
JUST-IN-TIME AND JUST-IN-PLACE
DEADLOCK RESOLUTION

BY FANCONG ZENG

A Dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Prof. Michael L. Littman

and approved by

New Brunswick, New Jersey

May, 2007

c© 2007

Fancong Zeng

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Just-in-time and Just-in-place

Deadlock Resolution

by Fancong Zeng

Dissertation Director: Prof. Michael L. Littman

Deadlocked threads cannot make further progress, and frequently tie up resources requested

by still other threads, causing more and more threads to cometo a standstill. Thus, a deadlock

should not remain undetected and uncorrected for a long time. If deadlock-detection processes

are run too frequently, however, valuable system resourcesmay be wasted. Therefore, it is

important to choose the right interval between successive deadlock detections.

Deadlock recovery must follow deadlock detection to release held resources in the cyclic

wait. In addition to restarting the entire system, it is desirable that programmers be able to

implement fine-grained recovery actions such as releasing aresource currently not in use. Such

fine-grained recovery actions often require the knowledge of program contexts and deadlock

states. Unfortunately, modern programming languages lacklanguage-level support for signal-

ing deadlock conditions and for structuring resolution code.

My thesis is that, under the assumption that the time to the first deadlock in the system

(after a system restart) follows an exponential distribution, a reinforcement-learning approach

is effective in scheduling deadlock detection for a restart-oriented system, and that runtime ex-

ceptions are a programming abstraction that allows programmers to write fine-grained deadlock

recovery code.

My approach to deadlock-detection scheduling as reinforcement learning estimates the

ii

deadlock rate and then performs an optimization to find the detection interval that maximizes

system utility. It is theoretically proved that this technique finds the best tradeoff, and experi-

mental results suggest that it is a reasonable approximation to assume that the time to the first

deadlock in the system (after a system restart) follows an exponential distribution.

It is natural to consider deadlock occurrences as runtime exceptions because at runtime it is

relatively easy to detect actual deadlock occurrences, which represent not only abnormal states

but also fatal errors. Thus, exception handlers can be used to resolve deadlock occurrences

based on deadlock states and program contexts. Furthermore, because exceptions are a widely

used language concept, the technique of deadlock resolution via exceptions is intuitive and

practical.

iii

Acknowledgements

I am grateful to Professor Michael L. Littman for his advice and trust. I also would like to thank

the other members of my doctoral committee: Prof. Louis Steinberg, Prof. Marvin Paull, and

Prof. Gertrude Levine, for their time and efforts.

iv

Dedication

To my wife, Xi Zhu. For her love and support I work and I enjoy.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. What is deadlock? .. 1

1.2. A deadlock example in Java .. . 2

1.3. Accomodating deadlocks in production systems 4

1.4. Runtime approaches for handling deadlocks 5

1.5. Resource Allocation Graph and Wait-For Graph 5

1.6. Deadlock detection via cycle checking 6

1.7. Just-in-time deadlock detection 7

1.8. Just-in-place deadlock recovery 8

1.9. Outline . 9

2. Related Work . 10

2.1. Unspecified failure rate 10

2.2. Learning and estimation techniques 11

2.3. Deadlock-detection scheduling 11

2.4. Complementary techniques to deadlock exceptions 12

2.5. Extended application scope 13

vi

3. Deadlock-Detection Scheduling as Reinforcement Learning 14

3.1. Overview . 14

3.2. Problem formulation .. . 15

3.3. Utility maximization 16

3.4. Lambda estimation .. 17

3.5. An online learning algorithm 18

3.6. A simulation study .. 20

3.6.1. Theoretical optimal values 20

3.6.2. Lambdas and detection intervals 22

3.7. A Java Experiment .24

3.7.1. About Java deadlocks .24

3.7.2. Experiment setup . 25

3.7.3. Experiment parameters and data 25

3.7.4. A practical evaluation .. 28

3.7.5. The dynamics of calculated detection intervals 30

3.8. Summary . 31

4. Deadlock Resolution via Exceptions. 33

4.1. Overview . 33

4.2. Design . 34

4.2.1. Exception handling in Java .. . 34

4.2.2. A base class for deadlock exceptions 35

4.2.3. Deadlock exception handlers: global versus local 36

4.2.4. Synchronization issues .. . 37

4.3. Implementation within a JVM 39

4.3.1. Monitors in the Java language .. . 39

4.3.2. Deadlock exception .40

4.3.3. Deadlock detection .41

4.3.4. Deadlock resolver . 42

vii

4.3.5. Deadlock delegation .43

4.3.6. A use case . 43

4.4. Implementation outside a JVM 45

4.4.1. A general resource type .46

4.4.2. Deadlock exception .48

4.4.3. Deadlock detection .48

4.4.4. Deadlock resolver . 49

4.4.5. Deadlock delegation .49

4.4.6. A use case . 50

4.5. Application .53

4.5.1. Selecting a different execution path 53

4.5.2. Releasing a resource currently not under use 55

4.5.3. Resolving multiple deadlocks concurrently 58

4.5.4. Restarting the system to resolve deadlocks 61

4.6. Summary . 62

5. Conclusions . 63

5.1. Conclusions .63

6. Appendices . 65

6.1. A simplified version of class Account for Chapter 3 65

6.2. A simplified version of class Experiment for Chapter 3 65

6.3. A bank transfer deadlock example using locks for Chapter 4 66

6.4. A general resource type for Chapter 4 70

6.5. A deadlock exception class for Chapter 4 72

6.6. A bank transfer deadlock example using general resources for Chapter 4 73

References. 78

Curriculum Vita . 82

viii

List of Tables

3.1. Parameters for the simulation study 20

3.2. Simulation data after varying numbers of deadlocks 22

3.3. Parameters for the Java experiment 25

3.4. Detection and recovery costs from the Java experiment 26

3.5. Experimental data after varying numbers of deadlocks 26

3.6. Productive time period lower boundx(i) and deadlocked-interval sizey(i)−x(i) 32

ix

List of Figures

1.1. A RAG (Resource Allocation Graph) example for 2 deadlocked threads and 2

locks . 6

1.2. A WFG (Wait-For Graph) example for 2 deadlocked threadsand 2 locks 7

3.1. Detection interval versus optimality ratio for the simulation study 21

3.2. Learning curve for the simulation study (Log-Scaled Axes) 23

3.3. Detection interval versus optimality ratio for the Java experiment 29

3.4. Learning curve for the Java experiment (Log-Scaled Axes) 31

x

1

Chapter 1

Introduction

1.1 What is deadlock?

Deadlock, or “Deadly Embrace” as it was called by Dijkstra [13], has been widely studied since

the mid 1960s. A collection of tasks become deadlocked when they are involved in a cyclic wait

for resources. Deadlocks occur in many different applications such as computer systems, com-

munication networks, and databases. The well-known diningphilosophers problem [14, 15],

introduced by Dijktra, has been widely used to illustrate deadlocks. Levine gave an insightful

definition of deadlocks [29].

There are four necessary conditions for deadlock to exist, and they are also sufficient if all

resources are unique.

1. “Tasks claim exclusive control of the resources they require (‘mutual exclusion’ condi-

tion)” [10].

2. “Tasks hold resources already allocated to them while waiting for additional resources

(‘wait for’ condition)” [10].

3. “Resources cannot be forcibly removed from the tasks holding them until the resources

are used to completion (‘no preemption’ condition)” [10].

4. “A circular chain of tasks exists, such that each task holds one or more resources that are

being requested by the next task in the chain (‘circular wait’ condition)” [10].

In this dissertation, I consider deadlocks in centralized systems with reusable and unique

resources based on the one-resource deadlock model [25] in which a task can have at most one

outstanding request at one time and blocks until the requested resource is granted. As a practical

example, a deadlock in a centralized Java system occurs when“two or more threads block each

2

other in a vicious cycle while trying to access synchronization locks needed to continue their

activities” [28]. In this example, tasks are threads, and resources are locks.

1.2 A deadlock example in Java

Listing 1.1 shows a simple deadlocked Java program. This program simulates money transfer

between accounts. There are two accounts and two threads. For the transfer to begin, each of the

two threads has to acquire the locks for both accounts. In theprogram showed in Listing 1.1, a

deadlock occurs when each thread holds one lock after executing “synchronized (Accounts[f])”

ands waits for the other lock at “synchronized (Accounts[t])”.

Listing 1.1: A simple deadlockable Java program

import j a va . u t i l . Random ;

pub l i c c l a s s T r a n s f e r {

pub l i c s t a t i c f i n a l i n t NumberOfAccounts = 2 ;

pub l i c s t a t i c f i n a l i n t I n i t i a l F u n d = 1000;

pub l i c s t a t i c f i n a l i n t MaxFund = 1000000;

pub l i c s t a t i c f i n a l i n t NumberOfThreads = 2 ;

p r i va t e s t a t i c Objec t [] Accounts =

new Objec t [NumberOfAccounts] ;

p r i va t e s t a t i c long [] ba l a nc e =

new long [NumberOfAccounts] ;

pub l i c s t a t i c void main (S t r i n g [] a){

f o r (i n t i = 0 ; i < NumberOfAccounts ; i ++){

ba l a nc e [i] = I n i t i a l F u n d ;

Accounts [i] = new Objec t () ;}

f o r (i n t i = 0 ; i < NumberOfThreads ; i ++){

T r a ns f e r T h r e a d t r a n s =new T r a ns f e r T h r e a d () ;

new Thread (t r a n s) . s t a r t () ;

}}

pub l i c s t a t i c boolean doT r a ns f e r (i n t f , i n t t , i n t a){

3

synchron ized(Accounts [f]){

synchron ized(Accounts [t]){

i f (ba l a nc e [f] < a){

System . ou t . p r i n t l n (‘ ‘ T r a n s a c t i o n Aborted :

i n s u f f i c i e n t funds . ’ ’) ;

re tu rn f a l s e ; }

i f ((ba l a nc e [t] + a)> MaxFund){

System . ou t . p r i n t l n (‘ ‘ T r a n s a c t i o n Aborted : too

much funds . ’ ’) ;

re tu rn f a l s e ; }

ba l a nc e [f] −= a ;

ba l a nc e [t] += a ;

System . ou t . p r i n t l n (‘ ‘ T r a n s a c t i o n Completed :

t r a n s f e r r e d ’ ’+ a + ‘ ‘ d o l l a r s from ’ ’ + f + ‘ ‘ t o

’ ’ + t) ;

}}

re tu rn t rue ;

}

pub l i c s t a t i c c l a s s T r a ns f e r T h r e a d implements Runnable{

pub l i c synchron ized void run (){

whi le (t rue) {

i n t fund =

Math . abs (new Random () . n e x t I n t ())% I n i t i a l F u n d ;

i n t s ou r c e =

Math . abs (new Random () . n e x t I n t ())% NumberOfAccounts ;

i n t d e s t = 0 ;

do {

d e s t = Math . abs (new Random () . n e x t I n t ())%

NumberOfAccounts ;

}whi le (d e s t == s ou r c e) ;

4

doT r a ns f e r (source , des t , fund) ;

}}}}

1.3 Accomodating deadlocks in production systems

Due to the state-explosion problem, it is inherently difficult to not introduce deadlocks into

system design and implementation, Actually, deadlocks area well-known multithreaded pro-

gramming fault despite various traditional debugging and testing tools.

These traditional tools require executing the programs under investigation. Recently a few

research groups have developed a number of tools trying to help find deadlocks in programs

without actually executing these programs. Three examplesof such tools are:

1. ESC/JavaThis tool uses a theorem prover to verify that code matches specifications.

Generally programmers supply specifications in terms of annotations to the source code.

In some cases, programmers do not need to specify annotations and ESC/Java checks

some default properties like deadlocks [16].

2. JLint This tool operates on bytecode and exploits inter-procedural dataflow analysis and

some syntactical checks to find bugs and coding pitfalls. In particular, Jlint builds a lock

graph and signals deadlock warnings if there is a cycle in thegraph [2].

3. FindBugsThis tool works at the bytecode level and relies on bug patterns to find bugs. It

favors efficient analyses, so it does not use expensive inter-procedural dataflow analyses.

Consequently, FindBugs does not report deadlocks effectively [22].

Suppose the three tools are applied to the sample program in Listing 1.1. FindBugs does not

have expensive analyses to support static deadlock detection, so it cannot detect the deadlock

in the program. On the other hand, JLint and ESC/Java report some warnings for this deadlock.

If the “if (balance[f] < a)” block were moved to the place between the two synchronized

statements, there would still be a deadlock problem in the code, but in this case Jlint would not

report a warning. This example is an instance of a false negative.

5

If the doTransfer method were synchronized, then there would not be any deadlock prob-

lem. But, in this case, both Jlint and ESC/Java would still report a deadlock warning. This

example shows that false positives are also possible.

The above example illustrates that static bug-finding toolsmay be helpful, but they suffer

from false alarms, false negatives, or both, in particular when they are used for large programs.

Actually, without the aid of annotations, ESC/Java often produces too many false positives

of deadlocks so that by default it does not report deadlock warnings. I turned on the flag to

have ESC/Java report deadlock warnings for the sample program to create the example above.

Furthermore, there is a huge amount of legacy code that mightdeadlock and that may not be

ready for debugging or even inspection. In addition, at runtime, an application may dynamically

load code from the network that may deadlock. So, in practicethese tools are also no “silver-

bullet” [17] for guaranteeing deadlock-free code.

1.4 Runtime approaches for handling deadlocks

Traditionally speaking, basic runtime approaches for handling deadlocks include prevention,

avoidance, and detection and recovery. The approach of negating one or more of the four

necessary conditions is referred to as deadlock prevention, unless it aims to avoid deadlocks

by exploiting tasks’ future resource requirements and ensuring (via runtime testing) that each

resource allocation leads to a safe state, in which there remains at least one way for all tasks to

accomplish execution. Levine [30] pointed out that “the classification of deadlock prevention

and avoidance is erroneous” because deadlock avoidance also negates a necessary condition.

Deadlock instances can be detected by checking the wait-forrelationship between tasks; after

deadlocks are detected, recovery actions are performed to bring the system back to a working

state.

1.5 Resource Allocation Graph and Wait-For Graph

A Resource Allocation Graph (RAG), also known as a reusable-resource graph [21], charac-

terizes the runtime relationship between tasks and resources. A RAG’s nodes are partitioned

into the set of tasks and the set of resources. Edges directedfrom resource nodes are called

6

Figure 1.1: A RAG (Resource Allocation Graph) example for 2 deadlocked threads and 2 locks

assignment edges, and edges directed from task nodes are called request edges. Specifically,

there is a directed edge from taskti to resourcerj iff ti is requestingrj; there is a directed edge

from resourcerm to tasktn iff tn is holdingrm.

In the case of reusable and unique resources, a RAG can be reduced to a Wait-For Graph

(WFG) [1], which describes the wait-for relationship between tasks. Specifically, a WFG is

a directed graph, where nodes are tasks, and a directed edge from P to Q, denoted as a wait-

for edge, means that P is waiting for a resource currently held by Q. So, the reduction from

a RAG to the corresponding WFG in the case of reusable and unique resources is to take

out the resource nodes and to collapse the request and assignment edges into wait-for edges.

The resulting WFG is always smaller than the RAG. However, the reduction does not lose

informationthat is needed for deadlock detection.

Suppose that, in the simple deadlockable Java program as shown in Listing 1.1, Thread

1 and Thread 2 become deadlocked because Thread 1 (resp., Thread 2) holds the lock for

Account 1 (resp. Account 2) while waiting for the lock for Account 2 (resp., Account 1). The

corresponding RAG is shown in Figure 1.1, and the corresponding WFG is shown in Figure 1.2.

1.6 Deadlock detection via cycle checking

In the case of reusable and unique resources, a cycle in the WFG is both sufficient and neces-

sary for a deadlock assuming the other three conditions (“nopreemption”, “mutual exclusion”,

7

Figure 1.2: A WFG (Wait-For Graph) example for 2 deadlocked threads and 2 locks

and “wait for”) are operative. Deadlock detection in this dissertation work is performed by

dynamically building a WFG (based on the runtime relationship between resources and tasks

in the program) and checking for cycles in the WFG.

It is not a new idea to find deadlocks by checking for cycles in the WFG. Actually, more

than twenty years ago, Agrawal et al. [1] and Chin [8] showed that, for the deadlock model in

this dissertation, the complexity of deadlock detection via cycle checking in the WFG isO(n),

wheren is the number of tasks in the current system, no matter whether detection is continuous

or periodic.

Continuous detection and periodic detection are two flavorsof deadlock detection schedul-

ing. In continuous detection, deadlocks are checked whenever an edge is added to the WFG

graph. In periodic detection, deadlocks are checked periodically either due to some timer time-

out or after a certain number of edges are added to the WFG graph.

The contribution of this dissertation is not a new deadlock-detection algorithm. Rather, this

dissertation is focused on two emerging research topics in deadlock detection and recovery.

As described in the next 2 sections, one isscheduling deadlock detection to maximize system

performability; the other isproviding a programming abstraction for programmers to resolve

deadlocks.

1.7 Just-in-time deadlock detection

Deadlock detection is associated with a performance overhead. If deadlock detection is in-

voked too often, the overall detection overhead may significantly impact the normal system

performance. On the other hand, if the interval between two consecutive deadlock-detection

invocations is too large, then a potential deadlock occurrence left undetected for a long time

8

also may hurt the system performance dramatically.

Reinforcement learning is “learning what to do–how to map situations to actions–so as to

maximize a numerical reward signal” [42]. In other words, reinforcement learning allows a

software agent to keep learning and adjusting its behavior based on feedback from the envi-

ronment as time goes by in order to maximizes some well-defined reward. No human domain

expert is really needed in this automated learning scheme.

Thus, in order to maximize the “performability” (performance and reliability) [36] of long-

running server applications, it is a nice fit to cast the optimal deadlock-detection frequency

problem as reinforcement learning.

As stated elsewhere [24], in a standard reinforcement-learning model, a learning agent

interacts with its environment via action and perception. The model consists of

1. a set of environment statesS;

2. a set of actionsA;

3. a set of scalar reinforcement signals.

4. an input functionI describing how the agent views the environment state.

Assuming total observability,I is the identity function. At each timet, the learning agent

perceives its statest in S and chooses an action inA(st). It will receive a rewardrt+1 and

perceive a new statest+1. Based on these interactions, the learning agent must develop a policy

P , which maps states to actions to maximize some long-term measure of rewards.

In the deadlock-detection-scheduling setting, since the deadlock time itself is not observ-

able to the agent,I would not be the identity function. Planning and learning insuch partial

observable domains is notoriously difficult [23]. In Chapter 3, I detail how to establish a para-

metric utility-centric model for deadlock detection and recovery and how to solve the model to

maximize the expected utility.

1.8 Just-in-place deadlock recovery

Once a deadlock is detected, one or more of the four necessaryconditions have to be invalidated

in order to resolve the deadlock. Recovery actions include killing an offending task, preempting

9

a resource, releasing a resource currently not in use, rolling back to a checkpoint, and even

simply restarting the entire system, among many others. It often depends on program semantics

and runtime states to determine a fine-grained recovery action that best resolves the current

deadlock. Moreover, it is important to enable programmers to implement the (fine-grained)

recovery actions they have picked up and to incorporate the implementation into their programs

effortlessly.

Goodenough [19] stated that exceptions and exception handling are needed “in general as

a means of conveniently interleaving actions belonging to different levels of abstractions.” In

programming languages, exceptions are features that “provide the programmer the capability

to specify what should happen when unusual execution conditions occur, albeit infrequently”

[41].

Because deadlocks are not only abnormal events but also rareyet fatal errors, it is natural

to consider deadlocks as exceptions and to exploit exception handling to resolve deadlocks.

Furthermore, because exceptions are a widely used languageconcept, the technique of dead-

lock resolution via exceptions is intuitive (to learn) to use and is appropriate for real-life large

programs. In the dissertation, runtime exceptions are defined and implemented to help pro-

grammers resolve deadlocks [51]. In Chapter 4, I describe how to define, implement and use

deadlock exceptions.

1.9 Outline

The rest of the dissertation is organized as follows: Chapter 2 discusses and compares related

work. Chapter 3 details the approach of formulating deadlock-detection scheduling as rein-

forcement learning. Chapter 4 presents and discusses the approach of deadlock resolution via

exceptions. Chapter 5 concludes the dissertation. Chapter6 includes as the Appendices the

code listings used for the dissertation.

10

Chapter 2

Related Work

In this chapter, I compare and discuss related work in various areas.

2.1 Unspecified failure rate

More than 40 years ago, Barlow et al. [40] initially presented the problem of finding optimal

inspection policies that minimize the expected cost until afailure is detected. Since then, a few

researchers have devised new models based on different assumptions and/or object functions,

assumed a specification of the failure distribution shapes and parameters, and proposed various

approximation algorithms [34, 39, 12].

I assume that the time to the first deadlock follows an exponential distribution, but I do

not require a specification of the deadlock rate. Rather, in this dissertation, I discuss an on-

line reinforcement-learning algorithm that keeps learning the deadlock rate and calculating the

detection intervals so as to maximize the system performability.

Performability is “performance and reliability” [36]. Reinforcement learning is “learning

what to do–how to map situations to actions–so as to maximizea numerical reward signal”

[42]. In other words, reinforcement learning allows a software agent to keep learning and

adjusting its behavior based on feedback from the environment as time goes by in order to

maximize some well-defined reward. Thus, in order to maximize the performability of long-

running server applications, it is a nice fit to formulate theoptimal deadlock-detection-interval

problem as a reinforcement-learning problem.

11

2.2 Learning and estimation techniques

The deadlock-detection-scheduling problem is a special case of a continuous-time partially

observable Markov decision process (POMDP) problem. Whileit is known that discrete-state

POMDP problems are difficult or impossible to solve in the worst case [35], computational

approaches have been proposed and applied [23]. The even-more-challenging continuous-time

POMDPs have received almost no attention from computationalists at all.

Q-learning [45] is a general model-free reinforcement-learning algorithm. It does not

directly handle the partial observability problem, which is a key element of the deadlock-

detection scheduling problem: The system may have already deadlocked but until the detection

is performed, this information is not available to the decision maker.

Bayesian inference [3] is also used for parameter estimation in reliability analysis. When

using Bayesian inference, people need to define the prior distribution of the parameter to be

estimated and often have to transform the original estimation problem into a simpler one in

order to avoid complex computations. Without exploiting Bayesian inference, I directly solve

the formulated problem without assuming any range of the concrete distribution.

2.3 Deadlock-detection scheduling

Chen [7] performed a Petri-net-based analysis of deadlock-detection scheduling in centralized

translation database systems with dynamic locking. Specifically, Chen compared periodic de-

tection with continuous detection, and reported: 1) there existed an optimal deadlock detection

time interval for performance maximization; 2) the optimaldeadlock-detection interval was a

function of a few parameters such as workloads, transactionsizes and locking policies; and 3)

periodic detection was better than continuous detection when deadlocks are rare, although the

performance improvement was often small.

Ling et al. [32] studied scheduling distributed deadlock detection, and assumed that “dead-

lock formation follows a Poisson process” without performing empirical studies. They aimed

to “schedule deadlock detections so as to minimize the long-run mean average cost of dead-

lock handling”, and they devised some formulae relating thedeadlock-formation rate and the

detection-scheduling frequency.

12

Java currently does not support continuous deadlock detection. My work is focused on

periodic deadlock-detection scheduling, and I try to maximize a system’s average productive

time. In particular, I discuss the impact of an undetected deadlock on system productivity rather

than the number and/or sizes of deadlocks that affect deadlock resolution.

In practice, two (distributed) deadlock occurrences are likely to be related. Thus, I use a

more realistic assumption that the time to thefirst deadlock follows an exponential distribu-

tion. Furthermore, it is difficult to know the deadlock formation rate beforehand in practical

applications. So, I propose a reinforcement-learning algorithm that continuously estimates the

exponential distribution rate (λ) and calculates the scheduling frequencies accordingly.

In addition to performing a simulation study in which experimental data was generated

that closely fits my assumption, I have applied my work in a Java experiment with a simple

yet sufficiently realistic sample application. The experiment not only validated that it is a

reasonable approximation that the time to thefirst deadlock follows an exponential distribution

but showed that the algorithm has low overhead and can adjustthe detection interval for better

system performance in response to the system deadlock behaviors.

If deadlock rates change over time, my approach can be used keeping only the most recent

data. Because it learns so quickly, such an approach will remain accurate.

2.4 Complementary techniques to deadlock exceptions

Williams, Thies, and Ernst [47] exploited static analyses to find Java library deadlocks. Despite

the false positives reported by the static analyses, I believe such static analyses [47] help pro-

grammers use deadlock exceptions by letting them focus on program points that may deadlock.

Ilc et al. exploited a roll-back mechanism that allows locksto be transparently preempted

from Java threads [46]. They use this mechanism to avoid the priority-inversion problem.

Priority-inversion happens when a low-priority task holdsa resource required by a high-priority

task. In my work, I separate mechanisms from policies: user-defined exception handlers are

used to resolve deadlocks, signaled as exceptions. On the other hand, it would be interesting to

investigate using exceptions to resolve priority inversion.

13

2.5 Extended application scope

A practical solution to the deadlock-detection-scheduling problem has an extended application

scope. Failure detection is a key element to success in the emergent “self-healing” tools and

systems area [26]. My approach can be adapted for detecting failures whose distribution can

be approximated by an exponential distribution.

Deadlock resolution via system restarting is investigatedin this dissertation. System restart-

ing has been used in practice to work around Heinsenbugs [20]and to reclaim stale resources

like leaked memory. Recently, researchers have been looking into building recursively-restartable

systems [4] and optimizing restart strategies [44]. Thus, knowing when to restart is becoming

a core problem in several systems areas.

Checkpointing, a technique for periodically saving enoughinformation so that a task can

be started from the last point at which information was saved, has been widely used to avoid

restarting a task from the beginning [6]. A few references inthe literature [33, 18, 49] discuss

optimal checkpoint placement. To the best of my knowledge, they all assume that failures such

as deadlocks are detected as soon as they occur. My work can beadapted to this work to remove

that assumption.

Different polling policies were studied [9] in order to keep“fresh” local copies of remote

data sources for web search engines. A Poisson process was proposed as the change model of

a data source, and experimental data was used to support the proposal. The learning algorithm

in this paper fits well into learning theλ’s for the Poisson processes, thus potentially making

search engines more responsive.

In summary, a number of related investigations have looked at finding optimal detection/in-

spection policies and deadlock recovery techniques, but two critical problems remain unsolved.

Ons is finding the optimal deadlock-detection interval without knowing the deadlock rate be-

forehand assuming the system is restarted as soon as a deadlock is detected; the other is provid-

ing language-level abstractions for authorizing and structuring fine-grained deadlock resolution

code. These dissertation seeks a solution to these two problems.

14

Chapter 3

Deadlock-Detection Scheduling as Reinforcement Learning

3.1 Overview

In today’s programming practice, multithreaded programming is error prone. Deadlocks are a

well-known multithreaded programming fault. Moreover, due to the state-explosion problem, it

is essentially hard to produce deadlock-free code only. Thus, it is not uncommon for deadlocks

to occur in production systems.

Deadlocked tasks not only cannot make further progress, butalso frequently tie up resources

requested by still more threads, causing more and more tasksto come to a standstill. Thus, a

deadlock should not remain undetected and uncorrected for along time. However, deadlock

detection is associated with performance overhead. If deadlock detection is performed too

frequently, valuable system resources may be wasted.

Therefore, it is important to choose the right interval between successive deadlock detec-

tions. This chapter [52] provides a decision-theoretic learning approach to scheduling deadlock

detection.

Specifically, I learn a utility-based model for deadlock occurrence, and solve the model

to maximize the expected utility. The detection interval inthe solution depends on the dead-

lock rate, which is normally not in the system specifications. However, I provide a learning

algorithm for estimating the deadlock rate. Thus, the deadlock-detection scheduling approach

includes an effective method for figuring out the unknown deadlock rate and applies it within

an automated procedure for obtaining the current optimal detection interval.

The rest of the chapter is organized as follows. Section 3.2 formulates the problem of

15

deadlock-detection scheduling. Section 3.3 discusses theissue of reward maximization. Sec-

tion 3.4 details the procedure for estimating the deadlock rate. Section 3.5 presents and dis-

cusses an online algorithm for determining the current optimal detection frequency. Section 3.6

uses a simulation to investigate the convergence behavior of the algorithm. Section 3.7 reports

my empirical findings by applying the algorithm to detect deadlocks in a sample Java applica-

tion. Section 3.8 concludes this chapter

3.2 Problem formulation

System restarting has been used in practice to work around Heinsenbugs [20] and to reclaim

stale resources like leaked memory. Recently, researchershave been looking into building

recursively-restartable systems [4] and optimizing restart strategies [44]. In this chapter, I fo-

cus on exploiting restarting to resolve deadlocks. In today’s programming practice, system

restarting is the only working solution for resolving Java deadlocks involving monitor locks—

Chapter 4 will discuss programming abstractions that enable other deadlock resolution solu-

tions.

A deadlock detection is associated with costD, and a system restart is associated with cost

R. When the first deadlock is detected, the system is restarted. In this chapter, I consider the

initial system start as the first restart.

I assume that the time to the first deadlock follows an exponential distribution; the Java

experiment results in Section 3.7 have been consistent withthis standard statistical modeling

assumption. In the rest of the chapter, I useλ to denote the hazard function (for the exponential

distribution), that is, the deadlock rate.

I assume deadlocks do not happen during a deadlock detection, and I define the time interval

w that the system waits until the next deadlock detection as the detection interval. In practice,

a system administrator may place both a lower bound and an upper bound onw. The lower

boundwl constrains the biggest fraction of cycles that can be dedicated to deadlock detection,

and the upper boundwu constrains the worst case of how long a deadlock can go undetected. I

assume that anyw within [wl, wu] does not essentially affect the deadlock rateλ, the system-

restart costR, or the deadlock-detection costD. Both R andD are defined in terms of time

16

units.

I formulate the problem in a reinforcement-learning setting [42] as one of learning to make

decisions to maximize a reward. I consider that the system keeps receiving+1 reward (for

doing useful work) when it is deadlock free and it is not doinga deadlock detection or system

restart. Because, for any time pointt0 and intervalt, the probability that the system starting

at t0 is deadlock free until after time pointt0 + t is e−λt, the reward that the system receives

during the detection intervalw is:

r(w) =
∫ t0+w

t0
e−λ(t−t0)dt = (1 − e−λw)/λ.

If a deadlock is detected, then a system restart is performedautomatically. The probability

of a system deadlock within time intervalw is 1−e−λw, thus the average reward that the system

receives is:

a(w) = r(w)/(w + D + (1 − e−λw)R).

I am trying to optimize the average performance within thesebounds. Thus, the problem

that I want to solve is:Choose a detection intervalw∗ to maximizea(w∗) subject to0 < wl ≤

w∗ ≤ wu wherewl andwu are constantspotentially defined by a system administrator. I call

this problem theUtility-Maximization Problem.

Note that the deadlock-occurrence time point itself is not observable to the agent, making

the problem akin to a partially observable Markov decision process [23] in that decisions have

to be made without complete state information. Planning andlearning in such domains are

notoriously difficult, but I show that the modeling assumptions provide sufficient structure for

creating a practical learning algorithm.

3.3 Utility maximization

The critical parameters describing the system are the delayimposed by deadlock detectionD,

the deadlock recovery timeR, and the deadlock rateλ. In this section, I show how to select

a detection intervalw given D, R, andλ that maximizes the average utilitya(w). I assume

λ > 0 andw > 0.

The derivative ofa(w) is a′(w) = h(w)g(w) whereh(w) = e−λw(w+D)− (1−e−λw)/λ

andg(w) = 1/(w + D + (1 − e−λw)R)2. Note that∀w > 0, g(w) > 0.

17

The derivative ofh(w) is h′(w) = −λe−λw(w + D). Because∀w > 0, h′(w) < 0, h(w)

is a strictly decreasing function. Sincelimw→0 h(w) = D > 0 andlimw→+∞ h(w) = −1/λ,

h(w) has one and only root, denoted asroot. Sincea′(w) = 0 iff h(w) = 0, root is a maximizer

of a(w). Thus,root is the solution to theUtility-Maximization Problemif wl ≤ root ≤ wu. If

wu < root (resp.,wl > root), thenwu (resp.,wl) is the solution to theUtility-Maximization

Problem.

Note thath(w) does not depend onR, meaning that the system restart cost (which is not

affected byw) has no impact on the optimal choice ofw. Thus, the optimalw only depends on

λ andD.

To apply this optimization, it is important to have an accurate model—values ofD andλ. It

is straightforward to calculate the average value ofD via experience with the running system by

simply averaging the times needed for deadlock detection. However, there is need to estimate

λ, a method for which is described next.

3.4 Lambda estimation

The problem ofλ estimation would be simple if we could know when the deadlockoccurred.

In particular, we could average the time to first deadlock andtake the reciprocal.

In fact, we only observe whether the system has deadlocked ornot by particular time

points—those for which deadlock detection was run. As such,the deadlock-occurrence time is

only partially observable.

However, it can be estimated in a maximum likelihood sense, described next.

Consider a series of detection intervalsw1, w2, . . . , wi, The probability that the system

fails within an intervalwi is 1 − e−λwi ,∀i > 0.

Forλ > 0, define a component of the log-likelihood function as:

fi(λ) =







−λwi if no deadlock inwi

log(1 − e−λwi) otherwise.

The derivative offi(λ) is:

f ′

i(λ) =







−wi if no deadlock inwi

e−λwiwi/(1 − e−λwi) otherwise.

The second derivative offi(λ) is:

18

f ′′

i (λ) =







0 if no deadlock inwi

−e−λwiw2
i /(1 − e−λwi)2 otherwise.

The log-likelihood function of the probability of the observed data isl(λ) =
∑

i fi(λ). As

is common in machine-learning applications, I seek the maximum log-likelihood solution [5].

That is, I am interested in the value ofλ that makes the observed deadlocks maximally likely.

If there is an interval in which the system deadlocks, and if there is another interval in

which the system does not deadlock, thenl′′(λ) < 0, limλ→0 l′(λ) = +∞, limλ→+∞ l′(λ) <

0,∀λ > 0. So, in this case,l′(λ) has one and only one root, which is the maximizer ofl(λ) and

the maximum likelihood estimator (MLE) forλ.

These calculations can be used to select a series of detection intervals by performing dead-

lock detection at the end of each interval, and if a deadlock is detected, a system restart is also

performed. If, so far, there is an interval during which a deadlock is detected and an interval

during which no deadlock is detected, the MLE forλ is obtained by numerically finding the

root of l′(λ). If no deadlock has been detected so far,λ = 0. If deadlock is detected at the end

of every interval seen so far,λ = +∞.

For time and space efficiency, for a long-running system, an online learning algorithm can-

not always use all detection intervals since the first systemstart. In particular, a numerical

method to solvel′(λ) has to compute, during every iteration,e−λwiwi/(1 − e−λwi) for every

deadlocked intervalwi. A deadlocked interval is a detection interval during whicha deadlock

occurs. I describe in the next section a practical online learning algorithm.

3.5 An online learning algorithm

The overall algorithmALG(w0, wl, wu, k) for estimatingλ and computing the optimal detec-

tion interval is as follows:

1. Initializew to some valuew0 betweenwl andwu.

2. After waiting forw time units, perform deadlock detection.

3. UpdateD, the average deadlock-detection cost over all detections so far during the last

k restarts.

19

4. If no deadlocks have been detected so far, setw = min(2w,wu) and go to Step 2.

5. If every deadlock detection so far reports a deadlock, setw = max(w/2, wl) and go to

Step 10.

6. Use the detection intervals during the lastk restarts to find the MLE forλ by numerically

finding the root ofl′(λ) =
∑

i f ′

i(λ), wheref ′

i(λ) is defined in Section 3.4.

7. Setw to the root ofh(w) = e−λw(w + D) − (1 − e−λw)/λ as defined in Section 3.3.

The average deadlock detection costD and the MLE forλ are used to numerically find

the root ofh(w).

8. If w < wl, setw to wl.

9. If w > wu, setw to wu.

10. If a deadlock is detected, perform a system restart.

11. Go to Step 2.

The optimalw depends onλ andD as does the dynamics of the learning process. Note

that no explicit exploration is performed, nor is any needed. That is,anyw used for deadlock

detection provides information about the true value ofλ, due to the assumption of exponentially

distributed times to the first deadlocks.

The parameterk determines an upper bound of the number of detection intervals used for

λ estimation in practice. However, withk = ∗ meaning using all detection intervals thus far, I

show that the algorithmALG(w0, wl, wu, ∗) will converge on optimal behavior in the limit.

Proposition Let λi (resp.wi) denote the sequence ofλs (resp.ws) computed by the al-

gorithm. The value ofwi converges tow∗, which is the solution to theUtility-Maximization

Problem. Moreover, ifw∗ 6= wl andw∗ 6= wu, the value ofλi converges toλ∗, which is the

true constant hazard function.

Proof sketch: Supposewi does not converge towl or wu. Since0 < wl ≤ w ≤ wu, we

can break up the values fromwl to wu into δ-sized blocks for anyδ > 0. For the block from

w to w + δ, look at the set ofj such thatw ≤ wj < w + δ. If this set is finite, it will not

have an effect on the converged value ofλi . If it is infinite, then the fraction of deadlock-free

20

trials—no deadlock is detected within the corresponding intervals—will be betweene−λ∗w and

e−λ∗(w+δ). As δ > 0 was arbitrary, this fraction approachese−λ∗w, for whichλ∗ becomes the

MLE. So, no matter what the sequence of detection intervals is, the procedure will estimate the

constant hazard function asλ∗ in the limit. Sincew∗ is the optimal detection interval forλ∗,

the procedure will converge to this choice of detection interval as well.

3.6 A simulation study

In this section, I show that the algorithm quickly finds near-optimal detection intervals in a

simulation study, and that the initial valuew0 has little impact on the convergence to near-

optimal detection intervals.

3.6.1 Theoretical optimal values

I generated 500 deadlocks according to an exponential distribution of λ = 1E−6 for the sim-

ulation study. Assuming each time unit is one second, deadlocks occur exponentially with a

mean of 277.8 hours (after each restart). Other parameters are listed in Table 3.1.

D R wl wu w0 k

30 300 120 10800 600 1000

Table 3.1: Parameters for the simulation study

Given 500 deadlocks in total in the simulation study, parameterk = 1000 means that, every

time the algorithm estimates aλ, it uses all detection intervals so far (since the beginningof the

simulation study).

Given the trueλ = 1E−6 and other parameters, the theoretical optimal detection interval

w∗ = 7736, which corresponds to 2.15 hours. The theoretical peak average rewarda(w∗) =

99.2%, wherea(w) is defined in Section 3.2. The value ofR does not influencew∗, but it

affectsa(w∗). If R were 300000 in the simulation study, for example,a(w∗) would have been

76.47%.

The average detection costD includes both the average cost of a single deadlock detection

21

and the average cost of a single execution of the algorithm. The average cost of a single execu-

tion of the algorithm is considered to be the deadlock-detection scheduler overhead. A constant

D means that the variance of the algorithm overhead is ignored; I will discuss the algorithm

overhead in detail in Section 3.7.

I define the optimality ratio asp(w) = a(w)/a(w∗), and takep(w) ≥ 99.95% as the

definition of near-optimality forw.

Figure 3.1: Detection interval versus optimality ratio forthe simulation study

Figure 3.1, an inverted U-shaped curve, shows the relationship between the detection inter-

val w (from 1200 to 43200) and the optimality ratiop(w).

If w = 1200, simulating a detection interval of 2 hours, the optimalityratio is98.26%. If

w = 43200, simulating a detection interval of 12 hours, the optimality ratio is98.56%. If w is

22

between 5406 and 11069, the optimality ratio is over99.95%.

3.6.2 Lambdas and detection intervals

Table 3.2 shows the simulation results after several deadlocks. The fieldDeadlocksandDetec-

tions in the table represent cumulative data from the beginning ofthe simulation. Valuesλ and

w in each row are theλ and detection intervals estimated/calculated right afterthe correspond-

ing number ofDeadlockshave occurred.

Deadlocks Detections λ w

1 7 2.897E-05 1429
3 287 2.083E-06 5356
4 535 1.303E-06 6776
9 860 1.759E-06 5830

10 894 1.882E-06 5636
25 3206 1.232E-06 6969
50 6188 1.194E-06 7078

100 12372 1.151E-06 7211
250 30957 1.121E-06 7307
500 64739 1.060E-06 7515

Table 3.2: Simulation data after varying numbers of deadlocks

After 500 deadlocks have occurred, 64739 detections have been performed. The first de-

tection intervalw0 = 600 is given/calculated before any detection, and then an interval is

calculated after each detection. So, there are 64740 calculated detection intervals in total.

Figure 3.2 shows the dynamics of the calculated detection intervals. As consistent with

mathematical analysis, the figure shows that the calculateddetection interval size keeps in-

creasing in the absence of a deadlock and that, once a deadlock occurs, the next calculated

detection interval size decreases, often noticeably.

After 293 detections have been performed, all calculated detection-intervals are near opti-

mal. If the initialw0 waswl = 120 (resp.,wu = 10800), I find by additional simulations that

there would be 64741 (resp., 64730) detections. However, the estimatedλ after 500 deadlocks

would still be 1.060E-06, the calculatedw after 500 deadlocks would still be 7515, and all cal-

culated intervals after 4 deadlocks would be near optimal. In general, a different initial value

w0 makes a small change to the number of detections, but it does not have significant impact

23

on the estimatedλ and calculatedw in the long run.

Figure 3.2: Learning curve for the simulation study (Log-Scaled Axes)

Interestingly, the sequence ofλ andw (after 4 deadlocks have occurred) does not maintain a

relative error of no more than0.05%. After 500 deadlocks have occurred,λ = 1.060E−06 has

a relative error of6%, andw = 7515 has a relative error of3%. Recall that the trueλ = 1E−6

and the theoretical optimal detection intervalw∗ = 7736. So, although the simulation study

shows that it takes quite a few failures to estimateλ for an exponential distribution—a finding

consistent with [38]—the average rewarda(w) is at a low level of insensitivity to variations in

λ andw.

Therefore, the simulation study suggests that, under the assumption of an exponential dis-

tribution of the time to first deadlocks, the algorithm can find near-optimalws quickly in terms

24

of the number of detections in the presence of a few deadlocks.

In next section, I show 1) The online algorithm has an insignificant overhead with a reason-

ablek; and 2) The online algorithm can compute tinyλs.

3.7 A Java Experiment

I have implemented the algorithm described in Section 3.5 using J2SE 5.0. The implementation

contains fewer than 1000 lines of code. I have integrated theimplementation with an example

Java application, and performed a case study of applying thealgorithm withk = 100 to Java

deadlock detection in a real multithreaded environment.

3.7.1 About Java deadlocks

For software components implemented in Java, a deadlock occurs when “two or more threads

block each other in a vicious cycle while trying to access synchronization locks needed to con-

tinue their activities” [28]. In such a deadlock case, tasksare threads and resources are reusable

locks. Before Java 5.0, Java only provided monitor locks. Since Java 5.0, Java has provided

a package “java.util.concurrent.locks” in addition to monitor deadlocks. I focus the discussion

of this section on monitor locks only. Thus, in the rest of this chapter, a lock means a monitor

lock in Java. Java deadlocks involving only monitor locks can be detected by a Java API: find-

MonitorDeadlockedThreads. In J2SE 5.0, the Java Doc for findMonitorDeadlockedThreads

in ThreadMXBean says: “It might be an expensive operation”1. In any case, all Java threads

should be stalled when deadlock detection is in progress. So, if deadlock detection is performed

too frequently, valuable system resources may be wasted.

Deadlocked threads not only cannot make further progress, but also frequently tie up re-

sources requested by still more threads, causing more and more threads to come to a standstill.

Thus, a deadlock should not remain undetected and uncorrected for a long time. Java’s ap-

proach for handling deadlocks is deadlock detection and recovery. J2SE 1.4.1 has introduced a

command-line deadlock-detection utility, and J2SE 5.0 hasprovided thread-management beans

1http://java.sun.com/j2se/1.5.0/docs/api/.

25

to facilitate writing customized deadlock-detection utilities. Once deadlocks are detected, re-

covery actions are often required. Java currently does not support fine-grained deadlock re-

covery actions such as killing an offending thread; the API to kill a thread, Thread.stop(), is

now deprecated and does not always function properly. A working solution to Java deadlock

recovery is to restart the Java Virtual Machine (JVM).

3.7.2 Experiment setup

The machine used to perform the experiment had 2.00 GB of RAM and one 2.00 GHz proces-

sor. The operating system was Windows XP Professional, SP2.The JDK was J2SE 5.0 update

6.

The example application used in the experiment defines two classes: class Account and

class Experiment. The code listing for a simplified version of the two classes is in the Appen-

dices (Section 6.1 and Section 6.2) at the end of the dissertation. Class Account has a “transfer”

method to transfer money from one account to the other. In some cases, both accounts need to

be locked for the transfer to be accomplished. When several threads are executing the “transfer”

method, it is possible that two threads become deadlocked when trying to lock the destination

account while holding the lock of the source account. Class Experiment defines 2 accounts and

4 threads. The run method of each of the 4 threads executes a loop with its iteration transfer-

ring some randomly selected amount of money between two different accounts, which are also

randomly selected.

Deadlock detection and recovery is performed by the main thread, which has the highest

thread priority. Once a deadlock is found, deadlock recovery via system restart is performed to

keep the experiment running until 500 restarts have occurred.

3.7.3 Experiment parameters and data

wl wu w0 k

0.1 s 30 min 15 s 100

Table 3.3: Parameters for the Java experiment

26

Deadlocks R (ms) D (ms) S (ns)
10 102.6 13.2 162162
25 236.6 17.7 208827
50 121.3 15.3 307462

100 133.4 15.6 520522
150 118.5 17.3 832319
200 127.4 18.0 930881
250 162.3 18.7 922265
300 149.3 19.0 918374
400 178.8 17.5 910223
500 219.5 18.1 912333

Table 3.4: Detection and recovery costs from the Java experiment

Deadlocks Detections λ w (ns)
1 3 1.412E-11 3.217E9
2 49 1.030E-11 2.021E9
3 50 1.549E-11 1.636E9
4 62 1.889E-11 1.411E9
5 73 2.217E-11 1.232E9
6 82 2.548E-11 1.163E9
7 88 2.906E-11 1.077E9
8 100 3.159E-11 1.076E9
9 101 3.560E-11 1.009E9

10 204 2.786E-11 9.697E8
11 273 2.550E-11 1.071E9
25 893 2.188E-11 1.267E9
50 1772 2.275E-11 1.157E9

100 3692 2.276E-11 1.166E9
200 7305 2.325E-11 1.239E9
250 8968 2.515E-11 1.213E9
300 10519 2.573E-11 1.210E9
400 14215 2.272E-11 1.235E9
500 17352 2.753E-11 1.140E9

Table 3.5: Experimental data after varying numbers of deadlocks

27

Table 3.3 lists the parameters used by the algorithm in the experiment. It took about 6 hours

to finish a run of the experiment. Table 3.4 reports the detection and recovery costs from the

experiment.

The average cost of deadlock detection (D) includes two items: One is the average cost

of invoking a Java deadlock-detection API, and the other is the average overhead of the algo-

rithm for computingλ andw. The average algorithm overhead is also denoted as the average

deadlock-detection scheduler overhead (S). Note thatS is part ofD. The computational cost

in this experiment is measured in terms of nanoseconds.

In the experiment,D (resp.,S) is the average deadlock-detection cost (resp., deadlock-

detection scheduler cost) over all detections so far in the lastk = 100 restarts. The experiment

finds a sequence of small average deadlock-detection costD. It is not surprising that the cost of

a single detection is small, because the system uses only 4 fixed Java working threads competing

for 2 Java locks. As shown in Table 3.4,S keeps increasing when the number of deadlocks is

no more than 200. When the number of deadlocks is more than 200, S is around 1 ms.

The average scheduler overheadS is not sensitive to the number of threads or locks, and it

is still relatively small compared to the single detection cost. Moreover, in this experiment and

the simulation study in Section 3.6, a generic bisection method was used to find the numerical

roots required by Step 6 and Step 7 of the algorithm; the efficiency of the scheduler could be

further improved with a more customized numerical method.

The restart costR in this experiment is also small. It includes the cost to restart a Java

Virtual Machine (JVM) and the cost to save and fetch a small amount of data—the algorithm

needs some data, whose size is bounded byk, and the rest of the data is for keeping a record

of the experiment execution. There is no checkpoint for the experiment application. Again,R

does not impact the optimal choice ofw.

Table 3.5 shows the experiment results after several deadlocks. The fieldDeadlocksand

Detectionsin the table represent cumulative data from the beginning ofthe experiment. Val-

uesλ andw in each row are theλ and detection intervals estimated/calculated right afterthe

corresponding number ofDeadlockshave occurred.

As the computational cost is measured in terms of nanoseconds, the algorithm computes

tiny λ’s. The experiments involved 17352 detections and ended up with λ = 2.753E-11 and

28

w=1.140 second.

In the next section, I present a practical approach to evaluating the estimatedλ’s and detec-

tion intervals.

3.7.4 A practical evaluation

After each restart, the online algorithm keeps waiting and then detecting until the first deadlock

occurs. For theith restart, I recorded the start time-points(i) and the end time-pointe(i) of the

deadlocked interval, that is, the detection interval in which the first deadlock had occurred.

Suppose the algorithm spent detection costc(i) before the deadlocked interval during the

ith restart, the lower bound of theith productive time periodp(i) is x(i) = s(i) − c(i) and

the upper bound of productive time isy(i) = e(i) − c(i). Theith deadlocked interval size is

y(i) − x(i) = e(i) − s(i).

Due to the JVM thread-scheduling overhead and the Java timerAPI invocation overhead,

the recorded deadlocked interval size is a few millisecondslarger than the corresponding detection-

interval size calculated by the algorithm.

There are 500 deadlocked intervals; 499 of them are below 3 seconds. As shown in Ta-

ble 3.6, 90% of the deadlocked intervals are below 1247.9 ms.The largest deadlocked interval

(60006.3 ms) belongs to the first productive time period.

Table 3.6 also shows that the lower bounds on the productive time period are broader and

larger than the deadlocked interval sizes. For some productive time periods, the deadlocked

interval is the first detection interval, thus the corresponding lower bounds are 0.

As a consequence of the exponential distribution assumption of the time to the first dead-

lock, I assume the exact time-point in which the first deadlock occurred during theith system

lifetime follows a uniform distribution on the interval (s(i),e(i)]. For theith restart, the average

productive time period is̄p(i) = (x(i) + y(i))/2, and the average total lifetime period, assum-

ing a constant detection interval ofw time units, is̄k(w, i) = R+n(D+w), where the number

of detectionsn = (
∫ y(i)
x(i) dz/wedz)/(y(i) − x(i)) = w((2y(i)/w − dy(i)/we + 1)dy(i)/we −

(2x(i)/w − dx(i)/we + 1)dx(i)/we)/(2y(i) − 2x(i)).

DefineA(w,m,n) =
∑n

i=m p̄i/
∑n

i=m k̄(w, i) to be an empirical estimate of the average

29

reward using the productive time periods. According toA(w,m,n), once again,R affects the

maximal value ofA(w,m,n), but does not affect the value of its maximizer.

DefineA(w∗(m,n),m, n) to be the peak average reward. ForA(w, 1, 500) using the aver-

ageR = 194.3 ms (over the 500 restarts) and the lastD = 18.1 ms, the peak average reward

A(w∗(1, 500), 1, 500) = 96.65% for w∗(1, 500) = 1244 ms.

DefineP (w,m,n) = A(w,m,n)/A(w∗(m,n),m, n) to be the estimated optimality ratio.

Figure 3.3, another inverted-U-shaped curve very similar in shape to Figure 3.1, shows the

relationship between the detection interval (from 100 ms to10000 ms) and the optimality ratio.

Figure 3.3: Detection interval versus optimality ratio forthe Java experiment

I take P (w,m,n) ≥ 99.95% as the definition of near optimality forw. If w is not in

[1009,1455], thenP (w, 1, 500) < 99.95% andw is therefore not near optimal. On the other

30

hand,w in [1027,1420] is near optimal becauseP (w, 1, 500) ≥ 99.95% for w in [1027,1420].

In fact, the final calculated interval is 1140 ms.

3.7.5 The dynamics of calculated detection intervals

I use the last 250 productive time period ranges to test all the 8968 detection intervals used

during the first 250 restarts. ForA(w, 251, 500) with the averageR = 194.3 ms (over the

500 restarts) and the lastD = 18.1 ms, the peak average rewardA(w∗(251, 500), 251, 500) =

96.58% for w∗(251, 500) = 1152 ms.

If w is not in [997,1454], thenP (w, 251, 500) < 99.95%. If w is in [1024,1403], then

P (w, 251, 500) ≥ 99.95%.

Like Figure 3.2, Figure 3.4 shows that the size of the detection interval calculated right af-

ter a deadlock occurrence drops compared to the previous detection interval. After the average

detection costD has been stabilized, detection interval sizes generally increase in the absence

of a deadlock occurrence. It takes a few detections to stabilize the average detection costD in

the experiment.

The experimental study uses an algorithm instance withk = 100. More generally, ifk is

100× j wherej is a positive integer,S will be bounded byj × q whereq is a constant in terms

of time units. In this experiment setting, according to Table 3.4,q would be around 1 ms. A

largerk, the average scheduler overhead, would use more detection intervals for learning, thus

it will estimateλ andw with less variance.

However, as consistent with the simulation study, the experiment suggests that the algo-

rithm has an insignificant overhead and can find near-optimalw’s quickly in terms of the

number of detections in the presence of a few deadlocks. Figure 3.4 shows that fori ≥

232, P (wi, 251, 500) ≥ 99.95%. That is, after232 detections, all detection intervals calcu-

lated by an algorithm instance withk = 100, which has an insignificant overhead, are near

optimal.

I takeP (w,m,n) ≥ 99.95% as the definition of near optimality forw; in practice, a system

administrator can redefine near optimality as needed. It is also worthwhile to note the following

use scenario. In practice, for the purpose of load balance and fault tolerance, there are often

multiple server-application instances running similar code and balancing workload in a cluster.

31

Figure 3.4: Learning curve for the Java experiment (Log-Scaled Axes)

In this case, the scheduling algorithm can take (resp. apply) detection-intervals from (resp. to)

all running server instances within the cluster, and still it is likely that only a few hundreds of

detections in the presence of a few deadlocksin total are needed for the algorithm to approach

near-optimal detection intervals.

3.8 Summary

In this chapter, I provided a decision-theoretic learning approach to scheduling deadlock detec-

tion for Java, described not only a simulation study but alsoa case study using a simple yet suf-

ficiently realistic Java program, and showed that the approach of deadlock-detection scheduling

as reinforcement learning would be practical and promisingfor restart-oriented systems.

32

Percentage % x(i) s y(i) − x(i) ms
0% 0 1025.1

10% 3.5 1145.7
20% 8.1 1160.3
30% 14.2 1171.0
40% 20.4 1190.1
50% 27.5 1209.7
60% 38.2 1221.6
70% 48.7 1230.4
80% 67.3 1239.1
90% 96.2 1247.9

100% 221.6 60006.3

Table 3.6: Productive time period lower boundx(i) and deadlocked-interval sizey(i) − x(i)

33

Chapter 4

Deadlock Resolution via Exceptions

4.1 Overview

Due to the difficulty of the state-explosion problem, it is inherently hard to find and remove

deadlocks in multithreaded programs. There are some tools to help find deadlocks in mul-

tithreaded Java programs, but they are not widely used in industry for various reasons. One

technical reason is that these tools cannot efficiently handle large real-life programs, which

may dynamically load classes from networks, without generating too many spurious warnings.

Moreover, although some of the tools can show in a conservative way the absence of dead-

locks in some small programs not using certain Java features, they cannot be used to certify

large real-life programs for deadlock freedom. Furthermore, it is possible to write deadlock-

free code using well-known prevention methods such as linearly ordering resources for unique

resource, but it is not practical to apply these methods to dynamically created resources in real-

life programs. Consequently, it is difficult for programmers to write deadlock-free code only,

and most existing class libraries do not bear a certificate for deadlock freedom.

Nowadays when building truly dependable multithreaded applications, programmers can-

not use or produce code not guaranteed to be deadlock free. Thus, the productivity of de-

pendable applications containing deadlock-free-only code is quite unsatisfactory. To improve

software productivity and quality, it would be a necessary breakthrough to provide a systematic

and programmable approach for incorporating code that is not deadlock free into dependable

applications. Because at runtime it is relatively easy to detect actual deadlock occurrences,

which represent not only abnormal states but also fatal errors, it is natural to consider deadlock

occurrences as runtime exceptions. Thus, exception handlers associated to deadlock-able code

can be exploited to resolve potential deadlock occurrencesduring the execution of code.

34

In addition, because exceptions are a widely understood language construct supporting for-

ward recovery [37, 43, 11], the approach of deadlock resolution via exceptions is intuitive for

programmers (to learn) to use and is appropriate for real-life large programs. Furthermore,

exception objects contain rich and useful information about the deadlock occurrences, and the

exception handlers can access local program states. Thus, the approach allow programmers to

select and implement suitable fine-grained resolution actions.

This chapter [50, 51] describes an approach of deadlock resolution via exceptions. The

approach is not restricted to Java. Rather, it applies to anyprogramming language that sup-

ports both exceptions and multi-threading. However, for presentation purposes, I use Java as

the programming language to discuss the design, implementation and application of deadlock

exceptions.

The rest of this chapter is organized as follows. Section 4.2describes an approach to rep-

resenting deadlocks as exceptions and discusses two types of deadlock-exception handlers. In

Section 4.3, I restrict resources to monitor locks and analyze a JVM-based implementation of

deadlock exceptions and their handlers. In Section 4.4, I focus on user-defined resources and

exploit a class library to implement deadlock exceptions and their handlers. Section 4.5 further

illustrates the utility of the deadlock exceptions and their handlers in programming practice.

Section 4.6 concludes this chapter.

4.2 Design

I first briefly introduce exception handling in Java, then present a design for encoding various

deadlock states into exceptions, and then discuss two typesof handlers for deadlock exceptions.

4.2.1 Exception handling in Java

As part of its runtime support, Java provides an exception-handling mechanism to help pro-

grammers write reliable and robust programs in a structuredand controlled manner.

Java exceptions are first-class objects representing runtime errors, and they contain rich

information about the exception state for the sake of exception handling. Like other types of

objects, exceptions can be created, passed to methods as arguments, and garbage collected.

35

Unlike other types of objects, exceptions can be thrown by throw statements in program code

or by the JVM.

When exceptions are thrown, they are passed to their handlers, the closest dynamically en-

closing catch clauses that can handle the thrown exceptions, unless the handlers are unavailable.

Catch clauses are associated to “try blocks”, which represent code that needs to be protected

against exceptions. There can be several catch clauses for atry block, as long as they catch

different types of exceptions.

Upon receiving an exception object, an exception handler begins to execute. If there is not

an exception handler for an exception, the uncaughtException method of this thread’s Uncaugh-

tExceptionHandler is invoked. If this thread does not have an UncaughtExceptionHandler, its

ThreadGroup object is considered as its UncaughtExceptionHandler.

Programmers can define their own exception classes by extending the existing exception

hierarchy. Java exceptions are objects of the predefined class Throwable or its subclasses. Run-

timeException is a subclass of Throwable. Deadlock exceptions are defined as new subclasses

of RuntimeException.

4.2.2 A base class for deadlock exceptions

After a deadlock is detected, it is represented and signaledby an exception.An exception

for representing a deadlock should contain rich and helpfulinformation to support deadlock

resolution.In particular, it should provide access to the following information:

• The number of threads involved in the cycle

• For each thread involved in the cycle:

1. The thread object

2. The resource that this thread holds and that is involved inthis deadlock

3. The resource the thread is waiting for

The “number of threads involved” gives programmers an intuitive knowledge of how com-

plex the deadlock is. The encoding of the cyclic wait provides useful information for deadlock

resolution. As will be shown in a use case study in Subsection4.3.6, even the names of dead-

locked thread objects can help deadlock resolution.

36

The exception class, denoted asDeadLock, which contains the aforementioned fields is

considered as the base class for deadlock exceptions. Userscan customize their own deadlock

exception classes by extending the base class. For example,sometimes it helps to include the

stack traces of all deadlocked threads in the deadlock exception. In this case, users can define a

subclass containing the stack traces in addition to the aforementioned fields. In the rest of this

chapter, the discussion is focused on the base class.

A deadlock exception, which represents a deadlock occurrence, is supposed to be handled

by a well-designed handler that can resolve the deadlock occurrence. I discuss two types of

deadlock exception handlers in the next subsection.

4.2.3 Deadlock exception handlers: global versus local

Deadlock exception handlers can be installed for an application thread that may deadlock.

These deadlock handlers are classified aslocal deadlock handlers. One approach to make

use of local deadlock handlers is to have the JVM runtime throw a deadlock exception to a

thread that would otherwise be about to deadlock. This approach was partially implemented

around Summer 2002 [50]. Local deadlock handlers can exploit threads’ local states and pro-

gram semantics to perform fine-grained recovery actions like releasing a resource currently not

in use and picking up a possibly deadlock-free execution path.

Because it is hard to know beforehand which threads will get involved in a deadlock in

which order, in most cases local deadlock handlers have to beinstalled for all potentially dead-

locked threads in order not to miss a deadlock exception. Furthermore, this time-consuming

task is not even always feasible in the presence of unchangeable and invisible code. In addi-

tion, even if all potentially deadlocked threads have localdeadlock handlers installed, without

application knowledge it is difficult to know which thread tothrow the deadlock exception to

results in the most cost-effective way to resolve the current deadlock.

To overcome the shortcomings of local deadlock handlers, when a deadlock is detected, it

is desirable to get the deadlock exception thrown to a special thread, referred to as the deadlock

resolver. Theglobal deadlock handleris used to refer to the deadlock exception handler (for

DeadLockinstances) installed for and executed by the deadlock resolver. The deadlock resolver

is set to have the highest thread priority and should be started before any other threads in order

37

not to miss some deadlocks.

The global deadlock handler is suitable for performing coarse-grained recovery actions

such as killing a thread. However, unlike local deadlock handlers, it cannot perform some fine-

grained recovery actions based on deadlocked thread states. To exploit the benefits of local

deadlock handlers, the global handler can exploit application knowledge to select a deadlocked

thread with local deadlock handlers installed, and delegate the deadlock exception object to this

deadlocked thread.

The two complementary deadlock handler types enable effective deadlock recovery in pro-

gramming practice. In terms of implementation, local deadlock handlers are in the form of catch

clauses in order to take the advantage of the exception-handling mechanism of the language,

but the global deadlock handler does not need to be, especially when the thread performing

deadlock detection and the deadlock resolver are the same thread. However, it is assumed that,

when handling a deadlock exception, both global and local deadlock handlers actually break

the cycle in the current WFG, thus resolving the corresponding deadlock.

There are synchronization issues between the thread that performs deadlock detection, the

deadlock resolver, and threads that have local deadlock handlers installed. The next subsection

discusses these synchronization issues.

4.2.4 Synchronization issues

Suppose

1) Thread A performs a deadlock detection, and findsN > 0 concurrent deadlocks. In the

case of periodic detection, theseN deadlocks do not share threads; in the case of continuous

detection,N = 1 and the detected deadlock contains the thread whose currentoutstanding

request initiated the deadlock detection. Thread A then constructsN deadlock exceptions and

reports the exceptions to the deadlock resolver,

2) Thread B is the deadlock resolver; the global deadlock handler associated with Thread

B handlesM out of N deadlock exceptions, and delegates the rest of the deadlockexceptions

to local deadlock handlers,

and

38

3) ThreadC1,C2,...,CN−M execute the local deadlock handlers to handle the delegated

deadlock exceptions.

Thread A and Thread B may be the same, but other threads, whichare deadlocked threads,

are different from each other. Lack of proper synchronization between these different threads

may result in unexpected behaviors.

Consider the following scenario: Thread A sendsN deadlock exceptions to Thread B. The

relationship between Thread A and Thread B is like that between a producer and a consumer.

So, a buffer can be used to store deadlock exceptions in ordernot to miss any deadlock excep-

tion. Further, it is important to ensure that every deadlockexception gets processed by Thread

B.

Consider another scenario: Thread A detects the same deadlock for the second time before

the deadlock exception gets handled by a local handler, and Thread A reports the deadlock

exception for the second time (to Thread B) after the deadlock exception has already been

handled by the local handler. In this scenario, it is possible that the deadlock exception is

delegated to the local handler for the second time but unfortunately gets uncaught. If a deadlock

exception is guaranteed to be reported exactly once before it is handled, this scenario does not

come into being.

So, to address such synchronization issues, it is sufficientthat an implementation ensures

the Synchronization Propertythat a deadlock exception is reported to the deadlock resolver

once and exactly once before it is handled and every deadlockexception is handled by the

global deadlock handler (and a local deadlock handler in thepresence of delegation) once and

exactly once.

To achieve theSynchronization Property, it is necessary that neither the deadlock detection

thread or the global deadlock handler blocks forever. Actually, if the deadlock detection thread

or the deadlock resolver blocks forever such as getting involved in a deadlock, the system may

get stuck since future deadlocks will not be detected or resolved.

It is worthwhile to note that currently-resolved deadlocksmay repeat themselves in the

future. So, if deadlocks are detected after the corresponding deadlock exceptions have been

handled, the deadlock exceptions have to be reported again in order to be handled again (po-

tentially by different local handlers).

39

In the next two sections, I describe two implementations of the approach of deadlock res-

olution via exceptions. One implementation is within a JavaVirtual Machine (JVM), and the

other is outside any JVM.

4.3 Implementation within a JVM

Consider a common Java deadlock case in which “two or more threads block each other in a

vicious cycle while trying to access synchronization locksneeded to continue their activities”

[28]. In such a deadlock case, the resources are reusable locks. Before Java 5.0, Java only

provided monitor locks. Since Java 5.0, Java provides a package “java.util.concurrent.locks” in

addition to monitor deadlocks. Without loss of generality,I focus the discussion of this section

on monitor locks only. Thus, in the rest of this chapter, a lock means a monitor lock in Java.

To address deadlocks in the above deadlock scenario, I constructed an initial implemen-

tation of the deadlock exception approach into a modified Latte 0.9.1 JVM (Java Virtual Ma-

chine). Latte [48] is a Java Virtual Machine that can executeJava bytecode. In addition, Latte

provides a just-in-time compiler that dynamically translates Java bytecode into native code,

an on-demand exception-handing mechanism, and a lightweight monitor implementation [48].

Currently, Latte runs on Solaris 2.5+ on top of UltraSPARCs,and it has its own thread package

implemented inside the JVM.

Below I first briefly introduce Java monitors, then discuss four implementation issues: dead-

lock exception, deadlock detection, deadlock delegation,and deadlock resolver. At the end of

this section, I describe a use case study.

4.3.1 Monitors in the Java language

Java adopts Mesa-style monitors for thread communication and synchronization [27]. Java

monitors are in the form of synchronized methods or synchronized statements. A thread has

to acquire a lock associated with a monitor in order to enter it. When the thread leaves the

monitor, the thread releases the lock. Every object has a lock.

Java provides condition variables in the form of the methodsof wait(), notify() and noti-

fyAll() on class Object. For a clear presentation, in this dissertation I assume wait() is invoked

40

without a timeout value. A thread can wait in a monitor by invoking wait(). Specifically, the

thread is blocked on the condition variable of the monitor after it invokes wait() and before it is

awakened.

A thread that has invoked wait() releases the lock associated to the monitor, and it is disabled

from scheduling until the JVM sends it a notification, which is produced by another thread via

an invocation of notify(), notifyAll() or interrupt(). Java allows a thread with adequate permis-

sion to interrupt another thread blocked on a condition variable by invoking interrupt() for the

blocked thread. Java provides other methods for thread communication and manipulation. For

example, a thread can wait for the termination of another thread via join(), and a thread can kill

another thread via stop().

However, the stop() API is deprecated because it is inherently unsafe. Specifically, invoking

stop() on a thread will cause the thread to release all locks it holds thus leaving the objects pro-

tected by those locks potentially in inconsistent states. Therefore, stop() is now not guaranteed

to always function correctly.

Thus, once a Java thread is blocked due to waiting for a monitor lock, there is no effective

programming API to effectively change the thread to the ready state. So, the JVM has to be

modified in order to get a deadlocked thread to execute local deadlock handlers.

4.3.2 Deadlock exception

The exception for deadlocks, DeadLock, is a subclass of RuntimeException. When a deadlock

is detected, some native code is used to construct a DeadLockobject within the Latte JVM. It

has 4 fields:

Listing 4.1: Fields in DeadLock exception in a Latte-based implementation

i n t s i z e ;

Thread [] w a i t e r s ;

Ob jec t [] l o c k s h e l d i n d e a d l o c k ;

Ob jec t [] l o c k s w a i t i n g ;

The first fieldsize is the number of deadlocked threads in this deadlock. The following

three fields are arrays of sizesize. The arraywaitersstores the deadlocked threads. The element

41

locks held in deadlock[i] stores the lock thatwaiters[i] holds and that is being waited for by

waiters[(i − 1 + size) mod size]. The elementlocks waiting[i] stores the lock thatwaiters[i] is

waiting for and that is being held bywaiters[(i + 1) mod size].

4.3.3 Deadlock detection

I adopt a continuous deadlock-detection method that is easily implemented inside Latte. The

detection method is based on finding a new cycle in the WFG (Waits-For Graph), which is

locked during deadlock detection. Nodes in the WFG represents the threads, and there is an

edge from the node representing threadT1 to that representing threadT2 if T1 is waiting for a

lock held byT2.

Only a contended lock request, which means a request for a lock already held by a thread

other than the requesting thread, will trigger deadlock detection. The detection is performed by

taking a directed walk in the WFG starting from the nodeR representing the requesting thread:

if the nodeR is encountered again during the walk, then a deadlock that needs to be reported

is found. Otherwise, either the system currently has no deadlock or the requesting thread is

transitively blocked by a thread in a deadlock that has been reported via an exception but that

has not been resolved yet.

The complexity of detecting a deadlock in this case isO(n), wheren is the number of

threads in the current system. Liang and Viswanathan [31] claimed that lock contention is rare

in well-tuned programs since lock contention is usually dueto “multiple threads holding global

locks too long or too frequently.” Further, they reported that during one run of mtrt, the only

multi-threaded program in the SPECjvm981 benchmark suite, 11 out of 715244 lock requests

are contended requests.

Each continuous deadlock detection finds at most one deadlock that needs to be reported,

and every deadlock that needs to be reported is detected as itoccurs. So, it is safe to create a

deadlock exception for this deadlock and to report it to the deadlock resolver, described next.

1http://www.spec.org/osg/jvm98/.

42

4.3.4 Deadlock resolver

Programmers can choose to deploy a thread as the deadlock resolver; the deadlock exception

handler (for DeadLock instances) to be executed by the deadlock resolver is the global deadlock

handler. To be deployed as the deadlock resolver, a thread should have a specific name so that

the Latte JVM can recognize it as the deadlock resolver. Currently, a deadlock resolver should

have “NoTimerResolver” as its thread name. The deadlock resolver is set to have highest

thread priority, and should be started before any other threads in order to avoid missing some

deadlocks.

In the Latte-based implementation, the thread performing deadlock detection is different

from the deadlock resolver. The former produces a deadlock exception, and the latter consumes

deadlock exceptions. So, they have the producer-consumer relationship, and share a First-In-

First-Out (FIFO) buffer.

The deadlock resolver invokes join() for itself without a timeout value. In regular programs

under standard JVMs, an invocation of join() for the currentthread without a timeout value

makes the current thread blocked forever. However, in the Latte-based implementation that

supports deadlock exceptions, the implementation of join() is customized for the deadlock re-

solver, which has “NoTimerResolver” as its name, so that thedeadlock resolver behaves as a

producer.

Usually the invocation of join() is contained in a loop for the sake of continuous deadlock

resolution. Every time the deadlock resolver performs a join() for itself, it checks if there is any

deadlock exception in the FIFO buffer. If yes, it removes thefirst exception from the buffer,

wakes up any thread that is waiting for the FIFO buffer to be not full, and throws it to the global

deadlock handler, which is in the form of a catch clause. Otherwise, it blocks until exceptions

arrive at the FIFO buffer.

The thread that has made a contended lock request performs a deadlock detection. If it

detects a deadlock occurrence, it creates an exception for this deadlock occurrence, saves the

exception in a First-In-First-Out (FIFO) buffer, and wakesup the deadlock resolver (if it is

currently blocked).

43

4.3.5 Deadlock delegation

The global deadlock handler is suitable for performing coarse-grained recovery actions such as

killing a thread. However, unlike local deadlock handlers,it is not able to perform some fine-

grained recovery actions based on deadlocked thread states. To exploit the benefits of local

deadlock handlers, the deadlock resolver can select a deadlocked thread with local deadlock

handlers installed, and delegate the deadlock exception object to this deadlocked thread. No

new API is needed for delegation; the deadlock resolver justinvokes interrupt() for the thread

which the deadlock exception is to be delegated to. When executing interrupt() for a deadlocked

thread invoked by a deadlock resolver, the JVM runtime will restore the deadlocked thread to

the state right before it got deadlocked and then throw the current deadlock exception to it.

In sum, the JVM-based implementation does not require programmers to learn new APIs.

Rather, it only asks programmers to use some easy-to-followprogramming conventions when

using existing Thread APIs. In the next subsection, I describe a use case of this implementation.

4.3.6 A use case

The use case in this subsection shows how to resolve deadlocks involving locks in a system of

two money-transfer transactions. The two simultaneous transactions are as follows: one is to

transfer some money from a savings accounts to a checking accountc, the other is to transfer

some money fromc to s. The full code listing (including the definitions of all classes to be

discussed in this subsection) is in the Appendices (Section6.3).

Suppose class Account is unchangeable. The transfer method, as shown in List 4.2, in class

Account specifies how to perform a money-transfer transaction. The method contains a locking

order bug in two phase locking. Specifically, this bug causesa potential deadlock: the two

threads may hold a lock and wait for the lock held by the other thread.

Listing 4.2: A locking-order bug

pub l i c synchron ized void t r a n s f e r (Account to ,i n t amount){

t r y {

Thread . s l e e p (100) ;

} catch (I n t e r r u p t e d E x c e p t i o n e){}

44

synchron ized (t o) {

i f (va l ue >= amount) {

t o . va l ue = t o . va l ue + amount ;

va l ue = va lue−amount ;

}}}

Class S2CTransfer (C2STransfer, resp.) defines the run() method used by thread S2C

(thread C2S, resp.), which implements the transaction thattransfers money from the savings

(checking, resp.) account to the checking (savings, resp.)account.

Suppose class C2STransfer is changeable, but class S2CTransfer is unchangeable. There

is no local deadlock exception handler installed for threadS2C, since class S2CTransfer is

unchangeable. A local deadlock handler is plugged into the run() method of class C2STransfer.

When a DeadLock exception is caught by this local handler, the current thread has already

released the lock it owned. Thus, as shown in the code fragment below in Listing 4.3, this local

handler just lets the current thread, i.e., thread C2S, waits for a while so that the other thread,

i.e., thread S2C, can get a chance to finish.

Listing 4.3: A local handler

whi le (! s u c c e s s f u l){

t r y {

a1 . t r a n s f e r (a2 , amount) ;

s u c c e s s f u l = t rue ;

} catch (DeadLock e) {

t r y {

Thread . s l e e p (200) ;

} catch (I n t e r r u p t e d E x c e p t i o n e1){}

}}

Class DeadlockResolver defines how the deadlock resolver (NoTimerResolver) works. As

shown in the code fragment in Listing 4.4, NoTimerResolver invokes join() for itself. The

global deadlock handler installed for NoTimerResolver is in the form of a catch clause. When

a DeadLock exception is caught, the deadlock exception is delegated to thread C2S, which

45

installs a local handler for DeadLock exceptions.

Listing 4.4: A global handler

whi le (con t){

t r y {

Thread . c u r r e n t T h r e a d () . j o i n () ;

} catch (I n t e r r u p t e d E x c e p t i o n e0){

con t = f a l s e ;

} catch (DeadLock e1){

i f (e1 . w a i t e r s [0] . getName () . e q u a l s (‘ ‘ S2C ’ ’)){

e1 . w a i t e r s [1] . i n t e r r u p t () ;

} e l s e {

e1 . w a i t e r s [0] . i n t e r r u p t () ;

}}}

Class Driver describes creation of NoTimerResolver, thread S2C and thread C2S. NoTimer-

Resolver is a thread with the name “NoTimerResolver” in the thread group with the name

“DeadlockResolverGroup.” It is set to have the highest priority and is started before thread

S2C and thread C2S in order not to miss any deadlock exceptions.

With the help of the 2 deadlock handlers, the potential deadlock involving thread S2C and

thread C2S can be resolved and both threads can accomplish their money-transfer transactions.

4.4 Implementation outside a JVM

In this dissertation, I consider deadlocks in centralized systems with unique and reusable re-

sources, based on the one-resource deadlock model [25] in which a task can have at most one

outstanding request at one time and blocks until the resource is granted.

Locks are not the only interesting resources in user applications. In this section, I first

present a general resource type that works with deadlock exceptions. Then, I go on to discuss

an out-of-the-JVM (OOTJ) implementation of the deadlock-exception approach, and illustrate

it with a use case.

46

4.4.1 A general resource type

The full code listing for this resource type is in the Appendices (Section 6.4). Below, I describe

some important methods.

The resource type provides arequestmethod and areleasemethod. A thread can request

a resource via therequestmethod. After a thread finishes using a resource, it can return the

resource via thereleasemethod.

Both methodrequestand releasetry to acquire lockl first. Lock l is used to protect the

WFG; the thread performing deadlock-detection also needs to acquire lockl before executing

code that manipulates the WFG. The use of lockl guarantees that the WFG is not modified

during the process of deadlock detection.

After acquiring lockl, if the resource is free, the thread will get the resource. Ifthe resource

is owned by some other thread, the requesting thread is put toa waiting table. Once the resource

becomes free again, a waiting thread for this resource is picked up to get this resource.

The code fragment implementing the request and release methods is shown below:

Listing 4.5: A general resource

p r i va t e Thread owner = n u l l ;

p r i va t e Thread th rower = n u l l ;

p r i va t e DeadLock e x c e p t i o n =n u l l ;

pub l i c s t a t i c Objec t l = new Objec t () ;

pub l i c r e s o u r c e r e q u e s t (){

whi le (t rue) {

synchron ized (l) { / / p r o t e c t WFG

synchron ized (t h i s) { / / p r o t e c t c u r r e n t r e s ou r c e

i f (owner==n u l l | | owner== Thread . c u r r e n t T h r e a d ()){

h . remove (Thread . c u r r e n t T h r e a d ()) ;

owner = Thread . c u r r e n t T h r e a d () ;

re tu rn t h i s ;

}

i f (th rower ==Thread . c u r r e n t T h r e a d ()){

47

th rower = n u l l ;

DeadLock e = e x c e p t i o n ;

e x c e p t i o n = n u l l ;

throw e ;

}

h . pu t (Thread . c u r r e n t T h r e a d () ,t h i s) ;

}}

synchron ized (t h i s) {

t r y {

whi le ((th rower != Thread . c u r r e n t T h r e a d ()) && (owner !=

n u l l))

t h i s . wa i t () ;

} catch (I n t e r r u p t e d E x c e p t i o n e){}

}}}

pub l i c void r e l e a s e () {

synchron ized (l) { / / p r o t e c t WFG

synchron ized (t h i s) { / / p r o t e c t c u r r e n t r e s ou r c e

i f (owner== Thread . c u r r e n t T h r e a d ()){

owner = n u l l ;

t h i s . n o t i f y A l l () ;

}}}}

The requestmethod also contains code to throw a deadlock exception. This piece of

code works with thesetThrowermethod, as described below, to delegate a deadlock excep-

tion. Specifically, after a deadlock is detected, the deadlock resolver can exploitsetThrowerto

delegate a deadlock exceptione to some local handler installed for a deadlocked threadt.

Listing 4.6: The setThrower method

pub l i c synchron ized void se tThrower (Thread t , DeadLock e){

t h rower = t ;

e x c e p t i o n =e ;

48

t h i s . n o t i f y A l l () ;

}

4.4.2 Deadlock exception

Below, I describe a class for deadlock exceptions. The full code listing for this deadlock ex-

ception class is in the Appendices (Section 6.5).

Listing 4.7: Fields of DeadLock exception in an OOTJ implementation

pub l i c c l a s s DeadLock extends Runt imeExcept ion{

pub l i c i n t s i z e = 0 ;

pub l i c Thread [] w a i t e r s ;

pub l i c r e s o u r c e [] r e s o u r c e sh e l d ;

pub l i c r e s o u r c e [] r e s o u r c e sw a i t i n g ;

/ / c o n s t r u c t o r s and methods are o m i t t e d here

}

The first fieldsize is the number of deadlocked threads in this deadlock. The following

three fields are arrays of sizesize. The arraywaitersstores the deadlocked threads. The el-

ementresourcesheld[i] stores the resource thatwaiters[i] holds and that is being waited for

by waiters[(i − 1 + size) mod size]. The elementresourceswaiting[i] stores the resource that

waiters[i] is waiting for and that is being held bywaiters[(i + 1) mod size].

So, the OOTJ implementation of deadlock exceptions and the Latte-based implementation

contain similar fields.

4.4.3 Deadlock detection

The deadlock detection is performed at the application level. I adopt a periodic detection

method in this OOTJ implementation. As shown in other work [1, 8], the complexity of detect-

ing a deadlock in this case isO(n), wheren is the number of threads in the current system.

The periodic detection method may find multiple cycles in theWFG. In this case, there are

multiple concurrent deadlocks. Given the deadlock model inthis dissertation, a thread can be

involved in at most one deadlock. That is, multiple concurrent deadlocks do not share a thread.

49

When one or more deadlocks are detected, corresponding deadlock exceptions are reported

to the deadlock resolver. To ensure that deadlock exceptions are reported to the deadlock re-

solver once and exactly once before they are handled, the next deadlock detection is not per-

formed until all deadlock exceptions for the concurrent deadlocks are handled by the deadlock

handlers.

4.4.4 Deadlock resolver

The deadlock resolver and deadlock detection can share the same thread. This thread does not

need to use a special name, because the implementation of deadlock detection and deadlock

resolver is at the application level.

The global exception handler in this case does not need to usea catch clause to catch dead-

lock exceptions. For example, the deadlock exceptions constructed during deadlock detection

can be saved in an array, and the global exception handler canbe in terms of a code sequence

that examines the array and then takes appropriate actions.

One action may be to delegate a deadlock exception to a local deadlock handler. Below, I

discuss the OOTJ implementation of deadlock delegation.

4.4.5 Deadlock delegation

In the OOTJ implementation, deadlock delegation does not use the interrupt() API. Rather, it

exploits the setThrower API provided by the resource type.

Consider the following statement:

Listing 4.8: Deadlock delegation in an OOTJ implementation

e . r e s o u r c e sw a i t i n g [i] . se tThrower (e . w a i t e r s [i] , e) ;

Suppose variablee stores a deadlock exception. What this statement does is to delegate the

deadlock exceptione to the(i+1)th deadlocked thread in the deadlock. So, like the Latte-based

implementation, deadlock delegation can also be accomplished by a single statement.

Upon receiving a delegated deadlock exception, a local deadlock handler starts to handle the

exception, and will notify the deadlock-detection thread after it finishes handling the deadlock

50

exception. The use case in the next section shows how to do thenotification, among other

things.

4.4.6 A use case

The use case in this subsection is essentially the same as what is used to illustrate the Latte-

based implementation. There are two simultaneous transactions in the system: one is to transfer

some money from a savings accounts to a checking accountc, and the other is to transfer some

money fromc to s. The full code listing is in the Appendices (Section 6.6).

Assume Class Account, a subclass of the class implementing the generic resource type, is

unchangeable. The transfer method, as shown in Listing 4.9,in Class Account specifies how to

perform a money-transfer transaction. The method containsa resource-request ordering bug.

Specifically, this bug causes a potential deadlock: the two threads can hold a resource and wait

for the resource held by the other thread.

Listing 4.9: A resource-request ordering bug

pub l i c void t r a n s f e r (Account to ,i n t amount){

t h i s . r e q u e s t () ;

t r y {Thread . s l e e p (200) ;} catch (Excep t ion ee){}

t o . r e q u e s t () ;

i f (va l ue >= amount) {

t o . va l ue = t o . va l ue + amount ;

va l ue = va lue−amount ;

}

t o . r e l e a s e () ;

t h i s . r e l e a s e () ;

}

Class S2CTransfer(C2STransfer, resp.) defines the run() method used by thread S2C(thread

C2S, resp.), which implements the transaction that transfers money from the saving(checking,

resp.) account to the checking(saving, resp.) account.

Suppose class C2STransfer is changeable, but class S2CTransfer is unchangeable. There

51

is no local deadlock exception handler installed for threadS2C, since class S2CTransfer is

unchangeable. A local deadlock handler is plugged into the run() method of class C2STransfer.

Unlike the local handler in Listing 4.3 in the Latte-based implementation, the local handler as

shown in the code fragment in Listing 4.10, upon catching a DeadLock exception, first releases

the resource it holds, notifies the deadlock-detection thread that the current deadlock has been

handled, and then lets the current thread, i.e., thread C2S,wait for a while.

Listing 4.10: A local deadlock handler for general resources

whi le (! s u c c e s s f u l){

t r y {

a1 . t r a n s f e r (a2 , amount) ;

s u c c e s s f u l = t rue ;

} catch (DeadLock e) {

a1 . r e l e a s e () ;

synchron ized (c l i e n t s . l ock) {

c l i e n t s . r e s o l v e d ++;

c l i e n t s . l ock . n o t i f y () ;

}

t r y {Thread . s l e e p (200) ;} catch (Excep t ion ee){}

}}

The deadlock resolver is shown in Listing 4.11. No naming convention is needed for the

thread serving as the deadlock resolver, and the global handler installed for the deadlock re-

solver is not in the form of a catch clause. In addition, the deadlock resolver also performs a

periodic deadlock detection. If a deadlock is found, it creates a deadlock exception, and then

delegates the exception to the local handler of thread S2C. Then, the thread is waiting for a

notification from the local handler that the deadlock has been resolved. After the notification is

received, the thread will continue the periodic deadlock detection.

Listing 4.11: A global deadlock handler for general resources

boolean con t = t rue ;

whi le (con t) {

52

t r y {

Thread . s l e e p (5000) ;

} catch (I n t e r r u p t e d E x c e p t i o n e){

coun t =f a l s e ;

}

/∗ A c qu i r i ng t he l oc k r e s ou r c e . l t o p r o t e c t WFG, e x p l o i t i n g

an O(n) cyc le−d e t e c t i o n method t o f i n d dead locks , s e t t i n g

num be r o f de ad l oc k s t o be t he number o f de ad l oc k s found ,

c o n s t r u c t i n g e x c e p t i o n s f o r t he found dead locks , and

s t o r i n g t he e x c e p t i o n s i n t he ar ray : c u r r e n t D e ad l oc k s .

D e t a i l s o m i t t e d ∗ /

i f (num be r o f de a d l oc ks> 0) {

f o r (i n t i =0; i <num be r o f de a d l oc ks ; i ++) {

DeadLock e= c u r r e n t D e a d l o c k s [i] ;

e . D e a d l oc kP r i n t () ;

f o r (i n t j =0; j <e . s i z e ; j ++)

i f (e . w a i t e r s [j] . getName () . e q u a l s (‘ ‘ C2S ’ ’)){

e . r e s o u r c e sw a i t i n g [j] . se tThrower (e . w a i t e r s [j] , e) ;

break ;

}}}

i f (num be r o f de a d l oc ks >0) {

synchron ized (l ock) {

whi le (r e s o l v e d < num be r o f de a d l oc ks)

lock . wa i t () ;

r e s o l v e d = 0 ;

}}}

Again, with the help of the 2 deadlock handlers, the potential deadlock involving thread

S2C and thread C2S can be resolved and both threads can accomplish their money-transfer

53

transactions.

If an implementation uses periodic detection, programmersneed to write synchronization

code between deadlock handlers and any thread that performsdeadlock detection. On the other

hand, if an implementation uses continuous detection, deadlock detection is triggered by a

contended resource request and there is no need for programmers to write extra synchronization

code, which could be difficult if the implementation (of deadlock detection) is within a JVM.

The Latte-based implementation requires programmers to use some specific naming con-

ventions, but the OOTJ implementation does not. In addition, the OOTJ implementation sup-

ports applying exceptions to deadlocks involving generic resources, which can play the role

of locks among many others. Moreover, given that nowadays JVM’s are considered as ex-

changeable commodities, currently programmers are likelyreluctant to rely on a customized

JVM. While I have shown that it is feasible to implement the approach in a JVM, I will use the

OOTJ implementation to illustrate the deadlock exceptionsand their handlers in programming

practice in the next chapter.

4.5 Application

In practice, users can exploit deadlock exceptions and their handlers to resolve deadlocks in

various effective ways. In this section, I use one example toshow deadlock resolution via

selecting a different forward execution path. Another example shows how to resolve a deadlock

by releasing a resource currently not under use. Yet anotherexample describes how to handle

multiple deadlocks detected at one time by the periodic detection method. The last but not least

example shows deadlock resolution via restarting the system in the global deadlock handler.

4.5.1 Selecting a different execution path

In the use case discussed in the previous section, after the deadlock exception is caught, the

recovery action is to have a deadlocked thread release the resource it holds, wait for a while,

and then retry the deadlocked operation. Exception handling mechanisms are known to be

suitable for forward error recovery [37, 43, 11]. So, besides retrying the previously-deadlocked

operation as described in the use case, the deadlock in the use case study can be resolved by

54

selecting a different forward-execution path.

Listing 4.12: Resolving deadlock via a different executionpath

t r y {

a1 . t r a n s f e r (a2 , amount) ;

} catch (DeadLock e) {

System . ou t . p r i n t l n (‘ ‘ Caught an e x c e p t i o n ! ’ ’) ;

a1 . wi thdraw (amount) ;

synchron ized (c l i e n t s . l ock) {

c l i e n t s . r e s o l v e d ++;

c l i e n t s . l ock . n o t i f y () ;

}

a2 . d e p o s i t (amount) ;

}

As shown in Listing 4.12, after a deadlock exception is caught, the handler (installed for

thread C2S) will withdraw the money from the checking account, notify the deadlock resolver

that performs deadlock detection also, and then deposit it to the savings account. That is, the

deadlock is resolved by selecting the alternative execution path.

Neither withdraw() nor deposit() requests two or more resources. The two methods are

shown in Listing 4.13 below:

Listing 4.13: Method withdraw and deposit

pub l i c void d e p o s i t (i n t amount){

t h i s . r e q u e s t () ;

va l ue = va l ue +amount ;

t h i s . r e l e a s e () ;

}

pub l i c void withdraw (i n t amount){

t h i s . r e q u e s t () ;

i f (va l ue >= amount) {

va l ue = va lue−amount ;

55

}

t h i s . r e l e a s e () ;

}

It is worthwhile to note the notification of the deadlock resolver is done between the in-

vocation of withdraw() and that of deposit(). It is after theinvocation of withdraw() because

withdraw() releases a resource in the cyclic wait, thus breaking the cycle. It is before the in-

vocation of deposit() because deposit() needs to acquire a resource. More specifically, if the

notification of the deadlock resolver is done after the invocation of deposit(), the notification

may never be sent out because the invocation of deposit() maymake the current thread wait for

a resource held by a deadlocked thread.

4.5.2 Releasing a resource currently not under use

A local deadlock handler can choose to resolve a deadlock by releasing a resource that is being

waited for by another deadlocked thread and that is not beingused by the current deadlocked

thread.

Suppose there are 2 threads in a system. Thread AGGRESSIVE requests resource FAX,

but does not use it immediately. Then, it requests resource PRINTER followed by requesting

resource SCANNER, and will use PRINTER and SCANNER after getting them. Then, it will

go back and use FAX. On the other hand, thread LAZY requests resource SCANNER followed

by requesting FAX, and uses these 2 resources after getting them.

It is possible that thread AGGRESSIVE and LAZY get involved in a deadlock in which

thread AGGRESSIVE holds resource FAX but waits for resourceSCANNER and thread LAZY

holds resource SCANNER, but waits for resource FAX. In this case, a local deadlock handler

associated with thread AGGRESSIVE can choose to release resource FAX. Thread AGGRES-

SIVE will have to reacquire resource FAX before using it.

Thread AGGRESSIVE executes the code shown in Listing 4.14. The local handler exam-

ines the deadlock exception, and releases resource FAX if FAX is involved in the deadlock.

If FAX is not involved in the deadlock but PRINTER is, the deadlock handler will release

PRINTER and then will wait for a while before trying to reacquire PRINTER—a resolution

56

action similar to what is exploited in the use case study in Section 4.4.6.

Listing 4.14: Releasing a resource not under use

r e s o u r c e s [FAX] . r e q u e s t () ;

boolean succeeded =f a l s e ;

whi le (! succeeded){

t r y {

r e s o u r c e s [PRINTER] . r e q u e s t () ;

t r y {Thread . s l e e p (100) ;} catch (Excep t ion ee){}

r e s o u r c e s [SCANNER] . r e q u e s t () ;

succeeded =t rue ;

System . ou t . p r i n t l n (‘ ‘ Thread ’ ’+Thread . c u r r e n t T h r e a d () .

getName () + ‘ ‘ i s us i ng PRINTER and SCANNER. ’ ’) ;

} catch (DeadLock e){

System . ou t . p r i n t l n (‘ ‘ Caught an e x c e p t i o n ! ’ ’) ;

f o r (i n t i =0; i <e . s i z e ; i ++) {

i f (e . r e s o u r c e sh e l d [i] . g e t I d () ==FAX) {

r e s o u r c e s [FAX] . r e l e a s e () ;

synchron ized (l ock) {

r e s o l v e d ++;

lock . n o t i f y () ;

}

break ;

}

i f (e . r e s o u r c e sh e l d [i] . g e t I d () ==PRINTER) {

r e s o u r c e s [PRINTER] . r e l e a s e () ;

synchron ized (l ock) {

r e s o l v e d ++;

lock . n o t i f y () ;

}

57

t r y {Thread . s l e e p (5000) ;} catch (Excep t ion ee){}

break ;

}}}}

i f (r e s o u r c e s [FAX] . getOwner () ==n u l l)

r e s o u r c e s [FAX] . r e q u e s t () ;

e l s e i f (! r e s o u r c e s [FAX] . getOwner () . getName () . e q u a l s (‘ ‘

AGGRESSIVE ’ ’))

r e s o u r c e s [FAX] . r e q u e s t () ;

System . ou t . p r i n t l n (‘ ‘ Thread ’ ’+Thread . c u r r e n t T h r e a d () .

getName () + ‘ ‘ i s us i ng FAX. ’ ’) ;

r e s o u r c e s [FAX] . r e l e a s e () ;

r e s o u r c e s [PRINTER] . r e l e a s e () ;

r e s o u r c e s [SCANNER] . r e l e a s e () ;

Thread LAZY does not need to have any local deadlock handler installed. It executes the

code as shown in Listing 4.15.

Listing 4.15: Lazy use of resources

r e s o u r c e s [SCANNER] . r e q u e s t () ;

t r y {Thread . s l e e p (100) ;} catch (Excep t ion ee){}

r e s o u r c e s [FAX] . r e q u e s t () ;

System . ou t . p r i n t l n (‘ ‘ Thread ’ ’+Thread . c u r r e n t T h r e a d () .

getName () + ‘ ‘ i s us i ng FAX and SCANNER. ’ ’) ;

r e s o u r c e s [FAX] . r e l e a s e () ;

r e s o u r c e s [SCANNER] . r e l e a s e () ;

Like the use case in Section 4.4.6, the global deadlock handler delegates the exception to

thread AGGRESSIVE. However, the global deadlock handler isprogrammed in a more general

way, exploiting the size of the deadlock, as show in Listing 4.16.

Listing 4.16: Deadlock delegation using the fieldsize

i f (num be r o f de a d l oc ks> 0) {

58

f o r (i n t i =0; i <num be r o f de a d l oc ks ; i ++) {

DeadLock e= c u r r e n t D e a d l o c k s [i] ;

e . D e a d l oc kP r i n t () ;

f o r (i n t j =0; j <e . s i z e ; j ++)

i f (e . w a i t e r s [j] . getName () . e q u a l s (‘ ‘AGGRESSIVE ’ ’)){

e . r e s o u r c e sw a i t i n g [j] . se tThrower (e . w a i t e r s [j] , e) ;

break ;

}}}

4.5.3 Resolving multiple deadlocks concurrently

The periodic deadlock-detection method may detect multiple concurrent deadlocks during one

detection. These deadlocks do not share threads. So, a simple yet practical approach to re-

solving multiple concurrent deadlocks is that, for each deadlock, the deadlock resolver selects

a deadlocked thread with local handlers installed for each deadlock and then delegates each

deadlock exception to the selected deadlocked thread.

Consider the following use case. There are 32 threads and 128shared resources in a system.

Each thread randomly requests 2 resources, one after another, use them for a while, and then

release them. As shown in Listing 4.17, two or more threads may get involved in a cyclic wait

for resources. A thread may hold some resource after “resources[source].request();” but uses

“resources[dest].request();” to request another resource that is held by another thread. Each

cyclic wait corresponds to a deadlock. Further, there can bemultiple deadlocks concurrently,

and these deadlocks do not share threads.

After a deadlock exception is caught, the handler installedfor every thread will release the

resource held by the current thread, sleep for a while, attempt to request the 2 resources again.

Each thread keeps attempting to request the 2 resources until it obtains them.

Listing 4.17: Multiple deadlock resolution

s t a t i c f i n a l i n t N ACC = 128;

s t a t i c f i n a l i n t N TEL = 32 ;

s t a t i c r e s o u r c e [] r e s o u r c e s =new r e s o u r c e [NACC] ;

59

/ / Each t h r e ad w i l l run t he f o l l o w i n g loop

whi le (t rue) {

Random r = new Random (System . nanoTime ()) ;

i n t s ou r c e = Math . abs (r . n e x t I n t ()) % NACC;

i n t d e s t = 0 ;

do {

d e s t = Math . abs (r . n e x t I n t ()) % NACC;

}whi le (d e s t == s ou r c e) ;

r e s o u r c e s [s ou r c e] . r e q u e s t () ;

boolean succeeded =f a l s e ;

whi le (! succeeded){

t r y {

r e s o u r c e s [d e s t] . r e q u e s t () ;

succeeded =t rue ;

} catch (DeadLock e){

System . ou t . p r i n t l n (‘ ‘ Caught an e x c e p t i o n ! ’ ’) ;

r e s o u r c e s [s ou r c e] . r e l e a s e () ;

synchron ized (l ock) {

r e s o l v e d ++;

lock . n o t i f y () ;

}

t r y {Thread . s l e e p (5000) ;} catch (Excep t ion ee){}

r e s o u r c e s [s ou r c e] . r e q u e s t () ;

}}

System . ou t . p r i n t l n (‘ ‘ Thread ’ ’+Thread . c u r r e n t T h r e a d () .

g e t I d () + ‘ ‘ i s us i ng r e s o u r c e ’ ’+ s ou r c e + ‘ ‘ and r e s o u r c e ’ ’

+ d e s t) ;

t r y {Thread . s l e e p (50) ;} catch (Excep t ion ee){}

r e s o u r c e s [s ou r c e] . r e l e a s e () ;

r e s o u r c e s [d e s t] . r e l e a s e () ;

60

}

Listing 4.18 below shows how to delegate multiple deadlock exceptions. Each deadlock

exception is thrown to the first deadlocked thread stored in the deadlock exception. The dead-

lock resolver also performs deadlock detection. After all deadlock exception are delegated and

handled, the deadlock resolver continue its periodic deadlock detection.

Listing 4.18: Multiple deadlock delegation

boolean con t = t rue ;

whi le (con t){

t r y {

Thread . s l e e p (5000) ;

} catch (I n t e r r u p t e d E x c e p t i o n e){

con t = f a l s e ;

}

/∗ A c qu i r i ng t he l oc k r e s ou r c e . l t o p r o t e c t WFG,

e x p l o i t i n g an O(n) c y c l e d e t e c t i o n method t o f i n d

dead locks , s e t t i n g num be ro f de ad l oc k s t o be t he number o f

de ad l oc k s found , c o n s t r u c t i n g e x c e p t i o n s f o r t he found

dead locks , and s t o r i n g t he e x c e p t i o n s i n t he ar ray :

c u r r e n t D e ad l oc k s . D e t a i l s o m i t t e d∗ /

i f (num be r o f de a d l oc ks> 0) { / / can be more than 1 i n

t h i s case

f o r (i n t i =0; i <num be r o f de a d l oc ks ; i ++) {

DeadLock e= c u r r e n t D e a d l o c k s [i] ;

e . D e a d l oc kP r i n t () ;

e . r e s o u r c e sw a i t i n g [0] . se tThrower (e . w a i t e r s [0] , e) ;

}}

i f (num be r o f de a d l oc ks >0) {

synchron ized (l ock) {

whi le (r e s o l v e d < num be r o f de a d l oc ks)

61

lock . wa i t () ;

r e s o l v e d = 0 ;

}}}

With the help of deadlock exceptions, all 128 threads can keep running code that may result

in multiple deadlocks concurrently in an infinite loop!

4.5.4 Restarting the system to resolve deadlocks

The global deadlock handler can choose to resolve the current one or more deadlocks by restart-

ing the system. In this case, the global deadlock handler does not delegate any deadlock excep-

tion, but just restarts the system after saving necessary information. The restarted system will

continue its execution after picking up the information.

Listing 4.19 below sketches the sequence to restart the system after one ore more deadlocks

have been detected. Information to be saved may include large application-specific data. The

script “restart.sh” contains the Java command to run the system again. After restarting the

system, the global handler gets the current system to exit. The code sequence does not need to

be in an exception handler.

Listing 4.19: Restarting the system,

i f (num be r o f de a d l oc ks >0) {

t r y {

/∗ s av i ng some ne c e s s a r y i n f o r m a t i o n∗ /

S t r i n g command = ‘ ‘ sh r e s t a r t . sh ’ ’+ arg1 + ‘ ‘ ’ ’+ arg2 + ‘ ‘ ’

’+ argn ;

System . ou t . p r i n t l n (‘ ‘Now e xe c u t e t he r e c ove r y command : ’

’+command) ;

P r oc e s s c h i l d = Runtime . getRunt ime () . exec (command) ;

} catch (IOExcept ion e) {}

System . ou t . p r i n t l n (‘ ‘Now e x i t t he c u r r e n t sys tem . . . ’ ’) ;

System . e x i t (1) ;

}

62

4.6 Summary

This chapter presented an approach of deadlock resolution via exceptions, and showed that this

approach is practical and effective in developing dependable applications containing code that

may deadlock. In particular, deadlocks as exceptions allowprogrammers to write fine-grained

recovery code in addition to restarting the entire system.

63

Chapter 5

Conclusions

5.1 Conclusions

I considered deadlock-detection scheduling as a reinforcement-learning problem. Specifically,

based on the assumption that the time to first deadlock in the system (after a system restart)

follows an exponential distribution, I established a utility model for restart-oriented systems,

proposed a learning algorithm to estimate the deadlock rateand to find the detection interval

that maximizes system utility.

I have demonstrated that it is a reasonable approximation that the time to first deadlock in

the system (after a system restart) follows an exponential distribution. I have proved that this

technique finds the best tradeoff in theory, and I have used both a simulation study and a simple

yet sufficiently realistic Java program to show this technique is effective in practice.

I considered deadlocks as exceptions. Using this idea in addition to restarting the system,

programmers can exploit exception handlers to resolve deadlock occurrences based on program

contexts and deadlock states. I proposed a design of a base class for exceptions, distinguished

between global and local deadlock handlers, and described asolution to the synchronization

issues that should be addressed in any implementation.

I have presented 2 implementations of deadlock exceptions and their handlers. One imple-

mentation is based on a modified Latte JVM, and the other is outside any JVM. I have illustrated

the use of deadlock exceptions and their handlers by a use case study and various examples.

In the use case study and all the applicable examples, all deadlocks, signaled as exceptions,

are resolved effectively by corresponding exception handlers performing fine-grained recovery

actions.

Therefore, it is a valid thesis that, under the assumption that the time to first deadlock in the

64

system (after a system restart) follows an exponential distribution, a reinforcement-learning ap-

proach is effective in scheduling deadlock detection for a restart-oriented system, and that run-

time exceptions are a programming abstraction that allows programmers to write fine-grained

deadlock-recovery code.

65

Chapter 6

Appendices

6.1 A simplified version of class Account for Chapter 3

c l a s s Account {

p r i va t e i n t va l ue ;

pub l i c Account (i n t v) { va l ue = v ;}

synchron ized void t r a n s f e r (i n t to , i n t amount){

Account toAccount = Exper iment . a c c oun t s [t o] ;

i f (va lue<amount) re tu rn ;

synchron ized (toAccount){

toAccount . va l ue += amount ;

va l ue −= amount ;

}}}

6.2 A simplified version of class Experiment for Chapter 3

pub l i c c l a s s Exper iment implements Runnable {

/∗ A t t r i b u t e and v a r i a b l e d e f i n i t i o n s o m i t t e d∗ /

pub l i c void run (){

whi le (t rue) {

/∗ Do some house keep ing work and randomly choose

source , d e s t and amount . D e t a i l s o m i t t e d∗ /

a c c oun t s [s ou r c e] . t r a n s f e r (des t , amount) ;

}

}

66

s t a t i c double L(double no deadlock sum , long n []) { /∗ t o

compute t he MLE f o r lambda∗ / }

s t a t i c double W(double lambda , double c o s t) { /∗ t o compute

t he i n t e r v a l∗ / }

pub l i c s t a t i c void main (S t r i n g [] a r gs) throws IOExcept ion

{

/∗ Create 2 ac c oun t s and s t a r t 4 t h r e a d s . D e t a i l s o m i t t e d .

∗ /

boolean de a d l oc k f ound = f a l s e ;

whi le (! de a d l oc k f ound){

/∗ Save some i n t e r m e d i a t e c om pu t a t i ona l r e s u l t s ,

update t he i n t e r v a l p o t e n t i a l l y by i n v o k i n g L (f o r

lambda) and W (f o r i n t e r v a l) , and c o l l e c t t i m i n g

i n f o r m a t i o n . D e t a i l s o m i t t e d . ∗ /

t r y { Thread . s l e e p (new Double (i n t e r v a l) . longValue ())

;}

catch (I n t e r r u p t e d E x c e p t i o n e){}

/∗ use f indMon i to r Dead loc ke dThr eads f o r dead lock

d e t e c t i o n , and c o l l e c t t i m i n g i n f o r m a t i o n . I f a

dead lock i s found , de ad l oc kf ound i s s e t t o t r u e .

D e t a i l s o m i t t e d .∗ /

}

/∗ Do dead lock r e c ov e r y and pass some data t o t he ne x t

r e s t a r t . D e t a i l s o m i t t e d . ∗ /

}

}

6.3 A bank transfer deadlock example using locks for Chapter4

1c l a s s Account {

2p r i va t e i n t va l ue ;

67

3pub l i c S t r i n g type ;

4pub l i c Account (i n t v , S t r i n g t) {

5va l ue = v ;

6t ype = t ;

7}

8pub l i c synchron ized void t r a n s f e r (Account to ,i n t amount){

9t r y {

10Thread . s l e e p (100) ;

11} catch (I n t e r r u p t e d E x c e p t i o n e){}

12synchron ized (t o) {

13i f (va l ue >= amount) {

14t o . va l ue = t o . va l ue + amount ;

15va l ue = va lue−amount ;

16}}}}

17

18c l a s s S2C Trans fe r implements Runnable {

19p r i va t e Account a1 , a2 ;

20p r i va t e i n t amount ;

21pub l i c S2C Trans fe r (Account a1 , Account a2 ,i n t amount){

22t h i s . a1=a1 ;

23t h i s . a2=a2 ;

24t h i s . amount=amount ;

25}

26pub l i c void run (){

27a1 . t r a n s f e r (a2 , amount) ;

28}}

29

30c l a s s C2S Trans fe r implements Runnable {

31p r i va t e Account a1 , a2 ;

32p r i va t e i n t amount ;

68

33pub l i c C2S Trans fe r (Account a1 , Account a2 ,i n t amount){

34t h i s . a1=a1 ;

35t h i s . a2=a2 ;

36t h i s . amount=amount ;

37}

38pub l i c void run (){

39boolean s u c c e s s f u l = f a l s e ;

40whi le (! s u c c e s s f u l){

41t r y {

42a1 . t r a n s f e r (a2 , amount) ;

43s u c c e s s f u l = t rue ;

44} catch (DeadLock e) {

45t r y {

46Thread . s l e e p (200) ;

47} catch (I n t e r r u p t e d E x c e p t i o n e1){}

48}}}}

49

50c l a s s DeadlockHandler implements Runnable {

51p r i va t e Account s , c ;

52p r i va t e i n t s2c , c2s ;

53pub l i c DeadlockHandler (Account s , Account c ,i n t s2c , i n t c2s

) {

54t h i s . s = s ;

55t h i s . c = c ;

56t h i s . s2c = s2c ;

57t h i s . c2s = c2s ;

58}

59pub l i c void run (){

60boolean con t = t rue ;

61whi le (con t){

69

62t r y {

63Thread . c u r r e n t T h r e a d () . j o i n () ;

64} catch (I n t e r r u p t e d E x c e p t i o n e0){

65con t = f a l s e ;

66} catch (DeadLock e1){

67i f (e1 . w a i t e r s [0] . getName () . e q u a l s (‘ ‘ S2C ’ ’)){

68e1 . w a i t e r s [1] . i n t e r r u p t () ;

69} e l s e {

70e1 . w a i t e r s [0] . i n t e r r u p t () ;

71}}}}}

72

73pub l i c c l a s s D r i ve r {

74pub l i c s t a t i c void main (S t r i n g [] a r gs){

75ThreadGroup HG =new

76ThreadGroup (‘ ‘ DeadlockHandlerGroup ’ ’) ;

77Account s = new Account (1500 , ‘ ‘ s a v i ng ’ ’) ;

78Account c = new Account (1000 , ‘ ‘ check ing ’ ’) ;

79i n t s2c = 500;

80i n t c2s = 600;

81S2C Trans fe r t r a n s1 = new

82S2C Trans fe r (s , c , s2c) ;

83C2S Trans fe r t r a n s2 = new

84C2S Trans fe r (c , s , c2s) ;

85DeadlockHandler DH=new DeadlockHandler (s , c , s2c , c2s) ;

86Thread r e s o l v e r =new Thread (HG,DH, ‘ ‘ NoTimerHandler ’ ’) ;

87r e s o l v e r . s e t P r i o r i t y (Thread . MAXPRIORITY) ;

88r e s o l v e r . s t a r t () ;

89new Thread (t r a n s2 , ‘ ‘ C2S ’ ’) . s t a r t () ;

90new Thread (t r a n s1 , ‘ ‘ S2C ’ ’) . s t a r t () ;

91}}

70

6.4 A general resource type for Chapter 4

1import j a va . u t i l . H a s h t a b l e ;

2

3pub l i c c l a s s r e s o u r c e {

4p r i va t e Thread owner = n u l l ;

5p r i va t e Thread th rower = n u l l ;

6p r i va t e DeadLock e x c e p t i o n =n u l l ;

7p r i va t e s t a t i c H a s h t a b l e h =new H a s h t a b l e () ;

8p r i va t e i n t i d = 0 ;

9pub l i c s t a t i c Objec t l = new Objec t () ;

10pub l i c r e s o u r c e () {}

11pub l i c r e s o u r c e (i n t i) { i d = i ; }

12

13pub l i c r e s o u r c e r e q u e s t (){

14whi le (t rue) {

15synchron ized (l) { / / p r o t e c t WFG

16synchron ized (t h i s) { / / p r o t e c t c u r r e n t r e s ou r c e

17i f (owner==n u l l | | owner== Thread . c u r r e n t T h r e a d ()){

18h . remove (Thread . c u r r e n t T h r e a d ()) ;

19owner = Thread . c u r r e n t T h r e a d () ;

20re tu rn t h i s ;

21}

22i f (th rower ==Thread . c u r r e n t T h r e a d ()){

23t h rower = n u l l ;

24DeadLock e = e x c e p t i o n ;

25e x c e p t i o n = n u l l ;

26throw e ;

27}

28h . pu t (Thread . c u r r e n t T h r e a d () ,t h i s) ;

71

29}}

30synchron ized (t h i s) {

31t r y {

32whi le ((th rower != Thread . c u r r e n t T h r e a d ()) && (owner

!= n u l l))

33t h i s . wa i t () ;

34} catch (I n t e r r u p t e d E x c e p t i o n e){}

35}}}

36

37pub l i c synchron ized void se tThrower (Thread t , DeadLock e){

38t h rower = t ;

39e x c e p t i o n =e ;

40t h i s . n o t i f y A l l () ;

41}

42

43pub l i c synchron ized Thread getThrower (){

44re tu rn t h rower ;

45}

46

47pub l i c synchron ized Thread getOwner (){

48re tu rn owner ;

49}

50

51pub l i c synchron ized i n t g e t I d () {

52re tu rn i d ;

53}

54

55pub l i c s t a t i c H a s h t a b l e getWRTable (){

56re tu rn h ;

57}

72

58

59pub l i c void r e l e a s e () {

60synchron ized (l) { / / p r o t e c t WFG

61synchron ized (t h i s) { / / p r o t e c t c u r r e n t r e s ou r c e

62i f (owner== Thread . c u r r e n t T h r e a d ()){

63owner = n u l l ;

64t h i s . n o t i f y A l l () ;

65}}}}}

6.5 A deadlock exception class for Chapter 4

1import j a va . u t i l . H a s h t a b l e ;

2

3pub l i c c l a s s DeadLock extends Runt imeExcept ion{

4pub l i c i n t s i z e = 0 ;

5pub l i c Thread [] w a i t e r s ;

6pub l i c r e s o u r c e [] r e s o u r c e sh e l d ;

7pub l i c r e s o u r c e [] r e s o u r c e sw a i t i n g ;

8pub l i c DeadLock (i n t number , Thread l a s t){

9s i z e = number ;

10w a i t e r s = new Thread [number] ;

11r e s o u r c e sh e l d = new r e s o u r c e [number] ;

12r e s o u r c e sw a i t i n g = new r e s o u r c e [number] ;

13H a s h t a b l e WRTable = r e s o u r c e . getWRTable () ;

14r e s o u r c e cur rentHR = (r e s o u r c e) WRTable . ge t (l a s t) ;

15f o r (i n t i =0; i <s i z e ; i ++) {

16Thread c u r r e n t T = cur rentHR . getOwner () ;

17r e s o u r c e currentWR =(r e s o u r c e) WRTable . ge t (c u r r e n t T) ;

18w a i t e r s [i]= c u r r e n t T ;

19r e s o u r c e sh e l d [i]= cur rentHR ;

20r e s o u r c e sw a i t i n g [i]= currentWR ;

73

21cur rentHR = currentWR ;

22}}

23pub l i c i n t D e a d l oc kP r i n t (){

24f o r (i n t i =0; i <s i z e ; i ++) {

25System . ou t . p r i n t l n (‘ ‘ For dead locked t h r e a d ’ ’

26+ i + ‘ ‘ : ’ ’) ;

27System . ou t . p r i n t l n (‘ ‘ C u r r e n t Thread ID i s : ’ ’

28+ w a i t e r s [i] . g e t I d ()) ;

29System . ou t . p r i n t l n (‘ ‘ Resource Held i s : ’ ’

30+ r e s o u r c e sh e l d [i] . g e t I d ()) ;

31System . ou t . p r i n t l n (‘ ‘ Resource Wai t ing i s : ’ ’

32+ r e s o u r c e sw a i t i n g [i] . g e t I d ()) ;

33}

34re tu rn s i z e ;

35}}

6.6 A bank transfer deadlock example using general resources for Chapter 4

1import j a va . u t i l . H a s h t a b l e ;

2

3c l a s s Account extends r e s o u r c e{

4p r i va t e i n t va l ue ;

5pub l i c S t r i n g type ;

6pub l i c Account (i n t v , S t r i n g t) {

7va l ue = v ;

8t ype = t ;

9}

10pub l i c void t r a n s f e r (Account to ,i n t amount){

11t h i s . r e q u e s t () ;

12t r y {Thread . s l e e p (200) ;} catch (Excep t ion ee){}

13t o . r e q u e s t () ;

74

14i f (va l ue >= amount) {

15t o . va l ue = t o . va l ue + amount ;

16va l ue = va lue−amount ;

17}

18t o . r e l e a s e () ;

19t h i s . r e l e a s e () ;

20}}

21

22c l a s s S2C Trans fe r implements Runnable {

23p r i va t e Account a1 , a2 ;

24p r i va t e i n t amount ;

25pub l i c S2C Trans fe r (Account a1 , Account a2 ,i n t amount){

26t h i s . a1=a1 ;

27t h i s . a2=a2 ;

28t h i s . amount=amount ;

29}

30pub l i c void run (){

31a1 . t r a n s f e r (a2 , amount) ;

32}}

33

34c l a s s C2S Trans fe r implements Runnable {

35p r i va t e Account a1 , a2 ;

36p r i va t e i n t amount ;

37pub l i c C2S Trans fe r (Account a1 , Account a2 ,i n t amount){

38t h i s . a1=a1 ;

39t h i s . a2=a2 ;

40t h i s . amount=amount ;

41}

42pub l i c void run (){

43boolean s u c c e s s f u l = f a l s e ;

75

44whi le (! s u c c e s s f u l){

45t r y {

46a1 . t r a n s f e r (a2 , amount) ;

47s u c c e s s f u l = t rue ;

48} catch (DeadLock e) {

49System . ou t . p r i n t l n (‘ ‘ Caught an e x c e p t i o n ! ’ ’) ;

50a1 . r e l e a s e () ;

51synchron ized (c l i e n t s . l ock) {

52c l i e n t s . r e s o l v e d ++;

53c l i e n t s . l ock . n o t i f y () ;

54}

55t r y {Thread . s l e e p (200) ;} catch (Excep t ion ee){}

56}}}}

57pub l i c c l a s s c l i e n t s{

58s t a t i c f i n a l i n t N TEL = 2 ;

59s t a t i c Thread [] c l i e n t s t h r e a d s = new Thread [NTEL] ;

60s t a t i c DeadLock [] c u r r e n t D e a d l o c k s =new DeadLock [NTEL] ;

61s t a t i c i n t r e s o l v e d = 0 ;

62s t a t i c Objec t lock = new Objec t () ;

63p r i va t e i n t i d = 0 ;

64pub l i c c l i e n t s (i n t i d) { t h i s . i d = i d ;}

65pub l i c s t a t i c void main (S t r i n g [] a r gs) throws Excep t ion {

66i n t num be r o f de a d l oc ks = 0 ;

67Account sa = new Account (1500 , ‘ ‘ s a v i ng ’ ’) ;

68Account ch = new Account (1000 , ‘ ‘ check ing ’ ’) ;

69i n t s2c = 500;

70i n t c2s = 600;

71S2C Trans fe r t r a n s1 = new S2C Trans fe r (sa , ch , s2c) ;

72C2S Trans fe r t r a n s2 = new C2S Trans fe r (ch , sa , c2s) ;

73c l i e n t s t h r e a d s [0]=new Thread (t r a n s2 , ‘ ‘ C2S ’ ’) ;

76

74c l i e n t s t h r e a d s [1]=new Thread (t r a n s1 , ‘ ‘ S2C ’ ’) ;

75c l i e n t s t h r e a d s [0] . s t a r t () ;

76c l i e n t s t h r e a d s [1] . s t a r t () ;

77

78Thread . c u r r e n t T h r e a d () . s e t P r i o r i t y (Thread . MAXPRIORITY) ;

79i n t d e a d l o c k e d t h r e a d s = 0 ;

80boolean con t = t rue ;

81whi le (con t) {

82t r y {

83Thread . s l e e p (5000) ;

84} catch (I n t e r r u p t e d E x c e p t i o n e){

85coun t =f a l s e ;

86}

87

88/∗ A c qu i r i ng t he l oc k r e s ou r c e . l t o p r o t e c t WFG,

e x p l o i t i n g a O(n) c y c l e d e t e c t i o n method t o f i n d

dead locks , s e t t i n g num be ro f de ad l oc k s t o be t he

number o f de ad l oc k s found , c o n s t r u c t i n g e x c e p t i o n s

f o r t he found dead locks , and s t o r i n g t he e x c e p t i o n s

i n t he ar ray : c u r r e n t D e ad l oc k s . D e t a i l s o m i t t e d∗ /

89

90/ /

91/ / Fo l l ow ing code s e r v e s as a dead lock r e s o l v e r

92/ / pe r fo rm ing dead lock d e l e g a t i o n

93/ /

94i f (num be r o f de a d l oc ks> 0) {

95f o r (i n t i =0; i <num be r o f de a d l oc ks ; i ++) {

96DeadLock e= c u r r e n t D e a d l o c k s [i] ;

97e . D e a d l oc kP r i n t () ;

98f o r (i n t j =0; j <e . s i z e ; j ++)

77

99i f (e . w a i t e r s [j] . getName () . e q u a l s (‘ ‘ C2S ’ ’)){

100e . r e s o u r c e sw a i t i n g [j] . se tThrower (e . w a i t e r s [

j] , e) ;

101break ;

102}}}

103i f (num be r o f de a d l oc ks >0) {

104synchron ized (l ock) {

105whi le (r e s o l v e d < num be r o f de a d l oc ks)

106l ock . wa i t () ;

107r e s o l v e d = 0 ;

108}}}}}

78

References

[1] Rakesh Agrawal, Michael J. Carey, and David J. DeWitt. Deadlock detection is cheap.
SIGMOD Rec., 13(2):19–34, 1983.

[2] C. Artho. Finding faults in multi-threaded programs. Master’s thesis, Institute of Com-
puter Systems, Federal Institute of Technology, Zurich/Austin, 2001.

[3] William M. Bolstad. Introduction to Bayesian Statistics. John Wiley, 2004.

[4] George Candea and Armando Fox. Recursive restartability: Turning the reboot sledge-
hammer into a scalpel. InHOTOS ’01: Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems, page 125, Washington, DC, USA, 2001. IEEE Computer
Society.

[5] George Casella and Roger L. Berger, editors.Statistical Inference. Duxbury Press, CA,
USA, 1990.

[6] K.M. Chandy. A survey of analytic models of roll-back andrecovery strategies.IEEE
Computer, 8(5):40–47, May 1975.

[7] Ing-Ray Chen. Stochastic Petri net analysis of deadlockdetection algorithms in trans-
action database systems with dynamic locking.The Computer Journal, 38(9):717–733,
September 1995.

[8] W. N. Chin. Some comments on “deadlock detection is cheap” in SIGMOD record Jan.
83. SIGMOD Rec., 14(1):61–63, 1983.

[9] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for web crawlers.
ACM Trans. Database Syst., 28(4):390–426, 2003.

[10] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Comput. Surv.,
3(2):67–78, 1971.

[11] Flaviu Cristian. Exception handling and software fault tolerance.IEEE Trans. Comput-
ers, 31(6):531–540, 1982.

[12] J. Rodrigues Dias. New approximate solutions per unit of time for periodically checked
systems with different lifetime distributions.Journal of Applied Mathematics and Deci-
sion Sciences, 2006:Article ID 34506, 11 pages, 2006. doi:10.1155/JAMDS/2006/34506.

[13] Edsger W. Dijkstra. Co-operating sequential processes. In Programming Languages,
pages 43–112. F. Grnuys, Ed., Academic Press, New York, NY, USA, 1968.

[14] Edsger W. Dijkstra. Hierarchical ordering of sequential processes.Acta Inf., 1:115–138,
1971.

79

[15] Edsger W. Dijkstra. Two starvation-free solutions of ageneral exclusion problem. Circu-
lated privately, 1977.

[16] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata. Extended static
checking for Java. InProc. PLDI, 2002.

[17] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software engineering.
Computer, 20(4):10–19, 1987.

[18] Erol Gelenbe and Marisela Hernández. Optimum checkpoints with age dependent fail-
ures.Acta Informatica, 27(6):519–531, May 1990.

[19] John B. Goodenough. Exception handling: issues and a proposed notation.Commun.
ACM, 18(12):683–696, 1975.

[20] Jim Gray. Why do computers stop and what can be done aboutit? In Symposium on
Reliability in Distributed Software and Database Systems, pages 3–12, 1986.

[21] Richard C. Holt. Some deadlock properties of computer systems. ACM Comput. Surv.,
4(3):179–196, 1972.

[22] David Hovemeyer and William Pugh. Finding bugs is easy.SIGPLAN Not., 39(12):92–
106, 2004.

[23] Leslie Pack Kaelbling, Michael L. Littman, and AnthonyR. Cassandra. Planning and
acting in partially observable stochastic domains.Artificial Intelligence, 101(1–2):99–
134, 1998.

[24] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement learn-
ing: A survey.Journal of Artificial Intelligence Research, 4:237–285, 1996.

[25] Edgar Knapp. Deadlock detection in distributed databases. ACM Comput. Surv.,
19(4):303–328, 1987.

[26] Phil Koopman. Elements of the self-healing system problem space. InWorkshop on
Architecting Dependable Systems / WADS03, May 2003.

[27] Butler W. Lampson and David D. Redell. Experience with processes and monitors in
Mesa.Commun. ACM, 23(2):105–117, 1980.

[28] Doug Lea.Concurrent Programming in Java: Design Principles and Pattern. Addison-
Wesley, Reading, Mass., 1997.

[29] Gertrude Neuman Levine. Defining deadlock.SIGOPS Oper. Syst. Rev., 37(1):54–64,
2003.

[30] Gertrude Neuman Levine. The classification of deadlockprevention and avoidance is
erroneous.SIGOPS Oper. Syst. Rev., 39(2):47–50, 2005.

[31] Sheng Liang and Deepa Viswanathan. Comprehensive profiling support in the Java vir-
tual machine. In5th USENIX Conference on Object-Oriented Technologies andSystems
(COOTS ’99), pages 229–240, 1999.

80

[32] Yibei Ling, Shigang Chen, and Cho-Yu Jason Chiang. On optimal deadlock detection
scheduling.IEEE Transations On Computers, 55(9):1178–1187, September 2006.

[33] Yibei Ling, Jie Mi, and Xiaola Lin. A variational calculus approach to optimal checkpoint
placement.IEEE Transations On Computers, 50(7):699–708, July 2001.

[34] Hanan Luss and Zvi Kander. Inspection policies when duration of checkings is non-
negligible. Operational Research Quarterly (1970-1977), 25(2):299–309, Jun., 1974.

[35] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and infinite-horizon partially observable Markovdecision problems. InAAAI
’99, pages 541–548, Menlo Park, CA, USA, 1999.

[36] J. F. Meyer. Performability evaluation: where it is andwhat lies ahead. InIPDS ’95:
Proceedings of the International Computer Performance andDependability Symposium,
pages 334–343, Washington, DC, USA, 1995. IEEE Computer Society.

[37] Ali Mili. Towards a theory of forward error recovery. IEEE Trans. Softw. Eng.,
11(8):735–748, 1985.

[38] K.E. Murphy, C.M. Carter, and S.O. Brown. The exponential distribution: the good, the
bad and the ugly. a practical guide to its implementation. InProceedings of Reliability
and Maintainability Symposium, pages 550–555, 2002.

[39] T. Nakagawa and K. Yasui. Approximate calculation of optimal inspection times.The
Journal of the Operational Research Society, 31(9):851–853, Sep., 1980.

[40] R.E.Barlow, L.C.Hunter, and F.Proschan. Optimum checking procedures.Journal of
Society for industrial and Applied Mathematics, 11(4):1078–1095, 1963.

[41] Barbara G. Ryder, Mary Lou Soffa, and Margaret Burnett.The impact of software engi-
neering research on modern progamming languages.ACM Trans. Softw. Eng. Methodol.,
14(4):431–477, 2005.

[42] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An Introduction. The
MIT Press, 1998.

[43] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Coordinated forward error re-
covery for composite web services. InProceedings of the 22nd Symposium on Reliable
Distributed Systems (SRDS), pages 167–176, Florence, Italy, 2003.

[44] A.P.A. van Moorsel and K. Wolter. Analysis of restart mechanisms in software systems.
IEEE Transactions on Software Engineering, 32(8):547–558, August 2006.

[45] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–
292, 1992.

[46] Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Preemption-based avoidance
of priority inversion for Java. InICPP ’04: Proceedings of the 2004 International Con-
ference on Parallel Processing (ICPP’04), pages 529–538, Washington, DC, USA, 2004.
IEEE Computer Society.

[47] Amy Williams, William Thies, and Michael D. Ernst. Static deadlock detection for Java
libraries. InECOOP 2005, July 2005.

81

[48] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee, Jinpyo
Park, Yoo C. Chung, Suhyun Kim, Kemal Ebcioglu, and Erik Altman. Latte: A Java VM
Just-in-Time Compiler with Fast and Efficient Register Allocation. In1999 International
Conference on Parallel Architectures and Compilation Techniques (PACT’99), October
1999.

[49] John W. Young. A first order approximation to the optimumcheckpoint interval.Com-
mun. ACM, 17(9):530–531, 1974.

[50] Fancong Zeng. Exploiting runtime exceptions and static analyses to detect deadlock in
multithreaded Java programs.Ph.D. qualification talk presented at Department of Com-
puter Science at Rutgers university, August 2002.

[51] Fancong Zeng. Deadlock resolution via exceptions for dependable Java applications.
In Proceedings of the International Conference on DependableSystems and Networks
(DSN’03), June 2003.

[52] Fancong Zeng and Michael L. Littman. A decision-theoretic approach to scheduling
deadlock detection for Java.DCS-TR-592, December 2005.

82

Curriculum Vita

EDUCATIONAL EXPERIENCES:

09/1999–present Ph.D. Candidate
Department of Computer Science
Rutgers University (thesis advisor: Michael L. Littman)

09/1998–05/1999 Ph.D. Student
Department of Computer Science
Florida International University

09/1996–07/1998 Teaching Assistant/Instructor
Department of Computer Science
Nanjing University

09/1993–07/1996 M.S. Student (M.S. in Computer Science, 1996)
Department of Computer Science
Nanjing University

09/1989–07/1993 B.S. Student (B.S. in Computer Science, 1993)
Special Class for Gifted Young
Nanjing University

SELECTED PUBLICATIONS:

1. Fancong Zeng and Michael L. Littman: ”A Decision-theoretic Approach to Scheduling
Deadlock Detection for Java”, DCS-TR-592, Rutgers University (2005)

2. Fancong Zeng: ”Deadlock Resolution via Exceptions for Dependable Java Applica-
tions”, DSN 2003: 731-740 (2003)

3. Xudong He, Fancong Zeng, and Yi Deng: ”Specifying Software Architectural Connec-
tors in SAM”, SEKE99: 144-151 (1999)

4. Manwu Xu, Jianfeng Lu, Fancong Zeng, and Jingwen Dai: ”Agent Language NUML
and Its Reduction Implementation Model Based on HOpi”, SIGPLAN Notices 29(5): 41-48
(1994)

