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Distributed Data Stream Management Systems (DSMS) are increasingly used for the processing 

of high-rate data streams in real-time. An effective query optimization mechanism is a critical 

component that allows DSMS to deal with extreme data rates and large numbers of long-running 

concurrent queries. This dissertation investigates how to utilize semantic query analysis to 

perform query optimizations that enable scalable and robust data stream processing. 

We address three technical challenges faced by streaming system: (1) monitoring and correlating 

large number of diverse data streams with significant variations in data rates; (2) the ability to 

remain stable and produce correct answers even under overload conditions, and (3) supporting 

efficient distributed query processing to easily scale with increases in the number of processing 

nodes and stream data rates. 

First, we propose a heartbeat mechanism to prevent the DSMS from blocking when some of the 

monitored streams temporarily stall or slow down. By generating special punctuation messages at 

low-level query nodes and propagating them throughout the entire query execution plan, our 

heartbeat mechanism effectively unblocks all stalled query nodes.  
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The second contribution of this dissertation addresses the problem of DSMS robustness when a 

load on a system increases by orders of magnitude. We introduce a query-aware sampling 

mechanism for guaranteeing the system’s stability and the correctness of its query output under 

overload conditions. The mechanism is generic and supports arbitrary complex query sets. 

Finally, we address the problem of scalable distributed evaluation of streaming queries. The key 

contribution of the dissertation is a query-aware partitioning mechanism that allows us to scale 

the performance of the streaming queries in a close to linear fashion. We propose a query analysis 

framework for determining the optimal partitioning and a partition-aware distributed query 

optimizer that takes advantage of existing partitions. 

In summary, the contributions made by this dissertation in the area of streaming query 

optimization enable Data Stream Management Systems to scale to extreme data rates, gracefully 

handle overload conditions and support a large number of diverse input streams, enabling 

industrial-scale applications of DSMS technology.  
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Chapter 1 

1. Introduction 

1.1 Thesis 

This dissertation proposes new query optimizations techniques based on semantic query analysis 

enabling scalable and robust data stream processing in the presence of high-rate data streams. The 

proposed techniques enable stream management systems to support large numbers of diverse data 

streams, handle arbitrary complex query sets even under overload conditions, and support 

efficient distributed evaluation of streaming queries. 

1.2 Data Stream Management Systems 

A large number of measurement and monitoring applications produce their output in the form of a 

highly detailed data stream – a potentially unbounded sequence of records describing individual 

observations. Computer networks generate a variety of different data streams – traffic captured at 

router interfaces, web server accesses, email requests, p2p streams, and many others. Internet 

traffic itself can be thought as a `high-rate data stream’ composed of IP packets. Many network 

applications, such as traffic analysis, intrusion detection, router configuration analysis, and 

performance monitoring and debugging, work by processing these streams. Other examples of 
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applications that generate high-volume data stream are scientific applications such as 

astronomical survey projects [43][85][107], and meteorological [116] and geodetics 

measurements [94].  Large-scale sensor networks [3] being deployed both for military uses (e.g. 

battlefield monitoring) and commercial applications (manufacturing [46], product tracking [54], 

etc.) have also emerged as an important source of data streams. 

Historically, the main process for handling streaming data has been to load it into a data 

warehouse and then run analysis programs in an offline fashion. However, the explosion in data 

volumes and an increased need for real-time data analysis has made this model of processing ill-

suited for many applications. Consider, for example, a networking application that needs to 

monitor flows of data between different hosts on the internet. The number of flows in the AT&T 

IP backbone alone reaches 2.5TB of data per day [66] (fifty billion fifty byte records) making it 

very challenging to store them entirely. Furthermore, applications that use flow information to 

detect network attacks intrusions and attacks, need to report them immediately without the delay 

introduced by offline processing. These trends create a need for systems capable of monitoring 

massive volumes of data in real-time. 

A commonly used solution for real-time stream processing is to employ specialized hand-written 

applications designed to deal with large volumes of data. For example, in the area of network 

variety of different tools were developed for specialized tasks of traffic analysis, performance 

monitoring and debugging, protocol analysis and development, router configuration, and various 

ad-hoc analyses. Even though these tools are typically acceptable from a performance 

perspective, they suffer from the number of problems [66][96][97]: 

1. Specialized hand-written tools are typically hard to extend and maintain. This issue is 

especially important on the Internet where new applications are popping up very frequently 
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requiring modifications to existing monitoring tools. Security related tools (e.g. intrusion and 

network attack detection) also suffer from the difficulty of adapting to new types of attacks. 

2. No support for post-collection data management. Hand-built tools usually lack a metadata 

management facility, which frequently results in the loss of important information describing 

the semantics of captured data. Unclear data semantics significantly complicates further data 

analysis and increases the likelihood of errors. Metadata related problems are further 

exacerbated in the environment where multiple versions of streaming tools are maintained. 

Such version might have subtle but important differences, resulting in difficulty of 

interpreting of collected data. 

3. Poor scalability with respect to the number of monitoring queries. Many real-world 

networking applications require dozens to hundreds of monitoring queries to be running at the 

same time. Hand-optimizing such a large collection of independently developed tools is an 

intractable problem further complicated by the lack of clear inter-tool interfaces.  

4. Lack of support for distributed stream processing. Massive volumes and a natural 

physical distribution of streaming data make distributed monitoring a necessity for most 

applications. Hand-built tools are typically designed for single point monitoring and are 

notoriously difficult to parallelize. 

Recent studies of the applicability of using Database Management Systems (DBMS) for network 

[97] and financial monitoring [82] demonstrate that most typical queries can be expressed using a 

small number of basic query types – filtering queries, computing aggregate values and correlating 

multiple streams. Another popular type of query is a trigger – an alert raised when certain 

conditions are met. Traditional DBMSs benefit from decades of research and industrial 

development dealing specifically with executing these basic query types on massive data sets. 

They also feature extensive query optimization (both for single machine and distributed case) and 
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metadata management facilities. However, these systems are typically too complex and 

heavyweight for processing data streams. Many integral components of a traditional DBMS such 

as transaction support, concurrency control, backup and recovery, indices and materialized views 

are not needed for data streaming applications. Furthermore, relational databases are not designed 

for processing rapid data feeds and exhibit poor performance on streaming workloads [108]. 

The emerging class of Data Stream Management Systems (DSMS) is specifically designed to 

bring the benefits of traditional data processing and management to a streaming world. Most 

modern DSMSs are based on a variant of SQL language modified to support streaming operations 

(alternative languages have also been proposed [80][123]). Use of well-defined structured query 

language brings the benefits of easy metadata management, query optimizations and the query 

composition for complex query processing. The query optimizer in a Data Stream Management 

System can take full advantage of precise language semantics to implement a variety of different 

optimizations, such as: 

1. Transform query executions plans into semantically equivalent but more efficient plans 

DSMSs based on a variant of the SQL language can take advantage of apparatus of 

underlying relational algebra to perform many standard optimizations such as pushing down 

projections and selection and join reordering. Similar optimizations are also possible in 

systems with alternative languages, such as ones based on a state machines [123] and flow 

networks [2]. 

2. Optimize memory utilization of running queries by using temporal properties of the 

input streams. Many real-world data streams contain some form of timestamp attribute, 

which is generally monotonically increasing. For example, network data streams have 

timestamps assigned by interface cards, and sometimes also protocol-specific sequence 

numbers. It is also the case that most streaming queries make references to these monotonic 
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attributes [66]. Most modern DSMSs take advantage of the temporal properties of the input 

streams [38][109] to limit the state required to execute streaming operators.  

3. Automatically parallelize query execution based on the number of available stream 

processing nodes. The massive scale of many real-world data streams makes distributing 

processing a necessity. All distributed DSMSs implement a mechanism [1][71] for automatic 

query plan parallelization and distribution among a number of streaming engines. 

4. Utilize machine code generation to achieve performance exceeding that of hand-built 

tools. Many commercial DBMS (such as IBM DB2, AT&T Daytona) incorporate compiler 

technology [57] to translate submitted query into machine for efficient execution. High-

performance stream processing systems also started incorporating similar mechanisms [38] to 

deal avoid the overhead of query interpretation. 

5. Perform multi-query optimization by detecting and factoring out common components 

of multiple queries submitted for execution. A Data Stream Management System is 

expected to handle a very large number of queries running on the same sets of input streams, 

which greatly increases the likelihood of significant overlap between the computations 

performed by different queries. Modern DSMSs implement a variety of multi-query 

optimizations techniques for sharing filters [78][88], aggregations [51][124] and joins [64].  

Most of these optimization techniques potentially can be manually applied to hand-built 

streaming applications, but it is generally not feasible and potentially dangerous to apply them to 

large query sets consisting of hundreds of queries. In order to be usable for real-world 

applications, all of the optimization must be implemented in completely automated fashion based 

on semantic analysis of the streaming queries. 

The area of streaming processing using a DSMS has received a lot of attention in recent years, 

with a number of general purpose streaming systems proposed by both academia and industry. 
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List of currently active academic projects includes Aurora/Borealis [1][2], STREAM [6], 

TelegraphCQ [23], Nile [63], NiagaraCQ [28], and many others. Commercial examples include 

Gigascope for network monitoring [38][39][40], and Aleri Streaming Analytics [5], Gemfire 

Real-time Events [49], and Streambase [111] for financial monitoring. A large body of work by 

database community addressed a number of question related to data stream management: the 

design of a general purpose DSMS [21], the semantics of the query languages [8], using synopsis 

data structures for approximate query processing [89], scheduling execution of streaming 

operators [12], memory management for different types of queries [110], load shedding 

mechanisms [14], distributed stream processing [28] and many others. 

Despite the existence of a large body of work on data stream management, the focus of most of 

streaming work has always been on stream processing in the abstract. As a result, many real-

world problems related to processing high-rate streams, not entirely obvious from these abstract 

considerations, have not been addressed. In particular, the issues of dealing with very extreme 

data rates, complex query sets and large number of diverse data streams have received little 

attention. One of the main goals of this dissertation is to shift focus back to these important 

scalability issues.  

1.3 Problem Statement 

Three main problems addressed by the dissertation are related to different aspects of scalable and 

robust stream processing. 

1. A DSMS should be able to simultaneously monitor and correlate large numbers of 

diverse data streams. Many real-world data streams are inherently bursty and unpredictable, 

in particular IP traffic streams processed by network monitoring applications. Even small 

scale centralized stream processors correlating a small number of streams can easily block on 
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bursty or stalled input and exceed the available memory. The ability to robustly handle large 

numbers of unpredictable streams is even more critical for clustered/distributed systems that 

are expected to deal with order of magnitude differences in data rates of different input 

streams. 

2. A DSMS must remain stable and produce correct answers even under overload 

conditions. It is widely known phenomena that the load on the streaming systems can 

increase by an order of magnitude (e.g. during network attacks for network monitoring 

applications). Widely accepted solutions sacrifice the quality of the answers produced by the 

query processing system in order to remain stable under such adversarial conditions. The 

challenge that we address is in this dissertation is the design of the system that can continue 

producing semantically correct answers under all load conditions for arbitrary large and 

complex query sets. 

3. A DSMS should support efficient distributed query processing to easily scale with the 

increases in the number of processing nodes and stream data rates. Given the extreme 

rates of data streams typical for many real-world applications, distributed processing becomes 

a necessity. The challenge that we address in this dissertation is the design of a system that 

can automatically take advantage of available distributed resource and effectively spread the 

computation costs regardless of the complexity of the query set being executed. 

All the problems and challenges mentioned above have been previously addressed in the context 

of specific individual streaming queries. For example, specific sampling algorithms have been 

suggested for certain aggregation queries to keep the system stable during overload situations. 

Similarly, a number of parallel execution strategies have been suggested for certain types of 

aggregation and join queries. So for small application, one can custom build a query that will not 

suffer from blocking on bursty input stream, be well parallelized and properly handle overload 

conditions. However, addressing these challenges in the presence of large and complex query sets 
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with hundreds of queries is intractable for an application development team, and requires 

completely automated analysis tools that understand the semantics of individual queries.   

1.4 Summary of Contributions 

The main contribution of this dissertation is to utilize semantic query analysis to perform query 

optimizations that enable scalable and robust data processing in the presence of high-rate streams 

and arbitrarily large query sets. In particular, the dissertation proposes the following three 

techniques: 

1. A punctuation-carrying heartbeat mechanism [70] for unblocking bursty and 

unpredictable streams. The proposed heartbeat mechanism allows data stream management 

system to monitor a large number of diverse data streams without blocking even when some 

of the streams temporarily stall. By generating special punctuation messages at low-level 

query nodes and propagating them throughout the entire query execution plan, our heartbeat 

mechanism effectively unblocks all stalled query nodes. Our experiments with multi-source 

streaming queries running over high-rate data streams demonstrate the effectiveness of the 

proposed mechanism and its very low computational overhead. This work was published in 

the Proceedings of 31st International Conference on Very Large Data Bases [70].  

2. A query-aware sampling mechanism [72] for guaranteeing the system’s stability and the 

correctness of its query output under overload conditions. This dissertation defines a 

notion of correctness of queries in the presence of sampling and introduces a query analysis 

framework that suggests a semantic-preserving sampling strategy for arbitrarily complex 

query sets. The effectiveness of our sampling mechanism was validated on high-rate 

networking data streams. This work was published in the Proceedings of the First 

International Workshop on Scalable Stream Processing Systems [72]. 
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3. Query-aware data stream partitioning [71] for efficient work distribution across 

cooperative distributed stream processors. The proposed stream partitioning mechanism 

consists of two main components. The first component is a query analysis framework for 

determining the optimal partitioning for a given set of queries. The second component is a 

partition-aware distributed query optimizer that transforms an unoptimized query plan into a 

semantically equivalent query plan that takes advantage of existing partitions. 

1.5 Thesis Organization 

The remainder of this dissertation is organized as follows. Chapter 2 presents a general survey of 

the research in data stream management. Chapter 3 provides an overview of architecture of 

Gigascope stream manager for network monitoring used throughout the dissertation as a vehicle 

for implementation and evaluation for all proposed techniques. 

Chapter 4 introduces the problem of unblocking a DSMS in the presence of multiple bursty and 

unpredictable streams, and introduces the punctuation-carrying heartbeat mechanism to unblock 

all stalled streams. 

Chapter 5 of the dissertation presents a query-aware semantic sampling framework for selecting 

the appropriate sampling methods during overload conditions 

Chapter 6 introduces the idea of query-aware stream partitioning and develops a query analysis 

framework for selecting an optimal partitioning scheme for arbitrarily large query sets. 

Finally, Chapter 7 presents the dissertation conclusions and includes a discussion of future work 

directions. 
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Chapter 2 

2. Survey of Data Stream Management 

The area of data stream management has received a lot of attention in recent years, with a number 

of active research projects initiated both in the academic community and in industrial research 

labs. This research has addressed a number of issues, ranging from largely theoretical ones such 

as modeling infinite streams to very technical issues related to designing execution environments 

for efficient stream processing. A number of general purpose and application-specific DSMS we 

created, including Aurora/Borealis [1][2], STREAM [6], TelegraphCQ [23], Nile [63], 

NiagaraCQ [28], Gigascope [39], and many others. 

In this chapter, we survey the relevant work in data stream management with the emphasis placed 

on query processing and streaming query optimizations. To keep the dissertation focused, we 

omit the discussion of application-specific topics related such as stream processing in sensor 

networks [42][68][87][88][93] and financial monitoring [82][128].  

The rest of the chapter is organized follows. In Section 2.1 we survey the query languages for 

stream processing. Section 2.2 focuses on the implementation aspects of streaming query 

execution. In section 2.3 we provide the overview of the work in streaming query optimization. 

Finally, we survey the research in distributed data stream processing in Section 2.4. 
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2.1 Query Languages for Data Streams 

2.1.1. Stream Windows 

Traditional languages for querying Relational Database Management Systems (RDBMS) are 

designed to express one-time queries over relatively static datasets. Streaming queries, on the 

other hand, operate on unbounded data streams and continuously (or periodically) produce the 

query answers. In order to be able to execute such queries using fixed amount of memory, it 

becomes necessary to limit the scope of output tuples that an input tuple can affect. A standard 

mechanism employed by all DSMS involves defining a window on the data stream on which the 

query evaluation will occur at any moment in time. An alternative mechanism for a limiting the 

scope of the input tuples is by time-decaying the tuple values [31]; however this mechanism is 

restricted to certain types of aggregations queries and will not be discussed further in this survey. 

A variety of different window types were suggested in the research literature. Chandrasekaran et 

al [26] propose the following classification of stream windows based on three defining 

characteristics:  

• Movement of the window endpoints: Window endpoints can be either fixed or sliding in 

one (generally forward) direction. The most widely used type of stream window is a sliding 

window in which both endpoints are moving as the new tuples are added or old ones expire 

from the window. Windows with one endpoint fixed and the other one sliding are referred to 

as landmark windows; this query type is useful for expressing running aggregates. Queries 

using windows with both endpoints fixed are essentially equivalent to one-time queries 

executing over the subset of the data stream. 
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• Window size or extent: Similar to SQL-99 standard for relational databases [60], query 

languages for data streams distinguish between physical and logical windows. The size of a 

physical window is defined in terms of number of tuples that belong to the window. Logical 

windows are defined in terms of a time interval. Logical windows based on the ordered or 

temporal attributes [39] define the size of the window as a range of the values of the ordered 

stream attribute. Finally, the most general type of the window is called a predicate window 

which allows arbitrary predicates to be used to specify the extent of the window. One 

example of a streaming query that uses predicate windows is the GSQL running aggregate 

described in more detail in Section 3.1.2. 

• Window update interval: The frequency with which the window is advanced is defined 

either in terms of the number of received tuples (for physical windows) or time (for logical 

windows). A special case of the sliding window in which the update interval is equal to 

windows extent is referred to as tumbling window [39][112], the end result is a partitioning of 

the input stream into sequence disjoint windows. 

Out of many possible window types, physical sliding windows are the ones the most frequently 

used in the streaming literature, primarily because they are easier to analyze than logical 

windows. However, query composition is greatly complicated by the need to synchronize 

multiple tuple-based windows. We further address the issue of query composition in Section 3.1. 

2.1.2. Declarative Query Languages 

A variety of query languages have been proposed for querying unbounded data streams. Most of 

them are declarative-style languages, based on SQL, with the necessary extensions to support 

windows and stream-specific operators. In principle, declarative languages give the DSMS a 

significant freedom to choose the optimal query execution strategy by employing a query 
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optimizer. In this section we will cover the following declarative streaming languages: CQL, 

StreaQuel, AQuery, as well as SQL extensions for defining user defined stream aggregates 

(UDA-SQL). The GSQL language used by Gigascope DSMS is described in detail in section 3.1. 

The Continuous Query Language (CQL) [8] developed as a part of Stanford STREAM project [6] 

attempts to leverage well-understood SQL semantics for relational queries and apply it to 

continuous queries. The main idea behind CQL is to convert unbounded streams into 

instantaneous relations using relation-to-stream operators and then executing the query over the 

resulting relation using standard operations of relational algebra. Instantaneous relations can be 

thought of as a snapshot of a standard relation taken at certain time instant. In order to support 

query composition for continuous queries that can reference both streams and relations, CQL 

supports three types of conversion operators: stream-to-relations (using sliding window 

constructs), relation-to-stream and relation-to-relation (using standard SQL operators).   

Relation-to-stream conversion is accomplished by defining a sliding window using SQL-99 

syntax. Three window types are supported: time-based (using RANGE keyword), tuple-based 

(using ROWS keyword) and partitioned windows. Partitioned windows are defined by splitting a 

sliding window into groups based on a value of partitioning attributes. No tumbling, fixed or 

predicate windows are supported by the language, although conceptually they can be added with 

no effect on the semantics. 

CQL uses three different relation-to-stream operators (Istream, Dstream and Rstream) which 

differ by the nature of the output stream they produce. The Istream operator returns all the new 

tuples in the relation (ones that did not exist in the previous time instant). Dstream returns all the 

tuples that were present in previous time instant but are no longer present in current relation. 

Finally Rstream returns the entire content of the relation at the current time instant. An example 

query that uses the Rstream conversion is shown below: 
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SELECT Istream( S.a, count(*) ) 

FROM S [Rows 100], R [Rows 100] 

WHERE S.srcrIP = R.destIP 

GROUP BY S.srcIP 

The query joins two streams of network packets S and R on IP addresses using 100 tuple sliding 

windows and computes the number of packets observed for each source IP address.  The Istream 

clause guarantees that the results are updated whenever a new IP address is encountered or the 

number of packets for the existing IP addresses changes. 

The StreaQuel language [23][26]  proposed by TelegraphCQ project is a pure-stream query 

language. Continuous queries can only reference streams and produce streams as an output. The 

output of a StreaQuel query consists of a time sequence of sets, each set corresponding to the 

answer set of the query at that time (making it equivalent to CQL queries that Rstream construct). 

A distinctive characteristic of the language is a rich syntax for defining windows over the input 

stream. StreQuel queries use a for-loop iterating over time to declare a sequence of windows 

which query uses to compute the answer. Each data stream listed in for-loop has a corresponding 

WindowIs statement describing a type of window desired. The general syntax for the for-loop is 

shown below: 

for(t=initial_value; continue_condition(t); change(t)){ 

WindowIs(Stream A, left_end(t), right_end(t)); 

WindowIs(Stream B, left_end(t), right_end(t)); 

… 

} 
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Using the StreaQuel syntax it is possible to define both fixed, landmark and sliding windows. An 

example of a query over stream S running for 60 time unit using a size 10 sliding window is 

shown below: 

for(t=start_time; t < start_time + 60;  t++) 

 WindowIs(S, t-9, t) 

The time increment part of the loop control the frequency with which the query is executed, 

omitting it completely allows the user to define one-time snapshot queries. 

The AQuery [81] language proposed by Lerner and Shasha is focuses on exploiting natural 

ordered properties of the input streams. In AQuery, the data model treats the tables and streams as 

ordered entities called arrables (standing for array-tables).  The query optimizer can take 

advantage of stream ordering properties for a more efficient execution of the operators. This 

optimization is accomplished by utilizing order-dependent versions of standard relational 

operators such as aggregations and joins. Additionally, AQuery can introduce new orderings by 

using the ORDERED BY clause (implemented by resorting the stream on a new set of ordering 

attributes). Another interesting feature of the language is a column-oriented semantics which 

treats the table columns as arrays on which order-dependent operators such as next, prev, first, 

and last are defined. A query comparing two consecutive tuples in the stream that would normally 

require a self-join can be trivially expressed using a selection query. An example query that 

compares stock prices for two consecutive days is shown below: 

SELECT price - prev(price) 

FROM Trades  

A variant of SQL language suggested by Law et al [80] restricts the query language by only 

allowing non-blocking queries. Non-blocking queries do not need to wait for the end of the input 
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to produce the output results and can be efficiently implemented using pipelined query operators. 

A main contribution of this work is the support for non-blocking user-defined aggregates (NB-

UDA) using a syntax first introduced in ATLaS [121]. The authors prove that every non-blocking 

(monotonic) streaming function can be implemented using a combination of NB-UDAs and 

stream union operations.  

2.1.3. Procedural Query Languages 

Several Data Stream Management Systems employ procedural languages to support querying of 

the data streams. Queries in such systems are typically composed out of basic building blocks 

(streaming operators); however some systems employ general purpose programming languages 

with additional support for streaming operations. In this section we cover the following 

systems/languages that rely on procedural approach: Hancock, Tribeca and Aurora/SQuAl. 

Hancock [37] language was developed at AT&T Labs for extracting data signatures from 

transactional streams, such as call detail records, credit card transactions, etc. The language is 

based on C with additional domain-specific features to facilitate stream processing. Hancock 

programs look at stream as a sequence of values in a fixed format. A variety of constructs are 

added to the language to support stream filtering, sorting of the elements, detecting user-defined 

events in streams and executing user-specified code in response to those events. Hancock 

supports an efficient block processing of tuples with the ability to have multiple processing 

passes over each data block.  

Tribeca [112] system was developed at BellCore for managing network traffic databases. An 

interesting feature of the system is the support for an extensible type system (similar to object-

oriented databases). Different types of network packets are modeled as instances of abstract data 

types encapsulating particular network protocols (e.g. TCP, UDP, etc). Data type definitions can 
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use the inheritance to naturally model the layering of the packet headers typical for network data 

streams.  

Tribeca’s query language uses a stream-in stream-out paradigm and allows the composition of 

complex queries from a set of basic operators – selection, projection and restricted form of sliding 

windows aggregation and join. Two unique language constructs supported by the language are 

stream mux (multiplexing) and demux (demultiplexing). Stream demultiplexing effectively 

separates the grouping of the tuples from the computation of the aggregate values and allows 

different aggregates to be applied to each output of the demultiplex operator.  

SQuAl [2] language used by Aurora system developed at MIT/Brandeis/Brown, allows users to 

construct streaming queries by graphically connecting basic operators or boxes with directed 

arrows corresponding to data flows. The language views data stream as an append-only sequence 

of tuples with uniform schema. Aurora makes no assumption about the arrival ordering of the 

input tuples and allows windows to be defined using arbitrary stream attributes. SQuAl operators 

are divided into two major categories – order-agnostic and order-sensitive. Order-agnostic 

operators (Filter, Map, Union) do not require any assumption about the input stream to execute 

using bounded amount of memory. They are conceptually equivalent to standard selection, 

projection and union operations in other streaming languages. Order-sensitive operators (BSort, 

Aggregate, Join, Resample) on the other hand assume a bounded around of the disorder present in 

the input stream to execute with bounded amount of memory. The stream order specification 

includes both an ordering attribute and a slack parameter describing the maximum amount of 

disorder tolerated (maximum distance between the values of the ordering attribute). Aurora does 

not support automatic imputation of the slack parameters, so they need to be explicitly specified 

by the query writer. 
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2.2 Streaming Query Processing 

Processing unbounded data streams introduces a number of unique requirements on the design of 

streaming operators. Perhaps the most important requirement is the ability to execute streaming 

operators with a bounded amount of memory regardless of the size of the input. The evaluation 

algorithms used by the join operators also needs to be modified to be more suitable for real-time 

processing of multiple streams with different input rates. Finally, new approximation algorithms 

need to be developed to handle scenarios when exact query evaluation is not feasible. In this 

section we will review the recent work done in these areas of stream processing.  

2.2.1. Memory Requirements for Query Processing 

Processing a streaming query operator with a bounded amount of memory is the most 

fundamental challenge in stream processing. Tuple-based windows discussed in Section 1.1.1 do 

provide the guarantee that any streaming operator will only use a fixed amount of memory; 

however, the more widely used logical windows do not. Research efforts addressing this 

challenge fall into one of the two categories – characterizing the memory requirements of 

different streaming operators and designing mechanisms that help to reduce the operators’ state. 

Formal characterization of the memory requirements of continuous queries was given by Arasu et 

al. in [7]. The main contributions lie in the analysis framework for Select-Project-Join (SPJ) 

operators with both duplicate-preserving and duplicate-eliminating projection. The resulting 

bounded-memory conditions for SPJ operators require all attributes in the projection lists and 

equijoins to be bounded and the set of unbounded attributes participating in join inequality 

predicates to be empty (for simple SELECT queries) or to be at most size 1 (for SELECT 

DISTINCT queries). The analysis techniques were extended to cover aggregation queries with the 

bounding-memory conditions requiring that every grouping attribute needs to be bounded and 
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that no aggregated function executed on an unbounded attribute be holistic. In addition to 

characterizing the query memory requirements, the authors propose an algorithm that produces an 

execution strategy, which uses bounded size data synopses. 

Babu et al. [15] attack the problem of reducing memory requirement for streaming query 

execution by exploiting certain stream constraints. Four types of useful constraints are identified: 

many-one joins, ordering, clustering and referential integrity. In order to handle a data stream that 

can occasionally violate these constraints, the paper introduces the notion of k-constraints with 

adherence parameter k capturing the degree to which a data stream or joining pair of streams 

adheres to the strict interpretation of the constraint. The authors further describe the design of a 

low-overhead runtime monitoring system that can dynamically discover which constraints are 

holding on an input stream, and estimate their adherence parameters. The proposed query 

execution subsystem takes advantage of the adherence estimates provided by the monitoring 

system to do early eviction of tuples from their windows. 

The stream punctuation mechanism proposed by Tucker et al. [115] works by embedding special 

markers into the data stream indicating the end of certain subset of the data. Blocking streaming 

operators such as aggregations and joins can use the information encoded in punctuations to 

purge the memory state. Some examples of useful punctuations are ones specifying the ordering 

properties of the input streams, notifying that all tuples with a range of attribute values has been 

observed and notifying that all the tuples from a certain list have been seen. The mechanism is 

very generic and allows users to express arbitrary stream constraints, including the ones described 

in [15]. The punctuation mechanism has also been successfully applied to efficient evaluation of 

sliding window aggregate [83][84] and joins queries [44]. 
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2.2.2. Streaming Join Operators 

Traditional blocking join algorithms used by relational databases are poorly suited for data stream 

processing. The problem of designing a fully pipelined join operator attracted a lot of attention 

with a number of algorithms proposed in recent years. 

Kang et al. [74] investigate the performance of binary window join algorithms in the presence of 

input streams with asymmetric data rates. A window join operator must maintain a window’s 

worth of data for each of its input streams. A general procedure for processing a new tuple 

arriving from the first stream involves scanning the second stream’s window for matching tuples, 

inserting the tuple into first stream’ window, and invalidating all expired tuples. The data 

structure used to maintain a tuple window depends on the join algorithm used (e.g. hash-join will 

use a hash table, while nested-loop join will maintain a simple list). The paper proposes a cost 

model for operation (inserting, probing for matches and invalidation) as a function of the input 

stream rates and evaluates several existing join algorithms using this cost model. The important 

characteristic of the cost model is that divides the join cost into two independent terms, each 

corresponding to one of the two join directions. The main observation of this work is that mixing 

different join methods in one operator is preferable for data streams with asymmetric data rates. 

Viglas et al [119] investigate the problem of joining more than two streams and advocate using a 

single multi-way join operator (called MJoin) instead of the commonly-used chain of binary 

joins. Conceptually, the operator is a straightforward generalization of a symmetric binary hash 

join. Each arriving tuple is inserted intro corresponding stream’s hash-table and matched 

sequentially matched against tuples stored in other stream’s hash-tables. In order to reduce the 

total probing costs, the probing sequence is constructed in such a way that the most selective 

predicate is evaluated first. The main benefit of the MJoin operator is a better output rate as 

compared to binary join operators. The authors observe that the per-tuple processing cost of 



 

 

21

single MJoin operator increases with the number of streams and suggest breaking it into a bushy 

tree of smaller MJoin operators. Choosing an optimal tree of smaller MJoins remains an open 

optimization problem. 

The sliding window multi-join operator [53] proposed by Golab and Özsu executes multiple joins 

as a sequence of the nested for-loops. Two join evaluation strategies are suggested and evaluated 

by the authors. The eager strategy involves reiterating through outer for-loop each time a new 

tuple arrives in any of the input streams. On the other hand, the lazy strategy processes the 

outermost for-loop only for tuples which have arrived since the last operator re-execution. If the 

lazy evaluation strategy is employed, tuples maintained in the sliding windows need to be expired 

at most as frequently as the query re-evaluation frequency. Authors also suggest ordering the 

joins in descending order of binary join selectivities to minimize the execution costs per unit of 

time. The proposed strategies have also been extended to work with hash-based join evaluation. 

2.2.3. Approximate Stream Processing 

As discussed previously, the exact computation of many types of streaming queries such as 

holistic aggregates and joins can potentially require an unbounded amount of memory. A variety 

of approximate algorithms have been developed in the recent years for evaluating such queries 

with limited amount of storage while providing accuracy guarantees. The majority of 

approximation algorithms fall into one of the two main categories: sampling-based and sketch-

based.  

Sampling-based algorithms work by selecting a small subset of the elements of the stream and 

maintaining appropriate statistics about those elements sufficient to produce answers with the 

desired accuracy. Example stream sampling algorithms include fixed-size reservoir sampling 

[120], concise sampling [59], geometric sampling [16][65], importance-based sampling [45], and 
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many others. A sampling-based approach was successfully applied to approximate computation 

of quantiles [56], heavy hitters [89], distinct counts [58], subset sums [45], set resemblance and 

rarity [41] and geometric problems [16]. However, for many problems sampling primitives are 

not powerful enough and require large number of samples for complex aggregate functions 

[27][92].  

Sketch-based algorithms work by maintaining sketches of source data with a vector of pseudo-

random values chosen from an appropriate distribution. A large number of different sketches have 

been proposed in the literature for solving specific approximation problems including: 

• Flajolet-Martin sketch [47] for counting number of distinct elements 

• Count-Min sketch [35] for point estimation, range sums, inner products and heavy hitters  

• Variants of L2 sketches [36] for tracking stream histograms  

• Group-Count Sketch (GCS) [32] for tracking wavelet representation of data streams 

More detailed description of many sampling- sketch-based approximation techniques is given in 

the following surveys [48][92]. 

2.3 Streaming Query Optimization 

Optimizing the execution of the streaming queries poses large number of unique challenges not 

arising in traditional relational query optimization. In this section, we will describe research 

efforts addressing several such challenges: defining new cost models and optimization objectives, 

adaptive query execution, exploiting commonalities between streaming queries, and techniques 

for shedding the system load. 



 

 

23

2.3.1. Optimization Objectives for Stream Processing 

The job of the query optimizer for relational databases involves enumerating a number of 

alternative query execution plans and choosing the one that maximizes certain optimization 

objective functions (e.g. minimizing the amount of disk I/O). Data stream processing creates a 

need for new optimization objectives relevant for the needs of the streaming applications. Several 

optimization algorithms have been suggested in the literature differing by their objectives and 

algorithm for finding optimal execution strategies. 

The rate-based query optimization suggested Viglas and Naughton in [118] maximizes output rate 

of a query execution plan. New time-dependent cost models are proposed for selection, 

projection, nested-loop and symmetric hash-join operators replace traditionally used relation 

cardinalities with stream rates. Streaming operator output rates are computed using selectivity 

estimates combined with estimated computational and communication costs associated with 

individual operators. This work does not consider the effects of the operator scheduling on the 

output rates. Two different optimization objective functions are considered by this work: 

choosing a plan that will produce the most results by certain time, and choosing a plan that will 

reach the target number of output tuples the soonest. Since choosing an optimal plan is NP-hard, 

the paper proposes two heuristics that rely on local optimization to reach globally optimal plan.  

The chain scheduling algorithm [11] used in the STREAM DSMS is aimed at optimizing the 

runtime memory usage of the streaming operators. The algorithm treats a tuple’s processing path 

as a chain of filtering operators with known selectivities and tuple processing costs. The order in 

which the operators belonging to a chain are scheduled has a significant impact on tuple backlog 

between the operators, particularly when the stream is bursty. The algorithm works by graphically 

representing an operator chain as a progress chart encoding both operator processing cost (an x 

axis) and selectivity (y axis). The problem of finding an operator that maximizes the reduction in 
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queue sizes per unit of time is equivalent to the problem of finding a highest slope of the lower 

envelope segment in a progress chart. The algorithm was shown to produce near-optimal memory 

usage for single query scenarios, however a  negative effect on the query response time was also 

observed. 

The scheduling-based query optimization algorithm in Aurora/Borealis [22] is driven by Quality 

of Service (QoS) specifications provided by the applications. The scheduling is done using a two-

level approach – first the decision is made about which continuous query to process, followed by 

the decision about which order to process the operators within a query. In order to reduce 

overhead, Aurora groups the streaming operators (boxes) in atomically scheduled and executed 

superboxes. Superboxes can be selected either statically (covering the entire application) or 

dynamically (covering only operators with highest priority). The order of execution of operators 

within a superbox is selected according to one of three performance metrics – minimizing per-

tuple processing cost, minimizing output latency or maximizing data consumption per unit of 

time. Additionally, the scheduler makes a decision how many tuples need to be processed as a 

single batch to increase the overall memory utilization. 

2.3.2. Adaptive Query Processing 

The optimize-first, execute-next approach typical for most streaming query optimizers critically 

depends on the accuracy of assumptions made during optimization phase. For example, the 

optimizer needs to estimate the stream data rates, selectivity of the different predicates, and 

processing costs and memory requirements for individual streaming operators. The inherent 

unpredictability of data streams and the long running nature of stream queries increase the 

likelihood that these estimates will grow increasingly inaccurate during the lifetime of a query. 

Research in adaptive stream processing address this problem by dynamically reoptimizing the 

query execution plans as the system conditions change. 
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The Eddy operator [10], first introduced as a part Telegraph project. implements query adaptivity 

by dynamically routing the tuples between different query operators. For each tuple arriving into 

the system, Eddie selects which operator needs to be invoked next based on observed runtime 

statistics. After the operator finishes its processing, the tuple is returned back to Eddies which 

makes the next routing decision. In order to keep track of which operations have already been 

performed on particular tuple, each tuples must maintain a tuple lineage encoding the processing 

history.  

Continuously Adaptive Continuous Query (CACQ) [25][88] architecture further extends the 

Eddies to handle continuous queries. The main idea behind the architecture is to refine the 

granularity of streaming join operators by breaking them into separate State Modules (SteMs). 

Conceptually, the SteM is one half of the traditional join operator. It stores tuples in a dictionary 

data structure and supports insert (build), search (probe) and optionally delete (eviction) 

operations. All joins operating on the same base stream can reuse the same SteM for builds and 

probes involving that stream. Eddies in CACQ system actively monitor the state of the all input 

streams and query operators and dynamically change the order of builds and probes for efficient 

join processing. An additional challenge that needs to be addressed stems from the fact that not 

all routing policies correspond to valid execution plans. A set of routing constraints were 

developed to guarantee that queries do not produce duplicate or missing query results.  

An alternative adaptative approach employed by the CAPE system [127] uses a dynamic plan 

migration to switch the execution from suboptimal query plans to a better plans based on runtime 

statistics. Two alternative migration strategies are suggested: moving state strategy and parallel 

track strategy. The moving state strategy involves pausing of plan execution to drain all the tuple 

queues, followed by the migration of the relevant state to a new execution plan. A similar 

approach is also employed by the Aurora stream manager [2]. The parallel track strategy is 
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unique to CAPE system; it uses a more gradual migration by executing both query plans in 

parallel while slowly migrating the state from one plan to another. 

2.3.3. Multi-Query Optimization 

Work in traditional multi-query optimization for relational databases focuses on exploiting the 

commonalities between several queries to improve the overall performance. The likelihood of 

such commonalities is greatly increased in stream processing systems that are expected to run a 

number of concurrent queries on the same data stream. The main areas of research interest are 

sharing filters in selection/projection queries, state sharing for similar aggregation, and join 

queries working on the same window over the data stream. 

The grouped filter [88] technique introduced as a part of the CACQ architecture for adaptive 

stream processing combines all selection predicates over the same stream attribute into one 

common operator. The system creates a predicate index that allows the grouped filter to apply 

many range predicates over an ordered domain to a single tuple more efficiently than applying 

each predicate independently. An index consists of four different data structures: two balanced 

binary trees for answering “less-then” and “greater-than” predicates respectively, and two hash 

tables for answering “equal” and “non-equal” predicates. Additionally the system maintains the 

bit-masks indicating which predicates are covered by which queries and uses them to decide 

whether to pass tuple for further processing to respective queries. 

Arasu and Widom [9] address the problem of shared execution of sliding and partitioned window 

aggregation queries that use the same aggregation function but differ in windows sizes. The 

proposed approach specifically targets queries that do not actively stream their answers, but 

instead produce answers only when explicitly polled. Two algorithms (B-INT and L-INT) are 

suggested for sharing sliding window aggregates. B-INT (standing for Base-Intervals) maintains a 
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data structure storing subaggregates for set of base intervals. The base intervals are computed in 

such a way that any interval can be expressed as a disjoint union of a small number of base-

intervals. L-INT (standing for Landmark-Intervals) on other hand maintains the subaggregates for 

landmark windows. Multiple queries can share the data structure maintained by B-INT and L-INT 

to reduce query computation costs. 

Zhang at all [124] consider a problem of optimal execution of multiple aggregation queries that 

feature overlapping but not identical grouping attributes. The proposed solution uses phantoms, 

special aggregation queries that use a combination of the grouping attributes referenced in 

submitted queries. Aggregated values maintained by the phantom can then be used to 

inexpensively compute the results for the queries whose set of grouping attributes are covered by 

the phantom. The paper evaluates several greedy heuristics for choosing the set of phantoms and 

for allocation of the space required by hash-tables maintained by both phantoms and individual 

aggregation queries. 

Hammad et al [64] considers a problem of shared execution of multiple join queries operating on 

the same stream but different in the sizes of their respective sliding windows. Three scheduling 

algorithms are proposed for shared execution of window joins: Largest Window Only (LWO), 

Shortest Window First (SWF) and Maximum Query Throughput (MQT). The LWO algorithm 

works by evaluating all the joins at once using one large window containing all the windows 

referenced by individual joins.  The SWF algorithm optimizes the response time of the joins that 

use smaller windows by scheduling them first. Finally, the MQT algorithm schedules the 

processing by first choosing tuples that serve the maximum number of the queries per unit of time 

(to maximize query throughput). 
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2.3.4. Load-shedding 

Load shedding is an important query optimization technique designed to guarantee the stability of 

the stream processing system under overload conditions. The load is reduced by intelligent 

discarding of a fraction of the unprocessed tuples. The main research challenges lie in trading the 

potential load reduction against the decreased accuracy of the query answers.  

The load shedding mechanism used in STREAM data manager [14] places random sampling 

operators at various points in the query execution plans to reduce the overall system load. Only 

simple aggregation queries are considered for which relative query errors can be estimated using 

Hoeffding bounds. In order to compensate for the effects of random sampling, aggregate results 

are appropriately scaled. Load shedding is formally defined as an optimization problem whose 

objective function is minimizing inaccuracy in query answers, subject to the constraint that 

system throughput must match or exceed the data arrival rate. This work proposes an algorithm 

for finding the optimal placement of sampling operators in a query execution plan. It also 

suggests how runtime stream window statistics can be maintained by aggregation operators to 

dynamically recalculate relative errors and adjust the placement of sampling operators. 

The load shedder proposed as a part of Aurora/Borealis project [113] introduces the idea of 

dropping tuples based on their utility. A tuple’s utility is computed based on Quality-of-Service 

(QoS) graphs that need to be specified for every application. Three types of QoS graphs can be 

used by the system: a latency graph specifies the utility of the tuple as a function of time to 

propagate through query plan, a loss-tolerance graph captures the sensitivity of the application to 

tuple loss, and a value-graph shows which attribute values are more important than others. In this 

system the load shedding becomes an optimization problem where the objective function is 

minimizing loss of utility resulting from the tuple loss. This work proposes a number of heuristics 

for reducing a search space of possible placement of load shedding operators. An interesting 
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property of the system is use of a precomputed Load Shedding Road Map (LSRM) structure, 

encoding the expected load reductions of different query plans to reduce the cost of finding an 

optimal placement of load shedders to a simple table lookup. 

The Data Triage [100] architecture for load shedding developed in the context of the 

TelegraphCQ project attempts to combine the benefits of approximate query processing and 

sampling-based load shedding. The main idea is to store the tuple being dropped in a compressed 

synopsis data structure instead of just silently dropping them. The operators in the query tree need 

to be modified to use the synopsis of the dropped tuples in addition to sampled input stream and 

thereby increase the accuracy of the results. Since the synopsis data structure are fairly 

specialized to the  particular join or aggregate being computed, it is not feasible to construct the 

synopsis that would suit all operators in the query plan. The system includes a Triage Scheduler 

component that dynamically decides when to route excess tuples for synopsis computation and 

when to send summarized data to the query nodes responsible for final processing. 

2.4 Distributed Stream Processing Systems 

The massive rates and natural distribution of many real-world data streams have generated a lot 

of interest in distributed query processing. A number of research projects have been initiated to 

explore the architectural issues facing the design of distributed stream processing engines. In this 

section we describe the main published contributions in distributed DSMS. 

The Medusa system built at MIT [30][91] is a distributed DSMS building using Aurora [2] as a 

single-node stream processing engine. The system can function both as a tightly-coupled 

collection of nodes under the same administrative domain or as a federation of the autonomous 

participants. Individual participants use an overlay network layered on top of the Internet for 

inter-node commutation. A set of communication primitives used by the system includes scalable 
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message passing and routing interface for interface and global directory for all nodes and queries 

in the system.  

The main mechanism employed by Medusa for distributed query processing is the partitioning of 

Aurora query networks across the participating nodes. Two techniques employed for network 

partitioning are box sliding and box splitting. Box sliding involves moving the streaming 

operators (boxes) from the edge of the node’s query network to the network on the neighbour 

node. Box splitting involves creating a copy of the box on the neighbour node and partitioning the 

input stream to go to both boxes. In order to preserve the correctness of the results, the partial 

results produced by partitioned boxes need to be combined before being sent for further 

processing. Medusa uses economic principles to govern the load migration for participating 

processing nodes. Nodes use a market mechanism with an underlying currency to negotiate the 

load migration contracts. 

The Borealis project jointly developed at MIT/Brandeis/Brown [18] further extends Aurora and 

Medusa adding support for dynamic revision of the query results and dynamic query 

modification. The system drops the fundamental assumption that a data stream is an append-only 

sequence of tuples and introduces a support for post-factum modifications of the previously 

processed stream elements. Borealis accomplishes it by using special revision messages and a 

history replay mechanism to update the query results based on these messages. Dynamic query 

adaptation is accomplished by changing various properties of the processing boxes in a query 

network (e.g. selection predicates, grouping attributes etc). 

The distributed version of TelegraphCQ DSMS [105][106] introduces a new flux mechanism to 

enable parallel stream processing on a shared-nothing cluster of machines. Flux partitions 

streaming query operators across multiple machines in the cluster and coordinates multiple 

replicas of individual operator partitions within a larger parallel dataflow. The mechanism 
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supports automatic on-the-fly recovery for dealing with node failures using live replicas of failed 

operators. An interesting feature of the Flux is automatic load balancing mechanism that adjusts 

stream partitioning at runtime depending on observed data skew. 

2.5 Summary 

In this chapter, we present the relevant work in data stream management with the emphasis 

placed on query processing and streaming query optimizations. We survey the structured and 

procedural query languages for stream processing, comparing their expressive power and 

differentiating features. We also give an overview of related research addressing implementation 

aspects of streaming query operators. Finally we survey the related work in streaming query 

optimization and distributed stream processing. 
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Chapter 3 

3. Architecture of High-Performance Data 

Stream Management System 

Designing a high-performance Data Stream Management System (DSMS) requires solving a 

large number of unique technical challenges stemming from extreme data rates and real-time 

processing requirements. In this chapter, we present the architecture of the Gigascope stream 

database specifically designed to address these challenges. Gigascope was developed at AT&T 

Labs-Research for monitoring high-rate network data streams and is currently widely used as a 

vehicle for networking and streaming research by both AT&T and collaborating universities 

[19][20][34][61][62][90][99][102][103][117]. The author of this dissertation is one of the 

principal members of Gigascope development team, along with Charles Cranor, Theodore 

Johnson and Oliver Spatscheck. 

All the contributions of this dissertation were implemented and evaluated in the context of 

Gigascope system. Even though the system is specialized for network monitoring applications, 

most of the Gigascope design principles apply to any streaming application required to process 

high-rate data streams in real-time. This chapter focuses on these more general aspects of the 

system and sets the content for the rest of the contribution of the dissertations. For the discussion 

of issues specific to network monitoring see [38][39][40]. 
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The rest of the chapter is organized follows. In Section 3.1 we provide an overview the stream 

query language used by Gigascope and describe the main types of streaming queries. In Section 

3.2, we provide an overview of the two-level (low- and high-) architecture that Gigascope uses 

for early data reduction. Section 3.3 describes the main software components of the system. 

.Section 3.4 discusses a number of query optimizations performed by Gigascope to handle the 

demands of real-time stream processing. We summarize the chapter in Section 3.5. 

3.1 Stream Query Language 

The Gigascope query language, GSQL, is a pure stream query language with SQL-like syntax 

(being mostly a restriction of SQL). That is, all inputs to a GSQL are streams, and the output is a 

data stream. This restriction enables easy query composition and greatly simplifies and 

streamlines the implementation of efficient streaming operators. The query model used by most 

of the recently proposed stream database systems is that of a continuous query over a sliding 

window of the data stream [8]. While this model has some advantages (e.g., presentation of 

results to the end user) and some areas of best application (e.g. sensor networks), it is poorly 

suited for processing high-rate feeds such as network data streams, as it suffers from poor 

performance and is cumbersome for expressing typical network analysis queries [77][97][100]. 

One of the main problems is the complexity of continuous query model, makes it very difficult to 

implement efficient streaming operators capable of processing the data at line speeds. Query 

composition is also complicated by complex stream-to-relation and relation-to-stream 

transformations happening behind the scene. The input to a query is one or more data streams, but 

the output is a (continuously changing) relation. Queries can still be composed (i.e., can use the 

output of as its input), but the differences in the output of must often be reverse interpreted as a 

data stream. 
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A second problem is the difficulty of precisely expressing a query - or conversely, understanding 

what a query means. Let us consider example query from [13] that uses CQL (continuous query 

language) syntax: 

(Select Count(*) From C, B 

Where C.src=B.src and C.dest=B.dest and C.id=B.id) 

/ (Select Count(*) from B) 

This query is intended to identify fraction of traffic in the backbone B which can be attributed to a 

customer network C. However the semantics of the result are not clear. Since the output is used 

for monitoring, the intended result is not likely to be the evaluation of the query over the entire 

stream, rather over some recent window. However, the window is not specified, and there are in 

fact three windows to specify (two in the first subquery, one in the second). The snapshots taken 

by these three subqueries must be precisely synchronized (but on what is not specified), else the 

result is erratic and meaningless. If the respective windows are defined by a number of tuples 

rather than by time, the three windows will certainly be unsynchronized. Although example query 

appears to be simple, an examination of the evaluation details shows that the semantics are 

complex.  

A primary requirement of a DSMS is to provide a way to unblock otherwise blocking operators 

such as aggregation and join. As we discussed in Section 2.1 unblocking is generally 

accomplished by defining a window on the data stream on which the query evaluation will occur 

at any moment in time. Gigascope uses tumbling windows, which are more suitable for network 

analysis applications [97]. Unblocking is accomplished by limiting the scope of output tuples that 

an input tuple can affect using a timestamp mechanism. To implement this mechanism, 

Gigascope requires that some fields of the input data streams be identified as behaving like 

timestamps.  The locality of input tuples is determined by analyzing how the query references the 



 

 

35

timestamp fields. In the following sections we will describe all the basic types of streaming 

queries in GSQL, paying particular attention to how the timestamp analysis is used to unblock 

normally blocking queries. All the example queries examples assume the following schema. 

PKT(time increasing, srcIP, destIP, len) 

The time attribute is marked as being ordered, specifically increasing. 

3.1.1. Aggregation Queries 

In an aggregation query, at least one of the group-by attributes must have a timestampness, say 

monotone increasing. When this attribute changes in value, all existing groups and their 

aggregates are flushed to the operator’s output (similar to the tumble operator [21]). The values of 

the group-by attributes with timestampness thus define epochs in which aggregation occurs, with 

a flush at the end of each epoch. Consider the following GSQL query: 

SELECT tb, srcIP, destIP, count(*) 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP 

Since time is monotone increasing, the tb group-by variable is inferred to be monotone increasing 

also. This query counts the packets between each source and destination IP address during 60 

second epochs.  

In addition to supporting all standard SQL aggregate functions such as SUM, COUNT, MIN, etc, 

Gigascope supports User Defined Aggregate Functions (UDAFs) [33] . In order to incorporate a 

new UDAF into Gigascope, the user needs to provide the following four functions:  an 

INITIALIZE function, which initializes the state of a scratchpad space, an ITERATE function, 

which adds a value to the state of the UDAF, and a OUTPUT function, which returns the value of 
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the aggregate, and DESTROY function, which releases UDAF resources. Gigascope handles all 

the details of managing the scratchpad space for maintaining the state of aggregates and 

automatically inserts the calls to corresponding functions. 

3.1.2. Running Aggregates 

Standard aggregate queries described in the previous section suffer from one drawback – the state 

of the aggregates lives only for one epoch. This restriction makes it difficult to compute the 

aggregates that require variable size windows such as moving averages. Consider for example a 

streaming query that for every minute and every TCP connection reports the number of duplicate 

sequence numbers. A GSQL statement for the query is shown below: 

SELECT tb, srcIP, dstIP, sum_of_dups(seq) 

FROM TCP 

GROUP BY time/60 as tb, srcIP, dstIP 

Since some of the TCP connection spans multiple one minute epochs, the query undercounts all 

such connections. Gigascope solves this problem by introducing special type of aggregation 

query, running aggregation, which allows a running aggregate to retain its state between the 

epochs. This is accomplished by introducing a new GSQL keyword – Closing_When. Whenever 

a predicate given in Closing_When clause evaluates to TRUE, the state of the aggregate is 

discarded from the query’s memory. In the example above, the proper condition for closing the 

aggregate is whenever the termination of the TCP connection is detected (e.g. a FYN packet 

received). A fixed GSQL statement that properly counts the number of duplicate sequence 

numbers, using the running aggregate sum_of_dups, is shown below: 

SELECT tb, srcIP, dstIP, sum_of_dups(seq) 

FROM TCP 
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GROUP BY time/60 as tb, srcIP, dstIP 

CLOSING_WHEN Or_aggr(FYN) = TRUE or count(*) = 0 

Using running aggregate functionality, it becomes possible to express sliding windows queries 

such as moving averages in GSQL. Similar approach of expressing sliding windows queries using 

more efficient tumbling windows is also used by Li et al. [84] in their work on pane-based 

aggregate evaluation. 

3.1.3. Stream Merge and Join Queries 

The merge operator allows us to combine streams from multiple sources into a single stream. The 

operator is particularly important for applications that need to monitor a number of streams that 

share the same schema. For example, network monitoring applications frequently need to monitor 

a number of network links as one logical link.  

A merge operator performs a union of two streams R and S in a way that preserves timestamps. R 

and S must have the same schema, and both must have a timestamp field, say t, on which to 

merge. If tuples on one stream, say R, have a larger value of t than those in S, then the tuples 

from R are buffered until the S tuples catch up. For example, the query below merges two TCP 

streams coming from two separate network interfaces into one logical stream: 

MERGE R.timestamp : S.timestamp 

FROM interface1.TCP R, interface2.TCP S 

Similarly a join query on streams R and S must contain a join predicate such as R.tr=S.ts or 

R.tr/2=S.ts+1: that is, one that relates a timestamp field from R to one in S. The input streams are 

buffered (in a manner similar to that done for merge) to ensure that the streams match up on the 
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timestamp predicate. An example of join query that combines the length of packets with matching 

IP addresses is shown below: 

SELECT time, PKT1.srcIP, PKT1.destIP,PKT1.len + PKT2.len 

FROM PKT1 JOIN PKT2 

WHERE PKT1.time = PKT2.time and PKT1.srcIP = PKT2.srcIP  

 and PKT1.destIP = PKT2.destIP 

Even though Gigascope currently does not support sliding windows joins, it is fairly 

straigtforward to extend GSQL and query translator to support this type of streaming queries. 

3.2 Two-Level Query Architecture 

Gigascope has a two-level query architecture, where the low level is used for data reduction and 

the high level performs more complex processing [38][39][40]. This approach is employed for 

keeping up with high streaming rates in a controlled way.  High speed data streams from, e.g. a 

Network Interface Card (NIC), are placed in a large ring buffer. These streams are called source 

streams to distinguish them from data streams created by queries. The data volumes of these 

source streams are far too large to provide a copy to each query on the stream. Instead, the queries 

are shipped to the streams. If a query Q is to be executed over source stream S, then Gigascope 

creates a subquery q which directly accesses S, and transforms Q into Q0 which is executed over 

the output from q. In general, one subquery is created for every table variable which aliases a 

source stream, for every query in the current query set. The subqueries read directly from the ring 

buffer. Since their output streams are much smaller than the source stream, the two-level 

architecture greatly reduces the amount of copying (simple queries can be evaluated directly on a 

source stream). 
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The subqueries (which are called LFTAs, or low-level queries, in Gigascope) are intended to be 

fast, lightweight data reduction queries. By deferring expensive processing (expensive functions 

and predicates, joins, large scale aggregation), the high volume source stream is quickly 

processed, minimizing buffer requirements. The expensive processing is performed on the output 

of the low level queries, but this data volume is smaller and easily buffered. Depending on the 

capabilities of the network interface card (NIC), we can push some or all of the subquery 

processing into the NIC itself. In general, the most appropriate strategy depends on the streaming 

rate as well as the available processing resources. Choosing the best strategy is a complex query 

optimization problem that attempts to maximize the amount of data reduction without 

overburdening the low level processor and thus causing packet drops. We will give more detailed 

description of the query splitting optimizations in Section 3.4.1. 

The Gigascope DSMS has many aspects of a real-time system: for example, if the system cannot 

keep up with the offered load, it will drop tuples. To spread out the processing load over time and 

thus improve schedulability, Gigascope implements traffic shaping policies in some of its 

operators. In particular, the aggregation operator uses a slow flush to emit tuples when the 

aggregation epoch changes. One output tuple is emitted for every input tuple which arrives, until 

all finished groups have been output (or the epoch changes again, in which case all old groups are 

flushed immediately). 

3.3 System Architecture 

The Gigascope database system consists of a four main software components: query translator, 

runtime system, cluster manager, and applications: 

• Query translator translates GSQL queries submitted to the system into multiple executable 

query modules called FTAs (stands for Filtering, Transformation, and Aggregation). First all 
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submitted queries are automatically split into lightweight low-level queries performing 

simple selection and aggregations (LFTAs) and complex high-level queries performing more 

complex aggregations, merges and joins (HFTAs). After performing the split, the queries are 

translated into C/C++ code which is then translated into native machine code All the HFTAs 

run as separate processes using a standard stream library to communicate with other FTAs 

and applications. All the LFTA modules are linked directly into the runtime system for 

efficient access to the source streams. A query translator is capable of generating both 

centralized and distributed query plans depending on particular Gigascope configuration. If a 

streaming query spans multiple network interfaces or several distributed data streams, the 

generated code is automatically parallelized to use the available resources.  

• Runtime system provides the entire infrastructure necessary for running the FTA on the 

network streams coming from one of the managed interfaces. It provides such services as 

management and tracking of the data sources (network interface cards, remote source, and 

file sources), maintaining the registry of all active FTAs, and handling Inter-Process 

Communications (IPC). Additionally, the runtime system is responsible for the scheduling 

and execution of all the low-level queries linked directly into it. Each Gigascope node in 

distributed configurations runs its own runtime system responsible for the local FTAs.  

• Cluster manager component is responsible for managing a network of cooperating Gigascope 

nodes. This component is responsible for all aspects of distributed stream processing: 

placement of the FTAs on participating hosts, failure detection for applications and streaming 

queries, restart-based recovery, load shedding during overload conditions, and performance 

monitoring. In additions a cluster manager is responsible for providing a distributed FTA 

registry service for remote nodes.  
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• Applications are the main consumers of the output produced by the streaming queries. From 

the system’s perspective there is a little difference between the applications and HFTA 

modules. Both run as separate processes and can subscribe to and consume the output streams 

produced by other FTAs using standard stream library. The only difference lies in the fact 

that application does not produce the output stream of its own and essentially acts as a data 

sink. Many Gigascope applications dump the processed streaming data into data warehouse 

for further offline analysis.      

A simplified architecture of a single-node Gigascope system is shown in Figure 3-1. 

Network Interface
Card

Kernel drivers

Circular
Buffer

LFTA1 LFTA2 LFTA3 RTS

Registry
HFTA1 HFTA2 HFTA3

HFTA4

Application 1 Application 2

Query 1
Query 2
Query 3
Query 4

Query translator

 

Figure 3-1: Gigascope architecture. 
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3.4 Query Optimization 

Effective query optimization mechanism is critical for a Data Stream Management System that 

needs to perform sophisticated query processing at line speeds. Gigascope uses a large number of 

optimizations to lower the processing cost for both HFTA and LFTA queries. The range of 

techniques employed includes conventional optimizations based on relational algebra (pushing 

selection and projection as low as possible, join reordering) and a number of unique streaming 

query optimizations. In the following subsections we give an overview of streaming-specific 

Gigascope. 

3.4.1. Splitting Selection and Aggregation Queries 

In section 3.2, we discussed that optimally splitting streaming queries is a complex optimization 

problem. Intuitively we would like to maximize the amount of data reduction performed by low-

level queries (by pushing more processing to LFTAs), while keeping per-tuple processing costs 

very low to avoid overburdening the runtime systems and causing an uncontrollable packet drop. 

The solution used in Gigascope relies on a simple cost model to compare the respective costs of 

different selection predicates and scalar expressions involving the attributes of the data stream. 

Only the predicates and functions deemed inexpensive enough to run on low-level (called LFTA-

safe predicates and functions) are pushed down for execution in an LFTA.  

LFTA-safeness largely depends on the restrictions or additional capabilities of the runtime system 

used in particular Gigascope configuration. For example, if the runtime system is running on a 

network interface card, complex operations such as regular expression matching will be 

considered too expensive to be pushed to the LFTA level. However, on specialized hardware 

using FPGAs to perform fast regular expression matching [104], this operation is natively 

supported and will therefore be pushed down by the query translator. 
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We will illustrate how query splitting works using a network monitoring query that extracts the 

names of the hosts from HTTP requests. The GSQL statement for this selection query is given 

below: 

SELECT tb*60, destIP, dest_port,  

 str_extract_regex(TCP_data, ‘[Hh][Oo][Ss][Tt]:[0-9A-Z\\.: ]*’)   

 as hostheader 

FROM TCP 

WHERE ipversion=4 and offset=0 and protocol=6 and  

  str_match_start[TCP_data, ‘GET’] 

The query selects only TCP packets that starts with “GET” (using str_match_start() function) and 

extracts the name of HTTP hostnames using str_extract_regex(). For the runtime system running 

on a NIC,  str_extract_regex() is prohibitively expensive and thus it is move into a high-level 

subquery. The results of automatic query decomposition for the query are shown below: 

Query hostnames_low: 

SELECT tb*60 as t, destIP, dest_port, TCP_data 

FROM TCP 

WHERE ipversion=4 and offset=0 and protocol=6 

str_match_start[TCP_data, ‘GET’] 

Query hostnames_high: 

SELECT t, destIP, dest_port,  

 str_extract_regex(TCP_data, ‘[Hh][Oo][Ss][Tt]:[0-9A-Z\\.: ]*’)   

 as hostheader 

FROM hostnames_low 

WHERE  
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Splitting aggregation queries is done similarly; however there are additional considerations 

related to the way that aggregation is implemented at LFTA level. To ensure that aggregation is 

fast, the low-level aggregation operator uses a fixed-size hash table for maintaining the different 

groups of a GROUP BY. If a hash table collision occurs, the existing group and its aggregate are 

ejected (as a tuple), and the new group uses the old group's slot. That is, Gigascope computes a 

partial aggregate at the low level which is completed at a higher level. The query decomposition 

of an aggregate query Q is similar to that of subaggregates and superaggregates in data cube 

computations [55]. If the definition of one or more grouping variables uses LFTA-unsafe 

function, it is not possible to decompose the aggregation query into sub- and superaggregates. 

Instead the low-level query will be restricted to performing selection using LFTA-safe predicates 

from the original query. 

We demonstrate the aggregate query decomposition on a networking query that tracks how many 

requests people send to different HTTP hosts. The query is similar to previously shown selection 

query, except now the data is aggregated using extracted hostname as a key. Since the 

aggregation key (hostname) is computed using an LFTA-unsafe function, the query will be split 

into a low-level selection and a high-level aggregation query. The final query decomposition is 

shown in Figure 3-2. 
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LFTA query: HFTA query:

select tb*60, MIN(timestamp), MAX(timestamp),
destIP, dest_port, hostheader, count(*)

from TCP

where ipversion=4 and offset=0 and 
str_match_start[TCP_data, ‘GET’]

group by time/60 as tb, str_extract_regex(TCP_data,
‘[Hh][Oo][Ss][Tt]: [0-9A-Z\\.:]*’) as 

hostheader, destIP, dest_port

DEFINE {
query-name ‘_hostmap’;

}

select time, timestamp, destIP,
dest_port, TCP_data

from TCP

where ipversion=4 and offset=0 
and 
str_match_start[TCP_DATA, ‘GET’]

select tb*60, MIN(timestamp), 
MAX(timestamp), destIP, dest_port, 
hostheader, count(*)

from _hostmap

group by time/60 as tb, 
str_extract_regex(TCP_data, 
‘[Hh][Oo][Ss][Tt]:[0-9A-Za-z\\.: ]*’)
as hostheader, destIP, dest_port

 

Figure 3-2: Aggregate Query Decomposition 

3.4.2 Prefilters 

A Data Stream Management System is expected to handle a very large number of queries running 

on the same sets of input streams, which greatly increases the likelihood of significant overlap 

between the computations performed by different queries. In order to avoid performing redundant 

computations Gigascope utilizes a prefilter mechanism which extracts the shared predicates out 

of streaming queries and executes them only once per input tuple. In order to keep the prefilter 

very lightweight and to avoid pushing expensive predicates that may not be invoked by LFTAs, 

only cheap predicates are selected for the inclusion in the prefilter. Non-shared predicates are also 

considered since pushing them into prefilter allows the Gigascope to avoid relatively expensive 

LFTA invocations. 
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The query translator selects the candidate predicates based on the query analysis and generates a 

special prefilter bit-vector with one bit assigned to each selected predicate. All the predicates 

selected for inclusion in the prefilter are removed from their corresponding queries. Additionally 

for every LFTA query, a signature bit-vector is computed denoting which of the prefilter 

predicates it contains. Whenever an input tuples enters the system, it is passed to the prefilter, 

which evaluates the selected predicates and sets the corresponding bits of the prefilter bit-vector. 

The resulting bit-vector is then compared with the signature of each LFTA to figure out whether 

the tuples should be passed for further processing by that LFTA. 

3.4.3 Machine Code Generation 

Interpreting a streaming query at runtime incurs a significant CPU overhead that should be 

avoided if real-time tuples processing is required.  To avoid this overhead, Gigascope instead uses 

a generated code system. All the input queries are translated into C (for LFTAs) and C++ (for 

HFTAs) code which is then translated into native machine code. The object modules 

corresponding to the low-level queries are linked directly into runtime system. Having multiple 

LFTA in the same address space removes a lot of synchronization overhead of accessing the ring 

buffer and leads to good cache locality critical for low-level queries. The obvious drawback of 

this implementation is the loss of flexibility – it is not possible to add new LFTAs on a fly. 

However, the performance benefits combined with ability to adapt existing LFTAa using a 

parameter mechanism make it good choice for real-time stream processing.  

An interesting aspect of the query translator is template-based generation of HFTA code. All the 

high-level streaming operators are implemented as general C++ template classes encapsulating 

the general functionality of an operator. The query translator specializes the templates by 

generating a special functor class specific to particular query. For example, the template for an 

aggregation operator implements all the generic functionality required by this type of query: 
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maintaining a group table, updating the values of the aggregates, flushing the aggregate values of 

the epoch change, etc. The generated aggregate functor only needs to implement query-specific 

functionality such as extracting all referenced tuple attributes and generating output tuples based 

on grouping variables and computed aggregates. The Gigascope approach to template-based code 

generation combines the performance of generated query system with the ease of extensibility 

and modification to existing operators. 

3.5 Summary 

In this chapter, we presented the design of Gigascope – a high-performance database for network 

applications used throughout the dissertation as a vehicle for implementation and evaluation for 

all proposed techniques. We presented an overview the stream query language used by Gigascope 

and described the semantics of the basic types of streaming queries. We also surveyed the two-

level architecture for early data reduction and describe several of the streaming query 

optimizations that Gigascope uses for efficient processing of high-rate streams. 
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Chapter 4 

4. Unblocking Unpredictable Streams 

A Data Stream Management System should be able to simultaneously monitor and correlate large 

numbers of diverse data streams. Many real-world data streams are inherently bursty and 

unpredictable, in particular IP traffic streams processed by network monitoring applications. Even 

small scale centralized stream processors correlating a small number of streams can easily block 

on bursty or stalled input and exceed the available memory. The ability to robustly handle large 

numbers of unpredictable streams is even more critical for clustered/distributed systems that are 

expected to deal with order of magnitude differences in data rates of different input streams. 

In this chapter, we introduce a punctuation-carrying heartbeat mechanism designed to prevent the 

DSMS from blocking when some of the monitored streams temporarily stall or slow down. We 

show how heartbeats can be regularly generated by low-level nodes in query execution plans and 

propagated upward unblocking all streaming operators on its way. Additionally, we show that the 

heartbeat mechanism can be used for other applications in distributed settings such as detecting 

node failures, performance monitoring, and query optimization.  

We implemented the heartbeats in the context of Gigascope data, however, proposed techniques 

should easily apply to any DSMS that uses two-level architecture for early data reduction and 

relies on timestamp mechanism to unblock streaming operators. We demonstrate the effectiveness 
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of our approach by running experiments with multi-source streaming queries running over high-

rate network data streams. Our experimental evaluation shows that mechanism significantly 

decreases the query memory utilization while incurring low computational overhead. 

4.1 Introduction 

A Data Stream Management System (DSMS) evaluates queries over potentially infinite streams 

of tuples.  In order for a DSMS to produce useful output, it must be able to unblock operators 

such as aggregation, join, and union.  In general, this unblocking is done by limiting the scope of 

output tuples that an input tuple can affect.  One unblocking mechanism is to define queries over 

windows of the input stream; this technique is particularly applicable to continuous query systems 

for monitoring applications [6][13][21][23]. Another technique for localizing input tuple scope is 

to a timestamp mechanism; this technique is particularly applicable to data reduction applications 

[39][112]. 

Gigascope's technique for localizing input tuple scope is to require that some fields of the input 

data streams be identified as behaving like timestamps, e.g., be monotone increasing. The locality 

of input tuples is determined by analyzing how the query references the timestamp fields.  For 

example, an aggregation query must have a timestamp field as one of its group-by variables, and 

a join query must relate timestamp fields of both inputs. We have found the timestamp analysis 

mechanism to be quite effective for unblocking operators as long as all input streams make 

progress.  However, if one of the input streams stalls, operators such as join or merge which 

combine two streams can stall, possibly leading to a system failure. 

Example. Let’s consider a concrete example.  Gigascope is designed for network monitoring 

applications.  Many of the sites that we monitor have multiple high-speed links (e.g., Gigabit 

Ethernet) to the Internet.  To ensure high reliability, one or more of these links is a backup link.  
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If a primary link fails, traffic is automatically diverted to a backup link. In order to monitor traffic 

at these installations, we need to monitor all links simultaneously.  At a minimum, we need to 

monitor the merged traffic of a link and its backup.  Since the primary link has gigabit traffic and 

the backup link has almost no traffic, the merge operator will quickly overflow (i.e., even after 

optimizations which minimize traffic flow to the merge operator), either running out of buffer 

space or dropping packets.      

The problem we face is that while the presence of tuples carries temporal information, their 

absence does not.  A technique that has been proposed in the literature is to use heartbeats or 

punctuation [109][115] to unblock operators.  However, detailed implementation discussions are 

lacking. 

In this chapter, we present our implementation of punctuation-carrying heartbeats in the 

Gigascope DSMS.  We first implemented these heartbeats to collect load and liveness 

information about the operators.  Our heartbeats originate at source query operators and propagate 

throughout the query DAG.  We show how timestamp punctuations can be generated at the 

source query nodes and inferred at every other operator in the query DAG.  Finally we show how 

the punctuated heartbeats can unblock otherwise blocked operators. 

In this chapter, our focus is on unblocking multi-stream operators such as joins and merges 

(previous heartbeat work [109] focuses on providing guarantees that tuples arriving to query 

processor are properly ordered).  We demonstrate the need and effectiveness of our punctuation-

carrying heartbeats by running experiments with join and merge queries over very high-speed 

data streams.  We find that our punctuation-carrying heartbeat significantly reduces the memory 

load for join and merge operators with a CPU cost too small to be measured. 

The rest of the chapter is organized as follows. We discuss related work in Section 4.2. In Section 

4.3, we show to integrate heartbeats into two-level Gigascope DSMS architecture. In Section 4.4, 
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we describe how heartbeat generation is implemented in Gigascope’s low-level queries. Section 

4.5 discusses the heartbeat generation and propagation in higher-level queries. We demonstrate 

how heartbeat mechanism goes beyond its use for operator unblocking by giving its other 

applications in Section 4.6. In Section 4.7, we present our experimental study with Gigascope on 

live network traffic. Conclusions are in Section 4.8. 

4.2 Previous Work 

A heartbeat is a very widely used mechanism in distributed systems to achieve fault tolerance. 

The most common implementations have remote nodes send periodic heartbeat messages to 

inform other nodes that they are alive. If no heartbeat is received for certain amount of time, the 

node is declared dead. Recent research projects in distributed data stream management systems 

(Aurora+, Medusa, and Borealis) [1][30] also use heartbeats to detect remote node failures.  

Stream punctuation [83][84][115] has been proposed as a technique to unblock operators by 

embedding special marks in the stream that indicate the end of a subset of the data. This 

mechanism is very generic and allows punctuation to carry arbitrary information that might be 

helpful to operators (e.g. all future tuples will have the values of the attribute in certain range). 

However, this work on punctuated streams does not describe how data sources are going to 

generate the punctuations. It is also not clear how to integrate such a mechanism into high-

performance streaming database that needs to process data at line speeds. 

The heartbeat mechanism described in [109] is designed to enforce a guarantee that all the tuples 

are ordered by a timestamp before they are sent to the query processor. This approach assumes 

that the DSMS includes a special input manager that buffers tuples arriving from multiple 

streams to provide such a guarantee. They focus on eliminating out-of-orderness in input streams, 

which is different from our problem of unblocking multi-stream operators. Gigascope’s 
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punctuation-carrying heartbeats that we present here are not restricted to a single system or 

application time, and are designed for large number of protocol and application-level timestamps 

and sequence numbers characteristic of network streams. 

4.3 Using Heartbeats to Unblock Streaming Operators 

The heartbeat mechanism was initially designed to collect the runtime statistics about operator 

loada and to detect node failures when the system is used in distributed settings. Gigascope 

heartbeats are special messages that are regularly produced by low-level query operators and 

propagated throughout the query DAG. Since heartbeat messages are propagated using the 

regular tuple routing mechanism, they incur the same queuing delays as regular tuples and can 

give a good indication of the system bottlenecks and overloaded nodes. Collecting traces of 

heartbeats propagating through the query execution DAG gave us a valuable tool in system 

performance monitoring. Another benefit of having regular flow of heartbeat messages through 

active operators is the ease of detecting failed nodes. 

We approached the problem of unblocking streaming operators that take multiple inputs by 

implementing a stream punctuation mechanism that injects special temporal update tuples into 

operator output streams. The purpose of temporal update tuples is to inform the receiving 

operators about the end of a subset of a data (typically the end of the time window or epoch on 

which streaming operators such as aggregations, stream merge and joins operate). Our first 

implementation of stream punctuations used on-demand generation of temporal updates tuples. In 

this approach blocked operators explicitly request the temporal update tuple from their input 

nodes. We found that on-demand generation of stream punctuations led to unnecessary 

complexity in both Gigascope runtime and code generation system. After taking a closer look at 

Gigascope heartbeat mechanism we realized that heartbeats regularly propagating through query 
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execution DAG provide a perfect vehicle for carrying the temporal update tuples. The constant 

flow of punctuation-carrying heartbeats ensures that stalled merge and join operators will be 

unblocked in timely manner. 

Temporal update tuples generated by streaming operator have schema identical to that of regular 

tuples, but they also have a few important distinctions. All the tuple attributes that are marked as 

temporal in operator’s output schema are initialized with values that are guaranteed not to violate 

the ordering properties. For example, if attribute Timebucket is marked as temporal increasing, 

and operator receives a temporal update tuple with value Timebucket = t, all future tuple are 

guaranteed to have Timebucket >= t. All the non-temporal attributes in stream schema are left 

uninitialized and are ignored by receiving operators. One simple and very conservative scheme 

for generating such temporal tuples is to always emit the previously produced tuple (cast as a 

temporal update tuple). However, such mechanism would be useless, as heartbeats will not 

provide any new information to streaming operators. Our goal is to build a system that will be 

very aggressive in generating values of temporal attributes and try to set them to highest possible 

value it can safely guarantee (or lowest value in case of temporal decreasing attributes). We will 

describe our algorithms for generating the values of temporal attributes in sections 4.4 and 4.5. 

4.4 Heartbeat Generation at LFTA Level 

Heartbeat generation in Gigascope is initiated by low-level operators (LFTAs) regularly injecting 

the heartbeat messages carrying temporal update tuples into their output streams. In this section, 

we a give brief overview of low-level streaming operators used in Gigascope and describe the 

algorithms generation of temporal update tuples. 
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4.4.1 Low-level Streaming Operators in Gigascope 

Gigascope’s low-level streaming operators (LFTAs) read data directly from source data streams 

(e.g., packets sniffed from a network interface). Their main purpose is to maximally reduce the 

amount of data in a stream using filtering, projection and aggregation before it is passed to 

higher-level execution nodes (requiring a memory copy). Input tuples, typically in the form of 

networks packets, are read directly from NIC’s ring buffer.  To avoid overflowing this high input 

rate buffer, it is essential that the processing of input tuples be as fast as possible. The only two 

types of streaming operators used in LFTA nodes are selection and aggregation.  

The normal mode of operations of the LFTA node in Gigascope is to block, waiting for new 

tuples to be posted to a NIC’s ring buffer. Once a tuple is posted in the buffer, the runtime system 

invokes the operator’s Accept_Tuple() function to process it. In order to make sure that operators 

regularly produce the heartbeats even in the absence of incoming packets, the runtime system 

periodically interrupts the LFTA’s wait and requests for them to emit a punctuation-carrying 

heartbeat.  

Every low-level operator maintains the necessary state required to correctly generate temporal 

update tuples. This state always includes the last seen values of all the temporal attributes 

referenced in operator’s select clause, in addition to other operator-specific states. These values 

are used by the operator to infer the values of the temporal attributes for temporal update tuples. 

The example of such an inference is given in the following aggregation query: 

SELECT tb, srcIP, count(*) from TCP 

GROUP BY time/60 as tb, srcIP 

If according to LFTA’s internal state the last seen value of ‘time’ attribute was X, it will use the 

inference rules to generate a ‘tb’ value for temporal update tuple to be equal to X/60. 
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4.4.2 Effects of Prefilters 

Preliminary filtering is a form of multiple query optimization employed by Gigascope to avoid 

the cost of invoking operators on tuples which are certain to fail selection predicates. Even though 

this technique frequently leads to significant performance gains, it presents a problem for our 

heartbeat generation system. Consider a scenario in which an arriving tuple has a value of the 

temporal attributes that would advance the time window used by higher-level aggregation, merge 

or join operator. If the tuple failed the prefilter test, it will never be delivered to LFTA operators 

and they would not be aware that the time window in fact advanced. 

In order to avoid losing valuable temporal information, we augment the prefilter to save the 

values of all the temporary attributes used by the queries that share the prefilter. These saved 

values are made available to all LFTA nodes for use in heartbeat generation. 

4.4.3 Heartbeats in Selection LFTAs 

Low-level selection operators in Gigascope perform selection, projection, and transformation on 

packets arriving from a source data stream. The normal tuple processing flow for this operator is 

to unpack the values of the fields referenced in the query predicate and check if the predicate is 

satisfied.  If so, the output tuple is generated according to the projection list in query select clause. 

There are a small number of changes that need to be made to the normal tuple processing flow in 

order to enable heartbeat generation: 

1) Modify operator’s Accept_Tuple() function to save the values of all temporal attributes 

referenced in query Select clause.  
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2) Whenever operator receives a regular request to generate a temporal update tuple, use the 

maximum of the saved value of temporal attributes and a value saved by prefilter to infer the 

value of the temporal update tuple. 

It is important to note that the values of the temporal attributes are saved in Accept_Tuple() 

regardless of whether tuple satisfies the operator’s predicate or not. The generation of attribute 

values for temporal update tuples is done using the value inference scheme outlined earlier in 

Section 4.1. 

4.4.4 Heartbeats in Aggregation LFTAs 

Gigascope's low-level aggregation queries implement group by and aggregation functionality 

using small direct-mapped hash table. Whenever a collision in a hash-table occurs, the ejected 

tuple is sent to output stream; as a result, the output stream can have multiple tuples for the same 

group. To ensure that the aggregation query always generates the correct output, a low-level 

query is paired with high-level aggregation node that completes the aggregation of partial results 

produced by LFTA. 

Whenever the incoming tuple advances the epoch, the aggregation operator closes all the 

aggregates maintained in the hash table and flushes them to the output stream. If the number of 

groups accumulated during an epoch is very large, the flush puts a large load on a stream manager 

and can potentially lead to overflow of system buffers. To avoid this effect Gigascope uses a 

traffic-shaping technique known as slow flush. Instead of putting tuples directly into output 

stream, it gradually emits them as new tuples arrive from the input. This property has a significant 

effect on generating the values of temporal attributes in heartbeat tuples. Using the largest 

observed values of temporal attributes may violate the stream ordering properties because some 

tuples with smaller attribute values remain unflushed. 
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Similar to selection operator, aggregation nodes save the last seen values of temporal attributes in 

the input stream and use the value inference to generate temporal update tuples. In addition to the 

state common to all operators, it also maintains the value of temporal attributes of the last tuple it 

flushed to the output stream. Whenever a request to produce a heartbeat is received, the following 

formula is used: 

if we have unflushed tuples : 

 use the value of last flushed tuple 

else: 

use maximum of the saved value of temporal  

attributes and the value saved by the prefilter 

This method guarantees that heartbeat tuples injected into operator’s output stream do not violate 

temporal attribute ordering properties. 

4.4.5 Infering Values of Temporal Attributes Based on System Time 

The heartbeat generation scheme that Gigascope uses in LFTAs works well when each of the 

monitored links has some amount of traffic. However, the situation becomes more complicated 

when one of the monitored network cards does not observe any tuple in a long time. In the 

absence of incoming tuples, the streaming operators will not be able to advance the values of 

temporal attributes and will conservatively produce heartbeats based on previously observed 

input. Since most of the temporal attributes in typical network queries are time-based and can be 

easily correlated with system clock, naturally, Gigascope has the ability to advance the values of 

temporal attributes based on a system clock. 

When advancing temporal attributes using this method, one must however be careful about the 

skew between the system clock and the timestamps assigned by network interfaces. One source of 
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the skew is the buffering in packet capture library (pcap) library that can keep already 

timestamped tuples from being delivered to LFTA nodes. In the presence of low-rate stream, 

buffering can lead to scenarios where the timestamps of the tuples received by LFTA fall 

significantly behind a system clock. As part of setting up Gigascope, the administrator needs to 

specify the maximum skew between host system clock and each of the monitored network 

interfaces. The heartbeat generation system uses the skew information to automatically advance 

the time-based temporal attributes. Future tuples that violate the skew specification are discarded 

by receiving LFTAs. 

4.5 Heartbeat Propagation at HFTA Level 

A streaming operator in high-level query nodes (HFTA) emits temporal update tuples whenever it 

receives a heartbeat from one of its source stream. In this section, we give an overview of high-

level query nodes and the streaming operators they use as well as algorithms for heartbeat 

generation and propagation by different streaming operators. 

4.5.1. High-level Query Nodes in Gigascope 

An important characteristic of the Gigascope architecture is a two-level approach to query 

execution. Low-level subqueries (LFTAs) executing directly within Gigascope runtime are 

responsible for early data reduction, while more complicated processing involving expensive 

predicates or complex operators is performed in high-level query nodes (HFTAs). Even though 

from application perspective LFTAs and HFTAs are indistinguishable, there are significant 

differences in their capabilities. High-level nodes are not restricted to running single streaming 

operator (the way LFTAs are) and can implement arbitrarily complex query execution plans. 

Currently Gigascope supports selection, multiple types of aggregation, stream merge, and inner 
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and outer join operators. HFTAs can receive data from multiple different streams produced by 

LFTAs and other running HFTAs.  

The normal mode of execution of an HFTA node in Gigascope is to block, waiting for new tuples 

to arrive from one of its input streams. After determining which operators in the query execution 

tree are subscribed to that input stream, the runtime system invokes operator’s Accept_Tuple() 

function to process the incoming tuples. If the processing of the tuple forces the operator to 

produce some output tuples, they are routed to the appropriate parent operator in query execution 

plan. In addition to the regular tuples arriving from one of its input stream, an HFTA regularly 

receives temporal update tuples produced by LFTAs or other HFTAs. We augmented the 

implementation of all streaming operators to correctly interpret temporal update tuples and use 

them to unblock themselves. We will describe the changes that we made in subsequent sections 

dedicated to different types of operators. 

Similar to low-level operators described earlier, high-level operators residing in an HFTA 

maintain the necessary state required to generate temporal update tuples. Normally the state 

includes the last seen values of all relevant temporal attributes for each of the operator’s input 

streams. High-level operators use these values in addition to operator-specific state to infer the 

values of the attributes of temporal update tuples. 

4.5.2. Heartbeats in Selection Operator 

Heartbeat generation in selection operator is largely identical to the scheme used selection LFTAs 

discussed earlier. The difference lies in the fact that operator can receive temporal update tuples 

in addition to regular data tuples. Whenever a temporal update tuples is received, operator 

updates the saved values of all temporal attributes referenced in query Select clause and generates 

a new temporal update tuple based on a saved state. The rest of the normal tuple processing is 
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bypassed. The generation of attribute values for temporal update tuples is done using the value 

inference scheme outlined earlier in Section 4.1. 

4.5.3. Heartbeats in Aggregation and Sampling 

The high-level aggregation operator in Gigascope is a non-blocking operator that aggregates the 

data within a time window (epoch) defined by values of temporal groupby attributes. In contrast 

with low-level aggregation queries that use direct-mapped hash-table and can emit multiple 

partial aggregates for the same group, high-level aggregates are required to keep all the groups 

and corresponding aggregates till the end of epoch before flushing them to output stream. To deal 

with the increased danger of overflowing system buffers by flushing huge amounts of data at the 

end of the epoch, aggregation operators rely on the slow flush mechanism that we described 

earlier. 

We made a small number of modifications to Gigascope aggregation operator to enable the 

generation of the punctuation-carrying heartbeats. These modifications mostly mimic the changes 

required to implement heartbeats in low-level aggregation queries. The operator maintains the last 

seen values of all relevant temporal attributes, updating them whenever a new tuple (regular or 

temporal) arrives. In addition to this state, the operator also maintains the values of temporal 

attributes of the last flushed tuple (for correctness in the presence of slow flush). These values are 

combined to infer the attributes of temporal update tuple using the formula from Section 4.4. 

In addition to traditional stream aggregation operators, Gigascope also supports more complex 

aggregation operators – such as the stream sampling operator [69]. However, in all respects 

related to processing of temporal tuples and heartbeat generation, these operators behave 

identically to plain aggregation operator and share all the heartbeat-related code. 
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4.5.4. Heartbeats in Stream Merge Operator 

A merge operator in Gigascope performs a union of two streams R and S in a way that preserves 

the ordering properties of the temporal attributes. R and S must have the same schema, and both 

must have a temporal field, say t, on which to merge. Note that t is the only attribute that 

preserves the temporal properties in the merge output schema. The operator maintains the 

smallest values RMIN and SMIN of the timestamp observed on each of the input streams. If tuples 

on one stream, say R, have a values of t larger then SMIN, then the tuples from R are buffered until 

the S tuples catch up. Note that the values of RMIN and SMIN are updated whenever a new tuple 

(regular or temporal) arrives from a stream that has no buffered tuples. Whenever the operator is 

asked to generate the temporal update tuple, it can trivially generate it by setting the value of t to 

MIN(RMIN, SMIN). 

4.5.5. Heartbeats in Join Operator 

GSQL queries that join two data streams R and S must contain a predicate that relates a 

timestamp from R to one in S (e.g. R.tr = 2 * S.ts). This requirement is critical for implementing 

the join using bounded amount of memory without relying on sliding windows. Gigascope 

implementation of join operator supports inner as well as left, right and full outer equi-joins. 

Similar to merge operator, join maintains a minimum timestamps RMIN and SMIN and buffers input 

streams to ensure they match up on the timestamp predicate. Note that timestamp in GSQL may 

include a number of temporal attributes, so RMIN and SMIN could be a composite structure storing 

minimum values of all attributes that constitute a timestamp. Again the value of the attributes in 

temporal updates tuples are generated using the MIN(RMIN, SMIN) formula.  
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4.6 Other Heartbeat Applications 

The initial goal in implementing heartbeat mechanism for Gigascope was to collect the statistics 

about the load on query nodes when system is used in distributed settings. Once the mechanism 

was implemented we discovered that heartbeat infrastructure can be used for variety of other 

tasks. In addition to carrying stream punctuations (which is the main focus of this chapter) and 

statistics collection, we are currently applying heartbeats to fault tolerance, query performance 

analysis, distributed query optimization. In this section we give brief overview of different 

applications that rely on heartbeat mechanism. 

4.6.1. Fault Tolerance 

A heartbeat is a widely used mechanism in distributed systems to detect node failures. Traditional 

implementations require every remote node to periodically send heartbeat messages to a resource 

manager to indicate that the node is still alive. In our Gigascope implementation, we use a 

slightly different scheme in which heartbeats are periodically generated by low-level queries and 

propagated upward through the query execution DAG. A constant flow of heartbeat tuples 

through the system provides an easy way for a running query to identify that a node running one 

of its subqueries no longer responding. If a subquery does not produce a heartbeat for some 

specified amount of time, it is declared to be failed and a recovery procedure is initiated. Usually 

the recovery involves moving an instance of the failed query to another machine. 

4.6.2. System Performance Analysis 

Gigascope relies on the regular tuple routing mechanism to propagate the heartbeat messages 

from the low-level queries up to top-level nodes that applications subscribe to. As a result, 

heartbeats are subject to the same queuing delays that regular tuples incur and can be used to 
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identify backlogged nodes and system bottlenecks. Every heartbeat message emitted by an LFTA 

is timestamped and contains an identifier of the producing query. In addition to this information, 

every heartbeat is assigned a special trace identifier (trace_id). As the messages propagate 

upwards to higher level nodes, they attach their own identifiers along with a timestamps 

corresponding to the time they received a heartbeat. When a heartbeat message finally reaches a 

top-level query node, it has a full trace of all the operators it visited on its way along with the 

delays it incurred in each of the operator’s queues. Systems administrators and developers can use 

these heartbeat traces to identify system performance problems that are otherwise very difficult to 

detect. 

4.6.3. Distributed Query Optimization 

Streaming query optimizers critically depend on accurate statistics describing input stream to 

drive many optimization decisions, such as order of join evaluation, operator placement and 

stream partitioning.  Heartbeat mechanism is a perfect vehicle to collect all the runtime statistics 

required by distributed query optimizer. In addition to detailed traces described in previous 

section, our implementation of heartbeats carries other operator statistics such as predicate 

selectivities, data arrival rates, query memory utilization and tuple processing costs.  

4.7 Limitations of the Heartbeat Mechanism 

The heartbeat mechanism proposed in this dissertation is designed for throughput-oriented 

streaming applications, such as network monitoring, in which the latency of the propagation of 

the individual tuples through the query graph is not critical. For such applications it is sufficient 

to generate periodic heartbeats with the frequency as low as the size of the smallest time window 

used by the application. However, for other types of streaming application, such as battlefield 
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monitoring or fire sensor monitoring, the latency of the event propagation through the system is 

critical. To provide the necessary latency guarantees, the heartbeat generation system proposed in 

this dissertation would be forced to generate heartbeats almost as frequently as rate of the input 

streams, which will incur significant overhead. Recent research in heartbeat mechanisms for such 

applications [157] addresses the problem by using on-demand heartbeat generation with special 

optimizations enabling fast heartbeat forwarding through the query graph. 

4.8 Performance Evaluation 

In this section, we present our experiments with the Gigascope heartbeat mechanism. These 

experiments were conducted on a live network feed from a data center tap. All our queries 

monitor the set of 3 network interfaces, two high-speed DAG4.3GE Gigabit Ethernet interfaces 

(main1 and main2) which see the main bulk of the traffic and one control 100Mbit interface 

(control). Both Gigabit interfaces receive approximately 100,000 packets per second (about 400 

Mbits/sec). Our primary focus is to be able to unblock streaming operators that combine the 

streams from both high-rate main links and low-rate backup links. Since the control interface has 

very small amount of traffic, its behaviour is a representative of the behaviour of backup 

interfaces. All experiments were conducted on dual processor 2.8 GHz P4 server with 4 GB of 

RAM running FreeBSD 4.10. 

4.8.1. Unblocking Stream Merge Using Heartbeats 

We evaluated the effect that punctuation-carrying heartbeats have on memory usage of running 

queries that use the stream merge operator. For this experiment we used the following GSQL 

query: 

SELECT tb, protocol, srcIP, destIP, 
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srcPort, destPort, count(*)  

FROM DataProtocol  

GROUP BYtime/10 as tb, protocol, srcIP, destIP, 

srcPort, destPort 

The query computes the number of packets observed in different flows in 10 second time buckets. 

Since the query is executed on a machine with 3 network interfaces, the Gigascope query planner 

automatically inserts stream merge operators into query plans to combine the stream from 

different interfaces. The resulting query plan is shown in Figure 4-1. 
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Figure 4-1: Merge query execution plan 

Data is partially aggregated using low-level aggregation queries and then combined using stream 

merge operators before finally being aggregated by high-level aggregation query. When the 

control link has no traffic, both stream merge operators must buffer a large number of tuples 



 

 

66

received from high-rate main links. In this experiment, we varied the interval with which 

heartbeats are generated and recorded maximum memory that a running query consumes. We 

varied a heartbeat interval from 1 sec (the default value used in Gigascope) to 30 seconds in 5 

second increments. The results of the experiments are presented in Figure 4-2.  
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Figure 4-2: Memory usage of stream merge query 

The result of the experiment illustrate that heartbeats successfully unblock the stream merge 

operators. As the heartbeat interval increases, the amount of state that the merge operators need to 

maintain before they can advance the epoch is growing linearly. Eventually memory footprint of 

the query would exceed the available RAM and will cause a system crash. 

It is important to notice that increasing the heartbeat intervals not only leads to increased memory 

footprint, but also significantly increases the amount of data that needs to be flushed by the 

operator once the epoch advances. Since our stream merge implementation does not currently use 

traffic-shaping techniques (such as slow flush), the system can cause a query failure even before 

the memory consumption exceeds the available RAM. In the experiment in which we used 30 
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second heartbeat intervals, merge operators were instantly flushing 420MB worth of tuples which 

exceeded the capabilities of tuple transfer mechanism and led to query failure. 

4.8.2. Unblocking join operators using heartbeats 

In this experiment, we observed how effectively heartbeats unblock join queries and reduce 

overall query memory requirements. We used the following GSQL query: 

Query flow1: 

SELECT tb, protocol, srcIP, destIP,  

srcPort, destPort, count(*) as cnt 

FROM [main0_and_control].DataProtocol 

GROUP BY time/10 as tb, protocol, srcIP, destIP,  

srcPort, destPort 

Query flow2: 

SELECT tb,protocol, srcIP, destIP,  

srcPort, destPort, count(*) as cnt  

FROM main1.DataProtocol 

GROUP BY time/10 as tb, protocol, srcIP, destIP,  

srcPort, destPort 

Query full_flow: 

SELECT flow1.tb, flow1.protocol, flow1.srcIP, 

flow1.destIP, flow1.srcPort, flow1.destPort, 

flow1.cnt, flow2.cnt 

OUTER_JOIN FROM flow1, flow2  

WHERE flow1.srcIP=flow2.srcIP and  
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flow1.destIP=flow2.destIP and 

flow1.srcPort=flow2.srcPort and  

flow1.destPort=flow2.destPort and  

flow1.protocol=flow2.protocol and  

flow1.tb = flow2.tb 

Two subqueries (flow1 and flow2) compute the flows aggregated in 10 second timebuckets and 

observed on interfaces main1+control and main2 respectively. The query results are combined 

using full outer join to generate a final output. The resulting query plan is shown in Figure 4-3. 
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Figure 4-3: Join query execution plan 

In this experiment we varied an interval with which heartbeats are generated from 1 sec to 60 

seconds in 10 second increments. The results of the experiments are presented in Figure 4-4. 
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Figure 4-4: Memory usage of join query 

The results of the experiments show a similar pattern to the query that just uses stream merge 

operators. Again punctuation-carrying heartbeats are able to unblock both merge and join 

operators. The state maintained by query merge, aggregation and join operators linearly grows 

with the heartbeat interval and reaches 520MB for 60 second interval. At this point, our outer join 

implementation, which does not use traffic-shaping, instantaneously dumps 520MB of data to 

receiving application and causes the overflow of system buffers. When we set a heartbeat interval 

to default value of 1 sec, we not only avoid accumulating large state of blocking operators, but 

also decreasing the burstiness of their output. 

4.8.3. CPU overhead of heartbeat generation 

We measured the CPU overhead that Gigascope’s implementation of heartbeats incurs on running 

streaming queries. We measured the average CPU load of a merge query used in Section 4.7.1 

running on two high-rate interfaces (main1 and main2). We compared the CPU load of a system 

with 1 second heartbeat interval to an identical system which has heartbeats completely disabled. 
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Since both of the monitored links have moderately high load, the merge operators are naturally 

unblocked even with heartbeat disabled. Therefore both systems behave identically and allow us 

to measure overhead of heartbeat generation without significantly changing runtime behavior of 

the operators. We observed that a version of Gigascope with heartbeats disabled has average CPU 

load of 37.3%, while enabling heartbeat generation every second raises the load to 37.5%. This 

difference is so small that it can be explained by variations in traffic load.  Hence we conclude 

that the overhead of the heartbeat mechanism is immeasurably small. 

4.9 Summary 

In this chapter, we introduced a mechanism for punctuation-carrying heartbeat generation that 

allows a Data Stream Management System to monitor a large number of diverse data streams 

without blocking, even when some of the streams temporarily stall. We showed how heartbeats 

can be regularly generated by low-level nodes in query execution plans and propagated upwards. 

By attaching temporal update tuples as punctuation, the heartbeats unblock any blocked 

operators. Our heartbeat mechanism can be also be used for other applications in distributed 

settings, such as detecting node failures, performance monitoring, and query optimization. The 

mechanism was incorporated into Gigascope, a high-performance streaming database for network 

monitoring that is operationally used within AT&T's IP backbone. A performance evaluation 

using live data feeds showed that our system is capable of working at multiple Gigabit line speeds 

in industrial deployment and can significantly decrease the query memory utilization.  
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Chapter 5 

5. Query-Aware Data Stream Sampling 

The robust handling of the overload conditions is an important requirement for Data Stream 

Management Systems monitoring high-rate streams. It is a widely known phenomena that the 

load on streaming systems can increase by an order of magnitude (e.g. during network attacks for 

network monitoring applications). Therefore, load shedding is necessary to preserve the stability 

of the system, gracefully degrade its performance and extract answers. 

Existing methods for load shedding in a general-purpose data stream query system use random 

sampling of tuples, essentially independent of the query.  While this technique is acceptable for 

some queries, the results may be meaningless or even incorrect for other queries.  In principle, a 

number of different query-dependent sampling methods exist, but they work only for particular 

queries. In this chapter, we show how to perform query-aware sampling, termed semantic 

sampling, which works in general.  We present methods for analyzing any given query, choosing 

sampling methods judiciously, and guaranteeing the correct semantic execution of the query. Our 

experimental evaluation on a high-speed data stream demonstrates with different query sets that 

our method guarantees semantically correct and accurate results while being efficient in 

decreasing the load significantly. 
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5.1 Introduction 

High-rate data streams from many application domains (network monitoring, financial 

monitoring, scientific measurements) are inherently busty. For example, there are flash events 

[73] on the network when legitimate traffic spikes sharply. In [69], the authors report that during 

a Distributed Denial of Service (DDoS) attack, the load on a link can increase from 100,000 

packets/sec to 500,000 packets/sec. Trading volumes bursts on individual securities are common, 

and even occur in entire markets during financial panics (Two examples from the New York 

Stock Exchange are 10/19/1987 and 10/28/1997 [95]). Even if the DSMS is configured to handle 

a high volume data stream during normal circumstances, during a burst period the DSMS might 

exhaust available resources such as CPU cycles, memory, and link capacities. 

Perversely, it is precisely during such highly loaded instants such as a DDoS attack that the 

DSMS is most useful and analysts rely on it crucially to identify the attackers and protect the 

network.  Similarly it is precisely during a financial spike or market volatility that analysts rely on 

a DSMS in order to identify price trends and protect market positions. Therefore, it is critical to 

build DSMSs that can gracefully perform and provide useful results even in highly loaded 

instants. That is, DSMSs often have to target instantaneous – not average – data rates. 

The widely accepted solution proposed for use by DSMSs to handle overloaded conditions is 

load shedding. In particular, all published systems employ per-tuple sampling: uniform random 

sampling of tuples at different levels of query hierarchy to reduce the load on processing nodes. 

However, for a large class of queries, uniform random sampling violates the intended query 

semantics and leads to meaningless or even incorrect output.  

Example. Consider the query for computing flows from the packet data - summaries of packets 

between a source and a destination during a period of time.  The group-by attributes are the 



 

 

73

source and destination IP address, the source and destination port, and the protocol, while the 

aggregates include the number of packets, the number of bytes transferred, and so on.  Our 

example is one particular aggregate, i.e., the OR of the TCP flags in the packets that comprise the 

flow.  This information is vital for distinguishing between regular flows and attack flows (attack 

flows do not follow proper TCP protocols).  

 If one randomly drops packets, one cannot compute the aggregate on the flags properly, and 

therefore cannot distinguish between valid traffic and attack traffic.  Thus a natural stream query 

written by an analyst to detect attack traffic will result in incorrect output in existing data stream 

systems that drop tuples randomly.  The problem is that the OR aggregate does not have a good 

approximation on sampled data.  Many other aggregates (e.g. MIN and MAX, among others) 

share this property. 

In principle, there is a different sampling strategy that will work in the example above, namely, to 

drop all packets that belong to randomly chosen flows. For all flows that are not dropped, the 

query will correctly compute the OR aggregate of the TCP flags and the output will be correct, 

albeit a subset of the correct output.  

We refer to this type of sampling as per-group sampling, where the random choice is over the 

groups (in this case, the group is defined by the attributes that comprise the flow, but in general, it 

may be any subset of attributes).   Per-group sampling is well known in the folklore as being 

necessary for computing loss-sensitive aggregates such as OR, Min, Max, count of duplicates, 

and so on.  Join queries are also sensitive to random sampling, so variants of group sampling have 

been proposed for approximate query systems based on samples of large data sets [4][3][50]. 

Given any particular query, an advanced user can determine the best sampling strategy.  

However, a DSMS will support dozens to hundreds of simultaneous queries.  Requiring a user to 

analyze and reconcile the sampling strategies for all queries simultaneously is simply not 
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scalable. Therefore, we need a principled mechanism to determine a suitable sampling strategy 

for any query set. We call this query-aware method semantic sampling. In this Chapter we present 

semantic sampling methods, show how to implement them effectively and present experimental 

results validating the approach. More precisely, the contributions we make are: 

1. Introducing the concept of query-aware semantic sampling with a suite of tuple and per-group 

sampling and suitable notion of correctness in presence of sampling for any query.  

2. Analyzing query sets to determine a semantics-preserving sampling strategy. For this, we 

introduce the concept of grouping sets being compatible with given query and show how to 

reconcile different grouping sets in a query set. 

3. Validating our approach experimentally on real network traffic data streams.  

By using the methods described in the chapter, we are able to provide high quality results (which 

very likely reflect the user’s intended semantics) even under adverse operating conditions, and 

avoid random sampling without guarantees. 

The rest of the chapter is organized as follows. We discuss related work in Section 5.2. In Section 

5.3 we give an overview of semantic sampling framework and discuss the suite of sampling 

algorithms that it uses. We describe how to deduce the compatible sampling methods for 

individual streaming queries in Section 5.4. In Section 5.5 we extend our semantic sampling 

framework to cover arbitrary query sets. In Section 5.6, we present our experimental study. 

Conclusions are presented in Section 5.7. 

5.2 Previous Work 

Two main approaches to gracefully handle high-load conditions have been explored in recent 

literature: load shedding through per-tuple sampling and approximate query processing. 
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The load shedding mechanism described in [14] relies on random tuple sampling to discard 

unprocessed tuples and reduce the system load. Sampling operators are placed at various points in 

query plans based on statistics accumulated during plan execution. The main goal is to minimize 

the inaccuracy of the results while keeping up with data arrival rates. In order to compensate for 

the effects of random sampling, aggregate results are appropriately scaled.  This approach is 

suitable for estimating certain aggregates on sliding windows, but is not suitable for a large class 

of aggregation queries that generate semantically incorrect results when presented with randomly 

sampled input (e.g., the OR of TCP flags). 

The load shedding mechanism used in Aurora/Borealis [113] is also based on random tuple 

sampling.  The system additionally has a mechanism for dropping tuples based on their utility. A 

tuple’s utility is computed based on Quality-of-Service (QoS) graphs that need to be specified for 

every application. Three types of QoS graphs can be used by the system: a latency graph 

specifies the utility of the tuple as a function of time to propagate through query plan, a loss-

tolerance graph captures the sensitivity of the application to tuple loss, and a value-graph shows 

which attribute values are more important than others. Their mechanism is restricted to queries 

that do not change the values of the input tuples (such as filter and sort); thus it is not directly 

applicable to a wide variety of queries including aggregations. Even though one can approximate 

the benefits of per-group sampling by carefully constructing value-based QoS graphs, the burden 

of generating the appropriate QoS graph lies with the application writer, which tends to make it 

unwieldy.  

Recent work on window-aware load shedding [114]  addresses the problem of preserving the 

correctness of the answer returned by aggregation queries over data streams. Proposed “window 

drop” operator drops entire windows instead of individual tuples and thus guarantees that output 

of the query is the subset of the correct output. The approach is restricted to sliding window 
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aggregation queries and not easily applicable to arbitrary streaming queries containing 

combination of selection, aggregation merge and join operators. 

A large number of algorithms have been suggested in the literature for approximate query 

processing. They can be divided into two main categories: sampling-based and sketch-based. 

Query-independent methods of uniform random and fixed-size reservoir sampling work only for 

certain queries. A variety of query-specific sampling methods have been suggested in literature. 

Examples include specialized techniques for computing quantiles [50], heavy hitters [89], distinct 

counts [58], subset-sums [45], set resemblance and rarity [41], etc. Unfortunately, these 

techniques do not apply beyond the computation of their intended aggregate functions and their 

interaction in a set of interrelated queries is not well understood. Similarly, there are sketch-based 

algorithms that are optimized for specific queries, such as particular types of joins or aggregations 

being computed, and cannot be easily combined in the same query. These limitations make it very 

hard to use these techniques in automated fashion, i.e. automatically inferring which 

approximation is safe to use just based on the query text.   

5.3 Semantic Sampling Overview 

The semantic sampling framework proposed here automatically infers the sampling methods for 

every query in any given query set and guarantees the results remain semantically correct. In 

order to simplify our task, we consider a suite of only two sampling algorithms: uniform random 

per-tuple sampling and per-group sampling. These are the most common sampling algorithms and 

together, they suffice for a large class of streaming queries involving aggregations, merges 

(stream union) and joins. We will soon provide more details. 
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5.3.1 Illustrative example 

We illustrate the semantic sampling framework by working through an example query set. The 

first query (dup_and_all_count, denoted γ), a simplified version of TCP performance analysis, 

computes the number of duplicate packets and the total number of packets in each TCP flow in 

each one-minute window (making use of the User Defined Aggregate Function or UDAF, 

count_dups, equivalent to an aggregation subquery with a HAVING clause). The higher-level 

aggregation query (dup_ratio, denoted γ2) computes the ratio of the duplicate packets to the total 

number of packet for each time window. The corresponding SQL statements for both queries are 

shown below: 

Query dup_all_count: 

SELECT tb, count_dups(sequence_number) as dup_cnt, 

count(*) as full_cnt 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP, 

srcPort, destPort; 

Query dup_ratio: 

SELECT tb, sum(dup_cnt) / sum(full_cnt) 

FROM dup_and_all_count 

GROUP BY tb; 

We would like to run the queries over 3 data streams, so the aggregations need to be performed 

on their union. A query plan for execution of the queries is shown in Fig 5-1. In order to perform 

semantic sampling, we need to address the following issues: 
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Figure 5-1: Semantic sampling example 

1. At which level in query hierarchy should sampling be performed? 

The goal is to achieve maximum load reduction without sacrificing the output quality. Intuitively, 

we should be sampling at the input streams σ1, σ2, and σ3 to drop tuples before investing any time in 

partially processing them. 

2. What sampling method is needed for each input stream to guarantee that the output of 

top-level query is semantically correct? 

By analyzing the aggregate functions used in the query dup_all_count, we can infer that one of 

them cannot be approximated using random uniform sampling (in particular, the count_dup 

UDAF.) and therefore per-group sampling needs to be used.  Since the count_dups UDAF counts 

the number of duplicate sequence numbers, it will return an accurate answer only if it aggregates 

over all tuples in the group.  Instead of uniform random sampling of tuples, it is better to collect 

all tuples from a uniform random sample of the groups (defined by srcIP, destIP, srcPort, 

destPort), on which the count_dups aggregate will be computed exactly. Therefore, the output of 

query dup_all_count is a sample of the exact query output. An analysis of the query dup_ratio 
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reveals that the aggregates it references (SUM) are easily approximated if the input is sampled; 

therefore per-group sampling of input streams guarantees the semantically correct output for the 

full query tree, while per-tuple sampling does not have this property. 

3. How do we guarantee the consistency of sampling for all input streams? 

Since the multiple streams are sampled, we need to guarantee consistency of output of the merge. 

We achieve that by using the same sampling method (for example, per-group sampling using the 

identical group) for each of the streams. 

4. How do we preserve the metadata describing which sampling methods and sampling 

rates were used to compute the result? 

Load shedding subsystems are expected to dynamically adjust the sampling levels based on 

current load conditions. It is therefore critical for application to know exactly what sampling 

method was used and what were the rates to be able interpret the results and to reason about 

confidence bounds. In our implementation we preserve this metadata by regularly embedding 

special punctuations [115] into query output stream describing sampling strategy used to compute 

the results. 

In the rest of the chapter, we will formally define these problems and present the framework for 

semantic sampling analysis that addresses them. 

5.3.2 Compatibility of Sampling Methods 

In order to reason about whether a particular sampling method guarantees semantically correct 

results for a given query, we need to have a formal definition. 

Def. Sampling method M is strongly compatible with a query Q if for every time window, the 

output of the query is a subset of the exact output Q would produce if no sampling was used. 
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While strongly compatible is useful, it does not allow the use of approximations in aggregation 

queries. Hence:  

Def. Sampling method M is weakly compatible with a query Q if it is strongly compatible, 

except that fields which are the result of aggregate functions are “good approximations” to 

the exact values. 

We will use weak compatibility as our test as to whether a sampling method can be used with a 

query.  The measure of “good approximation” depends on the aggregate function.  For example, 

aggregate functions such as sums, counts and quantiles, can be adjusted to give good 

approximations when used with sampled input.  Other aggregate functions, such as MIN, MAX, 

(bitwise) OR, or count_dups, cannot provide good approximations on sampled input, and 

therefore are not even weakly compatible with tuple sampled input. 

5.3.3 Suite of Sampling Algorithms 

We consider two classes of sampling methods in this chapter: per-tuple and per-group sampling. 

5.3.3.1 Per-tuple Sampling 

Per-tuple sampling is done by uniformly randomly dropping a fraction of tuples from the input 

stream. This method is independent of the queries that are running in the system and does not 

need to examine the tuple content to make a decision whether to drop tuple or not. It is 

inexpensive and works well for selection queries and for aggregation queries that have “good 

approximations” based on uniform sample of the input. E.g., SUM and COUNT can be 

approximated by dividing the value of the aggregate by sampling rate – and therefore are weakly 

compatible. However, per-tuple sampling is not compatible with queries involving more 
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sophisticated aggregates. Further, per-tuple sampling also leads to poor results for join queries. 

Acharya et al [3] list two main reasons why uniform sampling is inappropriate for join queries: 

• The join of two streams that were uniformly sampled is not a uniform sample of the output of 

the join. As a result the confidence bounds for the output are significantly degraded. 

• The cardinality of the output of k-way join whose input were per-tuple sampled with rate α 

(α ∈ (0, 1]) is αk of the cardinality of the exact answer. As a consequence, result is less accurate 

and has low confidence bounds as k increases.  

Intuitively we would like to restrict the use of per-tuple sampling to the following scenarios: 

1. When we are looking for tuples with very specific content. For example, an application in 

network monitoring is to capture packets with questionable (worm, attack, P2P) payloads. 

2. When we are more interested in the analysis of the group themselves rather than the 

particular aggregate values for the groups. Examples of such queries are finding ranges of IP 

addresses, or estimating fraction of one type of traffic to another (e.g. kazaa vs bittorrent). 

3. When it is possible to infer the missing values or the aggregates can be easily estimated 

based on the random sample of the data. Examples of such aggregates are SUM, CNT, quantiles. 

We give exact rules for deciding whether per-tuple sampling is compatible with a given query in 

Section 5.4.2. 

5.3.3.2 Per-group Sampling  

Per-group sampling works by partitioning the tuples of the input stream into disjoint groups, and 

either sampling all the tuples from the group or dropping the group entirely.  
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Def. Let A be a set of the tuple attributes (attr1, attr2, …, attrn) and H be a hash function with 

large integer domain [0, R]. Per-group sampling with rate α ∈ (0, 1] selects a tuple iff 

H(attr1, attr2, …, attrn) ≤ α * R. The attribute set A is called a grouping set. 

The main property of per-group sampling is exact computation of all aggregate functions for all 

tuples in the output. Consider our motivational aggregation query: 

SELECT tb, srcIP, destIP,  

srcPort, destPort, count_dup(sequence_number) 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP, srcPort, destPort 

Per-group sampling with grouping set (srcIP, destIP, srcPort, destPort) will guarantee that for 

every sampled group the value of count_dup() aggregate will be computed correctly. In general 

per-group sampling is preferable for queries that are interested in complex properties of groups 

which cannot be easily estimated based on a random sample. Examples include count_dups, MIN, 

MAX and (bitwise) OR. 

Another class of queries for which per-group sampling is preferable is computing a join between 

two streams or any type of correlating data by group. Work on join synopses [3] and hierarchical 

group-based sampling [50] uses the variants of the per-group sampling approach to achieve high 

accuracy for join results. 

5.4 Semantic Sampling for Individual Queries 

The main component of our semantic sampling framework is the analysis of the query structure to 

infer compatible sampling methods. We start with the analysis of individual queries consisting of 

single streaming operators (selection, aggregation, or join), or ensembles consisting of 
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aggregation or join plus selection and projection. We show how to infer which sampling method 

is compatible with a given query.  Whenever per-group sampling is the strategy of choice, we 

show how to choose the grouping set to be used for sampling. Individual query analysis allows us 

to reason about the semantics of the query output and will be used as a building block for 

analyzing complex query sets in Section 5.5. For simplicity of the discussion we will assume 

tumbling window semantics for streaming queries (except where otherwise noted). For additional 

issues, see Section 5.4.1.1. 

5.4.1 Grouping Set 

Recall that per-group sampling hashes the set of tuple attributes called the grouping set to a large 

domain and selects only those tuples that hash into a subset of the domain. Essentially the 

grouping set defines a partitioning of the domain of tuple values and per-group sampling only 

selects a random sample of partitions. An important question that needs to be addressed is which 

attributes should be chosen for a grouping set, such that per-group sampling using the set will 

result in semantically correct query results. We will formalize this requirement for grouping sets 

in a definition below: 

Def. Grouping set GS for the stream S is compatible with a query Q on S if per-group 

sampling using GS is strongly compatible with query Q. 

Consider the following query Q: 

SELECT time/60, srcIP, destIP, max(len) 

FROM S 

GROUP BY time/60, srcIP, destIP 
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Intuitively, a compatible grouping set partitions the domain of tuple values such that any pair of 

tuples that have identical values of the grouping attributes will fall in the same partitions. For the 

query above the trivial example of compatible grouping set is the set of its group-by attributes 

{time/60, srcIP, destIP}. It is easy to observe that grouping set consisting of any non-empty 

subset of {time/60, srcIP, destIP} is also compatible with a query. More formally, we can state 

the requirements for compatible grouping sets in the following way: 

Lemma. Let G be a set of group-by attributes referenced by the query Q and H be a hash 

function used for per-group sampling. Grouping set GS is compatible with a query Q iff for 

any pair of tuples tup1 and tup2 G(tup1) = G(tup2) ⇒ H(GS(tup1)) = H(GS(tup2)). 

In addition to using the subsets of the group-by attributes, we can form new compatible grouping 

sets by using scalar expressions defined on group-by attributes. An example of such compatible 

grouping set for the query above is {(time/60)/2, srcIP & 0xFFF0, destIP & 0xFF00). An example 

of an incompatible grouping set for the query above is {time, srcIP, destIP} (since the fact that 

time1/60 = time2/60 does not imply that H(time1) = H(time2)). 

In the following sections, we will list the rules for choosing the grouping sets for two query types 

that use per-group sampling: aggregations and joins. 

5.4.1.1 Dealing with Temporal Attributes 

One issue that needs to be considered when selecting a grouping set compatible with a given 

query is whether to include the temporal attributes. Selecting the temporal attribute in a grouping 

set will effectively change the hash function used by a sampling method whenever the time epoch 

changes. This property could be desirable if we want to ensure good coverage of all groups. We 

can control the periodicity of the sampling change by changing the value of the scalar expression 

involving the temporal attribute. For example an aggregation query that uses time/60 to aggregate 
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in one-minute time buckets can use time/60/10 as a member of a grouping set to change the hash 

function every 10 minutes. 

For most of the aggregation and join queries, it is impossible to guess whether periodically 

changing the set of sampled groups is desirable based just on the query text. We make this choice 

a user option. For sliding window queries that use pane-based evaluation, changing the hashing 

function in the middle of a window will lead to incorrect query results. Therefore we always 

remove the temporal attributes from the grouping sets of such queries.  

5.4.1.2 Grouping Sets for Aggregation Queries.  

In its general form an aggregation query has the following format: 

SELECT expr1, ... ,exprn 

FROM STREAM_NAME 

WHERE tup_predicate 

GROUP BY temp_var, gb_var1, ,...,gb_varm 

HAVING group_predicate 

Compatible grouping sets for an aggregation query will have the following form:  

{sc_exp(gb_var1), … , sc_exp(gb_varn)} 

where sc_exp(x) is any scalar expression involving x. Given that there is infinite number of 

possible scalar expression, every aggregation query has an infinite number of compatible 

grouping sets. Furthermore any subset of compatible grouping sets is also compatible. 
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5.4.1.3 Grouping Sets for Join Queries 

We will consider a restricted class of join queries, namely two-way equi-join queries that use the 

semantics of tumbling windows. The general form of such query has the following format: 

SELECT expr1, ... , exprn 

FROM STREAM1 {LEFT|RIGHT|FULL} [OUTER] JOIN STREAM2 

WHERE STREAM1.ts = STREAM1.ts and STREAM1.var11 =    

 STREAM2.var21 and ... STREAM1.var1k = STREAM2.var2k and 

other_predicates 

Since a join query has 2 input streams that are independently sampled, we must define two 

compatible grouping sets – LEFT and RIGHT. The LEFT compatible grouping set will have the 

following form: {sc_exp(STREAM1.var11), … ,sc_exp(STREAM2.var1k)} while RIGHT 

compatible set will be in a form of {sc_exp(STREAM2.var21), …,sc_exp(STREAM2.var2k)}. As 

before, any subset of a compatible set is also compatible with additional restriction that LEFT and 

RIGHT compatible sets must use the same subset. 

5.4.2 Selecting the Sampling Method  

In general, it is difficult to determine the best sampling strategy for a query since the query text 

does not necessarily reveal the importance of different attributes to the output. Even though a 

system could require query writer to explicitly specify the sampling method to be used to shed the 

load in overload situations, it is desirable to automatically infer the compatible strategy to the 

extent possible just based on the query. Furthermore, automatic selection of the sampling strategy 

is critical for complex query sets with multiple interconnected queries that have different 

tolerance to sampling.  
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In this section, we present the rules that we use for automatically choosing per-tuple or per-group 

sampling for major classes of streaming operators: selection, aggregation and join. For some 

operators, both sampling methods will be acceptable in which case we suggest how to break the 

ties. 

5.4.2.1 Sampling in Selection/Projection Queries 

Selection/projection queries perform filter operation on the input stream only allowing tuples that 

pass the selection predicates. Both per-tuple and per-group sampling methods are strongly 

compatible with this type of queries according to our definition of compatibility. For standalone 

queries, per-tuple sampling is clearly preferable due to lower processing overhead – there is no 

need to read tuple attributes. However, other queries that consume the query’s output stream 

might affect the choice of compatible sampling. In Section 5 we will present the algorithm that 

selects the compatible sampling method for the query taking into account all the queries that 

consume its output stream. 

5.4.2.2 Sampling in Aggregation Queries 

The appropriate sampling method for aggregation queries largely depends on the intent of the 

query writer, which is not always evident just based on a query text. Consider the following 

aggregation query that computes the statistics for TCP flows: 

SELECT tb, srcIP, destIP,  

srcPort, destPort, sum(len), count(*) 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP, 

srcPort, destPort 
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If we are interested in getting maximum number of flows (e.g. to use it to compute the ratios of 

different types of flows), then we will be willing to tolerate the inaccuracy of sum() and cnt() 

aggregates. In that scenario uniform random sampling is the most appropriate and cheapest 

method. If, on other hand, we do not care about capturing all the flows, but are very sensitive to 

errors in aggregate values, per-group sampling is preferable. Ideally, we would want query 

writers to explicitly state their intent and tolerance to different sampling methods in the query 

language. However, it is not practical to expect the users to take the burden of explicitly labeling 

all the query nodes with acceptable sampling strategies. Explicit labeling is made more 

complicated by the complex interrelations between the queries in the query sets. Therefore, we 

would like to automatically infer the safe sampling strategy just based on query text that would 

guarantee that output remain semantically correct, even if it potentially could be inferior to an 

explicit sampling specification. 

We propose the following rules for selecting sampling methods for aggregation queries: 

1. If all the aggregate function computed in the query can be easily estimated based on random 

uniform sample (e.g. SUM, CNT, quantiles, etc), both per-group and per-tuple sampling are 

compatible with a query. 

2. If at least one of the aggregate functions referenced in a query is incompatible with random 

uniform sampling (e.g. count duplicate, OR aggregation, etc), per-group sampling must be used. 

3. If aggregation query has a HAVING clause referencing the aggregate values, per-group 

sampling must be used. The intuition behind this rule is that by providing HAVING clause for 

aggregate values query writer signifies the importance of exact computation of aggregate values. 

4. All user-defined aggregate functions (UDAFs) must be explicitly labeled by the authors to 

specify whether they are sensitive to uniform random sampling or not. This information allows us 

to treat UDAFs as any other aggregate function when deciding which sampling strategy is 

compatible with the query. 
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5.4.2.3 Sampling in Stream Merge Queries 

A merge query performs a union of two streams R and S in a way that preserves the ordering 

properties of the temporal attributes. R and S must have the same schema, and both must have a 

temporal field, say t, on which to merge. In order to preserve the abstraction of having one large 

stream, the sampling of merged streams must be coordinated. Similar to selection/projection 

queries, both sampling methods are compatible; in addition both streams must be sampled using 

the same method with the same sampling rates. Additional restrictions on load shedding strategy 

might be placed by other queries that consume the merged stream; we will discuss it in more 

details in Section 5. 

5.4.2.4 Sampling in Stream Join Queries 

In a query language with tumbling window semantics, a join between two data streams R and S 

must contain an equality predicate that relates a timestamp from R to one in S. In addition to this 

special equality predicate, join queries might contain any number of other predicates relating the 

attributes from two streams. Consider the join query below that correlates two streams of TCP 

packets with matching source and destination IP address. 

SELECT TCP1.tb, TCP1.srcIP, TCP1.len + TCP2.len 

FROM TCP1 JOIN TCP2 

WHERE TCP1.srcIP=TCP2.destIP and TCP1.tb = TCP2.tb 

Both per-tuple and per-group sampling using join attributes guarantee that the output of the query 

for every time bucket tb will be a subset of the exact output and therefore satisfy our definition of 

compatible sampling method. However, using per-tuple random uniform sampling with sampling 

rate R reduces the effective sampling rate to R2.  Per-group sampling with rate R using srcIP for 

stream TCP1 and destIP for stream TCP2 k, keeps the query effective sampling rate at R and is 
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therefore preferable. In general we will always use per-group sampling for join queries except in 

the special case where the only attribute in the join equality predicates is temporal attribute. In 

that special case, both per-tuple and per-group sampling are acceptable. 

5.5 Semantic Sampling for Query Sets 

Data stream management systems are expected to run large number of queries simultaneously; 

queries in turn may contain a number of different query nodes (selections, aggregations, merges, 

and joins). Each of the nodes might place different requirements for range of acceptable sampling 

methods.  

Example: Consider the following query set: 

Query flow_dup_count: 

SELECT tb, srcIP, destIP, srcPort, destPort,  

 count_dups(seq_nbr) as dup_cnt 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP, srcPort, destPort 

Query max_dups: 

SELECT tb, srcIP, destIP, MAX(dup_cnt) 

FROM flow_dup_count 

GROUP BY tb, srcIP, destIP 

Query flow_dup_counts computes the number of duplicate packets in each TCP flow; query 

max_dups computes the maximum number of duplicates for each pair of communication hosts. 

Query flow_dup_count requires per-group sampling to be used with a compatible grouping set of 

the form of {sc_exp(srcIP), sc_exp(destIP),sc_exp(srcPort),sc_exp(destPort)} or any of its non-
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empty subsets. Query max_dups, on other hand, requires the input stream to be per-group 

sampled using {sc_exp(srcIP), sc_exp(destIP)}. Considering both grouping sets we can infer that 

per-group sampling of TCP stream using {sc_exp(srcIP), sc_exp(destIP)} will satisfy both 

queries. A similar inference is required for join queries whose child queries have different 

grouping sets.  

In what follows, we will present our analysis framework that infers the set of compatible 

sampling methods for arbitrary Directed Acyclic Graph (DAG) of streaming query nodes. 

5.5.1 Placement of sampling in a query DAG 

The placement of the sampling operators in a query DAG critically affects the effectiveness of 

load shedding mechanism. One obvious choice is to perform sampling directly on the stream 

source before processing tuples by low-level operators. Shedding tuples as early as possible 

avoids investing processing time into computation of aggregate tuples that may eventually be 

discarded. Dropping tuples at higher-level nodes in query tree is generally less efficient and 

makes reasoning about the semantics of answers more difficult. One scenario in which sampling 

on non-leaf query node is justifiable is when output of a query is shared by multiple consumers 

with different tolerance to the rate with which input stream is sampled. We do not concern 

ourselves with this scenario and will only consider leaf-level sampling. 

5.5.2 Reconciling query grouping sets 

Previously, we discussed the need to reconcile the different requirements two queries might have 

for compatible grouping set to generate a new grouping set compatible with both queries. We 

abstract this issue using Reconcile_Group_Sets(), defined as follows: 
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Def.  Given two grouping set definitions GS1 for query Q1 and GS2 for query Q2, 

Reconcile_Group_Sets() is defined to return the largest grouping set Reconciled_GS such that 

per-group sampling using Reconciled_GS is strongly compatible with both Q1 and Q2. 

Considering a simple case of grouping sets consisting of just the stream attributes (no scalar 

expressions involved), Reconcile_Group_Sets() computes the intersection of two grouping sets. 

For example Reconcile_Group_Sets({srcIP, destIP}, {srcIP, destIP, srcPort, destPort},) is a set { 

srcIP, destIP }. For more general case of grouping sets involving arbitrary scalar expressions 

Reconcile_Group_Sets uses scalar expression analysis to find “least common denominator”. For 

example Reconcile_Group_Sets  ({sc_exp(time/60), sc_exp(srctIP), sc_exp(destIP)}, 

{sc_exp(time/90}, sc_exp(srcIP & 0xFFF0)} ) is equal to a set {sc_exp(time/180, sc_exp(srcIP & 

0xFFF0)}.  The Reconcile_Group_Sets function can make use of either simple or complex 

analysis based on implementation time that is available.  A full discussion is beyond the scope of 

this dissertation, but we expect that the simple analyses used in the example will suffice for most 

cases. 

5.5.3 Algorithm for assigning sampling methods to leaf nodes in query set 

We now describe an algorithm for assigning the sampling methods to each of the input stream for 

arbitrary query sets. The algorithm takes a query DAG as an input and produces labelling of the 

leaf-nodes with the compatible sampling method. The algorithm is comprised of the following 

stages: 

Transform the query DAG into query forest 

We transform the query DAG by splitting all the query nodes that have multiple parent nodes into 

set of independent nodes that have a single parent. Since it is possible that multiple copies of the 
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same query nodes will get assigned conflicting sampling methods, we will perform final 

reconciliation in the final stage of the algorithm. 

Label sampling-unsafe nodes 

We identify two classes of query nodes for which we cannot produce a compatible sampling 

strategy: 

1. Aggregation queries in which none of the grouping attributes that can be expressed as a 

scalar expression involving an attribute of the source stream (e.g. a grouping attribute is the result 

of aggregation computed in a lower-level query). 

2. Join queries that do not contain an equality predicate involving attributes of the source 

streams.  

GS2left GS2right

GS1left GS1right

GS3 GS4

compatible with per-tuple sampling

per-group sampling required

sampling unsafe

 

Figure 5-2: Labelling of nodes in the query set 
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We label these types of nodes as sampling-unsafe, since their output results cannot be 

approximated. 

Assign and reconcile node grouping sets 

In this phase of the algorithm, we reconcile sampling requirements of all dependent query nodes 

in the query set. Formal description of reconciliation algorithm is given below. 

Input: Topologically sorted list of nodes in the query tree V1,   V2,  …, Vn 

Output: Labelling of the leaf-nodes with the compatible sampling method. 

Algorithm: 

1. For every i ∈ [1 to n], compute GS(Vi). For binary operators compute GSleft (Vi) and GSright (Vi). 

If the node is compatible with per-tuple sampling, set GS(Vi) to the union of all attributes of input 

schema. If no compatible sampling strategy exists, set GS(Vi) = ∅. 

2. For every i ∈ [1 to n] 

If Vi is unary operator with child node Vj.  

set GS(Vj) = Reconcile_Group_Sets(GS(Vi),,  GS(Vj)) 

If Vi is binary operator with child node Vleft and Vright.  

set GS(Vleft) = Reconcile_Group_Sets(GS(Vi),,   

GS(Vleft)) and GS(Vright) = Reconcile_Group_Sets(GS(Vi),,  GS(Vright)) 

3. For every pair of nodes Vi and Vj s.t. Vi and Vj share common ancestor, set GS(Vi) = GS(Vj) = 

Reconcile_Group_Sets(GS(Vi),,  GS(Vj)) 

Transform query forest back into query DAG  
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Remember that in the first phase of the algorithm the nodes that have multiple parents are split to 

form a forest. In order to guarantees that multiple copies of the same node were not assigned a 

conflicting grouping sets we perform a final reconciliation of previously split nodes. All the split 

nodes that cannot be reconciled (result of the Reconcile_Group_Sets() is an empty set)  are kept 

separate as independent instances of a query that use two different sampling methods. 

5.6 Limitations of the Semantic Sampling Framework 

Perhaps the biggest limitation of the semantic sampling framework lies in the inability to identify 

the true intent of the query writer just based on the query text. Consider the previously discussed 

query which computes TCP flows, maintaining only simple aggregates (sum() and cnt() ).  If the 

query writer is interested in getting maximum number of flows (e.g. to use it to compute the 

ratios of different types of flows), then we will be willing to tolerate the inaccuracy of sum() and 

cnt() aggregates. In that scenario uniform random sampling is the most appropriate and cheapest 

method. Based on the rules given in section 5.4, our automatic analysis would select this 

sampling strategy. If, on other hand, the query writer does not care about capturing all the flows, 

but is very sensitive to errors in aggregate values, per-group sampling is preferable. It is therefore 

easy to imagine the scenarios where automatic inference of compatible sampling method will fail 

to generate the preferred solution.  

Another limitation of the proposed framework is the rather small suite of base sampling 

algorithms. For many widely used streaming queries, importance-based sampling algorithms 

which aim to reduce the variance of the approximation are more appropriate. Incorporating such 

algorithms into general semantic sampling framework is a promising future work direction that 

we discuss in Chapter 7. 
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5.7 Experimental Evaluation 

In this section, we present our experiments with semantic sampling in the context of the 

Gigascope streaming database. We implemented both per-group and per-tuple sampling by 

augmenting query plans with additional selection predicates implementing corresponding 

sampling method. All sampling predicates were pushed to leaf nodes in query execution plan by 

query optimizer. 

All the experiments were conducted on a live network feed from a data center tap. All our queries 

monitor the set of two high-speed DAG4.3GE Gigabit Ethernet interfaces. Both Gigabit 

interfaces receive approximately 100,000 packets per second (about 400 Mbits/sec). Our main 

goal is to compare the accuracy of the query results for a system that uses random uniform 

sampling as a load shedding mechanism to accuracy achieved using semantic sampling. We also 

evaluated the effectiveness with which both approaches can reduce the overall system load. All 

experiments were conducted on dual processor 2.8 GHz P4 server with 4 GB of RAM running 

FreeBSD 4.10. 

5.6.1 Effective Sampling Rate for Join Queries 

In this experiment, we evaluate how the results of the join queries are affected by the choice of 

the sampling strategy. We use a query from the networking domain that computes the round-trip 

delays for active TCP connections. Round-trip delay is defined as a time difference between SYN 

packet that initiates the TCP connection and corresponding SYN ACK packet. Computing round 

trip times requires the join between the streams of SYN and SYN ACK packets. The 

syn_ack_delay query computes the join between two streams as shown below: 

Query syn_ack_delay: 

SELECT S.tb, S.srcIP, S.destIP, S.srcPort, S.destPort,  



 

 

97

 (A.timestamp - S.timestamp) as rtt 

FROM tcp_syn S JOIN tcp_syn_ack A 

WHERE S.srcIP = A.destIP  and S.destIP = A.srcIP and  

  S.srcPort = A.destPort and  S.destPort = A.srcPort and 

  S.tb = A.tb and   S.timestamp <= A.timestamp and  

  (S.sequence_number + 1) = A.ack_number 
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Figure 5-3: Effective sampling rate 

To compare the performance of semantic sampling to traditional per-tuple sampling, we compare 

the ratio of different round trip delays computed by each method with exact value of the round 

trip delays computed when no sampling is used. Essentially the query computes the effective 

sampling rate that is achieved by the join using different sampling methods. We varied sampling 

rates from 0.02 to 0.2, which is typical range for network monitoring applications. The results of 

the experiments are presented in Figure 5-3.  
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The results of the experiments demonstrate that effective sampling rate when using semantic 

sampling with sampling rate R is very close to R.  On the other hand, uniform random sampling 

performs poorly for join queries and leads to quadratic effective sampling rate for the output 

results. In order to achieve the accuracy of the semantic load shedding, traditional sampling 

method will have to use significantly higher sampling rate R , which will correspondingly 

increase the overall system load. 

5.6.2 Sampling Sensitive Aggregations 

In this experiment, we observe how the accuracy of the results produced by sampling-sensitive 

aggregation queries is affected by the choice of sampling strategy. The queries used in 

experiment analyze the network performance by measuring the number of TCP packets that 

needed to be retransmitted due to packet loss. Monitoring retransmission rates is widely used by 

network analyst for analyzing the quality of end-to-end communications in managed network. 

The query dup_all_count computes the number of duplicate sequence numbers for each network 

flow identified by (srcIP, destIP, srcPort, destPort) as well as total number of packets in a flow. 

The results from query dup_and_all_count are further aggregated in query dup_ratio that for 

every 60 second time bucket computes the ratio of duplicate TCP packets to total number of 

packets sent. Corresponding GSQL queries dup_all_count: and dup_ratio are shown below. 

Query dup_all_count: 

SELECT tb, count_dups(sequence_number) as dup_cnt,  

count(*) as full_cnt 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP, srcPort, destPort 

Query dup_ratio: 
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SELECT tb, sum(dup_cnt) / sum(full_cnt) 

FROM dup_and_all_count 

GROUP BY tb 

Retransmission rate
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Figure 5-4: Accuracy for aggregation queries 

As in previous experiment, we vary sampling rate from 0.02 to 0.2 in 0.02 increments.  We 

compare a baseline configuration computing exact TCP retransmission rates (no sampling) with 

semantic sampling and per-tuple sampling.  For a given sampling rate, we ran all three queries at 

the same time. The results of the experiments are presented in Figure 5-4. They demonstrate that 

semantic sampling achieves accuracy from 91 to 98%, while uniform random sampling prevents 

count_dups() aggregate from detecting large number of duplicate sequence numbers and leads to 

misleading results. 



 

 

100

5.6.3 Semantic Sampling for Query Sets 

In this experiment we observe how the choice of sampling strategy affects the accuracy of query 

sets involving multiple aggregation and join queries. The query set used in this experiment is 

designed to detect a particular type of Distributed Denial of Service (DDoS) attack known as a 

SYN-flood. During a SYN-flood, the attacking hosts send a large number of SYN packets with 

spoofed random IP addresses, which forces the victim host to wait forever for matching SYN 

ACK packets. To detect a SYN-flood attack, we compute the ratio of TCP SYN packets that have 

corresponding SYN ACK packets. The query matched_syn_count computes the join between the 

stream of SYN and SYN ACK packets and aggregates the results by computing the total number 

of matched SYN packets for every 60 second time bucket. The query all_syn_count computes the 

total number of SYN packets observed in the same timebucket, while matched_syn_ratio 

computes the ration of matched SYN packets to total number of SYN packets: 

Query mached_syn_count: 

  SELECT tb, count(*) 

 FROM tcp_syn S JOIN tcp_syn_ack A 

 WHERE S.srcIP = A.destIP and S.destIP = A.srcIP  

and S.srcPort = A.destPort  

and S.destPort = A.srcPort and S.tb = A.tb 

and (S.timestamp <= A.timestamp)  

and (S.sequence_number + 1) = A.ack_number 

GROUP BY time/60 as tb 

Query all_syn_count: 

SELECT tb, count(*) as cnt 

FROM tcp_syn S 
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GROUP BY time/60 as tb 

Query matched_syn_ratio: 

SELECT A.tb, M.cnt / A.cnt as ratio 

FROM all_syn_count A OUTER_JOIN matched_syn_count M 

WHERE A.tb = M.tb 

As in previous experiments, we vary sampling rate from 0.02 to 0.2 in 0.02 increments. We 

compare a baseline configuration computing the exact ratio of matched SYN packets (no 

sampling) with semantic sampling and per-tuple sampling. The results of the experiments are 

presented in Figure 5-5. 

The results of the experiment confirm that semantic sampling maintains the correct semantics of 

the output results with observed accuracy in 91-99% range. Uniform random sampling on other 

hand again leads to misleading results and suggests that there is a SYN flood attack in progress 

while in fact the ratio of matched SYN packets is within norm. 
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Figure 5-5: Accuracy for complex query set 

5.6.4 Efficiency of Load Shedding  

In our final experiments, we evaluate the effectiveness of different sampling techniques at 

reducing the overall system load. We used the query set from Section 6.2 and observed the effect 

of sampling the input stream on average CPU load. Even though the experiments were conducted 

on live data stream and the load conditions changed slightly from one experiment to another, 

overall the stream load was stable and our comparison results are still valid.  

We varied the sampling rate from 0.02 to 0.2 in 0.02 increments and observed the overall 

reduction in average CPU load for both semantic and per-tuple sampling. The results of the 

experiments are presented in Figure 5-6. 
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Figure 5-6: CPU load for different sampling methods 

The results of the experiment confirm that sampling is an efficient load shedding strategy; 

varying the sampling rate from 0.02 to 0.2 we were able to reduce the overall system load from 

0.05 to 0.2. It is interesting to note that semantic sampling achieves slightly better load reduction 

than per-tuple sampling despite the fact that it uses a more expensive sampling predicate. The 

main reason behind phenomena is that per-group sampling for aggregation queries discards larger 

percentage of groups compared to per-tuple sampling with the same sampling rate. Since the cost 

of the execution of aggregation operator is largely determined by the number of groups in the 

output, semantic sampling is more efficient at reducing the load for aggregation queries. 

5.8 Summary 

Data Stream Management Systems (DSMS) processing high rate data steams are often subject to 

bursts of high activity, which might overload the system, and have to be robust. In this chapter, 
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we show how to perform general-purpose query-aware sampling, which we call semantic 

sampling. We propose methods for analyzing a large class of streaming operators and judiciously 

choosing sampling methods that guarantee semantically correct results. We extend our single-

operator techniques to a general framework for analyzing any set of queries to determine a 

semantics-preserving sampling strategy. Since it is important for applications to know which 

sampling methods and sampling rates were used to compute the query results, we propose to 

embed special punctuations into query output stream that would contain this information.  The 

methods described in this chapter can be extended to handle a larger suite of sampling algorithms, 

such as various types of “importance” sampling which aim to reduce the variance in 

approximations [45]. 

We evaluate our semantic sampling approach by running various sets of streaming queries on 

high-rate data streams. The results of our experiments confirm that our method provides 

semantically correct and highly accurate results for scenarios where traditional per-tuple sampling 

fails to provide semantically meaningful results. We also demonstrate that semantic sampling is 

effective at reducing the overall system load, which makes it a very valuable technique the load 

shedder can employ to guarantee the robustness and the correctness of the results under overload 

conditions. 
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Chapter 6 

6. Query-aware Partitioning for Data 

Streams 

The load generated by many streaming applications frequently exceeds by far the computation 

capabilities of single centralized server, making distributed query processing a necessity. Query -

independent stream partitioning mechanisms widely used by modern distributed DSMS fail to 

reduce the load of a large class of streaming queries as compared to centralized systems, and can 

even increase the load. 

In this chapter, we present an alternative approach - query-aware data stream partitioning that 

allows us to scale the performance of the streaming queries in a close to linear fashion. We 

present methods for analyzing any given query and choosing the optimal partitioning scheme, and 

show how to reconcile potentially conflicting requirements that different queries might place on 

partitioning. We propose a query analysis framework for determining the optimal partitioning and 

a partition-aware distributed query optimizer that takes advantage of existing partitions. 

Experiments on a small cluster of processing nodes on high-rate network traffic feeds with 

different query sets demonstrate that our methods effectively distribute the load across all 

processing nodes and facilitate efficient scaling whenever more processing nodes become 

available. 
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6.1 Introduction 

The volume of data that needs to be processed in real time for streaming applications can easily 

exceed the resources available on a centralized server. For example, dual OC768 network links 

used in Internet backbone generate up to 2x40 Gbit/sec of traffic, which corresponds to roughly 

112 million packets/sec. Even a fast 4GHz server can spend at most 26 cycles processing each 

tuple, which does not allow it to perform any meaningful processing short of incrementing few 

counters. Furthermore, this data load exceeds by order of magnitude the throughput of fastest 

computer buses such as PCI-X and PCI-Express. The rate of scientific data feeds is typically 

lower than network traffic feeds, but the tuple sizes and per-tuple processing costs are 

significantly larger and can include more complex computation such as Fast Fourier Transforms 

(FFT). As a result scientific data processing can also result in a load that by order of magnitude 

exceeds the capacity of a single centralized server. 

Distributed DSMSs attack the performance problem by spreading the load across a number of 

cooperating machines running independent DSMSs. Two commonly used techniques used to 

distribute the load across the participating machines are partitioning query plans into subplans to 

be executed in parallel (query plan partitioning) and splitting resource-intensive query nodes into 

multiple nodes working on subset of data feed (data stream partitioning). However, query plan 

partitioning fails to generate feasible execution plans if the original query plan contains one or 

more operator that is too “heavy” for a single machine. Such query plans are very common in 

network monitoring applications in which resource consumption of different query nodes is 

highly non-uniform. 

Data stream partitioning as commonly implemented in DSMSs is done in query-independent 

fashion (e.g. partitioning tuples in random or round robin fashion). However, for a large class of 
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queries, such data stream partitioning fails to significantly reduce the load as compared to a 

centralized system and can even lead to increase in the load. 

Example. Let us consider an example of a network monitoring query computing traffic flows – 

summaries of packets between a source and a destination during a period of time.  The group-by 

attributes are the source and destination IP address, the source and destination port, and the 

protocol, while the aggregates include the number of packets, the number of bytes transferred, 

start and stop times, and so on. These types of queries are popular in various network monitoring 

applications – from performance monitoring to detecting network attacks [75]. The SQL version 

of the query is shown below.  

SELECT time,srcIP,destIP,srcPort,destPort, 

COUNT(*), SUM(len), MIN(timestamp),MAX(timestamp), … 

FROM TCP 

GROUP BY time,srcIP,destIP,srcPort,destPort 

Suppose that data stream partitioning is applied in round robin fashion to evenly distribute input 

tuples among n machines that compute partially aggregated flows and send them to a central node 

that merges the partials flows and computes a final aggregation. It is easy to see that in the worst 

case, a single flow will result in n partial flows being computed and transmitted over the network 

to central aggregating node. In a more typical network monitoring scenario, the query is only 

interested in a subset of all flows. For example, suppose we want to monitor attack flows that do 

not follow TCP protocols and can frequently be differentiated by OR of the flags of the packets in 

the flow. In SQL we can write this query by adding a corresponding HAVING clause to the flow 

query (e.g. HAVING OR_AGGR(flags)= ATTACK_PATTERN). It is easy to see that none 

of the nodes performing local aggregation will be able to apply the HAVING clause to filter out 

regular flows. Depending on the number of participating hosts, the CPU and network link load on 
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final aggregation node can exceed the load on single node in centralized case, rendering the 

execution strategy infeasible.  

For this example, a more reasonable approach for distributing the load among the participating 

machines is to partition the input data stream based on flows (e.g. evenly distributing entire 

flows). If such partitioning is utilized, all flows can be computed locally and filtered using the 

HAVING clause before being transmitted over the network. The problem of determining a good 

partitioning scheme for certain classes of individual relational queries (aggregations and 

equijoins) has been studied in the context of parallel relational databases; however in the 

streaming environment existing approaches do not scale to complex query sets and massive data 

rates. Data stream management systems are generally expected to run a large number of queries 

simultaneously; queries in turn may contain a number of different subqueries. Each of the 

subqueries might place different requirements for the way partitioning has to be done. These 

requirements can easily be in conflict with each other and it would not be always possible to 

satisfy all of them. It is also not feasible to dynamically repartition the inputs to suit individual 

queries as is commonly done in parallel relational databases, since each such repartitioning puts 

the entire stream back into inter-node network without any data reduction, which greatly 

increases communication costs. In general, we need a partitioning mechanism that can 

automatically analyze an arbitrary complex query set and determine the optimal initial stream 

partitioning scheme. 

In order to incorporate the results of the analysis into distributed query optimization, we need to 

make the optimizer fully aware of the partitioning scheme used. However, we cannot make an 

assumption that the actual partitioning scheme used by the system is identical to the optimal one 

recommended by the analysis. For many applications, the implementation details of particular 

systems can place additional constraints on what kind of partitioning can be used. Consider for 

example an application that wants to monitor high-speed OC768 network. Monitoring the 
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80Gbit/sec link requires specialized network interface cards that can partition the data at line 

speeds. Even though such interface cards are typically programmable using FPGAs, the limited 

number of available gates place restrictions on a type of partitioning can be performed in 

hardware. For example it is possible to implement partitioning based on TCP fields such as 

source or destination IP addresses, but accessing fields from higher-level protocols such as HTTP 

requires regular expression processing that is not feasible to do at OC768 speeds. Therefore, we 

need a distributed query optimizer that is flexible enough to take advantage of any available 

partitioning. 

The query-aware data stream partitioning mechanism proposed in this chapter includes both an 

analysis framework for determining the optimal partitioning and a partition-aware distributed 

query optimizer that transforms the unoptimized query plan into a semantically equivalent query 

plan that takes advantage of existing partitions. 

The contributions we make in this chapter are as follows. We 

1. Develop the concept of query-aware data stream partitioning for distributed stream 

processing. 

2. Present techniques for determining the appropriate partitioning scheme for a given query. 

3. Design and develop a framework a framework for analyzing a set of queries to determine a 

partitioning strategy that would satisfy all the queries in a set. 

4. Determine a set of query transformation rules to be used by query optimizer to take advantage 

of existing data stream partitioning. 

5. Perform detailed experiments with a live cluster of stream processing nodes and show that 

our partitioning methods lead to highly efficient distributed query execution plans that scale 

linearly with the number of nodes. 
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The rest of the chapter is organized as follows. We discuss related work in Section 6.2. We give 

an overview of query-aware data stream partitioning in Section 6.3. In section 6.4 we present the 

partition analysis framework for arbitrary query sets. Section 6.5 covers partition-aware query 

transformation rules for distributed query optimization. In Section 6.6 we present the results of 

experimental evaluation of our techniques. Conclusions and promising directions for future work 

are in Section 6.7. 

6.2 Previous Work 

A number of currently active research data streaming projects focus on extending DSMS to 

enable scalable distributed stream processing [18][106]. Two main approaches used to distribute 

the load across the cooperating machines are query plan partitioning and data stream partitioning. 

The load distribution mechanism used in Borealis [18] relies on query plan partitioning to balance 

the load on cooperating DSMSs. As we discussed earlier, this approach is not feasible if a query 

plan contains one or more operators that are too “heavy” for a single machine. In addition to 

query plan partitioning, Borealis also employ fairly simple data stream partitioning mechanism 

called box splitting. However, partitioning is done in a query-independent manner and requires 

expensive processing of partial results generated by split query nodes. 

The FLUX load partitioning operator used in TelegraphCQ DSMS [106] supports a variety of 

data stream partitioning schemes including the hash-based strategy used in our mechanism. The 

primary goal of FLUX is to avoid imbalance in the load caused by the data scheme. To address 

the imbalance problem it uses an adaptive partitioning adjusted at runtime depending on observed 

data skew. The partitioning itself is still however operator-independent and suffers from 

excessive load on the node combining partial results. 
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The Grid Stream Data Manager (GSDM) described in [67] proposes operator-dependent windows 

split strategy which partitions the input data stream in such a way that partial results can be 

inexpensively combined. The query writer is expected to manually provide specific stream 

distribute/stream merge routines for all query nodes eligible for optimization. The authors do not 

address the issue of automatic inference of an optimal splitting strategy for arbitrary query sets. 

Recent work on automating physical database design for relational databases [98] addresses a 

problem of choosing a database partitioning scheme that is optimal or close to optimal for a given 

query workload. The proposed system relies on the IBM DB2 query optimizer for both 

recommending candidate partitions and estimating potential query costs. Even though some of the 

technique suggested by the authors can potentially be applied to stream processing, the main 

focus of the work is on processing of large-scale stored data sets. 

6.3 Query-Aware Stream Partitioning Overview 

The goal of the query-aware data stream partitioning mechanism is to distribute input tuples 

across multiple machines in such a way that maximizes the amount of data reduction that can be 

performed locally before shipping the intermediate results to a node that produces final results. 

We would call such partitioning compatible with a given query. In this section we will give a 

formal definition of partition compatibility and show how to infer compatible partitioning scheme 

for two major classes of streaming queries – aggregations and joins. 
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6.3.1 Illustrative Example 
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Figure 6-1: Sample query execution plan 

We illustrate the query-aware partitioning mechanism by working through an example query set. 

The first query (flows, denoted γ1) computes simplified TCP traffic flows for every 60 second 

time epoch (for each communicating source and destination host it produces a number of packets 

sent between them). The higher-level aggregation query (heavy_flows, denoted γ2) computes 

“heaviest” flows for each source (heaviest flows have the largest number of packets). Finally a 

self-join query (flow_pairs, denoted ) correlates heavy flows that span consequent time 

epochs. The corresponding SQL statements for both queries are shown below: 

Query flows: 

SELECT tb,srcIP,destIP,COUNT(*) as cnt 

FROM TCP 

GROUP BY time/60 as tb,srcIP,destIP 

Query heavy_flows: 

SELECT  tb,srcIP,max(cnt) as max_cnt 
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FROM flows 

GROUP BY tb, srcIP 

Query flow_pairs: 

SELECT S1.tb, S1.srcIP, S1.max_cnt,S2.max_cnt 

FROM heavy_flows S1, heavy_flows S2 

WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1 

A query plan for execution of the queries is shown in Figure 6-1. 

1. Which partitioning scheme is optimal for each of the queries in an execution plan? 

Intuitively, a lower-level aggregation query (node γ1) will benefit the most from a partitioning 

which guarantees that no tuples with identical pair of attributes (srcIP, destIP) will end up in 

different partitions. Any partitioning that satisfies this properly would allow γ1 to be evaluated in 

parallel on all participating hosts with linear scalability. Following a similar intuition, the query 

nodes γ2 and self-join node will benefit the most if the input stream was partitioning using 

(srcIP). Later in the section, we will formally define what requirements a partitioning scheme 

must satisfy and give inference rules to compute an appropriate partitioning for major classes of 

streaming queries. 

2. How to reconcile potentially conflicting partitioning requirement from different queries in a 

query set? 

As we have seen previously, query γ1 will benefit mostly from partitioning based on attributes 

(srcIP, destIP), while the rest of the queries would prefer partitioning on (srcIP). Since it is 

(usually) not feasible to partition the input stream simultaneously in multiple ways, we need to 

reconcile partitioning requirements of different query nodes. It is easy to see that partitioning on 
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(srcIP) can satisfy all queries in our sample query set. More generally, we will need an algorithm 

for inferring an optimal set of attributes to be used for partitioning for arbitrary complex query 

set. We will present such an algorithm in Section 6.4. 

3. How can we use the information about the scheme used for partitioning in distributed query 

optimizer? 

Assuming the input stream is partitioned as recommended by the query analysis, we can use this 

information to drive the distributed query optimizer. In our prototype implementation the 

optimizer works by invoking a set of partition-aware transformation rules on nodes of original 

query plan in bottom-up fashion.  

In many real life applications, the query writer does not have complete control over how the 

partitioning is done. As we mentioned in the introduction, processing capabilities of the hardware 

used for partitioning can place restrictions on the partitioning scheme. For example we could 

have hardware that can only split the input stream based on (destIP). The query optimization 

framework needs to be flexible enough to maximally take advantage of any partitioning, even if it 

is different from the optimal one.  An example distributed query plan produced by the optimizer 

under the assumption that partitioning is done based on (destIP) is shown in Figure 6-2. 
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Figure 6-2: Optimized query execution plan 

6.3.2 Hash-Based Stream Partitioning 

The main goal of any stream partitioning scheme is to distribute tuples evenly across multiple 

distributed nodes in such a way that load is evenly spread across all nodes. There are multiple 

ways in which such scheme could be implemented, but one of the simplest can be done by 

hashing selected set of tuple attributes. More formally we will define hash-based tuple 

partitioning in the following way: 

Def. Let A be a set of the tuple attributes (attr1, attr2, …, attrn) and H be a hash function with 

large integer domain [0, R]. A hash-based tuple partitioning for stream S is defined as 

partitioning S = ∪ Partn_i, where Partn_i is defined as a set of tuples with i * R/M ≤ H(attr1, 

attr2, …, attrn) < (i + 1) * R/M, where M is the number of partitions. The set of attributes A 

will be further called partitioning set. 
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It is easy to see that hash-based partitioning has a property that  ∀ i ≠ j  Partn_ii  ∩ Partn_j  = ∅. 

It is often beneficial not to restrict ourselves to using singleton tuple attributes and instead allow 

grouping sets to include arbitrary scalar expression involving tuple attributes. For example one 

choice of partitioning set for could be (srcIP & 0xFFF0, destIP) which will effectively partition 

tuples based on subnet that srcIP belongs to. Let sc_expi(attri) represent a scalar expression.  For 

the rest of the chapter we will only assume more general definition of partitioning set: 

(sc_exp1(attr1), sc_exp2(attr2),  ..., sc_expn(attrn)) 

6.3.3 Partition Compatibility 

The choice of the partition set critically impacts the ability of the query optimizer to reorganize 

the query plans for distributed evaluation. Consider the following aggregation query that 

computes simple network flows: 

SELECT tb, srcIP, destIP, sum(len) 

FROM PKT 

GROUP BY time/60 as tb, srcIP, destIP 

It is easy to see that partitioning using partitioning set (time/60, srcIP, destIP) allows each host to 

execute the aggregation query locally on corresponding partition with no further aggregation 

necessary. A partition-aware query optimizer can replace the aggregation query by stream union 

of the identical queries running on individual partitions. However, if (srcIP, destIP, srcPort, 

destPort) is used as partitioning set, this optimization would not be possible. We will capture the 

notation of “optimizer-friendly” partitioning set in the following definition: 

Def. Partitioning set P is compatible with a query Q if for every time window, the output of 

the query is equal to a stream union of the output of the Q running on all partitions produced 

by P, 



 

 

117

An example of such compatible partitioning set for the query above is {(time/60)/2, srcIP & 

0xFFF0, destIP & 0xFF00). An example of an incompatible grouping set for the query above is 

{time, srcIP, destIP} (since tuples belonging to the same 60 second epoch will end up in different 

partitions). 

In the following sections, we will give the rules for inferring the compatible partioning sets for 

two major classes of streaming queries - aggregations and joins. Other types of streaming queries 

(selection, projection, union) are always compatible with any partitioning sets and therefore we 

will omit the discussion of these query types. 

6.3.4 Inference of Partitioning Sets for Streaming Queries 

The definition of partition compatibility given in the previous section is very generic and does not 

directly tell us how to infer the partitioning set for a given query. In this section, we give 

equivalent definitions of query compatibility for both aggregation and join queries that can be 

directly applied to compute the partitions. For simplicity of the discussion we will assume 

tumbling window semantics for streaming queries (except where otherwise noted). 

6.3.4.1 Dealing with temporal attributes 

One issue that needs to be considered when selecting a partitioning set compatible with a given 

query is whether to include the temporal attributes. Selecting the temporal attribute in a 

partitioning set will effectively change the hash function used by a partitioning method whenever 

the time epoch changes. This property could be desirable if we want to avoid bad hash functions 

that fail to uniformly spread the load across the participating machines. We can control the 

periodicity of the partitioning change by changing the value of the scalar expression involving the 

temporal attribute. For example an aggregation query that uses time/60 to aggregate in one-

minute time buckets can use time/60/10 as a member of a partitioning set to change the hash 
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function every 10 minutes. Note that for sliding window queries that use pane-based [84], 

changing the hashing function in the middle of a window will lead to incorrect query results. 

Therefore, we always remove the temporal attributes from the partitioning sets of such queries. 

For most of the aggregation and join queries, it is impossible to guess whether periodically 

changing a hash-based partitioning is desirable based just on the query text. It would require a 

priori knowledge of the distribution of the values of tuple attributes. An alternative solution is to 

monitor how well the hash function distributes the load at the runtime and adjust the hash 

function on epoch boundaries if necessary. A full discussion of the runtime load monitoring 

system is beyond the scope of the dissertation. 

6.3.4.2 Partitioning sets for aggregation queries  

In its general form an aggregation query has the following format: 

SELECT expr1, exp2, ... ,exprn 

FROM STREAM_NAME 

WHERE tup_predicate 

GROUP BY temp_var, gb_var1, ... , gb_varm 

HAVING group_predicate 

We only consider a subset G of these groupby variables (gb_var1, ... , gb_varm) that 

can be expressed as a scalar expression involving an attribute of one of the source input streams 

(ignoring grouping variables that are, e.g.,  results of aggregations computed in lower-level 

queries).  

Lemma 1. Let G be a set of group-by attributes referenced by the query Q and let P be 

partitioning set, P =  (sc_expr(attr1), sc_exp(attr2),  …, sc_exp(attrn) ).Query Q is compatible 
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with partitioning set P iff for any pair of tuples tup1 and tup2 G(tup1) = G(tup2) ⇒ P(tup1)) = 

P(tup2). 

Following Lemma 1, any compatible partitioning set for aggregation query Q will have the 

following form:  

{sc_exp(gb_var1), … , sc_exp(gb_varn)} 

where sc_exp(x) is any scalar expression involving x. Given that there is an infinite number of 

possible scalar expressions, every aggregation query has an infinite number of compatible 

partitioning sets. Furthermore, any subset of a compatible partitioning set is also compatible. 

6.3.4.3 Partitioning sets for join queries  

We will consider a restricted class of join queries, namely two-way equi-join queries that use the 

semantics of tumbling windows. The general form of such query has the following format: 

SELECT expr1, expr2, ... ,exprn 

FROM STREAM1 AS S {LEFT|RIGHT|FULL}  

[OUTER] JOIN STREAM2 as R 

WHERE STREAM1.ts = STREAM1.ts and  

  STREAM1.var11 = STREAM2.var21 and ... 

  STREAM1.var1k = STREAM2.var2k and  

  other_predicates 

For ease of the analysis, we will only consider join queries whose WHERE clause is in 

Conjunctive Normal Form (CNF) in which at least one of the CNF terms is equality predicate 

between the scalar expressions involving attributes of the source streams. Let J be a set of all such 

equality predicates { sc_exp(R.rattr1) = sc_exp(S.sattr1), …, sc_exp(R.rattrn) = sc_exp(S.sattrn)}. 

As with aggregation queries, we will only consider scalar expressions involving attributes of the 
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source input streams. Join queries that do not satisfy these requirements will be considered 

incompatible with any partitioning set. 

Lemma 2. Let J be a set of equality join predicates of the query Q and let P be a partitioning 

set, P =  (sc_expr(attr1), sc_axp(attr2),  …, sc_exp(attrn) ) Query Q is compatible with 

partitioning set P iff there exists a non-empty subset J’ of J s.t. for any pair of tuples tup1 from 

R and tup2 from S s.t. J’ is satisfied ⇒ P(tup1)) = P(tup2). 

Following Lemma 2, we can compute the partitioning sets for both streams S and R using 

Partn_R = { sc_exp(R.attr1), … sc_exp(R.attrn) ) and Partn_S = { sc_exp(S.attr1), ... , 

sc_exp(S.attrn) ) respectively. It also follows that join query is compatible with any non-empty 

subset of its partitioning set. Since it is not feasible to partition the input stream simultaneously in 

multiple ways, Partn_R and Partn_S will need to be reconciled to compute a single partitioning 

scheme. More details on reconciliation procedure are given in Section 6.4. 

6.4 Partitioning for Query Sets 

Data stream management systems are expected to run a large number of queries simultaneously; 

queries in turn may contain a number of different subqueries (selections, aggregations, unions, 

and joins). Each of the subqueries might place different requirements on partitioning set to be 

compatible with it. 

Example: Consider the following query set: 

Query tcp_flows: 

SELECT tb, srcIP, destIP, srcPort, destPort,  

COUNT(*), SUM(len) 

FROM TCP 
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GROUP BY time/60 as tb, srcIP, destIP, srcPort, destPort 

Query flow_cnt: 

SELECT tb, srcIP, destIP, count(*) 

FROM flow_dup_count 

GROUP BY tb, srcIP, destIP 

Query tcp_flows computes the number of packets and total number of bytes sent in each flow; 

query flow_cnt computes a number of distinct flows active during the time epoch for each pair 

of communication hosts.  

Based on our analysis for individual queries, tcp_flows is compatible with partitioning set of 

the form of {sc_exp(srcIP), sc_exp(destIP), sc_exp(srcPort), 

sc_exp(destPort)} or any of its non-empty subsets. Query flow_cnt, on other hand, requires 

the input stream to be partitioned using {sc_exp(srcIP), sc_exp(destIP)} to be compatible 

with distributed optimization. Considering both partitioning sets we can infer that partitioning 

based on {sc_exp(srcIP), sc_exp(destIP)} will be compatible with both queries. A similar 

inference is required for join queries whose child queries have different compatible partitioning 

sets.  

In what follows, we will present our analysis framework that infers the compatible partitioning 

set for arbitrary set of streaming queries. Our framework makes a simplifying assumption that all 

of the source input streams processed by a query set are partitioned using the same partitioning 

set. Expanding the analysis algorithms to handle different partitioning schemes for different input 

stream is part of planned future work. 
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6.4.1 Reconciling Partitioning Sets 

Previously, we discussed the need to reconcile the different requirements two queries might have 

for a compatible grouping set to generate a new grouping set compatible with both queries. We 

abstract this issue using Reconcile_Partn_Sets(), defined as follows: 

Def.  Given two partitioning set definitions PS1 for query Q1 and PS2 for query Q2, 

Reconcile_Partn_Sets() is defined to return the largest partitioning set Reconciled_PS such 

that both Q1 and Q2 are compatible with partitioning using a set Reconciled_PS. The empty 

set is returned if no such Reconciled_PS exists. 

Considering a simple case of partitioning sets consisting of just the stream attributes (no scalar 

expressions involved), ReconcilePartn_Sets() returns the intersection of the two partitioning sets. 

For example Reconcile_Partn_Sets({srcIP, destIP}, {srcIP, destIP, srcPort, destPort}) is the set { 

srcIP, destIP }. For a more general case of partitioning sets involving arbitrary scalar expressions, 

Reconcile_Partn_Sets uses scalar expression analysis to find “least common denominator”. For 

example 

 Reconcile_Partn_Sets ( 

{sc_exp(time/60), sc_exp(srcIP), sc_exp(destIP)},   

{sc_exp(time/90}, sc_exp(srcIP & 0xFFF0)} )  

is equal to a set 

 {sc_exp(time/180, sc_exp(srcIP & 0xFFF0)}. 

The Reconcile_Partn_Sets function can make use of either simple or complex analysis based on 

the implementation time that is available.  A full discussion is beyond the scope of this 
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dissertation, but we expect that the simple analyses used in the example will suffice for most 

cases. 

6.4.2 Algorithm for Computing a Compatible Partitioning Set 

We represent a set of streaming queries as a Directed Acyclic Graph (DAG) of streaming query 

nodes, where each query node is a basic streaming query (selection/projection, union, 

aggregation, and join). Even though most real systems also use more complicated streaming 

operators, we can always express them using a combination of basic query nodes. Note that based 

on the analysis in Section 6.3, we know how to compute compatible partitioning sets for all 

individual query nodes. 

Computing a compatible partitioning for an arbitrary query set essentially requires reconciling all 

the requirements that all nodes in the query graph place on compatible partitioning sets. A 

simplified implementation of the procedure of computing compatible set PS for a DAG with n 

nodes would look the following way: 

1. For every query node Qi in a query DAG, compute the compatible partitioning set PS(Qi). 

2. Set PS = PS(Q1). 

3. For every i∈[1 to n], set PS = Reconcile_Partn_Sets(PS, PS(Qi)). 

Unfortunately, for many realistic query sets we would expect the resulting partitioning set PS to 

be empty due to conflicting requirements of different queries. A more reasonable approach would 

be to try to satisfy a subset of nodes in a query DAG in order to minimize the total cost of the 

query execution plan. There are a variety of different cost models that can be used to drive the 

optimization; in this chapter we will use a simple model that approximates a maximum network 

load on single node. 
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6.4.2.1 Cost model for streaming query nodes 

The cost model that we are going to use in this chapter defines a cost of query execution plan to 

be the maximum amount of data a single node in query execution plan is expected to receive over 

the network during one time epoch. The intuition behind this model is trying to avoid query plans 

that overload a single host with excessive amounts of data sent from query nodes residing on 

different hosts.  

Let R be the rate of the input stream on which the query set is operating, and PS be a partitioning 

set. For each query node Qi in a potential query execution plan we define the following variables: 

• selectivity_factor (Qi). The selectivity factor estimates the expected ratio of the number of 

output tuples to the number of input tuples Qi receives during one epoch. 

• out_tuple_size (Qi). Expected size of the output tuple produced by Qi. 

• We recursively define input_rate (Qi) to be R if Qi is a leaf node and to be the sum of all 

output_rate (Qi) s.t. Qj is a child of Qi. 

• output_rate (Qi) =  input_rate (Qi) * selectivity_factor (Qi) * out_tuple_size (Qi). 

We define the cost(Qi) in the following way: 

• 0 if it processes only local data 

• input_rate (Qi) if Qi is incompatible with PS 

• output_rate (Qi) if Qi is compatible with PS 

The intuition behind this cost formula is that an operator partitioned using a compatible 

partitioning set only needs to compute the union of the results produced by remote nodes, and 

therefore the rate of the remote data it is expected to receive is equal to its output rate. 
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Finally, we define the cost of the query plan Qplan given partitioning PS cost(Qplan, PS) to be 

the max cost(Qi) for all i.  

6.4.2.2 Computing an optimal compatible partitioning set 

We now describe an algorithm for computing an optimal partitioning set for arbitrary query sets. 

The algorithm takes a query DAG as an input and produces a partitioning set that minimizes the 

cost of the query execution plan. The basic idea is to enumerate all possible compatible 

partitioning sets using dynamic programming to reduce the search space. The outline of the 

algorithm is given below: 

1. For every query node Qi in a query DAG, compute its compatible partitioning set PS(i) and 

cost(Qplan, PS(i)). Add non-empty PS(i) to a set of partitioning candidates. 

2. Set PS to be PS(i) with minimum cost(Qplan, PS(i)). 

3. For every candidate pair of partitioning sets PS(i) and PS(j) compute compatible partitioning 

set PS(i, j) = Reconcile_Partn_Sets(PS(i), PS(j)) and cost(Qplan, PS(i,ji)). Add non-empty 

PS(I, j) to a set of candidate pairs. 

4. Set PS to be PS (i, j) with minimum cost(Qplan, PS(I, j)). 

5. Similarly to previous step, expand candidate pairs of partitioning sets to candidate triples and 

compute corresponding reconciled partitioning sets and minimum cost. 

6. Continue the iterative process until we exhaust the search space or end up with an empty list 

of candidates for the next iteration. 

Since it is impossible for a partitioning set to be compatible with a node and not to be compatible 

with one of the node predecessors, we can use the following heuristics to further reduce the 

search space: 

• Only consider leaf nodes for a set of initial candidates 
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• When expanding candidate sets only consider adding a node that is either an immediate 

parent of a node already in the set or is a leaf node. 

6.5 Query Plan Transformation For a Given Partitioning 

The query analysis framework presented in Section 6.4 provides a way to automatically infer the 

optimal partitioning scheme for a given set of streaming queries. In order to incorporate the 

results of the analysis into distributed query optimization, we need to make the optimizer fully 

aware of the partitioning scheme used. We implemented all partition-related optimizations as a 

set of transformation rules invoked by the query optimizer on compatible query nodes. All query 

transformation rules that we use work by replacing a qualifying subtree in query execution plan 

by equivalent optimized version (under the assumption that the input stream was partitioned using 

a compatible partitioning method). 

As discussed earlier, we cannot assume that the partitioning scheme used by the actual system is 

identical to the optimal one recommended by the query analyzer. Therefore, the distributed query 

optimizer needs to take advantage of any partitioning that used by the system, even if it differs 

from the optimal one. 

6.5.1 Algorithm for Performing Partition-related Query Plan Transformations 

Our algorithm for transforming query execution plans based on available partitioning information 

consists of the following two phases: 

Build partition-agnostic query execution plan 

Let S be the partitioned source input stream consumed by a query set, S = ∪ Partni,. We construct 

a partition-agnostic query plan by creating an additional merge query node that computes a 
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stream union of all the partitions and making all query nodes that consume S read from the merge 

node. Since each host might have multiple CPUs/Cores, we can allocate multiple partitions to 

each participating host depending on the host capabilities. An example of a partition-agnostic 

plan for an aggregation query is shown in Figure 6-3. In this example an input stream S is split 

into 6 different partitions, with 2 partitions assigned to each host. 

γ

∪

Host 1 Host 2 Host 3
 

Figure 6-3: Partition-agnostic query execution plan 

Even though such a query execution plan is clearly inefficient since it forces all the partitioned 

streams to be shipped to a single host before performing any processing, in the absence of any 

information about partitioning scheme used it is often the only feasible plan. 

Perform query plan transformation in bottom-up fashion 

All transformation rules that we use for partition-related query optimization consist of two 

procedures: Opt_Eligible() and Transform().  Opt_Eligible() is a Boolean test that takes a query 

node and returns true if it is eligible for partition-related optimization. Transform() replaces the 

node that passed  Opt_Eligible() test by equivalent optimized plan. The pseudo code for query 

optimizer is given below: 

1. Compute a topologically sorted list of nodes in the query DAG Q1,   Q2,  …, Qn  starting with 

the leaf nodes. 
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2. For every i ∈ [1 to n] 

If Opt_Eligible(Qi) 

  Transform(Qi ,Partitiong_Info) 

Performing the transformation in a bottom-up fashion allows us to easily propagate the 

transformation compatible leaf nodes through the chain of compatible parent nodes. In the 

following section we will give a detailed description of the implementation of Opt_Eligible() and 

Transform() for all major classes of query nodes – aggregations, joins and selection/projection. 

6.5.2 Transformation for Aggregation Queries 

The Opt_Eligible() procedure for an aggregation query Q and partitioning set PS returns true if 

the following conditions are met: 

• query Q has a single child node M of type merge (stream union) 

• each child node of M is operating on single partition consistent with PS 

• Q is compatible with PS 

• Q is the only parent of M 

The last requirement is important to prevent the optimizer from removing the merge nodes that 

are used by multiple consumers. An example of a query node that stultifies all of the conditions 

required by Opt_Eligible()  is shown Figure 6-3. 

6.5.2.1 Transformation for compatible aggregation queries nodes 

The main idea behind the Transform() procedure for eligible aggregation query Q is to push the 

aggregation operator below the merge M and allow it to execute independently on each of the 
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partitions. For each of the inputs of M we create a copy of Q and push it below the merge 

operator. The resulting optimized query execution plan is shown in Figure 6-4. 

∪
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Figure 6-4: Aggregation transformation for compatible nodes 

The correctness of the transformation follows directly from out definition of partition 

compatibility. Note, that data is fully aggregated before being sent to central node and does not 

require any additional processing. 

6.5.2.2 Transformation for incompatible aggregation queries 

For many aggregation queries that fail the Opt_Eligible() test, we can still do better than use the 

default partition-agnostic query execution plan. The main idea behind the proposed optimization 

is the concept of partial aggregates. This idea is widely used in a number of streaming database 

engines [30][33], sensor networks [1][28] and traditional relational databases [79]. We illustrate 

this idea on a query that computes a count of number of packets sent between pairs of hosts: 

Query tcp_count: 

SELECT time, srcIP, destIP, srcPort, COUNT(*) 

FROM TCP 

GROUP BY time, srcIP, destIP, srcPort 



 

 

130

We can split tcp_count into two queries called sub- and super-aggregate: 

Query super_tcp_count: 

SELECT time, srcIP, destIP, srcPort, SUM(cnt) 

FROM sub_tcp_count 

GROUP BY time, srcIP, destIP, srcPort 

Query sub_tcp_count: 

SELECT time, srcIP, destIP, srcPort, COUNT(*) as cnt 

FROM TCP 

GROUP BY time, srcIP, destIP, srcPort 

All the SQL’s built-in aggregates can be trivially split in a similar fashion. Many commonly used 

User Defined Aggregate Functions (UDAFs) can also be easily split into two components as was 

suggested in [33]. Note that we can push all the predicates in the query’s WHERE clause to sub-

aggregates, but all predicates in HAVING clause need complete aggregate values and therefore 

must be evaluated in super-aggregate. The query execution plan produced by this optimization is 

shown is Figure 6-5. 



 

 

131
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∪ ∪ ∪
γ-sub γ-sub γ-sub

γ-super

∪

 

Figure 6-5: Aggregation transformation for incompatible nodes 

6.5.3 Transformation for Join Queries 

In this section, we will only consider two-way join queries, since all multi-way joins can be easily 

expressed by combination of two-way joins.  The Opt_Eligible() procedure for a join query Q and 

partitioning set PS returns true if the following conditions are met: 

• query Q has a two children nodes M1 and  M2 of type merge (stream union) 

• each child node of M1 and M2  is operating on single partition consistent with PS 

• Q is compatible with PS 

• Q is the only parent of M1 and M2 

An example query execution plan that satisfies Opt_Eligible() test is shown in Figure 6-6. 
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Figure 6-6: Original query execution plan 

The main idea behind the Transform() procedure for an eligible join query Q is to perform 

pair-wise joins for each of partition of input stream. This is accomplished by creating a copy 

of join operator and pushing it below the child merges. The left side partitions that do not 

have matching right side partitions and similarly unmatched right side partitions are ignored 

for inner join computations. For outer join computations, unmatched partitions are passed 

through special projection operator that adds appropriate NULL values needed by outer join. 

The output tuples produced by the projection operator are then merged with the rest of the 

final results. The resulting optimized query execution plan for inner-join query is shown in 

Figure 6-7. 

Host 1 Host 2 Host 3

∪

 

Figure 6-7: Join transformation for compatible nodes 
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6.5.4 Transformations for Selection/Projection Queries 

Selection/projection queries are always compatible with partition optimization and can be 

trivially pushed below child merge operators. Even though this transformation does not 

necessarily provides significant performance improvements, it is critical to ensure that partition-

related optimization propagate further up the query tree. 

6.6 Comparison of Semantic Sampling and Query-aware Stream 

Partitioning 

Query-aware stream partitioning for distributed processing and semantic sampling framework 

presented in Chapter 5 are both based on the same analytical foundation. Both frameworks rely 

on partitioning of the input stream into disjoint groups of tuples when then are distributed across 

all participating nodes or selectively sampled to produce the approximate query answers. The 

definitions of grouping and partitioning compatibility are defined in a very similar fashion. In fact 

it easy to show that an individual query Q compatible with the sampling method that uses 

grouping set GS if and only if it is compatible with the partitioning using partitioning set GS. 

Similarly the reconciliation procedures defined by both frameworks can be shown to be 

equivalent to each other. This commonality in the analysis tools greatly simplifies that 

implementation of both subsystems within a data stream manager and allows for significant code 

reuse. 

The main difference between the two frameworks lies in multi-query optimization aspects. Partial 

compatibility is not acceptable in semantic sampling framework since it would mean that some of 

the running queries could produce semantically incorrect results. The algorithm for computing 

compatible grouping sets for an arbitrary query DAG presented in section 5.5 has the freedom to 

choose different sampling strategy for each leaf node and even have multiple sampling methods 
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executed by the same node to guarantee the correctness of all the queries in a set. Furthermore the 

choice of the sampling method is not restricted by the limitations imposed by the partitioning 

hardware since it is implemented fully in the software by generating corresponding filtering 

predicates for the leaf nodes. Stream partitioning for distributed query processing on the other 

hand is restricted by both the partitioning hardware and the requirement the input stream can be 

partitioned only once. This property leads to different set of constraints and objectives for the 

query optimization, encapsulated in the algorithm given in section 6.5. 

6.7 Experimental Evaluation 

In this section, we present the result of experimental evaluation of query-aware partitioning in the 

context of the Gigascope streaming database. Gigascope fully supports distributed query 

evaluation using TCP as a protocol for transmitting tuples between coopering hosts. We 

augmented Gigascope’s query analysis framework to add support for stream partitions. We also 

modified the query optimizer to fully implement all query transformation rules and thus support 

partitioned evaluation of distributed queries.  

All the experiments were conducted by replaying a one-hour trace of network packets and feeding 

it to a cluster of Gigascope nodes. The trace was obtained by combining four different one-hour 

traces captured concurrently using four data center taps. Each network tap captured two separate 

streams of packets for each traffic direction, each direction receiving approximately 100,000 

packets/sec (about 400 Mbits/sec). We used a cluster of four dual core 3.0GHz Intel Xeon servers 

(2 cores per/CPU) with 4 GB of RAM running Linux 2.4.21. Servers were equipped with dual 

Intel(R) PRO/1000 network interface cards and were connected via Gigabit Ethernet LAN. 

The goal of the experiments was to compare the performance of partition-agnostic query 

evaluation strategy with alternative strategies that take advantage of stream partitioning. 
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6.6.1 Partitioning for Simple Aggregation Queries 

In this experiment, we observe how the performance of an aggregation query is affected by the 

choice of partitioning strategy. The query used in the experiment computes network traffic flows 

returning only suspicious flows that do not follow the TCP protocol (i.e. have an abnormal value 

of OR aggregate of TCP flags). In our packet trace, suspicious flows accounted for about 5% of 

the total number of flows. The corresponding GSQL statement for the query is shown below. 

SELECT tb, srcIP, destIP, srcPort, destPort,  

 OR_AGGR(flags) as orflag, COUNT(*), SUM(len) 

FROM TCP 

GROUP BY time as tb, srcIP, destIP, srcPort, destPort 

HAVING OR_AGGR(flags) = #PATTERN# 

We compared three different system configurations: 

a) Naïve – data stream is partitioned in a round robin fashion 

b) Optimized – data stream is partitioned round robin, but  all the host’s data is partially 

aggregated before being sent for final aggregation 

c) Partitioned – data stream is partitioned using  optimal compatible partitioning set (srcIP, 

destIP) 

We varied the number of machines in the cluster from 1 to 4 while varying the number of stream 

partitions from 2 to 8 respectively.  In each experiment, we assign two partitions to each host to 

make better use of multiple processing cores. We will denote the host assigned to execute a root 

of the query tree as the aggregator node and to the rest of the nodes as leaf nodes. 

In a course of the experiments, we observed that all three configurations are very effective at 

reducing the CPU load on leaf nodes.  The load on each host drops from 80.4% to 23.9% 
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(combined CPU utilizations of the leaf nodes) as the number of hosts grows from 1 to 4. 

However, the load on the aggregator node shows completely opposite behavior. The results of the 

measuring the load on aggregator node are shown in Figure 6-8. 

As we can observe from the graphs for Naïve configuration, the load grows linearly with a 

number of hosts and reaches almost 100% CPU utilization for 4 machines. At this point the 

system is clearly overloaded and starts dropping input tuples. Enabling partial aggregation helps 

reduce the load by 20-22% but overall trend of linear growth continues. The configuration using 

partitioning set recommended by the query analyser, on other hand, reduces the load on both 

aggregator and leaf nodes and enables true linear scaling. 
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Figure 6-8: CPU load on aggregator node 
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In addition to the CPU load on aggregator nodes, we also measured network load that query 

evaluation places on aggregator node. The results of the experiments are shown in Figure 6-9. As 

we can see from the graph, both partition-agnostic configurations suffer from transmitting the 

same partial flows to aggregator multiple times and exhibit linear grows in the network load. The 

slope of the Partitioned configuration is nearly flat with maximum network load limited by the 

cardinality of the query output. 
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Figure 6-9: Network load on aggregator node 

6.6.2 Partitioning for Join Queries 

In our second set of experiments, we study the performance of a self-join query on both the 

partition-agnostic and partition-optimized configurations. The query used in the experiment 
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computes delays between consecutive TCP packets within the same traffic flow. This particular 

query is often used by network analysis for monitoring TCP session jitter. We only select a subset 

of the results with large TCP delays (> 1000ms). A GSQL statement for the query is shown 

below. 

SELECT S1.tb, S1.srcIP, S1.destIP, S1.srcPort,  

S1.destPort,(S2.timestamp-S1.timestamp) as delay 

FROM TCP as S1, TCP as S2 

WHERE S1.tb=S2.tb and S1.srcIP=S2.srcIP 

    and S1.destIP=S2.destIP and 

    S1.srcPort=S2.srcPort and  

    S1.destPort=S2.destPort and 

   (S1.seq_number+1)=S2.seq_number and 

   (S2.timestamp - S1.timestamp) > 1000 

We varied the number of machines in the cluster in the cluster from 1 to 4 with 2 partitions 

assigned to each host. Similar to the previous experiment, we observe that both configurations are 

very effective at reducing the CPU load on leaf nodes (load on drops from 77.4% to 19.7% as the 

number of hosts grows from 1 to 4). The results of the measuring the load on aggregator (root of 

the query tree) node are shown in Figure 6-10. 
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Figure 6-10: CPU load on aggregator node 

As we can see from the graph, the load rises rapidly for the partitioning-agnostic scheme and 

reaches 90% CPU utilization for 4 participating hosts. These results are not surprising if we 

consider that leaf nodes cannot perform any filtering of the data and need to send the entire 

incoming tuple stream to an aggregator node. As the number of hosts increases, the number of 

remote tuples that need to be processed by the aggregator increases correspondingly. Since the 

cost of processing remote tuples is significantly higher that of local ones (due to TCP overhead 

and extra memory copying), the load on the aggregator node rises with the number of 

participating hosts. The partition-optimized execution plan, on other hand, effectively enables a 

linear scaling.  
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Figure 6-11 shows the results of the experiments measuring the network load on the aggregator 

node. Unable to do local join processing, the partition-agnostic configuration exhibits an almost 

linear increase in the network load. The partition-compatible configuration, on other hand, not 

only evaluates all the joins locally but can also apply an additional selection predicate (delay > 

1000) to further reduce the network load on aggregator. The resulting network load curve is 

almost flat, and in the worst case is limited by the cardinality of the output of the query.  
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Figure 6-11: Network load on aggregator node 

6.6.3 Partitioning for Query Sets 

In this set of experiments, we study the performance of a query set consisting of independent 

aggregation and self-join queries. The aggregation query computes the statistics for packets sent 
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between the source subnets and destination hosts (grouping attributes are (srcIP & 0xFFF0, 

destIP)). The self-join query computes delays between consecutive TCP packets within the same 

traffic flow. The optimal partitioning set for aggregation query is (srcIP & 0xFFF0, destIP), while 

for the join query it is (srcIP, destIP, srcPort. destPoirt). We model a scenario where the 

restrictions of the partitioning hardware do not allow us to partition the data in a way that is 

compatible with both queries. According to the cost model presented in Section 4, the optimal 

partitioning set is (srcIP & 0xFFF0, destIP), which is compatible only with the aggregation 

query.  

We compared three different system configurations: 

a) Naïve – data stream is partitioned in a round robin fashion.  

b) Partitioned (suboptimal) – the data stream is partitioned using  the suboptimal partitioning set 

(srcIP, destIP, srcPort. destPoirt) compatible with the join query 

c) Partitioned (optimal) – the data stream is partitioned using the optimal compatible 

partitioning set (srcIP & 0xFFF0, destIP). 

We varied the number of machines in the cluster in the cluster from 1 to 4 with 2 partitions 

assigned to each host. The results of the measuring the load on aggregator (root of the query tree) 

node are shown in Figure 6-12. 

As we can see from the graph, the load rises rapidly for the partitioning-agnostic scheme and 

reaches 95% CPU utilization for 4 participating hosts. Suboptimally partitioned configuration 

compatible with the join query reduces the load by 43-47% reaching 54% utilization for a 4 host 

configuration. However, the linear load growth trend is still present due the fact since the 

workload is dominated by incompatible aggregation query. The load growth curve for the optimal 

partitioning scheme is much flatter, reducing the load to 31% for 4 host configuration. 
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Figure 6-12: CPU load on aggregator node 

Figure 6-13 shows the results of the experiments measuring the network load on the aggregator 

node. Unable to perform any significant load reduction, the partition-agnostic configuration 

exhibits an almost linear increase in the network load. Suboptimal configuration, on other hand, 

evaluates all the joins locally and reduces the network load on aggregator node by 36-52% as the 

number of participating nodes increases to 4. The optimal configuration has an almost flat growth 

and effectively reduces the network load by 64-70% depending on number of hosts. These 

experiments demonstrate that our cost model correctly identifies the dominant queries in a query 

set and computes the globally optimal partitioning. 
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Figure 6-13: Network load on aggregator node 

6.6.4 Partitioning for Complex Queries 

In the final set of experiments, we use a more complex query set involving multiple aggregation 

and join queries. This query set is identical to the one we used in Section 6.3 to illustrate query-

aware partitioning framework. The corresponding GSQL statements for the queries are shown 

below. 

Query flows: 

SELECT tb, srcIP, destIP, COUNT(*) as cnt 

FROM TCP 

GROUP BY time/60 as tb, srcIP, destIP 
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Query heavy_flows: 

SELECT  tb, srcIP, max(cnt) as max_cnt 

FROM flows 

GROUP BY tb, srcIP 

Query flow_pairs: 

SELECT S1.tb, S1.srcIP, S1.max_cnt,S2.max_cnt 

FROM heavy_flows S1, heavy_flows S2 

WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1 

. Host 1 Host 2 Host 3

∪ ∪ ∪
γ-sub γ-sub γ-sub

γ-super

∪

 

Figure 6-14: Plan for partially compatible partitioning set 

We compared four different system configurations: 

a) Naïve – data stream is partitioned in a round robin fashion 

b) Optimized – data stream is partitioned round robin,  all the host’s data is partially aggregated 

before being sent for final aggregation 
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c) Partitioned (partial) – the data stream is partitioned using  the suboptimal partitioning set 

(srcIP, destIP) 

d) Partitioned (full) –the  data stream is partitioned using the optimal compatible partitioning set 

(srcIP) 

Note that in the Partitioned (partial) configuration, only query flow is compatible with 

partitioning set while the rest of the queries are incompatible. The query plan generated by the 

optimizer for suboptimal partitioning is shown in Figure 6-12. As in previous experiments we 

varied the number of machines in the cluster from 1 to 4 with 2 partitions assigned to each host.  
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Figure 6-15: CPU load on aggregator node 
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Since the CPU load on leaf nodes followed the same patterns as in previously shown experiments, 

we concentrate on discussing the load on aggregator node. The results of the measuring the CPU 

load on aggregator (root of the query tree) node are shown in Figure 6-15. 

As we can observe from the graphs for the Naïve configuration, the load on aggregator node 

grows linearly with a number of hosts. For a four machine configuration, the system overloaded 

and is forced to drop tuples from the input stream. The optimized configuration with partial 

aggregation enabled reduces the load by 23-24% reaching 82% utilization for a 4 host 

configuration. However, the linear load growth trend is still present and adding one more machine 

to the cluster will lead to the aggregator overload.  
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Figure 6-16: Network load on aggregator node 
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The load for the partially compatible configuration exhibits a nearly flat growth curve, primarily 

due to the fact that the most expensive query in a query set flows fully takes advantage of the 

compatible partitioning set. The load on aggregator node reaches only 18.4% which leaves a lot 

of room for further increase in the number of hosts. Finally, the fully compatible configuration 

exhibits true linear scaling, with the load on an aggregator node reaching 8.4% for a 4 machine 

setup. 

Figure 6-16 shows the results of the experiments measuring the network load on the aggregator 

node. Here we observe the trends similar to previous experiments. Both Naïve and Optimized 

configuration with partial aggregates suffer from transmitting duplicate partial flows to the 

aggregator node and exhibit linear load growth. The partially and fully compatible configurations, 

on other hand, have flat growth curve with the maximum load approaching the cardinalities of 

flows and flow_pairs respectively. 

6.8 Summary 

Distributed Data Stream Management Systems (DSMS) are increasingly used for processing of 

high-rate data streams. Two main approaches used to distribute the load across the cooperating 

machines are query plan partitioning and query-independent data stream partitioning. However, 

for a large class of queries both approaches fail to reduce the load compared to centralized 

system, and can even lead to increase in the load. 

In this chapter, we introduce the idea of query-aware data stream partitioning that allows us to 

scale the performance of streaming queries in close to linear fashion. Our stream partitioning 

mechanism consists of two main components. The first component is a query analysis framework 

for determining the optimal partitioning for a given set of queries. The second component is a 
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partition-aware distributed query optimizer that transforms an unoptimized query plan into a 

semantically equivalent query plan that takes advantage of existing partitions. 

We evaluate our query-aware partitioning approach by running sets of streaming queries of 

various complexities on a small cluster of processing nodes using high-rate network data streams. 

The results of our experiments confirm that the partitioning mechanism leads to highly efficient 

distributed query execution plans that scale linearly with the number of cooperating processing 

hosts. We also demonstrate that even suboptimal query-aware partitions offer significantly better 

performance that conventionally used query-independent partitioning. 
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Chapter 7 

7. Conclusions and Future Work 

7.1  Dissertation Conclusions 

Data Stream Management Systems (DSMS) are gaining acceptance for applications that require 

sophisticated processing of large volumes of data in real time. Monitoring potentially unbounded 

data streams presents a large number of unique problems, such as designing a programming 

language for querying infinite streams, developing query operators with bounded memory 

requirements, approximate query processing, and many others. One of the most important issues 

to be addressed by a streaming system is that of query optimizations. Having an effective query 

optimization mechanism is critical for dealing with extreme data rates, query sets consisting of 

hundreds of queries, and a large number of diverse data streams. The main contribution of this 

dissertation is to utilize semantic query analysis to perform query optimizations that enable 

scalable and robust data processing in the presence of high-rate streams and arbitrarily large 

query sets. 

The first problem addressed by this dissertation is enabling DSMSs to simultaneously monitor 

and correlate large numbers of diverse data streams. The inherent burstiness and unpredictability 

of many real-world streams cause streaming operators to buffer input streams indefinitely and 

exceed the available system memory. The punctuation-carrying heartbeat mechanism proposed in 
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this dissertation guarantees that all streaming operators use a bounded amount of memory even in 

the presence of temporarily stalled data streams. The main idea behind the heartbeat mechanism 

is to generate special punctuation messages at low-level query nodes and propagate them 

throughout the entire query execution plan. Temporal information contained in the heartbeat 

messages allow streaming operators to unblock and purge all the state that would otherwise be 

indefinitely buffered. The proposed mechanism relies on a sophisticated timestamp analysis for 

aggressive but safe heartbeat generation. 

Our experiments in Chapter 4 with multi-source streaming queries running over high-rate data 

streams demonstrate the effectiveness of the proposed mechanism even when some of the streams 

stall completely. We further demonstrated the validity of our approach by incorporating 

punctuating-carrying heartbeats into a production high-performance DSMS used for monitoring 

high-rate network streams. 

In Chapter 5, we address the problem of handling bursts of high activity, during which the load 

on a streaming system can increase by an order of magnitude. We demonstrate that the widely 

used solution of uniform random sampling sacrifices the quality of the query answers to bring the 

system load to acceptable level. This dissertation proposes a general-purpose query-aware 

sampling framework for effective load reduction while still guaranteeing that the query answers 

remain semantically correct. We formally define the notion of query correctness in the presence 

of sampling, and give an algorithm for choosing the suitable sampling strategy for individual 

streaming queries. Further, this dissertation extends the single-query techniques to a general 

framework for analyzing any set of queries to determine a semantics-preserving sampling 

strategy. Since it is important for applications to know which sampling methods and sampling 

rates were used to compute the query results, we propose to use the heartbeat mechanism to 

embed special punctuations into query output stream that would contain this information.   
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We experimentally evaluated the semantic sampling approach by running various sets of 

streaming queries on high-rate network data streams. The results of the experiments presented in 

Chapter 5 demonstrate that proposed methods provides semantically correct and highly accurate 

results for scenarios where traditional approaches fails to provide semantically meaningful 

results. 

Finally, Chapter 6 addresses the problem of scalable distributed processing in the presence of 

massive data streams. We first demonstrate that the query-independent stream partitioning 

mechanisms widely used by modern distributed DSMS fail to reduce the load of a large class of 

streaming queries as compared to centralized systems, and can even increase the load. Instead, 

this dissertation introduces the idea of query-aware data stream partitioning, which allows us to 

scale the performance of streaming queries in a close to linear fashion. We propose a query 

analysis framework for determining the optimal partitioning for an arbitrary large and complex 

query set. We also develop a partition-aware distributed query optimizer that transforms an 

unoptimized query plan into a semantically equivalent query plan that takes advantage of existing 

partitions. 

This dissertation includes a comprehensive experimental evaluation of query-aware partitioning 

on a cluster of processing nodes using high-rate network data streams. The results of our 

experiments confirm that the partitioning mechanism leads to highly efficient distributed query 

execution plans that scale linearly with the number of cooperating processing hosts. We also 

demonstrate that even suboptimal query-aware partitions offer significantly better performance 

that conventionally used query-independent partitioning. 

In summary, the contributions made by this dissertation in the area of streaming query 

optimization enable Data Stream Management Systems to scale to extreme data rates (up to 

80Gbit/sec for network monitoring applications), gracefully handle overload conditions with no 
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resulting quality degradation, and support a large number of diverse input streams, enabling 

industrial-scale applications of DSMS technology.  All of the presented techniques are generic 

and support arbitrary large and complex sets of streaming queries. 

7.2 Directions for Future Research 

Work presented in this dissertation can be further extended along the following lines: 

1. Handling partially disordered streams. Most Data Stream Management Systems rely on 

temporal properties of the input streams for consistent query semantics. Specifically, a DSMS 

assumes the existence of a monotonically increasing timestamp or other application-defined 

time associated with every incoming tuple. However, when a streaming system is monitoring 

a large number of distributed data streams, there is significant possibility that input tuples will 

become partially disordered due to effects of routing and retransmissions over wide-area 

network. It is therefore important for a distributed DSMS to be capable of handling a small 

amount of disorder and still be capable of executing streaming operators with a bounded 

amount of memory. One possible solution would be to extend the heartbeat mechanism to 

embed appropriate punctuations specifying the level of out-of-orderness in the stream. All the 

streaming operators will also need to be extended to properly interpret such punctuations and 

use them to purge the runtime state.  

2. Scalable trigger processing. There is a significant interest in a special class of stream 

monitoring applications that are interested in executing triggers – queries designed to notify 

subscribers that certain events occurred in the input streams. For such applications, a critical 

performance consideration is the latency of event reporting to the end user. One example of 

such an application is network intrusion detection software that needs to raise an alarm as 

soon as an attack intrusion is detected. Designing a scalable trigger processing system for 

stream applications poses a number of new challenges. The design of the streaming operators 
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needs to be changed to shift the focus from optimal throughput to the latency of event 

detection and reporting. One possible solution would be to utilize heartbeat mechanism to 

propagate the event notifications throughout the query execution plans. 

3. Adaptive distributed query processing. Streaming query optimizers critically depend on 

accurate statistics describing input stream to drive many optimization decisions, such as order 

of join evaluation, operator placement and stream partitioning.  The inherent unpredictability 

of data streams and the long running nature of stream queries increase the possibility that 

once optimal query plans will became highly inefficient during the lifetime of the query. 

Fully dynamic and adaptive query execution environments that do not suffer from this 

problem are too inefficient to handle high-rate data streams [97]. In Chapter 4, we suggest 

that the heartbeat mechanism could be used to collect the comprehensive statistics required 

by distributed query optimizer. An interesting area of potential future research is in periodic 

query plan reoptimization driven by these runtime statistics. 

4. Extending the suite of sampling algorithms used by semantic sampling. Query-aware 

sampling framework suggested in Chapter 5 relies on small suite of algorithms: per-tuple and 

per-group sampling. A large number of alternative sampling algorithms has been suggested in 

the literature, including reservoir sampling [120], geometric sampling [16][65], importance-

based sampling [45], and many others. It would be interesting to extend the semantic 

sampling framework to incorporate large number of sampling methods and being able to 

reason about interaction of various sampling methods when used within the same query set. 

5. Dynamic stream repartitioning. Our query-aware stream partitioning mechanism relies on a 

good hash function to evenly distribute the input stream among all participating streaming 

engines. Significant fluctuations in the values of the partitioning attributes can easily lead to a 

load imbalance and even to the overload of individual streaming engines. One extension of 

our partitioning mechanism would be to incorporate dynamic stream repartitioning based on 
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the runtime statistics collected from distributed nodes. The challenges here are efficient 

distributed statistics collection in the presence of high stream data rates, the design of the 

feedback mechanism to drive repartitioning, and changing the partitioning scheme in the 

middle of operator execution. 

6. Using partitioning-based optimizations for processing non-streaming data. A large 

number of one-pass algorithms were developed in the context of Data Stream Management 

Systems for efficient query evaluation over unbounded data stream. Recently, there has been 

a significant interest in a applying some of the techniques developed for stream processing 

for one-pass processing on non-streaming data (for example in active data warehousing 

applications). Similar to streaming systems, these applications have the properties of soft 

real-time systems and can benefit from a load shedding mechanism to deal with overload 

conditions. An interesting research direction would be to investigate using semantic sampling 

to help queries meet the execution deadlines while still maintaining the semantic correctness 

of the output.  Furthermore, the partitioning analysis framework used for distributed 

evaluation of streaming queries can be applied to the problem of horizontally partitioning the 

stored datasets based on the structure of submitted queries and their expected frequencies in 

the workload.  

7. Combining semantic sampling with query-aware stream partitioning.  Semantic 

sampling and query-aware streaming partitioning frameworks are designed to solve different 

problems in data stream management and can in principle be applied independently of each 

other. However, combining both mechanisms in a high-performance distributed DSMS raises 

an issue of how these mechanisms should interact under overload conditions. One possible 

alternative is to always apply the partitioning first and make individual host independently 

apply semantic sampling to react to overload conditions. Alternatively, one can try to react to 

overload conditions by sampling the data before it is distributed to the participating query 



 

 

155

processing nodes, and avoid sending the tuple only to have it immediately discarded by the 

remote host. Exploring the performance tradeoffs for the two design options and potential for 

combining both mechanisms in the single partitioning hardware will be an interesting 

research direction. 
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