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An important topic in machine-learning / data-mining is that of analyzing binary datasets. 

A binary dataset consists of a subset of n-vectors (observations) with binary components, 

each of which has an associated binary outcome (the class of the observation).  Clearly, 

the set of n-vectors and their outcomes represent a partially defined Boolean function. 

The central problem of machine-learning / data-mining, the so-called classification 

problem, consists in finding an “extension” of the partially defined Boolean function 

closely approximating a hidden (“target”) function. Various methods have been 

developed to solve this and related problems, such as identifying misclassified 

observations, revealing irrelevant and/or redundant variables, etc. 
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In this thesis, we propose a new approach to analyzing different problems in machine-

learning / data-mining. First, we define a simple procedure for generating artificial 

Boolean variables, called Composite Boolean Features, and describe an iterative 

algorithm for generating Boolean functions which agree with the outcomes in a large 

proportion of the observations in the dataset. We call these functions Composite Boolean 

Separators (CBSes for short). We then use the idea of CBSes in several ways. In 

particular,  

• we demonstrate the usefulness of these concepts by showing how the introduction 

of CBSes can enhance the accuracy of classification systems; 

• we employ CBSes for identifying misclassified observations and examine how 

deletion of such observations and reversal of their class influence the 

classification accuracy; 

• we apply the new variables to the attribute selection problem, i.e., to the problem 

of finding “good” (informative) subsets of the original attributes, or equivalently, 

identifying “bad” (irrelevant and/or redundant) attributes in the given datasets.   

All the results have been tested on eight publicly available datasets and validated by five 

well-known machine-learning / data-mining techniques. Also, we applied CBSes, along 

with other techniques, to the analysis of two real-life medical datasets: computed 

tomography data and breast cancer gene expression microarray data. 

 

The results presented in this thesis demonstrate that for many real-life datasets, the 

application of CBSes increases the classification accuracy significantly. CBSes also 

prove useful in the missclassification and attribute selection problems. 
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1. INTRODUCTION 

 
An important topic in machine-learning / data-mining is that of analyzing binary datasets. 

A binary dataset Ω consists of a subset of n-vectors with binary {0,1} components, each 

of which has an associated binary outcome.  The n-vectors of Ω are called observations, 

while those whose outcome is 1 (respectively 0) are called positive (respectively 

negative) observations. We shall denote the sets of all positive and negative observations 

in Ω by Ω+ and Ω-, respectively. The i-th components of all the vectors in Ω will be 

viewed as the values of a variable xi; frequently variables are also called attributes or 

features. 

 

Clearly, the set of n-vectors in Ω and their outcomes represent a partially defined 

Boolean function. The central problem of machine-learning / data-mining, the so-called 

classification problem, consists in finding an “extension” of the partially defined Boolean 

function (i.e., a Boolean function which is defined in every binary n-vector, and which 

agrees in Ω with the given values) closely approximating a hidden (“target”) function. 

 

Since the number of variables present in datasets appearing in real-life problems is 

usually very large, an important aspect of the classification problem is attribute selection, 

i.e., a set of methods and techniques for identifying and eliminating unnecessary 

variables included in datasets. There is a rich literature in machine-learning / data-mining 

dedicated to attribute selection (see [39], [40], [65], and for survey see [15] and [29]).  

This is an extremely important area of research, since the number of irrelevant and/or 
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redundant variables is often very large, and their presence does not only slow down the 

computational aspects of data analysis, but can also introduce inaccuracies and errors.  

 

An exactly opposite approach, which one can term “attribute construction”, has been 

adopted in several publications ([2], [28], [47], [55], [66], [67], [72], [75]), where beside 

the given variables, additional “artificial” variables have been introduced and added to 

the given ones, in order to increase the accuracy of classification. For example, the 

artificial variables proposed in [28] were associated to pairs of given variables using 

simple arithmetic operations; to a pair of binary variables x, y it was suggested to 

associate new variables of the form a+bx+cy, where a, b and c were real numbers, chosen 

in such a way that the artificial variable contributed to the separation of positive 

observations from negative ones. It was shown in the same paper that the introduction of 

artificial variables can enhance the accuracy of classifications. 

 

In this thesis, we contribute to both problems: attribute construction and attribute 

selection. In particular, we develop a procedure for creating new variables that represent 

logical functions of the given variables.  We then add the new variables to the original set 

and study the effect of this addition on the accuracy of classification. We also apply the 

new variables to the attribute selection problem, i.e., to the problem of finding “good” 

(informative) subsets of the original attributes, or equivalently, identifying “bad” 

(irrelevant and/or redundant) attributes in the given datasets. Moreover, the artificial 

variables turn out to be a useful tool in one more aspect of data cleaning, i.e., identifying 

“bad” observations.  
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Usually, real-word datasets contain noise which can be introduced in different ways. For 

example, errors can be made at the time of sampling, i.e., incorrect data was collected for 

some observations. We refer to the problem of identifying such observations as the 

attribute noise problem. Another example deals with the situation when an operator, who 

creates a dataset electronically, inputs a wrong class to some observations. Such errors 

are called classification noise. Wrongly classified observations may appear in a different 

way, for instance, when a medical doctor makes an incorrect diagnosis. We refer to the 

problem of identifying misclassified observations as the classification noise problem, or 

simply misclassification problem.  Identifying observations containing noise is very 

important, since their presence may result in incorrect classification models. Different 

methods for identifying suspicious observations were discussed in many papers ([13], 

[21], [22], [24], [69], [71], [93], [94], [97], [100], [101]). In our study, we concentrate on 

the classification noise problem and present two new techniques for finding subsets of 

suspicious observations. One of them is a new approach for data cleaning: it uses 

synthetic variables to eliminate noise. The second one is a development of the approach 

proposed by Brodley and Friedl in [21], [22]. This method uses Simulated Error Rate 

(SER) for identifying suspicious sets. We examine how deletion of suspicious 

observations and reversal of their class influence the classification accuracy.  

 

All our results are experimental, which is in accordance with the following observation 

by Thomas G. Dietterich [31]:  

“Fundamental research in machine-learning is inherently empirical, because the        
performance of machine-learning algorithms is determined by how well their 
underlying assumptions match the structure of the world. Hence, no amount of 
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mathematical analysis can determine whether a machine-learning algorithm will work 
well. Experimental studies are required”.  

 

In our computational experiments we use five well-known machine-learning / data-

mining methods.  A short description of each of these methods is presented below. 

 

1.1.   Classification Methods 

 

• Support Vector Machines ([33], [81], [82], [83]) 

This method is founded on Vapnik’s Statistical Learning Theory [92].  A 

support vector classifier has the form 





 ∑ ≥+

=
otherwise

b,x)K(xyawhen
y j

jjj

0

01
 

where the coefficients αj and b are learned parameters (they are learned by 

solving a convex optimization problem) and the function K(xj, x) is a kernel 

function that in some sense measures the similarity between the test observation 

x and the training observation xj. 

 

• Simple Logistic Regression  ([26], [52], [62], [89]) 

This is a classifier for building linear logistic regression models. Logistic 

regression allows one to predict a discrete outcome. What we want to predict 

from knowledge of relevant independent variables is not a precise numerical 

value of a dependent variable, but rather the probability (p) that it is 1 rather 

than 0. Since probabilities can only take values between 0 and 1, a logistic 

transformation of p is made, which is defined as:  
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logit(p)=log(p/(1-p)) . 

Logistic regression involves fitting to the data an equation of the form:  

logit(p)= a + b1x1 + b2x2 + b3x3 + ... 

Just like linear regression, logistic regression estimates for each regressor xi a 

coefficient bi which measures the regressor's independent contribution to 

variations in the dependent variable and also estimates the constant a of the 

equation. 

 

• Multilayer Perceptron ([68], [70], [78], [79], [80]) 

Multilayer Perseptron (MP) is a network of simple neurons called perceptrons. 

The basic concept of a single perceptron was introduced by Rosenblatt in 1958. 

MP is composed of more than one layer of neurons (artificial neural network), 

with some or all of the outputs of each layer connected to one or more of the 

inputs of another layer. The first layer is called the input layer, the last one is the 

output layer, and in between there may be one or more hidden layers. The 

principle of the network is that when data from an input pattern is presented at 

the input layer the network nodes perform calculations in the successive layers 

until an output value is computed at each of the output nodes. This output signal 

should indicate the appropriate class for the input data.  

 

• Decision trees (C4.5) ([73], [74]) 

J. Ross Quinlan’s algorithm C4.5 builds decision trees top-down and prunes 

them. The procedure starts from the root node and greedily chooses a split of the 
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data that maximizes some objective function. After choosing a split, the sub-

samples are then mapped to the two children nodes. This procedure is then 

recursively applied to the children, and the tree is growing until each subset in 

the partition contains cases of a single class, or until no test offers any 

improvement. The result is often a very complex tree that “overfits the data”. 

The tree is then used as a starting point for a bottom up search, performing a 

pruning of the tree. This eliminates nodes that are redundant or are unable to 

“pay for themselves” in terms of the objective function. 

 

• Logical Analysis of Data (LAD) ([18], [27], [41], [42]) 

The idea of LAD for analysis of binary data was proposed by P.L.Hammer in 

the middle of 1980s. Later it was developed for analysis of data with numerical 

values of attributes. LAD is a combinatorics, optimization, and logic based 

methodology for the analysis of data.  The basic concepts used in LAD are 

described below. 

 

Cut points and binarization.  

One of the underlying principles of LAD is to disregard the exact values of a 

variable, specifying for each observation only whether the corresponding value 

of this variable is sufficiently ‘large’ or ‘small’. The binarization procedure 

proposed in [17] consists in associating to each numerical variable x one or more 

cutpoints c′ , c ′′ , …, and then associating to each of these cutpoints a binary 

variable x′ , x ′′ , …, defined by   
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 ′>

=′
otherwise

cxif
x

0
1

 ,       


 ′′>

=′′
otherwise

cxif
x

0
1

 ,    …….. 

 

The binarization process is correct if and only if the binary (0, 1) vector 

representing the image of any positive observation is different from the binary 

image of any negative observation. It has been shown in [17] that the 

minimization of the number of binary variables allowing the correct binarization 

of a given dataset can be accomplished by solving a set-covering problem. 

 
 

Logical patterns 

The central concept of LAD is a pattern. A ‘conjunction’ is a set of conditions 

that require that the binary variables take specific (0 or 1) values. A conjunction 

is called a positive (or negative) pattern if its conditions are satisfied 

simultaneously by ‘sufficiently many’ of the positive (or negative) cases, and by 

‘sufficiently few’ of the negative (or positive) cases. If an observation satisfies 

all the conditions describing a pattern, then we say that the observation is 

covered by this pattern. Three of the most important characteristics of a pattern 

are its degree, its prevalence and homogeneity.  

 

 The degree of a pattern is the number of its defining conditions.  

 The prevalence of a positive (or negative) pattern is the proportion of positive 

(or negative) cases covered by it.  

 The homogeneity of a positive (respectively negative) pattern is the proportion 

of positive (respectively negative) cases among all the cases covered by the 
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pattern. Patterns which cover only positive or only negative cases (i.e., have the 

homogeneity 100%) are called pure patterns. 

 

Pandect and Theory 

The pandect (i.e., the collection of all of the positive and negative patterns 

corresponding to a dataset) is an important concept of LAD which is used in the 

construction of diagnostic and prognostic systems, analysis of the importance 

and role of variables, and identification of new classes of observations, among 

other factors. In view of the enormous number of patterns found in a typical 

dataset, the construction of the entire pandect is not realistic. The set of all 

positive (or negative) patterns of degree at most d+ (or d-) and prevalence at least 

p+ (or p-) is called the (d+, p+) positive pandect (or the (d-, p-) negative pandect). 

Clearly, the pandect is not a minimal system because it may contain many 

redundant patterns, without which the system can still remain accurate. LAD 

uses the set-covering formulation to find a subset of patterns which cover all the 

observations. This subset is called a theory (or model). Models provide 

classification of observations in the dataset as well as of new observations. The 

way in which the model provides the classification of a new observation is the 

following.  

 If an observation is covered by positive (negative) patterns, but is not covered 

by any one of the negative (positive) patterns, then the observation is classified 

as positive (negative).  
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 If an observation is not covered by any positive or negative pattern, then it 

remains “unclassified”.  

 If an observation is covered by some positive and also some negative patterns 

in the model, then a weighting process is applied to decide on the appropriate 

classification. 

 

Pattern space  

Pattern-based representation of the observations is constructed by associating to 

each observation and to each pattern in the pandect an indicator variable that shows 

whether the observation satisfies (indicator = 1) or does not satisfy (indicator = 0) 

the conditions that define that pattern. In this way, each observation is characterized 

by a sequence of 0-1 values of the indicator variables associated with the positive 

and negative patterns in the pandect. 

 

1.2.  Structure of Thesis 

 

In Chapter 2, we define a simple procedure for generating artificial Boolean variables, 

called Composite Boolean Features, and describe an iterative algorithm for generating 

Boolean functions which agree with the outcomes in a large proportion of the 

observations in the dataset. We call these functions Composite Boolean Separators 

(CBSes for short).  

 

In Chapter 3, we use the idea of composite Boolean separators to study various problems 
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of machine-learning / data-mining. In particular, in Section 3.1 we demonstrate the 

usefulness of these concepts by showing on a number of publicly available datasets how 

the introduction of CBSes can enhance the accuracy of classifications.  Sections 3.2 and 

3.3  are devoted to data cleaning problems. More specifically, in Section 3.2 we analyze 

the problem of identifying misclassified observations and develop two new approaches to 

solve it. One of them is a CBS based method, while the other one is a modification of the 

idea of Simulated Error Rate (SER) introduced by Brodley and Friedl [21], [22]. Both 

approaches demonstrate robustness in eliminating class noise.  In Section 3.3, composite 

Boolean separators are applied to the attribute selection problem, i.e., the problem of 

identifying informative subsets of variables. All the results presented in Chapter 3 are 

tested on eight datasets available on the Web in the Repository of the University of 

California at Irvine.  

 

In Chapter 4 we present case-study results based on two real-life medical datasets: 

computed tomography data and breast cancer gene expression microarray data. 
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2. GENERATION OF COMPOSITE BOOLEAN SEPARATORS 

 

The results presented in this chapter refer to binary datasets only. In order to apply our 

techniques to a dataset which is generally non-binary, we have first to “binarize” the data, 

i.e., to replace each variable taking numerical values by one or more binary variables, 

following the procedure in [17]. After converting the dataset to an equivalent binary 

form, we view the new data as representing a partially defined Boolean function (pdBf). 

The classification problem requires the determination of an “extension” of this pdBf, i.e., 

of a Boolean function which agrees with the values of the pdBf in the points of the 

dataset. To determine such an extension, we develop a heuristic method for constructing 

new Boolean variables, called Composite Boolean Features (CBFs).  After a number of 

iterations, this method produces a set of Composite Boolean Separators (CBSes), each of 

which is a Boolean function agreeing with the given outcomes in a large proportion of the 

observations in the dataset.  

 
 

2.1. Concept of Composite Boolean Separators 

 

In this chapter, we describe an approach for creating a set of artificial Boolean variables 

(to be called Composite Boolean Features).  For this purpose, to every pair of binary (0,1) 

variables x and y we associate 12  new binary variables f1(x,y), …, f12(x,y), where {fi(x,y), 

i = 1,…,12} is the set of all Boolean functions depending on two variables, except for 

two constant functions (0 and 1) and two functions representing the original variables     

(x and y). At this point the newly created binary variables are added to the dataset, and 
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the unknown Boolean function which determines the positive or negative nature of each 

observation (frequently called the “hidden function” or, the “target function”) is 

considered as depending both on the original and on the added variables. In order to keep 

at a reasonable level the size of the problem obtained by introducing the composite 

Boolean features as additional variables in the dataset, a filtering mechanism is used to 

retain only those CBFs which have a sufficiently high classification power.  

 

The basic idea of using Boolean functions for producing artificial variables has already 

been considered in the literature (see e.g. [16], [47], [66]). Among the methods based on 

an iterative generation of artificial Boolean variables we mention GALA [55],        

CITRE [67], FRINGE [72], and LFC [75]. In several studies (IB3-CI [2], GALA [55], 

CITRE [67], FRINGE [72], LFC [75]) special attention is given to the use of minimal 

sets of logical operators (e.g. negation and conjunction) to express existing Boolean 

relations between data attributes. In some algorithms (e.g. LFC and FRINGE) feature 

construction is accomplished parallelly with the construction of decision tree classifiers. 

In most of these methods the new features are constructed based on previously generated 

hypotheses. Another common feature of most of these methods is the confinement of the 

construction process to a restricted set of Boolean expressions.  

 

The method proposed in this thesis differs from the above mentioned ones in two 

essential ways. On the one hand, the composite Boolean features generated at each step 

of the proposed iterative process are associated to every pair of existing variables, i.e., no 

pre-selection is made to identify the “most promising” pairs. On the other hand, the 
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Boolean operations used for generating new CBFs are not restricted in any way, i.e., the 

outputs of all the Boolean functions of two variables (with the obvious exception of 

constant functions) are evaluated as candidates for new composite Boolean features. 

 

2.2. Composite Boolean Features as Artificial Variables 

 

In order to present in detail the procedure of generating composite Boolean features we 

shall define the negation x  of a binary {0,1} variable x as 1 – x, and  define for any two 

binary variables xi and xj, their  disjunction xi ∨ xj  =  xi + xj – xi xj,  their conjunction       

xi & xj, defined as their product  xi xj  (and denoted simply as  xi xj), and their  sum  

modulo 2 as  xi ⊕ xj = xi + xj – 2 xi xj.   Note that treating the 0,1 values of Boolean 

variables as the numbers 0,1 (i.e., not as symbols) allows the definition of arithmetic 

operations with them, and does not lead to any confusion.  

 

Given a Boolean function y depending on a subset of the Boolean variables x1, x2, … , xn 

in the dataset, the classification power of  y, CP(y), is defined in the following way: if 

π(y) denotes the number of positive observations for which the value of y is 1, and υ(y) 

denotes the number of negative observations for which the value of y is 0, then  

CP(y) = 
2
1









Ω

+
Ω
 

−+ ||
)(

||
)( yy υπ

. 

 

In order to construct the composite Boolean features associated to a dataset we shall 

associate to every pair of Boolean variables xi, xj all the Boolean functions yk(xi, xj)  
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depending on them. In total, there are 16 Boolean functions of two variables: 

1, 0, xi, ix , xj, jx , xi ∨ xj,  xi xj,  xi ∨ jx , xi jx , ix ∨ xj, ix xj, ix ∨ jx , ix jx , xi ⊕ xj, ji xx ⊕    

 As we mentioned before, we exclude from our consideration the two constant functions 

0 and 1. Also, we do not generate the two functions xi and xj as they are present in the 

dataset. Therefore, to every pair of Boolean variables we shall associate 12 Boolean 

functions. In order to reduce the number of Boolean functions generated in this way, we 

shall calculate the CP of each yk(xi, xj) and retain only those functions whose CP exceeds 

a certain threshold. In this thesis, we take as the threshold the maximum of CP(xi) for all i 

=   1,…, n;  clearly, choosing a higher  (lower) threshold would lead to the retention of a 

smaller (larger) set of CBFs. 

 

Before we proceed to a formal description of the procedure of generating composite 

Boolean features, let us consider a simple example illustrating the main steps of the 

procedure. 

 

Example. Let us consider a dataset containing three negative observations (A,B,C) (the 

“class” of these is labeled 0) and three positive observations (D, E, F) (the “class” of 

these is labeled 1), described in terms of four binary variables (x1, x2, x3, x4): 

Obs. x1 x2 x3 x4 class

A 0 1 0 0 0 

B 1 1 1 0 0 

C 0 0 0 1 0 

D 1 0 1 0 1 

E 1 0 0 0 1 

F 0 0 1 1 1 
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We shall examine now the CBFs depending on the 







2
4

 = 6 possible pairs of original 

variables. As mentioned above, for each pair of variables we shall list 12 Boolean 

functions depending on these two variables. For example, for the pair x1, x2 we shall 

construct the following functions: 

 

Obs. 1x  x1 x2 x1 ∨ x2 x1 2x  x1 ∨ 2x  x1 ⊕ x2 

A 1 0 1 0 0 1 

B 0 1 1 0 1 0 

C 1 0 0 0 1 0 

D 0 0 1 1 1 1 

E 0 0 1 1 1 1 

F 1 0 0 0 1 0 

CP 2/6 2/6 1/2 5/6 4/6 4/6 

 

 

Obs. 2x  21 xx ∨ 21xx  21 xx ∨  21xx   
21 xx ⊕  

A 0 1 0 1 1 0 

B 0 0 0 1 0 1 

C 1 1 1 1 0 1 

D 1 1 0 0 0 0 

E 1 1 0 0 0 0 

F 1 1 1 1 0 1 

CP 5/6 4/6 1/2 1/6 2/6 2/6 

 

 

In the line called CP we indicate the classification power of each of the 12 functions 

above. For example, the CP of the function x1x2 is 2/6 (since this function agrees with the 
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outcome in the observations A and C), and the CP of its compliment is 4/6 (since the 

complement agrees with the outcome in the observations B, D, E and F). Similar tables 

can be constructed for all the other pairs of variables.  

 

Since the largest value of CP corresponding to the variables x1,…, x4  is 4/6 (achieved on 

x1 and x3),  we shall retain only those CBFs which have a CP of  5/6 or higher; the 

retained columns are the following: 

2x , x1 2x ,   x1 ∨ x3,  x1 ⊕ x3,  32 xx ,  42 xx ,  42 xx ∨ ,  42 xx ⊕ . 

 

Obs. x1 x2 x3 x4 2x  x1 2x  x1 ∨ x3 x1 ⊕ x3 32 xx 42 xx  42 xx ∨
42 xx ⊕

A 0 1 0 0 0 0 0 0 0 0 0 0 

B 1 1 1 0 0 0 1 0 0 0 0 0 

C 0 0 0 1 1 0 0 0 0 0 1 0 

D 1 0 1 0 1 1 1 0 1 1 1 1 

E 1 0 0 0 1 1 1 1 0 1 1 1 

F 0 0 1 1 1 0 1 1 1 0 1 0 

CP 4/6 1/6 4/6 1/2 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 

 

It can be seen that the CBF 42 xx ∨  takes the same values as 2x  in each of the 6 

observations. Therefore this feature can be eliminated from the table. Similarly, both 

42 xx  and   42 xx ⊕  take the same values as x1 2x , and therefore it is enough to retain one 

(say, x1 2x ) of these three composite Boolean features. The set of original variables and 

retained CBFs (to be denoted by x5, x6, x7, x8 and x9) becomes  
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Obs. x1 x2 x3 x4 x5 = 2x  x6 = x1 2x x7 = x1 ∨ x3 x8  =  x1 ⊕ x3 x9 = 32 xx  class

A 0 1 0 0 0 0 0 0 0 0 

B 1 1 1 0 0 0 1 0 0 0 

C 0 0 0 1 1 0 0 0 0 0 

D 1 0 1 0 1 1 1 0 1 1 

E 1 0 0 0 1 1 1 1 0 1 

F 0 0 1 1 1 0 1 1 1 1 

CP 4/6 1/6 4/6 1/2 5/6 5/6 5/6 5/6 5/6  

 

Now let us summarize the above discussion in the following procedure for generating 

composite Boolean features. We view the computation of the classification power of a 

variable x as a single call of a subroutine CP(x). 

 

 

 

 

 

 

 

 

 

 

 

Algorithm CBF 

Input: a pdBf F(x1,x2,…,xn)  

Output: a set B of composite Boolean features   

 M:=max{ CP(x1),…, CP(xn)} 

 p:=n 

 B:=∅ 

 For each i=1,…,n-1, 

  For each j=i+1,…,n, 

   For each k=1,…,12, 

    Compute Boolean function fk(xi,xj)  

    If CP(fk(xi,xj)) >M  and   fk(xi,xj)≠xl, for each l=1,…,p,   

then p:=p+1, xp:= fk(xi,xj), B:=BU { xp} 

 Return B 
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As we mentioned before, the choice of the threshold M proposed in the algorithm is not 

the only possible way to define it; choosing a higher (lower) threshold would lead to the 

retention of a smaller (larger) set of composite Boolean features. 

 

2.3. Iterative Procedure for Finding Composite Boolean Separators (CBSes) 

 

The CBFs identified in the process described in Section 2.2 can be regarded as synthetic 

variables associated to the dataset. As such, they can be simply added to the original data, 

and the process described in Section 2.2 can now be repeated on the augmented dataset. 

Moreover, the resulting CBFs can again be added to the new dataset, and the process can 

be repeated again. If in a certain step Algorithm CBF produces no new composite 

Boolean features, we terminate the process and call the CBFs found in the previous step 

the Composite Boolean Separators (CBSes) of the original dataset.  

 

It is important to note that it is not necessarily true that there exists a CBS whose values 

coincide with the correct classification of all the observations in the dataset. Our 

experience shows however that in every example we have studied, several separators 

were found which took the same values as the outcome of “almost all” observations. 

 

Example (continued).  Let us repeat now the procedure for generating CBFs, with x1, …, 

x9 playing the role of original variables. Applying Algorithm CBF to the extended table, 

we find the four new composite Boolean features, 75xx , x6 ∨ x8,  x6 ∨ x9, 98 xx ∨ having 

CP values exceeding 5/6. 
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Obs. f1= 75xx  f2= x6 ∨ x8 f3= x6 ∨ x9 f4 = x8 ∨ x9 class 

A 0 0 0 0 0 

B 0 0 0 0 0 

C 0 0 0 0 0 

D 1 1 1 1 1 

E 1 1 1 1 1 

F 1 1 1 1 1 

CP 1 1 1 1  

 

In conclusion, we have found four functions (f1, f2,  f3 and f4) which take exactly the same 

values as the class; clearly these functions are CBSes. Substituting in the expressions of 

these separators, the expressions of x5, …, x9 as functions of the original variables x1, …, 

x4, we find that:  

  f1  = 2x (x1 ∨ x3), 

             f2  = (x1 2x ) ∨ (x1 ⊕ x3), 

         f3  = (x1 2x ) ∨ ( 2x x3), 

           f4  = (x1 ⊕ x3) ∨ ( 2x x3). 

 

We conclude this section with a formal description of the procedure for generating 

composite Boolean separators. This procedure uses Algorithm CBF as a subroutine. For 

the conceptual clarity, we purposely omit some implementation details that are used to 

improve its efficiency. 
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  Algorithm CBS (Composite Boolean Separators) 

  Input: a pdBf F 

  Output: a set B of CBSes   

  While CBF (F) ≠ ∅ 

                   Do B:= CBF (F), Augment F by adding to it composite Boolean features from B 

Return B   
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3. CBS BASED DATA ANALYSIS METHODS 

 

In this chapter, we apply composite Boolean separators to three major problems of 

machine-learning / data-mining: classification, misclassification and attribute selection. 

In our experiments, we use several datasets available on the web in the Repository of the 

University of California at Irvine [53] and several frequently used classification methods.   

 

a) Datasets. The datasets examined in this study along with their main 

characteristics are described in Table 1. The list of cutpoints and binarized variables for 

these datasets are presented in Table A, …, Table  H in the Appendix. Each table 

provides the definition of the binary variables used in this study. For example, the first 

line of Table A indicates that  

 



 >

=
otherwise

mcvif
a

0
871

1 . 

 

Note that we have eliminated from the study the observations which include missing data, 

and in the case of the bcw dataset which contains many repetitions of some of the 

observations, we have retained only one copy of each observation.  

 

b) Classification methods. In the computational experiments aimed at evaluating the 

usefulness of composite Boolean separators, we used the Logical Analysis of Data (LAD) 

methodology (see [27], [41], or the surveys [18] or [42]), and four of the most frequently 
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applied machine-learning / data-mining procedures:  

• support vector machines (SMO),  

• artificial neural networks (MP),  

• linear logistic regression (SL),  

• decision trees (C4.5).  

The software used for LAD was Datascope [54], while for the other four methods we used 

the WEKA package [96].  For all these methods we used the default values of the control 

parameters, as given in the WEKA package.  

Table 1 

BENCHMARK DATASETS 

Number of 

observations 
Number of attributes Name of 

dataset 
Abbreviation

Positive Negative Given Binarized 

BUPA liver-

disorders 
bld 200 145 6 29 

German  

credit 
ger 700 300 24 57 

Pima Indians 

Diabetes 
pid 130 262 8 23 

Cleveland 

heart disease 
hea 137 160 13 17 

Australian 

credit 
aus 307 383 14 45 

Ionosphere ion 225 126 33 71 

Wisconsin 

breast cancer 
bcw 236 213 9 20 

Congressional 

voting records 
vot 124 108 16 16 
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3.1. Classification 

 

Classification is an important problem in such fields as artificial intelligence, data 

mining, machine learning, and so on. In terminology of Boolean functions this problem 

consists in finding an extension of a given partially defined Boolean function. Such an 

extension is also called a classifier or a model. In order to establish the reliability of 

classifiers they have to be validated. For this purpose, we apply a cross-validation 

technique called k-folding.  

 

K-folding involves a random partitioning of the dataset into k (e.g. 2, 5, or 10) 

approximately equal-size subsets, using k -1 of these subsets as the training set and the 

remaining one as the test set, then repeating this experiment k times, while using in each 

experiment another one of the k subsets as the test set, and calculating the average 

accuracy on the test sets over the k folds.  

 

In Table 2 we report the average classification accuracies obtained by applying the five 

machine-learning / data-mining methods to the eight datasets in Table 1, using the 

original variables. The averages refer to the results of twenty 10-folding cross-validation 

experiments, each of them based on a different random 10-partitioning. 
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Table 2 

CLASSIFICATION ACCURACIES FOR BENCHMARK DATASETS 

 SMO MP SL C4.5 LAD Average

bld 50.03% 67.63% 66.24% 63.65% 69.29% 63.37% 

ger 69.39% 65.50% 68.56% 66.18% 72.21% 68.37% 

pid 72.31% 73.81% 72.07% 76.13% 74.60% 73.78% 

hea 83.05% 78.70% 82.48% 77.16% 82.35% 80.75% 

aus 86.47% 82.98% 86.66% 84.93% 85.57% 85.32% 

ion 91.10% 88.78% 85.08% 88.05% 91.58% 88.92% 

bcw 95.28% 94.39% 94.86% 92.78% 94.44% 94.35% 

vot 97.05% 94.42% 96.49% 96.61% 97.14% 96.34% 

 

3.1.1. Composite Boolean Separators for Benchmark Datasets 

 

Applying the iterative algorithm described in Section 2.3 for the generation of composite 

Boolean separators to the eight datasets described in Table 1 produces new variables, 

which – at least in some of the cases – have extremely simple expressions in terms of the 

original binary variables. The simplest example is that of the dataset vot 

vot: 4a  

which is produced in the very first iteration, and whose CP (in percentages)  is 

%12.97100*
108
107

124
118

2
1

=





 + . It is interesting to note that this separator depends only on 

1 of the 16 original variables, but provides the correct classification of 225 of the 232 

observations in the original dataset. 

 

Following the same procedure of step-by-step substitutions, we can generate CBSes for 
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other datasets. For each of the sets we present one of the separators with highest CP: 

brw :  a5 ∨ a8 ∨ (a7 a14) ∨ (a14 a15) ∨ (a9 a15) 

 

 bld:  ( 5a 12a 29a )∨ ( 5a a18 29a )∨( 9a 12a 29a ) ∨ ( 12a a23 29a ) ∨ ( 9a a18 a20 29a ) ∨(a18 a20 a23 

29a ) ∨ ( 1a 13a 16a 26a 29a )∨ ( 13a 16a a24 26a 29a ) ∨ ( 1a 16a a25 26a 29a ) ∨ ( 16a a24 a25 26a 29a ) ∨   

( 9a 11a 16a 26a 29a ) ∨ ( 11a 16a a19 26a 29a ) ∨ ( 9a 16a a23 26a 29a ) ∨ ( 16a a19  a23 26a 29a ). 

 

The CPs of these two separators are 96.12% and 74.16% respectively. Let us note that 

since the expression of the separator found for the dataset bld is rather complex, it may 

make sense to use instead of it one of the CBFs found at the previous step of the iterative 

process  

bld: ( 11a a22) ∨ (a22 a25) ∨  ( 9a 12a ) ∨ ( 12a a23) ∨ ( 9a a19) ∨ (a19 a23) 

which has a much simpler expression and has a reasonably high CP of 71.37%. 

A composite Boolean separator with the highest CP generated for the dataset aus is 

 

aus: (a7a27a28 a35) ∨ (a7 a27 a28 40a ) ∨ (a7 a12 a27 40a ) ∨ (a7 a14 a27 40a ) ∨ (a7 a12 a13a27a35) ∨   

(a7 a13 a14 a27 a35) ∨ (a12 a18 a27 a35 40a )  ∨  (a12 a14 a27 a35 40a ) ∨  (a12 a18 a27 a28 a35) ∨  

(a12 a14 a27 a28 a35)  ∨  (a12 a13 a14 a27 a35)  ∨  (a13a18 a27 a28 a35)  ∨  (a13a14 a27 a28 a35), 

 

having a CP of 88.56%. It should be remarked that – similarly to the case of bld – we 

have found a much simpler CBF for aus: 

aus:  a27(a22∨ a35) (a33∨ a12 ∨ a13), 
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having a CP of 87.05%.  

Examples of CBSes with highest CP for the remaining four datasets are: 

 

ion : (a1 a2 a6 a11 a34 5a  a48) ∨ (a4 a8 a26) 

 

pid: (a4 a22) ∨ (a3 a14 a22) ∨ (a14 a18 a22) ∨ (a3 a5) ∨ (a3 a15 a22) ∨ (a4 a5) ∨ (a5 a9 a23) ∨ 

(a9 a15 a22 a23)  

 

hea: (a4 a12 a16) ∨ (a4 a5 a7 a12) ∨ (a4 a17) ∨ (a5 a12 a17) ∨ (a5 a16a17) 

∨ (a4 a5 a16) ∨ (a5 a7 11a a12 ) ∨ (a4 11a a16) ∨ (a5 a7 11a a16) 

 

ger: (a3 a20) ∨ ( 4a  a20) ∨ (a1 a20 a22) ∨ ( 4a  a12) ∨ (a3 51a ) ∨ (a3a12) ∨ ( 4a 51a ) ∨ (a22 a48) 

∨ a2∨ (a19 33a ). 

 

The CPs of these four separators are respectively 93.24%, 82.56%, 86.29%, 74.10%.  

 

The construction of the above listed composite Boolean separators required respectively 

1, 4, 7, 8, 5, 5, 6, 10 iterations for the eight datasets considered, i.e., an average of 5.75 

iterative steps.  

 

3.1.2. Classification with Composite Boolean Separators  

 

It has been seen before that the values of the different separators coincide among 

themselves in a (usually) very high proportion of the observations given in a dataset. 

Moreover, the values of the CBSes are very frequently equal to 1 (respectively to 0) in 

the positive (respectively negative) observations in the dataset, a property which makes 

the CBSes a promising tool for classification.  
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To evaluate the quality of the constructed separators and show their usefulness for 

classification purposes we perform experiments in two different ways. First, we interpret 

composite Boolean separators as artificial variables. Second, we view each separator as a 

classification system.  

 

Composite Boolean Separators as Artificial Variables 

 

In the computational experiments aimed at comparing the results of various classification 

systems we had always to clarify the extent of the collection of CBSes to be used. Since 

the number of separators can be large and addition of all of them can introduce extra 

noise, we have retained in the experiments only the set of best CBSes defined as those 

separators whose CPs are within 1% of the highest CP of all the CBSes constructed. In 

some experiments we used only one CBS with the highest CP.  

 

In Table 3 reported below we present the results of applying the five classification 

methods to the eight datasets described in Table 1, using  

• the original variables; 

•  the original variables along with the best CBSes found; 

• the original variables together with one separator with the highest CP; 

•  the best CBSes only.  
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The results in the table represent averages obtained in twenty 10-folding experiments 

using five different classification methods (i.e., every entry in the table represents the 

average accuracy found in 1,000 experiments). 

Table 3 

AVERAGE CLASSIFICATION ACCURACY ON DATASETS WITH (AND WITHOUT) ORIGINAL 

VARIABLES AND CERTAIN BEST CBSES 

Average accuracy of 5 classification methods (SMO, MP, SL, C4.5, LAD) 

using 
Dataset 

Original 

variables 

Original variables 

and best CBSes 

Original variables and one 

CBS with highest CP 

Best 

CBSes 

bld 63.37% 73.20% 73.04% 73.42% 

ger 68.37% 69.27% 69.03% 73.46% 

pid 73.78% 79.47% 79.62% 81.93% 

hea 80.75% 83.86% 84.29% 84.80% 

aus 85.32% 86.74% 86.75% 88.32% 

ion 88.92% 91.90% 91.70% 93.02% 

bcw 94.35% 95.42% 95.49% 95.55% 

vot 96.34% 96.26% 96.31% 96.79% 

 

It is interesting to note that for the datasets considered, 

• the use of the original variables jointly either with all the best CBSes, or just with 

one separator with the highest CP, gives higher average accuracy than the use of 

only the original variables (except for vot); 

•  the use of the best CBSes without original variables gives higher average 

accuracy than the use of the original variables jointly either with all the best 

separators, or just with one separator with the highest CP. 

The results in Table 3 show high quality of CBSes as artificial variables.  
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In Table 4 we compare the average accuracies of various classification methods obtained 

on the original variables with the accuracies obtained on the set of best CBSes applied to 

the eight benchmark datasets, and also we show average error rate reduction if only best 

CBSes are used for classification.  

Table 4 

COMPARISON OF CLASSIFICATION ACCURACIES ON ORIGINAL VARIABLES AND BEST CBSES 

Dataset 

Average 

accuracy of 5 

classification 

methods 

Maximum 

accuracy of 5 

classification 

methods 

Average 

accuracy 

obtained 

with best 

CBSes 

Improvement 

over average 

accuracy of 5 

classification 

methods 

Improvement 

over maximum 

accuracy of 5 

classification 

methods 

Average 

error rate 

reduction 

bld 63.37% 69.29% 73.42% +10.05% +4.13% 27.44% 

ger 68.37% 72.21% 73.46% +5.09% +1.25% 16.09% 

pid 73.78% 76.13% 81.93% +8.15% +5.80% 31.08% 

hea 80.75% 83.05% 84.80% +4.05% +1.75% 21.04% 

aus 85.32% 86.66% 88.32% +3.00% +1.66% 20.44% 

ion 88.92% 91.58% 93.02% +4.10% +1.44% 37.00% 

bcw 94.35% 95.28% 95.55% +1.20% +0.27% 21.24% 

vot 96.34% 97.14% 96.79% +0.45% -0.35% 12.30% 

                                                                           Average          +4.51%               +1.99%             23.33% 

 

It can be seen that the average accuracy improvement provided by the CBSes 

• in comparison with the average accuracy of the five classification methods 

applied to the original datasets, is 4.51%; 

• in comparison with the maximum accuracy among the five classification methods 

applied to the original datasets, is 1.99%. 
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Moreover, it can be seen that for every dataset (with the possible exception of vot – a 

dataset which from the beginning allows an exceptionally accurate classification) the 

accuracy obtained on the set of best CBSes does not only exceed the average accuracy of 

the five examined classification methods, but surpasses even the accuracy given by the 

very best of these five methods. Also the table shows that the average error rate is 

reduced by 23.33% if only best CBSes are used for classification. 

 

Composite Boolean Separators as Classification Systems 
 
 
To evaluate a CBS as a classification system we have compared the accuracy of this 

system with that of several of the most frequently used machine-learning / data-mining 

methods.  

 

Table 5 shows the average accuracies of various classification methods applied to the 

datasets in 2-folding experiments. These experiments were performed in the following 

way. The dataset was divided into two parts. One of them was used as a training set and 

remaining one as a test set. On the training set we constructed CBSes and chose one with 

the highest CP. The quality of this separator was checked on the test set. Then we 

exchanged training and test sets and repeated experiments. The same observations (before 

binarization) in training sets were used for construction of classifiers by other five 

classification methods and the same observations (before binarization) in test sets were 

used for validation of these classifiers. To compare the results we performed the paired 

two sample for means one-tail t test. 
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Table 5 

RESULTS OF 2-FOLDING EXPERIMENTS USING SIX CLASSIFICATION METHODS 
 

AVERAGE 

  
bld ger pid hea aus ion bcw vot 

Method CBS 
t Stat P(T<=t) 

one-tail 

SMO 50.35% 67.30% 73.10% 82.80% 86.20% 81.95% 95.33% 94.53% 78.95%   

CBS 65.29% 70.26% 79.11% 81.08% 85.79% 88.77% 92.96% 94.06%   82.16% 
-1.55 0.08 

MP 67.98% 64.33% 71.63% 77.50% 81.35% 83.23% 94.53% 94.50% 79.38%   

CBS 65.29% 70.26% 79.11% 81.08% 85.79% 88.77% 92.96% 94.06%   82.16% 
-2.06 0.04 

SL 64.40% 68.68% 72.73% 81.20% 86.20% 83.75% 94.45% 96.25% 80.96%   

CBS 65.29% 70.26% 79.11% 81.08% 85.79% 88.77% 92.96% 94.06%   82.16% 
-1.12 0.15 

C4.5 63.55% 66.18% 72.38% 73.98% 83.30% 87.38% 93.03% 97.13% 79.62%   

CBS 65.29% 70.26% 79.11% 81.08% 85.79% 88.77% 92.96% 94.06%   82.16% 
-2.12 0.04 

LAD 67.44% 71.97% 74.68% 82.19% 85.57% 91.15% 94.73% 96.51% 83.03%   

CBS 65.29% 70.26% 79.11% 81.08% 85.79% 88.77% 92.96% 94.06%   82.16% 
1.06 0.16 
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Conclusion 1. The results of t-tests applied to the average accuracies show that CBSes 

seem to be statistically better than multilayer perceptron, decision trees, support vector 

machines considered at the confidence level of at least 90%, seem somewhat better than 

simple logistic regression, and seem to be somewhat weaker than LAD. All in all, the 

method is definitely comparable with the other methods considered.  

 

3.2. Identification of Misclassified Observations 

 

The quality of real-world datasets is usually not perfect. The presence of noise usually 

leads to negative effects such as decrease of the classification accuracy, increase of the 

size of the model, incorrect decisions, and many others. To enhance the quality of data, 

we propose here two techniques for identifying suspicious observations, i.e., those which 

were supposedly misclassified.   

 

3.2.1. CBS Technique 

 

3.2.1.1.  Consistent Composite Boolean Separators and Suspicious 

Observations 

 
A phenomenon observed in many datasets is that each observation in the dataset is 

classified in the same way by all (or almost all) the composite Boolean separators, i.e., if 

an observation is classified as positive or negative by one of the separators, then all (or 

almost all) the other separators classify it in the same way. This phenomenon is present in 
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particular in all the eight datasets examined above, as well as in both real-life medical 

datasets to be analyzed in Chapter 4. This motivates the following definitions. 

 

Definition 1: An observation will be called strongly reliable if it was classified correctly 

by all the CBSes. 

 

Definition 2: An observation will be called strongly suspicious if it was classified 

erroneously by all the CBSes. 

 

We shall denote the set of all strongly reliable observations by R and the set of all 

strongly suspicious observations by S. Also, let T denote the “residual” set, i.e., the set of 

those observations in the dataset which do not belong to R or S. 

 

In what follows, we examine the question of whether the classes to which the 

observations in S are assigned in the dataset are correct, i.e., whether their classifications 

by the CBSes are credible. In order to derive some useful conclusions about the 

partitioning of the dataset into the subsets R, S, and T, we have carried out a large number 

of computational experiments meant to clarify the characteristics of these subsets. 

 

In the first experiment, to be called strong deletion, the accuracy of the five classification 

methods described in the introduction applied to all the observations in the dataset 

( TSR UU ) was compared to that of the same methods applied to the observations in the 

set TRU  only, i.e., those remaining in the dataset after the deletion of the strongly 
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suspicious observations.  The average accuracies obtained in twenty 10-folding cross-

validation experiments carried out with the five methods on each of the eight datasets are 

shown in Table 6. 

Table 6 

RESULTS ON THE ORIGINAL DATASETS AND ON THE DATASETS OBTAINED AFTER DELETION 

OF STRONGLY SUSPICIOUS OBSERVATIONS 

Average accuracy of 5 classification methods 

D a t a s e t Original dataset 

TSR UU  

Dataset TRU  

after deletion of  

strongly suspicious observations 

Average 

accuracy 

increase  

 

Average 

error rate 

reduction 

 

Size of  

dataset   

TRU  

bld 63.37% 78.91% 15.54% 42.42% 69.60% 

ger 68.37% 93.61% 25.24% 79.80% 74.00% 

pid 73.78% 87.26% 13.48% 51.41% 84.90% 

hea 80.75% 90.28% 9.54% 49.56% 90.90% 

aus 85.32% 95.26% 9.93% 67.64% 89.90% 

ion 88.92% 89.62% 0.70% 6.32% 95.50% 

bcw 94.35% 97.11% 2.76% 48.85% 97.80% 

vot 96.34% 99.50% 3.16% 86.34% 97.40% 

Average 81.40% 91.44% 10.04% 54.04% 87.50% 

  

An examination of the table above leads us to the following statement. 

Conclusion 2. By deleting the set S of strongly suspicious observations, we obtain a new 

dataset which includes on the average almost 90% of the observations, and on which the 

examined machine-learning / data-mining methods have on average a 10% higher 

accuracy and a 54% less error rate than on the original datasets.   
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While the role of the first experiment was to demonstrate the predictability of the subset 

TRU  remaining after the deletion of the strongly suspicious observations, the role of the 

second experiment is to demonstrate the suspiciousness of the strongly suspicious subset 

S. For this purpose, we shall compare the average accuracies obtained in twenty 10-

folding cross-validation experiments carried out on the original dataset TSR UU , with 

the average accuracies obtained by training on the set TRU  and testing on the strongly 

suspicious set S. After randomly partitioning in 20 different ways each of the datasets 

TRU  into 10 subsets, we have used in 20×10 experiments 9 of these subsets for training 

and tested the results on S. The average accuracies obtained in this way are shown in 

Table 7. 

Table 7 

RESULTS ON THE ORIGINAL DATASETS AND ON THE STRONGLY SUSPICIOUS SUBSETS S 

Average accuracy  

of 5 classification methods 

D a t a s e t 

Original dataset 

TSR UU  

Strongly 

suspicious 

subset  S 

Average 

accuracy 

decrease 

Average 

error rate 

increase  

Size of 

strongly 

suspicious 

subset 

bld 63.37% 27.26% 36.11% 49.64% 30.40% 

ger 68.37% 8.30% 60.07% 65.51% 26.00% 

pid 73.78% 12.12% 61.66% 70.16% 15.10% 

hea 80.75% 21.38% 59.37% 75.52% 9.10% 

aus 85.32% 3.03% 82.29% 84.86% 10.10% 

ion 88.92% 39.20% 49.72% 81.78% 4.50% 

bcw 94.35% 1.00% 93.35% 94.29% 2.20% 

vot 96.34% 0.01% 96.33% 96.34% 2.60% 

Average 81.40% 14.04% 67.36% 77.26% 12.50% 
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An examination of the table above leads us to the following statement. 

 

Conclusion 3. On the set S of strongly suspicious observations, which includes on the 

average 12.50% of the observations in the examined datasets, the average accuracy of 

the examined machine-learning / data-mining methods decreases by almost 70% and the 

average error rate increases by almost 80%  compared to the original dataset.  

 

In light of the above conclusion it is natural to wonder whether the very low accuracy (or 

very high error rate) of classification methods on the strongly suspicious set S is due to  

 

• errors in the given descriptions of attribute values in the dataset,  or 

• a difference in the nature of the observations in S compared to those in TRU , or  

• errors in the given classifications of the observations in S.  

 

The results of the second experiment can be presented in a different way by showing how 

the models learned on the set TRU  classify the “reversed” set S consisting of the 

observations in the set S, having reversed classifications (i.e., reversing the classification 

of a positive observation to negative, and of a negative one to positive). These results are 

shown in Table 8. 

 

It can be seen that reversing the classification of the observations in the strongly 

suspicious  set  S,  the  accuracies  on  S   become  comparable  to  those  on  TSR UU .  
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Table 8 

RESULTS ON THE ORIGINAL DATASETS AND ON THE REVERSED STRONGLY SUSPICIOUS 

SUBSETS S  

Average accuracy  

of 5 classification methods 

D a t a s e t Original 

dataset 

TSR UU

Reversed 

strongly 

suspicious 

subset S  

Average 

change 

in 

accuracy 

Average 

error rate 

change 

bld 63.37% 72.74% +9.37% -25.58% 

ger 68.37% 91.70% +23.33% -73.76% 

pid 73.78% 87.88% +14.10% -53.78% 

hea 80.75% 78.62% -2.13% +9.96% 

aus 85.32% 96.97% +11.65% -79.36% 

ion 88.92% 60.80% -28.12% +71.73% 

bcw 94.35% 99.00% +4.65% -82.30% 

vot 96.34% 99.99% +3.65% -99.73% 

Average 81.40% 85.96% +4.56% -41.60% 

 

Moreover, it is interesting to notice that in six of the eight datasets the accuracy on S  is 

actually higher than that on  TSR UU , the  increase  averaging at almost 5%. The only 

dataset on which the reversal produces a sizeable decrease in accuracy is ion; the other 

dataset on which there is a small (approx. 2%) decrease of accuracy is hea, on which 

however the accuracy found on TSR UU  and on S  remain comparable. It also can be 

noticed that the average error rate was reduced by more than 40%. These observations 

lead to the following statement. 
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Conclusion 4. The reversal of the given classifications of the strongly suspicious 

observations produces a set S  of observations on which the machine-learning / data-

mining methods examined in this study provide accuracies comparable with  and usually 

higher than on the original dataset.  

 

In view of the above three conclusions, it is natural to ask which one of the two methods 

presented above, deletion or reversal, can produce better results. In order to answer this 

question we have compared the accuracies of the five machine-learning / data-mining 

methods on the eight datasets; the original dataset TSR UU , the dataset TRU  obtained 

by deletion (i.e., by the deletion of S), and the dataset TSR UU obtained by the reversal 

of the classifications of the strongly suspicious observations. The average results of 

twenty 10-folding cross-validation experiments are presented in Table 9. These results 

lead to the following statement. 

 

Conclusion 5. Regardless of the classification methods used, deletion and reversal 

improve the accuracy of classification, the average improvements in accuracy being of 

approximately 10% and 11% respectively; the improvement obtained by reversal is 

slightly higher in most cases than that obtained by deletion. Both deletion and reversal 

cut the error rate more than in half. 
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Table 9 

D a t a s e t SMO MP SL C4.5 LAD Average 
Average 

increase in 
accuracy 

Average 
error rate 
reduction 

Original 50.03% 67.63% 66.24% 63.65% 69.29% 63.37%    
Deletion 50.65% 84.42% 78.67% 97.87% 82.94% 78.91% 15.54% 42.42% bl

d 

Reversal 69.56% 87.88% 70.98% 98.64% 84.11% 82.23% 18.87% 51.51% 

Original 69.39% 65.50% 68.56% 66.18% 72.21% 68.37%     
Deletion 89.56% 95.41% 89.97% 97.37% 95.75% 93.61% 25.24% 79.79% ge

r 

Reversal 90.45% 95.73% 91.25% 98.57% 97.69% 94.74% 26.37% 83.36% 

Original 72.31% 73.81% 72.07% 76.13% 74.60% 73.78%     

Deletion 84.13% 86.51% 85.81% 93.09% 86.77% 87.26% 13.48% 51.42% pi
d 

Reversal 85.95% 88.37% 87.84% 94.26% 87.61% 88.81% 15.03% 57.33% 

Original 83.05% 78.70% 82.48% 77.16% 82.35% 80.75%     

Deletion 90.22% 90.73% 89.85% 91.44% 89.17% 90.28% 9.54% 49.55% he
a 

Reversal 89.86% 89.89% 89.57% 92.72% 89.95% 90.40% 9.65% 50.12% 

Original 86.47% 82.98% 86.66% 84.93% 85.57% 85.32%     

Deletion 95.26% 94.93% 95.44% 95.39% 95.26% 95.26% 9.93% 67.65% au
s 

Reversal 95.34% 95.23% 95.77% 96.20% 95.30% 95.57% 10.25% 69.83% 

Original 91.10% 88.78% 85.08% 88.05% 91.58% 88.92%     

Deletion 86.13% 89.93% 85.91% 92.13% 93.99% 89.62% 0.70% 6.32% io
n 

Reversal 84.90% 89.09% 84.83% 93.59% 91.76% 88.83% -0.08% -0.72% 

Original 95.28% 94.39% 94.86% 92.78% 94.44% 94.35%     

Deletion 97.92% 96.90% 97.61% 95.78% 97.33% 97.11% 2.76% 48.85% bc
w

 

Reversal 97.97% 96.93% 97.45% 95.65% 97.28% 97.06% 2.71% 47.96% 

Original 97.05% 94.42% 96.49% 96.61% 97.14% 96.34%     

Deletion 99.58% 99.16% 99.58% 99.58% 99.60% 99.50% 3.16% 86.39% vo
t 

Reversal 99.58% 99.17% 99.58% 99.58% 99.59% 99.50%    3.16% 86.39% 

                                                                                                       Average 81.40%   
                                                                                                          Average    91.44%        10.04% 54.04% 
                                                                                                                                  Average    92.14%       10.75%          55.71% 
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Before concluding this section we shall return to the question of whether the observations 

in S have been misclassified in the original dataset. We have seen before that the models 

learned on TRU  and tested on S have very low accuracies (Table 7). Also, we have seen 

in Table 8 that the models learned on TRU  and tested on S  have very high accuracies. 

In order to understand the structure of the strongly suspicious sets S and complete the 

tests we have developed and cross-validated a series of models on these sets. Since in 

some of the datasets the size of the sets S was too small to carry out the experiments, we 

have only performed it for the datasets pid, bld, aus, ger – whose strongly suspicious 

sets are sufficiently large. In Table 10 and Table 11 below we present the results of these 

experiments. These results are averages of twenty 10-folding experiments performed in 

the following way. The set S (respectively S ) is randomly partitioned into 10 

approximately equally sized parts, 9 of which are used as a training set, and the resulting 

model is tested on TRU . In each of the 10 tests in a 10-folding experiment another part 

of S is removed. 

 

Table 10 

AVERAGE ACCURACY OF MODELS LEARNED ON S BY 5 CLASSIFICATION METHODS  
 

D a t a s e t Cross-validation on S Testing on TRU  

bld 82.11% 25.17% 

pid 93.32% 15.93% 

ger 89.30% 10.64% 

aus 95.72% 5.28% 
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Table 11 

AVERAGE ACCURACY OF MODELS LEARNED ON S  BY 5 CLASSIFICATION METHODS 
 

D a t a s e t Cross-validation on S  Testing on TRU  

bld 81.41% 74.86% 

pid 93.18% 84.02% 

ger 91.70% 91.65% 

aus 95.80% 94.78% 

 

The results shown in Table 10 indicate clearly that the sets S in these four datasets, 

considered in isolation, allow a very accurate classification. The same conclusion is also 

true for the sets S  (see Table 11).  

 

All in all, it is clear that the models built on S, respectively on S , have high accuracy, and 

that TRU  is “inconsistent” with S, but it is perfectly consistent with S .  

 

Therefore it seems that all the strongly suspicious observations in all the eight datasets 

examined were simply misclassified in their original version. 

 

3.2.1.2.  Expanding the Suspicious Set 

 

In the previous section we have defined as strongly reliable (respectively, as strongly 

suspicious) those observations for which (i) all the CBSes gave the same classification, 

and (ii) that classification coincided with (respectively, differed from) the classification 

given in the original dataset. In this section we shall relax the requirements of this 
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definition in order to identify more of the observations whose classifications given in the 

original dataset may be questionable. 

 

Let c be the number of CBSes constructed as in Section 2.3, and let p be an arbitrary 

number in [0,1].  Let us give first an intuitive definition of a natural partition of  Ω, which 

reflects the classifications given by the CBSes. Let us define the p-reliable subset Rp of 

the dataset Ω as the subset which consists of those observations for which the outcomes 

(1 or 0) of at least pc CBSes agree both among themselves and with their classifications 

(positive or negative) given in the dataset. Similarly, the p-suspicious subset Sp of Ω is 

defined as consisting of those observations for which the outcomes (1 or 0) of at least pc 

CBSes agree among themselves, but disagree with their classifications (positive or 

negative) given in the dataset. The remaining “divergent” subset Tp consists of the 

observations for which the CBS outcomes are split in such a way that both the number of 

1’s and that of 0’s is less than pc; clearly, Tp =  Ω \ ( Rp U  Sp). The observations in Rp 

and Sp will be called p-reliable, respectively p-suspicious. Clearly, the strongly reliable 

and strongly suspicious observations represent the special case of p-reliable, respectively 

p-suspicious, observations corresponding to p = 1. We shall examine later in this section 

a way of determining a good value of p. 

 

In the computational experiments reported below the value of p was chosen to be 0.75. 

The following Table 12 presents the average accuracies obtained in twenty 10-folding 

experiments using five machine-learning / data-mining methods, as well as the sizes of 

the corresponding sets of p-suspicious and strongly suspicious observations. 
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Table 12 

AVERAGE ACCURACY OF 5 CLASSIFICATION METHODS ON THE ORIGINAL DATASETS AND ON 
THE DATASETS OBTAINED AFTER DELETION AND REVERSAL  (P=1 AND P=0.75)  

 
Average accuracy of 5 classification methods Size 

 

Dataset 
Original 

dataset 

Strong 

deletion 

Deletion 

for 

p=0.75 

Strong 

reversal 

Reversal for 

p=0.75 

Strongly 

suspicious 

set 

p-suspicious 

set  for 

p=0.75 

bld 63.37% 78.91% 78.91% 82.23% 82.23% 30.43% 30.43% 

ger 68.37% 93.61% 94.57% 94.74% 95.11% 26.00% 26.50% 

pid 73.78% 87.26% 88.81% 88.81% 89.96% 15.10% 16.07% 

hea 80.75% 90.28% 93.53% 90.40% 93.61% 9.10% 12.46% 

aus 85.32% 95.26% 96.82% 95.57% 96.74% 10.10% 11.88% 

ion 88.92% 89.62% 89.74% 88.83% 89.13% 4.50% 5.11% 

bcw 94.35% 97.11% 97.61% 97.06% 97.65% 2.20% 2.90% 

vot 96.34% 99.50% 99.48% 99.50% 97.81% 2.60% 3.88% 

Average 81.40% 91.44% 92.43% 92.14% 92.78% 12.50% 13.65% 

 

The following conclusions can be drawn from these results: 

• the average number of observations in the p-suspicious sets exceeds 

the average number of observations in the strongly suspicious sets by 

about 1% of the size of the datasets; 

• on every dataset studied, the accuracy of classification after deletion 

for p = 0.75 is higher than classification after strong deletion; the 

average increase in accuracy being of approximately 1%; 

• on every dataset studied, with the exception of vot, the accuracy of 

classification after reversal for p = 0.75 is higher than classification 
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after strong reversal; the average increase in accuracy being of 

approximately 0.6%; 

• the accuracy of classification after reversal for p = 0.75 is moderately 

increased in most datasets compared to classification after deletion for 

p = 0.75, the average increase being of approximately 0.4%. 

 

In order to illustrate the influence of various values of p on the accuracy of deletion and 

reversal we shall consider the dataset hea, for which the number of CBSes is 12. In Table 

13 we show the effects of deleting and of reversing all the suspicious observations, for 

different values of the parameter p between 0.75 and 1. Since in this dataset there are no 

observations in which the values of exactly 9 (= 0.75 x 12) CBSes coincide, the reliable 

and suspicious sets are defined by the observations in which the values of at least 10 

separators coincide; these sets of observations corresponds to p less than 0.917.  When p 

exceeds 0.917, at least 11 separators have to agree in the observations defining Rp and Sp, 

and for p = 1.0 this number is 12. 

 

Table 13 

AVERAGE ACCURACY OF 5 CLASSIFICATION METHODS FOR THE DATASET HEA (0.75 ≤ P ≤ 1) 
 

Average accuracy  

of 5 classification methods Value of p 

Deletion Reversal 

Size of 

|Sp| 

0.75 ≤ p <0. 917 93.53% 93.61% 12.46% 

 0.917 ≤ p < 1.0 92.91% 92.92% 11.78% 

p = 1.0 90.28% 90.40% 9.09% 
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In order to identify a good value of the parameter p, let us make some observations, based 

on the accumulated experimental evidence. First, we have noticed in our experiments that 

for large values of p∈[0,1] the accuracy of classification after reversal is generally higher 

than the accuracy of classification after deletion. Second, it was remarked that the 

accuracy of classification after deletion increases monotonically when p decreases. Third, 

it was also observed that the accuracy of classification after reversal increases with 

decreasing p until it reaches a peak, after which it starts decreasing. The second and third 

remarks indicate that – if we disregard small irregularities – the accuracy of deletion is a 

monotonically non-increasing function of p, while the accuracy of reversal is a unimodal 

function of p. The dependence of the accuracy of deletion and of reversal on p is 

illustrated in Figure 3. It is important to remember however that this picture provides 

only an approximate description of the real phenomenon. 

 

Figure 3. Finding a good value of p 

 

 

93.0% 

94.0% 

95.0% 

96.0% 

97.0% 

98.0% 

99.0% 

100.0% 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Parameter p

Accuracy 

Deletion
Reversal



 

 

46

Based on the above, it is natural to assume that for high values of p the suspicious set S 

includes only a part of those observations whose classification is perhaps erroneous, 

while for low values of p too many observations are included in S. Our objective is to 

find a true set of misclassified observations. Therefore, we do not want to leave out those 

observations which are really misclassified or to include those which are not.  In this 

respect, the following hypothesis seems reasonable.  

 

Hypothesis: the optimal value of the parameter p is that one for which the accuracy of 

deletion is closest to that of reversal.   

 

In the computational experiments reported in this thesis, we have used a simple heuristic 

for finding a relatively good value p* of the parameter p. For evaluating the accuracies of 

classifying the various sets of observations in this process we have always used twenty 

10-folding cross-validation experiments with each of the five machine-learning / data-

mining methods listed in the introduction, and reported the average accuracy of these 

1,000 experiments. For every t = 1, 2,… let the suspicious set St consist of those 

observations in which at least ct of the total number c of CBSes have the same value, and 

this value differs from the given classification of the corresponding observations. Let us 

define ct to be c – t + 1, and pt to be 
c
ct . We shall denote by δ(t) and ρ(t) the accuracy of 

classification on the dataset Ω \ St obtained  by  deletion,   respectively  the  accuracy  of  

classification  on  the  dataset     (Ω \ St) U  tS  obtained by reversal, and we define the 

tolerance ε to be  an arbitrary small  nonnegative number.  Let  t̂   be  the  first  index  t  
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for  which  |ρ(t) - δ(t)|   ≤  ε ,  and  let t* = min { t̂ , c/2  + 1}. We shall take p* = pt* =1- 

c
t )1*( − . This value was chosen so as to satisfy the property of p* stated by the 

hypothesis given above, while making sure that the set of CBSes used in the definition of 

the p-suspicious set Sp* includes at least half of all CBSes. 

 

In the next table we shall show the influence of the choice of the value of p on the 

accuracy of deletion and reversal, as well as on the size of the suspicious set. It can be 

seen that while strong deletion as well as strong reversal can improve the average 

accuracy by more than 10%, deletion or reversal using the value p* of the parameter p 

can add to this a further improvement of 1-2%. Also, while in strong deletion or strong 

reversal the size of the suspicious set averages at 12.5% of Ω, the size of Sp* averages at 

13.7%.  

Table 14 

RESULTS ON THE DATASETS OBTAINED AFTER DELETION AND REVERSAL  (P=1, P=0.75, 

P=P*)  

Average accuracy of 5 classification methods   

Deletion for  Reversal for 
Size of suspicious set for 

Dataset p* Original 

dataset p=1 p=0.75 p=p* p=1 p=0.75 p=p* p=1 p=0.75 p=p* 

bld 0.53 63.37% 78.91% 78.91% 79.40% 82.23% 82.23% 82.32% 30.4% 30.4% 31.3% 

ger 0.5 68.37% 93.61% 94.57% 95.02% 94.74% 95.11% 95.39% 26.0% 26.5% 27.0% 

pid 0.53 73.78% 87.26% 88.81% 89.32% 88.81% 89.96% 90.42% 15.1% 16.1% 17.6% 

hea 0.83 80.75% 90.28% 93.53% 93.53% 90.40% 93.61% 93.61% 9.1% 12.5% 12.5% 

aus 0.91 85.32% 95.26% 96.82% 96.77% 95.57% 96.94% 96.84% 10.1% 11.9% 11.6% 

ion 1.00 88.92% 89.62% 89.74% 89.62% 88.83% 89.13% 88.83% 4.5% 5.1% 4.5% 

bcw 1.00 94.35% 97.11% 97.61% 97.11% 97.06% 97.65% 97.06% 2.2% 2.9% 2.2% 

vot 1.00 96.34% 99.50% 99.48% 99.50% 99.50% 97.81% 99.50% 2.6% 3.9% 2.6% 
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An interesting question concerning the suspicious sets is to know whether there is a clear 

relationship between their sizes and the improvement of accuracy by deletion or reversal.  

Table 15 provides an affirmative answer to this question.  It shows that, when p ≥ p* the 

correlation between |S| and the possible accuracy improvements is of 0.88 for deletion 

and 0.92 for reversal. Moreover, it can also be seen from the table that there is a strong 

negative correlation between average accuracy on the original data and its possible 

improvement by deletion or reversal; not surprisingly there is a -0.98 correlation between 

the average accuracy on the original set and the size of the suspicious set.  

 

Table 15 

CORRELATIONS BETWEEN ACCURACY ON ORIGINAL DATA, IMPROVEMENTS BY DELETION 

AND REVERSAL, AND SIZE OF SUSPICIOUS SET FOR P ≥ P* 

Improvement of average 

accuracy of 5 classification 

methods by 

Size of 

suspicious 

set  

Average 

accuracy of 5 

classification 

methods on 

original dataset 
Deletion Reversal  

Average accuracy of 5 machine 

classification methods on original 

dataset  

-0.86 -0.89 -0.98 

Deletion 
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  0.92 

Size of suspicious set 
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3.2.2. Best SER (Simulated Error Rate) Technique 

 
In this section, we analyze one more method for identifying suspicious observations. This 

method is based on the notion of simulated error rate. 

 
Definition 3. The Simulated Error Rate (SER) of an observation w in N k-folding 

experiments is the average number of times the observation, while being in the test set, 

was wrongly classified by a method C, i.e., 
N
ew w

C =)(σ , where ew is the number of 

erroneous classifications of observation w ∈Ω by the classification method C in the N 

experiments.  

 
The procedure for identifying suspicious observations based on the notion of SER can be 

described as follows. 

 

Procedure Best_SER 

1. repeat k-folding N times for each classification method Ci (i = 1, 2, 3, …..); 

2. compare average classification accuracies of the methods Ci for i = 1, 2, 3, … 

obtained on test sets; 

3. choose a method C which gives the best accuracy (if there is a tie, i.e., several 

methods give the same best accuracy, then pick any of those);  

4. using the chosen method, for each observation in the dataset evaluate SER on 

the test sets; 

5. create the subset of suspicious observations by including in it the observations w 

with )(wCσ = 1. 
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Since the condition in step 5 of this procedure is quite strong, it may lead to omitting 

some misclassified observations from the suspicious set. To overcome this difficulty we 

at times relax this condition by introducing a numerical parameter α∈[0,1] and replacing 

the requirement )(wCσ = 1 with α  ≤ )(wCσ  ≤  1.  With this modification, the above 

procedure will be referred to as Best_SER(α). The set of observations found by 

Best_SER(α) will be denoted Sα.  

 

To identify the optimal value of the parameter α we adapt the hypothesis proposed in 

Section 3.2.1.2 in the following way: it seems reasonable to expect that the optimal value 

of α is the one for which the accuracy obtained by deletion is closest to that obtained by 

reversal.   

 

Let δα be the accuracy of classification on the dataset Ω \ Sα obtained by deletion of the 

set Sα, and let ρα  be the accuracy of classification on the dataset (Ω \ Sα) U  αS  obtained 

by reversal of the class of the observations in the set Sα. According to the above 

hypothesis, we want the value of |ρα-δα| to be within some tolerance ε  which is a small 

nonnegative number.  If  ρα -δα  > ε ,  we  gradually  increase  the  parameter  α  until   |ρα 

-δα| ≤ ε.  If ρα -δα < - ε, we gradually decrease α until |ρα -δα|  ≤  ε. 

 

The idea of using SER for filtering data is not new. For example, Brodley and Friedl (see 

[21], [22]) employed this idea in a two-step procedure for identifying and eliminating 

mislabeled training instances. The difference between the technique proposed by Brodley 

and Friedl and the technique proposed in this section is the following. The authors of 
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[21], [22] use several machine-learning / data-mining methods to compute SER for each 

observation, and qualify an observation as suspicious if most of the methods (Majority) 

or all of them (Consensus) indicate that this is an error. In our approach, out of several 

methods we choose the one which gives the best average accuracy on the test sets and 

calculate SER of each observation for this method only.  We call this approach the Best 

SER technique. 

 

To justify the proposed modification we implement two series of experiments. In the first 

series, we use four classification methods and classify an observation as suspicious if two 

methods having the highest accuracies indicate that the observation is misclassified in 

every one of the twenty 10-folding experiments. We call this approach 2-consensus. In 

the second series, we implement the Best SER technique with the same four classification 

methods. The results reported in Table 16 refer to the eight datasets described in Table 1 

with the following modifications: we do not delete missing data, but we delete repetitions 

in all these datasets. 

 

Our experiments show that the first approach is more conservative than the Best SER, 

since it eliminates fewer instances from the data. The drawback of a conservative 

approach is the risk of retaining “bad” data. It can be seen from Table 16 that after 

deletion/reversal for each machine-learning / data-mining method and for each dataset the 

accuracy increases for both techniques. However for the Best SER technique the average 

increase  is  almost  twice  as  much  as that obtained by the first approach. The minimum 
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Table 16 
COMPARISON OF 2-CONSENSUS WITH BEST SER  

SMO MP SL C4.5 Average Average increase 
in accuracy 

Average error rate 
reduction D a t a s e t 

2-
consensus Best SER 2-

consensus Best SER 2-
consensus Best SER 2-

consensus Best SER 2-
consensus Best SER 2-

consensus Best SER 2-
consensus Best SER 

Original 52.39% 52.39% 67.21% 67.21% 66.46% 66.46% 63.05% 63.05% 62.28% 62.28%         

Deletion 54.53% 54.60% 74.45% 76.55% 72.09% 72.42% 69.18% 69.79% 67.56% 68.34% 5.28% 6.07% 14.00% 16.09% bl
d 

Reversal 55.83% 56.42% 77.34% 78.81% 73.31% 74.46% 67.33% 68.55% 68.45% 69.56% 6.17% 7.28% 16.36% 19.30% 

Original 62.44% 62.44% 64.67% 64.67% 68.71% 68.71% 63.61% 63.61% 64.86% 64.86%         

Deletion 66.51% 86.84% 68.82% 88.06% 70.39% 89.26% 66.61% 82.34% 68.08% 86.63% 3.22% 21.77% 9.16% 61.95% ge
r 

Reversal 67.60% 88.64% 69.37% 90.49% 70.96% 91.82% 66.47% 81.41% 68.60% 88.09% 3.74% 23.23% 10.64% 66.11% 

Original 70.29% 70.29% 72.24% 72.24% 71.18% 71.18% 70.17% 70.17% 70.97% 70.97%         

Deletion 75.69% 75.75% 79.00% 80.18% 76.70% 76.73% 75.49% 76.03% 76.72% 77.17% 5.75% 6.20% 19.81% 21.36% pi
d 

Reversal 77.40% 77.04% 81.41% 81.48% 78.23% 77.98% 77.85% 77.61% 78.72% 78.53% 7.75% 7.56% 26.70% 26.04% 

Original 78.81% 78.81% 78.52% 78.52% 82.93% 82.93% 75.51% 75.51% 78.94% 78.94%         

Deletion 85.91% 94.39% 85.63% 93.59% 87.30% 94.96% 83.30% 89.93% 85.54% 93.22% 6.59% 14.28% 31.29% 67.81% he
a 

Reversal 86.86% 95.28% 86.64% 94.63% 88.54% 95.54% 83.00% 90.77% 86.26% 94.06% 7.32% 15.11% 34.76% 71.75% 

Original 84.82% 84.82% 82.75% 82.75% 86.73% 86.73% 81.79% 81.79% 84.02% 84.02%         

Deletion 92.29% 93.60% 91.35% 93.65% 93.44% 95.03% 91.20% 92.80% 92.07% 93.77% 8.05% 9.75% 50.38% 61.01% au
s 

Reversal 92.82% 94.31% 91.99% 94.09% 93.79% 95.35% 92.17% 93.24% 92.69% 94.25% 8.67% 10.23% 54.26% 64.02% 

Original 85.33% 85.33% 88.02% 88.02% 84.41% 84.41% 88.02% 88.02% 86.44% 86.44%         

Deletion 86.85% 88.87% 88.41% 89.02% 84.25% 87.57% 88.95% 91.12% 87.12% 89.15% 0.67% 2.70% 4.94% 19.91% io
n 

Reversal 86.59% 88.27% 88.59% 88.26% 84.61% 87.58% 88.88% 91.37% 87.17% 88.87% 0.72% 2.42% 5.31% 17.85% 

Original 93.66% 93.66% 93.37% 93.37% 94.47% 94.47% 91.43% 91.43% 93.23% 93.23%         

Deletion 96.97% 99.09% 96.15% 98.85% 96.68% 98.56% 94.70% 96.25% 96.13% 98.19% 2.89% 4.96% 42.69% 73.26% bc
w

 

Reversal 96.93% 99.18% 96.28% 99.08% 96.68% 98.72% 94.81% 95.60% 96.18% 98.15% 2.94% 4.91% 43.43% 72.53% 

Original 92.18% 92.18% 93.08% 93.08% 94.62% 94.62% 92.72% 92.72% 93.15% 93.15%         

Deletion 97.22% 99.48% 97.56% 99.06% 97.09% 98.88% 98.11% 99.58% 97.50% 99.25% 4.35% 6.10% 63.50% 89.05% vo
t 

Reversal 96.29% 98.56% 97.64% 99.15% 97.01% 98.32% 96.86% 98.39% 96.95% 98.61% 3.80% 5.46% 55.47% 79.71% 

         Average  79.24% 79.24%         

         Average  83.84% 88.21% 4.60% 8.98% 29.47% 51.31% 

         Average  84.38% 88.76% 5.14% 9.53% 30.87% 52.16% 
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increase in accuracy for the eight datasets is 2.42% for Best SER and 0.67% for 2-

consensus; the maximum increase in accuracy for the eight datasets is 23.23% for Best 

SER and 8.67% for 2-consensus. It also can be seen that deletion/reversal reduce the 

average error rate by more than half if Best SER is used and by only 30% if 2-consensus 

is used. This discussion shows that the Best SER technique is a promising modification of 

the Brodley-Friedl’s idea.  

 

Now let us present a detailed study of the Best SER technique in which we use five 

machine-learning / data-mining methods described in the introduction. For each dataset 

presented in Table 1 and each method we run twenty 10-folding experiments (k = 10 and 

N = 20). Table 17 presents the average accuracies obtained in these experiments. For each 

dataset we emphasize in bold the best accuracy. 

 

Table 17 

BEST CLASSIFICATION ACCURACIES FOR BENCHMARK DATASETS  
 

 SMO MP SL C4.5 LAD Average 

bld 50.03% 67.63% 66.24% 63.65% 69.29% 63.37% 

ger 69.39% 65.50% 68.56% 66.18% 72.21% 68.37% 

pid 72.31% 73.81% 72.07% 76.13% 74.60% 73.78% 

hea 83.05% 78.70% 82.48% 77.16% 82.35% 80.75% 

aus 86.47% 82.98% 86.66% 84.93% 85.57% 85.32% 

ion 91.10% 88.78% 85.08% 88.05% 91.58% 88.92% 

bcw 95.28% 94.39% 94.86% 92.78% 94.44% 94.35% 

 vot 97.05% 94.42% 96.49% 96.61% 97.14% 96.34% 
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It can be seen that LAD provides the maximum accuracy for the bld, ger, ion, and vot 

datasets. For hea and bcw, the best results were obtained by using the SMO method. 

Simple Logistic and C4.5 give the best accuracies for the aus and pid datasets, 

respectively.  

 

For each dataset we use the method that gives the best accuracy in order to calculate SER 

of each observation in the set and construct the set Sα with α = 1, i.e., we include in Sα 

those observations that have been misclassified 20 times. Next, we use the obtained 

subsets of suspicious observations for data cleaning in two ways: we either delete this 

subset from the dataset or reverse the class of observations in this subset. In Table 18, we 

present the original results as well as the results of deletion and reversal. These results 

lead us to the following conclusion.  

 

Conclusion 6.  Both deletion and reversal improve the average accuracy of 

classification, the improvement being approximately 7.5%, and the difference between 

these two improvements in favor of reversal is only 0.21%. Both deletion and reversal cut 

the error rate almost in half. The accuracy increases (the error rate decreases) for each 

classification method regardless of the method used for the construction of the suspicious 

set. 
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Table 18 

AVERAGE ACCURACY ON THE ORIGINAL DATASETS AND ON THE DATASETS OBTAINED 

AFTER DELETION AND REVERSAL  

(α = 1) 

 

D a t a s e t SMO MP SL C4.5 LAD Average 

Average 
increase 

in 
accuracy 

Average 
error rate 
reduction 

Original  50.03% 67.63% 66.24% 63.65% 69.29% 63.37%   

Deletion 54.23% 75.85% 75.85% 76.42% 78.55% 72.18% 8.81% 24.05% bl
d 

Reversal 50.99% 76.30% 73.00% 73.80% 80.36% 70.89% 7.52% 20.53% 

Original  69.39% 65.50% 68.56% 66.18% 72.21% 68.37%    

Deletion 86.39% 85.77% 86.77% 83.49% 85.16% 85.52% 17.15% 54.22% ge
r 

Reversal 88.28% 86.21% 88.47% 85.43% 86.63% 87.00% 18.63% 58.90% 

Original  72.31% 73.81% 72.07% 76.13% 74.60% 73.78%    

Deletion 75.41% 76.91% 77.42% 83.95% 80.15% 78.77% 4.99% 19.03% pi
d 

Reversal 76.65% 77.05% 78.15% 85.16% 81.37% 79.68% 5.90% 22.50% 

Original  83.05% 78.70% 82.48% 77.16% 82.35% 80.75%    

Deletion 95.33% 94.26% 95.05% 88.54% 92.28% 93.09% 12.34% 64.10% he
a 

Reversal 95.89% 95.73% 96.39% 89.53% 92.06% 93.92% 13.17% 68.42% 

Original  86.47% 82.98% 86.66% 84.93% 85.57% 85.32%    

Deletion 94.22% 93.77% 94.99% 94.31% 93.61% 94.18% 8.86% 60.35% au
s 

Reversal 95.03% 94.29% 95.30% 95.23% 93.80% 94.73% 9.41% 64.10% 

Original  91.10% 88.78% 85.08% 88.05% 91.58% 88.92%    

Deletion 88.36% 90.69% 89.55% 91.07% 96.70% 91.27% 2.35% 21.21% io
n 

Reversal 88.20% 89.01% 89.92% 91.32% 96.21% 90.93% 2.01% 18.14% 

Original  95.28% 94.39% 94.86% 92.78% 94.44% 94.35%    

Deletion 98.55% 98.00% 97.28% 93.23% 96.97% 96.80% 2.45% 43.36% bc
w

 

Reversal 98.06% 97.73% 97.23% 94.22% 96.68% 96.79% 2.44% 43.19% 

Original  97.05% 94.42% 96.49% 96.61% 97.14% 96.34%    

Deletion 99.58% 99.56% 99.58% 99.58% 99.61% 99.58% 3.24% 88.52% vo
t 

Reversal 99.04% 99.87% 99.17% 98.59% 99.20% 99.18% 2.84% 77.60% 

Average 88.93% 7.53% 46.86% 
 

89.14% 7.74% 46.67% 
 

 

It can be seen from Table 18 that the largest accuracy difference between reversal and 

deletion was obtained on the dataset ger and it is equal to 1.49%. This suggests that 

perhaps the value α = 1 is not optimal for the set ger. We define ε to be equal to 1% and 
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decrease α to 0.95, i.e., the observations which were erroneously classified 19 or 20 times 

are considered to be suspicious. With this relaxation of α, the size of the suspicious set 

increases from 17.10% to 18.80% of the total number of the observations in the dataset 

ger. The results obtained for deletion and reversal after the relaxation are shown in Table 

19.  

Table 19 

AVERAGE ACCURACY OF DELETION AND REVERSAL ON THE DATASET GER  

(α = 0.95) 

D a t a s e t SMO MP SL C4.5 LAD Average 

Average 

increase in 

accuracy 

Average 

error rate 

reduction 

Deletion 88.14% 86.48% 88.20% 85.78% 86.24% 86.97% 18.60% 58.80% 

ge
r 

Reversal 88.94% 86.84% 88.99% 88.22% 86.35% 87.87% 19.50% 61.65% 

 

After the relaxation the difference between the average accuracy obtained after reversal 

and the average accuracy obtained after deletion becomes less than 1% and further 

relaxation is not needed. 

 

In order to verify the correctness of the construction of the set Sα, we run one more series 

of experiments. The goal of these experiments is to compare the average accuracies 

obtained on the original dataset with the average accuracies obtained by training on the 

set  Ω \ Sα  and testing on the suspicious set Sα. After randomly partitioning in 20 different 

ways each of the datasets  Ω \ Sα   into 10 subsets, we use in 20×10 experiments 9 of these 

subsets for training and test the results on Sα. The obtained results are presented in Table 

20. 
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Table 20 

AVERAGE ACCURACY OF 5 CLASSIFICATION METHODS ON THE ORIGINAL DATASETS AND 

SUSPICIOUS SUBSETS  

(α = α*) 
 

Average accuracy 

of 5 classification methods (α = α*) 
 
D a t a s e t Original 

dataset 

Suspicious 

subset Sα 

Average 

accuracy 

decrease 

Average 

error 

rate 

increase 

Size of 

suspicious 

subset Sα 

bld 63.37% 29.34% 34.03% 48.16% 13.62% 

ger 68.37% 14.59% 53.78% 62.97% 18.80% 

pid 73.78% 14.97% 58.81% 69.16% 6.12% 

hea 80.75% 5.90% 74.85% 79.54% 12.46% 

aus 85.32% 2.93% 82.39% 84.88% 8.41% 

ion 88.92% 25.88% 63.04% 85.05% 5.11% 

bcw 94.35% 5.57% 88.78% 94.02% 3.12% 

vot 96.34% 11.64% 84.70% 95.86% 3.02% 

Average 81.40% 13.85% 67.55% 77.45% 8.83% 

 

The following conclusion can be made from the above table. 

 

Conclusion 7.  The average accuracy on the suspicious subset Sα is very low and is 

almost 70% less than on the original dataset. The average error rate on this subset is 

77.5% more than on the original dataset. 

 
We conclude this section by reporting results that describe the correlation between 

possible accuracy improvement obtained after deletion and reversal and the size of the 



 

 

58

suspicious subset Sα. These results are valid only for values of α ≥ α*, where α* stands 

for the optimal value of α. 

Table 21 

CORRELATIONS BETWEEN IMPROVEMENTS BY DELETION AND REVERSAL AND SIZE OF 

SUSPICIOUS SET FOR 

α ≥ α* 

Improvement of average 

accuracy of 5 classification 

methods by 

α ≥ α* 
 

Deletion Reversal 

Size of 

suspicious set 

Deletion  0.99 0.94 
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Reversal   0.9 

Size of strongly suspicious set 
   

 

 

3.2.3. Comparison of the Results Obtained by CBS and Best SER 

Techniques 

 
In the two previous sections we described two different techniques for identifying 

suspicious observations. Table 22 summarizes the results obtained by means of these 

techniques in terms of average increase in accuracy for deletion/reversal, in terms of 

average error rate reduction for deletion/reversal, and in terms of the size of suspicious 

sets. The average increase in accuracies presented in the table was obtained in the 

following way. 1,000 experiments (twenty 10-folding cross-validation experiments for 
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five machine-learning / data-mining methods) were performed for each original dataset 

described in Table 1. The same experiments were performed for the data obtained after 

deletion of the suspicious observations from the original datasets and for the data 

obtained after reversal of the class of the suspicious observations. The average increase in 

accuracy for deletion/reversal is the difference between the average accuracy of 1,000 

experiments obtained after deletion/reversal and the average accuracy of 1,000 

experiments obtained on the original data.  

 

Table 22 

COMPARISON OF CBS TECHNIQUE WITH BEST SER TECHNIQUE 
 

Average increase in accuracy if 
suspicious set was obtained by 

using 

Average error rate reduction if 
suspicious set was obtained by 

using 

Size of suspicious set obtained 
by using 

CBS technique  
(p=p*) 

Best SER 
technique 
(α=α*) 

CBS technique  
(p=p*) 

Best SER 
technique 
(α=α*) 

Deletion Deletion Deletion Deletion 

Dataset 

Reversal Reversal Reversal Reversal 

CBS technique  
(p=p*) 

Best SER 
technique 
(α=α*) 

16.03% 8.81% 43.76% 24.05% 

bl
d 

18.95% 7.52% 51.73% 20.53% 
31.30% 13.62% 

26.65% 18.60% 84.26% 58.80% 

ge
r 

27.02% 19.50% 85.43% 61.65% 
27.00% 18.80% 

15.54% 4.99% 59.27% 19.03% 

pi
d 

16.64% 5.90% 63.46% 22.50% 
17.60% 6.12% 

12.78% 12.34% 66.39% 64.10% 

he
a 

12.86% 13.17% 66.81% 68.42% 
12.46% 12.46% 

11.45% 8.86% 78.00% 60.35% 

au
s 

11.52% 9.41% 78.47% 64.10% 
11.60% 8.41% 

0.70% 2.35% 6.32% 21.21% 

io
n 

-0.09% 2.01% -0.81% 18.14% 
4.50% 5.11% 

2.76% 2.45% 48.85% 43.36% 

bc
w

 

2.71% 2.44% 47.96% 43.19% 
2.20% 3.12% 

3.16% 3.24% 86.34% 88.52% 

vo
t 

3.16% 2.84% 86.34% 77.60% 
2.60% 3.02% 

11.13% 7.71% 59.15% 47.43% Average 
11.60% 7.85% 59.92% 47.02% 

13.66% 8.83% 
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It can be seen that the average size of the suspicious subsets obtained by Best SER is less 

than that obtained with CBSes by 4.83%. It also can be seen that the average increase in 

accuracy obtained for deletion by CBSes is greater than that obtained by Best SER by 

3.43%. Also, the average increase in accuracy obtained for reversal by CBSes is greater 

than that obtained by Best SER by 3.73%. Moreover, it can be seen that the average error 

rate for deletion (reversal) is reduced by almost 12% (13%) more if the CBS technique is 

applied. The results in Table 22 show that for the dataset hea the size of the suspicious 

subsets obtained by different techniques is the same and the results for deletion/reversal 

are close to each other (the average increase in accuracy is approximately 12.5%). The 

Best SER technique gives better results for the ion dataset (the average improvement is 

approximately 2%). This is the only dataset for which CBSes do not work properly 

(deletion and reversal of the set of suspicious observations do not improve the average 

result obtained on the original data). It also can be noted that the size of the suspicious 

subset obtained by Best SER for bcw is greater (by 0.92%), but the average accuracy for 

deletion/reversal is slightly greater (by 0.31% / 0.27%) if the CBS technique is used. 

Based on the above, the following conclusion can be made. 

 

Conclusion 8. Each of the two techniques under the study has its own advantages and 

disadvantages. In other words, these techniques are generally incomparable. However, in 

most datasets that have been analyzed the CBS technique achieves better results, i.e., the 

average increase in accuracy and the average error rate reduction obtained by CBSes is 

lager than that obtained by Best SER.  The average accuracy decrease on the suspicious 

set for both techniques is almost 70%.  
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Now let us compare the suspicious sets obtained by the two different methods. Table 23 

shows the sizes of the suspicious sets (the numbers of observations) for each dataset 

obtained by means of the CBS and Best SER techniques and the number of the suspicious 

observations belonging to the intersection of these two subsets. 

Table 23 

COMPARISON OF SUSPICIOUS SUBSETS OBTAINED BY CBSES AND BEST SER 

 
Size of suspicious subset obtained 

using Dataset 

CBSes Best SER 

Size of the 

intersection of 2 

suspicious subsets 

bld 108 47 29 

ger 270 188 162 

pid 69 24 22 

hea 37 37 22 

aus 80 58 53 

ion 16 18 7 

bcw 10 14 7 

vot 6 7 6 

 

It is interesting to note that all suspicious observations of vot found by one of the 

techniques have been also found by the other one. For the other datasets the situation is 

somewhat similar: most of the suspicious observations found by one of the techniques 

have been also found by the other one. To make this statement more formal, let us 

calculate the ratio of the size of the intersection of the two subsets to the smaller one of 

them. For instance, for the dataset vot this ratio is equal to 100%. The average of this 

ratio computed over all datasets is more than 75%. This suggests the following 

conclusion: 
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Conclusion 9. The subsets of the suspicious observations obtained by using the CBS and 

Best SER techniques have a large intersection. 

 

3.2.4. The Results for Deletion/Reversal on the Intersection and on 

the Union of Two Suspicious Sets  

 

We have seen before that the suspicious subsets obtained by means of the CBS and Best 

SER techniques have a large intersection. Let us analyze the results for deletion/reversal 

on this intersection. It is obvious that the size of this set is less than or equal to the size of 

the smaller subset of suspicious observations found by the two techniques. The 

observations belonging to the intersection are “more suspicious” than others, since they 

were identified by both methods. It is interesting to observe the change in accuracy if we 

delete or reverse only these observations. In Table 24 we present the average results of 

twenty 10-folding cross-validation experiments of five machine-learning / data-mining 

methods obtained for the eight datasets. 

 

Table 24 shows that the average size of the suspicious sets for the given datasets is 

6.43%; the average increases in accuracy for deletion and for reversal are 5.65% and 

6.41%, respectively. It also can be seen from the table that the error rate is reduced by 

34.33% for deletion and by 37.44% for reversal. It indicates that some misclassified 

observations were not included in the suspicious subsets. The table also shows that the 

original result for the ion dataset is not improved. The correlation between possible 

accuracy improvement of deletion and of reversal and the size of the suspicious set 

obtained by intersection is 0.97 and 0.98, respectively.  
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Table 24 

RESULTS FOR DELETION AND REVERSAL ON THE INTERSECTION 

 

D a t a s e t SMO MP SL C4.5 LAD Average 

Average 
increase 

in 
accuracy 

Average 
error rate 
reduction 

Size of 
suspicious 

set 

Original  50.03% 67.63% 66.24% 63.65% 69.29% 63.37%     

Deletion 50.00% 74.52% 71.64% 75.50% 74.90% 69.31% 5.94% 16.22% bl
d 

Reversal 50.00% 75.62% 73.29% 78.73% 76.60% 70.85% 7.48% 20.42% 

8.41% 

Original  69.39% 65.50% 68.56% 66.18% 72.21% 68.37%     

Deletion 84.88% 82.49% 84.28% 82.76% 84.78% 83.84% 15.47% 48.91% ge
r 

Reversal 86.61% 84.45% 86.31% 86.52% 86.85% 86.15% 17.78% 56.21% 

16.20% 

Original  72.31% 73.81% 72.07% 76.13% 74.60% 73.78%     

Deletion 75.19% 74.49% 77.49% 82.90% 79.31% 77.88% 4.10% 15.64% pi
d 

Reversal 75.81% 75.07% 78.64% 84.06% 80.12% 78.74% 4.96% 18.92% 

5.61% 

Original  83.05% 78.70% 82.48% 77.16% 82.35% 80.75%     

Deletion 90.61% 89.07% 89.83% 86.76% 87.97% 88.85% 8.10% 42.08% he
a 

Reversal 91.13% 89.98% 90.59% 88.47% 88.78% 89.79% 9.04% 46.96% 

7.41% 

Original  86.47% 82.98% 86.66% 84.93% 85.57% 85.32%     

Deletion 93.44% 92.45% 94.15% 93.04% 93.16% 93.25% 7.93% 54.02% au
s 

Reversal 93.82% 93.17% 94.79% 94.08% 93.45% 93.86% 8.54% 58.17% 

7.68% 

Original  91.10% 88.78% 85.08% 88.05% 91.58% 88.92%     

Deletion 85.35% 89.42% 85.04% 89.26% 93.73% 88.56% -0.36% -3.25% io
n 

Reversal 84.76% 88.42% 84.59% 89.05% 94.22% 88.21% -0.71% -6.41% 

1.99% 

Original  95.28% 94.39% 94.86% 92.78% 94.44% 94.35%     

Deletion 95.56% 95.92% 95.72% 92.66% 96.02% 95.18% 0.83% 14.69% bc
w

 

Reversal 95.40% 95.98% 95.80% 93.55% 96.35% 95.42% 1.07% 18.94% 

1.56% 

Original  97.05% 94.42% 96.49% 96.61% 97.14% 96.34%     

Deletion 99.58% 99.16% 99.58% 99.58% 99.60% 99.50% 3.16% 86.34% vo
t 

Reversal 99.58% 99.17% 99.58% 99.58% 99.59% 99.50% 3.16% 86.34% 

2.59% 

Average 
87.05% 5.65% 34.33% 

 
87.81% 6.41% 37.44% 

6.43% 

 

 

Now let us analyze the results for deletion/reversal in case when the suspicious set is the 

union of two suspicious sets obtained by the CBS and Best SER techniques. The results 

are presented in Table 25. 
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Table 25 
 

RESULTS FOR DELETION AND REVERSAL ON THE UNION 
 

D a t a s e t SMO MP SL C4.5 LAD Average 

Average 
increase 

in 
accuracy 

Average 
error rate 
reduction 

Size of 
suspicious 

set 

Original  50.03% 67.63% 66.24% 63.65% 69.29% 63.37%     

Deletion 52.98% 88.54% 80.90% 99.02% 84.51% 81.19% 17.82% 48.65% bl
d 

Reversal 65.58% 86.67% 68.76% 93.82% 82.35% 79.43% 16.07% 43.87% 

36.52% 

Original  69.39% 65.50% 68.56% 66.18% 72.21% 68.37%     

Deletion 95.16% 96.38% 94.93% 99.41% 97.33% 96.64% 28.28% 89.41% ge
r 

Reversal 91.25% 92.10% 90.79% 97.47% 94.55% 93.23% 24.86% 78.60% 

29.60% 

Original  72.31% 73.81% 72.07% 76.13% 74.60% 73.78%     

Deletion 85.23% 88.65% 88.44% 94.55% 90.45% 89.46% 15.68% 59.80% pi
d 

Reversal 86.54% 86.96% 89.26% 95.75% 90.14% 89.73% 15.95% 60.83% 

18.11% 

Original  83.05% 78.70% 82.48% 77.16% 82.35% 80.75%     

Deletion 98.47% 97.48% 97.80% 97.08% 93.99% 96.96% 16.22% 84.26% he
a 

Reversal 96.23% 93.91% 95.17% 91.86% 92.73% 93.98% 13.23% 68.73% 

17.51% 

Original  86.47% 82.98% 86.66% 84.93% 85.57% 85.32%     

Deletion 97.08% 97.42% 97.46% 97.66% 97.04% 97.33% 12.01% 81.81% au
s 

Reversal 96.73% 97.49% 97.59% 97.49% 96.73% 97.21% 11.89% 80.99% 

12.32% 

Original  91.10% 88.78% 85.08% 88.05% 91.58% 88.92%     

Deletion 89.09% 90.69% 89.96% 92.99% 96.24% 91.79% 2.88% 25.99% io
n 

Reversal 87.63% 89.13% 89.03% 94.10% 93.94% 90.77% 1.85% 16.70% 

7.69% 

Original  95.28% 94.39% 94.86% 92.78% 94.44% 94.35%     

Deletion 98.78% 98.69% 97.63% 94.67% 97.49% 97.45% 3.10% 54.87% bc
w

 

Reversal 97.56% 97.75% 96.77% 95.06% 96.85% 96.80% 2.45% 43.36% 

3.79% 

Original  97.05% 94.42% 96.49% 96.61% 97.14% 96.34%     

Deletion 99.58% 99.56% 99.58% 99.58% 99.61% 99.58% 3.24% 88.52% vo
t 

Reversal 99.04% 99.87% 99.17% 98.59% 99.20% 99.18% 2.83% 77.32% 

3.02% 

Average 
93.80% 12.40% 66.66% 

 
92.54% 11.14% 58.80% 

16.07% 

 

Table 25 shows that the average size of the suspicious sets is 16.07%; the average 

increases in accuracy for deletion and for reversal are 12.40% and 11.14%, respectively; 

the average error rate reduction is 66.66% for deletion and 58.80% for reversal. The 

average results for reversal are less than that for deletion. This means that too many 

observations were included in the suspicious subset; the percent of correctly classified 
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observations in this set became too high. To better understand this phenomenon, let us 

consider an example shown in the figure below. 

 

Figure 4. Example: union of two suspicious subsets 
 
 
 

 

 

 

 

 

 

 

 

Assume we have two suspicious subsets A (e.g., obtained by using CBSes) and B (e.g, 

obtained by using Best SER). Each of the subsets includes 80 suspicious observations. 

We do not claim that each observation which is included in the subsets is “bad”, i.e., it 

has wrong class. Let us suppose that in each of the subsets 70 of 80 observations are 

really “bad”, and 10 of 80 observations (1/8 = 12.5%) are included in the subset by error, 

i.e., they are correctly classified in the original dataset. It was shown above that subsets 

of the suspicious observations obtained by using the CBS and Best SER techniques have 

a large intersection. Let us suppose that the intersection of A and B includes 60 

observations. These observations, as we noted before, are more suspicious than others, so 

we can assume that all these observation are really “bad”. It is clear that the union of 

Subset A

Union  

80=70_”bad”_observations+10_”good”_observations 

80=70_”bad”_observations+10_”good”_observations 

Intersection

60_”bad”_observations 20_”good”_observations 

Subset B

20_”bad”_observations 



 

 

66

these subsets consists of 100 observations. These 100 observations include 80 “bad” 

observations and 20 “good” ones (see Figure 4). It implies that the percent of correctly 

classified observation in the newly created suspicious subset is 20/100 = 20%.  This 

number is 7.5% higher than the number of the observations that were included in the sets 

A and B. So, the accuracy after reversal decreases, since we reverse the class of too many 

correctly classified observations.  

 

Table 26 summarizes the average results from the tables above. 

Table 26 

 
Suspicious set was obtained by using 

    

CBS 
technique  

(p=p*) 

Best SER 
technique 
(α= α*) 

Intersection Union 

Deletion 11.13% 7.71% 5.65% 12.40% Average increase in 
accuracy Reversal 11.60% 7.85% 6.41% 11.14% 

Deletion 59.15% 47.43% 34.33% 66.66% Average error rate 
reduction Reversal 59.92% 47.02% 37.44% 58.80% 

Average size of 
suspicious set  

13.66% 8.83% 6.43% 16.07% 

 
 

These tables show that the best average increase in accuracy (best average error rate 

reduction) for deletion/reversal was obtained by the CBS technique and by the union; the 

size of the suspicious set obtained by the union is 2.41% more than that obtained by the 

CBS  technique. 

 

Conclusion 10. The average increase in accuracy (the average error rate reduction) 

obtained on the intersection of two suspicious subsets is less than the average increase in 

accuracy (the average error rate reduction) on each of the subsets; the average increase 
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in accuracy (the average error rate reduction) obtained on the union of two suspicious 

sets is comparable with the one obtained by the CBS technique, but the suspicious sets 

obtained by the union may contain many observations with the correct class. 

 

3.3. Attribute Selection 

 
As we mentioned before, attribute selection is the process of identifying and removing as 

many of the irrelevant and redundant attributes as possible. Alternatively, we want to find 

minimum sets of attributes that provide as much information for determining the class of 

the observations in the dataset as the original set of attributes. We shall refer to such 

subsets of attributes as informative subsets. In this section, we apply the CBS technique 

to the problem of identifying informative subsets and compare this approach with two 

other methods, CFS and Consistency, which are standard procedures of the WEKA 

package [96]. 

 

3.3.1. Attribute Selection Using Composite Boolean Separators 
 
 
Let us repeat that we work with binary data to obtain CBSes. If the dataset is not binary, 

then the Binarization procedure (see [17]) is applied. We call the variables in the original 

dataset before binarization the original variables, and the variables obtained after this 

procedure the original binary variables. First, our attribute selection technique finds an 

informative subset of the original binary variables. Then using thus identified binary 

attributes and their relationship with the original ones (see Appendix) we identify the 

respective informative subset of the original variables.  
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In the attempt to reveal informative subsets of variables by utilizing the obtained CBSes, 

we consider two different approaches. The first approach (to be called All_CBSes) 

consists of the following steps: 

• for each CBS, find the subset of all original binary variables which this CBS 

depends on; 

• take the union of all the subsets found in the previous step. 

 

To illustrate this approach, let us return to the example in Sections 2.2 and 2.3. In this 

example, variables x1, x2, x3, and x4 are original binary variables; f1, f2, f3, and f4 are 

obtained CBSes.  It can be seen that x1, x2 and x3 are included in the formulas for the 

CBSes, so these variables form the set we are looking for. It is not necessary that the 

formula of each CBS should include each variable from the constructed set of variables, 

but it is necessary that each variable from this set should be in the formula for at least one 

separator.   

 

Example 

Obs. x1 x2 x3 x4 f1 = 2x (x1 ∨ x3) 
f2 = (x1 2x ) ∨ 

(x1 ⊕ x3) 

f3  = (x1 2x ) ∨ 

( 2x x3) 

f4 = (x1 ⊕ x3) ∨ 

( 2x x3) 
class 

A 0 1 0 0 0 0 0 0 0 

B 1 1 1 0 0 0 0 0 0 

C 0 0 0 1 0 0 0 0 0 

D 1 0 1 0 1 1 1 1 1 

E 1 0 0 0 1 1 1 1 1 

F 0 0 1 1 1 1 1 1 1 

CP 4/6 1/6 4/6 1/2 1 1 1 1  
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The second approach (to be called One_CBS) uses one CBS with the highest CP. In this 

case, the informative set of attributes consists of those original binary variables which 

this CBS depends on. If there is a tie, i.e., there are several CBSes with the same highest 

CP, then we have several informative subsets of attributes. In this case, only additional 

experiments (for example, cross-validation) can show which subset is better. In the above 

example all CBSes have the highest CP. Since all these separators depend on the same 

original binary variables, only one subset { x1, x2, x3 } is defined as an informative subset 

of attributes in the example.  

 

In the next four tables, we present the results of application of the above two approaches 

to the eight datasets listed in Table 1. Each entry in the tables is the average result of 

twenty 10-folding cross-validation experiments. First, we present the results for the 

original binary variables.  

 

From Table 27 and Table 28 we can conclude that the subsets of attributes obtained by 

using One_CBS on average are better than the ones obtained by All_CBSes.  First of all, 

these subsets contain fewer variables (on average 7 versus 9). Second of all, on average 

the One_CBS approach leads to slightly better classification results. It also can be seen 

that the average accuracy obtained on the original binary datasets is very close to that 

obtained on the informative subsets. The accuracy goes down for four datasets and it goes 

up also for four datasets. The highest loss of accuracy is for the bld dataset. On average 

the number of the original binary variables is 35. This number decreases to nine variables 

in case of the first approach and to seven variables in case of the second approach. 
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Table 27 

RESULTS FOR ATTRIBUTE SELECTION WITH ALL_CBSES (ORIGINAL BINARY VARIABLES) 
 

Average accuracy obtained by 

Dataset 

# of original 
binary  
variables 
 
   #of variables 
             in 
      informative 
             subset    

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Difference 
between 
average 

accuracy of 
informative 
subset and 

original  
binary 
dataset 

29 76.89% 72.51% 75.50% 70.44% 69.29% 72.93%   bld 
8 69.05% 67.34% 69.15% 68.85% 68.51% 68.58% -4.35% 

57 68.22% 65.63% 68.31% 64.58% 72.21% 67.79%   ger 
12 61.72% 67.60% 65.20% 66.47% 72.00% 66.60% -1.19% 

23 75.56% 73.20% 75.54% 76.49% 74.60% 75.08%   pid 
9 70.22% 75.12% 77.17% 75.89% 74.17% 74.51% -0.57% 

17 83.77% 80.18% 83.21% 81.49% 82.35% 82.20%   hea 
8 83.26% 80.74% 83.63% 82.10% 84.51% 82.85% 0.65% 

45 86.12% 83.53% 85.95% 84.65% 85.57% 85.16%   aus 
9 86.17% 86.09% 86.59% 85.28% 86.14% 86.05% 0.89% 

71 87.69% 86.59% 89.02% 88.13% 91.58% 88.60%   ion 
14 89.20% 88.02% 89.29% 88.69% 83.88% 87.82% -0.79% 

20 95.19% 94.51% 94.72% 93.81% 94.44% 94.53%   bcw 
11 95.39% 94.80% 95.46% 94.94% 93.71% 94.86% 0.32% 

16 97.05% 94.42% 96.49% 96.61% 97.14% 96.34%   vot 
1 97.12% 97.12% 97.12% 97.12% 97.12% 97.12% 0.77% 

      Average 82.83%  
      Average 82.30% -0.53% 
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Table 28 

RESULTS FOR ATTRIBUTE SELECTION WITH ONE_CBS (ORIGINAL BINARY VARIABLES)  

 
# of original 
binary  
variables 
 

Average accuracy obtained by 

Dataset         #of 
variables 
          in  

informative   
subset   

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Difference 
between 
average 

accuracy of 
informative 
subset and 

original  
binary 
dataset 

29 76.89% 72.51% 75.50% 70.44% 69.29% 72.93%  
bld 

7 66.25% 70.17% 69.44% 70.17% 68.87% 68.98% -3.95% 

57 68.22% 65.63% 68.31% 64.58% 72.21% 67.79%  
ger 

11 61.93% 65.22% 67.63% 68.67% 70.97% 66.88% -0.90% 

23 75.56% 73.20% 75.54% 76.49% 74.60% 75.08%  
pid 

9 70.22% 75.12% 77.17% 75.89% 74.17% 74.51% -0.57% 

17 83.77% 80.18% 83.21% 81.49% 82.35% 82.20%  
hea 

7 83.89% 84.08% 82.86% 82.71% 84.31% 83.57% 1.37% 

45 86.12% 83.53% 85.95% 84.65% 85.57% 85.16%  
aus 

9 86.17% 86.09% 86.59% 85.28% 86.14% 86.05% 0.89% 

71 87.69% 86.59% 89.02% 88.13% 91.58% 88.60%  
ion 

9 88.78% 89.59% 89.83% 88.37% 81.65% 87.64% -0.96% 

20 95.19% 94.51% 94.72% 93.81% 94.44% 94.53%  
bcw 

6 95.09% 95.12% 95.38% 95.30% 93.85% 94.95% 0.41% 

16 97.05% 94.42% 96.49% 96.61% 97.14% 96.34%  
vot 

1 97.12% 97.12% 97.12% 97.12% 97.12% 97.12% 0.77% 

      Average    82.83%  
      Average   82.46% -0.37% 
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The results for the binary datasets are good, but we are interested in obtaining an 

informative subset of the original variables. To this end, we restore the original variables 

from binary ones. Let us illustrate the restoration procedure with an example. 

 

Example.  Consider the subset of attributes for bld obtained by using One_CBS. This 

subset consists of seven original binary variables (9, 11, 12, 19, 22, 23, 25). Table A in 

the Appendix shows that binary variables 9, 11, and 12 are obtained by binarization of 

the original variable “sgpt”, the binary variable 19 is the result of binarization of the 

original variable “sgot”, and binarization of the original variable “gammagt” gives the 

binary variables 22, 23 and 25. Therefore, the three original variables “sgpt”, “sgot” and 

“gammagt” form the informative subset chosen by the attribute selection procedure. 

 

Table 29 and Table 30 present the results obtained on the informative subsets of the 

original variables. These tables show that the results obtained on the original variables 

are similar to those obtained on the original binary datasets. The average number of 

variables in the original datasets is 15. This number reduces to 7 if All_CBSes is used and 

to 6 in case if only One_CBS is used. The average accuracy on the original datasets is 

very close to the average accuracy obtained on the informative subsets and is better only 

by 0.43% for the first approach and by 0.30% for the second one. The informative subsets 

win in accuracy for four out of eight datasets and lose for the remaining four. On the 

basis of the above discussion the following conclusion can be made. 
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Table 29 

RESULTS FOR ATTRIBUTE SELECTION WITH ALL_CBSES (ORIGINAL VARIABLES) 
 

# of  
original 
variables   

Average accuracy obtained by 

Dataset # of variables  
in  

informative  
subset 

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Difference 
between 
average 

accuracy of 
informative 
subset and 

original 
dataset 

6 50.03% 67.63% 66.24% 63.65% 69.29% 63.37% bld 
4 50.00% 68.28% 64.85% 64.27% 65.75% 62.63% 

 
-0.74% 

24 69.39% 65.50% 68.56% 66.18% 72.21% 68.37% ger 
8 61.80% 64.72% 64.71% 65.59% 69.71% 65.31% 

 
-3.06% 

8 72.31% 73.81% 72.07% 76.13% 74.60% 73.78% pid 
6 71.90% 74.74% 72.79% 75.93% 76.02% 74.28% 

 
0.49% 

13 83.05% 78.70% 82.48% 77.16% 82.35% 80.75% hea 
7 83.27% 78.86% 82.52% 78.49% 82.04% 81.04% 

 
0.29% 

14 86.47% 82.98% 86.66% 84.93% 85.57% 85.32% aus 
8 86.21% 85.85% 87.05% 85.26% 86.31% 86.13% 

 
0.81% 

33 91.10% 88.78% 85.08% 88.05% 91.58% 88.92% ion 
12 84.05% 89.92% 83.48% 88.72% 88.94% 87.02% 

 
-1.90% 

9 95.28% 94.39% 94.86% 92.78% 94.44% 94.35% bcw 
7 95.23% 94.53% 94.76% 93.18% 93.66% 94.27% 

 
-0.08% 

16 97.05% 94.42% 96.49% 96.61% 97.14% 96.34% vot 
1 97.12% 97.12% 97.12% 97.12% 97.10% 97.11% 

 
0.77% 

Average    15                                                                                                                                    81.40%  

                                        7                                                                                                                       80.97%        -0.43% 
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Table 30 

RESULTS FOR ATTRIBUTE SELECTION WITH ONE_CBS (ORIGINAL VARIABLES) 
 

# of  
original 
variables   

Average accuracy obtained by 

Dataset # of variables  
in  

informative  
subset 

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Difference 
between 
average 

accuracy of 
informative 
subset and 

original 
dataset 

6 50.03% 67.63% 66.24% 63.65% 69.29% 63.37%   bld 
3 50.00% 66.81% 64.81% 61.73% 64.00% 61.47% -1.90% 

24 69.39% 65.50% 68.56% 66.18% 72.21% 68.37%  ger 
7 63.66% 68.22% 65.98% 66.43% 71.29% 67.12% -1.25% 

8 72.31% 73.81% 72.07% 76.13% 74.60% 73.78%  pid 
6 71.90% 74.74% 72.79% 75.93% 76.02% 74.28% 0.49% 

13 83.05% 78.70% 82.48% 77.16% 82.35% 80.75%  hea 
6 83.10% 79.47% 82.33% 80.58% 82.56% 81.61% 0.86% 

14 86.47% 82.98% 86.66% 84.93% 85.57% 85.32%  aus 
8 86.21% 85.85% 87.05% 85.26% 86.31% 86.13% 0.81% 

33 91.10% 88.78% 85.08% 88.05% 91.58% 88.92%  ion 
8 83.98% 90.38% 83.89% 89.64%  87.58% 87.09% -1.83% 

9 95.28% 94.39% 94.86% 92.78% 94.44% 94.35%  bcw 
5 94.62% 94.13% 94.32% 93.58% 93.31% 93.99% -0.36% 

16 97.05% 94.42% 96.49% 96.61% 97.14% 96.34%  vot 
1 97.12% 97.12% 97.12% 97.12% 97.10% 97.11% 0.77% 

Average    15                                                                                                                                    81.40%  

                                         6                                                                                                                       81.10%       -0.30% 
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Conclusion 11.  The informative subsets of variables chosen by using All_CBSes and by 

using One_CBS have fairly small size, since their number of variables is about half of the 

number of the original ones. The second approach produces subsets of slightly smaller 

size. Both methods also perform well in terms of classification accuracy regardless of 

classification methods applied to the chosen subsets. The difference between the average 

accuracy on the informative subsets and on the original data is small. It is difficult to 

compare these two methods with respect to accuracy, since for some datasets the first 

method is better (for example, for bld) and for other datasets the second one is better (for 

example, for ger). 

 

3.3.2. Comparison of Attribute Selection Results Obtained with CBS and 

with WEKA Approaches 

 
In this section, we report attribute selection results obtained with two WEKA methods 

(CFS and Consistency) and compare them with the results obtained in the previous 

section.  

 

CFS [39], [40] (Correlation-based Feature Selection)  is an attribute selection technique 

which builds an informative subset of attributes so that any two attributes in the subset 

have a low correlation with each other, while each of them has a high correlation with the 

class. 

 

Consistency [40] (Consistency-Based Subset Evaluation) builds a combination of the 

attributes whose values divide the data into subsets containing a strong single class 
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majority. This method looks for the smallest subset with consistency equal to that of the 

full set of attributes. 

 

In Table 31 we present the percentage of correct classifications averaged over twenty 10-

foding experiments obtained by the two methods described above.   

Table 31 

RESULTS OF ATTRIBUTE SELECTION OBTAINED WITH TWO WEKA METHODS (CFS AND 

CONSISTENCY) 

# of variables 
in informative 
set obtained 
by WEKA 

using 

Average accuracy obtained by 

CFS 

Dataset 

# of 
variables 

in 
original 
dataset 

Consistency 
SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

1 50.00% 56.94% 50.21% 60.50% 52.93% 54.12% 
bld 6 

1 50.00% 56.94% 50.21% 60.50% 52.93% 54.12% 

4 60.48% 66.20% 65.01% 66.28% 69.76% 65.55% 
ger 24 

19 68.01% 65.08% 68.15% 65.32% 72.54% 67.82% 

2 73.24% 72.40% 73.12% 77.84% 73.18% 73.95% 
pid 8 

7 71.03% 70.14% 72.11% 71.76% 74.52% 71.91% 

5 83.74% 81.52% 82.69% 82.24% 83.56% 82.75% 
hea 13 

12 83.44% 78.50% 83.01% 77.36% 81.94% 80.85% 

1 86.21% 86.21% 86.21% 86.21% 86.21% 86.21% 
aus 14 

14 86.47% 82.98% 86.66% 84.93% 85.57% 85.32% 

9 83.92% 90.71% 83.67% 89.53% 88.67% 87.30% 
ion 33 

10 84.51% 89.50% 83.86% 89.49% 88.94% 87.26% 

8 93.96% 93.51% 93.18% 91.54% 93.88% 93.21% 
bcw 9 

4 94.85% 93.67% 94.18% 91.73% 94.25% 93.73% 

1 97.12% 97.12% 97.12% 97.12% 97.10% 97.11% 
vot 16 

15 97.12% 94.23% 96.57% 96.61% 97.01% 96.31% 

               Average    4                                                                                  Average     80.03%   
                                                10                                                                                             79.67%       

 

It can be seen from the above table that the average size of the chosen subsets of 

variables is four for CFS and 10 for Consistency. Thus, we conclude that the size of the 
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subsets obtained by Consistency is maximum among the two CBS methods and the two 

WEKA methods. We also see that the average accuracy obtained by Consistency is 

minimum among the four mentioned methods.   

 

In Table 32, we compare the two CBS based methods with the two WEKA approaches. 

To make the comparison we performed the paired two sample for means two-tail t test 

using the confidence level of 95%. We use the sign + in favor of the CBS based methods 

and the sign -  in favor of the WEKA approaches. For example, the sign + located at the 

intersection of the CFS row and the One_CBS column for the ger dataset indicates that 

the One_CBS method statistically performs better than CFS on the given dataset.  The 

sign - located at the intersection of the CFS row and the One_CBS column for the hea 

dataset shows that One_CBS performs statistically worse than CFS.  

Table 32 

COMPARISON OF CBS BASED METHODS WITH CFS AND CONSISTENCY 

Dataset Method All_CBSes One_CBS 

CFS +  bld 
Consistency +  

CFS  + ger 
Consistency   

CFS   pid 
Consistency + + 

CFS  - hea 
Consistency   

CFS   aus 
Consistency   

CFS   ion 
Consistency   

CFS +  bcw 
Consistency   

CFS   vot 
Consistency   
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The above table shows that the All_CBSes method has four wins; One_CBS has two wins 

and one loss. CFS has one win and three losses, and Consistency has three losses. 

 

Conclusion 12.  None of the four analyzed methods provides the best results uniformly 

for all datasets. However, in most cases the CBS based approaches show better results 

than the CFS and Consistency methods.   
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4. ANALYSIS OF TWO REAL-LIFE MEDICAL DATASETS 

 

This chapter is devoted to the analysis of two real-life datasets: computed tomography 

data and breast cancer gene expression microarray data. In Sections 4.1, 4.2  we report 

the results obtained for these datasets with LAD, and in Section 4.3 we compare them 

with the results obtained by the CBS technique. 

 

4.1. Logical Analysis of Computed Tomography Data to Differentiate Entities of 

Idiopathic Interstitial Pneumonias2 

 

The Idiopathic Interstitial Pneumonias (IIPs) are a heterogeneous group of nonneoplastic 

disorders resulting from damage to the lung parenchyma by varying patterns of 

inflammation and fibrosis. A new classification of IIPs was established in 2001 by an 

International Consensus Statement defining the clinical manifestations, pathology and 

radiological features of patients with IIPs [12]. Various forms of IIP differ both in their 

prognoses and their therapies, but are not easily distinguishable using clinical, biological 

and radiological data, and therefore frequently requiring pulmonary biopsies to establish 

the diagnosis. The aim of this study is to analyze computed tomography (CT) data by 

techniques of biomedical informatics to distinguish between three types of IIPs:   

 

• Idiopathic Pulmonary Fibrosis (IPF) 

• Non Specific Interstitial Pneumonia (NSIP) 

                                                 
2 The results presented in this section are based on joint work with M.W. Brauner, N. Brauner, P.L. Hammer, and D. Valeyre, 
published in [20]. 
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• Desquamative Interstitial Pneumonia (DIP) 

 

4.1.1. Patients and Methods 
 

This is a study of the CT scans in patients with IIPs referred to the Department of 

Respiratory Medecine, Avicenne Hospital, Bobigny, France, for medical advice on 

diagnosis and therapy. The diagnosis was established on clinical, radiographic and 

pathologic data. The 56 patients included 34 IPFs, 15 NSIPs, and 7 DIPs. 

 

We reviewed the CT examination of the chest from these patients. CT scans were 

evaluated for the presence of signs and a score was established for the two main lesions, 

ground-glass attenuation and reticulation. Pulmonary disease severity on thin section CT 

scans was scored semiquantitatively in upper, middle and lower lung zones. The six areas 

of the lung were defined as follows: the upper zones are above the level of the carina; the 

middle zones, between the level of the carina and the level of the inferior pulmonary 

veins; and the lower zones, under the level of the inferior pulmonary veins. The profusion 

of opacities was recorded separately in the six areas of the lung to yield a total score of 

parenchymal opacities. The severity was scored in each area according to four basic 

categories : 0 = normal, 1 = slight, 2 = moderate, 3 = advanced (total : 0-18). 

 

The data consisting of the binary attributes 1, 2, …, 10, and the numerical attributes 11, 

12, and 13 are listed bellow: 
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1. IIT                    intralobular interstitial thickening 

2. HC                    honeycombing 

3. TB                     traction bronchiectasis 

4. GG1                  ground-glass attenuation 

5. BRVX               peri-bronchovascular thickening 

6. PL                      polygonal lines 

7. HPL                   hilo-peripheral lines 

8. SL                      septal lines 

9. AC                     airspace consolidation 

10. N                      nodules 

11. GG2                 ground-glass attenuation score 

12. RET3                 reticulation score 

13. GG2/RET        ground-glass attenuation/reticulation score 

 

In this section, we analyze this dataset using the Logical Analysis of Data. Among 

previous studies dealing with applications of LAD to medical problems we mention ([3], 

[6], [63]). 

 

The choice of LAD for analyzing the IIP data is due on the one hand to its proven 

possibility to provide highly accurate classifications, and on the other hand to the 

usefulness of LAD patterns in analyzing the significance and nature of attributes.  

 

                                                 
3 RET is a generic term which get together the 3 main fibrotic lesions : ITT, HC and TB 
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The conclusions of LAD have been confirmed by other machine-learning / data-mining 

methods (SMO, MP, SL, and C4.5) described in the introduction. An additional result of 

the study was the identification by LAD of two outliers, which turned out to have 

complete medical explanation. 

 

4.1.2. Outliers 
 

We have constructed three different LAD models to distinguish between IPF, NSIP or 

DIP patients:  

• model I  to distinguish IPF patients (considered to be the positive observations in 

this model) from non-IPF patients (negative observations); 

• model II to distinguish NSIP patients (positive in this model) from non-NSIP 

patients (negative observations); 

• model III to distinguish DIP patients (positive in this model) from non-DIP 

patients (negative observations). 

 

These models use only pure patterns, their degrees are at most 4, and their prevalences   

range between 40% and 85.7%. 

 

4.1.2.1. Two Suspicious Observations 

 

The classification given by the three LAD models for the 56 observations in the dataset is 

shown in Table 33. It can be seen that all the 56 classifications are correct, but only 54 of 
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them are precise. In fact the classifications of the observations s003 and s046 are vague. 

Since observation s003 turns out to be classified as being either a DIP or an NSIP patient, 

we have built an additional model to distinguish between these two classes. It turns out 

that the model contains only one pattern covering observation s003. This pattern shows 

(correctly) that s003 is a DIP patient, however it does not cover any other observation, 

i.e., its prevalence is so low that it cannot be considered reliable. A very similar argument 

concerning the observation s046 shows that in a model distinguishing IPF/NSIP cases, it 

is classified as being an NSIP case, however this classification is based only on extremely 

weak patterns, whose reliability is low. The facts signaled above, raise suspicions about 

the specific nature of these two observations, and raise the question of whether they 

should be included at all in the dataset. 

 

4.1.2.2. Medical Confirmation 

 
In view of the suspicions related to these two observations, the medical records of these 

two patients have been re-examined. It was found that patient s003 was exposed to 

asbestos, and therefore its classification as DIP is uncertain. Asbestosis may be 

responsible for a pathologic aspect similar to that of IPF, but very different from DIP. It 

is also possible that the pathologic result on the biopsy of a very small area of the lung 

was wrong. Also, it was found that the data of patient s046 are highly atypical in all the 

features (age, clinical data and lung pathology). Based on the clinical, radiographic and 

pathologic data, this patient does not seem to belong to any of the three classes in the 

initial classification before CT analysis, and it was suggested that in view of these 

reasons, (s)he should be considered non-classable and removed from the dataset.   
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Table 33 
 

Classification by LAD Models Observations Given 
Classification IPF/non-IPF NSIP/non-NSIP DIP/non-DIP Conclusion 

s001 DIP 0 ? 1 DIP 
s002 DIP 0 0 1 DIP 
s003 DIP 0 ? ? NSIP or DIP 
s004 DIP 0 0 1 DIP 
s005 DIP 0 ? 1 DIP 
s006 DIP 0 ? 1 DIP 
s007 DIP 0 0 1 DIP 
s008 IPF 1 0 0 IPF 
s009 IPF 1 ? 0 IPF 
s010 IPF 1 ? 0 IPF 
s011 IPF 1 0 0 IPF 
s012 IPF 1 0 0 IPF 
s013 IPF 1 0 0 IPF 
s014 IPF 1 0 0 IPF 
s015 IPF 1 0 0 IPF 
s016 IPF 1 ? 0 IPF 
s017 IPF 1 ? 0 IPF 
s018 IPF 1 0 0 IPF 
s019 IPF 1 0 0 IPF 
s020 IPF 1 0 0 IPF 
s021 IPF 1 ? 0 IPF 
s022 IPF 1 0 0 IPF 
s023 IPF 1 0 0 IPF 
s024 IPF 1 0 0 IPF 
s025 IPF 1 0 0 IPF 
s026 IPF 1 0 0 IPF 
s027 IPF 1 0 0 IPF 
s028 IPF 1 0 0 IPF 
s029 IPF 1 0 0 IPF 
s030 IPF 1 0 0 IPF 
s031 IPF 1 0 0 IPF 
s032 IPF 1 0 0 IPF 
s033 IPF 1 0 0 IPF 
s034 IPF 1 0 0 IPF 
s035 IPF 1 0 0 IPF 
s036 IPF 1 0 0 IPF 
s037 IPF 1 0 0 IPF 
s038 IPF 1 0 0 IPF 
s039 IPF 1 0 0 IPF 
s040 IPF 1 0 0 IPF 
s041 IPF 1 0 0 IPF 
s042 NSIP 0 1 0 NSIP 
s043 NSIP 0 1 0 NSIP 
s044 NSIP 0 1 0 NSIP 
s045 NSIP 0 1 0 NSIP 
s046 NSIP ? ? 0 IPF or NSIP 
s047 NSIP 0 1 0 NSIP 
s048 NSIP 0 1 ? NSIP 
s049 NSIP 0 1 ? NSIP 
s050 NSIP 0 1 0 NSIP 
s051 NSIP 0 1 0 NSIP 
s052 NSIP 0 1 0 NSIP 
s053 NSIP 0 1 0 NSIP 
s054 NSIP 0 1 0 NSIP 
s055 NSIP 0 1 0 NSIP 
s056 NSIP 0 1 0 NSIP 
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4.1.2.3. Improving Classification Accuracy by Removing Outliers 

 

The medical confirmation of the suspicions raised by the inability of the LAD models to 

classify the two unusual observations, have led us to check the ways in which the 

accuracy of various classification methods changes when these two observations are 

removed from the dataset. In order to evaluate these changes, we have applied four 

classification methods taken from the WEKA package [96], separately to the original 

dataset of 56 observations, and to the dataset of 54 observations obtained by removing 

the two suspicious ones.  

  

Twenty 3-folding experiments were carried out for each of the three classification 

problems (IPF/non-IPF, NSIP/non-NSIP, DIP/non-DIP). In each of the experiments the 

dataset was randomly partitioned into three approximately equal parts, two of which were 

used as the training set, and the third one as the testing set. By rotating the subset taken in 

the role of the test set, in fact each experiment consisted of 3 tests, i.e., a total of 60 

experiments were carried out for each of the three classification problems. The average 

accuracy of these 1440 experiments (i.e., four methods applied 60 times to original and 

reduced datasets of three problems) measured on the test sets is shown in Table 34.  

 

It can be seen from Table 34 that by removing the two outliers, the accuracy of every 

single classification method was improved for each of the three models. It also can be 

seen that the removing only two these observations cuts the error rate from 7.5% to 

20.3% for these problems. 
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Table 34 

     CLASSIFICATION ACCURACIES BEFORE/AFTER ELIMINATION OF OUTLIERS 

 

  
Dataset  SMO MP SL C4.5  Average  

Average 
change 

in 
accuracy 

Average 
error rate 
reduction

Original 66.50% 65.11% 62.53% 62.14% 64.07% NSIP/non-NSIP 
Reduced 71.96% 74.09% 71.40% 68.12% 71.39% 

+7.32% 20.37% 

Original 79.60% 79.44% 80.66% 81.27% 80.24% IPF/non-IPF 
Reduced 79.62% 81.24% 82.15% 83.90% 81.73% 

+1.49% 7.54% 

Original 60.88% 64.38% 62.30% 71.18% 64.69% DIP/non-DIP 
Reduced 63.96% 73.02% 62.66% 80.21% 69.96% 

+5.28% 14.92% 

 

 

In conclusion, the suspicions generated by the weakness of the coverage with patterns of 

two of the observations, lead to the identification of these two patients as outliers, and 

eventually to medical explanations of the inappropriateness of maintaining them in the 

dataset.  The “cleaned” dataset obtained by eliminating these two outliers was shown to 

allow a substantial improvement in the accuracy of all the tested classification methods.    

 

4.1.3. Support Sets 
 

4.1.3.1.  Set Covering Formulation 

 

Although the dataset involves 13 variables, some of them may be redundant. Following 

the terminology of LAD ([18], [27], [41]) we shall call an irredundant set of variables or 

attributes or features a support set of the dataset, if projecting on this subset the 13 

dimensional vector representing the patients, there will be no overlap between the three 

different types of IIPs.  
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The determination of a minimum size support set was formulated as a set covering 

problem. The basic idea of the set covering formulation of this problem consists in the 

simple observation that a subset S is a support set if and only if the projections on S of the 

positive and the negative observations in the dataset are disjoint. 

 

In order to illustrate this reduction we shall identify a subset of the variables in the dataset 

which are capable of distinguishing IPF observations from non-IPF observations. We 

shall assume that the three numerical variables x11, x12, x13 have been “binarized”, i.e., 

each of them had been replaced by one or several 0-1 variables.  The binarized variables 

are associated to cut-points. For instance, there are two cut-points (5.5 and 6.5) associated 

to the numerical variable x11, and the corresponding binary variables 5.5
11x  and 5.6

11x  are 

then defined in the following way: 

                            5.5
11x =1 if  x11≥5.5, and 5.5

11x =0 if  x11<5.5, 

                            5.6
11x =1 if  x11≥6.5, and 5.6

11x =0 if  x11<6.5. 

Similarly, two cut-points (7.5, 8.5) are introduced for x12, along with two associated 

binary variables. The variable x13 is binarized using four 0-1 variables associated to the 

cut-points 0.5,  1,  1.05 and 1.2.  

 

Using the original 10 binary variables along with the eight binarized variables (which 

replace the numerical variables x11, x12, x13), we shall now represent the observations as 

18 dimensional binary vectors (x1,…,x10, 5.5
11x , 5.6

11x , 5.7
12x , 5.8

12x , 5.0
13x , …, 2.1

13x ). For example, 

the positive (i.e., IPF) observation   s008 = (0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 2, 9, 0.22) will 

become in this way the binary vector b008 = (0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 
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0). Similarly the negative (i.e., non-IPF) observation s006 = (0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 5, 

2, 2.5) becomes the binary vector b006 = (0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1).  

 

Clearly, the positive binarized observation b008 and the negative binarized observation 

b006 differ only in the following eight components: x2, x3, 5.7
12x , 5.8

12x , 5.0
13x ,…, 2.1

13x . It 

follows that any support set S must include at least one of these variables, since otherwise 

the projections on S of the positive observation b008 and the negative observation b006 

could not be distinguished. Therefore, if we denote by (s1,…,s10, 5.5
11s , 5.6

11s , 5.7
12s , 5.8

12s , 5.0
13s , 

…, 2.1
13s ) the characteristic vector of S, one of the necessary conditions for S to be a 

support set is  

 

 s2  + s3 + 5.7
12s  +  5.8

12s  + 5.0
13s + …+ 2.1

13s  ≥ 1. 

 

A similar inequality can be written for every pair consisting of a positive (IPF) and a 

negative (non-IPF) observation in the binarized dataset. The 34*22=748 pairs of positive-

negative observations define the constraints of a set covering problem for finding a 

minimum size support set. Since our dataset consists of a rather limited number of 

observations, in order to increase the accuracy of the models to be built on the support 

sets obtained in this way, we have further strengthened the above set covering-type 

constraints, by replacing the 1 on their right-hand side, by 3 (the choice of 3 is based on 

empirical considerations, the basic idea being simply to sharpen the requirements of 

separating positive and negative observations). 
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 Clearly the objective function of this set covering type problem is simply the sum  

 

s1 +…+ s10  +  5.5
11s  + 5.6

11s + 5.7
12s  +  5.8

12s  + 5.0
13s + …+ 2.1

13s . 

 

4.1.3.2. Three Support Sets 

 

By solving this problem we found that the binary variables x3, x4, x9, x10 are redundant, 

and that a support set (using the original binary and numerical variables) consists of the 

attributes 1, 2, 5, 6, 7, 8, 11, 12 and 13. 

 

In a similar way we can see that a support set distinguishing DIP observations from non-

DIP ones consists of the six original attributes: 1, 2, 3, 5, 12 and 13, while a support  set 

distinguishing NSIP patients from non-NSIP ones consists of the eight original attributes: 

1, 2, 5, 6, 7, 8, 11 and 12. 

 

4.1.3.3.  Accuracy of Classification on Support Sets 

 

It is important to point out that the elimination of redundant variables does not reduce the 

accuracy of classification. In order to demonstrate the qualities of the support sets 

obtained for the IPF/non-IPF, DIP/non-DIP and NSIP/non-NSIP problems we have 

carried out twenty 3-folding classification experiments on these three problems using 

four different classification methods mentioned above. These experiments used first the 

original 13 variables, and after that the support sets of nine, six, and eight variables 
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respectively, obtained above for these three problems. The results of these experiments 

are presented in Table 35. 

 

Table 35 

            CLASSIFICATION ACCURACIES ON ALL ORIGINAL VARIABLES AND ON SUPPORT SETS 

 

  

Support 
Set SMO MP SL C4.5  Average 

Average 
change 

in 
accuracy 

Original 71.96% 74.09% 71.40% 68.12% 71.39% NSIP/non-NSIP 
Reduced 71.88% 78.96% 72.21% 67.88% 72.73% 

+1.34% 

Original 79.62% 81.24% 82.15% 83.90% 81.73% IPF/non-IPF 
Reduced 79.15% 83.66% 81.12% 84.74% 82.17% 

+0.44% 

Original 63.96% 73.02% 62.66% 80.21% 69.96% DIP/non-DIP 
Reduced 60.16% 74.27% 70.83% 86.88% 73.03% 

+3.07% 

 

In conclusion we can see from Table 35 that the elimination of those features which were 

identified as redundant does not only maintain the accuracy of classification, but actually 

on average increases it in each of the three models.     

 

4.1.4. Patterns and Models 

 

Using the support sets developed in the previous section, we shall apply now the LAD 

methodology to this dataset for generating patterns and classification models. It turns out 

that in spite of the very small size of this dataset, some surprisingly strong patterns can be 

identified in it. For example, in the IPF/non-IPF model, 14 (i.e., 70%) of the 20 non-IPF 

patients satisfy the simple pattern “GG2/RET  ≥ 1.2”; moreover none of the 34 IPF 

patients satisfy this condition. While this simple pattern involves a single variable, other 
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more complex patterns exist and are capable of explaining the IPF or non-IPF character 

of large groups of patients.  For instance, the negative pattern  

“RET  ≤  8   and   GG2/RET  > 1” 

is satisfied by 70% of the non-IPF patients, and by none of the IPF patients. As an 

example of a positive pattern, we mention  

“HC = 1,  HPL = 0   and   GG2/RET  ≤  1.2”; 

24 (i.e., 70.6%) of the 34 IPF patients satisfy all the three constraints of this pattern, and 

none of the non-IPF patients satisfy simultaneously these three conditions.  

 

While the above patterns can distinguish large groups of patients having a certain type of 

IIP from those of other types of IIP, larger collections of patterns constructed by LAD 

can classify collectively the entire set of 54 observations in the dataset. We shall first 

illustrate the way the classification works by considering the problem of distinguishing 

IPF and non-IPF patients.  

 

We present in Table 36 a model consisting of 20 positive and 20 negative patterns 

allowing the accurate classification of IPF/non-IPF patients. Note that the equality of the 

numbers of positive and negative patterns in this model is a simple coincidence.  

 

Beside the IPF/non-IPF model, we have also constructed a model to distinguish the 14 

NSIP patients from the 40 non-NSIP patients, and another model to distinguish the 6 DIP 

patients from the 48 non-DIP patients. The NSIP/non-NSIP model is built on the support 

set of eight attributes described in the previous section, and includes 16 positive and 4 
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negative patterns. The DIP/non-DIP model is built on the support set of six attributes 

described in the previous section, and includes 7 positive and 15 negative patterns. 

Table 36 

IPF/NON-IPF MODEL 

attr.1 attr.2 attr.5 attr.6 attr.7 attr8 attr.11 attr.12 attr.13 
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P1   1     0       ≤1.2 70.6% 0 
P2   1     0     ≥8   47.1% 0 
P3 1 1         ≥4   ≤1.2 47.1% 0 
P4   1     0 0   ≥6   47.1% 0 
P5 1 1     0     ≥6   47.1% 0 
P6 1 1         ≥4 ≥8   41.2% 0 
P7   1 0           ≤0.5 41.2% 0 
P8   1 0         ≤8  ≤1.2 41.2% 0 
P9 1 1             >0.5, ≤1.2 38.2% 0 
P10       1         ≤1.2 32.4% 0 
P11 1 1           ≥8 >0.5 32.4% 0 
P12 1 1           ≥9   29.4% 0 
P13   1 0       ≤3      29.4% 0 
P14   1         ≥4 ≤8  ≤1.2 26.5% 0 
P15         0     ≥8 ≤0.5 26.5% 0 
P16     0 1       ≥6   26.5% 0 
P17 0             ≤8  ≤1.2 20.6% 0 
P18           1   ≥8   20.6% 0 
P19       1     ≤3      20.6% 0 
P20       1 0         17.6% 0 
N1               ≤8  >1 0 70.0% 
N2                 >1.2 0 70.0% 
N3   0       0 ≥4     0 50.0% 
N4               ≤5   0 50.0% 
N5   0       0     >0.5 0 50.0% 
N6   0   0 0         0 45.0% 
N7   0   0       ≤7   0 45.0% 
N8   0     0       >0.5 0 40.0% 
N9   0     0   ≥4     0 40.0% 
N10         0       >1 0 40.0% 
N11   0   0   0       0 40.0% 
N12 0               >1 0 35.0% 
N13 1 0         ≥4 ≤7   0 30.0% 
N14         1 0   ≤8  >0.5 0 30.0% 
N15         1 0 ≥4 ≤8    0 30.0% 
N16       0 1 0   ≤8    0 20.0% 
N17           1     >1 0 15.0% 
N18 0       1 0 ≥4     0 15.0% 
N19     1   1 0   ≤8    0 15.0% 
N20 0       1 0     >0.5 0 15.0% 
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It is not surprising to find, in Table 36, honeycombing and a high score of reticulation in 

the majority of  IPF patterns since it is known that IPF can be suspected with confidence 

in the 50% of cases with a bilateral, predominantly basal, predominantly subpleural 

reticular pattern, associated with honeycombing and/or traction bronchectasis. However 

the distribution of the lesions has not been tested in this study since NSIP and DIP have 

almost the same distribution. On the contrary, it is known that ground glass is the 

predominant finding in the majority of cases of NSIP and DIP explaining the high scores 

of ground glass and of ground glass on reticulations in 10 of the non-IPF patterns. 

 

The combination of the three models allows the drawing of additional conclusions. For 

example, if the results of the three classifications are 0, 0 and ? respectively, and one 

knows that each patient is exactly of one type of IIP, one can conclude that the “?” in the 

classification of the third  condition can be replaced by  “1”.  

 

The results of the classification of the 54 patients given by the three models, along with 

the conclusions derived from the knowledge of all the three classifications are presented 

in Table 37. The accuracy of this classification is 100%.    

 

It is usually said that the CT diagnosis of NSIP is difficult. In a recent study [48] 

experienced observers considered the CT pattern indistinguishable from IPF in 32% of 

cases. In another investigation the author assessed the value of CT in the diagnosis of 129 

patients with histologically proven idiopathic interstitial pneumonias [58]. Two 

independent  observers  were  able  to  make  a correct first choice diagnosis in more than 
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Table 37 
 

Classification by LAD Models  
Observations 

Given 
Classification IPF/non-IPF NSIP/non-NSIP DIP/non-DIP Conclusion 

s001 DIP 0 ? 1 DIP 
s002 DIP 0 0 1 DIP 
s004 DIP 0 0 1 DIP 
s005 DIP 0 ? 1 DIP 
s006 DIP 0 ? 1 DIP 
s007 DIP 0 0 1 DIP 
s008 IPF 1 0 0 IPF 
s009 IPF 1 ? 0 IPF 
s010 IPF 1 ? 0 IPF 
s011 IPF 1 0 0 IPF 
s012 IPF 1 0 0 IPF 
s013 IPF 1 0 0 IPF 
s014 IPF 1 0 0 IPF 
s015 IPF 1 0 0 IPF 
s016 IPF 1 ? 0 IPF 
s017 IPF 1 0 0 IPF 
s018 IPF 1 0 0 IPF 
s019 IPF 1 0 0 IPF 
s020 IPF 1 0 0 IPF 
s021 IPF 1 ? 0 IPF 
s022 IPF 1 0 0 IPF 
s023 IPF 1 0 0 IPF 
s024 IPF 1 0 0 IPF 
s025 IPF 1 0 0 IPF 
s026 IPF 1 0 0 IPF 
s027 IPF 1 0 0 IPF 
s028 IPF 1 0 0 IPF 
s029 IPF 1 0 0 IPF 
s030 IPF 1 0 0 IPF 
s031 IPF 1 0 0 IPF 
s032 IPF 1 0 0 IPF 
s033 IPF 1 0 0 IPF 
s034 IPF 1 0 0 IPF 
s035 IPF 1 0 0 IPF 
s036 IPF 1 0 0 IPF 
s037 IPF 1 0 0 IPF 
s038 IPF 1 0 0 IPF 
s039 IPF 1 0 0 IPF 
s040 IPF 1 0 0 IPF 
s041 IPF 1 0 0 IPF 
s042 NSIP 0 1 0 NSIP 
s043 NSIP 0 1 ? NSIP 
s044 NSIP 0 1 0 NSIP 
s045 NSIP 0 1 0 NSIP 
s047 NSIP 0 1 0 NSIP 
s048 NSIP 0 1 ? NSIP 
s049 NSIP 0 1 0 NSIP 
s050 NSIP 0 1 0 NSIP 
s051 NSIP 0 1 ? NSIP 
s052 NSIP 0 1 0 NSIP 
s053 NSIP 0 1 0 NSIP 
s054 NSIP 0 1 0 NSIP 
s055 NSIP 0 1 0 NSIP 
s056 NSIP 0 1 0 NSIP 
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70% of IPF cases, in more than 60% of DIP, but only in 9% of NSIP cases. In that study, 

NSIP was confused most often with DIP, and less often with IPF. It seems that LAD 

makes possible to distinguish NSIP from the other entities in the majority of cases.  

 

4.1.5. Validation 

 

It has been shown in the previous section (Table 37) that the accuracy of   classifying by 

LAD the 54 patients is of 100%. It should be added however that this result represents 

only the correctness of the proposed classification model when the entire dataset is used 

both as a training set, and as a test set. In order to establish the reliability of these 

classifications they have to be validated. Because of the very limited size of the dataset 

(in particular because of the availability of data for only 6 DIP patients and only 14 NSIP 

patients) the traditional partitioning of the dataset into a training and a test set would 

produce extremely small subsets, and therefore highly unreliable conclusions. In view of 

this fact, we shall test the accuracy of the LAD classification by cross-validation, using 

the so-called “jackknife” or “leave-one-out” method.  As an example, the cross-validation 

of the classification results for the IPF/non-IPF model will be presented below. 

 

The basic idea of the “leave-one-out” method is very simple. One of the observations is 

temporarily removed from the dataset, a classification method is “learned” from the set of 

all the remaining observations, and it is applied then to classify the extracted observation. 

This procedure is then repeated separately for every one of the observations in the 
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dataset. For example in the case of the IPF/non-IPF model we have to apply this 

procedure 54 times.  

 
Table 38 shows the results of the “leave-one-out” procedure applied to the models. The 

table includes the results of directly applying leave-one-out experiments to the three 

models (IPF/non-IPF, NSIP/non-NSIP, DIP/non-DIP), as well as the resulting combined 

classifications. The combined classifications are then used to derive the final conclusion 

about the IPF/non-IPF character of each observation; the correctness of the conclusion 

(compared with the given classification) is presented in the last column of Table 38 

(“evaluation”).  

 
The average accuracy of directly applying leave-one-out experiments for each problem is 

the following: 

IPF/non-IPF NSIP/non-NSIP DIP/non-DIP 

84.85% 78.21% 89.58% 

 

For the combined classifications it can be seen that out of 54 observations, 44 are 

classified correctly, there are 6 errors (the IPF patients s009, s010 and s021 are classified 

as non-IPF, and the non-IPF patients s042, s047, and s053 are classified as IPF), two 

patients (s007 and s052) are unclassified, and for two other patients (s016 and s055) the 

classifications (“IPF or NSIP”) are imprecise. The accuracy of the combined 

classifications for the IPF/non-IPF problem is 83.6%. 

 
In view of the very small size of the dataset, the results of the leave-one-out tests can be 

viewed as extremely encouraging. 



 

 

97

Table 38 
Classification by Leave-One-Out Conclusion Obs. Given  

Classification IPF/non-IPF NSIP/non-NSIP DIP/non-DIP 
Derived 

Classification IPF/non-IPF Evaluation 
s001 DIP 0 ? 1 DIP 0 correct 
s002 DIP 0 0 1 DIP 0 correct 
s004 DIP 0 0 1 DIP 0 correct 
s005 DIP 0 1 1 DIP or NSIP 0 correct 
s006 DIP 0 1 1 DIP or NSIP 0 correct 
s007 DIP 0 0 0 ? ? unclassified 
s008 IPF 1 0 0 IPF 1 correct 
s009 IPF 0 ? 0 NSIP 0 error 
s010 IPF 0 1 0 NSIP 0 error 
s011 IPF 1 0 0 IPF 1 correct 
s012 IPF 1 0 0 IPF 1 correct 
s013 IPF 1 0 0 IPF 1 correct 
s014 IPF 1 0 0 IPF 1 correct 
s015 IPF 1 0 0 IPF 1 correct 
s016 IPF 1 1 0 IPF or NSIP ? imprecise 
s017 IPF 1 0 0 IPF 1 correct 
s018 IPF 1 0 0 IPF 1 correct 
s019 IPF 1 0 0 IPF 1 correct 
s020 IPF 1 0 0 IPF 1 correct 
s021 IPF 0 1 0 NSIP 0 error 
s022 IPF 1 0 0 IPF 1 correct 
s023 IPF 1 0 0 IPF 1 correct 
s024 IPF 1 0 0 IPF 1 correct 
s025 IPF 1 0 0 IPF 1 correct 
s026 IPF 1 0 0 IPF 1 correct 
s027 IPF 1 0 0 IPF 1 correct 
s028 IPF 1 0 0 IPF 1 correct 
s029 IPF 1 0 0 IPF 1 correct 
s030 IPF 1 0 0 IPF 1 correct 
s031 IPF 1 0 0 IPF 1 correct 
s032 IPF 1 0 0 IPF 1 correct 
s033 IPF 1 0 0 IPF 1 correct 
s034 IPF ? 0 0 IPF 1 correct 
s035 IPF 1 0 0 IPF 1 correct 
s036 IPF 1 0 0 IPF 1 correct 
s037 IPF 1 0 0 IPF 1 correct 
s038 IPF 1 0 0 IPF 1 correct 
s039 IPF 1 0 0 IPF 1 correct 
s040 IPF 1 0 0 IPF 1 correct 
s041 IPF 1 0 0 IPF 1 correct 
s042 NSIP 1 0 0 IPF 1 error 
s043 NSIP 0 1 ? NSIP 0 correct 
s044 NSIP 0 1 0 NSIP 0 correct 
s045 NSIP 0 1 0 NSIP 0 correct 
s047 NSIP 1 ? 0 IPF 1 error 
s048 NSIP 0 ? 1 DIP 0 correct 
s049 NSIP 0 1 0 NSIP 0 correct 
s050 NSIP 0 1 0 NSIP 0 correct 
s051 NSIP 0 1 ? NSIP 0 correct 
s052 NSIP 0 0 0 ? ? unclassified 
s053 NSIP 1 0 0 IPF 1 error 
s054 NSIP 0 1 0 NSIP 0 correct 
s055 NSIP 1 1 0 NSIP or IPF ? imprecise 
s056 NSIP 0 1 0 NSIP 0 correct 
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4.1.6. Attribute Analysis 

     

4.1.6.1.  Importance of Attributes 

 

A simple measure of the importance of an attribute is the frequency of its inclusion in the 

patterns appearing in the model. For example, attribute 1 (IIT) appears in 11 (i.e., in 

27.5%) of the 40 patterns of the IPF/non-IPF model in Table 36. The frequencies of all 

the 13 attributes in the models are shown in Table 39 for the three LAD models 

considered, along with the averages of these three indicators.  

 

Table 39 

                       FREQUENCIES OF ATTRIBUTES IN MODELS 
 

Attributes IPF/non-IPF NSIP/non-NSIP DIP/non-DIP Average 

IIT 0.275 0.25 0.343 0.289 

HC 0.525 0.813 0.357 0.565 

TB 0 0 0.238 0.079 

GG1 0 0 0  0.000 

BRVX 0.125 0.219 0.381 0.242 

PL 0.2 0.094 0  0.098 

HPL 0.4 0.375 0  0.258 

SL 0.3 0.156 0  0.152 

AC  0 0  0  0.000 

N  0 0  0  0.000 

GG2 0.25 0.688 0  0.313 

RET 0.5 0.5 0.376 0.459 

GG2/RET 0.475 0  0.662 0.379 

   

Two of the most important conclusions which can be seen in this table indicate that: 
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• the most influential attributes are ground-glass attenuation/reticulation score 

(GG2/RET),  honeycombing (HC), ground-glass attenuation score (GG2) and 

reticulation score (RET); 

• the attributes ground-glass attenuation (GG1), airspace consolidation (AC) 

and nodules (N) have no influence on the classification. 

 

4.1.6.2.   Promoting and Blocking Attributes 

 

We shall illustrate the promoting or blocking nature of some attributes on the IPF/non-

IPF model shown in Table 36. It can be seen in the table that every positive pattern which 

includes a condition on HC (honeycombing) requires that HC=1. Conversely, every 

negative pattern which includes a condition on HC requires that HC=0. This means that if 

a patient is known to be a non-IPF case with HC=1, and all the attributes of another 

patient have identical values except for HC which is 0, then this second patient is 

certainly not an IPF case. This type of monotonicity means simply that HC is a 

“promoter” of IPF. It is easy to see that the attribute PL (polygonal lines) has a similar 

property. 

 

On the other hand, the attribute BRVX (peri-bronchovascular thickening) appears to have 

a converse property. Indeed, every positive pattern which includes this attribute requires 

that BRVX=0, while the only negative pattern (N19) which includes it requires that 

BRVX=1. Therefore if a patient’s BRVX would change from 1 to 0, the patient’s 

condition would not change from IPF to non-IPF (assuming again that none of the other 
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attributes change their values). Similarly to the previous case, this type of monotonicity 

means simply that BRVX is a “blocker” of IPF. 

 

In this way the IPF/non-IPF model allows the identification of two promoters and of one 

blocker. None of the other attributes in the support set appear to be promoters or 

blockers. 

 
A similar analysis of the DIP/non-DIP model shows that honeycombing (HC) and 

ground-glass attenuation/reticulation score (GG2/RET) are promoters of DIP, while peri-

bronchovascular thickening (BRVX), intralobular interstitial thickening (IIT), traction 

bronchiectasis (TB) and reticulation score (RET) are blockers. Also, the analysis of the 

NSIP/non-NSIP model shows that peri-bronchovascular thickening (BRVX) is a 

promoter of NSIP, while honeycombing (HC), polygonal lines (PL) and septal lines (SL) 

are blockers of NSIP. 

 
To conclude, we show in Table 40 the promoters and blockers which have been identified 

for the three forms of idiopathic interstitial pneumonias. 

Table 40 
PROMOTERS AND BLOCKERS FOR CT DATA 

 
 Idiopathic 

Pulmonary 

Fibrosis 

Desquamative 

Interstitial 

Pneumonia 

Non Specific 

Interstitial 

Pneumonia 

honeycombing promoter promoter blocker 
polygonal lines promoter  blocker 

peri-bronchovascular thickening blocker blocker promoter 
ground-glass attenuation/reticulation score  promoter  

intralobular interstitial thickening  blocker  
traction bronchiectasis  blocker  

reticulation score  blocker  
septal lines   blocker 
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4.1.7. Conclusion 

 
It has been shown that it is possible to use a computational technique (LAD) for 

analyzing CT data for distinguishing with high accuracy different entities (IPF, NSIP and 

DIP) of idiopathic interstitial pneumonias (IIPs). This is particularly important for NSIP 

which is as yet poorly defined. It was also shown that the patterns developed by LAD 

techniques provide additional information about outliers, redundant features, the relative 

significance of the attributes, and allow to identify promoters and blockers of various 

forms of IIPs. These encouraging results will form the basis of a forthcoming study of a 

broader population of IIPs, which will include not only CT data, but also clinical and 

biological ones. 

 

4.2.  Breast Cancer Prognosis by Combinatorial Analysis of Gene Expression 

Data4 

 
Microarray gene expression technology has provided extensive datasets that describe 

patients with cancer in a new way. Several methodologies have been used to extract 

information from these datasets. In this section we use the methodology of logical 

analysis of data to reanalyze the publicly available microarray dataset reported by van’t 

Veer et al. [90]. The motivation for using yet another method to analyze these data was 

the expectation that the specific aspects of LAD, and especially the combinatorial nature 

of its approach, would allow the extraction of new information on the problem of 

                                                 
4 The results presented in this section are based on joint work with G. Alexe, S. Alexe, D.E. Axelrod, T.O. Bonates, M. Reiss, and 
P.L. Hammer, published in [5]. 
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metastasis-free survival of breast cancer patients, and in particular on the role of various 

significant combinations of genes that may have an influence on this outcome. 

 

The main goal of the study by van’t Veer et al. was to predict the clinical outcome of 

breast cancer (that is, to identify those patients who will develop metastases within 5 

years) based on analysis of gene expression signatures. The crucial importance of this 

problem arises from the fact that the available adjuvant (chemo or hormone) therapy, 

which reduces by about one-third the risk for distant metastases, is not really necessary 

for 70-80% of the patients who currently receive it. Moreover, this therapy can have 

serious side effects and involves high medical costs. The study by van’t Veer et al. 

illustrates clearly that machine learning techniques, data mining, and other new 

techniques applied to DNA microarray analysis can outperform most clinical predictors 

currently in use for breast cancer. The study concludes that the new findings, ‘… provide 

a strategy to select patients who would benefit from adjuvant therapy’. 

 

A specific feature of datasets coming from genomics is the presence of a very large 

number of measurements concerning gene expressions but only a relatively small number 

of observations. For instance, the attributes in the van’t Veer study correspond to more 

than 25,000 human genes, whereas the number of cases was only 97. In that dataset, each 

case is described by the expression levels of 25,000 genes, as measured by fluorescence 

intensities of RNA hybridized to microarrays of oligonucleotides. The cases included in 

the dataset are 97 lymph-node-negative breast cancer patients, who are grouped into a 

training set of 78 and a test set of 19 cases. The training set includes 34 positive cases 
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(having a ‘poor prognosis’ signature; that is, having fewer than 5 years of metastasis-free 

survival) and 44 negative cases (having a ‘good prognosis’ signature; i.e., having more 

than 5 years of metastasis-free survival). The test set includes 12 positive and 7 negative 

cases. 

 

The van’t Veer study used DNA microarray analysis in primary breast tumors, and 

“applied supervised classification to identify gene expression signature strongly 

predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients 

without tumor cells in local lymph nodes at diagnosis (lymph node negative)”. The study 

identified 231 genes as being significant markers of metastases, all of whose correlations 

with outcome exceeded 0.3 in absolute value, and it constructed an optimal prognosis 

classifier based on the best 70 genes. In the training set the system predicted correctly the 

class of 65 of the 78 cases (that is, with an accuracy of 83.3%, corresponding to a 

weighted accuracy of 83.6%), whereas in the test set it predicted correctly the class of 17 

of the 19 cases (that is, with an accuracy of 89.5%, corresponding to a weighted accuracy 

of 88.7%). Weighted accuracy is defined as the average of the proportion of correctly 

predicted cases within the set of positive cases and that of correctly predicted negative 

cases in the dataset. 

 

Numerous statistical and machine-learning methods have been successfully applied to the 

analysis of microarray datasets; these methods include cluster analysis (hierarchical 

clustering ([14], [23], [34], [37]), self-organizing maps ([25], [86], [88]), and two-way 

clustering [36], regression analysis [56], nearest neighborhood methods [98], decision 
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trees ([19], [85], [99]), artificial neural networks ([38][59]), support vector machines 

([23], [35], [76], [84]), principal component analysis ([9], [49], [50], [77], [87]), singular 

value decomposition ([10], [11], [51], [64]), and multidimensional scaling ([60], [98]). A 

pattern-based recognition method has been developed using other kinds of data for 

prediction of outcome in preclinical and clinical trials of cancer patients ([57], [61]). 

 

Specific features of the LAD approach include the exhaustive examination of the entire 

set of genes (without excluding those that have low statistical correlations with the 

outcome, or those that have low expression levels), focusing on the classification power 

of combinations of genes (without confining attention only to individual genes) and on 

the possibility of extracting novel information on the role of genes and of combinations 

of genes through the analysis of these exhaustive lists. 

 

LAD has been shown to offer important insights into problems ranging from oil 

exploration [18], labor productivity analysis [45] and country creditworthiness evaluation 

[46], to medical application (for example, risk evaluation among cardiac patients ([6], 

[63]), polymer design for artificial bones [1], genomic-based diagnosis and prognosis of 

lymphoma [4], and proteomics-based ovarian cancer diagnosis [3]. 

 

We develop a new type of classification model that can distinguish between patients who 

will have a metastasis-free survival of 5 years from the others.  
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4.2.1. Materials and Methods 

 

It can be expected that ‘large’ or ‘small’ values of the expression levels of certain genes 

can determine the poor or bad prognosis of a breast cancer patient. In order to express 

such relations in more precise terms, it is natural to replace terms such as ‘large’ and 

‘small’ with conditions of the type ‘ … is more than’ or ‘… is less than’ a certain value. It 

is therefore natural to examine the role of well chosen cut points associated with the 

expression levels of genes. For instance, the observation that low intensity levels of gene 

Contig15031_RC are (more or less) characteristic for a poor prognosis is imprecise; it 

can be reformulated as the ultra-simplistic classification system, ‘If the intensity level of 

gene Contig15031_RC is at most 0.055 then the patient has a poor prognosis’. The 

assumption of this rule is valid for 25 positive and 11 negative cases in the training set 

(that is, it has a sensitivity of 25/34 = 73.5% and a specificity of 33/44 = 75%). 

 
Combinations of such cut point based conditions naturally extend this idea. For instance, 

the combined requirement of satisfying simultaneously the three conditions ‘The intensity 

level of gene Contig15031_RC is at most 0.055’ and ‘The intensity level of gene 

NM_004035 is at least -0.106’ and ‘The intensity level of the gene NM_003239 is at 

most -0.014’ is fulfilled by 22 of the 34 positive cases in the dataset and by none of the 

negative ones. Again, these three requirements could be viewed as a classification system 

of poor prognosis cases, having a sensitivity of 64.7% and a specificity of 100%. 

 

Such ideas are at the foundation of LAD. The essence of LAD is to detect patterns, or 

combinatorial biomarkers (i.e., simple classifiers consisting of restrictions imposed on the 
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values of the expression levels of the intensities of a combination of several genes); to 

generate patterns exhaustively and in an algorithmically efficient way; to use the 

collection of patterns as a prognostic system and thoroughly validate it; to extract from 

this collection as much additional information as possible about the role and nature of 

genes in the dataset (that is, to detect promoters and blockers); and to study the common 

characteristics of groups of patients that satisfy similar patterns. 

 

The LAD method was trained on the same training set of 78 samples used by van’t Veer 

et al. [90]. The prognosis results for LAD were validated on the same test set of 19 

samples used by van’t Veer et al. The samples in the test set were disregarded during the 

training procedure. 

 

 Support Set Selection 

In order to distinguish between measurements of good and of poor prognosis patients, 

only a tiny fraction of the information contained in the (original or binarized) dataset is 

needed. In particular, all of the information about the vast majority of the genes in the 

dataset is redundant. Moreover, even for the genes that are not redundant, only a few 

(usually only one) of the corresponding binary variables are needed. A set of binary 

variables that are sufficient to distinguish poor from good prognosis cases is called a 

support set. A support set is called ‘minimal’ if none of its proper subsets is a support set; 

clearly, not every minimal support set is of minimum size. It is important to note that a 

dataset may admit hundreds or thousands of minimal support sets. The reduction of a 

large dataset to a substantially smaller one that includes only the variables in the chosen 
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support set allows a major simplification of the problem, and has great importance for 

diagnosis and prognosis (although, in some cases, the presence of a limited number of 

redundant variables may be acceptable in terms of ensuring greater stability of results). 

 

The problem of finding minimal support sets has been modeled elsewhere ([17], [18], 

[27]) as a typical ‘set-covering’ problem, and numerous methods are known in 

combinatorial optimization for the solution of this problem. In our case, the excessive 

dimensions of the associated set-covering problem (approximately 20,000 constraints 

involving between 2 and 3 million 0-1 variables) required the use of powerful heuristics 

to trim down the size of the problem. In order to be able to handle the large problems 

typical for genomic and proteomic datasets, a general heuristic size-reduction procedure 

has been developed [8]. The essence of this method is to balance the conflicting criteria 

of minimizing size and maximizing discrimination between positive and negative 

observations. In contrast to many statistically based methods, the support set generation 

procedures of LAD are guided by the collective strength of the subsets of variables, 

without being necessarily restricted to those variables that have the highest individual 

correlation coefficients with the outcome. 

 

We restricted our study only to those 13,387 genes whose log-ratio measurements of 

fluorescence intensities are known for every single patient (that is, we eliminated those 

genes that include missing data). After that the feature selection procedure [8] was 

applied. This procedure consists of two stages. In a first ‘filtering’ stage, a relatively 

small subset of relevant features was identified on the basis of several combinatorial, 
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statistical, and information/theoretical criteria (for example, separation measure, envelope 

eccentricity, system entropy, signal to noise ratio). In the second stage, the importance of 

variables selected in the first step was evaluated based on the frequency of their 

participation in the set of all patterns and generated using an efficient, total polynomial 

time algorithm [7], and a large proportion of the low impact variables was eliminated. 

This step was applied iteratively, until a Pareto-optimal support set of 17 variables 

(shown in Table 41) was arrived at, which balanced the conflicting criteria of simplicity 

and accuracy.  

   

  Binarization 

We have used a simple binarization technique to replace the expression level of each 

gene by several binary (0-1) variables, simply indicating whether the expression level 

does or does not exceed certain thresholds. In order to achieve this, we introduced nine 

cut points into the range of fluorescence intensities of each gene. 

 

 Pattern and Model Generation 

In order to ensure high reliability of the patterns used in the model, we restricted our 

search to patterns of prevalence at least 20. Furthermore, in order to maximize the 

explanatory power of the patterns detected, we restricted our search to patterns of degree 

3 at most (that is, involving at most three genes). In this way, using the support set of 17 

genes we have identified a pandect of 201 positive and 232 negative patterns and 

extracted from it the model consisting of only 20 positive and 20 negative patterns, as 

shown in Table 42. 



 

 

109

Each row in Table 42 describes a pattern. The first entry in the row is the name of the 

pattern (for example, P1 in the first row describes the first positive pattern). The next 17 

entries describe the defining conditions of that pattern (for example, P1 is described by 

the three conditions ‘Gene NM_001756 > -0.42’, ‘Contig15031_RC ≤ 0.09’, and 

‘Contig65439 ≤ 0.06’). The last two entries indicate the positive and negative coverages 

(that is, the number of cases satisfying the defining conditions of the pattern) and 

prevalences (that is, proportion of positive, or negative, cases satisfying the defining 

conditions) of the pattern on the training set. For instance, P1 covers 19 of the 34 positive 

cases and none of the negative cases in the training set; therefore, its positive and 

negative prevalences on the training set are 55.9% and 0%, respectively. 

 

Prognosis 

The availability of the model makes it possible to classify new (that is, not yet seen) 

observations as being positive or negative. As a matter of fact, diagnosis and prognosis 

are perhaps the most important applications of LAD to biomedical problems. The most 

direct way to apply LAD to prognostic problems is to examine which patterns are 

displayed by a new case. If the case displays only positive patterns, then it is assigned a 

poor prognosis. Similarly, if it displays only negative patterns, then it is assigned a good 

prognosis. If the case does not display any pattern, then no prognosis can be assigned to 

it; it should be noted that this situation is extremely rare and did not occur at all in the 

present study. Finally, if a case displays both positive and negative patterns, then a simple 

weighting procedure is applied to determine whether the positive or the negative patterns 

are predominant. The weighting procedure consists simply of comparing the proportion 
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of the displayed positive patterns in the set of all positive patterns contained in the model 

(pandect), with the analogous proportion of negative patterns. 

 

To illustrate the way in which a model can be used to predict the positive (negative) 

nature of a ‘new’ patient, let us consider one which, for example, will satisfy one of the 

20 positive patterns and five of the 20 negative patterns appearing in the model. 

Therefore, the ‘prognostic index’ of this patient will be (1/20) - (5/20) = -0.2; because the 

prognostic index is negative, the model predicts this patient to be in the ‘negative’ class. 

 

Calibration 

The quality of the prognosis given by the model is a consequence of the choice of several 

control parameters.  The collection of control parameters include the number of cutpoints 

per gene, upper bounds on the size of support sets, pattern degrees, and lower bounds on 

pattern prevalence. The control parameters define uniquely the model. The best values of 

the control parameters were determined iteratively by assigning some values to them, 

constructing the associated model, verifying the correctness of its predictions, reassigning 

the values, and continuing this sequence of steps until we arrived at a model with highly 

accurate predictions.  

 

The entire calibration process was conducted only on the training set and it was intended 

to identify the best parameters to be used in the construction of the LAD model. 
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Validation 

The model has been validated in two ways. First, the prediction of the model built on the 

training set was checked on the test set. This is the most frequently used validation 

method. In order to increase the reliability of the proposed model, an additional 

validation procedure was applied. In this second validation procedure, we created a new 

dataset consisting of all of the observations in the original training and test sets. The 

procedure consisted in the application of the usual cross-validation techniques (twenty 5-

folding) to this augmented dataset, using the parameters found at the calibration stage. 

 

4.2.2. Results 

  

4.2.2.1.  Prognostic System 

 

We examine the model built on the 17 genes shown in Table 41. The functions of these 

genes, obtained from the DAVID database [30], are summarized in Table 41.  

 

Based on this 17-gene support set we constructed the model shown in Table 42, which 

consists of 20 positive and 20 negative patterns. It can be seen that the patterns are very 

robust, having prevalences of up to almost 56% in the positive case and above 34% in the 

negative case. 

 
The classification provided by the model for the 34 patients with poor prognosis and the 

44 patients with good prognosis makes no errors in the training set (weighted accuracy = 

100%). More significantly, on the 19-case test set (which includes 12 positive and seven  
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Table 41 

THE 17-GENE SUPPORT SET 
 

Gene Index Van’t Veer id GeneBank DAVID_GENE_NAME 

1 AB033007 AB033007 KIAA1181 protein 

2 NM_001661 NM_001661 ADP-ribosylation factor 4-like 

3 NM_001756 NM_001756 
Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 

antiproteinase, antitrypsin), member 6 

4 AF148505 AF148505 Aldehyde dehydrogenase 6 family, member A1 

5 Contig42421_RC AI912791 F-box protein 16 

6 NM_003748 NM_003748 Aldehyde dehydrogenase 4 family, member A1 

7 NM_020974 NM_020974 Signal peptide, CUB domain, EGF-like 2 

8 AL080059 AL080059 TSPY-like 5 

9 AL110129 AL110129 Mitochondrial ribosomal protein S22 

10 Contig15031_RC AI347425 Oligodendrocyte myelin glycoprotein 

11 Contig65439 AI572600 Chromosome 20 open reading frame 178 

12 Contig37063_RC AA579843 Poly (ADP-ribose) glycohydrolase 

13 Contig41383_RC AA142876 Asparaginase like 1 

14 AL049689 AL049689 Tenascin N 

15 Contig63102_RC AI583960 Hypothetical protein FLJ11354 

16 Contig55574_RC AA524093 F-box protein 41 

17 Contig38451_RC AA497035 Not available 
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Table 42 

LAD MODEL CONSISTING OF 20 POSITIVE AND 20 NEGATIVE PATTERNS ON SUPPORT SET OF 17 GENES 
 

Definition of Patterns 
A

B
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Patterns' 
coverages 

(prevalences) on 
training set 

Pa
tt
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Attr. 
1 

Attr. 
2 

Attr. 
3 

Attr. 
4 

Attr. 
5 

Attr. 
6 

Attr. 
7 

Attr. 
8 

Attr. 
9 

Attr. 
10 

Attr. 
11 

Attr. 
12 

Attr. 
13 

Attr. 
14 

Attr. 
15 

Attr. 
16 

Attr. 
17 

Pos 
Prev 

Neg  
Prev 

P1   >-0.42       ≤0.09 ≤0.06       19 
(55.9%) 0 

P2      ≤0.07     ≤-0.01  ≤0.07     18 
(52.9%) 0 

P3   >-0.42      ≤0.06  ≤0.06       18 
(52.9%) 0 

P4           ≤-0.01 ≤0.38 ≤0.07     18 
(52.9%) 0 

P5      ≤0.07 ≤-0.45    ≤0.06       17 
(50.9%) 0 

P6 ≤0.33          ≤-0.01    ≤-0.104   16 
(47.1%) 0 

P7      ≤0.07     ≤-0.01     >-0.02  16 
(47.1%) 0 

P8      ≤0.07  >-0.295  ≤0.033        16 
(47.1%) 0 

P9   >-0.42        ≤0.06   ≤-0.001    14 
(41.2%) 0 

P10  >-0.1   ≤-0.11      ≤-0.01       14 
(41.2%) 0 

P11  ≤0.03     ≤-0.45      ≤0.19     13 
(38.2%) 0 

P12      ≤0.07  >-0.295        >0.08  13 
(38.2%) 0 

P13  ≤0.35      >-0.295        >0.08  13 
(38.2%) 0 

P14            ≤0.3  ≤-0.001  >0.08  13 
(38.2%) 0 

P15  ≤0.03           >-0.16  
≤0.07     12 

(35.3%) 0 

P16      ≤0.35 >-0.96,  
≤-0.7            10 

(29.4%) 0 

P17   >-0.22    ≤0.055 >-0.295          10 
(29.4%) 0 

P18   >-0.22   >-0.48  >-0.1          10 
(29.4%) 0 

P19   >-0.22  ≤0.32  ≤0.055           10 
(29.4%) 0 

P20   >-0.22     >-0.1   >-0.27       10 
(29.4%) 0 
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N1  >0.09             >-0.005   0 15 
(34.1%) 

N2        ≤-0.295    >0.06    ≤-0.02  0 15 
(34.1%) 

N3     >-0.11       ≤0.14    ≤-0.02  0 15 
(34.1%) 

N4       >0.055         ≤-0.02 ≤1.88 0 14 
(31.8%) 

N5             >0.07 >-0.001 
≤0.17    0 14 

(31.8%) 

N6       >0.055         ≤-0.02  0 14 
(31.8%) 

N7   ≤-0.22        >0.06    >-0.005   0 14 
(31.8%) 

N8       >0.055         ≤-0.02  0 14 
(31.8%) 

N9  >0.09             >-0.005  >-0.083 0 14 
(31.8%) 

N10          >0.09      >-0.12  
≤0.08  0 13 

(29.5%) 

N11    >-0.03        >0.06 
≤0.14      0 13 

(29.5%) 

N12    >0.077  ≤0.35 >0.055           0 13 
(29.5%) 

N13    >0.077     ≤0.34       ≤-0.0213  0 13 
(29.5%) 

N14   ≤-0.22  ≤0.18  >0.055           0 13 
(29.5%) 

N15 ≤0.21   >0.077            ≤-0.0213  0 12 
(27.3%) 

N16        ≤-0.49        >-0.1207 ≤1.877 0 12 
(27.3%) 

N17            >0.06 
≤0.14    ≤-0.0213  0 12 

(27.3%) 

N18            ≤0.22    >-0.12  
≤-0.02  0 12 

(27.3%) 

N19  ≤0.16 ≤-0.42    >-0.197           0 12 
(27.3%) 

N20      >-0.204 >-0.197    >0.13       0 11 
(25.0%) 
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negative cases), the system makes only one error and classifies correctly all of the other 

cases; thus, the system’s weighted accuracy is 92.9%. The only error is of type 2, and it is 

due to the incorrect classification of negative sample 119. The supplementary validation 

tests based on an additional series of twenty 5-folding experiments on the combined 

dataset of 97 cases showed an average weighted accuracy of 81.7%. 

 

4.2.2.2.  Significant Biomarkers 

 

Based on the frequency of inclusion of genes in the positive patterns, it can be seen that 

Contig65439 (chromosome 20 open reading frame 178) plays a significant role in 

determining a poor prognosis, because it appears in 10 of the 20 positive patterns of the 

model. Similarly, Contig 55574_RC (F-box protein 41) plays a significant role in 

determining good prognosis, because it appears in 11 of the 20 negative patterns of the 

model. 

 

4.2.2.3.   Promoters and Blockers 

 

A gene with the property that an increase in the intensity level of its expression (while the 

expression levels of the all other genes remain unchanged) can sometimes worsen the 

prognosis, but can never improve it, will be called a ‘promoter’. Similarly, a gene with 

the property that a decrease in the intensity level of its expression (while the expression 

levels of the all other genes remain unchanged) can sometimes improve the prognosis, 
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but can never worsen it, will be called a ‘blocker’. Clearly, not every gene is a promoter 

or a blocker. 

 

The model can identify promoters and blockers in the following way. If every occurrence 

of a gene among the positive patterns imposes a lower bound on its expression level (i.e., 

in all those patterns whose definition includes a condition concerning that gene, the 

condition is of the form ‘the expression level of that gene is ≥ than a prescribed level’), 

while every occurrence of the same gene among the negative patterns imposes an upper 

bound of its expression level (that is, in all those patterns whose definition includes a 

condition concerning that gene, the condition is of the form ‘the expression level of that 

gene is ≤ than a prescribed level’), then it can be concluded that an increase in the 

expression level of that gene (assuming that the expression levels of all the other genes 

remain unchanged) may have as a result the activation of more positive patterns and/or 

the deactivation of some negative ones. Therefore, an increase in the expression level of 

such a gene can only increase the chances of metastasis formation. Such a gene will be 

called a promoter. 

 

Similarly, if every occurrence of a gene among the positive patterns imposes an upper 

bound on its expression level (namely, in all those patterns whose definition includes a 

condition concerning that gene, the condition is of the form ‘the expression level of that 

gene is ≤ than a prescribed level’), while every occurrence of the same gene among the 

negative patterns imposes a lower bound of its expression level (namely, in all those 

patterns whose definition includes a condition concerning that gene, the condition is of 
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the form ‘the expression level of that gene is ≥ than a prescribed level’), then it can be 

concluded that an increase in the expression level of that gene (assuming that the 

expression levels of all the other genes remain unchanged) may have as a result the 

activation of more negative patterns and/or the deactivation of some positive ones. 

Therefore, an increase of the expression level of such a gene can only decrease the 

chances of metastasis formation. Such a gene will be called a blocker.  

 

Using these definitions, it is shown in Table 42 that genes NM_001756, AL080059, and 

Contig55574_RC are promoters, whereas genes NM_020974, Contig65439, 

Contig15031_RC, Contig41383_RC, and Contig63102_RC are blockers. The genes 

AF148505 and AL049689 also exhibit blocker characteristics although to a somewhat 

lesser extent; we view them as weak blockers.  

 

4.2.2.4.  Special Classes of Positive Cases 

 

In order to discover special classes, we conducted a series of two-means clustering 

experiments of the positive observations, but they did not reveal the existence of any 

special subgroups of observations. However, using the pattern-based representation of the 

positive cases (as described in the introduction), two-means clustering revealed the 

existence of two very special classes of patients. Despite the random element present in 

the nature of the two-means clustering procedure, it transpired that in the 100 

experiments we have carried out, the positive observations were repeatedly and 

consistently clustered into the same two subgroups, which are denoted below by P+++ 
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(consisting of patient numbers 48, 50, 51, 59, 66, 68, and 69) and P+ (consisting of patient 

numbers 46, 52, 54, 55, 60, 62, 63, 73, and 78) respectively; these subgroups have the 

following distinctive properties. 

 
Cohesion 

The seven patients belonging to P+++ are assigned to a common cluster in 86% of the 

experiments, whereas the nine patients belonging to P+ are assigned to another common 

cluster in 98% of the experiments. 

 
Predictability 

In each validation experiment of the prognostic system by the leave-one-out method, the 

prognosis of every single observation in P+++ was correct; the 100% accuracy of the 

prognostic system on set P+++ is much higher than its 82.3% accuracy on the set of 

positive cases not contained in P+++. On the other hand, the accuracy of predictions for 

the patients in class P+ is only 55.6%. 

 
Distinctive coverage by patterns 

Each patient belonging to class P+++ satisfies 50-90% of the positive patterns (68.5% on 

average), whereas each patient belonging to P+ satisfies only 10-30% of the positive 

patterns (20% on average). 

 
 
Distinctive gene expression ranges 

The smallest interval of the 17-dimensional real space containing P+++ does not contain 

any other positive or negative observation, whereas the one containing P+ also contains 

seven negative observations (Table 43). 
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Table 43 

DESCRIPTION OF THE CASES IN THE SPECIAL POSITIVE CLASS P+++ 
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Lower bound -0.13 -0.123 -0.193 -0.362 -0.281 -0.372 -1.125 -0.066 -0.078 -0.077 -0.268 -0.193 -0.095 -0.242 -0.453 -0.369 -0.119 

P+++ 

Upper bound 0.108 0.044 0.381 0.116 -0.058 0.041 0.783 0.518 0.054 0.071 -0.009 0.116 0.07 0.115 0.048 0.525 0.268 

Lower bound -0.174 -0.129 -0.708 -0.514 -0.601 -2 -1.337 -0.783 -2 -0.044 -0.263 -0.222 -0.567 -0.291 -0.345 -0.334 -0.147 
Positive 

cases not 

in P+++ Upper bound 0.363 0.329 0.638 0.386 0.671 0.487 0.942 0.776 0.418 0.418 0.211 0.494 0.393 0.431 0.444 0.256 2 
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Statistical distinctions of clinical features 

We shall say that feature ‘f’ is a ‘contrastor’ of subset S` of the positive cases from the 

complementary set S`` (consisting of those positive cases that do not belong to S`) if the 

following two conditions hold: the average value of f in S` does not belong to the 95% 

confidence interval of the values of f in S``; and the average value of f in S`` does not 

belong to the 95% confidence interval of the values of f in S`. With this definition, it can 

be seen in Table 44 that the diameter and, to some extent, the grade are contrastors, 

which distinguish P+++ from its complement in the positive class. It can be also observed 

(see Table 45) that class P+ has some distinguishing characteristics (for example, the 

average PRp [progesterone receptor] of the patients in this class is 55.6, whereas the 

average PRp of the positive patients outside class P+ is 27.6, with the 95% confidence 

interval ranging from 12.6 to 42.6). 

Table 44 

CONTRASTORS DIFFERENTIATING THE POSITIVE CASES IN P+++ FROM THE POSITIVE CASES 

OUTSIDE P+++ 

 

  
Diameter 

(mm) 
Grade 

Average 30.71 3.00 

25.31 3.00 P+++ 
CI (95%) 

36.12 3.00 

Average 22.67 2.81 

20.11 2.67 Positive cases outside P+++ 
CI (95%) 

25.22 2.96 
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Table 45 

CONTRASTORS DIFFERENTIATING THE POSITIVE CASES IN P+ FROM THE POSITIVE CASES 

OUTSIDE P+ 

 
  PRp 

Average 55.56 

26.50 P+ 
CI (95%) 

84.61 

Average 27.60 

12.59 Positive cases outside P+ 
CI (95%) 

42.61 

 

 

Summary 

It is clear that the classes P+ and P+++ are very special and that all of the characteristics 

listed above indicate that it is most likely that the patients belonging to class P+++ have a 

very strong tendency toward developing metastases, whereas those in P+ have a 

substantially reduced tendency. 

  

4.2.2.5.    Special Classes of Negative Cases 
 

Using the pattern-based representation of cases described in the introduction, we also 

carried out 100 two-means clustering experiments within the set of negative observations. 

Despite of the random element present in the nature of the two-means clustering 

procedure, it transpired that, similar to the positive class, the negative class also contains 



 

 

122

two disjointed (but not exhaustive) special subclasses. These are denoted below by N−−− 

(consisting of patient numbers 10, 18, 21, 23, 30, 32, 37, and 38) and N− (consisting of 

patient numbers 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 22, 24, 26, 27, 28, 33, 34, 

36, 39, 40, 41, and 44), respectively, and have the following distinctive properties. 

 

Cohesion 

The eight patients belonging to N−−− are assigned to a common cluster in 88% of the 

experiments, whereas the 26 patients belonging to N− are assigned to a common cluster in 

95% of experiments. 

 

Predictability 

In each validation experiment of the prognostic system by the leave-one-out method, the 

prognosis of every single observation in N−−− was correct; the 100% accuracy of the 

prognostic system on set N−−− is much higher than its 77.8% accuracy on the set of 

negative cases not contained in N−−−. On the other hand, the accuracy of predictions for 

the patients in class N− is only 73.1%. 

 

Distinctive coverage by patterns 

Each patient belonging to the class N−−− satisfies 50-70% of the negative patterns (57.5% 

on average), whereas each patient belonging to N− satisfies only 5-35% of the negative 

patterns (20% on average). 
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Distinctive gene expression ranges 

The smallest interval of the 17-dimensional real space containing N−−− does not contain 

any other positive or negative observation, whereas the one containing N− also contains 

eight positive observations (Table 46). 

 

Statistical distinctions of clinical features 

Similar to the positive case, we shall say that feature ‘f’ is a ‘contrastor’ of subset S` of 

the negative cases from the complementary set S`` (consisting of those negative cases that 

do not belong to S`) if the following two conditions hold: the average value of f in S` does 

not belong to the 95% confidence interval of the values of f in S``; and the average value 

of f in S`` does not belong to the 95% confidence interval of the values of f in S`. With 

this definition, it can be seen in Table 47 that grade, estrogen receptor positive, and (to 

some extent) lymphocytic infiltrate are contrastors of N−−−. As far as class N− goes, Table 

48 shows the differences between the average values of some of the parameters in class 

N− compared with average values of the same parameters in the set of negative cases 

outside N−. 

 

Summary 

It is clear that the classes N− and N−−− are very special; all of the characteristics listed 

above indicate that it is most likely that patients belonging to class N−−− are very strongly 

resistant to development of metastases, whereas those in class N− have a substantially 

milder resistance. 
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Table 46 

 
DESCRIPTION OF THE CASES IN THE SPECIAL NEGATIVE CLASS N--- 

 

 
Table 47 

CONTRASTORS DIFFERENTIATING THE NEGATIVE CASES IN N--- FROM THE NEGATIVE CASES 

OUTSIDE N--- 

 

  Grade ERp 
Lymphocytic 

infiltrate 

Average 1.75 78.75 0.00 

1.43 61.60 0.00 N−−− 
CI (95%) 

2.07 95.90 0.00 

Average 2.42 57.22 0.14 

2.17 44.98 0.02 Positive cases outside N−−− 
CI (95%) 

2.67 69.46 0.25 
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Lower 

bound 
0.041 -0.112 -0.65 0.007 -0.126 0.059 -0.976 0.05 0.05 0.085 -0.266 0.062 -0.251 0.039 -0.022 -0.255 0.02 

N−−− 
Upper 

bound 
0.21 0.228 0.166 0.453 0.386 0.675 -0.038 0.394 0.394 0.285 0.293 0.247 0.401 0.35 0.278 -0.024 0.303 

Lower 

bound 
-0.144 -0.106 -0.734 -0.294 -0.407 -1.253 -0.844 -0.214 -0.214 -0.115 -0.307 -0.179 -0.291 -0.21 -0.395 -0.343 -0.206 Negative 

cases not 

in N−−− 
Upper 

bound 
0.345 0.443 1.135 0.363 0.521 0.881 0.311 0.477 0.477 0.273 0.293 0.433 0.482 0.455 0.335 0.22 0.323 
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Table 48 

CONTRASTORS DIFFERENTIATING THE NEGATIVE CASES IN N− FROM THE NEGATIVE CASES 

OUTSIDE N− 

 

  
Follow-up 

time (years) 
Grade ERp PRp 

Lymphocytic 

infiltrate 

Average 8.16 2.58 47.31 36.92 0.19 

7.28 2.31 32.62 23.19 0.04 N− 
CI (95%) 

9.04 2.85 62.00 50.65 0.35 

Average 9.48 1.89 81.11 56.94 0.00 

8.20 1.58 71.23 40.61 0.00 
Negative cases 

outside N− CI (95%) 
10.76 2.20 90.99 73.28 0.00 

 

 

4.2.3. Discussion 

 

On the training set of 34 positive and 44 negative cases, the model reported by van ’t 

Veer et al. [90] misclassifies 12 positive and 3 negative cases. The proposed model 

classifies 100% of the cases in the training set correctly. On the 19-case test set, the van’t 

Veer model misclassifies two cases, whereas the proposed model misclassifies one. We 

do not know whether the performance of the model presented by van’t Veer et al. [90] 

has been subjected to cross-validation (for example, by k-folding or leave-one-out 

experiments), and therefore we can not conduct a comparison with the cross-validation 

results of LAD, as shown in Table 49. 
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Table 49 

COMPARISON OF WEIGHTED ACCURACIES OF THE VAN’T VEER CLASSIFIER AND THE LAD 
MODEL 

 

 
Training set  

(78 cases) 

Test set  

(19 cases) 

Entire dataset  

(78 + 19 cases) 

 
Direct classification 

(%) 

Cross-validation 

(%) 

Direct classification 

(%) 

Cross-validation  

(%) 

Van ’t Veer 

classifier  
83.6 Not reported 88.7 Not reported 

Enhanced LAD 

model 
100 82.52 92.86 81.74 

 

4.2.3.1.Comparison of Support Sets 

 

The study by van’t Veer et al. [90] considered two support sets consisting of 70 and 231 

selected genes, whereas the model proposed in the present study used a support set of 17 

genes. Accuracy in distinguishing cases of poor and good breast cancer prognosis 

provided by the subset of 70 genes selected by van’t Veer et al. was revalidated and 

confirmed by van de Vijver and colleagues [91] in a different cohort of patients. 

 

In order to assess further the performance of the reported subsets of 231 and of 70 genes 

selected by van’t Veer et al. [90], and of the support set of 17 genes selected for the 

proposed LAD model, we applied LAD to each of these three subsets of genes. We then 

constructed separate predictive models on the training set and on the entire dataset 

(consisting of 78 and 97 samples, respectively), and tested their accuracy direct 
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application both to the training set of 78 and to the entire dataset of 97 samples, and also 

by cross-validation, consisting of twenty 5-folding experiments. The results are shown in 

Table 50. 

Table 50 

COMPARISON OF WEIGHTED ACCURACIES OF THE LAD MODELS CONSTRUCTED ON THREE 

DIFFERENT SUPPORT SETS 

 
Training set  

(78 cases) 

Test set  

(19 cases) 

Entire dataset  

(78 + 19 cases) 
Support set 

Direct classification 

(%) 

Cross-validation 

(%) 

Direct classification 

(%) 

Cross-validation 

(%) 

231 genes  

(van’t Veer) 
100.00 79.48 84.52 78.35 

70 genes  

(van’t Veer) 
99.26 75.43 84.52 74.06 

Proposed support set 

of 17 genes 
100.00 82.52 92.86 81.74 

 

Furthermore, we repeated the same type of experiments by comparing the weighted 

accuracies of applying five frequently used classification methods to the three support 

sets discussed above; these classification methods include artificial neural networks, 

support vector machines, logistic regression, nearest neighbors and decision trees, and are 

included in the publicly available software WEKA  [96]. The results are given in Table 

51  -  Table 53 and show that the average weighted accuracy of the five methods applied 

to the support set of 17 genes compares favorably with the results obtained using the two 

larger support sets of van’t Veer et al. 
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Table 51 

WEIGHTED ACCURACIES OF VARIOUS MODELS CONSTRUCTED ON THE SUPPORT SET 

IDENTIFIED BY LAD 

Support set of 17 genes (LAD) 

Training set  

(78 cases) 

Test set  

(19 cases) 

Entire dataset 

 (78 + 19 cases) 
Method 

Direct classification 

(%) 

Cross-validation 

(%) 

Direct classification 

(%) 

Cross-validation 

(%) 

Artificial neural networks 

(1 hidden layer) 
100.00 76.55 84.21 78.65 

Support vector machines 

(linear kernel) 
87.18 76.43 63.16 77.27 

Logistic regression 94.87 76.87 73.68 77.95 

Nearest neighbors 100.00 80.55 63.16 76.34 

Decision trees (C4.5) 96.15 67.48 57.90 67.01 

95% CI 91.03-100 71.33-79.82 59.20-77.65 71.25-79.64 

 

Table 52 

WEIGHTED ACCURACIES OF VARIOUS MODELS CONSTRUCTED ON THE SUPPORT SET OF 70 

GENES IDENTIFIED BY VAN’T VEER ET AL. 

Support set of 70 genes (van ’t Veer) 

Training set  

(78 cases) 

Test set  

(19 cases) 

Entire dataset 

(78+19 cases) Method 

Direct classification 

(%) 

Cross-validation 

(%) 

Direct classification 

(%) 

Cross-validation 

 (%) 

Artificial neural networks  

(1 hidden layer) 
100.00 80.16 42.11 71.65 

Support vector machines 

(linear kernel) 
96.15 82.01 57.90 77.03 

Logistic regression 100.00 73.52 47.37 73.79 

Nearest neighbors 100.00 71.58 63.16 71.77 

Decision trees (C4.5) 96.15 60.49 42.11 61.89 

95% CI 96.61-100 66.09-81.01 42.15-58.91 66.27-76.18 
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Table 53 

WEIGHTED ACCURACIES OF VARIOUS MODELS CONSTRUCTED ON THE SUPPORT SET OF 231 

GENES IDENTIFIED BY VAN’T VEER ET AL. 

 
Support set of 231 genes (van ’t Veer) 

Training set  

(78 cases) 

Test set  

(19 cases) 

Entire dataset   

(78 + 19 cases) Method 

Direct classification 

(%) 

Cross-validation  

(%) 

Direct classification 

(%) 

Cross-validation  

(%) 

Artificial neural networks  

(1 hidden layer) 
100.00 72.24 73.68 73.96 

Support vector machines 

(linear kernel) 
100.00 72.79 73.68 74.88 

Logistic regression 100.00 71.21 73.68 75.63 

Nearest neighbors 100.00 72.94 78.94 77.15 

Decision trees (C4.5) 97.44 60.70 73.68 66.64 

95% CI 98.48-100.00 65.39-74.56 72.67-76.79 70.07-77.24 

 

From these tables we can estimate the comparative average weighted accuracies of the 

different predictive models constructed on the 17 genes of the proposed model, and on 

the 70 and 231 genes selected by van’t Veer et al. [90]. It can be seen that the 95% 

confidence intervals of weighted accuracy of direct classification estimated on the test set 

for the three predictive models that use 17, 70 and 231 genes were 59.20-77.65, 42.15-

58.91 and 72.67-76.79, respectively. Clearly, we can conclude that the weighted accuracy 

in distinguishing patients with good and poor breast cancer prognosis is best for the 

model using 231 genes, is at a comparable (although slightly lower) level for the model 

using 17 genes, and is at a substantially lower level for the model using 70 genes. 
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4.2.3.2.   Individual versus Collective Biomarkers 

 

One of the important hypotheses raised by the LAD approach concerns the role played in 

an accurate prognostic system by those genes that have the greatest correlation with 

outcome. In contrast to the conventional approach, LAD aims to go beyond the 

straightforward goal of identifying genes with important individual contributions to 

distinguishing between breast cancer patients with good and poor prognosis, instead 

focusing on those genes that - taken as a group - have the greatest collective prognostic 

potential. 

 

The breast cancer prognostic system developed in the present study confirms the 

hypothesis that the most accurate prognostic systems do not necessarily include only 

genes with strong correlations with outcome. Indeed, the 70 biomarkers used in the study 

by van’t Veer et al. [90] are extracted from the pool of 231 genes that (taken 

individually) are most highly correlated with the outcome. On the other hand, the 17-gene 

support set selected by LAD includes several genes whose correlation with the outcome 

in absolute value is very low. The average absolute value of Pearson correlation with the 

outcome of the 17 individual genes in the support set of the LAD model is only 0.33. 

However, the average absolute value correlation with the outcome of the 40 positive and 

negative patterns (which can be viewed as collective biomarkers) is higher, at 0.46. 

 

It is interesting to note that the overlap between the set of 17 genes selected by LAD and 

the set of the 70 genes used in the study by van’t Veer et al. [90] consists of only four 



 

 

131

genes (AL080059, NM_003748, NM_020974 and Contig63102_RC). Also, the overlap 

between the set of 17 genes and the pool of 231 genes, from which the 70 biomarkers 

were extracted by van’t Veer et al., consists of only eight genes (the four mentioned 

above and AB033007, AF148505, Contig42421_RC, and Contig37063_RC). 

 

The high accuracy of the LAD model is not due to the role of the individual genes 

selected, but rather to the interactions among various genes in the ‘collective biomarkers’ 

represented by patterns. The concept of collective biomarkers is crucial to the LAD 

approach. 

 

4.2.3.3.    Contrast between Training and Test Sets 

 

One of the most frequently used validation techniques in a model learned on a training set 

is to apply it to a test set, and to compare the accuracies of the model’s predictions on the 

two sets. It is usually assumed that characteristics of the training and test sets are very 

similar. The accuracy of predictions obtained by LAD and other machine-learning 

methodologies on the test set is usually lower than that on the training set. This 

phenomenon can be easily explained by the fact that any such model learns the obvious 

and less obvious characteristics of the training set, not all of which may be represented in 

the test set. Surprisingly, in our analysis, the weighted accuracy on the test set (92.9%) 

turned out to be even higher than that estimated by cross-validation on the training set 

(82.5%). This suggests that a previously unrecognized, possibly substantial, difference 

existed between the training and the test sets. In fact, we determined that this is the case. 
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Indeed, it can be seen that for the set of all observations in the training set, with the 

exception of case number 70 (Sample 70), the intensity levels of gene NM_005839 

(Ser/Arg-related nuclear matrix protein [plenty of prolines 101-like]) are consistently less 

than or equal to 0.19. On the other hand, on the test set the intensity levels of the same 

gene are consistently greater than 0.19. Therefore, it is clear that the intensity levels of 

gene NM_005839 distinguish completely the observations in the training set (with the 

exception of observation 70) from all the observations in the test set. 

 

The above finding is made even clearer by considering patterns. It transpires that 

hundreds of patterns of degree 2 can be found that completely separate the training set 

and the test set, without any exceptions (not even for the observation 70 mentioned 

above). 

 

The existence of pairs of genes that can distinguish between the training and test sets is 

an extremely rare situation. The existence of individual genes allowing such a distinction 

is clearly even more surprising. Even in datasets in which the training and test samples 

are collected in different laboratories, the existence of such genes or pairs of genes is 

highly unlikely. For instance, no such separation exists for the microarray dataset 

Leukemia AML-ALL studied by Golub et al.  [37]. 

 

As an additional distinguishing characteristic of the training and test sets, let us consider 

the upper and the lower bounds of each variable for the 19 test cases, as shown in Table 

54. It is clear that the measurements of none of the training set cases fit into the ranges of 
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the 17 variables in the table. Technically, this means that if we define the interval closure 

of a set S of points as being the smallest interval [S] of the 17-dimensional Euclidean 

space R17 spanned by the points in S, then the interval [test set] does not contain any of 

the observations included in the training set.  

 

Table 54 

INTERVAL CONTAINING ALL THE 19 CASES IN THE TEST SET AND NONE OF THE 78 CASES IN 

THE TRAINING SET 

 

Gene 

Accession 

Number A
B
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Lower 

bound 
-0.212 -0.227 -0.541 -0.268 -0.301 -0.295 -1.085 -0.606 -0.144 -0.282 -0.325 -0.307 -0.106 -0.219 -0.347 -0.325 -0.245 

Upper 

bound 
0.187 0.017 0.29 0.22 0.394 0.309 0.557 0.401 0.241 0.062 0.303 0.272 0.117 0.304 0.331 0.576 0.183 

 

The observations presented above led us to the conclusion that the training and the test 

sets have different characteristics. 

 

4.2.3.4.    Individualized Therapy 
 

An important consequence of the identification of genes that are promoters or blockers is 

the possibility of targeting therapies in such a way that they should raise the expression of 

some blockers and/or lower those of some promoters. An even more attractive challenge 
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is that of developing individualized therapies, which target the particular blockers and 

promoters present in the specific positive and negative patterns ‘triggered’ by the 

expression levels of an individual’s genes. 

 

4.2.4. Conclusion 

 

In summary, the LAD-based analysis of the van‘t Veer data [90]  identified  

• a new support set of 17 genes, capable of fully distinguishing cases  with 

poor prognosis from cases with good prognosis; the selection of the set of 

17 genes took into account their collective interactive role in 

distinguishing cancer cases from controls (i.e., did not simply select those 

genes which, taken individually, have particularly high expression levels 

or high correlations with the outcome); 

• an explicit and highly accurate classification model  for breast cancer 

diagnosis, in which every decision is explicit and transparent, i.e., fully 

described by the patterns of gene expression displayed by each individual 

patient; 

• the relative importance of each of the 17 genes, and identified those which 

have a blocking or contributing influence on breast cancer. 

 

This study suggests the applicability of the nonparametric combinatorial method of LAD 

to genomic analysis of other human cancers, as well as to the design of individualized 

therapies based on the specific patterns of gene expressions for each patient. 
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4.3.  Results for the Two Real-life Datasets Obtained with Composite Boolean 

Separators 

 
In this section, we apply the CBS techniques developed in Chapters 2 and 3 to the two 

real-life datasets analyzed above. We show that the classification accuracy improves if a 

CBS with the highest CP is added to the data. We present new results on the attribute 

selection problem, and provide more evidence of the suspiciousness of the observations 

which were identified in the previous studies for the CT data. We also show that the 

special classes P+++ and N--- in the breast cancer dataset contain strongly reliable 

observations. 

 
 

4.3.1. Computed Tomography Data 

 
As we mentioned before, there are three types of patients in the CT data: DIP, IPF and 

NSIP. In Section 4.1, we constructed and validated three different models: DIP_non-DIP, 

IPF_non-IPF and NSIP_non-NSIP.  Now we apply the iterative algorithm described in 

Section 2.3 for generation of CBSes in order to obtain separators for each of the 

problems. Below we present CBSes with the highest CPs and show, using four machine-

learning / data-mining methods, the accuracy improvement (the error rate reduction) if 

only one CBS is added to the original data (see Table 55). Each entry in Table 55 is the 

average result obtained in twenty 3-folding experiments. 

 

CBS with the highest CP for the DIP_non-DIP  problem is: 

18169895853 aaaaaaaaa ∨∨∨∨∨ ; 
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for the IPF_non-IPF problem is:                    

18161516915292 aaaaaaaaa ∨∨∨ ; 

and for the NSIP_non-NSIP problem is:                  

7611262 aaaaaa ∨∨ . 

The CPs of these three CBSes are 97.96%,  90.24% and 89.35% respectively.  

 

Table 55 

AVERAGE ACCURACY ON ORIGINAL DATA AND ON ORIGINAL DATA WITH ONE CBS WITH 
THE HIGHEST CP  

 

 Dataset SMO MP SL C4.5 Average 

Average 
change 

in 
accuracy 

Average 
error rate 
reduction 

Original 60.88% 64.38% 62.30% 71.18% 64.69% DIP/non-DIP 
Original+CBS 92.90% 86.38% 94.35% 80.50% 88.53% 

+23.84% 67.52% 

Original 79.60% 79.44% 80.66% 81.27% 80.24% IPF/non-IPF 
Original+CBS 84.20% 83.19% 89.10% 83.21% 84.92% 

+4.68% 23.68% 

Original 66.50% 65.11% 62.53% 62.14% 64.07% NSIP/non-NSIP 
Original+CBS 63.86% 69.61% 87.88% 75.47% 74.20% 

+10.13% 28.19% 

 

It can be seen from Table 55 that by adding only one CBS, the average accuracy of every 

single classification method was improved for each of the problems and the average error 

rate was reduced.  

 

In Section 4.1, we showed that observations s003 and s046 are suspicious and this was 

confirmed by medical doctors. A natural question to ask is whether CBSes are able to 

identify these observations as suspicious. Table 56 provides an answer to this question. 
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Table 56 

CLASSIFICATION OF OBSERVATIONS S003 AND S046 BY CBSES 
 

Given Classification by CBSes Observations 
Classification IPF/non-IPF NSIP/non-NSIP DIP/non-DIP Conclusion 

s003 DIP 0 1 1 NSIP or DIP 

s046 NSIP 1 0 0 IPF 

 

All found CBSes for the NSIP/non-NSIP problem identify the observation s003 as an 

NSIP patient; additionally, all found CBSes for the DIP/non-DIP problem identify this 

observation s003 as a DIP patient. Therefore the patient cannot be classified. 

  

The observation s046 is classified by all the CBSes, found for the IPF/non-IPF problem, 

as being an IPF patient. All found CBSes for the other two problems also confirm that 

this seems to be an IPF patient. This makes it suspicious with respect to class, since the 

original classification for this observation is NSIP. 

 

In Section 4.1, we presented informative subsets of attributes (support sets). In this 

section, we compare the results obtained on these subsets with the results obtained on 

new subsets of attributes, constructed by the two CBS approaches given in Section 3.3.1. 

It should be noted that before these experiments we deleted observations s003 and s046. 

Each entry in Table 57 is the average result of twenty 3-folding cross-validation 

experiments. 
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Table 57 

ATTRIBUTE SELECTION RESULTS FOR CT DATA 
 

Average accuracy obtained by 

Dataset Method 

# of 
variables  

in 
informative 

subset 
SMO MP SL C4.5 

Average 
accuracy 

of 4 
methods 

Difference 
between 
average 

accuracy of 
original 

dataset and 
informative 

subset 
LAD 6 60.16% 74.27% 70.83% 86.88% 73.03% 3.07% 

One_CBS 5 57.40% 72.45% 69.74% 91.72% 72.83% 2.86% DIP/non-DIP 

All_CBSes 5 57.40% 72.45% 69.74% 91.72% 72.83% 2.86% 

LAD 9 79.15% 83.66% 81.12% 84.74% 82.17% 0.44% 

One_CBS 3 79.01% 81.29% 84.47% 82.03% 81.70% -0.03% IPF/non-IPF 

All_CBSes 6 78.58% 80.95% 83.15% 82.03% 81.18% -0.55% 

LAD 8 71.88% 78.96% 72.21% 67.88% 72.73% 1.34% 

One_CBS 4 71.34% 80.97% 71.47% 70.87% 73.67% 2.27% NSIP/non-NSIP 

All_CBSes 11 73.49% 81.84% 70.49% 66.12% 72.98% 1.59% 

 

It can be seen that the results obtained by the CBS techniques are comparable with those 

obtained in Section 4.1.3.2. For the DIP/non-DIP problem, the subset from Section 

4.1.3.2 provides a better accuracy (by 0.2%), but the subsets obtained with CBSes have a 

smaller size. For the IPF/non-IPF problem, the size of the subset obtained with One_CBS 

is three times less than the size of the support set obtained in Section 4.1.3.2, and the 

average accuracy on the former is only 0.4% less than on the latter. For the NSIP/non-

NSIP problem, the best informative subset of attributes was also obtained by using 

One_CBS approach. The number of variables in this subset is half of the number of 

variables in the support set found in Section 4.1.3.2, and the average accuracy is 0.93% 

higher. 
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To conclude this section, we show the accuracy improvement (error rate reduction) on the 

informative subsets of attributes if one CBS with the highest CP is added to each of these 

subsets (see Table 58). 

 

Table 58 

RESULTS ON THE INFORMATIVE SUBSETS OF ATTRIBUTES WITH ONE CBS WITH THE HIGHEST 

CP FOR CT DATA 

 
Average accuracy obtained by 

Dataset Method 
SMO MP SL C4.5 

Average 
accuracy 

of 4 
methods 

Difference 
between 
average 

accuracy of 
original 

dataset and 
informative 

subset 

Average 
error rate 
reduction 

LAD 91.46% 90.57% 91.51% 90.52% 91.02% 21.05% 70.10% 

One_CBS 96.15% 76.41% 92.55% 96.98% 90.52% 20.56% 68.44% DIP/non-DIP 

All_CBSes 96.15% 76.41% 92.55% 96.98% 90.52% 20.56% 68.44% 

LAD 91.83% 86.96% 91.40% 90.64% 90.21% 8.48% 46.41% 

One_CBS 91.95% 90.50% 91.95% 91.59% 91.49% 9.76% 53.42% IPF/non-IPF 

All_CBSes 91.95% 88.48% 91.83% 90.87% 90.78% 9.05% 49.53% 

LAD 89.53% 82.58% 90.66% 89.56% 88.08% 16.69% 58.34% 

One_CBS 92.12% 86.59% 90.49% 89.95% 89.79% 18.40% 64.31% NSIP/non-NSIP 

All_CBSes 89.62% 83.68% 91.23% 89.54% 88.51% 17.12% 59.84% 

 

The following conclusion can be made for this section. 

 

Conclusion 13. The CBSes obtained for the problems DIP/non-DIP, IPF/non-IPF and 

NSIP/non-NSIP have simple formulas and high CPs. The CBS technique for identifying 

suspicious observations confirms the suspiciousness of the observations s003 and s046. 

The subsets of attributes obtained by using the CBS approaches have small sizes. The 

classification accuracies obtained on them are comparable with the accuracies obtained 

with all original variables and are even 2% higher for the DIP/non-DIP and NSIP/non-
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NSIP problems. Removing the two suspicious observations and the redundant variables 

from the data and adding one CBS with the highest CP substantially improve the average 

classification accuracies (substantially reduce error rates). These accuracy 

improvements for the three considered problems are at least 9% and at most 21% (the 

error rate reductions are at least 46% and at most 70%).  

 
 

4.3.2. Breast Cancer Gene Expression Microarray Data 

 
In this section, we use CBSes to analyze the breast cancer gene expression microarray 

dataset. We apply them in two different ways. First, we use CBSes to find smaller subsets 

of variables that adequately describe the data. Second, we analyze how the addition of a 

CBS with the highest CP to the chosen subsets affects the classification accuracy. In our 

analysis we use the same partitioning of the data into training set and test set as was used 

in Section 4.2. 

 

Since the number of variables for this dataset is very large (25,000 genes), we cannot 

apply the iterative procedure for finding CBSes directly to the original dataset. Instead, 

we apply it to the support set of 17 variables obtained in Section 4.2. As a result, we 

obtain 21 CBSes. The separator with the highest CP, denoted by f, is very complicated, 

so we present below its negation which has a simpler formula. CP of f is 95.92% on the 

training set, 85.71% on the test set and 90.82% on the entire data. 

 

f = a7 a12 a13 a22 ∨ a7 a13 a14 a22 ∨ a7 a13 16a  a17 ∨ a4 a12 ∨ a11 a12 a27 ∨ a4 16a a17 ∨ 

5a a11a33 ∨ 5a a12 ∨ 5a a14 ∨ a14 16a a17 
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Using  f and the union of all obtained separators, we identify two informative sets of 

variables, which are subsets of the support set of 17 variables. The first of them contains 

10 variables and will be denoted by S10. The second subset contains 13 variables and will 

be denoted by S13. For notational consistency, we shall denote the support set of 17 

variables by S17. Table 59 and Table 60  show the classification accuracy obtained on 

these three subsets by the five classification methods. Each entry in Table 60 is the result 

of twenty 5-folding experiments.   

Table 59 

ATTRIBUTE SELECTION RESULTS FOR GENE EXPRESSION MICROARRAY DATA 

DIRECT CLASSIFICATION 
 

Average accuracy obtained by 
Subset   

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Tra 86.95% 100.00% 94.80% 95.90% 100.00% 95.53% S17 
Test 61.90% 81.55% 70.20% 57.70% 92.86% 72.84% 

Tra 82.90% 100.00% 88.10% 98.85% 100.00% 93.97% S10 
Test 81.55% 74.40% 67.30% 77.35% 85.71% 77.26% 

Tra 87.80% 97.75% 92.50% 97.40% 100.00% 95.09% S13 
Test 69.05% 74.40% 70.20% 43.45% 85.71% 68.56% 

 

Table 60 

ATTRIBUTE SELECTION RESULTS FOR GENE EXPRESSION MICROARRAY DATA 

CROSS-VALIDATION  
 

Average accuracy obtained by 
Subset   

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Tra 76.43% 76.55% 76.87% 67.48% 82.52% 75.97% S17 
Tra+Test 77.27% 78.65% 77.95% 67.01% 81.74% 76.52% 

Tra 75.23% 77.17% 78.39% 68.96% 82.09% 76.37% S10 
Tra+Test 75.52% 76.37% 75.50% 70.25% 78.96% 75.32% 

Tra 72.68% 76.44% 77.89% 68.40% 81.79% 75.44% S13 
Tra+Test 74.30% 76.03% 73.84% 69.21% 79.59% 74.60% 
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It can be seen from the above tables that the subset of variables obtained by One_CBS has 

the smallest size. The cross-validation results obtained on this subset of 10 variables are 

very close to the results obtained on the support set of 17 variables (on average the 

difference is within 1%). It also can be seen that the direct application of the models 

obtained on the subset of 10 variables to the training set decreases the classification 

accuracy for the SMO and Simple Logistic methods and increases it for C4.5. The 

application of the models to the test set decreases the classification accuracy for 

Multilayer Perceptron, Simple Logistic and LAD by minimum 3% and maximum 7%, 

and increases accuracy for SMO and C4.5 by approximately 20%. The new LAD model 

(see Table 61) obtained on 10 variables results in 100% correct prediction on the training 

set and in 85.7% correct prediction on the test set (17 cases out of 19 are correctly 

predicted and two negative cases are predicted as positive).  This result is slightly worse 

than that obtained on 17 variables (only one case in test set was predicted as positive), but 

it is better than the results reported by van’t Veer and coworkers [90]. Moreover, the new 

model consists of only 6 positive and 8 negative patterns (recall that the model reported 

in Section 4.2 consists of 20 positive and 20 negative patterns). All patterns are pure and 

only two cutpoints are introduced into the range of intensities of each gene.   
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Table 61 

LAD MODEL ON THE INFORMATIVE SUBSET OF 10 GENES 
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Patterns’ 
prevalences on 

training set  Pattern 

Attr.1 Attr.2 Attr.3 Attr.4 Attr.5 Attr.6 Attr.7 Attr.8 Attr.9 Attr.10 Pos 
Prev 

Neg 
Prev 

P1  >-0.455  ≤0.1095  >-0.1245     18 
(52.9%) 0 

P2    ≤0.1095 ≤0.086  ≤0.02    17 
(50.0%) 0 

P3  >-0.455     ≤0.02 ≤0.044   15 
(44.1%) 0 

P4    ≤0.1095    ≤-0.066  ≤0.142 15 
(44.1%) 0 

P5 ≤-0.02     >-0.3295 ≤0.157    14 
(41.2%) 0 

P6  >-0.275 ≤0.095   >-0.3295     11 
(32.4%) 0 

N1  ≤-0.455        >0.037 0 19 
(43.2%) 

N2  ≤-0.455  >0.1095       0 16 
(36.4%) 

N3      ≤-0.3295  >0.044   0 16 
(36.4%) 

N4     >0.086    >-0.016  0 16 
(36.4%) 

N5 >-0.02  >0.095      >-0.016  0 15 
(34.1%) 

N6 >0.086       >-0.066  >0.037 0 15 
(34.1%) 

N7 >-0.02  >0.095 >0.1095       0 13 
(29.5%) 

N8  ≤-0.275     >0.157  >-0.016  0 12 
(27.3%) 

 

Now let us analyze how the addition of CBSes affects the classification accuracy. We add 

the CBS f with the highest CP to each of the three sets S10,  S13, S17  obtaining in this way 

three extended sets '
10S , '

13S , '
17S . To each of these sets we apply the five classification 

methods used in this study. An interesting phenomenon revealed in these experiments is 

that the model built by LAD on the extended set of variables depends only on part of 

these variables. Therefore, since the classification accuracy does not depend on the 

presence of the other part, we can disregard those redundant variables. Removing the 

redundant variables from each of the sets '
10S , '

13S , '
17S  results in three new sets ''

10S , 
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''
13S , ''

17S , each containing nine variables. Moreover, ''
13S  and ''

17S  coincide and we report 

classification results for only one of them. The intersection of ''
10S  with ''

17S  contains six 

variables. The new classification results are presented in Table 62 and Table 63. 

 

Table 62 

RESULTS ON THE INFORMATIVE SUBSETS OF VARIABLES WITH ONE CBS WITH THE HIGHEST 

CP FOR GENE EXPRESSION MICROARRAY DATA 

DIRECT CLASSIFICATION 

Average accuracy obtained by 
Subset   

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Tra 95.90% 98.55% 95.90% 95.90% 100.00% 97.25% S17 
Test 85.70% 73.20% 85.70% 85.70% 85.71% 83.20% 

Tra 95.90% 98.55% 95.90% 95.90% 100.00% 97.25% S10 
Test 85.70% 85.70% 85.70% 85.70% 85.71% 85.70% 

 

Table 63 

RESULTS ON THE INFORMATIVE SUBSETS OF VARIABLES WITH ONE CBS WITH THE HIGHEST 

CP FOR GENE EXPRESSION MICROARRAY DATA 

CROSS-VALIDATION  

Average accuracy obtained by 
Subset   

SMO MP SL C4.5 LAD 

Average 
accuracy 

of 5 
methods 

Tra 95.96% 91.16% 95.59% 93.73% 93.31% 93.95% S17 
Tra+Test 94.93% 89.60% 94.88% 93.75% 89.80% 92.59% 

Tra 95.96% 90.81% 95.61% 93.73% 92.62% 93.75% S10 
Tra+Test 94.93% 89.87% 94.88% 93.75% 89.00% 92.49% 

 

Comparing Table 62 with Table 59 and Table 63 with Table 60 and adding the results for 

error rate reduction we obtain the following tables. 
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Table 64 

AVERAGE CHANGE IN ACCURACY AND AVERAGE ERROR RATE REDUCTION FOR GENE 

EXPRESSION MICROARRAY DATA 

DIRECT CLASSIFICATION 

Subset   
Average 
change in 
accuracy 

Average error 
rate reduction 

Tra 1.72% 38.48% S17 
Test 10.36% 38.14% 

Tra 3.28% 54.39% S10 
Test 8.44% 37.12% 

 

Table 65 

AVERAGE CHANGE IN ACCURACY AND AVERAGE ERROR RATE REDUCTION FOR GENE 

EXPRESSION MICROARRAY DATA 

CROSS-VALIDATION  

Subset   
Average 
change in 
accuracy 

Average 
error rate 
reduction 

Tra 17.98% 74.82% S17 
Tra+Test 16.07% 68.44% 

Tra 17.38% 73.55% S10 
Tra+Test 17.17% 69.57% 

 

From the above tables we can conclude that: 

 

Conclusion 14.  The addition of one CBS significantly improves classification accuracy   

(significantly reduces error rate) for each machine-learning / data-mining method used.  
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We conclude this section with the demonstration of one more useful aspect of CBSes. In 

Section 4.2.2 we showed that there are special classes of positive and negative cases for 

the given dataset. It turned out that the patients who belong to class P+++ are strongly 

reliable in the sense defined in Section 3.2.1, i.e., they are classified correctly by all the 

CBSes. Analogous results are obtained for the negative cases which belong to class N---.  

 

Conclusion 15.  CBSes confirm that the patients belonging to class P+++ have a very 

strong tendency toward developing metastases and patients belonging to class N−−− are 

very strongly resistant to development of metastases. 
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5.   CONCLUSION  

 
In this thesis, we introduced the concept of composite Boolean separators and 

demonstrated in various ways the usefulness of the new concept for data analysis. In 

particular,  

• we demonstrated how the introduction of CBSes can enhance the accuracy of 

classification systems; CBSes also proved to be a promising tool as classification 

systems themselves; 

• we employed CBSes for identifying misclassified observations and examined how 

deletion of such observations and reversal of their class influence the 

classification accuracy; the obtained results showed high effectiveness of the 

proposed technique, since it reduces the error rate more than in half; 

• we applied CBSes to the attribute selection problem and demonstrated that the 

CBS based methods allow to identify small subsets of attributes that provide as 

much information for determining the class of the observations in the dataset as 

the original set of attributes.     

  

All the results have been tested on eight publicly available datasets and validated by five 

well-known machine-learning / data-mining techniques. We also applied CBSes, along 

with other techniques, to analyze two real-life medical datasets: computed tomography 

data and breast cancer gene expression microarray data. 

 

The results demonstrated in this thesis showed that for many real-life datasets, CBSes 
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have noticeable advantages over other techniques (higher classification accuracy, smaller 

informative subsets of attributes identified, etc.). For some data, CBSes do not provide 

improvements, though show results comparable with other techniques, verifying the so-

called No Free Lunch Theorem:  

     “All algorithms are equivalent, on average. Or to put it another way, for any two 

learning algorithms, there are just as many situations in which algorithm one is 

superior to algorithm two as vice versa” (D.H. Wolpert [95]).  

We hope that along with other techniques the CBSes will be a useful tool in the area of 

machine-learning / data-mining.  

 
The usefulness of CBSes has been already confirmed by a practical application.  Richard 

Hoshino (Senior Project Officer, Canada Border Services Agency, Government of 

Canada) in his talk given at DIMACS [32] reported the application of composite Boolean 

separators to Marine Container Security. We hope that in the future this concept will find 

many other applications.  
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APPENDIX 

Table A 

BUPA LIVER-DISORDERS 

Binary variable Original variable Cutpoint 

a1 mcv 87 

a2 mcv 89 

a3 mcv 90 

a4 mcv 92 

a5 alkphos 51 

a6 alkphos 65 

a7 alkphos 77 

a8 alkphos 84.5 

a9 sgpt 16 

a10 sgpt 17 

a11 sgpt 19 

a12 sgpt 21 

a13 sgpt 23 

a14 sgpt 26 

a15 sgpt 39 

a16 sgpt 48 

a17 sgot 19 

a18 sgot 20 
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a19 sgot 22 

a20 sgot 24 

a21 sgot 44 

a22 gammagt 7 

a23 gammagt 20 

a24 gammagt 29 

a25 gammagt 36 

a26 gammagt 116 

a27 drinks 3 

a28 drinks 5 

a29 drinks 12 

 

Table  B 

GERMAN CREDIT 

Binary variable Original variable Cutpoint 

a1 Attribute 1 1.5 

a2 Attribute 1 2.5 

a3 Attribute 1 3 

a4 Attribute 2 13.5 

a5 Attribute 2 15.5 

a6 Attribute 2 18 

a7 Attribute 2 21 

a8 Attribute 2 24 
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a9 Attribute 2 30 

a10 Attribute 3 2 

a11 Attribute 3 2.5 

a12 Attribute 3 3 

a13 Attribute 4 14 

a14 Attribute 4 19 

a15 Attribute 4 24 

a16 Attribute 4 30.5 

a17 Attribute 4 40 

a18 Attribute 4 53 

a19 Attribute 5 1.5 

a20 Attribute 5 2 

a21 Attribute 5 2.5 

a22 Attribute 5 3 

a23 Attribute 6 2.5 

a24 Attribute 6 3 

a25 Attribute 6 3.5 

a26 Attribute 6 4 

a27 Attribute 7 2.5 

a28 Attribute 7 3.5 

a29 Attribute 8 2 

a30 Attribute 8 2.5 

a31 Attribute 8 3 
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a32 Attribute 8 3.5 

a33 Attribute 9 1.5 

a34 Attribute 9 2 

a35 Attribute 9 2.5 

a36 Attribute 9 3 

a37 Attribute 10 27 

a38 Attribute 10 30 

a39 Attribute 10 33 

a40 Attribute 10 36 

a41 Attribute 10 39.5 

a42 Attribute 10 44.5 

a43 Attribute 11 2 

a44 Attribute 11 2.5 

a45 Attribute 12 1.5 

a46 Attribute 13 1.5 

a47 Attribute 14 1.5 

a48 Attribute 15 1.5 

a49 Attribute 16 0.5 

a50 Attribute 17 0.5 

a51 Attribute 18 0.5 

a52 Attribute 19 0.5 

a53 Attribute 20 0.5 

a54 Attribute 21 0.5 
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a55 Attribute 22 0.5 

a56 Attribute 23 0.5 

a57 Attribute 24 0.5 

 

Table C 

PIMA INDIANS DIABETES 

Binary 

variable 
Original variable 

Cutpoint

a1 Number of times pregnant 1 

a2 Number of times pregnant 3.5 

a3 Number of times pregnant 7 

a4 
Plasma glucose concentration a 2 hours in an oral glucose 

tolerance test 
127 

a5 
Plasma glucose concentration a 2 hours in an oral glucose 

tolerance test 
165 

a6 Diastolic blood pressure 67 

a7 Diastolic blood pressure 71 

a8 Diastolic blood pressure 76 

a9 Diastolic blood pressure 80 

a10 Triceps skin fold thickness 19.5 

a11 Triceps skin fold thickness 26 

a12 Triceps skin fold thickness 32 

a13 2-Hour serum insulin 69 
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a14 2-Hour serum insulin 110 

a15 2-Hour serum insulin 164 

a16 2-Hour serum insulin 197.5 

a17 Body mass index 30.1 

a18 Body mass index 45.4 

a19 Diabetes pedigree function 0.347 

a20 Diabetes pedigree function 0.5 

a21 Diabetes pedigree function 0.673 

a22 Age (years) 23 

a23 Age (years) 41 

 

Table D 

 CLEVELAND HEART DISEASE 

Binary variable Original variable Cutpoint 

a1 age 55.5 

a2 age 62 

a3 sex 0.5 

a4 cp 3 

a5 trestbps 109 

a6 trestbps 136 

a7 trestbps 156 

a8 chol 233 

a9 fbs 0.5 
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a10 restecg 1 

a11 thalach 125.583 

a12 exang 0.5 

a13 oldpeak 0.3 

a14 oldpeak 0.5 

a15 slope 1 

a16 ca 0 

a17 thal 3 

 

Table  E 

             AUSTRALIAN CREDIT 

Binary variable Original variable Cutpoint 

a1 A1 0.5 

a2 A2 23.375 

a3 A2 27.035 

a4 A2 29.71 

a5 A2 33.96 

a6 A2 39.915 

a7 A3 1.395 

a8 A3 2.665 

a9 A3 4.0425 

a10 A3 5.895 

a11 A3 7.9375 
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a12 A4 1.5 

a13 A5 4.5 

a14 A5 6 

a15 A5 7.5 

a16 A5 8.5 

a17 A5 10 

a18 A6 2.5 

a19 A6 4.5 

a20 A6 5.5 

a21 A6 6 

a22 A7 0.375 

a23 A7 0.875 

a24 A7 1.395 

a25 A7 2.3125 

a26 A7 3.875 

a27 A8 0.5 

a28 A9 0.5 

a29 A10 0.5 

a30 A10 1.5 

a31 A10 2.5 

a32 A10 4 

a33 A10 5.5 

a34 A11 0.5 
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a35 A12 1.5 

a36 A13 87 

a37 A13 130 

a38 A13 170.5 

a39 A13 220 

a40 A13 280 

a41 A14 10 

a42 A14 76 

a43 A14 223 

a44 A14 518.5 

a45 A14 1401 

 

Table  F 

IONOSPHERE 

Binary variable Original variable Cutpoint 

a1 Attribute 1 0.5 

a2 Attribute 2 0.26223 

a3 Attribute 2 0.614535 

a4 Attribute 3 -0.46032 

a5 Attribute 3 0.62245 

a6 Attribute 4 0.09844 

a7 Attribute 4 0.824325 

a8 Attribute 5 -0.44056 
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a9 Attribute 6 0.149065 

a10 Attribute 6 0.516665 

a11 Attribute 7 -0.79194 

a12 Attribute 8 -0.779705 

a13 Attribute 8 -0.028715 

a14 Attribute 8 0.32418 

a15 Attribute 9 -0.45817 

a16 Attribute 9 0.25767 

a17 Attribute 9 0.62414 

a18 Attribute 10 -0.81263 

a19 Attribute 10 0.28425 

a20 Attribute 10 0.63587 

a21 Attribute 11 -0.813615 

a22 Attribute 11 -0.451775 

a23 Attribute 12 -0.82287 

a24 Attribute 12 -0.46797 

a25 Attribute 12 0.269625 

a26 Attribute 13 -0.411275 

a27 Attribute 14 -0.81353 

a28 Attribute 14 -0.036675 

a29 Attribute 14 0.3254 

a30 Attribute 15 -0.455625 

a31 Attribute 16 -0.82353 
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a32 Attribute 16 0.277815 

a33 Attribute 16 0.640465 

a34 Attribute 17 -0.81818 

a35 Attribute 18 -0.8139 

a36 Attribute 18 -0.07269 

a37 Attribute 18 0.639865 

a38 Attribute 19 -0.81772 

a39 Attribute 19 -0.459005 

a40 Attribute 19 -0.1047 

a41 Attribute 19 0.652285 

a42 Attribute 20 -0.822895 

a43 Attribute 20 -0.10837 

a44 Attribute 20 0.245355 

a45 Attribute 21 -0.8181 

a46 Attribute 22 -0.818885 

a47 Attribute 22 -0.46174 

a48 Attribute 23 -0.823075 

a49 Attribute 23 -0.470615 

a50 Attribute 23 -0.118475 

a51 Attribute 24 -0.82329 

a52 Attribute 25 -0.82396 

a53 Attribute 25 -0.1123 

a54 Attribute 25 0.614975 
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a55 Attribute 26 -0.816185 

a56 Attribute 27 -0.813725 

a57 Attribute 27 -0.076245 

a58 Attribute 28 -0.82436 

a59 Attribute 28 -0.463945 

a60 Attribute 28 -0.1021 

a61 Attribute 29 -0.82214 

a62 Attribute 29 -0.10603 

a63 Attribute 29 0.61558 

a64 Attribute 30 -0.774455 

a65 Attribute 30 -0.361305 

a66 Attribute 30 0.00406 

a67 Attribute 30 0.357855 

a68 Attribute 31 -0.822685 

a69 Attribute 31 0.622015 

a70 Attribute 32 -0.82067 

a71 Attribute 33 -0.81478 

 

Table  G 

WISCONSIN BREAST CANCER 

Binary variable Original variable Cutpoint 

a1 Clump Thickness          3 

a2 Clump Thickness          4 
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a3 Clump Thickness          6 

a4 Clump Thickness          7 

a5 Clump Thickness         8 

a6 Uniformity of Cell Size      2 

a7 Uniformity of Cell Size      3 

a8 Uniformity of Cell Size      4 

a9 Uniformity of Cell Shape    2 

a10 Uniformity of Cell Shape    6 

a11 Marginal Adhesion 1 

a12 Marginal Adhesion 2 

a13 Marginal Adhesion 5 

a14 Single Epithelial Cell Size   4.25 

a15 Bare Nuclei               2 

a16 Bare Nuclei               4 

a17 Bland Chromatin           4 

a18 Normal Nucleoli           3 

a19 Normal Nucleoli           9 

a20 Mitoses 3 

 

Table  H 

CONGRESSIONAL VOTING RECORDS 

Binary variable Original variable 

a1 handicapped-infants 
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a2 water-project-cost-sharing 

a3 adoption-of-the-budget-resolution 

a4 physician-fee-freeze 

a5 el-salvador-aid 

a6 religious-groups-in-schools 

a7 anti-satellite-test-ban 

a8 aid-to-nicaraguan-contras 

a9 mx-missile 

a10 immigration 

a11 synfuels-corporation-cutback 

a12 education-spending 

a13 superfund-right-to-sue 

a14 crime 

a15 duty-free-exports 

a16 export-administration-act-south-africa 
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