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ABSTRACT OF THE THESIS

Sensitivity Analysis of Blast Loading Parameters and Their

Trends as Uncertainty Increases

by Elan Borenstein

Thesis Director: Dr. Haym Benaroya

A sensitivity analysis of blast loading parameters is performed to determine which of the

parameters�uncertainty has the greatest e¤ect on the maximum de�ection of an aluminum

plate subjected to a blast load. A numerical simulation using the Monte Carlo method

is used to obtain the ensemble averages of the probabilistic runs. The random variables

were given a uniform distribution. Two simpli�ed loading models are used. The �rst has

an instantaneous rise with an exponential decay, represented by the modi�ed Friedlander

equation. The second loading model has a linear rise with an exponential decay. Both of

these models are simulated with three di¤erent blast scaled values, giving a total of six

di¤erent cases. In addition, the de�ection trends due to the loading parameters as uncer-

tainty increases is quanti�ed. Probability density functions of the maximum de�ection are

also presented. The probabilistic results and trends are also explained using deterministic

methods. It appears that the duration time of the loading models is generally the most

sensitive parameter to uncertainty.
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Chapter 1

Introduction

1.1 Motivation

Due to the rise of terrorism, the commercial aviation industry has a great need to

understand the e¤ects of an on-board explosion to improve the future design of containers

and aircraft. It is also important to locate the areas of the aircraft that are most vulnerable

to an explosive load. Knowing these locations and the amount of loading needed to cause

critical failures provides a baseline of the amount of explosives which must be detected

on all passengers and cargo. In order to obtain these data, many experiments are being

performed, which are very costly and time consuming. As an alternative, there are a vast

number of �nite element codes that can help analyze the response of a section of the aircraft

with a given loading. However, these codes can be rather time consuming. Therefore, an

accurate simpli�ed model of the response of an aircraft structure subjected to a blast load

would be of great use to the aviation industry.

Aside from a simpli�ed response model, an accurate loading model is needed. Many

experiments have been performed to analyze the variety of di¤erent types of explosives.

During these complex and costly blast experiments, a variety of sensors and devices are used

to capture the loading on the structure. The positioning of the sensors and the accuracy of

the devices generally lead to uncertainty, exclusive of the random characterization associated

with the explosives.

In this thesis, a sensitivity analysis of blast loading parameters is performed to determine

which of the parameters�uncertainty has the greatest e¤ect on the maximum de�ection of

an aluminum plate subjected to a blast load. In addition, the de�ection trends due to these

parameters as uncertainty increases is quanti�ed. Such a study can be used to determine

beforehand which experimental parameters must be measured most precisely in order to
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capture the fundamental behavior. This can potentially reduce the number of experiments

needed.

For instance, consider an experimentalist who would like to obtain an accurate pressure

pro�le of a particular explosion in order to study how that size explosion a¤ects a structure.

The experimentalist may want to perform numerous identical blast experiments and use

the average of all the experiments as the �nal, �accurate� pressure pro�le. During the

experiment there are a number of instruments and equipment that need to be designed

and/or chosen. For example, placement of the instrumentation has a key role in obtaining

proper data. The experimentalist sets up the experiment in a way to obtain the most

accurate result. However, what if the experimentalist had to choose between measuring a

certain parameter more precisely verse another parameter? For example, they can choose

an instrument that has a more precise pressure reading than some other instrument, but

does not take the readings as often. This instrument will have less uncertainty to the

pressure reading, however, it will increase the uncertainties of duration time and rise time.

A sensitivity analysis will help determine which of the parameters should be more accurately

measured in order to reduce the amount of uncertainty in the measurements.

In this thesis, we numerically model a clamped, thin aluminum plate, representative of a

fuselage section, subjected to a simpli�ed blast load and calculate the maximum transverse

de�ection occurring at the plate�s center. This maximum de�ection is used as our testing

value to see how randomizing the various loading parameters changes this value. The

greater the di¤erence of maximum de�ection to the testing value, the greater the parameter�s

sensitivity.

1.2 Thesis Outline

In Chapter 2, a brief background review is presented on blast loading models. Chapter

3 is broken up into several parts. First, the response model is derived, which includes the

elastic response, the yield condition, the plastic response and the failure criteria. Then

the two loading models and the six di¤erent cases studied in this thesis are described.

Chapter 3 concludes with a brief overview of the general procedure and some details of the
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probabilistic distribution. Chapter 4 goes into detail about the procedure. It starts with

the description of the computation and solution for the de�ection using the Runge-Kutta

method. The Monte Carlo method used to obtain the ensemble averages, as well as the

statistical analyses, are also described. Chapter 5 presents some of the results and explains

them. Chapter 6 provides a summary of key results and future work. Appendix A has

additional �gures and tables of results, while Appendix B has a sample MATLAB
R
code

written to perform this analysis.
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Chapter 2

Literature Review on Blast Loading

Understanding the dynamics of blast loading and developing simpli�ed loading models

are topics of research that have been pursued in academia and government. A good

amount of the government work is classi�ed; however, there is literature available to the

general public. Following is an overview of some of the books and papers related to blast

load modeling.

There have been a few books dedicated to explosive loading. Kinney and Graham

produced a very comprehensive book, �Explosive Shocks in Air� [1], which explains many

di¤erent aspects and characteristics of explosive loads. Another extensive book on blast

loading is �Explosions in Air� [2] by Baker. Aside from an overview of explosive loading

this book includes a compilation of experimental equipment and data, as well as some

computational methods. A much cited book that deals with explosive loads is �Explosion

Hazards and Evaluation� [3] by Baker et al. This book has an extensive compilation of

various experimental works.

In addition to books, there have been a number of review papers. Florek and Benaroya

[4] provide an extensive and excellent review on pulse-loading e¤ects on structures. Their

review studies various pulse shapes and their e¤ects on the de�ection of structures. In

addition, they summarize e¤orts that try to reduce or eliminate these pulse shape e¤ects,

which can be done for many rigid-plastic geometries with a uniform load. A detailed

description is provided of research on pressure-impulse isodamage curves along with some

background on the sensitivity of various loading models.

Bashara [5] provides an extensive review of the analysis of uncon�ned blast loading from

di¤erent sources for aboveground rigid structures. Bashara discusses the use of TNT equiv-

alency and blast scaling laws, as well as the di¤erence of overpressure, re�ective pressure



5

and dynamic pressure. From reviewing the available unclassi�ed literature, Bashara con-

cluded that �precise loading information is hard to obtain and may be not justi�ed because

of the many uncertainties involved in the interaction process between the blast wave and

the structure and the ideal gas assumption in the derivation of relevant relations. . . � In

addition, Bashara adds that the way a blast load a¤ects the response of a structure does

not only depend upon the magnitude of the load, but also on its duration, rise time and

general shape. The implication is that a good blast loading model is important.

Chock and Kapania [6] provide a good review of blast scaling, particularly the Hopkinson-

Cranz and the Sachs blast scaling. They then compare two methods for calculating explosive

blasts in air. One method is from Baker [2], which uses Sachs scaling and the other method

is from Kingery and Bulmash [7], which uses Hopkinson-Cranz scaling. They concluded

that the re�ected peak pressures are of a similar order of magnitude but there is a di¤erence

in the speci�c impulses delivered to the target. For the case given in Chock and Kapa-

nia, Baker�s method has a much lower impulse and an earlier arrival time than Kingery

and Bulmash�s method. Chock and Kapania mention that this could be attributed to

the di¤erence in duration time, as well as a change in the way that the decay values are

determined. They were unable to determine which of the two methods are more precise

because both methods are based on experimental data, with little or no repeated tests.

Esparza [8] did experimental work on TNT and other high explosives at small scaled

distances. He states that using a single equivalent weight ratio may not be appropriate,

especially at small scaled distances because there is insu¢ cient experimental veri�cation.

In regards to TNT equivalency, he mentions that an equivalence system with only one blast

parameter may not be accurate because TNT equivalence can be signi�cantly di¤erent

depending on the scaled distance of the explosive, even with the same type of explosive.

Esparza did a study and comparison to published data [7] on the peak overpressure, arrival

time, impulse and positive duration of the blast loads in his experiments. He noticed that

the TNT equivalency for some of the parameters can be signi�cantly di¤erent than one based

on heat of detonation. In addition, for small scaled distances, the impulse and positive

duration parameters are not as well de�ned as the pressure and arrival time parameters.

Gatto and Krznaric [9] performed experiments on explosive loads in aircraft luggage
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containers. They measured the pressure pro�les on the container panels due to explosions

with di¤erent amounts of luggage inside. They noticed that additional luggage reduces

the pressure on the container signi�cantly. In addition, the location of the bag with the

explosives has a signi�cant e¤ect on the loading the container experiences.

Simmons and Schleyer [10] did experimental and �nite element analysis of the response

and failure modes of sti¤ened, aluminum alloy panels with conventional riveting and laser

welding. They used a pressure chamber that theoretically gives a triangular pressure pulse

on the test structure. They concluded that riveted joints have greater energy absorbing

capacity than laser-welded joints. In addition, they noted that the joints�energy absorption

is sensitive to the load rate.

There have been studies [11�13] on saturated impulse phenomena for pulse-loaded per-

fectly plastic beams and elastic-plastic plates. These studies show that there is a limit on

how much impulse applied to a structure will a¤ect its deformation. This is because the

membrane forces, which are induced by large de�ections, give the plates a greater capacity

to withstand loads. The saturation duration is the time during which the loading a¤ects

the deformation of the structure. Any additional load after this saturation duration time

will have no further contribution to the structural deformation. Zhu and Yu [12] point out

that the saturation duration is a function of plate geometry and material properties, and

not of the pressure loading.

Brode did a computational analysis [14] of a blast wave from a spherical charge of TNT.

In his analysis Brode was able to observe the rarefaction waves and their interaction with

multiple shocks.

Gantes and Pnevmatikos [15] propose a response spectra based on a blast pressure pro�le

with an exponential distribution and then compare it to one with a triangular distribution.

In their work, they used a technique recommended by the US Department of the Army TM5-

1300 [16], which is based upon substituting the structural element by a sti¤ness equivalent,

single degree-of-freedom system, and using elastic-plastic response spectra to predict the

maximum response of the system. They found that a triangular distribution with time

can sometimes be slightly unconservative, particularly for �exible structural systems. In

addition, it can be signi�cantly overconservative for sti¤er structures. They state that since
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exponential loading decreases faster than a triangular one, the di¤erences between the two

are in�uenced more in elastic-plastic situations than in purely elastic ones. In addition,

ranges of certain parameters are given for when di¤erences in blast loading pro�les play

signi�cant roles in the response. Referring to Watson [17], the response depends on the

synchronization with the rebound of the structure, which means that a good knowledge of

blast load time and space variation are critical to obtain the correct response. In addition,

Watson says that the in�uence of damping on these systems can be neglected because the

peak response of the system occurs within the �rst few cycles. This allows for a much

simpler response equation.

Bogosian et al. [18] used experimental data to compare a variety of simpli�ed models,

including BlastX, ConWep and SHOCK, and to measure the inherent uncertainty in these

blast model codes. The data they analyze is restricted to a scaled range of 3 to 100 ft/lb(1=3).

Although their �nal test database comprised of 303 individual gage records, they noted that

not all were of su¢ cient duration and/or quality. Some have bad peak pressure readings

and therefore could not produce reliable impulses. In addition, the test data comprised

of a wide range of con�gurations from cylindrical to spherical to hemispherical charges.

Di¤erent types of explosives were also used, including TNT, C-4 and ANFO, which were

converted into their TNT equivalent load before computing the scaling factors. This shows

how di¢ cult it is to obtain a complete and accurate set of experimental work to analyze and

understand the entire spectrum of blast loadings. However, Bogosian et al. were able to

show that of the tools they analyzed, ConWep best represented the test data in an overall

sense. They also show that BlastX provides values that are close to the data set, but

SHOCK signi�cantly underpredicts re�ected positive pressure and overpredicts re�ected

positive impulse. By calculating the standard deviations of the test data, they noticed that

their two-sigma values range from 1/3 to 2/3 in magnitude, which indicates a very wide

range of uncertainty.

ABS Consulting Ltd prepared a research report [19] that uses a tool they developed,

call BlastSTAR, to perform multiple analysis of simple structures that are subjected to

blast loadings with di¤erent geometries, durations and peak pressures. BlastSTAR �nds
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the force-displacement and equivalent mass characteristics of an equivalent simpli�ed sys-

tem by utilizing the results of a static FE analysis. Their results analyze the maximum

displacements obtained from a variety of loading scenarios acting on various structures.

Trying to obtain a simpli�ed, yet accurate model for blast loadings is a topic still being

examined. These publications, which are mainly focused on loading models, show there is a

great amount of uncertainty involved when dealing with blast load modeling. In addition,

many of the publications show that the response of a structure is very sensitive to the

loading model.

This is why it is important to perform a sensitivity analysis on blast loads. The sensi-

tivity analysis will evaluate which loading parameters need to be measured more precisely

in order to obtain a more accurate result. This will help experimentalists in deciding which

instrumentation and setup will collect the best set of data. In addition, it will also re-

duce the number of dangerous, expensive and time consuming experiments that are needed.

The simpli�ed response and loading models used in this thesis will be explained in the next

chapter.
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Chapter 3

Simpli�ed Plate Response and Loading Models

To perform a sensitivity analysis of an aircraft panel subjected to simpli�ed blast loads,

a response model as well as the loading model are needed. This chapter derives the

governing equations for the response model of a clamped plate. Then, the di¤erent load

models are explained along with six di¤erent loading cases looked at in this thesis. This

chapter concludes with a brief overview of the general procedure used to obtain parameter

sensitivities and other probabilistic information on the response of the plate.

3.1 Elastic Response Model

For the elastic region, the response model used is outlined in Florek and Benaroya [20],

which is developed from the works of Bauer [21], Singh and Singh [22] and Florek [23]. The

two fundamental equations which govern the nonlinear vibration of plates subjected to a

time dependent pressure load are given by

r4F =
(�

@2w

@x@y

�2
� @2w

@x2
@2w

@y2

)
(3.1)

and

Eh3

12 (1� �2)r
4w + �h �w = P (x; y; t) + h

�
@2F

@y2
@2w

@x2
+
@2F

@x2
@2w

@y2
� 2 @

2F

@x@y

@2w

@x@y

�
; (3.2)

where w is the transverse de�ection of the plate, � the mass density of the plate, E the

elastic modulus, � the Poisson�s ratio, h the plate thickness, P the loading pressure and

r4 � @4

@x4
+ 2 @4

@x2@y2
+ @4

@y4
. F is the Airy stress function which is related to the stresses

by �x = @2F
@y2

; �y =
@2F
@x2

and �xy = � @2F
@x@y , where �x; �y and �xy are membrane stresses.

When using Equations 3.1 and 3.2 the e¤ects of longitudinal and rotary inertia forces are

neglected.
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Figure 3.1: Plate geometry and coordinate system.

The transverse de�ection of the clamped plate is assumed to be of the form

w(x; y; t) = hf(t) cos2
�x

a
cos2

�y

b
; (3.3)

where a and b are the length and width of the plate, respectively. The origin of the

coordinate system x y z is located at the center of the plate, as shown in Figure 3.1. The

maximum transverse de�ection is equal to hf(t) at any time t. This de�ection shape,

represented by Equation 3.3, satis�es the boundary conditions of a clamped rectangular

plate, given by

w = 0 and
@w

@x
= 0 at x = �a

2
; (3.4)

and

w = 0 and
@w

@y
= 0 at y = � b

2
: (3.5)

In order to separate the space and time variables, the Airy stress function is assumed

to be of the form

F (x; y; t) = F �(x; y)f2(t): (3.6)

Substituting Equations 3.3 and 3.6 into Equation 3.1 yields

r4F (x; y; t) = � Eh2

2a2b2
f2(t)

�
cos

2�x

a
+ cos

2�y

b
+ 2 cos

2�x

a
cos

2�y

b
(3.7)

+cos
4�x

a
+ cos

4�y

b
+ cos

2�x

a
cos

4�y

b
+ cos

4�x

a
cos

2�y

b

�
:
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Using Equation 3.7, we are able to solve for the Airy stress function, F (x; y; t), by assuming

it is of the form

F (x; y; t) = f2(t)

�
C1x

2 + C2y
2 + C3 cos

2�x

a
+ C4 cos

2�y

b
(3.8)

+C5 cos
2�x

a
cos

2�y

b
+ C6 cos

4�x

a
+ C7 cos

4�y

b

+C8 cos
2�x

a
cos

4�y

b
+ C9 cos

4�x

a
cos

2�y

b

�
;

where the Cn terms are constants, and knowing

u =

Z x

0

(
1

E

�
@2F

@y2
� � @

2F

@x2

�
� 1
2

�
@w

@x

�2)
dx (3.9)

and

v =

Z y

0

(
1

E

�
@2F

@x2
� � @

2F

@y2

�
� 1
2

�
@w

@y

�2)
dy; (3.10)

where u and v are the midplane displacements in the x and y directions, respectively, and

the boundary conditions for immovable plate edges are

u = 0 and
@2F

@x@y
= 0 at x = �a

2
(3.11)

and

v = 0 and
@2F

@x@y
= 0 at y = � b

2
: (3.12)

The Airy stress function is [23]

F (x; y; t) = �Eh
2

512
f2(t)

�
24�2

1� �2

��
�

a2
+
1

b2

�
x2 +

�
1

a2
+
�

b2

�
y2
�

(3.13)

�a
2

b2

�
16 cos

2�x

a
+ cos

4�x

a

�
� b2

a2

�
16 cos

2�y

a
+ cos

4�y

a

�
�16a2b2

�
2

(a2 + b2)2
cos

2�x

a
cos

2�y

b
+

1

(4a2 + b2)2
cos

2�x

a

+cos
4�y

b
+

1

(a2 + 4b2)2
cos

4�x

a
+ cos

2�y

b

��
:

Substituting Equations 3.3 and 3.13 into Equation 3.2, a lengthy expression, given in

Florek [23], is obtained. Equations 3.3 and 3.13 satisfy the boundary conditions as well as

Equation 3.1. However, as mentioned in Bauer [21], they may not exactly satisfy Equation

3.2. In order to obtain the complete solution, the Galerkin method is used. All the nonzero

terms of the lengthy expression previously mentioned are brought to one side and become
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the residue, R. Using the assumed mode shape for the clamped plate, the Galerkin method

is performed by solving Z b=2

0

Z a=2

0
R cos2

�x

a
cos2

�y

b
dxdy = 0: (3.14)

The Galerkin method leads to the nonlinear elastic equation of motion for a clamped plate

[23],

�h2 �f(t) +
4Eh4�4

27a4(1� �2)

�
3 + 2

a2

b2
+ 3

a4

b4

�
f(t)

+
Eh4�4

a4

�
1 + 2�a2=b2 + a4=b4

8(1� �2) +

�
17

144
+

a4

9b4

�
17

16

+
2

(1 + a2=b2)2
+

1=2

(1 + 4a2=b2)2
+

1=2

(4 + a2=b2)2

���
f3(t) =

16

9
P (t); (3.15)

where P is the uniform loading pressure. Solving Equation 3.15 for f(t) yields the de�ection

at the center of the plate, hf(t), until the plate yields.

3.1.1 Yield Condition

In order to determine when the response is no longer in the elastic region governed by

Equation 3.15 a von Mises yield condition is initially used. As outlined in Florek and

Benaroya [20], the von Mises condition given by Massonnet [24] is

Yc �
M2
x +M

2
y �MxMy + 3M

2
xy

M2
0

+
N2
x +N

2
y �NxNy + 3N2

xy

N2
0

� 1 = 0; (3.16)

where Mk represents the elastic bending moments per unit length and Nk represents the

elastic membrane forces per unit length, in the k direction, while M0 and N0 are the

plastic bending moment per unit length and the plastic membrane force per unit length,

respectively. Lee [25] gives these parameters as

Mx =
�Eh3

12(1� �2)

�
@2w

@x2
+ �

@2w

@y2

�
My =

�Eh3
12(1� �2)

�
@2w

@y2
+ �

@2w

@x2

�
Mxy =

�Eh3
12(1 + �)

@2w

@x@y

M0 =
�0h

2

4
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Nx = h
@2F

@y2

Ny = h
@2F

@x2

Nxy = �h @
2F

@x@y

N0 = �0h; (3.17)

where �0 is the dynamic yield stress of the plate material. The dynamic yield stress is the

stress level where the material begins to �ow.

Substituting Equations 3.3 and 3.13 into Equation 3.17 and then Equation 3.16 gives

the von Mises yield criterion for a clamped plate,

Yc =
E2h4�4

a2�20

�
L�n
1024

f4(t) +
4Lm

9b4(1� �2)2 f
2(t)

�
� 1

Lm = (a4 + b4)(�2 � � + 1)� a2b2(�2 � 4� + 1)

L�n = A2 +AB +B2

A =
3

(1� �2)

�
1 + �

a2

b2

�
+ 5 +

4a4

b4

�
2

(1 + a2=b2)2
+

4

(1 + 4a2=b2)2
+

1

(4 + a2=b2)2

�
B =

3

(1� �2)

�
� +

a2

b2

�
+
5a2

b2
+
4a2

b2

�
2

(1 + a2=b2)2

+
1

(1 + 4a2=b2)2
+

4

(4 + a2=b2)2

�
: (3.18)

Once Yc > 0, the plate begins to yield. As per Massonnet [24], it is assumed that

the elastic-plastic interactions in a membrane are negligible and, after yielding begins, the

response enters the purely plastic region. In the plastic region a new model is needed to

represent the response of the plate. However, once the de�ection of the plate begins to

decrease, it does so elastically and is then modeled using the elastic model. At this point,

the yield de�ection becomes the maximum displacement the plate has previously reached.

Therefore, once the plate de�ection surpasses the previous maximum de�ection, the plastic

model is used until the de�ection begins to decrease, and so forth. Note that for the loads

presented here, the plastic region is never reached more than once.
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Figure 3.2: Roof top geometry of plastic deformation.

3.2 Plastic Response Model

The plastic model used is Jones�hinge line method [26, 27]. This method assumes a

plastic deformation in the shape of a roof top, shown in Figure 3.2, with all the energy

of the system dissipating through the hinge lines. Assuming the in-plane displacements,

velocities and accelerations are negligible, as well as knowing the geometry of the assumed

deformation, an energy relationship between the external and inertial work rates and the

internal energy dissipated across the hinge lines is established. Assuming the angle � = 45�,

as per Nurick et al. [28], the �nal equation given in Florek and Benaroya [20] for the plastic

model of a clamped plate is

�b2

�0h

�
2a

b
� 1
�
�w +

24a

b

w

h
+ 8

h

w
=

Pb2

�0h2

�
3a

b
� 1
�
: (3.19)

Solving for w in Equation 3.19 yields the maximum transverse de�ection of the clamped,

rectangular plate.

3.2.1 Failure Criteria

For the response model to be a complete structural model, failure is incorporated. To

determine whether the plate fails due to the blast load, the maximum allowable transverse

de�ection for the aluminum plate is calculated. This is done using the rupture strain value

of 18% for aluminum 2024-T3 [29]. Since the de�ection of the plate in the plastic region

is in the shape shown in Figure 3.2, the smaller side of the rectangular plate, b, will be the
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limiting factor for failure. Making sure line l in Figure 3.2 does not reach the elongation

of 18% of its original length, the maximum possible transverse de�ection before failure is

calculated. The plate properties used in this study are shown in Table 3.1. Using these

values the failure de�ection is 63.644 mm. If the de�ection reaches this value the plate is

considered to fail.

a 508 mm (20 in)
b 203 mm (8 in)
h 1:6 mm (0:063 in)
� 2780 kg/m3

E 7:31 GPa
� 0:33

�0 345 GPa

Table 3.1: Plate properties.

3.3 Modi�ed Friedlander Loading Model with and without a Preceding

Linear Rise

For a blast load, chemical investigation and experimental data [1�3, 8, 9] show that a

good representative simpli�ed model is an exponential distribution. The most frequently

used blast model is an exponential decay model with an initial peak pressure governed by

the modi�ed Friedlander equation

P (t) =

�
0;

Pmax

�
1� t

Tdur

�
e��(t=Tdur);

0 � t � Ta
Ta � t � Tdur;

(3.20)

where P (t) is the overpressure at time t, Pmax is the maximum overpressure, Ta is the

arrival time from detonation point to the object, Tdur is the duration time of overpressure

and � is the exponential decay constant. Figure 3.3 is a graphical representation of this

simpli�ed loading model, where P0 is the ambient pressure. Since the arrival time does not

a¤ect the response of the plate in this study, the arrival time is set to zero. In addition, the

pressure phase below the ambient pressure is neglected. As Gantes and Pnevmatikos [15]

mention, this pressure phase is less signi�cant as � is larger than one, which is the case for

this study.

This thesis considers two types of simpli�ed blast loading models, shown in Figures 4

and 5. Load 1 is the common modi�ed Friedlander model described previously and Load 2
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Figure 3.3: Simpli�ed blast loading model representative of the modi�ed Friedlander equa-
tion.

is similar except it has a linear rise as opposed to an instantaneous rise. Load 2 is governed

by

P (t) =

�
(Pmax=Tmax)t;

Pmax

�
1� t�Tmax

Tdur

�
e��(t�Tmax)=Tdur ;

0 � t � Tmax
Tmax � t � Tdur;

(3.21)

where the rise time, Tmax, is the time when the maximum pressure occurs.

3.3.1 Obtaining Parameter Values

Using the Hopkinson-Cranz blast scaling law, the values of Pmax, Tdur and �, are char-

acterized by the blast�s Z value, or scaled distance,

Z =
R

M1=3
; (3.22)

where R is the stando¤distance between the spherical charge center and the plate in meters,

and M is the charge mass, which is expressed in kilograms of equivalent TNT. Therefore,

two blast loads are considered to have the same loading pro�le if they have the same Z

value. The smaller the Z value, the stronger the blast load.
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Figure 3.4: Load 1. Instantaneous rise with an exponential decay.

Using the program ConWep [30], it is possible to generate the values of various air

blast loads. This computer simulation uses values gathered through experiments given

in TM 5-855-1, which makes use of Kingery and Bulmash [7]. According to Esparza [8],

Kingery and Bulmash supply polynomial curve �ts from values found in Goodman [31],

Kingery [32], Reisler et al. [33], Swisdak [34] and Davis et al. [35]. For appropriate Z

values, ConWep provides values for the normally re�ected overpressure, which is used for

Pmax, and the positive phase duration, which is used for Tdur of the exponential decay.

Using the re�ected overpressure, as opposed to the incident overpressure, results in a more

realistic pressure for a blast force hitting an object. When a blast force hits an object,

part of the incident shock wave will be re�ected. In order for the shock wave to change

directions, the object needs to absorb the shock wave�s initial momentum as well as counter

that re�ected momentum. Due to this re�ection of the shock wave, the object will be

subjected to a stronger overpressure. The normally re�ected pressure given by ConWep is

the greatest possible amount of overpressure for that particular Z value.

ConWep does not provide the decay constant for the re�ective pressure. Therefore, it

needs to be calculated using the given value for re�ective impulse, Ir. Knowing that

Ir =

Z Tdur

0
P (t)dt; (3.23)
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Figure 3.5: Load 2. Linear rise with an exponential decay.

where P is the re�ective pressure given by Equation 3.20, one can �nd that

PmaxTdure
��(�e� � e� + 1)
�2

� Ir = 0: (3.24)

Substituting the ConWep values of Pmax, Tdur and Ir into Equation 3.24, MATLAB can be

used to numerically solve for the re�ective pressure decay constant, �.

Since there is no widely used loading model representative of Load 2, there is no conven-

tion or table of values to calculate Tmax. By looking at experimental pressure loads [9,36],

the rise time is very quick. In addition, the larger the load, the faster the rise time. It

was determined to use a percentage of the blast�s arrival time because the arrival time is

representative of the blast�s speed and initial distance to the object, as well as, it contains

the trend just mentioned. By examining a few cases and designing Loads 1 and 2 to have

some di¤erences, it was determined that the rise time, Tmax, would be set equal to 10%

of the arrival time, which can be obtained through ConWep. In addition, for Load 2, the

value of Tdur needs to be modi�ed. In order for the exponential decay of Load 2 to be the

same as for Load 1, Tmax must be added to Tdur of Load 1 to obtain the new value of Tdur

for Load 2.
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3.3.2 Six Cases

For this study, three values of Z are used. Z = 2:0 is representative of a weaker blast

where the response of the plate is well below the failure point. Meanwhile, the case Z = 0:7

is near the failure range, and the case Z = 1:2 is in an intermediate range. The values

obtained for the loading parameters of Loads 1 and 2 for each Z case studied here are

shown in Tables 3.2 and 3.3, respectively. In addition, some of these load cases are shown

in Appendix A.

Case 1 Case 2 Case 3
Random Variable Z = 0:7 Z = 1:2 Z = 2:0

Pmax Maximum Pressure 134� 105 Pa 29� 105 Pa 6:458� 105 Pa
Tdur Duration Time 0:8346 ms 1:792 ms 1:846 ms
� Decay Constant 11:296 10:784 3:7365

Table 3.2: Loading parameter values of the three Z cases for Load 1.

Case 4 Case 5 Case 6
Random Variable Z = 0:7 Z = 1:2 Z = 2:0

Pmax Maximum Pressure 134� 105 Pa 29� 105 Pa 6:458� 105 Pa
Tdur Duration Time 0:86225 ms 1:867 ms 2:0404 ms
� Decay Constant 11:296 10:784 3:7365
Tmax Time of Maximum Pressure 0:02765 ms 0:075 ms 0:1944 ms

Table 3.3: Loading parameter values of the three Z cases for Load 2.

3.4 General Procedure for Obtaining Parameter Sensitivities

First, using a Runge-Kutta method, as described by Jaluria [37], the response is de-

terministically solved for each of the six loading cases. Then, making one of the loading

parameters random while leaving the rest deterministic, the ensemble average of the re-

sponse is evaluated using a Monte Carlo scheme as described by Benaroya [38].

By comparing the maximum de�ections of the random runs to the deterministic run

for each loading case, the order of sensitivity of all the parameters are calculated. A

random parameter is considered more sensitive to uncertainty if its maximum de�ection

has a greater di¤erence from the respective maximum of the deterministic run.
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3.4.1 Probabilistic Distribution

Since blast loads are random and there is not much information on the di¤erent loading

parameters�randomness, all the random variables are assumed to have uniform distribu-

tions. Since all the random variables have the same type of distribution, it is possible to

compare the accuracy of the response due to the level of randomness for each variable. In

addition, using a uniform distribution makes it easier to specify a range of values for each

random variable. In this thesis, the term half-range is used to describe the range between

the mean value and endpoint of allowable values, which is half of the total range in a uniform

distribution. For a uniform distribution

� =
HRp
3
; (3.25)

where � is the standard deviation and HR is the half-range. See Figure 3.6 for a visual

explanation. The values of each random variable�s half-range is a percentage of its mean

value. This also allows for a direct comparison between the various random parameters.

Figure 3.6: Visual representation of half-range where � is the mean and HR represents the
half-range.

The following chapter goes more into detail on the procedures of calculating the de-

�ections, the ensemble averages and the various statistical evaluations. It discusses the

numerical methods and equations used to obtain the results.
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Chapter 4

Numerical Procedures

This chapter expands on the general overview of the procedures by giving details on the

various steps to produce the results. After a brief explanation on what computational tool

was used, this chapter explains the method used to solve for the de�ection of the plate.

The equations for the Runge-Kutta method are derived. The procedure and details of

the Monte Carlo method are also presented in this chapter. This is then followed by an

explanation on how the statistical results are calculated.

4.1 MATLAB

A MATLAB program is written to numerically solve for the sensitivity of loading pa-

rameters to uncertainty using the response and loading models described in the previous

chapter. This program generates the loading for the various cases and solves for the

simpli�ed plate model response. MATLAB was chosen because it is a simple language to

program, it is available and it also generates nice graphical results. If the models were more

complicated and all the runs took over a very long time to �nish, a faster programming

language would have been used.

4.2 Solving for De�ection via Runge-Kutta Method

The Runge-Kutta method is a self-starting numerical method used to solve ordinary

di¤erential equations. As mentioned by Jaluria [37], this method has a high level of

accuracy, good stability, is simple to program, is applicable in a wide variety of problems,

and exhibits an increased accuracy by decreasing the time step size. In this thesis, the

classical fourth-order Runge-Kutta method is used to obtain the accuracy of a Taylor series
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expansion of the fourth order. The Runge-Kutta method uses a weighted average of the

predicted slopes of the equation within the current time step.

4.2.1 Solution Algorithm for the Elastic Response

The elastic Equation 3.15 is of the form

 �f(t) + �f(t) + f3(t) = �P (t); (4.1)

where

 = �h2

� =
4Eh4�4
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:

Equation 4.1 is converted into a system of �rst-order, ordinary di¤erential equations and

then solved by implementing the Runge-Kutta method. By setting

df

dt
= g

dg

dt
=

�P (t)� �f(t)� f3(t)
 

; (4.2)

the set of equations to be solved is

gi+1 = gi +
K 0
1 + 2K

0
2 + 2K

0
3 +K

0
4

6

fi+1 = fi +
K1 + 2K2 + 2K3 +K4

6
; (4.3)
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where
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and �� is the time increment between the last two time steps. The de�ection at the center

of the plate, wi+1, for every time step, i, is then obtained by

wi+1 = hfi+1: (4.4)

4.2.2 Solution Algorithm for the Plastic Response

The plastic response, Equation 3.19, is of the form

 p �w + �pw +
p
w
= �pP (t); (4.5)

where

 p =
�hb2

�0h2

�
2a

b
� 1
�

�p =
24a

bh

p = 8h

�p =
b2

�0h2

�
3a

b
� 1
�
:

By setting

dw

dt
= q

dq

dt
=

�pP (t)� �pw � p=w
�p

; (4.6)
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we solve

qi+1 = qi +
K 0
1 + 2K

0
2 + 2K

0
3 +K

0
4

6

wi+1 = wi +
K1 + 2K2 + 2K3 +K4

6
; (4.7)
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and �� is the time increment between the last two time steps. These equations are solved

for the de�ection at the center of the plate, wi+1, for every time step, i.

4.2.3 Initialization and Transition

Since the plate is initially at rest and undeformed, the initial values for g and f in

Equation 4.3 are set to zero. In addition, whenever there is a transition between the elastic

and plastic domains, the derivative of the response is recalculated by using the last two

solved de�ections. This prevents any kinks at the transition between the elastic and plastic

equations and guarantees a smooth and accurate result.

4.3 Probabilistic Procedure Using the Monte Carlo Method

The Monte Carlo method is a deterministic computational method that results in a

converged "exact" solution by taking a number of random samples and averaging them.
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The accuracy of this method increases as more random samples are averaged. The Monte

Carlo method generally calculates the convergence of the averaged response and uses a

prede�ned criterion to determine when to stop the runs.

4.3.1 Random Variable Generation

The deterministic parameter values for the di¤erent load cases, shown in Tables 3.2 and

3.3, are taken to be the mean values for the Monte Carlo scheme. As mentioned before, a

uniform density is assumed for all the random parameters. To obtain realizations for each

parameter, a standard uniform number is generated and then transformed using

n(r) = �(r) +HR(r)� (2� rand� 1); (4.8)

where n(r) is the realization for parameter r, �(r) is the mean value and HR(r) is the

half-range, where HR(r) = �(r)�HRf and HRf is the half-range factor. The half-range

factor is a number between 0 and 1, which determines the level of uncertainty for the random

parameter. The closer the half-range factor is to 1 the higher the level of uncertainty is for

the random parameter. The function rand is an internal MATLAB function that generates

a uniformly distributed random number between the range of 0 to 1. For each random

variable run, the seed for the rand command in MATLAB is reset. This ensures that the

same sequence of random numbers are generated with each run.

4.3.2 Convergence Function

In order to determine when the solution converges to an "exact" solution, the newly

calculated average is compared to the previous average. The absolute value of the di¤erence

between the current average and the previous average response are calculated at every time

step. Then, all these values are added to obtain a single convergence value. Mathematically,

this convergence value is given by

� =

SX
i=1

jAveci �Avepi j ; (4.9)
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where Aveci is the current average value at time step i, Avepi is the previous average value

at time step i and S is the total number of time steps. This convergence value is compared

to a predetermined tolerance value to decide if the Monte Carlo procedure should continue.

This guarantees the di¤erence of the average and the previous average at any time is less

than this predetermined convergence value. When many runs have already been averaged,

the weight of one additional run will be much less and does not have a signi�cant e¤ect on

the new average. At this point, the averaged response is assumed to have converged to the

exact value within the predetermined tolerance.

In order to guarantee that the �rst few runs do not satisfy the convergence function

and stop the procedure due to having similar randomness, a set number of runs must be

completed before this convergence function is taken into e¤ect. For all the cases shown in

this work, the minimum number of trial runs for the Monte Carlo procedure is 400.

In addition, since the failure runs are not included in the averaged response, there is a

check to see if all the runs have failed. If the failure count and the number of trial runs are

both equal to 100 the Monte Carlo procedure stops before even reaching the minimum of

400 runs. This prevents the code from continually running if all the responses have plate

failures.

In case a large number of runs lead to plate failures, 6,000 is set as the maximum number

of trial runs. This guarantees that the Monte Carlo procedure runs in a timely fashion.

Only eight runs were stopped for reaching 6,000 trial runs. The tables showing the number

of trial runs is located in Appendix A.

4.3.3 Time Step

The static time stepping value for the program is set at 0:5 �s. This is a very small

time step, even for blast loads, which allows for accurate tracking. In order to reduce the

time of each run, the program is written to progressively increase the time step after a

designated time. However, while decreasing the number of time steps, the error increases

and therefore, the number of trial runs needed for the response to converge increases. Due

to this, the varying time stepping feature is disabled.

In addition, the program is written to allow for a time extension. This time extension
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Figure 4.1: Ensemble averaging of random function X(t) with density function f(x; t) at
time t1.

is the length of time after Tdur that the response is still calculated. This feature is used in

case the response reaches its maximum de�ection after the load has vanished. Since this

feature was not needed for the loads used in this study, the extension time is set to zero.

4.3.4 Averaging Response

The average response in the Monte Carlo method must be calculated at every time step

since the loading and response of the plate are time dependent. This procedure is known

as ensemble averaging, depicted in Figure 4.1. Only the runs for which the plate does not

fail are factored into the averaged response since response Equations 3.15 and 3.19 are not

valid when the plate fails. Therefore, if the plate reaches the failure point, the failure count

is increased by one and the time of failure is recorded. Also, the previous run�s average

response is restored, negating any changes from the failed run�s values. Once the plate

fails, there is no need to continue for the rest of the time steps of that run, and therefore

the loop is broken. The force is averaged as was the response, neglecting the failed runs

in order to compare the averaged force to the averaged response. Some of these averaged
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forces are shown in Appendix A.

4.4 Statistical Evaluations of Results

4.4.1 Percent Errors of Maximum De�ection

Once all the averaged responses are calculated, the maximum de�ection of each averaged

response is found and used to determine the loading parameter�s sensitivity. For each of

the six cases, the maximum of the deterministic response is calculated and used as the

testing value. The di¤erence between the averaged response of a random parameter to this

testing value is then calculated for each speci�c case. This di¤erence is then converted

into a percent error, which is used to determine the sensitivity of that parameter for the

particular case. The greater the percent error, the greater the parameter�s sensitivity to

uncertainty.

4.4.2 Standard Deviations

The standard deviation for each time step is calculated by

�(t) =

vuuut NP
i=1
(wi(t)� wave(t))2

N
; (4.10)

where �(t) is the standard deviation at time t, wi(t) is the response of run i at time t, N

is the number of runs that do not have plate failures and wave(t) is the averaged response.

This standard deviation is a measure of the spread, or scatter, of the response values. The

standard deviation is also useful for creating con�dence bounds. The standard deviation

of the force is also calculated.

The standard deviation of the maxima of each run is also calculated. This is di¤erent

than the previously mentioned standard deviation. In this case, there is no time dependence

and the maxima of each run are taken regardless of when they occur. The equation for

this standard deviation is

�max =

vuuut NP
i=1
(wmaxi � wavemax)

2

N
; (4.11)
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where �max is the standard deviation of the maxima, wmaxi is the maximum value of run i,

N is the number of runs that do not have plate failures and wavemax is the maximum of the

averaged response. Using this standard deviation, we calculate the number of runs whose

maxima fall between a range of standard deviation bounds from the averaged response.

4.4.3 Probability Densities of the Response

In order to obtain the densities of maximum de�ections, histograms of the maximum

values of all non-failing responses are generated and normalized. In addition, since the

response process is time dependent, densities of the response are generated at various times

in order to show how they change as the time progresses. Five time instances are selected

to obtain this information. First is the time when the maximum occurs in the averaged

response. The remaining four times are equally spaced from the time when the maximum

occurs to the �nal time. Some of these time varying densities are shown in Appendix A.

Although the time dependent probability density analysis are not included in Chapter 5,

many results from the procedures speci�ed in this chapter are.



30

Chapter 5

Results and Discussion

This chapter presents and discusses various results for the six cases. Tables 5.1 and 5.2

display the six di¤erent cases studied in this thesis. The parameter sensitivities, as well

as the maximum de�ection trends due to uncertainties are analyzed in this chapter. In

addition, the probability densities of the maximum de�ections for each parameter are also

studied. The chapter concludes with a detailed discussion using deterministic solutions to

explain the outcome of the probabilistic results. Due to the large number of results, only a

handful are displayed in this chapter. A number of other results are in Appendix A.

Case 1 Case 2 Case 3
Random Variable Z = 0:7 Z = 1:2 Z = 2:0

Pmax Maximum Pressure 134� 105 Pa 29� 105 Pa 6:458� 105 Pa
Tdur Duration Time 0:8346 ms 1:792 ms 1:846 ms
� Decay Constant 11:296 10:784 3:7365

Table 5.1: Loading parameter values of the three Z cases for Load 1.

Case 4 Case 5 Case 6
Random Variable Z = 0:7 Z = 1:2 Z = 2:0

Pmax Maximum Pressure 134� 105 Pa 29� 105 Pa 6:458� 105 Pa
Tdur Duration Time 0:86225 ms 1:867 ms 2:0404 ms
� Decay Constant 11:296 10:784 3:7365
Tmax Time of Maximum Pressure 0:02765 ms 0:075 ms 0:1944 ms

Table 5.2: Loading parameter values of the three Z cases for Load 2.

5.1 De�ections of Deterministic Runs

Figure 5.1 shows the de�ections of Case 2 and 5 with all deterministic parameters.

These de�ections are the baseline of the analysis and are considered to be the deterministic

solution. The responses are oscillatory; however, the interest is in the maximum de�ection
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of the response. Table 5.3 shows the maximum de�ection for each case which will be

compared to the probabilistic results. As expected, for smaller Z values, the maximum

de�ection is larger than for the larger Z value cases. In addition, for a particular Z value,

Load 2 has a larger maximum de�ection than Load 1. This is due to the extra impulse

from under the linear-rise region of Load 2. The smallest Z value of 0.7 was chosen so that

the maximum de�ection of the deterministic run was just under the allowable maximum

de�ection before failure.

Figure 5.1: Deterministic de�ections for Cases 2 and 5.

Case Max De�ection (mm)
1 48.1813
2 20.8533
3 10.1719
4 58.9217
5 25.5814
6 11.4930

Table 5.3: Maximum de�ections of deterministic solution.
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5.2 De�ections of Probabilistic Runs

After obtaining the deterministic de�ection, we introduce randomness into each loading

parameter, one at a time. For each random parameter the ensemble average of the responses

are calculated using the Monte Carlo method. For all the following �gures and tables, the

labeled variable is the loading parameter which is the random variable for that particular

result. Figures 5.2-5.5 are graphs of the average de�ections of each random variable for

Case 5 when HRf = 0:05, 0:2, 0:4 and 0:8, respectively. For all six cases, as the half-range

increases, the averaged de�ection for each random variable deviates from its deterministic

response. In addition, the responses tend to dampen more as the uncertainty is increased.

The de�ection shape di¤ers the most from the deterministic response when Pmax is the

random variable. The predetermined convergence value for these runs is set to 0:5� 10�2

m.

Figure 5.2: In this �gure, each de�ection is for a simulation where the respective variable
is the random variable with HRf = 0:05 for Case 5. For example, the solid line de�ection
is for the simulation where Pmax is the random variable.
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Figure 5.3: Average de�ections of Case 5 with HRf = 0:2.

Figure 5.4: Average de�ections of Case 5 with HRf = 0:4.
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Figure 5.5: Average de�ections of Case 5 with HRf = 0:8.

5.3 Standard Deviation Bounds of De�ection

For each run, the standard deviation of the de�ection is calculated. This allows for the

response to be bound by its standard deviation to show where a certain percentage of the

run�s values will lie. The speci�c percentage depends on the type of probability density

the response has. Figures 5.6-5.8 depict the de�ections with random variable Tdur along

with standard deviation bounds for Case 2 when HRf = 0:05, 0:2 and 0:8, respectively.

As expected, as the uncertainty increases, the standard deviation of the response increases.

Figure 5.9 is the standard deviation of Case 2 with random variable Tdur when HRf = 0:8.

This �gure is a good representation of most cases. For instance, for all the cases, the

standard deviation of the averaged de�ection is oscillatory. Also, for most cases, the

standard deviation tends to increase with time.

As mentioned in Section 4.4.2, the standard deviation of the maximums of each run

is also calculated. As the time dependent standard deviations of the displacements, this

standard deviation of maximum values also increases as the half-range increases. This is

what would be expected since a higher half-range implies a more random and scattered
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result. Table 5.4 shows the results for all the cases and variables when HRf = 0:8. The

full set of standard deviations of the maximum values is presented in Appendix A. For most

cases, the largest standard deviation is when all the variables are random, represented as

variable All. For the individual parameters, the order of standard deviations from greatest

to least is; Pmax, Tdur, � and then Tmax. For instance, the standard deviation of the

maximum values is 15.17 mm for Case 1 when the random variable is Pmax and HRf = 0:8.

The standard deviation of the maximum values is much lower at 9.268 mm for Case 1 when

the random variable is � and HRf = 0:8. In addition, by observing Table 5.4, one can

see for the same random variable, the standard deviation of the maximum values change

dramatically between the the di¤erent cases, in particularly between the di¤erent Z value

loads.

Figure 5.6: De�ection and standard deviation bounds for Case 2 for random variable Tdur
and HRf = 0:05.
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Figure 5.7: De�ection and standard deviation bounds for Case 2 for random variable Tdur
and HRf = 0:2.

Figure 5.8: De�ection and standard deviation bounds for Case 2 for random variable Tdur
and HRf = 0:8.
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Figure 5.9: Standard deviation for Case 2 for random variable Tdur and HRf = 0:8.

HRf = 0:8 Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)
Case 1 15.17 14.82 9.27 N/A 15.63
Case 2 8.16 5.68 5.65 N/A 11.77
Case 3 2.52 1.35 0.84 N/A 3.01
Case 4 14.56 11.67 6.25 3.52 14.71
Case 5 10.39 5.03 4.80 1.83 12.69
Case 6 3.13 0.85 0.49 0.36 3.11

Table 5.4: Standard deviation of maximum values when HRf = 0:8.

5.4 Averaged De�ections with Half-range Equal to 80% of the Mean

Figures 5.5 and 5.10-5.14 show the averaged de�ections where various parameters are

modeled as random variables for each of the six cases for HRf = 0:8. For all cases,

the maximum de�ection occurs at the �rst local maximum. This means that for none

of the cases does the de�ection reach the plastic region more than once. Only Cases 1

and 4 have plate failures. Since the runs with plate failures are not incorporated into the

averaged response, this decreases the maximum de�ection of the average response and it is

appropriate to look at their probabilities of failure.
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Figure 5.10: Average de�ections of Case 1 for HRf = 0:8.

Figure 5.11: Average de�ections of Case 2 for HRf = 0:8.
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Figure 5.12: Average de�ections of Case 3 for HRf = 0:8.

Figure 5.13: Average de�ections of Case 4 for HRf = 0:8.
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Figure 5.14: Average de�ections of Case 6 for HRf = 0:8.

5.5 Sensitivity of Loading Parameters

Tables 5.5-5.10 show results with HRf = 0:1, 0:4 and 0:8 for Cases 1-6, respectively.

The full set of results are given in Appendix A. For each case and HRf value, each loading

parameter is represented as the random variable for that particular run. In addition, the

random variable All represents runs when all of the loading parameters are random. For

each random variable, the di¤erence in maximum de�ection of the probabilistic run to the

deterministic run is given and represented as �. In addition to �, the percent error of

maximum de�ection and the probability of plate failure are given for each probabilistic run.

The greater these percent errors of maximum de�ection, the greater the sensitivity that

parameter has to uncertainty. Note, the percent errors are calculated using the maximums

of the averaged responses, which do not include any of the runs with plate failures. By

observing Tables 5.5-5.10, as expected, these percent errors increase as the uncertainty, or

HRf value, increases. If the random variables are arranged in order of their sensitivity to

uncertainty (i.e., their percent errors) for a given case and HRf , this order is maintained

throughout that case if HRf is varied. This is always true except when the percent errors
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are very small.

Only Cases 1 and 4 have results with probability of plate failures greater than zero.

As seen in Tables 5.5 and 5.8, the probability of plate failures increase as the uncertainty

increases. With a higher probability of plate failure, a greater number of runs with high

de�ections are not included in the averaged response. This means that the more plate

failures there are, the lower the averaged response tends to be compared to the deterministic

de�ection. This yields to a greater percent error. For Case 1, when all the variables are

random and HRf = 0:8, the probability of plate failure is greatest with a value of 30.17%.

However, among the individual parameters, the probability of plate failure is greatest with

a value of 29.29% which occurs when � is the random variable. The results when Tdur

is the random variable produce the smallest probability of plate failure for Case 1 with a

value of 22.15%. For the individual parameters, the most sensitive parameter for Case 1 is

Pmax with a percent error of 21.84%. The second most sensitive parameter is Tdur which

has a di¤erence of 3.3% for the percent error, but about a 7% di¤erence for the probability

of plate failure when compared to the data when Pmax is the random variable. This may

imply when Tdur is the random variable, it would be the most sensitive to uncertainty if it

was not for the plate failures.

For the results of the individual parameters of Case 4, the probability of plate failure

from greatest to least is when the random variable is; Pmax, �, Tdur and then Tmax. When

Pmax is the random variable and HRf = 0:8, the probability of plate failure is the greatest

with a value of 45.18%. However, when Tmax is the random variable and HRf = 0:8,

the response has a much lower probability of plate failure with a value of 16.78%. This

is because as random variable Tmax changes for Case 4, the maximum de�ection does not

change signi�cantly and therefore does not reach over the failure limit as often. This small

change in de�ection can be seen in the small percent error of 2.19% when the random

variable is Tmax and HRf = 0:8. For Case 4, the probability of plate failure when all

the parameters are random is greater than the results for the individual parameters when

HRf < 0:4. However, when HRf � 0:4 the probability of plate failure when all the

parameters are random is less than some of the results for the individual parameters. For

instance, when HRf = 0:8, all the individual parameters except for when Tmax is the
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random variable produce probability of plate failures greater than when all of the variables

are random. This result shows there can be a combination of random parameters which

may reduce the probability of failure. The reason for this is because when the uncertainty

for the various random parameters increase, some of the responses tend to increase the

maximum de�ection while others tend to decrease it. These trends will be explained in

later sections.

Random variable � produces a negative � for Cases 1 and 4, while for all the other cases

it produces a positive �. Again, this is because the failed plate results are not included

in the averaged de�ection and Cases 1 and 4 have runs where the plate fails. If a random

variable produces a negative �, then its results underestimates the maximum de�ection,

while a positive � overestimate it.

For Cases 2 and 3, shown in Tables 5.6 and 5.7, respectively, random variable Tdur is

the most sensitive individual parameter. When HRf = 0:8, the percent errors for random

variable Tdur are 6.34% and 4.99% for Cases 2 and 3, respectively. For Case 2, random

variable � is the second most sensitive parameter with a percent error of 4.81%, while for

Case 3 it is the least sensitive parameter with a very low percent error of 0.67%. For Case

2, where random variable ��s uncertainty has a larger in�uence than Case 3, the percent

error when all the variables are random is smaller with a di¤erence of 5.69% between the

two cases. This is because when � is the random variable it tends to increase the maximum

de�ection of the plate as its uncertainty increases, as will be shown in Section 5.6. However,

as the uncertainty increases when all of the variables are random, there is a net decrease

in maximum de�ection. This can also be seen by observing the sign of � for the various

results. In addition, for Case 2, when Pmax is the random variable, the maximum de�ection

increases slightly as the uncertainty increases. This gives the same e¤ect as random variable

� of reducing the percent error when all the parameters are random.

On the other hand, for Case 3 when Pmax is the random variable and HRf � 0:4, the

maximum de�ection of the response decreases with respect to the deterministic�s maximum

de�ection. In other words, it has a negative �. Due to this and the small e¤ect of

random variable ��s uncertainty for Case 3, the greatest percent error occurs when all the

parameters are random. The reason for the random variable Pmax to have positive � at
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HRf < 0:4 and negative � at HRf � 0:4 for Case 3 is because of the large scatter of data

for random variable Pmax. At smaller half-ranges, the percent errors are very small for

random variable Pmax and the scatter is large enough that the converged averaged de�ection

could have a positive or negative �, however it will be close to zero. It is not until the

higher half-ranges that the true decreasing trend is revealed, where � is negative.

For Case 5, shown in Table 5.9, the random variable Tdur is the most sensitive parameter

to uncertainty with a 5.93% error when HRf = 0:8. For the individual parameters of Case

5, their sensitivity to uncertainty from greatest to least is; Tdur, �, Tmax and then Pmax.

However, for the individual parameters of Case 6, shown in Table 5.10, their sensitivity to

uncertainty from greatest to least is; Tmax, Tdur, Pmax and then �. The reason for random

variable Tmax to have the highest sensitivity to uncertainty in this case is because the mean

value for Tmax has an order of magnitude greater than the other cases, making the linear

rise part of the forcing function the main contributor to the load.

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0221 0:0458 0

Tdur �0:2383 0:4945 0

� 0:0057 0:0118 0

All �0:1333 0:2766 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �1:4066 2:9194 0:0821

Tdur �0:9560 1:9841 0

� �0:2262 0:4694 0:0812

All �5:5229 11:4627 0:1833

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �10:5214 21:8371 0:2906

Tdur �8:9209 18:5152 0:2215

� �5:5163 11:4491 0:2929

All �17:0795 35:4485 0:3017

Table 5.5: Case 1 di¤erences, percent errors and probability of plate failures.
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Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0036 0:0173 0

Tdur �0:0691 0:3314 0

� 0:0528 0:2532 0

All �0:0275 0:1318 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0698 0:3349 0

Tdur �0:4274 2:0498 0

� 0:2240 1:0744 0

All �0:0952 0:4564 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:2165 1:0381 0

Tdur �1:3229 6:3436 0

� 1:0026 4:8079 0

All �0:3126 1:4989 0

Table 5.6: Case 2 di¤erences, percent errors and probability of plate failures.

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0046 0:0450 0

Tdur �0:0192 0:1885 0

� �0:0048 0:0475 0

All �0:0132 0:1297 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0131 0:1286 0

Tdur �0:1312 1:2900 0

� 0:0082 0:0809 0

All �0:1513 1:4876 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:2628 2:5833 0

Tdur �0:5073 4:9874 0

� 0:0682 0:6707 0

All �0:7307 7:1836 0

Table 5.7: Case 3 di¤erences, percent errors and probability of plate failures.



45

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:4683 0:7948 0:0841

Tdur �0:2236 0:3795 0

� 0:0134 0:0227 0

Tmax 0:003 0:0051 0

All �1:2499 2:1213 0:1493

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �8:9262 15:1493 0:3993

Tdur �5:8432 9:9169 0:3318

� �4:051 6:8753 0:3431

Tmax �0:038 0:0645 0

All �11:3514 19:2652 0:3838

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �20:2262 34:3273 0:4518

Tdur �14:5803 24:7452 0:4095

� �8:6061 14:6061 0:4209

Tmax �1:2879 2:1858 0:1678

All �24:3052 41:2500 0:4057

Table 5.8: Case 4 di¤erences, percent errors and probability of plate failures.



46

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0424 0:1657 0

Tdur �0:0452 0:1767 0

� 0:0444 0:1736 0

Tmax 0:0061 0:0238 0

All 0:0186 0:0726 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0553 0:2161 0

Tdur �0:4719 1:8448 0

� 0:1209 0:4728 0

Tmax �0:0657 0:2568 0

All �0:2885 1:1276 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:2588 1:0117 0

Tdur �1:5168 5:9294 0

� 0:6462 2:5261 0

Tmax �0:3630 1:4191 0

All �1:1466 4:4823 0

Table 5.9: Case 5 di¤erences, percent errors and probability of plate failures.
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Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0081 0:0704 0

Tdur �0:0128 0:1115 0

� �0:005 0:0433 0

Tmax �0:0097 0:0847 0

All �0:0103 0:0895 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0203 0:1762 0

Tdur �0:0908 0:7901 0

� �0:0025 0:0219 0

Tmax �0:1087 0:9457 0

All �0:2164 1:8825 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0928 0:8076 0

Tdur �0:3679 3:2012 0

� 0:0141 0:1223 0

Tmax �0:4002 3:4817 0

All �0:8675 7:5483 0

Table 5.10: Case 6 di¤erences, percent errors and probability of plate failures.
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5.6 Trends of Maximum De�ection as Uncertainty Increases

In order to see the trends of the maximum de�ection as the uncertainty of each parameter

increases, the response was calculated 100 times per random variable, with random half-

ranges from 0 to 80% of the mean. The maximum de�ection of each ensemble average is

then plotted against a normalized half-range, de�ned as the half-range value divided by 80%

of the mean. This allows for a direct comparison between the various loading parameters�

trends. To reduce the length of time for the program to complete, the predetermined

convergence value is increased to 0:5 � 10�1 m for these runs. Although this reduces the

accuracy of the averaged de�ection, for the most part, the trends are easy to see.

5.6.1 Trends of Maximum De�ection of Cases without Plate Failures

Figure 5.15: Scatter plot of maximum de�ections vs. normalized half-range for Case 2.

Figures 5.15-5.18 show the results for Cases 2, 3, 5 and 6. In all these cases, random

variable � has a trend of increasing the maximum de�ection as its uncertainty increases.

Random variable Tdur tends to decrease the maximum de�ection as its uncertainty increases.

When all the parameters were random at the same time, the trend is also a decreasing one.

For Case 5, as random variable Tmax�s uncertainty increases, the response has a constant
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maximum de�ection until a normalized half-range of 0.5, where it begins to decrease slightly.

However, for Case 6 when Tmax is the random variable, the maximum de�ection begins to

steadily decrease at a normalized half-range of 0.2. In fact, the maximum de�ection for

random variable Tmax decreases more than any of the other individual random parameters

for Case 6. As mentioned before, Tmax is the most sensitive parameter to uncertainty for

this case.

Figure 5.16: Scatter plot of maximum de�ections vs. normalized half-range for Case 3.

The original results, shown in Figures 5.15-5.18, show a large scatter, or high coe¢ cient

of variation, for the maximum de�ection trend when Pmax is the random variable. To obtain

a more accurate maximum de�ection trend by reducing this scatter, the program is rerun

for random variable Pmax with a smaller predetermined convergence value of 0:2 � 10�3

m and a maximum number of trial runs of 15,000. Figures 5.19 and 5.20 show these

new results as asterisks and the circles represent the data using the original predetermined

convergence value of 0:5 � 10�1 m for Cases 3 and 5, respectively. By analyzing these

new, more accurate results, the maximum de�ection trends for random variable Pmax are

easy to see. For Cases 2 and 5, the maximum de�ection trend for random variable Pmax

is a straight line with a very small positive slope, while for Cases 3 and 6, the maximum
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de�ection decreases more as the uncertainty increases.

Figure 5.17: Scatter plot of maximum de�ections vs. normalized half-range for Case 5.

5.6.2 Trends of Maximum De�ection of Cases with Plate Failure

Figures 5.21 and 5.23 show the maximum de�ection trends of all the runs with no plate

failures for each parameter of Cases 1 and 4, respectively. Both plots show a decreasing

maximum de�ection trend for all the parameters. However as mentioned before, this

is due to the fact that the runs with plate failures, which have a high de�ection, are not

averaged into the averaged response. When all of the parameters are random, the maximum

de�ection decreases the most with increasing uncertainty. For the individual random

parameters, the maximum de�ection when Pmax is the random variable decreases the most

with increasing uncertainty. This decreasing maximum de�ection trend is highly related

to the probability of failure for each parameter.

Figures 5.22 and 5.24 show the probability of failure as uncertainty increases for each

parameter of Cases 1 and 4, respectively. Each random parameter initially shows a zero

probability of failure and then at a certain uncertainty, the probability of failure begins to

increase as the uncertainty increases. For both Cases 1 and 4, as uncertainty increases,
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Figure 5.18: Scatter plot of maximum de�ections vs. normalized half-range for Case 6.

plate failures are �rst observed when all the parameters are random. For Case 1, for random

variables Pmax and �; plate failures begin to occur around the same level of uncertainty at a

normalized half-range of about 0.42. For random variable Tdur the plate failures do not start

to occur until a higher level of uncertainty, which is at a normalized half-range of 0.55. For

the individual parameters of Case 4, when Pmax is the random variable the response begins

to show plate failures �rst, which is at a normalized half-range of 0.1. For random variables

Tdur and �, plate failures begin to occur around the same level of uncertainty, which is at

a normalized half-range of about 0.17. This is a little after the uncertainty level where

random variable Pmax begins to show plate failures. For Case 4, random variable Tmax

shows the smallest probability of failure and a zero probability of failure until a normalized

half-range of about 0.68, which is a much longer period of uncertainty compared to the other

parameters. By observing Figures 5.21 and 5.22 as well as Figures 5.23 and 5.24, it can

be seen that as each probability of failure begins to increase, the corresponding maximum

de�ection of the non-failed runs begin to decrease.
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Figure 5.19: Maximum de�ection vs. normalized half-range of random variable Pmax for
Case 3. The data represented by the circles are runs with a predetermined convergence
value of 0:5� 10�1 m and a maximum allowable number of trial runs equal to 6,000. The
data represented by the circles are runs with a predetermined convergence value of 0:2�10�3
m and a maximum allowable number of trial runs equal to 15,000.

Figure 5.20: Maximum de�ection vs. normalized half-range of random variable Pmax for
Case 5. The data represented by the circles are runs with a predetermined convergence
value of 0:5� 10�1 m and a maximum allowable number of trial runs equal to 6,000. The
data represented by the circles are runs with a predetermined convergence value of 0:2�10�3
m and a maximum allowable number of trial runs equal to 15,000.
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Figure 5.21: Scatter plot of maximum de�ections vs. normalized half-range for Case 1.
These maximum de�ections are the maximums of the averaged responses, which do not
include the runs that have plate failures.

Figure 5.22: Probability of failure vs. normalized half-range for Case 1.
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Figure 5.23: Scatter plot of maximum de�ections vs. normalized half-range for Case 4.
These maximum de�ections are the maximums of the averaged responses, which do not
include the runs that have plate failures.

Figure 5.24: Probability of failure vs. normalized half-range for Case 4.
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5.7 Probability Densities for Maximum De�ection

The probability density functions of the maximum de�ections for Case 5 when HRf =

0:8 are represented in Figures 5.25-5.33. Although only Case 5 is shown here, the other

cases have similar shapes for each random parameter. The probability density functions

due to random parameters Pmax and Tmax, shown in Figures 5.25 and 5.26, respectively,

have a uniform distribution. However, as Figure 5.27 shows, random variable Tdur leads to

a probability density function that has more area under larger maximum de�ections. This

means there is a greater probability of obtaining higher maximum de�ections when Tdur is

the random variable. Conversely, Figure 5.28 shows the probability density function due to

random variable � has more area under the smaller maximum de�ections, giving a greater

probability to obtain lower de�ections. These �gures are very useful to show the range of

maximum de�ections for a particular random variable. In addition, they help to show the

probability of the maximum de�ection to be within a certain range.

Figure 5.25: Probability density of maximum de�ection for random parameter Pmax in Case
5 with HRf = 0:8. These results were generated using 5173 simulation runs.
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Figure 5.26: Probability density of maximum de�ection for random parameter Tmax in Case
5 with HRf = 0:8. These results were generated using 1756 simulation runs.

Figure 5.27: Probability density of maximum de�ection for random parameter Tdur in Case
5 with HRf = 0:8. These results were generated using 5622 simulation runs.
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Figure 5.28: Probability density of maximum de�ection for random parameter � in Case 5
with HRf = 0:8. These results were generated using 5451 simulation runs.

5.8 Further Discussion

To understand why these probability density functions are shaped this way, as well as

to explain the trends of the maximum de�ection as uncertainty increases, the deterministic,

maximum de�ection of the response for each parameter is calculated for all the values

within the full range of minus to plus 80% of that variable�s mean. Figures 5.30-5.33

show these results for Case 5. For parameters Pmax and Tmax the maximum de�ection

of the response increases in a linear way as the parameter values increase. Due to this

relationship, if a uniform distribution of the parameter is taken around the mean value, the

response will also have a uniform distribution with a mean de�ection equal to the de�ection

of the parameter�s mean value. This also explains why random parameters Pmax and Tmax

have a straight horizontal maximum de�ection trend for Case 5, because their averages with

a uniform distribution, or any distribution that is symmetric about its mean value, will be

the de�ection at the mean value.
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For parameter Tdur, shown in Figure 5.32, the maximum de�ection of the response

increases with a concave down curve as the parameter values increase. Since the curve is

concave down, the average maximum de�ection of two points equidistant and on opposite

sides of the mean will be less than the maximum de�ection at the mean value, as seen in

Figure 5.29. This explains why the maximum de�ection trends of random parameter Tdur

are decreasing as the uncertainty increases. In addition, since the slope of the maximum

de�ection curve decreases as a function of Tdur, there will be more variation in the de�ection

with a wider distribution of maximum responses at lower Tdur. However, in the higher Tdur

range where the slope is not as steep, the maximum de�ection of the responses are closer

to each other resulting in a higher probability to obtain those maximum de�ections. Thus,

the probability density function is increasing as shown in Figure 5.27.

For parameter �, shown in Figure 5.33, the maximum de�ection of the response decreases

as a function of �. Since the curve is concave up, the average of the maximum de�ections

with a uniform distribution will be greater than the maximum de�ection at the mean

value, which explains why the maximum de�ection trend for parameter � is increasing as

the uncertainty increases. Figure 5.33 shows the slope of the maximum de�ection curve

increases as a function of �. Thus the probability density function for random parameter

� is decreasing as shown in Figure 5.28.
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Figure 5.29: Visual explanation for why the average value of a concave down plot with a
�xed range will always be less than the value at the middle of that range.

Figure 5.30: Deterministic results for maximum de�ection for parameter Pmax in Case 5.
The range for Pmax is the full range when HRf = 0:8.
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Figure 5.31: Deterministic results for maximum de�ection for parameter Tmax in Case 5.
The range for Tmax is the full range when HRf = 0:8.

Figure 5.32: Deterministic results for maximum de�ection for parameter Tdur in Case 5.
The range for Tdur is the full range when HRf = 0:8.
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Figure 5.33: Deterministic results for maximum de�ection for parameter � in Case 5. The
range for � is the full range when HRf = 0:8.

Figure 5.34 shows the deterministic results for the maximum de�ection with respect to

Pmax for Case 3. In this result, there is a small kink and change of slope. This is the

reason for the slight decrease in Pmax at larger uncertainties for this case. This kink may

be due to the transition between the response being purely elastic to being an elastic-plastic

response.

Figure 5.35 shows the deterministic results for the maximum de�ection with respect to

Tmax for Case 6. This �gure shows that the maximum de�ection for parameter Tmax in Case

6 is linear and then curves down, which will underestimate the mean value. The reason this

curve begins to concave down and produce a saturation e¤ect is because as Tmax increases,

the base of the triangle for the �rst part of the load increases but the height remains the

same. As the base increases, the impulse, or area underneath, increases. However, as the

base continues to increase, the impulse does not grow as fast and therefore the maximum

de�ection of the response does not change as rapidly.



62

Figure 5.34: Deterministic results for maximum de�ection for parameter Pmax in Case 3.
The range for Pmax is the full range when HRf = 0:8.

Figure 5.35: Deterministic results for maximum de�ection for parameter Tmax in Case 6.
The range for Tmax is the full range when HRf = 0:8.
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Chapter 6

Summary of Key Results and Future Work

6.1 Summary of Key Results

A sensitivity analysis of simpli�ed blast loading model parameters is conducted to de-

termine their sensitivity to uncertainty. In addition, some probabilistic analysis and obser-

vations of trends are performed as the uncertainty of the parameters increase. Six di¤erent

loading cases, described in Tables 3.2 and 3.3, were analyzed in this work.

For Cases 2, 3 and 5, Tdur is the most sensitive parameter to uncertainty. For Cases

1 and 4, Pmax becomes the most sensitive parameter to uncertainty once the plate begins

to fail for some of the runs. However, for the lower levels of uncertainty, before the plate

begins to fail for any of the runs, Tdur is the most sensitive parameter. The reason for this

transition is because the failed runs are not averaged into the averaged de�ection. Due to

the fact that the linear rise of Case 6 is not very steep, the parameter Tmax is the most

sensitive to uncertainty, although parameter Tdur�s sensitivity to uncertainty is very close.

In addition, according to Esparza [8], Tdur is the hardest of the parameters to experimentally

measure, especially at small scaled distances. This means that in order to obtain a more

accurate result, the measurement precision of Tdur needs to be improved upon more than

that of the other parameters.

Besides determining which parameter is more sensitive to uncertainty, the trends of

the maximum de�ection due to the change of uncertainty are examined. Uncertainty in

parameter � tends to increases the maximum de�ection, while the rest of the parameters�

uncertainties tend to decrease it or keep it the same.

The maximum de�ection probability density functions are created and show a uniform
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distribution for the parameters Pmax and Tmax, while the parameter Tdur has a distribu-

tion with positive slope and parameter � has a distribution with negative slope. These

probability density functions provide a way to calculate the probability of the maximum

de�ection to be within a certain range.

Finally, by examining deterministic plots of maximum de�ection over the range of each

parameter, many of the trends and features are able to be explained. This method can be

applied to a wide range of problems.

6.2 Future Work

There is a large amount of analysis that still can be done within this work. For

instance, more cases can be studied to better understand how the probabilistic parameters

of the loading model a¤ect the maximum de�ection. This includes considering other types

of loads, such as triangular loads or exponential loads with a negative phase pressure. In

addition, the loading can be analyzed as a nonuniform load. Also, more Z values can

be considered, resulting in a better understanding of all the trends. In this study, all

the random parameters were given a uniform probability distribution. Analysis can be

conducted with di¤erent types of distributions, including non-symmetric distributions.

In addition to changing the loads, the plate model can also be changed. In this work,

only a fully clamped rectangular plate was analyzed. The de�ection of a plate with di¤erent

boundary conditions can be examined. It would also be interesting to see if and by how

much the dimensions or properties of the plate a¤ect the results.

In most experimental work, parameter � is not measured; instead the total impulse is

measured and � is then derived. Therefore it can be argued that instead of randomizing

parameter �, the total impulse should be randomized. Appendix A has an example of this

analysis, showing the deterministic maximum de�ection for Case 5 with varying impulse.

Since the plate de�ection is not a static process, the probability density functions of

the ensemble average is calculated at various times. Some of these graphs are shown in

Appendix A. In addition, plate failure times can be analyzed as well.
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It will also be interesting to analyze the averaged force pro�le and its statistical charac-

teristics. Although the MATLAB program written already generates all this information,

this analysis is left for subsequent e¤orts.

However, we believe that the essential character of this model and loading cases are

faithfully represented by the analysis and computation herein.
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Appendix A

Additional Results

Half-Range = 5% of the Mean (HRf = 0:05)
Pmax Tdur � Tmax All

Case 1 405 400 401 0 405

Case 2 405 400 401 0 405

Case 3 400 400 400 0 400

Case 4 405 400 403 400 467

Case 5 440 400 401 400 540

Case 6 402 400 400 400 400

Half-Range = 10% of the Mean (HRf = 0:1)
Pmax Tdur � Tmax All

Case 1 571 403 418 0 1047

Case 2 860 403 412 0 1152

Case 3 402 400 400 0 402

Case 4 1082 403 418 400 1333

Case 5 1492 403 412 403 1858

Case 6 404 400 400 400 402

Half-Range = 20% of the Mean (HRf = 0:2)
Pmax Tdur � Tmax All

Case 1 2073 1085 968 0 2700

Case 2 2760 918 791 0 3271

Case 3 405 400 400 0 405

Case 4 3161 1038 924 403 3756

Case 5 4617 766 618 403 4771

Case 6 405 400 400 400 405

Table A.1: Number of trial runs for HRf = 0:05, 0:1 and 0:2.
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Half-Range = 40% of the Mean (HRf = 0:4)
Pmax Tdur � Tmax All

Case 1 4715 3256 2845 0 4425

Case 2 5320 3034 2832 0 4659

Case 3 503 400 400 0 519

Case 4 6000 3626 2160 403 6000

Case 5 6000 2757 2416 509 6000

Case 6 813 400 400 400 680

Half-Range = 60% of the Mean (HRf = 0:6)
Pmax Tdur � Tmax All

Case 1 5611 4754 3998 0 4304

Case 2 4850 4500 4262 0 4402

Case 3 986 400 400 0 1022

Case 4 6000 5707 3350 541 6000

Case 5 5873 4631 4512 1023 5429

Case 6 1544 400 401 400 1362

Half-Range = 80% of the Mean (HRf = 0:8)
Pmax Tdur � Tmax All

Case 1 5665 5070 4452 0 4007

Case 2 4525 4889 4508 0 3996

Case 3 1632 400 400 0 1455

Case 4 6000 6000 4063 1007 5689

Case 5 5173 5622 5451 1756 4550

Case 6 2235 400 401 403 1926

Table A.2: Number of trial runs for HRf = 0:4, 0:6 and 0:8.
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Half-Range = 5% of the Mean (HRf = 0:05)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0240 0:0499 0

Tdur �0:1122 0:2328 0

� �0:0244 0:0506 0

All �0:0909 0:1886 0

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0221 0:0458 0

Tdur �0:2383 0:4945 0

� 0:0057 0:0118 0

All �0:1333 0:2766 0

Half-Range = 20% of the Mean (HRf = 0:2)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:2193 0:4552 0

Tdur �0:3546 0:7359 0

� 0:1775 0:3684 0

All �0:7399 1:5357 0:04

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �1:4066 2:9194 0:0821

Tdur �0:9560 1:9841 0

� �0:2262 0:4694 0:0812

All �5:5229 11:4627 0:1833

Half-Range = 60% of the Mean (HRf = 0:6)
Random Variable � (mm) % Error Prob of Failure

Pmax �5:9104 12:2671 0:2165

Tdur �4:6040 9:5556 0:1338

� �3:1392 6:5154 0:2254

All �11:2142 23:2751 0:2607

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �10:5214 21:8371 0:2906

Tdur �8:9209 18:5152 0:2215

� �5:5163 11:4491 0:2929

All �17:0795 35:4485 0:3017

Table A.3: Case 1 di¤erences, percent errors and probability of plate failures.
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Half-Range = 5% of the Mean (HRf = 0:05)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0218 0:1045 0

Tdur 0:0156 0:0748 0

� 0:0024 0:0115 0

All �0:0190 0:0911 0

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0036 0:0173 0

Tdur �0:0691 0:3314 0

� 0:0528 0:2532 0

All �0:0275 0:1318 0

Half-Range = 20% of the Mean (HRf = 0:2)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0678 0:3254 0

Tdur �0:1566 0:7511 0

� 0:0466 0:2233 0

All �0:0219 0:1050 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0698 0:3349 0

Tdur �0:4274 2:0498 0

� 0:2240 1:0744 0

All �0:0952 0:4564 0

Half-Range = 60% of the Mean (HRf = 0:6)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:1491 0:7151 0

Tdur �0:8103 3:8858 0

� 0:5501 2:6382 0

All �0:1587 0:7611 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:2165 1:0381 0

Tdur �1:3229 6:3436 0

� 1:0026 4:8079 0

All �0:3126 1:4989 0

Table A.4: Case 2 di¤erences, percent errors and probability of plate failures.
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Half-Range = 5% of the Mean (HRf = 0:05)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0007 0:0065 0

Tdur �0:0099 0:0970 0

� �0:0045 0:0445 0

All �0:0072 0:0710 0

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0046 0:0450 0

Tdur �0:0192 0:1885 0

� �0:0048 0:0475 0

All �0:0132 0:1297 0

Half-Range = 20% of the Mean (HRf = 0:2)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0105 0:1036 0

Tdur �0:0449 0:4417 0

� �0:0035 0:0343 0

All �0:0330 0:3241 0

Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0131 0:1286 0

Tdur �0:1312 1:2900 0

� 0:0082 0:0809 0

All �0:1513 1:4876 0

Half-Range = 60% of the Mean (HRf = 0:6)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:1705 1:6760 0

Tdur �0:2696 2:6507 0

� 0:0325 0:3191 0

All �0:4059 3:9902 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:2628 2:5833 0

Tdur �0:5073 4:9874 0

� 0:0682 0:6707 0

All �0:7307 7:1836 0

Table A.5: Case 3 di¤erences, percent errors and probability of plate failures.
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Half-Range = 5% of the Mean (HRf = 0:05)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0479 0:0813 0

Tdur �0:0995 0:1688 0

� �0:0156 0:0265 0

Tmax 0:0047 0:0080 0

All �0:1314 0:2231 0:015

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:4683 0:7948 0:0841

Tdur �0:2236 0:3795 0

� 0:0134 0:0227 0

Tmax 0:003 0:0051 0

All �1:2499 2:1213 0:1493

Half-Range = 20% of the Mean (HRf = 0:2)
Random Variable � (mm) % Error Prob of Failure

Pmax �3:2355 5:4912 0:2961

Tdur �1:5880 2:6952 0:1638

� �1:1424 1:9388 0:1797

Tmax �0:0047 0:0080 0

All �4:6038 7:8135 0:3054

Table A.6: Case 4 di¤erences, percent errors and probability of plate failures for HRf =
0:05, 0:1 and 0:2.
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Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �8:9262 15:1493 0:3993

Tdur �5:8432 9:9169 0:3318

� �4:051 6:8753 0:3431

Tmax �0:038 0:0645 0

All �11:3514 19:2652 0:3838

Half-Range = 60% of the Mean (HRf = 0:6)
Random Variable � (mm) % Error Prob of Failure

Pmax �14:5942 24:7687 0:4345

Tdur �10:0565 17:0675 0:3851

� �6:5653 11:1424 0:4009

Tmax �0:3336 0:5661 0:0684

All �17:8859 30:3553 0:4033

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �20:2262 34:3273 0:4518

Tdur �14:5803 24:7452 0:4095

� �8:6061 14:6061 0:4209

Tmax �1:2879 2:1858 0:1678

All �24:3052 41:2500 0:4057

Table A.7: Case 4 di¤erences, percent errors and probability of plate failures for HRf = 0:4,
0:6 and 0:8.
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Half-Range = 5% of the Mean (HRf = 0:05)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0165 0:0645 0

Tdur 0:0146 0:0571 0

� 0:0044 0:0172 0

Tmax 0:0080 0:0313 0

All �0:0256 0:1002 0

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0424 0:1657 0

Tdur �0:0452 0:1767 0

� 0:0444 0:1736 0

Tmax 0:0061 0:0238 0

All 0:0186 0:0726 0

Half-Range = 20% of the Mean (HRf = 0:2)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0302 0:1180 0

Tdur �0:1984 0:7756 0

� �0:0085 0:0334 0

Tmax �0:0152 0:0593 0

All �0:0693 0:2709 0

Table A.8: Case 5 di¤erences, percent errors and probability of plate failures for HRf =
0:05, 0:1 and 0:2.
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Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0553 0:2161 0

Tdur �0:4719 1:8448 0

� 0:1209 0:4728 0

Tmax �0:0657 0:2568 0

All �0:2885 1:1276 0

Half-Range = 60% of the Mean (HRf = 0:6)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:1100 0:4299 0

Tdur �0:9067 3:5442 0

� 0:3369 1:3172 0

Tmax �0:1943 0:7596 0

All �0:5979 2:3374 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:2588 1:0117 0

Tdur �1:5168 5:9294 0

� 0:6462 2:5261 0

Tmax �0:3630 1:4191 0

All �1:1466 4:4823 0

Table A.9: Case 5 di¤erences, percent errors and probability of plate failures for HRf = 0:4,
0:6 and 0:8.
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Half-Range = 5% of the Mean (HRf = 0:05)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0022 0:0190 0

Tdur �0:0069 0:0600 0

� �0:0030 0:0258 0

Tmax �0:0047 0:0407 0

All �0:0038 0:0334 0

Half-Range = 10% of the Mean (HRf = 0:1)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0081 0:0704 0

Tdur �0:0128 0:1115 0

� �0:005 0:0433 0

Tmax �0:0097 0:0847 0

All �0:0103 0:0895 0

Half-Range = 20% of the Mean (HRf = 0:2)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0205 0:1786 0

Tdur �0:0303 0:2636 0

� �0:0047 0:0405 0

Tmax �0:0299 0:2604 0

All �0:0316 0:2750 0

Table A.10: Case 6 di¤erences, percent errors and probability of plate failures for HRf =
0:05, 0:1 and 0:2.
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Half-Range = 40% of the Mean (HRf = 0:4)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0203 0:1762 0

Tdur �0:0908 0:7901 0

� �0:0025 0:0219 0

Tmax �0:1087 0:9457 0

All �0:2164 1:8825 0

Half-Range = 60% of the Mean (HRf = 0:6)
Random Variable � (mm) % Error Prob of Failure

Pmax 0:0298 0:2597 0

Tdur �0:1958 1:7038 0

� 0:0040 0:0345 0

Tmax �0:2346 2:0412 0

All �0:4028 3:5049 0

Half-Range = 80% of the Mean (HRf = 0:8)
Random Variable � (mm) % Error Prob of Failure

Pmax �0:0928 0:8076 0

Tdur �0:3679 3:2012 0

� 0:0141 0:1223 0

Tmax �0:4002 3:4817 0

All �0:8675 7:5483 0

Table A.11: Case 6 di¤erences, percent errors and probability of plate failures for HRf =
0:4, 0:6 and 0:8.
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Half-Range = 5% of the Mean (HRf = 0:05)
Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)

Case 1 1:32 1:10 1:01 N/A 1:95

Case 2 0:51 0:33 0:30 N/A 0:67

Case 3 0:15 0:07 0:05 N/A 0:17

Case 4 1:63 1:08 0:99 0:26 2:08

Case 5 0:66 0:28 0:26 0:11 0:75

Case 6 0:19 0:04 0:03 0:02 0:18

Half-Range = 10% of the Mean (HRf = 0:1)
Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)

Case 1 2:64 2:20 2:02 N/A 3:96

Case 2 1:04 0:66 0:60 N/A 1:35

Case 3 0:31 0:13 0:10 N/A 0:34

Case 4 3:03 2:15 1:97 0:51 3:48

Case 5 1:32 0:57 0:52 0:22 1:53

Case 6 0:39 0:08 0:06 0:05 0:37

Half-Range = 20% of the Mean (HRf = 0:2)
Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)

Case 1 5:35 4:39 4:10 N/A 7:23

Case 2 2:08 1:31 1:22 N/A 2:72

Case 3 0:61 0:27 0:20 N/A 0:68

Case 4 4:72 3:55 3:11 1:02 5:65

Case 5 2:64 1:14 1:04 0:45 3:07

Case 6 0:78 0:16 0:12 0:09 0:74

Table A.12: Standard deviation of maximum responses (mm) for HRf = 0:05, 0:1 and 0:2.
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Half-Range = 40% of the Mean (HRf = 0:4)
Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)

Case 1 9:79 9:01 7:58 N/A 10:98

Case 2 4:11 2:73 2:53 N/A 5:56

Case 3 1:22 0:56 0:41 N/A 1:36

Case 4 7:98 6:08 4:42 2:05 9:23

Case 5 5:25 2:36 2:17 0:91 6:20

Case 6 1:56 0:33 0:24 0:18 1:48

Half-Range = 60% of the Mean (HRf = 0:6)
Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)

Case 1 12:54 11:94 8:47 N/A 13:62

Case 2 6:14 4:17 3:96 N/A 8:56

Case 3 1:84 0:90 0:62 N/A 2:11

Case 4 1:84 8:76 5:39 2:88 12:19

Case 5 7:85 3:63 3:39 1:37 9:44

Case 6 2:32 0:55 0:36 0:27 2:22

Half-Range = 80% of the Mean (HRf = 0:8)
Pmax (mm) Tdur (mm) � (mm) Tmax (mm) All (mm)

Case 1 15:17 14:82 9:27 N/A 15:63

Case 2 8:16 5:68 5:65 N/A 11:77

Case 3 2:52 1:35 0:84 N/A 3:01

Case 4 14:56 11:67 6:25 3:52 14:71

Case 5 10:39 5:03 4:80 1:83 12:69

Case 6 3:13 0:85 0:49 0:36 3:11

Table A.13: Standard deviation of maximum responses (mm) for HRf = 0:4, 0:6 and 0:8.
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Figure A.1: Deterministic loading for Case 2.

Figure A.2: Deterministic loading for Case 4.



80

Figure A.3: Deterministic loading for Case 5.

Figure A.4: Deterministic loading for Case 6.
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Figure A.5: Average force when Tdur is the random variable for Case 5 with HRf = 0:8.

Figure A.6: Average force when Tmax is the random variable for Case 4 with HRf = 0:8.
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Figure A.7: Average force when Tmax is the random variable for Case 6 with HRf = 0:2.

Figure A.8: Average force when Tmax is the random variable for Case 6 with HRf = 0:8.
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Figure A.9: Probability density of maximum de�ection for random parameter Tdur in Case
5 with HRf = 0:05.

Figure A.10: Probability density of maximum de�ection for random parameter Tdur in Case
5 with HRf = 0:2.
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Figure A.11: Probability density of maximum de�ection for random parameter Tdur in Case
5 with HRf = 0:4.

Figure A.12: Probability density of maximum de�ection for random parameter Tdur in Case
5 with HRf = 0:6.
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Figure A.13: Probability density of de�ection at time 0:3625 ms for random parameter
Tdur in Case 5 with HRf = 0:8. This time is when the maximum de�ection occurs in the
averaged response.

Figure A.14: Probability density of de�ection at time 0:7385 ms for random parameter Tdur
in Case 5 with HRf = 0:8.
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Figure A.15: Probability density of de�ection at time 1:1145 ms for random parameter Tdur
in Case 5 with HRf = 0:8.

Figure A.16: Probability density of de�ection at time 1:8665 ms for random parameter Tdur
in Case 5 with HRf = 0:8.
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Figure A.17: Deterministic results for maximum de�ection as impulse varies in Case 5.
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Appendix B

Sample MATLAB Code to Obtain Ensemble Averages

%Elan Borenstein, M.S. Thesis, Rutgers University

%Program performs a sensitivity analysis on blast loading models on a clamped plate.

clear all;

close all;

%known variables

rho=2780; %density (kg/m^3)

E=7.31*10^10; %Young�s Modulus (N/m^2) = (Pa)

sigma_o=3.45*10^8; %dynamic yield strength (Pa)

v = 0.33; %poisson ratio of material

a = 508*10^(-3); %length of plate (m)

b = 203.2*10^(-3); %width of plate (m)

h = 1.6*10^(-3); %thickness of plate (m)

D=E*h^3/(12*(1-v^2));

lambda_f=16/9;

beta_f=(16*pi^4*D*h/(9*a^4))*(3+2*a^2/b^2+3*a^4/b^4);

gamma_f=(E*h^4*pi^4/a^4)*((1+2*v*a^2/b^2+a^4/b^4)/(8*(1-v^2))+17/144

+a^4/(9*b^4)*(17/16+2/(1+a^2/b^2)^2+1/2/(1+4*a^2/b^2)^2+1/2

/(4+a^2/b^2)^2));

alpha_f=rho*h^2;

mu=rho*h; %plate mass per unit area

bt=b/a;

Mo=sigma_o*h^2/4;
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lambda_w=b^2/4/Mo*(3/bt-1);

beta_w=24/bt/h;

gamma_w=8*h;

alpha_w=mu*b^2/4/Mo*(2/bt-1);

%yielding equation constants

yc1=E^2*h^4*pi^4/a^4/sigma_o^2;

yc2=4/9/b^4/(1-v^2)^2;

Lm=(a^4+b^4)*(v^2-v+1)-a^2*b^2*(v^2-4*v+1);

ab=a^2/b^2;

A=3/(1-v^2)*(1+v*ab)+5+4*ab^2*(2/(1+ab)^2+4/(1+4*ab)^2+1/(4+ab)^2);

B=3/(1-v^2)*(v+ab)+5*ab+4*ab*(2/(1+ab)^2+1/(1+4*ab)^2+4/(4+ab)^2);

Lna=A^2+A*B+B^2;

w_failure=63.644108*10^-3; %de�ection value for critical failure (m)

initial_w=0; %initial value for w(t) for runge-kutta sceme

initial_g=0; %initial value for df/dt for runge-kutta sceme

num_of_rand = 4; %number of random variables

del_t = 0.5*10^-6; %delta t for time stepping (s)

time_expand = 0.5*10^-7; %time to progrssively expand iteration by

variation_time_factor = 1; %factor multiplied by �nal time for variation of time

to start [must be LE 1]

err = 0.5*10^-2; %error value (m)

min_trial_run = 400; %minumum number of trial runs

max_trial_run = 6000; %maximum number of trial runs

for load_num=4:5

for z_temp=1:3

switch (z_temp)

case 1

Z=1.2;

extension = 0.0*10^-3; %extended time pro�le (s) [force is 0]
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u(1) = 29.31*10^5; %average maximum pressure (Pa=N/m^2)

u(2) = 0.075*10^-3; %average time when the maximum pressure is reached (s)

if load_num == 4

u(3) = u(2)+1.792*10^-3; %average �nal time (s)

else

u(3) = 1.792*10^-3;

end

u(4) = 10.784; %average value for alpha of the exponential decay

case 2

Z=2.0;

extension = 0.0*10^-3; %extended time pro�le (s) [force is 0]

u(1) = 6.458*10^5; %average maximum pressure (Pa=N/m^2)

u(2) = 0.1944*10^-3; %average time when the maximum pressure is reached (s)

if load_num == 4

u(3) = u(2)+1.846*10^-3; %average �nal time (s)

else

u(3) = 1.846*10^-3;

end

u(4) = 3.7365; %average value for alpha of the exponential decay

case 3

Z=0.7;

extension = 0.0*10^-3; %extended time pro�le (s) [force is 0]

u(1) = 134*10^5; %average maximum pressure (Pa=N/m^2)

u(2) = 0.02765*10^-3; %average time when the maximum pressure is reached (s)

if load_num == 4

u(3) = u(2)+0.8346*10^-3; %average �nal time (s)

else

u(3) = 0.8346*10^-3;

end
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u(4) = 11.296; %average value for alpha of the exponential decay

otherwise

error(�Wrong Z value!�)

end

for half_range_inc=1:6

switch(half_range_inc)

case 1

half_range_factor=0.8;

case 2

half_range_factor=0.6;

case 3

half_range_factor=0.4;

case 4

half_range_factor=0.2;

case 5

half_range_factor=0.1;

case 6

half_range_factor=0.05;

end

for varinc=0:4

if load_num==5 & varinc==2

continue;

end

if varinc==0 & half_range_inc~=1

continue;

end

full_run_lock=0;

failure_count=0;

failure_t_index=0;
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failure_trial_run=0;

e=err+1;

error2=0;

trial_run = 0;

non_fail_index = 0;

w=0;

F=0;

x_sum=0;

x_prev_sum=0;

x_prev_ave=0;

x_ave=0;

F_sum=0;

F_prev_sum=0;

F_prev_ave=0;

F_ave=0;

ytemp=0;

Sx2=0;

SF2=0;

sigma_x=0;

sigma_F=0;

max_val=0;

max_val_t=0;

rand(�seed�,0) %set the rand command to start with the same seed

var = varinc; %variable number to make random variable

%initialize half-range

s(1) = 0.0;

s(2) = 0.0;

s(3) = 0.0;

s(4) = 0.0;
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%assign the appropriate random variable�s half-range

switch (var)

case 0

%no random variables

case 1

s(1) = u(1)*half_range_factor;

case 2

s(2) = u(2)*half_range_factor;

case 3

s(3) = u(3)*half_range_factor;

case 4

s(4) = u(4)*half_range_factor;

otherwise

error(�Wrong random variable number!�)

end

%continue with program till error is small enough

while (e > err jj trial_run < min_trial_run) && trial_run<max_trial_run

&& (trial_run~=100 jj failure_count~=100)

trial_run=trial_run+1;

failure_trial_run(trial_run)=0;

if trial_run >= 2

e = 0;

end

%get the uniform random variable for each variable for

%the current trial run

for r=1:num_of_rand

n(r) = u(r)+s(r)*(2*rand - 1);

end

%if one non-failing run has been completed this will
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%unlock the failure lock

if trial_run > 1 & time_loop >= u(3)+extension & full_run_lock ~=1

time_full=time; %stores the time vector of a complete run (used for graphs)

full_run_lock=1;

end

%continue while time is less then �nal time

t_index = 0;

t_trans = 0;

time_loop = 0;

time = 0;

w(trial_run,1)=initial_w;

g=initial_g;

yield_c=-1;

yield_last = 1;

yield_lock = 0;

w_yield_max = 0;

f=initial_w;

temp_x_prev_sum = x_prev_sum;

temp_x_ave = x_ave;

temp_F_prev_sum = F_prev_sum;

temp_F_ave = F_ave;

while time_loop < u(3)+extension

t_index=t_index+1; %real time for each t_index is: (t_index-1)*del_t

%calculate varying time iterations

if (t_index-1)*del_t < (u(3)+extension)*variation_time_factor

time(t_index) = (t_index-1)*del_t;

t_trans = t_index;

time_loop = (t_index)*del_t;

else
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time(t_index) = time(t_index-1) + del_t + (t_index-t_trans)*time_expand;

time_loop = time(t_index) + del_t + (t_index+1-t_trans)*time_expand;

end

%calculate force function for the particular time.

switch (load_num)

case 4 %load 2: modi�ed linear rise with an exponential decay

if time(t_index)<=n(2)

F(trial_run,t_index) = (time(t_index)*n(1)/n(2));

else

if time(t_index)<=n(3)

F(trial_run,t_index) = n(1)*(1-(time(t_index)-n(2))/n(3))

*exp(-n(4)*(time(t_index)-n(2))/n(3));

else

F(trial_run,t_index) = 0;

end

end

case 5 %load 1: instantaneous rise with an exponential decay

if time(t_index)<=n(3)

F(trial_run,t_index) = n(1)*(1-(time(t_index))/n(3))*exp(-n(4)

*(time(t_index))/n(3));

else

F(trial_run,t_index) = 0;

end

otherwise

error(�Wrong load model number!�)

end

if t_index>1

%check if plate yielded

if yield_c < 0
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if yield_last == 0

g(t_index-1)=(w(trial_run,t_index-1)-w(trial_run,t_index-2))

/(time(t_index-1)-time(t_index-2));

yield_last = 1;

end

%solve for w(t) using runge-kutta sceme

%(elastic equation)

K1=(time(t_index)-time(t_index-1))*g(t_index-1);

K1p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*(w(trial_run,t_index-1)/h)-gamma_f

*((w(trial_run,t_index-1)/h)^3));

K2=(time(t_index)-time(t_index-1))*(g(t_index-1)+K1p/2);

K2p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*((w(trial_run,t_index-1)/h)+K1/2)

-gamma_f*(((w(trial_run,t_index-1)/h)+K1/2)^3));

K3=(time(t_index)-time(t_index-1))*(g(t_index-1)+K2p/2);

K3p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*((w(trial_run,t_index-1)/h)+K2/2)

-gamma_f*(((w(trial_run,t_index-1)/h)+K2/2)^3));

K4=(time(t_index)-time(t_index-1))*(g(t_index-1)+K3p);

K4p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*((w(trial_run,t_index-1)/h)+K3)

-gamma_f*(((w(trial_run,t_index-1)/h)+K3)^3));

g(t_index)=g(t_index-1)+(K1p+2*K2p+2*K3p+K4p)/6;

f=(w(trial_run,t_index-1)/h)+(K1+2*K2+2*K3+K4)/6;

w(trial_run,t_index)=f*h;

%calculate the yield

if yield_lock == 1 %if plate has reached plastic region

if w(trial_run,t_index) < w_yield_max %if de�ection is less then the largest
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de�ection (new yield condition)

yield_c = -2;

else

yield_c = 2;

end

else

yield_c = yc1*(Lna/1024*(w(trial_run,t_index)/h)^4+yc2*Lm

*(w(trial_run,t_index)/h)^2)-1; %elastic yield condition

end

else

yield_lock = 1; %yield lock for the elastic equation to know that the new

yield of max de�ection is used.

if yield_last == 1

g(t_index-1)=(w(trial_run,t_index-1)-w(trial_run,t_index-2))

/(time(t_index-1)-time(t_index-2));

yield_last = 0;

end

%solve for de�ection of center of plate in

%the plastic region using runge-kutta sceme

%(plastic equation)

K1=(time(t_index)-time(t_index-1))*g(t_index-1);

K1p=(time(t_index)-time(t_index-1))/alpha_w*(lambda_w*F(trial_run,t_index)

-beta_w*w(trial_run,t_index-1)-gamma_w/(w(trial_run,t_index-1)));

K2=(time(t_index)-time(t_index-1))*(g(t_index-1)+K1p/2);

K2p=(time(t_index)-time(t_index-1))/alpha_w*(lambda_w*F(trial_run,t_index)

-beta_w*(w(trial_run,t_index-1)+K1/2)

-gamma_w/(w(trial_run,t_index-1)+K1/2));

K3=(time(t_index)-time(t_index-1))*(g(t_index-1)+K2p/2);

K3p=(time(t_index)-time(t_index-1))/alpha_w*(lambda_w*F(trial_run,t_index)
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-beta_w*(w(trial_run,t_index-1)+K2/2)

-gamma_w/(w(trial_run,t_index-1)+K2/2));

K4=(time(t_index)-time(t_index-1))*(g(t_index-1)+K3p);

K4p=(time(t_index)-time(t_index-1))/alpha_w*(lambda_w*F(trial_run,t_index)

-beta_w*(w(trial_run,t_index-1)+K3)

-gamma_w/(w(trial_run,t_index-1)+K3));

g(t_index)=g(t_index-1)+(K1p+2*K2p+2*K3p+K4p)/6;

w(trial_run,t_index)=w(trial_run,t_index-1)+(K1+2*K2+2*K3+K4)/6;

%calculate the new yield

if w(trial_run,t_index) < w(trial_run,t_index-1) %de�ection decreases, goes

back to elastic equation

w_yield_max = w(trial_run,t_index-1); %set value of max de�ection

for new yield condition

g(t_index-1)=(w(trial_run,t_index)-w(trial_run,t_index-1))

/(time(t_index)-time(t_index-1));

yield_last = 1;

%solve for w(t) using runge-kutta sceme

%(elastic equation)

K1=(time(t_index)-time(t_index-1))*g(t_index-1);

K1p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*(w(trial_run,t_index-1)/h)-gamma_f*((w(trial_run,t_index-1)/h)^3));

K2=(time(t_index)-time(t_index-1))*(g(t_index-1)+K1p/2);

K2p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*((w(trial_run,t_index-1)/h)+K1/2)

-gamma_f*(((w(trial_run,t_index-1)/h)+K1/2)^3));

K3=(time(t_index)-time(t_index-1))*(g(t_index-1)+K2p/2);

K3p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*((w(trial_run,t_index-1)/h)+K2/2)

-gamma_f*(((w(trial_run,t_index-1)/h)+K2/2)^3));
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K4=(time(t_index)-time(t_index-1))*(g(t_index-1)+K3p);

K4p=(time(t_index)-time(t_index-1))/alpha_f*(lambda_f*F(trial_run,t_index)

-beta_f*((w(trial_run,t_index-1)/h)+K3)

-gamma_f*(((w(trial_run,t_index-1)/h)+K3)^3));

g(t_index)=g(t_index-1)+(K1p+2*K2p+2*K3p+K4p)/6;

f=(w(trial_run,t_index-1)/h)+(K1+2*K2+2*K3+K4)/6;

w(trial_run,t_index)=f*h;

yield_c = -1;

else

yield_c = 1;

end

end

end

if w(trial_run,t_index) >= w_failure

failure_count=failure_count+1;

failure_t_index(failure_count)=t_index;

failure_trial_run(trial_run)=1;

x_prev_sum = temp_x_prev_sum;

x_ave = temp_x_ave;

F_prev_sum = temp_F_prev_sum;

F_ave = temp_F_ave;

e=err+1;

break;

else

%calculate ensemble averages and error

if trial_run > 1 & full_run_lock==1

x_sum(t_index) = x_prev_sum(t_index)+w(trial_run,t_index);

x_prev_sum(t_index) = x_sum(t_index);

x_prev_ave(t_index) = x_ave(t_index);
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x_ave(t_index) = x_sum(t_index)/(trial_run-failure_count);

error2(t_index)=abs(x_ave(t_index)-x_prev_ave(t_index));

e = e+error2(t_index);

F_sum(t_index) = F_prev_sum(t_index)+F(trial_run,t_index);

F_prev_sum(t_index) = F_sum(t_index);

F_prev_ave(t_index) = F_ave(t_index);

F_ave(t_index) = F_sum(t_index)/(trial_run-failure_count);

else

x_prev_sum(t_index) = w(trial_run,t_index);

x_ave(t_index) = w(trial_run,t_index);

F_prev_sum(t_index) = F(trial_run,t_index);

F_ave(t_index) = F(trial_run,t_index);

end

end

end

if failure_trial_run(trial_run)~=1

[C,I]=max(w(trial_run,:));

non_fail_index=non_fail_index+1;

max_val(non_fail_index)=C;

max_val_t(non_fail_index)=I;

end

end

non_failed_trial_runs=trial_run-failure_count;

if non_failed_trial_runs > 1

%calculate variance and std dev of x and F

for t_index2=1:t_index

SSum(t_index2)=0;

FSum(t_index2)=0;

for j=1:trial_run
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if failure_trial_run(j)==0

SSum(t_index2)=SSum(t_index2)+(w(j,t_index2)-x_ave(t_index2))^2;

FSum(t_index2)=FSum(t_index2)+(F(j,t_index2)-F_ave(t_index2))^2;

end

end

Sx2(t_index2)=SSum(t_index2)/(non_failed_trial_runs-1);

SF2(t_index2)=FSum(t_index2)/(non_failed_trial_runs-1);

sigma_x(t_index2)=abs(sqrt(Sx2(t_index2)));

sigma_F(t_index2)=abs(sqrt(SF2(t_index2)));

end

[max_x_ave, max_ave_t_index]=max(x_ave);

max_ave=mean(max_val); %average of all the maximums of each trial run

%calculate variance and std dev of max_ave

MSSum=0;

for trial_index2=1:trial_run

if failure_trial_run(trial_index2)==0

MSSum=MSSum+(max_val(trial_index2)-max_ave)^2;

end

end

MSx2=MSSum/(non_failed_trial_runs-1);

sigma_max_x=abs(sqrt(MSx2));

histo_max_t=0;

histo_max_t2=0;

histo_max_t3=0;

histo_max_t4=0;

histo_max_t5=0;

for trial_index3=1:trial_run

histo_max_t(trial_index3)=w(trial_index3,max_ave_t_index);

histo_max_t2(trial_index3)=w(trial_index3,max_ave_t_index
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+�oor((t_index-max_ave_t_index)/4));

histo_max_t3(trial_index3)=w(trial_index3,max_ave_t_index

+�oor(2*(t_index-max_ave_t_index)/4));

histo_max_t4(trial_index3)=w(trial_index3,max_ave_t_index

+�oor(3*(t_index-max_ave_t_index)/4));

histo_max_t5(trial_index3)=w(trial_index3,max_ave_t_index

+�oor(4*(t_index-max_ave_t_index)/4));

end

end

clear F w ytemp;

printname=[�var_�,int2str(var),�_z_�,num2str(Z*10),�_load_�,

int2str(load_num),�_hr_�,num2str(half_range_factor*100),

�_err_005_FINAL_histo3_failure.mat�];

save (printname);

end

end

end

end
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