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Accelerated life testing (ALT) is a method for estimating the reliability of products at 

normal operating conditions from the failure data obtained at the severe conditions.  We 

propose an ALT model based on the proportional odds (PO) assumption to analyze 

failure time data and investigate the optimum ALT plans for multiple-stress-type cases 

based on the PO assumption.  

 

We present the PO-based ALT model and propose the parameter estimation procedures 

by approximating the general baseline odds function with a polynomial function.  

Numerical examples with experimental data and Monte Carlo simulation data verify that 
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the PO-based ALT model provides more accurate reliability estimate for the failure time 

data exhibiting PO properties.   

 

The accuracy of the reliability estimates is directly affected by the reliability inference 

model and how the ALT is conducted.  The latter is addressed in the literature as the 

design of ALT test plans.  Design of ALT test plans under one type of stress may mask 

the effect of other critical types of stresses that could lead to the component’s failure.  

The extended life of today’s products makes it difficult to obtain “enough” failures in a 

reasonable amount of testing time using single stress type.  Therefore, it is more realistic 

to consider multiple stress types.  This is the first research that investigates the design of 

optimum ALT test plans with multiple stress types.  We formulate nonlinear optimization 

problems to determine the optimum ALT plans.  The optimization problem was solved 

with a numerical optimization method. 

 

Reliability practitioners could choose different ALT plans in terms of the stress loading 

types.  In this dissertation we conduct the first investigation of the equivalency of ALT 

plans, which enables reliability practitioners to choose the appropriate ALT plan 

according to resource restrictions.  The results of this research show that one can indeed 

develop efficient test plans that can provide accurate reliability estimate at design 

conditions in much shorter test duration than the traditional test plans. 
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Finally, we conduct experimental testing using miniature light bulbs.  The test units are 

subjected to different stress types.  The results validate the applicability of the PO-based 

ALT models. 
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1 CHAPTER 1  
 
 

INTRODUCTION 
 

1.1 Research Background 

 

The developments of new technologies and global competition have emphasized the need 

for more accurate estimation of reliability of a product, system or component in a shorter 

time.  Traditional life data analysis involves analyzing failure data in order to quantify the 

life characteristics of the product, system or component.  In many situations it is very 

difficult, if not impossible, to obtain such failure data under normal operating conditions 

because of the long life of today's products, the short time period between design and 

release and the challenge of testing products that are used continuously under normal 

conditions.  Given this difficulty, reliability practitioners have attempted to devise 

methods to induce failures quickly by subjecting the products to severer environmental 

conditions without introducing additional failure modes other than those observed under 

normal operating conditions.  The failure data obtained under the severe conditions are 

used to estimate the life characteristics, and the reliability performance of products at 

normal operating conditions.  The term accelerated life testing (ALT) has been used to 

describe those methods.  

 

The accuracy of reliability estimation depends on the models that relate the failure data 

under severe conditions, or high stress, to that at normal operating conditions, or design 

stress. Elsayed (1996) classifies these models into three groups: statistics models, 
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physics-statistics models, and physics-experimental models.  Furthermore, he classifies 

the statistics models into two sub-categories: parametric and nonparametric models.  

With parametric models, failure times at each stress level are used to determine the most 

appropriate failure time distribution along with its parameters.  Parametric models 

assume that the failure times at different stress levels are related to each other by a 

common failure time distribution with different parameters.  Usually, the shape 

parameters of the failure time distribution remain unchanged for all stress levels, but the 

scale parameters may present a multiplicative relationship with the stress levels.  

 

Nonparametric models relax the requirement of the common failure time distribution, i.e., 

no common failure time distribution is required.  Cox’s Proportional Hazards (PH) model 

(1972, 1975) is the most popular nonparametric model.  It has become the standard 

nonparametric regression model for accelerated life testing in the past few years.  This 

model usually produces “good” reliability estimation with failure data for which the 

proportional hazards assumption holds and even when it does not hold exactly.  In many 

applications, however, it is often unreasonable to assume the effects of covariates 

(stresses) on the hazard rates remain fixed over time.  Brass (1971) observes that the ratio 

of the death rates, or hazard rates, of two populations under different stress levels (for 

example, one population for smokers and the other for non-smokers) is not constant with 

age, or time, but follows a more complicated course, in particular converging closer to 

unity for older people.  So the PH model is not suitable for this case.  Brass (1974) 

proposes a more realistic model: the Proportional Odds (PO) model.  The Proportional 

Odds model has been successfully used in categorical data analysis (McCullagh 1980, 
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Agresti and Lang 1993) and survival analysis (Hannerz 2001) in the medical fields.  The 

PO model has a distinct different assumption on proportionality, and is complementary to 

the PH model.  It has not been used in reliability analysis of accelerated life testing so far.  

 

The accuracy of reliability estimation is a major concern in accelerated life testing, since 

it is important for making appropriate subsequent decisions regarding preventive 

maintenance, replacement and warranty policies.  In the accelerated life testing 

experiments, a comprehensive reliability estimation procedure includes an appropriate 

ALT model and a carefully designed test plan in order to achieve high accuracy of the 

reliability estimates. 

 

An appropriate ALT model is important since it explains the influences of the stresses on 

the expected life of a product based on its physical properties and the related statistical 

properties.  On the other hand, a carefully designed test plan improves the accuracy and 

efficiency of the reliability estimation.  The design of an accelerated life testing plan 

consists of the formulation of objective function, the determination of constraints and the 

definition of the decision variables such as stress levels, sample size, allocation of test 

units to each stress level, stress level changing time and test termination time, and others.  

Inappropriate decision variable values result in inaccurate reliability estimates and/or 

unnecessary test resources.  Thus it is important to design test plans to optimize the 

objective function under specific time and cost constraints.  

 



 

 

4

Most of the previous work on ALT plans involves only a single stress type with two or 

three stress levels.  However, as products become more reliable due to technological 

advances, it becomes more difficult to obtain significant amount of failure data within 

reasonable amount of time using single stress type only.  Multiple-stress-type ALTs have 

been employed as a means to overcome such difficulties.  For instance, Kobayashi et al. 

(1978), Minford (1982), Mogilevsky and Shirn (1988), and Munikoti and Dhar (1988) 

use two stress types to test certain types of capacitors, and Weis et al. (1988) employ two 

stress types to estimate the lifetime of silicon photodetectors. 

 

1.2 Problem Definition 

 

In this dissertation, we investigate two related problems.  The first problem deals with a 

nonparametric accelerated life testing model, proportional odds model, and its 

applicability for reliability predication at normal operating condition.  We also discuss its 

characteristics, robustness and its accuracy of reliability estimates.  We begin by defining 

the odds function ( )tθ , which is the ratio of cumulative distribution function to the 

reliability function: 

 

                                       ( ) ( )( )
( ) 1 ( )

F t F tt
R t F t

θ = =
−

,                                                             (1.1) 

 

or 
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Pr( ) Pr( )( )
Pr( ) 1 Pr( )

T t T tt
T t T t

θ ≤ ≤
= =

> − ≤
,                                                (1.2) 

 

where T  is the failure time of a test unit.  

 

Therefore the odds function ( )tθ  is literally the odds of failure of a unit at time t . The 

odds function ( )tθ  is related to the hazard rate ( )tλ  at time t  by 

 

( )( )
( ) 1

tt
t

θλ
θ

′
=

+
,                                                               (1.3) 

 

or 

 

0
( )

( ) 1
t

u du
t e

λ
θ ∫= − .                                                        (1.4) 

 

The proportional hazards model is a widely used nonparametric accelerated life testing 

model, which assumes that the covariates, or stresses, act multiplicatively on the hazards 

rate function, and is expressed as: 

 

 0 0
1

( ; ) ( )exp( ) ( )exp
k

t
j j

j

t t t zλ λ λ β
=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑z zβ ,                                 (1.5) 

 



 

 

6

where z  is the vector of the applied  stresses, β  is the vector of unknown parameters and 

0( )tλ  is an arbitrary baseline hazard rate.  However proportional hazards model may not 

be the most appropriate model especially when the hazards rates at different stress levels 

converge to the baseline hazard rate over time.  In this case, proportional odds model is 

more accurate for reliability estimation. 

 

Failure times under two different stress levels are said to follow proportional odds model 

if 

 

2 2
2 1

1 1

( ; ) exp[ ( )]
( ; )

tt
t

θ
θ

= − −
z z z
z

β .                                                          (1.6) 

 

The current estimation procedures in literatures for the PO model are either too 

complicated for practical accelerated life testing use, or have no rigorous justification for 

large sample properties.  In literatures, Dabrowska et al. (1988) and Wu (1995) propose 

estimation methods for only two-sample data.  Pettitt (1984) estimates the parameters of 

the PO model using ranks, which ignores the actual observations, and results in 

corresponding inaccurate estimation.  Murphy et al. (1997) propose the estimation 

method of the PO model based on profile likelihood.  The likelihood is constructed from 

the conditional probability density.  Because the number of unknown parameters in the 

profile likelihood is extremely large, the estimation calculation is also extremely 

computationally intensive. 
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In this dissertation, a new approach for the reliability estimation of accelerated life testing 

based on proportional odds model is proposed.  The estimates obtained from this 

approach are verified using both simulation study and experimental failure time data.  We 

may use this new approach to predict the point estimate of reliability of the product at any 

time t  and any stress level. 

 

The interval estimates of model parameters and reliability of the product are also 

interesting to us in this dissertation.  We construct the confidence intervals through the 

covariance matrix obtained by taking the inverse of Fisher information matrix.  In order 

to validate the assumption of the proposed accelerated life testing model and estimation 

procedures, we use both likelihood ratio test to test the model sufficiency and Cox-Snell 

residual to verify the proportionality.  

 

The second major problem of this dissertation deals with the accuracy of reliability 

estimation.  In order to increase the accuracy of reliability estimates in accelerated life 

testing problem, a carefully designed test plan is required.  This test plan is designed to 

minimize a specified criterion, usually the variance of a reliability-related estimate, such 

as reliability function, mean time to failure and a percentile of failure time, under specific 

time and cost constraints.  Most of the previous work on ALT plans involves only a 

single stress type with two or three stress levels.  However, as products become more 

reliable due to technological advances, it becomes more difficult to obtain significant 

amount of failure data within reasonable amount of time using single stress type only.   

Multiple-stress-type ALTs have been employed as a means to overcome such difficulties.  
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For instance, Kobayashi et al. (1978), Minford (1982), Mogilevsky and Shirn (1988), and 

Munikoti and Dhar (1988) use two stress types to test certain types of capacitors, and 

Weis et al. (1988) employ two stress types to estimate the lifetime of silicon 

photodetectors.  Unlike the case of the single-stress-type ALT, little work has been done 

on designing multiple-stress-type ALT plans.  Escobar and Meeker (1995) develop 

statistically optimal and practical plans with two stress types with no interaction between 

them.   However, if prior information does not support the nonexistence of interaction or 

if the so-called sliding level technique cannot be employed to avoid the potential 

interaction, then the analysis based on the main effects only could lead to serious bias in 

estimation.  Park and Yum (1996) develop ALT plans in which two stresses are 

employed with possible interaction between them with exponential distribution 

assumption.  Elsayed and Zhang (2005) consider optimum ALT plans with proportional 

hazard model, which involve only two stress types with two stress levels for each stress 

type.  

 

In this dissertation, we also propose to design and develop optimum multiple-stress-type 

accelerated life testing plans based on the proportional odds model with both constant-

stress loading and simple step-stress loading.  The objective function is chosen to 

minimize the asymptotic variance of reliability function estimate at the design stress 

conditions.  The plans determine the optimum stress levels, the number of test units 

allocated to each stress level, the stress level changes and the corresponding changing 

times, and/or the test termination time.  We adopt the widely used cumulative exposure 

model to derive the cumulative distribution function of the failure time for a test unit 
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experiencing step-stress loading.  Since the model parameters are unknown before the 

test planning, we use the estimates of those parameters through a preliminary baseline 

experiments or through engineering experience to design the optimum test plans.   

 

1.3 Organization of the Dissertation Proposal 

 

The remainder of the dissertation proposal is organized as follows.  Chapter 2 provides a 

thorough review of the current literature of accelerated life testing models and discusses 

the problems encountered in ALT modeling.  In chapter 3, we propose the new approach 

for accelerated life testing based on proportional odds model after careful investigation of 

the properties of odds function.  This new approach is verified by both a simulation study 

and an experimental data application.  In chapter 4, we construct the confidence intervals 

for the model parameters and reliability estimate at design stress conditions based on 

proportional odds model.  We also provide methods to investigate the model sufficiency 

based on likelihood ratio test and to validate the model assumption based on Cox-Snell 

residuals.  In chapter 5, we design optimum multiple-stress-type accelerated testing plans 

based on proportional odds model with both constant-stress loading and simple step-

stress loading.  Those carefully designed test plans provide the most accurate reliability 

estimates at design stress conditions since the plans are achieved by minimizing the 

asymptotic variance of reliability estimates at design stress condition.  A preliminary 

investigation of the equivalent ALT plans is presented in chapter 6. The results of this 

research enable reliability practitioners to choose the appropriate ALT plan according to 

their practice and available resources. In chapter 7 we conduct experimental testing using 

miniature light bulbs as test units and subject them to various test plans.  We validate the 
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reliability estimates at different stress conditions. In chapter 8, we give conclusive 

remarks of this research and present future work related to the PO-based accelerated life 

testing model and the proposed optimum multiple-stress-type accelerated life testing 

plans based on the proportional odds model. 
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2 CHAPTER 2  
 
 

LITERATURE REVIEW  
 

In this chapter, we present a detailed overview of the reliability models for accelerated 

life testing and the motivation of the new ALT method.  We then discuss the review of 

the ALT test plans, objective constraints and those limitations.  We begin by the review 

of the proportional hazards (PH) model and its parameter estimation methods in section 

2.1.1.  In section 2.1.2, we present a group of models, the accelerated failure time (AFT) 

models, and point out that the Weibull distribution is the only distribution that yields both 

a proportional hazards and an accelerated failure time model.  After that, we introduce the 

proportional odds (PO) model as a complement to the PH model and several parameter 

estimation methods for the PO model in section 2.1.3.  Since the current parameter 

estimation methods for the PO model are not suitable for accelerated life testing, we 

conclude that a new estimation method of the PO model is needed for accelerated life 

testing. In section 2.2, we present a thorough review of literature about ALT plans. The 

review indicates that there are no optimum plans for proportional odds cases when 

neither the AFT nor the PH assumptions hold for the failure time data.  Furthermore, 

current existing ALT plans only consider single stress type situations.  However, as 

products become more reliable thanks to technological advances, it becomes more 

difficult to induce significant amount of failure time data within the limited testing 

duration using a single stress type only.  Multiple-stress-type ALTs and ALT plans have 

to be applied to overcome such difficulties. 
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2.1 ALT Models 

  

2.1.1 Cox’s Proportional Hazards Model 
 

The most widely used model describing the influence of covariates on the failure time 

distribution is the proportional hazards (PH) or Cox model, introduced by D. Cox (1972).   

It was first used in biomedical applications.  The PH model has also been used as an 

accelerated life testing model.  Although it does not assume any form of the failure time 

distribution, it still allows us to quantify the relationship between the failure time and a 

set of explanatory variables, which are stresses in accelerated life testing area.  A brief 

description of the PH model follows. 

 

Let T  denote the failure time, τ  the right censoring time.  The data, based on a sample 

of size n , consists of the triple ( , , )i i it I z , 1, ,i n= K  where it  is the failure time of the ith 

test unit under study, iI  is the failure indicator for the ith unit ( 1iI =  if the failure has 

occurred, which means it τ≤ , and 0iI =  if the failure time is right-censored, or it τ> ), 

and 1( , , )t
i i kiz z= Kz  is the vector of covariates or stresses for the ith unit, which affects 

the reliability distribution of T ,  including temperature, voltage, humidity, etc. 

 

Let ( ; )tλ z  be the hazard rate at time t  for a unit with a vector of stresses, z .  The basic 

PH model is as follows: 

 

0( ; ) ( ) ( )tt t cλ λ=z zβ ,                                                           (2.1) 
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where 

 

0( )tλ  an arbitrary baseline hazard rate; 

1 2( , , , )t
kz z z= Kz  a vector of the covariates or the applied stresses; 

1 2( , , , )t
kβ β β= Kβ  a vector of the unknown regression parameters; 

( )tc zβ  a known function 

k  the number of the stresses. 

 

Because hazard rate function ( ; )tλ z  must be positive, a common feasible function for 

( )tc zβ  is  

 

                                   
1

( ) exp( ) exp
k

t t
j j

j

c zβ
=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑z zβ β , 

 

yielding 

 

0 0
1

( ; ) ( )exp( ) ( )exp
k

t
j j

j

t t t zλ λ λ β
=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑z zβ .                                   (2.2) 

 

The main assumption of the proportional hazards (PH) model is that the ratio of two 

hazard rates of two units under two stress levels 1z  and 2z  is constant over time.  In 

other words: 
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                       1 0 1
1 2

12 0 2

( ; ) ( )exp( )
exp[ ( )]

( ; ) ( )exp( )

t k

j j jt
j

t t
z z

t t
λ λ

β
λ λ =

= = −∑
z z
z z

β
β

. 

 

This implies that the hazard rates are proportional to the applied stress levels. 

 

Without the specification of the form of baseline hazard rate function 0( )tλ , the inference 

for β  could be based on a partial or conditional likelihood rather than a full likelihood 

approach.  

 

Suppose that there are no ties between the failure times.  Let 1 2 Dt t t< < <L  denote the 

ordered failure times with corresponding stresses 1 2, , , DKz z z . If D n< , then the 

remaining n D−  units are censored.  Define the risk set at time it , ( )iR t , as the set of all 

units that are still surviving at a time just prior to it .  Then the partial likelihood, based on 

the hazard function as specified by Eq. (2.1), is expressed by 

 

                          
1 ( )

exp( )( )
exp( )

i

tD
i

t
i jj R t

L
= ∈

= ∏ ∑
ββ

β
z

z
.                                                   (2.3) 

 

The log likelihood is obtained as 

 

( )
1 1

( ) ln[ exp( )]
i

D D
t t

i jj R t
i i

l
∈

= =

= −∑ ∑ ∑β β βz z .                                      (2.4) 
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The partial maximum likelihood estimates are found by solving a set of nonlinear 

equations, which are obtained by setting the first derivates of the log likelihood with 

respect to the k  unknown parameters 1 2, , , kβ β βK  to zero.  This can be done 

numerically using a Newton-Raphson method or some other iterative methods.  Note that 

Eq. (2.4) does not depend on the baseline hazard rate 0( )tλ , so that inferences may be 

made on the effects of the covariates without knowing 0( )tλ . 

 

Due to the way failure times are recorded, ties between failure times are often found in 

the data.  Alternate partial likelihoods have been provided by a variety of authors 

(Breslow 1974, Efron 1977, Cox 1972) when there are ties between failure times.  

Among them, Efron suggests a partial likelihood as 

 

                        
1

1 ( )

exp( )( ) 1[ exp( ) exp( )]i

i i

tD
i

d t ti
k kj k R t k D

i

L j
d

=
= ∈ ∈

=
−

−
∏

∏ ∑ ∑
ββ

β β

s

z z
, 

 

where  

 

1 2 Dt t t< < <L  denote the D  distinct, ordered, failure times,  

id  is the number of failures at it , 

iD  is the set of all units that failure at time it , 

is  is the sum of the vector jz  over all units that failure at it , that is 
i

i jj D∈
= ∑s z , 
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( )iR t  is the set of all units at risk just prior to it .  

 

After obtaining the estimates of the unknown parameters β , there are several ways to 

estimate the reliability of units at the design stress level Dz .  One way, without the 

explicit specification of baseline hazard rate function, is based on Breslow’s estimator 

(Breslow 1975) of the baseline cumulative hazard rate.  Breslow’s estimator of the 

baseline cumulative hazard rate is given by 

 

                                      0

( )

ˆ ( ) ˆexp( )i
i

i
t

t t jj R t

dt
≤ ∈

Λ = ∑∑ β z
, 

 

which is a step function with jumps at the observed failure times.  Therefore the estimator 

of the baseline reliability function, 0 0( ) exp[ ( )]R t t= −Λ  is given by 

 

                                           0 0
ˆˆ ( ) exp[ ( )]R t t= −Λ . 

 

This is an estimator of the reliability function of a unit with a baseline set of stresses, 

=z 0 . To estimate the reliability function for a unit at the design stresses level Dz , we 

use the estimator 

 

                                           ˆexp( )
0

ˆ ˆ( ; ) ( )
t

D
DR t R t= zz β .  
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Other ways to estimate the reliability function of units at design stress require estimating 

the baseline hazard rate function 0( )tλ  first.  Anderson (1980) describes a piecewise 

smooth estimate of 0( )tλ  instead of step function of 0
ˆ ( )tΛ .  He assumes 0( )tλ  to be a 

quadratic spline.  Other authors (Elsayed 2002) also suggest to use quadratic function to 

estimate 0( )tλ .  Based on the estimator 0
ˆ ( )tλ , the estimator of the reliability function is 

given by 

 

                                00
ˆ ˆˆ ( ; ) exp[ exp( ) ( ) ]

tt
D DR t u duλ= − ∫βz z . 

 

The PH model usually produces good reliability estimation with failure data for which 

the proportional hazards assumption does not even hold exactly. 

 

2.1.2 Accelerated Failure Time Models 
 

In the previous section, we present nonparametric methods for accelerated life testing 

which do not require any specific distributional assumptions about the shape of the 

reliability function. In this section, we present a class of parametric models for ALT, 

named Accelerated Failure Time (AFT) models, which have an accelerated failure time 

model representation and a linear model representation in log of failure time.   

 

The accelerated failure time model representation assumes that the covariates act 

multiplicatively on the failure time, or linearly on the log of failure time.  Let T  denote 
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the failure time and z  a vector of covariates, the AFT model is defined by the 

relationship 

 

                                           0( ; ) [exp( ) ]tR t R t=z zδ .                                                      (2.5) 

 

The factor exp( )tδ z  is called an acceleration factor telling how a change in the covariate 

values changes the time scale from the baseline time scale.  The model presented by Eq. 

(2.5) implies that hazard rate relationship is given by 

 

                                    0( ; ) [exp( ) ]exp( )t tt tλ λ=z z zδ δ .                                               (2.6) 

 

The second representation of this group of models is the linear relationship between log 

failure time and the stress values, and is given by 

 

                                               ln tT Wμ ψ= + +ω z , 

 

where tω  is a vector of regression coefficients and W  is the random error. 

 

The two representations are closely related.  If we let 0( )R t  to be the reliability function 

of the random variable exp( )Wμ ψ+ , then the linear log failure time model is equivalent 

to the AFT model with = −δ ω .  
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A variety of distributions can be used for W  or, equivalently, for 0( )R t .  If 0( )R t  is 

assumed to be Weibull reliability function, or W  has a standard extreme value 

distribution, we will then have a Weibull distributed AFT model.  If  0( )R t  is assumed to 

be log-logistic reliability function, or W  has a logistic distribution, we have a log-logistic 

distributed AFT model.  If 0( )R t  is assumed to be log-normal reliability function, or W  

has a normal distribution, we have a log-normal distributed AFT model.  Therefore the 

AFT model also implies that the failure times at different stress levels follow a common 

distribution with the same shape parameter but different scale parameter, which has some 

relationship with the applied stresses.  For the AFT models, estimates usually must be 

found numerically.  When these parametric AFT models provide a good fit to failure time 

data, they tend to give more precise estimates of the reliability.   However, if a parametric 

model is chosen incorrectly, it may lead to consistent estimates with significant errors. 

 

We note that the Weibull distribution is the only continuous distribution that yields both a 

proportional hazards and an accelerated failure time model.  A PH model for  T  with a 

Weibull baseline hazard 1
0( )t tαλ αλ −=  is 

 

1
0( ; ) ( )exp( ) ( )exp( )t tt t tαλ λ αλ −= =z z zβ β .                                    (2.7) 

 

An AFT model for  T  with a Weibull baseline hazard 1
0( )t tαλ αλ −=  is 

 

1
0( ; ) [exp( ) ]exp( ) exp( )t t tt t tαλ λ αλ α−= =z z z zδ δ δ .                          (2.8) 
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Comparing Eq. (2.7) and Eq. (2.8), we have α=β δ . 

 

2.1.3 Proportional Odds Model and Inference 
 

The PH model is a widely used nonparametric model for accelerated life testing because 

of its relative easiness of the estimating procedure of partial likelihood and its large 

sample inference properties demonstrated using martingale theory.  Moreover, reliability 

practitioners have easy access to statistical software, including SAS, BMDP, and S-Plus, 

as described by Klein (1997), for this model.  Therefore, there is a temptation to use the 

PH model to analyze failure time data, even when the model does not fit the data well.  In 

many applications, however, it is often unreasonable to assume the effects of covariates 

on the hazard rates remain fixed over time.  Brass (1971) observes that the ratio of the 

death rates, or hazard rates, of two populations under different stress levels (for example, 

one population for smokers and the other for non-smokers) is not constant with age, or 

time, but follows a more complicated course, in particular converging closer to unity for 

older people.  So the PH model is not suitable for this case.  Brass (1974) proposes a 

more realistic model as 

 

  0

0

( ; ) ( )
1 ( ; ) 1 ( )

tF t F te
F t F t

=
− −

β zz
z

.                                                           (2.9) 
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This model is referred to as the Proportional Odds (PO) model since the odds functions, 

which are defined as ( )( )
1 ( )

F tt
F t

θ ≡
−

, under different stress levels are proportional to each 

other.  

 

The proportional odds models have been widely used as a kind of ordinal logistic 

regression model for categorical data analysis, as described by McCullagh (1980) and 

Agresti (2002).   Recently the PO model has received more attentions for survival data 

analysis.  Dabrowska et al. (1988) and Wu (1995) propose estimation methods for only 

two-sample life time data based on PO model.  Pettitt (1984) estimates the parameter in 

the PO model using ranks, which ignores the actual observations, and results in 

corresponding inaccurate estimation.  Murphy et al. (1997) propose the estimation 

method of the PO model based on profile likelihood.  The likelihood is constructed from 

the conditional probability density.  Because the number of unknown parameters in the 

profile likelihood is extremely large, the estimation calculation is also extremely 

computationally intensive.  The description of the PO model and the current inference 

procedures of parameter estimation are summarized as follows. 

 

2.1.3.1 Description of PO model 

 

Let T  denote the failure time, τ  the right censoring time.  The data, based on a sample 

of size n , consists of the triple ( , , )i i it I z , 1, ,i n= K  where it  is the failure time of the ith 

unit under study, iI  is the failure indicator for the ith unit ( 1iI =  if the failure has 
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occurred, which means it τ≤ , and 0iI =  if the failure time is right-censored, or it τ> ), 

and 1( , , )t
i i ipz z= Kz  is the vector of covariates, or stresses, for the ith unit. 

 

Let ( ; )( ; )
1 ( ; )

F tt
F t

θ =
−

zz
z

 be the odds function, which is the ratio of the probability of a 

unit’s failure to the probability of its not failing, at time t  for a unit with a vector of 

stresses, z .  The basic PO model is given: 

 

0( ; ) ( ) exp( )tt tθ θ=z zβ ,                                                           (2.10) 

 

where 

 

0( )tθ  an arbitrary baseline odds function; 

1 2( , , , )t
kz z z= Kz  a vector of the covariates or the applied stresses; 

1 2( , , , )t
kβ β β= Kβ  a vector of the unknown regression parameters; 

k  the number of the stresses. 

 

For two failure time samples with stress levels 1z  and 2z , the difference between the 

respective log odds functions  

 

                                1 2 1 2log[ ( ; )] log[ ( ; )] ( )tt tθ θ− = −z z z zβ  
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is independent of the baseline odds function 0( )tθ , and furthermore of the time t , thus 

one odds function is constantly proportional to the other.  The baseline odds function 

could be any monotone increasing function of time t  with the property of 0(0) 0θ = .  

When 0( )t tϕθ = , PO model described by Eq. (2.10) becomes the log-logistic accelerated 

failure time model (Bennett 1983), which is a special case of the general PO model. 

 

To investigate the relation between the PO model and the PH model, we represent the PO 

model as described by Eq. (2.10) with hazard rate function. After mathematical 

transform, the PO model in Eq. (2.10) can be represented by  

 

0

0

( )
( ; )

1 (1 ) ( )

t

t

e t
t

e F t
λ

λ =
− −

z

z
z

β

β
 ,                                                          (2.11) 

 

where 0( )F t  is the baseline cumulative distribution function.  

 

It is easy to see, from Eq. (2.11), that in two failure time sample setup, the model implies 

that the ratio of the hazard rates at different stress levels converges to 1 over time. Thus 

the PO model is useful when the covariate (stress) effect on the hazard rate diminishes 

over time. 

 

2.1.3.2 Estimating the Parameter in a Two-sample PO Model 
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Dabrowska and Doksum (1988) and Wu (1995) give an estimation procedure for the so-

called generalized odds-rate models, of which the PO model is a special case, in two-

sample case.  They show that the estimates are consistent and asymptotically normal.  

They first consider the generalized odds function for a random failure time T  as defined 

by 

 

                      
1 1 (1 ( )) , 0

( | ) (1 ( ))
log[1 ( )], 0

c

c
T

F t c
t c c F t

F t c

⎧ ⎡ ⎤− −
>⎪ ⎢ ⎥Λ = −⎨ ⎣ ⎦

⎪− − =⎩

                                              (2.12) 

 

where ( )F t  is the cumulative distribution function for failure time T .  

 

Note that ( | 0)T tΛ  is the cumulative hazard rate, whereas ( |1)T tΛ  is the odds of the 

failure before time t .  For c  other than 1, ( | )T t cΛ  also has an interpretation as an odds 

function for some situations.  When considering experiments involving covariates that 

affect the distribution of the failure time, the generalized proportional odds-rate model is 

represented by 

 

                           1 2

1 2

( )
1 2( ; | ) ( ; | )z z

T Tt z c e t z cβ −Λ = Λ ,                                           (2.13) 

 

where 1T  is a random failure time sample with size 1n  associated with covariate 1z , and 

2T  is a random failure time sample with size 2n  associated with covariate 2z .  
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When 1c = , the generalized proportional odds-rate model as in Eq. (2.13) is just the 

proportional odds model as described in Eq. (2.10). 

 

By rewriting (2.13), they obtain 

 

                 1 2

1 2 2 1

( )1 1(1 ( )) ( ) (1 ( )) ( )z zc c
T T T TF t dF t e F t dF tβ −+ +− = − .                                 (2.14) 

 

Based on Eq. (2.14), the estimator of 1 2( )z zeβ − , or 1 2( )ˆ ( )z zeβσ − , is given by 

 

1 2 2
1 2

1 1 1

( 1)

0( )

( 1)

0

ˆ ˆ ˆ( ( ))[1 ( )] ( )
ˆ ( )

ˆ ˆ ˆ( ( ))[1 ( )] ( )

c
T T Tz z

c
T T T

F t F t dF t
e

F t F t dF t
βσ

∞ − +

−
∞ − +

Ψ −
=

Ψ −

∫
∫

,                                   (2.15) 

 

where 
1

ˆ ( )TF t  and 
2

ˆ ( )TF t  are left-continuous empirical distributions based on the failure 

time samples 1T  and 2T , respectively, and ( )Ψ ⋅  is some score function.  Then the 

estimator of β  is given by 

 

                                              
1 2( )

1 2

ˆln[ ( )]ˆ
( )

z ze
z z

βσβ
−

=
−

. 

 

Under some mild regularity conditions, Dabrowska and Doksum show that 

1 2 1 2( ) ( )1/ 2
1 2 ˆ( ) ( ( ) )z z z zn n e eβ βσ − −+ −  has an asymptotically normal distribution and an 

efficient score function is given by the follow equation for 1 2( ) 1z zeβ − = , 
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                                           2 1( ) ( 1)(1 ) cu c u +Ψ = + − , 

 

However, for 1 2( ) 1z zeβ − ≠ , the efficient score function ( )Ψ ⋅  remains unknown. 

 

Wu (1995) consider the special case of the two-sample proportional odds model and 

show that an efficient estimator of 1 2( )z zeβ −  can be constructed based on the solution of a 

pair of integral equations.  Because of the special structure of the proportional odds 

model, the solution of the equations can be obtained in a closed form.   Wu further proves 

that, by selecting any suitable and convenient score function, the estimator of 1 2( )z zeβ −  is 

asymptotically normal. 

 

Although the asymptotically efficient estimate of 1 2( )z zeβ −  could be constructed explicitly 

for this special two-sample proportional odds model, this estimator has limited usage for 

accelerated life testing.   Firstly, in the accelerated life testing field, there are always more 

than two samples, which means there are always more than two stress levels.   

Furthermore this estimation method can be used for the situation where there is only one 

stress type.  If there are two stress types, such at temperature and voltage, or more, we 

can not estimate the parameters vector β  from the estimator of 1 2( )t

e −z zβ .  Also, an 

appropriate score function is difficult to determine.  Finally, this estimation method 

doesn’t give an approach to the reliability estimate at stress levels other than the two 

observed levels.  
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2.1.3.3 Estimates of the PO model Using Ranks  

 

Pettitt (1984) proposes an approximate estimation method of proportional odds model for 

failure time data using the ranks of the failure times, instead of the true observations, 

without specification of the format of the baseline odds function.  The approximation is 

based upon a Taylor series expansion of the logarithm of the marginal likelihood about 

zero, and can be used for censored failure time data.  The approximate method is as 

follows. 

 

Let 1, , Dt tK  be observed uncensored failure times and 1, ,D nt t+′ ′K  be right censored 

failure times. Order the , 1, ,jt j D= K , in the usual way to obtain the ordered failure 

times (1) ( )Dt t< <K .  The rank jr  of jt  is defined in the usual way.  The ranks, jr , of the 

censored failure times , 1, ,jt j D n′ = + K , are defined as follows: jt′  has rank jr  if and 

only if jt′  lies in the interval ( ) ( 1)( , )
j jr rt t + , with (0) 0t =  and ( 1)Dt + = ∞ . 

 

Inference for β  in the proportional odds model described by Eq. (2.10) is now based on 

the ranks estimate  

 

1ˆ [ ( ) ]t t
R Z B A Z Z−= −β a ,                                              (2.16) 

 

where Z  is the model matrix, and a , A  and B  are defined as follows: 
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a  is a 1n ×  vector with   

 

1 (2 )
jj j ra c ξ= − − , 

 

A  is a n n×  symmetric matrix with  

 

,( ) (2 )(2 )( )
i j i jij i j r r r rA c c v ξ ξ= − − − , 

 

B  is a n n×  diagonal matrix with  

 

( ) (2 )( )
j jjj j r rB c ξ τ= − − , 

 

where 0jc =  for 1, ,j D= K  and 1jc =  for 1, ,j D n= + K , 

 

                                       
1

, ( 1, , ),
1

j
i

j
i i

u j D
u

ξ
=

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

∏ K  

 

                                       
1

, ( 1, , ),
2

j
i

j
i i

u j D
u

τ
=

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

∏ K  

 

and 
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1 1

, (1 ).
2 1

ji
k k

ij
k kk k

u uv i j D
u u= =

⎛ ⎞ ⎛ ⎞
= ≤ ≤ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∏ ∏  

 

The ju ’s are defined as follows: Let jm  be the number of the ( 1, , )it i D n′ = + K  having 

their ranks, ir , equal to , 1, ,j j D= K , then define ( 1) ( 1), 1, ,j j Du m m j D= + + + =K K , 

so that ju  is the total number of failures, censored or uncensored, greater than or equal to 

( )jt . 

 

Pettitt (1984) also gives the variance-covariance matrix 1[ ( ) ]tM Z B A Z −= −  for the 

estimator ˆ
Rβ  based on ranks without proof. 

 

This estimator looks appealing to reliability practitioners since it gives a closed form of 

the estimation.  But it actually has little usage for accelerated life testing because of the 

common drawback of rank estimator, inaccuracy, which is the corresponding result of the 

fact that these rank estimates are based on the ranks of the failure time observations 

instead of their actual values.  Meanwhile the estimation procedure based on ranks does 

not provide any well-tested approach to the estimation of the reliability function of 

products at the design stress level nor does it produce residuals for model checking using 

the rank estimates, since no specification and inference about the baseline odds function 

are discussed in this procedure.  

 

2.1.3.4 Profile Likelihood Estimates of PO Model  
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The estimation method of the PO model based on profile likelihood is proposed by 

Murphy et al. (1997).  The likelihood is constructed from the conditional probability 

density.  The profile likelihood estimation method of the PO model by Murphy et al. is 

summarized as follows. 

 

From the PO model described by Eq. (2.10) and the relationship between odds function 

and reliability function, 1 ( ; )( ; )
( ; )
R tt

R t
θ −

=
zz

z
, we have 

 

           
0

exp( )( ; )
( ) exp( )

t

tR t
tθ

−
=

+ −
zz

z
β

β
,                                              (2.17) 

 

Then we specify the conditional probability density with respect to the sum of Lebesgue 

and the counting measure by 

 

0 0

exp( ) ( )
[ ( ) exp( )] [ ( ) exp( )]

t

t t

t
t t

ϑ
θ θ

−
⋅

+ − − + −
z

z z
β

β β
,                                   (2.18) 

 

where 0( )tθ −  is the left limit of 0( )tθ  at t .  If 0( )tθ  is absolutely continuous, the ( )tϑ  is 

the derivative of 0( )tθ ; if 0( )tθ  is discrete, then 0 0 0( ) ( ) ( ) ( )t t t tϑ θ θ θ= Δ = − − .  The Eq. 

(2.18) is the approximation of the continuous conditional probability density ( ; )f t z  

defined as 
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= ⋅
− +
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We consider the use of the conditional probability density as described in Eq. (2.18) for 

right-censored failure time data.  If we let T  denote the failure time, let τ  to be the right 

censoring time.  Then based on a sample of size n , the observations consist of the triple 

( , , )i i it I z , 1, ,i n= K  where it  is the failure time of the ith unit under study, iI  is the 

failure indicator for the ith unit ( 1iI =  if the failure has occurred, which means it τ≤ , 

and 0iI =  if the failure time is right-censored, or it τ> ), and 1( , , )t
i i kiz z= Kz  is the 

vector of covariates or stresses for the ith unit.  Then the likelihood based on the 

conditional probability density of Eq. (2.18) for one observation is 

 

  
1

0
0 0 0

exp( ) ( ) exp( )( ; , )
[ ( ) exp( )] [ ( ) exp( )] [ ( ) exp( )]

I It t

t t t

tL t
t t t

ϑθ
θ θ θ

−
⎧ ⎫ ⎧ ⎫− −

= ⋅ ⋅⎨ ⎬ ⎨ ⎬+ − − + − + −⎩ ⎭ ⎩ ⎭

z z
z z z

β ββ
β β β

. 

 

Murphy et al. prove that if 0( )tθ  is known to be absolutely continuous, then, as in the 

case of density estimation, there is no maximizer of the likelihood, but if 0( )tθ  is known 

to be discrete, then a maximizer exists.  The likelihood function for the whole failure time 

observations can be written as 
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0
0

1 0 0

exp( ) ( )( ; , )
[ ( ) exp( )] [ ( ) exp( )]

iItn
i i

t t
i i i i i

tL
t t

θθ
θ θ=

⎧ ⎫ ⎧ ⎫− Δ
= ⋅⎨ ⎬ ⎨ ⎬+ − − + −⎩ ⎭ ⎩ ⎭

∏ zt
z z

ββ
β β

,            (2.19) 

 

where we have replaced ϑ  by 0θΔ .  The MLE of 0θ  will be a non-decreasing step 

function with steps at the observed failure times. 

 

The profile log-likelihood for β  is given by  

 

                                  0̂Pr ( ) log ( ; ( ), )nlik L θ= tβ β β , 

 

where 0̂ ( )θ β  maximizes the log-likelihood for a fixed β . The maximum profile 

likelihood estimator, β̂ , maximizes Pr ( )nlik β .  

 

The presence of the terms 0( )itθΔ  in the likelihood of Eq. (2.19) forces the estimator of 

0θ  to have positive jumps at the observed failure times and have no jumps at any other 

points.  Thus the number of unknown parameters is k , the number of covariates, plus the 

number of observed failure times.  

 

Murphy et al. also prove that the maximum profile likelihood estimator of β  is 

consistent, asymptotically normal, and efficient.  Differentiation of the profile likelihood 

yields consistent estimators of the efficient information matrix.  Additionally, a profile 
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likelihood ratio statistic can be compared to percentiles of the chi-squared distribution to 

produce asymptotic hypothesis tests of the appropriate size.  

 

The calculation of the maximum profile likelihood depends on the numerical algorithms, 

from which Murphy et al. choose a modification of the Newton-Raphson algorithm.   The 

numerical algorithms can not always guarantee a convergent solution, especially when 

the size of the unknown parameter is large.   As mentioned in the paper by Murphy et al, 

the number of the unknowns in the likelihood function of Eq. (2.19) is k , the number of 

covariates, plus the number of observed failure times.   As the size of failure time sample 

increases, the maximization problem becomes extremely difficult.  Another problem of 

this maximum profile likelihood estimator of β  is the fact that the estimator is a function 

of the failure times only through their ranks.  The profile likelihood is the same whether 

we use the actual failure time observations or replace them by their ranks.  From the 

maximum profile likelihood estimation, the estimates of the baseline odds function can 

be only obtained at the observed failure times.  As a result, the reliability estimates also 

can be only obtained at the observed failure times, only explicit reliability function 

estimate is available.  This problem also makes the maximum profile likelihood 

estimation method not applicable to accelerated life testing which requires the reliability 

function estimation of the unit at the normal design stress level.  

 

2.2 ALT Test Plans 

 

In order to increase the accuracy of reliability estimates in accelerated life testing 

problem, a carefully designed ALT test plan is required.  This test plan is designed to 
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minimize a specified criterion, usually the variance of a reliability-related estimate, such 

as reliability function, mean time to failure and a percentile of failure time, under specific 

time and cost constraints. 

 

For easy implementation, commonly used constant stress ALT test plans consist of 

several equally spaced constant stress levels, each is allocated a proportion of the total 

number of test units.  Such standard test plans are usually inefficient for estimating 

reliability of the product at design stress.  Earlier work by Meeker and Nelson (1978) 

propose optimal statistical plans for constant stress ALTs which include only two stress 

levels.  Such plans lack robustness since the assumed life-stress relationship is difficult, if 

not impossible, to validate.  Meeker and Hahn (1985) address this by proposing a 4:2:1 

allocation ratio for low, middle, and high stress levels and give the optimal low level by 

assuming the middle stress to be the average of the high and the low stress levels.  In 

recent years, by considering other test constraints and allowing non-constant shape 

parameter of the failure time distribution (Meeter and Meeker, 1994), the use of 

compromised ALT plans for three stress levels without optimizing the middle stress level 

and allocation of test units is advocated.  The existing ALT plans could be classified into 

two categories: parametric ALT plans and nonparametric ALT plans.  Parametric ALT 

plans are based on a pre-specified common reliability distribution and an assumed life-

stress relationship.  These plans are typically not robust to deviations from the model 

assumptions and the model parameters.  Recently, Elsayed and Jiao (2002) consider 

optimum ALT plans based on nonparametric proportional hazards model. These 

nonparametric ALT plans are based on the minimization of the asymptotic variance of 
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the hazard rate estimate at design stress.  The plans determine the optimum three stress 

levels and the allocation of test units to each stress level.   Most of the previous work on 

ALT plans involves only a single stress type with two or three stress levels.  However, as 

products become more reliable due to technological advances, it becomes more difficult 

to obtain significant amount of failure data within reasonable amount of time using single 

stress type only.  Multiple-stress-type ALTs have been employed as a means to overcome 

such difficulties.  For instance, Kobayashi et al. (1978), Minford (1982), Mogilevsky and 

Shirn (1988), and Munikoti and Dhar (1988) use two stress types to test certain types of 

capacitors, and Weis et al. (1988) employ two stress types to estimate the lifetime of 

silicon photodetectors.  Unlike the case of the single-stress-type ALT, little work has 

been done on designing multiple-stress-type ALT plans.  Escobar and Meeker (1995) 

develop statistically optimal and practical plans with two stress types with no interaction 

between them.  However, if prior information does not support the nonexistence of 

interaction or if the so-called sliding level technique cannot be employed to avoid the 

potential interaction, then the analysis based on the main effects only could lead to 

serious bias in estimation.  Park and Yum (1996) develop ALT plans in which two 

stresses are employed with possible interaction between them with exponential 

distribution assumption.  Elsayed and Zhang (2005) consider optimum ALT plans with 

proportional hazard model, which involve two stress types with two stress levels for each 

stress type.  

 

Based on the employed accelerated life testing model in designing an ALT, we classify 

the existing ALT plans into two categories: Accelerated failure time model based (AFT-
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based) ALT plans, Proportional hazards model based (PH-based) ALT plans.  There is 

extensive research concerning the AFT-based optimum ALT which involves the most 

widely used parametric accelerated failure time regression model with the exception of 

Elsayed and Jiao (2002) who consider optimum ALT plans based on nonparametric 

proportional hazards model.  There is little research that investigates the design of 

optimum ALT plans using multiple stress types. We now describe these categories in 

details. 

 

2.2.1 AFT-based ALT Plans 
 

In general, AFT-based ALT plans use the parametric accelerated failure time (AFT) 

regression model.  These ALT plans assume that the failure times follow a predetermined 

distribution, e.g. Weibull distribution, lognormal distribution, extreme value distribution, 

etc.  Under this model, a higher stress level has the effect on reduced failure time through 

a scale factor.  This can be expressed in terms of reliability function as 

 

                                     0( ; ) [exp( ) ]tR t R t=z zδ .                                                            (2.20) 

 

The factor exp( )tzδ  is called an acceleration factor.  Since the performance of these ALT 

plans is highly dependent on the assumed failure time distribution, the optimum plans 

thus obtained are typically not robust to the deviations from the assumed distribution. 

 

2.2.1.1 General Assumptions of AFT-based ALT Plans 



 

 

37

 

The AFT-based ALT plans use the following general assumptions: 

(1) The log-time-to-failure for each unit follows a location-scale distribution such that 

 

         Pr( ) yY y μ
σ
−⎛ ⎞≤ = Φ ⎜ ⎟

⎝ ⎠
, 

 

where log( )y t=  is the logarithm of failure time t , μ  and σ  are location and scale 

parameters respectively, and ( )Φ ⋅  is the standard form, cumulative distribution 

function, of the location-scale distribution. 

(2) Failure times for all test units, at all stress levels, are statistically independent. 

(3) The location parameter μ  is a linear function of stresses (z1, z2, ...).  Specifically we 

assume that 

 

1 0 1 1( )= = +z zμ μ γ γ  ,   for a one-stress ALT, or 

 

1 2 0 1 1 2 2( , )z z z zμ μ γ γ γ= = + + , for a two-stress ALT 

 

(4) The scale parameter σ  does not depend on the stress levels. 

(5) All units are tested until timeτ , a pre-specified censoring time. 

The iγ ’s and σ  are unknown parameters to be estimated from the available ALT data. 
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2.2.1.2 Criteria for the Development of AFT-based ALT Plans 

 

In developing preliminary test plans we assume constant stress levels during the ALT.   

The constant stress test plans in the literature can be further classified as: (1) ALT plans 

to estimate percentiles of the life distribution at specified design stress, and (2) ALT 

plans to estimate reliability at specified time and design stress based on different 

optimization criterion.  

 

1. ALT plans to estimate percentiles of the life distribution at specified design stress 

 

Chernoff (1962) considers maximum likelihood (ML) estimation of the failure rate of an 

exponential distribution at the design stress level.  The relationship for the failure rate is 

assumed as a quadratic function of stress and an exponential function of stress.  He gives 

optimum plans both for simultaneous testing with Type I censored data and for 

successive testing with complete data.  Chernoff calls the plans “Locally optimum” 

because they depend on the true (unknown) parameter values.  Most optimum designs 

associated with nonlinear estimation problems (including estimation with censored data) 

result in locally optimum designs. 

 

Mann et al. (1974) consider linear estimation with order statistics to estimate a percentile 

of an extreme value (or Weibull) distribution at design stress and obtain optimal plans for 

failure data with censored observations. 
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Nelson and Kielpinski (1975, 1976) obtain optimum plans and best traditional plans 

(traditional plans use equally spaced levels of stress with equal allocation of test units to 

each stress level) for the median of a normal and lognormal distribution.  Their model 

assumes that the normal distribution location parameter μ (also the mean) is a linear 

function of stress and the scale parameter σ (also the standard deviation) does not depend 

on stress.  They also assume simultaneous testing of all test units and censoring at a pre-

specified time. 

 

Nelson and Meeker (1978) provide similar optimum test plans to estimate percentiles of 

Weibull and smallest extreme-value distributions at a specified design stress when test 

units are overstressed.  They assume that the smallest extreme-value location parameter μ 

(also the 0.632 percentile) is a linear function of stress and that the scale parameter σ is 

constant. 

 

Using similar assumptions, Meeker (1984) compares the statistically optimum test plans 

to more practical test plans that have three levels of stress.  Meeker and Hahn (1985) 

provide extensive tables and practical guidelines for planning an ALT.  They present a 

statistically optimum test plan and then suggest an alternative plan that meets practical 

constraints and has desirable statistical properties.  The tables allow assessment of the 

effect of reducing the testing stress levels (thereby reducing the degree of extrapolation) 

on statistical precision.  Jensen and Meeker (1990) provide a computer program that 

allows the user to develop and compare optimum and compromise ALT plans.  The 

program also allows the user to modify or specify plans and evaluate their properties. 
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Previous work on planning ALTs assumes that the scale parameter σ  for a location-scale 

distribution of log lifetime remains constant over all stress levels.  This assumption is 

inappropriate for many applications including accelerated tests for metal fatigue and 

certain electronic components.   Meeter and Meeker (1994) extend the existing maximum 

likelihood theory for test planning to the nonconstant scale parameter model and present 

test plans for a large range of practical testing.  The test setup assumes simultaneous 

testing of test units with time censoring. 

 

Barton (1991) proposes a variation of the optimum ALT plans described by Nelson and 

others.  He shows how to minimize the maximum test-stress subject to meeting a certain 

standard-deviation of the reliability estimate at normal operating conditions. 

 

Nelson, Meeker and others choose equal censoring times at each stress level. This 

practice does not completely cover field applications.  A long censoring time that yields 

sufficient failure at the lowest stress level is considered too long at the highest stress 

level.  Yang (1994) proposes an optimum design of 4-level constant-stress accelerated 

life test plans with various censoring times.  The optimal plans choose the stress level, 

test units allocated to each stress, and censoring times to minimize the asymptotic 

variance of the MLE of the mean life at design stress and test duration.  The test plans 

derived are proven to be more robust than the 3-level best-compromise test plans. 

 

2. ALT plans to estimate reliability at specified time and design stress 
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Easterling (1975) considers the determination of a lower bound on reliability at design 

stress conditions.  He utilizes the probit model to show that one can obtain an appreciably 

improved lower bound on reliability by allocating test units to stresses higher than the 

design stress, instead of testing all units at stresses close to or at the design stress. 

 

Martz and Waterman (1977) use Bayesian methods for determining the optimal test stress 

for a single test unit to estimate the survival probability at a design stress.  

 

Maxim et al. (1977) determine optimum accelerated test plans using the D-optimality 

criterion and assuming a bivariate exponential or Weibull model. 

 

Meeker and Hahn (1977) consider the optimum allocation of test units to overstress 

conditions when it is desired to estimate the survival probability to a specified time at a 

design condition.  The optimal criterion is to minimize the large sample variance under a 

logistic model assumption. 

 

Based on the review of the literatures, we summarize the following guidelines for 

planning ALTs: 

 

(1) Assuming a linear life-stress relationship for the statistically optimum plan, tests at 

only two levels of stress. 
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(2) Choosing the highest stress level to be as high as possible will increase precision and 

statistical efficiency.  But the highest stress level should not be so high that new 

failure modes would be introduced and the assumed life-stress relationship would be 

invalid. 

(3) Compromising test plans that use three or four levels of stress have somewhat 

reduced statistical efficiency but tend to be more robust to misspecification of the 

model and its parameters. 

(4) More test units should be allocated to lower stress levels.  There are two reasons for 

this: small portion of units will fail at the lower stress due to the limited test time and 

inferences at lower stress levels are closer to the extrapolation at design stress 

conditions.  So more failures at lower stresses result in a more accurate estimate of 

reliability at normal conditions. 

 

2.2.2 PH-based ALT Plans 
 

Recently Elsayed and Jiao (2002) consider optimum ALT plans based on the 

nonparametric proportional hazards model.  This ALT plan determines three optimum 

stress levels: high, medium and low levels, and optimum allocations of units to the three 

stress levels such that the asymptotic variance of the hazard rate estimate at the design 

stress level is minimized.  The constraints include the maximum available test duration, 

total number of test units and the minimum number of failures at each stress level.  The 

optimum ALT plans are based on the proportional hazards model.  The procedure of the 

PH-based optimum ALT plans is summarized as follows. 
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The proportional hazards (PH) model is expressed as, 

 

0( ; ) ( )exp( )t z t zλ λ β= .                                                      (2.21) 

 

The baseline hazard function 0( )tλ  is assumed to be linear with time, 

 

                                              0 0 1( )t tλ γ γ= + .                                                             (2.22) 

 

Substituting Eq. (2.22) into Eq. (2.21) yields 

 

 0 1( ; ) ( )exp( )t z t zλ γ γ β= + .                                                (2.23) 

 

Then the corresponding cumulative hazard function ( ; )t zΛ  and reliability function 

( ; )R t z  are obtained respectively as, 

 

2
0 10

( ; ) ( ) ( / 2)exp( )
t

t z u du t t zλ γ γ βΛ = = +∫ ,                                  (2.24) 

 

2
0 1( ; ) exp[ ( ; )] exp[ ( / 2)exp( )]R t z t z t t zγ γ β= −Λ = − + .                       (2.25) 

 

For a failure time sample ( , , )i i it I z , 1, ,i n= K , where it  is the failure time of the ith unit 

under study, iI  is the failure indicator for the ith unit ( 1iI =  if the failure has occurred, 
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which means it τ≤ , and 0iI =  if the failure time is right-censored, or it τ> ), and iz  is 

the stress level for the ith unit (only a single stress type is considered in this situation). 

Based on the proportional hazard model and the baseline hazard function, the log 

likelihood for the failure time sample is constructed as 

 

1
2

1
0 1 0

1

[ ln ( ; ) ( ; )]

[ ln( ) ( )exp( )].
2

n

i i i i i
i

n
i

i i i i i
i

l I t z t z

tI t I z t z

λ

γγ γ β γ β

=

=

= − Λ

= + + − +

∑

∑
                             (2.26) 

 

The maximum likelihood estimates 0 1
ˆˆ ˆ,   and γ γ β  are the parameter values that maximize 

the above sample log likelihood function and are obtained by setting the three first 

derivatives of the log likelihood function with respect to the parameters to zero, and 

solving the resultant equations simultaneously. 

 

An accelerated life test is planned to obtain the most accurate hazard rate estimate of the 

products at the design stress level under given constraints (time, cost, test units, etc.).  In 

order to achieve such objective, the optimal criterion chosen is to minimize the 

asymptotic variance of the hazard rate estimate at the design stress level over a pre-

specified period of time T , that is to minimize  

 

0 10 0
ˆ ˆˆ ˆ[ ( ; )] [( )exp( )]

T T

D DVar t z dt Var t z dtλ γ γ β= +∫ ∫ ,                         (2.27) 
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where the variance ˆ[ ( ; )]DVar t zλ  is obtained through delta method as 

 

ˆ
0 1

0 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ( ; )] [( ) ] , , , ,ˆ ˆˆ ˆ ˆ ˆ
D

T

z
DVar t z Var t eβ λ λ λ λ λ λλ γ γ

γ γ γ γβ β
⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂

= + = Σ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂∂ ∂⎣ ⎦ ⎣ ⎦
,            (2.28) 

 

and Σ  is the variance-covariance matrix of the parameter estimates 0 1
ˆˆ ˆ( , , )γ γ β , which is 

calculated as the inverse of the Fisher information matrix. 

 

Let’s consider the setup of an ALT plan, which is defined by 

1. There is a single accelerating stress type z . 

2. Test can be run at three or more stress levels. 

3. Total test duration is limited to τ . 

4. A total of n  test units is available for testing. 

5. The highest stress level Hz  is defined at the highest level at which the failure mode 

will not change. 

6. Initial values for the model parameter estimates are given by a baseline experiment. 

 

Under the constraints of available test units, test time and specification of minimum 

number of failures at each stress level, the objective of the ALT plans is to optimally 

allocate stress levels and test units so that the asymptotic variance of the hazard rate 

estimate at the design stress is minimized over a pre-specified period of time T . The 

optimum decision variables * * * * *
1 2 3( , , , , )L Mz z p p p  are determined by solving the following 

nonlinear optimization problem. 
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Min ˆ
0 10

ˆ ˆ( ) [( ) ]D
T zf Var t e dtβγ γ= +∫x  

Subject to 

 1F −Σ =  

 0 1,   1, 2, 3ip i< < =  

 
3

1

1i
i

p
=

=∑  

 Pr[ | ] ,   1, 2, 3i inp t z MNF iτ≤ ≥ =  

 

where MNF is the minimum number of failures and Σ  is the inverse of the Fisher’s 

information matrix F . 

 

The above nonlinear optimization problem can be solved by numerical methods. 

 

2.3 Conclusions 

 

A thorough review of the literature about ALT models indicates that widely-used 

nonparametric proportional hazards model can not be used for all failure time data, and 

proportional odds model is a good alternative to proportional hazards model when the 

failure time data present the property of proportionality of odds function instead of 

hazard rate function.  Unfortunately the current parameter estimation methods of PO 

model are not applicable for accelerated life testing.  Therefore we resort to a new 

parameter estimation method of PO model. 
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A thorough review of the literature about ALT plans indicates that there are no optimum 

plans for proportional odds cases when neither the AFT nor the PH assumptions hold for 

the failure time data.  Furthermore, current existing ALT plans only consider single stress 

type situations.  However, as products become more reliable thanks to technological 

advances, it becomes more difficult to induce significant amount of failure time data 

within the limited testing duration using a single stress type only.  Multiple-stress-type 

ALTs have been applied to overcome such difficulties.  But little work has been done on 

designing ALT plans with multiple stress types.  In this dissertation proposal, we propose 

to design and develop the PO-based ALT plans with multiple stress types when neither 

the assumption of AFT model nor the PH model is valid. 
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3 CHAPTER 3  
 
 

ALT MODEL BASED ON PROPORTIONAL ODDS 
 

In accelerated life testing, it is more important to extrapolate the reliability performance 

of products at the design stress level from the failure time data at more severe stress 

conditions.  Therefore reliability practitioners are interested in estimating the baseline 

function as well as the covariate parameters.  Since the baseline odds function of the 

general PO models could be any monotonically increasing function, it is important to find 

a viable baseline odds function structure to approximate most, if not all, of the possible 

odds function.  In order to find such a universal baseline odds function, we investigate the 

properties of odds function and its relation to the hazard rate function in this chapter. 

Based on these properties, we propose a general form of the baseline odds function to 

approximate the odds function.  We construct the log-likelihood function for the PO-

based ALT model with the proposed baseline odds function. The estimates of the 

unknown parameters are obtained through a numerical algorithm.  We also demonstrate 

the PO-based ALT model by a simulation study and an experimental study. 

  
3.1 Properties of Odds Function 

 

The odds function ( )tθ  is defined as the odds on failure of a unit at time t , or the ratio 

between the probability of failure and the probability of survival, which is expressed as 
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( ) 1 ( ) 1( ) 1
1 ( ) ( ) ( )

F t R tt
F t R t R t

θ −
≡ = = −

−
,                                           (3.1) 

 

where ( )F t  is cumulative probability function of the random failure time T , and 

( ) 1 ( )R t F t= −  is the corresponding reliability function.  From Eq. (3.1), we could 

investigate the properties of odds function through the reliability function.  Since most 

failure time processes are modeled on a continuous scale, all the failure time distributions 

considered in this dissertation proposal are continuous.  

 

From the properties of reliability function and its relation to odds function shown in Eq. 

(3.1), we could easily derive the following properties of odds function ( )tθ : 

(1) (0) 0θ = , ( )θ ∞ = ∞ ; 

(2) ( ) 0tθ ≥  for 0t ≥ ; 

(3) ( )tθ  is a monotone non-decreasing function for 0t ≥ , that is ( ) 0tθ ′ ≥ . 

Proof: 

(1) Since (0) Pr( 0) 1R T= > = , then 1(0) 1 1 1 0
(0)R

θ = − = − = ; 

  and Lim ( ) Lim Pr( ) 0
t t

R t T t
→∞ →∞

= > = , then 1( ) Lim ( ) 1
Lim Pr( )t
t

t
T t

θ θ
→∞

→∞

∞ = = − = ∞
>

. 

(2)  Since  0 ( ) 1R t≤ ≤  for 0t ≥ , then 1 1
( )R t

≥ , so 1( ) 1 0
( )

t
R t

θ = − ≥  for 0t ≥ . 

(3) Since ( ) Pr( )R t T t= >  is a monotone nonincreasing function, we have ( ) 0R t′ ≤ . 

Then 2

1 ( )( ) [ 1] 0
( ) [ ( )]

R tt
R t R t

θ
′

′ ′= − = − ≥ , so ( )tθ  is a monotone nondecreasing function. 
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We also summarize the relationship between odds function and cumulative hazard rate 

function ( )tΛ , and hazard rate function ( ).tλ  

(4) ( )( ) 1tt eθ Λ= − , and ( ) ln[ ( ) 1]t tθΛ = + ; 

(5) ( )( )
( ) 1

tt
t

θλ
θ

′
=

+
, and 

0
( ) exp( ( ) ) 1

t
t u duθ λ= −∫ . 

Proof: 

(4) ( )
( )

1 1( ) 1 1 1
( )

t
tt e

R t e
θ Λ

−Λ= − = − = − , ⇒  ( ) ln[ ( ) 1]t tθΛ = + . 

(5) ( ) ( ) {1/[ ( ) 1]} ( )( )
( ) ( ) {1/[ ( ) 1]} ( ) 1

f t R t t tt
R t R t t t

θ θλ
θ θ

′ ′ ′+
= = − = − =

+ +
,  and 

      ( )

0
( ) 1 exp( ( ) ) 1

ttt e u duθ λΛ= − = −∫ . 

 

3.2 Proposed Baseline Odds Function Approximation 

 

Furthermore, plotting the odds functions of some common failure time distributions as 

shown in Figure 3.1 provides further clarification of the odds functions. 
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Figure 3.1  Odds functions of four common failure time distributions 

 

Based on the properties of the odds function and the plots in Figure 3.1, we could use a 

polynomial function to approximate the general baseline odds function in the PO models.  

 

The proposed general baseline odds function is 

 

                                              2 3
0 1 2 3( )t t t tθ γ γ γ= + + +K  

 

Usually high orders are not necessary, second or third order polynomial function is 

sufficient to cover most of possible odds function. 

 

If the baseline odds function is assumed to be quadratic form, that is 
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                                       2
0 1 2( )t t tθ γ γ= + .                                                           (3.2) 

 

we have the following theorem: 

 

Theorem: 1 0γ ≥  and 2 0γ ≥  in Eq. (3.2). 

Proof: This theorem can be proven by contradiction.  

The values of 1γ  and 2γ  must fall into one of the following four cases: 

1. 1 0γ <  and 2 0γ < ; 

2. 1 0γ <  and 2 0γ > ; 

3. 1 0γ ≥  and 2 0γ < ; 

4. 1 0γ ≥  and 2 0γ ≥ .  

If 1 0γ <  and 2 0γ < , then 2
0 1 2( ) 0t t tθ γ γ= + ≤  for 0t ≥ . This is a contradiction to the 

property (2).  So case 1 is not possible for baseline odds function. 

 

If case 2 is true, that is 1 0γ <  and 2 0γ > , then the baseline odds function 

                           2
0 1 2 1 2( ) ( )t t t t tθ γ γ γ γ= + = +  

has roots 1 0r =  and 2 1 2/r γ γ= − . 

 

Since 1 0γ <  and 2 0γ > , we have 2 1 2/ 0r γ γ= − > .  Then we obtain the derivative of the 

baseline odds function at 1r , 0 1 1( 0) 0t rθ γ′ = = = < , which contradicts to the property (3) 

of odds function.  
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If case 3 is true, then the baseline odds function still has two roots 1 0r =  and 2 1 2/r γ γ= − . 

Since 1 0γ ≥  and 2 0γ < , we have 2 1 2/ 0r γ γ= − > .  Then we obtain the derivative of the 

baseline odds function at 2r , 0 2 1 2 1 2 1 2 1( / ) 2 ( / ) 0t rθ γ γ γ γ γ γ γ′ = = − = + − = − ≤ , which also 

contradicts to the property (3) of odds function. 

 

So the values of 1γ  and 2γ  must satisfy 1 0γ ≥  and 2 0γ ≥ .  This theorem gives a bound 

for parameter estimation in the later sections of the dissertation proposal. 

 

3.3 Log-Likelihood Function of the PO-based ALT Model 

 

We assume that the baseline odds function is expressed in a quadratic form: 

 

          2
0 1 2( )t t tθ γ γ= + ,           1 20, 0γ γ≥ ≥                                              (3.3) 

 

where 1γ  and 2γ  are unknown parameters which we are interested to estimate and the 

intercept parameter is zero since the odds function crosses the origin according to 

property (1) in section 3.1. 

 

The proportional odds model is then represented by: 

 

2
0 1 1 2 2 1 2( ; ) exp( ) ( ) exp( )( )t

k kt t z z z t tθ θ β β β γ γ= = + + +Lβz z ,                       (3.4) 
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where 

 

0( )tθ  an arbitrary baseline odds function; 

1 2( , , , )t
kz z z= Kz  a vector of the covariates or the applied stresses; 

1 2( , , , )t
kβ β β= Kβ  a vector of the unknown regression parameters; 

k  the number of the stresses. 

 

Therefore the hazard rate function ( ; )tλ z  and cumulative hazard rate function ( ; )tΛ z  are 

 

                        1 2
2

1 2

( ; ) exp( )( 2 )( ; )
( ; ) 1 exp( )( ) 1

t

t
t tt

t t t
θ γ γλ

θ γ γ
′ +

= =
+ + +
z zz

z z
β

β
, 

 

                        2
1 2( ; ) ln[ ( ; ) 1] ln[exp( )( ) 1]tt t t tθ γ γΛ = + = + +z z zβ . 

 

The parameters of the PO model with the proposed baseline odds function for censored 

failure time data are obtained as follows. 

 

Let , 1, ,it i n= K  represent the failure time of the ith testing unit, 1 2( , , , )t
i i i kiz z z= Kz  the 

stress vector of this unit, and iI  the indicator function, which is defined by 

 

                 
1 if ,  failure observed before time ,

( )
0 if ,  censored at time .                  

i
i i

i

t
I I t

t
τ τ

τ
τ τ

≤⎧
= ≤ = ⎨ >⎩
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 The log likelihood function of the proposed PO-based ALT model is 

 

                          
1 1

ln[ ( ; )] ( ; )
n n

i i i i i
i i

l I t tλ
= =

= − Λ∑ ∑z z .                                                        (3.5) 

 

Substituting the hazard rate function and cumulative hazard function into Eq. (3.5) results 

in: 

 

  

21 2
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Taking the derivatives of the log likelihood function with respect to the unknown 

parameters ( 1 2, ,γ γβ ) respectively, we obtain 
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The estimates of the model parameters ( 1 2, ,γ γβ ) are obtained by setting the above 

derivatives to zero and solving the resultant equations simultaneously.  Unfortunately 

there are no closed form solutions for these equations.  Therefore the solutions can be 

only obtained by using numerical methods such as Newton-Raphson method. 

 

To use Newton-Raphson method, we calculate the second derivatives of the log-

likelihood function as follows. 
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We then construct the Hessian matrix as: 
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Let 1 2

tt γ γ⎡ ⎤= ⎣ ⎦βx , 0x  is the initial value of the parameters. The Newton-Raphson 

method starts with this initial value, and after j  steps of the algorithm, the updated 

estimate of the parameters is given by 

 

                                          
1( ) ( )j+1 j j j

−= −x x H x u x , 

 

where 1 2 1 2 1 2

1 2

( , , ) ( , , ) ( , , )( ) |
j

t

j
l l lγ γ γ γ γ γ

γ γ =

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

β β β
β x xu x . 

 

The Newton-Raphson algorithm converges quite rapidly when the initial value is not too 

far from the true value. When the initial value is poor, the algorithm may move in the 

wrong direction or may take a step in the correct direction, but overshoot the root. The 

value of the log-likelihood function is computed at each step to ensure that the algorithm 

is moving in the correct direction. If ( )kl x  is smaller than 1( )kl +x , one option is to cut the 

step size in half and try 1( ) ( ) / 2k+1 k k k
−= −x x H x u x . 

 

3.4 Simulation Study 

 

In this section, we compare the performance of the PO models with that of the PH models 

using simulation data.  To validate the proposed PO-based ALT model, we apply both the 

PO-based and PH-based ALT models to a group of simulated failure time data sets.  Sets 

of random failure time data from mixed log-logistic distribution and Weibull distribution 
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are generated by Monte Carlo simulation method.  We now describe the details of the 

simulation study. 

 

3.4.1 Generation of Failure Time Data 
 

By definition, the reliability function of the mixed distribution, from which we generate 

the random failure time data, with stress level z  is 

 

                    
1

( ) (1 )exp( )
1 ( )

z
z

wR t w te
t e

β
β α

γ
= + − −

+
,                                              (3.7) 

 

where α  is a Weibull distribution parameter, 1γ  is a log-logistic distribution parameter, 

and 0 1w≤ ≤ . 

 

The reason for choosing the log-logistic distribution and the Weibull distribution to 

construct the mixed distribution is due to the fact that the log-logistic distribution and the 

Weibull distribution are special cases for the PO models and the PH models respectively 

as we discussed in Chapter 2.  The first part of Eq. (3.7) is a special case of the general 

PO models with the baseline odds function 0 1( )t tθ γ= .  While the second part, which is a 

Weibull distribution reliability function, is a special case of the general PH models. 

Equation (3.7) becomes a pure log-logistic distribution when w  is 1, a pure Weibull 

distribution when w  is 0, or a mixed distribution when w  takes any value between 0 and 

1.  If w  is close to 1, the generated failure time data from the mixed distribution are 
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much like being drawn from a log-logistic distribution.  On the other hand, if w  is close 

to 0, the generated failure time data from the mixed distribution are much like being 

drawn from a Weibull distribution.  We expect that the simulation study reveals the result 

that if w  is equal to, or close to 1, the PH-based ALT model is much better than PO 

counterpart, and if w  is equal to, or close to 0, the PO-based ALT model is much better 

than PH model. 

 

When w  is 1, solve t  from Eq. (3.7), we have 

 

                                                 1

1

[ ( ) 1]
zet R t

β

γ

−
−= − , 

 

or 

 

                                             1

1

[(1 ( )) 1]
zet F t

β

γ

−
−= − − .                                                   (3.8) 

 

Based on Eq. (3.8), a random log-logistic failure time it′  is generated by Monte Carlo 

simulation method as 

 

             1

1

[(1 1( )) 1]
z

i
et rand i

β

γ

−
−′ = − − ,                                              (3.9) 

 

where 1( )rand i  is uniformly-distributed random variable between [0, 1]. 
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Similarly, for 0w = , the Weibull distributed random failure time it′′  is generated by  

 

ln[1 2( )]
z

i
et rand i

β

α

−

′′= −                                                     (3.10) 

 

For any 0 1w≤ ≤ , the mixed random failure time it  is generated by the following 

equation: 

 

3( )
3( )

i
i

i

t rand i w
t

t rand i w
′ ≤⎧

= ⎨ ′′ >⎩
                                                     (3.11) 

 

where 1( ), 2( ),rand i rand i  and 3( )rand i  are uniformly-distributed random variables 

bounded in the interval [0, 1]. 

 

Using the following parameters: 30β = − , 1 800γ = , and 0.2α = , the Monte Carlo 

random failure time it  ( 1, ,120n = K ) is generated by Eq. (3.11) with 1w =  and four 

stress levels: 0.3, 0.35, 0.4, and 0.45.   We generate thirty random failure times for each 

of the stress levels.  Similarly we could generate several datasets with different w  values 

as summarized in table 3.1. 
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Table 3.1  Monte Carlo simulation datasets 

 
w  1 0.9 0.7 0.5 0.3 0.1 0 

Dataset I II III IV V VI VII 

 

3.4.2 Simulation Results 
 

After generating the random failure time data, we apply the PO-based ALT model and 

PH-based ALT model to the data sets respectively.  The unknown parameters of the 

models are estimated by the Maximum Likelihood Estimation procedures as discussed in 

section 3.3 for the PO-based ALT and Chapter 2 for the PH-based ALT respectively.  

Then the reliabilities at a specific stress level can be estimated with those parameter 

estimates for proportional odds model and proportional hazards model respectively.  

Since the failure time data are generated from the mixed distribution given in Eq. (3.7), 

we could obtain the theoretical reliability at any time for any specified stress level using 

that equation.  Then the reliability estimates obtained from the PO-based ALT and the 

PH-based ALT models are compared with the theoretical reliability respectively.  The 

comparisons are based on graphical technique and the sum of squared reliability errors 

(SSE) at the simulated failure times for the specified stress level. 

  

First, when 1w = , we apply the PO-based ALT model to the simulated data, we obtain 

the following parameter estimates: 
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β̂ = 31.25−  

1̂γ = 1294  

2γ̂ = 0.039  

 

Thereafter we use the estimated parameters to predict the reliability at the design stress 

level 0.5.  Figure 3.2 shows the theoretical reliability obtained from the original 

parameters 30β = − , 1 800γ = , and 2 0γ =  and the predicted reliability obtained from the 

estimated parameters ˆ 31.25β = − , 1̂ 1294γ = , and 2ˆ 0.039γ =  at stress level 0.5. The sum 

of squared errors is 0.0175. 
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Figure 3.2  Theoretical reliability and predicted reliability 

at stress level 0.5 by the PO-based ALT model 

 

Similarly we fit the same simulated data with the PH-based ALT model; the theoretical 

and predicted reliabilities are shown in Figure 3.3 with sum of squared errors 4.3783.  
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Figure 3.3 Theoretical reliability and predicted reliability 

at stress level 0.5 by the PH-based ALT model 

 

The simulation results show that the PO-based ALT model provides more accurate 

reliability estimates than the PH-based ALT model when 1w = . 

 

The reliability functions at other stress levels are plotted in Figure 3.4 through Figure 

3.11 for the PO-based ALT and the PH-based ALT models respectively. 
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Figure 3.4  Reliability comparison for the PO-based ALT model 

with 1w =  at stress level 0.45  
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Figure 3.5  Reliability comparison for the PH-based ALT model 

with 1w =  at stress level 0.45  
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Figure 3.6  Reliability comparison for the PO-based ALT model 

with 1w =  at stress level 0.4 
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Figure 3.7  Reliability comparison for the PH-based ALT model 

with 1w =  at stress level 0.4 
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Figure 3.8  Reliability comparison for the PO-based ALT model 

with 1w =  at stress level 0.35 
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Figure 3.9  Reliability comparison for the PH-based ALT model 

with 1w =  at stress level 0.35 
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Figure 3.10  Reliability comparison for the PO-based ALT model 

with 1w =  at stress level 0.3 
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Figure 3.11  Reliability comparison for the PH-based ALT model 

with 1w =  at stress level 0.3 
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The sums of squared errors at different stress levels are summarized in Table 3.2 for 

dataset I using the PO-based ALT and the PH-based ALT models respectively. 

 
Table 3.2  Sums of squared errors with different stress levels 

 

Stress PO-based ALT PH-based ALT 

0.5 0.0175 4.3783 

0.45 0.0040 6.6690 

0.4 0.0002 6.7100 

0.35 0.0023 8.5391 

0.3 0.0113 9.6553 

 

Similarly, we repeat the above procedures with different w  values. The sums of squared 

errors (SSE) for both the PO-based ALT and the PH-based ALT model are summarized 

in Table 3.3. 
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Table 3.3  Sums of squared errors with different w  values 

 

w  PO-based ALT PH-based ALT 

1 0.0175 4.3783 

0.9 0.0319 3.0929 

0.7 0.5800 2.3328 

0.5 0.9411 1.5906 

0.3 1.6377 0.6617 

0.1 2.6617 0.2329 

0 3.7889 0.0052 

 

Table 3.3 indicates that the PO-based ALT model provides more accurate reliability 

estimates when w  approaches 1; while the PH-based ALT model provides more accurate 

reliability estimates when w  approaches 0. 

 

As the results of the simulation study show, the choice of either the PO-based ALT model 

or the PH-based ALT model depends on the inherent property of the failure time data.  

Neither the PO-based ALT model nor the PH-based ALT model can be used to fit failure 

time data without checking the model assumption.  

 

3.5 Example with Experimental Data 
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In this section we use a set of experimental data as an example.  The failure time data of 

MOS devices with temperature as the applied stress are provided by Swartz (1986).  The 

temperature has five levels: 225 C° , 200 C° , 125 C° , 50 C° , and 25 C° , where stress 

level 25 C°  is the design stress level of the devices. The failure times it  ( 1, ,199i = K ) of 

unit i  is associated with its stress level iz .  According to the Arrehenius model, we 

transform the Celsius temperature to 1/Kelvin as the stress z  in the PO model.  Therefore 

the transformed five temperature stress levels are: 0.201 1K − , 0.211 1K − , 0.251 1K − , 

0.309 1K − , and 0.335 1K − .  

 

The validity of the PO-based ALT model relies heavily on the assumption of 

proportionality of the odds functions of units at different stress levels. Therefore, we plot 

the logarithm of the odds functions at different stress levels using product-limit, or 

Kaplan-Meier, reliability estimates shown in Figure 3.11. 
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Figure 3.12  Plot of log odds functions versus time for Swartz’s data 
 

From Figure 3.12, there is no significant deviation from the proportional odds assumption 

since the curves do not cross.  We also plot the cumulative hazards functions at different 

stress levels using Kaplan-Meier reliability estimates to validate the proportional hazard 

rate functions as shown in Figure 3.13 Similar to the conclusions from Figure 3.12, there 

is no significant violation of the proportional hazards assumption.  Therefore it is difficult 

to determine whether the inherent proportionality of Swartz’s data is closer to 

proportional odds assumption or proportional hazards assumption. 
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Figure 3.13  Plot of log cumulative hazards functions versus time for Swartz’s data 
 

In order to determine the appropriateness of the PO-based ALT model or the PH-based 

ALT model for the reliability predication at design stress level, we propose the following 

procedures: 

1. We fit Swartz’s data using only failure time data at stress levels 225 C° , 200 C° , 

125 C° , and 50 C° , with the PO-based ALT model to estimate parameters of the model, 

and then predict the reliability at stress level 25 C° . 

2. Compare the Kaplan-Meier reliability estimates obtained from actual failure time data 

at stress level 25 C° with those reliability estimated by the PO-based ALT model and 

calculate the sum of squared errors (SSE). 

3. Repeat steps 1 and 2 using the PH-based ALT model. 

4. Choose the model with smaller SSE. 
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Applying the above procedures, we analyze the Swartz’s data as follows: 

 

Assuming that the failure time dataset follows the proportional odds model, the log 

likelihood function is then formulated as  

 

174 174
2 2

1 2 1 2 1 2 1 2
1 1

( , , ) { ln( 2 ) ln[ ( ) 1]} ln[ ( ) 1]i iz z
i i i i i i i

i i

l I z t e t t e t tβ ββ γ γ β γ γ γ γ γ γ
= =

= + + − + + − + +∑ ∑ . 

 

In the above log likelihood function, only the failure time data at stress levels 225 C° , 

200 C° , 125 C° , and 50 C°  are used to estimate the three unknown parameters of the 

model, which are used to predict the reliability of the devices at design stress level 25 C° .   

The predicted reliability is then compared to the Kaplan-Meier reliability estimates based 

on the actual failure time data obtained at stress level 25 C° . 

 

The MLE estimates of ( 1 2, ,β γ γ ) are: 

 

β̂ = 64.93−  

1̂γ = 833.73  

2γ̂ = 5.18  

 

Figure 3.14 shows the Kaplan-Meier reliability and the predicted reliability at 

temperature level 25 C° .  The sum of squared errors (SSE), i.e. the sum of squared 
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difference between the predicted reliability and Kaplan-Meier reliability estimate, is 

0.2904.  
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Figure 3.14  Kaplan-Meier reliability vs. predicted reliability 

at temperature 25 C°  by the PO-based ALT model  

 

Similarly we fit the same failure time data with the PH-based ALT model and compare 

the predicted reliability estimates with the Kaplan-Meier reliability estimates obtained 

from the actual failure data at the stress level 25 C°  as shown in Figure 3.15.  
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Figure 3.15  Kaplan-Meier Reliability vs. Predicted Reliability 

at Temperature 25 C°  by the PH-based ALT Model 

 

The sum of squared errors of the PH-based ALT model is 2.9149, which is much larger 

than that of the PO-based ALT model.  We conclude that the PO-based ALT model 

provides more accurate reliability estimates at normal operating conditions than the PH-

based ALT model for the given failure time data. 
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4 CHAPTER 4  
 
 

CONFIDENCE INTERVALS AND MODEL VALIDATION 
 

Chapter 3 provides the point estimate of the unknown parameters of the PO-based ALT 

model and the point estimate of reliability at design stress conditions.  Some reliability 

estimation problems in many systems require the interval estimate of the reliability at a 

specified stress level, especially the design stress level.  In this chapter, we introduce a 

methodology for obtaining the confidence intervals for the unknown parameters and the 

estimated reliability at the design stress level through Fisher information matrix.  We also 

describe the likelihood ratio test and the modified Cox-Snell residuals to validate the 

model.  Numerical examples are also given in this chapter to display the interval 

estimation procedure and the validation procedures. 

 

4.1 Confidence Intervals 

  

4.1.1 Fisher Information Matrix 
 

We begin by the calculation of Fisher information matrix. 

 

Assume that the baseline odds function is expressed in a quadratic form: 

 

          2
0 1 2( )t t tθ γ γ= + ,           1 20, 0γ γ≥ ≥                                              (4.1) 
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where 1γ  and 2γ  are constant parameters to be estimated, and the intercept parameter is 

zero since the odds function crosses the origin according to the first property of odds 

function as described  in Chapter 3. 

 

The proportional odds model is then represented by: 

 

2
0 1 1 2 2 1 2( ; ) exp( ) ( ) exp( )( )t

k kt t z z z t tθ θ β β β γ γ= = + + +Lβz z ,            (4.2) 

 

and the hazard rate function ( ; )tλ z  and cumulative hazard rate function ( ; )tΛ z  are 

 

                        1 2
2

1 2

( ; ) exp( )( 2 )( ; )
( ; ) 1 exp( )( ) 1

t

t
t tt

t t t
θ γ γλ

θ γ γ
′ +

= =
+ + +
z zz

z z
β

β
, 

 

                        2
1 2( ; ) ln[ ( ; ) 1] ln[exp( )( ) 1]tt t t tθ γ γΛ = + = + +z z zβ . 

 

For a censored failure time data set, let it  represent the failure time of the ith unit, 

1 2( , , , )t
i i i kiz z z= Kz  the stress vector of this unit, and iI  the indicator function, which is 

1 if it τ≤  (the censoring time), or 0 if it τ> .  The log likelihood function of the proposed 

PO-based ALT model is 

 

                          
1 1

ln[ ( ; )] ( ; )
n n

i i i i i
i i

l I t tλ
= =

= − Λ∑ ∑z z ,                                                        (4.3) 
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Substituting hazard rate function and cumulative hazard rate function into the log 

likelihood function, we obtain: 

 

2 2
1 2 1 2 1 2

1 1

{ ln( 2 ) ln[ ( ) 1]} ln[ ( ) 1]
t t

i i

n n
t

i i i i i i i
i i

l I t e t t e t tγ γ γ γ γ γ
= =

= + + − + + − + +∑ ∑z zz β ββ .    (4.4) 

 

The unknown parameters ( 1 2, ,γ γβ ) are obtained by the maximum likelihood estimation 

procedure.  To determine the confidence intervals of the estimated parameters, we should 

first construct the Fisher information matrix, which requires the first and second 

derivatives of the log likelihood function l  with respect to each of three parameters, 

respectively: 

 

        
2 2

1 1 2 1 1 2
1 2 2

1 1 11 1 2 1 2

( ) ( )
( ) 1 ( ) 1

t t
i i

t t
i i

n n n
i i i i i i

i i i
i i ii i i i

l z e t t z e t tI z I
e t t e t t

γ γ γ γ
β γ γ γ γ= = =

∂ + +
= − −

∂ + + + +
∑ ∑ ∑

β β

β β

z z

z z
, 

 

         
2 2

1 2 1 2
2 2

1 1 11 2 1 2

( ) ( )
( ) 1 ( ) 1

t t
i i

t t
i i

n n n
ki i i ki i i

i ki i
i i ik i i i i

l z e t t z e t tI z I
e t t e t t

γ γ γ γ
β γ γ γ γ= = =

∂ + +
= − −

∂ + + + +
∑ ∑ ∑

β β

β β

z z

z z
, 

 

         
2 2

1 1 11 1 2 1 2 1 2

1
( 2 ) ( ) 1 ( ) 1

t t
i i

t t
i i

n n n
i i

i i
i i ii i i i i

l e t e tI I
t e t t e t tγ γ γ γ γ γ γ= = =

∂
= − −

∂ + + + + +
∑ ∑ ∑

β β

β β

z z

z z
, 

 

        
2 2

2 2
1 1 12 1 2 1 2 1 2

2
( 2 ) ( ) 1 ( ) 1

t t
i i

t t
i i

n n n
i i i

i i
i i ii i i i i

l t e t e tI I
t e t t e t tγ γ γ γ γ γ γ= = =

∂
= − −

∂ + + + + +
∑ ∑ ∑

β β

β β

z z

z z
, 
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2 2 2

1 2 1 2
2 2 2 2 2

1 11 2 1 2

( ) ( )
[ ( ) 1] [ ( ) 1]

t t
i i

t t
i i

t tn n
i i i i i i i i

i
i ii i i i

l e t t e t tI
e t t e t t

γ γ γ γ
γ γ γ γ= =

∂ + +
= − −

∂ + + + +
∑ ∑

β β

β ββ

z z

z z

z z z z , 

 

       
2 22 2 2

2 2 2 2 2 2
1 1 11 1 2 1 2 1 2

1
( 2 ) [ ( ) 1] [ ( ) 1]

t t
i i

t t
i i

n n n
i i

i i
i i ii i i i i

l e t e tI I
t e t t e t tγ γ γ γ γ γ γ= = =

∂
= − + +

∂ + + + + +
∑ ∑ ∑

β β

β β

z z

z z
, 

 

       
2 22 2 4 4

2 2 2 2 2 2
1 1 12 1 2 1 2 1 2

4
( 2 ) [ ( ) 1] [ ( ) 1]

t t
i i

t t
i i

n n n
i i i

i i
i i ii i i i i

l t e t e tI I
t e t t e t tγ γ γ γ γ γ γ= = =

∂
= − + +

∂ + + + + +
∑ ∑ ∑

β β

β β

z z

z z
,         

 

        
2 22 3 3

2 2 2 2 2
1 1 11 2 1 2 1 2 1 2

2
( 2 ) [ ( ) 1] [ ( ) 1]

t t
i i

t t
i i

n n n
i i i

i i
i i ii i i i i

l t e t e tI I
t e t t e t tγ γ γ γ γ γ γ γ= = =

∂
= − + +

∂ ∂ + + + + +
∑ ∑ ∑

β β

β β

z z

z z
. 

 

The elements of the Fisher information matrix are the negative expectations of the second 

derivatives of the log likelihood function: 

 

2

2

2 2

2
1 1 2

2 2

2
1 2 2

[ ]

[ ] [ ]

[ ] [ ]

lE

l lF E E

l lE E

γ γ γ

γ γ γ

⎡ ⎤∂
−⎢ ⎥∂⎢ ⎥

⎢ ⎥∂ ∂
= − −⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂

− −⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

β
0 0

0

0

,                            (4.5) 

 

where  

 

                                
0

[ ( )] ( ) ( )E g t f t g t dt
∞

= ∫                                                    (4.6) 
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( )g t  is the negative of the second derivative of log likelihood function, or any element 

of the Fisher information matrix, and ( )f t  is the pdf of the failure time distribution, 

given by 

 

                              1 2
2 2

1 2

( 2 )( ) ( )
[1 ( ) ]

z

z

t ef t R t
t t e

β

β

γ γ
γ γ

+′= − =
+ +

. 

 

So the Fisher information matrix F is a 3 3×  symmetric matrix. 

 

Since the baseline odds function is assumed to be independent of the stress vector z  in 

the PO model, the correlations between the stress coefficient β  and baseline parameters 

1 2,γ γ  are zero. So the cells (1, 2), (1, 3), (2, 1), and (3, 1) of the Fisher information 

matrix are zero as in Eq. (4.5). 

 

The calculation of the Fisher information matrix is performed numerically to integrate 

Eq. (4.6) from time 0  to time T , which is large enough and more than the longest 

failure time of the failure time observations.  In the numerical calculation procedure, the 

unknown parameters 1 2( , , )γ γβ  of the proportional odds model are replaced by the 

estimated values obtained from the maximum likelihood estimation procedure 

mentioned in Chapter 3. 
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4.1.2 Variance-Covariance Matrix and Confidence Intervals of Model Parameters 
 

The asymptotic variance-covariance matrix Σ  of the maximum likelihood estimates of 

the parameters is the inverse of the Fisher information matrix F : 

 

                                            
11

1
22 23

23 33

F σ σ
σ σ

−

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

0 0
0
0

Σ
Σ .                                              (4.7) 

 

So the asymptotic variances of the parameter estimates ( 1 2
ˆ ˆ ˆ, ,γ γβ ) for the PO-based ALT 

model are:  

 

   11
ˆ( ) ( ), 1, ,jVar j j kβ = = KΣ , 

 

   1 22ˆ( )Var γ σ= , 

 

   2 33ˆ( )Var γ σ= . 

 

where 11( )jΣ  is the jth diagonal element of the matrix 11Σ . 

 

Therefore the (1 )%α−  confidence intervals of the parameters are: 

 

   β :    / 2
ˆ ˆ( ), 1, ,j jZ Var j kαβ β± = K , 
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   1γ :    1 / 2 1ˆ ˆ( )Z Varαγ γ± ,  

 

   2γ :    2 / 2 2ˆ ˆ( )Z Varαγ γ± . 

 

4.1.3 Confidence Intervals of Reliability Estimates 
 

We use the delta method to calculate the asymptotic variance of the estimated reliability 

at design stress level Dz  with the PO-based ALT model.  Under the PO model the 

reliability function of any unit at the design stress Dz  is 

 

                                               
2

1 2

1( ; )
1 ( )

t
D

DR t
t t eγ γ

=
+ + β z

z , 

 

The asymptotic variance of the estimated reliability is given by delta method as: 

 

1 2 1 2

1

ˆ ˆ ˆ( , , ) ( , , )
1 1 2

1

2

( ; )

( ; )
( ; ) ( ; ) ( ; ) ( ; )ˆ[ ( ; )] [ ] |

( ; )

( ; )

D

D
D D D D

kD
k

D

D

R t

R t
R t R t R t R tVar R t

R t

R t

γ γ γ γ

β

β
β β γ γ

γ

γ

=

∂⎡ ⎤
⎢ ⎥∂
⎢ ⎥
⎢ ⎥
⎢ ⎥∂⎢ ⎥∂ ∂ ∂ ∂ ∂= Σ ⎢ ⎥

∂ ∂ ∂ ∂ ⎢ ⎥∂⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂⎢ ⎥
∂⎢ ⎥⎣ ⎦

M

K
β β

z

z
z z z zz

z

z

   

(4.8) 
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Therefore, the (1 )%α−  confidence intervals of the reliability at the design stress Dz  is 

 

/ 2 / 2
ˆ ˆ ˆ ˆ( ; ) [ ( ; )], ( ; ) [ ( ; )]D D D DR t Z Var R t R t Z Var R tα α

⎡ ⎤− +⎢ ⎥⎣ ⎦
z z z z .                             (4.9) 

 

 

4.1.4 Numerical Example of Reliability Confidence Intervals 
 

We use Swartz’s data (Swartz 1986) as an example to calculate the 95% confidence 

intervals of unknown parameters and reliability estimate at the design stress 25Dz C= ° . 

The variance-covariance matrix is 

 

                                        
0.266 0 0

0 37030 36.24
0 36.24 0.314

⎡ ⎤
⎢ ⎥Σ = −⎢ ⎥

−⎢ ⎥⎣ ⎦

, 

 

Then the 95%  confidence intervals of the parameters are: 

 

β :    / 2
ˆ ˆ( ) 64.93 1.96 0.266 ( 65.94, 63.92)Z Varαβ β± = − ± = − −  

 

1γ :    1 / 2 1ˆ ˆ( ) 833.73 1.96 37030 (456.56, 1210.90)Z Varαγ γ± = ± =  

 



 

 

85

2γ :    2 / 2 2ˆ ˆ( ) 5.18 1.96 0.314 (4.08, 6.28)Z Varαγ γ± = ± =  

 

The 95% reliability confidence intervals at stress level 25Dz C= ° , which are calculated 

with Eq. (4.9), are depicted in Figure 4.1.  As shown, the intervals intend to large when 

time is larger. Therefore the reliability estimates are more accurate at the early stage. 
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Figure 4.1  95% reliability confidence intervals at temperature 25Dz C= °  level 
 

4.2 Model Validations 

 

4.2.1 Model Sufficiency 
 

In Chapter 3, a polynomial baseline odds function is proposed to approximate the general 

odds function, 

 

 2 3
0 1 2 3( )t t t tθ γ γ γ= + + +K .                                            (4.10) 



 

 

86

 

We also point out that higher order may not be necessary and a quadratic baseline odds 

function is already sufficient in most cases.  In order to test the sufficiency of quadratic 

baseline odds function, we use the likelihood ratio test. 

 

The hypothesis can be expressed as: 

 

                                         0 3: 0,H γ =  versus  1 3: 0.H γ ≠  

 

To test the null hypothesis 0H  against the alternative hypothesis 1H , we use the 

likelihood ratio statistic 

 

                         2
1 2 1 2 32[ln ( , , ) ln ( , , , )]LR L Lχ β γ γ β γ γ γ′ ′ ′ ′′ ′′ ′′ ′′= − − ,                                 (4.11)  

 

where 1 2( , , )β γ γ′ ′ ′  is found by maximizing the log likelihood function with consideration 

of only 1γ  and 2γ , and 1 2 3( , , , )β γ γ γ′′ ′′ ′′ ′′  is found by maximizing the log likelihood function 

with 3γ  in the model.  

 

This statistic has an asymptotic chi-squared distribution with 1 degree of freedom. A 

large value of 2
LRχ  gives the evidence against the null hypothesis 0H .  
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To test if we need higher order polynomial baseline odds function than cubic equation, 

we could use the similar likelihood ratio test. 

 

4.2.2 Model Residuals 
 

To test the validation of the assumption of proportional odds after the fitting of the 

regression model, we need to calculate the residual of model fitting.  In the usual linear 

regression setup, it is quite easy to define a residual for the fitted regression model.  In 

the proportional odds regression model, the definition of the residual is not 

straightforward.  We could use Cox-Snell type residual to assess the fit of a PO-based 

ALT model.  The Cox-Snell residuals (Cox and Snell 1968) could be used for assessing 

the goodness-of-fit of a Cox model.  With some modifications, we could also use the 

similar type residual to assess the goodness-of-fit of a proportional odds model.  

 

We suppose a PO-based ALT model was used to fit the dataset ( , , )i i it I z , 1, ,i n= K .  

We also suppose that the proportional odds model 2
0 1 2( ; ) ( ) ( )z zt z e t e t tβ βθ θ γ γ= = +  has 

been utilized.  If the model is correct, then, it is well known that, if we make the 

probability integral transformation ( ; )i iF t z  on the true failure time it , the resulting 

random variable has a uniform distribution on the unit interval.   Therefore we can prove 

that the random variable ( ; )i iY t z= Λ  has an exponential distribution with hazard rate 1.  

Here, ( ; )y t z= Λ  is the cumulative hazard rate of failure time at stress level z  after the 

parameter estimates have obtained. 
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Theorem: the random variable ( ; )i iY t z= Λ  has an exponential distribution with hazard 

rate 1 if proportional odds model is correct. 

 

Proof: If the model is correct, the random variable ( ; )i ix F t z= , which is obtained from 

the probability integral transformation of the failure time, follows a uniform distribution 

on the interval [0, 1] .  Therefore the probability density function of x  is given by 

 

1 [0,1]
( )

0 otherwise
x

f x
∈⎧

= ⎨
⎩

                                                       (4.12) 

 

Then the random variable ( ; )i iY t z= Λ , which is the cumulative hazard rate function of 

failure time, can be also expressed in terms of the random variable ( ; )i ix F t z= , 

 

( ; ) ln[1 ( ; )]i i i iY t z F t z= Λ = − − .                                       (4.13) 

 

Without loss of generality, Eq. (4.13) can be simplified as  

 

ln(1 )y x= − − .                                                           (4.14)        

 

So the random variable y  is a function of the random variable x , which has a uniform 

distribution on the interval [0, 1] , and is described by the probability density function Eq. 
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(4.12).  We can obtain the probability density function of random variable y  (DeGroot 

and Schevish 2002): 

 

If a random variable X  has a continuous distribution; the probability density function of 

X  is ( )f x ; and another random variable is defined as ( )Y r X= .  For each real number 

y , the cumulative distribution function of Y can be derived as follows: 

 

{ : ( ) }
( ) Pr( ) Pr[ ( ) ] ( )

x r x y
F y Y y r X y f x dx

≤
= ≤ = ≤ = ∫ .                                         (4.15) 

 

Since the random variable Y  is defined by ln(1 )Y X= − −  as Eq. (4.14) here, then Y  

must belong to the interval 0 Y≤ < ∞ .  Thus, for each value of Y  such that 0 Y≤ < ∞ , 

the cumulative distribution function ( )F y  of Y  is derived from Eq. (4.15) as follows: 

 

1

0

( ) Pr( ) Pr[ ln(1 ) ]
Pr[ln(1 ) ]
Pr[(1 ) ]
Pr[ 1 ]

( )

1

y

y

y

e

y

F y Y y X y
X y

X e
X e

f x dx

e

−

−

−

−

−

= ≤ = − − ≤
= − ≥ −

= − ≥

= ≤ −

=

= −

∫

                                      (4.16) 

 

For 0 Y< < ∞ , the probability density function ( )f y  of Y  is  

 

( )( ) ydF yf y e
dy

−= = .                                                         (4.17) 
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Eq. (4.17) is the probability density function of exponential distribution with hazard rate 

1. Proof is complete.                                                                                                            □ 

 

Therefore we could utilize the above theorem to generate the Cox-Snell type residuals for 

the PO-based ALT model to verify the assumption of proportional odds.  If the estimates 

of the unknowns 1 2( , , )β γ γ  from the postulated model are 1 2
ˆ ˆ ˆ( , , )β γ γ , then, the Cox-

Snell type residuals for the PO-based ALT model are defined as 

 

 ˆ 2
1 2

ˆˆ ˆ ˆ( ; ) ln[ ( ; ) 1] ln[ ( ) 1]iz
i i i i i i ir t z t z e t tβθ γ γ= Λ = + = + + , 1, ,i n= K .               (4.18)  

 

If the proportional odds model is correct and the estimates 1 2
ˆ ˆ ˆ( , , )β γ γ  are close to the true 

values of 1 2( , , )β γ γ , then the ir ’s should look like a censored sample from a unit 

exponential distribution. 

 

To check whether the ir ’s behave as a sample from a unit exponential distribution, we 

compute the Nelson-Aalen estimator (Klein and Moeschberger 1997) of the cumulative 

hazard rate of the ir ’s.   If the unit exponential distribution fits the data, then, the Nelson-

Aalen estimator should be approximately equal to the cumulative hazard rate of the unit 

exponential distribution, ( )E t tΛ = .  Thus, a plot of the estimated cumulative hazard rate 

of ir ’s, or ˆ ( )r irΛ , versus ir  should be a straight line through the origin. 

 



 

 

91

The nonparametric Nelson-Aalen estimator of the cumulative hazard rate is obtained as 

follows.  To allow for possible ties in the data, suppose that the failures occur at D  

distinct times 1 2 Dt t t< < <L , and that at time it  there are id  failures.  Let iY  be the 

number of units at risk at time it , or the number of units which are operating properly at 

time it .  Then the Nelson-Aalen estimator of the cumulative hazard rate is defined as 

follows 

 

1

1

0, if   ˆ ( ) / , if   
i

i it t

t t
t d Y t t

≤

<⎧⎪Λ = ⎨ ≥⎪⎩∑                                             (4.19) 

 

The Nelson-Aalen estimator has better small-size performance than the estimator based 

on the Kaplan-Meier estimator.  The Nelson-Aalen estimator has two primary uses in 

analyzing failure time data.  The first is selecting parametric models for the data.  For our 

case, a plot of Nelson-Aalen estimators of ir ’s, or ˆ ( )r irΛ , versus ir  will be approximately 

linear if the exponential distribution fits the data ir ’s.  The second use of the Nelson-

Aalen estimator is providing crude estimate of the hazard rate of the failure time data. 

This estimate is the slope of the plot obtained above.  For our case, the slope of the plot 

of Nelson-Aalen estimators of ir ’s versus ir  will be roughly 1 if the data are from an 

exponential distribution with hazard rate 1. 

  

4.2.3 Numerical Example of Cox-Snell Residuals 
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We use the simulation dataset I in Table 3.1 as an example to demonstrate the 

performance of the Cox-Snell residuals. 

 

We apply the PO-based ALT model to this data set.  The unknown parameters of the 

models are estimated by the Maximum Likelihood Estimation procedures as discussed in 

section 3.3.  We obtain the following parameter estimates: 

 

β̂ = 31.25−  

1̂γ = 1294  

2γ̂ = 0.039  

 

Therefore the Cox-Snell type residuals for the PO-based ALT model are calculated by  

 

ˆ 2
1 2

ˆˆ ˆ ˆ( ; ) ln[ ( ; ) 1] ln[ ( ) 1]iz
i i i i i i ir t z t z e t tβθ γ γ= Λ = + = + + , 1, ,i n= K . 

 

To check whether the ir ’s behave as a sample from a unit exponential distribution, we 

treat them as failure times and compute the Nelson-Aalen estimators of the cumulative 

hazard rate of the ir ’s.  The plot of the cumulative hazard rate of the ir ’s versus the ir ’s is 

shown in Figure 4.2.  As shown in this figure, the step function is the estimated 

cumulative hazard rate of the ir ’s and the straight line is a line with the slope of 1. It is 

obvious that the estimated cumulative hazard rate of ir ’s, or ˆ ( )r irΛ , is approximately a 
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straight line with the slope of 1.  Therefore, we conclude that the proportional odds 

assumption is valid for the given data set. 

 

Figure 4.2  Nelson-Aalen estimators of Cox-Snell residuals 
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5 CHAPTER 5  
 
 

PO-BASED MULTIPLE-STRESS-TYPE ALT PLANS  
 

While accelerated life test saves time and expenses over testing at design stress 

conditions, the reliability estimates obtained via extrapolation in both stress and time are 

inevitably less accurate.  One interesting measurement to obtain more accurate estimates 

is to devise a test plan that tests units at appropriately selected stress levels with proper 

allocation of test units to each level.  In other words, an optimum accelerated life testing 

plan will result in more accurate estimates of reliability at design stress conditions.  

Design of ALT plans under one type of stress may mask the effect of other critical types 

of stresses that could lead to the component’s failure.  Therefore, it is more realistic to 

consider multiple stress types.  In this chapter, we are investigating the design of 

optimum ALT plans based on the proportional odds model with multiple stress types.  

  

 

5.1 PO-based ALT Plans with Constant Multiple Stress Types 

 

In this section, we design constant multiple-stress-type ALT plans based on the 

proportional odds assumption.  

 

5.1.1 The Assumptions  
 

We assume the following conditions for the ALT plans with multiple stress types. 
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1. There are k  types of stress 1 2( , , , )kz z z= Kz  with 3 levels for each stress type used 

in the test. 

2. The proportional odds (PO) model is employed to relate the reliability at different  

accelerated stress levels and the design stress levels 

                      

        1 1 2 2 0( ; ) exp( ) ( )k kt z z z tθ β β β θ= + +Lz .                                     (5.1) 

 

where ( ; )tθ z is the odds function of test units at time t  and stress vector z ; 0( )tθ  is 

the baseline odds function of the PO model; 1 2, , , kβ β βK  are unknown model 

parameters, which explain the effects of stresses on the failure time. 

3. The baseline odds function  is quadratic and given by 

 

                                              2
0 1 2( )t t tθ γ γ= + ,                                                       (5.2) 

 

where 1γ  and 1γ  are unknown model parameters. 

4. The number of stress level combination to determined is 3k  as shown in Figure 5.1 

for 2k = .  The upper bounds of stresses are pre-specified as the highest stress levels 

beyond which the failure mode will change.  While the lower bounds of two stresses 

are specified as the design stress levels. 
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Figure 5.1  Design of ALT plan with two stress types and three levels for each stress type 

 

5. A total of n  units are available for testing.  The proportion of testing units allocated 

to the testing point of the 1i th level of the first stress type 1z , 2i th level of the second 

stress type 2z , …, ki th level of the last stress type kz  is denoted by 
1 2 ki i ip K , 

0, 1, 2; 1, 2, ,ji j k= = K , where the notation of the levels 0, 1, 2  are equivalent to the 

notation of the levels , ,L M H , standing for lower level, medium level, and high 

level respectively.  Throughout the thesis, both notations are interchangeable. 

6. The test is terminated at the pre-specified censoring time τ . 

 

As defined by the above assumptions, the decision variables are the stress levels ( 1Lz , 

1Mz , 1Hz ), ( 2Lz , 2Mz , 2Hz ), …, ( kLz , kMz , kHz ) and the proportions of test units allocated 
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to the 3k  stress combinations 
1 2 ki i ip K , 0, 1, 2; 1, 2, ,ji j k= = K .  The total number of 

decision variables is ( 3 3kk + ).  This factorial arrangement of stress levels and test units 

shown in Figure 5.1 is not statistically optimal.  However, this arrangement is motivated 

by the actual practice of reliability engineers.  Since any other arrangement with the same 

number of testing points will result in more stress levels for each stress type, it enables 

reliability engineers to carry out the entire test simultaneously by utilizing the available 

equipment in an efficient manner and lead to substantial savings in test time and cost. In 

addition, it allows for testing of interactions after the data are collected. 

 

5.1.2 The Log Likelihood Function 
 

Using the assumption of proportional odds and the baseline odds function we obtain the 

odds function at stress combination 1 2( , , , ) t
kz z z= Kz  

 

2
1 1 2 2 1 2( ; ) exp( )( )k kt z z z t tθ β β β γ γ= + + +Lz .                                  (5.3) 

 

Then the corresponding hazard rate function ( ; )tλ z , cumulative hazard function ( ; )tΛ z , 

reliability function ( ; )R t z , and probability density function ( ; )f t z  are obtained as 

follows: 

 

1 2
2

1 2

( ; ) exp( )( 2 )( ; )
( ; ) 1 exp( )( ) 1

t

t
t tt

t t t
θ γ γλ

θ γ γ
′ +

= =
+ + +
z zz

z z
β

β
,                                  (5.4) 
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2
1 2( ; ) ln[ ( ; ) 1] ln[exp( )( ) 1]tt t t tθ γ γΛ = + = + +z z zβ ,                            (5.5) 

 

2
1 2

1 1( ; )
( ; ) 1 exp( )( ) 1tR t
t t tθ γ γ

= =
+ + +

z
z zβ

,                                   (5.6) 

 

1 2
2 2 2

1 2

( ; ) exp( )( 2 )( ; )
[ ( ; ) 1] [exp( )( ) 1]

t

t
t tf t

t t t
θ γ γ

θ γ γ
′ +

= =
+ + +
z zz

z z
β

β
.                              (5.7) 

 

Let , 1, ,it i n= K  represent the failure time of the ith testing unit, 1 2( , , , )t
i i i kiz z z= Kz  the 

stress vector of this unit, and iI  the indicator function, which is defined by 

 

                 
1 if ,  failure observed before time ,

( )
0 if ,  censored at time .                  

i
i i

i

t
I I t

t
τ τ

τ
τ τ

≤⎧
= ≤ = ⎨ >⎩

 

 

The log likelihood of the proposed ALT based on proportional odds model for this unit is 

 

    ln[ ( ; )] ( ; )i i i i i il I t tλ= − Λz z .                                             (5.8) 

 

Substituting the hazard rate function in Eq. (5.4) and cumulative hazard function in Eq. 

(5.5) into above log likelihood results in: 

 

( ) ( )2 2
1 2 1 2 1 2[( ) ln( 2 )] ln[ ( ) 1] ln[ ( ) 1]

t t
i it

i i i i i i i i il I t I e t t e t tγ γ γ γ γ γ= + + − + + − + +z zz β ββ .  (5.9) 
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Then the log likelihood function for the whole failure time sample is 

 

                                               1 2 nl l l l= + + +L . 

 

5.1.3 The Fisher Information Matrix and Covariance Matrix 
 

For a single observation triple ( , , )t I z , where z  is a vector of stress levels, the first 

partial derivatives of log likelihood of this observation with respect to the model 

parameters are: 

 

  
( ) 2 ( ) 2

1 1 2 1 1 2
1 ( ) 2 ( ) 2

1 1 2 1 2

( ) ( )
( ) 1 ( ) 1

t t

t ti
l z e t t z e t tIz I

e t t e t t
γ γ γ γ

β γ γ γ γ
∂ + +

= − −
∂ + + + +

β β

β β

z z

z z
,                           (5.10) 

 

                                  M  

 

 
( ) 2 ( ) 2

1 2 1 2
( ) 2 ( ) 2

1 2 1 2

( ) ( )
( ) 1 ( ) 1

t t

t t
k k

k
k

l z e t t z e t tIz I
e t t e t t

γ γ γ γ
β γ γ γ γ
∂ + +

= − −
∂ + + + +

β β

β β

z z

z z
,                           (5.11) 

 

( ) ( )

( ) 2 ( ) 2
1 1 2 1 2 1 2( 2 ) ( ) 1 ( ) 1

t t

t t

l I Ie t e t
t e t t e t tγ γ γ γ γ γ γ

∂
= − −

∂ + + + + +

β β

β β

z z

z z
,                    (5.12) 

               

( ) ( )2 2

( ) ( )2 2
2 1 2 1 2 1 2

2
( 2 ) ( ) 1 ( ) 1

t t
i i

t t
i i

i i i i i

i i i i i

l I t I e t e t
t e t t e t tγ γ γ γ γ γ γ

∂
= − −

∂ + + + + +

z z

z z

β β

β β
,                     (5.13) 
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Summing the above first derivatives over all test units and setting them equal to zero will 

provide the equations for solving the maximum likelihood estimates of the model 

parameters 1 2 1 2( , , , , , )kβ β β γ γK . 

 

Assuming the correlations only exist between 1γ  and 2γ , then, for a single observation 

triple ( , , )t I z , the second partial derivatives of the log likelihood with respect to model 

parameters are 

 

2 2 ( ) 2 2 ( ) 2
1 1 2 1 1 2

2 ( ) 2 2 ( ) 2 2
1 1 2 1 2

( ) ( )
[ ( ) 1] [ ( ) 1]

t t

t t

l z e t t z e t tI
e t t e t t

γ γ γ γ
β γ γ γ γ

∂ + +
= − −

∂ + + + +

z z

z z

β β

β β
,                               (5.14) 
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2 2 ( ) 2 2 ( ) 2
1 2 1 2

2 ( ) 2 2 ( ) 2 2
1 2 1 2

( ) ( )
[ ( ) 1] [ ( ) 1]

t t

t t
k k

k

l z e t t z e t tI
e t t e t t

γ γ γ γ
β γ γ γ γ

∂ + +
= − −

∂ + + + +

z z

z z

β β

β β
,                                (5.15) 

 

2 2( ) 2 2( ) 2

2 2 ( ) 2 2 ( ) 2 2
1 1 2 1 2 1 2( 2 ) [ ( ) 1] [ ( ) 1]

t t

t t

i

l I Ie t e t
t e t t e t tγ γ γ γ γ γ γ

∂
= − + +

∂ + + + + +

z z

z z

β β

β β
,            (5.16) 

 

2 2 2( ) 4 2( ) 4

2 2 ( ) 2 2 ( ) 2 2
2 1 2 1 2 1 2

4
( 2 ) [ ( ) 1] [ ( ) 1]

t t

t t

l It Ie t e t
t e t t e t tγ γ γ γ γ γ γ

∂
= − + +

∂ + + + + +

z z

z z

β β

β β
,             (5.17) 

 

2 2( ) 3 2( ) 3

2 ( ) 2 2 ( ) 2 2
1 2 1 2 1 2 1 2

2
( 2 ) [ ( ) 1] [ ( ) 1]

t t

t t

l It Ie t e t
t e t t e t tγ γ γ γ γ γ γ γ

∂
= − + +

∂ ∂ + + + + +

z z

z z

β β

β β
.         (5.18) 
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The elements of the Fisher information matrix for an observation are the negative 

expectation of the above second partial derivatives: 

 

2 2

2 20
1 1

( ; )l lE f t dt
τ

β β
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z ,                                                         (5.19) 

 

                                                    M  

 

2 2

2 20
( ; )

k k

l lE f t dt
τ

β β
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z ,                                                         (5.20) 

 

2 2

2 20
1 1

( ; )l lE f t dt
τ

γ γ
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z ,                                                         (5.21) 

 

2 2

2 20
2 2

( ; )l lE f t dt
τ

γ γ
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z ,                                                         (5.22) 

 

2 2

0
1 2 1 2

( ; )l lE f t dt
τ

γ γ γ γ
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∫ z ,                                                (5.23) 

 

where probability density function is give by Eq. (5.7). 
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With layout of the ALT plan shown in Figure 5.1, the Fisher information matrix for the 

stress combination Lz  is 

 

2

2
1

2

2

2 2

2
1 1 2

2 2

2
1 2 2

( ) 0 0

0

( )0 0 0 0

( ) ( )0 0 0

( ) ( )0 0 0

L

L

kL L

L L

L L

lE

lE
F

l lE E

l lE E

β

β

γ γ γ

γ γ γ

⎡ ⎤⎡ ⎤∂
−⎢ ⎥⎢ ⎥∂⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥

⎡ ⎤∂⎢ ⎥−⎢ ⎥⎢ ⎥∂= ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤∂ ∂

− −⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

L

L L

M O M M

z

z

z z

z z

.      (5.24) 

 

Similarly the Fisher information matrices for other stress combinations can be easily 

obtained. 

 

Finally, the Fisher information matrix for all test units allocated in Figure 5.1 is obtained 

as 

 

1 1

1

2 2

0
k k

k

i i i i
i i

F np F
=

= ∑ ∑ L LL .                                                             (5.25) 

 

which is a function of the model parameters 1 2 1 2( , , , , , )kβ β β γ γK , stress levels ( 1Lz , 

1Mz , 1Hz ), ( 2Lz , 2Mz , 2Hz ), …, ( kLz , kMz , kHz ) and the proportions of test units allocated 

to the 3k  stress combinations 
1 2 ki i ip K , 0, 1, 2; 1, 2, ,ji j k= = K .  The asymptotic variance-
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covariance matrix Σ  of the ML estimates 1 2 1 2
ˆ ˆ ˆ ˆ ˆ( , , , , , )kβ β β γ γK  is the inverse of the 

Fisher information matrix F  

 

1

1

1 1 2

1 2 2

ˆ( ) 0 0 0
0 0

ˆ0 ( ) 0 0
ˆ ˆ ˆ0 0 ( ) ( , )

ˆ ˆ ˆ0 0 ( , ) ( )

k

Var

FVar
Var Cov

Cov Var

β

β
γ γ γ

γ γ γ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Σ = =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

O M M

M

L

L

,                           (5.26) 

 

which is a ( 2) ( 2)k k+ × +  symmetric matrix. 

 

Under the standard regularity conditions, the ML estimates 1 2 1 2
ˆ ˆ ˆ ˆ ˆ( , , , , , )kβ β β γ γK , which 

are calculated based on the values of failure time sample, are asymptotically normally 

distributed with mean 1 2 1 2( , , , , , )kβ β β γ γK  and variance-covariance matrix Σ .  The 

asymptotic covariance matrix Σ  depends on the inherent regression model, the layout of 

the ALT design and the parameters.  Thus, for the POM-based ALT, if we have the initial 

baseline estimates for 1 2 1 2( , , , , , )kβ β β γ γK , it is straightforward to estimate the 

variance-covariance matrix Σ  numerically based on the initial estimates. 

 

5.1.4 Optimization Problem Formulation 
 

The appropriate optimization criterion for ALT plans depends on the purpose of the 

accelerated life testing. As presented earlier, the possible criteria include the 

minimizations of: 
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(1) the variance of estimate of a percentile of the failure time distribution at the design 

stress conditions, 

(2) the variance of reliability estimate or hazard rate estimate at design stress conditions 

over a pre-specified period of time, 

(3) the variance of an reliability estimate or hazard rate estimate over a range of stress, 

(4) the variance of the estimate of a particular parameter. 

 

In this section, the optimization criterion is chosen to minimize the asymptotic variance 

of the reliability function estimate over a pre-specified period of time T  at the design 

stress conditions, ie, to minimize 
0

ˆ[ ( ; )]
T

DVar R t dt∫ z . 

 

The variance of the reliability function estimate at the design stress levels ˆ[ ( | )]DVar R t z  

is obtained by Delta method as 

 

1 2 1 2 1 2 1 2

1 1 2

1 1 2 ˆ ˆ ˆ ˆ ˆ( , , , , , ) ( , , , , , )

ˆ[ ( ; )]

( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )

k k

D

D D D D

k

T

D D D D

k

Var R t

R t R t R t R t

R t R t R t R t

β β β γ γ β β β γ γ

β β γ γ

β β γ γ
=

⎡ ⎤∂ ∂ ∂ ∂
= Σ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂
×⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

K K

L

L

z

z z z z

z z z z

   (5.27) 

 

With the limitations of available test units n , test time τ  and specification of minimum 

failures at each stress combination, the objective of the ALT plan is to optimally allocate 

the stress levels ( 1Lz , 1Mz , 1Hz ), ( 2Lz , 2Mz , 2Hz ), …, ( kLz , kMz , kHz ) and the proportions 
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of test units allocated to the 3k  stress combinations 
1 2 ki i ip K , 0, 1, 2; 1, 2, ,ji j k= = K , so 

that the asymptotic variance of the reliability estimate at design stress levels is minimized 

over a pre-specified period of time .T  The optimum decision variables [( 1Lz , 1Mz , 1Hz ), 

( 2Lz , 2Mz , 2Hz ), …, ( kLz , kMz , kHz ), 
1 2 ki i ip K , 0, 1, 2; 1, 2, ,ji j k= = K ] are determined by 

solving the following nonlinear optimization problem  

 

Objective function 

Min                   
0

ˆ( ) [ ( ; )]
T

Df Var R t dt= ∫x z  

Subject to  

  
1 2

0 1, 0,1, 2; 1, 2, ,
ki i i jp i j k< < = =K K  

  
1 2

1
ki i ip =∑ K  

  1 1 1 1 1D L M H upperz z z z z≤ ≤ ≤ ≤  

                                      M  

  kD kL kM kH kupperz z z z z≤ ≤ ≤ ≤  

  
1 2 1 21 2 2 1 2[1 ( | , , , )] , , , 0, 1, 2

k ki i i i i i knp R z z z MNF i i iτ− ≥ =K K K  

  1F −Σ =  

 

where MNF  is the required minimum number of failures. 

 

5.1.5 Optimization Algorithm 
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The nonlinear optimization problem formulated in the above section is an optimization 

problem with nonlinear objective function, nonlinear constraints, and multivariable 

decision variables.  Since the objective function is complicated, we use a version of the 

multivariable constrained search methods, where no derivatives are required, to solve this 

optimization problem.  

 

The procedure is based on COBYLA (Constrained Optimization BY Linear 

Approximations) optimization method proposed by Powell (1992).  This method is a 

sequential search technique which has proven effective in solving problems with 

nonlinear objective function subject to nonlinear constraints as well as linear and 

boundary constraints.  

 

Without loss of generality, we use the following constrained multivariable nonlinear 

problem formulation to illustrate the COBYLA algorithm: 

 

 
Min         ( ),

,
Subject to        ( ) 0, 1,2, ,

n

i

f x R
c i m

⎫∈
⎬

≥ = ⎭K

x
x

                                              (5.28) 

 

The COBYLA algorithm is based on the Nelder and Mead’s method (Nelder and Mead 

1965) and the idea of generating the next vector of variables from function values at the 

vertices { : 0,1, , }j j n= Kx  of a non-degenerate simplex in nR .  In this case there are 

unique linear functions, f̂  and ˆ{ : 1,2, , }ic i m= K , that interpolate the nonlinear objective 
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function f  and nonlinear constraints { : 1,2, , }ic i m= K  at the vertices, and we 

approximate the calculation (5.28) by the linear programming problem 

 

ˆMin         ( ),
ˆSubject to        ( ) 0, 1,2, ,

n

i

f x R
c i m

⎫∈ ⎪
⎬

≥ = ⎪⎭K

x
x

                                               (5.29) 

 

Changes to the variables are restricted by a trust region bound, which gives the user some 

control over the steps that are taken automatically and which respond satisfactorily to the 

fact that there may be no finite solution to the linear programming problem (5.29).  The 

trust region radius ρ  remains constant until predicted improvements to the objective 

function and feasibility conditions fail to occur.  Then the trust region radius is reduced 

until it reaches a final value that has to be set by the user.  The COBYLA algorithm 

employs a merit function of the form 

 

( ) ( ) max{max{ ( ) : 1,2, , },0}if c i mμΦ = + − = Kx x x                         (5.30) 

 

in order to compare the goodness of two different vectors of variables.  Here μ  is a 

parameter that is adjusted automatically. So we have ( ) ( )fΦ =x x  whenever x  is 

feasible, and nR∈x  is better than nR∈y  if and only if the inequality ( ) ( )Φ < Φx y  

holds. 

 

The algorithm includes several strategies, and is summarized with the aid of Figure 5.2. 
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Figure 5.2  A summary of the COBYLA algorithm 
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Firstly we consider the “Generate *x ”. The vector of variables *x  is generated by solving 

the linear programming problem (5.29).  If the resultant *x  is not in the trust region, we 

redefine *x  by minimizing the greatest of the constraint violations 

*ˆ{ ( ) : 1,2, , }ic i m− = Kx  subject to the trust region bound.  

 

The branch Δ  ensures that the simplex is acceptable.  The definition of “acceptability” 

follows: For 1,2, ,j n= K , let jσ  be the Euclidean distance from the vertex jx  to the 

opposite face of the current simplex, and let jη  be the length of the edge between jx  and 

0x .  We say that the simplex is “acceptable” if and only if the inequalities  

 

                              , 1,2, , ,
j

j j n
σ αρ
η βρ

⎫≥
=⎬

≤ ⎭
K                                                 (5.31) 

 

hold, where α  and β  are constants that satisfy the conditions 0 1α β< < < . 

 

The vector Δx  is defined as follows. If any of the numbers { : 1,2, , }j j nη = K  of Eq. 

(5.31) is greater than βρ , we let l  be the least integer from [1, ]n  that satisfies the 

equation 

 

max{ : 1,2, , }l j j nη η= = K  .                                                 (5.32) 

 

Otherwise we obtain l  from the formula 
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min{ : 1,2, , }l j j nσ σ= = K .                                                  (5.33) 

 

The iteration replaces the vertex lx  by Δx , so we require Δx  to be well away from the 

face of the simplex that is opposite the vertex lx .  Therefore we let lv  be the vector of 

unit length that is perpendicular to this face, and we define the vector Δx  by 

 

0 lγρΔ = ±x x v ,                                                                (5.34) 

 

where the sign is chosen to minimize the approximation ˆ ( )ΔΦ x  to the new value of the 

merit function, and γ  is a constant from the interval ( ,1)α .  Then the next iteration is 

given the simplex that has the vertices { : 0,1, , , }j j n j l= ≠Kx  and Δx . 

 

5.1.6 Numerical Example 
 

An accelerated life test is to be carried out at three temperature levels and three voltage 

levels for MOS devices in order to estimate its reliability function at design temperature 

level of 25 C°  and voltage level of 5V.  The layout of the test is shown as in Figure 5.1 

where there are totally 9 stress combinations.  The test needs to be completed in 300 

hours.  The total number of units available for testing is 200.  To avoid the inducing of 

failure modes different from that expected at the design stress levels, it has been 

determined, through engineering judgment, that the temperature level should not exceed 



 

 

111

250 C°  and the voltage level should not exceed 10V.  The minimum number of failures 

for each stress combination is specified as 15 units.  Furthermore, we expect that the 

accelerated life testing provide the most accurate reliability estimate over a 10-year 

period of time. The test plan is designed through the following steps: 

 

1. According to the Arrehenius model, we transform the Celsius temperature scale to 

1/Kelvin scale as the covariate 1z  in the test plan.  Then the design stress level of 

temperature 1Dz  is 1/(25+276.13) or 0.00335 1K − , and the upper bound of stress level 

of temperature 1upperz  is 1/(250+276.13) or 0.0019 1K − . 

 

2. A baseline experiment is conducted to obtain a set of initial values of the parameters 

for the PO model with quadratic odds function.  These values are: 

                                              

1 1600β = −  

2 0.02β =  

1 2γ =  

2 0γ =  

 

3. Under the constraints of available test units and test time, the objective of the test plan 

is to optimally allocate the stress levels and test units so that the accelerated life test 

provides the most accurate reliability estimate of the product at design stress 

conditions, i.e. to ensure that the asymptotic variance of the reliability function 
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estimate at design conditions is minimized over a pre-specified time period of 10-

year. The decision variables are the stress levels ( 1Lz , 1Mz , 1Hz , 2Lz , 2Mz , and 2Hz ) 

and the proportion of test units ( , 0,1,2; 0,1,2,ijp i j= = ) at each stress level 

combination as shown in Figure 5.1. The values of the optimum decision variables 

are determined by solving the following nonlinear optimization problem with 

nonlinear constraints as well as linear and boundary constraints: 

 

Objective function 

Min             
0

ˆ( ) [ ( | )]
T

Df Var R t dt= ∫x z  

Subject to  

  0 1, 0,1, 2; 1, 2, 3ij jp i j< < = =  

  
,

1ij
i j

p =∑ , 

  1 1 125 1/ 273.16 1/ 273.16 1/ 273.16 250L M HC z z z C° ≤ − ≤ − ≤ − ≤ ° , 

                   2 2 25 10L M Hz z z≤ ≤ ≤ ≤ , 

  1 2[1 ( | , )] , , 0, 1, 2ij i jnp R z z MNF i jτ− ≥ =  

  1F −Σ =  

where  15MNF = , 

  10T = years, 

  200n = , 

  300τ = hours, 

  1 1 1 2 2 2 00 01 02 10 11 12 20 21 22( , , , , , , , , , , , , , , )t
L M H L M Hz z z z z z p p p p p p p p p=x . 
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4. We use the algorithm as described in section 5.2.5 to solve this optimization problem. 

The algorithm is implemented using SAS/IML and SAS/OR. SAS/IML software is a 

powerful and flexible programming language (Interactive Matrix Language) in a 

dynamic, interactive environment.  The fundamental object of the language is a data 

matrix.  The programming is dynamic because necessary activities such as memory 

allocation and dimensioning of matrices are performed automatically.   

 

5. The optimum decision variables that minimize the objective function and meet the 

requirement of the constraints are: 

Stress levels: 

                   76LT C= ° ,  165MT C= ° , 244HT C= ° ; 

                   5.35LV V= ,  7.39MV V= , 9.25HV V= . 

The corresponding proportions of units allocated to each stress level combination are 

are list in the following table: 

 
Table 5.1  Proportions of units allocated to each stress level combination 

 

ijp  76LT C= °  165MT C= °  244HT C= °  

5.35LV V=  0.247 0.141 0.085 

7.39MV V=  0.128 0.089 0.077 

9.25HV V=  0.080 0.077 0.076 

 

 The objective function value is 0.0975. 
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5.2 PO-based Multiple-Stress-Type ALT Plans with Simple Step-Stress Loading 

 

Accelerated life testing (ALT) procedures are commonly used to evaluate the lifetime 

characteristics of highly reliable components.  If a constant stress ALT is used and some 

selected stress levels are not high enough, there are many survived units by the limited 

testing period, thus reducing the effectiveness of ALT.  To ensure enough failed units in a 

limited testing period, step-stress accelerated life testing (SSALT) has been developed. 

 

Most of the previous work on designing ALT plans is focused on the application of a 

single stress type.  Especially no previous work on step-stress ALT plans has investigated 

the use of multiple stress types.  Alhadeed and Yang (2005) design optimal simple step-

stress plan for cumulative exposure model with consideration of single stress type.  Only 

optimal time of changing stress level using log-normal distribution is determined in their 

paper.  Elsayed and Zhang (2005) propose optimum simple step-stress ALT plans based 

on nonparametric proportional hazards model.  Alhadeed and Yang (2002) also design 

optimal simple step-stress plan for Khamis-Higgins model using Weibull distribution.  

Teng and Yeo (2002) present a Transformed Least-Squares (TLS) approach to drive 

optimum ALT plans.  Khamis and Higgins (1996) design the optimum step-stress test 

using the exponential distribution.  Bai et al. (1989) discuss an optimal plan for a simple 

step-stress ALT with censoring for exponential life data. Miller and Nelson (1983) obtain 

the optimum simple step-stress ALT plans where the test units have exponentially 

distributed life.  All of the previous work has only considered a single stress type 

application.  However, the mission time of today’s products is extended so much that it 
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becomes more difficult to obtain significant amount of failure data within reasonable 

amount of time using single stress type for simple step-stress test.  Multiple-stress-type 

ALTs have been employed as a means of overcoming such difficulties.  For instance, 

Kobayashi et al. (1978), Minford (1982), Mogilevsky and Shirn (1988), and Munikoti 

and Dhar (1988) use two stresses to test capacitors, and Weis et al. (1988) employ two 

stresses to estimate the lifetime of silicon photodetectors. 

 

In this section, we propose multiple-stress-type ALT plans based on the proportional 

odds (PO) model with simple step-stress loading.  We do not make assumptions about a 

common life distribution of the test units.  The cumulative exposure model is used to 

derive the life distribution of test units after the stress level changing time.  The plans are 

optimized such that the asymptotic variance of reliability prediction at design stress over 

a specified period of time is minimized.  We present the proportional odds model and 

corresponding maximum likelihood estimation for accelerated life testing.   We introduce 

a simple step-stress test based on PO model with multiple stress types and explain how 

the cumulative exposure model is applied to this case.  A nonlinear optimization problem 

is formulated to design the optimum ALT plans in this section.  Asymptotic variance of 

the reliability prediction at the design stress levels has been chosen as the objective 

function of the nonlinear optimization problem.  This optimization problem could be 

solved by direct search algorithm, such as the COBYLA algorithm proposed by Powell 

(1992).   
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Step-stress loading of accelerated life testing is described as follows.  A set of samples is 

subjected to test starting with specified low stresses.  If we don’t have enough failures by 

a specified time, the stress levels are increased and held constant for another period of 

time.  We repeat this procedure until enough failures achieved.  The step-stress ALT 

usually results in enough failures in a shorter period of time than the constant-stress ALT 

does.  

 

Now we consider POM-based multiple-stress-type ALT plans with simple step-stress 

loading. In the testing scheme, test units are initially placed on test at a low stress level 

vector Lz , where these low stress levels satisfy L D≥z z , and run until stress level 

changing time 1τ .  Then the stress levels are increased to the high level vector Hz  and 

held constant until a predetermined censoring time 2τ .  

  

5.2.1 Test Procedure 
 

1. There are k  types of stresses, 1z , 2z , K kz , applied to the test units. 

2. There are n  test units initially placed under test at the low stress levels 

1 2( , , , )t
L L L kLz z z= Kz  until changing time 1τ .  Then surviving units at time 1τ  are 

subjected to higher stress levels 1 2( , , , )t
H H H kHz z z= Kz  until a pre-determined 

censoring time 2τ .  Figure 5.3 depicts the test procedure for the case of 2k = .  As 

shown in Figure 5.3.  We start the test with all low stress levels and increase all the 

stress levels simultaneously at the stress changing time 1τ .  As an alternative we 
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could increase the different stress levels following some arbitrary orders.  How to 

determine the optimum order is beyond the coverage of this dissertation and will be 

investigated as a topic of Equivalent ALT Plans in the future work as mentioned in 

Chapter 6.  In this dissertation we only consider increasing all the stress levels 

simultaneously since it is easy to carry out.  

 

t
1τ 2τ

1Dz

2Dz

1Lz

1Hz

2Lz

2Hz

 

Figure 5.3  Step-Stress loading with multiple-stress-type 

 

3. There are in  failure times observed while testing at the low stress levels and high 

stress levels respectively, ,i L H= , and L Hn n n+ ≤ . 

4. The objective of the step-stress ALT (SSALT) plan with multiple stress types is to 

determine the optimum values of the stress levels Lz  and Hz , as well as the optimum 

changing time 1τ  so as to minimize the estimation error of the reliability estimates at 

the design stress levels Dz . 
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5.2.2 Assumptions 
 
 
1. The proportional odds (PO) model is assumed to fit the failure time data: 

 

                                    0( ; ) exp( ) ( )tt tθ θ=z zβ ,                                                             (5.35) 

 

where 1 2( , , , )t
kz z z= Kz , which is a column vector of stress levels; and 

1 2( , , , )t
kβ β β= Kβ , which is a column vector of model parameters. 

 

2. The baseline odds function 0( )tθ  is quadratic and given by 

 

                                    2
0 1 2( )t t tθ γ γ= + ,                                                                (5.36) 

 

where 1γ  and 2γ  are unknown parameters, there is no intercept term because the odds 

function always crosses the origin. 

 

3. The failure times of the test units are statistically independent. 

 

5.2.3  Cumulative Exposure Models 
 

To analyze the failure time data from a step stress test, we need to relate the life 

distribution under step-stresses to the distribution under constant stresses.  We adopt the 

most widely used cumulative exposure model to derive the cumulative density function 
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of the failure time for a test unit experiencing step-stress loading since the odds function 

changes immediately after 1τ , the stress level changing time under step-stress loading. 

 

The cumulative exposure models assume that the remaining life of a test unit depends 

only on the “exposure” it has seen, and the unit does not remember how the exposure was 

accumulated.  Figure 5.4 shows the relationship between constant-stress and step-stress 

distributions. 

 

Fi(t) F(t)
1 1

t ts 1τ 1τ

Lz
Hz

 

Figure 5.4  Relationship between constant-stress and step-stress distributions 

 

Let ( )iF t  denote CDF of time to failure for units run at constant stress iz , ,i L H= . 

Following proportional odds model, they are given by: 

 

                                0( ) 1 exp[ ln{ ( ) 1}]
t

L
LF t t eθ= − − +zβ ,                                             (5.37) 

 

                                0( ) 1 exp[ ln{ ( ) 1}]
t

H
HF t t eθ= − − +zβ .                                            (5.38) 
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The test runs under stress Lz  to time 1τ  at step 1.  The population CDF of units failed by 

time t in step 1 is: 

 

                                          ( ) ( )LF t F t=    1t τ<                                                        (5.39) 

 

Test units at step 2 have an equivalent starting time s , which would have produced the 

same population cumulative failures.  Thus, s  is the solution to the following equation  

 

                                                1( ) ( ),H LF s F τ=                                                             (5.40) 

 

or equivalently  

 

   2 2
1 2 1 1 2 11 exp[ ln{( ) 1}] 1 exp[ ln{( ) 1}]

t t
H Ls s e eγ γ γ τ γ τ− − + + = − − + +z zβ β ,           (5.41) 

 

The above equation is obtained by substituting Eq. (5.37) and Eq. (5.38) into Eq. (5.40). 

 

Therefore the population CDF of units failing by time 1t τ≥  is  

 

                                    1( ) ( )HF t F t sτ= − + ,        1t τ≥  .                                       (5.42) 

 

In summary, the equivalent population cumulative distribution function of units failing 

under multiple step-stresses is 
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                                 1

1 1

( ),
( )

( ),
L

H

F t t
F t

F t s t
τ

τ τ
<⎧

= ⎨ − + ≥⎩
                                                (5.43) 

 

5.2.4  Log Likelihood Function 
 

A test unit experiences one of two possible types of failure patterns: (a) it either fails 

under stress level Lz  before the stress is changed at time 1τ , or (b) it does not fail by time 

1τ  and continues to run either to failure or to censoring time 2τ  at stress level Hz .  The 

following provides the log likelihood of a single observation t (time to failure).  Firstly 

we define the indicator function 1 1 1( )I I t τ= ≤  in terms of the stress changing time 1τ  by: 

 

1 1
1 1 1

1 1

1 if ,  failure observed before time ,
( )

0 if ,  failure observed after time .   
t

I I t
t

τ τ
τ

τ τ
≤⎧

= ≤ = ⎨ >⎩
 

 

and the indicator function 2 2 2( )I I t τ= ≤  in terms of the censoring time 2τ  by: 

 

2 2
2 2 2

2 2

1 if ,  failure observed before time ,
( )

0 if ,  censored at time .    
t

I I t
t

τ τ
τ

τ τ
≤⎧

= ≤ = ⎨ >⎩
 

 

where 1 2τ τ≤ . 

 

Following proportional odds model and Eq. (5.43), we have  
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                                  1 2
2 2

1 2

( 2 )( ; )
[( ) 1]

t
L

t
L

L
t ef t

t t e
γ γ

γ γ
+

=
+ +

β

β

z

z
z ,                     for 1t τ<  

 

                                1 2
2 2

1 2

( 2 )( ; )
[( ) 1]

t
H

t
H

H
t ef t

t t e
γ γ

γ γ
′+

=
′ ′+ +

z

z
z

β

β
,                    for 1t τ≥  

 

                                2
1 2( ; ) ln[( ) 1]

t
L

Lt t t eγ γΛ = + +zz β ,                     for 1t τ<  

 

                                2
1 2( ; ) ln[( ) 1]

t
H

Ht t t eγ γ′ ′Λ = + +zz β ,                   for 1t τ≥  

 

where 1t t sτ′ = − + . 

 

Therefore the log likelihood of one single observation t can be expressed as 

 

2 1 1 2

2
1 2 1 2 1 2

2
1 2 1 2 1 2

2
2 1 2

ln ( ; , ) { [ln ( ; )] (1 )[ln ( ; )]} (1 ) ( ; )

{ln( 2 ) 2 ln[( ) 1]}

(1 ) {ln( 2 ) 2 ln[( ) 1]}

(1 ) ln[( ) 1]

t
L

t
H

t
H

L H L H H

t
L

t
H

l L t I I f t I f t I t

I I t t t e

I I t t t e

I t t e

γ γ γ γ

γ γ γ γ

γ γ

= = + − − − Λ

= + + − + +

′ ′ ′+ − + + − + +

′ ′− − + +

z

z

z

z z z z z

z

z

β

β

β

β

β
        (5.44) 

 

The first partial derivatives with respect to the model parameters are: 
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H
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The last equation could be decomposed into 

 

2 2
1 2 1 1 2 1 2 1 1 2

1 2 1 1 2 12 2
1 1 2 1 2

2
2 1 1 2

2
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The above equations, when summed over all test units and set equal to zero, provide the 

maximum likelihood estimates for the model parameters. 

 

5.2.5 Fisher’s Information Matrix and Variance-Covariance Matrix 
 

If we only consider the correlations among 1γ  and 2γ , the second partial derivatives with 

respect to the model parameters are as shown as: 
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The above derivatives are given in terms of the random quantities 1I , 2I  and stress levels 

Lz , Hz  as well as the model parameters.  The elements of the Fisher information matrix 

for an observation are the negative expectations of the second partial derivatives: 

 

2
2 2

2 20
1 1

( ; , )L H
l lE f t dt

τ

β β
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z z ,                                               (5.53) 
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2
2 2

2 20
( ; , )L H

k k

l lE f t dt
τ

β β
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z z ,                                              (5.54) 

 

2
2 2

2 20
1 1

( ; , )L H
l lE f t dt

τ

γ γ
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z z ,                                              (5.55) 

 

2
2 2

2 20
2 2

( ; , )L H
l lE f t dt

τ

γ γ
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂⎣ ⎦

∫ z z ,                                              (5.56) 

 

2
2 2

0
1 2 1 2

( ; , )L H
l lE f t dt

τ

γ γ γ γ
⎡ ⎤∂ ∂
− = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∫ z z ,                                         (5.57)       

 

where the probability density function ( ; , )L Hf t z z  is given as the derivative of the 

equivalent cumulative density function in Eq. (5.43). 

 

The above equations show the components of the Fisher’s information matrix for a single 

observation.  Since all n  test units placed under the step-stress test experience the same 

test conditions, the Fisher’s information matrix for the sample is just the summation of all 

units: 
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The Variance-Covariance matrix for maximum likelihood estimates ( 1 1 2
ˆ ˆ ˆ ˆ, , , ,kβ β γ γK ,) is 

defined as the inverse matrix of the Fisher’s information matrix: 
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 .                      (5.59) 

 

5.2.6  Optimization Criterion 
 

In order to obtain the most accurate reliability estimate under the constraints of testing 

conditions, such as time, cost, number of available units, etc, we choose to minimize the 

asymptotic variance of the reliability estimates at the design stress levels over a pre-

specified period of time, i.e., minimize  
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As shown earlier, the asymptotic variance of the reliability estimate at the design stress 

levels is derived as: 
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5.2.7 Problem Formulation 
 

The problem is to design an optimum multiple-stress-type ALT based on proportional 

odds model using simple step-stress loading with consideration of censoring and the 

constraints of test units, censoring time and specification of minimum number of failures 

at the low stress levels, such that the asymptotic variance of the reliability estimate at the 

design stress levels is minimized over a pre-specified period of time T .  This optimum 

ALT plan gives the most accurate reliability prediction at the design stress levels over the 

pre-specified period of time T .  The decision variables include the low stress levels Lz  

and stress changing time 1τ .  The high stress levels Hz  are given as the highest possible 

stress levels beyond which the failure mode will change.  The optimum solution of Lz  

and 1τ  is determined by solving the following nonlinear optimization problem. 
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Objective function 
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Subject to  

  1Pr[ ; ]Ln t MNFτ≤ ≥z , 

  1F −Σ = . 

where  

  

1

1

1

,
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kL

z

zτ
τ

⎡ ⎤
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⎢ ⎥
⎣ ⎦

Mz
x  

and  

  MNF  is the minimum required number of failures at low stress levels. 

 

The optimum solution depends on the values of model parameters 1 2( , , )t γ γβ . A design 

using the pre-estimates of the model parameter is called a locally optimum design 

(Chernoff, 1962) and is commonly adopted by Bai and Kim (1989), Bai and Chun 

(1991), and Nelson (1990).  We also assume that the baseline estimates of 1 2( , , )t γ γβ  are 

available through either preliminary test or engineering experience obtained prior to the 

design of the optimum ALT plan. 

 

5.2.8  Numerical Example 
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A multiple-stress-type accelerated life test with simple step-stress loading is to be carried 

out for MOS capacitors in order to estimate their life distribution at design stress levels: 

temperature of 50 C°  and voltage of 5V .  The test needs to be completed in 300 hours. 

The total number of available testing units is 200.  To avoid failure modes other than 

those expected at the design stress levels, it has been determined, through engineering 

judgment, that the applied testing temperature level should not exceed 250 C°  and the 

voltage level should not exceed 10V .  The required minimum number of failures at the 

low stress levels is specified as 50.  Furthermore, the objective of the accelerated life test 

is to provide the most accurate reliability predication at the design stress levels over a 10-

year period of time.  The optimum ALT plan is determined as follows: 

 

1. According to the Arrehenius model, we transform the Celsius temperature scale to 

1/Kelvin as the covariate in the ALT model, i.e., the design stress level of temperature 

is 1 1/(50 273.16) 1/ 323.16Dz = + = 1K − , and the highest stress level of temperature is 

1 1/ 523.16Hz = 1K − . 

2. The PO model is used to fit the failure time data. The model is given by:                        

    

   1 2 1 1 2 2 0( ; , ) exp( ) ( )t z z z z tθ β β θ= + , 

 

where 1z  is the stress level of temperature, 2z  is the stress level of voltage, 1 2,β β  are 

unknown parameters, and 0( )tθ  is the baseline odds function, which is given by 

2
0 1 2( )t t tθ γ γ= + . 
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3. A baseline experiment is carried out to obtain the initial values for the model 

parameters. These values are listed below: 

 

1β̂  1600−  

2β̂  0.02  

1̂γ  2  

2γ̂  0.01  

 

4. The problem is to optimally design a multiple step-stresses ALT to fit failure time 

data with type I censoring, under the constraints of available test units, censoring time 

and minimum required number of failure units at low stress levels, such that the 

asymptotic variance of the reliability estimate of the product at design stress levels is 

minimized over a pre-specified period of time T , which is 10 years in this case. The 

optimum decision variables, including the low stress levels *
1Lz , *

2Lz  and stress 

changing time *
1τ  are determined by solving the following nonlinear optimization 

problem: 

 

Objective function 

Min    ˆ20
1 2

1( ) [ ]
ˆ ˆ( ) 1

t
D

T
f Var dt

t t eγ γ
=

+ +∫ z
x

β
 

Subject to 

  1Pr[ ; ]Ln t MNFτ≤ ≥z , 
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  11/ 523.16 1/ 323.16Lz≤ ≤ , 

  25 10Lz≤ ≤ , 

  1τ τ< , 

  1F −Σ = . 

where 

  
1

2
1

1

,
L

L
L

z
z

τ
τ

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

z
x  

  1

2

1/ 323.16
5

D
D

D

z
z

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
z , 

  1

2

1/ 523.16
10

H
H

H

z
z

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
z  

  87600T = , 

  300τ = , 

  50MNF = . 

5. We use the algorithm as described in section 5.2.5 to solve this optimization problem. 

The algorithm is implemented using SAS/IML and SAS/OR. SAS/IML software is a 

powerful and flexible programming language (Interactive Matrix Language) in a 

dynamic, interactive environment.  The fundamental object of the language is a data 

matrix. The programming is dynamic because necessary activities such as memory 

allocation and dimensioning of matrices are performed automatically. 

6. The optimum solutions that minimize the objective function and satisfy the 

constraints are  
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  *
1 132Lz C= ° ,  *

2 8.7Lz V= ,  and *
1 127τ = hours. 
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6 CHAPTER 6 
 

EQUIVALENT ALT PLANS 

 

6.1 Introduction 

 

The significant increase in the introduction of new products coupled with the significant 

reduction in time from product design to manufacturing, as well as the increasing 

customer’s expectation for high reliability, have prompted industry to shorten its product 

test duration.  In many cases, accelerated life testing (ALT) might be the only feasible 

approach to meet this requirement.  The accuracy of the statistical inference procedure 

obtained using ALT data has a profound effect on the reliability estimates and the 

subsequent decisions regarding system configuration, warranties and preventive 

maintenance schedules. Specifically, the reliability estimate depends on two factors, the 

ALT model and the experimental design of test plans.  Without an optimal test plan, it is 

likely that a sequence of expensive and time-consuming tests results in inaccurate 

reliability estimates and misleading the final product design requirements.  That might 

also cause delays in product release, or the termination of the entire product.   

 

Traditionally, ALT is conducted under constant stresses during the entire test. For 

example, a typical constant temperature test plan consists of defining three temperature 

levels (high, medium, and low) and test units are divided among these three levels where 

units at each level are exposed to the same temperature until failure or until the test is 

terminated.  The test results are then used to extrapolate the product life at normal 
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conditions.  In practice, constant-stress tests are easy to carry out but need more test units 

and long time at low stress level to yield “enough” number of failures.  However, in 

many cases the available number of test units and test duration are extremely limited.  

This has prompted industry to consider step-stress test where the test units are first 

subjected to a lower stress level for some time; if no failures or only a small number of 

failures occur, the stress is increased to a higher level and held constant for another 

amount of time; the steps are repeated until all units fail or the predetermined test time 

expires.  Usually, step-stress tests yield failures in a much shorter time than constant-

stress tests, but the statistical inference from the data is more difficult to make.  

Moreover, since the test duration is short and a large proportion of failures occur at high 

stress levels far from the design stress level, much extrapolation has to be made, which 

may lead to poor estimation accuracy.  On the other hand, there could be other choices in 

stress loadings (e.g., cyclic-stress and ramp-stress) in conducting ALT experiments.  

Each stress loading has some advantages and drawbacks.  This has raised many practical 

questions such as: Can accelerating test plans involving different stress loadings be 

designed such that they are equivalent?  What are the measures of equivalency?  Can 

such test plans and their equivalency be developed for multiple stresses especially in the 

setting of step-stress tests and other profiled stress tests?  When and in which order 

should we change the stress levels in multi-stress multi-step tests?   

 

Figure 6.1 shows various stress loading types as well as their adjustable parameters.  

These stress loadings have been widely utilized in ALT experiments.  For instance, static-

fatigue tests and cyclic-fatigue tests (Matthewson and Yuce, 1994) have been frequently 
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performed on optical fibers to study their reliability; dielectric-breakdown of thermal 

oxides (Elsayed, Liao and Wang, 2006) have been studied under elevated constant 

electrical fields and temperatures; the lifetime of ceramic components subject to slow 

crack growth due to stress corrosion have been investigated under cyclic stress by NASA 

(Choi and Salem, 1997).  These types of stress loading are selected based on the 

simplification of statistical analyses, and familiarity of existing analytical tools and 

industrial routines without following a systematic refinement procedure.  Due to budget 

and time constraints, there is an increasing necessity to determine the best stress loading 

type and the associated parameters in order to shorten the test duration and reduce the 

total cost while achieving reliability estimate with equivalent accuracy to that of constant 

stress testing.  Research on ALT Plans has been focused on the design of optimum test 

plans for given stress loading type.  However, fundamental research on the equivalency 

of these tests has not yet been investigated in the reliability engineering.  Without the 

understanding of such equivalency, it is difficult for a test engineer to determine the best 

experimental settings before conducting actual ALT.   
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Figure 6.1  Various loadings of a single type of stress 
 

Furthermore, as is often the case, products are usually exposed to multiple stress types in 

actual use such as temperature, humidity, electric current and various types of vibration.  

To study the reliability of such products, it is important to subject test units to multiple 

stress types simultaneously in ALT experiments.  For constant-stress tests, it might not be 

difficult to extend the statistical methods in the design of optimum test plans for single 

stress to multiple stresses scenarios.  However, the problem becomes complicated when 

time-varying stresses such as step-stresses are considered.  For example, in a multiple-

stress-type multi-step test, issues such as when and in which order the levels of the 

stresses should be changed are challenging and unsolved.  Figure 6.2 illustrates two 

experimental settings out of thousands of choices as one can imagine in conducting a 

multiple-stress-type multi-step ALT.  In general, an arbitrary selection from combinations 

of multiple stress profiles may not result in the most accurate reliability estimates, 
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especially when the effects of the stresses on the reliability of the product are highly 

correlated.  Therefore, optimization of test plans by tuning the high dimensional decision 

variables under time and cost constraints needs to be carefully investigated from the 

perspective of statistics, operations research and engineering physics. 

 

Figure 6.2 Two example settings of an ALT involving temperature, current, 
humidity and electric current 

 
 
6.2 Definition of Equivalency  

 

We will consider different optimization criteria depending on the type of stress loading 

and the objective of the test.  The optimization criteria to be considered are the 

minimization of the asymptotic variance of the maximum likelihood estimate (MLE) of: 

(1) the specified failure time quantile at normal operating conditions; 

(2) the mean time to failure at normal operating conditions; 

(3) the reliability function or (cumulative distribution function) at a given age of the 

product at normal operating conditions;   

(4) the hazard function over a specified period of time at normal operating conditions;  
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(5) the model parameter(s) (for multiple parameters, consider D-optimality or A-

optimality). D-optimality is the criterion that determines how well the coefficients 

of the design Approximation are estimated. It requires changes in the locations of 

the sampling points to maximize this criterion which in turn maximizes the 

confidence in the coefficients of the approximation model. A-optimality is based 

on the sum of the variances of the estimated parameters for the model 

 

To study the equivalency among ALT plans involving different stress loadings, several 

definitions are explored.  Some feasible definitions are: 

Definition 1. Two ALT plans are equivalent if they generate the same values of the 

optimization criterion during the testing with Type I censoring. 

Definition 2. Two ALT plans are equivalent if difference between the estimated times to 

failure by the two plans at normal operating conditions are within %δ , where δ  is an 

acceptable level of deviation. 

 

In the following sections, we investigate the equivalent ALT plans based on the first 

definition. 

 
6.3 Equivalency of Step-stress ALT Plans and Constant-stress ALT Plans 

The first scenario of equivalent ALT plans considered is the case of the equivalency of 

step-stress ALT plans and constant-stress ALT plans.  Since constant-stress tests are the 

most commonly conducted accelerated life tests in industry and their statistical inference 

has been extensively investigated, we focus on determining the equivalent step-stress 
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ALT plan. The constant-stress ALT plan serves as the baseline test result for comparison 

with the step-stress plan.  More importantly, the constant-stress ALT plan requires longer 

test duration when compared with other test plans. Therefore, the efficiency of equivalent 

plans will also be measured by the percent reduction in test time.   In this section, we are 

interested in determining the minimized test duration of the step-stress ALT plan, which 

is equivalent to the baseline constant-stress ALT plan.  .  

 

Figure 6.3  An example of equivalent constant ALT plan and step-stress ALT plan 

 

As a preliminary investigation of the equivalent ALT plans, we consider the following 

simplified single stress type case.  As shown in Figure 6.3a, the baseline optimum 

constant-stress ALT plan is determined with the pre-determined censoring time τ .  The 

baseline constant-stress ALT plan is a good compromise optimum plan (Nelson 2004).  

The adjective “good compromise” is due to the fact that only the low stress level Lz  is 

determined through the optimization process in order to minimize the asymptotic 

variance of the reliability estimates at the design stress level Dz .  It assumes that the high 

stress level Hz  is chosen to be the highest stress level beyond which another failure mode 

will be introduced. The intermediate stress level ( ) / 2M L Hz z z= +  is midway between 
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will be introduced. The intermediate stress level ( ) / 2M L Hz z z= +  is midway between 

the low stress level Lz  and the high stress level Hz .  The optimum Lz  is obtained such 

that the asymptotic variance of ML estimates of the reliability function at the design 

stress level Dz  is minimized. The allocation of fraction of test units to the stress levels Lz ,  

Mz  and Hz  are 4 / 7Lp = , 2 / 7Mp = , and 1/ 7Hp =  respectively. This unequal 

allocation is a compromise that extrapolates reasonably well. For a sample of n  test units, 

the allocation is 4 / 7Ln n= , 2 / 7Mn n= , and 2 / 7Hn n= .  Therefore the optimization 

problem can be formulated by following the same procedure described in Section 5.1.4 

with 1k = : 

 

Objective function 

Min                   
0

ˆ( ) [ ( ; )]
T

C C Df x Var R t z dt= ∫  

Subject to  

  1
C CF −Σ =  

4 / 7Lp = , 2 / 7Mp = , 1/ 7Hp =  

  D Lz z≤ , H upperz z= , ( ) / 2M L Hz z z= +  

  [1 ( ; )]L Lnp R z MNFτ− ≥  

  [1 ( ; )]M Mnp R z MNFτ− ≥  

  [1 ( ; )]H Hnp R z MNFτ− ≥  

where  
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⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Lx z=  

The only decision variable is the low stress level Lz  in the above optimization problem. 

Let *
Lz  denote the optimum solution, and *( )C Lf z denote the minimum asymptotic 

variance of the reliability estimates given by the constant-stress ALT plan.  

Compared with the constant-stress ALT plan, the step-stress ALT plan can substantially 

shorten the test duration.  The censoring time 2τ  of the step-stress ALT plan shown in 

Figure 6.3b is less than the censoring time τ  of the constant-stress ALT plan shown in 

Figure 6.3a.  The objective of the equivalency of ALT plans is to determine the minimum 
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2τ  which results in the equivalent asymptotic variances of the reliability estimates at the 

design stress level obtained from the two test plans.   

To obtain the optimum asymptotic variance of the reliability estimates at the design stress 

level for any given 2τ  of the step-stress ALT plan, we formulate the optimization 

problem following the procedures described in section 5.2.7: 

 

Objective function 

Min  
0

ˆ( ) [ ( ; )]
T

S S Df Var R t z dt= ∫x  

Subject to  

  1 1 1Pr[ ; ]n t z MNFτ≤ ≥  

  2 1 2 2Pr[ ; , ]n t z z MNFτ≤ ≥  

  2 upperz z=  

  1
S SF −Σ =  

where  
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144

1MNF  and 2MNF  are the minimum required number of failures at low stress level and 

high stress level respectively 

Solving the above optimization problem, we obtain the optimum solution: *
1z , *

1τ , and the 

achieved minimized asymptotic variance * *
1 1 2( , ; )Sf z τ τ  for given 2τ .  Following the 

definition of the equivalent ALT plans in section 6.2, the minimum censoring time *
2τ  of 

the step-stress ALT plan is defined as: 

* * * *
2 2 1 1 2inf{ | ( , ; ) ( )}S C Lf z f zτ τ τ τ= ≤ .                                          (6.1) 

We use the following bisectional search procedure to determine the minimum censoring 

time *
2τ : 

Step 1. Solve the nonlinear optimization problem defined in the constant-stress ALT plan, 

and find  *( )C Lf z , choose a small value number ε  arbitrarily.  

Step 2. Let 1i = , 0Lτ = , Hτ τ= , and 2 ( ) / 2i
L Hτ τ τ τ= + = . 

Step 3. Determine * *
1 1 2( , ; )i

Sf z τ τ  by solving the above nonlinear optimization problem 

defined in the step-stress ALT plan.  

Step 4. Let 1i i= + . If * * 1 *
1 1 2( , ; ) ( )i

S C Lf z f zτ τ − ≤ , then let 1
2
i

Lτ τ −=  and 2 ( ) / 2i
L Hτ τ τ= + ; 

otherwise let 1
2
i

Hτ τ −=  and 2 ( ) / 2i
L Hτ τ τ= + . 
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Step 5. Determine * *
1 1 2( , ; )i

Sf z τ τ  by solving the above nonlinear optimization problem 

defined in the step-stress ALT plan.  If 1
2 2| |i iτ τ ε−− ≤  and * * *

1 1 2( , ; ) ( )i
S C Lf z f zτ τ ≤ , 

then stop and let *
2 2

iτ τ= ; otherwise continue Step 4. 

 

6.4 Numerical Example 

A constant-stress accelerated life test is conducted at three temperature levels for MOS 

devices in order to estimate its reliability function at design temperature level 25 C° .  The 

test needs to be completed in 100 hours. The total number of available test units is 200. 

The highest temperature level that test units can experience is 250 C° .  It is expected that 

the ALT will provide the most accurate reliability estimate over a period of 10000 hours.  

A constant-stress ALT plan can be designed through the following steps: 

1. According to Arrehenius model, the scaled stress 1000 /( 276.13)z temp= +  is used. 

Then the design stress level 3.35Dz =  and the upper bound is 1.19upperz = . 

2. A baseline experiment is conducted to obtain a set of initial values of the parameters 

for the PO model with quadratic odds function.  These values are: 1.8β = − , 1 10γ = , 

and 2 0.001γ = . 

3. Following the formulation in section 6.3 for the constant-stress ALT plan, the 

nonlinear optimization problem is expressed as follows: 

 

Objective function 
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Min                   
10000

0
ˆ( ) [ ( ;3.35)]C Cf x Var R t dt= ∫  

Subject to  

  1
C CF −Σ =  

4 / 7Lp = , 2 / 7Mp = , 1/ 7Hp =  

  3.35 D Lz z= ≤ , 1.91H upperz z= = , ( ) / 2M L Hz z z= +  

  [1 ( ; )] 90L Lnp R zτ− ≥  

  [1 ( ; )] 50M Mnp R zτ− ≥  

  [1 ( ; )] 40L Hnp R zτ− ≥  
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200n = ,   100τ =  

Lx z=  

4. The solution of the optimization problem is: * 3.1Lz =  and (3.1) 0.2823Cf = . 

In order to shorten the test period and still obtain the equivalent asymptotic variance, we 

consider the step-stress ALT plan. The nonlinear optimization problem of the step-stress 

ALT plan is formulated as follows: 

 

Objective function 

Min  
10000

0
ˆ( ) [ ( ;3.35)]S Sf Var R t dt= ∫x  

Subject to  

  1 1Pr[ ; ] 50n t zτ≤ ≥  

  2 1 2Pr[ ; , ] 140n t z zτ≤ ≥  

  2 1.19z =  

  1
S SF −Σ =  

where  

  1

1

z
τ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
x  
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  200n =  

The minimum censoring time *
2τ  of the step-stress ALT plan is determined by: 

* * * *
2 2 1 1 2inf{ | ( , ; ) ( )}S C Lf z f zτ τ τ τ= ≤ . 

Following the bisectional search algorithm (ε  is arbitrarily chosen as 1) in Section 6.3, 

the results are listed in Table 6.1. 

Table 6.1 Results of bisectional search 
 

i  
2
iτ  * *

1 1 2( , ; )i
Sf z τ τ  

1 50 0.2884 

2 75 0.2489 

3 63 0.2648 

4 56 0.2764 

5 53* 0.2822 

6 55 0.2782 

7 54 0.2802 

From Table 6.1, the minimum censoring time *
2 53τ = . The corresponding optimum low 

stress level is 1 3.15z = ; the optimum stress changing time is 1 46τ = . 
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6.5 Simulation Study 

In this section, we conduct a simulation study to verify the resultant constant ALT plan 

and step-stress ALT plan in the previous section are equivalent indeed in terms of the 

estimation accuracy. 

The sets of simulation data following both constant ALT plan and step-stress ALT plan 

are generated by Monte Carlo simulation method based on the following reliability 

function. 

1

1( )
1 ( )exp( )

R t
t zγ β

=
+

.                                                       (6.2) 

It can be easily verified that the assumption of the PO model is valid for the failure time 

samples generated by the above reliability function.  The corresponding PO model can be 

expressed as 

0 1( ; ) ( )exp( ) ( )exp( )t z t z t zθ θ β γ β= = .                                          (6.3) 

The total sample size is 200 and divided into three stress groups with constant ALT plan: 

200, 800 / 7 114L Ln p= = ≈ , 57Mn = , and 29Hn = .  

The model parameters used to generate the Monte Carlo simulation failure times are 

summarized in Table 6.2 for the constant ALT plan. 
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Table 6.2  Model parameters for the constant-stress ALT simulation 
 
 

Common 

parameters 

Censoring time: 100τ = ; Design stress level: 3.5Dz = ; 

Baseline parameters: 1.8β = − , 1 10γ =  

Stress Low Medium High 

Stress level 3.1Lz =  2.15Mz =  1.19Hz =  

Sample size 114Ln =  57Mn =  29Hn =  

Dataset I II III 

 

Rewriting Eq. (6.3) by solving  for t , we obtain  

1

( )exp( )
[1 ( )]

F t zt
F t

β
γ

−
=

−
                                                                        (6.4) 

Therefore 114 simulated failure times are generated for low stress level by the following 

equation 

1

( )exp( ) , for   1, , 114
[1 ( )]

L
i

rand i zt i
rand i

β
γ

−
= =

−
K                                   (6.5) 

where ( )rand i  is uniformly distributed random variables on the interval (0, 1). 

And 57 simulated failure times are generated for medium stress level based on the 

equation 

1

( )exp( ) , for   115, , 171
[1 ( )]

M
i

rand i zt i
rand i

β
γ

−
= =

−
K                                   (6.6) 
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As well there are 29 simulated failure times generated for high stress level derived from 

the equation 

1

( )exp( ) , for   172, , 200
[1 ( )]

H
i

rand i zt i
rand i

β
γ

−
= =

−
K                                   (6.7) 

Any simulated failure time greater than 100 will be censored. 

Similarly, the model parameters for the step-stress ALT simulation are listed in Table 6.3.  

 

Table 6.3 Model parameters for the step-stress ALT simulation 
 
 

Common 

parameters 

Censoring time: 2 53τ = ; Design stress level: 3.5Dz = ; Stress 

changing time 1 46τ = ; Baseline parameters: 1.8β = − , 1 10γ =  

Stress Low High 

Stress level 1 3.15z =  2 1.19z =  

Sample size 200n =  

Dataset VI V 

 

Using the model parameters in Table 6.3, the Monte Carlo simulation data for the step-

stress ALT are generated based on the cumulative exposure model, which is explained in 

Chapter 5 and shown in Figure 6.4.  To be more specific, the procedure of generation of 

the Monte Carlo simulation data for the step-stress ALT is as follows 

1. A total of 200 failure times are generated based on the equation 
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1

1

( )exp( ) , for   1, , 200
[1 ( )]i

rand i zt i
rand i

β
γ

−
= =

−
K                                             (6.8) 

Fi(t) F(t)
1 1

t ts 1τ 1τ

1z
2z

 

Figure 6.4  Cumulative exposure model 
 

2. Among the 200 failure times simulated in step 1, all failure times greater than 1τ  

are discarded.  

3. Suppose that only 1n  failure times are kept in step 2. The remaining 1200 n−  

failure time are generated based on the equation 

2
1 1

1

( )exp( ) , for   1, , 200
[1 ( )]i

rand i zt s i n
rand i

β τ
γ

−
= + − = +

−
K                          (6.9) 

4. Among the 1200 n−  failure times simulated in step 3, all failure times smaller 

than 1τ  are discarded and all failure times greater than 2τ  are censored. 

The results of the reliability estimations from the simulated failure time data based  

on the constant-stress ALT plan and the step-stress ALT plan are shown in Figure 6.5.  
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Figure 6.5 Estimated reliability functions from constant and step simulated data 
 

As shown in Figure 6.5, the estimated reliability functions are so close that the 

equivalency of the constant-stress ALT plan and step-stress ALT plan are verified.  
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7 CHAPTER 7 
 

EXPERIMENTAL VALIDATION 

 

The objective of this chapter is to validate the PO model and the optimal ALT plans 

based on this model by conducting an accelerated life testing in the Quality and 

Reliability Engineering Laboratory of the Industrial and Systems Engineering 

Department. 

 

7.1 Experimental Samples 

 

The experiment is designed to study the effects of temperature and voltage on the lifetime 

distribution of the miniature light bulbs, to predict their reliability at normal operating 

conditions using the PO model, and to design optimum ALT plans based on the PO 

model. Each experimental set has a board that contains up to 32 miniature light bulbs 

depending on the applied stress levels. The set is placed in a temperature and humidity 

chamber where humidity is held constant. 

The test units are Chicago Miniature 606-CM49 type miniature light bulbs. The design 

work conditions of this light bulb are: voltage is 2 volts, and current is 0.06 amps.  

Mechanically, light bulbs consist of a metal base, which itself consists of a screw thread 

contact (attached electrically to one side of the filament), insulating material and an 

electrical "foot" contact (the little brass bulge on the bottom which is electrically 

connected to the other end of the filament).  The metal contacts at the base of the bulb are 
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connected to two stiff wires that go to the center of the bulb and, in turn, hold the 

filament. The bulb itself is the glass housing that not only shields the filament from 

oxygen in the atmosphere but also holds in an inert gas, usually argon.  The filament is 

the part of the bulb that does the work to create light. It is made up of a long, extremely 

thin (about .01 inch) length of tungsten, a very versatile metal. The typical filament in a 

household bulb is over six feet long and is tightly wound to form a double-coil.  

When electricity is passed through the bulb, the electrons (current) vibrate through the 

filament, creating very high temperatures: up to 4,000 degrees F. This temperature is 

needed to cause the atoms in the filament to gain energy and then to emit photons in 

sufficient quantities to bathe the area in a useful amount of visible light. Most of the 

photons emitted by a bulb are infrared.  Tungsten is one of the only widely available 

metals that can withstand such temperatures, but in the presence of oxygen it will catch 

fire and burn itself up. This is why the bulb is evacuated and filled with an inert gas.   

Light bulbs eventually fail due to one of four modes:  

1. Breakage of the glass bulb accounts for a small portion of failures, especially in 

motor vehicles.  

2. Sealing Failure occurs when the bulb's atmospheric seal is broken and oxygen enters 

the bulb. The filament burns up instantly. Such failures occur when bulbs are screwed 

into sockets too tightly.  
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3. Long Term Failure occurs when the filament eventually becomes so fatigued that its 

electrical resistance increases to the point that current will not flow. The inside of the 

bulb gets very dark and the electrical contact on the base starts to burn.  

4. Thermal shock is the most common failure mode of bulbs. As soon as the switch is 

turned on the bulb flashes brightly and then fails. The reason most bulbs fail in this 

manner is thermal shock. When the switch is turned on, full current suddenly hits the 

filament at the speed of light. This sudden, massive vibration causes the filament to 

wildly bounce. This mechanical movement causes metal fatigue (just like bending a 

paper clip until it breaks) that results in breakage of the filament.  

The results of three experiments are used in estimating the parameter of the PO so that 

the reliability of miniature light bulbs is estimated using the PO at the same stress 

conditions of the fourth experiment. The reliability is then compared with the 

experimentally obtained reliability from the result of fourth experiment. The details of 

experiment are presented in the next section.  Typical set up that shows all bulbs working 

is shown in Figure 7.1 while Figure 7.2 shows some failed bulbs. 
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Figure 7.1 Samples of the miniature light bulbs 

 

Figure 7.2 Miniature light bulbs testing set 
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7.2 Experiments Setup 

In order to continuously monitor the failure times of testing components and to control 

the applied factors, an automatic accelerated life testing environment is designed. Figure 

7.3 depicts the layout of the experimental equipment. 

The NI PCI 6229 is a multifunction analog, digital and timing data acquisition board with 

32 analog input, 48 digital I/O and . The SCB-68 is a shielded I/O connector block with 

68 screw terminals for easy signal connection to a National Instruments 68- or 100-pin 

DAQ device. The SCB-68 features a general breadboard area for custom circuitry and 

sockets for interchanging electrical components. The two expansion boards for the 

computer are used to retrieve the information of the current status of testing components 

and the testing environment.  

 

Figure 7.3 The layout of the accelerated life testing equipment 
 

NI 6229 DAQ board is connected to SCB 68 I/O connector block, which is then wired to 

the resistor board and the test units. 
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Figure 7.4 shows the programmable power supply used to provide different voltage stress 

levels. 

 

Figure 7.4 The programmable power supply 

 

NI LabView software is used to develop the application used to continuously monitor the 

status of the test units. The failure time data are automatically saved as spreadsheet file 

by LabView application. Figure 7.5 shows the graphic user interface of the programmed 

LabView application.  
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Figure 7.5 LabView application interface 
 
 
7.3 Test Conditions 

Accelerated tests are performed at DC voltage stress of 3.5 ~ 5V V  and temperature 

between 75 oC  and 200 oC . Temperatures less than 75 oC  and above 200 oC  are not 

appropriate since it is difficult to observe the miniature light bulb failure in a reasonable 

test time and extrapolation can not be justified respectively. As a compromise, the range 

of  75 oC ~ 200 oC  is known as the appropriated temperature range to observe failures of 

miniature light bulbs,  

The experiment is conducted at four different stress levels ( 75 , 3.5oC V ), ( 75 , 5oC V ), 

(150 , 3.5oC V ), (150 , 5oC V ), and (50 , 2oC V ). Miniature light bulbs are tested at each 
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test level. In each test a miniature light bulbs set is placed in a temperature chamber 

where both the temperature and applied voltage in the circuit are held constant. The 

working status of the light bulbs is automatically measured and recorded by LabView 

application. 

 

7.4 Analysis of the Experimental Result  

The test begins with up to 32 miniature light bulbs being tested at each of the first four 

experimental conditions, and it is conducted at four different stress levels as stated in 

section 7.3. Table 7.1 contains the summary of the failure time (in hours) data from the 

experiment. The last data set from experimental condition (50 , 2oC V ) is only used to 

verify the reliability prediction of the models. 

Table 7.1 Summary of the experimental data 
 

Level 1 Level 2 Level 3 Level 4 Level 5 

( 75 , 3.5oC V ) ( 75 , 5oC V ) (150 , 3.5oC V ) (150 , 5oC V ) (50 , 2oC V )

Time Failure Time Failure Time Failure Time Failure Time Failure

43.6 1 22.3 1 20.5 1 37.8 1 223.1 1 

51.1 1 24.7 1 23.2 1 65.9 1 254.0 1 

58.6 1 39.6 1 26 1 75.6 1 316.7 1 

65.5 1 41.8 1 34.1 1 82.5 1 560.2 1 

89 1 47.7 1 43.6 1 88.1 1 679.0 1 

121.5 1 62.1 1 44.9 1 106.6 1 737.0 1 

151.8 1 65.5 1 61.6 1 113.1 1 894.4 1 

171.7 1 87.8 1 70.8 1 121.1 1 930.5 0 

181 1 118.3 1 145.4 1 128.3 1 930.5 0 

211.7 1 120.1 1 206.7 1 202.7 1 930.5 0 
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230.7 1 157.4 1 215.2 1 249.9 1 930.5 0 

275.6 1 180.9 1 218.7 1 506.4 1 930.5 0 

285 1 187.7 1 313.7 1 876.3 1 930.5 0 

296.2 1 204 1 314.1 1 890.0 0 930.5 0 

358.5 1 213.9 1 317.9 1 890.0 0 930.5 0 

379.8 1 254.1 1 430.2 1 890.0 0 930.5 0 

434.5 1 262.6 1   930.5 0 

493.1 1 293 1   930.5 0 

561.1 1 304 1   930.5 0 

570 1 337.7 1   930.5 0 

577.7 1     930.5 0 

922 1     930.5 0 

941 0     930.5 0 

941 0     930.5 0 
 

Figure 7.6 illustrates the log of cumulative hazard rate plot of the first four data sets. 

These four estimated functions are not well approximated by parallel lines. Therefore, the 

Proportional Hazard model is not an approximate failure time model for this data set.  
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Figure 7.6  Log of cumulative hazard rate plot 
 

Compared with the PH model, the PO model ( 0( | ) exp( ) ( )Tt z tθ θ= β z ) 

where 1 2( , )β β=β , and 1 2( , )z z=z  correspond to absolute temperature and voltage in V  

provides a broader feasibility for analyzing the miniature light bulb failure time data. A 

simple quadratic polynomial function 2
0 1 2( )t t tθ γ γ= +  is found sufficient to approximate 

the baseline odds function.   

Table 7.2 gives the parameters of the PO model at constant stress level. 
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Table 7.2 Estimated parameters of the PO model 
 

Parameter Estimates 

γ1 0.1089 

γ2 0.0121 

β1 -1.1925 

β2 0.0498 

 

It is more important to verify the reliability prediction of the model by comparing the 

estimated reliability at level 5 condition by using the model to its Kaplan-Meier 

reliability estimates. Figure 7.7 shows the results of three reliability curves estimated by 

Kaplan-Meier method or predicted by the PO model and the PH model, respectively.  The 

results show that the PO model provides more accurate reliability predication than the PH 

model. 
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Figure 7.7 Result comparison 
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8 CHAPTER 8  
 
 

CONCLUSIONS AND FUTURE WORK 
 

We have investigated several challenging topics related the PO-based accelerated life 

testing models, including parameter estimation procedures for the PO-based ALT model, 

the construction of the confidence intervals, the validation of the PO-based ALT model, 

the constant-stress and step-stress PO-based multiple-stress-type ALT plans, and the 

equivalency of ALT plans.  We summarize the main conclusions of these topics and 

future improvements. 

 

8.1 Summary  

 

8.1.1 The PO-based ALT Model and Estimation Procedures 
 

In Chapter 3, we present the PO-based ALT model and propose relatively simple 

parameter estimation procedures by approximating the general baseline odds function 

with a polynomial function.  The log-likelihood function is constructed to obtain the 

maximum likelihood estimates of the model parameters.  This proposed PO-based ALT 

model can be used to not only estimate the heterogeneity described by the stresses and 

the corresponding regression parameters, but also to extrapolate reliability performance at 

the design stress level.  Numerical examples with experimental data and Monte Carlo 

simulation data are used to verify that the applicability of the PO-based accelerated life 

testing.  The results show that the PO-based ALT model provides more accurate 
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reliability estimates for the failure time data exhibiting proportional odds properties than 

the PH-based ALT model. 

 

8.1.2 Confidence Intervals and Model Validation 
 

In Chapter 4, confidence intervals of the unknown parameters and the predicted 

reliability at the design stress level are obtained through Fisher information matrix.  We 

also present the likelihood ratio test and modified Cox-Snell residuals to validate the 

model.  The likelihood ratio test is used to verify the model sufficiency.  The order of the 

baseline polynomial odds function is determined by the likelihood ratio test.  The Cox-

Snell residuals are constructed to check the assumption of proportional odds.  Literally, 

the Cox-Snell residual ˆ ( ; )i i ir t z= Λ  is the cumulative hazard rate function of the failure 

time it  estimated by the PO-based ALT model.   If the model assumption holds, the Cox-

Snell residuals exhibit an exponential distribution with hazard rate of 1 and the plot of the 

cumulative hazard rate of the Cox-Snell residuals versus the Cox-Snell residuals is a 

straight line with slope of 1.   Therefore we check the model assumption by plotting the 

Nelson-Aalen estimators of the cumulative hazard rate of the Cox-Snell residuals.  

 

8.1.3 The PO-based Multiple-stress-type ALT Plans 
 

The accuracy of the reliability estimates obtained via extrapolation in both stress and time 

is a major issue in the accelerated life testing problem.  One interesting measurement to 

obtain more accurate estimates is to devise a test plan that tests units at appropriately 
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selected stress levels with proper allocation of test units to each level. Design of ALT 

plans under one type of stress may mask the effect of other critical types of stresses that 

could lead to the component’s failure.  Furthermore, due to the technological advances, 

the extended life of today’s products makes it difficult to obtain enough failures in a 

reasonable testing duration using single stress type when carrying out an accelerated life 

test.   Therefore, it is more realistic to consider multiple stress types. In the Chapter 5, we 

investigate the design of optimum ALT plans based on the proportional odds model with 

multiple stress types for both constant stress loading and simple step-stress loading.   We 

formulate nonlinear optimization problems to determine the optimum ALT plans.  Due to 

the highly nonlinear properties of those problems, we solve the optimization problems 

using a numerical method, COBYLA (Constrained Optimization BY Linear 

Approximations) optimization method. We show that applying multiple stresses in a 

systematic way results in a significant reduction in the test duration while obtaining 

“good” estimates of reliability at design conditions. 

 

8.1.4 The Equivalency of ALT Plans 
 

The investigation of the equivalency of ALT plans involving different stress-loading 

types is given in Chapter 6.  The definitions of the equivalent ALT plans are discussed.  

The initiative research of equivalent ALT plans focuses on the equivalency of constant-

stress ALT plan and step-stress ALT plan for single stress type problem.  In this scenario, 

the baseline constant-stress ALT plan is given and the equivalent step-stress ALT plan is 

determined based on the definition of the equivalency of ALT plans.  The research of the 
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equivalent ALT plans enables reliability practitioners to choose the appropriate ALT plan 

under given constraints. The results show that an equivalent step-stress plan to the 

constant stress plan results in a significant reduction in the test period without sacrificing 

the accuracy of the reliability estimates at design stress conditions. 

 

8.2 Future Work 

 

The PO-based ALT model and its optimum ALT plans and corresponding equivalent 

ALT plans provide advantages for accurate reliability prediction. To further refine the 

results, we need to improve and extend our work as follows.   

 

The PO model discussed in this dissertation only considers time-constant coefficients. It 

should be extended to incorporate time-varying coefficients for both baseline odds 

function and stress effects.  This will accommodate situations when the applied stress is 

time-dependent. 

 

In the dissertation, we assume that the effects of different stress types are not correlated 

for multiple-stress-type ALT and test plans.  The correlations of different stress types 

should be considered in future research for more practical cases.   

 

To approximate the general odds functions, the polynomial function is utilized due to the 

properties of odds functions.  Exploring more general baseline odds functions will further 

extend the breadth of the application of the proposed ALT model and plans. 
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In this dissertation, only a simple case of equivalent ALT plans is investigated.  Statistical 

and analytical models should be used to investigate the equivalency among ALT 

experiments involving different stress loadings; develop a general approach for the 

design of optimum test plans with flexibility of choosing stress loadings and adjusting 

their parameters and extend the results to the optimum design of test plans under multiple 

stresses scenarios.   
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