
OPTIMIZATION IN LOGICAL ANALYSIS OF DATA

BY TIBÉRIUS OLIVEIRA BONATES

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of

Peter L. Hammer and Alexander Kogan

and approved by

New Brunswick, New Jersey

October, 2007

ABSTRACT OF THE DISSERTATION

Optimization in Logical Analysis of Data

by Tibérius Oliveira Bonates

Dissertation Directors: Peter L. Hammer and Alexander Kogan

Logical Analysis of Data (LAD) is a machine learning/data mining methodology

that combines ideas from areas such as Boolean functions, optimization and logic. In

this thesis, we focus on the description and the application of novel optimization models

to the construction of improved and/or simplified LAD models of data. We address the

construction of LAD classification models, proposing two alternative ways of generating

patterns, or rules. First, we show how to construct LAD models based on patterns of

maximum coverage. We show, through a series of computational experiments, that such

models are as good as, if not better than those obtained with the standard LAD imple-

mentation and other machine learning methods, while requiring a much simpler calibra-

tion for optimal performance. We formulate the problem of finding the most suitable

LAD model as a large linear program, and show how to solve it using column generation.

For the subproblem phase, we describe a branch-and-bound algorithm, whose perfor-

mance is significantly superior to that of a commercial integer programming solver. The

LAD models produced by this algorithm are virtually parameter-free and practically

as accurate as the calibrated models obtained with other machine learning methods.

Finally, we propose a novel regression algorithm that extends the LAD methodology for

the case of a numerical outcome and show that it constitutes an attractive alternative

to other regression methods in terms of performance and flexibility of use.

ii

Acknowledgements

I would like to thank my advisors Peter L. Hammer and Alexander Kogan for their

patience and constant support in writing this thesis, for their kind advices, and for all

that I learned from them. I will be forever grateful.

I am obliged to Gabriela Alexe, Endre Boros, Vladimir Gurvich, Nelson Maculan,

and Andras Prekopa for being kind enough to participate in this thesis’ committee.

I am thankful to the people at Dash Optimization Inc. for the internship experience

I had in their New Jersey office, and to DIMACS for their financial support, which –

over the years – made possible a major part of the research presented in this thesis.

Also, the partial financial support of the Cleveland Clinic Foundation, NIH, and NSF

was of great importance and was much appreciated.

I would also like to mention the names of other people who have, over the last

few years, offered me so much help and kindness: David E. Axelrod, Noam Goldberg,

Aritanan Gruber, Anca Hammer, Terry Hart, José Koiller, Irina Lozina and Vadim

Lozin, Marcin Kamiński, Carlos and Janaina Oliveira, Fábio Oliveira, Eduardo Pinheiro

and Izabel Martins, Luiz Ramos, Clare Smietana, Gabriel Tavares, Rodrigo Toso, and

Cem Iyigun. Many thanks! Also, many thanks to my professors from Brazil who

supported my intention of coming to RUTCOR. In particular, Nelson Maculan, Plácido

Pinheiro, Marcos Negreiros and Maria Helena Jardim.

I thank my family in Brazil, for their emotional support and for bearing the distance

and the limited contact that we have had over the last five years. They have always

offered me so much and asked me for so little. I can only begin to express my gratitude

to them.

Lastly, however mostly, I thank my wife, Mara, who has been a constant source of

inspiration to me, and whose unlimited patience, kindness, and companionship were

invaluable for the conclusion of this thesis. I will never be able to thank her enough.

iii

Dedication

I dedicate this thesis to the memory of Peter L. Hammer. Peter was a brilliant and

generous man, who taught me so much, and who is greatly missed. Having his guidance

through my studies at RUTCOR was an honor and a pleasure. I express here my

profound respect and gratitude to him.

I would also like to dedicate this thesis to the memory of my good old friend Elder

Magalhães Macambira, who sadly left us on August 29, 2007. Elder was a good friend,

who will also be missed a lot.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Tables . viii

List of Figures . x

1. Introduction . 1

2. Literature Review . 4

2.1. Introduction . 4

2.2. Logical Analysis of Data . 4

2.2.1. Binarization . 5

2.2.2. Patterns . 8

2.2.3. Non-homogeneous Patterns and Conjunctions 9

2.2.4. LAD Models . 10

2.2.5. Classification . 11

2.3. Classification and Regression Literature 12

2.3.1. Decision Trees (C4.5) . 12

2.3.2. Random Forests . 14

2.3.3. Support Vector Machines . 15

2.3.4. Logistic Regression . 16

2.3.5. Neural Networks (Multilayer Perceptron) 17

2.4. Estimating Accuracy . 18

v

3. Maximum Patterns . 19

3.1. Introduction . 19

3.2. Notation . 21

3.3. Construction of Exact Maximum Patterns (EMPs) 21

3.4. Heuristics . 24

3.4.1. Best Linear Approximation (BLA) 24

3.4.2. Enlarging Patterns to Maximized Prime Patterns (MPP) 26

3.4.3. Enlarging Patterns to Maximized Strong Patterns (MSP) 28

3.4.4. Combined Heuristic Algorithms (CHAs) 29

3.5. Fuzzy Patterns . 30

3.6. Robust Patterns . 31

3.7. Computational Evaluation of Maximum Pattern Generation Algorithms 32

3.8. Application to Classification . 37

3.9. Conclusions . 42

4. A Branch-and-Bound Algorithm . 43

4.1. Introduction . 43

4.2. Problem Formulation . 46

4.3. Branching Strategy . 47

4.3.1. Branching Criterion . 48

4.4. Initialization and Node Selection . 50

4.4.1. Generating an Initial Solution . 50

4.4.2. Node Selection Strategy . 51

4.5. Bounding . 52

4.6. Computational Experience . 52

4.7. Conclusions . 57

5. Large Margin LAD Classifiers . 61

5.1. Introduction . 61

5.2. Constructing an Optimal Discriminant Function 62

vi

5.2.1. Maximizing the Separation Margin 63

5.2.2. The Pricing Subproblem . 66

5.2.3. The Column Generation Algorithm 69

5.2.4. Overfitting . 71

5.3. Computational Experiments . 72

5.4. Conclusions . 75

6. Pseudo-Boolean Regression . 79

6.1. Introduction . 79

6.2. Related Work . 80

6.3. Data Transformation . 82

6.3.1. Binarization . 83

6.3.2. Conjunction-space . 83

6.3.3. Constructing an Optimal Conjunction-Space 84

6.3.4. Implementation . 86

6.4. Computational Experiments . 88

6.5. Conclusions . 89

7. Conclusions . 91

7.1. The Standard LAD Implementation . 91

7.2. Our Main Contributions . 92

References . 95

Vita . 104

vii

List of Tables

3.1. Relative time and size of heuristically generated patterns for small datasets

(as percentage of size and time of the exact model). 35

3.2. Relative time and size of heuristically generated patterns for large datasets

(as percentage of size and time of the CHA algorithm). 36

3.3. Relative time and size of heuristically generated patterns for UCI datasets

(as percentage of size and time of the exact algorithm EMP). 36

3.4. Classification accuracy and Borda counts of LAD using different types

of patterns. Entries marked with “***” could not be finished within the

total running time limit of 48 hours. 39

3.5. Classification accuracy and Borda counts of Weka algorithms and CAP-

LAD. 40

3.6. Matrix of wins, losses and ties. 42

4.1. Characteristics of randomly generated instances of problem (PB): n =

number of features of dataset Ω, m = number of points in dataset Ω. . . 53

4.2. Quality of solutions for randomly generated instances of problem (PB)

using a maximum of 1,000 branch-and-bound nodes. Objective function

values marked with an asterisk (*) were proven to be optimal during the

truncated search. 54

4.3. Quality of solutions for randomly generated instances of problem (PB)

using a maximum of 2,000 branch-and-bound nodes. Objective function

values marked with an asterisk (*) were proven to be optimal during the

truncated search. Instances marked with “—” were solved to optimality

using at most 1,000 branch-and-bound nodes. 55

viii

4.4. Upper bound on the value of the optimal solution of randomly generated

instances of problem (PB). Instances marked with an asterisk were solved

to optimality. 56

4.5. Results of the truncated search with a limit of 30 minutes on the running

time and no limit on the number of branch-and-bound nodes. Instances

marked with an asterisk were solved to optimality. 59

4.6. Results of the truncated search with a limit of 30 minutes on the running

time and no limit on the number of branch-and-bound nodes. 60

5.1. Classification accuracy and Borda counts of Weka algorithms, CAP-LAD

and LM-LAD. 74

5.2. Matrix of wins, losses and ties. 74

6.1. Datasets used in regression experiments. 88

6.2. Mean absolute error of regression algorithms applied to 5 datasets. . . . 89

6.3. Correlation of regression algorithms applied to 5 datasets. 89

ix

List of Figures

3.1. Algorithm for Enlarging Patterns to Maximized Prime Patterns (MPP). 27

3.2. Algorithm for Enlarging Patterns to Maximized Strong Patterns (MSP). 29

5.1. Pseudo-code of the column generation algorithm. 70

5.2. Histograms of observations at different discriminant levels for the “heart”

dataset. 77

5.3. Behavior of the positive and negative margins for the “heart” dataset. . . 78

6.1. Pseudo-code of the pseudo-Boolean regression algorithm. 86

x

1

Chapter 1

Introduction

In this thesis we describe and investigate the performance of novel optimization appli-

cations in the design of classification and regression models within the framework of

Logical Analysis of Data (LAD). LAD is a machine learning methodology proposed in

the late 80’s [41, 65], which utilizes ideas from Boolean functions, optimization and logic

to construct classification models.

The original LAD algorithm deals with the machine learning task of distinguishing

between observations belonging to one of two disjoint classes. A typical implementation

of LAD encompasses a number of steps, including the enumeration of a collection of pat-

terns, or rules, the selection of a relatively small set of such patterns, and the definition

of a so-called discriminant function of theses patterns that is used for the classification

of unseen observations.

In this thesis we propose alternative algorithms for each of the above mentioned steps,

each of which utilizes an optimization model that accounts for the proper fitting of the

given training data. The algorithm described in Chapter 3 considerably simplifies the

task of constructing LAD models, since it requires the calibration of a single parameter,

while achieving an accuracy as good as (if not better than) that of the standard LAD

implementation. The linear optimization model of Chapter 5 allows the construction

of LAD models of reasonable accuracy without the need of virtually any parameter

calibration. In Chapter 6 we propose another LP formulation that permits us to extend

the LAD methodology for dealing with regression problems, where each observation is

assigned a numerical value, rather than being labeled as belonging to a class. In what

follows, we describe in more details the contributions of each chapter.

In Chapter 2 we provide a brief review of Logical Analysis of Data, describing the

2

main procedures involved in the construction of a LAD model for a given training

dataset. We also give high-level descriptions of other machine learning algorithms used

in this thesis for the purpose of assessing the relative quality of the algorithms proposed

here. At the end of the chapter we discuss the cross-validation procedure utilized in the

subsequent chapters.

Chapter 3 is based on a paper that has been accepted for publication in Discrete

Applied Mathematics [20]. We describe a family of LAD patterns consisting of those

patterns having maximum coverage in a given dataset. We present a formulation of

the problem of finding a maximum coverage pattern covering a specific observation as

a nonlinear set covering problem, show a natural reformulation of the problem as an

integer linear program, and describe three heuristics for its solution. We also evaluate the

exact and the heuristic algorithms in terms of their running times, quality of solutions,

and in terms of accuracy of the LAD models built using the patterns obtained with

these algorithms. We argue in favor of using two simple heuristics for building LAD

models, which are computationally efficient and provide accuracies on par with those of

standard machine learning algorithms.

In Chapter 4 we describe a branch-and-bound algorithm for a class of pseudo-Boolean

optimization problems related to the maximum pattern problem of Chapter 3. The so-

lution of this type of problem is utilized subsequently in this thesis as an essential part

of the algorithms proposed in Chapters 5 and 6. The pseudo-Boolean optimization

problems addressed in Chapter 4 have the property that all their terms have large de-

gree (equal to n/2, where n is the number of binary variables in the problem). The

large degree of the terms led us to propose a simple branching strategy that fixes the

terms at values 0 or 1 — rather than fixing individual variables at these values —

typically permitting a large number of binary variables to be simultaneous fixed, sub-

stantially simplifying the problem at every branch of the search tree. A simple node

selection strategy is also described, including a variation for finding a solution of good

quality early in the search. The results of a number of computational experiments are

reported, comparing the running time and solution quality of our algorithm with those

of the Xpress-MP integer linear programming solver [43]. We conclude that, in spite of

3

its simplicity, our branch-and-bound algorithm is quite efficient and exhibits a clearly

superior behavior to that of the Xpress solver.

In Chapter 5 we present a novel algorithm for the construction of a LAD model based

on the optimization of its associated discriminant function. We first provide a variant of

the linear program introduced in [28] for finding an optimal discriminant function given

a set of patterns. This LP attempts to maximize the margin of separation between the

two classes in the dataset, while accepting a small rate of misclassification, controlled

by the use of a soft margin penalty factor. In the remainder of the chapter we describe

the application of the column generation principle to the solution of this LP formulation

on the space of all patterns. Starting from any nonempty set of patterns, we make use

of the branch-and-bound algorithm of Chapter 4 in the subproblem phase for verifying

optimality and for constructing new patterns as needed.

In addition to providing a clear optimization criterion that guides and unifies the

usually distinct tasks of pattern generation and model selection, the algorithm is virtu-

ally parameter-free, having only a few control parameters that are primarily related to

the underlying optimization process. In our computational experiments the accuracy

of the proposed algorithm is 94.3% (on average) of the highest accuracy among the

accuracies of six other (properly calibrated) machine learning algorithms.

In Chapter 6 we describe an extension of the LAD methodology for handling re-

gression problems. Given a set of conjunctions, we propose a linear programming for-

mulation for finding an optimal L1-norm approximation of the dependent variable as a

linear function in the so-called conjunction-space, i.e., the space where each observation

is represented as the characteristic vector of the conjunctions satisfied by it (assuming

an arbitrary order of the conjunctions). Starting from a simple set of conjunctions, we

solve this LP by column generation in a similar way to the one described in Chapter 5.

We compare the results of this algorithm with those of three other regression algorithms

in terms of correlation and mean absolute error. We conclude that the performance of

our algorithm is comparable to that of the best among the other algorithms utilized for

comparison.

Finally, in Chapter 7 we highlight the main contributions of this thesis.

4

Chapter 2

Literature Review

2.1 Introduction

In this chapter we describe the methodology of Logical Analysis of Data (LAD) and

discuss its main components. Additionally, we briefly outline the ideas behind several

well-known classification and regression algorithms that are used as a reference in this

thesis and present the validation procedures used to estimate accuracy in our computa-

tional experiments.

In Section 2.2 we present the main concepts of LAD, describe some variants of the

main concepts and discuss several some implementation details. In Section 2.3 we briefly

describe some classification and regression algorithms that are used as a reference in the

remainder of the thesis. These algorithms serve mainly the purpose of carrying out

empirical evaluations of the algorithms proposed in this thesis.

Finally, we outline in Section 2.4 the cross-validation procedure used throughout the

text to evaluate the predictive accuracy of our algorithms.

2.2 Logical Analysis of Data

The methodology of Logical Analysis of Data (LAD) was first introduced in the 80’s

in [41] and [65] for dealing with classification problems involving binary data. In [27]

the algorithm was extended to the case of non-binary data by means of a so-called

binarization process, in which every numerical or categorical variable is discretized and

replaced by one or more binary variables, bringing the problem to the usual binary form.

In [28] the implementation of a LAD classification system was described, and in [4],

[8], [11], [20], [51], and [66] several further developments to the original algorithm were

5

proposed. A recent overview of LAD can be found in [70].

Let us assume we are given a dataset Ω, consisting of a number of real vectors, each

belonging to one of two disjoint classes. We will write Ω = Ω+∪Ω−, with Ω+∩Ω− = ∅,

and we will refer to the set Ω+ as the set of “positive” examples or observations, and to

the set Ω− as the set of “negative” examples or observations.

LAD can be seen as a rule-based algorithm, with some similarity to algorithms such

as C4.5Rules [104], and rough sets classification [103]. LAD builds a set of rules, or

“patterns” which are representative of the observations in Ω and defines a so-called

“discriminant function”, based on the constructed rules. The discriminant function is

used for the classification of unseen observations. We show in Chapter 6 that a similar

function can also be used for the prediction of a numerical outcome in the context of

regression problems.

In the following subsections we describe the main LAD concepts and how they are

currently implemented.

2.2.1 Binarization

In this section we present the usual binarization process of LAD, and discuss a natural

way to extend it to the case of regression problems.

In most real-life applications a substantial part of the data is numerical. We describe

below a simple binarization procedure for converting a numerical variable (also called

feature, or predictor) into one or more binary ones, while trying to preserve the infor-

mation available in the original variable. The binarization algorithm described here is

based on the one introduced in [27].

Let us denote by x1, . . . , xn the numerical variables (or attributes) of Ω. For each

variable xj , we construct a list Lj of the values that xj takes in Ω, in ascending order.

Let us consider two consecutive values u < v in Lj such that xj takes the value u in

at least one positive observation, and the value v in at least one negative observation,

or vice-versa. For each such pair of values, let us introduce a cutoff value of u+v
2 ,

called a cutpoint, whenever v − u > τ , where τ is a predefined tolerance value that

determines whether two actual values of xj are considered to be “too close”. We say

6

that u+v
2 separates the points with xj > u+v

2 from those with xj < u+v
2 . If v − u ≤ τ

then the two values u and v are so close that the introduction of a cutpoint between

them is not justified: if the measurement of the values of xj is subject to some small

imprecision, then, in practice, we are not able to distinguish between values u and v. In

our computational experiments, the value of τ is defined indirectly, as a fixed percentage

p of the standard deviation of variable xj , the same value p being used for all variables

x1, . . . , xn. We shall refer to the parameter p as the measurement imprecision parameter.

Let us assume that a set of cutpoints has been generated for each variable using the

above definition. We associate to each cutpoint c (corresponding to a variable xj) an

indicator variable yc
j such that

yc
j =

 1, if xj > c

0, otherwise.

With this notation we now have a binary description of each point of Ω in terms of

indicator variables. The rationale behind the binarization process is that points in Ω

that are significantly different with respect to the original numerical variables should

have significantly different representations in terms of indicator variables as well.

In general, the set of cutpoints generated in the way described above can be very

large. However, it is frequently observed that only a small subset of the cutpoints suffices

to map Ω to a binary representation where the differences between significantly distinct

points are preserved to a reasonable extent. It will become clear in subsequent chapters

that the overall computational performance of LAD algorithms is directly linked to the

number of indicator variables actually used. In view of this, we show how to formulate

a set covering problem whose solution provides a minimum-size set of cutpoints that

still preserves the original information to a predefined level.

Let us consider the entire set C = {c1, . . . , c|C|} of cutpoints generated with a suitable

choice of the measurement imprecision parameter p, and let I = {1, . . . , |C|} be the

index set of those cutpoints. Let zj be a binary decision variable associated to the

inclusion or not of the j-th cutpoint in the definitive set of cutpoints to be used. For

each pair of observations in Ω consisting of a positive and a negative observation, we

would like to include at least one of the cutpoints (if there is any) that separates the

7

two observations into the definitive set of cutpoints. At the same time, for the sake of

improved computational performance we want the set of cutpoints chosen to be as small

as possible. This gives rise to the following minimum set cover problem:

(SC) minimize
|C|∑
k=1

zk

subject to: ∑
k∈D(ωi,ωj)

zk ≥ 1, ∀ ωi ∈ Ω+, ωj ∈ Ω− (2.1)

zk ∈ {0, 1}, j = 1, . . . , |C|,

where D(ωi, ωj) ⊆ I is the index set corresponding to the cutpoints that separate

observations ωi and ωj . To ensure a more robust separation of the observations in Ω we

may require that each pair of positive and negative observations be separated by more

than one cutpoint. For that purpose we replace the right hand side of constraints (2.1)

by an integer larger than 1.

Several real-life datasets contain variables that are neither binary nor numerical, but

instead assume one of a set of nominal, or categorical, values. Let S = {s1, . . . , s|S|}

be the set of possible values that a certain nominal variable xj can assume. In some

cases, there is a total order between the possible values, for instance: low, medium, and

high. In such a case, the binarization of xj can be done by associating a sequence of

blog(|S|−1)c+1 binary variables to it in such a way that each value si of xj is represented

in binarized form simply as the binary representation of the integer i−1. Alternatively,

or when no total order among the elements of S is available, the binarization of xj can

be accomplished by associating to it a set of |S| binary variables, each one of which

represents a possible value of xj . In the resulting binarized representation of xj exactly

one of the associated indicator variables would have the value 1.

In the case of regression problems, we need to modify the procedure described above,

since there is no definition of positive and negative observations. For the purpose of

generating cutpoints for a variable xj we consider all those consecutive values u < v in

Lj such that v− u > τ . Once a set of cutpoints is generated in this manner, we solve a

8

modified version of problem (SC) in which the constraints (2.1) are replaced by∑
k∈D(ωi,ωj)

zk ≥
⌈
|r(ωi)− r(ωj)|

ρ

⌉
, ∀ ωi, ωj ∈ Ω, (2.2)

where r(ωi) and r(ωi) are the numerical outcomes associated to observations ωi and ωi,

respectively, and ρ is a parameter determining the difference in outcome that justifies

the requirement of one more cutpoint to separate a pair of observations.

It is clear that for very large datasets solving (SC) may become prohibitively ex-

pensive. In such cases one can apply a heuristic, such as the greedy one in [37], to find

a relatively small set of cutpoints that is reasonably informative. Another alternative

is to select a large value of the imprecision parameter p, resulting in the generation of

a smaller set of cutpoints that detect only the most pronounced discrepancies in the

values of the original variables. In the experiments presented in this study, we solve

(SC) by the greedy heuristic [37], due to satisfactory performance of this procedure and

to the fact that solving (SC) to optimality is not practically justified in data analysis

problems, as noted by Dietterich in [44].

2.2.2 Patterns

In this subsection we assume that the dataset Ω is given in binary form.

In the case of a binary dataset a pattern is simply a homogeneous subcube of {0, 1}n,

i.e., a subcube having (i) a nonempty intersection with one of the sets Ω+ or Ω−, and

(ii) an empty intersection with the other set (Ω− or Ω+, respectively). We recall that

a subcube consists of those points of the n-cube for which a subset of the variables is

fixed to 0 or 1, while the remaining variables take all the possible 0,1 values.

A pattern P disjoint from Ω− is called a positive pattern, while a pattern P ′ disjoint

from Ω+ is called a negative pattern. A point in {0, 1}n is said to be covered by a

pattern if it belongs to the subcube defined by that pattern.

Note that for a dataset with numerical variables that has been binarized according

to the procedure described in the previous subsection, the definition of a pattern can be

seen as a set of constraints that are simultaneously imposed on the values of one or more

of the original variables. Indeed, let the j-th binary (indicator) variable be associated

9

to the k-th original (numerical) variable and with the cutpoint value c. Then, a pattern

requiring that the j-th binary variable equals 1 corresponds to the requirement that the

k-th original variable exceeds c.

The prevalence of a positive pattern with respect to a given set of observation is the

percentage of positive observations that are covered by the pattern, while the coverage

of a pattern is simply the number of observations covered by the pattern in the given

set. The homogeneity of a positive pattern is the percentage of positive observations

among the set of observations covered by it. These concepts can be defined for negative

patterns in a similar way.

Previous implementations of LAD (see [4], [11], [27] and [28]) have all relied on

some type of pattern generation procedure that involves the enumeration of large col-

lections of positive and negative patterns, each satisfying certain requirements in terms

of prevalence and homogeneity.

2.2.3 Non-homogeneous Patterns and Conjunctions

The concept of patterns discussed above is based on the ideal assumption that the

historical information is perfectly correct. More specifically, it is assumed that, on the

one hand, all the attribute values are measured precisely, and on the other hand, all

the classifications of observations are recorded correctly. In most real-life situations

these ideal assumptions do not hold. This fact can be seen in the evaluation of patterns

on a testing set, showing that positive patterns of large coverage (on the training set)

cover on the testing set not only a significant number of positive observations but also

a (usually small) number of negative observations.

In view of this fact, it is reasonable to allow patterns to cover a “small” number

of observations of the opposite class. It is to be expected that such a relaxation of

constraints defining positive (negative) patterns should lead to a significant increase in

the coverage of positive (negative) observations. We shall refer to those patterns that

do not cover any observations of the opposite class as “pure” or “homogeneous”, while

the other ones shall sometimes be called “non-homogeneous”. In most cases, we will

simply refer to a “pattern”, without making any distinction between homogeneous and

10

non-homogeneous patterns.

Therefore, we can say that a pattern is a subcube of {0, 1}n with the property that it

covers “mostly” observations from one of the sets Ω+ or Ω−, covering only a small number

of observations from the other set. A pattern is positive if the percentage of observations

from Ω+ covered by the pattern is larger than the percentage of observations from Ω−

covered by it. A negative pattern is defined in a symmetric way.

More generally, we can construct subcubes that do not necessarily satisfy the con-

ditions for being considered patterns. Let us consider each subcube as described by its

associated Boolean conjunction, where a literal is used whenever the value of the corre-

sponding binary variable is fixed in the subcube. For instance, let n = 5 and C = x1x3.

The conjunction C is associated to the subcube of {0, 1}5 containing all points in which

the first component takes the value 1 and the third component takes the value 0.

For the task of classification we are only interested in those conjunctions having

certain values of prevalence and homogeneity. Indeed, in order to extract information

that can be used to classify “unseen” observations, we are only interested in finding a

conjunction with the property that the set of observations that it covers has a distri-

bution of points from Ω+ and Ω− that is significantly different from that originally in

Ω.

Let us consider the case of regression problems, where every observation is associated

to a numerical value, rather than a class label. Thus, there is no distinction between

positive and negative observations. In this setting, the concept of pattern can be re-

placed by that of a conjunction. Every conjunction simply identifies a subgroup of the

observations. We shall see in Chapter 6 that the use of conjunctions as predictors, or

independent variables, can form the basis of accurate regression models.

2.2.4 LAD Models

The basic assumption of LAD is that a binary point covered by some positive patterns,

but not covered by any negative pattern is positive, and similarly, a binary point covered

by some negative patterns, but not covered by any positive pattern is negative.

Let M+ be a set of positive patterns and M− be a set of negative patterns. If every

11

observation from Ω+ is covered by at least one pattern from M+ and every observation

from Ω− is covered by at least one pattern from M−, the we say that M+ ∪M− is a

LAD model for Ω. In many cases, when constructing a model we require that every

observation in the training dataset be covered at least a number k of times by the

patterns in the model, for an integer k > 1. This additional requirement usually has the

consequence of increasing the number of patterns in the model, sacrificing its simplicity.

However, it may result in more robust models for classification of unseen observations,

as suggested in [8] and in other experiments with combinations of classifiers [13, 47, 82].

The construction of a LAD model for a given dataset typically involves the generation

of a large set of patterns and the selection of a subset of them that satisfies the definition

of a LAD model presented above, and such that each pattern in the model satisfies

certain requirements in terms of prevalence and homogeneity.

2.2.5 Classification

Given a LAD model M = M+∪M− and a “new” observation ω /∈ Ω, the “classification”

of ω is determined by the sign of a so-called discriminant function ∆ : {0, 1}n → IR

associated to the given model. Let M+ = {P1, . . . , PM+} and M− = {N1, . . . , NM−},

and let us associate to each positive pattern Pi ∈ M+ a real weight αi and to each

negative pattern Nj ∈M− a real weight βj . The associated discriminant function on ω

is given by

∆(ω) =
∑

Pi∈M+

αiPi(ω)−
∑

Ni∈M−

βiNi(ω),

where Pi(ω) equals 1 if ω is covered by Pi, and 0 otherwise (similarly for Ni(ω)). The

sign of ∆(ω) determines the classification of ω. If ∆(ω) = 0 the observation is either

left unclassified, or is classified according to the more frequent class.

In most applications of LAD, equal weights are used among the positive patterns

of a LAD model, and also among its negative patterns. A more sophisticated way of

selecting weights is used in [28] and consists of the solution of a linear programming

model that chooses the weights in such a way so as to maximize the separation of the

training set in the so-called pattern-space. The pattern-space representation (associated

12

to an ordered set of patterns) of an observation ω is simply the characteristic vector of

the patterns covering ω.

Note that in this approach the discriminant function is optimized over a given set

of patterns that was previously selected during the pattern generation procedure. Since

the number of patterns can be extremely large, the use of this approach assumes that a

relatively small set of patterns has been previously identified.

2.3 Classification and Regression Literature

In this section we briefly describe some of the main classification and regression algo-

rithms used in the machine learning literature. We concentrate our discussion on those

algorithms that we use in subsequent chapters for the purpose of evaluating the quality

of our computational results. Whenever possible we highlight some connections between

particular features of these algorithms and some of the concepts present in LAD.

Most algorithms have a set of parameters that is dependent on the specific implemen-

tation. We discuss the main parameters of each algorithm based on their implementation

in the Weka package [128].

2.3.1 Decision Trees (C4.5)

The decision tree method for classification consists of a hierarchical partition of the

input space into homogeneous or almost homogeneous subspaces. For the case of nu-

merical features, the partition is usually rectangular, i.e., parallel to the original axes.

Some variants have been proposed in which more general partitions are applied, usually

through the construction of artificial features based on simple operations involving the

original ones. A relatively comprehensive overview of decision tree models can be found

in [104].

In a decision tree model each node represents a test involving the values of one or

more features, with each branch corresponding to one of the possible outcomes of the

test. For instance, x1 ≥ 5 is a test that splits the input space into two groups: those

observations where attribute x1 takes values below 5, and those where x1 takes values

13

above or equal to 5. Since this test has only two possible outcomes, it is said to be a

binary test. Tests with a larger number of outcomes are possible, in particular when

the feature used in the test assumes nominal or discrete values. A test can also involves

more than one attribute. For instance, one could use a test of the form αx1 + βx2 ≤ 2.

Given a training dataset, each test separates the observations into one or more

smaller sets. By the successive application of such tests one can grow a tree-like struc-

ture that partitions the data into increasingly smaller regions of the input space. The

construction of a decision tree for a specific training dataset is traditionally done in a

greedy way. Given the entire training data, a test which best separates the training

data is found and implemented, so that the training dataset is split into one or more

subsets. Each subset is subsequently split according to the same criterion of goodness

of separation, until each subset of observations is sufficiently homogeneous with respect

to the classes of the observations. Therefore, the leaves of a decision tree are associ-

ated to specific regions of the input data where the class distribution of observations is

significantly more homogeneous than the original distribution on the training dataset.

The criterion used for measuring the goodness of a test is based on a simple measure,

such as entropy. The main parameters related to the construction of a decision tree

concern the types of tests utilized, the criterion for stopping the growth of a tree, and

the post-construction pruning of the decision tree model in order to avoid overfitting

the training data.

Clearly, the partition of the input space into sub-regions in the decision tree context

is closely related to that of patterns in Logical Analysis of Data. Indeed, the sequence

of tests down a path in a decision tree corresponds to a pattern in LAD, given that it

defines a subset of the training observations that satisfies certain conditions of prevalence

and homogeneity. The main difference that should be noted here is that in the case of

decision trees the set of “patterns” constructed is typically significantly smaller than

that of LAD, since a test is only selected if it improves “locally” the separation of a

set of observations that has been defined by a number of previously implemented tests.

In the usual LAD enumeration scheme, all patterns (involving up to a certain number

of tests) are generated and evaluated. Clearly, the greedy criterion of decision trees

14

can neglect patterns that define highly homogeneous regions of the input space, but

whose individual tests do not significantly differentiate between the classes present in

the training dataset. From this point of view, the LAD classifiers are more general

than decision tree models. On the other hand, because decision tree models are usually

simpler classifiers, they are computationally inexpensive to generate and, if pruned, are

less prone to overfitting the data.

2.3.2 Random Forests

A generalization of the decision tree model, called random forests, was recently proposed

by Breiman [33]. In the random forests model several decision trees are constructed using

small perturbations of the original training data, and the set of trees constructed is used

for classification. The justification for such a procedure is to compensate for the effect

of the local decisions regarding the choice of the next test to be implemented when

growing a single decision tree.

Each of the trees in a random forests classifier is built using a small subset of the

features in the training dataset. Typically a randomly selected set of 2, 3, or log2(n)

features (where n is the total number of features in the training dataset) is used for

growing an entire tree, or for selecting the best test for each node.

The computational cost of building trees in this way is obviously very small. Also,

the generalization ability of each individual tree built in this way is expected to be quite

limited. However, as suggested by other studies involving the combination of simple

classifiers, such as boosting [56, 113, 114], bagging [32, 105], and others [13, 47, 82], the

collective use of such simple trees has been shown to result in very accurate classification

models [13, 46, 105].

The number of trees used in a random forests model depends on the training dataset

used. Typical values range from tens to several hundreds. The random factor in the

random forests algorithm seems to effectively compensate for the limitation of growing

decision trees in a greedy fashion. Given that a sufficiently large number of trees is

generated, one can expect that random forests models have a practical performance

very close to that of the usual LAD models based on the enumeration of complete

15

families of patterns [4, 8, 11].

2.3.3 Support Vector Machines

The support vector machine algorithm can be interpreted as the construction of a lin-

ear classifier in a very high-dimensional space (called the feature space), obtained by

transformation of the original input space.

The key ingredient of the algorithm is a kernel function that allows the training

phase and the classification of new observations to be carried out in the feature space

without the need to actually perform the transforming computations.

The typical support vector classifier (for two-class problems) consists of a linear

discriminant function that separates the training data in a similar way to the LAD

discriminant function defined in Section 2.2. A quadratic optimization model is used

to optimize the weights, so that the margin of separation between the two classes if

maximized. The margin of separation is simply the smallest distance from a point in

one of the classes to the separating hyperplane, plus the smallest distance from a point

in the other class to the separating hyperplane.

The formulation of the underlying optimization model is such that the only informa-

tion required about the feature space utilized is the inner product between every pair

of (transformed) observations in the training dataset. The kernel function is chosen in

such a way that it provides, with low computational costs, the inner product between

two observations mapped into the feature space. Clearly, one is interested in choosing

a feature space in which a better separation of the two classes is possible than that

obtained in the input space.

In practice, the optimization model takes into account a penalty term, in order

to allow some observations in the training dataset to be incorrectly classified. The

so-called C-parameter dictates how much importance the model should give to the

perfect separation of the training data, as opposed to the maximization of the margin

of separation of “most” observations. The value of C is a critical parameter in tuning

the support vector machines algorithm.

Another important parameter of the algorithm is the kernel function used, or – in

16

other words – the feature space chosen. Many different kernel functions have been pro-

posed for specific types of data. Among the general-purpose kernel functions frequently

used we cite the polynomial and radial basis function kernels.

A very similar variant of the optimization model utilized for training allows the

use of the same algorithm for regression tasks, resulting in the so-called support vector

regression algorithm. For a comprehensive treatment of support vector machines for

classification and regression, the reader is referred to [115].

Here, an analogy can be made with the discriminant function of LAD. Consider a

LAD model for a specific dataset. If we assume a certain order among the patterns in

the LAD model, and map every observation to the characteristic vector of the patterns

covering it, we have effectively mapped the dataset into a certain type of feature space.

Moreover, the optimization model described in Section 2.2 for optimizing the weights of

the discriminant function attempts to maximize a certain type of margin of separation

that resembles the one utilized in the support vector machines algorithm. In Chapter

5 we further explore this optimization model and propose an iterative algorithm that

explicitly constructs the best possible such pattern-based feature space.

2.3.4 Logistic Regression

The logistic regression [39, 76, 122] algorithm is a regression technique for the case

when the dependent variable is binary, i.e., when the problem is in fact a two-class

classification problem.

The algorithm fits a linear model of the independent variables to the log odds of the

dependent variable being 1. Therefore, although the model is linear in its parameters,

it predicts a nonlinear function of the dependent variable. The resulting model provides

information about the relative importance of the independent variables: the coefficients

of the input variables represent the effect on the log odds caused by a unit change in

the value of the variable. The value resulting from applying the model to an unseen

observation is used to provide a prediction of its class according to the estimate obtained

for its log odds: an observation with the log odds greater than or equal to 1 being

classified as positive, and otherwise being classified as negative.

17

The training of a logistic regression model, i.e., the adjustment of an independent

term and the coefficients of the input variables, is performed by maximum likelihood

estimation (MLE). The MLE algorithm attempts to maximize the likelihood that the

“dependent variable” (in the case of logistic regression, the log odds) values are obtained

from the values of the independent variables.

2.3.5 Neural Networks (Multilayer Perceptron)

A neural network [90, 91, 106, 107, 110] consists of a set of nodes and a set of arcs, or

connections, each of which has an associated weight. Each node is a simple processing

unit that receives one or more inputs, and uses their sum as its output value.

A network is typically represented as a graph organized in “layers”. The first layer

consists of as many nodes as the number of input variables in the data, with each node

in that layer receiving a single input corresponding to the associated input variable.

The last layer consists of as many nodes as the number of classes in the data, each node

having no connections to other nodes. For two-class classification problems, the final

layer typically contains a single node, determining a binary output. The intermediate

layers, if any, are present to allow an extended flexibility of the network, so that it can

learn complex functions.

During the training phase, the input values of a training observation are initially fed

into the first layer of the network. Depending on the input received by a node, it may be

“activated” and propagate the signal received to the set of nodes to which it connects.

The propagation is determined by a so-called activation function, which is applied to

the output of each node in order to decide if the set of inputs of that node was enough

to justify the propagation of the signal. If so, the node propagates the value 1 to each

of the nodes to which it connects; otherwise, no signal is propagated by that node.

After a full series of propagations reach the final layer, the only node in that layer

is either activated by its inputs, or not, thus determining the classification of the obser-

vation given as input. If the classification is incorrect, a correction in the weights of the

connections must be made. Typically a stochastic gradient descent algorithm is utilized

to update the weights in such a way as to globally minimize the number of errors made

18

on the set of training observations.

Slight variations in the cost function allow the adjustment of the algorithm to a

classification or regression setting.

2.4 Estimating Accuracy

When analyzing the experimental results of the algorithms proposed in this thesis we

utilize the classical cross-validation procedure [45, 52, 73, 80] in order to estimate the

accuracy of the algorithm on unseen observations.

The k-fold cross-validation procedure first partitions the training data into k ap-

proximately equal-sized parts. (In classification, the class distribution in each part is

approximately the same as that in the entire training data.) The first part is left aside

and the remaining k − 1 parts are used for training. The resulting model is evaluated

on the first part and the accuracy recorded. The same process is repeated k times,

every time with a different part being left out of the training process and being used

for testing purposes. At the end of the procedure, k accuracy measurements have been

taken and the average of these is reported as an estimate of the accuracy of a model

constructed on the entire training set when presented with unseen data.

The accuracy measure utilized can be the usual percentage of incorrectly classified

examples in the classification setting, or the correlation or mean absolute error for the

regression case.

19

Chapter 3

Maximum Patterns

3.1 Introduction

Patterns are the key building blocks in Logical Analysis of Data (LAD) (e.g., see [28],

[7], [4], [11] and [66]), and have been shown in numerous studies to provide important

indications about the positive or negative nature of the points covered by them. As dis-

cussed in Chapter 2, the collection of patterns used in the implementation of LAD (see

e.g. [28]) is generated by a combinatorial enumeration process, which can be quite ex-

pensive computationally. The number and type of patterns generated in this process are

controlled by several controls parameters. The choice of the most appropriate parameter

values is quite involved and time-consuming, being based on numerous computational

experiments. Moreover, even with the best choice of control parameter values the size of

the pattern collection produced is very large and requires in most cases the application

of a “filtering” procedure, which selects small subsets of patterns to form highly accurate

predictive models.

In this chapter we shall address the complexities of the pattern generation process

by introducing the concept of “maximum” patterns. An important property of the

approach used in this chapter is that the number of maximum patterns produced is

naturally bounded by the number of observations. We propose a discrete optimization

based exact algorithm, and highly efficient heuristics, for generating maximum patterns,

and show that the accuracy of LAD models based on these patterns is highly competitive

with that of the original LAD models, as well as with those of the best commonly used

classification methods.

The vast literature on data analysis contains several approaches which resemble

in certain respects the general classification methodology of Logical Analysis of Data

20

(LAD) proposed in 1986 and 1988 in [65, 41]. In Computational Learning Theory there

is a stream of research devoted to DNF learning [35, 79] which captures certain aspects

of LAD. Among related empirical machine learning approaches we have to mention

those based on production or implication rules, especially those derived from decision

trees, such as C4.5rules [104], those based on Rough Set theory, such as the Rough Set

Exploration System [103, 17], as well as techniques based on ensemble of classifiers such

as boosting [56, 114] and bagging [32, 105].

The implementation of the LAD methodology on the basis of the concept of max-

imum patterns proposed in this chapter bears resemblance to the concept of emerging

patterns, proposed in 1999 in [49]. The emerging pattern problem of [49] and [126] is a

special case of the maximum pattern problem considered in this chapter in which the

only admissible patterns are monotonically non-decreasing.

Another approach we would like to mention is that of “subgroup discovery tech-

niques”, see [86]. The subgroup discovery algorithm described in [86] differs from the

methods proposed in this chapter in the chosen measure of pattern quality. The algo-

rithms in this chapter maximize the coverage of patterns while limiting their coverage

of the opposite class. In contrast, the subgroup discovery algorithm of [86] maximizes

a measure of the coverage of patterns, which is discounted by their coverage of the

opposite class.

This chapter is organized as follows. In Section 2 we introduce the basic notation

used throughout the text. In Section 3 we develop an integer programming formulation

for the construction of exact maximum patterns, and in Section 4 we propose three

heuristics for constructing approximately maximum patterns. Sections 5 and 6 describe

natural extensions of the concept of patterns to datasets with missing attribute values

and possible misclassification noise, showing how to modify the pattern generation al-

gorithms to handle these cases. Section 7 presents computational results concerning the

generation of exact and heuristic patterns. Section 8 evaluates the accuracy of LAD

models built using one or more of the algorithms described in Sections 3 and 4, and

shows how their accuracies compare to those of some commonly used classification al-

gorithms. In Section 9 we discuss the comparative accuracy of the LAD models using

21

maximum patterns, and argue in favor of the use of a combination of two of the pro-

posed heuristic algorithms as an efficient pattern generation procedure for constructing

accurate LAD models.

3.2 Notation

Following the notation defined in Chapter 2, let us consider a binary dataset Ω =

Ω+ ∪ Ω− ⊂ {0, 1}n, with Ω+ ∩ Ω− = ∅. For the purpose of developing the exact

model and heuristic algorithms of Sections 3.3 and 3.4 we assume that Ω+ ∩ Ω− = ∅

and consider only homogeneous (i.e., pure) patterns. In Section 3.5, we relax this

requirement by introducing the concept of “fuzzy patterns”.

Let us recall that for α ∈ Ω+ ⊂ {0, 1}n a positive α-pattern is a pattern covering α.

A maximum positive α-pattern P is a positive α-pattern of maximum coverage in Ω+.

A maximum negative α-pattern is defined in a similar way.

Previous experience with LAD ([28], [66]) has shown that patterns with higher cov-

erage provide better indication of the positive or negative character of new observations

than those with lower coverage. This observation motivates the focus of this chapter on

maximum patterns, their construction, and their use in classification.

3.3 Construction of Exact Maximum Patterns (EMPs)

Given the sets Ω+,Ω−, we shall be concerned here with ways of finding a maximum

positive α-pattern, α ∈ {0, 1}n \ Ω−. The determination of a maximum negative α-

pattern can be done in a symmetric way. In view of the perfect symmetry of positive

and negative α-patterns we shall describe the proposed methodology only for the positive

case.

In order to formulate the maximum α-pattern problem as an integer program, we

shall introduce a binary decision variable yj which describes whether or not the value of

the j-th variable of the pattern is fixed to αj . With this notation, the condition that the

α-pattern should not include any negative point requires that for every point γ of Ω−,

the variable yj should take the value 1 for at least one of those j’s for which γj 6= αj ,

22

i.e.,
n∑

j=1
γj 6= αj

yj ≥ 1, for every γ ∈ Ω−. (3.1)

On the other hand, a positive point β will be covered by the α-pattern if and only

if yj = 0, for all those indices j for which βj 6= αj . Therefore, the number of positive

points covered by the α-pattern will be given by

∑
β∈Ω+

n∏
j=1

βj 6= αj

yj , (3.2)

where yj = 1 − yj , for every j = 1, . . . , n. In conclusion, the maximum α-pattern

problem can be formulated as the following nonlinear integer program

maximize
∑

β∈Ω+

n∏
j=1

βj 6= αj

yj

subject to
n∑

j=1
γj 6=αj

yj ≥ 1, for every γ ∈ Ω− (3.3)

yj ∈ {0, 1}, for every j = 1, . . . , n.

This problem is a generalized set covering problem. Indeed, in the special case

when Ω+ consists of the n points β(i), where β(i) differs from α only in variable i, then

the objective function becomes simply n −
∑n

j=1 yj , which is equivalent to minimizing∑n
j=1 yj , i.e., to a standard set covering problem. In view of this remark it is clear that

this problem is NP-hard and hence no polynomial algorithm is available for its solution.

Moreover, it has been shown [54] that the set covering problem is not approximable

within c log n, for any real c such that 0 < c < 1.

Since numerous software packages are available for solving integer linear programs,

it is useful to rewrite (3.3) in this form. This can be achieved by introducing a new

binary variable zβ to replace each term of the objective function of (3.3). Clearly, in

the case of 0/1 variables, the relation

zβ =
n∏

j=1
βj 6= αj

yj

23

is equivalent with the system of inequalities (3.4) and (3.5):

w(β)zβ ≤
n∑

j=1
βj 6= αj

yj , for every β ∈ Ω+, (3.4)

n∑
j=1

βj 6= αj

yj ≤ zβ + w(β)− 1, for every β ∈ Ω+, (3.5)

where

w(β) = |{j : βj 6= αj}|. (3.6)

Note that on the one hand, (3.4) forces zβ = 0 whenever at least one yj = 1, and on

the other hand, (3.5) forces zβ = 1 whenever all yj = 0.

Therefore, taking into account that
n∑

j=1
βj 6= αj

yj = w(β)−
n∑

j=1
βj 6= αj

yj , the nonlinear integer

program (3.3) can be seen to be equivalent to the linear integer program (EMP):

maximize
∑

β∈Ω+\{α} zβ

subject to ∑n
j=1

γj 6=αj

yj ≥ 1, for every γ ∈ Ω− (3.7)

w(β)zβ +
∑n

j=1
βj 6= αj

yj ≤ w(β), for every β ∈ Ω+ \ {α},

zβ +
∑n

j=1
βj 6= αj

yj ≥ 1, for every β ∈ Ω+ \ {α},

yj ∈ {0, 1}, for every j = 1, . . . , n,

zβ ∈ {0, 1}, for every β ∈ Ω+ \ {α}.

While the integer linear program (3.7) has the same feasible solutions as (3.3), the

omission of the constraints (3.5) from (3.7) results in a new integer linear program,

which may have a larger set of feasible solutions, but has exactly the same set of optimal

solutions as (3.7), and therefore as (3.3). However, from the computational efficiency

point of view this simplification is not beneficial and was not used in our experiments.

24

3.4 Heuristics

The number of binary variables appearing in problem (3.7) is n + |Ω+| − 1, which in

case of large datasets results in very large integer linear programs. In view of the

computational difficulty of handling such large integer linear programs, it is important

to develop appropriate heuristics to deal with instances for which current integer linear

programming software packages fail to find exact solutions to problem (3.7). In order

to achieve this objective, two heuristic approaches will be presented below.

Section 3.4.1 will describe an approach based on replacing the original objective

function of (3.3) by its best linear approximation in L2, while Sections 3.4.2 and 3.4.3 will

present two implementations of a greedy combinatorial heuristic in which the coverage

of a positive α-pattern is successively increased in order to find a maximal (rather than

maximum) positive α-pattern. Computational experiments with the proposed heuristics

will be presented in Section 3.7.

3.4.1 Best Linear Approximation (BLA)

We shall describe in this section a model based on the nonlinear set covering model (3.3)

in which we shall replace the objective function by its best linear approximation in L2

in order to reduce it to the usual format of a weighted (linear) set covering problem.

The determination of the L2-best linear approximation of the objective function of (3.3)

is based on the direct application of the results of [68].

The objective function of (3.3) is a real-valued function in binary variables, i.e., a

pseudo-Boolean function. If we represent a pseudo-Boolean function f(u1, u2, . . . , um)

as

f(u1, u2, . . . , um) =
s∑

j=1

cj

∏
i∈Sj

ui

,

where cj are real numbers, and Sj are subsets of {1, 2, . . . ,m}, then the L2-best linear

approximation L(f) of f is known ([68]) to be given by

L(f(u1, u2, . . . , um)) =
s∑

j=1

cj L(
∏
i∈Sj

ui).

25

Further, it was shown in [68] that

L(
∏
i∈Sj

ui) = −|Sj | − 1
2|Sj |

+
1

2|Sj |−1

∑
i∈Sj

ui

 .

Therefore, the L2-best linear approximation of f is given by

L(f(u1, u2, . . . , um)) =
s∑

j=1

cj

−|Sj | − 1
2|Sj |

+
1

2|Sj |−1

∑
i∈Sj

ui

 .

The computation of this formula should utilize standard numerical techniques to

avoid the loss of precision.

Applying the above formula to the objective function of (3.3) we find that its L2-best

linear approximation is given by

∑
β∈Ω+

w(β) + 1
2w(β)

−
n∑

j=1

 ∑
β∈Ω+

βj 6= αj

1
2w(β)−1

 yj .

Since the coefficient of every variable yj is non-positive, we shall approximate problem

(3.3) by the following weighted (linear) set covering problem:

minimize

n∑
j=1

 ∑
β∈Ω+

βj 6= αj

1
2w(β)−1

 yj

subject to (3.8)
n∑

j=1
γj 6=αj

yj ≥ 1, for every γ ∈ Ω−

yj ∈ {0, 1}, for every j = 1, . . . , n.

Clearly, the optimal solution of (3.8) will define a positive α-pattern whose size will

provide a lower bound to the size of a maximum positive α-pattern. The computational

experiments to be presented in Section 3.7 will show that this bound provides a good

approximation of the maximum size of a positive α-pattern.

We recall that problem (3.8) is NP-complete and, therefore, in principle, its solution

can become computationally intractable. However, many commercially available integer

26

linear programming solvers are capable of solving fairly large size weighted set covering

problems in an acceptable amount of time. Since in many machine learning datasets the

number of relevant variables is relatively small [19], one can utilize a feature selection

procedure (e.g. the binarization step of LAD [28]) to select such a small subset of

relevant binary variables and then use this subset to construct an instance of problem

(3.8) which can be solved fairly quickly.

3.4.2 Enlarging Patterns to Maximized Prime Patterns (MPP)

We will present in this and the next subsection combinatorial heuristics for solving (3.3).

Since (3.3) is a generalized set covering problem, the combinatorial heuristics presented

here are built on an idea which is similar to one used in the standard greedy heuristic

for the common weighted set covering problem [37]. The important distinction of the

heuristics proposed here is that they work “backwards”, i.e., they start with a “cover”

(minterm) and then proceed in a greedy fashion to improve the objective function while

still satisfying all the covering constraints.

Given a point α, the associated minterm Pα is defined as
∧n

i=1 xαi
i , where

xαi
i =

 xi, if αi = 1;

xi, if αi = 0.

Clearly, if α ∈ Ω+ then Pα is a positive α-pattern, covering only the point α. Each

pattern can be represented as a Boolean conjunction
∧

j∈S x
βj

j , S ⊆ {1, . . . , n}, of a

subset of literals (i.e., complemented and non-complemented variables). Minterms are

those positive patterns for which S = {1, . . . , n}.

A positive pattern
∧

j∈S x
βj

j is called prime if the conjunction
∧

j∈S′ x
βj

j is not a

positive pattern for any proper subset S′ ⊂ S. It is known from experience that many

of the prime patterns have very large coverages. Because of this it makes sense to

transform a minterm Pα into a positive prime α-pattern.

If a positive pattern P is not a prime pattern then we can apply to it the iterative

algorithm described in [66], which transforms a given pattern into a prime pattern.

Starting from P we shall obtain a prime pattern P =
∧

j∈S x
αj

j , for some S ⊂ {1, . . . , n},

27

by successively removing literals from P so as to maximize the coverage of the resulting

pattern.

In order for the algorithm to construct a prime pattern of large coverage a heuristic

criterion is used to choose the literal to be removed at each iteration. The removal of a

literal is considered to be advantageous if the resulting pattern is “closer” to the set of

positive points not covered by it than to the set of negative points.

In order to specify the heuristic, let us define the disagreement between a point β

and a pattern P to be the number of literals of P whose values are zero on β. The

disagreement between a set of points and a pattern is simply the sum of the disagree-

ments between the pattern and every point in the set. Let us denote by d+(P) the

disagreement between P and the set of positive points not covered by it. Similarly, let

us denote by d−(P) the disagreement between the pattern and the negative points. Our

computational experiments suggest that the ratio d+(P)
d−(P) provides a good criterion for

choosing the literal to be removed at each step. We describe in Figure 3.1 a pseudo-

code for this algorithm. Obviously this algorithm can be restated for the construction

of negative α-patterns.

1. Input: Ω+,Ω−,P(S) =
∧

i∈S xαi
i − positive pattern.

2. For every k ∈ S let Pk(S) =
∧

i∈S\{k} xαi
i .

3. If there is no k ∈ S such that Pk(S) is a positive pattern
then stop and output P(S).

4. Choose a k ∈ S such that Pk(S) is a positive pattern and
d+(Pk(S))
d−(Pk(S)) is minimized.

5. Set S := S \ {k}, P(S) =
∧

i∈S xαi
i , and go to Step 2.

Figure 3.1: Algorithm for Enlarging Patterns to Maximized Prime Patterns (MPP).

This algorithm can be used to enlarge a minterm Pα to a prime α-pattern, or more

generally, to enlarge patterns generated by other algorithms to prime ones. Here we use

the term “enlargement of a pattern” in the sense of increase of its coverage with respect

to the dataset Ω. While the successive removal of elements from S shortens the pattern

description, it is accompanied by a potential increase in the number of points of Ω that

are covered by P(S).

28

One can easily see that the time complexity of this algorithm is O(|Ω|n2). Therefore,

constructing a heuristic maximum prime pattern for every point in the dataset takes

O(|Ω|2n2) time.

3.4.3 Enlarging Patterns to Maximized Strong Patterns (MSP)

Let α ∈ Ω+ and P be a positive α-pattern. We denote by CovΩ(P) the set of points

of Ω covered by P, and denote by Lit(P) the index set of literals defining P, i.e.,

P =
∧

i∈Lit(P) xαi
i .

A positive pattern P is called strong if there is no positive pattern P ′ such that

CovΩ(P ′) ⊃ CovΩ(P). It is known (see e.g. [66]) from experience that many strong

patterns have very large coverage and their use in LAD leads to a superior performance.

If P is not a strong pattern, we can apply the iterative algorithm described in [66] to

transform it to a strong pattern P ′, such that CovΩ(P ′) ⊃ CovΩ(P).

As shown in [66] a strong pattern is not necessarily prime, even though one can

transform it to a prime and strong pattern having the same coverage. On the other

hand, a prime pattern is not necessarily strong and, as above, such a prime pattern P

can be transformed to a strong pattern P ′, such that CovΩ(P ′) ⊃ CovΩ(P).

Let S be a non-empty subset of Ω+, and let [S] be the Hamming convex hull of the

points in S, i.e., the smallest subcube containing S. A pattern P is called spanned if

P = [CovΩ(P)]. As shown in [66] this definition is equivalent to saying that if I is the

set of those indices i for which the corresponding components of all points of CovΩ(P)

have the same value, say βi, then

P =
∧
i∈I

xβi
i .

The general algorithm described in [66] can be adapted so as to produce patterns of

large coverage. For this purpose we use a heuristic criterion to choose the next point to

be included in the coverage of the current pattern P. The criterion selects a point β ∈

Ω+\CovΩ(P) such that [CovΩ(P)∪{β}] is a positive pattern, and |Lit([CovΩ(P)∪{β}])|

is maximized. We describe in Figure 3.2 a pseudo-code for this algorithm.

29

1. Input: Ω+,Ω−, α ∈ Ω+,P − positive α-pattern, S = CovΩ(P).
2. P(S) := [S].
3. For every β ∈ Ω+ \ S let Pβ(S) = [S ∪ {β}].
4. If there is no point β ∈ Ω+ \ S such that
Pβ(S) is a positive pattern

then stop and output P(S).
5. Choose β ∈ Ω+ \ S such that Pβ(S) is a positive

pattern and |Lit(Pβ(S))| is maximized.
6. Set S := CovΩ(Pβ(S)) and go to Step 2.

Figure 3.2: Algorithm for Enlarging Patterns to Maximized Strong Patterns (MSP).

It is obvious from the definition that the pattern generated by this algorithm is not

only strong, but also spanned. Furthermore, note that, since P = [CovΩ(P)] (according

to Theorem 4.5 in [66]), after Pβ(S) is computed in Step 3, no additional computation

is required in Step 2 of the following iteration.

A straightforward way to generate a strong α-pattern is to apply this algorithm to

the minterm Pα. Another way of using this algorithm is to apply it to the patterns

generated by any other pattern generating algorithms, e.g. the two heuristics described

above, and thus possibly achieving an increase in the coverage of the patterns produced

by them.

It is clear that the algorithm can be restated to construct negative α-patterns. One

can easily see that the time complexity of this algorithm for constructing a heuristic

maximum strong positive α-pattern is O(|Ω+|2|Ω−|n). Therefore, constructing a heuris-

tic maximum strong pattern for every point in the dataset takes O(|Ω|2|Ω+||Ω−|n) time.

3.4.4 Combined Heuristic Algorithms (CHAs)

Computational experiments show that in the case of large problems it takes a substan-

tially shorter time to run all the heuristics described above than to solve problem (3.7)

using a standard integer programming package. Thus, whenever the running time of

solving problem (3.7) becomes prohibitively long, a computationally affordable alterna-

tive is to run all the heuristics, and combine their results, as described below.

A so-called “combined heuristic algorithm” (CHA) consists in: (i) choosing a subset

30

of heuristics to use, (ii) running the chosen heuristics for every point in the dataset,

and (iii) selecting for each α ∈ Ω+ (respectively, Ω−) a positive (respectively, negative)

α-pattern of largest coverage from the collection of all patterns constructed in step (ii).

3.5 Fuzzy Patterns

As discussed in Chapter 2, when dealing with real-life datasets it is frequently necessary

to relax the definition of a pattern, allowing the coverage of observations from its op-

posite class. In this chapter we introduce the concept of “fuzziness” of a pattern, which

is closely related to that of homogeneity (see Chapter 2). The reason for utilizing a

slightly different definition in this chapter is that some of the algorithms described here

are more easily adapted to this definition than to the usual definition of homogeneity.

The fuzziness of a pattern is measured by a parameter which determines how many

observations of the opposite class can be covered by that pattern. A family of positive

(negative) patterns is said to have fuzziness ϕ if the percentage of negative (positive)

observations covered by each pattern in the family does not exceed ϕ. A pattern with

nonzero fuzziness is said to be a “fuzzy pattern.”

The construction of fuzzy (positive) patterns can be accomplished by a simple modi-

fication of the constraints of model (3.7). The only constraints that have to be modified

are those which have to hold for every γ ∈ Ω−; more precisely, for these constraints we

shall require that

n∑
j=1

γj 6=αj

yj ≥ 1− sγ , for every γ ∈ Ω−

sγ ∈ {0, 1}, for every γ ∈ Ω−,

and

∑
γ∈Ω−

sγ ≤ ϕ|Ω−|.

31

Exactly the same modification carries over to the best linear approximation-based

heuristic, formulated as problem (3.8).

It is fairly straightforward to generalize the two combinatorial heuristic algorithms

– Algorithm for Enlarging Patterns to Prime Patterns, and Algorithm for Enlarging

Patterns to Strong Patterns – to the case of fuzzy patterns. The only modification to

be made in the formulation of the algorithms is to replace everywhere “positive pattern”

by “positive pattern with fuzziness at most ϕ”.

Note that the utilization of fuzzy patterns allows to relax the assumption that Ω+

and Ω− are disjoint, by the weaker assumption that their intersection is “relatively

small”.

3.6 Robust Patterns

A common occurrence in real world datasets is the absence of the values of some of the

attributes in certain observation points. This can be due either to missing information,

or to measurement imprecisions leading to missing values when numerical data are

binarized. Some of the standard approaches to dealing with such datasets consist either

in the removal from the dataset of the observations or of the attributes with missing

values, or in the filling in of the missing values with estimates obtained in a variety

of ways (e.g. by using average values). While both approaches transform the original

dataset with missing values into a fully specified one, the former approach discards

possibly valuable information from the dataset, while the latter one introduces poorly

justified modifications in the data. Since the reduction of datasets with missing values

to completely specified ones is not satisfactory, we propose instead to work directly with

datasets with missing values by appropriately extending the concept of patterns.

The concept of robust patterns (see [28]) extends that of patterns to the case of

datasets with missing attribute values, always assuming a worst-case scenario. The

worst-case assumption concerns the way of defining whether a pattern covers an ob-

servation with missing attribute values. More specifically, on the one hand, a positive

32

observation with a missing attribute value in any of the variables appearing in a ro-

bust positive pattern will be considered not to be covered by that pattern (since the

actual attribute value may conflict with the literal in the pattern). On the other hand,

a negative observation with missing attribute values will be considered covered by a

robust positive pattern if there is a combination of missing attribute values for which

the corresponding completed observation is covered by that pattern. For example, the

coverage of the positive pattern x1x2 does not include the positive point (1,−, 0), but

does include the negative point (−, 0, 1).

To generalize the algorithms presented in Sections 3.3 and 3.4 for the case of missing

values and robust patterns we have to specify our algorithms as follows. In the case

of problems (3.3) and (3.8), if the value of αj is missing then the variable yj will not

appear in the formulation of the problems at all. Otherwise, if the value of βj is missing

then the condition βj 6= αj is considered to be satisfied. Additionally, if the value of γj

is missing then the condition γj 6= αj is considered to be not satisfied.

In the combinatorial heuristics described in subsections 3.4.2 and 3.4.3, the starting

minterm Pα includes only those literals for which the value of αi is not missing. As a

matter of fact, if any αj is missing, then this conjunction is not a minterm anymore since

it covers other Boolean vectors in addition to α. In the execution of the combinatorial

heuristics the positive and negative coverage of prospective patterns is calculated using

the worst-case approach described above.

3.7 Computational Evaluation of Maximum Pattern Generation Al-

gorithms

We evaluated the performance of the heuristics described in the previous section in a

series of computational experiments, first with artificially generated datasets, and then

on ten publicly available datasets from the UC Irvine repository [97].

We generated three families of artificial datasets with binary attributes, each family

being characterized by the type of target function defining the class to which each

observation belongs. Each family is parameterized by the number of variables (n). The

33

three families used in our experiments are:

(i) DNF(n)_i: is a randomly generated Boolean function in DNF form with the

number of clauses randomly chosen between 0.5n and n, each clause having degree

randomly chosen between 2 log2(0.1n) and 4 log2(0.1n). Observations on which

this function evaluates to 1 are assigned to the positive class.

(ii) Linear(n)_i: is a linear function of the variables with randomly chosen coeffi-

cients in the range [−1, 1] and a zero constant term. Observations on which this

function evaluates to a positive value are assigned to the positive class, while those

where it evaluates to a negative value are assigned to the negative class.

(iii) PB(n)_i: is a randomly generated pseudo-Boolean function with the number of

terms randomly chosen between 0.5n and n, each term having degree randomly

chosen between 2 log2(0.1n) and 4 log2(0.1n) and randomly generated coefficients

in the range [−1, 1]. Observations on which this function evaluates to a positive

value are assigned to the positive class, while those where it evaluates to a negative

value are assigned to the negative class.

For each target function in the three families above we randomly generated a dataset

consisting of 15n points in such a way that the number of points in the smaller class

was at least 5n. This was achieved by simply discarding the randomly generated points

of the larger class after the cardinality of the larger class reached 10n.

We generated 10 random problems of each family with n = 20, and 3 problems of

each family with values of n equal to 50 and 100. We refer to the datasets with 20

attributes as “small” datasets, while the others are referred to as “large” ones. Since

the number of positive observations and the number of negative observations in each

dataset are random numbers in the range [5n, 10n], the last two columns in the tables

below specify the numbers of positive and negative observations in the dataset.

The computer used to run the maximum pattern generation algorithms was an Intel

Pentium 4, 3.4GHz, with 2GB of RAM. The maximum pattern generation algorithms

were implemented using the MS Visual C++ .NET 1.1 compiler. Problems (3.7) and

(3.8) were solved using version 16.10.02 of the Xpress-MP solver [43].

34

We report in Tables 3.1 and 3.2 the quality of the patterns obtained, as well as and

the relative running time required, by applying the three heuristics described in Section

3.4, as well as the combinations CHA of MPP, MSP and BLA (referred to simply as

CHA), and of MPP and MSP (referred to as MPSP). For the small datasets the quality

of heuristically generated patterns is expressed in Table 3.1 1 as the average percentage

of the number of points covered by these patterns compared to the number of points

covered by the optimum patterns constructed by solving exactly the corresponding in-

teger programming problem (3.7). The relative running time is shown as a percentage

of the running time required to solve the exact model (3.7), shown in the first column.

The solution of the exact model (3.7) becomes computationally prohibitive for the

large datasets, and our attempts to solve this problem to optimality failed in the al-

located maximum computing time of 24 hours. Therefore, we compare in Table 3.2 2

the sizes of the patterns and the relative running time required by the heuristics MPP,

MSP, BLA, and the combination MPSP to the size of the best pattern obtained with

the CHA combination and the time required by CHA, presented in the first column.

As shown in Tables 3.1 and 3.2, the running time required for the solution of the exact

model (3.7) can be orders of magnitude higher than that required to run a combination

of the heuristics. As the number of variables and observations in the dataset increases

(and, consequently, the number of binary variables in (3.7) also increases), solving (3.7)

tends to become significantly more expensive than running one or more of the heuristics

described.

It can be seen that the heuristic algorithms produced patterns whose average cover-

ages ranged from 95.6% to 99.8% of those of the optimum patterns, whenever an optimal

solution of problem (3.7) was found. For the large datasets this range is from 68.3% to

98.8% of the sizes of the patterns produced by CHA. The average time needed by the

heuristics ranged from 1% to 15.4% of the time needed by the exact algorithm in the

1EMP: exact maximum patterns; BLA: best linear approximation heuristic; MPP: maximized prime
patterns; MSP: maximized strong patterns; CHA: combination of three heuristics; MPSP: combination
of prime and strong heuristics.

2CHA: combination of three heuristics; BLA: best linear approximation heuristic; MPP: maximized
prime patterns; MSP: maximized strong patterns; MPSP: combination of prime and strong heuristics.

35

EMP BLA MPP MSP CHA MPSP Observations
Dataset Time (s) Time Size Time Size Time Size Time Size Time Size Pos. Neg.
DNF(20)_1 1436.0 0.9% 99.3% 2.5% 93.4% 4.6% 93.0% 8.0% 99.5% 7.1% 97.8% 200 100
DNF(20)_2 1418.3 1.1% 97.8% 2.6% 81.5% 3.9% 92.8% 7.5% 99.2% 6.5% 96.9% 200 100
DNF(20)_3 1538.9 0.8% 99.4% 2.3% 91.9% 4.0% 95.6% 7.1% 99.8% 6.3% 98.3% 200 100
DNF(20)_4 1453.2 0.9% 98.8% 2.4% 93.3% 4.3% 95.9% 7.6% 99.6% 6.7% 99.0% 200 100
DNF(20)_5 780.2 0.9% 99.7% 4.7% 97.5% 11.0% 97.6% 16.6% 99.9% 15.7% 99.6% 200 100
DNF(20)_6 963.8 0.9% 99.5% 3.6% 94.0% 7.2% 96.1% 11.7% 99.8% 10.8% 98.5% 200 100
DNF(20)_7 920.0 0.9% 99.7% 4.0% 96.8% 7.6% 97.9% 12.5% 99.9% 11.6% 99.2% 200 100
DNF(20)_8 926.3 0.9% 99.1% 3.8% 95.3% 7.5% 94.2% 12.3% 99.3% 11.4% 98.4% 200 100
DNF(20)_9 1619.6 1.3% 97.7% 2.2% 77.4% 3.1% 89.6% 6.6% 99.1% 5.3% 94.7% 200 100
DNF(20)_10 845.3 1.1% 99.6% 4.2% 95.4% 8.9% 94.4% 14.2% 99.8% 13.1% 98.6% 200 100
Linear(20)_1 2411.5 0.8% 99.4% 1.5% 93.9% 4.2% 96.3% 6.5% 99.8% 5.7% 98.0% 152 148
Linear(20)_2 2656.6 0.5% 99.6% 1.4% 97.6% 4.0% 95.6% 5.9% 99.9% 5.3% 99.1% 186 114
Linear(20)_3 2785.4 0.5% 99.7% 1.3% 97.7% 4.1% 94.8% 5.9% 99.9% 5.3% 98.7% 100 200
Linear(20)_4 2088.7 0.7% 99.8% 1.8% 98.6% 5.1% 97.6% 7.6% 99.9% 6.9% 99.5% 126 174
Linear(20)_5 2165.3 0.5% 100.0% 1.7% 97.7% 5.4% 95.4% 7.6% 100.0% 7.1% 99.9% 100 200
Linear(20)_6 1060.9 0.7% 99.9% 3.3% 99.1% 10.8% 99.9% 14.8% 100.0% 14.1% 100.0% 200 100
Linear(20)_7 2874.1 0.6% 99.9% 1.3% 96.9% 3.1% 96.3% 5.0% 99.9% 4.4% 98.8% 188 112
Linear(20)_8 1665.9 0.6% 100.0% 2.2% 99.7% 6.9% 99.9% 9.7% 100.0% 9.1% 100.0% 100 200
Linear(20)_9 2508.5 0.6% 99.8% 1.4% 99.0% 4.2% 97.6% 6.2% 99.9% 5.6% 99.3% 100 200
Linear(20)_10 2562.4 0.6% 100.0% 1.5% 96.6% 3.8% 98.2% 5.9% 100.0% 5.3% 98.9% 181 119
PB(20)_1 497.8 1.7% 100.0% 7.2% 98.4% 29.1% 96.8% 38.0% 100.0% 36.3% 99.5% 100 200
PB(20)_2 1056.6 0.7% 99.9% 3.4% 99.2% 10.9% 100.0% 15.0% 100.0% 14.3% 100.0% 200 100
PB(20)_3 911.9 0.9% 99.9% 4.0% 98.4% 13.3% 99.6% 18.2% 99.9% 17.3% 99.7% 100 200
PB(20)_4 301.4 2.5% 99.9% 12.0% 99.4% 43.9% 99.7% 58.3% 99.9% 55.9% 99.9% 184 116
PB(20)_5 1016.3 0.9% 99.6% 3.6% 98.0% 10.8% 99.3% 15.2% 100.0% 14.4% 100.0% 200 100
PB(20)_6 297.2 2.3% 100.0% 12.2% 88.3% 46.1% 100.0% 60.5% 100.0% 58.2% 100.0% 200 100
PB(20)_7 1291.7 0.8% 99.7% 2.8% 96.8% 8.6% 99.7% 12.2% 100.0% 11.5% 99.9% 132 168
PB(20)_8 472.3 1.5% 100.0% 7.7% 99.8% 23.6% 99.8% 32.7% 100.0% 31.3% 100.0% 100 200
PB(20)_9 663.5 1.0% 100.0% 5.4% 100.0% 17.6% 100.0% 24.1% 100.0% 23.1% 100.0% 100 200
PB(20)_10 1445.6 0.7% 99.9% 2.5% 96.4% 6.3% 99.7% 9.5% 100.0% 8.7% 99.9% 100 200
Average 1.0% 99.6% 3.7% 95.6% 10.8% 97.1% 15.4% 99.8% 14.5% 99.1%

Table 3.1: Relative time and size of heuristically generated patterns for small datasets
(as percentage of size and time of the exact model).

case of small datasets, and from 22.3% to 51.5% of the time spent by the CHA procedure

in the case of large datasets. In view of the very high coverages of the patterns produced

by CHA, the computational expense of solving the exact model is not justified.

In Table 3.3 3 we report the quality of patterns produced, and the running time

required by the heuristics when applied to a set of ten problems from the UCI machine

learning repository [97]. Table 3.3 shows the relative running time and quality of pat-

terns produced by the heuristics, as compared to those of the exact algorithm EMP,

whenever the solution of (3.7) finished within the limit of 24 hours. In the case of prob-

lems “krkp” and “sick” we compared the running time and quality of patterns produced

3EMP: exact maximum patterns; MPP: maximized prime patterns; MSP: maximized strong pat-
terns; BLA: best linear approximation heuristic; CHA: combination of three heuristics; MPSP: com-
bination of prime and strong heuristics. Whenever EMP did not terminate after the allocated 24h
limit, we report the running time of CHA and present the relative sizes and running times of the other
algorithms as a percentage of CHA’s size and running time.

36

CHA BLA MPP MSP MPSP Observations
Dataset Time (s) Time Size Time Size Time Size Time Size Pos. Neg.
DNF(50)_1 3,051.9 53.0% 99.3% 22.8% 59.9% 24.2% 64.0% 47.0% 73.2% 500 250
DNF(50)_2 2,499.8 40.4% 99.1% 27.7% 70.1% 31.9% 80.2% 59.6% 85.3% 500 250
DNF(50)_3 2,963.5 51.3% 99.3% 23.8% 64.6% 24.9% 70.4% 48.7% 78.6% 487 263
Linear(50)_1 2,734.6 27.0% 99.8% 25.7% 82.0% 47.3% 69.5% 73.0% 85.6% 365 385
Linear(50)_2 2,177.7 23.5% 99.9% 31.5% 85.4% 44.9% 78.8% 76.5% 91.0% 250 500
Linear(50)_3 2,167.8 20.1% 99.9% 31.5% 90.7% 48.4% 87.5% 79.9% 94.5% 250 500
PB(50)_1 3,205.3 40.4% 98.9% 21.9% 65.7% 37.7% 69.6% 59.6% 83.1% 399 351
PB(50)_2 2,586.3 42.9% 98.9% 26.7% 64.0% 30.4% 65.5% 57.1% 73.8% 500 250
PB(50)_3 2,642.8 42.7% 99.0% 26.5% 71.7% 30.8% 71.6% 57.3% 81.9% 338 412
DNF(100)_1 126,212.3 80.7% 98.8% 10.8% 53.8% 8.5% 68.1% 19.3% 76.2% 615 885
DNF(100)_2 116,342.9 80.8% 98.8% 9.5% 55.2% 9.7% 74.4% 19.2% 77.2% 558 942
DNF(100)_3 112,230.5 73.3% 98.2% 10.0% 52.9% 16.7% 73.6% 26.7% 76.8% 500 1000
Linear(100)_1 42,990.3 49.6% 99.5% 25.2% 74.7% 25.2% 63.4% 50.4% 79.0% 1000 500
Linear(100)_2 43,568.0 48.6% 99.6% 25.0% 70.4% 26.3% 59.3% 51.4% 73.4% 500 1000
Linear(100)_3 42,759.3 46.9% 98.6% 26.6% 83.2% 26.4% 66.5% 53.1% 86.7% 965 535
PB(100)_1 84,151.5 74.4% 98.3% 13.2% 62.3% 12.4% 67.3% 25.6% 79.0% 815 685
PB(100)_2 63,301.1 65.8% 95.5% 17.5% 65.4% 16.7% 79.4% 34.2% 84.9% 916 584
PB(100)_3 103,915.6 64.9% 96.8% 25.5% 57.0% 9.6% 71.4% 35.1% 76.7% 578 922
Average 51.5% 98.8% 22.3% 68.3% 26.2% 71.1% 48.5% 80.9%

Table 3.2: Relative time and size of heuristically generated patterns for large datasets
(as percentage of size and time of the CHA algorithm).

EMP BLA MPP MSP CHA MPSP Observations Attributes
Dataset Time (s) Time Size Time Size Time Size Time Size Time Size Pos. Neg. Attr. Bin
breast-w 54,601.4 0.1% 98.6% 2.9% 98.4% 3.4% 97.5% 6.5% 99.5% 6.4% 99.1% 241 458 9 84
credit-a 160.8 15.7% 100.0% 31.9% 99.6% 29.9% 99.9% 77.5% 100.0% 61.7% 100.0% 307 383 14 34
hepatitis 588.5 0.9% 91.5% 13.6% 86.5% 4.5% 91.8% 18.9% 96.7% 18.0% 95.1% 32 123 19 100
krkp 132,996.1* 0.6% 99.6% 4.6% 99.5% 94.8% 99.7% 100.0% 100.0% 99.4% 100.0% 1,669 1,527 36 37
boston 109.3 18.8% 99.1% 89.9% 97.0% 13.2% 99.8% 122.0% 99.8% 103.1% 99.8% 250 256 13 64
bupa 40.7 19.2% 98.6% 76.6% 97.2% 10.1% 100.0% 105.9% 100.0% 86.7% 100.0% 200 125 6 65
heart 2,113.4 0.6% 92.8% 9.2% 87.0% 4.9% 88.5% 14.8% 97.1% 14.1% 95.0% 139 164 13 74
pima 2,113.4 11.1% 94.7% 137.1% 90.1% 7.0% 99.0% 155.3% 99.4% 144.1% 99.2% 268 500 8 87
sick 41,784.9* 5.6% 99.8% 23.9% 94.0% 70.5% 99.0% 100.0% 100.0% 94.4% 99.3% 231 3,541 26 62
voting 55.8 21.6% 99.9% 14.7% 93.5% 58.7% 93.1% 95.0% 100.0% 73.4% 93.5% 267 168 16 16

Table 3.3: Relative time and size of heuristically generated patterns for UCI datasets
(as percentage of size and time of the exact algorithm EMP).

by the heuristics with those of the combined algorithm CHA. We also include in Table

3.3 the numbers of positive and negative observations in each dataset, as well as the

number of attributes in the original datasets and the number of binary attributes ob-

tained after discretizing each original dataset. Clearly, the results on the UCI datasets

corroborate those observed in our experiments with synthetic datasets.

The results of all these experiments suggest that the BLA heuristic is the most

effective individual heuristic among those proposed here. However, it relies on solving

an NP-complete problem and, therefore, as the size of the problem grows (number of

attributes in the datasets increases), it becomes increasingly more expensive to solve.

For small problems, the BLA algorithm performs substantially faster than any of the

two combinatorial heuristics MPP or MSP. Moreover, the patterns produced by BLA

37

are consistently larger than those produced by MPP or MSP, and frequently larger than

those obtained with the combination MPSP. In the case of typical machine learning

problems (such as the UCI problems studied here) BLA is clearly the heuristic of choice.

Unfortunately, when the problems become sufficiently large (n ≥ 100 in the case of the

synthetic problems examined here) the BLA heuristic becomes prohibitively expensive.

On the other hand, the quality of the patterns produced with the use of the two

combinatorial procedures (MPP and MSP) is still quite reasonable. While the com-

puting time for the combinatorial algorithms was higher than the time required by the

BLA heuristic in the case of smaller problems, the combinatorial heuristics remained the

only viable options in the case of instances of larger sizes. Moreover, in a case when an

efficient integer linear programming solver is not available, the use of the combinatorial

heuristics becomes an invaluable option. Note that as the estimates of computational

complexity of these two heuristics (which are provided in Sections 3.4.2 and 3.4.3) in-

dicate, the running time of MPP is quite sensitive to the number of binary variables,

while the running time of MSP is much more sensitive to the number of observations

in the dataset. Therefore, in the case of very large problems, one would have to resort

to the use of only one of these heuristics, with the choice depending on whether the

number of variables or the number of observations is exceedingly large.

3.8 Application to Classification

One of the most important applications of maximum patterns (or their heuristically

generated approximations) is in the Logical Analysis of Data (LAD). Patterns are the

building blocks of LAD models, and the accuracy of these models depends on the type

of patterns used for their construction. It is therefore important to empirically evaluate

the effect of using (exact or approximate) maximum patterns on the accuracy of LAD

classification models. We present below the results of such evaluation carried out on the

ten datasets used in the previous section.

Given a dataset Ω = Ω+ ∪ Ω−, we recall that a collection of positive and negative

patterns Π+ ∪ Π− is called a LAD model, if every ω+ ∈ Ω+ is covered by at least one

38

pattern in Π+, and every ω− ∈ Ω− is covered by at least one pattern in Π−. For the

purpose of classifying a “new” observation ω /∈ Ω in the experiments described here, we

utilized the usual definition of a discriminant function ∆(ω):

∆(ω) =
π+(ω)
|Π+|

− π−(ω)
|Π−|

.

We evaluated the accuracy of classification models in this chapter using one random

10-fold cross-validation. For the purpose of comparing our results with those of algo-

rithms implemented in the Weka package [128], we utilized the LAD accuracy definition,

presented in Chapter 2.

Each of the LAD models used in our experiments was built on a collection of max-

imum patterns, constructed by one of the exact or heuristic algorithms described in

the previous sections. The only exception to this statement concerns the CAP model

(Combined Approximate Patterns), which uses the union of the two pattern collections

constructed by the heuristic algorithms MPP and MSP which separately enlarge each

minterm of Ω to a maximized prime, respectively strong pattern. In Table 3.4 the

combination CHA utilizes all three heuristics BLA, MPP and MSP.

Tables 3.4 and 3.5 below report the accuracy of various classification algorithms

obtained as the average result of a 10-fold cross-validation experiment. In both tables

we display the highest accuracy for each dataset in boldface characters. Moreover, at

the bottom of the tables we display the so-called Borda count [21] of each algorithm.

The Borda count in Table 3.4 is obtained by ranking the seven algorithms based on

their accuracies on a given dataset. The most accurate algorithm is assigned a score of

7, the second best is assigned a score of 6, and so on until a score of 1 is assigned to the

algorithm with the worst accuracy on that dataset. The Borda count of an algorithm is

the sum of these scores over the ten datasets. The Borda count for Table 3.5 is computed

analogously.

The column labeled “LAD” in Table 3.4 refers to the results obtained using the

current implementation of LAD described in [11]. This and other LAD systems following

the implementation framework described in [28] utilize several important parameters

and, therefore, have to be extensively calibrated to achieve the best possible results.

39

Dataset LAD EMP BLA MPP MSP CHA CAP
breast-w 0.945 ± 0.011 0.949 ± 0.017 0.953 ± 0.017 0.953 ± 0.014 0.952 ± 0.019 0.957 ± 0.017 0.966 ± 0.011
credit-a 0.840 ± 0.031 *** 0.840 ± 0.029 0.833 ± 0.034 0.835 ± 0.031 0.762 ± 0.050 0.867 ± 0.025
hepatitis 0.770 ± 0.056 0.713 ± 0.107 0.743 ± 0.072 0.785 ± 0.104 0.712 ± 0.069 0.760 ± 0.099 0.779 ± 0.104
krkp 0.848 ± 0.006 *** 0.992 ± 0.003 0.534 ± 0.007 0.990 ± 0.005 0.530 ± 0.010 0.993 ± 0.002
boston 0.848 ± 0.021 0.724 ± 0.044 0.867 ± 0.019 0.860 ± 0.031 0.847 ± 0.031 0.668 ± 0.075 0.855 ± 0.029
bupa 0.665 ± 0.053 0.640 ± 0.047 0.663 ± 0.055 0.673 ± 0.043 0.614 ± 0.037 0.668 ± 0.052 0.734 ± 0.052
heart 0.832 ± 0.041 0.812 ± 0.043 0.826 ± 0.031 0.825 ± 0.026 0.809 ± 0.029 0.823 ± 0.031 0.826 ± 0.032
pima 0.741 ± 0.026 0.577 ± 0.029 0.725 ± 0.027 0.743 ± 0.025 0.697 ± 0.025 0.575 ± 0.028 0.747 ± 0.022
sick 0.720 ± 0.020 0.722 ± 0.036 0.734 ± 0.033 0.713 ± 0.033 0.695 ± 0.023 0.739 ± 0.035 0.825 ± 0.019
voting 0.953 ± 0.019 0.956 ± 0.020 0.949 ± 0.012 0.949 ± 0.014 0.947 ± 0.008 0.945 ± 0.021 0.952 ± 0.021
Borda count 45 25 45 46 24 31 64

Table 3.4: Classification accuracy and Borda counts of LAD using different types of
patterns. Entries marked with “***” could not be finished within the total running time
limit of 48 hours.

The LAD results reported here were obtained after using only moderate calibration

and can potentially be improved with more extensive calibration. In contrast, all the

algorithms proposed in this chapter utilize only a single parameter of fuzziness and,

therefore, require only minimal calibration.

Note that none of the new algorithms for constructing LAD models shown in Table

3.4 clearly dominates the others in terms of accuracy. The results in Table 3.4 indicate

that the computational expense of producing patterns achieving the exact maximum

coverage does not translate into an (even marginally) superior classification performance

of the resulting EMP model of LAD, since the LAD models using heuristically gener-

ated patterns are always of comparable quality (being even better on many datasets).

Furthermore, in spite of the fact that CHA chooses for every point the best of the

three patterns generated by BLA, MPP and MSP, the CHA model does not always

perform better than its individual components. Overall it looks like the CAP model of

LAD provides a reasonable compromise between achieving superior classification per-

formance and keeping the computational expense reasonably low. The accuracies of the

CAP models are at least comparable to and often exceed the highest accuracies of the

models constructed by the other algorithms, as well as the accuracies of the current

implementation of LAD [11].

Based on the above, we shall use the CAP model of LAD (termed CAP-LAD in

the comparisons presented below) as LAD’s reference implementation. A significant

advantage of this reference implementation of LAD is its non-reliance on various control

40

parameters (utilized in the original framework of LAD [28]), the only one still used

being the fuzziness parameter ϕ. This drastically reduces the amount of fine tuning and

therefore simplifies the usage of the LAD methodology.

In Table 3.5 we present the cross-validated accuracies of CAP-LAD and of five com-

monly used machine learning algorithms as implemented in the publicly available soft-

ware package Weka [128]: Support Vector Machines (SMO), C4.5 Decision Trees (J48),

Random Forests (Rand.For.), Multilayer Perceptron (Mult.Perc.), and Simple Logistic

Regression (S.Log.). The comparison of these accuracies shows that CAP-LAD is a very

competitive classification method, whose accuracy is on par with the accuracies of most

accurate of the Weka algorithms.

Dataset SMO J48 Rand.For. Mult.Perc. S. Log. CAP-LAD
breast-w 0.965 ± 0.011 0.939 ± 0.012 0.967 ± 0.009 0.956 ± 0.012 0.963 ± 0.013 0.966 ± 0.011
credit-a 0.864 ± 0.025 0.856 ± 0.031 0.882 ± 0.027 0.831 ± 0.032 0.873 ± 0.025 0.867 ± 0.025
hepatitis 0.772 ± 0.084 0.652 ± 0.086 0.722 ± 0.101 0.727 ± 0.065 0.764 ± 0.090 0.779 ± 0.104
krkp 0.996 ± 0.003 0.994 ± 0.003 0.992 ± 0.003 0.993 ± 0.002 0.975 ± 0.005 0.993 ± 0.002
boston 0.889 ± 0.028 0.837 ± 0.045 0.875 ± 0.024 0.893 ± 0.031 0.874 ± 0.021 0.855 ± 0.029
bupa 0.701 ± 0.045 0.630 ± 0.041 0.731 ± 0.046 0.643 ± 0.020 0.662 ± 0.048 0.734 ± 0.052
heart 0.837 ± 0.039 0.799 ± 0.052 0.834 ± 0.051 0.815 ± 0.025 0.834 ± 0.040 0.826 ± 0.032
pima 0.727 ± 0.029 0.722 ± 0.026 0.736 ± 0.030 0.726 ± 0.023 0.729 ± 0.031 0.747 ± 0.022
sick 0.824 ± 0.027 0.926 ± 0.020 0.832 ± 0.023 0.852 ± 0.049 0.808 ± 0.023 0.825 ± 0.019
voting 0.961 ± 0.018 0.960 ± 0.015 0.961 ± 0.016 0.944 ± 0.025 0.961 ± 0.014 0.952 ± 0.021
Borda count 42 22 43 27 35 41

Table 3.5: Classification accuracy and Borda counts of Weka algorithms and CAP-LAD.

In order to perform a fair comparison between CAP-LAD and the Weka algorithms,

we calibrated a few parameters of each of the five Weka algorithms. Below we list for

each type of classifier the parameters and their associated values used for calibration.

A 10-fold experiment was carried out with each possible combination of parameters and

the highest average accuracy obtained in those experiments is reported in Table 3.5.

Support Vector Machines (SMO): (i) C: complexity parameter, which controls the

tradeoff between the maximization of the margin of separation and the minimization of

the misclassification rate in the training set (taking values 1, 10, and 50); (ii) exponent:

exponent of polynomial kernel, when using a standard polynomial kernel (taking values

1, 2, 3); and (iii) useRBF: whether or not to use a radial basis function kernel, instead

of a polynomial one.

Multilayer Perceptron: (i) learningRate: amount by which the weights are updated

(taking values 0.3 and 0.5); (ii) momentum: momentum applied to the weights during

41

updating (taking values 0.2 and 0.4); and (iii) hiddenLayers: number of hidden layers

in the network (taking values “i” and “t”, which correspond to the number of attributes

and to the sum of the number of attributes and the number of classes in the dataset,

respectively.

Simple Logistic Regression: (i) heuristicStop: the fitting of logistic models is stopped

if no new error minimum has been reached in the last “heuristicStop” iterations (taking

values 50, 100); (ii) maxBoostingIterations: maximum number of LogitBoost iterations

performed while fitting the logistic models (taking values 100, 500); and (iii) erro-

rOnProbabilities: whether or not to use error on the probabilities as a measure when

determining the best number of LogitBoost iterations.

Random Forests: (i) numFeatures: number of features to be used in random selection

(taking values 2 and blog2(n)+1)c; and (ii) numTrees: number of trees to be generated

(10, 100, 1000).

Decision Trees C4.5 (J48): (i) reducedErrorPruning: whether or not to use reduced-

error pruning; (ii) binarySplits: whether or not to use binary splits on nominal attributes

when building the tree; and (iii) minNumObj: minimum number of instances per leaf

(taking values 1 and 2).

Table 3.6 summarizes the results shown in Table 3.5. It reports the pairwise com-

parisons of the five algorithms from Weka and CAP-LAD. Each cell entry contains the

number of wins, losses and ties (respectively) between the algorithm corresponding to

the row and the one corresponding to the column, over the ten datasets used to con-

struct Table 3.5. Every comparison here is performed on the basis of a t test at 95%

confidence level. As discussed in [45], this test is prone to errors of Type I. Therefore,

the conclusion that the performance of a certain algorithm is superior to that of another

one on an individual instance is to be regarded cautiously, while the conclusion that the

accuracies of two algorithms are not statistically different at the 95% confidence level

on a given instance can be trusted. Based on this insight, we can conclude that the

performance of CAP-LAD is indistinguishable from that of Random Forests and SVMs

– despite the (slight) difference in the Borda counts of these algorithms – while being

at least as good as the performances of the other three algorithms from Weka.

42

SMO J48 Rand.For. Mult.Perc. S. Log.
J48 4-1-5
Rand.For. 1-1-8 4-1-5
Mult.Perc. 0-4-6 2-2-6 0-2-8
S.Log. 1-1-8 1-2-7 0-2-8 1-2-7
CAP-LAD 0-1-9 2-1-7 0-0-10 2-1-7 1-0-9

Table 3.6: Matrix of wins, losses and ties.

3.9 Conclusions

In this chapter we investigated the problem of constructing maximum coverage patterns

containing any given observation point in the dataset. The main contributions of this

chapter include the development of both exact and heuristic methods for the construc-

tion of such maximum patterns. The results obtained here show that the heuristically

constructed patterns can achieve more than 81%-98% of the maximum possible cover-

age, while requiring only a fraction of the computing time of the exact method. These

results were shown to hold on both real-life datasets from the UCI machine learning

repository [97], as well as on varied synthetic datasets.

We showed that maximum patterns are useful for constructing highly accurate LAD

classification models. One of the advantages of such models is that in contrast with the

original LAD models, the maximum pattern based ones do not require extensive cali-

bration (determination of good values of several control parameters), and can therefore

be easily used by non-experts.

It is also interesting that the LAD models built using the exact patterns of maximum

coverage do not exhibit any superior classification performance as compared to the mod-

els built using approximate maximum patterns – in agreement with similar phenomena

observed in different machine learning contexts [44].

In comparisons with the commonly used machine learning algorithms implemented

in the publicly available Weka software package, the proposed reference implementation

of LAD (termed CAP-LAD) was shown here to be a highly competitive classification

algorithm.

43

Chapter 4

A Branch-and-Bound Algorithm

4.1 Introduction

In this chapter we describe a branch-and-bound algorithm for a family of pseudo-Boolean

optimization problems, and report the results of a series of computational experiments

that compare the solution quality and running time of our algorithm with those of the

Xpress [43] integer linear programming solver.

The branch-and-bound approach dates back to 1960 when the pioneer work of Land

and Doig [84] was published, in which they described a novel algorithm for solving

integer linear programming problems. Since then, several versions of the algorithm were

proposed for special classes of optimization problems, such as the traveling salesman

problem [55, 99, 102], facility location [53, 94, 117], network design [42, 64, 75], nonlinear

programming problems [3, 71, 121, 124], to name a few.

The algorithm is essentially a combination of two procedures: the partitioning of

the original problem into a series of successively simpler subproblems (branching), and

the computation of bounds that permit the elimination of a significant fraction of the

subproblems (bounding). The expectation is that large parts of the search space can be

removed from consideration and only a small number of solutions have to be actually

computed.

The branching procedure basically partitions the space of feasible solutions. The

typical branching operation consists of (i) enumerating (or implicitly describing) the

possible values of one or more variables that can actually be realized in a feasible solu-

tion, and (ii) partitioning the space of feasible solutions according to those values. Each

partition is called a branch and creates a restricted version of the original problem.

44

Therefore, the objective function value in each branch can be at most as good as that

in the original problem. Note, however, that branching operations as described here do

not remove any feasible solution from consideration. Thus, after a branching operation

the set of solutions of a problem is completely preserved in its subproblems.

Due to the successively more refined partitions of the search space generated by the

algorithm, we often refer to the search tree or the branch-and-bound tree associated to

the application of a branch-and-bound algorithm to a particular instance. At the root

of the tree we have a special node corresponding the original problem. Each of the

remaining nodes of such a tree corresponds to a version of the original problem whose

space of feasible solutions has been reduced by a branching operation. Two nodes are

connected by an arc if one of them was obtained from the other by the application of

a branching operation, i.e., one of them is a restricted version of the other. We usually

say that the restricted subproblem is a descendant or a child node of the other, which

is referred to as the parent node. In this chapter we will sometimes identify a node in

the search tree with the subproblem associated to it.

The bounding procedure relies on the computation of an explicit bound on the

optimal objective function value for a given problem. Let us assume that our original

problem is a maximization one, and let zf be the objective function value associated to

a given feasible solution. We can use an upper bound on the optimal objective function

value of a subproblem to conclude that it cannot contain an optimal solution to the

original problem. If the upper bound on the optimal value of a given subproblem is

ẑ, and ẑ < zf , then it is clear that the given subproblem cannot contain an optimal

solution to the original problem.

In most applications, the bounding procedure produces a solution for a relaxation of

the subproblem, and that can be used as a candidate solution for the original problem.

For example, in the case of integer linear programming problems, solving the linear

relaxation of the current problem S provides a bound on the objective value of S while

producing a candidate solution x for the original problem. If x turns out to be integral

and the objective function value associated to it is better than that of the best solution

of the original problem produced so far, we declare x the best known solution so far.

45

If x is fractional, problem S can be either discarded or further branched on, depending

on the value of the bound computed: if the objective function value associated to x is

better than that of the current best known solution, then problem S is still considered

for further branching; otherwise, x is discarded, and the current subproblem is removed

from the search tree (as discussed above) without producing any descendant node. If the

procedure for computing a bound on the optimal objective value of a subproblem does

not produce a candidate solution, some mechanism of producing one or more candidate

solutions from each subproblem is needed as a way of generating feasible solutions for

the original problem.

More recently many modifications of the original branch-and-bound algorithm have

been proposed based on combinations of the original principles of branching and bound-

ing with those of other techniques, such as primal heuristics [12, 15, 98], cutting planes

[55, 74, 99, 100, 102, 124], column generation [14, 15, 111, 123], and constraint sat-

isfaction [2, 87, 101, 125]. These variants are mainly used for solving specific classes

of problems, as they typically explore the structure of the problem being solved, for

instance by the use of valid inequalities and special-purpose heuristics. For the solution

of real-life problems, commercial solvers rely heavily on branch-and-bound algorithms,

implementing some version of the standard algorithm enriched by a number of pre-

processing techniques, heuristics for fixing of variables, branching and node selection

strategies [2, 43, 74, 112, 50], and general-purpose cutting planes [61, 62, 36].

Certain classes of combinatorial optimization problems possess structural proper-

ties that allow the opportunistic use of branch-and-bound algorithms. In this chapter

we describe a class of pseudo-Boolean optimization problems [22, 23, 40, 67, 68, 69]

with applications in Logical Analysis of Data, and present a simple branch-and-bound

algorithm that satisfactorily solves problems from this class.

In the next section we describe the pseudo-Boolean optimization problem considered

in this chapter. Section 4.3 presents the branching strategies of our algorithm, and

Section 4.4 describes the node selection strategy utilized. In Section 4.5 we discuss

the bounding procedure, and in Section 4.6 we report on computational experiments

carried out on randomly generated instances. Finally, Section 4.7 discusses the main

46

contributions in this chapter.

4.2 Problem Formulation

Let us consider a binary dataset Ω ⊂ {0, 1}n, with |Ω| = m, and let us associate to each

point ωk ∈ Ω a real weight βk. Consider now the problem of finding a conjunction C

such that the sum of the weights of the points in Ω satisfied by C is maximized. The

following pseudo-Boolean optimization problem asks for such a conjunction:

(PB) maximize φ =
m∑

k=1

βk

 ∏
i:ωk

i =0

yi

∏
j:ωk

j =1

zj


subject to: yj , zj ∈ {0, 1}, j = 1, . . . , n,

where yj is a Boolean variable associated to the inclusion of literal xj in the resulting

conjunction C, and zj is a Boolean variable representing the inclusion of literal xj in C,

for j = 1, . . . , n. Note that the weights βk (k = 1, . . . ,m) do not have necessarily the

same sign.

Problem (PB) describes a particular class of pseudo-Boolean optimization problems

in which every term has degree equal to n and variables appear only complemented in

the expression of φ. As a simple example, let n = 3, Ω = {(1, 0, 1), (1, 1, 0)}, β1 = 1 and

β2 = −1. Then, function φ equals to z1 y2 z3 − z1 z2 y3.

Note that the maximum pattern problem described in Chapter 3 is a special case

of problem (PB) if the fuzziness parameter is set to zero. In such a case, we assume

that Ω = Ω+ ∪Ω−, with Ω+ ∩Ω− = ∅, and we ask, for instance, for a conjunction that

covers the largest number of points from Ω+ and does not cover any of the points in

Ω−. This is equivalent to setting weights βj = 1 for the points ωj ∈ Ω+, βj = −|Ω+|

for the points ωj ∈ Ω−, and solving problem (PB).

Problem (PB) can also be used to produce maximum patterns with nonzero fuzziness

by a proper setting of the weights βj . In that case, however, (PB) is not equivalent

to the formulation described in Chapter 3, since we cannot impose a nontrivial strict

upper bound on the number of points from Ω− that are covered. On the other hand,

by adjusting the weights βj we can obtain fuzzy patterns with optimal coverage with

47

respect to a criterion closer to the one used in the context of subgroup discovery [86].

In Chapters 5 and 6 we will present other applications in which problem (PB) and a

slight variation of it arise naturally.

4.3 Branching Strategy

A simple branch-and-bound algorithm for a problem with binary variables fixes one

variable at each branch. In such a case, every subproblem in the branch-and-bound

algorithm produces exactly two descendants, one corresponding to fixing xj = 0 and

the other to fixing xj = 1. The enumeration associated to such a branching policy is

typically very large, causing such an algorithm to be of little practical use. In general,

if a simple branching strategy is to be used, it becomes necessary to use preprocessing

techniques that substantially simplify the problem (reducing the number of variables or

the space of feasible solutions) and to develop sharp bounds to prune large parts of the

search tree.

Some classes of problems display certain structural properties that allow the develop-

ment of specific branching strategies that fix a larger number of variables at each branch

of the search tree, quickly reducing the size of the subproblems during the execution of

the algorithm. In this section we describe a branching strategy that takes advantage of

the particular structure of problem (PB) and attempts to fix a large number of variables

at each branch.

We propose a branching rule that takes into account the large number of variables

involved in the clauses (or terms) in problem (PB). We perform the branching step on an

entire clause of φ, instead of on a single variable. Branching on a clause T =
∏
i∈A

yi

∏
j∈B

zj

can fix a large number of variables at once, significantly reducing the sizes of the resulting

subproblems. For instance, if we fix clause T at value 1, we simultaneously fix all

variables yi = 0 (i ∈ A) and zj = 0 (j ∈ B). Fixing T = 0 leaves us with a number

of options: fixing any of the variables involved in T at value 1 is enough to ensure that

T = 0. We can then create |A|+ |B| descendant nodes associated with the case T = 0,

with an increasing number of variables fixed over these nodes. To achieve that, let us

48

assume some order among the variables involved in T . We can fix the first variable at

the value 1, leaving the remaining variables free. As a separate branch we can fix the

first variable at the value 0 and the second variable at the value 1, with the remaining

variables being free. Following this process, the third variable can be fixed at 1, and the

first two at 0, and so on, until we have a descendant node that fixes the last variable at

1 and all other variables in T at 0. Clearly, the set of nodes described above contains

all possible assignments with T = 0, and every such assignment is implicitly defined by

exactly one of the nodes in the set.

Consider the example of T = y1 z2 z3 y4. Branching on T = 1 fixes y1 = z2 =

z3 = y4 = 0 simultaneously and reduces the number of variables in the problem by

4. Fixing T = 0 can be done in four different ways: fixing each variable in T at the

value 1 separately. If we simply fix each variable separately at the value 1, we have a

symmetry effect that can clearly create an overhead in the performance of the algorithm.

For example, as we fix y1 = 1, and in a separate branch fix z2 = 1, we are potentially

considering a number of identical subproblems in subsequent branches: at subsequent

rounds of branching we could obtain (y1 = 1, z2 = 1) in one part of the search tree and

(z2 = 1, y1 = 1) in another part. Since the number of possible solutions is exponential,

this symmetry effect can result in a large increase in the running time of the algorithm.

In order to prevent such a situation we fix an increasingly larger set of variables at each

branch by, say, fixing y1 = 1, and in a subsequent branch fixing simultaneously y1 = 0

and z2 = 1. In a third branch we can fix y1 = z2 = 0 and z3 = 1, and finally fix

y1 = z2 = z3 = 0 and y4 = 1 in the last branch. Note that this policy does not remove

any potential solution from consideration, while preventing the undesirable overhead of

evaluating equivalent subproblems multiple times.

4.3.1 Branching Criterion

Let us assume that φ has both terms with positive and with negative coefficients. Indeed,

if all weights β are positive, the optimal solution of (PB) is simply the empty pattern

(i.e., a conjunction containing no literals, covering all points in Ω), since problem (PB)

requires the maximization of φ. Similarly, if all points have negative weights β, then

49

any conjunction that is not satisfied by any point in Ω is an optimal solution of (PB).

For instance, any conjunction of the type xjxj (corresponding to yj = zj = 1 in (PB))

is an optimal solution in this case.

A simple criterion for selecting the next clause to branch on is the value of the

coefficient of the clauses. The clause T with largest positive coefficient will hopefully

provide a large increase in objective function when fixed to 1. Thus, we first branch on

the case T = 1, postponing the branches with T = 0.

Similarly, if in a certain node there are only negative clauses, we choose the most neg-

ative clause and evaluate first the branches with T = 0, and subsequently the one with

T = 1. The advantages of such a criterion are that its implementation is straightforward

and its complexity is linear on the number clauses at the given node.

Obviously, more sophisticated criteria can be used, which can potentially reduce the

depth of the search tree and provide sharper upper bounds. In particular, the selection

of the order in which the variables should be fixed in the branches with T = 0 can make

a difference, since fixing certain variables at the value 1 can potentially cause other

clauses to vanish.

In addition to that, one could take into account the total effect of fixing a cer-

tain clause to the value 1. Fixing T = 1 can simultaneously fix other clauses at the

value 1 (those involving only a subset of the literals in T), thereby affecting the total

contribution of that fixing to the objective function.

In our computational experiments with randomly generated problems the use of the

alternative criterion described above did not result in an overall improvement of the

algorithm, as compared to the use of the simple criterion. In some cases, marginally

superior solutions were obtained early in the search, but that behavior was not consis-

tent. Moreover, in all cases the running time of the algorithm was largely increased,

sometimes to twice as much as the time required with the simple branching criterion.

Indeed, it is clear that the complexity of the more sophisticated criterion is significantly

higher.

In the remainder of this thesis we utilize solely the simple criterion proposed in the

beginning of this section.

50

4.4 Initialization and Node Selection

In this section, we describe a simple heuristic for finding initial solutions of good quality,

and the node selection strategy used throughout the rest of the algorithm.

4.4.1 Generating an Initial Solution

As described above, the bounding principle depends on the objective function value

of the best solution found so far. Near-optimal solutions typically allow the pruning of

considerable parts of the search tree, while solutions of poor quality render the bounding

procedure ineffective [15, 51, 77, 96]. Since at early stages of the search the space of

solutions is still very large, finding a solution with a high objective function value at

the outset of the search contributes to an aggressive pruning that can reduce the overall

running time of the algorithm.

We utilize the greedy branching strategy described in the previous section, along

with a depth-first queue discipline in order to produce one or more solutions of good

quality at an early stage of the search process. We select the next clause to be branched

on, and follow the appropriate branch, postponing the other branches. This policy is

applied until a maximum number of K nodes is visited, where K was selected to be

either 500 or 1,000 in our computational experiments.

As long as there are unresolved clauses, i.e., clauses that have not yet been fixed,

the algorithm branches on a clause whose fixing seems to be the most advantageous

one – according to the branching criterion described in the previous section – among all

unresolved clauses.

This depth-first strategy for selecting the next node to be examined is extremely

fast since it does not require the consideration of which node should be examined next

based on its upper bound. The procedure usually produces solutions of good quality

after a relatively small number of branching operations.

For problems of small dimension, the procedure described above for generating an

initial solution frequently exhausts the search space. For larger problems, the solutions

produced in this initial phase of the algorithm are typically among the best solutions

51

found during the remainder of the search.

In Section 4.6 we present the results of a series of computational experiments that

support these claims.

4.4.2 Node Selection Strategy

We discuss below how the general node selection strategy used throughout the algorithm

differs from the one used during the initialization phase.

At any stage of the search procedure, there is a set of nodes that have not yet been

examined and whose corresponding upper bounds are still larger than the objective

function value of the best solution found so far. We refer to these nodes as open nodes.

A careful choice of the next open node to be processed can lead to substantial gains

in computing time as solutions of good quality may be found more quickly, helping to

further prune the search tree.

We select the best open node to be processed according to a discipline based on

the depth-first strategy described for obtaining initial solutions. The main difference

consists in the periodic interruption of the search every time a certain number of nodes

has been examined. This interruption of the branch-and-bound search has the purpose

of reorganizing the memory used by the algorithm. Two main tasks are accomplished

during each interruption: (i) open nodes, whose upper bounds have become worse than

the objective function value of the best known solution since the time they were created,

are discarded, and (ii) the remaining set of open nodes is sorted in decreasing order of

their upper bounds, with the intent of giving priority of processing to nodes that are

more likely to contain improved solutions. We apply such an interruption every time

the number of nodes processed equals a multiple of an integer number, typically chosen

between 100 and 2,000.

The strategy described above for selecting the next clause to branch on, and for

deciding the order in which to create descendants of a subproblem is used throughout

the entire search procedure.

52

4.5 Bounding

As discussed before, the combined use of an effective bounding procedure with feasible

solutions of good quality is a crucial part of the branch-and-bound algorithm. At the

same time, a good bounding procedure should be relatively fast. Indeed, the node

selection strategy described above relies on the explicit computation of an upper bound

for each open node in the search tree.

We utilize as an upper bound on the objective function value at any given node,

having an associated function φ, the sum of the coefficients of the clauses of φ having

positive coefficients, plus the independent term of φ. This is an optimistic upper bound,

since we are expecting that there is a certain assignment of the remaining variables for

which all clauses with a negative coefficient will vanish, while all clauses with a positive

coefficient will be satisfied.

This rather simplistic upper bounding procedure is extremely inexpensive and turned

out to work remarkably well in our computational experiments described in Section 4.6

below.

4.6 Computational Experience

In this section we report the results of a number of computational experiments with

our branch-and-bound algorithm. We compare the performance of our algorithm with

that of the commercial solver Xpress-MP [43] in terms of running time and quality

of solutions produced. We also report the quality of the upper bounds generated by

both algorithms. Our experiments were performed on randomly generated instances of

problem (PB).

In Chapters 5 and 6 we describe two applications of problem (PB) in which one

is interested in obtaining a solution of good quality, rather than requiring an optimal

solution. In view of that, we report here the performance of what we call “truncated”

branch-and-bound searches, in which explicit limits are imposed on the maximum run-

ning time and on the maximum number of branch-and-bound nodes evaluated.

53

We execute three types of experiments: a truncated search with 1,000 nodes, a trun-

cated search with 2,000 nodes, and a truncated search without a limit on the maximum

number of branch-and-bound nodes evaluated. For each type of experiment we estab-

lished the maximum limit of 30 minutes of running time. It turned out that most of

the small instances were solved to optimality by both our algorithm and the Xpress-MP

solver during one of the truncated searches. Neither our algorithm nor the Xpress-MP

solver were able to solve the larger instances within the truncated searches.

Our algorithm was implemented in C++ using the MS Visual C++ .NET 1.1 en-

vironment, utilizing version 16.10.02 of the Xpress-MP solver in our experiments. The

computer utilized to run all experiments reported in this chapter was an Intel Pentium

4, 3.4GHz, with 2GB of RAM.

Table 4.1 presents the number of variables and the number of clauses of the set

of randomly generated instances used in our experiments. Note that n is the number

of variables in the dataset Ω. However, in problem (PB) the total number of binary

variables is in fact equal to 2n, while the total number of clauses equals m, each clause

having a coefficient randomly chosen between -1 and 1.

Instance n m

p_20_1 20 30
p_20_2 20 30
p_20_3 20 30
p_30_1 30 50
p_30_2 30 50
p_30_3 30 50
p_40_1 40 70
p_40_2 40 70
p_40_3 40 70
p_50_1 50 100
p_50_2 50 100
p_50_3 50 100

Instance n m

p_70_1 70 120
p_70_2 70 120
p_70_3 70 120
p_100_1 100 150
p_100_2 100 150
p_100_3 100 150
p_150_1 150 200
p_150_2 150 200
p_150_3 150 200
p_200_1 200 250
p_200_2 200 250
p_200_3 200 250

Instance n m

p_250_1 250 300
p_250_2 250 300
p_250_3 250 300
p_300_1 300 400
p_300_2 300 400
p_300_3 300 400

Table 4.1: Characteristics of randomly generated instances of problem (PB): n = number
of features of dataset Ω, m = number of points in dataset Ω.

Table 4.2 shows the results of a truncated search using a maximum of 1,000 branch-

and-bound nodes for each problem. The columns labeled “Xpress-MP” refer to the

54

solution and the running time required by the Xpress-MP solver to perform the trun-

cated search. “BBPBF” stands for our “branch-and-bound algorithm for maximizing a

pseudo-Boolean function.” Within the limit of 1,000 branch-and-bound nodes, BBPBF

found solutions with objective function values that are 37% larger on average than those

found by the Xpress-MP solver, while requiring an average of 26% of the running time

of the Xpress-MP solver.

Obj. Function Value Running Time (s)
Instance Xpress-MP BBPBF Xpress-MP BBPBF
p_20_1 3.86* 3.86* 0.4 0.0
p_20_2 3.69* 3.69* 0.3 0.0
p_20_3 4.44* 4.44* 0.4 0.1
p_30_1 5.11* 5.11* 2.0 0.4
p_30_2 6.37* 6.37* 1.6 0.4
p_30_3 9.19* 9.19* 1.3 0.1
p_40_1 6.62 7.50* 4.1 1.0
p_40_2 7.25 7.25* 4.1 1.3
p_40_3 5.11* 5.11* 3.8 1.6
p_50_1 7.92 8.27 6.3 1.1
p_50_2 5.85 6.61 5.8 3.0
p_50_3 6.45 7.46 5.5 2.5
p_70_1 5.69 8.74 9.1 1.3
p_70_2 8.29 8.86 9.6 1.3
p_70_3 9.85 11.37 10.5 2.6
p_100_1 7.33 8.22 14.0 1.7
p_100_2 9.86 9.90 15.1 1.8
p_100_3 11.87 20.40* 14.2 33.1
p_150_1 8.30 11.66 27.9 4.1
p_150_2 10.54 12.71 26.9 4.3
p_150_3 8.96 10.75 29.7 3.8
p_200_1 11.10 12.09 48.6 7.6
p_200_2 10.57 10.97 49.7 7.9
p_200_3 6.70 9.95 45.4 7.5
p_250_1 8.39 14.53 82.6 14.0
p_250_2 7.19 16.56 81.5 14.6
p_250_3 6.91 16.79 85.1 15.2
p_300_1 9.90 17.90 220.2 29.0
p_300_2 7.60 14.49 229.7 27.0
p_300_3 5.43 18.94 229.9 32.7

Table 4.2: Quality of solutions for randomly generated instances of problem (PB) using
a maximum of 1,000 branch-and-bound nodes. Objective function values marked with
an asterisk (*) were proven to be optimal during the truncated search.

55

Table 4.31 shows the results of a truncated search using a maximum of 2,000 branch-

and-bound nodes. BBPBF clearly outperforms Xpress-MP in the vast majority of the

instances. Not only it finds solutions that are on average 39% superior to those of

Xpress-MP, but the running time required is 35% (on average) of the one required by

Xpress-MP.

Obj. Function Value Running Time (s)
Instance Xpress-MP BBPBF Xpress-MP BBPBF
p_40_1 7.50* — 6.3 —
p_40_2 7.25* — 5.9 —
p_40_3 — — — —
p_50_1 7.92 8.27 9.2 4.3
p_50_2 5.88 6.61* 10.3 4.5
p_50_3 6.98 7.46* 10.6 3.3
p_70_1 6.79 8.75 14.8 5.4
p_70_2 8.29 9.03 13.7 6.0
p_70_3 10.15 11.37 16.0 9.2
p_100_1 7.33 8.39 23.1 3.3
p_100_2 10.49 9.90 22.3 3.4
p_100_3 14.66 — 22.6 —
p_150_1 8.30 13.38 46.3 40.1
p_150_2 10.54 12.71 46.8 8.1
p_150_3 9.35 12.65 46.7 16.0
p_200_1 14.06 14.70 84.2 14.5
p_200_2 10.87 10.97 82.4 11.0
p_200_3 10.77 13.11 80.5 11.4
p_250_1 8.39 14.53 132.1 18.2
p_250_2 8.17 16.56 157.0 70.0
p_250_3 11.48 18.31 155.8 39.8
p_300_1 9.90 20.32 356.6 250.0
p_300_2 7.60 14.49 365.4 59.2
p_300_3 5.43 18.94 350.4 92.0

Table 4.3: Quality of solutions for randomly generated instances of problem (PB) using
a maximum of 2,000 branch-and-bound nodes. Objective function values marked with
an asterisk (*) were proven to be optimal during the truncated search. Instances marked
with “—” were solved to optimality using at most 1,000 branch-and-bound nodes.

Table 4.4 presents the final upper bounds obtained by BBPBF and Xpress-MP af-

ter the end of the truncated searches of 1,000 and 2,000 nodes. Clearly, the upper

bound computed by BBPBF is sharper than that computed by the standard integer

1The problems with at most 30 variables are not shown here because each of them was solved to
optimality by both algorithms using at most 1,000 branch-and-bound nodes.

56

programming solver of Xpress-MP.

After 1,000 nodes After 2,000 nodes
Instance Xpress-MP BBPBF Xpress-MP BBPBF
p_20_1 3.86* 3.86* — —
p_20_2 3.69* 3.69* — —
p_20_3 4.44* 4.44* — —
p_30_1 5.11* 5.11* — —
p_30_2 6.37* 6.37* — —
p_30_3 9.19* 9.19* — —
p_40_1 9.53 7.50* 7.50* —
p_40_2 9.70 7.25* 7.25* —
p_40_3 5.11* 5.11* — —
p_50_1 16.35 16.96 15.29 14.51
p_50_2 10.61 11.03 9.34 6.61*
p_50_3 11.38 13.54 10.23 7.46*
p_70_1 18.90 18.73 17.85 15.57
p_70_2 17.61 18.05 16.58 15.87
p_70_3 22.79 21.79 21.72 18.38
p_100_1 26.18 24.63 25.47 22.70
p_100_2 26.36 25.32 25.74 24.74
p_100_3 33.39 20.40* 32.60 —
p_150_1 34.70 31.11 34.22 30.73
p_150_2 33.79 30.75 33.10 29.51
p_150_3 36.92 31.90 36.22 31.42
p_200_1 51.55 44.85 50.92 44.20
p_200_2 43.85 36.62 43.19 36.59
p_200_3 47.96 40.46 47.00 40.08
p_250_1 55.12 45.80 54.69 45.48
p_250_2 56.17 47.10 55.72 45.90
p_250_3 59.37 50.39 58.89 50.08
p_300_1 75.61 61.76 75.13 60.38
p_300_2 73.35 62.17 72.89 60.46
p_300_3 71.92 59.97 71.22 57.92

Table 4.4: Upper bound on the value of the optimal solution of randomly generated
instances of problem (PB). Instances marked with an asterisk were solved to optimality.

Tables 4.5 and 4.6 presents the results of a truncated search in which no limit is

imposed on the number of branch-and-bound nodes, but a limit of 30 minutes is enforced

on the running time of each algorithm. We report the objective function value of the

best solution found during the search by both the BBPBF and Xpress-MP algorithms,

along with the total running time and the number of nodes examined during the search.

57

4.7 Conclusions

It is easy to see that the BBPBF algorithm outperforms the Xpress-MP solver in each

of the criteria evaluated in this study. While this might come as a surprise given that

Xpress-MP is a well-established integer linear programming solver, we believe that it

simply reflects our use of a priori information about the problem’s structure.

In particular, it is natural that our bounding procedure proved more effective than

the one provided by the continuous relaxation of the integer linear formulation of the

problem. Moreover, our algorithm works on the original space of problem (PB), while

the use of the Xpress-MP solver requires the rewriting of the original problem as an

integer linear program, with as many additional binary decision variables as the number

of clauses, and several additional constraints.

It is possible that a proper fine tuning of the cutting-plane regime and preprocessing

techniques of the Xpress-MP solver could prove useful in speeding up the solution of

(PB) instances. However, the consideration of a fine tuning of the parameters of both

algorithms would be part of a larger study and is beyond of the scope of this chapter,

especially due to the intended use of the algorithm for producing solutions of reasonable

quality at low computational cost, rather than proving optimality.

Although we have focused our description of the algorithm and our computational

experiments on problems of the form (PB), it is clear that the BBPBF algorithm can be

applied to arbitrary unconstrained pseudo-Boolean optimization problems, without any

restriction on the degree of the terms. It is likely that for problems with small degree

terms, such as quadratic unconstrained binary optimization (QUBO) [24, 25, 26], the

performance advantage of our algorithm will be diminished, as compared to algorithms

such as the Xpress-MP solver or a standard branch-and-bound algorithm that branches

on individual variables. For problems having a relatively large average degree of terms,

it is more likely that the BBPBF algorithm will still retain a significant advantage over

the above mentioned algorithms.

Finally, another desirable feature of our algorithm is its trivial portability to different

computer platforms, since it is a standard stand-alone C++ implementation that does

58

not rely on the use of any third-party solver or library.

59

Objective Function Value Running Time (s)
Instance Xpress-MP BBPBF Xpress-MP BBPBF
p_40_1 7.50* 7.50* 6.0 1.0
p_40_2 7.25* 7.25* 5.8 1.3
p_40_3 5.11* 5.11* 3.7 1.6
p_50_1 8.27* 8.27* 55.9 9.0
p_50_2 6.61* 6.61* 19.8 4.5
p_50_3 7.46* 7.46* 19.2 3.3
p_70_1 8.75* 8.75* 237.3 26.6
p_70_2 9.03* 9.03* 189.7 23.8
p_70_3 11.37* 11.37* 190.3 18.2
p_100_1 11.00* 11.00* 1,281.4 317.9
p_100_2 11.11* 11.11* 1,203.1 236.2
p_100_3 20.40* 20.40* 572.4 33.2
p_150_1 11.88 14.66* 1,825.3 1,477.8
p_150_2 12.78 12.71 1,826.4 1,800.6
p_150_3 11.61 13.65 1,823.3 1,801.7
p_200_1 18.97 20.54 1,823.2 1,801.3
p_200_2 14.67 17.62 1,827.1 1,800.5
p_200_3 15.83 14.42 1,824.9 1,800.5
p_250_1 14.22 18.60 1,820.8 1,800.2
p_250_2 14.53 18.83 1,826.5 1,801.0
p_250_3 15.16 19.67 1,825.9 1,800.5
p_300_1 13.62 20.32 1,820.8 1,800.1
p_300_2 12.65 19.93 1,824.5 1,800.3
p_300_3 11.73 18.94 1,832.5 1,800.1

Table 4.5: Results of the truncated search with a limit of 30 minutes on the running
time and no limit on the number of branch-and-bound nodes. Instances marked with
an asterisk were solved to optimality.

60

Number of nodes Upper Bound
Instance Xpress-MP BBPBF Xpress-MP BBPBF
p_40_1 1,668 369 7.50 7.50
p_40_2 1,570 603 7.25 7.25
p_40_3 942 885 5.11 5.11
p_50_1 12,864 3,098 8.27 8.27
p_50_2 3,995 1,237 6.61 6.61
p_50_3 3,825 1,242 7.46 7.46
p_70_1 32,587 4,574 8.75 8.75
p_70_2 22,031 4,112 9.03 9.03
p_70_3 35,049 2,633 11.37 11.37
p_100_1 145,547 22,904 11.00 11.00
p_100_2 139,567 15,557 11.11 11.11
p_100_3 71,388 970 20.40 20.40
p_150_1 137,138 22,270 25.87 14.66
p_150_2 121,295 30,059 24.78 23.72
p_150_3 138,396 28,812 27.91 26.69
p_200_1 79,278 12,905 44.33 39.66
p_200_2 77,706 11,547 36.43 34.02
p_200_3 79,233 16,591 40.42 37.05
p_250_1 50,739 10,439 50.00 42.97
p_250_2 53,361 7,477 50.15 44.63
p_250_3 44,891 8,358 54.18 46.45
p_300_1 20,118 5,635 71.94 59.38
p_300_2 18,470 7,426 70.12 58.03
p_300_3 19,004 7,028 68.07 56.95

Table 4.6: Results of the truncated search with a limit of 30 minutes on the running
time and no limit on the number of branch-and-bound nodes.

61

Chapter 5

Large Margin LAD Classifiers

5.1 Introduction

In this chapter we present an optimization approach for model construction in LAD that

unifies the distinct tasks of pattern generation and creation of a discriminant function.

Consider a dataset Ω = Ω+ ∪Ω−, with Ω+ ∩Ω− = ∅. In this chapter we assume for

the sake of simplicity that Ω is a dataset with n binary attributes. The ideas described

here, however, can be applied to datasets with numerical attributes by the use of a

discretization procedure, such as the one described in [27] and discussed in Chapter 2.

We recall that a LAD model consists of a set M of patterns, so that every observation

in Ω+ satisfies at least one of the positive patterns in M , and every observation in Ω−

satisfies at least one of the negative patterns in M . As discussed in Chapters 2 and

3, the construction of a LAD model is a computationally expensive task that typically

involves the enumeration of a large set of patterns satisfying a certain property, followed

by the selection of a relatively small subset of those.

The fact that only a fraction of the patterns generated is ultimately used for the

construction of a LAD model suggests that the approach described above for model

construction may not be the most efficient one. Moreover, the choice of enumerating a

specific family of patterns, and the usual selection of a small number of those patterns –

which is frequently guided by a greedy criterion – may not be the most appropriate for

certain problems, resulting in sub-optimal LAD models. In view of this, it is appropriate

to say that there is a clear need for a global criterion for choosing an overall “best” LAD

model.

62

For a given set of patterns, the construction of a discriminant function for classifica-

tion is usually done in one of the ways discussed in Chapter 2: by majority vote among

positive and negative patterns, or by solving a linear program that provides a set of

weights that result in an optimal separation of the two classes [28]. In this chapter, we

propose an algorithm based on the linear programming formulation of [28] that finds an

optimal discriminant function defined over the set of all patterns.

Since the total number of patterns can be extremely large, even for datasets of modest

dimensions, the direct solution of the LP formulation of [28] over the set of all patterns

is of no practical use. We propose the use of the classical column generation technique

[58, 59, 85, 95, 129] for iteratively generating patterns as needed during the search

for an optimal discriminant function. We show how a pseudo-Boolean optimization

subproblem can be formulated which returns the most suitable pattern for improving

the discriminant function at any given iteration. The algorithm starts from an arbitrary

LAD model and proceeds until no pattern can be found that improves the current

discriminant function, or until only marginal improvements of the discriminant function

can be obtained. We discuss some computational issues about the implementation of

the algorithm and report numerical results obtained on publicly available datasets from

the UCI Machine Learning Repository [97].

5.2 Constructing an Optimal Discriminant Function

Several pattern generation algorithms [4, 11, 20] and selection criteria for constructing

LAD models [8, 66] have been proposed. However, none of these approaches for pattern

generation or model construction proved to be consistently superior to the others on

the datasets used for experimentation. Indeed, practice has shown that fine tuning the

control parameters that govern the construction of LAD models, including the choice

of pattern generation and model construction algorithms, is a time-consuming task. It

is therefore important to develop an algorithm that selects a set of patterns and a set

of weights to build an optimal LAD model according to a certain performance criterion

that relates to the robustness of classification of unseen observations. A natural such

criterion would the separation margin of the classifier [118, 120]. In the context of

63

LAD, the separation margin is simply the difference between the smallest value that the

discriminant function takes over the positive points of the training set that are correctly

classified and the largest value that the discriminant function takes over the negative

points in the training set that are correctly classified. We recall here that the LAD

discriminant function corresponding to sets of positive and negative patterns P and N ,

and associated vectors of weights α and β (respectively) is given by

∆(ω) =
∑
Pi∈P

αiPi(ω)−
∑

Ni∈N
βiNi(ω).

Thus, the separation margin corresponding to a given discriminant function is

min{∆(ω) : ω ∈ Ω+,∆(ω) > 0} −max{∆(ω) : ω ∈ Ω−,∆(ω) < 0}.

By maximizing the separation margin, we expect a robust classification of unseen exam-

ples. This expectation has been confirmed in practice in many situations [30, 81, 114].

The good performance of boosting and voting-based classifiers has also been shown to be

related to the implicit maximization of the separation margin of the resulting classifier

[114].

5.2.1 Maximizing the Separation Margin

In this subsection we show how to formulate the problem of constructing an optimal

discriminant function by using a linear programming formulation similar to the one

described in Chapter 2.

Let P be the set of all positive patterns having homogeneity at least ρ+, and let N be

the set of all negative patterns having homogeneity at least ρ−. Let P = {P1, . . . , P|P|},

N = {N1, . . . , N|N|}, and for every ω ∈ Ω let Pi(ω) = 1, if observation ω is covered

by pattern Pi, and 0 otherwise. Similarly, let Nj(ω) = 1 if ω is covered by Nj , and 0

64

otherwise. We are interested in solving the following problem:

(P) maximize r + s − C
∑
ω∈Ω

εω

subject to:
|P|∑
i=1

αiPi(ω)−
|N|∑
j=1

βjNj(ω) + εω ≥ r, ∀ ω ∈ Ω+ (5.1)

|P|∑
i=1

αiPi(ω)−
|N|∑
j=1

βjNj(ω)− εω ≤ −s, ∀ ω ∈ Ω− (5.2)

|P|∑
i=1

αi = 1

|N|∑
j=1

βj = 1

r ≥ 0, s ≤ 0

αi ≥ 0, i = 1, . . . , |P|

βj ≥ 0, j = 1, . . . , |N|

εω ≥ 0, ∀ ω ∈ Ω,

where the values of αi (i = 1, . . . , |P|) and βj (j = 1, . . . , |N|) are the weights of the posi-

tive and negatives patterns, respectively, r represents the positive part of the separation

margin, s represents the negative part of the separation margin, and C is a nonnegative

penalization parameter that controls how much importance is given to the violations εω

of the separating constraints (5.1) and (5.2).

Due to the potentially very large total number of patterns, it is highly unlikely

that in real-world applications one will encounter a dataset where such a formulation

can be directly tackled. Thus, let us consider a subset of positive patterns P0 ⊂ P

and a subset of negative patterns N 0 ⊂ N, and let us denote by I0 ⊂ {1, . . . , |P|}

and J0 ⊂ {1, . . . , |N|} the sets of indices corresponding to the elements of P0 and N 0,

65

respectively. Then, we can write a restricted version of (P) as

(RP) maximize r + s − C
∑
ω∈Ω

εω

subject to:

r −
∑
i∈I0

αiPi(ω) +
∑
j∈J0

βjNj(ω)− εω ≤ 0, ∀ ω ∈ Ω+ (5.3)

s +
∑
i∈I0

αiPi(ω)−
∑
j∈J0

βjNj(ω)− εω ≤ 0, ∀ ω ∈ Ω− (5.4)

∑
i∈I0

αi = 1 (5.5)

∑
j∈J0

βj = 1 (5.6)

r ≥ 0, s ≤ 0

αi ≥ 0, ∀ i ∈ I0

βj ≥ 0, ∀ j ∈ J0

εω ≥ 0, ∀ ω ∈ Ω.

Note that we rearranged constraints (5.3) and (5.4) in order to write (RP) in a

standard maximization form. It is easy to choose P0 and N 0 in such a way that

(RP) has a feasible solution. We recall that the minterm corresponding to a given

observation ω is simply the pattern with the largest possible number of literals that

is satisfied by observation ω, i.e., it is the pattern given by the following conjunction:

T =
∏

i:ωi=1 xi
∏

j:ωj=0 xj .

Clearly, T is a pattern that covers ω and does not cover any observation from the

opposite part of the dataset (since Ω+ ∩ Ω− = ∅). Let us choose P0 and N 0 to be

the sets of minterms corresponding to the positive and negative observations in the

dataset, respectively. Then, the vectors α and β given by αi = 1
|P0| , i ∈ P0 and

βj = 1
|N 0| , j ∈ N 0, along with r = 1

|P0| , and s = 1
|N 0| constitute a feasible solution to

(RP). In fact, constructing a feasible set of patterns to initialize (RP) is not a difficult

task; one pattern of each class would suffice. However, finding a good set of patterns

to initialize the column generation algorithm is always advantageous as such patterns

are likely to be part of the optimal set of patterns and their use in early iterations may

significantly speed up the entire procedure. A reasonable alternative to construct an

66

initial set of good patterns is to use one of the pattern generation algorithms described

in Chapter 3.

5.2.2 The Pricing Subproblem

In this subsection we address the subproblem phase in the column generation algorithm.

We formulate this problem as a pseudo-Boolean optimization problem that can also be

seen as a weighted version of the maximum pattern problem [20, 51] described in Chapter

3.

The solution of problem (RP) provides an optimal discriminant function for the set

of patterns P0 ∪ N 0. However, that discriminant function may not be optimal with

respect to the entire set of all patterns. In order to verify global optimality, we need

to make sure that there is no pattern that, once added to the current set of patterns,

allows for an improvement in the value of the objective function of (RP).

In the simplex method, one of the commonly used heuristics for choosing a non-

basic variable to enter the current basis is to choose the variable with the best (in

the maximization case, the largest) reduced cost [85, 95, 38, 129]. This criterion is

usually referred to as Dantzig’s rule or steepest descent rule [38, 95]. Similarly, we use

the reduced cost of a specific pattern P to measure the potential improvement in the

objective function of (RP) resulting from the introduction of P into the set of known

patterns P0 ∪ N0. To verify the optimality of the current solution of (RP), we solve a

pricing problem that will return a pattern with the best reduced cost with respect to the

current values of the dual variables of (RP). Because (RP) is a maximization problem,

we are interested in finding a pattern with the largest reduced cost.

According to the usual optimality criterion of the primal simplex method, if there is

no pattern (not in P0 ∪N 0) with a nonnegative reduced cost, then the current solution

of (RP) is optimal to (P); otherwise, a new pattern can be added to the set P0∪N 0 and

the algorithm proceeds. Notice here that we allow the introduction of a pattern whose

reduced cost is zero. Since the column generation algorithm is equivalent to applying

the simplex algorithm to a large formulation, there is a possibility of having degenerate

iterations in which no progress is made in terms of the objective function, exactly as in

67

the case of the simplex method [38, 95, 129]. We will refer to a pattern with nonnegative

reduced cost at a given iteration as a candidate pattern.

Note that since r + s corresponds to the separation margin of the current discrimi-

nant function, solving the pricing problem corresponds to asking if the current separation

margin can be enlarged by the addition of a pattern. Thus, the column generation algo-

rithm applied to problem (P) attempts to increase the separation margin by including

patterns that make the distinction between the sets Ω+ and Ω− more pronounced.

From now on, let us assume that k iterations of the column generation algorithm

have been executed. We will refer to the corresponding sets of patterns as Pk and N k,

and to the corresponding version of problem (RP) as (RPk). Let λ and µ be the vectors

of dual variables associated to constraints (5.3) and (5.4), respectively, at an optimal

solution of (RPk). Similarly, let θ+ and θ− be the dual variables corresponding to

constraints (5.5) and (5.6). The reduced costs corresponding to a positive pattern Pi and

a negative pattern Nj are given by θ+ +[λ>,−µ>]πi and θ−+[−λ>, µ>]νj [38, 129, 85],

respectively, where πi = [Pi(ω)]ω∈Ω and νj = [Nj(ω)]ω∈Ω are the characteristic vectors

of the observations satisfying Pi and Nj , respectively.

Let us define binary decision variables xi and xc
i (i = 1, . . . , n) associated to attribute

ai in the following way: (i) xi = 1 and xc
i = 0 if the literal associated to ai = 1 is used

in the resulting pattern; (ii) xi = 0 and xc
i = 1 if the literal associated to ai = 0 is

present in the resulting pattern. Thus, the positive pricing subproblem associated to

optimal vectors of dual variables λ∗ and µ∗ of (RP) can be formulated as the following

pseudo-Boolean optimization problem:

(SP+) maximize
∑

ω∈Ω+

λ∗ω

 ∏
i:ωi=0

xi

∏
j:ωj=1

xc
j

− ∑
ω∈Ω−

µ∗ω

 ∏
i:ωi=0

xi

∏
j:ωj=1

xc
j


subject to:

xj , x
c
j ∈ {0, 1}, j = 1, . . . , n,

where each term
∏

i:ωi=0

xi

∏
j:ωj=1

xc
j takes the value 1 whenever ω is covered by the resulting

conjunction, and 0 otherwise. In addition to the formulation of problem (Sk), we need

to enforce that the resulting conjunction is a positive pattern.

68

Clearly, problem (SP+) is an instance of the family of pseudo-Boolean optimization

problems whose solution was addressed in Chapter 4. In fact, we utilize a simple modi-

fication of our branch-and-bound algorithm BBPBF to solve (SP+). The only difference

between the algorithm described in Chapter 4 and the one used in this chapter to solve

(SP+) is that whenever we consider a candidate solution for problem (SP+) we first

check whether it satisfies the definition of a pattern, according to the homogeneity level

required. If the solution satisfies the definition, it is considered as a feasible solution,

otherwise it is not taken into account and the algorithm proceeds normally. This pro-

cedure is equivalent to the introduction of a large negative penalty for violating the

definition of a pattern.

Dual variable θ+ appears in the formulation of (SP+) because the problem is for-

mulated with the goal of constructing a positive pattern, and therefore it is implicit

that the column corresponding to this pattern has a coefficient equal to 1 in the row

corresponding to constraint (5.5). Thus, the value of θ+, despite being a constant, is

part of the formulation of (SP+).

While (SP+) is aimed at finding the best positive candidate pattern at the current

iteration, it may be necessary to search for a negative candidate pattern as well. In fact,

even if we have already found a positive candidate pattern, it may be advantageous

to generate a negative candidate pattern, if there is any. We suggest to solve both

(SP+) and its negative counterpart, (SP−), at every iteration. For the negative pricing

problem (SP−), we simply minimize the same objective function as in problem (SPk)

— as opposed to maximizing in (SP+) — and require that the resulting conjunction

satisfies the condition of being a negative pattern. Here, as in the case of (SP+), a slight

modification of algorithm BBPBF can be used to solve (SP−).

The solutions of (SP+) and (SP−) provide either: (a) a certificate of optimality of the

current discriminant function, in case the objective function value of (SP+) is strictly

positive and that of (SP−) is strictly negative; or (b) a new positive or negative pattern

(or both) to be added to our current set of known patterns. In general, if at iteration

k we generate new patterns P ∗ ∈ P and N∗ ∈ N, then we define the sets of patterns for

the next iteration as Pk+1 ← Pk ∪ {P ∗} and N k+1 ← N k ∪ {N∗}.

69

Let (x∗, xc∗) be an optimal solution of (SP+). In practice, by adding a new positive

pattern to the current set of patterns we are actually adding the following column to

problem (RPk): 

− ∏
i:ωi=0

x∗i
∏

j:ωj=1

xc∗
j


ω∈Ω+ ∏

i:ωi=0

x∗i
∏

j:ωj=1

xc∗
j


ω∈Ω−

1

0


.

5.2.3 The Column Generation Algorithm

The column generation algorithm as described above alternates the solution of problem

(RP) with the solution of (SP+) and (SP−). While problem (RP) optimizes the dis-

criminant function over the current set of patterns, problems (SP) verify the optimality

of the discriminant function obtained by (RP) and, if necessary, produce new patterns

to improve the current discriminant function. Thus, the iterative process stops at one of

the following events: (i) the maximum number of iterations is reached; (ii) no candidate

pattern can be found; (iii) no significant improvement of the objective function of (RP)

takes place after a large number of iterations. For the latter case, we need to define

two control parameters: a tolerance value corresponding to the smallest increase in the

objective function of (RP) to be regarded as a significant increase, and the maximum

number of iterations to be allowed without a significant increase. These control param-

eters are important, since in practice it is possible to have long sequences of iterations

in which the objective function of (RP) remains unchanged or changes only slightly.

Although column generation algorithms usually approach the neighborhood of a

near-optimal solution in a reasonably small number of iterations [89, 95], achieving or

proving optimality can take a very large number of iterations. Typically, towards the end

of the algorithm’s execution, the graph corresponding to the progress in the objective

function value exhibits a long “tail”, reflecting the failure in making significant progress

during a large number of iterations. This phenomenon is known as the tailing-off effect

70

[59, 85, 89, 95, 127]. Aside from numerical instability due to the finite precision used

in the implementation of such algorithms, the tailing-off phenomenon can be explained

by the fact that the solutions produced by (RP) may be interior points to the original

problem (P). Therefore, as the algorithm approaches an optimal solution, a significant

amount of “cleaning up” may be necessary to arrive at a vertex of the original polyhe-

dron [95]. This may require the generation of several columns in order to make small

adjustments in the values of some variables of (RP). In our experiments, we used the

tolerance parameter equal to 10−4 and the maximum number of degenerate iterations

equal to 10. The maximum number of iterations allowed for the entire execution of the

algorithm was set to 1, 000, but was never reached in our experiments.

Figure 5.1 summarizes the algorithm. We use the notation (RP(k)), (SP(k)+) and

(SP(k)−) to denote the optimization problems solved at iteration k.

1. Input: Ω+,Ω−, initial sets P0 and N 0 of patterns. Set k = 0.
2. Solve (RP(k)), with optimal primal and dual solutions (r∗, s∗, α∗, β∗) and

(λ∗, µ∗, θ+∗, θ−∗).
3. Solve (SP(k)+) and (SP(k)−), with optimal positive and negative

patterns P ∗ and N∗.
4. If at least one of the stopping criteria is met, stop.
5. If P ∗ or N∗ (or both) are candidate patterns, define Pk+1 = Pk ∪ {P ∗} and
N k+1 = N k ∪ {N∗} accordingly, and set k = k + 1.

6. Go to Step 2.

Figure 5.1: Pseudo-code of the column generation algorithm.

As an alternative, our algorithm can be implemented with the utilization of the orig-

inal BBPBF algorithm for the solution of problems (SP+) and (SP−). By not imposing

specific limits on the coverage of the conjunctions generated by BBPBF (i.e., by not

requiring that the conjunctions are patterns with prescribed minimum prevalence and

homogeneity), we allow the algorithm to self-adjust to the given training set. The algo-

rithm will generate the types of patterns required for a robust classification, without the

need for an initial estimation of how much homogeneity or prevalence should be required

for the given training data. Such a modification reduces even more the complexity of

the LAD training procedure, as it removes the need to fine tune the homogeneity and

71

prevalence parameters. In fact, this is the version of the algorithm actually utilized in

the computational experiments reported in the next section.

5.2.4 Overfitting

An important remark with respect to the termination criterion of our algorithm is that

it may force termination at a sub-optimal solution. In many applications of optimization

algorithms, reaching optimality is not a real concern. In our current context, this is also

true. The large margin criterion is simply a heuristic objective function that we use for

guiding our search for a good classifier. In machine learning, finding an optimal solution

frequently corresponds to selecting from a certain family of functions one that fits best

a given dataset. This can clearly lead to overfitting [92, 44, 73] the given data. Indeed,

as suggested in [44], by solving the optimization problem (P) we are trying to find the

best possible separation of the training data, while the actual objective function should

be to provide a good separation for unseen observations.

The early termination of our iterative algorithm due to the tailing-off phenomenon

can be seen as a simple procedure for avoiding overfitting the training data. Another

simple stopping criterion used in our experiments refers to the patterns obtained by

solving problems (SP+) and (SP−). If the coverage of the patterns obtained during a

number of consecutive iterations has always been less than a certain percentage of the

training set, we stop the algorithm. The rationale behind this test is that the inclusion

of patterns of low coverage suggests that, at the current iteration, no significant global

trend in the training data can be found in order to improve the separation margin. To

avoid making small adjustments of fit local characteristics of the training sample, we

stop the algorithm and report the current solution as the best one found.

Other usual overfitting-preventing mechanisms involve imposing an explicit limit on,

or penalizing the complexity of the classifier built [44, 73, 92]. As suggested above, this

mostly accounts for preventing the construction of a discriminant function based on a

large collection of patterns, many of which cover small subsets of the training data.

Our algorithm allows a certain level of extra control over such issues via the setting of

parameter C in problem (RP), by means of which we can define how much emphasis we

72

want to give to an accurate separation of the training data.

5.3 Computational Experiments

The algorithm proposed in this chapter was implemented in C++, using the MS Visual

C++ .NET 1.1 compiler. The linear programming formulations solved as part of the

column generation algorithm were solved using the callable library of the Xpress-MP

optimizer [43]. The computer used for carrying out the experiments reported here was

an Intel Pentium 4, 3.4GHz, with 2GB of RAM.

Problems (SP+) and (SP−) were not necessarily solved to optimality in our exper-

iments. Given the satisfactory performance of the truncated versions of the BBPBF

algorithm, as reported in Chapter 4, we established explicit limits on the execution of

the variant of the BBPBF algorithm utilized in this chapter. The maximum number of

branch-and-bound nodes explored in the initialization procedure was set to 1,000, while

the number of additional nodes explored during the remainder of the search was set to

2,000. The maximum time limit of 30 minutes was also imposed, but never reached in

our experiments.

In Figure 5.2, we show six histograms illustrating a typical example of how the

frequencies of values of the discriminant function evolve during the execution of our

algorithm. The graphs correspond to the application of our training algorithm to a

randomly extracted sample of 90% of the observations in the “heart” dataset, from the

UCI Repositrory [97]. The empty region in the middle of the graphs is the separation

margin between positive and negative points. The graphs shows how our algorithm

iteratively improves the separation margin as it finds candidate patterns and adjusts

the weights of the discriminant function accordingly.

Although all observations are correctly separated in each of the iterations, we can see

that a large number of observations are on the border of the separating region in early

iterations, i.e., their corresponding constraints from sets (5.3) and (5.4) are binding.

The observations on the border of the margin of separation can be seen as “support

observations”, just as in the case of support vector machines (see, e.g., [115, 120]).

73

Clearly, the ideal situation would be to have just a few observations on the border, and

a larger number of observations as we move towards the extreme regions of the graph.

Discriminant functions with such a distribution can be expected to perform better on

unseen examples than the ones shown in Figure 5.2(a) and 5.2(b), for instance. In

subsequent iterations (see Figures 5.2(c) and 5.2(d)) we can notice a better distribution

of the observations in terms of discriminant value, with substantially less observations

on the border of the separating region. Finally, in Figures 5.2(e) and 5.2(f) we see that

while trying to increase margin of separation, the algorithm adjusts the discriminant

function causing a simultaneous increase in the number of support observations. There

is here a natural trade-off between the margin of separation and the number of support

observations. The early termination criteria discussed in Section 5.2 cause the automatic

interruption of the algorithm at iteration 72, after a sequence of 10 iterations has taken

place without a substantial increase in the size of the margin of separation.

Note that here, as in the case of support vector machines, there is a natural inter-

pretation of the dual solution of problem (RP(k)). The values of the dual variables can

be used to describe a dual classifier consisting of a linear combination of the support

observations (described as 0-1 vectors in the pattern-space corresponding to iteration

k). The smaller the number of supporting observations, the simpler the dual classifier

will be.

In Figure 5.3 we present the values of the positive and negative margins during the

execution of the same experiment on the “heart” dataset. It can be seen that roughly

after iteration 50 the algorithm stops making significant improvements in terms of in-

crease in the separation margin (the tailing-off phenomenon described in the previous

section). That fact seems to be accompanied by an increase in the number of observa-

tions at the border of the separation margin, as discussed above (see Figure 5.2). This

observation helped us to adjust the parameters for early termination that prevent the

tailing-off phenomenon and avoid overfitting the discriminant function to the training

sample.

Table 5.1 reports the cross-validated accuracies of five algorithms implemented in

the Weka package, CAP-LAD, and those of LAD models built utilizing the algorithm

74

described in this chapter. The table is based on the one reported in Chapter 3, with

the addition of the “LM-LAD” column, which refers to the version of LAD based on our

algorithm and stands for Large Margin LAD. The highest accuracy for each dataset is

emphasized with boldface characters. The Borda counts are computed based on ranking

the seven algorithms and summarize their comparative performance.

Dataset SMO J48 Rand.For. Mult.Perc. S. Log. CAP-LAD LM-LAD
breast-w 0.965 ± 0.011 0.939 ± 0.012 0.967 ± 0.009 0.956 ± 0.012 0.963 ± 0.013 0.966 ± 0.011 0.942 ± 0.024
credit-a 0.864 ± 0.025 0.856 ± 0.031 0.882 ± 0.027 0.831 ± 0.032 0.873 ± 0.025 0.867 ± 0.025 0.815 ± 0.044
hepatitis 0.772 ± 0.084 0.652 ± 0.086 0.722 ± 0.101 0.727 ± 0.065 0.764 ± 0.090 0.779 ± 0.104 0.738 ± 0.091
krkp 0.996 ± 0.003 0.994 ± 0.003 0.992 ± 0.003 0.993 ± 0.002 0.975 ± 0.005 0.993 ± 0.002 0.962 ± 0.031
boston 0.889 ± 0.028 0.837 ± 0.045 0.875 ± 0.024 0.893 ± 0.031 0.874 ± 0.021 0.855 ± 0.029 0.840 ± 0.045
bupa 0.701 ± 0.045 0.630 ± 0.041 0.731 ± 0.046 0.643 ± 0.020 0.662 ± 0.048 0.734 ± 0.052 0.678 ± 0.034
heart 0.837 ± 0.039 0.799 ± 0.052 0.834 ± 0.051 0.815 ± 0.025 0.834 ± 0.040 0.826 ± 0.032 0.814 ± 0.033
pima 0.727 ± 0.029 0.722 ± 0.026 0.736 ± 0.030 0.726 ± 0.023 0.729 ± 0.031 0.747 ± 0.022 0.682 ± 0.023
sick 0.824 ± 0.027 0.926 ± 0.020 0.832 ± 0.023 0.852 ± 0.049 0.808 ± 0.023 0.825 ± 0.019 0.815 ± 0.041
voting 0.961 ± 0.018 0.960 ± 0.015 0.961 ± 0.016 0.944 ± 0.025 0.961 ± 0.014 0.952 ± 0.021 0.945 ± 0.025
Borda count 52 28 52 35 41 50 20

Table 5.1: Classification accuracy and Borda counts of Weka algorithms, CAP-LAD and
LM-LAD.

In Table 5.2 we present the counts of wins, losses, and ties for the pairwise comparison

of the seven algorithms. Each pairwise comparison in Table 5.2 is made with respect to

the 95% confidence interval presented in Table 5.1.

SMO J48 Rand.For. Mult.Perc. S. Log. CAP-LAD
J48 4-1-5
Rand.For. 1-1-8 4-1-5
Mult.Perc. 0-4-6 2-2-6 0-2-8
S.Log. 1-1-8 1-2-7 0-2-8 1-2-7
CAP-LAD 0-1-9 2-1-7 0-0-10 2-1-7 1-0-9
LM-LAD 0-0-10 0-1-9 0-1-9 0-0-10 0-0-10 0-1-9

Table 5.2: Matrix of wins, losses and ties.

While being superior to some of the other algorithms for some datasets, the perfor-

mance of the LM-LAD algorithm is, strictly speaking, generally inferior to that of other

algorithms on the datasets used in our experiments. The Borda count shown in Table

5.1 summarizes this observation. However, the accuracies obtained by our algorithm

are reasonably close to those of the other algorithms (as can be seen from Table 5.2).

Indeed, as discussed in [45], the direct comparison of the accuracy of two algorithms

in the experimental setup utilized here must be regarded cautiously, while the conclu-

sion that the two accuracies are not statistically different is to be trusted. Moreover,

75

if for each dataset we compare the accuracy of LM-LAD with the highest accuracy of

the other six algorithms, we can see that LM-LAD achieves on average 94.3% of the

accuracy of the best algorithm.

It is important to mention that the LM-LAD algorithm was not calibrated for any of

the ten benchmark datasets. In fact, the C parameter was fixed at 1.0 in all experiments

and no constraint has been imposed on the degree, prevalence or homogeneity of the

patterns generated.

5.4 Conclusions

In this chapter we have described a novel algorithm for constructing LAD models that

unifies the usually distinct tasks of generating a set of patterns and defining a discrim-

inant function. We have also investigated how accurate are the LAD models built with

such an algorithm and how they compare with other classification models.

The main novelty in our algorithm is that the underlying optimization model pro-

posed here is more general than other existing methods for model construction in LAD.

Other existing approaches for pattern generation have limitations of a certain type: on

the types of patterns generated (spanned [4], prime [11], maximum [20]) and on the de-

grees of the patterns enumerated (except for the case of maximum patterns). Moreover,

the discriminant functions are in general of a very simple form, with patterns of the

same class having equal weights [20, 28]. In each of the previous LAD implementations,

the choices of a model and a discriminant function were limited by one or more such

factors, none of which is present in our approach.

Indeed, the pricing problems (SP+) and (SP−) can produce patterns of any type,

including patterns of arbitrary degree. Moreover, the iterative procedure presented here

allows for the construction of a globally optimal discriminant function.

In addition to this conceptual simplification in the construction of a LAD model, our

algorithm is practically parameter-free, having only a few technical control parameters

primarily related to the underlying optimization process. Our computational experi-

ments suggest that the set of values described here for these parameters is quite stable,

76

and therefore fixing the parameters at these values allows the straightforward use of

the algorithm without any need for careful calibration in order to obtain reasonable

results. While the LAD models constructed by our algorithm are not optimal in terms

of accuracy, they have accuracies which are typically close to those of the most accurate

algorithms used in our experiments.

Moreover, the optimization model utilized by our algorithm is quite simple and can

be easily modified to account for different objective functions, or to include alternative

penalty terms. The similarities between our algorithm and the standard support vector

machines algorithm suggest that some improvement could be made by the use of ideas

coming from the SVM literature, such as the use a quadratic formulation, or the use of an

alternative parameter ν that bounds from above the fraction of misclassified observations

in the training dataset.

Finally, the LM-LAD algorithm described in this chapter can be seen as a first version

of a LAD procedure that completely dispenses with the calibration of parameters such

as degree, homogeneity, and prevalence of patterns.

77

(a) At iteration 2 (b) At iteration 5

(c) At iteration 10 (d) At iteration 20

(e) At iteration 50 (f) At iteration 72 (last)

Figure 5.2: Histograms of observations at different discriminant levels for the “heart”
dataset.

78

Figure 5.3: Behavior of the positive and negative margins for the “heart” dataset.

79

Chapter 6

Pseudo-Boolean Regression

6.1 Introduction

Linear regression is a frequently used tool in statistics and machine learning with a vast

literature devoted to it [34, 60, 73, 83, 93, 115, 119]. Let Ω = {ω1, . . . , ωm} be a set

of m real n-vectors, and let {y1, . . . , ym} be the values of a real-valued target function

r : Ω → IR, with yi = r(ωi) (i = 1, . . . ,m), whose expression is unknown. The linear

regression problem consists in finding a function of the form f(ω) = β0 +
∑n

j=1 βjωj

that approximates the values of the target function r in Ω as closely as possible, with

βj ∈ IR, j = 0, . . . , n.

The n components of the vectors in Ω are usually called the n independent variables

or predictors of the regression problem, while the vector Y = (y1, . . . , ym)> is called

the dependent variable. In this chapter we assume that the given dataset Ω consists

of binary n-vectors. If Ω is not originally binary, we apply the procedure described in

Chapter 2 as a preprocessing step in order to bring the data into a binary representation.

A commonly used criterion to measure how closely f approximates the values of

r is the Least Absolute Residuals (LAR) criterion [16, 18, 29, 48, 60, 72, 78, 88], also

known as Least Absolute Deviation, L1–Approximation, or Least Absolute Values, which

measures the sum of the absolute values of the residuals yi−f(ωi), i.e.,
∑m

i=1 |yi−f(ωi)|.

The problem of finding a LAR-optimal linear approximation f of r in Ω can be solved

by linear programming and other techniques [16, 18, 88]. In this chapter we solve the

following optimization problem to obtain values of β = (β0, β1, . . . , βn)> that minimize

the LAR criterion:

minimize
m∑

i=1

|ei| subject to : β0 +
n∑

j=1

βjω
i
j + ei = yi, i = 1, . . . ,m, (6.1)

80

where β ∈ IRn+1 and ei ∈ IR, for every ωi ∈ Ω. We show later that with a proper

rewriting of its constraints, problem (6.1) becomes a linear program.

In many cases, a linear function in the original independent variables is not suitable

to approximate r. To overcome this problem one can try to fit a more complex function

to the data, or map the data points to a new space, in which a hopefully more accurate

linear fit is possible. In Section 6.2 we briefly discuss such alternatives for regression.

In the remainder of this chapter we show that a better approximation of r in Ω can be

found as a linear combination of conjunctions involving the original (binary) variables.

In Section 6.3 we propose an iterative algorithm for finding such an approximation by

solving a large linear program by column generation, utilizing an approach similar to the

one described in Chapter 5. In the iterative process additional conjunctions are gradually

introduced into the expression of the approximant with the aim of compensating for

large deviations, until we obtain a set of conjunctions over which the LAR criterion is

minimized.

In Section 6.4 we present a comparison of the results of our algorithm with those of

frequently used regression algorithms in terms of both mean absolute error and correla-

tion. We conclude in Section 6.5 that our algorithm displays superior performance, in

addition to providing a relatively simple regression function.

6.2 Related Work

While a linear regression frequently provides a satisfactory approximation of the original

function r, in many cases a linear combination of the original variables cannot describe

the underlying phenomenon to a sufficient extent. In some applications, certain trans-

formations of the original variables can be used in conjunction with them in order to

produce a reasonable approximation. In other cases, a function which depends nonlin-

early on the parameters β is more appropriate to approximate r. In this section we

briefly outline such alternatives.

A common way of obtaining more accurate approximations is to transform the orig-

inal data by constructing new predictors based on the original independent variables.

81

The target function may depend on certain relations between the original independent

variables, such as products and ratios. In this context, we have methods such as poly-

nomial regression [83, 93] and support vector regression [115, 118, 119].

In polynomial regression the predictors are the set of monomials up to a certain

degree. Note that polynomial regression is still a linear regression technique. As we shall

see, polynomial regression in binary space differs from our algorithm in that the Boolean

conjunctions used in our pseudo-Boolean regression can involve complemented variables,

and can have arbitrary degree. Moreover, our approach constructs the conjunctions as

needed, while in polynomial regression the maximum degree k is fixed a priori and all

monomials of degree up to k are enumerated.

The standard support vector regression algorithm implicitly maps the points in Ω to

a higher-dimensional space and applies a linear regression technique in that space. This

is achieved with the use of the so-called kernel function that allows for the regression

calculations to be performed in the large dimensional transformed space without the

need to actually carry out the transforming computations. The choice of the kernel

function to be used is highly dependent on the nature of the data, and different kernel

functions have been developed for particular types of data [73, 115, 119].

The concept of Pseudo-Boolean Regression described in this chapter bears some

similarity with that of Logic Regression, recently proposed in [108, 109]. While the

algorithm described here can be seen as a natural extension of the LAD methodology

(accompanied by a novel and opportunistic use of the column generation technique for

constructing the regression function while maximizing fitness), Logic Regression seems

to have evolved on its own, as a method aimed at tackling bioinformatics problems.

Despite of the fact that these two regression methods are in principle equivalent (i.e., the

same functions can potentially the obtained, depending on the scoring function utilized

and on the random factor involved in the Logic Regression algorithm), we would like to

remark an important difference.

In Logic Regression the terms of the regression function are Boolean functions in dis-

junctive normal form (DNF), represented as trees, with a corresponding weight. Given

the complexity of searching in the space of such trees, the fitting of a Logic Regression

82

is performed in a heuristic way: at a given iteration one of the trees in the current re-

gression function is modified by means of one of several elementary operations, and the

parameters of the function are re-adjusted. This local search is embedded in a simulated

annealing scheme with a scoring function such as the residual sum of squares.

On the other hand, the pseudo-Boolean Regression algorithm globally optimizes the

fitness criterion (least absolute residuals) in a deterministic way. We will show that

since the least absolute residuals criterion can be written as a linear function of the

model parameters, its optimization becomes straightforward. Moreover, the algorithm

proposed here allows for a number of simple mechanisms for preventing overfitting ad

controlling model complexity.

In nonlinear regression the approximant function f depends nonlinearly on the pa-

rameters β. A common misconception regarding nonlinear regression is that it consists

of fitting a function involving nonlinear relations between the original variables to the

data. As long as the approximant function is linear on the parameters β, regardless of

what type of independent variables are used, the problem is still considered as linear

regression. In order to successfully apply nonlinear regression, it is usually necessary

to have some previous knowledge about the nature and shape of the function r. In

many cases, such information is not available. Moreover, depending on the function

used, the optimization of a fit criterion such as least squares or LAR can become rather

complicated. The optimization of the least squares criterion in linear regression does

not present any computational difficulty, while for nonlinear regression this is not the

case in general [57, 93, 116]. Indeed, a number of software packages provide extensive

support to linear regression, but support to nonlinear regression capabilities is scarce

and limited to certain types of functions.

6.3 Data Transformation

In this section we describe the algorithm proposed for constructing a set of conjunctions

that allows the global minimization of the LAR criterion over the set of all possible

conjunctions. The algorithm can be regarded as a feature construction procedure that

83

maps the original dataset to a higher-dimensional space.

6.3.1 Binarization

Many real-life datasets contain numerical or nominal variables. In such cases the ap-

plication of our algorithm requires a preprocessing step, just as it was the case for the

algorithms proposed in Chapters 3 and 5.

For the purpose of describing the algorithm in this chapter we assume that the

dataset Ω is given in binary form. If the original dataset is not binary, we assume that

the procedure described in Section 2.2 has been previously applied to it.

6.3.2 Conjunction-space

We recall that a conjunction, or monomial, is simply a product of literals from {x1, . . . ,

xn, x1, . . . , xn}. Similarly to a pattern, we say that a conjunction covers a point in

{0, 1}n if it takes the value 1 (true) on that point. The coverage of a conjunction (with

respect to Ω) is simply the number of points of Ω covered by it. Note, however, that

unlike a pattern, there is no constraint on the set of points covered by a conjunction,

considering that there is no distinction between classes of points in the regression setting.

Our algorithm consists in creating a set C of conjunctions and associating to it an

extended representation Ω̂ of Ω, where each point ω ∈ Ω is mapped to the character-

istic vector of conjunctions in C that are satisfied by ω. Let C = {C1, . . . , C|C|} be a

set of conjunctions in n binary variables. The extended dataset Ω̂ associated to C is

constructed by mapping each point ω in Ω to
(
C1(ω), . . . , C|C|(ω)

)
, where Cj(ω) = 1 if

Cj covers ω, and Cj(ω) = 0 otherwise.

Ideally, we would like to map Ω to the set of all conjunctions up to a certain degree

k > 1 and run a standard regression algorithm on that space. Since this set of con-

junctions includes all the positive (i.e., uncomplemented) literals as a subset, it is to be

expected that, by using these conjunctions as independent variables, the values of the

target function can be approximated with significantly more precision than they would

be if only the original variables were used. On the other hand, not only the number of

84

such conjunctions can be very large, depending on n and k, but many of these conjunc-

tions may not be necessary for the construction of a good approximant. In particular, if

the number of conjunctions of degree up to k is much larger than m, we can expect that

a relatively small subset of conjunctions is enough to provide a good approximation of

r. In the next section we present an algorithm that constructs a set C∗ of conjunctions

of arbitrary degree based on which we can obtain a solution to the minimization of the

LAR criterion over the set of all conjunctions.

6.3.3 Constructing an Optimal Conjunction-Space

As discussed in the previous section, the computational effort of generating all conjunc-

tions satisfying certain requirements and of applying a regression algorithm on a very

large set of variables is not justified, in general.

Let C denote the set of all conjunctions satisfied by at least one point in Ω. In this

section, we propose a column generation algorithm for constructing a subset C ⊂ C of

conjunctions that allows for an approximation of the target function which is as accurate

as the one that would be obtained by using C.

Rewriting (6.1) as a linear program we obtain:

(R) minimize
m∑

i=1

ei

subject to:

ei + β0 +
n∑

j=1

βjω
i
j ≥ yi, i = 1, . . . ,m

ei − β0 −
n∑

j=1

βjω
i
j ≥ −yi, i = 1, . . . ,m,

ei ≥ 0, i = 1, . . . ,m,

where each variable ei corresponds to the absolute value of the error yi − f(ωi), for

i = 1, . . . ,m. Let C0 = {C1, . . . , C|C0|} ⊂ C, and let us denote by (R(C0)) the variant

of problem (R) in which we seek an LAR-optimal approximation of function r in the

85

truncated transformed space {0, 1}|C0| corresponding to the projection of Ω on C0:

(R(C0)) minimize
m∑

i=1

ei

subject to:

ei + β0 +
|C0|∑
j=1

βjCj(ωi) ≥ yi, i = 1, . . . ,m (6.2)

ei − β0 −
|C0|∑
j=1

βjCj(ωi) ≥ −yi, i = 1, . . . ,m (6.3)

ei ≥ 0, i = 1, . . . ,m. (6.4)

The solution of (R(C0)) provides a vector β of weights, defining a function that

minimizes the LAR criterion over the current set of conjunctions C0. Clearly, this

function is not necessarily optimal for (R(C)), or even for any (R(C̃)), with C0 ⊂ C̃. In

order to verify global optimality with respect to the entire family of conjunctions under

consideration, say C̃, we need to answer the question of whether there is any conjunction,

or set of conjunctions in C̃ \C0 whose addition to C0 may decrease the objective function

of (R(C0)). Similarly to our description in Chapter 5, this question can be answered by

verifying whether there exists a conjunction in C̃ \ C0 with negative reduced cost.

Let us associate to constraints (6.2) and (6.3) the vectors of dual variables λ and

µ, respectively. Let (e∗, β∗) be the optimal solution of (R(C0)), and let (λ∗, µ∗) be the

corresponding dual variables.

By standard linear programming manipulations, we can find that the reduced cost

of a conjunction Cj ∈ C \ C0 is given by −(λ∗ − µ∗)>aj , where aj is the characteristic

vector
(
Cj(ω1), . . . , Cj(ωm),−Cj(ω1), . . . ,−Cj(ωm)

)> of the set of points covered by

Cj . The following pseudo-Boolean optimization problem finds the conjunction with the

most negative reduced cost:

(S(λ∗, µ∗)) maximize
m∑

k=1

 ∏
i:ωk

i =0

pi

∏
j:ωk

j =1

pc
j

 (λ∗k − µ∗k)

subject to: pj , p
c
j ∈ {0, 1}, j = 1, . . . , n,

where the binary decision variable pj corresponds to the inclusion or not of literal xj

in the resulting conjunction, binary variable pc
j corresponds to the inclusion or not of

86

literal xj in the resulting conjunction, and each term
∏

i:ωk
i =0

pi

∏
j:ωk

j =1

pc
j takes the value

1 whenever ωk is covered by the resulting conjunction, and 0 otherwise.

Once a conjunction Cj ∈ C \ C0 with negative reduced cost has been found, it is

introduced into the set of conjunctions under consideration, and an augmented version

of problem (R(C0)) is solved. The algorithm proceeds with the alternate solution of

an instance of problem (R(Ci)), for some Ci ⊂ C, and an instance of problem (S). In

general, at iteration i we solve (R(Ci)), obtain the dual variables λ∗ and µ∗ associated

to its optimal solution, and solve the corresponding problem (S(λ∗, µ∗)), obtaining a

conjunction Cj . If the optimal objective function value of (S(λ∗, µ∗)) is strictly positive,

then we define Ci+1 := Ci ∪ {Cj} and go on to the next iteration by solving (R(Ci+1)).

Otherwise, the function f constructed at the current iteration is optimal with respect

to the LAR criterion over C.

It can be seen that the above algorithm fits the usual prototype of column generation

algorithms, in which a large LP problem is solved by generating only a relatively small

subset of its columns, taking advantage of the fact that the columns of the problem

possess a well-defined structure. In Figure 6.1 we show the pseudo-code of the algorithm.

1. Input: Ω+,Ω−, initial set C0 of conjunctions. Set k = 0.
2. Solve (R(Ck)), with optimal primal and dual solutions (e∗, β∗) and (λ∗, µ∗).
3. Solve (S(λ∗, µ∗)), with optimal conjunction T ∗.
4. If at least one of the stopping criteria is met, stop.
5. Define Ck+1 = Ck ∪ {T ∗} and set k = k + 1.
6. Go to Step 2.

Figure 6.1: Pseudo-code of the pseudo-Boolean regression algorithm.

6.3.4 Implementation

We remark that problem (S(λ∗, µ∗)) is precisely the same problem for which we devel-

oped the branch-and-bound algorithm of Chapter 4. In the computational experiments

reported in this chapter, we applied algorithm BBPBF to solve (S(λ∗, µ∗)). As in Chap-

ter 5, we imposed a maximum limit of 1,000 branch-and-bound nodes in the initialization

87

phase of the BBPBF algorithm, allowing for extra 2,000 nodes for the remainder of the

search, and a maximum running time of 30 minutes.

Given the typical convergence behavior of column generation algorithms we adopt a

slightly more flexible stopping criterion than the one described above for the case when

the value of the optimal solution of (S(λ∗, µ∗)) is close to zero.

As argued in Chapter 5, the column generation algorithm can display some incon-

venient behavior such as degenerate iterations and the tailing-off phenomenon towards

the end of its execution. Here we applied a similar policy to the one described in Chap-

ter 5 to deal with such situations. A tolerance value of 10−4 was used to define the

minimum decrease in the objective function value of (R(Ci)) at any given iteration i

that is considered a “significant decrease.” The maximum number of iterations without

a significant decrease in the objective function was set to 10. Obviously, these settings

do not rule out the possibility of the algorithm stopping at a sub-optimal solution. As

pointed out in Chapter 5, this is not a real concern in our context as in general we are

not interested in a perfect fit of the data.

Two more stopping criteria were included in our implementation with the aim of

preventing the overfitting of the training data. We describe them below.

• If during 10 consecutive iterations the conjunctions generated by solving problem

(S(λ∗, µ∗)) cover a small number of points from Ω we stop the execution of the

algorithm. Such a behavior suggests that the algorithm is overfitting the training

data by adjusting the regression function to very particular trends in the data,

rather than capturing global trends. We utilized a threshold of 5% of |Ω|, below

which the coverage of a conjunction is considered too small.

• If during 10 consecutive iterations the number of conjunctions having a nonzero

coefficient βj in the optimal solution of (R(Ci)) has been larger than 0.1|Ω|, we

stop the execution of the algorithm. A rule of thumb for the practical application

of regression algorithms is that the number of predictors used should be limited

by a fraction of 1
10 or 1

8 of the number of data points [63].

88

6.4 Computational Experiments

In this Section we report the results of an experimental comparison of the algorithm

presented in the previous section, termed PBR (Pseudo-Boolean Regression), and three

algorithms available from the Weka package [128]: Support Vector Regression (SVR),

Multilayer Perceptron Neural Network (MP) and Linear Regression (LR).

In our experiments we utilized five datasets that are freely available and frequently

used as benchmarks for regression algorithms in the machine learning and statistics lit-

erature. The datasets were obtained from the Machine Learning Repository of the Uni-

versity of California Irvine and from the DELVE repository (http://www.cs.toronto.

edu/~delve/). The list of datasets is: Abalone (AB), Boston Housing (BH), Auto-mpg

(MPG), Robot Arm Kinematics (RAK), and Servo (SV).

Number of
Datasets Observations Original Vars. Binarized Vars.
AB 4,177 10 38
BH 506 13 42
MPG 398 7 23
RAK 8,192 8 8
SV 167 4 15

Table 6.1: Datasets used in regression experiments.

Since none of these datasets was originally binary, we binarized them using the

procedure discussed in Section 2.2. The binarization procedure was carried out with

the right-hand side equal to 1 for constraints (2.1), and with values of the τ parameter

between 1% and 50%. Table 6.1 shows the number of original and binarized variables

for each dataset.

We report in Tables 6.2 and 6.3 the average mean absolute error and correlation

of each algorithm over 10 random experiments on each dataset. In each experiment

a randomly selected set of observations, consisting of 90% of the original dataset, was

used for fitting a regression function, and the mean absolute error and correlation on the

remaining 10% set of observations are recorded. For datasets AB and RAK we utilized

75% of the original training data to fit the regression function and recorded the values

of mean absolute error and correlation on the remaining 25%. In all cases, 10 random

89

experiments were performed. We also include in the two tables the Borda count of each

algorithm.

Mean Absolute Error
Algorithms AB BH MPG RAK SV Borda
LR 1.59 3.33 2.73 0.16 0.87 9
MP 1.62 2.94 2.90 0.13 0.44 14
SVR 1.54 3.17 2.63 0.16 0.70 12
PBR 1.82 3.11 2.37 0.15 0.29 15

Table 6.2: Mean absolute error of regression algorithms applied to 5 datasets.

Correlation
Algorithms AB BH MPG RAK SV Borda
LR 0.73 0.86 0.89 0.64 0.67 9
MP 0.75 0.91 0.92 0.82 0.90 19
SVR 0.73 0.84 0.89 0.64 0.63 9
PBR 0.51 0.86 0.89 0.68 0.94 13

Table 6.3: Correlation of regression algorithms applied to 5 datasets.

It can be seen that the pseudo-Boolean regression algorithm presents a performance

comparable to that of Multilayer Perceptron, which is the best among the Weka al-

gorithms. According to the Borda count, the pseudo-Boolean regression algorithm is

slightly superior in terms of mean absolute error, while Multilayer Perceptron outper-

forms all other algorithms in terms of correlation.

6.5 Conclusions

In this chapter we proposed a novel algorithm that extends the LAD methodology to

deal with regression problems. We presented the results of computational experiments

that suggest that our algorithm is comparable to standard regression algorithms in terms

of mean absolute error and correlation.

The pseudo-Boolean regression algorithm described here can be viewed as the itera-

tive construction of a pseudo-Boolean function f on the n binary variables of Ω with the

objective of fitting the values of r. Our algorithm directly optimizes the Least Absolute

Residual criterion over the set of all conjunctions. The coordinating linear programming

formulation of (R(Ci)) provides the necessary information for improving the quality of

90

the approximation at each iteration, while the subproblem procedure exploits the type

of additional predictors (binary conjunctions) to search for the best additional predictor

in a computationally affordable manner.

Note that, although the resulting pseudo-Boolean function f is a nonlinear function

of the original n variables, our algorithm is a linear regression technique, since f depends

linearly on the parameters β.

Our algorithm can be applied in a more general context, in which numerical variables

are used as predictors, in addition to a set of binary predictors. In this setting, our

algorithm will construct a set of conjunctions that best complements the given binary

and numerical variables. The same column generation algorithm can be applied to

generate different types of predictors, as long as the search for a candidate predictor to

improve the current regression function can be carried out.

Finally, the conjunctions in the resulting pseudo-Boolean approximant may suggest

relations between the original variables that may not be apparent at a first glance.

Due to the binarization procedure and the construction of arbitrary conjunctions, our

algorithm constructs a set of additional predictors that cannot be obtained by most

regression approaches, where typically numerical products of two or three of the original

variables are used as additional predictors.

91

Chapter 7

Conclusions

In this thesis we have described some novel and opportunistic applications of optimiza-

tion to the construction of LAD models for classification and regression. Below, we

quickly review the standard implementation of LAD and highlight some ways in which

this study has made a meaningful contribution.

7.1 The Standard LAD Implementation

The standard implementation of LAD relies on the calibration of a number of impor-

tant parameters that control the type of patterns generated, and the type of models

constructed.

The typical set of parameters related to the pattern generation procedure that have

to be adjusted is: the degree of patterns, the family of patterns generated (prime,

spanned, strong patterns, or some combination of those), the minimum homogeneity of

a pattern, and its minimum prevalence.

In addition to the pattern generation process, other choices have to be made re-

garding the models constructed. The number of times each observation in the training

data must be covered by the patterns in the model represents a tradeoff between model

complexity and robustness. Another important choice – which has not been fully ex-

plored in the LAD literature – is the type of discriminant function utilized once a model

has been constructed. The standard implementation of LAD utilizes a simple linear

function, where all positive patterns have equal weights, and all negative patterns have

equal weights. Consequently, the discriminant function typically used in LAD classifies

an observation according to the difference between the percentage of positive patterns

and of negative patterns covering it.

92

The LAD discriminant function can be seen as a separating hyperplane in the so-

called pattern-space. Clearly, different discriminant functions can be constructed on

the same pattern-space with very different classification accuracies. It is to be expected

that a carefully defined discriminant function could make a difference in the resulting

accuracy of a model.

It has been observed in several real-life studies [1, 5, 9, 10, 31, 6] that a careful

calibration of LAD parameters allows the construction of highly accurate models that

frequently outperform those obtained with commonly used machine learning methods,

such as SVM, decision trees, neural networks, etc. Moreover, LAD models typically

provide additional insight into the data being analyzed that can hardly be obtained

with the use of a single machine learning/data mining algorithm. As examples we

mention the relative importance of variables, the automatic detection of outliers and

possibly misclassified observations, and the detection of representative subgroups of

observations within one of the classes considered.

However, to fully benefit from the classification power and data mining capabili-

ties of LAD, one must often go through a time-consuming process of calibrating the

parameters mentioned above. The main goal of this thesis is to provide, and evaluate

computationally, some alternative ways of constructing LAD models.

7.2 Our Main Contributions

The major contribution of this thesis can be summarized as the application of optimiza-

tion methods to overcome some of the difficulties in the construction of accurate LAD

models. In order to achieve this goal, two main points had to be addressed. First, a

precise definition of an objective function, such as a global fitness criterion, was neces-

sary. Second, efficient ways of solving the associated optimization problems were needed.

Below we discuss how we addressed these points in the chapters of this thesis.

Clearly, the accuracy of a LAD model is directly related to the quality of the patterns

in the model (i.e., mostly their prevalence and homogeneity). Therefore, a natural idea

is to define a LAD model on the basis of a set of patterns having very large prevalences

93

and homogeneities. Along these lines, we defined in Chapter 3 a nonlinear set covering

problem for finding a pattern of largest prevalence covering a given observation and

respecting a certain measure of fuzziness, which is a concept closely related to that of

homogeneity. Since the exact solution of the nonlinear set covering problem required a

substantial running time, we proposed three simple and efficient heuristics that allowed

the construction of “approximately maximum” patterns, while requiring just a fraction

of the running time required by the exact approach. The LAD models constructed with

these patterns were shown to be highly accurate, clearly outperforming most of the

other machine learning algorithms used as benchmarks. Another important feature of

these models is the utilization of a single control parameter to be calibrated.

In Chapter 5 we proposed an algorithm for the construction of LAD models that

optimizes a different criterion: the margin of separation between the two classes of ob-

servations. In other words, we were interested in defining a linear discriminant function

on the set of all patterns, such that the difference between the smallest value of the

discriminant function on a positive observation and the largest value of the discrimi-

nant function on a negative point is maximized. We formulated this problem as a linear

program and showed how to solve it by column generation. While the solution of the

linear program for a given (relatively small) set of patterns is a routine task, finding a

new pattern to be included in the formulation is not trivial. To accomplish this task we

utilized a branch-and-bound algorithm, which was proposed in Chapter 4 and showed

to be significantly superior to the commercial integer linear programming solver Xpress

[43]. The linear programming formulation, coupled with the fast solution of the column

generation subproblem, allowed us to construct LAD models that are optimal accord-

ing to the margin of separation criterion, while requiring an affordable running time.

Moreover, such LAD models are parameter-free and practically as accurate as the best

of the machine learning algorithms used for comparison.

In Chapter 6 we presented a column generation model similar to the one of Chapter

5 for addressing regression problems, an extension of the LAD methodology that had

not been explored in detail in the LAD literature. Our algorithm minimizes the Least

Absolute Residuals criterion by solving a linear program on the set of all conjunctions

94

– a conjunction being simply a set of conditions similar to a pattern, but lacking the

associated concept of homogeneity. The branch-and-bound algorithm of Chapter 4 was

utilized for finding the most suitable conjunction to be included in the formulation at

each iteration. Our computational results showed that the procedure is effective and

provides an attractive alternative to well-known regression methods.

In summary, this thesis has (i) introduced novel, efficient ways of constructing LAD

classification models having high accuracies and requiring minimal, if any, calibration of

control parameters; and (ii) extended the LAD methodology to deal with the important

class of regression problems that appears frequently in data analysis tasks.

95

References

[1] Abramson S., G. Alexe, P.L. Hammer, D. Knight and J. Kohn, A com-
putational approach to predicting cell growth on polymeric biomaterials, Journal
of Biomedical Material Research Part A, 73 (2005), pp. 116–124.

[2] Achterberg T., SCIP-a framework to integrate constraint and mixed integer
programming, Konrad-Zuse-Zentrum fur Informationstechnik Berlin, ZIB-Report,
(2004), pp. 04–19.

[3] Ahmed S., M. Tawarmalani, N.V. Sahinidis, A finite branch-and-bound algo-
rithm for two-stage stochastic integer programs, Mathematical Programming, 100
(2004), pp. 355–377.

[4] Alexe G., P.L. Hammer, Spanned patterns for the logical analysis of data,
Discrete Appl. Math., 154 (2006), pp. 1039–1049.

[5] Alexe G., S. Alexe, D. Axelrod, P.L. Hammer, D. Weissmann, Logical
analysis of diffuse large B-cell lymphomas, Artificial Intelligence in Medicine, 34
(2005), pp. 235–67.

[6] Alexe G., S. Alexe, D. E. Axelrod, T. O. Bonates, I. Lozina, M. Reiss,
P. L. Hammer, Breast cancer prognosis by combinatorial analysis of gene expres-
sion data, Breast Cancer Research, 8:R41 (2006).

[7] Alexe G., S. Alexe, P.L. Hammer, Pattern-based clustering and attribute
analysis, Soft Computing, 10 (2006), pp. 442–452.

[8] Alexe G., S. Alexe, P.L. Hammer, A. Kogan, Comprehensive vs. compre-
hensible classifiers in logical analysis of data, Discrete Applied Mathematics, in
press, (2007).

[9] Alexe G., S. Alexe, P.L. Hammer, L. Liotta, E. Petricoin, and M.
Reiss, Ovarian cancer detection by logical analysis of proteomic data, Proteomics,
4 (2004), pp. 766–783.

[10] Alexe S., E. Blackstone, P.L. Hammer, H. Ishwaran, M. Lauer, C.
Pothier Snader, Coronary risk prediction by logical analysis of data, Annals of
Operations Research, 119 (2003), pp. 15–42.

[11] Alexe S., P.L. Hammer, Accelerated algorithm for pattern detection in logical
analysis of data, Discrete Appl. Math., 154 (2006), pp. 1050–1063.

[12] Balas E., M.J. Saltzman, An algorithm for the three-index assignment problem,
Operations Research, 39 (1991), pp. 150–161.

96

[13] Banfield R.E., L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer, A compar-
ison of decision tree ensemble creation techniques, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29 (2007), pp. 173–180.

[14] Barnhart C., C.A. Hane, P.H. Vance, Using branch-and-price-and-cut to
solve origin-destination integer multicommodity flow problems, Operations Re-
search, 48 (2000), pp. 318–326.

[15] Barnhart C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh,
P.H. Vance, Branch-and-price: Column generation for solving huge integer pro-
grams, Operations Research, 46 (1998), pp. 316–329.

[16] Barrodale I., F.D.K. Roberts, An improved algorithm for discrete l_1 linear
approximation, SIAM Journal on Numerical Analysis, 10 (1973), pp. 839–848.

[17] Bazan J.G., M.S. Szczuka, J. Wroblewski, A new version of rough set
exploration system, Proceedings of the Third International Conference on Rough
Sets and Current Trends in Computing, (2002), pp. 397–404.

[18] Bloomfield P., W.L. Steiger, Least Absolute Deviations: Theory, Applica-
tions, and Algorithms, Birkhäuser Boston, Boston, Mass, USA, 1983.

[19] Blum A., P. Langley, Selection of relevant features and examples in machine
learning, Artificial Intelligence, 97 (1997), pp. 245–271.

[20] Bonates T.O., P.L. Hammer, A. Kogan, Maximum patterns in datasets, Dis-
crete Appl. Math. (in press), (2007).

[21] Borda J.C., Mémoire sur les élections au scrutin, Histoire de l’Academie Royale
des Sciences, (1781).

[22] Boros E., P.L. Hammer, Cut-polytopes, Boolean quadratic polytopes and non-
negative quadratic pseudo-Boolean functions, Mathematics of Operations Re-
search, 18 (1993), pp. 245–253.

[23] , Pseudo-Boolean optimization, Discrete Applied Mathematics, 123 (2002),
pp. 155–225.

[24] Boros E., P.L. Hammer, G. Tavares, Local search heuristics for unconstrained
quadratic binary optimization, Tech. Rep. RRR 09-2005, RUTCOR - Rutgers Cen-
ter for Operations Research, Rutgers University, 2005.

[25] , A max-flow approach to improved lower bounds for quadratic 0-1 mini-
mization, Tech. Rep. RRR 07-2006, RUTCOR - Rutgers Center for Operations
Research, Rutgers University, 2006.

[26] , Preprocessing of unconstrained quadratic binary optimization, Tech. Rep.
RRR 10-2006, RUTCOR - Rutgers Center for Operations Research, Rutgers Uni-
versity, 2006.

[27] Boros E., P.L. Hammer, T. Ibaraki, A. Kogan, Logical analysis of mumer-
ical data, Mathematical Programming, 79 (1997), pp. 163–190.

97

[28] Boros E., P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, I. Muchnik,
An implementation of logical analysis of data, IEEE Transactions on Knowledge
and Data Engineering, 12 (2000), pp. 292–306.

[29] Boscovich R.J., De litteraria expeditione per pontificiam ditioned, et synop-
sis amplioris operis, ac habentur plura ejus ex exemplaria etiam sensorum im-
pressa, Bononiensi Scientiarum et Artum Instituto Atque Academia Commentarii,
4 (1757), pp. 353–396.

[30] Boser B.E., I.M. Guyon, V.N. Vapnik, A training algorithm for optimal mar-
gin classifiers, Proceedings of the fifth annual workshop on Computational learn-
ing theory, (1992), pp. 144–152.

[31] Brauner M.W., N. Brauner, P.L. Hammer, I. Lozina, D. Valeyre, Log-
ical analysis of computed tomography data to differentiate entities of idiopathic
Interstitial pneumonias, Data Mining in Biomedicine, Biocomputing, Springer,
(2007).

[32] Breiman L., Bagging predictors, Machine Learning, 24 (1996), pp. 123–140.

[33] , Random forests, Machine Learning, 45 (2001), pp. 5–32.

[34] Breiman L., J. Friedman, C.J. Stone, R.A. Olshen, Classification and
Regression Trees, Chapman & Hall/CRC, 1984.

[35] Bshouty N.H., N. Eiron, Learning monotone DNF from a teacher that almost
does not answer membership queries, Journal of Machine Learning Research, 3
(2003), pp. 49–57.

[36] Chvátal V., Edmonds polytopes and a hierarchy of combinatorial problems, Dis-
crete Mathematics, 4 (1973), pp. 305–337.

[37] , A greedy heuristic for the set-covering problem, Mathematics of Operations
Research, 4 (1979), pp. 233–235.

[38] , Linear Programming, Freeman, New York, 1983.

[39] Cox D.R., The Analysis of Binary Data, Chapman and Hall New York, 1970.

[40] Crama Y., P. Hansen, B. Jaumard, The basic algorithm for pseudo-Boolean
programming revisited, Discrete Applied Mathematics, 29 (1990), pp. 171–185.

[41] Crama Y., P.L. Hammer, T. Ibaraki, Cause-effect Relationships and Partially
Defined Boolean Functions, Annals of Operations Research, 16 (1988), pp. 299–
325.

[42] Cruz F.B., G.R. Mateus, J.M. Smith, A cranch-and-bound algorithm to solve
a multi-level network optimization problem, Journal of Mathematical Modelling
and Algorithms, 2 (2003), pp. 37–56.

[43] Dash Associates, Xpress-Mosel Reference Manuals and Xpress-Optimizer Ref-
erence Manual, Release 2004G, 2004.

98

[44] Dietterich T.G., Overfitting and undercomputing in machine learning, ACM
Computing Surveys (CSUR), 27 (1995), pp. 326–327.

[45] , Approximate statistical tests for comparing supervised classification learning
algorithms, Neural Computation, 10 (1998), pp. 1895–1924.

[46] , An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting, and randomization, Machine Learning, 40
(2000), pp. 139–157.

[47] , Ensemble methods in machine learning, Lecture Notes in Computer Science,
1857 (2000), pp. 1–15.

[48] Dodge Y., Statistical Data Analysis Based on the L1-Norm and Related Methods,
Birkhäuser Basel, 2002.

[49] Dong G., J. Li, Efficient mining of emerging patterns: Discovering trends and
differences, Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, (1999), pp. 43–52.

[50] Eckstein J., Parallel branch-and-bound algorithms for general mixed integer pro-
gramming on the CM-5, SIAM Journal on Optimization, 4 (1994), p. 794.

[51] Eckstein J., P.L. Hammer, Y. Liu, M. Nediak, B. Simeone, The maximum
box problem and its application to data analysis, Computational Optimization and
Applications, 23 (2002), pp. 285–298.

[52] Efron B., R. Tibshirani, Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy, Statistical Science, 1 (1986),
pp. 54–75.

[53] Efroymson M.A., T.L. Ray, A branch and bound algorithm for plant location,
Operations Research, 14 (1996), pp. 361–368.

[54] Feige U., A Threshold of ln n for approximating set cover, Journal of the ACM,
45 (1998), pp. 634–652.

[55] Fischetti M., A. Lodi, P. Toth, Solving real-world ATSP instances by branch-
and-cut, Lecture Notes In Computer Science, (2003), pp. 64–77.

[56] Freund Y., Boosting a weak learning algorithm by majority, Information and
Computation, 121 (1995), pp. 256–285.

[57] Gallant A.R., Nonlinear regression, The American Statistician, 29 (1975),
pp. 73–81.

[58] Gilmore P.C., R.E. Gomory, A linear programming approach to the cutting-
stock problem, Operations Research, 9 (1961), pp. 849–859.

[59] , A linear programming approach to the cutting-stock problem - part II, Op-
erations Research, 11 (1963), pp. 863–888.

[60] Giloni A., J.S. Simonoff, B. Sengupta, Robust weighted LAD regression,
Computational Statistics and Data Analysis, 50 (2006), pp. 3124–3140.

99

[61] Gomory R.E., Outline of an algorithm for integer solutions to linear programs,
Bulletin of the American Mathematical Society, 64 (1958), pp. 275–278.

[62] , An algorithm for the mixed integer problem, Report RM-2597, The Rand
Corporation, (1960).

[63] Green S.B., How many subjects does it take to do a regression analysis?, Multi-
variate Behavioral Research, 26 (1991), pp. 499–510.

[64] Günlük O., A branch-and-cut algorithm for capacitated network design problems,
Mathematical Programming, 86 (1999), pp. 17–39.

[65] Hammer P.L., The Logic of Cause-effect Relationships. Lecture at the Interna-
tional Conference on Multi-Attribute Decision Making via Operations Research-
based Expert Systems, Passau, Germany, 1986.

[66] Hammer P.L., A. Kogan, B. Simeone, S. Szedmák, Pareto-optimal patterns
in logical analysis of data, Discrete Applied Mathematics, 144 (2004), pp. 79–102.

[67] Hammer P.L., I. Rosenberg, S. Rudeanu, On the determination of the
minima of pseudo-boolean functions, Studii si Cercetari Matematice, 14 (1963),
pp. 359–364.

[68] Hammer P.L., R. Holzman, Approximations of pseudo-Boolean functions: Ap-
plications to game theory, ZOR – Methods and Models of Operations Research,
36 (1992), pp. 3–21.

[69] Hammer P.L., S. Rudeanu, Pseudo-Boolean programming, Operations Re-
search, 17 (1969), pp. 233–261.

[70] Hammer P.L., T.O. Bonates, Logical analysis of data: From combinatorial
optimization to medical applications, Annals of Operations Research, 148 (2006),
pp. 203–225.

[71] Hansen E.R., Global Optimization Using Interval Analysis, Marcel Dekker New
York, 2004.

[72] Harris T., Regression using minimum absolute deviations, The American Statis-
tician, 4 (1950), pp. 14–15.

[73] Hastie T., R. Tibshirani, J.H. Friedman, The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, Springer, 2001.

[74] Hoffman K.L., M. Padberg, Solving airline crew scheduling problems by
branch-and-cut, Management Science, 39 (1993), pp. 657–682.

[75] Holmberg K., D. Yuan, A Lagrangean heuristic based branch-and-bound ap-
proach for the capacitated network design problem, Operations Research, 48 (2000),
pp. 461–481.

[76] Hosmer D.W., S. Lemeshow, Applied Logistic Regression, John Wiley & Sons,
1989.

100

[77] Ibaraki T., Theoretical comparisons of search strategies in branch-and-bound
algorithms, International Journal of Parallel Programming, 5 (1976), pp. 315–344.

[78] Karst O.J., Linear curve fitting using least deviations, Journal of the American
Statistical Association, 53 (1958), pp. 118–132.

[79] Klivans A.R., R.A. Servedio, Learning DNF in time 2 õ (n 1/3), Journal of
Computer and System Sciences, 68 (2004), pp. 303–318.

[80] Kohavi R., A study of cross-validation and bootstrap for accuracy estimation and
model selection, Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, 14 (1995), pp. 1137–1143.

[81] Krauth W., M. Mezard, Learning algorithms with optimal stability in neural
networks, Journal of Physics A Mathematical General, 20 (1987), pp. L745–L752.

[82] Kuncheva L.I., Diversity in multiple classifier systems, Information Fusion, 6
(2005), pp. 3–4.

[83] Kutner M.H., C.J. Nachtsheim, W. Wasserman, J. Neter, Applied Linear
Regression Models, McGraw-Hill/Irwin, 1989.

[84] Land A.H., A.G. Doig, An automatic method of solving discrete programming
problems, Econometrica, 28 (1960), pp. 497–520.

[85] Lasdon L.S., Optimization Theory for Large Systems, Dover Publications Inc.,
2002.

[86] Lavrac N., Subgroup discovery techniques and applications, in Advances in
Knowledge Discovery and Data Mining, vol. 3518 of Lecture Notes in Computer
Science, 2005, pp. 2–14.

[87] Li C.M., F. Manya, J. Planes, Exploiting unit propagation to compute lower
bounds in branch and bound max-SAT solvers, Proc. of the 11 thCP, Sitges, Spain,
(2005).

[88] Li Y., G.R. Arce, A maximum likelihood approach to least absolute deviation re-
gression, EURASIP Journal on Applied Signal Processing, 2004 (2004), pp. 1762–
1769.

[89] Lubbecke M.E., J. Desrosiers, Selected topics in column generation, Oper.
Res, 53 (2005), pp. 1007–1023.

[90] McCulloch W.S., Pitts W., A logical calculus of ideas immanent in nervous
activity, Bulletin of Mathematical Biophysics, 5 (1943), pp. 115–137.

[91] Minsky M.L., S. Papert, Perceptrons: An Introduction to Computational Ge-
ometry, MIT Press Cambridge, MA, 1969.

[92] Mitchell T.M., Machine Learning, McGraw-Hill Higher Education, 1997.

[93] Montgomery D.C., E.A. Peck, G.G. Vining, Introduction to Linear Regres-
sion Analysis, Wiley New York, 1982.

101

[94] Nauss R.M., An improved algorithm for the capacitated facility location problem,
The Journal of the Operational Research Society, 29 (1978), pp. 1195–1201.

[95] Nazareth J.L., Computer Solution of Linear Programs, Oxford University Press,
Inc. New York, NY, USA, 1987.

[96] Nemhauser G.L., L.A. Wolsey, Integer and Combinatorial Optimization,
Wiley-Interscience New York, NY, USA, 1988.

[97] Newman D.J., S. Hettich, C.L. Blake, C.J. Merz, UCI Repository
of Machine Learning Databases, 2007. http://www.ics.uci.edu/~mlearn/
MLRepository.html.

[98] Ortega F., L.A. Wolsey, A branch-and-cut algorithm for the single-commodity,
uncapacitated, fixed-charge network flow problem, Networks, 41 (2003), pp. 143–
158.

[99] Padberg M., G. Rinaldi, A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems, SIAM Review, 33 (1991), pp. 60–100.

[100] , A branch-and-cut algorithm for the resolution of large-scale symmetric trav-
eling salesman problems, SIAM Review, 33 (1991), pp. 60–100.

[101] Palacios H., H. Geffner, Planning as branch and bound: A constraint pro-
gramming implementation, Proceedings of CLEI, 2 (2002).

[102] Pascheuer N., M. Jünger, G. Reinelt, A branch & cut algorithm for the
asymmetric traveling salesman problem with precedence constraints, Computa-
tional Optimization and Applications, 17 (2000), pp. 61–84.

[103] Pawlak Z., Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers Norwell, MA, USA, 1992.

[104] Quinlan J.R., C4. 5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[105] , Bagging, boosting, and C4. 5, Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, 725 (1996), p. 730.

[106] Rosenblatt F., The Perceptron, a Theory of Statistical Separability in Cognitive
Systems.(Project PARA), US Dept. of Commerce, Office of Technical Services,
1958.

[107] , A Comparison of Several Perceptron Models, Self-Organizing Systems,
(1962).

[108] Ruczinski I., C. Kooperberg, M. LeBlanc, Logic regression, Journal of Com-
putational and Graphical Statistics, 12 (2003), pp. 475–511.

[109] , Exploring interactions in high-dimensional genomic data: An overview of
Logic Regression, with applications, Journal of Multivariate Analysis, 90 (2004),
pp. 178–195.

[110] Rumelhart D.E., G.E. Hinton, R.J. Williams, Learning Internal Represen-
tations by Error Propagation, MIT Press Cambridge, MA, USA, 1986.

102

[111] Savelsbergh M., A branch-and-price algorithm for the generalized assignment
problem, Operations Research, 45 (1997), pp. 831–841.

[112] Savelsbergh M.W.P., Preprocessing and probing techniques for mixed integer
programming problems, Eindhoven University of Technology, Department of Math-
ematics and Computing Science, 1992.

[113] Schapire R.E., The strength of weak learnability, Machine Learning, 5 (1990),
pp. 197–227.

[114] Schapire R.E., Y. Freund, P. Bartlett, W.S. Lee, Boosting the margin: A
new explanation for the effectiveness of voting methods, The Annals of Statistics,
26 (1998), pp. 1651–1686.

[115] Schölkopf B., Smola A.J., Learning with Kernels, MIT Press Cambridge,
Mass, 2002.

[116] Seber G.A.F., C.J. Wild, Nonlinear Regression, John Wiley & Sons, New York,
1989.

[117] Senne E.L.F., L.A.N. Lorena, M.A. Pereira, A branch-and-price approach
to p-median location problems, Computers and Operations Research, 32 (2005),
pp. 1655–1664.

[118] Shawe-Taylor J., N. Cristianini, Kernel Methods for Pattern Analysis, Cam-
bridge University Press, 2004.

[119] Smola A.J., B. Schölkopf, A tutorial on support vector regression, Statistics
and Computing, 14 (2004), pp. 199–222.

[120] Smola A.J., P. Bartlett, B. Schölkopf, D. Schuurmans, Advances in
Large-Margin Classifiers, The MIT Press, 2000.

[121] Tawarmalani M., N.V. Sahinidis, Global optimization of mixed-integer nonlin-
ear programs: A theoretical and computational study, Mathematical Programming,
99 (2004), pp. 563–591.

[122] Truett J., J. Cornfield, W. Kannel, A multivariate analysis of the risk of
coronary heart disease in Framingham., Journal of Chronic Diseases, 20 (1967),
pp. 511–24.

[123] Vance P.H., C. Barnhart, E.L. Johnson, G.L. Nemhauser, Solving binary
cutting stock problems by column generation and branch-and-bound, Computa-
tional Optimization and Applications, 3 (1994), pp. 111–130.

[124] Vandenbussche D., G.L. Nemhauser, A branch-and-cut algorithm for non-
convex quadratic programs with box constraints, Mathematical Programming, 102
(2005), pp. 559–575.

[125] Vidal V., H. Geffner, Branching and pruning: An optimal temporal POCL
planner based on constraint programming, Artificial Intelligence, 170 (2006),
pp. 298–335.

103

[126] Wang L., H. Zhao, G. Dong, J. Li, On the complexity of finding emerging
patterns, Theoretical Computer Science, 335 (2005), pp. 15–27.

[127] W. W.E., A technical review of column generation in integer programming, Op-
timization and Engineering, 2 (2001), pp. 159–200.

[128] Witten I.H., E. Frank, Data Mining: Practical Machine Learning Tools with
Java Implementations, Morgan Kaufmann, San Francisco, 1999.

[129] Wolsey L.A., Integer Programming, John Wiley & Sons, New York, 1998.

104

Vita

Tibérius Oliveira Bonates

October, 2007 PhD in Operations Research
Rutgers University, Piscataway, NJ

August, 2007 – Senior Associate
Princeton Consultants, Inc., Princeton, NJ

2002–2007 Research/Teaching Assistant
Rutgers University, Piscataway, NJ

Summer/2003 Summer Intern
Dash Optimization Inc., Englewood Cliffs, NJ

2001–2002 Systems Analyst
Eletrobrás Research Center, Brazil

1999–2001 MS in Systems Engineering
Federal University of Rio de Janeiro, Brazil

1995–1998 BS in Computer Science
State University of Ceará, Brazil

Publications

Bonates T.O., P.L. Hammer, A. Kogan, Maximum Patterns in Datasets, Discrete Ap-
plied Mathematics, in press, doi: 10.1016/j.dam.2007.06.004, 2007.

Alexe G., S. Alexe, T.O. Bonates, A. Kogan, Logical analysis of data – the vision of
Peter L. Hammer, Annals of Mathematics and Artificial Intelligence, 49:265-312, 2007.

Bonates T.O., P.L. Hammer, An Algorithm for Optimal Training in Logical Analysis of
Data, RUTCOR Research Report RRR 22-2007, 2007.

Bonates T.O., P.L. Hammer, A Branch-and-Bound Algorithm for a Family of Pseudo-
Boolean Optimization Problems, RUTCOR Research Report RRR 21-2007, 2007.

Bonates T.O., P.L. Hammer, Pseudo-Boolean Regression, RUTCOR Research Report
RRR 3-2007, 2007.

Bonates T.O., P.L. Hammer, Logical Analysis of Data: From Combinatorial Optimiza-
tion to Medical Applications, Annals of Operations Research, 148:203–225, 2006.

105

G. Alexe, S. Alexe, D.E. Axelrod, T.O. Bonates, I.I. Lozina, M. Reiss, P.L. Hammer,
Breast Cancer Prognosis by Combinatorial Analysis of Gene Expression Data, Breast
Cancer Research, 8:R41, 2006.

Bonates T.O., N. Maculan, Performance Evaluation of a Family of Criss-Cross Algo-
rithms for Linear Programming, International Transactions on Operational Research,
10(1), 53–64, 2003.

