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To enable high data rate target applications in a typical ultra-wideband (UWB) dense

multipath channel, DS-UWB signaling suffers from a severe inter-symbol-interference (ISI)

and multiple access interference (MAI). In an attempt to avoid complexity at the receiver,

we tackle these problems from the transmitter side and consider ternary sequence based

UWB (TS-UWB) signaling as a unifying descriptor of a number of impulse-based UWB

schemes.

We propose a technique which employs ternary complementary sets to improve the per-

formance of orthogonal pulse based multi-channel UWB systems. By assigning mutually

orthogonal (MO) complementary sets to the users, both MAI and multipath interference

can be significantly suppressed. One of the major impediments to deploying such sys-

tems is a high peak-to-average power ratio (PAPR). We show that PAPR can be upper

bounded by an autocorrelation merit function of column sequences of the corresponding

complementary set matrix. Hence, we propose a design of complementary sets satisfying

a column correlation constraint. The design algorithm recursively builds a collection of

MO complementary set matrices starting from a companion pair of sequences. We relate

correlation properties of column sequences to that of the companion pair and illustrate

how to select an appropriate companion pair to ensure that a given column correlation
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constraint is satisfied.

To support high-speed and multirate data services, we construct ternary orthogonal

variable spreading factor (OVSF) code with a zero-correlation zone (ZCZ). Compared to

the conventional Walsh code based OVSF code, the proposed ZCZ-OVSF code maintains

its code orthogonality even in a multipath channel or when synchronism is lacking and,

thus, is suitable for quasi-synchronous (QS) TS-UWB systems. We further propose an

adaptive data rate transmission scheme which maximizes the uplink aggregate throughput

of the system by allocating OVSF codes to the active users based on their signal to

interference and noise ratios (SINR).

Finally, we propose an adaptive transmission approach that suggests selecting a ternary

beamforming sequence for a TS-UWB signal based on the signs of the reflection coefficients

corresponding to a few strongest paths so that the signal energy at the output of the simple

non-adaptive receiver is enhanced.
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Chapter 1

Introduction

1.1 Background and Motivation

Ultra-wideband (UWB) is defined as any radio technology having a spectrum that occupies

a bandwidth greater than 20 percent of the center frequency, or a bandwidth of at least

500 MHz. By its rulemaking proposal in 2002, the Federal Communications Commission

(FCC) has mandated that UWB radio transmissions can legally operate in the range from

3.1 GHz up to 10.6 GHz at a low transmit power. To support high data-rate short-range

wireless personal area network (WPAN), UWB signaling is selected to provide a higher

speed physical layer (PHY) enhancement to IEEE 802.15.3 standard for applications which

involve image and multimedia transmission. The large bandwidth of UWB waveforms

significantly improve the channel capacity, at the same time, bring the following main

challenges and problems in signaling design for direct sequence based UWB (DS-UWB)

communications.

• Interference: At distances between 4-10 m, the typical nonline-of-sight (NLOS)

UWB channel environment has an rms delay spread of 14 ns, while the worst case

channel environment has an rms delay spread of 25 ns [1]. The large bandwidth of

UWB waveforms increase the ability of the receiver to resolve multipath reflections.

Hence, in a UWB dense multipath channel, DS-CDMA UWB signaling suffers from

severe multipath and multiple access interference (MAI).

• High Speed: Shorter length spreading sequences can be selected to support higher

data rate. However, the inter-symbol interference (ISI) increases and degrades the

system performance. Multicode or multicarrier scheme can be an alternate solution.

One of the main challenges involved in the design of these types of signaling is the
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peak-to-average power ratio (PAPR) reduction.

• Low Cost: The performance of a DS-UWB system is often determined by the amount

of multipath energy that can be collected at the receiver. A large number of RAKE

fingers are needed in order to sufficiently capture multipath energy. To mitigate the

effect of ISI caused by the time-dispersive nature of UWB channel, an equalizer can

be used to improve system performance. However, all these complicate the receiver

and raise the cost.

In an attempt to avoid introducing complexities at the receiver, we tackle the above prob-

lems from the transmitter side with an emphasis placed on sequence design for improved

system performance.

A sequence is a discrete-time complex-valued signal in which the order of its elements is

well defined and significant. The order of elements determines correlation functions of the

sequence. Communication devices typically employ matched filter (MF) receivers whose

output is characterized by the autocorrelation function (ACF) of the target sequence and

crosscorrelation functions (CCF) of the target sequence with other sequences forming the

input signal. Receiver performance requires that the magnitude of out-of-phase ACF and

the magnitude of CCF are as small as possible. Sequences with low out-of-phase ACFs have

widespread applications in parameter identification, synchronization, timing estimation,

and pulse compression radar system. The direct sequence code-division multiple-access

(DS-CDMA) systems and frequency-hopping spread-spectrum (FHSS) systems require

sequence sets with small CCF [2, 3]. Signals with good correlation properties are of special

importance for high rate and low power UWB communications for several reasons. In

particular, synchronization efficiency, multipath resolution, ISI suppression, and multiple

access interference suppression can be significantly degraded when the number of chips

per symbol and the corresponding correlation sidelobe suppression are reduced.

Motivated by the fact that ternary signaling with epochs of zero (power off) amplitude

is easy to implement with impulse radios, we study ternary sequences with elements in

{+1, 0,−1} including binary sequences as a special case. We suggest ternary sequence
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based UWB (TS-UWB) signaling [4–11] as a unifying descriptor of a number of impulse-

based UWB signaling schemes. Allowing some of the chips to be zero enables significant

improvement in the correlation properties of the employed signaling.

We study both ternary complementary sets of sequences [6, 8, 9] and ternary zero-

correlation zone (ZCZ) sequences [7, 10, 11]. The former are two-dimensional (2D) se-

quences or sequence arrays and the latter are traditional one-dimensional (1D) sequences.

Based on the well-known Welch bound [12], a non-trivial 1D sequence set may never sat-

isfy the ideal correlation property [2], i.e., zero out-of-phase ACF and zero CCF values.

However, a complementary 2D sequence set can achieve the ideal correlation property.

Here, the correlation function is defined based on the sum of correlation functions of all

1D row sequences in the array. Complementary sets can be recursively constructed from

a complementary pair [13]. It has been proved that the length of a binary complementary

pair (BCP), i.e., a Golay pair [14], can only be 2α10β26γ , where α, β, γ are non-negative

integers [2]. In [15], Gavish and Lempel have shown that ternary complementary pairs

(TCPs), which include BCPs as a special case, exist for any sequence length. Hence,

ternary signaling may not only improve the correlation properties, but also provide more

flexibility in choosing sequence lengths in the system design. Similar to multicarrier DS-

CDMA signals [16], signaling employing 2D sequences typically suffers from a high PAPR

which may limit its application or/and result in performance degradation. We propose

the construction of complementary sets with optimum PAPR reduction.

Compared to 2D sequences, although 1D sequences can not achieve ideal correlation

properties, their PAPR and hardware generation complexity are both smaller. We design

ternary 1D sequence set whose correlation values equal to zero for a contiguous set of

delays starting from a single delay. Thus, the proposed ZCZ sequences can suppress both

multipath and multiuser interference.

Ternary complementary sets and ZCZ sequence sets provide sequence solutions for

DS-UWB systems with no channel state information at the transmitter. Based on limited

multipath channel information, we also propose a set of beamforming sequences which can

coherently combine the energy at the output of a non-adaptive correlator receiver.
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Chapter 3
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Ternary
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Complex-valued


Figure 1.1: Classification of sequences

The sequences that we considered in this thesis are depicted in Figure 1.1. Ternary

sequences are our main focus, nevertheless, we also extend our research to multilevel and

complex-valued sequences.

1.2 Road Map

In this dissertation, we propose several sequence construction methods and attempt to

solve sequence related issues for UWB communications.

In Chapter 2, we first define sequence correlations, merits and operations, followed by

the introduction of several special sequences, i.e., perfect ternary sequences, ternary ZCZ

sequences, OVSF codes and complementary sets. We also present three lemmas which

can extend complementary sets from small to large sizes.

In Chapter 3, we propose a technique which employs ternary complementary sets

for an orthogonal-pulse based multichannel DS-UWB system. By assigning MO comple-

mentary sets to different users, both MAI and multipath interference can be significantly

suppressed. We derive an upper bound which shows that the column sequences of the com-

plementary set with small out-off-phase aperiodic ACFs can lower PAPR of the system.

Therefore, a construction method is proposed for the design of ternary complementary

sets with reduced PAPR.

In Chapter 4, motivated by the problem of reducing PAPR of transmitted signals, we

consider a design of complex-valued complementary set matrices whose column sequences
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satisfy a correlation constraint. The design algorithm recursively builds a collection of

MO complementary set matrices starting from a companion pair of sequences. We relate

correlation properties of column sequences to that of the companion pair and illustrate

how to select an appropriate companion pair to ensure that a given column correlation

constraint is satisfied. We also reveal a design of the companion pair which leads to

complementary set matrices with Golay column sequences. By exploiting the well-known

Welch bound, sufficient conditions for the existence of companion pairs which satisfy a set

of column correlation constraints are also given.

In Chapter 5, we construct ternary ZCZ sequence sets with a both periodic and ape-

riodic ZCZ to suppress the multipath and multiuser interference. We further construct a

tree-structure for ternary OVSF codes with a ZCZ of arbitrary lengths. ZCZ sequences

have been studied in [17–22]. However, there are no previous studies of trees formed by

codes of different spreading factors and a common ZCZ.

In Chapter 6, we focus on the uplink aggregate throughput maximization for a quasi-

synchronous (QS) TS-UWB system. QS systems [23] may employ GPS receivers at the

base station and mobiles to correct for propagation delays [24]. The relative time delay

between signals of different users is random but can be maintained within a given inter-

val [25]. We model the relative time delay ∆ being upper bound as |∆| ≤ τ (e.g., see [26]).

Hence, the MAI is zero when the length of the constructed ZCZ is no less than the τ . The

constructed ternary ZCZ-OVSF codes ensure that the multipath and MAI are zero [4, 7]

and thus, improve the system throughput. We also propose an optimal code assignment

which can maximize the aggregate throughput by allocating OVSF codes to the active

users based on their SINRs.

In Chapter 7, in view of target high data rate applications and corresponding simple

receiver design, our approach focuses on signal designs that enhance the performance of

a non-adaptive receiver. We propose an adaptive transmission approach which suggests

selecting a ternary sequence for a DS-UWB signal based on the signs of the reflection

coefficients corresponding to a few strongest paths so that the signal energy at the output

of the receiver is enhanced.
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Chapter 2

Definitions and Preliminaries

Sequences are denoted by boldface lowercase letters (e.g., x), their elements by correspond-

ing lowercase letters with subscripts (x0), boldface uppercase letters denote matrices (X),

and calligraphic letters denote either sets of numbers or sets of sequences (X ).

l


l


Aperiodic ACF


Periodic ACF


Figure 2.1: Aperiodic ACF and periodic ACF

2.1 Correlation Functions

Let a = (a0, a1, ..., an−1) denote a sequence of length n with ai ∈ C, 0 ≤ i ≤ n − 1, where

C is the set of complex numbers. As illustrated in Fig. 2.1, the aperiodic and periodic

ACFs of a are

Aa(l) =
n−1−l
∑

i=0

aia
∗
i+l, 0 ≤ l ≤ n − 1, (2.1)

Pa(l) =

n−1
∑

i=0

aia
∗
i⊕n l, 0 ≤ l ≤ n − 1, (2.2)

where a∗i denote the complex conjugate of ai, and ⊕n denotes modulo-n addition. It

follows that

Pa(l) = Aa(l) + Aa(n − l), 0 ≤ l ≤ n − 1. (2.3)
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l


l


Aperiodic CCF


Periodic CCF


Figure 2.2: Aperiodic CCF and periodic CCF

Let b = (b0, b1, ..., bn−1), where bi ∈ C, 0 ≤ i ≤ n − 1. As shown in Fig. 2.2, the

aperiodic and periodic crosscorrelation functions of a and b are defined, respectively, as,

Aa,b(l) =































n−1−l
∑

i=0
aib

∗
i+l, 0 ≤ l ≤ n − 1

n−1+l
∑

i=0
ai−lb

∗
i , 1 − n ≤ l < 0

0, |l| ≥ n

, (2.4)

Pa,b(l) =
n−1
∑

i=0

aib
∗
i⊕n l, 0 ≤ l ≤ n − 1. (2.5)

Table 2.1 lists the correlation function parameters which are commonly used to judge

the merits of a sequence design, and are termed correlation merits. λA
a , λP

a , SA
a , and SP

a

are autocorrelation merits, and λA
a,b, λP

a,b, SA
a,b, and SP

a,b are common crosscorrelation

merits. For example, it is well known that binary m-sequences satisfy λP
a = 1, and the

sequences with λA
a ≤ 1 are called Barker sequences. Furthermore, a small value of SA

a can

significantly reduce the PAPR of OFDM signals, if the elements of a are assigned across

all carriers [9, 27].

Table 2.1: Correlation Merits

λA
a = maxl{|Aa(l)|, 1 ≤ l ≤ n − 1} SA

a =
∑n−1

l=1 |Aa(l)|
λP
a = maxl{|Pa(l)|, 1 ≤ l ≤ n − 1} SP

a =
∑n−1

l=1 |Pa(l)|
λA
a,b = maxl{|Aa,b(l)|, | l | ≤ n − 1} SA

a,b =
∑n−1

l=1−n |Aa,b(l)|
λP
a,b = maxl{|Pa,b(l)|, 0 ≤ l ≤ n − 1} SP

a,b =
∑n−1

l=0 |Pa,b(l)|
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Table 2.2: Sequence Operations

a∗ = (a∗0, a
∗
1, ..., a

∗
n−1)

−a = (−a0,−a1, ...,−an−1)←−a = (an−1, an−2, ..., a1, a0)
ab = (a0, a1, ..., an−1, b0, b1, ..., bn−1)
a⊗b = (a0, b0, a1, b1, ..., an−1, bn−1)
a · b = a0b0 + a1b1 + ... + an−1bn−1

a⊙b = (a0b0, a0b1, ..., a0bn−1, a1b0, a1b1, ..., a1bn−1, ..., an−1bn−1)
fi(a) = (a1,−a0, a3,−a2, ..., an−1,−an−2)
fc(a) = (an

2
, an

2
+1, ..., an−1,−a0,−a1, ...,−an

2
−1)

2.2 Sequence and Matrix Operations

In Table 2.1, we list the following sequence operations: complex conjugation, negation,

reversal, concatenation, interleaving, inner product and Kronecker product. Furthermore,

we introduce two sequence reshaping functions fi(·) and fc(·) defined on sequences of even

length.

2D sequence can be represented using a matrix

C =



















r1

r2

...

rm



















=
[

cT
0 cT

1 · · · cT
n−1

]

=



















c1,0 c1,1 · · · c1,n−1

c2,0 c2,1 · · · c2,n−1

...
...

. . .
...

cm,0 cm,1 · · · cm,n−1



















m×n

, (2.6)

where row sequences ri = (ci,0, ci,1, ci,2, · · · , ci,n−1), 1 ≤ i ≤ m, and column sequences

cT
j =



















c1,j

c2,j

...

cm,j



















, 0 ≤ j ≤ n − 1. (2.7)

Correlation functions and merits of cT can be defined as the same as c. Hence, for

notation simplicity and without causing any confusion, column sequences are still denoted

by a normal row vectors,

cj =
[

c1,j c2,j · · · cm,j

]

, 0 ≤ j ≤ n − 1. (2.8)
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cT
j only helps to represent a column vector in a matrix.

Let C = [ci,j ] and D = [di,j ] be two matrices of equal dimensions, then C∗ = [c∗i,j ],

−C = [−ci,j ], and CT = [cj,i]. C ⊗ D is the matrix whose ith row sequence is obtained

by interleaving ith row sequences of C and D. CD denotes the matrix whose ith row

sequence is the concatenation of ith row sequences of C and D.

2.3 Ternary Sequences

a = (a0, a1, ...an−1) is a ternary sequence when ai ∈ {1, 0,−1}, 0 ≤ i ≤ n − 1. Ternary

sequences include binary sequences as a subset. Let λa = δa/n denote the deficiency ratio

of a ternary sequence a of length n, where δa denotes the number of zero elements in a.

2.3.1 Perfect Ternary Sequences

A perfect ternary sequence satisfies

Pa(l) =







(1 − λa)n l = 0

0 1 ≤ l ≤ n − 1
. (2.9)

2.3.2 Ternary ZCZ Sequence Set

A set of m ternary sequences {a1,a2, ...,am} each of length n is said to be a ZCZ sequence

set for both periodic and aperiodic correlations, if

Aai
(l) = Pai

(l) =







(1 − λa)n, l = 0

0, 1 ≤ |l| ≤ Lzcz

(2.10)

Aai,aj
(l) = Pai,aj

(l) = 0. |l| ≤ Lzcz (2.11)

Ternary ZCZ sequence set can be denoted as T (n, m, Lzcz), where n, m and Lzcz are ,

respectively, referred to as the length of the sequences, the family size, and the length of

the ZCZ.
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Figure 2.3: OVSF code tree: a
(k)
i denotes the ith code in kth layer

2.4 OVSF Codes

The tree structure of OVSF codes is shown in Fig. 2.3. Let a
(k)
i denote the ith code in

kth layer, where i ∈ [1, 2k]. The (k + 1)th layer codes can be constructed as follows,







a
(k+1)
2i−1 = a

(k)
i a

(k)
i

a
(k+1)
2i = a

(k)
i (−a

(k)
i )

. (2.12)

The conventional Walsh code based binary OVSF codes are constructed by a
(1)
1 = (++)

and a
(1)
2 = (+−). Let n(1) denote the length of the first layer code, then the kth layer

code of length n(k) = 2k−1n(1), k = 1, 2, 3....

The orthogonality of the assigned codes is guaranteed by the fact that none of the

parent-child code pairs is simultaneously assigned to the users. For instance, if a
(2)
2 has

been assigned, the codes a
(3)
3 and a

(3)
4 are blocked, since a

(2)
2 is a prefix of a

(3)
3 and a

(3)
4 .

As a result, the assigned code set has a prefix-free property. Let us assume kith layer code

is assigned to the ith user. Based on the Kraft inequality, we have

M
∑

i=1

2−ki ≤ 1, (2.13)

where M is the total number of active users.

2.5 Complementary Sequences

2.5.1 Complementary Pairs

A pair of sequences {c1, c2} is called a complementary pair, if

Ac1(l) + Ac2(l) = 0,∀ l 6= 0. (2.14)



11

Complementary pairs were first introduced by Golay, where the pairs are over the binary

alphabet {1,−1}, as known as Golay pairs. It has been proved that the length of a

binary complementary pair (BCP) can only be 2α10β26γ , where α, β, γ are non-negative

integers [2]. In [15], Gavish and Lempel investigated ternary complementary pairs. The

so-called ternary complementary pair (TCP) includes BCP as a special case, and exists

for any sequence length.

2.5.2 Complementary Sets

A set of m sequences {c1, c2, ..., cm}, each having length n, is called a complementary set

if

m
∑

i=1

Aci
(l) = 0, 1 ≤ l ≤ n − 1. (2.15)

A complementary set can be represented using a complementary set matrix

C =



















r1

r2

...

rm



















=



















c0

c1

...

cn−1



















T

=



















c1,0 c1,1 · · · c1,n−1

c2,0 c2,1 · · · c2,n−1

...
...

. . .
...

cm,0 cm,1 · · · cm,n−1



















m×n

, (2.16)

where the row sequences, ri = (ci,0, ci,1, ci,2, · · · , ci,n−1), 1 ≤ i ≤ m, are complementary

sequences, that is,
∑m

i=1 Ari
(l) = 0, 1 ≤ l ≤ n − 1. cj = (c1,j , c2,j , c3,j , · · · , cm,j), 0 ≤ j ≤

n − 1, are column sequences.

Complementary sets can be constructed from perfect ternary sequences [28, 29]. Let

c = (c0, c1, ...cn−1) be a perfect ternary sequence of length n, then all its shift versions

form a complementary set as follows,

C =

























c0 c1 c2 · · · cn−2 cn−1

c1 c2 c3 · · · cn−1 c0

c2 c3 c4 · · · c0 c1

...
...

...
...

...
...

cn−1 c0 c1 · · · cn−3 cn−2

























. (2.17)
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2.5.3 Mutually Orthogonal Complementary Sets

Complementary sets {a1,a2, ...,am} and {b1,b2, ...,bm} are mates if

m
∑

i=1

Aai,bi
(l) = 0, 1 − n ≤ l ≤ n − 1. (2.18)

The mutually orthogonal (MO) complementary set is a collection of complementary sets

in which any two are mates. Let Mk
m,n denote the MO complementary set consisting of

k complementary sets each having m complementary sequences of length n. For binary

sequences, k cannot exceed m [2], that is, the maximum number of mutually orthogonal

complementary sets is equal to the number of complementary sequences in a set. Hence,

Mm
m,n is called a complete complementary code of order m [30].

A set of k mutually orthogonal complementary sets, {C1,C2, ...Ck}, form a MO com-

plementary set matrix

Mk
m,n =

[

C1 C2 · · · Ck

]

m×kn
(2.19)

and its column sequences are denoted as ui, 0 ≤ i ≤ kn− 1. An upper bound on an auto-

correlation merit of column sequences is termed the column correlation constraint. If there

exists at least one MO complementary set matrix satisfying a given column correlation

constraint, then this constraint is called an achievable column correlation constraint. For

example, let

λA
u = max

{

λA
ui

, 0 ≤ i ≤ kn − 1
}

, (2.20)

if λA
u ≤ λA, then Mk

m,n is called a MO complementary set matrix satisfying a column

correlation constraint λA, and λA is an achievable column correlation constraint.

2.5.4 Extension Operations

We describe two operations for extending complementary set matrices, namely, length-

extension and size-extension.

Lemma 2.1 [2]: Let {a,b} be a complementary pair, then {←−b∗,−←−
a∗} is its mate, and

both {a←−b∗,b(−←−
a∗)} and {a ⊗←−

b∗,b ⊗ (−←−
a∗)} are complementary pairs.
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Proof. Let us first prove that {←−b∗,−←−
a∗} is a mate of {a,b}. A proof for binary sequences

can be found in Theorem 11 of [13]. For complex-valued sequences, the complementarity

of {←−b∗,−←−
a∗} follows from

A←−
b∗(l) + A

−
←−
a∗(l) = (A←−

b
(l))∗ + (A−←−a (l))∗

= Ab(l) + A−a(l)

= Ab(l) + Aa(l)

= 0

for 1 ≤ l ≤ n − 1, where n denotes the sequence length. We further show that the pair

{←−b∗,−←−
a∗} is orthogonal to {a,b} in the complementary sense,

A
a,
←−
b∗(l) + A

b,−
←−
a∗(l) = A

a,
←−
b∗(l) − A

b,
←−
a∗(l)

= (A
a∗,

←−
b

(l))∗ − A
b,
←−
a∗(l)

= A
b,
←−
a∗(l) − A

b,
←−
a∗(l)

= 0

for every l. Refer to the proofs of Theorem 6 and Theorem 13 from [13]. If {a1,b1}

is a complementary pair and {a2,b2} is one of its mates, then both {a1a2,b1b2} and

{a1 ⊗ a2,b1 ⊗ b2} are complementary pairs.

Lemma 2.2: Let {a1,b1}, {a2,b2}, ..., {am,bm} be m complementary pairs of length

n. Then, {a1,b1,a2,b2, ...,am,bm} is a complementary set of 2m complementary se-

quences.

Proof.
∑m

i=1 (Aai
(l) + Abi

(l)) = 0, 1 ≤ l ≤ n − 1.

Lemmas 2.1-2.2 imply that, if a complementary set consists of m/2 complementary

pairs, the sequence length can be recursively doubled as follows. Let

C(p) =

























r
(p)
1

r
(p)
2

...

r
(p)
m−1

r
(p)
m

























m×n(p)

and D(p) =

























←−r (p)
2

−←−r (p)
1

...

←−r (p)
m

−←−r (p)
m−1

























∗

m×n(p)

(2.21)
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be, respectively, an m by n(p) complementary set matrix and its mate, where m is an

even number, and {r(p)
1 , r

(p)
2 }, {r(p)

3 , r
(p)
4 }, ...{r(p)

m−1, r
(p)
m } are assumed to be complementary

pairs. A complementary set matrix C(p+1) of dimension m by n(p+1) = 2n(p) can be

constructed recursively as either,

C(p+1) = C(p) D(p) (2.22)

or C(p+1) = C(p) ⊗ D(p). (2.23)

We term (2.22) and (2.23) length-extension operations.

Lemma 2.3 [13]: A MO complementary set matrix M2k
2m,2n can be constructed recur-

sively as either,

M2k
2m,2n =





Mk
m,nM

k
m,n, (−Mk

m,n)Mk
m,n

(−Mk
m,n)Mk

m,n, Mk
m,nM

k
m,n



 (2.24)

or

M2k
2m,2n =





Mk
m,n⊗Mk

m,n, (−Mk
m,n)⊗Mk

m,n

(−Mk
m,n)⊗Mk

m,n, Mk
m,n⊗Mk

m,n



 . (2.25)

Proof. Refer to the proof of Theorem 12-13 in [13].

We term (2.24) and (2.25) size-extension operations.
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Chapter 3

Ternary Complementary Sets for Multiple Channel

DS-UWB with Reduced PAPR

3.1 Introduction

We have proposed a multichannel TS-UWB signaling which transmits orthogonal pulses

carrying the same information bit. We demonstrated how, by employing ternary mutu-

ally orthogonal (MO) complementary set of sequences as the spreading sequences, the

multipath interference and multiple access interference are efficiently suppressed.

Akin to the multicarrier direct-sequence code-division multiple access (MC-DS-CDMA)

signaling [16], the transmitted signal of the multichannel UWB system is the sum of the

signals from all parallel channels, so its envelope and transmitted power may vary sig-

nificantly. Hence, such signaling potentially suffers a high PAPR which may limit its

application. Great efforts have been devoted to PAPR analysis and reduction in multi-

carrier modulation systems (see, e.g., [16, 27, 31]). However, to our best knowledge, there

is no PAPR analysis for impulse based multichannel UWB signaling in the literature,

this being a promising technique for high bit-rate transmission, in particular, for indoor

environments where multipath can be significant.

We derive an upper bound on the PAPR for multichannel DS-UWB system using

orthogonal pulses. The bound shows that sequence with small out-off-phase aperiodic

ACF can lower the PAPR of the system. This result is similar to the bound derived by

Tellambura [27] for orthogonal frequency-division multiplexing (OFDM) signaling. We

construct the spreading sequence sets which can result in sequences with small aperiodic

ACF. The spreading sequence sets preserve the complementarity and orthogonality to

mitigate the multipath and multiuser interference.
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3.2 Multiple Channel DS-UWB

3.2.1 Multipath and Multiuser Interference Cancellation

In this section, we introduce a technique for multichannel DS-UWB systems that employ

complementary sets as spreading sequences. Fig. 3.1 demonstrates, in a simple single user

multipath environment, how a complementary pair suppress the multipath interference

with the aid of orthogonal channels.

At transmitter, the same information bit is spread by two complementary sequences

which are respectively assigned to orthogonal channels. The transmitted signal is the

summation of signals from two subchannels. Despreading in the receiver is accomplished

on a channel-by-channel basis using a set of correlators. The multipath interference at the

output of a correlator is the autocorrelation of the sequence assigned on this channel with

a time shift l. By adding the output of two correlators, the autocorrelation sidelobes are

cancelled by the complementarity of the complementary pair. The MAI can be suppressed

in a similar way if mutually orthogonal complementary sets are assigned to different users.
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Figure 3.1: Example: multipath interference cancellation by complementary sets and
orthogonal pulses
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3.2.2 System Model

The same information bit is spread over a set of m parallel channels, each corresponding

to one of a set of orthogonal pulses. The transmitted signal is given by

s(t) =
∑

r

br

m
∑

i=1

pi(t − rTb), (3.1)

where the pulse train of the ith channel is

pi(t) =
n−1
∑

j=0

ci,jψi(t − jTc). (3.2)

The binary antipodal symbol br is transmitted over m parallel channels and r is its index.

The m spreading sequences (ci,0, ci,1, · · · , ci,n−1), i = 1, 2, ...m, assigned respectively to

m parallel channels are ternary sequences of length n. Tc is the chip duration time and

Tb = nTc is the bit period. ψi(t) is the signaling pulse chosen from the orthogonal set of

pulses and assumed known to the receiver. The impulse response of the UWB channel

with L resolvable paths is

h(t) =
L−1
∑

l=0

αlδ(t − τl), (3.3)

where αl and τl denote the channel gain and the propagation delay of the lth path, respec-

tively. When sufficient multipath resolution is available, small changes in the propagation

time only affect the path delay and path component distortion can be neglected. Under

these assumptions, path coefficients αl can be modelled as independent real valued random

variables whose sign is a function of the material properties and, generally, depends on

the wave polarization, angle of incidence, and the frequency of the propagating wave [32].

We quantize the multipath delay into bins, i.e. τl = lTc.

For an asynchronous UWB system with K users, the corresponding received signal

model is:

r(t) =
K

∑

k=1

L−1
∑

l=0

αls
(k)(t − lTc − τ (k)) + n(t), (3.4)

where the superscript k indicates the parameter of kth user. τ (k) accounts for propagation

delay and lack of synchronism between transmitters, n(t) is a white Gaussian noise process.

For the system with short sequences, the delay τ (k) is assumed to be uniformly distributed

in the interval [0, nTc), and here, we quantize it into bins.
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Figure 3.2: Single User: Parallel channel UWB system with TCP versus Single channel
UWB system with m- and perfect ternary sequence

3.2.3 BER Performance

We study correlator receiver performances for TCP, m-sequences, and perfect ternary

sequences in a single user system. For multiuser system, we compare ternary comple-

mentary sets, Walsh codes, Gold-like sequences [2] and preferred m-sequences [33]. Bit

energy for all signaling schemes is normalized. The mean power of multipath components

are chosen to be equal to the average value given in [34], which is based on the indoor

line of sight (LOS) measurements performed in 23 homes. In [34], it is observed that

the line of sight component and the first 10 paths account for 33% and 75% of the total

power, respectively. The sign of the reflected path coefficient is modelled as a uniformly

distributed random variable [35]. The path power is quantized into bins corresponding

to a chip duration Tc = 0.4ns. We assume that each bin contains exactly one multipath

component (emulating a dense multipath environment) and the delay spread is assumed

to be 4 nanosecond. The effects of interchip interference has been assumed negligible.

In Fig. 3.2, a TCP with length 15 has been assigned to a single user for its two

orthogonal channels, i.e. [+ + − + + + + + −0 − + − 0+] and [+ + − + + + − − −0 +

− + 0−]. We compare it to a single user single channel UWB system using the same
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Figure 3.3: Two Users: Parallel channel UWB system with ternary complementary sets
versus Single channel UWB system with preferred m-sequences

length m-sequence [− − − + − − + + − + − + + + +] and perfect ternary sequence

[+ + + + + − +0 + 0 − + + −00 + −0 − −]. The results show that UWB signaling

employing TCP suffers less multipath interference than the signaling using m-sequence

and perfect sequences. At SNR = 10−3, 1 dB and 2 dB gain can be respectively achieved

by employing TCP over m-sequence and perfect ternary sequences.

Figure 3.3 demonstrates BER performances of complementary sets and preferred m-

sequence in a two user scenario. MO complementary sets constructed from binary comple-

mentary pair {(+−), (++)} and {(−−), (−+)} by using extension methods (see Sec. 2.5.4)

are assigned to two users. Based on the approach described in Eq. 2.17, we derive two

complementary sets from perfect ternary sequence [+ −−0 − 00] and [+00 − 0 −−] and

assign them to two users. Note that, by employing MO complementary sets, the multiple

access interference is mitigated significantly.

In a dense multipath UWB environment, the spreading sequence with short length

commonly suffers sever ISI, while with multiple orthogonal channels, MO ternary comple-

mentary set of sequence length 7 has better performance than the preferred m-sequences

with length 31. We can observe 2 dB gain at SNR = 10−3.
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Figure 3.4: Four Users: BER performance for MO ternary complementary sets, Walsh-
Hadamard codes and preferred m-sequences

In Figure 3.4, we respectively assign four ternary MO complementary sets to four

users. Ternary complementary set of sequences of length 8 can achieve the same BER

performance as Gold-like sequences of length 63. Hence, without any loss of the BER

performance, in a multiple channel UWB system, we can increase the date rate more than

7 times than the single channel UWB signals employing Gold-like sequences.

We have demonstrated that, when the spreading sequence set {(c(k)
i,0 , c

(k)
i,1 , · · · , c

(k)
i,n−1)},

i = 1, 2, 3, ...m, assigned to kth user is a ternary complementary set and ternary comple-

mentary sets between any two users are mutually orthogonal, the multipath interference

as well as multiple access interference are efficiently suppressed by simply employing a

correlator receiver. However, we need solve the potential PAPR problem caused by mul-

tiple channels while at the same time maintaining the complementarity and orthogonality

of the spreading sequence sets.
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3.2.4 PAPR Analysis

Complementary set with m complementary sequences of length n can be represented as a

matrix,

C =



















c0

c1

...

cn−1



















T

=



















c1,0 c1,1 c1,2 · · · c1,n−1

c2,0 c2,1 c2,2 · · · c2,n−1

...
...

...
. . .

...

cm,0 cm,1 cm,2 · · · cm,n−1



















m×n

, (3.5)

where {cj , j = 0, 1, ...n − 1}, are column sequences of the complementary set matrix. Note

that the information bits won’t affect the instantaneous power of the transmitted signal,

since all the parallel channels carry the same information bit at the same time. Thus, in

this section, we can analysis the PAPR and derive an upper bound on it by ignoring the

information bits.

The corresponding multichannel UWB signal of a single user is given by

scj
(t) =

m
∑

i=1

ci,jψi(t − jTc), for j = 0, 1, ...n − 1. (3.6)

where j is the chip index. The corresponding instantaneous envelope power is,

Pcj
(t) = s2

cj
(t) =

(

m
∑

i=1

ci,jψi(t − jTc)

) (

m
∑

l=1

cl,jψl(t − jTc)

)

= 2
m−1
∑

l=1

m−l
∑

i=1

ci,jci+l,jψi(t − jTc)ψi+l(t − jTc)

+
m

∑

i=1

c2
i,jψ

2
i (t − jTc). (3.7)

We assume that orthogonal pulses have zero amplitude outside the chip interval. Hence,

the instantaneous power over symbol period is given by,

Pc(t) =
n−1
∑

j=0

Pcj
(t)U(t − jTc), (3.8)

where

U(t) =







1 t ∈ [ 0, Tc)

0 otherwise
. (3.9)
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The peak amplitude of all the orthogonal pulses may or may not have the same value.

We define

λ = max
i

(

sup
t∈[0,Tc]

|ψi(t)|
)

for i = 1, 2, ...m, (3.10)

where supt∈[0,Tc] |ψi(t)| denotes the peak value of pulse |ψi(t)| over time period [0, Tc].

Hence, the peak envelope power (PEP) corresponding to the spreading sequence set C is

given by,

PEP(C) = sup
t∈[0,Tb]

Pc(t) = max
cj

(

sup
t∈[jTc,(j+1)Tc]

Pcj
(t)

)

≤ λ2 max
cj

(∣

∣

∣

∣

∣

m
∑

i=1

c2
i,j

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

m−1
∑

i=1

m
∑

l=i+1

ci,jcl,j

∣

∣

∣

∣

∣

)

≤ λ2 max
cj



Acj
(0) + 2

∑

l 6=0

∣

∣Acj
(l)

∣

∣



 . (3.11)

We normalize the information symbol energy over m channels to be 1. Thus,

∫ Tb

0
Pc(t)dt =

m
∑

i=1





∫ Tb

0

n−1
∑

j=0

c2
i,jψ

2
i (t − jTc)dt



 = 1. (3.12)

The average power corresponding to the spreading sequence set C over a symbol period

Tb is,

Pav(C) =
1

Tb

∫ Tb

0
Pc(t)dt =

1

Tb
. (3.13)

From (3.11) and (3.13), the PAPR of the multichannel UWB system can be upper bounded

as follows,

PAPR(C) =
PEP (C)

Pav(C)
≤ λ2

Tb
max
cj



Acj
(0) + 2

∑

l 6=0

∣

∣Acj
(l)

∣

∣



 . (3.14)

This upper bound highlights the intimate relationship of PAPR with the aperiodic ACF

of C’s column sequences. In the next section, we construct the ternary complementary

set C whose column sequences have reduced aperiodic ACFs, thus lowering the PAPR of

a multichannel UWB system.
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3.3 Ternary Complementary Sets with Reduced PAPR

Let T (m, δ, SA) denote a ternary sequence set, in which any sequence c of length m with

δ zero elements satisfies

m−1
∑

l=1

|Ac(l)| ≤ SA. (3.15)

We introduce a stepwise algorithm for the design of the ternary complementary set

matrix whose column sequences are in T (m, δ, SA), where m is an even number. Based

on (3.14), the PAPR of the system is bounded by

PAPR(C) ≤ λ2

Tb

(

m − δ + 2SA
)

. (3.16)

3.3.1 Design Algorithm

Step 1 : We do the exhaustive search to find seed sequence c0 = (c1,0, c2,0, ..., cm,0) ∈

T (m, δ, SA), such that,

c1 = fi(c0)

= (c2,0,−c1,0, c4,0,−c3,0, ..., cm,0,−cm−1,0)

∈ T (m, δ, SA). (3.17)

Step 2 : By employing length-extension operations, we can recursively extend

C(0) =





c0

c1





T

=





c1,0 c2,0 c3,0 c4,0 ... cm,0

c2,0 −c1,0 c4,0 −c3,0 ... −cm−1,0





T

(3.18)

to be the PAPR reduced ternary complementary set C(p) of dimension m by 2p+1.

Proposition 3.1: C(0) is a ternary complementary set with PAPR reduction.

Proof. c0 and c1 satisfy that {(c2i−1,0, c2i−1,1), (c2i,0, c2i,1)}, i = 1, 2, ...m/2, are respec-

tively m/2 ternary complementary pairs. Based on Lemma 2.1 and Lemma 2.2, C(0) is a

ternary complementary set. On the other hand, both c0 and c1 are in T (m, δ, SA), thus

PAPR(C(0)) ≤ λ2

Tb

(

m − δ + 2SA
)

. (3.19)
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Proposition 3.2: The extended sequence sets C(p), p = 0, 1, 2, 3..., are ternary com-

plementary sets with PAPR reduction.

Proof. The complementarity of C(p) can be verified by using Lemmas 3.1-3.2. The column

sequences of C(p+1), i.e.,
{

c
(p+1)
0 , c

(p+1)
1 , ...c

(p+1)

n(p+1)−1

}

, can be expressed in terms of the

column sequences of C(p) as follows

c
(p+1)
i =























c
(p)
i for 0 ≤ i ≤ n(p) − 1

−c
(p)

i−n(p) for n(p) ≤ i ≤ 3
2n(p) − 1

c
(p)

i−n(p) for 3
2n(p) ≤ i ≤ 2n(p) − 1

,

where n(p) = 2p+1. Note that c
(0)
0 and c

(0)
1 , the column sequences of C(0), are in set

T (m, δ, SA). Thus, all column sequences of C(p), i.e. c
(p)
0 , c

(p)
1 ,... c

(p)

n(p)−1
, p = 0, 1, 2, ...,

are in the same ternary sequence set T (m, δ, SA) as well.

3.3.2 Numerical Results

After exhaustive computer search, we can find c0 = (+ − − + + + 0 +) ∈ T (8, 1, 5). It

can be verified that, c1 = (−− + + + − + 0) ∈ T (8, 1, 5). Thus, C(0) is given by,

C(0) =



















c1,0 c1,1

c2,0 c2,1

...
...

c8,0 c8,1



















=





+ − − + + + 0 +

− − + + + − + 0





T

.

By employing length-extension operations, we construct ternary complementary set C(1)

and C(2) from C(0) as follows,

C(1) =



















+ − − + + + 0 +

− − + + + − + 0

− + + − − − 0 −

− − + + + − + 0



















T

, (3.20)
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Figure 3.5: Normalized PAPR upper bound of randomly generated complementary sets
versus that of proposed PAPR reduced ternary complementary set

and

C(2) =













































+ − − − − + − −

− − + − + + + −

− + + + + − + +

+ + − + − − − +

+ + − + − − − +

+ − − − − + − −

0 + 0 + 0 − 0 +

+ 0 − 0 − 0 − 0













































8×8

.

We normalize the PAPR upper bound of the 8 by 8 ternary complementary set C(2)

constructed in the above example. For comparison purpose, we randomly generate com-

plementary sets with the same dimension. Fig. 3.5 demonstrates that the proposed ternary

complementary set may lower the PAPR upper bound by 4.5 dB over that of randomly

generated complementary sets.
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Chapter 4

Complementary Set Matrices Satisfying a Column

Correlation Constraint

4.1 Introduction

Complementary sequence sets have been introduced by Golay [14, 36], as a pair of binary

sequences with the property that the sum of their aperiodic autocorrelation functions is

zero everywhere except at zero shift. Tseng and Liu [13] generalized these ideas to sets of

binary sequences of size larger than two. Sivaswamy [37] and Frank [38] investigated the

multiphase (polyphase) complementary sequence sets with constant amplitude sequence

elements. Gavish and Lemple considered ternary complementary pairs over the alphabet

{1, 0,−1} [15]. The synthesis of multilevel complementary sequences is described in [39].

These generalizations of a binary alphabet lead to new construction methods for com-

plementary sets having a larger family of lengths and cardinalities. However, all these

studies focus either on the set complementarity or on the design of orthogonal families of

complementary sets. Correlation properties of column sequences of the complementary

set matrix (i.e., the matrix whose row sequences form a complementary set) have not been

considered.

In Chapter 3 (see also [6, 40, 41]), a technique for a multicarrier direct-sequence code-

division multiple access (MC-DS-CDMA) system [42, 43] that employs complementary sets

as spreading sequences has been investigated. Each user assigns different sequences from

a complementary set to his subcarriers. By assigning MO complementary sets to different

users, both multiple access interference and multipath interference can significantly be

suppressed. Similar to conventional multicarrier systems, one of the major impediments

to deploying such systems is a high PAPR. We have stressed in the previous chapter that
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the PAPR can be upper bounded by the maximum sum-of-out-of-phase aperiodic auto-

correlation magnitude of column sequences of the employed complementary sets. Hence,

in this work, we search for ways of constructing sequence sets which are characterized by

both their complementarity and a desired column correlation constraint.

By generalizing earlier work of Boyd [44], Popović [45] has demonstrated that PAPR

corresponding to any binary Golay sequence (i.e., a sequence having a Golay complemen-

tary pair) is at most two. This has motivated Davis and Jedwab to explicitly determine

a large class of Golay sequences as a solution to the signal envelope problem [46]. Here,

we also consider Golay column complementary sets.

We describe a construction algorithm for the design of 2t+1 MO complementary set

matrices of size 2tm by 2t+p+1, where t and p can be any non-negative integer, and

m is an even number. The construction process is based on a set of sequence/matrix

operations, starting from a companion sequence pair which can be constructed based on

the Quads introduced in [47]. These operations preserve the alphabet (up to the sign) of

the companion pair. We illustrate how, by selecting an appropriate companion pair we

can ensure that column sequences of the constructed complementary set matrix satisfy a

correlation constraint. For t = 0, companion pair properties directly determine matrix

column correlation properties. For t ≥ 1, reducing correlation merits of the companion

pair may lead to improved column correlation properties. However, further decrease of the

maximum out-of-phase aperiodic autocorrelation of column sequences is not possible once

the correlation of the companion pair is less than a threshold determined by t. We also

present a method for constructing the companion pair which leads to the complementary

set matrix with Golay column sequences.

We exhaustively search for optimum companion pairs leading to binary complementary

sets with a minimum out-of-phase autocorrelation magnitude or a minimum sum-of-out-

of-phase autocorrelation magnitude for column sequences of length at least up to 28, or

leading to optimum complementary sets whose column sequences are ternary sequences

with a single zero element of length at least up to 24. However, exhaustive search is

infeasible for medium and long sequences. We instead suggest finding companion pairs

with a small, if not minimum, column correlation constraint. By exploiting properties of
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the companion pair, we convert the problem into a search for two sequences of length m/2

with low autocorrelation and crosscorrelation merits, a long standing problem in literature

(e.g. see [48–51]). We further derive an improved cost function and show how it leads

to reduced achievable maximum out-of-phase column correlation constraint. Sufficient

conditions for the existence of companion pairs which satisfy various column correlation

constraints are also derived.

4.2 Definitions

4.2.1 Companion Pair

Let a be a sequence of length m, where m is an even number. We define a sequence b as

a companion of a if

C =





a

b





T

(4.1)

is a complementary set matrix which consists of m/2 complementary pairs. C is called a

companion matrix and (a,b) is called a companion pair.

4.2.2 Expanded Sequences Set

Let us also define an expanded sequence set R(v)
c , which is a collection of row sequences

of matrix R
(v)
c recursively constructed from a sequence c, as follows,

R
(v)
c =





R
(v−1)
c R

(v−1)
c

R
(v−1)
c (−R

(v−1)
c )



 , v = 1, 2, 3..., (4.2)

where

R
(0)
c =





c

−c





2×m

. (4.3)

Let R(v)
c,d = R(v)

c ∪ R(v)
d which consists of 2v+2 sequences of length 2vm. For example,

R(0)
c = {c,−c}, R(0)

d = {d,−d}, and R(0)
c,d = {c,d,−c,−d}.
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4.3 Construction of Complementary Set Matrices from a Companion

Pair

4.3.1 Recursive Construction Algorithm

Let X (m) denote a sequence set which consists of all length m sequences whose elements

are from the alphabet X . We summarize a recursive construction of a MO complementary

set matrix M2t+1

2tm,2tn(p) with elements from X , where n(p) = 2p+1, m is an even number,

and t, p = 0, 1, 2, ....

Step 1: The construction starts from a companion pair c0 and c1 which are in X (m).

They form an m by 2 companion matrix

C(0) =





c0

c1





T

. (4.4)

Step 2: By employing the length-extension operation p times, we extend C(0) to an m

by n(p) = 2p+1 complementary set matrix C(p). C(p) and its mate D(p) constructed from

Eq. (2.21) form a MO complementary set matrix

M2
m,n(p) =

[

C(p) D(p)
]

m×2p+2
. (4.5)

Step 3: Starting with M2
m,n(p) , we can construct the MO complementary set matrix

M2t+1

2tm,2tn(p) by repeating the size-extension operation t times, where p, t = 0, 1, 2, ....

In this chapter, we will alternately use either “the constructed MO complementary set

matrix” or, simply, M2t+1

2tm,2tn(p) when referring to the above constructed MO complemen-

tary set matrix.

4.3.2 Companion Pair Design

Proposition 4.1: Let us arrange the elements of c0 = (c1,0, c2,0, ...cm,0) into m/2 arbi-

trary pairs, e.g., (cx,0, cy,0). Then, its companion sequence c1 = (c1,1, c2,1, ...cm,1) can be

constructed as either

cx,1 = c∗y,0, cy,1 = −c∗x,0 (4.6)

or cx,1 = −c∗y,0, cy,1 = c∗x,0 . (4.7)
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Proof. Let us assume c1 is constructed using (4.6). In this case,

C(0) =





c0

c1





T

=





... cx,0 ... cy,0 ...

... c∗y,0 ... −c∗x,0 ...





T

. (4.8)

Here, r
(0)
x = (cx,0, c

∗
y,0) and r

(0)
y = (cy,0,−c∗x,0), respectively, the xth and the yth row

sequence of C(0) form a complementary pair, since

A
r
(0)
x

(l) + A
r
(0)
y

(l) = 0, 1 ≤ l < 2. (4.9)

Based on Lemma 2.2, C(0) is a complementary set matrix consisting of m/2 complementary

pairs. Hence, c0 and c1 form a companion pair.

Example 4.1: f∗
i (c0) is a companion of c0, since

C(0) =





c0

f∗
i (c0)





T

=





c1,0 c2,0 c3,0 c4,0 ... cm−1,0 cm,0

c∗2,0 −c∗1,0 c∗4,0 −c∗3,0 ... c∗m,0 −c∗m−1,0





T

(4.10)

is a companion matrix. It can be verified that f∗
c (c0) is also a companion of c0.

Remark : A companion pair of length n consists of n/2 Quads of the following types





c d

−d∗ c∗



 or





c d

d∗ −c∗



 , (4.11)

where c, d ∈ C. (4.11) is a complex generalization of binary Quads proposed in [47]. Note

that binary Golay pair of length n are formed by n/2 binary Quads nested in a special way

(e.g., see Proposition 2.1 in [52]). This “nested” condition is not required by companion

pairs. Hence, binary Golay pair is a special case of the companion pair.

The companion pair has the following properties,

Property 4.1 (Commutation): If c0 is a companion of c1, then c1 is also a companion

of c0.

Proof. In Eq. (4.1), C is still a companion matrix when the column sequences a and b

are switched.

Property 4.2 (Inner product): If c0 and c1 form a companion pair, then c0 · c1 = 0.
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Proof. Based on Eqs. (4.6) and (4.7),
∑m

i=1 ci,0ci,1 = 0.

Property 4.3 (Negation property): If (c0, c1) forms a companion pair, then (−c0, c1),

(c0,−c1) and (−c0,−c1) are also companion pairs, and they are considered as the same

companion pair.

Proof. Based on Eqs. (4.6) and (4.7), ±∑m
i=1 ci,0ci,1 = 0.

Corollary 4.1: Binary sequences c0 and c1 form a companion pair, if and only if

c0 · c1 = 0.

Proof. From Property 4.2, c0 ·c1 = 0 is for any companion pair. Furthermore, if c0 and c1

are binary sequences such that c0 · c1 = 0, there must exist m/2 pairs of (x, y) satisfying

cx,0cx,1 + cy,0cy,1 = 0, where 1 ≤ x ≤ m and 1 ≤ y ≤ m. Hence, row sequences of C(0)

can be arranged into m/2 pairs, where each pair r
(0)
x = (cx,0, cx,1) and r

(0)
y = (cy,0, cy,1)

satisfies A
r
(0)
x

(l) + A
r
(0)
y

(l) = 0, 1 ≤ l < 2. Consequently, C(0) is a companion matrix.

4.3.3 Column Sequence Properties

Lemma 4.1: All column sequences of the constructed complementary set matrix M2
m,n(p) =

[

C(p) D(p)
]

are in R(0)
c0,c1 = {±c0,±c1}, where (c0, c1) is the companion pair for the con-

struction.

Proof. Let

C(p) =



















c
(p)
0

c
(p)
1

...

c
(p)

n(p)−1



















T

. (4.12)

For C(p+1) constructed by the length-extension (2.22), we have,

c
(p+1)
i =























c
(p)
i 0 ≤ i ≤ n(p) − 1

−c
(p)

i−n(p) n(p) ≤ i ≤ 3
2n(p) − 1

c
(p)

i−n(p)
3
2n(p) ≤ i ≤ 2n(p) − 1

. (4.13)
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It follows that column sequences of C(p+1) are equal to, or are a negation of, column

sequences of C(p). Since column sequences of C(0) are c0 and c1, all column sequences of

C(p), p = 0, 1, 2, ..., are in R(0)
c0,c1 . In addition, for C(p+1) constructed using the length-

extension (2.23), the interleaving of the corresponding row sequences doesn’t change the

column sequences and, thus, its column sequences are also in R(0)
c0,c1 . Any column sequence

of D(p) can be found in C(p+1) and, consequently, it is in R(0)
c0,c1 as well.

Lemma 4.2: All column sequences of the constructed MO complementary set matrix

M2t+1

2tm,2tn(p) are in R(t)
c0,c1 , where (c0, c1) is the companion pair and t, p = 0, 1, 2, ....

Proof. Let {u(t)
i , 0 ≤ i < r = 22t+1n(p)} denote column sequences of M2t+1

2tm,2tn(p) . The

size-extension (2.24) implies,






u
(t+1)
i = −u

(t+1)
i+2r = u

(t)
i (−u

(t)
i )

u
(t+1)
i+r = u

(t+1)
i+3r = u

(t)
i u

(t)
i

, (4.14)

where 0 ≤ i < r. Based on Lemma 4.1, u
(0)
i , i.e., column sequences of M2

m,n(p) =

[C(p) D(p)] , are in R(0)
c0,c1 . From (4.2), (4.3), and (4.14), we have that

u
(t)
i ∈ R(t)

c0,c1 , t = 0, 1, 2, ... (4.15)

When M2t+1

2tm,2tn(p) is constructed using size-extension (2.25), the proof is analogous.

4.4 Properties of the Constructed Complementary Set Matrix

In this section, column correlation properties of the constructed MO complementary set

matrix are related to ACFs of the companion pair. We illustrate how to satisfy a column

correlation constraint by selecting an appropriate companion pair. We also construct the

companion pair which leads to complementary set matrices with Golay column sequences.

Since number of zeros in an energy-normalized sequence can affect its PAPR (see e.g. [6,

15]), we also discuss the number of zeros in column sequences at the end of this section.

4.4.1 Column Correlation Properties

Theorem 4.1: MO complementary set matrix M2t+1

2tm,2tn(p) satisfies a column correlation

constraint, if and only if the companion pair (c0, c1) is selected so that all sequences in
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R(t)
c0,c1 satisfy the constraint.

Proof. The proof is a direct consequence of Lemma 4.2.

Corollary 4.2: Complementary set matrices C(p) and D(p) constructed from a com-

panion pair (c0, c1), satisfy a column correlation constraint, if and only if c0 and c1 satisfy

the constraint.

Proof. The proof follows by setting t = 0 in Theorem 4.1.

The minimum achievable column correlation constraint for the constructed MO com-

plementary set matrix M2t+1

2tm,2tn(p) is a function of its size and alphabet and can be ex-

pressed as follows,

λmin(t, m) = min
{

max
{

λc : c ∈ R(t)
c0,c1

}

: (c0, c1) is a companion pair, c0, c1 ∈ X (m)
}

,

where λ is any autocorrelation merit. The following Lemma 4.3 is a key in relating column

correlation constraints to the correlation of the companion pair. In particular, it leads to

the minimum achievable column correlation constraint λA
min(t, m).

Lemma 4.3: The ACF of any column sequence u
(t)
i of M2t+1

2tm,2tn(p) can be expressed

in terms of the ACF of c0 or c1 , recursively, as follows,

A
u

(v+1)
j

(l) =











2A
u

(v)
i

(l) ± A
u

(v)
i

(s − l), 0 ≤ l < s;

±A
u

(v)
i

(l − s), s ≤ l < 2s.
(4.16)

where ‘+’ holds for j = i + r or j = i + 3r, ‘−’ holds for j = i or j = i + 2r, when

size-extension (2.24) is used; ‘+’ holds for j = 2i + 1, ‘−’ holds for j = 2i, when size-

extension (2.25) is employed; u
(0)
i ∈ {c0, c1,−c0,−c1}; 0 ≤ i < r = 22v+1n(p), s = 2vm,

and v = 0, 1, 2, ..., t − 1.

Proof. Eq. (4.16) can be derived based on (4.14). Note that, u
(0)
i ∈ R(0)

c0,c1 = {c0, c1,−c0,−c1}

and the negation of a sequence doesn’t change its ACF.

Similar recursive equations can be found for periodic ACFs based on Eq. (2.3).



34

Proposition 4.2 (A sufficient condition for SA): Let SA
c0

≤ SA
0 , SA

c1
≤ SA

0 , and

Ac0(0) = Ac1(0) = E, where (c0, c1) is a companion pair. Then, a sufficient condition for

M2t+1

2tm,2tn(p) to satisfy the column correlation constraint SA
t is

SA
t ≥ 4tSA

0 + 2t−1(2t − 1)E . (4.17)

Proof. Let {u(t)
i , 0 ≤ i < 22t+1n(p)} be the column sequences of M2t+1

2tm,2tn(p) . Clearly,

u
(0)
i ∈ {c0, c1,−c0,−c1}. Then, based on (4.16), we have that

SA
u = max

i

{

SA

u
(t)
i

, 0 ≤ i < 22t+1n(p)

}

= max
i







2tm−1
∑

l=1

|A
u

(t)
i

(l)|, 0 ≤ i < 22t+1n(p)







≤ 4tSA
0 + 2t−1(2t − 1)E, (4.18)

for t = 0, 1, 2, .... Hence, (4.17) is sufficient for SA
t ≥ SA

u which proves the proposition.

Proposition 4.3 (A sufficient condition for λA): Let λA
c0

≤ λA
0 , λA

c1
≤ λA

0 , and

Ac0(0) = Ac1(0) = E, where (c0, c1) is a companion pair. Then, a sufficient condition for

M2t+1

2tm,2tn(p) to satisfy the column correlation constraint λA
t is

λA
t ≥ max

{

(2t − 1)E, (2t+1 − 1)λA
0

}

. (4.19)

Proof. Let {u(t)
i , 0 ≤ i < 22t+1n(p)} be the column sequences of M2t+1

2tm,2tn(p) . (4.16) implies

λA
u = max

i

{

λA

u
(t)
i

, 0 ≤ i < 22t+1n(p)

}

= max
l,i

{

|A
u

(t)
i

(l)|, 1 ≤ l < 2tm, 0 ≤ i < 22t+1n(p)
}

≤ max
{

(2t − 1)E, (2t+1 − 1)λA
0

}

(4.20)

where t = 0, 1, 2, .... Hence, if (4.19) holds, we have λA
t ≥ λA

u .

Proposition 4.4 (A necessary condition for λA): Let Ac0(0) = Ac1(0) = E, where

(c0, c1) is a companion pair. An achievable column correlation constraint λA
t of M2t+1

2tm,2tn(p)

must satisfy

λA
t ≥ (2t − 1)E. (4.21)
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Proof. (4.16) implies that |A
u

(t)
k

(m)| = (2t − 1)E for k = 22t+1n(p) − 1. Hence, λA
t ≥

maxl,i{|Au
(t)
i

(l)|, 1 ≤ l < 2tm, 0 ≤ i < 22t+1n(p)} ≥ (2t − 1)E.

Corollary 4.3: Let Ac0(0) = Ac1(0) = E and λA
0 = max{λA

c0
, λA

c1
}, where (c0, c1) is

a companion pair. For M2t+1

2tm,2tn(p) , t ≥ 1, when

λA
0 ≤ 2t − 1

2t+1 − 1
E, (4.22)

the minimum column correlation constraint

λA
min(t, m) = (2t − 1)E (4.23)

is achievable.

Proof. If (4.22) holds, based on Proposition 4.3, M2t+1

2tm,2tn(p) satisfies the column cor-

relation constraint λA
t = (2t − 1)E. On the other hand, Proposition 4.4 states that

λA
t ≥ (2t − 1)E must hold.

Example 4.2: To construct the complex-valued complementary set matrices C(p)

and D(p) with a column correlation constraint λA = 1, we can choose a companion pair

c0 = (+, j,−, j) and c1 = f∗
i (c0) = (j,−, j,+), where + denotes 1, − denotes −1,

j =
√
−1 denotes the imaginary unit and j denotes −j, which satisfy λA

ci
≤ 1, i = 0, 1.

Then, the companion matrix is

C(0) =





+ j − j

j − j +





T

. (4.25)

M4
8,8 =

























+j − j − j − j +j − j − j − j −j + j + j + j +j − j − j − j
j − j − j + j− j − j − j + j− j + j + j − j+ j − j − j + j−
−j + j + j + j −j + j + j + j +j − j − j − j −j + j + j + j
j + j + j − j+ j + j + j − j+ j − j − j + j− j + j + j − j+
−j + j + j + j +j − j − j − j +j − j − j − j +j − j − j − j
j + j + j − j+ j − j − j + j− j − j − j + j− j − j − j + j−
+j − j − j − j −j + j + j + j −j + j + j + j −j + j + j + j
j − j − j + j− j + j + j − j+ j + j + j − j+ j + j + j − j+

























8×32

(4.24)
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By employing length-extension (2.22), the complementary set matrix C(1) and its mate

D(1) can be obtained as

C(1) =



















+ j − j

j − j −

− j + j

j + j +



















4×4

, D(1) =



















− j − j

j + j −

+ j + j

j − j +



















4×4

. (4.26)

Based on Corollary 4.2, C(1) and D(1) are complementary set matrices with a column

correlation constraint λA = 1.

Example 4.3: Let again c0 = (+, j,−, j) and c1 = f∗
i (c0) = (j,−, j,+), then, any

sequence c in R(1)
c0,c1 satisfies λA

c ≤ λA = 4. Starting with M2
4,4 = [C(1) D(1)] constructed

in Example 4.2 and applying the size-extension (2.24), we obtain M4
8,8 as shown in (4.24).

Based on Theorem 4.1, M4
8,8 satisfies a column correlation constraint λA = 4. On the

other hand, Corollary 4.3 implies that M4
8,8 achieves its lower bound λA

1 = E = 4, since

λA
0 = 1 ≤ E

3 .

Example 4.4: Let us consider how to construct M4
8,8 satisfying a column correlation

constraint SA = 12. Since t = 1 and m = 4, based on Proposition 4.2, a sufficient

condition for SA
1 = 12 is SA

0 ≤ 2, for E = 4. The companion pair (c0, c1) in Examples

4.2-4.3 satisfies SA
ci

≤ SA
0 = 2, for i = 0, 1. Thus, M4

8,8 in (4.24) must also satisfy a

column correlation constraint SA = 12. Let {u(1)
i , 0 ≤ i ≤ 31} denote column sequences

of M4
8,8 in (4.24), we can verify that max

{

SA

u
(1)
i

, 0 ≤ i ≤ 31

}

= 12.

Remark: For the case t = 0, Corollary 4.2 implies that the correlation constraint for

the companion pair is also the column correlation constraint of M2
m,n(p) = [C(p) D(p)]. For

t ≥ 1, based on Proposition 4.2, small SA
0 may also help in reducing the column correlation

constraint SA
t . However, Corollary 4.3 implies that it is not necessary to search for the

companion pair with smaller λA
0 , once the lower bound λA

min(t, m) = (2t − 1)E has been

achieved.

4.4.2 Golay Column Sequences

Theorem 4.2: Column sequences of complementary set matrices C(p) and D(p) are Golay

sequences, if and only if the companion sequences c0 and c1 are both Golay.
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Proof. Lemma 4.1 states that column sequences of C(p) and D(p) are either ±c0 or ±c1.

Note that, a negation of a Golay sequence is also a Golay sequence.

We present a constructive method to obtain the companion pair from which an m

by n complementary set matrix with Golay column sequences can be constructed, where

m = 2q+1, n = 2p+1, p, q = 0, 1, 2....

Theorem 4.3: Let

H
(q)
i =





h
(q)
i,0

h
(q)
i,1





2×2q

=







h
(q−1)
i,0

←−−−
h

(q−1)
i,1

h
(q−1)
i,1 (−

←−−−
h

(q−1)
i,0 )






, (4.27)

where h
(q)
i,0 and h

(q)
i,1 are two row sequences of H

(q)
i , i = 0, 1. The initial matrices are

H
(0)
0 =





+ +

+ −





2×2

, H
(0)
1 =





+ −

+ +





2×2

. (4.28)

Then, {h(q)
0,0,h

(q)
0,1} and {h(q)

1,0,h
(q)
1,1} are respectively Golay complementary pairs and, fur-

thermore, fi(h
(q)
0,0) = h

(q)
1,0 and fi(h

(q)
0,1) = −h

(q)
1,1, for q = 0, 1, 2....

Proof. See Appendix.

Example 4.5: Let q = 2, then c0 = h
(2)
0,0 = (+ + − + − − −+) and c1 = h

(2)
1,0 =

(+−++−+++). Based on Theorem 4.3, {c0,h
(2)
0,1} and {c1,h

(2)
1,1} are, respectively, Golay

complementary pairs, where h
(2)
0,1 = (+−−−−+−−) and h

(2)
1,1 = (+++−−−+−). Thus,

the companion sequences c0 and c1 are Golay sequences. The length-extension (2.23) for

p = 2 allows for constructing the following complementary set matrix

C(2) =













































+ − − − + − + +

+ − − − − + − −

− + + + + − + +

+ − − − + − + +

− + + + − + − −

− + + + + − + +

− + + + + − + +

+ − − − + − + +













































8×8

(4.29)
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whose column sequences are Golay. Hence, the PAPR of all column sequences of C(2) is

at most two [46].

4.4.3 Number of Zeros of Ternary Complementary Sets

Proposition 4.5: Let the companion sequence c0 be a length m sequence with z zeros,

then, any column sequence of M2t+1

2tm,2tn(p) contains 2tz zeros.

Proof. Based on Eqs. (4.6) and (4.7), c0 and its companion c1 have the same num-

ber of zeros. The number of zeros in each column sequence does not change after each

length-extension operation. Each size-extension operation doubles the length of column

sequences, as well as the number of zeros.

Example 4.6: In this example, we consider a ternary complementary set matrix and

its mate with a column correlation constraint SA = 5. Let us set m = 8 and z = 1. We

can find the companion pair c0 = (+−−+++ 0 +) and c1 = fi(c0) = (−−+++−+ 0)

which satisfy SA
ci

≤ 5, i = 0, 1. The companion matrix is

C(0) =





+ −− + + + 0+

−− + + + − + 0





T

. (4.30)

Using length-extension (2.22), we extend C(0) as

C(2) =













































+ − − − − + − −

− − + − + + + −

− + + + + − + +

+ + − + − − − +

+ + − + − − − +

+ − − − − + − −

0 + 0 + 0 − 0 +

+ 0 − 0 − 0 − 0













































8×8

D(2) =













































− + + + − + − −

+ + − + + + + −

+ − − − + − + +

− − + − − − − +

− − + − − − − +

− + + + − + − −

0 − 0 − 0 − 0 +

− 0 + 0 − 0 − 0













































8×8

(4.31)

Based on Theorem 4.1, complementary set matrices C(2) and D(2) satisfy the column

correlation constraint SA = 5. Furthermore, by setting t = 0 in Proposition 4.5, we have

that any column sequence of C(p) and D(p) has only one zero.
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4.5 Search for Companion Pairs

4.5.1 Exhaustive Search Algorithm

Let X (n, λ) denote a subset of all sequences of X (n) which satisfy the correlation constraint

λ. For example, let B(2tm) = {c | ci ∈ B, 1 ≤ i ≤ 2tm}, then B(2tm, SA) = {c | c ∈

B(2tm), SA
c ≤ SA}, where B = {+1,−1}. Clearly, all column sequences of binary MO

complementary set matrix M2t+1

2tm,2tn(p) with a column correlation constraint SA can be

found in B(2tm, SA). Hence, to construct a MO complementary set matrix M2t+1

2tm,2tn(p)

whose column sequences are in X (n, λ), we need to find a companion pair (c0, c1) such

that R(t)
c0,c1 ⊆ X (n, λ) (see Lemma 4.2 ).

Let us index all K = |X (m)| sequences as xi, for 1 ≤ i ≤ K. When a column

correlation constraint λ is given, desired companion pairs can be obtained by exhaustive

computer search over X (m), as described in Table 4.1.

Table 4.1: Exhaustive Search Algorithm

j=0;
for i = 1, 2, 3, ..., K loop

if R(t)
xi

⊆ X (2tm, λ),
j = j + 1; yj = xi;
for l = j − 1, j − 2, ...1,

check if (yj ,yl) is a companion pair;
end

end
end loops

Note that the ACFs of sequences in R(t)
xi

can be computed recursively using (4.16). For

binary sequences, we can simply check if x · y = 0 to determine the companion pair.

4.5.2 Minimum Achievable Column Correlation Constraint

The exhaustive search algorithm can be easily modified to search for the companion pair

with a minimum achievable column correlation constraint. However, the computing load

is heavy, especially for large m and t. Let t = 0 in (4.16), the companion pair for the

construction of M2
m,n(p) = [C(p) D(p)] with a minimum achievable column correlation
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constraint is

(c0, c1) = arg min
(x,y)

{max {λx, λy} :

(x,y) is a companion pair and x,y ∈ X (m)} . (4.32)

Based on Propositions 4.2-4.4, the above companion pair may also lead to MO com-

plementary set matrix M2t+1

2tm,2tn(p) with a reduced column correlation constraint for t ≥ 1.

Hence, in the following, we consider companion pairs leading to an achievable or a min-

imum achievable column correlation constraint λmin(m) = λmin(t = 0, m) for the case

t = 0 only.

In Table 4.2, λA and SA denote the minimum autocorrelation constraints for arbitrary

binary sequences. λA
min and SA

min denote the minimum achievable column correlation

constraints for binary companion pairs. Nu, counted up to the commutative property 4.1

and the negation property 4.3, denotes the number of corresponding companion pairs. It

can be observed that, for lengths up to 28, the companion pairs can achieve the minimum

autocorrelation constraints of binary sequences. Hence, the proposed companion pair

based construction method can build optimum binary complementary sets (and their

mates) with a minimum λA or SA for column sequences of length at least up to 28. In

Table 4.3, a similar conclusion can be drawn for ternary sequences with a single zero

element of length at least up to 24. We also can observe that most of these optimum

companion pairs can achieve λA
min and SA

min simultaneously.

When m is large, the exhaustive computer search is infeasible. Hence, the existence of

a companion pair satisfying a correlation constraint is an important problem considered

in the next section.

4.6 The Existence of Companion Pairs

The existence of a sequence of a desired correlation constraint has been studied in litera-

ture. For example, binary sequences with λA = 1 exist only for lengths 2, 3, 4, 5, 7, 11 and

13, and are called binary Barker sequences; binary m-sequences [2] with λP = 1 exist for

length m = 2l − 1, l = 2, 3, 4.... In this section, we exploit the correlation properties of

companion pairs and analyze their existence for correlation constraints λA and λP .
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4.6.1 The Companion Pair Constructed Using Two Arbitrary Sequences

In the following Cases 1 and 2, we illustrate how a companion pair of length m can be

formed using two arbitrary sequences s0 and s1 of length m/2. We study the correlation

properties of the companion pair (c0, c1) constructed from s0 and s1.

Case 1: Let c0 = s0 ⊗ s1 and c1 = s∗1 ⊗ (−s∗0). Then c1 is a companion of c0 since

c1 = f∗
i (c0). The ACFs of the companion pair can be expressed in terms of the ACFs of

s0 and s1 and their crosscorrelation functions,

Ac0(l) =







As0,s1(
l−1
2 ) + As0,s1(

−l−1
2 ), l ∈ odd

As0(
l
2) + As1(

l
2), l ∈ even

(4.33)

Ac∗1
(l) =







−As0,s1(
l+1
2 ) − As0,s1(

−l+1
2 ), l ∈ odd

As0(
l
2) + As1(

l
2), l ∈ even

(4.34)

Pc0(l) =







Ps0,s1(
l−1
2 ) + Ps0,s1(

m−l−1
2 ), l ∈ odd

Ps0(
l
2) + Ps1(

l
2), l ∈ even

(4.35)

Pc∗1
(l) =







−Ps0,s1(
l+1
2 ) − Ps0,s1(

m−l+1
2 ),l ∈ odd

Ps0(
l
2) + Ps1(

l
2), l ∈ even

(4.36)

where 0 ≤ l ≤ m − 1.

Lemma 4.4: Let c0 = s0 ⊗ s1 and c∗1 = s1 ⊗ (−s0), then







λA
ci

≤ max{λA
s0

+ λA
s1

, 2λA
s0,s1}

λP
ci

≤ max{λP
s0

+ λP
s1

, 2λP
s0,s1}

(4.37)

and







SA
ci

≤ SA
s0

+ SA
s1

+ SA
s0,s1

SP
ci

≤ SP
s0

+ SP
s1

+ 2SP
s0,s1

, (4.38)

where i = 0, 1.

Proof. See Appendix.

Case 2: Let c0 = s0s1 and c1 = s∗1(−s∗0). Then c1 is a companion of c0 since
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c1 = f∗
c (c0). The aperiodic ACFs of the companion pair can be expressed as

Ac0(l) =







As0(l) + As1(l) + As0,s1(l − m
2 ), 0 ≤ l < m

2

As0,s1(l − m
2 ) m

2 ≤ l < m
(4.39)

Ac1(l) =







As0(l) + As1(l) − As0,s1(
m
2 − l), 0 ≤ l < m

2

−As0,s1(
m
2 − l) m

2 ≤ l < m
. (4.40)

Lemma 4.5: Let c0 = s0s1 and c∗1 = s1(−s0), then

λA
ci

≤ λA
s0

+ λA
s1

+ λA
s0,s1 , i = 0, 1. (4.41)

Proof. The proof is along the lines of the proof of Lemma 4.4.

4.6.2 Existence

Without loss of generality, we assume that si are complex-valued sequences of length m/2

and Asi
(0) = Psi

(0) = m/2, i = 0, 1.

Lemma 4.6 (Welch bound [12]): Let {si, i = 0, 1, ..., K − 1}, denote a set of K

complex-valued sequences of length N . If Asi
(0) = Psi

(0) = N for all i, then,

Pmax ≥ N

√

K − 1

NK − 1
(4.42)

Amax ≥ N

√

K − 1

2NK − K − 1
(4.43)

where

Pmax = max
0≤i,j<K,i6=j

{λP
si

, λP
si,sj

} (4.44)

Amax = max
0≤i,j<K,i6=j

{λA
si

, λA
si,sj

}. (4.45)

Proof. The proof can be found in [12].

The following Theorems 4.4-4.5 restate the companion pair existence conditions from

Theorems 4.1-4.2 in terms of the {s0, s1} pair existence conditions from Lemmas 4.4-4.5.

Theorem 4.4: MO complementary set matrix M2
m,n(p) with a column correlation

constraint λA exists if there exists a sequence pair {s0, s1} with Amax = 1
2λA.
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Proof. Theorem 4.1 states that MO complementary set matrix M2
m,n(p) satisfying the

column correlation constraint λA exists, if and only if we can find a companion pair

(c0, c1), such that,

λA
ci

≤ λA, i = 0, 1. (4.46)

Based on (4.37), a sufficient condition for (4.46) is,

λA
si
≤ λA

2
, i = 0, 1 and λA

s0,s1 ≤ λA

2
. (4.47)

Based on (4.41),

λA
si
≤ λA

3
, i = 0, 1 and λA

s0,s1 ≤ λA

3
. (4.48)

Hence, by comparing (4.47) and (4.48), we can set Amax = 1
2λA.

Proposition 4.6: Sequence pair {s0, s1} of length m
2 with Amax = 1

2λA exists only if

λA ≥ m√
2m − 3

. (4.49)

Proof. Let Amax = 1
2λA, K = 2, and N = m

2 in (4.43) of Lemma 4.6, then (4.49)

follows.

Corollary 4.4: Let c0 = s0 ⊗ s1 and c1 = s1 ⊗ (−s0) be a binary companion pair

of length m, and ui denote column sequences of the constructed M2
m,n(p) , 0 ≤ i < 2n(p).

Then, λA
W ≤ λA

u ≤ λA
B, where

λA
u = max

i

{

λA

u
(t)
i

, 0 ≤ i < 2n(p)

}

, (4.50)

λA
B = max

{

λA
s0

+ λA
s1

, 2λA
s0,s1

}

, (4.51)

λA
W = ⌈ m√

2m − 3
⌉. (4.52)

Proof. λA
W is derived from Theorem 4.4 and (4.49) by noting that λA

u is an integer for

binary sequences. λA
B follows from Lemma 4.4.

Theorem 4.5: MO complementary set matrix M2
m,n(p) with a column correlation

constraint λP exists, if there exists {s0, s1} of length m/2 with Pmax = 1
2λP .

Proof. The proof follows along the lines of the proof of Theorem 4.4 and is omitted.
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Proposition 4.7: A length m/2 sequence pair {s0, s1} with Pmax = 1
2λP exists only

if,

λP ≥ m√
m − 1

. (4.53)

Proof. Setting Pmax = 1
2λP , K = 2 and N = m

2 in (4.42) leads to (4.53).

4.6.3 Achievable Column Correlation Constraints

Theorems 4.4-4.5 suggest searching for sequences s0 and s1 of length m/2 with good

autocorrelation and crosscorrelation merits to form a companion pair with a small achiev-

able column correlation constraint. Former is a long standing problem (e.g. see [48–51]).

In [50], good binary sequence pairs with small λA
s0

, λA
s1

and λA
s0,s1 were found by using sim-

ulated annealing search algorithm, and were listed in Tables I and II. Based on Corollary

4.4, we present λA
W and λA

B of their corresponding binary companion pairs in Table 4.4,

where the reference [50] indicates that data is obtained by using sequences from this ref-

erence. However, the cost function for the simulated annealing in [50] is not optimal in

our case. We instead minimize the cost function

f(s0, s1) = max
{

λA
s0

+ λA
s1

, 2λA
s0,s1

}

(4.54)

to obtain an improved λA
B.

In Table 4.5, sequence pairs {s0, s1} of length m/2 = 63, 84 and 100 obtained using

simulated annealing based on (4.54) are presented. The corresponding ACF merit λA
u is

calculated and compared to that of the sequence pairs from [50]. The proposed sequence

pairs lead to companion pairs with an improved autocorrelation correlation merit.

4.7 Conclusion

We have considered a construction algorithm for MO complementary set matrices sat-

isfying a column correlation constraint. The algorithm recursively constructs the MO

complementary set matrix, starting from a companion pair. We relate correlation prop-

erties of column sequences to that of the companion pair and illustrate how to select an
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appropriate companion pair to satisfy a given column correlation constraint. We also re-

veal a method to construct the Golay companion pair which leads to the complementary

set matrix with Golay column sequences. An exhaustive computer search algorithm is de-

scribed which helps in searching for companion pairs. Based on exhaustive search results,

the companion pair based construction algorithm leads to optimum binary complemen-

tary sets (and their mates) with a minimum column correlation constraint λA or SA for

column sequences of length at least up to 28, or leads to optimum ternary complementary

sets whose column sequences are ternary sequences with a single zero element of length

at least up to 24. Exhaustive search is infeasible for relatively long sequences. Hence,

we instead suggest a strategy for finding companion pairs with a small, if not minimum,

column correlation constraint. Based on properties of the companion pair, the strategy

suggests a search for any two shorter sequences by minimizing a cost function in terms

of their autocorrelation and crosscorrelation merits, from which the desired companion

pair can be formed. An improved cost function is derived to further reduce the achievable

column correlation constraint λA. By exploiting the well-known Welch bound, sufficient

conditions for the existence of companion pairs are also derived for column correlation

constraints λA and λP .

We have left the general problem of finding MO complementary set matrices with a

minimum column correlation constraint as an open question. An important step towards

solving the general problem is to find new construction approaches for MO complementary

set matrices. A design algorithm based on N-shift cross-orthogonal sequences can be found

in [30]. However, their column correlation properties can be evaluated only on a case by

case basis.

4.8 Appendix

4.8.1 Proof of Theorem 4.3

H
(0)
0 =





h
(0)
0,0

h
(0)
0,1



 =





+ +

+ −





2×2
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and

H
(0)
1 =





h
(0)
1,0

h
(0)
1,1



 =





+ −

+ +





2×2

.

It can be verified that {h(0)
0,0,h

(0)
0,1} and {h(0)

1,0,h
(0)
1,1} are respectively Golay complemen-

tary pairs. Based on Lemma 2.1, {h(q)
0,0,h

(q)
0,1} and {h(q)

1,0,h
(q)
1,1}, q = 1, 2, 3..., constructed

from (4.27) are guaranteed to be Golay complementary pairs.

We observe that fi(h
(0)
0,0) = h

(0)
1,0 and fi(h

(0)
0,1) = −h

(0)
1,1. Let fi(h

(q)
0,0) = h

(q)
1,0, fi(h

(q)
0,1) =

−h
(q)
1,1, then,

fi(h
(q+1)
0,0 ) = fi(h

(q)
0,0

←−−
h

(q)
0,1) = fi(h

(q)
0,0)

←−−−−−−−
(−fi(h

(q)
0,1)) = h

(q)
1,0

←−−
h

(q)
1,1 = h

(q+1)
1,0 .

In a similar way, we have that fi(h
(q+1)
0,1 ) = −h

(q+1)
1,1 . This ends the proof.

4.8.2 Proof of Lemma 4.4

We give the proof for λP
c0

≤ max
{

λP
s0

+ λP
s1

, 2λP
s0,s1

}

and SA
c0

≤ SA
s0

+ SA
s1

+ SA
s0,s1 . Other

proofs are similar.

λP
c0

= max
l

{|Pc0(l)|, 1 ≤ l ≤ m − 1}

= max
l

{

|Ps0(l) + Ps1(l)|, 1 ≤ l ≤ m

2
− 1; |Ps0,s1(l) + Ps0,s1(−l − 1)|, 0 ≤ l ≤ m

2
− 1

}

≤ max
l

{

|Ps0(l)| + |Ps1(l)|, 1 ≤ l ≤ m

2
− 1; 2|Ps0,s1(l)|, 0 ≤ l ≤ m

2
− 1

}

= max
{

λP
s0

+ λP
s1

, 2λP
s0,s1

}

and

SA
c0

=
m−1
∑

l=1

|Ac0(l)|

=

m
2
−1

∑

l=0

|As0,s1(l) + As0,s1(−l − 1)| +
m
2
−1

∑

l=1

|As0(l) + As1(l)|

≤
m
2
−1

∑

l=0

|As0,s1(l)| +
−1
∑

l=−m
2

+1

|As0,s1(l)| +
m
2
−1

∑

l=1

|As0(l)| +
m
2
−1

∑

l=1

|As1(l)|

= SA
s0

+ SA
s1

+ SA
s0,s1 .
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Table 4.2: Binary Companion Pairs
m λA SA λA

min SA
min Nu Example Companion Pair

2 1 1 1 1 1
−+
++

4 1 2 1 2 6
−−−+
− + ++

6 2 5 2 5 37
− + −−−+
−− + − ++

8 2 6 2 6 20
− + −−−− ++
+ + + −− + −+

10 2 9 2 9 44
+ − + + + + + −−+
−−− + + −− + −+

12 2 8 2 8 16
+ + + + − + − + + −−+
−− + + −−−−− + −+

14 2 13 2 13 180
+ − + −−−−−− + + −−+
−−−− + + −− + + − + −+

16 2 12 2 Á 192
− + + + −−−−−− + −− + −+
+ −− + + − + − + −−−−−−+

16 2 12 Á 12 88
+ + −− + + + + + − + − + −−+
− + + + − + + + − + −− + − ++

18 2 17 2 17 16
+ + + + −−−− + − + −− + + −−+
− + − + + − + −−−−− + + −− ++

20 2 14 2 Á 22
+ + + + + − + + + −−− + − + + − + −−
+ + − + + −−−−−− + + −−− + − +−

20 2 14 Á 14 6
+ + + + + − + −−− + − + + −−− + +−
+ −− + + + −− + − + + + − + −−−−−

22 3 23 3 23 16

+ + + + + + −−− + + − + − + − + + −−
+−
+ + + −− + + + + + + + −− + −− + −+
−+

24 3 20 3 20 6

+ + −− + + + −−−−−− + − + − + −−
+ −−+
+ −− + + − + + − + − + −−−−−−−+
+ + −−

26 3 27 3 27 28

+ + + + + + −−− + + −−− + − + − +−
− + −− +−
+ + + −−− + + + + + + + − + + −− +−
− + − + −+

28 2 28 2 Á 12

+ + + −− + + + −−−−−− + − + − +−
− + −− + −−+
+ + − + + − + −− + −−− + −−− + −−
− + + + + −−−

28 2 28 Á 28 6

+ + + + + + − + −− + − + −−− + + +−
−− + −− + +−
+ + −− + + + − + + − + + − + + + + +−
−−− + − + −+
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Table 4.3: Ternary Companion Pairs

m λA SA λA
min SA

min Nu Example Companion Pair

2 0 0 0 0 1
0 +
+ 0

4 1 1 1 1 2
0 + +−
+ + − 0

6 1 2 1 2 16
+ + + 0 − +
+ + 0 − +−

8 1 3 1 3 2
0 + + + −− +−
+ + + −− + − 0

10 2 6 2 6 10
+ + 0 + − + −− ++
+ + + − 0 − + −−+

12 1 5 1 5 2
0 + + + −−− + −− +−
+ + + −−− + −− + − 0

14 1 6 1 6 2
0 + + + + + −− + + − + −+
+ + + + + −− + + − + − + 0

16 2 9 2 Á 25232
+ + + + + + −− + + − + − + + 0
+ + + 0 + + + −−− + − + + − +

16 2 9 Á 9 4
0 + + + + + −− + + −− + − +−
+ + + + + −− + + −− + − + − 0

18 2 14 2 14 8
+ + + 0 −−−− + − + −− + + −− +
+ + −− + + −−−−− + − + 0 − +−

20 2 15 2 Á 1274

+ 0 + + + + + − + −− + − + + + −−
++
+ + + + + − + −− + − 0 + + −− + +
+−

20 2 15 Á 15 58

+ + + + + −−− + + −− + −− + −+
− 0
+ + + − 0 −− + − + + − + + + − ++
+−

22 2 14 2 Á 1012

+ + + 0 + + + + −−− + + − + + −−
+ − +−
+ + + + + −− + + + −− + −− + −+
0 + −+

22 2 14 Á 14 4

+ + −−−−−−− + + −− + − + −+
−− + 0
0 + −− + − + − + −− + + −−−−−
−− ++

24 2 19 2 Á 94

+ + + + + + − + + −−− + − + − ++
−− 0 − ++
+ + + + − + −− + −− + −−− + −−
− + + 0 −−

24 2 19 Á 19 52

+ + + + + − + − 0 − + − + + − + −−
+ + + −−+
+ + + −−−− + + + − + + + − + +−
+ −− + − 0
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Table 4.4: λA
W and λA

B for Long Binary Seed Sequences

m 62 74 82 106 118 122 126 134

λA
W 6 7 7 8 8 8 8 9

λA
B [50] 16 18 16 18 20 22 22 22

λA
B 13 15 15 18 18 18 19 20

m 146 158 168 182 186 200 218 240

λA
W 9 9 10 10 10 11 11 11

λA
B [50] 24 24 28 24 24 28 30 28

λA
B 22 22 24 24 24 27 28 28

Table 4.5: Achievable λA for Long Binary Seed Sequences

m merits s0 and (s1 )

126

λA
B = 19

λA
u = 17

λA
B = 22 [34]

λA
u = 17 [34]

+ − + − + −− + − + − + + + + + + + −− +
−− + − + + + −− + −−− + + + −−− + +
−− + + − + + −−−− + + − + −−− + + +
(+ + − + + + − + + −− + + −−−− + − + +
− + + + −− + + + + −− + + + + + − + − +
+ + + − + −−−− + + − + − + − + −−− +)

168

λA
B = 24

λA
u = 20

λA
B = 28 [34]

λA
u = 21 [34]

+ −− + −− + + + + + −−−− + − + + −−
+ − + + −− + + −− + + − + + −−−− + +
− + + + − + − + −−− + + + − + + + + −−
+ − + + − + − + + −−−−−− + −−−−−
(+ −−− + −−−−−− + + −−− + + + + −
−− + −−− + + − + + + −−− + − + − + +
− + − + −− + + + + + −−− + + + + + + −
+ + − + + − + + + − + − + + − + −− + −−)

200

λA
B = 27

λA
u = 23

λA
B = 28 [34]

λA
u = 25 [34]

− + + + + + − + + + + + −−−− + − ++
+ + −−− + + − + − + − + + −− + − ++
+ + + + −−− + + + + − + − + −− + −+
− + + + + + − + + −−− + − + + −− +−
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(−− + + + − + + − + −−− + + + −− ++
+ − + + −− + − + −− + −− + − + −−−
−−−−− + + −− + −−−− + + + −−+
− + + + + + −−−− + + −− + − + + +−
− + + − + − + + − + + − + − + + + −−+)
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Chapter 5

Ternary ZCZ Sequences for Multirate DS-UWB

5.1 Introduction

A zero correlation zone (ZCZ) sequence set has the periodic and/or aperiodic correlation

values equal to zero for a contiguous set of delays starting with a single delay. Thus,

it can significantly alleviate the multipath interference and multiple access interference.

Recently, there has been a considerable interest in applying the ZCZ sequences in the quasi-

synchronous CDMA type systems. ZCZ sequence set design was first studied by Suehiro

in [53]. Fan [17, 20, 54] proposed binary, quadriphase and polyphase ZCZ sequence sets

derived from complementary sets. Torii and Nakamura proposed ZCZ set construction

based on perfect sequences and unitary matrices [55]. Cha et al. proposed a ternary ZCZ

sequence set constructed by cyclically shifting preferred ternary pairs [19].

We propose ternary ZCZ sequence set construction based on MO complementary

sets [13]. Compared with earlier work on ZCZ sets, constructed sets have both peri-

odic and aperiodic zero correlation zone. For example, a binary periodic ZCZ sequence

set with (n, m, Lzcz) = (32, 4, 4) can be generated by Fan’s method [20], where n is the

length of the sequence, m is the family size (namely, the number of sequences in the set)

and Lzcz is the length of the periodic ZCZ. Corresponding constructed sequences allow

for an improved system performance relative to Fan’s sets due to the fact that the ZCZ is

both in the periodic and aperiodic sense.

In the next generation of wireless systems, to access a mixture of multimedia appli-

cations, the system must support variable transmission rates for different users. It is

possible to support higher data rates in DS-CDMA systems by assigning a multiple of

orthogonal constant-spreading-factor codes to a link. This mode of operation is called

multicode CDMA (MC-CDMA) [56]. Multicode approach suggests splitting high data
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rate streams into several low rate data substreams. Each data substream is spread by a

sequence and all the substreams are transmitted in parallel using synchronous multicode

channels. Since a higher data rate is achieved by increasing the number of parallel code

channels, the processing gain can be kept sufficiently large to alleviate the ISI for any

particular sequence. Different data rates can be supported by changing the size of the

sequence set assigned to a user. Instead of being limited by single sequence ISI, the data

rate is limited by the sequence set correlation properties.

We study the BER performance of a multicode TS-UWB system employing the pro-

posed ternary ZCZ set and experiencing a dense multipath [57]. A comparison is given

with the performance of a single spreading sequence (with a reduced processing gain per

sequence), and with comparable examples employing Fan’s [20] and Cha’s [19] ZCZ sets.

In an alternative scheme (also known as OVSF-CDMA), each user is assigned a sin-

gle orthogonal variable-spreading-factor (OVSF) code [58]. A higher data rate access is

possible by using a lower spreading factor. Both MC-CDMA and OVSF-CDMA have

been proposed in UMTS/IMT-2000 [58] for supporting variable data rates. OVSF codes

are commonly adopted in the forward link of synchronous DS-CDMA systems as chan-

nelization codes to accommodate multiple users with different transmission rates. In the

precious work [59], OVSF codes with a tree structure are constructed based on Walsh

codes. In this case, the orthogonality is easily lost when the synchronism is lacking or

in a multipath scenario. Thus, the conventional OVSF codes are not suitable for UWB

systems which usually suffer in a dense multipath environment [57].

In [6], we propose the two-dimensional (2D) OVSF sequence set (matrix) with ideal

correlation properties (i.e. zero autocorrelation sidelobes and zero cross-correlation func-

tions), which significantly improve the interference-rejection capability of the multicarrier

DS-CDMA or multichannel DS-UWB systems. In such a system, each user applies a

unique 2D OVSF sequence set (i.e. an m by n matrix, where m is the number of multi-

channels and n is the sequence length). The same information bit is spread by different

sequences within the set and parallel transmitted over m multiple orthogonal channels.

Despreading in the receiver is accomplished on a channel-by-channel basis using a set of m

correlators matched to the spreading sequences for respective channels. However, the ideal
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correlation properties are easily lost when m channels undergo different fadings [6]. On

the other hand, the same information bits transmit over m channels , resulting in higher

complexities on transceiver design compared with that in a single channel scheme. The

multichannel scheme also potentially suffers a high peak-to-average power ratio (PAPR)

because the transmitted signal is the sum of the signals from parallel channels. As the

power amplifier has a limited peak output power, an increased PAPR reflects that the

average radiated power has to be reduced to avoid the nonlinear distortion of transmitted

signal [60]. Hence, it is necessary to construct a class of one-dimensional (1D) OVSF codes

which has better correlation properties than Walsh code based OVSF codes to support

multirate users in DS-UWB systems.

It is known that 1D spreading sequences with ideal correlation properties don’t ex-

ist [54]. However, we can construct zero-correlation zone (ZCZ) sequence sets whose peri-

odic and aperiodic correlation values equal to zero for a contiguous set of delays starting

with a single delay [7]. In this chapter, we also propose a stepwise algorithm for the con-

struction of 1D OVSF codes with both periodic and aperiodic ZCZ. The proposed ternary

OVSF codes have the same orthogonality as the conventional Walsh code based OVSF

codes and can support the same number of multirate users. In addition, the proposed

codes present a ZCZ which allows for significant alleviation of multipath and multiuser

interference of particular interests for TS-UWB systems.

5.2 ZCZ Sequence Set Design

5.2.1 Construction Method 1: Based on Ternary Complementary Pair

Let {c1, c2} be any ternary complementary pair (TCP) [15] of length n. Let Ht×t = [hij ]

be a ternary orthogonal matrix, where
∑t

j=1 hijhkj = 0, ∀i 6= k. By using Kronecker

product ⊙ , we construct the 2t by 2nt matrix





H ⊙ c1 H ⊙←−c2

H ⊙ c2 H ⊙ (−←−c1)



 =



















h11c1 h12c1 · · · h1t
←−c2

h21c1 h22c1 · · · h2t
←−c2

...
...

. . .
...

ht1c2 ht2c2 · · · −htt
←−c1



















. (5.1)
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The ternary ZCZ sequence set is given by padding n zeros between any two sequence

elements in the same row of the above matrix. E.g. ((h11c1)zn(h12c1)zn · · · zn(h1,t
←−c2)zn) is

one ternary ZCZ sequence in the set T (4nt, 2t, n), where zn denotes the sequence consisting

n continuous zero elements.

Example: Let {c1, c2} = {(+ + −), (+ 0 +)} and

H =













+ + 0

+ − 0

0 0 +













.

Based on construction method 1, one sequence in ZCZ set T {36, 6, 3} is (++−000++−

000000000 + 0 + 000 + 0 + 000000000).

5.2.2 Construction Method 2: Based on MO complementary set

Let Mk
m,n be a MO complementary set matrix where ci,j denotes the ith sequence in the

complementary set Cj ,

Mk
m,n = [C1 C2 ... Ck] =



















c1,1 c1,2 · · · c1,k

c2,1 c2,2 · · · c2,k

...
...

. . .
...

cm,1 cm,2 · · · cm,k



















. (5.2)

Ternary ZCZ sequence set T (2mn, k, n) can be constructed by padding n zeros between

adjacent sequences in the same column as follows,

T (2mn, k, n) = {ai = c1,iznc2,izn · · · cm,izn, i = 1, 2...k} . (5.3)

Example: Let MO complementary set

M2
2,3 =





+ + − + 0 +

+ 0 + + −−



 .

Based on construction method 2, one ZCZ sequence in T {12, 2, 3} is (++−000+0+000).
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5.2.3 ZCZ Sequences Comparison

The proposed ternary ZCZ sequence sets have the advantage over that constructed by

Fan’s [17, 54] and Cha’s [19] approaches with regard to available sequence lengths. The

length of Cha’s ternary ZCZ sequences is of the form 4 × 2p, (p = 1, 2, 3...) which is a

subset of lengths described in method 1. Fan’s ZCZ set is constructed from binary MO

complementary sets. If k = 2, binary M2
m,n contains two Golay Pairs which lead to binary

ZCZ sets (22p+1n, 2p+1, 2p−1n), where Golay length n = 2α10β26γ , α, β, γ are nonnegative

integers. However, based on the construction method 2, when k = 2, we can obtain the

ternary ZCZ sequence set T (22p+2n, 2p+1, 2pn), where n is the length of the TCP which

can be any positive integers [15]. Thus, the proposed methods have much more flexibilities

in selecting ZCZ sequence length.

In Table 5.1, we compare the family size for various lengths of ZCZ in two cases,

namely 128 and 256, which are possible for all the three methods. Note that, the ZCZ

in Fan’s and Cha’s methods is only in a periodic sense, but the proposed method can

construct sequences with both periodic and aperiodic ZCZ.

Table 5.1: Family Sizes of ZCZ Sequence Sets

Sequence Length N = 128

Lzcz 2 4 8 16 32

Fan’s 32 16 8 4 2

Cha’s 32 18 10 4 2

Proposed 32 16 8 4 2

Sequence Length N = 256

Lzcz 2 4 8 16 32 64

Fan’s 64 32 16 8 4 2

Cha’s 64 38 20 10 4 2

Proposed 64 32 16 8 4 2

5.3 ZCZ OVSF Codes Design

The construction algorithm is described as follows.
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Step 1 : Starting with a TCP {c1, c2} of length n, the first layer code can be con-

structed as follows,







a
(1)
1 = c1 zn c2 zn

a
(1)
2 = ←−c2zn(−←−c1)zn

, (5.4)

where zn denotes the sequence consisting of n zero elements, and ←−c1 denotes the reverse

of c1.

Step 2 : Based on (2.12), we can recursively construct the kth layer codes.

Proposition 5.1 : The constructed set {a(k)
i , i = 1, 2, ..., 2k, k = 1, 2, ...} is an OVSF

code set with a periodic and aperiodic ZCZ of length n.

Proof. See Appendix.

Compared with the conventional Walsh code based OVSF codes, the TCP based OVSF

codes preserve the orthogonality and, in addition, present a ZCZ in both periodic and

aperiodic correlation functions. The parameters of the proposed OVSF codes are listed

in Table 5.2, where k and n are, respectively, the layer index and the length of the TCP.

Note that, the codes in an OVSF code tree form a ZCZ sequence set of Lzcz = n, as long

as any two of them is not a parent-child pair.

Table 5.2: OVSF Codes Constructed from TCP of Length n

Layer Index k

Number of Codes 2k

Code Length 2k+1n

Lzcz n

Property 5.1 (arbitrary length of Lzcz): The OVSF code set {a(k)
i , i = 1, 2, ..., 2k, k =

1, 2, ...} can be constructed with arbitrary length of Lzcz.

Proof. Proposition 5.1 states that the Lzcz of the constructed OVSF code set is deter-

mined by the length of the TCP. It is known that the TCP exists for arbitrary sequence

length [15].
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Property 5.2 (constant deficiency ratio): Let λc = δc/n denote the deficiency ratio

of a ternary sequence c of length n, where δc is the number of zero elements of c. The

constructed ternary ZCZ sequences in the same OVSF code tree have a constant deficiency

ratio

λ
a
(k)
i

=
1

2
+

δc1 + δc2

4n
, i = 1, 2, ..., 2k, k = 1, 2, ... (5.5)

Proof. The proof follows from Eqs. (5.4) and (2.12).

Property 5.3 (additional zero-correlation duration): Let a
(u)
i and a

(v)
j be any two

codes from the constructed OVSF code set {a(k)
i , i = 1, 2, ..., 2k, k = 1, 2, ...}. Let us

assume u < v. a
(u)
i is the mother code of {a(v)

s , s = 2v−u(i−1)+1, 2v−u(i−1)+2, ..., 2v−ui}.

If a
(u)
i is not the mother code of a

(v)
j , they have an additional zero-correlation duration as

follows,

P
a
(v)
s ,a

(v)
j

(l) = 0, 2v+1 − n ≤ l ≤ 2v+1 − 1; (5.6)

A
a
(v)
s ,a

(v)
j

(l) = 0, 2v+1 − n ≤ |l| ≤ 2v+1 − 1. (5.7)

Proof. It can be proved by noticing the n ending zeros of all constructed codes.
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Aperiodic Crosscorrelation between a
1
 and a
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Lzcz=6 
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Figure 5.1: Upper plot: the aperiodic cross-correlation of code a
(1)
1 and a

(1)
2 ; Lower plot:

the aperiodic autocorrelation values of code a
(1)
1 .
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Example : Based on TCP {c1, c2} = {+ + − + 0+, + + − − 0−} of length n = 6, a

ZCZ sequence pair with Lzcz = 6 can be constructed as,

a
(1)
1 = (+ + − + 0 + 000000 + + −−0 − 000000); (5.8)

a
(1)
2 = (−0 −− + +000000 − 0 − + −−000000). (5.9)

The above ZCZ sequence pair forms the first layer OVSF codes. Based on Eq.(2.12), we

can generate higher layer OVSF codes. For example,

a
(2)
1 = a

(1)
1 a

(1)
1 = (+ + − + 0 + 000000 + + −−0 − 000000

+ + − + 0 + 000000 + + −−0 − 000000); (5.10)

a
(2)
2 = a

(1)
1 (−a

(1)
1 ) = (+ + − + 0 + 000000 + + −−0 − 000000

−− + − 0 − 000000 −− + +0 + 000000). (5.11)

The Lzcz of the OVSF codes is n = 6. Fig. 5.1 shows the ZCZ of codes a
(1)
1 and a

(1)
2 .

5.4 Ternary ZCZ Sequences for Multicode DS-UWB

5.4.1 System Model

A set of m spreading sequences {c1, c1, ..., cm, } of length n is assigned to a single user.

m consecutive information symbols {b1, b2, ...bm} are transmitted over m parallel code

channels simultaneously. The symbol rate Rs = m/Ts, where Ts is the symbol period

containing n chips of duration Tc. By increasing the number of code channels from 1 to

m, we can adapt the system data rate from 1/Ts to m/Ts.

The transmitted baseband signal is given by

s(t) =
∑

r

m
∑

i=1

bi,r

n−1
∑

j=0

ci,jψ(t − jTc − rTs), (5.12)

where bi,r is the rth binary antipodal symbol transmitted using the ith multicode sequence;

ψ(t) is the unit energy chip pulse with duration Tc and assumed known to the receiver.

The spreading sequence set {c1, c1, ..., cm, } is suggested to be the ternary ZCZ sequence

set introduced in the preceding section. The UWB channel with L resolvable paths is
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modeled as

h(t) =
L−1
∑

l=0

αlδ(t − τl), (5.13)

where αl and τl denote the channel gain and the propagation delay of the lth path, respec-

tively. When sufficient multipath resolution is available, small changes in the propagation

time only affect the path delay and path component distortion can be neglected. Under

these assumptions, path coefficients αl can be modelled as independent real valued random

variables whose sign is a function of the material properties and, generally, depends on

the wave polarization, angle of incidence, and the frequency of the propagating wave [32].

For simplicity, we quantize the multipath delay into bins, i.e. τl = lTc. For a single user

multicode UWB system, the corresponding received signal model is:

r(t) =
L−1
∑

l=0

αls(t − lTc) + n(t), (5.14)

where n(t) is a white Gaussian noise process with power spectral density N0/2.

5.4.2 Numerical Results

We first compare the single user correlator receiver BER performance for multiple and

single code systems employing a ternary ZCZ set and an m-sequence, respectively. Two

data rates, i.e., Rate A and Rate B are assumed. For Rate A, n = 16 for single code

scheme employing an m-sequence of length 15 padded with a zero and n = 128 for the

multicode scheme with m = 8. For Rate B, n = 8 for a single code scheme employing an

m-sequence of length 7 padded with one zero and n = 32 for the multicode scheme with

m = 4.

The mean power of the multipath component is selected equal to the average value

given in [34], which is based on the indoor line of sight (LOS) measurements performed

in 23 homes. In [34], it is observed that the line of sight component and the first 10

multipath bins account for 33% and 75% of the total power, respectively. The sign of the

reflected path coefficient is modeled as a uniformly distributed random variable [35]. The

path power is quantized into 0.4 nanosecond bins corresponding to a chip duration Tc.

We assume that each bin contains exactly one multipath component (emulating a dense
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Figure 5.2: BER performance for multicode system using ternary ZCZ sequences versus
that of single code system using m-sequence

multipath environment) and that the delay spread is restricted to be 4 nanoseconds. The

effect of interchip interference has been assumed negligible.

In Figure 5.2, the average BER is plotted against the SNR per bit. For a multicode

system, we employ the ternary ZCZ sequence set constructed from complementary pair

{++,−+} with parameter (n, m, Lzcz) = (128, 8, 8) and (n, m, Lzcz) = (32, 4, 4) for Rate

A and B respectively. For single code scheme, we employ m-sequence with ending zero

(− − − + − − + + − + − + + + + 0) and (+ + + − + − − 0) for Rate A and Rate B

respectively. BER performance improvement can be observed for both Rate A and Rate

B. E.g., larger than 2 dB and 1 dB gains can be achieved by using ternary ZCZ set based

multicode scheme over single code scheme when the target BER is 10−3.

Figure 5.3 demonstrates that when employing ternary ZCZ set, the BER performance

does not change when the data rate is varied by increasing the number of code channels.

The ternary ZCZ sequence set parameters are (n, m, Lzcz) = (128, 8, 8), the number of

code channels varies from 1 to 8. The three almost flat BER performance curves lie at

BER = 10−2, 10−3 and 10−4 for SNR = 8, 10 and 12 dB respectively.
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Figure 5.3: BER performance for multicode system using ternary ZCZ sequences vs num-
ber of code sequences

In Figure 5.4, we compare the BER performance of the multicode UWB system employ-

ing Cha’s ternary ZCZ set (n, m, Lzcz) = (32, 4, 5) [19], Fan’s binary ZCZ set (n, m, Lzcz) =

(32, 4, 4) [20] and the constructed ternary ZCZ set with parameter (n, m, Lzcz) = (32, 4, 4).

At BER = 10−4, the system employing proposed ternary ZCZ set can achieve 2 dB and 4

dB gains over the system using Fan’s binary ZCZ set and Cha’s ternary ZCZ set, respec-

tively. This is due to the fact that the proposed ternary sets have a ZCZ in both periodic

and aperiodic sense. Note that, the sequences from the proposed ternary set have the

same PAPR as that ones proposed by Cha.

5.5 OVSF Codes with a ZCZ for Synchronous TS-UWB

5.5.1 System Model

The impulse response of the UWB channel with L resolvable paths is

h(t) =

L−1
∑

l=0

αlδ(t − τl), (5.15)

where αl and τl denote the channel gain and the propagation delay of the lth path, re-

spectively. Path coefficients αl are modelled as independent real valued random variables
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whose sign is a uniformly distributed random variable [35]. The transmitted signal for

user m is given by

sm(t) =
∑

r

bm, r
n−1
∑

i=0

cm,nψ(t − rTs − nTc), (5.16)

where r is the index of the information symbols and n is the length of spreading sequences.

The spreading sequence for mth user is the OVSF code chosen from the OVSF code tree.

br are binary antipodal symbols, Tc is the chip duration time and Ts = nTc is the symbol

period. ψ(t) is the unit energy signaling pulse and assumed known to the receiver. We

consider a synchronous CDMA UWB system in which M active users share the same

physical channel. The corresponding received signal model is:

r(t) =
M
∑

m=1

L−1
∑

l=0

αlsm(t) + n(t), (5.17)

where n(t) is a white Gaussian noise with zero mean and two-sided power spectral density

N0/2.
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Figure 5.5: Comparison of the BER performances of ZCZ sequence, Gold sequence and
Walsh code in a single user DS-UWB system

5.5.2 Numerical Results

We study correlator receiver performance of DS-UWB systems employing different types of

OVSF codes. The mean power of multipath components are chosen to be equal to average

value given in [34]. The path power is quantized into 0.4 nanosecond bins corresponding

to a chip duration Tc. We assume that each bin contains exactly one multipath component

(emulating a dense multipath environment) and the delay spread was restricted to be 4

nanosecond. The effects of interchip interference has been assumed negligible.

In a single user DS-UWB system, we compare the BER performances of the proposed

ZCZ sequence to that of Walsh code (++−−−−++++−−−−++++−−−−++

+ + −−−− ++) and Gold sequence (−−−− + −− + − + + −− + + + + + −−− +

+ − + + + − + − +). For comparison purpose, since both the sequence lengths of Walsh

code and Gold sequence are the power of 2. The ZCZ sequence that we employ here is

(+ + + + 0000 + +−−0000−+−+0000−+ +−0000) which is constructed from binary

complementary pair {++,−−}. Fig. 5.5 shows that the OVSF code with Lzcz = 4, which

may help suppress the multipath interference from the first 4 indirect paths, has the same

BER performance as the Gold sequence. However, the user employing a Walsh code has
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the worst BER performance.

In Fig. 5.6, we compare the correlator receiver performance of DS-UWB systems

employing different types of OVSF codes. For OVSF codes with a ZCZ, we use the tree

structure constructed in Sec. 5.3. The four codes assigned to four users are marked in

black so that none of the above codes is the mother code of the others. We also construct

the OVSF codes based on Gold sequence using the method in (2.12) for comparison

purpose. The first layer OVSF codes are chosen from the Gold sequence set with sequence

length 31. R and R/4 denote the codes selected from the first and third layer respectively.

We observe that, in multiuser scenario, proposed OVSF codes have much better BER

performance than Gold sequence based OVSF codes.

5.6 Conclusion

We construct ternary ZCZ sequence sets with both periodic and aperiodic ZCZ and a

tree structure of ZCZ OVSF codes. Both can be employed in DS-UWB systems for

multiple rate purposes. A multicode UWB system using ternary ZCZ sequence set can

adapt its data rate by changing the size of the code set to satisfy different data rate
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requirements without compromising its BER performance. DS-UWB system employing

ZCZ OVSF codes can assign the users different length spreading codes and, thus, satisfy

different data rate requirements. Multicode and OVSF systems employing the proposed

ZCZ sequences have a notably improved BER performance over systems using comparable

binary or ternary sequences. We argue that the improvement is due to the unique periodic

and aperiodic ZCZ property of proposed sequence sets.

5.7 Appendix: Proof of Proposition 5.1

Lemma 5.1a: The same layer sequences {a(k)
i , i = 1, 2, ..., 2k} form a ZCZ sequence set

with a periodic and aperiodic ZCZ of length Lzcz = n.

Proof. Based on Theorem 11 in [13], for a complementary pair {c1, c2} of length n, we

have

Ac1(l) + Ac2(l) = 0, 1 ≤ l ≤ n − 1; (5.18)

A←−c2
(l) + A−←−c1

(l) = 0, 1 ≤ l ≤ n − 1; (5.19)

Ac1,←−c2
(l) + Ac2,−←−c1

(l) = 0, 1 − n ≤ l ≤ n − 1; (5.20)

Then, Eqs. (5.18), (5.19) and (5.20) imply that,

A
a
(1)
i

(l) = P
a
(1)
i

(l) = 0, 1 ≤ l ≤ n, i = 1, 2. (5.21)

A
a
(1)
1 ,a

(1)
2

(l) = P
a
(1)
1 ,a

(1)
2

(l) = 0, −n ≤ l ≤ n. (5.22)

Thus, {a(1)
1 ,a

(1)
2 } is a ZCZ sequence set with Lzcz = n. If we assume {a(k−1)

i , i =

1, 2, ..., 2k−1} is a ZCZ sequence set of Lzcz = n, then for {a(k)
i , i = 1, 2, ..., 2k} we have

A
a
(k)
i

(l) = 2A
a
(k−1)
r

(l) ± A
a
(k−1)
r

(2kn − l) = 0, 1 ≤ l ≤ n, (5.23)

P
a
(k)
i

(l) = 2A
a
(k−1)
r

(l) ± 2A
a
(k−1)
r

(2kn − l) = 0, 1 ≤ l ≤ n, (5.24)

where r = ⌈ i
2⌉ and i = 1, 2, ...2k. Let s = ⌈ j

2⌉, j = 1, 2, ..., 2k, and i 6= j. When r = s, we

have

A
a
(k)
i ,a

(k)
j

(l) = A
a
(k−1)
r

(l) − A
a
(k−1)
r

(l) + A
a
(k−1)
r

(2kn − l) = 0, (5.25)

P
a
(k)
i ,a

(k)
j

(l) = A
a
(k−1)
r

(l) − A
a
(k−1)
r

(l) + A
a
(k−1)
r

(2kn − l) − A
a
(k−1)
r

(2kn − l)

= 0. (5.26)
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When r 6= s,

A
a
(k)
i ,a

(k)
j

(l) = A
a
(k−1)
r ,a

(k−1)
s

(l) ± A
a
(k−1)
r ,a

(k−1)
s

(l) ± A
a
(k−1)
r ,a

(k−1)
s

(2kn − l)

= 0, (5.27)

P
a
(k)
i ,a

(k)
j

(l) = A
a
(k−1)
r ,a

(k−1)
s

(l) ± A
a
(k−1)
r ,a

(k−1)
s

(l) ± A
a
(k−1)
r ,a

(k−1)
s

(2kn − l)

±A
a
(k−1)
r ,a

(k−1)
s

(2kn − l) = 0, (5.28)

where −n ≤ l ≤ n.

Lemma 5.1b: Any two sequences from different layers a
(u)
i and a

(k)
j , where u 6= k, have

a periodic and aperiodic ZCZ of length Lzcz = n, if no one is the mother code of the other.

Proof. Let us assume u < k. a
(u)
i is the mother code of {a(k)

v , v = 2k−u(i−1)+1, 2k−u(i−

1) + 2, ..., 2k−ui}. Since j 6= v, based on Eqs. (5.25)-(5.28), a
(u)
i and a

(k)
j have a periodic

and aperiodic ZCZ of length Lzcz = n.

Lemmas 5.1a-b imply that the constructed set {a(k)
i , i = 1, 2, ..., 2k, k = 1, 2, ...} is an

OVSF code set with a periodic and aperiodic ZCZ of length n.
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Chapter 6

OVSF Code Assignment for Throughput Maximization

6.1 Introduction

To support high-speed and multirate data services in third-generation (3G) mobile com-

munication systems, orthogonal variable-spreading-factor (OVSF) codes are being used in

Universal Mobile Telecommunications System (UMTS)/ International Mobile Telecommu-

nication 2000 (IMT-2000) with wideband code-division multiple access (WCDMA) tech-

nology [58, 61–64]. OVSF codes can be represented as a binary code tree [59, 65], in which

the codes at lower layer are of shorter spreading factor and can be used for a higher data

rate access. The code orthogonality is preserved if none parent-and-child pair has been

assigned to any two active users. This prefix-free condition imposes a constraint on the

OVSF code assignment, which can be described by the well-known Kraft inequality [66].

Recent studies of CDMA systems employing OVSF codes focus on dynamic code as-

signment schemes and attempt to solve the code placement and code replacement problems

(e.g., see [67–69]). The former addresses how to place a new call to avoid the code tree

becoming too fragmented and, thus, it may have significant impact on the OVSF codes

utilization. The latter addresses, when a new call arrives, how to relocate codes to reduce

code blocking.

We study the adaptive code assignment scheme which allocates the OVSF codes to

active users based on their SINRs such that the aggregate throughput of the system is

maximized. Different layer codes on the OVSF code tree lead to different throughput.

Hence, throughput is a function of the spreading sequence length and the SINR. The kth

layer OVSF codes are of length 2k−1n(1), k = 1, 2, 3, ..., where n(1) denotes the length of

the first layer codes. Hence, the aggregate throughput maximization becomes a discrete

optimization problem. In a set of OVSF codes, each user chooses a single code with a
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corresponding throughput and a cost associated with the Kraft inequality constraint. The

objective is to maximize the overall throughput. This is similar to the classical binary

Knapsack problem (BKP) [70], in which a hitch-hiker has to fill his knapsack by selecting

from among various possible objects with specific volume and comfort to maximize his

total comfort. The BKP is NP-complete so that it can not be solved by simple algorithms.

Our problem is more complex in that the code set has infinite number of items (the OVSF

code tree potentially has infinite number of layers).

The throughput maximization problem associated with OVSF codes has been studied

in [71]. However, throughput functions may vary for different system setups and, thus,

the OVSF code assignment algorithm which is optimal for a system setup may not be

optimal for other systems. We describe three types of throughput functions which include

throughput functions in [71] as a special case. Based on the properties of throughput

functions, an optimal OVSF code assignment algorithm is proposed.

The optimality of the code assignment is verified in a quasi-synchronous ternary se-

quence based UWB (QS TS-UWB) system [4–11]. QS [23] operation is obtained, for

example, by using GPS receivers at the base station and mobiles to correct for propaga-

tion delays and obtain a universal clock [24]. However, due to synchronization errors, the

relative time delay between the signals of different users is random, but can be maintained

in a certain time range [25]. We model the relative time delay ∆ being upper bound as

|∆| ≤ τ (e.g., see [26]).

We construct ternary OVSF codes with a ZCZ of arbitrary length Lzcz, and apply

these to a QS TS-UWB system. ZCZ sequences have been intensively studied in the

literature (e.g., see [17–19, 21, 22]). However, all these studies focus on ZCZ sequence sets

in which all sequences are of a fixed length. The analysis in [26] demonstrates that the

multiple access interference (MAI) of the QS-CDMA system is determined by the cross-

correlation between spreading codes around the origin. As a result, the MAI is cancelled

when τ ≤ Lzcz.

Based on the knowledge of relative time delay parameter τ , we demonstrate how to

select an ZCZ-OVSF code tree to increase the aggregate throughput of the system. Once

the OVSF code tree is selected, the optimal code assignment can further maximize the
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aggregate throughput by allocating OVSF codes to the active users based on their SINRs.

6.2 Throughput Analysis

6.2.1 System Model

The information bit stream is organized in packets, each containing J information bits.

With channel coding, the total size of each packet is L ≥ J bits. The packet needs to be

retransmitted when at least one error has been detected. The probability of a successful

packet transmission q(γ) depends on the SINR γ at the receiver of the desired user. If

all transmissions are statistically independent, the number of necessary transmissions to

receive a packet correctly is a geometric random variable with an expected value 1/q.

The throughput of a user can be interpreted as the number of information bits correctly

received per second. Thus, when a kth layer OVSF code of length n(k) is assigned to a

user, its throughput can be expressed as follows,

Γk(γ) =
α

2k
q (k, γ) , k = 1, 2, 3, ..., (6.1)

where α = 2J/LTcn
(1), and Tc is the chip duration.

Property 6.1 (monotonic non-decreasing): If γ1 ≥ γ2, then

Γk(γ1) ≥ Γk(γ2), k = 1, 2, 3, ... (6.2)

Proof. It follows from the fact that q(γ) is a monotonic non-decreasing function.

Property 6.2 (throughput at high SINR):

lim
γ→+∞

Γk(γ) =
α

2k
, k = 1, 2, 3, ... (6.3)

Proof. It can be proved by noticing that limγ→+∞ q(γ) = 1.

Property 6.3 (throughput at low SINR):

lim
γ→0

Γk(γ) = c · α

2k
, k = 1, 2, 3, ... (6.4)

where c is a non-negative constant.
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Proof. It can be proved by noticing that limγ→0 q(γ) = c, where c is a non-negative

constant.

Proposition 6.1 (upper bound): Let the throughput functions be

Γk =
α

2k
q (k, γ) k = 1, 2, 3, .... (6.5)

The aggregate throughput of the system employing OVSF codes is bounded by

M
∑

i=1

Γki
(γi) ≤ α. (6.6)

Proof. Based on Properties 6.1-6.2,

M
∑

i=1

Γki
(γi) ≤

M
∑

i=1

α

2ki
= α

M
∑

i=1

2−ki ≤ α. (6.7)

6.2.2 Throughput Functions

Let us introduce three types of Γk which satisfy the Properties 6.1-6.3.

Γ
1
 

Γ
3
 

Γ
2
 

Γ
4
 

Γ

γγ*
1γ*

2
γ*
3γ*

4

Figure 6.1: Type-I throughput function Γk

Type-I Γk as shown in Fig. 6.1

Γk(γ) =







α/2k, γ ≥ γ∗
k

0, otherwise
, (6.8)
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Γ
4
 

Γ
3
 

Γ
2
 

Γ
1
 

Γ

γ

Figure 6.2: Type-II throughput function Γk

where γ∗
k ≥ γ∗

k+1, k = 1, 2, 3, ....

Type-II Γk as shown in Fig. 6.2 A set of Type-II throughput functions is characterized

by the fact that there is no intersection between any two of them.

Γ
1
 

Γ
3
 

Γ
2
 

Γ
4
 

Γ

γγ*
1,2γ*

2,3
γ*
3,4

Figure 6.3: Type-III throughput function Γk
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Type-III Γk as illustrated in Fig. 6.3 Let k < j,

(Γk − Γj) (γ)























> 0, γ > γ∗
k,j

= 0, γ = γ∗
k,j

< 0, γ < γ∗
k,j

, (6.9)

where (Γk − Γj) (γ) = Γk(γ) − Γj(γ) and γ∗
k,k+1 ≥ γ∗

k+1,k+2, k, j = 1, 2, 3, ...

Property 6.4 (maximum Γk): Let γ∗
0,1 = +∞. When γ∗

k−1,k ≥ γ ≥ γ∗
k,k+1, k =

1, 2, 3, ..., then

(Γk − Γj) (γ) ≥ 0, ∀j 6= k and j = 1, 2, 3, ... (6.10)

Proof. If j > k, then γ ≥ γ∗
k,k+1 ≥ γ∗

k+1,k+2 ≥ ... ≥ γ∗
j−1,j . Thus,

Γk(γ) ≥ Γk+1(γ) ≥ ... ≥ Γj−1(γ) ≥ Γj(γ). (6.11)

If j < k, then γ ≤ γ∗
k−1,k ≤ γ∗

k−2,k−1 ≤ ... ≤ γ∗
j,j+1,

Γk(γ) ≥ Γk−1(γ) ≥ ... ≥ Γj+1(γ) ≥ Γj(γ). (6.12)

6.2.3 Examples of Throughput Functions

For example, let us assume a single user uncoded BPSK system in an AWGN channel

with two-sided spectral density N0/2. J information bits are transmitted in a packet.

The packet needs to be retransmitted if one or more than one errors have been detected.

The transmitted power is Pt and the link gain is h. Let γ = n(1)TcPth/2N0, thus,

Γk(γ) =
α

2k

[

1 − 1

2
erfc

(

√

2kγ
)

]J

, k = 1, 2, 3, ..., (6.13)

where erfc(·) is the complementary error function and α = 2/n(1)Tc. When J is relative

small, the {Γk, k = 1, 2, 3, ...} are Type-II throughput functions. Type-III throughput

functions are those in (6.13) with relative large J . Type-I throughput models an ideal

situation where q(k, γ) = 1 if the SNR 2kγ ≥ γ0 in (6.1). Thus, γ∗
k = γ02

−k in (6.8).

However, if we fix the transmit bit energy Et instead of the constant transmit power

Pt, the throughput function

Γk(γ) =
α

2k

[

1 − 1

2
erfc (

√
γ)

]J

, k = 1, 2, 3, ..., (6.14)
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where γ = Eth/N0, is another example of a Type-II throughput function.

The examples for coded systems can be the ones from [72], where the throughput

performance of binary IR HARQ (incremental redundancy Hybrid ARQ) schemes based

on turbo codes over block-fading channels are studied. In general, the throughput function

presents either a step or a continuous nondecreasing behavior. We consider Type-I, Type-

II, and Type-III functions as shown in Figs. 6.1-6.3.

6.2.4 Aggregate Throughput

In a non-adaptive case, the OVSF codes can be assigned to the M active users as follows,

ki =







p, 1 ≤ i ≤ 2p+1 − M

p + 1, 2p+1 − M + 1 ≤ i ≤ M
, (6.15)

where p = ⌊log2 M⌋. The codes on the pth or (p + 1)th layer arbitrarily assigned to the

M users as long as none of parent-child pairs is assigned. However, if the SINR γ of the

users are periodically estimated, then we can accordingly assign the active users the OVSF

codes other than on the pth or (p + 1)th layer to maximize the overall throughput of the

system, i.e.,

max
{ki}

{

M
∑

i=1

Γki
(γi) =

M
∑

i=1

α

2ki
q (ki, γi)

}

(6.16.a)

subject to:
M
∑

i=1

2−ki ≤ 1, ki ∈ {1, 2, 3, ...}. (6.16.b)

For simplicity, throughout this chapter, we assume that assigning a different layer code

to the ith user may not change the SINR of other users. An example can be the downlink

of a synchronous CDMA system in a frequency-flat channel. The orthogonality of the

OVSF codes remains unchanged when a user select codes from a different layer. Another

example is the uplink of a QS-CDMA system employing OVSF codes with a ZCZ which

we will discuss in details in Section 6.3.

The problem stated in (6.16) can be considered as an extended binary Knapsack prob-

lem (BKP) [70]. BKP belongs to a discrete optimization problem and is NP-complete so

that it can not be solved with polynomial complexity. In BKP, a hitch-hiker has to fill up
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his knapsack of capacity v by selecting from among various possible objects with volume

vi and comfort ci to maximize his total comfort. Formally,

max
m

∑

i=1

cixi (6.17.a)

subject to:
m

∑

i=1

vixi ≤ v (6.17.b)

where

xi =







1, if object i is selected

0, otherwise
. (6.18)

In the problem stated in (6.16), for each γi, we have a set of infinite codes each having a

value Γk(γi) and a cost 2−k, k = 1, 2, 3, .... Our goal is selecting one code in each set to

maximize the total value under a total cost 1.

6.3 OVSF Codes Assignment

6.3.1 Self Maximization and Group Maximization

Definition 6.1 (self maximization): The self maximization is defined as a code assign-

ment which maximizes a single user throughput and satisfies a constraint ka, that is,

S(ka, γ) = arg max
k

{Γk(γ), k ≥ ka} . (6.19)

Definition 6.2 (group maximization): Let −→γ = {γ1, γ2, ..., γm}, where γ1 ≥ γ2 ≥

... ≥ γm, and v ≤ 1. Then, the group maximization is defined as a code assignment which

maximizes the overall throughput of m users under the constraint v and ka,

G (v, ka,
−→γ , m) = arg max

{ki}

{

m
∑

i=1

Γki
(γi) :

m
∑

i=1

2−ki ≤ v,∀ki ≥ ka

}

, (6.20.a)

Γmax(v, ka,
−→γ , m) = max

{ki}

{

m
∑

i=1

Γki
(γi) :

m
∑

i=1

2−ki ≤ v,∀ki ≥ ka

}

. (6.20.b)

Theorem 6.1 (self maximization): For the ith user of γi, then

1) for Type-I Γk,

S(ka, γi) =







ka, γi ≥ γ∗
ka

k, γ∗
k ≤ γi < γ∗

k−1 ≤ γ∗
ka

.
(6.21)
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2) for Type-II Γk,

S(ka, γi) = ka. (6.22)

3) for Type-III Γk,

S(ka, γi) =







ka, γi ≥ γ∗
ka,ka+1

k, γ∗
k,k+1 ≤ γi < γ∗

k−1,k

. (6.23)

Proof. If a kath layer code is available, then all its child codes with layer index k > ka are

also available. The proofs for Type-I and Type-II Γk are straightforward. The result for

Type-III Γk can be proved by using Property 6.4.

Lemma 6.1 (priority of users): If S(ka, γi) = ki, S(ka, γj) = kj , and γi ≥ γj , then

ki ≤ kj and Γki
(γi) ≥ Γkj

(γj).

Proof. The proof follows the fact that throughput functions are monotonic non-decreasing

functions.

Lemma 6.2 (priority of codes): If S(ka, γi) = ki, S(kb, γi) = k
′

i, and ka ≤ kb, then

ki ≤ k
′

i and Γki
(γi) ≥ Γ

k
′

i
(γi).

Proof. It can be proved based on (6.21)-(6.23).

Lemma 6.3 (pair maximization): Let γi ≥ γj ,

S(ka, γi) = ki; S(kb, γj) = kj (6.24)

S(kb, γi) = k
′

i; S(ka, γj) = k
′

j (6.25)

If ka ≤ kb, then Γki
(γi) + Γkj

(γj) ≥ Γ
k
′

i
(γi) + Γ

k
′

j
(γj), for

1) Type-I Γk;

2) Type-II Γk satisfying
d(Γk−Γj)(γ)

dγ ≥ 0, ∀γ ≥ 0, k ≤ j .

3) Type-III Γk satisfying
d(Γk−Γk+1)(γ)

dγ ≥ 0, ∀γ ≥ γ∗
k,k+1, k = 1, 2, 3, ....

Proof. See Appendix.



75

In the following, we focus on the throughput functions with a constraint on q functions

as described in Lemma 6.3.

Theorem 6.2 (initial assignment): Let γ1 ≥ γ2 ≥ ... ≥ γM , and v ≤ 1. The OVSF

codes can be assigned to M active users as follows,

S (Ki, γi) = ki, i = 1, 2, ...M, (6.26.a)

where Ki =























1 + ⌊− log2 (v)⌋ , i = 1

1 +
⌊

− log2

(

v − ∑i−1
j=1 2−kj

)⌋

, 1 < i < M
⌈

− log2

(

v − ∑M−1
j=1 2−kj

)⌉

, i = M

(6.26.b)

Then, if i ≤ j, the resulting code assignment {ki, 1 ≤ i ≤ M} satisfies

M
∑

i=1

2−ki ≤ v, (6.27.a)

Γki
(γi) ≥ Γkj

(γj), (6.27.b)

ki ≤ kj , (6.27.c)

Γki
(γi) + Γkj

(γj) ≥ Γkj
(γi) + Γki

(γj). (6.27.d)

Proof. See Appendix.

Lemma 6.4 (stopping criteria): Let γ1 ≥ γ2 ≥ ... ≥ γm and −→γ i+1 = {γi+1, γi+2, ..., γm}.

Let {ki, 1 ≤ i ≤ m} denote the initial code assignment and, thus, vi = v − ∑i−1
j=1 2−kj ,

then ∀t ≥ t0,

Γmax

(

vi − 2−ki−t0 , ki + t0,
−→γ i+1, m − i

)

≥

Γmax

(

vi − 2−ki−t, ki + t,−→γ i+1, m − i
)

, (6.28)

where

t0 =

⌈

log2

(

m − i + 1

2kivi

)⌉

. (6.29)

Proof. When the ith user increase its initial code from the kith layer to (ki + t)th layer,

then

v′i+1 = v −
i−1
∑

j=1

2−kj − 2−ki−t = vi − 2−ki−t. (6.30)
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If t = t0, we have

(m − i + 1)2−(ki+t0) ≤ vi. (6.31)

Then, a (ki + t0)th layer code is available for each jth user, where j > i. Thus,

G
(

vi − 2−ki−t0 , ki + t0,
−→γ i+1, m − i

)

= {S(ki + t0, γi+1),S(ki + t0, γi+2),

...,S(ki + t0, γm)}. (6.32)

In a similar way, for ∀t > t0,

G
(

vi − 2−ki−t, ki + t,−→γ i+1, m − i
)

= {S(ki + t, γi+1),S(ki + t, γi+2),

...,S(ki + t, γm)}. (6.33)

Based on Lemma 6.2, (6.28) can be proved by (6.32) and (6.33).

Theorem 6.3 (group maximization): Let −→γi = {γi, γi+1, ..., γm}, where 1 ≤ i ≤ m

and γ1 ≥ γ2 ≥ ... ≥ γm. Let {ki, 1 ≤ i ≤ m} denote the initial code assignment, and

vi = v − ∑i−1
j=1 2−kj . If

G
(

vi − 2−ki−t, ki + t,−→γ i+1, m − i
)

, 0 ≤ t ≤ t0 =

⌈

log2

(

m − i + 1

2kivi

)⌉

, (6.34)

are known, and let

δ = arg max
t

{

Γmax

(

vi − 2−ki−t, ki + t,−→γ i+1, m − i
)

+ Γki+t(γi), 0 ≤ t ≤ t0

}

. (6.35)

Then the group maximization

G (vi, ki,
−→γi , m − i + 1) = (ki + δ) ∪ G

(

vi − 2−ki−δ, ki + δ,−→γ i+1, m − i
)

. (6.36)

Proof.

Γmax (vi, ki,
−→γ i, m − i + 1) = max

t

{

Γmax

(

vi − 2−ki−t, ki + t,−→γ i+1, m − i
)

+Γki+t(γi), t ≥ 0} . (6.37)

Note that, ki is the initial code assignment for the ith user and, thus, for ∀t > 0,

Γki+t(γi) ≤ Γki
(γi). Hence, (6.36) can be proved based on Lemma 6.4.



77

Table 6.1: Initial OVSF Codes Assignment Algorithm

Input: γ1 ≥ γ2 ≥ γ3 ≥ ... ≥ γM

FOR i = 1 : M ,

Ki =















1, i = 1

1 +
⌊

− log2

(

1 − ∑i−1
j=1 2−kj

)⌋

, 1 < i < M
⌈

− log2

(

1 − ∑M−1
j=1 2−kj

)⌉

, i = M

ki = S (Ki, γi)
END

Output: {ki, i = 1, 2, ...M}

6.3.2 OVSF Codes Assignment Algorithms

Table 6.1 presents an initial code assignment algorithm, which is an important initializa-

tion step for optimal code assignment demonstrated in Table 6.2.

Theorem 6.4 : The initial code assignment algorithm maximizes the aggregate through-

put for Type-I Γk.

Proof. For Type-I Γk, the initial assignment remains unchanged after group maximization.

Table 6.2: Optimum OVSF Codes Assignment Algorithm

Input: γ1 ≥ γ2 ≥ γ3 ≥ ... ≥ γM

Initial assignment output: {k1, k2, ..., kM}
Group maximization: G

(

vi, ki,
−→γi , M − i + 1

)

=

(ki + δ) ∪ G
(

vi − 2−ki−δ, ki + δ,
−→γ i+1, m − i

)

δ = arg maxt

{

Γmax

(

vi − 2−ki−t, ki + t,
−→γ i+1, M − i

)

+Γki+t(γi), 0 ≤ t ≤
⌈

log2

(

M−i+1
2kivi

)⌉}

G
(

vM , kM ,
−→γ M , 1

)

= S(kM , γM )

Optimum assignment Output: G
(

1, 1,
−→γ1, M

)

As shown in Table 6.2, the optimum OVSF code assignment maximizes the aggregate

throughput of the system by recursively operating the group maximization. For each
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group maximization, an initial code assignment is operated.

Theorem 6.5 : The optimum code assignment algorithm maximizes the aggregate

throughput for

1) Type-I Γk;

2) Type-II Γk satisfying
d(Γk−Γj)(γ)

dγ ≥ 0, ∀γ ≥ 0, k ≤ j .

3) Type-III Γk satisfying
d(Γk−Γk+1)(γ)

dγ ≥ 0, ∀γ ≥ γ∗
k,k+1, k = 1, 2, 3, ....

Proof. For M users with γ1 ≥ γ2 ≥ ... ≥ γM , the optimum code assignment G (1, 1,−→γ1, M)

can be recursively achieved by the group maximization described in Theorem 6.3. For the

Mth user, its group maximization is reduced to self maximization.

6.4 Uplink Throughput Maximization for a QS-DS UWB Systems

6.4.1 System Model

We consider a QS-CDMA UWB system in which M active users share the same physical

channel. Each user transmits data to a single base station. The received signal is

r(t) =
M
∑

i=1

√

Pibi(t − liTc)
N−1
∑

n=0

ci,nψ(t − nTc − liTc) + n(t), (6.38)

where ψ(t) is the unit energy signaling pulse assumed here to be equal to zero outside an

interval which is equal to or smaller than the chip duration Tc, and assumed known to the

receiver. The spreading sequence ci = {ci,0, ci,1, ...ci,N−1} is selected from the OVSF code

tree. bi(t) is the data signal consisting of a sequence of rectangular pulses with positive

or negative unit amplitude and the duration Tb = NTc. Pi is the received signal power of

user i determined by

Pi =
(1 − λ)Echi

Tc
, (6.39)

where λ is the deficiency ratio of the employed OVSF codes, hi is the link gain of the ith

user, and Ec is the chip energy. For simplification, we have quantized the propagation

delay into bins, and li is modelled as a discrete uniformly distributed random variable on

[−τ, τ ], where τ is an integer and 0 ≤ τ ≤ N/2. We further assume the time delays of all

users are i.i.d. n(t) is the white Gaussian noise with two-sided spectral density N0/2.
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When the correlator receiver is tuned to the ith user, the output is,

Zi =
√

PiTb



bi,0 +
M
∑

j=1,j 6=i

Ii,j + η



 , (6.40)

where η is a zero-mean Gaussian random variable with variance σ2
η = (2PiTb/N0)

−1. bi,0

is the desired signal in the decision interval [0, Tb]. The MAI from the jth user is denoted

as Ii,j , which can be formulated in terms of the continuous two bits, i.e., bj,−1 and bj,0, of

the jth user, and the aperiodic cross correlation functions of ci and cj .

Ii,j(li,j) =

√

Pj

Pi

[

bj,−1Aci,cj
(li,j − N) + bj,0Aci,cj

(li,j)
]

, (6.41)

where li,j represents the time delay of the jth user relative to the ith user. Let ξ =
∑

j 6=i Ii,j(li,j). The data signal bj(t) and the time delay li,j are independent from those of

different users. As a result, the variance of ξ equals to the sum of the variance of Ii,j(li,j),

that is

σ2
ξ =

∑

j 6=i

E
{

I2
i,j(li,j)

}

=
∑

j 6=i

Pj

2Pi

{

(Aci,cj
(li,j − N) + Aci,cj

(li,j))
2 + (Aci,cj

(li,j − N) − Aci,cj
(li,j))

2
}

=
∑

j 6=i

Pj

Pi

{

A2
ci,cj

(li,j − N) + A2
ci,cj

(li,j)
}

. (6.42)

Let us assume, in the QS-CDMA system, the relative time delay li,j can be maintained

such that |li,j | ≤ Lzcz, where Lzcz is the ZCZ of the employed OVSF codes. Based on

the definition of ZCZ and Property 5.3 of the proposed ZCZ sequences, the MAI can be

reduced as σ2
ξ = 0. Thus, the signal to interference and noise ratio (SINR) for the ith user

is,

SINRi =
1

σ2
ξ + σ2

η

=
(1 − λ)NhiEc

N0/2
, when |li,j | ≤ Lzcz. (6.43)

Let us further assume the QS-DS UWB system is an uncoded BPSK system in which

J information bits are transmitted in a packet. The packet needs to be retransmitted if

one or more than one errors have been detected. When the relative delays within the ZCZ

and the kth layer code is assigned to the user, we have

Γk =
1

2k+1nTc

[

1 − 1

2
erfc

(
√

2k+1n(1 − λ)hiEc

N0/2

)]J

k = 1, 2, 3, .... (6.44)
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Based on γi = hiEc/N0 of the ith user, we attempt to maximize the overall throughput

of the QS-DS-UWB system,

max
{ki}

M
∑

i=1

α

2ki

[

1 − 1

2
erfc

(

√

2kiβγi

)

]J

(6.45.a)

subject to:
M
∑

i=1

2−ki ≤ 1, ki ∈ {1, 2, 3, ...}. (6.45.b)

where β = 4(1 − λ)n and α = 1/2nTc.

6.4.2 OVSF Code Tree Selection

When the OVSF code tree with Lzcz = τ is selected, the multiple access interference is

cancelled and, thus, the power control scheme is not necessary. All active users can simply

maintain the same chip energy. The TCPs of the same length and different deficiency ratio

may further affect the aggregate throughput of the system.

Proposition 6.2 : Let λ(n) and λ′(n) be the deficiency ratios of two TCPs of length

n. Let {ki} denote the code assignment for the ith users of SINR γi, i = 1, 2...M . If

λ(n) ≥ λ′(n), then we have

M
∑

i=1

Γki
(γi) ≤

M
∑

i=1

Γ′
ki

(γi), (6.46)

where Γki
(γi) and Γ′

ki
(γi) denotes the throughput of the ith user employing OVSF code

tree constructed by the TCP of deficiency ratio λ(n) and λ′(n) respectively.

Proof. q(γ) is a monotonic non-decreasing function, thus,

Γki
(γi)

Γ′
ki

(γi)
=

q
(

2kin(1−λ(n))hiEc

N0/2

)

q
(

2kin(1−λ′(n))hiEc

N0/2

) ≤ 1. (6.47)

Based on Proposition 6.2, we suggest selecting the TCP of length n = τ , and with the

minimum λ(n).
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Figure 6.4: OVSF code tree selection: BCP-based OVSF code tree with Lzcz = 4 v.s.
TCP-based OVSF code tree with Lzcz = 6, Ec/N0 = −3 dB

6.4.3 Numerical Results

We assume that the multipath interference has been suppressed by the ZCZ sequences. In

the QS-DS UWB system, M active links (M users and 1 base station) are in the system.

The γi = Ecd
2
0/N0d

2
i , where di, the distance between the ith user and the base station,

is a uniformly distributed random variable in [d0, 5d0] and may vary from time to time.

Each transmitter maintains the same chip energy independent of its data rate. The chip

rate 1/Tc = 1 GHz, and the packet size J = 1024.

We first demonstrate how to select the OVSF code tree. One of the candidate OVSF

trees is constructed from the TCP {+ + − + 0+, + + −− 0−}, as shown in the example

in Section 5.3. The tree has a Lzcz = 6. The other OVSF code tree is constructed

from a BCP {+ + −+, + + −−} with Lzcz = 4. The aggregate throughput is calculated

based on the average aggregate throughput over 104 sets of random positions of 4 users

at Ec/N0 = −3 dB. Fig. 6.4 illustrates how τ affects the aggregate throughput of the

system. When τ < 5, the OVSF code tree with less sequence length shows its advantage

over the OVSF code tree with longer length due to the time delays tensely around the

origin. When τ ≥ 5, the time delays may fall outside Lzcz = 4, hence if an active user
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suffers a sever near-far problem, its effective throughput may significantly reduced. In this

case, the OVSF code tree with larger Lzcz shows its advantage.

Figure 6.5 illustrates the aggregate throughput gain of the proposed adaptive data

rate transmission scheme over the non-adaptive transmission when the OVSF codes of

Lzcz = 6 is selected. We assume τ ≤ Lzcz. In the non-adaptive transmission case,

the OVSF codes are assigned to the users based on (6.15). We can observe the average

aggregate throughput gain of initial and optimal code assignment over the non-adaptive

scheme at relative low Ec/N0 regions. For particular relative distances between the users

and the base station, the optimal code assignment may have instantaneous aggregate

throughput gain over the initial code assignment. If the average aggregate throughput is

considered, as shown in Fig. 6.5, the performance of the initial code assignment approaches

that of the optimal one due to the fact that the instantaneous aggregate throughput

gain has been averaged out. Thus, the optimal code assignment trades the computation

complexity only for the instantaneous aggregate throughput. Based on Proposition 6.1,

both adaptive and non-adaptive schemes approach the aggregate throughput upper bound

α = 1/2nTc = 83.3(Mbps) at high Ec/N0 region.

6.5 Conclusion

We study the aggregate throughput maximization problem associated with OVSF codes for

three types of throughput functions. We propose two code assignment scheme: initial code

assignment and optimal code assignment. Both algorithms adapt the data rate of active

users based on their SINRs and, thus, obtain the aggregate throughput gain. Optimal code

assignment trades the long code allocation time to achieve the instantaneous maximum

aggregate throughput.

We construct ternary OVSF codes with a ZCZ of arbitrary lengths. The OVSF codes

can be employed in a QS-CDMA UWB system to suppress both the multipath and multiple

access interference. The relative time delay of the QS CDMA system is modelled as a

uniformly distributed random variable on [−τ, τ ]. When τ is large, the time delays may

frequently fall outside the ZCZ of the OVSF codes, thus causes the MAI to the active users,
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Figure 6.5: The aggregate throughput gain of the adaptive data rate transmission scheme
for the DS-UWB system employing OVSF code tree with Lzcz ≥ τ

and further reduces the aggregate throughput of the system. Based on the knowledge of

τ , we demonstrate how to select the OVSF code tree of different Lzcz to improve the

aggregate throughput of the system. Once the OVSF code tree is selected, based on the

knowledge of SINRs, we can further obtain the aggregate throughput gain by adaptively

allocating OVSF codes to the active users.

6.6 Appendix

6.6.1 Proof of Lemma 6.3

Proof for Type-I Γk: Based on (6.21), if γ∗
ka

≥ γ∗
kb

, then

Γki
(γi) + Γkj

(γj)























= Γ
k
′

i
(γi) + Γ

k
′

j
(γj), γi ≥ γj ≥ γ∗

ka
or γ∗

ka
≥ γi ≥ γj ≥ γ∗

kb

or γ∗
kb

≥ γi ≥ γj

> Γ
k
′

i
(γi) + Γ

k
′

j
(γj), γi ≥ γ∗

ka
≥ γj or γ∗

ka
≥ γi ≥ γ∗

kb
≥ γj

(6.48)
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Proof for Type-II Γk: If ka ≤ kb, (Γka
− Γkb

) (γ) is a monotonic non-decreasing func-

tion. Hence, if γi ≥ γj ,

(

Γki
(γi) + Γkj

(γj)
)

−
(

Γ
k
′

i
(γi) + Γ

k
′

j
(γj)

)

= (Γka
(γi) + Γkb

(γj)) − (Γkb
(γi) + Γka

(γj))

= (Γka
− Γkb

) (γi) − (Γka
− Γkb

) (γj) ≥ 0. (6.49)

Proof for Type-III Γk: We have that (Γk − Γk+1) (γ) is a monotonic non-decreasing

function for ∀γ ≥ γ∗
k,k+1, k = 1, 2, 3, .... Note that γ∗

ka,ka+1 ≥ γ∗
ka+1,ka+2 ≥ ... ≥ γ∗

kb−1,kb
,

thus,

(Γka
− Γkb

) (γ)

= (Γka
− Γka+1) (γ) + (Γka+1 − Γka+2) (γ) + ... + (Γkb−1 − Γkb

) (γ) (6.50)

is a monotonic non-decreasing function for γ ≥ γ∗
ka,ka+1. Then based on (6.23), we can

prove it as follows.

For γi ≥ γj ≥ γ∗
ka,ka+1,

(

Γki
(γi) + Γkj

(γj)
)

−
(

Γk′
i
(γi) + Γk′

j
(γj)

)

= (Γka
− Γkb

) (γi) − (Γka
− Γkb

) (γj) ≤ 0. (6.51)

For γi ≥ γ∗
ka,ka+1 ≥ γj ≥ γ∗

kb,kb+1, without loss of any generality, let us assume

γ∗
t,t+1 ≥ γj ≥ γ∗

t+1,t+2, then

(

Γki
− Γk′

i

)

(γi) = (Γka
− Γkb

) (γi) ≥ (Γka
− Γkb

) (γ∗
ka,ka+1)

= (Γka+1 − Γkb
) (γ∗

ka,ka+1) ≥ (Γka+1 − Γkb
) (γ∗

ka+1,ka+2)

= (Γka+2 − Γkb
) (γ∗

ka+1,ka+2) ≥ ... ≥ (Γt − Γkb
) (γ∗

t,t+1)

= (Γt+1 − Γkb
) (γ∗

t,t+1) ≥ (Γt+1 − Γkb
) (γj) =

(

Γk′
j
− Γkj

)

(γj) (6.52)

For γi ≥ γ∗
ka,ka+1 ≥ γ∗

kb,kb+1 ≥ γj , we have
(

Γk′
j
− Γkj

)

(γj) = 0. For the cases

γi ≤ γ∗
ka,ka+1, the Lemma can be proved in a similar way.
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6.6.2 Proof of Theorem 6.2

Proof of (6.27.a): It can be proved by noticing that

kM ≥ KM =









− log2



v −
M−1
∑

j=1

2−kj













≥ − log2



v −
M−1
∑

j=1

2−kj



 . (6.53)

Proof of (6.27.b) and (6.27.c): If i ≤ j,

Kj = 1 +

⌊

− log2

(

v −
j−1
∑

m=1

2−km

)⌋

= 1 +

⌊

− log2

(

v −
i−1
∑

m=1

2−km −
j−1
∑

m=i

2−km

)⌋

≥ 1 +

⌊

− log2

(

v −
i−1
∑

m=1

2−km

)⌋

= Ki. (6.54)

Let k′
i = S(Kj , γi). Since ki = S(Ki, γi) and kj = S(Kj , γj), based on Lemmas 6.1-6.2,

Γki
(γi) ≥ Γk′

i
(γi) ≥ Γkj

(γj), (6.55)

ki ≤ k′
i ≤ kj . (6.56)

Proof of (6.27.d): The proof is very similar to the proof of Lemma 6.3 and, thus, is

omitted.
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Chapter 7

Beamforming Sequences

7.1 Introduction

We study an adaptive approach that exploits the increased phase coherence of ultra-

wideband (UWB) channels [73] with a “discrete” number of reflectors relative to narrow-

band wireless channels. The proposed multipath beamforming technique suggests selecting

the transmitted signal waveform based on limited multipath channel state information so

that the signal energy at the output of a non-adaptive correlator is enhanced. The ap-

proach falls into the general category of adaptive signal design where the transmitter has

a full or partial knowledge of the channel. Narrowband literature on this topic is abun-

dant; nevertheless, even though somewhat related UWB literature exists (see, e.g. [74]), an

approach that explicitly exploits the distinct phase coherence characteristic of impulsive

UWB signaling has not been found in the literature.

In view of target high data rate applications and corresponding simple receiver design,

our approach focuses on signal designs that enhance the performance of the non-adaptive

correlator.

The first approach exhaustively searches ternary beamforming sequences that maxi-

mize one of two criteria. The optimal ternary beamforming sequences minimize detector’s

error probability, the suboptimal one enhances the signal energy at the output of a matched

filter based on the sign of the reflection coefficients of several strongest reflectors. Here we

assume the signs of the reflection coefficients are known, as would be natural in a TDD

system. It is obvious that the exhaustive computer search is only suitable for relatively

short sequences.

We also provide a constructive approach for multilevel beamforming sequence design.
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This method is based on the autocorrelation properties of perfect ternary sequence, the

idea of pre-RAKE [75] and Lüke’s approach to the construction of binary Alexis se-

quences [76]. In [75], the authors suggested concentrating all the processing required

for the RAKE combination at the transmitter and keeping the receiver as simple as a

non-combining single path receiver. In [76], Lüke suggested an approach to the construc-

tion of binary Alexis sequences [77] of various lengths. The aperiodic ACF of Alexis

sequences vanishes in a broad window. We combined these ideas to achieve beamforming

gain in a multipath environment by employing a multilevel beamforming sequence and a

receiver correlation sequence at the transmitter and receiver sides respectively. Note that,

the only knowledge we need to construct the beamforming sequence is the signs of several

strongest multipath coefficients.

7.2 Signal Model

The received signal model is:

r(t) =
∑

r

L−1
∑

l=0

brαlp(t − rTs − τl) + n(t), (7.1)

where

p(t) =
n−1
∑

i=0

ciψ(t − iTc). (7.2)

br are binary antipodal symbols of duration Ts = nTc. n is the length of the ternary

spreading sequence c = (c0, c1, c2, ...cn−1) whose elements are in {−1, +1, 0}, ψ(t) is the

signaling pulse assumed here to be equal to zero outside an interval which is equal to or

smaller to the chip interval [0, Tc] and assumed known to the receiver. L is the number

of multipath components. The delays τl are either fixed or chosen randomly. The αl

are real channel coefficients, each with a random sign. In slowly changing environments

determining, tracking, and conveying the signs of reflection coefficients to the transmitter

would require a non-significant overhead.

It is assumed that the transmitter knows the sign of the first Lc paths (e.g., based

on receiver feedback) and can select the spreading sequence which attempts to maximize

the energy at the output of the matched filter. The resulting effect is that the first Lc
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paths are combined coherently in a beamforming manner. The crosscorrelation between

any one of the Lc path components times the channel coefficient and the line of sight path

component is positive and, thus, enhances the received signal energy.

7.3 Beamforming Sequence Design

7.3.1 Exhaustive Computer Search for Ternary Beamforming Sequence

We address exhaustive computer search maximization of two criteria only for relatively

short sequences.

The energy-based criterion for beamforming sequence selection is:

∑Lc−1
l=0 sign(αl)E{|αl|}R(l) − ∑n−1

l=Lc
E{|αl|}|R(l)|

−∑Lc−1
l=0 E{|αl|}|R(n − l)| − ∑n−1

l=Lc
E{|αl|}|R(n − l)| − B, (7.3)

where

B =
∑⌊(L−1)/n⌋

k=1 E{|αkn|}|R(0)|

+
∑L−1

l=n+1,l⊕n 6=0 E{|αl|}(|R(l⊕n)| + |R(n − l⊕n)|). (7.4)

R(τ) is the autocorrelation function of p(t) with Tc being suppressed (assumed to be equal

to 1) for notational simplicity, and ⊕n is modulo-n operation. Here we assume that the

mean values of the channel coefficients are known. Simply setting these values to be 1, we

obtain another criterion for the case when we only know the signs of first several strongest

channel coefficients.

The optimal bit-error rate criterion for sequence selection is based on the probability

of detection error.

p(error) = Eα,b{p(error|α,b)}, (7.5)

where the expectation is over L−1 random channel coefficients α = {α1, . . . , αL−1} (note

that the sign of the first Lc coefficients might be known) and ⌊L/n⌋ interfering symbols

b = {b1, . . . , b⌊L/n⌋}. For a correlator detector, the conditional probability of error is:

p(error|α,b) =







1
2erfc(

√

Eb/N0) Ab ≥ 0

1 − 1
2erfc(

√

Eb/N0) Ab < 0
, (7.6)
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where erfc(.) is the complementary error function. Here, Eb = A2
b , where

Ab =
∑n−1

l=0 αlR(l) +
∑n−1

l=1 b1αlR(n − l)

+
∑L−1

l=n+1,l⊕n 6=0 b⌊l/n⌋αlR(l⊕n)

+b1+⌊l/n⌋αlR(n − l⊕n) +
∑⌊(L−1)/n⌋

k=1 bkαknR(0). (7.7)

Note that the energy-based criteria, as defined above, is based on the mean values

of channel coefficients, whereas, the probability of error criteria requires the knowledge

of the coefficient probability distributions. A particularly important component of the

sequence design is the PAPR of the signal. For ternary based signaling, arbitrarily padding

the transmitted sequence with zeros is helpful to achieving good ACF properties. The

tradeoff is an increase in PAPR. A reasonable approach is to find the best sequence

under a constraint on the number of zeros (or, more generally, under a PAPR constraint).

Even so, as will be demonstrated in the following section, the single pulse (maximum

PAPR solution) sequence is not always optimum for signaling in multipath channels when

beamforming is aided with limited channel state information at the transmitter.

7.3.2 Constructive Design of Multilevel Beamforming Sequence

The construction of multilevel beamforming sequence is based on the properties of per-

fect ternary sequences, the idea of pre-RAKE and Lüke’s approach to the binary Alexis

sequences design. A perfect ternary sequence (c0, c1, ...cn−1), for which

Pa(l) =







(1 − λa)n l = 0

0 1 ≤ l ≤ n − 1
(7.8)

is linearly combined with its first (Lc − 1) left cyclic shifts where the combining coef-

ficients are the signs of the first Lc paths. Thus, the multilevel beamforming sequence

(c̃0, c̃1, ..., c̃n+L̃−1) is obtained by appending L̃ < L − 1 zero guard chips to

c̃i =

Lc−1
∑

l=0

sign(αl)c(i+l)⊕n
, i = 0, 1, ...n − 1. (7.9)

By periodically extending the mother perfect ternary sequence up to length n + L̃, we

obtain the receiver correlation sequence. By employing this pair of sequences and a simple
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correlation receiver, the signal replicas corresponding to the first Lc paths are coherently

combined at the output of the correlator.

Example: Let us assume that the multipath number is 11, the signs of the first three

paths (including the direct path) are {+, -, +} respectively, and the mother sequence is

the Hoholdt’s perfect ternary sequence [28]

(+ + + + + − +0 + 0 − + + −00 + −0 −−).

Then, the transmitter beamforming sequence of length 31 is {1 1 1 -1 3 -2 2 -1 0 2 -1 -1

2 -1 1 -2 2 -2 0 1 -1 0 0 0 0 0 0 0 0 0 0 } and the received correlation sequence is {+ + +

+ + - + 0 + 0 - + + - 0 0 + - 0 - - + + + + + - + 0 + 0}.

We note that the transmitter beamforming sequence is a multilevel signal with a num-

ber of levels no larger than 2Lc +1, while the received correlation sequence is still ternary.

In this example, the energy from the first, second, and the third path is coherently com-

bined. The multipath interference from other paths will be suppressed due to the perfect

ACF properties of the mother perfect ternary sequence. The noise penalty increases since

we employ different beamforming and receiver correlation sequence. Thus, this approach

trades multipath interference suppression and beamforming gain for SNR loss and an in-

crease in the number of levels of the beamforming sequence. The simulation result in the

next section shows that even with no zero guard chips, a multilevel beamforming sequence

can still achieve lower BER than a single pulse sequence.

7.4 Numerical Results

Two sets of experiments have been conducted. Bit energy for all signaling schemes is

normalized, so that, for example, a ternary sequence of length seven with three zero pulses

have pulses with a peak 30% higher and single impulse sequence pulses 160% higher than

the corresponding m-sequence pulses. The path power is quantized into 0.4 nanosecond

bins corresponding to a chip duration Tc. It is assumed that each bin can contain only

one path; the sign of the reflected path coefficient is modelled as a uniformly distributed

random variable [35]. Effects of interchip interferences have been assumed negligible.

Employed multipath beamforming was based on the sign of first Lc path coefficients. For
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Figure 7.1: Short sequence BER performance for an exponential channel profile and supersymbol
path delays.

each simulation block, one of 2Lc optimum ternary sequences was selected based on the

sign of the first Lc reflected path coefficients.

In the first set of experiments, we focus on high rate direct sequence ultra-wideband

schemes with low spreading gain N = 7, which, for a chip time of Tc < 1 nanoseconds

would correspond to data rates of over 100Mbits/Second. Note that such high rate systems

employed in channels with significant multipath can experience significant inter-symbol

interference which can dominate the performance degradation, in particular, at high SNRs.

We have employed two sets of channel coefficients. One is an exponentially decaying

profile, the other is a deterministic set of coefficients based on the indoor line of sight

(LOS) measurements (performed in 23 homes) [34]. In the latter case, channel coefficients

are chosen to be equal to average values given in [34] where it is observed that the line

of sight component and the first 10 paths account for 33% and 75% of the total power,

respectively. In both cases, the distribution of the arrival times of individual multipath

components follows a modified Poisson model (namely, the ∆ − K model) [78]. Here, we

have used k=0.5 (see [1]). Two scenarios have been considered. In the first, the delay
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Figure 7.2: Short sequences BER performance for an exponential channel profile and subsymbol
path delays: PAPR optimized sequences.

spread was restricted to be less than 8 bins, and in the second to be less than 11 bins We

study correlator receiver performance for beamforming, m-, single impulse and ternary

sequences.

Figures 7.1 and 7.2 depict the results based on the exponential multipath profile de-

creasing 10 dB (in power) over a 4 nanosecond excess delay and the decreasing 10 dB

over a 2.8 nanosecond excess delay, respectively. Results in Figure 7.3 is based on the

profile in [34] truncated to 2.4 nanoseconds. Figure 7.1 demonstrates the gain of the

multipath beamforming approach which requires knowledge of the first four indirect path

coefficient, means and signs over the non-adaptive single impulse, m-, and perfect ternary

sequence. For a range of SNRs both single pulse and the beamforming approach can

overcome the inter-symbol interference induced error floor observed when either perfect

ternary or m-sequences are used. Figure 7.2 demonstrates that beamforming based on

two path coefficients which constrains the number of zeros to be less or equal to three

can still improve over the non-adaptive single pulse sequence. Figure 7.3 demonstrates

that correlator receiver with multipath beamforming and ternary sequences can capture
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as much energy as the maximum ratio combining (MRC) receiver when m-sequences are

used.

The second set of experiments focuses on the long beamforming sequences and assumes

that each bin contains exactly one multipath component (emulating a dense multipath

environment) and an exponential profile decreasing 10 dB in power over a 4.4 nanosecond

excess delay. Employed pair of transmitter multilevel beamforming and receiver correla-

tion sequences is based on a Hoholdt’s perfect ternary sequence and has been introduced in

Section 7.3.2. Figure 7.4 depicts that a 2 dB beamforming gain can be achieved by employ-

ing beamforming sequences over m- and single pulse sequences. Figure 7.5 demonstrates

that the beamforming approach benefits from the multipath interference suppression and

beamforming gain exceed the noise penalty due to difference in transmitting and receiving

sequences when the excess delay is larger than 1.6ns. In Figure 7.6, we shorten the trans-

mitter multilevel beamforming sequence by reducing the number of zero guard chips. At

the receiver, the correlation sequence will accordingly shrink. The more zeros we reduce,

the higher the multipath and inter-symbol interference. Even in the case of zero guard

chips, the SNR required for achieving the BER of 10−3 is smaller for the beamforming
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approach than that for the single pulse sequence.

7.5 Conclusions

We study an adaptive transmission approach that exploits the increased phase coherence

of UWB channels with a “discrete” number of reflectors relative to narrow-band wireless

channels. In a LOS environment, based on the signs (and/or mean) of a few strongest

multipaths’ coefficients, the transmitter adaptively selects the beamforming sequence so

that the signal energy of these paths coherently combines at the output of a receiver

correlator. By employing both the ternary and multilevel beamforming sequences, better

performance can be achieved than by using a single pulse sequence while still keeping a

low PAR.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

We studied TS-UWB signaling which has epochs of zero signal amplitude including binary

antipodal signaling as a special case. Allowing some of the chips to be zero enables sig-

nificant improvement in the correlation properties of the employed signaling and provides

new construction methods for spreading sequence sets of diverse sequence lengths and

family sizes.

To achieve an ideal correlation property, i.e., all cross-correlations and all sidelobes of

the ACFs are zeros, we proposed a technique employing complementary sets as spreading

sequences for an orthogonal-pulse based multichannel UWB system. As a result, both

multiple access and multipath interference can be significantly suppressed. Similar to

conventional multicarrier systems, one of the major impediments to deploying such sys-

tems is high PAPR. We have stressed that correlation properties of column sequences in

complementary set matrices play an important role in the reduction of PAPR. Hence, we

generalized our construction procedure to design the complex-valued MO complementary

set whose column sequences satisfy a correlation constraint.

We constructed OVSF codes with both a periodic and aperiodic ZCZ. A higher data

rate access can be achieved by assigning a lower spreading factor code to the user. The

proposed OVSF codes can be employed in a quasi-synchronous code-division multiple

access (QS-CDMA) UWB system, for which the relative time delay ∆ between the signals

of different users is being upper bounded as |∆| ≤ τ . Based on the knowledge of τ , we

demonstrated how to select the OVSF code tree with a different ZCZ to increase the

aggregate throughput of the QS-TS-UWB system.
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We also studied an adaptive transmission approach that exploits the increased phase

coherence of UWB channels with a “discrete” number of reflectors relative to narrow-band

wireless channels. The proposed multipath beamforming technique suggests selecting a

ternary sequence for a DS-UWB signal based on the signs of the reflection coefficients

corresponding to a few strongest paths so that the signal energy at the output of a non-

adaptive correlator receiver is enhanced.

8.2 Future Work

In this thesis, we have left the general problem of finding MO complementary set matrices

with a minimum column correlation constraint as an open question. An important step

towards solving the general problem is to find new construction approaches for MO com-

plementary set matrices. A design algorithm based on N-shift cross-orthogonal sequences

can be found in [30]. However, their column correlation properties are intractable. The

optimality of the constructed binary/ternary complementary sets have been verified by

exhaustive computer search to a limited sequence length. We hope our research can stim-

ulate the research in this thread and, thus, our results can be further evaluated.

We use simulated annealing search algorithm for finding companion pairs of relatively

long length sequences. The simulated annealing is a statistical computational technique for

obtaining optimal or near-optimal solutions for combinational optimization problem [79].

The search process may stop at the local minimum if the starting temperature, the decre-

ment of temperature, the determination of equilibrium condition and the stopping criterion

have not been well selected. Hence, the results in Table 4.4 and Table 4.5 may be further

improved.
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