
CLASSIFIERS OF MASSIVE AND STRUCTURED
DATA PROBLEMS: ALGORITHMS AND

APPLICATIONS

BY SUHRID BALAKRISHNAN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

David Madigan

and approved by

New Brunswick, New Jersey

October, 2007

c© 2007

Suhrid Balakrishnan

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Classifiers of Massive and Structured Data Problems:

Algorithms and Applications

by Suhrid Balakrishnan

Dissertation Director: David Madigan

The last two decades have seen the emergence of vast and unprecedented data repos-

itories. Extraordinary opportunities now present themselves for new data analysis

methods that can harness these repositories. As larger and larger amounts of widely

varying types of data are constantly being collected and assimilated, the task of making

use of such data opens up interesting and challenging avenues of research.

This thesis deals with specific problems in data mining and machine learning in this

setting. In particular we describe algorithms and applications for classification problems

where computational restrictions become limiting (resource bounded algorithms and

online/streaming algorithms) as well as models and algorithms for certain problems

where the structure of the input is leveraged to provide not only accurate, but also

interpretable classifiers.

ii

Acknowledgements

This thesis would not have been written without the assistance of my teachers, col-

leagues friends and family.

I’d like to begin by thanking David Madigan for being a perfect research advisor—

I couldn’t have asked for better guidance or support. I’d also like to thank my other

mentors and teachers, Diane Lambert, Tapas Kanungo, Panos Georgopoulos, Marianthi

Ierapetritou, Muthu Muthukrishnan, Casimir Kulikowski, Vladimir Pavolvic, Ahmed

Elgammal, for all their help through the years.

I’d also like to thank my colleagues and peers from machine learning reading groups

for stimulating discussions: Ofer Melnik, Alex Strehl, Dmitriy Fradkin and Chris

Mesterharm.

Finally, I’d like to thank my parents and friends for their love and support through

my doctoral programme. Without the company of Vasisht and Akshay or without Evi’s

love and support, this thesis would not have been written.

iii

Dedication

To my family and friends

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Models for Supervised Learning . 2

1.1.1. Structural Risk Minimization . 3

1.1.2. Bayesian Theory . 4

1.2. Outline of This Document . 6

1.2.1. Chapter 2: Fully Bayesian Classifiers for Small d 6

1.2.2. Chapter 3: Sparse linear classifiers for Large d 7

1.2.3. Chapter 4: Finding Predictive Runs for Structured Data Classi-

fication . 7

1.2.4. Chapter 5: A Non-parametric Approach to Structured Data Clas-

sification . 8

2. Fully Bayesian Classifiers for Small d . 10

2.1. Introduction . 10

2.2. Bayesian computation for massive datasets 11

2.3. One-pass Particle Filtering for Massive Datasets 14

2.3.1. Convergence of the Smooth Bootstrap; Bandwidth Selection . . . 16

2.3.2. Empirical Justification of Bandwidth Selection Rule 19

v

2.4. Example I - Fully Bayes Logistic Regression 21

2.5. Example II - Mixtures of Transition Models 24

2.6. Discussion . 27

3. Sparse linear classifiers for Large d . 31

3.1. Introduction . 31

3.2. Background and Notation . 32

3.3. Approximating the likelihood for online learning 36

3.3.1. The modified Shooting algorithm 38

3.4. Related work . 40

3.5. An Online algorithm . 42

3.5.1. Heuristics for improvement/Issues 44

3.6. A multi-pass algorithm . 47

3.6.1. A reduced memory multi-pass algorithm 47

3.7. Experiments . 50

3.7.1. Results . 51

3.8. Conclusions . 56

3.A. Log-likelihood Taylor Approximations 57

3.B. Derivation of the Shooting Algorithm 58

3.C. Non-divergence Proof Sketch . 62

4. Finding Predictive Runs for Structured Data Classification 65

4.1. Predictive Runs . 65

4.2. Modelling Predictive Runs . 67

4.2.1. The LAPS model . 68

4.2.2. K—“Soft” Fusion . 69

4.3. Learning LAPS models . 71

4.3.1. I∗—Run Structure Search . 71

4.3.2. Selecting the Hyperparameters 72

4.4. Experiments . 74

vi

4.4.1. SIM Data . 74

4.4.2. BF Data . 77

4.4.3. NHP study . 79

4.5. Discussion . 81

4.A. The LAPS prior . 83

4.B. Core LAPS problem optimality criteria 84

4.C. The Approximate Marginal Data Likelihood Score 85

4.D. Heuristic for the initial I . 85

5. A Non-parametric Approach to Structured Data Classification . . . 87

5.1. Introduction . 87

5.2. Previous Studies . 89

5.3. Candidate Splits For Functional Variables 90

5.3.1. Finding Representative Curves 91

5.3.2. Choosing Good Splits . 92

5.4. Applications . 93

5.4.1. CBF . 94

5.4.2. CBF-2 . 96

5.4.3. Control Chart . 97

5.4.4. Japanese Vowels . 98

5.4.5. Bone . 99

5.4.6. NHP study . 100

5.5. Discussion . 101

6. Conclusions . 105

Vita . 107

vii

List of Tables

2.1. The effect of the bandwidth parameter on the outpic dataset. 20

2.2. Mean β estimates obtained from Bayesian logistic regression analysis of

the outpic data. 22

2.3. Comparative number of data accesses. 22

3.1. Performance of the online algorithm on simulated data 46

3.2. Performance of the MP algorithm on simulated data 53

3.3. Performance of the MP and RMMP algorithms on ModApte 54

3.4. Results for the ModApte dataset: Illustrating the effect of changing k. . 54

3.5. RCV1-v2 results. 55

3.6. Confusion matrices for prediction results on the RCV Test dataset. . . . 56

4.1. SIM data regression coefficients. 75

4.2. Predictive performance—estimated error rates 82

5.1. Dataset Descriptions . 93

5.2. Predictive Performance—Error Rates . 100

viii

List of Figures

2.1. Comparison of prior and posterior variance. 13

2.2. The Ridgeway and Madigan (2002) algorithm for massive datasets . . . 14

2.3. One-pass Particle Filtering for Massive Datasets 16

2.4. A pictorial walk-through of the resample-move step. 17

2.5. MSE and standard deviation plot. 20

2.6. 1PFS posterior mean as a function of amount of data processed. 23

2.7. The posterior distribution of the transition probabilities for one of the

transition matrices. 26

2.8. Posterior distribution of the transition probabilities for one of the tran-

sition matrices. 27

3.1. Laplace versus Gaussian distributions. 34

3.2. L1-regularization in two dimensions. 35

3.3. Schematic elucidating quadratic approximation schemes in literature. . . 41

3.4. Performance of the online algorithm. 44

3.5. More detailed look at the performance of the online algorithm. 45

3.6. Schematic showing the construction of the various RCV1-v2 based datasets

used in the experiments. 52

3.7. Illustration of the Shooting algorithm. 61

4.1. Typical LAPS classification problem setup. 66

4.2. Simple example showing proof of concept. 69

4.3. Illustrating soft fusion. 70

4.4. Illustrating the I∗ search with a graphical representation of the model

coefficients. 73

4.5. Lasso vs. LAPS on the SIM 1 dataset. 76

ix

4.6. Lasso vs. LAPS on the SIM 2 dataset. 76

4.7. Lasso vs. LAPS on the SIM 3 dataset. 77

4.8. Lasso vs. LAPS on the BF dataset. 78

4.9. IgG assay for a particular dose for all NHPs. 79

4.10. IgG assay for all dose levels, for all the NHPs. 80

4.11. ED50 assay for all dose levels, for all the NHPs. 80

4.12. IFNeli assay for all dose levels, for all the NHPs. 81

4.13. Lasso vs. LAPS on the NHP dataset. 82

5.1. IgG and IL6 measurements for all 30 NHPs. 88

5.2. Cylinder, bell, funnel dataset. 94

5.3. CBF results: pruned tree, splits. 95

5.4. CBF-2 results: learnt tree, splits. 96

5.5. Control chart dataset. 97

5.6. Control chart: learnt tree and some splits. 98

5.7. Japanese Vowels: Functional splits corresponding to reported results in

Kudo et al. (1999). 103

5.8. Bone data comparative results. 104

5.9. NHP learnt tree, functional splits. 104

x

1

Chapter 1

Introduction

The last two decades have seen the emergence of vast and unprecedented data repos-

itories. Extraordinary opportunities now present themselves for new data analysis

methods that can harness these repositories. The opportunities cut across a range of

human endeavors such as biology, finance, retailing, and drug discovery to name a few.

As larger and larger amounts of widely varying types of data are constantly being col-

lected and assimilated, the task of making use of such data opens up interesting and

challenging avenues of research.

This thesis deals with specific problems in data mining and machine learning, broad

sub-fields of both artificial intelligence and statistics. In particular, the focus will be on

modelling and algorithmic problems in the supervised learning setting, where the goal

is to approximate/learn the behavior of a system that you only get to see examples of

(regression/classification, or more abstractly, the problem of induction). The supervised

setting is amenable to theoretical analysis (which informs the modelling of the complex

interactions in the domain) and the range of practical applications that it encompasses

ensures no lack of challenging and interesting problems.

It is known that the problem of induction is impossible in complete generality. This

can be formalized in “No free lunch theorems” (Devroye et al., 1996; Wolpert, 2001)

which essentially show that in order to be able to prove predictions made will be of

high quality, assumptions on how the given examples (or training data) are linked to

the data we’d like to predict (also called test data) are necessary. Further, additional

restrictions are also required on the complexity of the phenomena we are trying to

model—without this restriction, for any two learning algorithms, there would be just

2

as many phenomena where one algorithm is better than the other and vice-versa1.

Even more interestingly, these theorems also prove that no such set of assumptions are

universally the best (Wolpert, 1994).

Thus, much modelling effort is spent making reasonable assumptions that allow for

useful/practical predictive models. Note that the final task in this supervised learn-

ing framework is always the same: predict the outcomes for new/unseen inputs as

best you can, in other words, learn how to generalize well (where how well one pre-

dicts/generalizes is usually measured quantitatively using a loss function). A number of

theoretical frameworks have been proposed which make distinct assumptions and thus

enable a modeler to make various types of claims.

1.1 Models for Supervised Learning

This thesis will deal (mostly) with learning problems in a probabilistic framework.

Here, the basic assumption is that the data are generated from some (stationary but

unknown) probabilistic model. Further, it is typical to assume that the training data

are generated by independently sampling this distribution (i.i.d., or independently and

identically distributed samples). Further specific assumptions are made by different

theories of learning which impact the kinds of claims they then imply.

Here we present sketches of just two of the main competing theories that have

wide practical application—structural risk minimization (via VC theory) and Bayesian

theory2. We will need some notation going forward, and x will denote inputs (say in

R
n), y will denote the outputs (in {−1, 1}—for binary classification), and let P (x, y)

denote the distribution from which the data set3 has been drawn D = {xi, yi}ti=1. The

distribution P (x, y) is unknown. A classifier is defined by the deterministic function

f(β,x) where β ∈ B parametrizes the set of functions (or hypothesis class) the classifier

1This would in turn imply impossibility of generalization. This holds for most reasonable measures
of “better”—see Wolpert (2001).

2Hence we will not deal with PAC (Valiant, 1984) and Statistical Physics (Wolpert, 1994) or more
recent theories like PAC-Bayes (McAllester, 1999) and the online learning framework (Littlestone, 1988;
Kivinen and Warmuth, 1997).

3Formally, this is a training data sequence (and not set). However, the term set has become standard,
and we will thus use it throughout this document.

3

must be chosen from. How well (or poorly) a classifier does on examples is measured

by the loss function l(β,xi, yi), which maps the prediction f(β,x), and actual target

y, to a cost or value. Typically, the range of the loss function is thus positive.

1.1.1 Structural Risk Minimization

Uniform Convergence/VC Statistical learning theory was popularized by Vapnik (Vap-

nik and Chervonenkis, 1971; Vapnik, 1996). This theory makes the assumptions that

the dataset seen D, is drawn from the unknown distribution P in an iid fashion. Since

the quality of predictions is judged by how well one performs on test examples, this can

now be quantified using the notion of the risk of a classifier f (which is parametrized

by β ∈ B, the hypothesis class) as: R(β) = EP [l(β,xi, yi)] = EP [1f(β,x) 6=y]. Note that

the loss used is misclassification error which takes the value 1 if the predicted label is

wrong and 0 otherwise. The risk of a classifier is unknown because the distribution

P is unknown. Instead only the empirical version of the risk can be evaluated, using

the empirical distribution implied by the given data: Rt(β) = 1
t

∑t
i=1 1f(β,xi) 6=yi

. In

a profound result, Vapnik proved the following confidence interval style small sample

bound, for any δ > 0, with probability 1− δ:

R(β) ≤ Rt(β) + 2

√
2h(log(2t/h) + 1) + 2 log(4/δ)

t
.

Under the assumptions, this bound allows one to estimate to desired confidence the

absolute difference between the worst case risk and that of the empirical risk (Vapnik,

1998). The bound holds with probability 1−δ, over repeated t-sized samples (or training

datasets) from the distribution P . The h term is the VC dimension of the classifier and

is a formal measure of its complexity/capacity. Interpreted, the bound also inspires

principles for choosing classifiers with predictive guarantees. First, in the infinite size

training dataset limit (t→∞), the empirical risk Rt(β), is the only non-zero term and

a good classifier is one that minimizes this risk. This large data limit strategy is called

empirical risk minimization. With small training dataset sizes, alternatively, one can

choose a parameter setting such that the bound is tightest. This leads to the idea of

4

structural risk minimization ((Vapnik, 1996). Margin hyperplanes (as used in support

vector machines) provide a concrete function class where a search over the parameter

space is directly inspired by this principle and (importantly) is also computationally

feasible. These hyperplanes are usually constructed in a high-dimensional feature space

(a reproducing kernel Hilbert space or RKHS)—by a process which involves representing

the inputs in terms of an appropriate kernel function. Moreover, extensions of this

basic SVM approach (margin-maximization) have been applied to noisy data via the

soft-margin SVM (Cortes and Vapnik, 1995) and these extensions have met with great

empirical success4.

1.1.2 Bayesian Theory

In this approach, the data generating model is assumed to be probabilistic. All quan-

tities are treated as random variables, and typically one starts out with a subjective

prior belief about the hypothesis class. This prior belief places a measure on all mem-

bers of the hypothesis class having generated the data. Combining this prior with the

probabilistic model for the data then results in the posterior belief over the hypothesis

class. This combination is done via Bayes rule, using the likelihood function, which is

the probability of generating the labels given the data and model parameters. In the

Bayesian paradigm, this posterior distribution can be proved to be optimal for inference

(Berger, 1985; Bernardo and Smith, 1994). In other words, the posterior distribution

over the parameters provides the minimal loss: EP [l|D].

Hence, as opposed to other approaches in machine learning, (optimal) prediction in

the Bayesian paradigm (using the Bayes classifier, or the ”fully” Bayes classifier) results

by integration over the posterior distribution of the model parameters.

As a large fraction of this thesis will deal with supervised learning problems in this

Bayesian setting, we explain the concepts sketched in the previous paragraphs in more

detail now. Mathematically, starting with a hypothesis class B, the parameters β ∈ B

specify a formal probability model of the observed data D, p(D|β). For classification,

4Note that although these approaches are motivated by the SVM formulation, theoretical guarantees
for these extensions are not as well studied.

5

typically P (y = 1|β,x) = f(β,x) which results in a probabilistic classifier parametrized

by β. This probability P (y = 1|β,x), can then be thresholded appropriately to get the

final classification5. Under the assumption that the data is sampled i.i.d. from P ,

p(D|β) =
∏t

i=1 P (yi|β,xi).

Assuming a prior probability distribution over the parameter space, p(β), all in-

formation about the parameters after seeing the data D is contained in the posterior

p(β|D) and it can be evaluated using Bayes rule as follows:

p(β|D) =
P (β)P (D|β)∫
B P (β)P (D|β)

.

The term P (D|β) is the likelihood function and for a fixed β evaluates the probability

of observing the given dataset using the model6. The term in the denominator is a

normalizing constant (does not depend on β) called the marginal data likelihood (or

evidence) and is sometimes useful in Bayesian model selection (see Chapter for and

example of its use).

As the formulation makes clear, for complex models and prior beliefs, the above

computations are (typically) intractable, and a host of algorithms, approximations,

and computational techniques have been developed. Also, approximations are also

common at the prediction stage (alternatives to using the fully Bayes classifier). For

example, the MAP-Bayes classifier uses just the (single) set of parameters associated

with the highest posterior mass for prediction (that is, prediction using the posterior

mode). Depending on the models being used, this can result in great computational

savings and this approach has enjoyed much empirical success7.

While the Bayesian framework presented above is theoretically sound and has found

5The threshold will depend on misclassification costs, which unless otherwise stated will be assumed
equal for this thesis. Thus the decision rule is simply: y = 1, if P (y = 1|β,x) ≥ 0.5 and y = −1
otherwise.

6Note that the likelihood function is not a probability distribution as it is a function of β.

7The Gibbs classifier, which is a non-deterministic approximation is another alternative that avoids
integration over the posterior. Here one samples a parameter setting from the posterior distribution
and uses this set of parameters to makes the prediction.

6

widespread practical use, challenging research problems arise when applying it to com-

plex models or data. For example, learning even the most simple classifiers in the

presence of huge amounts of data (or adapting an existing classifier to an unbounded

number of incoming examples) is a very challenging task and one that is extremely

important practically.

This thesis covers select algorithms and applications for classification problems

where computational restrictions become limiting (resource bounded algorithms and

online/streaming algorithms) as well as models and algorithms for certain problems

where the structure of the input is leveraged to provide not only accurate, but also

interpretable classifiers.

1.2 Outline of This Document

This thesis is arranged as follows: the next three chapters deal with Bayesian classifiers.

Chapters two and three describe algorithms for classifiers where the input data is mas-

sive and Chapter four describes a structured data classification problem. Chapter five

then outlines a non-Bayesian approach to the same structured data problem (a non-

parametric classifier). Finally we present conclusions. Each chapter is self contained.

To aid the reader, individual chapter summaries follow.

1.2.1 Chapter 2: Fully Bayesian Classifiers for Small d

In the massive data scenario, even routine tasks in Bayesian analysis seem impossible.

Consider evaluating a posterior distribution for the parameters of a simple (generalized)

linear regression model. If the training dataset available is enormous (a large collec-

tion of input-output pairs) even this task becomes a computational nightmare. Every

likelihood calculation involves examining the entire dataset which can be prohibitive if

the data doesn’t fit in main memory (and thus requires disk access). This automat-

ically rules out standard approaches like Markov Chain Monte Carlo (MCMC). This

chapter deals with a one-pass (or online/streaming) algorithm for solving this problem

for general models when the numbers of parameters are small—medium. Data items

7

are examined sequentially and a representation of the posterior distribution continually

maintained. The main techniques used are sequential Monte Carlo (particle filtering)

methods with a novel resampling technique based on kernel smoothing Balakrishnan

and Madigan (2006a). We show asymptotic convergence for the method and present

empirical results.

1.2.2 Chapter 3: Sparse linear classifiers for Large d

Predictive models for text classification (categorizing news stories as related to finance

or not, for example) typically involve extremely high-dimensional feature spaces where

the inputs are also very sparse. Hundreds of thousands of “bag-of-word” features are

not uncommon and typically only a few words occur in each document. For classifiers

to be practical in this setting, feature selection is necessary, and the combined feature

selection and shrinkage method using L1 regularization (the Lasso, Tibshirani (1996))

is an attractive option with proven empirical performance. Unfortunately, the size of

the resulting optimization problem and massive/unbounded numbers of input exam-

ples necessitate alternative approaches to solve this problem. This chapter deals with

algorithms for learning such sparse linear classifiers that have bounded memory costs

(independent of the number of examples in the dataset), exploit any inherent sparsity

of the data, and are sequential in nature. There is an online (one-pass) version of the

algorithm as well. These algorithms are theoretically sound and shown to be practical,

accurate and efficient Balakrishnan and Madigan (2006b). The main techniques used

are a simple quadratic approximation to the likelihood of the parameters, combined

with careful analysis and sequential caching of the datasets’ sufficient statistics.

1.2.3 Chapter 4: Finding Predictive Runs for Structured Data Clas-

sification

This chapter describes an approach to create parametric classifiers for structured classi-

fication problems—which are classification problems where the input examples (or out-

put labels) have certain structural dependencies. In particular, we assume that groups

of the input covariates are meaningfully ordered, and it is important to try and use this

8

information in building the final classifier. For this task, we propose a new linear model

based on recent extensions to the Lasso, namely the Group Lasso (Yuan and Lin (2006),

where sets of variables are modelled as effects that can be zeroed out) and the Fused

Lasso (Tibshirani et al. (2005), where serial correlation between coefficients is explicitly

modelled). This new model (LAPS, the Lasso with Attribute Partition Search) blends

the advantages of both of the above approaches, and explicitly formalizes the problem

in terms of a search for groups of correlated attributes. We also propose an algorithm

to efficiently find the model coefficients, and our results on applications show the model

to be very good predictively, while also capable of providing insight into the structured

domain it is applied on Balakrishnan and Madigan (2007).

1.2.4 Chapter 5: A Non-parametric Approach to Structured Data

Classification

The structured classification problems mentioned above was also the motivation for the

work described in this chapter. Here, as an alternative to the Bayesian approach, a

new extension to decision trees were applied to the problem. Decision trees are a type

of non-parametric classifier that have had good empirical success and are especially

well known for their interpretability, which makes them ideal in this problem domain.

This chapter describes “functional” decision trees which are decision trees augmented

with a new type of variable split (functional splits), designed to partition based on the

overall shape of assay curves (these are time series). We present the model, outline an

algorithm to learn the trees and demonstrate results on both real and applied datasets.

References

S. Balakrishnan and D. Madigan. A one-pass sequential monte carlo method for
bayesian analysis of massive datasets. Bayesian Analysis, 1(2):345–362, 2006a.

S. Balakrishnan and D. Madigan. Algorithms for sparse linear classifiers in the massive
data setting. submitted manuscript, 2006b.

S. Balakrishnan and D. Madigan. Finding predictive runs with laps. submitted
manuscript, 2007.

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag, 1985.

9

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, 1994.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, 1995.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, New York, 1996.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient de-
scent for linear predictors. Inf. Comput., 132(1):1–63, 1997. ISSN 0890-5401. doi:
http://dx.doi.org/10.1006/inco.1996.2612.

Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2, 1988.

McAllester. Some PAC-bayesian theorems. Machine Learning, 37, 1999.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society, 67(1):91 – 108, 2005.

R. J. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1996.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory of Probab. and its Applications, 16(2):
264–280, 1971.

D. Wolpert. The supervised learning no-free-lunch theorems. In World conference on
Soft Computing 2001, 2001.

D. Wolpert. The relationship between the various supervised learning formalisms. In
D. Wolpert, editor, The Mathematics of Generalization, Boston, MA, 1994. Addison-
Wesley.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society, 68(Series B):49 – 67, 2006.

10

Chapter 2

Fully Bayesian Classifiers for Small d
1

2.1 Introduction

Routine Bayesian data analysis relies on Monte Carlo algorithms that perform thou-

sands or even millions of laps through the data. This can preclude Bayesian analyses of

massive datasets. The Bayesian approach does, however, lend itself naturally to sequen-

tial algorithms. The posterior after the ith observation becomes the prior for the i+1st

observation, and so on. For analyses that adopt conjugate prior distributions, this can

provide a simple, scalable approach for dealing with massive datasets. However, this

conjugate setup describes only a small fraction of today’s Bayesian applications.

In this chapter we propose a general algorithm that performs a rigorous Bayesian

computation on a small, manageable portion of the dataset and then sequentially adapts

those calculations with the remaining observations. The algorithm loads each of these

remaining observations into memory only once yet maintains inferential fidelity.

There exists a small literature focussed on scaling up Bayesian methods to massive

datasets. A number of authors have proposed large-scale Bayesian network learning

algorithms, although most of this work is not actually Bayesian per se (see, for example,

Friedman et al.) and none to our knowledge is one-pass. Posse (2001) presents an

algorithm for large-scale Bayesian mixture modelling. DuMouchel (1999) presents an

algorithm for learning a Gamma-Poisson empirical Bayes model from massive frequency

tables.

Our work improves and extends the previously proposed scheme in Ridgeway and

Madigan (2002) (which is essentially the same as that outlined for static models in

1The basic content in this chapter has appeared in “One Pass Bayesian Analysis of Massive
Datasets”, Balakrishnan S. and Madigan D., Bayesian Analysis, 1, 2006.

11

Chopin 2002a) and formulates a one-pass method of analysis.

2.2 Bayesian computation for massive datasets

The outputs of Bayesian data analyses often take the form of estimates of expectations.

Specifically, we compute the expected value of the quantity of interest, h(θ), using

E(h(θ)|x1, . . . , xN) =

∫
h(θ)f(θ|x1, . . . , xN)dθ (2.1)

where f(θ|x), is the posterior density of the parameters given the observed data. An-

alytic expressions for such integrals exist only in the simplest of cases leading to a de

facto reliance on Monte Carlo methods. Monte Carlo integration methods sample from

the posterior, f(θ|x), and then estimate E(h(θ)|x1, . . . , xN) as 1
M

∑M
i=1 h(θi) where

θ1, . . . , θM comprise a sample of M “particles” from f(θ|x). The law of large numbers

ensures convergence:

lim
M→∞

1

M

M∑

i=1

h(θi) =

∫
h(θ)f(θ|x1, . . . , xN)dθ. (2.2)

Importance sampling methods sample from a different density, say g(θ), and take

weighted averages:

∫
h(θ)f(θ|x1, . . . , xN)dθ =

∫
h(θ)

f(θ|x)

g(θ)
g(θ)dθ (2.3)

= lim
M→∞

1

M

M∑

i=1

wih(θi) (2.4)

where θi is now a draw from g(θ) and wi = f(θi|x)/g(θi), is a weight associated with

a particular particle θi. Since the expected value of wi under g(θ) is 1, we need only

compute weights up to a constant of proportionality and then normalize, leading to:

Ê(h(θ|x1, . . . , xN)) =

∑M
i=1wih(θi)∑M

i=1wi

. (2.5)

12

Geweke (1989) provides conditions under which these estimates are asymptotically con-

sistent.

The algorithm in Ridgeway and Madigan (2002), essentially consists of partitioning

the data {x1, . . . , xN} into two pieces, a manageable portion D1:n = x1, . . . , xn where

n ≪ N , and the remainder of the data, Dn+1:N = xn+1, . . . , xN , and then applying

importance sampling with g(θ) = f(θ|x1, . . . , xn). Now, if the observations are condi-

tionally independent given the parameters θ, i.e. f(x1, . . . , xn|θ) =
∏n

i=1 f(xi|θ), the

corresponding importance sampling weights have a particularly simple form. Recall

that our conditions imply wi = f(θi|D1:N)/g(θi), and substitute the expressions for f, g

to get:

wi =
f(θi|D1:n, Dn+1:N)

f(θi|D1:n)

=
f(D1:n, Dn+1:N |θi)f(θi)

f(D1:n, Dn+1:N)

f(D1:n)

f(D1:n|θi)f(θi)

∝ f(Dn+1:N |θi) =
∏

xj∈Dn+1:N

f(xj |θi). (2.6)

This is just the likelihood of the observations in Dn+1:N evaluated at each particle.

Unfortunately, the Monte Carlo variance of the resulting importance sampling esti-

mates grows quickly. Since all of the terms are positive in:

V ar(θ|D1:n) = E(V ar(θ|D1:n, Dn+1:N)) + V ar(E(θ|D1:n, Dn+1:N)), (2.7)

the posterior variance with the additional observations in Dn+1:N is, in expectation,

smaller than the posterior variance conditioned only on D1:n. Therefore, although

the location of the sampling density should be close to the target density, its spread

will most likely be wider than that of the target. As additional observations become

available, f(θ|D1:n, Dn+1:N) becomes much narrower than f(θ|D1:n). The result of

this narrowing is that the weights of many of the original draws from the sampling

density approach zero and so we have few effective draws from the target density, a

phenomenon also known as degeneracy of the sample. Figure 2.1 demonstrates the

problem schematically. The wider density represents the sampling density f(θ|D1:n)

13

that generates the particles. However, the target density, f(θ|D1:n, Dn+1:N), shown as

a dashed curve, is shifted and narrower. About half of the draws from f(θ|D1:n) will

have importance weight near zero.

Figure 2.1: Comparison of f(θ|D1:n, Dn+1:N) (dashed) and f(θ|D1:n) (solid).

Ridgeway and Madigan (2002) monitor this degeneracy via the so-called effective

sample size or ESS. Kong et al. (1994) provided a simple approximation for the ESS:

ESS =
M

1 + V ar(w)
=

(
∑
wi)

2

∑
w2

i

.

When the ESS drops below some pre-specified level, Ridgeway and Madigan (2002)

counter the degeneracy via a resample-move or “rejuvenation” step, an idea that bor-

rows from the particle filtering/sequential Monte Carlo literature – see, for example

Doucet et al. (2001) and Gilks and Berzuini (2001). The resample-move step first re-

samples the particles with probabilities proportional to the weights and then applies a

single Metropolis-Hastings “move” step to each particle. Each move requires a complete

scan of all the data. Figure 2.2 provides an outline of the algorithm.

While the Ridgeway and Madigan (2002) scheme decreases the number of data

accesses by up to 99% as compared to vanilla MCMC, it is not a one-pass algorithm

since the move portion of the rejuvenation scheme, i.e. the single MCMC step, involves

conditioning on all of the data processed thus far. Although Ridgeway and Madigan

provide arguments that show that rejuvenations become less frequent as more data

14

1. Load as much data into memory as possible to form D1:n

2. Draw M times from f(θ|D1:n) via Monte Carlo or Markov chain Monte Carlo

3. Iterate through the remaining observations (those that comprise Dn+1:N). For
each observation, xj , update the log-weights on all of the draws from f(θ|D1:n).
Set j = n+ 1 and p ∈ (0, 1) to the allowable decrease in ESS
While j < N

Set wi = 1, i = 1, . . . ,M
While ESS > pM

j ← j + 1
for i in 1, . . . ,M do wi ← wi × f(xj |θi)

Resample M times with replacement from θ1, . . . , θM

with probability proportional to wi

for i in 1, . . . ,M do one MCMC step to move θi

conditioned on n+ j observations

Figure 2.2: The Ridgeway and Madigan (2002) algorithm for massive datasets

accumulate, this is still a significant flaw since the number of repeated data accesses

per observation grows without bound.

2.3 One-pass Particle Filtering for Massive Datasets

Our proposed one-pass particle filtering algorithm 1PFS (One-pass Particle Filter with

Shrinkage) differs from the Ridgeway and Madigan algorithm of Figure 2.2 only in

the rejuvenation step. The new rejuvenation step uses a “shrinkage” kernel smoothing

approximation to the current importance sampling distribution.

Thus 1PFS starts out with Steps 1 and 2 of the Ridgeway and Madigan (2002)

algorithm (see Figure 2.2). Then, as with Ridgeway and Madigan, 1PFS iterates the

outer loop of Step 3 until the ESS deteriorates below some tolerance limit (10% of M ,

say). Assuming that this occurs after absorbing n1 observations, 1PFS then resamples

M times with replacement the particles from the posterior conditioned on the first

n+ n1 data points. The resample selects each particle θi with probability proportional

to wi.

15

Note that these draws still represent a sample, albeit a dependent one, from the

posterior conditioned on the first n + n1 data points. Several of the θi will appear

multiple times in this new sample. For the most part this refreshed sample will be

devoid of those θi not supported by the data.

In order to rejuvenate the sample, we propose to approximate the distribution of

the resampled θi using kernel smoothing. Liu and West (2001) note that centering the

kernels at the standard locations (i.e., at the existing particles) systematically results

in a density estimate that is over-dispersed. Liu and West (2001) propose a shrinkage

scheme to correct for this over-dispersion via a weighted shift of the location of the

particles towards the sample mean.

More precisely, 1PFS uses kernel smoothing to approximate the importance sam-

pling posterior density f(θ|D1:n+n1
) of the parameters as per:

f̂(θ|D1:n+n1
) =

M∑

i=1

K(θ; θ̃i, b
2V) (2.8)

where K(θ; s, T) is the value at θ of the kernel function (e.g., Gaussian) with mean s

and variance matrix T . θ̃i and V are the shifted sample/particle values and the sample

Monte Carlo variance respectively with b being the kernel bandwidth. Note that the

wi’s, are all identically equal to 1 in the above formula because a resample step preceded

the rejuvenation step. The shrinkage rule specifies the shifted sample locations as:

θ̃i = aθi + (1− a)θ (2.9)

where a =
√

1− b2 and θ is the current Monte Carlo mean θi value. The sample drawn

from the kernels placed at the shrinkage locations will not only have the correct mean

(which is the original sample mean, θ and is unchanged) but also the correct variance

(the sample variance, V).

Therefore, to rejuvenate the sample, for each of the new θi’s we simply sample from

the shrinkage kernel density based approximation to the importance sample distribution

16

that we currently have, f̂(θ|D1:n+n1
). Our rejuvenated θi’s now represent a more diverse

set of parameter values with an effective sample size closer to M again. Figure 2.4

graphically walks through the resample-move process for this “smooth bootstrap” step-

by-step and Figure 2.3 shows the new reweighting step to replace step 3 of the Ridgeway

and Madigan (2002) algorithm.

3. Iterate through the remaining observations (those that comprise Dn+1:N). For
each observation, xj , update the log-weights on all of the draws from f(θ|D1:n).
Set j = n + 1, p ∈ (0, 1) to the allowable decrease in ESS and b, the kernel
bandwidth (Note: enables computation of a =

√
1− b2)

While j < N
Set wi = 1, i = 1, . . . ,M
While ESS > pM

j ← j + 1
for i in 1, . . . ,M do wi ← wi × f(xj |θi)

Resample M times with replacement from θ1, . . . , θM

with probability proportional to wi

Compute θ, V
for i in 1, . . . ,M do

Compute θ̃i = aθi + (1− a)θ
Sample new θi from K(θ̃i, b

2V)

Figure 2.3: One-pass Particle Filtering for Massive Datasets

After rejuvenating the set of θi, we can continue where we left off, on observation

n+ n1 + 1, absorbing additional observations until either we include the entire dataset

or the ESS again has dropped too low and we need to preform a new rejuvenation step.

2.3.1 Convergence of the Smooth Bootstrap; Bandwidth Selection

There exist established asymptotic (as the number of particles tends to infinity, i.e.,

M → ∞) Central Limit Theorems for Sequential Monte Carlo methods – see Moral

and Guionnet (1999), Gilks and Berzuini (2001), and Chopin (2002b). These results

deal with the more general version of the sequential inference problem involving unseen

state variables in addition to static model parameters. These results also apply to the

17

−4 −2 0 2 4 6 8
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a)

−4 −2 0 2 4 6 8
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b)

−4 −2 0 2 4 6 8
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c)

Figure 2.4: The resample-move step. (a) Generate an initial sample from f(θ|D1:n)
(the solid curve). The stars mark the particles, the sampled θi. (b) Weight based on
f(θ|D1:n, Dn+1:N) (the dashed density) and resample, the length of the vertical lines
indicate the number of times resampled. Shrink these locations towards θ (the open
diamond) 3) For each θi sample from the now shifted kernel density distribution and
thus diversify and obtain the new sample (the stars mark these locations).

18

simpler version of the problem we are concerned with, namely filtering for static model

parameters. Indeed, the static-only case is better behaved and more tractable than the

general problem Chopin (2002b). Further, since we don’t have a general state-space

model (and the sequential updating is only an artifact to reduce the number of data

accesses) we are concerned solely with the convergence properties of the final posterior

distribution estimate that our algorithm returns.

These Central Limit Theorems hold true for sequential Monte Carlo methods involv-

ing sampling-importance resampling and MCMC (rejuvenation) moves as per Ridgeway

and Madigan. 1PFS, however, employs an “extra” approximation step involving the

kernel smoothing approximation to the importance sampling posterior distribution,

f̂(θ|x). Intuitively, this extra approximation will be inconsequential if, in the limit as

the number of particles tend to infinity, the particles sampled from the kernel smoothed

approximation to the posterior distribution will resemble random samples from the im-

portance sampling posterior f(θ|x).

Stavropoulos and Titterington (2001) prove a restricted version of the above state-

ment formally. Their theorem states:

Theorem 2.3.1 Under mild conditions, for univariate θ and the Normal kernel K, the

cumulative distribution function of the values generated by the kernel approximation to

the posterior distribution f̂(θ|x), converges to that of the target density, f(θ|x).

The proof has an easy multivariate generalization and can be adapted for non-

Normal K as well. The assumptions under which theorem 2.3.1 holds are fairly mild,

essentially the same as those required by Geweke (1989) for the importance sample es-

timates to converge, with the additional requirement that the kernel functions variance

should shrink to zero as the number of particles tends to infinity.

For Normal kernels (whereK(s, T) = ϕ(s, T), the Gaussian density function), kernel

density estimation literature Silverman (1986) suggests a choice of T = V bM
2, with

bM =

(
4

(d+ 2)M

) 1

d+4

(2.10)

19

where d is the dimensionality of the samples, M is the number of samples and V is

the sample Monte Carlo variance estimate. This choice of bandwidth is asymptotically

optimal if the density being approximated is multivariate-Normal, and the samples had

been obtained from this distribution Stavropoulos and Titterington (2001). In the next

section we also provide empirical data supporting its use as reasonable even for small

sample sizes.

2.3.2 Empirical Justification of Bandwidth Selection Rule

As stated previously, the bandwidth selection rule in Equation 2.10 is (on average) an

optimal finite sample size bandwidth selection rule (minimizes the AIMSE) when the

distribution being estimated is known to be multivariate Normal and we are using a

Gaussian kernel. Since the addition of observations forces the posterior distribution to

asymptotically approach a multivariate Normal, and as we know that for a Gaussian

kernel, no other bandwidth selection rule will behave better uniformly (because then

it would also be better on average) we believe the choice of bandwidth to be very

reasonable (and indeed continually improving as more data is assimilated).

In order to empirically validate this claim, we performed 10 simulations of 1PFS

with parameters exactly as specified previously, except for the bandwidth parameter,

which we varied uniformly in the [0-1] interval in increments of 0.1. We then calculated

the MSE error between the mean posterior parameter values obtained from regular

MCMC and those obtained from the use of 1PFS. The following table (Table 2.1) shows

the mean error (averaged over the 10 runs per bandwidth) and associated standard

deviations.

The figure shows the same data on a plot. The results of our limited number

of simulations point to the fact that while the bandwidth specified per Equation 10,

bM = 0.4557, doesn’t give the lowest error (that appears to be at bM = 0.6), it still

clearly does provide a reasonable choice.

The following sections present two examples (both of which were previously ana-

lyzed in Ridgeway and Madigan 2002) that elucidate the application of the proposed

algorithm in practice, followed by a discussion of the method and conclusions.

20

Bandwidth (bM) Mean MSE STD MSE
0.10 0.0436 0.0169
0.20 0.0151 0.0029
0.30 0.0074 0.0012
0.40 0.0063 0.0007
0.50 0.0062 0.0008
0.60 0.0057 0.0008
0.70 0.0062 0.0007
0.80 0.0064 0.0006
0.90 0.0065 0.0008

Table 2.1: The effect of bandwidth bM on the mean MSE error estimates (and standard
deviations) obtained between regular MCMC and 1PFS for Bayesian logistic regression
analysis of the outpic data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Bandwidth (b)

M
ea

n
M

S
E

Figure 2.5: Plot of the MSE and associated standard deviation of Table 2.1. The dashed
vertical line indicates the bandwidth choice recommended by Equation 10.

21

2.4 Example I - Fully Bayes Logistic Regression

The first example we consider concerns Bayesian logistic regression. The training data

comprise vectors xi = [xi1 , . . . , xid]
T in Rd and yi ∈ {0, 1}, i = 1, . . . , N. We consider a

model of the form:

p(y = 1|x) = ψ(βTx) (2.11)

where β is a vector of regression coefficients and ψ(·) is the logistic link function. Fol-

lowing some recent literature on so-called “sparse” models (Tibshirani 1995; Figueiredo

2001) we use an independent Laplace prior for each component of β:

π(βi|γ) =
γ

2
e−γ|βi|, γ > 0, i = 1, . . . , d.

This prior typically results in posterior modes of zero for many parameters and as such

accomplishes simultaneous shrinkage and variable selection. Our interest here however

is not in obtaining the posterior mode (see Genkin et al. 2004) but rather in fully

Bayesian inference for arbitrary characteristics of the posterior distribution of β. In

the example below we set γ = 5; Genkin et al. (2004) discuss approaches for selecting

γ.

Following Ridgeway and Madigan (2002) we report fully Bayesian logistic regression

analysis of the “outpic data” comprising 744,963 customer records, 57 Mb when stored

in double precision. Thus, in our notation, N = 744, 963. These data originated in a

major telecommunications company. The binary response variable identifies customers

who have switched to a competitor. There are seven predictor variables. Five of these

are continuous and two are 3-level categorical variables. Thus for logistic regression

there are d = 10 parameters. This dataset is small enough that regular MCMC to

compute f(β|D1:N), while cumbersome, is still feasible. We also used MCMC to gen-

erate the initial particles from f(β|D1:n). In both cases we used a straightforward

Metropolis-within-Gibbs sampler. Ridgeway and Madigan (2002) describe this sampler

in detail. The key point is that the MCMC sampler requires one complete pass through

the data per iteration.

22

1PFS used a Gaussian kernel function. Formula 2.10 defines the kernel bandwidth.

Conditioning on the first 10,000 observations (i.e., n = 10, 000), we generated 25,000

initial particles using the MCMC algorithm, dropping the first 5,000 (i.e. M = 20, 000).

Thus we accessed each of the first 10,000 observations 25,000 times. 1PFS executed a

rejuvenation step whenever the ESS dropped below 10,000 (which occurred 51 times

until the whole dataset was processed) corresponding to the tolerance limit p = 0.5.

By construction, 1PFS accessed observations 10,001-744,963 just once. Ridgeway and

Madigan’s algorithm with the same rejuvenation schedule also accessed the first 10,000

observations 25,000 times each, but then accessed the remaining 734,963 observations

a total of 2,352,460 times or 3.2 times per observation.

In addition to 1PFS, we also fit the logistic regression model using maximum likeli-

hood and using a full MCMC run on the entire dataset. Table 2.2 shows the resulting

estimates.

β(1) β(2) β(3) β(4) β(5) β(6) β(7) β(8) β(9) β(10)
MLE -0.574 0.155 0.056 0.220 -0.087 0.361 -0.358 -0.204 0.079 0.079
MCMC -0.574 0.155 0.056 0.220 -0.087 0.360 -0.358 -0.204 0.080 0.078
1PFS -0.574 0.156 0.056 0.221 -0.087 0.360 -0.357 -0.204 0.079 0.079

Table 2.2: Mean β estimates obtained from Bayesian logistic regression analysis of the
outpic data.

Table 2.3 shows the total number of data accesses.

Algorithm first 10,000 next 734,963

MCMC 2.5 ×108 1.8 ×1010

R&M 2.5 ×108 2.4 ×106

1PFS 2.5 ×108 7.3 ×105

Table 2.3: Total number of data accesses for MCMC (Markov chain Monte Carlo on the
entire dataset), R&M (Ridgeway and Madigan’s Particle Filter), and 1PFS (One-pass
Kernel-based Particle Filter).

1PFS not only scans (most of) the dataset only once but also produces parameter

estimates that are very close to the desired values. Indeed, on smaller subsets of the

data, the maximum likelihood estimates for the parameter values and those obtained

via 1PFS are very similar as well (Figure 2.6).

23

0 1 2 3 4 5 6 7 8

x 10
5

−0.585

−0.58

−0.575

−0.57

−0.565

−0.56

−0.555

−0.55

−0.545

Data points assimilated (n
1
)

M
ea

n
R

eg
re

ss
io

n
V

ar
ia

bl
e

(β
1)

1PF
MLE

(a)

0 1 2 3 4 5 6 7 8

x 10
5

−0.385

−0.38

−0.375

−0.37

−0.365

−0.36

−0.355

−0.35

Data points assimilated (n
1
)

M
ea

n
R

eg
re

ss
io

n
V

ar
ia

bl
e

(β
7)

1PF
MLE

(b)

Figure 2.6: Plot showing the representative mean posterior parameter values (β(1) and
β(7)) determined via 1PFS as a function of the amount of data processed. Also shown
on the plot is the corresponding MLE for the same amount of data.

24

2.5 Example II - Mixtures of Transition Models

Mixtures of first-order transition models (i.e., finite state Markov chains) have attracted

recent attention in a variety of applications such as web user modelling (Cadez et al.

2000; Ridgeway 1997) and unsupervised training of robots (Ramoni et al.). This mixture

model assumes that the data comprise N state sequences of random length and that

one of C transition matrices generated each sequence. However, neither the transition

matrices nor the mixing proportions are known. Thus the unknown parameters of

this model are the C transition matrices (each S × S, where S is the size of the state

space), P1, . . . , PC , the mixing vector of length C, and the N cluster assignments,

zj ∈ {1, . . . , C}, j = 1, . . . , N . A Bayesian analysis estimates the posterior distribution

of these unknowns given a set of observed sequences. We assume that both C and S

are fixed.

Ridgeway and Madigan (2002) describe a simple-to-implement Gibbs sampler that

generates draws from this posterior distribution. However, each iteration requires two

scans of the entire dataset, one for the matrix update and one for the cluster assignment

update. Consequently, computation time becomes prohibitive for any N much bigger

than a few tens of thousands. Ridgeway and Madigan (2002) propose a particle filtering

algorithm for this model and, as with the logistic regression example, the number of

data accesses decreases dramatically compared to the Gibbs sampler. However each

rejuvenation step requires a complete scan of the data to that point. Here we apply

the 1PFS algorithm to this model in the context of a particular example.

Specifically we generated N = 1 million sequences of length between 5 and 20 from

two 4 × 4 transition matrices. We used the first n = 1000 sequences to obtain the

initial sample of M = 1000 particles. For this example 1PFS executes a rejuvenation

step each time ESS drops below 100 (i.e. p = 0.1). Because both the rows of the

transition matrices and the vector of mixing proportions must sum to one, the kernel

function, K(., .), we chose for this example was Dirichlet. Following Aitchison and

Lauder (1985), we choose the bandwidth b that maximizes the pseudo-likelihood (the

average leave-one-out cross validation approximated likelihood).

25

The use of the Dirichlet kernel involves one extra detail. The Liu and West (2001)

shrinkage rule requires a parametrization of the kernel K(θ̃i, b
2V) in terms of its mean

θ̃i and variance b2V . Unfortunately, starting from a mean and variance, a closed-

form expression for the corresponding Dirichlet distribution Dirichlet(α) does not exist.

Following Ronning (1989) we compute an approximation to α by matching first and

second moments. Specifically, the parameter values αisc for the ith row of the transition

matrix Pc are:

αisc = θ̃isc

∑

s

αisc (2.12)

log
∑

s

αisc =
1

S − 1

S−1∑

s=1

log

(
θ̃isc(1− θ̃isc)

b2Visc
− 1

)
(2.13)

Here we model each row independently. A similar set of equations exists for the mixing

vector’s parameters (implying a total of d = 25 independent parameters).

Except for the first 1000 observations, which generate the initial set of particles,

1PFS accesses each of the remaining observations once. Once again, this represents a

substantial computational savings as compared to the Ridgeway and Madigan (2002)

scheme. A Gibbs sampler, conditioned on the entire dataset, would need to access each

observation 2000 times.

While efficiency as measured by the number of data accesses is important in the

analysis of massive datasets, precision of parameter estimates is also important. Fig-

ure 2.7 shows the marginal posterior densities for the 16 transition probabilities from

the first mixture component’s transition matrix. The smooth density plot is based on

the M = 1000 1PFS particles. The figure also marks the location of the parameter

value that generated the data. All of these values are within the region with most of

the posterior mass.

With 1,000,000 observations, a Gibbs sampler here is prohibitively expensive (scaling

computational time linearly and disregarding memory constraints leads to an estimate

of around 2 months CPU time). On a subset of the data comprising the first 10,000

observations, the two methods produced nearly identical posterior distributions – see

26

0.222 0.224 0.019 0.02 0.538 0.54 0.216 0.218

0.1165 0.1173 0.5165 0.5185 0.238 0.239 0.24 0.126 0.127

0.394 0.396 0.1605 0.1625 0.2115 0.2135 0.2305 0.2325

1.15 1.35

x 10
−3

0.864 0.866 0.0785 0.08 0.054 0.055

Figure 2.7: The posterior distribution of the transition probabilities for one of the
transition matrices. 1PFS generated these densities. The vertical line marks the true
value used to simulate the dataset.

27

Figure 2.8.

0.2 0.22 0.24 0.015 0.02 0.025 0.52 0.54 0.56 0.2 0.22

0.11 0.12 0.51 0.52 0.53 0.23 0.24 0.25 0.12 0.13

0.39 0.4 0.41 0.15 0.16 0.17 0.21 0.22 0.23 0.215 0.235

2 4

x 10
−3

0.86 0.87 0.88 0.07 0.08 0.09 0.045 0.06

Figure 2.8: The posterior distribution of the transition probabilities for one of the tran-
sition matrices for a smaller subset of the whole dataset (the first 10,000 observations).
The posterior density found via MCMC is represented by the blue solid line and that
of the particle filter by the red dashed line.

Note that increasing M does not change the number of data accesses for 1PFS while

each additional draw represents yet another scan for the standard implementation.

2.6 Discussion

MCMC has established itself as a standard tool for the statistical analysis of complex

models. Data mining research, by contrast, rarely features MCMC. Indeed, for data

mining applications involving massive datasets, computational barriers essentially pre-

clude routine use of MCMC. MCMC is however an indispensable tool for Bayesian

28

analysis, especially in those applications where the inferential targets are more complex

than posterior means or modes. As such we contend that extension of MCMC methods

to larger datasets is an important research challenge. We present one particular line of

attack. Working with samples from massive datasets represents an alternative strategy

for large-scale Bayesian data analysis and may be viable for some applications. In high

dimensional applications, however, throwing data away may be too costly.

Indeed, high dimensionality is well known to be the bane of all kernel density based

approximation methods. However, it should be pointed out here that our proposed

scheme utilizes kernel smoothing (and not density estimation per se) and thus should

be applicable even in medium dimension problems (Liu and West 2001, have examples

where they apply kernel smoothing in dimension around 30)2.

By reducing the number of data accesses by a huge amount (one-pass for all but a

small fraction of the data), MCMC becomes viable for a large class of models useful in

data mining. We note that 1PFS can bypass the exhaustive analysis of an initial portion

of the training data by sampling initial particles from the prior distribution of the

parameters. While this doesn’t affect any of the analysis, we have seen in practice, that

it is often a good idea to start the particle filter with a reasonable set of particles. The

sequential nature of the algorithm also allows the analyst to stop when uncertainty in

the parameters of interests has dropped below a required tolerance limit. Parallelization

of the algorithm is straightforward. Each processor manages a small set of the weighted

draws from the posterior and is responsible for updating their weights and computing

the refresh step.

References

J. Aitchison and I. J. Lauder. Kernel density estimation for compositional data. Applied
Statistics, 34(2):129 – 137, 1985.

I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Visualization of navigation
patterns on a web site using model-based clustering. Technical report, Microsoft
Research, 2000. Technical Report MSR-TR-00-18.

N. Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539
– 552, 2002a.

2Software for both examples is available at: http://paul.rutgers.edu/∼suhrid/code/1PFS.

29

N. Chopin. Central limit theorem for sequential monte carlo methods and its
applications to bayesian inference. Technical report, CREST, 2002b. URL
http://www.crest.fr/doctravail/document/2002-44.pdf.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, NY, 2001.

W. DuMouchel. Bayesian data mining in large frequency tables, with an application to
the fda spontaneous reporting system (with discussion). The American Statistician,
53(3):177 – 190, 1999.

M. Figueiredo. Adaptive sparseness using jeffreys prior. In S. Becker T. G. Dietterich
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems,
(NIPS 14), Vancouver, Canada, 2001. MIT Press.

N. Friedman, I. Nachman, and D. Peer. Learning bayesian network structures from
massive datasets: The sparse candidate algorithm.

A. Genkin, D. D. Lewis, and D. Madigan. Bayesian logistic regression for text catego-
rization. 2004. In preparation.

J. Geweke. Bayesian inference in econometric models using monte carlo integration.
Econometrica, 24:1317 – 1399, 1989.

W. Gilks and C. Berzuini. Following a moving target - monte carlo inference for dynamic
bayesian models. Journal of the Royal Statistical Society B, 63(1):127 – 146, 2001.

A. Kong, J. Liu, and W. Wong. Sequential imputation and bayesian missing data
problems. Journal of the American Statistical Association, 89:278 – 288, 1994.

J. Liu and M. West. Combined parameter and state estimation in simulation-based
filtering, pages 197 – 224. Springer-Verlag, New York, NY, 2001.

P. Del Moral and A. Guionnet. A central limit theorem for nonlinear filtering using
interacting particle systems. Annals of Applied Probability, 9:275 – 297, 1999.

C. Posse. Hierarchical model-based clustering for large datasets. Journal of Computa-
tional and Graphical Statistics, 10(3):464 – 486, 2001.

M. Ramoni, P. Sebastiani, and P. Cohen. Bayesian clustering by dynamics. Machine
Learning, 47(1):91 – 121.

G. Ridgeway. Finite discrete markov process clustering. Technical report, Microsoft
Research, 1997. Technical Report MSR-TR-97-24.

G. Ridgeway and D. Madigan. A sequential monte carlo method for bayesian analysis
of massive datasets. Journal of Knowledge Discovery and Data Mining, 7:301 – 319,
2002.

G. Ronning. Maximum likelihood estimation of dirichlet distributions. Journal of
Statistical Computation and Simulation, 32(4):215 – 221, 1989.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Monographs on
Statistics and Applied Probability. Chapman Hall, New York, NY, 1986.

30

P. Stavropoulos and D. M. Titterington. Improved particle filters and smoothing.
Springer-Verlag, New York, NY, 2001.

R. Tibshirani. Regression selection and shrinkage via the lasso. Journal of the Royal
Statistical Society, Series B, 57:267 – 288, 1995.

31

Chapter 3

Sparse linear classifiers for Large d
1

3.1 Introduction

Chapter 2 considered problems of massive data, but limited dimension (d < 30). In

this chapter, we instead consider the problem of learning high-dimensional sparse linear

classifiers from large numbers of training examples. A number of different applications

from finance, text mining, and bioinformatics motivate this work. We concern ourselves

specifically with binary classification and consider L1-regularized logistic and probit

regression models. Such models have provided excellent predictive accuracy in many

applications (see, for example, Genkin et al., 2003; Figueiredo and Jain, 2001; Shevade

and Keerthi, 2003) and attack overfitting and variable selection in a unified manner.

L1-regularization and a maximum a posteriori (MAP) Bayesian analysis with so-called

Laplacian priors yield identical results (Tibshirani, 1996) and in order to streamline

our presentation, we adopt the Bayesian approach. Many training algorithms now

exist for L1-logistic regression that can handle high-dimensional input vectors (Hastie

et al., 2004; Shevade and Keerthi, 2003). However, these algorithms generally begin

with a “load data into memory” step that precludes applications with large numbers

of training examples. More precisely, consider a training dataset that comprises t

examples each of dimension d. Due to matrix multiplications on t× t or d×d matrices,

typical computational time requirements are O(t3 + d3), with memory requirements

that are O(td+d2). In our target applications, both t and d can exceed 106 so standard

algorithms become impractical.

We present two basic algorithms for learning L1-logistic and/or probit regression

1The basic content in this chapter has appeared in “Algorithms for Sparse Linear Classifiers in the
Massive Data Setting”, Balakrishnan S. and Madigan D., submitted manuscript, 2006.

32

models. Both operate in the data streaming model, by which we mean that they scan the

data sequentially, and never require storing processed observations. The first algorithm

we present is an online algorithm which sequentially processes each observation only

once. This algorithm is provably non-divergent and uses in the worst case O(d2) time

and O(d2) space to assimilate each new training example (note that both costs are

constant with respect to the number of observations, t). Further, if the input data is

sparse, the practical computational cost is better represented by O(f2 + md) where

f,m≪ d (we define the quantities f and m later).

For t constant, that is, for fixed but massive datasets, we also present a second

algorithm that allows practitioners to trade-off computational time for improved accu-

racy. This multi-pass algorithm (the MP algorithm) also processes data sequentially

but makes a small constant number of extra passes over the data set. The algorithm’s

computational cost is a thus constant factor higher and memory costs are essentially

the same as the online algorithm. Finally, we propose the RMMP (Reduced Memory

MP) algorithm that has significantly lower worst case memory costs, O(d+ k2) (where

k ≪ d) and the same computational costs as the MP algorithm (thus both computa-

tional and memory costs are essentially linear in t and d). We will comment on the

similarities and differences of our technique to other learning algorithms, in particular

other online algorithms, in the following sections.

3.2 Background and Notation

As with the rest of this thesis, in this chapter, we will continue to concern ourselves

with the task of binary classification, with class labels y ∈ {0, 1}. The training data

comprise t labeled training examples, i.e., Dt = {(xi, yi)}ti=1, with input vectors xi =

[xi1 , . . . , xid]
T in R

d and corresponding labels yi, i = 1, . . . , t. We consider probabilistic

classifiers of the form:

p(y = 1|x) = Φ(βTx)

where β ∈ R
d is a vector of regression parameters and Φ(·) is a link function. We

restrict our analytical results to the two most commonly used link functions, the probit

33

Φ(z) =
∫ z
−∞

1√
2π
e−x2/2dx and logistic Φ(z) = ez

1+ez link functions.

The machine learning problem is thus to estimate the parameters β, in the light

of the training data Dt. We tailor our results towards high input dimension, that is,

large d, and large numbers of training vectors, large t. Viewing the learning problem

as one of Bayesian inference, we seek to compute the posterior distribution of the

parameters β conditioned on a labeled training dataset Dt, given a prior distribution

on the parameters β:

p(β|Dt) ∝
(

t∏

i=1

p(yi|β)

)
p(β). (3.1)

The quantity on the left hand side of (3.1) is the required posterior distribution of

β given the dataset Dt, while the second term on the right hand side is the prior

distribution on β, which we will specify momentarily. The first term on the right hand

side is the likelihood:

t∏

i=1

p(yi|β) =
t∏

i=1

(
yiΦ(βTxi) + (1− yi)(1− Φ(βTxi)

)
. (3.2)

Finding the MAP β leads to the optimization problem we wish to solve (now on the

log scale):

max
β

(log p(β|Dt))

≡ max
β

(
t∑

i=1

log
(
yiΦ(βTxi) + (1− yi)(1− Φ(βTxi)

)
− log p(β)

)
.

The prior distribution p(β) we pick for the parameters is the LASSO prior (Tibshi-

rani, 1996), a product of independent Laplacian or double-exponential prior distribu-

tions on each component βj :

p(βj |γ) =
γ

2
e−γ|βj |, γ > 0, j = 1, . . . , d.

A prior of this form places high probability mass near zero and along individual com-

ponent axes (Note: this is the same prior used in Chapter 2’s regression example). It

34

also has heavier tails than a Gaussian distribution—see Figure 3.1 for plots of the 2-

dimensional distributions. It thus favors locations in parameter space with component

(a)

(b)

Figure 3.1: (a) A standard Laplacian distribution, γ = 1 (b) A superposition of standard
(zero mean, unit variance) Gaussian distribution, and the Laplacian distribution clearly
showing both the higher probability mass the Laplacian assigns along the axes and at
zero as well as its heavier tails.

magnitudes either exactly zero, and hence pruned from our predictive model, or shrunk

towards zero. With this prior distribution, (3.3) presents a convex optimization prob-

lem and yields the same solutions as the LASSO (Tibshirani, 1996) and Basis Pursuit

(Chen et al., 1999):

max
β

(log p(β|Dt))

≡ max
β

(
t∑

i=1

log
(
yiΦ(βTxi) + (1− yi)(1− Φ(βTxi)

)
− γ‖β‖1

)
. (3.3)

The parameter γ in the above problem controls the amount of regularization. Figure

35

3.2 shows a 2-dimensional visualization of how the objective function of the optimiza-

tion problem changes as γ is varied. The choice of the regularization parameter is an

important but separate question in itself (Efron et al., 2004; Hastie et al., 2004). While

methods such as cross validation can be used to pick its value, we do not address such

issues in this work, and we simply assume γ is some fixed, user-specified constant.

Figure 3.2: L1-regularization in two dimensions (i.e., d = 2). The axes are the solid
lines, the horizontal axis representing β1 and the vertical axis representing β2. The
diamond represents the origin and the open circle represents the (non-regularized) max-
imum likelihood solution. The figure shows contours of the function in (3.3), the ob-
jective function, for increasing amounts of regularization (right to left and then top to
bottom). The star shows the MAP location. The top row, left figure, shows negligible
regularization; the MAP and maximum likelihood estimates coincide and the contours
show no L1-induced discontinuities. The top row, right figure, shows noticeable L1

effects and the MAP and maximum likelihood solutions differ. The bottom row, mid-
dle panel shows enough L1-regularization to set β2 to zero (i.e., variable selection has
occurred). The bottom row, right panel, shows extreme regularization, where both β1

and β2 are zero.

To the best of our knowledge, all existing algorithms solve the above convex opti-

mization problem in the batch setting, i.e., by storing the dataset Dt in memory and

36

iterating over it (Fu, 1998; Osborne et al., 2000; Zhang and Oles, 2001; Zhang, 2002;

Shevade and Keerthi, 2003; Genkin et al., 2003). Consequently, these algorithms can-

not be used in the massive data/online scenario, where memory costs dependent on t

must be avoided. The approach we present now attempts to overcome this limitation

and thereby provide algorithms for training sparse linear classifiers without loading the

entire dataset into memory.

3.3 Approximating the likelihood for online learning

The Bayesian paradigm supports online learning in a natural fashion; starting from

the prior, the first training example produces a posterior distribution incorporating the

evidence from the first example. This then becomes the prior distribution awaiting the

arrival of the second example, and so on. In practice, however, except in those cases

where the posterior distribution has the same mathematical form as the prior distribu-

tion, some form of approximation is required to carry out the sequential updating.

We want to avoid algorithms that begin with a “load data into memory” step and

also avoid memory costs that increase with increasing amounts of data. In other words,

we want memory costs independent of t, or be allowed to “forget” examples after pro-

cessing them. We achieve this by maintaining the sufficient statistics of a standard

quadratic approximation in β to the log-likelihood of the parameters for each observa-

tion.

We approximate the expression in (3.2) (on the log scale) as:

t∑

i=1

log(p(yi|β)) =
t∑

i=1

log
(
yiΦ(βTxi) + (1− yi)(1− Φ(βTxi)

)

≈
t∑

i=1

(
ai(β

Txi)
2 + bi(β

Txi) + ci
)
,

where ai(β
Txi)

2 + bi(β
Txi) + ci approximates log Φ(βTxi) when yi = 1 and approxi-

mates log(1−Φ(βTxi)) when yi = 0, i = 1, . . . , t. In either case the approximation uses

a simple Taylor expansion around βT
i−1xi, where βi−1 estimates the posterior mode

given the first i − 1 examples, Di−1 (Appendix 3.A provides expressions for ai, bi for

37

the probit and logistic link functions). We then have:

t∑

i=1

log(p(yi|β)) ≈
t∑

i=1

(
ai(β

Txi)
2 + bi(β

Txi) + ci
)

=
t∑

i=1

ai(β
Txi)(x

T
i β) +

t∑

i=1

bi(β
Txi) +

t∑

i=1

ci

= βTΨtβ + βT θt +
t∑

i=1

ci

where:

Ψt =
t∑

i=1

aixix
T
i , and θt =

t∑

i=1

bixi.

We now substitute this approximation of the log-likelihood function into equation (3.3)

to obtain the modified (approximate) optimization problem:

max
β

(log p(β|Dt)) ≈ max
β

(
βTΨtβ + βT θt − γ‖β‖1

)
. (3.4)

Note that we can ignore the term involving the ci’s, as it is not a function of β. Further,

the fixed size d×d matrix Ψ and the d×1 vector θ can be updated in an online fashion

as data accumulate:

Ψt+1 = Ψt + at+1xt+1x
T
t+1, and θt+1 = θt + bt+1xt+1. (3.5)

The size of the optimization problem in (3.4) doesn’t depend on t, the size of the dataset

seen so far. Thus, solving a fixed (with respect to t) size optimization problem allows

one to sequentially process labeled data items and march through the dataset. In data

streaming terminology, the matrix Ψ and the vector θ provide a constant size sketch

or summary of the labeled observations seen so far.

A number of questions now present themselves: how good is this approximation?

How do we solve the approximate optimization problem efficiently? How does this

approach differ from other likelihood approximation schemes (some which are also

quadratic)? Also, the scheme as set up requires O(d2) memory in the worst case.

Since we would like to use this approach for high dimensional datasets, can we reduce

38

the memory requirements?

The remainder of this chapter addresses these and other questions. First, we con-

sider how to efficiently obtain the MAP solution of (3.4), the approximate optimization

problem.

3.3.1 The modified Shooting algorithm

Recall that we need to find β that solves:

max
β

(
βTΨβ + βT θ − γ‖β‖1

)
. (3.6)

In the above equation and following discussion, we drop the subscript t from Ψ,θ for

notational convenience. This is a convex optimization problem and a number of efficient

techniques exist to solve it. Newton’s method and other Hessian-based algorithms

may be prohibitively expensive as they need O(d3) computational time in order to

construct the Hessian/invert d×d matrices. Other authors have described good results

on the arguably tougher (non-approximate) optimization problem for logistic regression

(essentially the terms in Equation 3.3, but with L2 regularization of β) with techniques

such as fixed memory BFGS (Minka, 2000), modified conjugate gradient (Moore and

Komarek, 2004) and cyclic coordinate descent (Zhang and Oles, 2001; Genkin et al.,

2003).

Here, we employ instead a slight modification of the Shooting algorithm (Fu, 1998),

see Algorithm 1. Shooting is essentially a coordinate-wise gradient ascent algorithm,

explicitly tailored for convex L1-constrained problems. The vector Ω in the algorithm is

defined as Ω = 2Ψ′β+θ, where Ψ′ is the matrix Ψ with its diagonal entries set to zero

(see Appendix 3.B for details). This vector is related to the gradient of the differentiable

part of the objective function and consequently can be used for optimality checking.

Minor variants of this algorithm have been independently proposed by Shevade and

Keerthi (2003) and Krishnapuram et al. (2005). Although Fu originally derived the

algorithm by taking the limit of a modified Newton-Raphson method, it can also be

obtained by a subgradient analysis of the system, subgradients being necessary due to

39

the non-differentiability that the L1 constraints on β result in, see Appendix 3.B for

the derivation.

Algorithm 1: The modified Shooting algorithm.

Data: Ψ,θ,β0, γ.
β0 is initial β vector.
Ωj refers to the j’th component of Ω.
Ψjj refers to the (j, j)’th element of matrix Ψ.
Result: β satisfying (3.6).
while not converged do

for j ← 1 to d do

βj =

0, if |Ωj | ≤ γ
γ−Ωj

2Ψjj
, if Ωj > γ

−γ−Ωj

2Ψjj
, if Ωj < −γ

Update Ω.
end

end

While one can think of numerous stopping criteria for the algorithm, we stop when

successive iterates are sufficiently close to each other (relatively, and with respect to

the L2 norm). More precisely, we declare convergence whenever ‖βi − βi−1‖2/‖βi−1‖2
is less than some user specified tolerance.

In the worst case, each iteration of Shooting requires O(d2) computational time.

However, for reasonable amounts of regularization, where the final set of non-zero β

values is small, the time requirements are much smaller. Indeed, the practical compu-

tational cost is perhaps better reflected by bounds in terms of the sparsity of MAP β.

Let m denote the maximum number of non-zero components of β along the solution

path to MAP β (hence m ≤ d). Implemented carefully, Shooting requires O(md) time

per iteration (see Appendix 3.B for details).

While coordinate-wise approaches are commonly regarded as slow in the literature

(for example, Minka, 2001a), for sparse classifiers, they are much faster (see for example,

Shevade and Keerthi, 2003). In our experiments, the Shooting algorithm has proven to

be practical even for d in the hundreds of thousands.

40

3.4 Related work

Approximating the log-likelihood function by a quadratic polynomial is a standard tech-

nique in Bayesian learning applications; see for example Laplace approximation (Kass

and Raftery, 1995; MacKay, 1995), Assumed Density Filtering (ADF)/Expectation

Propagation (EP) (Minka, 2001b), some variational approximation methods such as

Jaakkola and Jordan (2000) and in Bayesian online learning (Opper, 1996). Our ap-

proach is closest in spirit to the online Bayesian method presented in Opper (1996) but

is closer in the details of the approximation to ADF/EP as described in Minka (2001b).

We briefly outline these similarities at a high level here; interested readers should refer

to the original articles for details.

As stated in the previous section, although the Bayesian paradigm admits sequential

updating of the posterior distribution (online learning) in a natural way, some form of

approximation is almost always necessary for practical applications. Approximating the

posterior distribution at every stage by a multivariate Normal (Gaussian) distribution

seems a natural first step backed by asymptotic Bayesian central limit results that imply

this approximation will get better and better with the addition of data (Bernardo and

Smith, 1994).

The version of Assumed Density Filtering closest to our approach is described in

Minka (2001b). The posterior distribution is assumed to be multivariate Normal and

observations are processed sequentially. The posterior distribution is updated using

the exact likelihood. This exact update typically results in the posterior distribution

becoming some non-multivariate Normal distribution. This distribution is then ap-

proximated by a new multivariate Normal distribution (the approximation being based

on minimizing the KL-divergence between the two distributions, achieved by matching

moments) before processing the next observation, and so on—see Figure 3.3.

As Minka points out (Minka, 2001b), the exact update followed by approxima-

tion/projection described above can also be thought of in a different but equivalent

way. Since when using ADF, the prior and posterior distributions are both multivari-

ate Normal, we can think of the observation likelihood as first being approximated by

41

p
A
(β|D

t
)

p
A
(β|D

t+1
)

p
A
(β|D

t+2
)

p(β|D
t+1

)
p(β|D

t+2
)

{A}

Figure 3.3: Schematic elucidating quadratic approximation schemes in literature (mod-
ified version of a figure in Solla and Winther, 1998). The surface pictorially represents
the set of multivariate Normal distributions, {A}. Starting with a distribution in this
family, pA(β|Dt) (the subscript A denoting the distribution to be from {A}), incorpo-
rating the likelihood of the t+1’st observation exactly (shown by the heavy solid arrow)
leads to a posterior distribution that is outside {A}, shown in the Figure as p(β|Dt+1).
This distribution is then projected back to {A}, giving pA(β|Dt+1), and this process
continues. As Minka points out (Minka, 2001b), this is entirely equivalent to an exact
update of pA(β|Dt) by an appropriate quadratic approximation to the likelihood (the
dashed arrow).

42

a multivariate Normal and then combined exactly with the prior to yield a posterior

distribution in the same family of distributions—see Figure 3.3. The online Bayesian

algorithm presented in Opper (1996) fits into this framework. In Opper’s algorithm,

the prior and posterior distribution are also assumed to be multivariate Normal. How-

ever, his Gaussian approximation to the likelihood of each observation is constructed

differently and derives from mean-field theory considerations.

Similarly, Jaakkola and Jordan (2000), present a variational approximation scheme

for logistic regression models that uses a different quadratic approximation to the log-

likelihood. They explicitly seek to bound the true posterior distribution and their

quadratic approximation includes an additional variational parameter.

Our approach differs from the above methods in the following ways: a) Our results

hold for the Laplacian (sparsity favoring) prior. This is an important difference, be-

cause sparsity may entail better generalization performance. b) We explicitly design

algorithms considering the high dimensionality of the input data; all of the alternative

approaches do not scale to such datasets because their update steps involve inverting

matrices of size O(d2). c) We propose an algorithm that applies to the online scenario

(Opper’s algorithm does as well). d) We are only concerned with the MAP estimate

of β - all of the above approaches explicitly maintain both the mean and covariance

matrix of the approximate posterior distribution (and thus have memory costs O(d2)).

e) Our algorithms exploit any inherent sparsity the input data may have.

3.5 An Online algorithm

The quadratic approximation and the Shooting algorithm lead straightforwardly to an

online algorithm. After initializing the parameters Ψ0,θ0,β0, process the dataset one

observation at a time. Calculate the quadratic Taylor approximation to each observa-

tion’s log-likelihood at the current estimate of the posterior mode, βi−1, thus finding

parameters ai, bi. Use these parameters and the observation to update the sketches,

Ψ,θ. Now run the modified Shooting algorithm to update the posterior mode, βi and

repeat for the next labelled observation—see Algorithm 2.

43

Algorithm 2: The Online algorithm.

Data: Dt, γ.
Result: Sequentially outputs βi, the MAP estimate of β that solves (3.4).
Initialize β0 = θ0 = 0, Ψ0 = 0, i = 1.
while i < t do

Get i’th observation (xi, yi).
Obtain quadratic approximation to term likelihood at βi−1, i.e., obtain ai, bi.
Ψi ← Ψi−1 + aixix

T
i .

θi ← θi−1 + bixi.
βi ← modified Shooting(Ψi,θi,βi−1, γ)
i← i+ 1.

end

We show the performance of the online algorithm on a low dimensional simulated

dataset in Figure 3.4 (the data generating mechanism is a logistic regression model

with d = 11 and t = 100, 000. For details see the Experiments section). As we process

greater numbers of observations, the online estimates (the solid lines) improve i.e., get

closer to the batch estimates (the dashed lines which we obtain using BBR, publicly

available software for batch L1 penalized logistic regression). See Figure 3.4, where

different colors represent different components of MAP βi. Figure 3.5 shows individual

plots of the online and batch estimates for four representative components of MAP βi

in blue. We also plot the absolute difference between the batch and online estimates

in green on the same plot on the right (green) axis. As we expect, after the parameter

estimates stabilize, this difference steadily tapers off with increasing amounts of data.

In the worst case, the online algorithm requires O(d2) space and O(d2) computa-

tional time to compute the MAP β for each new observation. Note however, that if the

input data has sparsity, which is true of text data for example, the algorithm leverages

this. Let the maximum number of non-zero components in any x be f and assume a

constant number of iterations of the modified Shooting algorithm. In such case, the

practical computational time requirement of the algorithm is O(f2 + md) per obser-

vation. Although the practical memory costs of the algorithm will likely be less than

O(d2), exactly how much less depends heavily on the data, since Ψ (the part of the

sketch dominating the memory requirements) is a weighted sum of outer products of

the xi’s. It is quite possible that even very sparse data may result in the full O(d2)

44

0 2 4 6 8 10

x 10
4

1

0

0.5

−0.5

Figure 3.4: Performance of the online algorithm. Simulated dataset, γ = 100. The
y-axis is the parameter value, the x-axis the number of observations processed, t.

memory requirement.

Here, we highlight the fact that the online algorithm is accurate and practical if the

problem is of low to medium input dimension, but massive in terms of the number of

observations. Appendix 3.C proves non-divergence of the algorithm in the infinite data

limit.

3.5.1 Heuristics for improvement/Issues

While one can also obtain parameter estimates for fixed t using the online algorithm,

multiple passes typically provide better estimates, albeit with increased computational

cost. Denote by β∗ the solution to the exact optimization problem (3.3) for some fixed

t. Since the online algorithm typically initializes itself far from β∗, it is only after pro-

cessing a sufficient number of examples that the online algorithm’s term approximations

will start being taken closer to β∗. The update formulae, (3.5), reveal that for values of

i < t, both Ψi and θi are (comparatively) smaller in magnitude than their respective

final values, Ψt,θt. However, the amount of regularization remains relatively fixed at

45

0 5 10

x 10
4

0

0.2

0.4

0 5 10

x 10
4

0

0.5

1

0 5 10

x 10
4

0

0.02

0.04

0 5 10

x 10
4

−0.4

−0.2

0

0 5 10

x 10
4

−0.4

−0.2

0

0 5 10

x 10
4

0

0.005

0.01

0 5 10

x 10
4

0

0.005

0.01

0 5 10

x 10
4

0

0.005

0.01

Figure 3.5: Slightly more detailed version of Figure 3.4. The panels show four rep-
resentative parameters from that figure, also showing tapering L1 loss between the
online and batch algorithm estimates on the right axis (in green). Simulated dataset,
γ = 100. Once again, the (left) y-axis is the parameter value and the x-axis the number
of observations processed, t.

γ‖β‖1. Hence, if the online algorithm is initialized at β0 = 0, for any i < t, the output

MAP estimate βi will be more shrunk towards zero than β∗. Figure 3.4 illustrates this

for smaller values of t where the solid lines (approximate MAP estimates) are closer to

zero than the dashed lines (exact batch estimates).

This suggests the following two heuristics to improve the quality of estimates from

the online algorithm. The first is to increase the amount of regularization gradually as

the algorithm processes observations sequentially (via a schedule, linearly say, ∝ t from

zero initially to the specified value γ at the end of the dataset). Less regularization of

the first few observations somewhat mitigates the effect of taking term approximations

at shrunken parameter estimates.

The second heuristic is for the online algorithm to keep a block of observations in

memory. The algorithm then uses the value of the parameter estimates after having

seen/processed all the observations in a block to update the sketch for the whole block.

46

t = 2x104 t = 6x104 t = 105

β
true

Batch Online Batch Online Batch Online

0.259 0.244 0.242 0.248 0.247 0.254 0.253
0.761 0.700 0.690 0.743 0.739 0.740 0.737
-0.360 -0.360 -0.356 -0.401 -0.399 -0.394 -0.393
0.876 0.980 0.966 0.918 0.913 0.922 0.919
0.913 0.920 0.907 0.920 0.916 0.931 0.929
-0.302 -0.275 -0.270 -0.327 -0.324 -0.317 -0.315
-0.820 -0.826 -0.814 -0.806 -0.802 -0.819 -0.816

0 0 0 -0.010 -0.010 -0.005 -0.005
0 0.050 0.049 0 0 0.013 0.013
0 0.038 0.037 0.014 0.014 0.013 0.013

-0.319 -0.298 -0.294 -0.318 -0.316 -0.320 -0.319
L1 Norm 0.066 0.025 0.016

Table 3.1: Table with columns showing values of βtrue, and the MAP estimates of β

obtained by the batch algorithm and the online algorithm, for increasing amounts of
data on the simulated dataset. To aid assessing convergence of the online to the batch
estimates, we show the value of the L1 norm of the adjacent vectors (batch vs. online
estimates) in the last row. For this example, γ = 10 (logistic link function).

Note that this will involve keeping track of the corresponding updates to the sketches

for the block. In experiments not reported here, both of these heuristics improve the

final online estimates somewhat.

One possibility for improving upon the O(d2) worst case computational requirement

of the online algorithm is as follows. In the infinite data case, in order to obtain spar-

sity in parameter estimates, the amount of regularization must be allowed to increase

as observations accumulate—an increasingly weighty likelihood term will inundate any

fixed amount of regularization. In this setting (where we have the freedom to choose

the amount of regularization), we can use exactly the same quadratic approximation

machinery to pick the value of γ that minimizes the approximate one-step look ahead

predictive error (the expressions for approximating ramp loss would be almost identi-

cal to those for the log-likelihood). The resulting scheme has the flavor of predictive

automatic relevance determination as presented in Qi et al. (2004).

The worst caseO(d2) memory requirement of the online algorithm, however, presents

a greater challenge. In the next section we outline a multi-pass algorithm based on the

same sequential quadratic approximation that improves the accuracy of estimates when

applied to finite datasets and also uses less memory than the online algorithm.

47

3.6 A multi-pass algorithm

Continuing with the heuristic for the online algorithm, taking all term approximations

at the final online algorithm MAP βt value would certainly produce better estimates

of Ψt,θt that would consequently result in a better estimate of β∗.

Therefore, for fixed datasets where computational time restrictions still permit a

few passes over the dataset, this suggests the following algorithm, which we will refer

to as the MP (Multi-Pass) algorithm: Initialize β0 = θ0 = 0, Ψ0 = 0, z = 1. The

quantity z will count the number of passes through the dataset. Compute Ψt,θt by

the steps in Online Algorithm (Algorithm 2), except take all term approximations at

the fixed value βz. Note that consequently there is no need for the shooting algorithm

during the pass through the dataset. Once a pass through the dataset is complete,

compute a revised estimate of β∗ by running modified Shooting, i.e., set βz+1 =modified

Shooting(Ψt,θt,βz, γ). Iteratively loop over the dataset, appropriately incrementing

z.

Although not strictly comparable, the MP algorithm is very similar to Expectation

Propagation (Minka, 2001), where passes through the dataset result in better term

approximations, and hence a better final estimate of the MAP p(β|Dt). Like EP, the

above scheme typically requires only a few passes through the dataset to converge. For

a constant number of passes, the MP algorithm has the worst case computational time

requirement of O(td2) to do an equivalent batch MAP β estimation. Once again, if the

dataset is sparse, this cost is closer in practice to O(tf2 +md).

The worst case memory requirement of the MP algorithm is O(d2), which is fixed

with respect to t (EP requires explicitly storing term approximations and thus has

memory costs O(t)). The next subsection presents a modification of the MP algorithm

that reduces this worst case memory requirement.

3.6.1 A reduced memory multi-pass algorithm

The key to reducing the memory requirements of the algorithm in the previous subsec-

tion is exploiting the sparsity of β∗. Towards this end, consider the modified Shooting

48

algorithm upon convergence; say βMAP is the sparse converged solution Shooting ob-

tains with inputs Ψ,θ and γ. Now consider the smaller system obtained by only retain-

ing those rows of the vectors, and also corresponding columns for matrices, for which

the components of βMAP are nonzero (denoted with a)̃. The important observation

is that the solution to the reduced size system β̃MAP , obtained using Ψ̃, θ̃ and Ω̃, has

exactly the same nonzero components as βMAP obtained for the full system.

We use this fact to derive the RMMP (Reduced Memory Multi-Pass) algorithm,

Algorithm 3. The core of the algorithm is the same as before. However, we now keep

track of a much smaller matrix Ψ̃, while also keeping track of the original vectors θ and

Ω. The update for θ is unchanged and Appendix 3.B shows how to perform the update

for Ω in small space. The central idea is to use the optimality criteria for the Shooting

algorithm to determine which components of β to keep track of (call this set S, the

active set, which is fixed during every iteration). Specifically, we set S = {j : |Ωj | ≥ γ},

i.e., the set of variables that are either nonzero and optimal or variables that violate

optimality in every pass (the corresponding nonzero elements of the vectors/matrices

are denoted by their previous symbols but with a˜above them).

A desirable consequence of the setup is that no new approximation is introduced.

The search for the optimal parameter values is slightly more involved though, now

proceeding iteratively by first identifying candidate nonzero components of βMAP , and

then refining the estimates for these components. We can employ the same stopping

criteria as for modified Shooting algorithm.

Note that memory requirements are now O(d + k2), where k is the number of

variables in the largest active set. However, we can be even more stringent and set k

to be a user specified constant provided k is bigger than the final number of nonzero

components of β∗. Typically, setting k very close to this limit results in some loss of

accuracy and the cost of a few more passes over the data for convergence. The worst

case computational requirements for a constant number of passes, are still O(td2) to do

an equivalent batch MAP β estimation and in a manner similar to before, practically

better reflected by O(t(k2 + f2) + kd).

49

Algorithm 3: The RMMP algorithm.

Data: fixed dataset Dt, γ.
Result: βz, the MAP estimate of β that solves (3.3).
Initialize β0 = 0, S = {}, z = 1.
while not converged do

Set θ = 0, Ψ̃ = 0, i = 1.
for i = 1, 2, . . . , t do

Get i’th observation (xi, yi).
Obtain quadratic approximation to term likelihood at βz−1, i.e., obtain
ai, bi.

Ψ̃← Ψ̃ + ai
˜(xix

T
i).

θ ← θ + bixi.
Update Ω.

end

βz ← modified Shooting(Ψ̃, θ̃, β̃z−1, γ).
Obtain new active set S = {j : |Ωj | ≥ γ}.
z ← z + 1.

end

We now draw attention to a few practical considerations about the RMMP algo-

rithm. The first is that although we consider initializing the parameter vector to zero,

β0 = 0, better guesses of β0 (guesses closer to the MAP β) would likely result in less

passes for convergence. Further, given we do initialize at zero, the first pass is com-

pleted very rapidly. This is because no outer products are computed, since the active

set is initialized as the empty set. Indeed in this case the first pass is used simply to

determine the size and components of the active set; the parameter estimates for the

next iteration are still zero, β1 = 0. Typically, setting the reduced memory parameter

k to be larger than this first active set size results in further RMMP iterations mimick-

ing iterations of the MP algorithm. This is seen by observing two facts. One, for both

algorithms, the only components that change in successive iterations are those in the

active set (components that are either non-zero and optimal or not optimal). Two, in

a typical search path for the MAP β, the size of the active set decreases (and finally

stabilizes) as the MAP β is honed in on. Both of these observations together imply that

if we start the RMMP algorithm with enough memory allotted to look at all possibly

relevant β components, we will follow the MP search path (as a motivating example,

consider that setting k = d results in the MP algorithm exactly).

50

Another consideration is a very useful practical advantage of the proposed algorithm:

knowledge of Ω implies the practitioner can confirm when convergence to β∗ has/has not

occurred. We also point out that in practice, for numerical stability, slightly expanding

the active set seems to be a good heuristic. In our experiments that follow, we do so

only if we have extra space (if k > |S| for any iteration) in two ways: 1. We retain in

the active set variables that were in the previous active set and, 2. we add to the active

set components that are close to violating optimality (close in terms of a threshold,

τ < 1. This amounts to replacing the rule in Algorithm 3 with S = {j : |Ωj | ≥ τγ}).

The next section describes results we obtained on some simulated as well as real

examples using the proposed algorithms.

3.7 Experiments

We now present examples illustrating the application of the MP and RMMP algorithms

to simulated datasets, where we control the data generating mechanism, and some

real datasets. We make logistic regression comparisons to results obtained using BBR

(Genkin et al., 2003). BBR is publicly available software for Bayesian binary logistic

regression that handles the Laplacian prior. We make probit regression comparisons to

results obtained using a batch EM algorithm for Laplacian prior based probit regression

(a slightly modified version of the algorithm in Figueiredo and Jain, 2001). We generally

do not present prediction accuracy results here as our goal is to obtain accurate, i.e.,

close to batch, parameter values. What we wish to accomplish with the experiments

is demonstrate practical efficiency and applicability of the algorithms. In so doing

and by obtaining essentially identical parameter estimates to batch algorithms, our

predictive performance will mirror those of the batch algorithms. Several papers provide

representative predictive performance results for L1-regularized classifiers, for example,

Genkin et al. (2003); Figueiredo and Jain (2001).

We carried out all the experiments on a standard Windows OS based 2Ghz processor

machine with 1GB RAM. For all experiments we set the modified Shooting convergence

tolerance to be 10−6, and τ = 0.8 (for experiments involving the RMMP algorithm).

51

We use the following datasets:

• Simulated datasets: d=11, t=10,000. The data generating mechanism is either

a probit or logistic regression model with 11 known parameters, of which three are

intentionally set as redundant variables (set with zero coefficients in the model). For

the experiments with the online algorithm (Figure 3.4, Table 3.1), we used the same

model parameters as above, but with t = 100, 000 and only a logistic regression model.

• ModApte training dataset: d = 21, 989, t = 9, 603. This is a text dataset, the

ModApte split of Reuters-21578 (Lewis, 2004). We examine one particular category,

money-fx, to which we fit a logistic regression model.

• BIG-RCV dataset: d = 288, 062, t = 421, 816, a dataset constructed from the RCV1-

v2 dataset (Lewis et al., 2004). It consists of the training portion of the LYRL2004

split plus 2 parts of the test data (the test data is made publicly available in 4 ≈ 350

MB parts)—see Figure 3.6. We also use just the training portion of RCV1-v2 in some

experiments. RCV1-v2 training dataset : d = 47, 152, t = 23, 149 (the features in this

dataset are a particular subset of the features in BIG-RCV). Our results are for a single

topic “ECAT”, whether or not a document is related to economics.

3.7.1 Results

The small dimensional simulated dataset highlights typical results we obtain with the

MP algorithm (the RMMP algorithm is not of practical significance in this case).

With very few additional passes over the dataset, denoted as before by the variable

z, we obtain parameter estimates practically identical to those obtained by the batch

algorithm—see Table 3.2. Each column in the table is an 11-dimensional vector which

is the MAP β estimate of the parameter values. The table reports typical results we

get for both link functions and over a wide range of γ values. As a guide to assessing

convergence, the Tables show the L1 norm of the difference between the batch algo-

rithm estimates (EM or BBR as appropriate) and the MP (or RMMP, as appropriate)

algorithm iterates.

We next examine the first real dataset, the training data for the ModApte split of

Reuters-21578 (Lewis et al., 2004). This is a moderate dimensional (d = 21989 features)

52

Figure 3.6: Schematic showing the construction of the various RCV1-v2 based datasets
used in the experiments. The solid line bordered rectangles show the data as publicly
available, the dashed-line bordered rectangles show the datasets we assembled. The
shaded portion of the data is used only during testing.

yet manageable sized dataset with t = 9603 labelled observations. The features of this

dataset are weighted term occurrences and it is quite sparse, as is typical for text data.

The batch EM algorithm for probit regression is prohibitively expensive on this dataset

as it involves inverting a very high dimensional matrix, but we can run BBR to obtain

batch logistic regression results. Hence we focus our results on logistic regression for this

dataset. We examine two reasonable settings for the regularization parameter, γ = 10

and γ = 100. For γ = 10, BBR returns 150 nonzero components and for γ = 100, the

MAP β BBR returns has 31 non-zero components. Since the dataset is sparse, we are

able to apply both the MP and RMMP algorithms.

For γ = 100, the MP algorithm converges in about z = 6 iterations to parameter

values indistinguishable from BBR—see the left three columns in Table 3.3. We next

applied the RMMP algorithm to this dataset. Examining the size of the first active set

reveals setting k ≈ 3000, would give exactly the same results as the MP algorithm—

see typical effects of changing k in Table 3.4 for γ = 10. We point out that this is a

huge reduction in the worst case memory required, an approximately 98% reduction

53

Probit link function, γ = 10 Logistic link function, γ = 100
EM MP BBR MP

z = 1 z = 2 z = 3 z = 1 z = 2 z = 3
0.252 0.207 0.250 0.252 0.178 0.168 0.178 0.178
0.764 0.614 0.755 0.764 0.450 0.422 0.450 0.450
-0.318 -0.263 -0.314 -0.318 -0.124 -0.1161 -0.124 -0.124
0.834 0.667 0.824 0.834 0.713 0.666 0.712 0.713
0.894 0.719 0.884 0.894 0.656 0.613 0.655 0.656
-0.304 -0.243 -0.301 -0.304 0 0 0 0
-0.782 -0.627 -0.773 -0.782 -0.511 -0.477 -0.510 -0.511
-0.039 -0.037 -0.039 -0.039 0 0 0 0
-0.036 -0.029 -0.036 -0.036 0 0 0 0

0 0 0 0 0 0 0 0
-0.327 -0.266 -0.324 -0.327 -0.030 -0.028 -0.030 -0.030

L1 Norm 0.878 0.050 0 0.172 0.003 0

Table 3.2: Table with columns showing values of the MAP estimates of β obtained by
the batch algorithms (EM on the left half, for probit regression and BBR on the right
half for logistic regression) and three successive iterates of the MP algorithm applied
to the simulated dataset. The final row displays the L1 norm of the difference between
the batch algorithm estimates (EM or BBR as appropriate) and the MP algorithm
estimates. The results shown here are representative of those obtained for other values
of γ as well.

(k = 3000 vs. d = 21989 originally). Note also that the size of k should be compared

relative to the nonzero components for MAP β (150 and 31 for γ = 10 and γ = 100

respectively).

We further test the limits of the algorithm, by running it with k = 300 for γ = 100.

The RMMP algorithm performs very well, requiring about z = 7 passes (only two more

than the MP algorithm) to converge to correct parameter values. For γ = 10, where

k = 300 is small (only twice the number of non-zero components in the MAP β), once

again the same kind of results hold, with the MP algorithm needing about 7 passes

over the dataset and the RMMP algorithm needing about 15 passes to converge to the

batch β.

Finally, we present results of application of the algorithms to the RCV1-v2 data sets.

For the RCV1-v2 training data (d = 47, 152, t = 23, 149), sparsity enables application

of BBR to obtain the batch MAP β parameter values, as well as the MP algorithm,

although this is quite cumbersome. For γ = 10 (a fairly high amount of regularization),

we find essentially the same qualitative results as the ModApte dataset—it takes about

z = 6 passes through the dataset to obtain indistinguishable parameter values as BBR.

54

j BBR MP RMMP, k = 300
z = 3 z = 5 z = 3 z = 5 z = 7

1 -1.588 -1.527 -1.586 -1.451 -1.573 -1.588
9 1.188 0.957 1.185 0.688 1.143 1.188
13 0.847 0.793 0.846 0.678 0.839 0.847
147 0.813 0.795 0.813 0.696 0.812 0.813
31 0.801 0.618 0.800 0.356 0.772 0.801
...

...
...

...
...

...
...

3 -2.264e-2 -2.127e-2 -2.240e-2 -3.247e-2 -2.062e-2 -2.264e-2
62 -1.757e-2 -2.840e-2 -1.779e-2 -3.346e-2 -2.045e-2 -1.757e-2
2 1.552e-2 1.542e-2 1.548e-2 1.610e-2 1.525e-2 1.552e-2
12 -1.467e-2 -1.956e-2 -1.480e-2 -1.415e-2 -1.643e-2 -1.467e-2
8 1.277e-2 2.870e-2 1.320e-2 2.915e-2 1.776e-2 1.278e-2
L1 Norm 1.691 0.034 3.496 0.4027 3e-4

Table 3.3: Results obtained on the ModApte dataset. The 5 highest and 5 lowest
magnitude non-zero coefficients of MAP β for γ = 100 are shown. In table are the
indices of β, coefficients from BBR and those obtained after a particular number of
passes over the data using the MP algorithm (full memory) and the RMMP algorithm
with k = 300.

j BBR RMMP, z = 8
k = 3120∗ k = 2000 k = 1000 k = 600 k = 300

292 2.695 2.695 2.695 2.695 2.695 2.699
20 2.268 2.268 2.260 2.260 2.259 2.273
1 -2.010 -2.010 -2.009 -2.009 -2.009 -2.005

341 1.755 1.755 1.754 1.754 1.754 1.742
147 1.572 1.572 1.572 1.572 1.572 1.568
...

...
...

...
...

...
...

66 4.943e-3 4.944e-3 4.849e-3 4.821e-3 4.849e-3 3.224e-3
134 4.488e-3 4.479e-3 4.720e-3 4.756e-3 4.712e-3 1.677e-2
267 -2.057e-3 -2.068e-3 -1.863e-3 -1.897e-3 -1.852e-3 -3.427e-3
28 -1.652e-3 -1.644e-3 -1.542e-3 -1.560e-3 -1.537e-3 -1.991e-3
56 -1.518e-4 -1.540e-4 -3.059e-4 -2.983e-4 -3.121e-4 -8.640e-4
L1 Norm 1.4e-3 0.047 0.044 0.048 1.269

Table 3.4: Results for the ModApte dataset: Illustrating the effect of changing k. The
5 highest and 5 lowest magnitude non-zero coefficients of MAP β for γ = 10 are shown.
In table are the indices of β, coefficients from BBR and those obtained after 8 passes
over the data using the RMMP algorithm. * For k = 3120, RMMP behaves the same
as the MP algorithm.

55

γ = 10 γ = 100, k = 2500
β BBR RMMP, k = 1500 β RMMP

index z = 2 z = 5 z = 10 index z = 10
12220 18.065 0 18.084 18.065 12220 17.234
27407 9.909 7.988 9.904 9.909 37665 -11.901
37665 -8.201 -2.255 -8.118 -8.201 43626 8.654
46160 7.144 4.061 7.133 7.144 27407 8.308
5946 6.453 5.142 6.436 6.453 5946 8.215
33192 -6.211 -2.066 -6.159 -6.211 19647 6.326
43626 6.164 4.430 6.157 6.164 39539 5.782
21160 5.661 3.498 5.644 5.661 29641 4.728
19647 5.573 6.587 5.539 5.573 37471 4.621
29641 5.472 4.810 5.473 5.472 41148 4.507
L1 Norm 87.940 0.480 0.001

Table 3.5: RCV1-v2 results. Left portion RCV1-v2 training dataset, right BIG-RCV
dataset.

The RMMP algorithm also gives excellent results in about 10 passes, see the left portion

of Table 3.5 with k = 1500.

For the BIG-RCV dataset (d = 288, 062, t = 421, 816) however, computational and

memory limitations made it impossible to run the batch algorithms on this dataset

(also the MP algorithm). It is precisely for cases like this that the RMMP algorithm

is useful, and we were able to obtain parameter estimates for reasonable settings of

regularization in a few days—see for example, the right portion of Table 3.5.

In order to further make the case for examining massive datasets in their entirety,

we performed the following experiment: We obtained the best possible predictive pa-

rameters using 10-fold cross-validation on the RCV1-v2 training dataset. This is an

expensive computation, involving many repeated BBR training instances for many dif-

ferent values of the regularization parameter (we searched over γ = 0.01, 0.1, 1, 10, 100)

and takes about a day. The final cross-validation chosen β has 1010 non-zero parame-

ters.

We then trained a separate sparse logistic classifier on the BIG-RCV dataset using

the RMMP algorithm with k = 3000 and γ = 40. Setting γ = 40 results in 1015 non-zero

MAP β coefficients which is approximately the same number of non-zero coefficients

as the cross-validation chosen β. This is also an expensive computation requiring a

56

“Optimized” β trained “Naive” β trained
on RCV1-v2 training data on BIG-RCV
Relevant Not Relevant Relevant Not Relevant

Retrieved 38,821 7,415 (83.96%) 40,655 6,017 (87.11%)

Not Retrieved 16,368 (70.34%) 319,994 14,534 (73.67%) 321,392

Table 3.6: This table shows confusion matrices for prediction results on the RCV Test
dataset. The CV β (trained on the RCV1-v2 training data set) results are on the left
and the MAP β (trained on the BIG-RCV dataset, with γ = 30, k = 3000) results
are on the right. Also shown are recall and precision percentages in bold and brackets.
There are approximately 383,000 examples in the test dataset.

few days. Finally, we compare the predictive accuracy of both classifiers on the unused

RCV test set (comprising the unused two portions of the original RCV1-v2 test data).

The results, shown in Table 3.6, demonstrate that using the information in extra ex-

amples, the “unsophisticated” classifier trained on the much larger dataset outperforms

the “optimized” classifier trained on a smaller dataset.

3.8 Conclusions

In this chapter we present an asymptotically convergent online algorithm that builds

sparse generalized linear models for massive datasets. We also present efficient multi-

pass algorithms that examine observations sequentially and thus enable learning on

massive datasets. Both algorithms exploit sparsity of input data. We effectively applied

the algorithms to very large, sparse datasets, for which state-of-the-art batch algorithms

are impractical/cumbersome, and our results show that examining such datasets in their

entirety can lead to better classifier performance.

Some areas of further research that this work opens up are: extension of the algo-

rithms for a hierarchical prior model so that the choice of regularization is less impor-

tant, the possible application of our methods to kernel classifiers, and applications to

multi-class classification problems.

.8

57

3.A Log-likelihood Taylor Approximations

Here we show the Taylor expansions for the quadratic approximations to the log-

likelihood function. To simplify notation, let c(β) = βTxi and ĉ = βT
i−1xi. The

link function (we will restrict analytical results to the logistic and probit link functions)

is Φ(z) as before and we denote its first and second derivative, with respect to z, by

Φ′(z) and Φ′′(z) respectively.

Consider the case where yi = 1:

log Φ(c) ≈ log Φ(ĉ) + (c− ĉ)Φ
′(ĉ)

Φ(ĉ)
+

(c− ĉ)2
2

(
Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

∝ Φ′(ĉ)
Φ(ĉ)

c+
1

2

(
Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)
c2 − ĉ

(
Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)
c

so that:

ai =
1

2

(
Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

and

bi =
Φ′(ĉ)
Φ(ĉ)

− ĉ
(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)
.

Analogously, when yi = 0:

log(1−Φ(c)) ≈ log(1−Φ(ĉ))− (c− ĉ) Φ′(ĉ)
1− Φ(ĉ)

− (c− ĉ)2
2

(
Φ′′(ĉ)

1− Φ(ĉ)
+

(
Φ′(ĉ)

1− Φ(ĉ)

)2
)

so that:

ai = −1

2

(
Φ′′(ĉ)

1− Φ(ĉ)
+

(
Φ′(ĉ)

1− Φ(ĉ)

)2
)

and

bi = − Φ′(ĉ)
1− Φ(ĉ)

+ ĉ

(
Φ′′(ĉ)

1− Φ(ĉ)
+

(
Φ′(ĉ)

1− Φ(ĉ)

)2
)
.

58

For the probit link function:

Φ(z) =

∫ z

−∞

1√
2π
e−x2/2dx

Φ′(z) =
1√
2π
e−z2/2

Φ′′(z) =
−z√
2π
e−z2/2,

whereas for the logistic link function:

Φ(z) =
ez

1 + ez

Φ′(z) =
ez

(1 + ez)2

Φ′′(z) =
(ez)(1− ez)
(1 + ez)3

.

These expressions then allow us to compute the ai, bi in the cases needed.

3.B Derivation of the Shooting Algorithm

In this appendix we derive the modified Shooting algorithm, Algorithm 1 and discuss

its efficient implementation. We derive Shooting by performing a simple subgradient

analysis of the system. Reviewing concepts very briefly, the subgradient of a convex

function f(β) is defined as:

∂f(β) = {s|f(β + ∆) ≥ f(β) + s|∆,∀∆ ∈ R}.

i.e. the subgradient is the entire range of slopes s, such that a line through (β, f(β))

with slope s contains f in its upper half-space. This is a generalization of the derivative

which reduces to the derivative, ∂f(β) = ∂f(β)
∂β whenever f is differentiable. As a

simple example, the subgradient of f(β) = |β|, the absolute value function (which is

59

non-differentiable at β = 0) is:

∂f(β) =

{−1}, β < 0

[−1, 1], β = 0

{1}, β > 0

As one expects, analogous to optimality conditions resulting from setting the gradient

of a differentiable function to zero, optimality conditions for non-differentiable functions

result from restrictions on the subgradient. In particular we appeal to the following

result from non-smooth analysis:

Theorem β̂ is a global minimizer of a convex function f(β) if and only if 0 ∈ ∂f(β̂).

Now to our particular problem. We need to find β that is a solution to:

max
β

(
βTΨβ + βT θ − γ‖β‖1

)
.

The convexity of the problem allows us to make incremental progress towards the

maxima coordinate-wise. Computing the j’th component of the subgradient of the

function (keeping all other components fixed) we get:

∂
∂βj

(βTΨβ) + ∂
∂βj

(βT θ)− γ∂(
∑d

j=1(|βj |)

= 2(Ψβ)j + θj − γ∂(|βj |)

= 2Ψjjβj + 2(Ψ′β)j + θj − γ∂(|βj |)

where (Ψ′β)j is the j’th component of the vector Ψ′β and Ψjj refers to the (j, j)’th

element of the matrix Ψ. The second equation follows from the first as the subgradient

of a differentiable function is just its derivative and since matrix Ψ is symmetric (it

is just a weighted sum of outer products). Now if we plug in the subgradient of the

non-differentiable absolute value function, setting Ωj = 2(Ψ′β)j + θj , we obtain the

60

subgradient of the optimization problem (whose j’th component we denote by ∂βj) as:

∂βj =

{2Ψjjβj + Ωj + γ}, βj < 0

[Ωj − γ,Ωj + γ], βj = 0

{2Ψjjβj + Ωj − γ}, βj > 0

This is a piecewise linear function with fixed negative slope 2Ψjj and a constant jump

of fixed size 2γ at βj = 0 (Ψjj can be proven to always be negative by looking at the

update formula for Ψ and using the fact that ∀i, ai < 0). Using the optimality criteria

(now for maximization since −|βj | is a concave function) naturally leads to the modified

Shooting algorithm, illustrated in Figure 3.7.

Now to questions regarding the efficient implementation of this algorithm. In the

modified Shooting algorithm, after each component update (change in βj) we need to

modify Ω (the update Ω step in the algorithm). This can be implemented efficiently

using the following result (similar to the trick detailed in Minka, 2001):

Ωnew = Ωold + 2Ψ′
(.j)(∆βj)

where ∆βj is the change in βj and Ψ′
(.j) is the j’th column of Ψ′. Thus each component

update of Shooting can be done in O(d) computational time. Now, if as before the

maximum number of non-zero components of β along the solution path to MAP β is

m, only m such updates will need to be made, giving a total time requirement per

iteration of O(md).

Finally we detail how to carry out the Ω update in small space given we don’t

explicitly store the complete matrix Ψ, but rather only a submatrix of it Ψ̃, based on

the active set of components S, as required in Algorithm 3. Note that since we are

discussing the MP algorithm, the location where we take the quadratic approximation,

βi−1, is constant throughout the pass through the fixed dataset, Dt. We exploit the

fact that for constant βi−1, you don’t explicitly need the matrix Ψ (or Ψ̃) to determine

61

0

0
β

j
=0

Ω
j
 + γ

Ω
j
 − γ

β
j

∂β
j

(a)

0

0
β

j
<0

Ω
j
 + γ <0

Ω
j
 − γ

β
j

∂β
j

(b)

0

0

β
j
>0

Ω
j
 + γ

Ω
j
 − γ >0

β
j

∂β
j

(c)

Figure 3.7: Illustration of cases occurring in the Shooting algorithm (a) If |Ωj | ≤ γ
the constant portion of the subgradient contains zero. In this case, set βj = 0 (b) If

instead, Ωj < −γ, the optimality conditions will be satisfied by setting βj =
−γ−Ωj

2Ψjj
(c)

The case analogous to (b) but when Ωj > γ. Here the subgradient is set equal to zero

when βj =
γ−Ωj

2Ψjj
.

62

Ω. Indeed, after going through all the observations in the dataset (pass z, say):

Ω = 2Ψ′βz−1 + θ = 2

(
t∑

i=1

ai

(
xix

T
i − diag(x2

i)
)
)

βz−1 +
t∑

i=1

bixi,

which follows from the definition of Ω,θ and Ψ′. In the above equation, diag(x2
i) is a

d×d matrix zero everywhere except the diagonal entries, which consists of the elements

of the vector xi squared component-wise. This leads to the following equation for Ω:

Ω = 2
t∑

i=1

ai(β
T
z−1xi)xi − 2

t∑

i=1

ai(x
2
i βz−1) +

t∑

i=1

bixi,

where (x2
i βz−1) is a vector whose entries are x2

i multiplied by βz−1 component-wise.

Note the first sum is just a weighted combination of the input data (βT
z−1xi is a scalar).

Thus, our final update formula results:

Ωnew = Ωold + (2aiβ
T
z−1xi + bi)xi − 2ai(x

2
i βz−1).

As can be seen, computing this update per observation takes time and space O(d), and

having restricted the number of non-zero components of β to k, a total computational

cost per iteration of Shooting to O(kd).

3.C Non-divergence Proof Sketch

We present a proof sketch for the non-divergence of the online algorithm in the infinite

data limit. The intuition for convergence to the optima is as follows: as t → ∞,

the Bayesian central limit theorems dictate that the posterior distribution tends (in

distribution) to a multivariate Normal (with ever shrinking covariance, Bernardo and

Smith 1994). Thus, fewer and fewer parameters are required to encode the posterior

distribution as more and more data is added (in the limit, this only the vector of βMLE ,

the maximum likelihood value of the parameters).

Suppose now that the online algorithm converges to a particular fixed point. In the

infinite data limit, an infinite number of term approximations are taken at this fixed

63

point. Now, our Taylor polynomial based approximation preserves both the function

value and its derivative, and an infinite number of approximations are jointly maximum

at this fixed point. This implies the fixed point is an optima of the posterior distribution.

Thus, if the approximation converges to a fixed point, it is the correct optima

location. The above is a modification of the fixed point Lemma in the paper on Laplace

Propagation (Smola et al., 2003). One can also prove unbiasedness which follows from

our update rules and a minor modification of a theorem in Opper, (1999). Even though

Opper derives his results based on a Gaussian prior on the parameters β (corresponding

to L2 regularization), the general format of Opper’s theorem is still applicable in our

case because, in the infinite data limit, the prior is inconsequential.

References

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley and Sons, Inc.,
1994.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing, 20(1):33–61, January 1999.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals
of Statistics, 32(2):407 – 499, 2004.

M. A. T. Figueiredo and A. K. Jain. Bayesian learning of sparse classifiers. 1:35 – 41,
2001.

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computational
and Graphical Statistics, 7(3):397–416, 1998.

A. Genkin, D. D. Lewis, D. Madigan, S. Eyheramendy, and W.-H. Ju.
Sparse bayesian classifiers for text categorization, April 30 2003. URL
http://www.stat.rutgers.edu/ madigan/PAPERS/shortFat-v13.pdf.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the
support vector machine. Journal of Machine Learning Research, 5:1391 – 1415, 2004.

T. Jaakkola and M. Jordan. Bayesian parameter estimation via variational methods.
Statistics and Computing, 10:25 – 37, 2000.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical
Association, 90:773 – 795, 1995.

B. Krishnapuram, L. Carin, M. A. T. Figueiredo, and A. J. Hartemink. Sparse multi-
nomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans-
actions on Pattern Analalysis and Machine Intelligence, 2005. To appear.

64

D. D. Lewis. Reuters-21578 text categorization test collec-
tion: Distribution 1.0 readme file (v 1.3), 2004. URL
http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research, 5:361 – 397,
2004.

D. J. C. MacKay. Probable networks and plausible predictions: a review of practical
bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6:469 – 505, 1995.

T. P. Minka. Expectation propagation for approximate bayesian inference. In Jack
Breese and Daphne Koller, editors, Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence (UAI-01), pages 362–369, San Francisco, CA,
August 2–5 2001a. Morgan Kaufmann Publishers.

T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science, 2001b.

A. Moore and P. Komarek. Logistic regression for data mining and high-dimensional
classification, April 29 2004. URL http://citeseer.ist.psu.edu/652603.html.

M. Opper. A bayesian approach to on-line learning. Technical report, 1996.
NCRG/99/029.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection
in least squares problems. IMA Journal of Numerical Analysis, 20(3):389–403, July
2000.

Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic relevance
determination by expectation propagation. In Proceedings of Twenty-first Interna-
tional Conference on Machine Learning, Banff, Alberta, Canada, July 4-8 2004.

S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics., 19(17):2246 – 2253, 2003.

S. A. Solla and O. Winther. Optimal perceptron learning: an online bayesian approach.
In D. Saad, editor, Proceedings of the Newton Institute Workshop on On-Line Learn-
ing, pages 379 – 398. Cambridge University Press, 1998.

R. J. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

T. Zhang. On the dual formulation of regularized linear systems. Machine Learning,
(46):91–129, 2002.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification
methods. Information Retrieval, 4(1):5–31, 2001.

65

Chapter 4

Finding Predictive Runs for Structured Data

Classification1

4.1 Predictive Runs

In this chapter and the next, we consider regression and classification problems where

the predictor variables are ordered and naturally form groups (structured data clas-

sification problems). For example, in predicting whether or not a vaccinated animal

survives an anthrax challenge, relevant attributes might include a toxin neutralization

assay (TNA) measured at ten different time points (i.e., a group of ten predictor vari-

ables), a protective antigen assay, measured at 20 time points (i.e., a group of twenty

predictor variables), and vaccine dilution (i.e., a group containing a single predictor

variable). We believe that many regression and classification applications exhibit such

structure and we describe several in what follows.

Standard modelling approaches that ignore the group structure or ordering can lead

to models that provide good predictive performance but make little sense. For example,

applying feature selection to the problem above might result in selecting TNA predictor

variables corresponding to measurements at weeks 2, 8, and 48 and dropping the mea-

surements at weeks, 4, 6, 12, 20, 32, 40, and 52. Similarly, feature selection might result

in selecting values of other assays at seemingly arbitrary timepoints. Since the assay

measurements are generally serially correlated, small perturbations to the training data

often lead to the selection of a drastically different set of predictor variables. We argue

that in many applications, it makes more sense to select (or omit) contiguous “runs”

of predictor variables - for example, TNA measurements from week 2 through week 8.

1The basic content in this chapter has appeared in “Finding Predictive Runs with LAPS”, Balakr-
ishnan S. and Madigan D., submitted manuscript, 2007.

66

Figure 4.1: Typical classification problem setup. Plotted are 4 examples, two each
drawn from the two different classes (shown in red dotted and blue solid lines). Also
shown in the figure are the 3 different groups (the differently shaded and delineated
bands x.1,x.2,x.3) and potential locations for predictive runs.

Again we restrict our focus to binary classification problems. For each example,

given an input vector xi = [xi1, . . . ,xid], we seek to predict the corresponding label

yi ∈ {−1, 1}. Each xij corresponds to a “group,” xig = [x
(1)
ig , x

(2)
ig , . . . , x

(Tg)
ig], Tg ≥ 1(the

group length). Figure 1 shows a problem with three equal-size groups, x.1,x.2 and x.3,

where the second half of the first group (variable indices ∼ 30—60, denoted by I∗) has

some discriminatory power with respect to the two classes (indicated by blue-solid and

red-dotted lines), the second group has no discriminatory power, and the entire third

group (indices I∗∗), is useful, with the possible exception of the first few values.

We also continue to restrict our attention to linear logistic regression models. Within

this hypothesis class, we seek to develop a modelling approach that automatically iden-

tifies the sub-group indices, or runs, I∗ and I∗∗ and the corresponding regression pa-

rameters.

67

4.2 Modelling Predictive Runs

Our work builds on two recent extensions to the original “Lasso” L1-regularized re-

gression models of Tibshirani (1996) 2. The “fused Lasso” (Tibshirani et al., 2005)

addresses problems like ours where the variables are ordered (their development and

experiments are described for inputs with one group, i.e., x = x.1). The fused Lasso

encourages contiguous subgroups of identical coefficients (the corresponding variables

being highly correlated) to be non-zero together. They accomplish this through an

additional L1 penalty (besides the regular Lasso regularization term) on the differences

of successive coefficient values (βk − βk+1 terms). In a sense, what we propose below is

a “soft” version of the fused lasso.

Our work is more closely related to another Lasso extension, the “group Lasso”

(Yuan and Lin, 2006; Meier et al., 2006). Here the emphasis is on adapting the Lasso

sparsity to sets of predictors. In particular, the group lasso either selects or omits

entire groups of variables, where the data analyst pre-specifies what attributes form the

groups. An elegant result of this formulation is that it reduces to the Lasso when all

the variable sets are of size one.

Our proposed approach identifies runs (or contiguous subgroups) of model coeffi-

cients, that are similar (like a soft fused Lasso) and that will be selected together (have

non-zero model coefficients en-block, like the group Lasso). The challenge is that we

neither know the within-group run structure of the attributes, nor the amount of sim-

ilarity within runs beforehand. The following sections outline our approach to these

problems, which essentially consists of modifying the group Lasso penalty to poten-

tially include similarity between coefficients and searching over group partitions into

runs. We call this approach LAPS (the Lasso with Attribute Partition Search).

2The Lasso uses L1-regularization to achieve simultaneous sparsity and complexity control. Genkin
et al. (2004) and others report excellent predictive performance in high dimensional applications within
this modelling framework.

68

4.2.1 The LAPS model

Given hyper-parameters λ (a regularization parameter) and k (a parameter governing

serial correlation of run coefficients), LAPS finds logistic regression coefficients β and

the run structure I such that:

argmin
β,I

nll(β) + λ
J∑

j=1

sj

∥∥∥βIj

∥∥∥
Kj

, (4.1)

where nll(β) = −∑t
i=1 log Φ(−yiβ

Txi), is the negative log-likelihood involving the

logistic link function Φ(z) = ez

1+ez . The training data D = {(xi, yi)}ti=1 comprises

t labeled examples where the input examples, as before, are xi = [xi1, . . . ,xid] and

can be thought of compactly as a single p-dimensional vector (as presented in the

introduction. Thus p = the total number of attributes = sum of the lengths of the d

groups =
∑d

g=1 Tg). The run structure (or partition structure) I comprises the set of run

indices Ij , I = {I1, I2, . . . , IJ}. These run indices, in turn, form a disjoint partition that

covers the entire attribute index range (all groups), thus ∪J
j=1Ij = 1 . . . p, and Iu∩Iv =

0,∀u 6= v. Additionally we impose the requirement that run indices respect all group

boundaries (that is, runs never cross the boundaries between the various x.j for different

js). The Kj matrices are positive definite matrices parameterized by a single scalar k

(subsection 4.2.2 has details). The regularization term involves the Kj matrix norms3

of the run coefficients (for a vector z and a matrix A, ‖z‖A = (zTAz)0.5). Finally, the

sj =
√

0.5(|Ij |+ 1), are scalars factors that “normalize” the prior β variance (more

about this also in subsection 4.2.2).

Figure 4.2 shows the resulting LAPS model applied to a small simulated example

with two groups, where one entire group is discriminative. Whereas the Lasso results

are unsatisfactory, as it finds only two non-zero coefficients among the discriminative

group of correlated variables4, LAPS does exactly what we’d like, finding runs in both

3This matrix norm penalty is the Mahalanobis distance of the run coefficients to the (appropriate-
size) zero vector. In a Bayesian interpretation, zero is the location of the prior mode and the prior
covariance matrix involves, K−1

j . Details can be found in Appendix 4.A. Such matrix norms were
suggested by Yuan and Lin (2006) (and in their references), but all their subsequent modelling and
experiments used only the identity matrix.

4Since the Lasso models all coefficients as exchangeable and strongly favors parsimony, this behavior

69

regions, and giving (lower, but) almost equal predictive weight to the whole group

(which is found to be a single run).

Figure 4.2: Simple example showing proof of concept. In the top portion we plot the
data set used (created by collating different 10-dimensional highly correlated Gaussians
as shown. The correlation boundaries define groups, which are shaded. 20 samples
total, 10 from each class). The two classes are shown in different colors. The bottom
portion of the plot shows the Lasso model coefficients (found using BBR Genkin et al.
2004 with hyperparameter selected by 10-fold CV) and the estimated LAPS model
coefficients and inferred run structure, I (denoted by the bands below the coefficients).
The thin shaded region on the left is for the intercept term, and its coefficient is cropped
out of the y-axis of the bottom portion.

4.2.2 K—“Soft” Fusion

LAPS models use non-identity K matrices which provide them a very flexible set of

modelling choices—all the way from strongly dependent run coefficients (via strong

correlation structure of K) to models where the entire set of coefficients in the run is

exchangeable (K = I).

is expected.

70

We parameterize these Kj matrices by a single scalar k, based on the following as-

sumptions. First, we assume that a-priori all the components of β have equal variance,

regardless of the size of the run they will be in (a Bayesian interpretation is involved,

see Appendix 4.A). Second, since we seek runs on ordered variables, we try to impose

the requirement that consecutive model coefficients in the same run should be simi-

lar. We accomplish this via tri-diagonal Kj ’s. The corresponding K−1
j is a symmetric

positive definite matrix with ones on the diagonal (this ensures the equal variance of

components) and terms in decreasing geometric progression (multiplicative factor k)

proportional to the distance from the diagonal (a Green’s matrix).

Figure 4.3: The effect of k on the prior for 2-D—illustrating soft fusion. Notice how as
k increases, prior mass shifts favoring both parameters to be more like each other.

See Figure 4.3 for a graphical view of how the Bayesian prior varies with respect

to the fusion parameter k on a two-variable size run. The k value rather intuitively

controls how much soft fusion we enforce (for k=0, we obtain the group Lasso). For a

slightly bigger example, consider the matrices obtained for a run of size 4, with k=0.5.

71

Here:

K−1 =

1 0.5 0.25 0.125

0.5 1 0.5 0.25

0.25 0.5 1 0.5

0.125 0.25 0.5 1

and, K =

1.333 −0.667 0 0

−0.667 1.667 −0.667 0

0 −0.667 1.667 −0.667

0 0 −0.667 1.333

.

4.3 Learning LAPS models

We describe the algorithm for fitting full LAPS models (with parameters β, I, k, and

λ) in stages. First, consider the situation where values for k, λ and the run structure

I are known. In this case, given D, λ, I and k, we want to find β such that:

argmin
β

gλ,I,k(β) = nll(β) + λ
J∑

j=1

sj‖βIj
‖

Kj
. (4.2)

We will refer to this as the core LAPS optimization problem. It is a convex optimization

problem and we use a standard block coordinate descent algorithm to solve it (see

Algorithm 1, Meier et al. 2006. We use simple off-the-shelf line search and Newton

solvers)5. Convexity is crucial, and the algorithm results from repeated application of

the optimality criteria (Appendix 4.B provides a sketch of the derivation). Note that

throughout we do not penalize the intercept term β0. Next, consider the search for I

(with λ and k still fixed).

4.3.1 I∗—Run Structure Search

Motivated by the work of Consonni and Veronese (1995), we use a heuristic greedy

procedure for the run structure search. The search starts at an initial I derived using

the core LAPS optimization problem (see Appendix 4.D for details). The search then

proceeds by locally perturbing an existing partition structure to generate a candidate

run structure (see Figure 4.4). We then obtain the optimal β∗ corresponding to this

5Although this is probably not the most efficient algorithm for this problem, in our experiments it
proved to be quite reasonable.

72

Algorithm 4: Core LAPS optimization problem

Data: Training data D, initial β.
Result: β that satisfies Equation 4.2
while Convergence criteria not met do

β0 ← argminβ0
gλ,I,k(β) (Line search for intercept).

for j = 1, 2, . . . , J do

if
∥∥∇nll(β)Ij

∥∥
K−1

j
≤ λsj then

βIj
← 0

else
βIj
← argminβIj

gλ,I,k(βIj
) (by Newton’s method, say).

end

end

end

candidate. We use the optimal objective function value, gλ,I,k(β
∗) (Equation 4.2) to

score the candidates. The search stops when all changes to the existing run structure

result in worse scoring models. Note that our greedy search just involves repeated

solutions of the (efficient) core LAPS optimization problem. Further, since the amount

of regularization is fixed at this stage (λ, k constant), the optimal objective function

value, g, makes a sensible scoring criterion for the models.

4.3.2 Selecting the Hyperparameters

Finally, we propose to search over a discrete grid for the remaining hyperparameters, λ

and k. For each (λ,k) pair, we greedily search over the run structures for locally best

I and β pairs (as outlined in subsection 4.3.1).

Having found β∗ and I∗ for every (λ,k) pair, we now score these locally “optimal”

models. We cannot use the same g function value for scoring across the different grid

points as they have different amounts of regularization. A cross-validation accuracy

based score for instance, makes sense, but may prove computationally infeasible for

even moderate size problems (this would require repeated solutions of the I∗ search

problem for each fold). We instead use an approximate marginal data likelihood based

73

Figure 4.4: Illustrating the I∗ search with a graphical representation of the model
coefficients. Edges (parts of a run) can only occur between adjacent nodes (coefficients)
within the same group (shaded regions, as before). The run structure I, is the set
of all connected components defining the runs, Ijs. Our search strategy works by
sequentially examining all potential or existing edges. Two accepted perturbations
and the corresponding run partitions are shown for the middle group (from the top to
bottom rows).

score (Appendix 4.C).

S(β∗, I∗, λ, k) = nll(β∗) + 0.5 log |Ψ(β∗, I∗)|

+λ
J∑

j=1

sj‖β∗
I∗

j
‖

Kj

−
J∗∑

j=1

log

(
c(|I∗j |)
|Σj |0.5

)

−0.5(nJ∗ + 1) log(2π),

where Ψ(β, I) = XTAX + λ
∑J∗

j=1 sj(‖βIj
‖−1

Kj
Kj − ‖βIj

‖−3

Kj
B), with A being the t× t

diagonal matrix formed by the aii = Φ(β∗Txi)(1−Φ(β∗Txi)) terms, B = bbT (an outer

product of b = Kjβ
∗
I∗

j
vectors. The summation till J∗ is only over the non-zero β∗ run

indices (and nJ∗ is the number of non-zero β∗ indices). Appendix 4.A has expressions

74

for c,Σj .

We compare the model scores S(β∗, I∗, λ, k) over the entire (λ,k) grid and pick the

best model amongst those (as defined, smaller S is better. This then results in values for

λ∗ and k∗). In our experiments we have found this procedure quite robust to variations

in the dataset and parameter settings.

4.4 Experiments

We next apply LAPS models to real and simulated data. We are interested in evaluating

both structural (run partitioning) performance and predictive accuracy. Predictive

performance comparisons are made to Lasso logistic regression (using BBR6, Genkin

et al. 2004, publicly available software).

4.4.1 SIM Data

In our first set of experiments we simulate datasets from three different models, with re-

gression coefficients designed to favor one of regular Lasso, the group Lasso, and LAPS.

The data x ∼ N(0, 1)15, are simulated to be uncorrelated 15-dimensional Gaussian with

mean zero and unit variance. The βtrue are shown in Table 4.1. A large test dataset

(104 examples) was also simulated for each set of regression coefficients. As can be seen,

each set of coefficients favors one of the three models—the first set has no intentionally

long runs (thus favors the Lasso model, SIM1), the second set has runs, but with no

internal similarity (thus favors the group Lasso, SIM2), and the third has runs with

extremely high similarity (SIM3). In all three cases, the coefficients are scaled such that

the Bayes risk, r =
∑t

i=1 min{Φ(βT
truexi), 1 − Φ(βT

truexi)}, on the large corresponding

test dataset is 0.2. In order to assess sample size effects, we also simulate training

datasets of two sizes, small (50 examples, denoted in the results by SM) and large (LG,

500 examples). There is only one group here, which corresponds to the entire set of

predictors, [1—16] (Index 1 is for the intercept).

6http://www.stat.rutgers.edu/∼madigan/BBR

75

Table 4.1: SIM data regression coefficients (βtrue, in columns). The first index corre-
sponds is for the intercept term. The desired runs are shown as blocks in the columns
(same as the blue bands at the bottom of the relevant plots in Figures 4.5,4.6 and 4.7).

β Index SIM1 SIM2 SIM3

1 0 0 0
2 1.1500 0 0
3 0 -1.1609 -0.9540
4 0.5750 0.5804 -0.9540
5 -0.2875 -0.8706 -0.9540
6 0 0.5804 -0.9540
7 0 0 0
8 -0.2875 0 0
9 0.5750 0 0
10 0 -0.5804 -0.4770
11 1.1500 0.2902 -0.4770
12 0 -1.1609 -0.4770
13 -1.1500 0 0
14 0 0 0
15 0 0.8706 0.7155
16 -0.8625 -0.2902 0.7155

The results show that LAPS does a fairly reasonable job of finding non-zero co-

efficient runs7 even with the small datasets, and performs much better on the large

datasets (see the I bands in the plots in the figures). The inferred k∗ parameter also

provides insight, being 0 and 0.99 for SIM2-LG and SIM3-LG, indicating run structure

that is not-at-all and highly similar respectively. Also, predictively, LAPS performs

competitively with the Lasso (see Table 5.28), having small gains and losses in the

expected cases.

7We point out here that the zero coefficient runs aren’t necessarily grouped because the the xs
are uncorrelated and g, is insensitive to zero-coefficients being grouped in a run together (MAP zero
coefficients in any number of runs result in the same g value).

8The error estimates are obtained from the test set for the SIM data (SM/LG 1. . .3) and by 10-fold
CV on BF and NHP(at k∗, V ∗ with standard error shown). V = 2/λ2, is an equivalent paramterization
of λ. V ∗ (and k∗, for LAPS) are found through grid search. The grid for k is consistently set to five
values uniform over the range [0—0.99] (including both end points). The search ranges for V for Lasso
and LAPS are [0.01—1] and [0.1—0.9] respectively for the SIM datasets . For the BF dataset, the
ranges were [0.01—103] and [0.01—1], and [0.05—1], [0.1—0.9] for the NHP data (Lasso and then
LAPS respectively). The Lasso V grid was always chosen at least thrice as fine as the uniform 10 grid
points from the interval for LAPS.

76

Figure 4.5: Lasso vs. LAPS on the SIM 1 dataset. The plots show the true, Lasso and
best LAPS βs and LAPS I (the bands at the bottom of each plot). The intended/true
run structure for the SIM 1 data is also shown in blue bands.

Figure 4.6: Lasso vs. LAPS on the SIM 2 dataset. The plots show the true, Lasso and
best LAPS βs and LAPS I (the bands at the bottom of each plot). The intended/true
run structure for the SIM 2 data is also shown in blue bands.

77

Figure 4.7: Lasso vs. LAPS on the SIM 3 dataset. The plots show the true, Lasso and
best LAPS βs and LAPS I (the bands at the bottom of each plot). The intended/true
run structure for the SIM 3 data is also shown in blue bands.

4.4.2 BF Data

The cylinder, bell, funnel dataset proposed by Saito (1994), is a three class problem,

with one input group variable per example9. The equations describing the x for each

class have both random noise as well as random start and end points for the generating

events of each class, making for quite a lot of variability in the instances. We focus

on just two classes, bell vs. funnel. The class labels roughly describe the shape of

the examples—bells ramp up and then drop at some point sharply, and funnels spike

sharply and then ramp down. As in past studies, we simulated 266 instances of each

class to construct the dataset. Figure 4.8 shows the data and a particular instance of

each class in bold (bells in red and funnels in blue). Once again, there is only one big

group here, consisting the entire set of variable indices (128 predictors).

Both LAPS and Lasso make just one error on one fold in 10-fold cross-validation

9This dataset also appears in the next chapter, and readers may benefit from looking at the figure
in the CBF section.

78

predictive accuracy experiments (Table 5.2). Indeed the best LAPS model is very

similar to the best Lasso model, with k∗=0, see Figure 4.8. However, some salient

properties of the dataset become apparent when examining successive LAPS models

with increasing run cohesiveness (i.e., fixing at λ∗, increasing k). As can be seen in the

figure, the k = 0.99 model seems to imply three specific runs which are discriminative—

the first run is not so strong, occurs early (indices around 15—30) and primarily focuses

on “early” rising bells from the funnels. The next run is the most significant, occurs

right afterwards (from about 35—40) and is the region of the data where the two classes

are most segregated10. Finally, a short positive run around 50 works in combination

with the previous two runs—by this index location, a bell should be on the ascendency

compared to a funnel.

Figure 4.8: Lasso vs. LAPS on the BF dataset. The top portion of this plot shows the
whole dataset (no lines connecting the data points for clarity) and two examples. The
bottom portion plots the Lasso and best LAPS β and corresponding Is. For the other
LAPS models in this BF plot, λ is held fixed and k is varied.

10While the region around 80—100 also appears to be similarly segregated, a careful look reveals it
is actually much more mixed, because some examples for both classes have “fallen” trajectories by this
index location.

79

4.4.3 NHP study

Our final application concerns a vaccine efficacy study. 136 non-human primates

(NHPs) were vaccinated, monitored for a year and then “challenged” with anthrax.

Of the 136 NHPs, 93 survived the challenge and 43 died. Repeated measurements

during the year (and some up to a year after) assessed over a dozen aspects of the pu-

tative immune response. These measurements include an include an immunoglobulin

G enzyme-linked immunosorbent assay (IgG, see Figures 4.9, 4.10), various interleukin

measures (IL2, IL4, IL6), and a so-called “stimulation index” (SI), to name a few, with

the number of measurements varying somewhat from animal to animal (See figures 4.11,

4.12 for some examples). The goal of the study is to understand the predictive value of

the various assays with respect to survival. The assays thus define the groups, and we

search for runs in their time series measurements.

Figure 4.9: IgG assay for a particular dose for all NHPs. In this and plots that follow,
red curves are for NHPs that died and black are for those that survived. The x-axis
plots time (in weeks), while the y-axis plots the assay measurement. In this plot the
two early spikes on the left correspond to booster shots for the vaccine. Notice that
low IgG measurements, especially later in the study, seem predictive of death.

The best LAPS model found with k∗ = 0, looks a lot like the best Lasso model

80

Figure 4.10: IgG assay for all dose levels, for all the NHPs. Again, low measurements
seem to be predictive of death.

Figure 4.11: ED50 assay for all dose levels, for all the NHPs. This is a tumor neutralizing
factor, and again broadly, low measurements seem to be predictive of death.

81

Figure 4.12: IFNeli assay for all dose levels, for all the NHPs. Here, no easily discernable
predictive regions exist. A number of assay timeseries feature the two classes in this
manner.

found. Again, it is instructive to look at the LAPS models obtained by varying k (Fig-

ure 4.13, holding λ∗ fixed). The models are biologically reasonable—high amounts of

antibodies that neutralize the toxin predict survival (IgG, ED50/TNA). High amounts

of interleukins (immune system response/signaling molecules), particularly as time in-

creases, are predictive of death (il4eli, il2m, il4m etc.). Finally, the model also allows

one to find runs that are likely not predictive—see for example the first half of the il6m

assay, which is identified as a single run across different the k values, and consistently

set to zero.

4.5 Discussion

In this chapter we present a model based on the Lasso for finding predictive runs in

particular types of structured classification problems. We provide the details of the

model, an algorithm for inferring its parameters, and results of application on different

types of data. Many extensions of the current work are possible, of which we mention

a few. In this work, we have assumed a flat prior over partition space—it would be

82

Figure 4.13: Lasso vs. LAPS on the NHP dataset.

Table 4.2: Predictive performance—estimated error rates

Data Lasso LAPS

% Err V ∗ % Err V ∗ k∗

SM1 25.43 0.45 27.52 0.28 0
SM2 30.83 0.15 34.38 0.54 0.99
SM3 35.98 0.15 30.62 0.37 0.99
LG1 22.31 0.15 22.09 0.54 0.74
LG2 21.14 0.5 21.09 0.63 0
LG3 21.86 0.35 21.68 0.19 0.99
BF 0.1887 ± 0.6 200 0.1887 ± 0.6 0.45 0

NHP 30.81 ± 11.97 0.2 28.02 ± 10.27 0.46 0

83

interesting to see the effect of various priors on run-partition space. In particular, a non-

parametric prior like the Chinese restaurant process prior (adapted for the ordering of

variables), might provide for an alternative way for the data to “decide” on the number

and type of runs. One could also look at alternatives to the MAP style Bayesian analysis

carried out here—numerical simulation may be used to generate a posterior distribution

on LAPS model outputs. Finally, extending this model to larger problems (in the

number of attributes, the number of training examples and also dimension of structured

data—2-D images, for example) raises interesting computational and methodological

issues.

4.A The LAPS prior

Viewed as a Bayesian prior, the LAPS regularization term corresponds to a product of

multivariate power exponential (MVPE) distributions with power 0.5 Lindsey (1999).

The particular MVPE distribution we use has the following density function (for a

particular run and with mean zero):

f(βIj
|µ = z,Σj) =

c(|Ij |)
|Σj |1/2

exp−1

2

[
βT
Ij

Σ−1
j βIj

]0.5
,

where the normalizing constant contains c(|Ij |) =
|Ij |Γ(|Ij |/2)

π|Ij |/2Γ(1+|Ij |)21+|Ij |
. The covariance

matrix of this distribution is given by: cov(βIj
) = 4Γ(nj+2)

njΓ(nj) Σj = 4(n+ 1)Σj , ∀|Ij | ∈ Z

(|Ij | denotes the size/cardinality of Ij). For LAPS, we set Σ−1
j = 2(nj + 1)λ2Kj . This

results in cov(βIj
) = 2K−1

j /λ2. Since theKj matrices have unit diagonals, the marginal

prior variance of every parameter is identical (and equal to 2/λ2, which is exactly the

Lasso model prior variance). This Σj setting then results in sj =
√

0.5(|Ij |+ 1).

Also, the Kj being tri-diagonal results in approximate structural conditional in-

dependence11. This can be seen by examining an approximating Gaussian graphical

model, which would be found by matching the first and second moments (exactly as

above). The structural zeros in the approximating Gaussian’s inverse covariance result

11True conditional independence is not possible for any non-diagonal inverse covariance due to the
0.5 power in the exponent.

84

in runs being a linear chain graphical model.

4.B Core LAPS problem optimality criteria

There are two distinct optimality cases to check run-wise for a purported solution β∗

of Equation 4.2 (I is given): One, if the run is set to zero β∗Ij
= 0, and two, if all

the elements in the run are non-zero β∗Ij
6= 0. If β∗Ij

6= 0 for the run, the optimality

conditions are derived by simply setting the gradient of the objective function to zero.

If β∗Ij
= 0, we need convex non-smooth analysis results Rockafellar (1970) because

the regularization term is non-differentiable at zero. We will use both the notions of the

subgradient (a tangent plane supporting a convex function, f . Precisely, the subgradient

ξ ∈ R
|z|, of f at z0 is defined to be any vector satisfying: f(z) ≥ f(z0) + ξT (z − z0))

and the subdifferential (∂f which is the set of all subgradients, ξ, at a point. This

collapses to the ordinary derivative when the function is differentiable.). We will also

use the following theorem: β̂ is a global minimizer of a convex function f(β) if and

only if 0 ∈ ∂f(β̂).

Now for β∗Ij
= 0, use the theorem above. For the matrix norm part of the objective

function, the subgradient ξ ∈ R
|Ij | satisfies

∥∥βIj

∥∥
Kj
≥ ξTβIj (by the definition). Now,

consider the (unique) Cholesky decomposition of the positive definite matrix Kj =

RT
j Rj (also define αj = RjβIj). Rewriting the previous condition, we can express the

subdifferential as the set ξj : (βT
Ij
KjβIj)

0.5 = (αT
j αj)

0.5 = ‖αj‖2 ≥ ξT
j βIj = ξTR−1

j αj .

This inequality in turn, holds whenever
∥∥∥(R−1

j)T ξj

∥∥∥
2
≤ 1, which can also be seen to

be equivalent to ‖ξj‖K−1

j
≤ 1 (because K−1

j = (RT
j Rj)

−1 = R−1
j (RT

j)−1). The theorem

then requires that 0 ∈ ∇nll(β)Ij + λsj{ξj : ‖ξj‖K−1

j
≤ 1} be satisfied. This finally

yields:
∥∥∇nll(β)Ij

∥∥
K−1

j
≤ λsj ∀βIj

= 0. Thus the optimality criteria result:

∇nll(β)Ij + λsj

KjβIj

‖βIj
‖

Kj

= 0 ∀βIj
6= 0,

∥∥∇nll(β)Ij

∥∥
K−1

j
≤ λsj ∀βIj

= 0. (4.3)

85

4.C The Approximate Marginal Data Likelihood Score

The S score we use, is based on a Laplace approximation to the posterior distribution.

As anticipated, the non-differentiability of the regularization term at zero complicates

evaluating it. We use an approximation suggested in Shimamura et al. (2006), which

essentially ignores the contribution to the curvature of the posterior by the β∗I∗
j

= 0

components (in other words, performs a Laplace approximation by only considering the

non-zero coefficients/variables—we denote these by the summation till J∗, instead of J

for all the attributes). This rather drastic appearing assumption and a straightforward

second order Taylor expansion of the negative log posterior results in the score we use.

We note here that the assumption is really not as bad as it appears on first glance.

Indeed, the posterior is clearly less curved along zero coefficient axes—this can be

seen from the optimality conditions, Equation 4.3, by looking at the magnitude of the

subdifferential in both cases. Further, simulation studies also show this approximation

to be quite reasonable in practice.

4.D Heuristic for the initial I

Given k and λ the procedure (for a single group) is: 1. For each attribute, fit a group

Lasso model to the outputs with the current neighbors as the only predictors (a list

initially containing just the attribute itself). If the minimum gλ,I,k value (restricted

to only the attributes in the list) of an expanded neighborhood is better than that for

the old neighborhood, update the neighborhood. Otherwise if all expansions result in

poorer g value, stop and record the final neighborhood for that variable. 2. Once the

neighborhoods for all the variables (in the group) have been obtained, the initial run

partition is given by the set of maximal cliques (the largest subgroups where each vari-

able in the clique votes to have the other variable in it’s neighborhood, and vice-versa).

In our experiments, this heuristic performs quite well at very reasonable computational

cost.

86

References

G. Consonni and P. Veronese. A bayesian method for combining results from several
binomial experiments. Journal of the American Statistical Association, 90:935 – 944,
1995.

A. Genkin, D. D. Lewis, and D. Madigan. Large-scale
bayesian logisitic regression for text categorization., 2004. URL
http://www.stat.rutgers.edu/ madigan/PAPERS/.

J. K. Lindsey. Multivariate elliptically contoured distributions for repeated measure-
ments. Biometrics, 55(4):1277 – 1280, 1999.

L. Meier, van de Geer, S, Bühlmann, and P. The group lasso for logistic regression.
Technical report, ETH, Zurich, Switzerland, 2006.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, N.J, 1970.

N. Saito. Local feature extraction and its application using a library of bases. PhD
thesis, Yale University, 1994.

T. Shimamura, H. Minami, and M. Mizuta. Regularization parameter selection in the
group lasso. In COMPSTAT, Capri, Italy, 2006.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society, 67(1):91 – 108, 2005.

R. J. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society, 68(Series B):49 – 67, 2006.

87

Chapter 5

A Non-parametric Approach to Structured Data

Classification1

5.1 Introduction

In this chapter, we continue studying the same structured data classification problem

of the previous chapter, although from a different viewpoint. In particular, we present

an extension to standard decision trees (for example CART, Breiman et al. 1984 or

C4.5, Quinlan 1993) that enables them to be applied to classification problems with

the structured data as inputs. In so doing, we aim to leverage the interpretability

of decision trees as well as their other important benefits like reasonable classification

performance and efficient associated learning procedures.

The application that motivated this work is the same as those of the previous chap-

ter. In particular, a similar vaccine efficacy study was a key motivational example. The

study in question followed thirty vaccinated NHPs for a year and then “challenged” the

animals2. Of the 30 NHPs, 21 survived the challenge and 9 died. Repeated measure-

ments during the year assessed over a dozen aspects of the putative immune response.

These measurements include an IgG assay, various interleukin measures (IL2, IL4, IL6),

and a so-called “stimulation index” (SI), to name a few, with the number of measure-

ments varying somewhat from animal to animal. The goal of the study is again, to

understand the predictive value of the various assays with respect to survival.

Our initial approach to this problem used a logistic regression model (Genkin et al.,

2004) and treated each assay-timepoint combination as a separate input variable. As

1The basic content in this chapter has appeared in “Functional Decision Trees”, Balakrishnan S.
and Madigan D., ICDM, 2006.

2This study was smaller than the study of the previous chapter but otherwise rather similar.

88

0 10 20 30 40 50
0

2

4

6

8
IgG, 9 dead (red), 21 survived (green)

0 10 20 30 40 50
0

1

2

3

4
IL6

Figure 5.1: IgG and IL6 measurements for all 30 NHPs. Green (solid) represents
animals that survived; red (dashed) represents animals that died. The thick curves
represent sample means.

mentioned in the previous chapter, while this provided models with good predictive per-

formance, it resulted in models with biologically meaningless set of predictors selected

such as IgG at week 46, SI at week 38, and IL6 at week 12. The study immunologists

instead sought insights such as “IgG trajectories that rise more rapidly after the 4-week

booster shot and fall more slowly after the 26-week booster lead to higher survival prob-

ability.” In other words, the underlying biology suggests that the shape of the assay

curves should be predictive of survival rather than measurements at specific timepoints.

Figure 5.1, for example, shows IgG and IL6 trajectories. For IgG, comparison of the

thick green curve with the thick red curve shows that higher values are beneficial at

the beginning, then lower values, and then higher values again towards the end. For

IL6, it appears higher values of the curve in general are beneficial. We shall return to

the motivating example in later sections.

More generally, we consider the following multi-class classification problem: the

89

training dataset comprises n labeled training examples, D = {(xi, yi)}ni=1 where xi =

[xi1, . . . ,xid] is a list of d features and yi ∈ {1, . . . , c}, the c labels. We account for

functionally structured input data, by allowing the elements of xi to be vectors/lists

themselves, each representing an instance of a function of some independent variable.

For example, a time series classification problem with only one time-series (or func-

tional) variable of fixed-length T say, as input, would be represented as xi = xi1 in

our setup, with the single feature xi1 = [x
(1)
i1 , x

(2)
i1 , . . . , x

(T)
i1]. Here time would be the

independent variable.

We allow the inputs to be multivariate—meaning there may be more than one

functional variable (i.e., more than one vector/list element of xi) and also allow for

standard (non-functional) discrete/continuous/categorical variables (in this case the

relevant components of xi will be the corresponding scalars/nominal values). Thus,

standard decision trees can be considered a type of special case of the above formulation

where all inputs are restricted to length 1.

5.2 Previous Studies

Past approaches to this problem applying standard machine learning algorithms have

typically relied on some sort of ad hoc and domain specific preprocessing to extract pre-

dictive features. A few previous studies look for interesting “events” in the training in-

stances of the functional variables and then construct auxiliary variables based on them.

These auxiliary variables are then used by either a particular classifier (decision trees,

regression trees and 1-nearest neighbor, Geurts 2001 which retains interpretability), or

generic classifiers (Kadous and Sammut, 2005) (with interpretable results available if

a rule learning classifier is applied), or used in literals as base classifiers combined via

boosting (Gonzalez and Diez, 2004). Another approach is the scheme by Kudo et al.

(1999), which constrains the functional variables to pass through certain regions in

(discretized) space and disallows other regions. There are also techniques that create

features via specialized functional PCA techniques, designed to deal with large data

applications (EEG data) where the functional variables are lengthy and numerous. Fi-

nally, there are support vector machine based approaches that are typically applied

90

by defining an appropriate kernel function for the problem domain (Shimodaira et al.,

2001).

5.3 Candidate Splits For Functional Variables

In order for a decision tree to be able to process functional variables, we first need to

define candidate splits for such variables. In other words, we need to define a procedure

that results in a partition of the space of possible function instances (in a manner similar

to partitions for discrete/continuous/categorical variables). We describe the idea using

the time series example. Consider a binary classification problem, i.e., yi ∈ {1, 2}, and

a functional input variable, a time series of fixed length T , xi1 = [x
(1)
i1 , x

(2)
i1 , . . . , x

(T)
i1].

While many splitting rules can be imagined, we propose the following: consider two

representative curves, xr and xl where xr = [x
(1)
r , x

(2)
r , . . . , x

(T)
r] (and xl is similarly

defined). The (binary) split is defined by the set of function instances that are closer

(in terms of some distance) to one representative curve than the other.

Note that this definition allows for the construction of very flexible partitions. Multi-

way splits are an immediate extension and are quite simply defined by considering more

than two representative curves. The distance function used can be application specific.

In our experiments, we primarily focus on binary splits and two kinds of distance

measures: Euclidean distance and dynamic time warping (DTW) distance. The use of

DTW distance further exemplifies how flexible this kind of split is, enabling function

instances of different lengths to be compared.

Classification with such splits in trees proceeds exactly as with standard decision

trees, and the input test function instance follows the branch corresponding to the

closest representative curve (with leaf nodes as usual holding predicted class labels).

Note that for a given distance measure, different choices for xr and xl lead to dif-

ferent candidate splits. Each candidate split corresponds to a partition of “function

space” into two regions, functions within one region being more similar to each other

than to functions in the other region. Our proposed approach rests on two basic as-

sumptions. First, the partition should be interpretable. That is, the choice of xr and xl

91

and the particular distance measure should lead to sets of functions that correspond to

recognizably homogeneous sets of curves. Second, the true classification rule needs to

be smooth with respect to the chosen distance measure. That is, functional inputs that

are close together according the distance measure should generally belong to the same

output class. What we attempt to show in later sections is that straightforward choices

for xr, xl, and the distance measure lead to functional-split-enabled decision trees with

good classification accuracy and tree structures that provide valuable insights.

5.3.1 Finding Representative Curves

Having provided the intuition for defining the candidate test on the basis of proximity of

the function instances to representative curves xr and xl (quantified in some manner),

we now focus on how these curves can be automatically obtained from the data.

Note that the regularity assumption we make, is equivalent to assuming that the

instances (or curves) cluster in some manner in the input domain. Consequently, a

simple idea is to perform a functional variable-specific clustering, and then use cluster

representatives in the candidate tests. The choice of different clustering procedures may

lead to different decision trees and in general this choice will require some application-

specific consideration.

In our experiments we used two clustering procedures: standard k-means clustering (

k = 2 for binary partitions) with the Euclidean distance function between two instances

of the same length, and a clustering procedure using DTW distances between instances.

With DTW distance, the mean of the curves is not a particulary well-motivated rep-

resentative of a cluster (instances look more like warped/time-shifted versions of each

other than the mean). We instead use an instance as representative of the cluster—in

particular, we perform the following EM-like iterations to find the representatives: a)

Set the cluster representative to be the instance which is closest (has smallest combined

DTW distance) to all the other instances in the cluster. b) Reassign instances to clus-

ters based on their distance to the representatives3. We will refer to these procedures

3Note that this procedure bears resemblance to complete-link hierarchical clustering.

92

as “Euclidean clustering” and “DTW clustering” in the remainder of this chapter.

5.3.2 Choosing Good Splits

While reasonable clustering procedures can provide reasonable representative curves,

most standard clustering algorithms are only guaranteed to converge to locally optimal

solutions. The standard approach to alleviate this problem is to do multiple restarts

(multiplicity m) initialized randomly and pick the tightest clusters found.

Recall that in our application, however, the criterion for “goodness” of a candidate

test is not how tight the found clusters are, but rather how well the representative

curves partition the data class labels. Typical measures of partition purity used include

entropy, information gain and the Gini diversity index. In our experiments we use the

Gini index.

Summing up, in order to find good (high purity) splits for a functional variable

we perform multiple restarts of clustering with random initializations (setting m =

1000, unless noted otherwise) and pick the partition (the representative curves summa-

rize/define this partition) that has highest Gini index. This search procedure can be

easily plugged in to standard divide and conquer decision tree building algorithms like

C4.5 and CART, and Algorithm 5 provides an outline in high level pseudo-code.

Algorithm 5: Search procedure for functional variable split

Data: subset of the training data D.
Result: Representative curves xr,xl that partition the input data Dl, Dr

(D = Dl ∪Dr), score of partition.
Initialize best = [0, φ, φ] (stores [score,Dl, Dr]).
xr,xl = φ.
for j = 1, 2, . . . ,m do

Run clustering procedure with random initialization. Obtain candidate
representative curves and partition.
Compute score (e.g., Gini index using candidate partition).
if score is better than current best score then

Update best,xr,xl.
else

Continue.
end

end

93

5.4 Applications

We now describe applications of our algorithm to both simulated and real datasets (see

Table 5.1 for details). We will first examine three simulated datasets, the cylinder,

bell, funnel dataset (CBF), an extension of it we created (CBF-2), and the control

chart (CC) dataset. Table 5.2 provides some details about the predictive performance

Table 5.1: Dataset Descriptions

Data Src. n df c Tr Protocol

CBF * 798 1 3 128 10-fold CV
CBF-2 * 798 2 2 128 10-fold CV

CC 1 600 1 6 60 10-fold CV
JV 1 370 12 9 7-29 test 270

Bone 2 96 1 2 100 leave one out
NHP * 30 7 2 7-10 leave one out

*: Own/Simulated, 1: UCI KDD Archive (Hettich and Bay, 1999), 2: Ramsay and
Silverman (2002). n: Num. of observations, df : Num. of functional variables, c: Num.

of classes and Tr: length of the functional instances.

experiments. For each dataset, we compare predictive error rates to one or more of

the following: 1. LR (an L1 constrained logistic regression classifier), using BBR4

(Genkin et al., 2004) (for binary classification problems) and BMR5 (for multi-class

problems) trained with 10-fold CV used to pick the hyperparameter from amongst the

set {0.001, 0.01, 0.1, 1, 10, 100, 1000}. This is a reasonably fair baseline that represents

state-of-the-art classifier performance (see Genkin et al. 2004, for how BBR compares

to SVMs etc.). 2. Seg. (segmented inputs), which are the best previously published

results from Geurts (2001) on various classifiers that use segmented auxiliary variables

as input. 3. Fnl. (functional), which are the best previously published results of Geurts

(2001) using comparably interpretable classifiers constructed by combining functional

patterns and decision trees. 4. Best, which are the best published results otherwise

known (not any of the other three categories).

For datasets where 10-fold CV was used to estimate error rates (CBF, CBF-2 and

4http://www.stat.rutgers.edu/∼madigan/BBR

5http://www.stat.rutgers.edu/∼madigan/BMR

94

CC), the functional decision trees (FDT) were pruned by training on 8 out the 10 folds,

and picking the sub-tree of the full tree that gave smallest error on the 9th fold (the

pruning set). Finally, prediction errors were counted on the remaining 10th fold. For

leave-one-out protocol datasets, no pruning was done.

Also, in order to display the functional splits we will use the following conventions in

displayed trees throughout: a functional split will be displayed by showing the functional

variable name, a < symbol, followed by a unique integer for the split. For example, x1

< 1 represents a split on the functional variable 1 (xi1), and the index 1 likely indicates

this is the root split. Further, for any split, the left branch representative xl will

be shown in plots by a solid line and the right branch representative xr, will be

shown by a dashed line.

5.4.1 CBF

0 50 100
−5

0

5

10

Bell (b)

0 50 100
−5

0

5

10

Cylinder (c)

0 50 100
−5

0

5

10

Funnel (f)

0 50 100

0

2

4

6

8
Means

Figure 5.2: Cylinder, bell, funnel dataset.

The cylinder, bell, funnel dataset proposed by Saito (1994) is a three class problem

yi ∈{b,c,f}, with one time series (functional) variable of fixed length. The equations

95

describing the functional attribute for each class have both random noise as well as

random start and end points for the generating events of each class, making for quite a

lot of variability in the instances. As in past studies, we simulated 266 instances of each

class to construct the dataset. Instances of each class are shown in Figure 5.2, where

also shown is a particular instance of each class in bold and the computed class means

in the bottom right panel. Although this is essentially an easy classification problem

0 50 100

0

2

4

6

8
x1<1

0 50 100

0

2

4

6

8
x1<2

c

f b

 x1 < 1

 x1 < 2

Figure 5.3: CBF results: pruned tree, splits.

(reported accuracies are in the high 90’s), it is often used as a sanity check when

testing algorithms that perform functional variable classification. As far as predictive

performance goes, our procedure also performs at par with some of the best known

methods on this dataset (see Table 5.2). The functional decision tree provides a highly

interpretable representation. Shown in Figure 5.3 is a pruned decision tree constructed

on the whole dataset using Euclidean distance6. The leaf splits are, as expected, very

representative of the class means (cf., Figure 5.2).

6Note that the DTW results are reported in Table 5.2. Euclidean clustering results are slightly
worse.

96

5.4.2 CBF-2

This is an artificial dataset we created that extends the CBF dataset by adding another

independent functional variable. This second functional variable we also set to be a

cylinder, bell or funnel instance. Finally, we create a binary classification problem

with these inputs by assigning patterns to be class 1 if and only if the first variable

instance xi1, is a cylinder and the second variable instance xi2, is a bell (again, we

simulated 266 instances of each class for each variable). The classification problem

is pretty much of the same hardness as the original CBF problem (see the predictive

results table). We choose to work with this dataset because it is a perfect example

to apply functional decision trees to: a combination of both input functional instances

carry the entire predictive signal. The interpretability of the learned tree highlights

how effective functional decision trees can be—see Figure 5.4. The splits, one on each

variable, correspond exactly to the true data generating mechanism, and this mechanism

is evident in the plots of the functional splits.

0 50 100
−5

0

5

10

x2<1

0 50 100
−5

0

5

10

x1<2

0

0 1

 x2 < 1

 x1 < 2

Figure 5.4: CBF-2 results: learnt tree, splits. Branches predicting class 1 are shown in
red.

97

5.4.3 Control Chart

This is an artificial dataset in the UCI KDD Archive7 consisting 100 objects of each of

the six classes. The instances of each class ∈{normal,cyclic,up,down,increasing,decreasing}

are defined by 60 time points and the label broadly describes the behavior of the func-

tion with time—see Figure 5.5 (Up/Down denote a sudden jump in the series up/down

respectively) . Euclidean clustering performs best on this dataset, with competitive

0 20 40 60
0

20

40

60

80
Cyclic, Up

0 20 40 60
0

10

20

30

40
Down, Normal

0 20 40 60
−20

0

20

40

60

80
Increasing, Decreasing

0 20 40 60
0

20

40

60
Class means

Figure 5.5: Control chart dataset.

predictive accuracy to other techniques (Table 5.2). Figure 5.6 shows the complete

functional decision tree along with select functional splits. Notice that the highest level

split (x1 < 1) corresponds broadly to partitioning the instances as those that generally

increase and those that generally decrease (cyclic and normal are arbitrarily assigned

to one or other). Appealingly, other internal splits display similar sorts of intuitive be-

havior (see x1 < 4, for example) and leaf splits display strong representative instances

of the component classes (see x1 < 9 and x1 < 10).

7Hettich and Bay (1999), http://kdd.ics.uci.edu

98

up incr up cyclic

up incr cyclic normal decrdown down

down decr

 x1 < 1

 x1 < 2 x1 < 3

 x1 < 4 x1 < 5 x1 < 6 x1 < 7

 x1 < 8 x1 < 9 x1 < 10 x1 < 11

 x1 < 14

0 20 40 60
20

30

40

50
x1<1

0 20 40 60
25

30

35

40

45

50
x1<4

0 20 40 60
10

20

30

40

50
x1<9

0 20 40 60
0

10

20

30

40
x1<10

Figure 5.6: Control chart: learnt tree and some splits.

5.4.4 Japanese Vowels

Another dataset in the UCI KDD Archive, the Japanese Vowels dataset was first used

in Kudo et al. (1999). The classification problem is a speaker identification task and

the dataset consists the utterance of the Japanese vowels “a” and “e” by nine male

speakers (yi ∈ {1, . . . , 9}). Each utterance is described by 12 temporal attributes,

which are 12 time-varying LPC spectrum coefficients (for details of how these attributes

were obtained see Kudo et al. 1999). An important challenge this dataset poses to

many standard classification techniques is that the input sequences are of variable

length (owing to the variable length of each utterance). For this reason, our results are

99

obtained by applying the DTW clustering procedure, for which variable lengths are not

a problem.

For this problem, since the number of classes is fairly large compared to the number

of examples of each class, we constructed a 15-bit error correcting output code classifier

(Dietterich and Bakiri, 1995) from the functional decision trees. Although our pre-

diction accuracy isn’t quite at par with the best methods for this problem (see Table

5.2) it is better than that of the other functional classifier that produces interpretable

outputs, Geurts (2001). More interesting for this dataset, are the learnt decision trees

and their comparison with Kudo et al.’s analysis of the problem. Shown in Figure 5.7

is the tree learnt for speaker 1 (a 1-vs.-all binary classification problem), select splits

from the tree, and previously published results based on Kudo et al.’s analysis (who

also construct individual speaker classifiers). Kudo et al.’s procedure constructs regions

in space through which the speakers curves mostly should (solid black rectangles) and

mostly should not (dashed purple rectangles) pass. The qualitative correspondence

between these regions and the functional splits we obtain is quite striking.

5.4.5 Bone

This second real dataset records the planar cross-sectional outline of the intercondy-

lar notch from the knee joint (on the femur) of adults. The data has been collected

from exhumed skeletons and includes concomitant information such as the sex of the

individual. We obtained the data from Ramsay and Silverman’s book (Ramsay and

Silverman, 2002) data section8. The raw data (outline of the coordinates of the bone)

is first parameterized by arc length and sampled—see Ramsay and Silverman (2002)

for details of this standard pre-processing. This arc length parameterized data is what

we set (both x and y coordinates) as our single two-dimensional functional variable (the

independent variable being arc length). The binary classification problem involves pre-

dicting arthritis and past analyses of this problem have shown the notch shape to be an

important predictor. Besides obtaining competitive predictive accuracy on this dataset,

8http://www.stats.ox.ac.uk/∼silverma/fdacasebook/

100

the learnt tree displays interesting splits. Firstly, the tree contains both non-functional

splits (on sex of the individual) and functional splits. Second, the functional splits

themselves are instructive about bone shape and arthritis implications—see Figure 5.8

(shown with a comparable plot from the literature). Corroborating the conclusions

James and other authors reached by independent analyzes on the same dataset (James

and Silverman, 2005; Ramsay and Silverman, 2002), the functional splits we learn show

that both variability in the y-direction (shrunken bones) and bending to the right are

predictive of a greater risk of arthritis.

5.4.6 NHP study

As described previously, this dataset involves time series measurements (of different

lengths) related to the state of the immune system of vaccinated NHPs. Once again,

the tree we learn is competitive in predictive accuracy. Figure 5.9 shows the learnt tree

and functional splits (as in the introduction, red corresponds to branches for predicting

death yi = d, while green corresponds to NHPs that survive, yi = a). The splits are

biologically sensible. A increasing IL6 trajectory is predictive of survival; A rapid early

rise in SI is predictive of death; an early rise in TNF (tumor necrosis factor) is predictive

of survival9.

Table 5.2: Predictive Performance—Error Rates

Data Best LR Seg. Fnl. FDT

CBF 01 2.77 0.5 1.17 0.13D

CBF2 - 5.29 - - 0.25D

CC 0.332 10.33 0.5 2.33 2.0E

JV 3.83 - 3.51 19.4 9.46D

Bone - 21.86 - - 19.79E

NHP - 33.33 - - 26.67E

1: Kadous and Sammut (2005) 2: Geurts and Wehenkel (2005) 3: Kudo et al. (1999)
D: DTW clustering, E: Euclidean clustering.

9The results also broadly agree with qualitative results obtained from LAPS in the previous chapter.
However, we leave the comparison at this abstract level because these are two different datasets.

101

5.5 Discussion

In this chapter, we presented a simple and effective extension to decision trees that

allows them to operate on functional input variables. We presented results showing

that these functional decision trees are accurate and produce interpretable classifiers.

Many extensions to the basic idea presented here suggest themselves; we describe a

few. The representative curves can be generated by more sophisticated clustering algo-

rithms; of particular interest would be ones designed for clustering functional curves.

For example, the one proposed by James and Sugar (2003). Also, a range of algo-

rithms from model-based clustering (e.g. HMM based) to non-parametric clustering

(e.g. Gaussian processes based clustering methods) might be applied.

Further, one is not limited to decision trees as the base classifier either. An alter-

native way to view a single functional split is that it defines an auxiliary variable that

may be used in addition to standard features in any classification algorithm. Multi-way

splits, for example, might be particularly powerful features in multi-class problems. Fi-

nally, predictive accuracy can likely be improved by boosting these functional decision

trees, a topic we are currently investigating.

References

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth International Group., 1984.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263 – 286, 1995.

A. Genkin, D. D. Lewis, and D. Madigan. Large-scale
bayesian logisitic regression for text categorization., 2004. URL
http://www.stat.rutgers.edu/ madigan/PAPERS/.

P. Geurts. Pattern extraction for time-series classification. In L. de Raedt
and A. Siebes, editors, Proceedings of PKDD 2001, 5th European Con-
ference on Principles of Data Mining and Knowledge Discovery, LNAI
2168, pages 115 – 127, Freiburg, September 2001. Springer-Verlag. URL
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2001/Geu01a.

P. Geurts and L. Wehenkel. Segment and combine approach for non-parametric time-
series classification. In Proceedings of the 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD), October 2005. URL
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2005/GW05a.

102

C. J. A. Gonzalez and J. J. R. Diez. Boosting interval-based literals: Variable length
and early classification. In A. Kandel M. Last and H. Bunke, editors, Data mining
in time series databases. World Scientific, 2004.

S. Hettich and S. D. Bay. The uci kdd archive, 1999. URL http://kdd.ics.uci.edu.

G. James and B. Silverman. Functional adaptive model estimation. Journal of the
American Statistical Association, 100:565 – 576, 2005.

G. James and C. Sugar. Clustering for sparsely sampled functional data. Journal of
the American Statistical Association, 98:397 – 408, 2003.

M. W. Kadous and C. Sammut. Classification of multivariate time series and structured
data using constructive induction. Machine Learning Journal, 58:179 – 216, 2005.

M. Kudo, J. Toyama, and M. Shimbo. Multidimensional curve classification using
passing-through regions. Pattern Recognition Letters, 20(11-13):1103 – 1111, 1999.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
California, 1993.

J. O. Ramsay and B. W. Silverman. Applied Functional Data Analysis: Methods and
Case Studies. Springer-Verlag, New York, 2002.

N. Saito. Local feature extraction and its application using a library of bases. PhD
thesis, Yale University, 1994.

H. Shimodaira, K. i. Noma, M. Nakai, and S. Sagayama. Dynamic time-alignment
kernel in support vector machine. In Advances in Neural Information Processing
Systems, volume 2, pages 921 – 928. NIPS, 2001.

103

0 0

0 0

0 1 1 0

 x11 < 1

 x4 < 2 x10 < 3

 x3 < 4 x1 < 5

 x2 < 7 x3 < 8

0 10 20 30
−1

0

1

2

3
x1<5

0 10 20 30
−2

−1

0

1
x2<7

0 10 20 30
−1

0

1

2
x3<4

0 10 20 30
−1

−0.5

0

0.5

1
x4<2

Figure 5.7: Japanese Vowels: Functional splits corresponding to reported results in
Kudo et al. (1999). Branches corresponding to speaker 1 have been colored red for ease
of comparison. Note: the bottom figure is a capture of a figure in Kudo et al. (1999).

104

0 0.2 0.4 0.6 0.8 1
0

0.1

0.4

0.6

0.8

1
x1<1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x1<2

x

y
Figure 5.8: Bone data comparative results. Top Row figures: captures from a figure in
James and Silverman (2005). Plot shows, in blue, the first two principal components
of the predictive model they propose. ’-’ sign curve being for arthritic bones and the
’+’ curve being for healthy bone shapes (mean bone shape in red). Lower row figures:
root and next level split of learnt FDT (tree not shown). Branches of the functional
splits predicting arthritis are colored red.

0 10 20 30 40 50
0

1

2

3

4
x7 < 1, IL6

0 10 20 30 40 50
0

1

2

3

4
x3 < 2, Si

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4
x9 < 3, TNF

Weeks

a

a

a d

 x7 < 1

 x3 < 2

 x9 < 3

Figure 5.9: NHP learnt tree, functional splits. Branches of the functional splits pre-
dicting death are colored red.

105

Chapter 6

Conclusions

In this thesis we present novel algorithms for supervised binary classification tasks in

two non-standard settings— for massive data, where computational limitations arise

from being unable to store the dataset in memory, and for structured data problems

where the inputs are correlated and interpretable models reflecting this correlation are

desired.

Much of the development is motivated by Bayesian theory—which provides a sound

theoretical basis to construct algorithms conditioned on a given dataset. We demon-

strate that the proposed procedures are all highly competitive to state-of-art classifiers

in terms of predictive performance. We propose the following areas of future work:

• Massive Data: The work in Chapters 2 and 3, suggest a number of extensions.

In the case of fully Bayesian inference (Chapter 2), for low to medium dimension,

a different approach could be the application of efficient numerical integration

techniques (for example sparse grid methods, which are essentially modified finite

element techniques) using the set of particles as quadrature/knot points. This

would yield bounds on the parameter estimates and derived quantities (sparse grid

methods enable one to bound integration error). The results of the online algo-

rithm and the MP algorithm in Chapter 3 suggest that a performance-guaranteed

bounded memory truly online/streaming approximate L1 regularized linear model

algorithm may be feasible (one pass, using only a pre-specified amount of mem-

ory). Indeed, an efficient algorithm for this problem would be useful in a number

of applications like: ad placement, collaborative filtering, link analysis, fraud de-

tection etc. The algorithms in Chapter 3 appear to share many commonalities

with stochastic gradient based algorithms and their convergence properties may

106

provide new insights. Also, in order to study the small sample properties of the

algorithms in this setting, non-Bayesian frameworks like the online learning model

(algorithms like Winnow and exponentiated gradient) could potentially be useful.

• Structured Data: The problem we formalize in Chapters 4 and 5, has large num-

bers of applications in many diverse practical settings—financial data and medical

data to name but two. From the results, it appears that interpretable classifiers

can provide a lot insight into the problem domains. Future work may examine

the functional decision tree model of Chapter 5 as a generic classifier combination

tool. In particular, functional splits applied to kernel space (using kernel k-means

for splits, say) would seem to provide powerful hypotheses. For the LAPS work

(Chapter 4), a number of questions remain to be resolved, which open up avenues

of potential future work. Perhaps the most straightforward issue is improving the

the run partition structure search. Another possibility is examining a prior over

partition space, and exploring the consequences of this expanded model. The

LAPS work also suggests a separate model that may be useful. Here, the data

would be generated by a linear chain graphical model (directed or undirected)

over the parameters in combination with a suitable sparsity promoting prior (like

a spike and slab prior, over latent/hidden indicator variables which would indicate

presence or absence of the parameter). Comparisons of this approach and LAPS

would be interesting.

107

Vita

Suhrid Balakrishnan

Education

2002-2007 Ph. D., Computer Science, Rutgers University

1999-2002 M.S., Chemical and Biochemical Engineering, Rutgers University

1995-1999 Bachelor of Technology, Chemical Engineering Indian Institute of Tech-
nology, Bombay

Publications

• S. Balakrishnan and D. Madigan, Finding Predictive Runs with LAPS, ICDM, to
appear, 2007.

• S. Balakrishnan and D. Madigan, Decision Trees for Functional Variables, ICDM,
2006.

• S. Balakrishnan and D. Madigan, Algorithms for Sparse Linear Classifiers in the
Massive Data Setting, under review, JMLR.

• S. Balakrishnan and D. Madigan, A One-Pass Sequential Monte Carlo Method
for the Bayesian Analysis of Massive Datasets, Bayesian Analysis Journal, 1(2),
345-362, 2006.

