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ABSTRACT OF THE DISSERTATION

Just-in-time and Just-in-place
Deadlock Resolution

by Fancong Zeng

Dissertation Director: Prof. Michael L. Littman

Deadlocked threads cannot make further progress, anddindgdie up resources requested
by still other threads, causing more and more threads to ¢toraetandstill. Thus, a deadlock
should not remain undetected and uncorrected for a long tindeadlock-detection processes
are run too frequently, however, valuable system resoumtas be wasted. Therefore, it is
important to choose the right interval between successaglldck detections.

Deadlock recovery must follow deadlock detection to redelasld resources in the cyclic
wait. In addition to restarting the entire system, it is dasie that programmers be able to
implement fine-grained recovery actions such as releasiegaarce currently not in use. Such
fine-grained recovery actions often require the knowledgeragram contexts and deadlock
states. Unfortunately, modern programming languagesléaakuage-level support for signal-
ing deadlock conditions and for structuring resolutionezod

My thesis is that, under the assumption that the time to tis¢ dieadlock in the system
(after a system restart) follows an exponential distriimytia reinforcement-learning approach
is effective in scheduling deadlock detection for a restaignted system, and that runtime ex-
ceptions are a programming abstraction that allows progrars to write fine-grained deadlock
recovery code.

My approach to deadlock-detection scheduling as reinfoerg learning estimates the



deadlock rate and then performs an optimization to find theatien interval that maximizes
system utility. It is theoretically proved that this techue finds the best tradeoff, and experi-
mental results suggest that it is a reasonable approximagiassume that the time to the first
deadlock in the system (after a system restart) follows @omential distribution.

It is natural to consider deadlock occurrences as runtimepions because at runtime it is
relatively easy to detect actual deadlock occurrences;iwigpresent not only abnormal states
but also fatal errors. Thus, exception handlers can be usegsblve deadlock occurrences
based on deadlock states and program contexts. Furtherbem@use exceptions are a widely
used language concept, the technique of deadlock resolui#oexceptions is intuitive and

practical.
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Chapter 1

Introduction

1.1 Whatis deadlock?

Deadlock, or “Deadly Embrace” as it was called by Dijkstra][has been widely studied since
the mid 1960s. A collection of tasks become deadlocked wiendre involved in a cyclic wait
for resources. Deadlocks occur in many different applicetisuch as computer systems, com-
munication networks, and databases. The well-known dipimitpsophers problem [14, 15],
introduced by Dijktra, has been widely used to illustratadlecks. Levine gave an insightful
definition of deadlocks [29].

There are four necessary conditions for deadlock to exist they are also sufficient if all

resources are Unique.

1. “Tasks claim exclusive control of the resources they ireg{imutual exclusion’ condi-

tion)” [10].

2. “Tasks hold resources already allocated to them whileingafor additional resources

(‘wait for’ condition)” [10].

3. “Resources cannot be forcibly removed from the tasksihglthem until the resources

are used to completion (‘no preemption’ condition)” [10].

4. “A circular chain of tasks exists, such that each task$olie or more resources that are

being requested by the next task in the chain (‘circular’weaitdition)” [10].

In this dissertation, | consider deadlocks in centralizggtesms with reusable and unique
resources based on the one-resource deadlock model [25jdh & task can have at most one
outstanding request at one time and blocks until the regdessource is granted. As a practical

example, a deadlock in a centralized Java system occurs ‘twker more threads block each



other in a vicious cycle while trying to access synchromiratocks needed to continue their

activities” [28]. In this example, tasks are threads, arsdbueces are locks.

1.2 A deadlock example in Java

Listing 1.1 shows a simple deadlocked Java program. Thigrano simulates money transfer
between accounts. There are two accounts and two threadheRoansfer to begin, each of the
two threads has to acquire the locks for both accounts. Ipiihgram showed in Listing 1.1, a
deadlock occurs when each thread holds one lock after érgc¢siynchronized (Accounts|f])”

ands waits for the other lock at “synchronized (Accounys|[i]

Listing 1.1: A simple deadlockable Java program

import java.util.Random;
public class Transfer {
public static final int NumberOfAccounts = 2;
public static final int InitialFund = 1000;
public static final int MaxFund = 1000000;
public static final int NumberOfThreads = 2;
private static Object[] Accounts =
new Object[NumberOfAccounts];
private static long[] balance =
new long[NumberOfAccounts];
public static void main(String[] a)X
for (int i = 0; i < NumberOfAccounts; i++]
balance[i] = InitialFund;
Accounts[i] = new Object () ;}
for (int i = 0; i < NumberOfThreads; i++)
TransferThread trans =mew TransferThread () ;
new Thread (trans).start();

1

public static boolean doTransfer (nt f, int t, int a){



synchronized(Accounts[f]){
synchronized(Accounts[t]){
if (balance[f]< a){
System.out. println(‘‘Transaction Aborted:
insufficient funds.'’);
return false; }
if ((balance[t] + a)> MaxFund){
System.out. printiln(‘‘Transaction Aborted: too
much funds.’'’);
return false; }
balance[f] —= a;
balance[t] += a;
System.out. println(‘‘Transaction Completed:
T+ f o+ 't to

transferred "'+ a + ‘‘ dollars from

ot

13

return true ;

}

public static class TransferThreadimplements Runnablg
public synchronized void run (){
while (true){
int fund =
Math . abs fiew Random () . nextint () )% InitialFund;
int source =
Math . abs fiew Random() . nextlint () )% NumberOfAccounts;
int dest = 0;
do {
dest = Math.absfew Random (). nextint () )%
NumberOfAccounts ;

}while (dest == source);



doTransfer (source , dest, fund);

1333

1.3 Accomodating deadlocks in production systems

Due to the state-explosion problem, it is inherently diffido not introduce deadlocks into
system design and implementation, Actually, deadlocksaasell-known multithreaded pro-
gramming fault despite various traditional debugging astiig tools.

These traditional tools require executing the programeuimbestigation. Recently a few
research groups have developed a number of tools tryinglpofimel deadlocks in programs

without actually executing these programs. Three examyflesch tools are:

1. ESC/JavaThis tool uses a theorem prover to verify that code matchesif§gations.
Generally programmers supply specifications in terms obtations to the source code.
In some cases, programmers do not need to specify annatativh ESC/Java checks

some default properties like deadlocks [16].

2. JLint This tool operates on bytecode and exploits inter-proaddiataflow analysis and
some syntactical checks to find bugs and coding pitfalls.ahtiqular, Jlint builds a lock

graph and signals deadlock warnings if there is a cycle igthph [2].

3. FindBugs This tool works at the bytecode level and relies on bug padtar find bugs. It
favors efficient analyses, so it does not use expensive pnteedural dataflow analyses.

Consequently, FindBugs does not report deadlocks eftdgtj22].

Suppose the three tools are applied to the sample prograistind-1.1. FindBugs does not
have expensive analyses to support static deadlock detest it cannot detect the deadlock
in the program. On the other hand, JLint and ESC/Java repuoré svarnings for this deadlock.

If the “if (balance[f] < a)” block were moved to the place between the two synchrdnize
statements, there would still be a deadlock problem in tlge cout in this case Jlint would not

report a warning. This example is an instance of a false ivegat



If the doTransfer method were synchronized, then there dvoat be any deadlock prob-
lem. But, in this case, both Jlint and ESC/Java would stjlore a deadlock warning. This
example shows that false positives are also possible.

The above example illustrates that static bug-finding towds be helpful, but they suffer
from false alarms, false negatives, or both, in particulaemthey are used for large programs.
Actually, without the aid of annotations, ESC/Java ofteadpices too many false positives
of deadlocks so that by default it does not report deadloctiwgs. | turned on the flag to
have ESC/Java report deadlock warnings for the sample gorogy create the example above.
Furthermore, there is a huge amount of legacy code that mdiggmlock and that may not be
ready for debugging or even inspection. In addition, atim@f an application may dynamically
load code from the network that may deadlock. So, in pradkiese tools are also no “silver-

bullet” [17] for guaranteeing deadlock-free code.

1.4 Runtime approaches for handling deadlocks

Traditionally speaking, basic runtime approaches for hagdieadlocks include prevention,
avoidance, and detection and recovery. The approach oftinggane or more of the four
necessary conditions is referred to as deadlock preventioiess it aims to avoid deadlocks
by exploiting tasks’ future resource requirements and imgvia runtime testing) that each
resource allocation leads to a safe state, in which therairenat least one way for all tasks to
accomplish execution. Levine [30] pointed out that “thesslfication of deadlock prevention
and avoidance is erroneous” because deadlock avoidareeedsites a necessary condition.
Deadlock instances can be detected by checking the waitfationship between tasks; after
deadlocks are detected, recovery actions are performedng the system back to a working

state.

1.5 Resource Allocation Graph and Wait-For Graph

A Resource Allocation Graph (RAG), also known as a reuseddeurce graph [21], charac-
terizes the runtime relationship between tasks and ressus RAG’s nodes are partitioned

into the set of tasks and the set of resources. Edges direct@dresource nodes are called



The lock for Account 2

Thread 1 Thread 2

The lock for Account 1

Figure 1.1: A RAG (Resource Allocation Graph) example foeadlocked threads and 2 locks

assignment edges, and edges directed from task nodes ke remjuest edges. Specifically,
there is a directed edge from taisko resource; iff ¢; is requesting-;; there is a directed edge
from resource-,, to taske, iff ¢, is holdingr,,.

In the case of reusable and unique resources, a RAG can beetkttua Wait-For Graph
(WFG) [1], which describes the wait-for relationship betneasks. Specifically, a WFG is
a directed graph, where nodes are tasks, and a directed ragd>fto Q, denoted as a wait-
for edge, means that P is waiting for a resource currentlgt bglQ. So, the reduction from
a RAG to the corresponding WFG in the case of reusable anduemgsources is to take
out the resource nodes and to collapse the request and mssigedges into wait-for edges.
The resulting WFG is always smaller than the RAG. Howeveg, ridduction does not lose
informationthat is needed for deadlock detection

Suppose that, in the simple deadlockable Java program amshoListing 1.1, Thread
1 and Thread 2 become deadlocked because Thread 1 (respadT2y holds the lock for
Account 1 (resp. Account 2) while waiting for the lock for Aamt 2 (resp., Account 1). The

corresponding RAG is shown in Figure 1.1, and the correspgn@/FG is shown in Figure 1.2.

1.6 Deadlock detection via cycle checking

In the case of reusable and unique resources, a cycle in ti@ ig/both sufficient and neces-

sary for a deadlock assuming the other three conditionsfeemption”, “mutual exclusion”,



e

Thread 1 Thread 2

Figure 1.2: A WFG (Wait-For Graph) example for 2 deadlocka@ads and 2 locks

and “wait for”) are operative. Deadlock detection in thisggirtation work is performed by
dynamically building a WFG (based on the runtime relatigmdetween resources and tasks
in the program) and checking for cycles in the WFG.

It is not a new idea to find deadlocks by checking for cyclehmWFG. Actually, more
than twenty years ago, Agrawal et al. [1] and Chin [8] showwd,tfor the deadlock model in
this dissertation, the complexity of deadlock detectianaycle checking in the WFG i8(n),
wheren is the number of tasks in the current system, no matter whdttection is continuous
or periodic.

Continuous detection and periodic detection are two flawbdeadlock detection schedul-
ing. In continuous detection, deadlocks are checked wlegrav edge is added to the WFG
graph. In periodic detection, deadlocks are checked piedthg either due to some timer time-
out or after a certain number of edges are added to the WF@&G.grap

The contribution of this dissertation is not a new deadldetection algorithm. Rather, this
dissertation is focused on two emerging research topiceauldck detection and recovery.
As described in the next 2 sections, onadéheduling deadlock detection to maximize system
performability the other igoroviding a programming abstraction for programmers toake

deadlocks

1.7 Just-in-time deadlock detection

Deadlock detection is associated with a performance oaethéf deadlock detection is in-
voked too often, the overall detection overhead may signifly impact the normal system
performance. On the other hand, if the interval between trsecutive deadlock-detection

invocations is too large, then a potential deadlock ocouedeft undetected for a long time



also may hurt the system performance dramatically.

Reinforcement learning is “learning what to do—how to mapadions to actions—so as to
maximize a numerical reward signal” [42]. In other worddnfercement learning allows a
software agent to keep learning and adjusting its behavsed on feedback from the envi-
ronment as time goes by in order to maximizes some well-dgfie@ard. No human domain
expert is really needed in this automated learning scheme.

Thus, in order to maximize the “performability” (perfornw@mand reliability) [36] of long-
running server applications, it is a nice fit to cast the optitheadlock-detection frequency
problem as reinforcement learning.

As stated elsewhere [24], in a standard reinforcementilegrmodel, a learning agent

interacts with its environment via action and perceptiohe Thodel consists of
1. aset of environment statés
2. aset of actions!;
3. aset of scalar reinforcement signals.
4. an input function/ describing how the agent views the environment state.

Assuming total observability] is the identity function. At each timg the learning agent
perceives its state; in S and chooses an action if(s;). It will receive a rewardr;,; and
perceive a new statg. ;. Based on these interactions, the learning agent mustajeaqiolicy
P, which maps states to actions to maximize some long-ternsuneaf rewards.

In the deadlock-detection-scheduling setting, since #abbck time itself is not observ-
able to the agent] would not be the identity function. Planning and learningsirch partial
observable domains is notoriously difficult [23]. In Chap2el detail how to establish a para-
metric utility-centric model for deadlock detection andaeery and how to solve the model to

maximize the expected utility.

1.8 Just-in-place deadlock recovery

Once a deadlock is detected, one or more of the four necessagjtions have to be invalidated

in order to resolve the deadlock. Recovery actions inclillegan offending task, preempting



a resource, releasing a resource currently not in usengoltiack to a checkpoint, and even
simply restarting the entire system, among many otherstdhaepends on program semantics
and runtime states to determine a fine-grained recovergrattiat best resolves the current
deadlock. Moreover, it is important to enable programmersriplement the (fine-grained)
recovery actions they have picked up and to incorporatatipéeimentation into their programs
effortlessly.

Goodenough [19] stated that exceptions and exception imgnaie needed “in general as
a means of conveniently interleaving actions belongingifferént levels of abstractions.” In
programming languages, exceptions are features thatitf@dlie programmer the capability
to specify what should happen when unusual execution dondibccur, albeit infrequently”
[41].

Because deadlocks are not only abnormal events but alsgetfatal errors, it is natural
to consider deadlocks as exceptions and to exploit exeepiémdling to resolve deadlocks.
Furthermore, because exceptions are a widely used langaagept, the technique of dead-
lock resolution via exceptions is intuitive (to learn) tewmnd is appropriate for real-life large
programs. In the dissertation, runtime exceptions are el@fand implemented to help pro-
grammers resolve deadlocks [51]. In Chapter 4, | describethalefine, implement and use

deadlock exceptions.

1.9 Outline

The rest of the dissertation is organized as follows: Chapttiscusses and compares related
work. Chapter 3 details the approach of formulating deddltmtection scheduling as rein-
forcement learning. Chapter 4 presents and discusses pheagh of deadlock resolution via
exceptions. Chapter 5 concludes the dissertation. Chéptazriudes as the Appendices the

code listings used for the dissertation.
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Chapter 2
Related Work

In this chapter, | compare and discuss related work in var&eas.

2.1 Unspecified failure rate

More than 40 years ago, Barlow et al. [40] initially presentiee problem of finding optimal
inspection policies that minimize the expected cost urfdlilare is detected. Since then, a few
researchers have devised new models based on differembptésns and/or object functions,
assumed a specification of the failure distribution shapedgparameters, and proposed various
approximation algorithms [34, 39, 12].

| assume that the time to the first deadlock follows an exptialedistribution, but | do
not require a specification of the deadlock rate. Rathemimdissertation, | discuss an on-
line reinforcement-learning algorithm that keeps leagrime deadlock rate and calculating the
detection intervals so as to maximize the system perforihabi

Performability is “performance and reliability” [36]. Rébrcement learning is “learning
what to do—how to map situations to actions—so as to maximinemerical reward signal’
[42]. In other words, reinforcement learning allows a safitev agent to keep learning and
adjusting its behavior based on feedback from the environras time goes by in order to
maximize some well-defined reward. Thus, in order to maxéniie performability of long-
running server applications, it is a nice fit to formulate ¢tiptimal deadlock-detection-interval

problem as a reinforcement-learning problem.
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2.2 Learning and estimation techniques

The deadlock-detection-scheduling problem is a specis¢ @ a continuous-time partially
observable Markov decision process (POMDP) problem. Whiteknown that discrete-state
POMDP problems are difficult or impossible to solve in the starase [35], computational
approaches have been proposed and applied [23]. The evenamallenging continuous-time
POMDPs have received almost no attention from computdtgigat all.

Q-learning [45] is a general model-free reinforcementdaa algorithm. It does not
directly handle the partial observability problem, whicha key element of the deadlock-
detection scheduling problem: The system may have alreeagidcked but until the detection
is performed, this information is not available to the dieciamaker.

Bayesian inference [3] is also used for parameter estimatigeliability analysis. When
using Bayesian inference, people need to define the pritiildison of the parameter to be
estimated and often have to transform the original estongpiroblem into a simpler one in
order to avoid complex computations. Without exploitingyBsian inference, | directly solve

the formulated problem without assuming any range of thema distribution.

2.3 Deadlock-detection scheduling

Chen [7] performed a Petri-net-based analysis of deadiet&etion scheduling in centralized
translation database systems with dynamic locking. Spadifji Chen compared periodic de-
tection with continuous detection, and reported: 1) theisted an optimal deadlock detection
time interval for performance maximization; 2) the optirdakdlock-detection interval was a
function of a few parameters such as workloads, transasti®s and locking policies; and 3)
periodic detection was better than continuous detectioarmdeadlocks are rare, although the
performance improvement was often small.

Ling et al. [32] studied scheduling distributed deadloctedgon, and assumed that “dead-
lock formation follows a Poisson process” without perfanmiempirical studies. They aimed
to “schedule deadlock detections so as to minimize the fongmean average cost of dead-
lock handling”, and they devised some formulae relatingdéadlock-formation rate and the

detection-scheduling frequency.
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Java currently does not support continuous deadlock datectMy work is focused on
periodic deadlock-detection scheduling, and | try to maz@ra system’s average productive
time. In particular, | discuss the impact of an undetectetitteek on system productivity rather
than the number and/or sizes of deadlocks that affect deladésolution.

In practice, two (distributed) deadlock occurrences d&el\ito be related. Thus, | use a
more realistic assumption that the time to firet deadlock follows an exponential distribu-
tion. Furthermore, it is difficult to know the deadlock fortiem rate beforehand in practical
applications. So, | propose a reinforcement-learningrélyn that continuously estimates the
exponential distribution rate\] and calculates the scheduling frequencies accordingly.

In addition to performing a simulation study in which expeental data was generated
that closely fits my assumption, | have applied my work in aaJexperiment with a simple
yet sufficiently realistic sample application. The expenihnot only validated that it is a
reasonable approximation that the time tofil&t deadlock follows an exponential distribution
but showed that the algorithm has low overhead and can atiistetection interval for better
system performance in response to the system deadlockibehav

If deadlock rates change over time, my approach can be usginigeonly the most recent

data. Because it learns so quickly, such an approach wikireaccurate.

2.4 Complementary techniques to deadlock exceptions

Williams, Thies, and Ernst [47] exploited static analysefrd Java library deadlocks. Despite
the false positives reported by the static analyses, I\@Bech static analyses [47] help pro-
grammers use deadlock exceptions by letting them focusamr@m points that may deadlock.
lic et al. exploited a roll-back mechanism that allows lotkde transparently preempted
from Java threads [46]. They use this mechanism to avoid tiwgitg-inversion problem.
Priority-inversion happens when a low-priority task hadd®source required by a high-priority
task. In my work, | separate mechanisms from policies: definred exception handlers are
used to resolve deadlocks, signaled as exceptions. Ontibelwnd, it would be interesting to

investigate using exceptions to resolve priority invamsio
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2.5 Extended application scope

A practical solution to the deadlock-detection-schedyfnoblem has an extended application
scope. Failure detection is a key element to success in teegemt “self-healing” tools and
systems area [26]. My approach can be adapted for detedilogels whose distribution can
be approximated by an exponential distribution.

Deadlock resolution via system restarting is investigatdtis dissertation. System restart-
ing has been used in practice to work around Heinsenbugsafithio reclaim stale resources
like leaked memory. Recently, researchers have been lgakio building recursively-restartable
systems [4] and optimizing restart strategies [44]. Thuswkng when to restart is becoming
a core problem in several systems areas.

Checkpointing, a technique for periodically saving enougbrmation so that a task can
be started from the last point at which information was saad been widely used to avoid
restarting a task from the beginning [6]. A few referencethinliterature [33, 18, 49] discuss
optimal checkpoint placement. To the best of my knowledgey &ll assume that failures such
as deadlocks are detected as soon as they occur. My work eatapted to this work to remove
that assumption.

Different polling policies were studied [9] in order to ke¥pesh” local copies of remote
data sources for web search engines. A Poisson process ogspd as the change model of
a data source, and experimental data was used to supporojespl. The learning algorithm
in this paper fits well into learning th¥'s for the Poisson processes, thus potentially making
search engines more responsive.

In summary, a number of related investigations have look&idding optimal detection/in-
spection policies and deadlock recovery techniques, buttitical problems remain unsolved.
Ons is finding the optimal deadlock-detection interval withknowing the deadlock rate be-
forehand assuming the system is restarted as soon as adeidietected; the other is provid-
ing language-level abstractions for authorizing and stinirng fine-grained deadlock resolution

code. These dissertation seeks a solution to these twogongbl
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Chapter 3

Deadlock-Detection Scheduling as Reinforcement Learning

3.1 Overview

In today’s programming practice, multithreaded programaris error prone. Deadlocks are a
well-known multithreaded programming fault. Moreovergda the state-explosion problem, it
is essentially hard to produce deadlock-free code onlysTitis not uncommon for deadlocks
to occur in production systems.

Deadlocked tasks not only cannot make further progress|foifrequently tie up resources
requested by still more threads, causing more and more tasi@ne to a standstill. Thus, a
deadlock should not remain undetected and uncorrected lforgatime. However, deadlock
detection is associated with performance overhead. Ifldeldietection is performed too
frequently, valuable system resources may be wasted.

Therefore, it is important to choose the right interval begw successive deadlock detec-
tions. This chapter [52] provides a decision-theoreticriz®m approach to scheduling deadlock
detection.

Specifically, | learn a utility-based model for deadlock urcence, and solve the model
to maximize the expected utility. The detection intervathe solution depends on the dead-
lock rate, which is normally not in the system specificatiohkowever, | provide a learning
algorithm for estimating the deadlock rate. Thus, the deadtletection scheduling approach
includes an effective method for figuring out the unknowndiieek rate and applies it within
an automated procedure for obtaining the current optimalatien interval.

The rest of the chapter is organized as follows. Section @&&dilates the problem of
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deadlock-detection scheduling. Section 3.3 discusseisshe of reward maximization. Sec-
tion 3.4 details the procedure for estimating the deadlaté. r Section 3.5 presents and dis-
cusses an online algorithm for determining the currennagitidetection frequency. Section 3.6
uses a simulation to investigate the convergence behaktbe@lgorithm. Section 3.7 reports
my empirical findings by applying the algorithm to detectdleaks in a sample Java applica-

tion. Section 3.8 concludes this chapter

3.2 Problem formulation

System restarting has been used in practice to work arouimbétgugs [20] and to reclaim
stale resources like leaked memory. Recently, researdtames been looking into building
recursively-restartable systems [4] and optimizing mestizategies [44]. In this chapter, | fo-
cus on exploiting restarting to resolve deadlocks. In t&layogramming practice, system
restarting is the only working solution for resolving Jawsadlocks involving monitor locks—
Chapter 4 will discuss programming abstractions that enatiier deadlock resolution solu-
tions.

A deadlock detection is associated with cBstand a system restart is associated with cost
R. When the first deadlock is detected, the system is restalneithis chapter, | consider the
initial system start as the first restart.

| assume that the time to the first deadlock follows an expialedistribution; the Java
experiment results in Section 3.7 have been consistentthighstandard statistical modeling
assumption. In the rest of the chapter, | ude denote the hazard function (for the exponential
distribution), that is, the deadlock rate.

| assume deadlocks do not happen during a deadlock deteatidr define the time interval
w that the system waits until the next deadlock detection @sl¢hection interval. In practice,
a system administrator may place both a lower bound and aerupund onw. The lower
boundw; constrains the biggest fraction of cycles that can be dastic® deadlock detection,
and the upper bound,, constrains the worst case of how long a deadlock can go widdtd
assume that any within [w;, w, ] does not essentially affect the deadlock rat¢he system-

restart costR, or the deadlock-detection cobt. Both R and D are defined in terms of time
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units.

| formulate the problem in a reinforcement-learning set{#2] as one of learning to make
decisions to maximize a reward. | consider that the systeepkeeceiving+1 reward (for
doing useful work) when it is deadlock free and it is not doindeadlock detection or system
restart. Because, for any time poigtand intervalt, the probability that the system starting
att, is deadlock free until after time poing + ¢ is e, the reward that the system receives
during the detection intervab is:

r(w) = tioer e At=to)dt = (1 — e )/,

If a deadlock is detected, then a system restart is perfoantamatically. The probability
of a system deadlock within time intervalis 1 —e~**, thus the average reward that the system
receives is:

a(w) = r(w)/(w+ D + (1 — e )R).

| am trying to optimize the average performance within thesends. Thus, the problem
that | want to solve isChoose a detection interval* to maximize:(w*) subject tod < w; <
w* < w, wherew; andw, are constantpotentially defined by a system administrator. | call
this problem theJtility-Maximization Problem

Note that the deadlock-occurrence time point itself is riaepvable to the agent, making
the problem akin to a partially observable Markov decisioocpss [23] in that decisions have
to be made without complete state information. Planning laaching in such domains are
notoriously difficult, but | show that the modeling assurops provide sufficient structure for

creating a practical learning algorithm.

3.3 Utility maximization

The critical parameters describing the system are the delpysed by deadlock detectidn,
the deadlock recovery timg, and the deadlock rat®. In this section, | show how to select
a detection intervalv given D, R, and\ that maximizes the average utilitw). | assume
A > 0andw > 0.

The derivative ofi(w) is a’(w) = h(w)g(w) whereh(w) = e (w+ D) — (1 —e ) /A

andg(w) = 1/(w + D + (1 — e~**)R)2. Note thatvw > 0, g(w) > 0.
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The derivative ofu(w) is b/ (w) = —Xe™**(w + D). Becaus&/w > 0,h'(w) < 0, h(w)
is a strictly decreasing function. Sintien,, .o h(w) = D > 0 andlim,,_, 4 A(w) = —1/A,
h(w) has one and only root, denotedrast. Sincea’(w) = 0iff h(w) = 0, rootis a maximizer
of a(w). Thus,root is the solution to th&Jtility-Maximization Problenif w; < root < w,,. If
w, < root (resp.,w; > root), thenw, (resp.,w;) is the solution to thdJtility-Maximization
Problem

Note thath(w) does not depend oR, meaning that the system restart cost (which is not
affected byw) has no impact on the optimal choicewf Thus, the optimadv only depends on
AandD.

To apply this optimization, it is important to have an acteraodel—values oD and ). It
is straightforward to calculate the average valu®ofia experience with the running system by
simply averaging the times needed for deadlock detectimwener, there is need to estimate

)\, a method for which is described next.

3.4 Lambda estimation

The problem of\ estimation would be simple if we could know when the deadlockurred.
In particular, we could average the time to first deadlocktakd the reciprocal.

In fact, we only observe whether the system has deadlocketbtoby particular time
points—those for which deadlock detection was run. As stiehdeadlock-occurrence time is
only partially observable.

However, it can be estimated in a maximum likelihood senssciibed next.

Consider a series of detection intervalg wo, . .., w;, .. .. The probability that the system
fails within an intervahu; is 1 — e=% i > 0.

For A > 0, define a component of the log-likelihood function as:

—Aw; if no deadlock inw;
fi(A) =

log(1 — e~?"i)  otherwise.
The derivative off;(\) is:

. —w; if no deadlock inw;
fz' (/\) =

e Mi; /(1 — e~ i) otherwise.
The second derivative gf; (1)) is:
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0 if no deadlock inw;
f) =

—e Miw? /(1 — e~ )2 otherwise.
The log-likelihood function of the probability of the obsed data id(\) = ), fi(\). As

is common in machine-learning applications, | seek the mari log-likelihood solution [5].
That is, | am interested in the value dthat makes the observed deadlocks maximally likely.

If there is an interval in which the system deadlocks, andhéfreé is another interval in
which the system does not deadlock, tH&M\) < 0,limy_o (X)) = o0, limy— 100 I'(A) <
0,VA > 0. So, in this casd;(\) has one and only one root, which is the maximizet(af and
the maximum likelihood estimator (MLE) for.

These calculations can be used to select a series of detautiovals by performing dead-
lock detection at the end of each interval, and if a deadledetected, a system restart is also
performed. If, so far, there is an interval during which adleek is detected and an interval
during which no deadlock is detected, the MLE fois obtained by numerically finding the
root of ’(\). If no deadlock has been detected so faf 0. If deadlock is detected at the end
of every interval seen so fak,= +oo.

For time and space efficiency, for a long-running system,rdin® learning algorithm can-
not always use all detection intervals since the first syss@rt. In particular, a numerical
method to solve’(\) has to compute, during every iteratiam,“iw; /(1 — e~?*#) for every
deadlocked interval;. A deadlocked interval is a detection interval during whécleadlock

occurs. | describe in the next section a practical onlineniag algorithm.

3.5 An online learning algorithm

The overall algorithmALG(wy, w;, w,,, k) for estimating\ and computing the optimal detec-

tion interval is as follows:

1. Initialize w to some valuev, betweernw; andw,,.
2. After waiting forw time units, perform deadlock detection.

3. UpdateD, the average deadlock-detection cost over all detectiorfarduring the last

k restarts.
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4. If no deadlocks have been detected so faryset min (2w, w,,) and go to Step 2.

5. If every deadlock detection so far reports a deadlockywset max(w/2,w;) and go to

Step 10.

6. Use the detection intervals during the lasestarts to find the MLE fok by numerically

finding the root of'(\) = >, f/()\), wheref/()\) is defined in Section 3.4.

7. Setw to the root ofh(w) = e~ (w + D) — (1 — e~**)/\ as defined in Section 3.3.
The average deadlock detection céstaind the MLE for\ are used to numerically find

the root ofh(w).
8. If w < wy, setw to wy.
9. If w > w,, setw tow,.
10. If a deadlock is detected, perform a system restart.

11. Goto Step 2.

The optimalw depends o\ and D as does the dynamics of the learning process. Note
that no explicit exploration is performed, nor is any needEldat is,any w used for deadlock
detection provides information about the true valua,alue to the assumption of exponentially
distributed times to the first deadlocks.

The parametek determines an upper bound of the number of detection intensed for
A estimation in practice. However, with= x meaning using all detection intervals thus far, |
show that the algorithPALG(wy, w;, w,,, *) will converge on optimal behavior in the limit.

Proposition Let \; (resp.w;) denote the sequence a6 (resp.ws) computed by the al-
gorithm. The value ofv; converges tav*, which is the solution to th&tility-Maximization
Problem Moreover, ifw* # w; andw* # w,, the value of\; converges to\*, which is the
true constant hazard function.

Proof sketcht Supposew; does not converge t@; or w,. Sincel < w; < w < wy, We
can break up the values fromy to w,, into é-sized blocks for any > 0. For the block from
w to w + 6, look at the set off such thatw < w; < w + 4. If this set is finite, it will not

have an effect on the converged value\gf If it is infinite, then the fraction of deadlock-free
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trials—no deadlock is detected within the correspondinerirals—will be betweea=*"* and
e~A"(wtd) As§ > 0 was arbitrary, this fraction approaches™*, for which \* becomes the
MLE. So, no matter what the sequence of detection intergathé procedure will estimate the
constant hazard function as in the limit. Sincew* is the optimal detection interval fox*,

the procedure will converge to this choice of detectionrirgkas well.

3.6 A simulation study

In this section, | show that the algorithm quickly finds neptimal detection intervals in a
simulation study, and that the initial valug, has little impact on the convergence to near-

optimal detection intervals.

3.6.1 Theoretical optimal values

| generated 500 deadlocks according to an exponentialmison of A\ = 1E£—6 for the sim-
ulation study. Assuming each time unit is one second, deksloccur exponentially with a

mean of 277.8 hours (after each restart). Other parameeeisied in Table 3.1.

D| R | w | wyg |wo]| k
30| 300 | 120 | 10800] 600 | 1000

Table 3.1: Parameters for the simulation study

Given 500 deadlocks in total in the simulation study, pat@mie= 1000 means that, every
time the algorithm estimates)a it uses all detection intervals so far (since the beginifiie
simulation study).

Given the true\ = 1E—6 and other parameters, the theoretical optimal detectitamval
w* = 7736, which corresponds to 2.15 hours. The theoretical pealageereward:(w*) =
99.2%, wherea(w) is defined in Section 3.2. The value &f does not influencev*, but it
affectsa(w*). If R were 300000 in the simulation study, for exampiéy*) would have been
76.47%.

The average detection caBtincludes both the average cost of a single deadlock detectio
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and the average cost of a single execution of the algorithm.alverage cost of a single execu-
tion of the algorithm is considered to be the deadlock-dietescheduler overhead. A constant
D means that the variance of the algorithm overhead is igndredl discuss the algorithm
overhead in detail in Section 3.7.

| define the optimality ratio ag(w) = a(w)/a(w*), and takep(w) > 99.95% as the

definition of near-optimality fokw.
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Figure 3.1: Detection interval versus optimality ratio foe simulation study

Figure 3.1, an inverted U-shaped curve, shows the reldtipimetween the detection inter-
val w (from 1200 to 43200) and the optimality raow).
If w = 1200, simulating a detection interval of 2 hours, the optimal#gio is 98.26%. If

w = 43200, simulating a detection interval of 12 hours, the optinyalétio is98.56%. If w is
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between 5406 and 11069, the optimality ratio is ®&05%.

3.6.2 Lambdas and detection intervals

Table 3.2 shows the simulation results after several deksldrhe fieldDeadlocksandDetec-
tionsin the table represent cumulative data from the beginnintgesimulation. Values and
w in each row are tha and detection intervals estimated/calculated right aftercorrespond-

ing number oDeadlockshave occurred.

Deadlocks| Detections A w
1 7 | 2.897E-05| 1429
3 287 | 2.083E-06| 5356
4 535 | 1.303E-06| 6776
9 860 | 1.759E-06| 5830
10 894 | 1.882E-06| 5636
25 3206 | 1.232E-06| 6969
50 6188 | 1.194E-06| 7078

100 12372 | 1.151E-06| 7211
250 30957 | 1.121E-06| 7307
500 64739 | 1.060E-06| 7515

Table 3.2: Simulation data after varying numbers of deddioc

After 500 deadlocks have occurred, 64739 detections hase performed. The first de-
tection intervalwy = 600 is given/calculated before any detection, and then anviales
calculated after each detection. So, there are 64740 agdcutietection intervals in total.

Figure 3.2 shows the dynamics of the calculated detectitamnvals. As consistent with
mathematical analysis, the figure shows that the calculdé&tection interval size keeps in-
creasing in the absence of a deadlock and that, once a dkamtioars, the next calculated
detection interval size decreases, often noticeably.

After 293 detections have been performed, all calculateection-intervals are near opti-
mal. If the initial wg wasw; = 120 (resp.,w,, = 10800), | find by additional simulations that
there would be 64741 (resp., 64730) detections. Howeverestimated\ after 500 deadlocks
would still be 1.060E-06, the calculatedafter 500 deadlocks would still be 7515, and all cal-
culated intervals after 4 deadlocks would be near optinragdneral, a different initial value

wo Makes a small change to the number of detections, but it dutdsave significant impact
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on the estimated and calculatedv in the long run.
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Figure 3.2: Learning curve for the simulation study (Loged Axes)

Interestingly, the sequence dandw (after 4 deadlocks have occurred) does not maintain a
relative error of no more tham05%. After 500 deadlocks have occurred= 1.060EF — 06 has
a relative error 06%, andw = 7515 has a relative error af%. Recall that the trug¢ = 1E—6
and the theoretical optimal detection intervell = 7736. So, although the simulation study
shows that it takes quite a few failures to estimatier an exponential distribution—a finding
consistent with [38]—the average rewar@v) is at a low level of insensitivity to variations in
A andw.

Therefore, the simulation study suggests that, under thengstion of an exponential dis-

tribution of the time to first deadlocks, the algorithm camfirear-optimatvs quickly in terms
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of the number of detections in the presence of a few deadlocks
In next section, | show 1) The online algorithm has an indigaint overhead with a reason-

ablek; and 2) The online algorithm can compute tiky.

3.7 A Java Experiment

| have implemented the algorithm described in Section 3rigu2SE 5.0. The implementation
contains fewer than 1000 lines of code. | have integratedntipbfementation with an example
Java application, and performed a case study of applyingltdeithm withk = 100 to Java

deadlock detection in a real multithreaded environment.

3.7.1 About Java deadlocks

For software components implemented in Java, a deadlock®eden “two or more threads
block each other in a vicious cycle while trying to accesshyonization locks needed to con-
tinue their activities” [28]. In such a deadlock case, temlesthreads and resources are reusable
locks. Before Java 5.0, Java only provided monitor locksic&iJava 5.0, Java has provided
a package “java.util.concurrent.locks” in addition to ritondeadlocks. | focus the discussion
of this section on monitor locks only. Thus, in the rest oftthapter, a lock means a monitor
lock in Java. Java deadlocks involving only monitor locks ba detected by a Java API: find-
MonitorDeadlockedThreads. In J2SE 5.0, the Java Doc foiMordtorDeadlockedThreads
in ThreadMXBean says: “It might be an expensive operationii any case, all Java threads
should be stalled when deadlock detection is in progressf &adlock detection is performed
too frequently, valuable system resources may be wasted.

Deadlocked threads not only cannot make further progregsalbo frequently tie up re-
sources requested by still more threads, causing more arelthreads to come to a standstill.
Thus, a deadlock should not remain undetected and uncedréot a long time. Java’'s ap-
proach for handling deadlocks is deadlock detection anavesy. J2SE 1.4.1 has introduced a

command-line deadlock-detection utility, and J2SE 5.0dnasided thread-management beans

http://java.sun.com/j2se/1.5.0/docs/api/.
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to facilitate writing customized deadlock-detection itiis. Once deadlocks are detected, re-
covery actions are often required. Java currently does uqmtaat fine-grained deadlock re-
covery actions such as killing an offending thread; the APkitl a thread, Thread.stop(), is
now deprecated and does not always function properly. A ingrkolution to Java deadlock

recovery is to restart the Java Virtual Machine (JVM).

3.7.2 Experiment setup

The machine used to perform the experiment had 2.00 GB of RAd/loae 2.00 GHz proces-
sor. The operating system was Windows XP Professional, Bi2JDK was J2SE 5.0 update
6.

The example application used in the experiment defines tassek: class Account and
class Experiment. The code listing for a simplified versibthe two classes is in the Appen-
dices (Section 6.1 and Section 6.2) at the end of the dissertalass Account has a “transfer”
method to transfer money from one account to the other. Irestames, both accounts need to
be locked for the transfer to be accomplished. When sevaedds are executing the “transfer”
method, it is possible that two threads become deadlockexhwrizing to lock the destination
account while holding the lock of the source account. ClaggeEment defines 2 accounts and
4 threads. The run method of each of the 4 threads executep avith its iteration transfer-
ring some randomly selected amount of money between twerdiit accounts, which are also
randomly selected.

Deadlock detection and recovery is performed by the maiathrwhich has the highest
thread priority. Once a deadlock is found, deadlock regovier system restart is performed to

keep the experiment running until 500 restarts have ocdurre

3.7.3 Experiment parameters and data

wy ‘ Wy, ‘wo‘ k
0.1s| 30min| 15s| 100

Table 3.3: Parameters for the Java experiment



Deadlocks| R (ms) | D (ms)| S (ns)
10| 102.6 13.2| 162162
25| 236.6 17.7| 208827
50| 121.3 15.3| 307462

100 | 133.4 15.6 | 520522
150 | 1185 17.3| 832319
200 | 127.4 18.0| 930881
250 | 162.3 18.7| 922265
300| 149.3 19.0| 918374
400| 178.8 17.5| 910223
500 | 219.5 18.1| 912333

Table 3.4: Detection and recovery costs from the Java expeti

Deadlocks| Detections A w (NS)

1 3| 1.412E-11| 3.217E9
49 | 1.030E-11| 2.021E9
50 | 1.549E-11| 1.636E9
62 | 1.889E-11| 1.411E9
73| 2.217E-11| 1.232E9
82 | 2.548E-11| 1.163E9
88 | 2.906E-11| 1.077E9
100 | 3.159E-11| 1.076E9
101 | 3.560E-11| 1.009E9

O ooNOO|O b~ WN

10 204 | 2.786E-11| 9.697E8
11 273 | 2.550E-11| 1.071E9
25 893 | 2.188E-11| 1.267E9
50 1772 | 2.275E-11| 1.157E9
100 3692 | 2.276E-11| 1.166E9
200 7305 | 2.325E-11| 1.239E9
250 8968 | 2.515E-11| 1.213E9

300 10519| 2.573E-11| 1.210E9
400 14215| 2.272E-11| 1.235E9
500 17352 | 2.753E-11| 1.140E9

Table 3.5: Experimental data after varying numbers of duzkdl
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Table 3.3 lists the parameters used by the algorithm in theraxent. It took about 6 hours
to finish a run of the experiment. Table 3.4 reports the dietecnd recovery costs from the
experiment.

The average cost of deadlock detectidp) (ncludes two items: One is the average cost
of invoking a Java deadlock-detection API, and the othehdsaverage overhead of the algo-
rithm for computing\ andw. The average algorithm overhead is also denoted as thegavera
deadlock-detection scheduler overhe&)l (Note thatS is part of D. The computational cost
in this experiment is measured in terms of nanoseconds.

In the experiment,D (resp.,S) is the average deadlock-detection cost (resp., deadlock-
detection scheduler cost) over all detections so far ingbg:|= 100 restarts. The experiment
finds a sequence of small average deadlock-detectiontdsis not surprising that the cost of
a single detection is small, because the system uses onlgdiJava working threads competing
for 2 Java locks. As shown in Table 3.4 keeps increasing when the number of deadlocks is
no more than 200. When the number of deadlocks is more thanS28Ground 1 ms.

The average scheduler overheads not sensitive to the number of threads or locks, and it
is still relatively small compared to the single detectiastc Moreover, in this experiment and
the simulation study in Section 3.6, a generic bisectiorhatvas used to find the numerical
roots required by Step 6 and Step 7 of the algorithm; the effay of the scheduler could be
further improved with a more customized numerical method.

The restart cosR in this experiment is also small. It includes the cost toasst Java
Virtual Machine (JVM) and the cost to save and fetch a smatham of data—the algorithm
needs some data, whose size is bounded,land the rest of the data is for keeping a record
of the experiment execution. There is no checkpoint for tpegment application. Againk
does not impact the optimal choice of

Table 3.5 shows the experiment results after several dekllorhe fieldDeadlocksand
Detectionsin the table represent cumulative data from the beginningp@fexperiment. Val-
ues)\ andw in each row are the. and detection intervals estimated/calculated right after
corresponding number @eadlockshave occurred.

As the computational cost is measured in terms of nanosecahe algorithm computes

tiny \'s. The experiments involved 17352 detections and endeditipw= 2.753E-11 and
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w=1.140 second.
In the next section, | present a practical approach to etiatythe estimated’s and detec-

tion intervals.

3.7.4 A practical evaluation

After each restart, the online algorithm keeps waiting dreshtdetecting until the first deadlock
occurs. For théth restart, | recorded the start time-paiff) and the end time-poir(i) of the
deadlocked interval, that is, the detection interval inachtthe first deadlock had occurred.

Suppose the algorithm spent detection egst before the deadlocked interval during the
ith restart, the lower bound of thiéh productive time periogh (i) is z(i) = s(i) — ¢(i) and
the upper bound of productive timeg$i) = e(i) — ¢(i). Theith deadlocked interval size is
y(i) — (i) = e(i) — (i).

Due to the JVM thread-scheduling overhead and the Java tMRkmvocation overhead,
the recorded deadlocked interval size is a few millisectéader than the corresponding detection-
interval size calculated by the algorithm.

There are 500 deadlocked intervals; 499 of them are belowe@nsls. As shown in Ta-
ble 3.6, 90% of the deadlocked intervals are below 1247.9Te.largest deadlocked interval
(60006.3 ms) belongs to the first productive time period.

Table 3.6 also shows that the lower bounds on the produdtive period are broader and
larger than the deadlocked interval sizes. For some privdutime periods, the deadlocked
interval is the first detection interval, thus the corregpog lower bounds are 0.

As a consequence of the exponential distribution assumpfiche time to the first dead-
lock, | assume the exact time-point in which the first deakdioccurred during théth system
lifetime follows a uniform distribution on the intervad ¢),e(:)]. For theith restart, the average
productive time period ig(i) = (x(i) + y(i))/2, and the average total lifetime period, assum-
ing a constant detection interval ftime units, isk(w, i) = R-+n(D +w), where the number
of detections: = ([ [2/w]dz)/(y(i) — (i) = w((2y(i)/w — [y(i)/w] + 1)[y(i) /w] -
(2z(i)/w — [2(i)/w] + V[ () /w])/(2y(i) — 22(i)).

Define A(w,m,n) = >" />, k(w,i) to be an empirical estimate of the average
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reward using the productive time periods. Accordingdiav, m,n), once againp affects the
maximal value ofd(w, m, n), but does not affect the value of its maximizer.

Define A(w*(m,n), m,n) to be the peak average reward. P, 1, 500) using the aver-
ageR = 194.3 ms (over the 500 restarts) and the I&st= 18.1 ms, the peak average reward
A(w*(1,500),1,500) = 96.65% for w*(1,500) = 1244 ms.

DefineP(w, m,n) = A(w,m,n)/A(w*(m,n), m,n) to be the estimated optimality ratio.
Figure 3.3, another inverted-U-shaped curve very simiashiape to Figure 3.1, shows the

relationship between the detection interval (from 100 nEX@00 ms) and the optimality ratio.
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Figure 3.3: Detection interval versus optimality ratio foe Java experiment

| take P(w, m,n) > 99.95% as the definition of near optimality fap. If w is notin

[1009,1455], therP(w, 1,500) < 99.95% andw is therefore not near optimal. On the other
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hand,w in [1027,1420] is near optimal becauBgw, 1, 500) > 99.95% for w in [1027,1420].

In fact, the final calculated interval is 1140 ms.

3.7.5 The dynamics of calculated detection intervals

| use the last 250 productive time period ranges to test allB®68 detection intervals used
during the first 250 restarts. Fot(w,251,500) with the averageR = 194.3 ms (over the
500 restarts) and the last = 18.1 ms, the peak average rewaddw* (251, 500), 251, 500) =
96.58% for w*(251,500) = 1152 ms.

If w is notin [997,1454], thenP(w, 251,500) < 99.95%. If w is in [1024,1403], then
P(w,251,500) > 99.95%.

Like Figure 3.2, Figure 3.4 shows that the size of the dairdtiterval calculated right af-
ter a deadlock occurrence drops compared to the previoastitet interval. After the average
detection cosD has been stabilized, detection interval sizes generathease in the absence
of a deadlock occurrence. It takes a few detections to &alithe average detection cdstin
the experiment.

The experimental study uses an algorithm instance with 100. More generally, ifk is
100 x j wherej is a positive integerS will be bounded byj x g whereg is a constant in terms
of time units. In this experiment setting, according to €Bl4,q would be around 1 ms. A
largerk, the average scheduler overhead, would use more deteotemwals for learning, thus
it will estimate A andw with less variance.

However, as consistent with the simulation study, the érpEnt suggests that the algo-
rithm has an insignificant overhead and can find near-optiriglquickly in terms of the
number of detections in the presence of a few deadlocks. ré&igut shows that fof >
232, P(w;,251,500) > 99.95%. That is, after232 detections, all detection intervals calcu-
lated by an algorithm instance with = 100, which has an insignificant overhead, are near
optimal.

| take P(w, m,n) > 99.95% as the definition of near optimality fas; in practice, a system
administrator can redefine near optimality as needed. lségsv@orthwhile to note the following
use scenario. In practice, for the purpose of load balanddauit tolerance, there are often

multiple server-application instances running similadeand balancing workload in a cluster.



31

g 2]
D_
]
LT
L]
L]
_—
— 27
=IRR
= i
z 2
b L]
=
j
§ 8]
T
o
_
_—
g_ o
| o
o "Eni “A_,“_,...
=
L]
o T T T T T
1 10 100 1000 10000
interval index

Figure 3.4: Learning curve for the Java experiment (LogkfLAxes)

In this case, the scheduling algorithm can take (resp. apigliection-intervals from (resp. to)
all running server instances within the cluster, and 4ti# iikely that only a few hundreds of
detections in the presence of a few deadldok®tal are needed for the algorithm to approach

near-optimal detection intervals.

3.8 Summary

In this chapter, | provided a decision-theoretic learnipgraach to scheduling deadlock detec-
tion for Java, described not only a simulation study but alsase study using a simple yet suf-
ficiently realistic Java program, and showed that the amirofddeadlock-detection scheduling

as reinforcement learning would be practical and promifingestart-oriented systems.



Percentage % (i) s | y(i) — (i) ms
0% 0 1025.1
10% 35 1145.7
20% 8.1 1160.3
30% | 14.2 1171.0
40% | 20.4 1190.1
50% | 27.5 1209.7
60% | 38.2 1221.6
70% | 48.7 1230.4
80% | 67.3 1239.1
90% | 96.2 1247.9
100% | 221.6 60006.3
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Table 3.6: Productive time period lower boun() and deadlocked-interval sizgi) — ()
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Chapter 4

Deadlock Resolution via Exceptions

4.1 Overview

Due to the difficulty of the state-explosion problem, it ifiémently hard to find and remove
deadlocks in multithreaded programs. There are some todielp find deadlocks in mul-
tithreaded Java programs, but they are not widely used instngl for various reasons. One
technical reason is that these tools cannot efficiently lealaige real-life programs, which
may dynamically load classes from networks, without getiredoo many spurious warnings.
Moreover, although some of the tools can show in a conseevatay the absence of dead-
locks in some small programs not using certain Java feattiieg cannot be used to certify
large real-life programs for deadlock freedom. Furtheemdris possible to write deadlock-
free code using well-known prevention methods such asHiyneadering resources for unique
resource, but it is not practical to apply these methods tanhcally created resources in real-
life programs. Consequently, it is difficult for programmeo write deadlock-free code only,
and most existing class libraries do not bear a certificatddadlock freedom.

Nowadays when building truly dependable multithreadediegijons, programmers can-
not use or produce code not guaranteed to be deadlock frees, e productivity of de-
pendable applications containing deadlock-free-onlyedsdjuite unsatisfactory. To improve
software productivity and quality, it would be a necessagakthrough to provide a systematic
and programmable approach for incorporating code thattisi@adlock free into dependable
applications. Because at runtime it is relatively easy ttecteactual deadlock occurrences,
which represent not only abnormal states but also fatat®ritds natural to consider deadlock
occurrences as runtime exceptions. Thus, exception haraisociated to deadlock-able code

can be exploited to resolve potential deadlock occurredueag the execution of code.
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In addition, because exceptions are a widely understoalibage construct supporting for-
ward recovery [37, 43, 11], the approach of deadlock remwiutia exceptions is intuitive for
programmers (to learn) to use and is appropriate for réalldirge programs. Furthermore,
exception objects contain rich and useful information altoel deadlock occurrences, and the
exception handlers can access local program states. Heugpproach allow programmers to
select and implement suitable fine-grained resolutioroasti

This chapter [50, 51] describes an approach of deadlockutiso via exceptions. The
approach is not restricted to Java. Rather, it applies topaogramming language that sup-
ports both exceptions and multi-threading. However, faspntation purposes, | use Java as
the programming language to discuss the design, imple@mtand application of deadlock
exceptions.

The rest of this chapter is organized as follows. Sectiondéstribes an approach to rep-
resenting deadlocks as exceptions and discusses two tiydeadiock-exception handlers. In
Section 4.3, | restrict resources to monitor locks and amaty JVM-based implementation of
deadlock exceptions and their handlers. In Section 4.4cudmn user-defined resources and
exploit a class library to implement deadlock exceptiors their handlers. Section 4.5 further
illustrates the utility of the deadlock exceptions and itheindlers in programming practice.

Section 4.6 concludes this chapter.

4.2 Design

| first briefly introduce exception handling in Java, thensgre a design for encoding various

deadlock states into exceptions, and then discuss two bffiemdlers for deadlock exceptions.

4.2.1 Exception handling in Java

As part of its runtime support, Java provides an exceptamdling mechanism to help pro-
grammers write reliable and robust programs in a structargtcontrolled manner.

Java exceptions are first-class objects representingnranrgirors, and they contain rich
information about the exception state for the sake of exgeftandling. Like other types of

objects, exceptions can be created, passed to methodswsesnty, and garbage collected.
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Unlike other types of objects, exceptions can be thrown bgvitstatements in program code
or by the JVM.

When exceptions are thrown, they are passed to their handher closest dynamically en-
closing catch clauses that can handle the thrown exceptinitess the handlers are unavailable.
Catch clauses are associated to “try blocks”, which reptesede that needs to be protected
against exceptions. There can be several catch clausegrpbbock, as long as they catch
different types of exceptions.

Upon receiving an exception object, an exception handlginsdo execute. If there is not
an exception handler for an exception, the uncaughtE>aeptiethod of this thread’s Uncaugh-
tExceptionHandler is invoked. If this thread does not havé&JacaughtExceptionHandler, its
ThreadGroup object is considered as its UncaughtExcetindler.

Programmers can define their own exception classes by émtetite existing exception
hierarchy. Java exceptions are objects of the predefined Tlarowable or its subclasses. Run-
timeException is a subclass of Throwable. Deadlock exopptare defined as new subclasses

of RuntimeException.

4.2.2 A base class for deadlock exceptions

After a deadlock is detected, it is represented and signiayedn exception. An exception
for representing a deadlock should contain rich and helpfifbrmation to support deadlock

resolution.In particular, it should provide access to the followingoimhation:

e The number of threads involved in the cycle

e For each thread involved in the cycle:

1. The thread object
2. The resource that this thread holds and that is involvekdisndeadlock

3. The resource the thread is waiting for

The “number of threads involved” gives programmers an fivieiknowledge of how com-
plex the deadlock is. The encoding of the cyclic wait prosideeful information for deadlock
resolution. As will be shown in a use case study in Subseetidrb, even the names of dead-

locked thread objects can help deadlock resolution.
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The exception class, denoted BsadLock which contains the aforementioned fields is
considered as the base class for deadlock exceptions. tiewsistomize their own deadlock
exception classes by extending the base class. For exasophetimes it helps to include the
stack traces of all deadlocked threads in the deadlock &recepn this case, users can define a
subclass containing the stack traces in addition to thesafentioned fields. In the rest of this
chapter, the discussion is focused on the base class.

A deadlock exception, which represents a deadlock occterda supposed to be handled
by a well-designed handler that can resolve the deadlockrarce. | discuss two types of

deadlock exception handlers in the next subsection.

4.2.3 Deadlock exception handlers: global versus local

Deadlock exception handlers can be installed for an apfitahread that may deadlock.
These deadlock handlers are classifiedogal deadlock handlers One approach to make
use of local deadlock handlers is to have the JVM runtimewhaiodeadlock exception to a
thread that would otherwise be about to deadlock. This amirevas partially implemented
around Summer 2002 [50]. Local deadlock handlers can expi@ads’ local states and pro-
gram semantics to perform fine-grained recovery actiomsrikeasing a resource currently not
in use and picking up a possibly deadlock-free executioh.pat

Because it is hard to know beforehand which threads will getlved in a deadlock in
which order, in most cases local deadlock handlers have itwstadled for all potentially dead-
locked threads in order not to miss a deadlock exceptionthErmore, this time-consuming
task is not even always feasible in the presence of unchhlegeaad invisible code. In addi-
tion, even if all potentially deadlocked threads have lat=ddlock handlers installed, without
application knowledge it is difficult to know which thread ttrow the deadlock exception to
results in the most cost-effective way to resolve the ctrdeadlock.

To overcome the shortcomings of local deadlock handlergrvendeadlock is detected, it
is desirable to get the deadlock exception thrown to a spibeizad, referred to as the deadlock
resolver. Thaglobal deadlock handleis used to refer to the deadlock exception handler (for
DeadLockinstances) installed for and executed by the deadlockweisdlhe deadlock resolver

is set to have the highest thread priority and should beestdr¢fore any other threads in order
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not to miss some deadlocks.

The global deadlock handler is suitable for performing seagrained recovery actions
such as killing a thread. However, unlike local deadlockdhews, it cannot perform some fine-
grained recovery actions based on deadlocked thread .stBbesxploit the benefits of local
deadlock handlers, the global handler can exploit apptindnowledge to select a deadlocked
thread with local deadlock handlers installed, and detethet deadlock exception object to this
deadlocked thread.

The two complementary deadlock handler types enable afedéadlock recovery in pro-
gramming practice. Interms of implementation, local deeklhandlers are in the form of catch
clauses in order to take the advantage of the exceptionihgnaiechanism of the language,
but the global deadlock handler does not need to be, eslyeaién the thread performing
deadlock detection and the deadlock resolver are the saesthHowever, it is assumed that,
when handling a deadlock exception, both global and locatlidek handlers actually break
the cycle in the current WFG, thus resolving the correspundieadlock.

There are synchronization issues between the thread tHatmpe deadlock detection, the
deadlock resolver, and threads that have local deadloaiérannstalled. The next subsection

discusses these synchronization issues.

4.2.4 Synchronization issues

Suppose

1) Thread A performs a deadlock detection, and fivds- 0 concurrent deadlocks. In the
case of periodic detection, theadédeadlocks do not share threads; in the case of continuous
detection,N = 1 and the detected deadlock contains the thread whose cuuestanding
request initiated the deadlock detection. Thread A thesttocts N deadlock exceptions and
reports the exceptions to the deadlock resolver,

2) Thread B is the deadlock resolver; the global deadlockllearassociated with Thread
B handlesM out of N deadlock exceptions, and delegates the rest of the deaekmelptions
to local deadlock handlers,

and
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3) Thread(4,Cs,...Cn_p execute the local deadlock handlers to handle the delegated
deadlock exceptions.

Thread A and Thread B may be the same, but other threads, atédteadlocked threads,
are different from each other. Lack of proper synchronoratietween these different threads
may result in unexpected behaviors.

Consider the following scenario: Thread A serddsleadlock exceptions to Thread B. The
relationship between Thread A and Thread B is like that betweeproducer and a consumer.
So, a buffer can be used to store deadlock exceptions in nadeo miss any deadlock excep-
tion. Further, it is important to ensure that every deadlexéeption gets processed by Thread
B.

Consider another scenario: Thread A detects the same d&édditthe second time before
the deadlock exception gets handled by a local handler, émeladl A reports the deadlock
exception for the second time (to Thread B) after the de&dioweption has already been
handled by the local handler. In this scenario, it is posstbht the deadlock exception is
delegated to the local handler for the second time but wrfately gets uncaught. If a deadlock
exception is guaranteed to be reported exactly once befwdandled, this scenario does not
come into being.

So, to address such synchronization issues, it is suffithentan implementation ensures
the Synchronization Propertyhat a deadlock exception is reported to the deadlock resolv
once and exactly once before it is handled and every deadiockption is handled by the
global deadlock handler (and a local deadlock handler irptheence of delegation) once and
exactly once.

To achieve th&ynchronization Propertyt is necessary that neither the deadlock detection
thread or the global deadlock handler blocks forever. Abtuathe deadlock detection thread
or the deadlock resolver blocks forever such as gettingvedoin a deadlock, the system may
get stuck since future deadlocks will not be detected orvedo

It is worthwhile to note that currently-resolved deadlockay repeat themselves in the
future. So, if deadlocks are detected after the correspgndéadlock exceptions have been
handled, the deadlock exceptions have to be reported agairdér to be handled again (po-

tentially by different local handlers).
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In the next two sections, | describe two implementationshefapproach of deadlock res-
olution via exceptions. One implementation is within a Jdirdual Machine (JVM), and the

other is outside any JVM.

4.3 Implementation within a JVM

Consider a common Java deadlock case in which “two or moeatisr block each other in a
vicious cycle while trying to access synchronization lookgded to continue their activities”
[28]. In such a deadlock case, the resources are reusalde I@efore Java 5.0, Java only
provided monitor locks. Since Java 5.0, Java provides agugecljava.util.concurrent.locks” in
addition to monitor deadlocks. Without loss of generalifigcus the discussion of this section
on monitor locks only. Thus, in the rest of this chapter, & lowans a monitor lock in Java.

To address deadlocks in the above deadlock scenario, Irooted an initial implemen-
tation of the deadlock exception approach into a modifiedeL@19.1 JVM (Java Virtual Ma-
chine). Latte [48]is a Java Virtual Machine that can exedat& bytecode. In addition, Latte
provides a just-in-time compiler that dynamically transtaJava bytecode into native code,
an on-demand exception-handing mechanism, and a lightiveignitor implementation [48].
Currently, Latte runs on Solaris 2.5+ on top of UltraSPAR&H] it has its own thread package
implemented inside the JVM.

Below [ first briefly introduce Java monitors, then discuss fmplementation issues: dead-
lock exception, deadlock detection, deadlock delegatiod, deadlock resolver. At the end of

this section, | describe a use case study.

4.3.1 Monitors in the Java language

Java adopts Mesa-style monitors for thread communicatiwhsgnchronization [27]. Java
monitors are in the form of synchronized methods or syndheshstatements. A thread has
to acquire a lock associated with a monitor in order to erteihen the thread leaves the
monitor, the thread releases the lock. Every object haslka loc

Java provides condition variables in the form of the methafdsait(), notify() and noti-

fyAll() on class Object. For a clear presentation, in thissdrtation | assume wait() is invoked
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without a timeout value. A thread can wait in a monitor by king wait(). Specifically, the
thread is blocked on the condition variable of the monitterat invokes wait() and before it is
awakened.

Athread that has invoked wait() releases the lock assatiathe monitor, and it is disabled
from scheduling until the JVM sends it a notification, whistproduced by another thread via
an invocation of notify(), notifyAll() or interrupt(). Javallows a thread with adequate permis-
sion to interrupt another thread blocked on a conditional@e by invoking interrupt() for the
blocked thread. Java provides other methods for thread eonaation and manipulation. For
example, a thread can wait for the termination of anotheratthvia join(), and a thread can kill
another thread via stop().

However, the stop() APl is deprecated because it is inhigrensafe. Specifically, invoking
stop() on a thread will cause the thread to release all lddiads thus leaving the objects pro-
tected by those locks potentially in inconsistent statéwréfore, stop() is now not guaranteed
to always function correctly.

Thus, once a Java thread is blocked due to waiting for a moloitk, there is no effective
programming API to effectively change the thread to the yestdte. So, the JVM has to be

modified in order to get a deadlocked thread to execute lazdldck handlers.

4.3.2 Deadlock exception

The exception for deadlocks, DeadLock, is a subclass ofiRefxception. When a deadlock
is detected, some native code is used to construct a Deadibjekt within the Latte JVM. It

has 4 fields:

Listing 4.1: Fields in DeadLock exception in a Latte-basaglementation
int size;
Thread[] waiters;
Object[] locks held.in_deadlock;

Object[] locks.waiting ;

The first fieldsizeis the number of deadlocked threads in this deadlock. THewoig

three fields are arrays of sig&ze The arraywaitersstores the deadlocked threads. The element
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locks held.in_deadlock:] stores the lock thawaitergi] holds and that is being waited for by
waiterg(: — 1 + size mod sizg. The elemenlockswaiting[i] stores the lock thawaiterd:] is

waiting for and that is being held hyaiterd(i + 1) mod sizd.

4.3.3 Deadlock detection

| adopt a continuous deadlock-detection method that idyeiasplemented inside Latte. The
detection method is based on finding a new cycle in the WFGt&Ar Graph), which is
locked during deadlock detection. Nodes in the WFG reptedsiie threads, and there is an
edge from the node representing thrdado that representing thredt if 77 is waiting for a
lock held byTs.

Only a contended lock request, which means a request foikealogady held by a thread
other than the requesting thread, will trigger deadlocled@n. The detection is performed by
taking a directed walk in the WFG starting from the ndéleepresenting the requesting thread:
if the nodeR is encountered again during the walk, then a deadlock tredst be reported
is found. Otherwise, either the system currently has noldekdr the requesting thread is
transitively blocked by a thread in a deadlock that has beparted via an exception but that
has not been resolved yet.

The complexity of detecting a deadlock in this cas®is:), wheren is the number of
threads in the current system. Liang and Viswanathan [2ilineld that lock contention is rare
in well-tuned programs since lock contention is usually tiugnultiple threads holding global
locks too long or too frequently.” Further, they reportedttduring one run of mtrt, the only
multi-threaded program in the SPECjvmd8nchmark suite, 11 out of 715244 lock requests
are contended requests.

Each continuous deadlock detection finds at most one ddathat needs to be reported,
and every deadlock that needs to be reported is detectedesuits. So, it is safe to create a

deadlock exception for this deadlock and to report it to thadiock resolver, described next.

http://www.spec.org/osg/jvm98s/.
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4.3.4 Deadlock resolver

Programmers can choose to deploy a thread as the deadlatkereshe deadlock exception
handler (for DeadLock instances) to be executed by the deladésolver is the global deadlock
handler. To be deployed as the deadlock resolver, a threaddshave a specific name so that
the Latte JVM can recognize it as the deadlock resolver. &dti, a deadlock resolver should
have “NoTimerResolver” as its thread name. The deadloctlvesis set to have highest
thread priority, and should be started before any otheattyén order to avoid missing some
deadlocks.

In the Latte-based implementation, the thread performiegdibck detection is different
from the deadlock resolver. The former produces a deadboodption, and the latter consumes
deadlock exceptions. So, they have the producer-consustaionship, and share a First-In-
First-Out (FIFO) buffer.

The deadlock resolver invokes join() for itself without méout value. In regular programs
under standard JVMs, an invocation of join() for the currdmead without a timeout value
makes the current thread blocked forever. However, in theltzased implementation that
supports deadlock exceptions, the implementation of jain¢ustomized for the deadlock re-
solver, which has “NoTimerResolver” as its name, so thaté@dlock resolver behaves as a
producer.

Usually the invocation of join() is contained in a loop foethake of continuous deadlock
resolution. Every time the deadlock resolver performs()dor itself, it checks if there is any
deadlock exception in the FIFO buffer. If yes, it removesfil& exception from the buffer,
wakes up any thread that is waiting for the FIFO buffer to bifuity and throws it to the global
deadlock handler, which is in the form of a catch clause. @itse, it blocks until exceptions
arrive at the FIFO buffer.

The thread that has made a contended lock request perforreaddodk detection. If it
detects a deadlock occurrence, it creates an exceptiohifodéadlock occurrence, saves the
exception in a First-In-First-Out (FIFO) buffer, and wakgs the deadlock resolver (if it is

currently blocked).
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4.3.5 Deadlock delegation

The global deadlock handler is suitable for performing seagrained recovery actions such as
killing a thread. However, unlike local deadlock handlétss not able to perform some fine-
grained recovery actions based on deadlocked thread .stbbesxploit the benefits of local
deadlock handlers, the deadlock resolver can select aatt@d thread with local deadlock
handlers installed, and delegate the deadlock exceptifttaio this deadlocked thread. No
new API is needed for delegation; the deadlock resolverijusikes interrupt() for the thread
which the deadlock exception is to be delegated to. Whenuixednterrupt() for a deadlocked
thread invoked by a deadlock resolver, the JVM runtime veditore the deadlocked thread to
the state right before it got deadlocked and then throw tieentideadlock exception to it.

In sum, the JVM-based implementation does not require progrers to learn new APIs.
Rather, it only asks programmers to use some easy-to-fglmgramming conventions when

using existing Thread APls. In the next subsection, | dbsaiuse case of this implementation.

4.3.6 A use case

The use case in this subsection shows how to resolve deadioalving locks in a system of
two money-transfer transactions. The two simultaneoussaetions are as follows: one is to
transfer some money from a savings accaiat a checking accourt, the other is to transfer
some money front to s. The full code listing (including the definitions of all ckes to be
discussed in this subsection) is in the Appendices (Seétidn

Suppose class Account is unchangeable. The transfer methgtlown in List 4.2, in class
Account specifies how to perform a money-transfer transaciihe method contains a locking
order bug in two phase locking. Specifically, this bug caws@®tential deadlock: the two

threads may hold a lock and wait for the lock held by the othezed.

Listing 4.2: A locking-order bug

public synchronized void transfer (Account toint amount)
try {
Thread.sleep (100);

}catch (InterruptedException e){}
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synchronized (to) {
if (value >= amount) {
to.value = to.value + amount;

value = value-amount;

38

Class S2CTransfer (C2STransfer, resp.) defines the runflotheused by thread S2C
(thread C2S, resp.), which implements the transactiontthasfers money from the savings
(checking, resp.) account to the checking (savings, resgdunt.

Suppose class C2STransfer is changeable, but class SA@fraunchangeable. There
is no local deadlock exception handler installed for thr&&C, since class S2CTransfer is
unchangeable. A local deadlock handler is plugged intouh§ method of class C2STransfer.
When a DeadLock exception is caught by this local handler,clirrent thread has already
released the lock it owned. Thus, as shown in the code fragoedow in Listing 4.3, this local
handler just lets the current thread, i.e., thread C2S sviaiita while so that the other thread,

i.e., thread S2C, can get a chance to finish.

Listing 4.3: A local handler

while (!successful])
try {
al.transfer(a2,amount);
successful =true;
}catch (DeadLock e) {
try {
Thread. sleep (200);

}catch (InterruptedException el){}
i3

Class DeadlockResolver defines how the deadlock resol@FifiNerResolver) works. As
shown in the code fragment in Listing 4.4, NoTimerResolvewokes join() for itself. The
global deadlock handler installed for NoTimerResolvenighie form of a catch clause. When

a DeadLock exception is caught, the deadlock exception legdted to thread C2S, which
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installs a local handler for DeadLock exceptions.

Listing 4.4: A global handler

while (cont){
try {
Thread.currentThread () .join () ;
tcatch (InterruptedException e0f)
cont = false;
}catch (DeadLock el)
if (el.waiters[0].getName().equals(‘‘S2C'’Y)
el.waiters[1l].interrupt();
telse {

el.waiters[0].interrupt();
39

Class Driver describes creation of NoTimerResolver, @h®2C and thread C2S. NoTimer-
Resolver is a thread with the name “NoTimerResolver” in thedad group with the name
“DeadlockResolverGroup.” It is set to have the highestnisicand is started before thread
S2C and thread C2S in order not to miss any deadlock exception

With the help of the 2 deadlock handlers, the potential deddinvolving thread S2C and

thread C2S can be resolved and both threads can accommisimitney-transfer transactions.

4.4 Implementation outside a JVM

In this dissertation, | consider deadlocks in centralizgstesns with unique and reusable re-
sources, based on the one-resource deadlock model [25]ial@task can have at most one
outstanding request at one time and blocks until the resdargranted.

Locks are not the only interesting resources in user agjgit® In this section, | first
present a general resource type that works with deadloakpéions. Then, | go on to discuss
an out-of-the-JVM (OOTJ) implementation of the deadlogkeption approach, and illustrate

it with a use case.
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4.4.1 A general resource type

The full code listing for this resource type is in the Appearedi (Section 6.4). Below, | describe
some important methods.

The resource type providesr@guestmethod and aeleasemethod. A thread can request
a resource via theequestmethod. After a thread finishes using a resource, it canmrehe
resource via theeleasemethod.

Both methodrequestandreleasetry to acquire locK first. Lock| is used to protect the
WFG; the thread performing deadlock-detection also nee@sduire locd before executing
code that manipulates the WFG. The use of lbgluarantees that the WFG is not modified
during the process of deadlock detection.

After acquiring locH, if the resource is free, the thread will get the resourcthdfresource
is owned by some other thread, the requesting thread is puw#iting table. Once the resource
becomes free again, a waiting thread for this resource kegdiap to get this resource.

The code fragment implementing the request and releaseodweth shown below:

Listing 4.5: A general resource

private Thread owner =null;

private Thread thrower =null;

private DeadLock exception =null;

public static Object | =new Object();

public resource request ()}

while (true) {
synchronized (1) { //protect WFG
synchronized (this) { //protect current resource
if (owner==null || owner==Thread.currentThread ()}

h.remove(Thread.currentThread ());
owner = Thread.currentThread () ;
return this ;

}

if (thrower==Thread.currentThread ()}
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thrower = null;
DeadlLock e = exception;

exception =null;

throw e;
¥
h.put(Thread.currentThread (}this);
b
synchronized (this) {
try {
while ((thrower!=Thread.currentThread ()) & (owner!=
null))
this.wait () ;

}catch (InterruptedException e){}
38,
public void release () {
synchronized (I) { // protect WFG
synchronized (this) { // protect current resource
if (owner==Thread.currentThread ()]}
owner = null ;

this.notifyAll () ;
I3y

The requestmethod also contains code to throw a deadlock exception.s pigice of
code works with thesetThrowermethod, as described below, to delegate a deadlock excep-
tion. Specifically, after a deadlock is detected, the dezdiesolver can explogetThrowerto

delegate a deadlock exceptieto some local handler installed for a deadlocked thitead

Listing 4.6: The setThrower method

public synchronized void setThrower(Thread t,DeadLock ej
thrower=t;

exception=e;
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this. notifyAll () ;

4.4.2 Deadlock exception

Below, | describe a class for deadlock exceptions. The fudleclisting for this deadlock ex-

ception class is in the Appendices (Section 6.5).

Listing 4.7: Fields of DeadLock exception in an OOTJ impleta¢ion

public class DeadLock extends RuntimeExceptior
public int size = 0;
public Thread[] waiters;
public resource[] resourcesheld;
public resource[] resourcewaiting;

// constructors and methods are omitted here

The first fieldsizeis the number of deadlocked threads in this deadlock. THewiig
three fields are arrays of sizize The arraywaitersstores the deadlocked threads. The el-
ementresourcesheld]i] stores the resource thaefaiterdi] holds and that is being waited for
by waiterg(i — 1 + size) mod sizg. The elementesourceswaiting[i| stores the resource that
waiterdi| is waiting for and that is being held hyaiter§(: + 1) mod sizd.

So, the OOTJ implementation of deadlock exceptions and #tieibased implementation

contain similar fields.

4.4.3 Deadlock detection

The deadlock detection is performed at the applicationlleveadopt a periodic detection
method in this OOTJ implementation. As shown in other worl8]1the complexity of detect-
ing a deadlock in this case @3(n), wheren is the number of threads in the current system.
The periodic detection method may find multiple cycles in\t#€G. In this case, there are
multiple concurrent deadlocks. Given the deadlock mod#himdissertation, a thread can be

involved in at most one deadlock. That is, multiple conautrdeadlocks do not share a thread.
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When one or more deadlocks are detected, correspondingpdkackceptions are reported
to the deadlock resolver. To ensure that deadlock exceptiom reported to the deadlock re-
solver once and exactly once before they are handled, thedeexllock detection is not per-
formed until all deadlock exceptions for the concurrentdiieeks are handled by the deadlock

handlers.

4.4.4 Deadlock resolver

The deadlock resolver and deadlock detection can sharathe thread. This thread does not
need to use a special name, because the implementation dibdealetection and deadlock
resolver is at the application level.

The global exception handler in this case does not need ta aaieh clause to catch dead-
lock exceptions. For example, the deadlock exceptionstearied during deadlock detection
can be saved in an array, and the global exception handldsecamterms of a code sequence
that examines the array and then takes appropriate actions.

One action may be to delegate a deadlock exception to a lecallack handler. Below, |

discuss the OOTJ implementation of deadlock delegation.

4.4.5 Deadlock delegation

In the OOTJ implementation, deadlock delegation does rmothss interrupt() API. Rather, it
exploits the setThrower API provided by the resource type.

Consider the following statement:

Listing 4.8: Deadlock delegation in an OOTJ implementation

e.resourceswaiting[i].setThrower(e. waiters[i],e);

Suppose variable stores a deadlock exception. What this statement does &ddgate the
deadlock exceptioato the(i+1)th deadlocked thread in the deadlock. So, like the Lattedas
implementation, deadlock delegation can also be accohguliby a single statement.

Upon receiving a delegated deadlock exception, a localldelatiandler starts to handle the

exception, and will notify the deadlock-detection threftérait finishes handling the deadlock
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exception. The use case in the next section shows how to dodtifecation, among other

things.

4.4.6 A use case

The use case in this subsection is essentially the same dssalsed to illustrate the Latte-
based implementation. There are two simultaneous tréosadh the system: one is to transfer
some money from a savings accosmd a checking accourt and the other is to transfer some
money fromc to s. The full code listing is in the Appendices (Section 6.6).

Assume Class Account, a subclass of the class implememtengeneric resource type, is
unchangeable. The transfer method, as shown in Listingm®@ass Account specifies how to
perform a money-transfer transaction. The method contirsource-request ordering bug.
Specifically, this bug causes a potential deadlock: the hresids can hold a resource and wait

for the resource held by the other thread.

Listing 4.9: A resource-request ordering bug

public void transfer (Account toint amount)
this.request () ;
try {Thread.sleep (200)}; catch (Exception ee]}
to.request();
if (value >= amount) {
to.value = to.value + amount;
value = value-amount;
}
to.release();

this.release ();

Class S2CTransfer(C2STransfer, resp.) defines the runothesed by thread S2C(thread
C2S, resp.), which implements the transaction that transfmney from the saving(checking,
resp.) account to the checking(saving, resp.) account.

Suppose class C2STransfer is changeable, but class SA@fraunchangeable. There
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is no local deadlock exception handler installed for thr&&C, since class S2CTransfer is
unchangeable. A local deadlock handler is plugged intouh€ method of class C2STransfer.
Unlike the local handler in Listing 4.3 in the Latte-basedglementation, the local handler as
shown in the code fragment in Listing 4.10, upon catching adReck exception, first releases
the resource it holds, notifies the deadlock-detectionathtbat the current deadlock has been

handled, and then lets the current thread, i.e., thread @W&iSfor a while.

Listing 4.10: A local deadlock handler for general resogarce

while (!successful)
try {
al.transfer (a2,amount);
successful =true;
}tcatch (DeadLock e) {
al.release ();
synchronized (clients .lock) {
clients.resolved ++;
clients .lock. notify ();

}
try {Thread.sleep (200)}; catch (Exception ee]j}

13

The deadlock resolver is shown in Listing 4.11. No namingveation is needed for the
thread serving as the deadlock resolver, and the globalléraimdtalled for the deadlock re-
solver is not in the form of a catch clause. In addition, thadlieck resolver also performs a
periodic deadlock detection. If a deadlock is found, it teeaa deadlock exception, and then
delegates the exception to the local handler of thread SBEn,Tthe thread is waiting for a
notification from the local handler that the deadlock hasivesolved. After the notification is

received, the thread will continue the periodic deadlodiection.

Listing 4.11: A global deadlock handler for general researc

boolean cont = true;

while (cont) {
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try {
Thread.sleep (5000);

tcatch (InterruptedException e){
count=false;

}

/[« Acquiring the lock resource.|l to protect WFG, exploiting
an O(n) cycle-detection method to find deadlocks, setting
numberof_deadlocks to be the number of deadlocks found,
constructing exceptions for the found deadlocks, and
storing the exceptions in the array: currentDeadlocks.
Details omitted x/
if (numberof_deadlocks> 0) {
for (int i=0; i<numberof_deadlocks; i++){

DeadLock e=currentDeadlocks][i];

e.DeadlockPrint () ;

for (int j=0;j<e.size;j++)

if (e.waiters[j].getName().equals(‘‘C2S’'’))
e.resourceswaiting[j].setThrower(e.waiters[j],e);

break;

1

if (numberof_deadlocks >0) {
synchronized (lock) {
while (resolved < numberof_deadlocks)
lock .wait () ;

resolved = 0;
1

Again, with the help of the 2 deadlock handlers, the potéuigadlock involving thread

S2C and thread C2S can be resolved and both threads can distothpir money-transfer
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transactions.

If an implementation uses periodic detection, programmeed to write synchronization
code between deadlock handlers and any thread that perétaadtock detection. On the other
hand, if an implementation uses continuous detection, Ideladietection is triggered by a
contended resource request and there is no need for prognatonwrite extra synchronization
code, which could be difficult if the implementation (of désak detection) is within a JVM.

The Latte-based implementation requires programmersdaaosie specific naming con-
ventions, but the OOTJ implementation does not. In additiee OOTJ implementation sup-
ports applying exceptions to deadlocks involving geneggources, which can play the role
of locks among many others. Moreover, given that nowadayd'd\are considered as ex-
changeable commaodities, currently programmers are lifalyctant to rely on a customized
JVM. While | have shown that it is feasible to implement themach in a JVM, | will use the
OOTJ implementation to illustrate the deadlock exceptamd their handlers in programming

practice in the next chapter.

4.5 Application

In practice, users can exploit deadlock exceptions and tagidlers to resolve deadlocks in
various effective ways. In this section, | use one examplshiww deadlock resolution via

selecting a different forward execution path. Another eplEnshows how to resolve a deadlock
by releasing a resource currently not under use. Yet anett@mple describes how to handle
multiple deadlocks detected at one time by the periodicotiete method. The last but not least

example shows deadlock resolution via restarting the sysidhe global deadlock handler.

4.5.1 Selecting a different execution path

In the use case discussed in the previous section, aftereddiatk exception is caught, the
recovery action is to have a deadlocked thread release sberm it holds, wait for a while,

and then retry the deadlocked operation. Exception hagpdtiechanisms are known to be
suitable for forward error recovery [37, 43, 11]. So, besigsrying the previously-deadlocked

operation as described in the use case, the deadlock in ¢heass study can be resolved by
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selecting a different forward-execution path.

Listing 4.12: Resolving deadlock via a different executjzath

try {

al.transfer (a2,amount);

}catch (DeadLock e){
System.out. println (‘‘Caught an exception!’'’);
al.withdraw (amount);
synchronized (clients .lock) {

clients.resolved ++;
clients.lock.notify () ;

}

a2.deposit(amount);

As shown in Listing 4.12, after a deadlock exception is cautite handler (installed for
thread C2S) will withdraw the money from the checking actpnatify the deadlock resolver
that performs deadlock detection also, and then deposittiiet savings account. That is, the
deadlock is resolved by selecting the alternative execytaih.

Neither withdraw() nor deposit() requests two or more resest The two methods are

shown in Listing 4.13 below:

Listing 4.13: Method withdraw and deposit

public void deposit(int amount)
this.request();
value = value+amount;
this.release ();

¥

public void withdraw (int amount){
this.request();
if (value >= amount) {

value = value-amount;
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}

this.release ();

It is worthwhile to note the notification of the deadlock reso is done between the in-
vocation of withdraw() and that of deposit(). It is after tingocation of withdraw() because
withdraw() releases a resource in the cyclic wait, thuslingathe cycle. It is before the in-
vocation of deposit() because deposit() needs to acquiesaurce. More specifically, if the
notification of the deadlock resolver is done after the imtmn of deposit(), the notification
may never be sent out because the invocation of depositOnma&g the current thread wait for

a resource held by a deadlocked thread.

4.5.2 Releasing a resource currently not under use

A local deadlock handler can choose to resolve a deadlocklbgsing a resource that is being
waited for by another deadlocked thread and that is not beded by the current deadlocked
thread.

Suppose there are 2 threads in a system. Thread AGGRESSt\Ests resource FAX,
but does not use it immediately. Then, it requests resourRI&IPER followed by requesting
resource SCANNER, and will use PRINTER and SCANNER aftetimgethem. Then, it will
go back and use FAX. On the other hand, thread LAZY requestairee SCANNER followed
by requesting FAX, and uses these 2 resources after getimg. t

It is possible that thread AGGRESSIVE and LAZY get involvedai deadlock in which
thread AGGRESSIVE holds resource FAX but waits for reso@CANNER and thread LAZY
holds resource SCANNER, but waits for resource FAX. In tlaise; a local deadlock handler
associated with thread AGGRESSIVE can choose to releasaroesFAX. Thread AGGRES-
SIVE will have to reacquire resource FAX before using it.

Thread AGGRESSIVE executes the code shown in Listing 4.& |dcal handler exam-
ines the deadlock exception, and releases resource FAXXfiBAnvolved in the deadlock.
If FAX is not involved in the deadlock but PRINTER is, the dksdk handler will release

PRINTER and then will wait for a while before trying to react@uPRINTER—a resolution
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action similar to what is exploited in the use case study ictiSe 4.4.6.

Listing 4.14: Releasing a resource not under use

resources [FAX].request();
boolean succeeded =false;
while (!succeeded){
try {
resources [PRINTER]. request () ;
try {Thread.sleep (100)}; catch (Exception ee]}
resources [SCANNER]. request () ;
succeeded =true;
System.out. println(‘‘Thread ''+Thread.currentThrea}.(
getName () +‘* is using PRINTER and SCANNER. '’);
}catch (DeadLock e}
System.out. println (‘‘Caught an exception!’’);
for (int i=0;i<e.size;i++){
if (e.resourcesheld[i].getld ()==FAX) {
resources [FAX].release () ;
synchronized (lock) {
resolved ++;
lock . notify () ;
}

break;

}
if (e.resourcesheld[i].getld ()==PRINTER) {

resources [PRINTER]. release () ;
synchronized (lock) {
resolved ++;

lock . notify () ;
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try {Thread.sleep (5000)}; catch (Exception ee]}
break;
338
if (resources[FAX].getOwner() ==null)
resources [FAX]. request();
else if (!'resources[FAX].getOwner().getName().equals(""
AGGRESSIVE' "))
resources [FAX]. request();
System.out. println (*‘Thread ''+Thread.currentThreal.(
getName () +‘* is using FAX.'’");
resources [FAX]. release ();
resources [PRINTER]. release ();

resources [SCANNER]. release () ;

Thread LAZY does not need to have any local deadlock handgtalied. It executes the

code as shown in Listing 4.15.

Listing 4.15: Lazy use of resources

resources [SCANNER]. request () ;

try {Thread.sleep (100)}; catch (Exception ee]}
resources [FAX].request();
System.out. printiln (‘‘Thread ''+Thread.currentThrea}l.(
getName () +'* is using FAX and SCANNER.'’);

resources [FAX].release ();

resources [SCANNER]. release () ;

Like the use case in Section 4.4.6, the global deadlock banld#legates the exception to
thread AGGRESSIVE. However, the global deadlock handlpragrammed in a more general

way, exploiting the size of the deadlock, as show in Listirip4

Listing 4.16: Deadlock delegation using the fiside

if (numberof_deadlocks> 0) {
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for (int i=0; i<numberof_deadlocks; i++){
DeadLock e=currentDeadlocks][i];
e.DeadlockPrint () ;
for (int j=0;j<e.size;j++)
if (e.waiters[j].getName().equals(‘‘AGGRESSIVE'’Y)
e.resourceswaiting[j].setThrower(e. waiters[j],e);

break;

38

4.5.3 Resolving multiple deadlocks concurrently

The periodic deadlock-detection method may detect maltiphcurrent deadlocks during one
detection. These deadlocks do not share threads. So, aesymppractical approach to re-

solving multiple concurrent deadlocks is that, for eachditezk, the deadlock resolver selects
a deadlocked thread with local handlers installed for eaddbck and then delegates each
deadlock exception to the selected deadlocked thread.

Consider the following use case. There are 32 threads anshE28d resources in a system.
Each thread randomly requests 2 resources, one after anatleethem for a while, and then
release them. As shown in Listing 4.17, two or more threadg geainvolved in a cyclic wait
for resources. A thread may hold some resource after “ress[gource].request();” but uses
“resources[dest].request();” to request another resotirat is held by another thread. Each
cyclic wait corresponds to a deadlock. Further, there cambkiple deadlocks concurrently,
and these deadlocks do not share threads.

After a deadlock exception is caught, the handler instdtbeevery thread will release the
resource held by the current thread, sleep for a while, pitéorequest the 2 resources again.

Each thread keeps attempting to request the 2 resourcé# obtains them.

Listing 4.17: Multiple deadlock resolution

static final int NLACC

128;
static final int N_TEL

32;

static resource[] resources mew resource [NACC];
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/l Each thread will run the following loop
while (true) {
Random r =new Random(System.nanoTime());
int source = Math.abs(r.nextint()) %_ANCC;
int dest = O0;
do {
dest = Math.abs(r.nextlint()) % _WNCC;
twhile (dest == source);
resources[source].request();
boolean succeeded =false;
while (!succeeded){
try {
resources[dest].request();
succeeded =true
}catch (DeadLock e}
System.out. println (‘‘Caught an exception!’’);
resources[source].release();
synchronized (lock) {
resolved ++;
lock . notify ();
}
try {Thread.sleep (5000)}; catch (Exception ee]}
resources[source].request();
3
System.out. println (**Thread ''+Thread.currentThreaj.(
getld ()+** is using resource ''+source+‘ and resource '’
+dest);
try {Thread.sleep (50)}; catch (Exception ee]}
resources|[source].release ();

resources[dest].release ();



60

Listing 4.18 below shows how to delegate multiple deadlocéeptions. Each deadlock
exception is thrown to the first deadlocked thread storetierdieadlock exception. The dead-
lock resolver also performs deadlock detection. After alidiock exception are delegated and

handled the deadlock resolver continue its periodic deadlockddiete.

Listing 4.18: Multiple deadlock delegation

boolean cont = true;
while (cont){
try {
Thread.sleep (5000);
}tcatch (InterruptedException e){
cont = false;
}
/[« Acquiring the lock resource.|l to protect WFG,
exploiting an O(n) cycle detection method to find
deadlocks , setting numbeof_deadlocks to be the number of
deadlocks found, constructing exceptions for the found
deadlocks, and storing the exceptions in the array:
currentDeadlocks . Details omittedk/
if (numberof_deadlocks> 0) { //can be more than 1 in
this case
for (int i=0; i<numberof_deadlocks; i++){
DeadLock e=currentDeadlocks][i];
e.DeadlockPrint () ;
e.resourceswaiting [0].setThrower(e. waiters[0],e);
3
if (numberof_deadlocks >0) {
synchronized (lock) {

while (resolved < numberof_deadlocks)
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lock . wait () ;

resolved = O;

138

With the help of deadlock exceptions, all 128 threads cap keening code that may result

in multiple deadlocks concurrently in an infinite loop!

4.5.4 Restarting the system to resolve deadlocks

The global deadlock handler can choose to resolve the ¢umneror more deadlocks by restart-
ing the system. In this case, the global deadlock handles doedelegate any deadlock excep-
tion, but just restarts the system after saving necesséoynimtion. The restarted system will
continue its execution after picking up the information.

Listing 4.19 below sketches the sequence to restart themayadter one ore more deadlocks
have been detected. Information to be saved may include kpglication-specific data. The
script “restart.sh” contains the Java command to run théesysgain. After restarting the
system, the global handler gets the current system to elxé.cbde sequence does not need to

be in an exception handler.

Listing 4.19: Restarting the system,

if (numberof_deadlocks >0) {

try {

[+ saving some necessary informatieh
String command = ‘‘sh restart.sh ’'’+argl+‘' '’'+arg2+‘'‘ "’
"+argn;
System.out. println (*‘Now execute the recovery command: ’
"+command) ;
Process child = Runtime.getRuntime () .exec (command) ;
}tcatch (1O0Exception e) {}
System.out. println(‘‘Now exit the current system...'’);

System. exit (1) ;
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4.6 Summary

This chapter presented an approach of deadlock resolugoexeeptions, and showed that this
approach is practical and effective in developing depeledapplications containing code that
may deadlock. In particular, deadlocks as exceptions ghimgrammers to write fine-grained

recovery code in addition to restarting the entire system.
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Chapter 5

Conclusions

5.1 Conclusions

| considered deadlock-detection scheduling as a reinfioecg-learning problem. Specifically,
based on the assumption that the time to first deadlock inytbers (after a system restart)
follows an exponential distribution, | established a tytilnodel for restart-oriented systems,
proposed a learning algorithm to estimate the deadlockamnadeto find the detection interval
that maximizes system utility.

| have demonstrated that it is a reasonable approximataintie time to first deadlock in
the system (after a system restart) follows an exponens#illtion. | have proved that this
technique finds the best tradeoff in theory, and | have ustddsimulation study and a simple
yet sufficiently realistic Java program to show this techrigs effective in practice.

| considered deadlocks as exceptions. Using this idea iitiaddo restarting the system,
programmers can exploit exception handlers to resolveldeladccurrences based on program
contexts and deadlock states. | proposed a design of a lessefal exceptions, distinguished
between global and local deadlock handlers, and descritsmiution to the synchronization
issues that should be addressed in any implementation.

| have presented 2 implementations of deadlock exceptindgheeir handlers. One imple-
mentation is based on a modified Latte JVM, and the other @dmiany JVM. | have illustrated
the use of deadlock exceptions and their handlers by a usestady and various examples.
In the use case study and all the applicable examples, allatde, signaled as exceptions,
are resolved effectively by corresponding exception hensdberforming fine-grained recovery
actions.

Therefore, it is a valid thesis that, under the assumptianttte time to first deadlock in the
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system (after a system restart) follows an exponentialibigion, a reinforcement-learning ap-
proach is effective in scheduling deadlock detection farsaart-oriented system, and that run-
time exceptions are a programming abstraction that allowgrammers to write fine-grained

deadlock-recovery code.



Chapter 6

Appendices

6.1 A simplified version of class Account for Chapter 3

class Account {
private int value;
public Account(int v) { value = v;}
synchronized void transfer (int to, int amount)
Account toAccount = Experiment.accounts|[to];
if (value<amount) return ;
synchronized (toAccount){
toAccount.value += amount;

value —= amount;

138;

6.2 A simplified version of class Experiment for Chapter 3

public class Experiment implements Runnable {
I+ Attribute and variable definitions omittedk/
public void run (){
while (true) {
I+ Do some house keeping work and randomly choose
source, dest and amount. Details omitted

accounts[source].transfer(dest,amount);



static double L(double no_deadlocksum , long n[]) {/xto
compute the MLE for lambde/ }
static double W(double lambda, double cost) {/xto compute
the intervalx/}
public static void main(String[] args)throws IOException
{
/x Create 2 accounts and start 4 threads. Details omitted
*/
boolean deadlockfound = false;
while (!deadlockfound){
[+ Save some intermediate computational results ,
update the interval potentially by invoking L (for
lambda) and W (for interval), and collect timing
information. Details omitted .x/
try { Thread.sleeprfew Double(interval).longValue ())
)
catch (InterruptedException e){}
/Ixuse findMonitorDeadlockedThreads for deadlock
detection , and collect timing information. If a
deadlock is found, deadlockound is set to true.
Details omitted «/
}
/+ Do deadlock recovery and pass some data to the next

restart. Details omitted. x/

}
}

6.3 A bank transfer deadlock example using locks for Chaptert

class Account {

private int value;

66



public String type;

public Account(int v, String t) {
value = v;
type = t;

}

public synchronized void transfer (Account toint amount)

try {
Thread.sleep (100);

}catch (InterruptedException e){}
synchronized (to) {
if (value >= amount) {
to.value = to.value + amount;

value = value-amount;

1333

class S2C_Transfer implements Runnable {

private Account al,aZ2;

private int amount;

public S2C_Transfer (Account al,Account a2nt amount)
this.al=al;
this.a2=a2;
this.amount=amount;

}

public void run (){

al.transfer(a2,amount);

13

class C2S. Transfer implements Runnable {
private Account al,aZ2;

private int amount;
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public C2S_.Transfer (Account al,Account a2nt amount)

this.al=al,;
this.a2=a2;
this.amount=amount;
}
public void run (){
boolean successful =false;
while (!successful)
try {
al.transfer(a2,amount);
successful =true;
}tcatch (DeadLock e) {

try {
Thread.sleep (200);

}catch (InterruptedException el){}

1383

class DeadlockHandlerimplements Runnable {

private Account s,c;

private int s2c,c2s;

public DeadlockHandler (Account s, Account ¢nt

) |
this.s = s;
this.c = c;

this.s2c

s2c;

this.c2s

}
public void run (){

c2s;

boolean cont = true;

while (cont){

c2s
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try {
Thread.currentThread () .join ();

tcatch (InterruptedException e0f)
cont = false;
tcatch (DeadLock elj)
if (el.waiters[0].getName().equals('‘S2C’"Y))
el.waiters[1].interrupt();
lelse {

el.waiters[0].interrupt();

13333

public class Driver {

13

public static void main(String[] args])

ThreadGroup HG =new

ThreadGroup (‘‘DeadlockHandlerGroup '’);

Account s =new Account(1500,‘‘saving’’);

Account ¢ =new Account(1000,‘‘checking’’);

int s2c = 500;

int c2s = 600;

S2C_Transfer transl = new

S2C_Transfer(s,c,s2c);

C2S_Transfer trans2 = new

C2S_Transfer(c,s,c2s);

DeadlockHandler DHrew DeadlockHandler(s,c,s2c,c2s);
Thread resolver =new Thread (HG,DH, ‘‘NoTimerHandler’’);
resolver.setPriority (Thread . MARRIORITY) ;
resolver.start();

new Thread (trans2 ,''C2S’''). start();

new Thread(transl ,h6‘‘S2C’'").start();
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6.4 A general resource type for Chapter 4

import java. util.Hashtable;

public class resource {
private Thread owner =null;
private Thread thrower =null;
private DeadLock exception =null;
private static Hashtable h =new Hashtable () ;
private int id = 0;
public static Object | = new Object();
public resource () {}

public resource{nt i) { id = i;}

public resource request ()
while (true) {
synchronized (1) { //protect WFG
synchronized (this) { //protect current resource
if (owner==null || owner==Thread.currentThread ()}
h.remove(Thread.currentThread ());
owner = Thread.currentThread () ;
return this ;
¥
if (thrower==Thread.currentThread ()}
thrower = null;
DeadlLock e = exception;
exception =null;
throw e;

}

h.put(Thread.currentThread (}his);
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synchronized (this) {
try {
while ((thrower!=Thread. currentThread ()) & (owner
I=null))
this.wait () ;

}tcatch (InterruptedException e){}

1

public synchronized void setThrower(Thread t,DeadLock €}
thrower=t;
exception=e;

this. notifyAll () ;

public synchronized Thread getThrower (){

return thrower;

public synchronized Thread getOwner (){

return owner;

public synchronized int getld () {

return id;

public static Hashtable getWRTable (){

return h;
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public void release () {
synchronized (1) { //protect WFG
synchronized (this) { //protect current resource
if (owner==Thread.currentThread ()}
owner = null ;

this.notifyAll () ;
)

6.5 A deadlock exception class for Chapter 4

import java.util.Hashtable;

public class DeadLock extends RuntimeExceptior
public int size = 0;
public Thread[] waiters;
public resource[] resourcesheld;
public resource[] resourcesaiting;
public DeadLock(int number, Thread last)
size = number;
waiters =new Thread[number];
resourcesheld = new resource [number];
resourceswaiting = new resource [number];
Hashtable WRTable = resource .getWRTable () ;
resource currentHR = (resource )WRTable.get(last);
for (int i=0;i<size;i++) {
Thread currentT = currentHR.getOwner () ;
resource currentWR=(resource )WRTable.get(currentT);
waiters[i]=currentT;
resourcesheld[i]=currentHR;

resourceswaiting|[i]=currentWR;
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currentHR = currentWR;
3
public int DeadlockPrint ()}
for (int i=0; i<size; i++) {
System.out. printin(‘‘For deadlocked thread
titt ),
System.out. println(*‘Current Thread ID is: '’
+waiters[i].getld());
System.out. println(‘*Resource Held is: '’
+resourcesheld[i]. getld ());
System.out. println (**Resource Waiting is: '’
+resourceswaiting[i]. getld ());

}

return size;

13

6.6 A bank transfer deadlock example using general resoursegfor Chapter 4

import java. util.Hashtable;

class Account extends resource

private int value;

public String type;

public Account(int v, String t) {
value = v;
type = t;

}

public void transfer (Account toint amount)
this.request () ;
try {Thread.sleep (200)}; catch (Exception ee]}

to.request();
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if (value >= amount) {

to.value = to.value + amount;

value = value-amount;

}

to.release();

this.release ();

13

class S2C_Transfer implements Runnable {

private Account al,aZ2;

private int amount;

public S2C_Transfer (Account al,Account adnt

this.al=al;
this.a2=a2;
this.amount=amount;
}
public void run (){

al.transfer(a2,amount);

13

class C2S. Transfer implements Runnable {

private Account al,aZ2;

private int amount;

public C2S_Transfer (Account al,Account adnt

this.al=al;
this.a2=a2;
this.amount=amount;
}
public void run (){

boolean successful =false;

amount{

amount{
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while (!successful])
try {
al.transfer(a2,amount);
successful =true;
tcatch (DeadLock e) {
System.out. println (‘‘Caught an exception!’’);
al.release ();
synchronized (clients .lock) {
clients .resolved ++;
clients .lock.notify ();

}
try {Thread.sleep (200)}; catch (Exception ee]}

i333;
public class clients{
static final int N_TEL = 2;
static Thread[] clientsthreads =new Thread[NTEL];
static DeadLock[] currentDeadlocks =smew DeadLock[NTEL];
static int resolved = 0;
static Object lock =new Object();
private int id = 0;
public clients (int id) {this.id=id;}
public static void main(String[] args)throws Exception {
int numberof_deadlocks = O;
Account sa =new Account(1500,‘‘saving’’);
Account ch =new Account(1000,‘‘checking’’);
int s2c = 500;
int c2s = 600;

S2C_Transfer transl = new S2C_Transfer(sa,ch,s2c);

C2S_Transfer trans2

new C2S_Transfer(ch,sa,c2s);

clients_.threads[0]=new Thread (trans2 ,‘'C2S"'’");
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clients_.threads[1]=ew Thread(transl ,h‘'S2C"’");
clients_.threads [0]. start ();

clients_.threads [1]. start () ;

Thread.currentThread () .setPriority (Thread . MRRIORITY) ;
int deadlockedthreads = O;
boolean cont = true;
while (cont) {
try {
Thread . sleep (5000);
}catch (InterruptedException e){

count=false;

/+ Acquiring the lock resource.l to protect WFG,
exploiting a O(n) cycle detection method to find
deadlocks, setting numbeof_deadlocks to be the
number of deadlocks found, constructing exceptions
for the found deadlocks, and storing the exceptions

in the array: currentDeadlocks. Details omitted/

TETTIEEE i rnrrrrrrn

/I Following code serves as a deadlock resolver

/I performing deadlock delegation

LETTTEIEEr i rinrrrrng

if (numberof_deadlocks> 0) {

for (int i=0; i<numberof_deadlocks; i++){

DeadLock e=currentDeadlocks]|[i];
e.DeadlockPrint () ;

for (int j=0;j<e.size;j++)
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13838;
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if (e.waiters[j].getName().equals('‘C2S’’)) 99

e.resourceswaiting[j].setThrower(e.waiters [0

il.e);
break; 101
38 102
if (numberof_deadlocks >0) { 103
synchronized (lock) { 104
while (resolved < numberof_deadlocks) 105
lock .wait () ; 106
resolved = 0O; 107

108
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