y) (8.8)

Then, the �xed points for above equationssatisfy following nullclines:

Yf =
1

~f (X f ) + 1
= f̂ (X f ) (8.9)

X f =
1

~g(Yf ) + 1
= ĝ(Yf ) (8.10)

whereX f and Yf denotethe �xed point values. Note that f̂ (X ) and ĝ(Y) are

monotonically decreasingfunctions inside the interval 0 � X � 1 and 0 � Y � 1,

which themselvesarecon�ned between0 and1. For the specialcasesbeingstudied

in this dissertation, the generalshape of f̂ and ĝ is given in Fig.8.1; i.e. either

they decreasewith a positive curvature (positive secondderivative) or decrease

like an S-curve. The solution to above equationsis then given by the intersection

of one such curve with another one re
ected at the x = y line. Therefore, it

is easyto seethat for all casesin this dissertation, there is either one or three

answers to above equations.

One can investigate the stabilit y of the �xed points by Taylor expansionof

equations (8.7) and (8.8) around the �xed points. So if X = X f + � X and

Y = Yf + � Y, for small � X and � Y, keepingup to the �rst non-zeroterm:
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d
dt

0
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� X
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0

@
� Y

� X
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In order to have stabilit y at (X f ; Yf ), the above Jacobianmatrix has to have

negative eigenvalues. The two eigenvaluessatisfy the below quadratic equation:

Z 2 � (
@F
@Y

+
@G
@X

)Z + (
@F
@Y

@G
@X

�
@G
@Y

@F
@X

) = 0 (8.12)

So to have negative solutions,we should have:

@F
@Y

+
@G
@X

< 0 (8.13)

@F
@Y

@G
@X

�
@G
@Y

@F
@X

> 0 (8.14)

According to equations(8.7) and (8.8), both @F
@Y and @G

@X are negative when

0 � X � 1 and 0 � Y � 1, hencethe condition (8.13) is always satis�ed. Since

this condition meansthat the sum of eigenvaluesis negative, we can either have

two negative eigenvaluesor onenegative and the other positive. In other words,

each �xed point can either be a stable point or an unstable saddle point. In

the three �xed point regimethen, we can either have two stable points 
anking

the middle saddle point or two saddlepoints 
anking the middle stable point.

However sincefor small Y , dY=dt is always positive (equation (8.7)) and it only

changessign when Y passesits nullcline value (equation 8.9) and also sincethe

sameholds for X ; one can �nd that the middle �xed point is always the saddle

point. Hencethe 
anking points areactually stable. Onecanalsodraw the vector

�eld of the 
o w ( dX
dt ; dY

dt ), using softwares such as MATLAB , to investigate the

stabilit y of the points (Fig. 2.3).

Note that, now in order to �nd the numerical valuesof stable �xed points, we

can always start from either X = 0 or Y = 0 and by recursively plugging X and

Y insideequations(8.9) and (8.10) and obtaining new valuesapproach the stable

�xed point answers.
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Chapter 9

App endix B: Numerical Metho ds in Discrete
Mo del Approac h

We usean array of variable length L = 10 to 200sites,setting the value of S and

A at each boundary equal to either oneof the two stable uniform solutions. Two

forms of 
 ij is considered. First, 
 ij is assumedto be non-zeroonly for nearest

neighbors (ji � j j = 1) and bezeroelsewhere.Second,
 ij = 
 0exp(�j i � j j=� ) with

a positive length scale, � . For the initial condition, we assumea con�guration

with a very sharp transition in the middle of the lattice i.e. half of the sites

on one side are set to hypo-acetylated/silenced uniform solution and the rest of

the lattice which are on the other side are set to hyper-acetylated/un-silenced

uniform solution. Then an explicit �nite di�er ence method is employed to �nd

the numerical answers of equations2.1 and 2.2:

Sij +1 = � t [� (1 � Sij )f (1 � A ij ) � � Sij ] + Sij (9.1)

A ij +1 = � t

"

� (1 � A ij )(1 � Sij ) � (� +
X

k


 ik Skj )A ij

#

+ A ij (9.2)

wherej indicates the number of stepsin time, and � t is the time step. Con-

vergenceto a stablestate wasvery fast and in most caseswith only slight change

from the initial con�guration.

At the end, to check that our answer has actually converged to the stable

solution, we can apply the time independent form of equations (2.1) and (2.2)

recursively on the answer:
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Si =
�f (1 � A i )

�f (1 � A i ) + �
(9.3)

A i =
� (1 � Si )

� (1 � Si ) + � +
P

k 
 ik Sk
(9.4)
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Chapter 10

App endix C: Mon te Carlo Simulation of the
Sto chastic Mo del

In order to employ a stochastic simulation of equations(4.1) and (4.2), one can

take a Monte Carlo approach. Assumethat we have a lattice of size L and at

each site i of this lattice n digital parametersA (m)
i , m = 1; 2; ::; n and onedigital

parameterSi . Si and A (m)
i can take only be 0 or 1. We alsochoosethe parameter


 ij to fall o� exponentially with a length scale� and apply periodic boundary

condition. Then, at each step of the simulation, one picks a random site i and

alsooneof the parametersf Si ; A(m)
i g at random; then follows the rules below:

1. for A (m)
i ;

(a) if A (m)
i = 1

i. if (� +
P

j 
 ij Sj ) � � (1 � Si ), switch to A (m)
i = 0

ii. else,switch to A (m)
i = 0 with the rate

� +
P

j

 ij Sj

� (1� Si ) .

(b) if A (m)
i = 0

i. if (� +
P

j 
 ij Sj ) � � (1 � Si ), switch to A (m)
i = 1

ii. else,switch to A (m)
i = 1 with the rate � (1� Si )

� +
P

j

 ij Sj

.

2. for Si ;

(a) if Si = 1

i. if � � �
Q

m (1 � A (m)
i ), switch to Si = 0
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ii. else,switch to Si = 0 with the rate �
�

Q
m

(1� A ( m )
i )

.

(b) if Si = 0

i. if � � �
Q

m (1 � A (m)
i ), switch to Si = 1

ii. else,switch to Si = 1 with the rate
�

Q
m

(1� A ( m )
i )

� .

For each set of control parameters,we run the simulation twice i.e. for op-

posite initial con�gurations: uniformly silenced/hypo-acetylated and uniformly

un-silenced/hyper-acetylated lattice. As a result, we avoid getting stuck in only

oneof the two local minima (�xed points) by choosingeach opposite �xed point

once.
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