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Patched structures have many engineering applications, ranging from aircraft 

repair to electronic devices and beyond.  Delamination growth at the edge of the interface 

between the substructures may lead to catastrophic results.  In the spirit of preventing 

this, edge delamination failure is studied such that behavior may be predicted as well as 

characterized for a patched beam-plate structure under different physical conditions.  The 

loading scenario on such structures includes transverse pressure and an applied uniform 

temperature field.  These conditions are intended to mimic possible conditions under 

which a patched beam-plate may be used.  The patched beam-plate consists of two plates: 

the “patch,” which is of shorter length, adhered to the longer “baseplate”.  This composite 

structure is examined under various support conditions on the endpoints: hinged-free, 

clamped-free, hinged-fixed, and clamped-fixed.   

The problem is formulated analytically, from first principles, using linear and 

geometrically nonlinear models.  Governing equations are derived using a local force 

balance on an element of the structure incorporating an appropriate geometrically 

nonlinear thin structure theory, and can be reduced accordingly to simplify to a 

corresponding linear model.  A Griffith type criterion, is adopted to determine the onset 

of delamination growth.  Exact analytical solutions are obtained for nonlinear as well as 
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linear problems and numerical simulations based on these solutions are performed using 

MATLAB.  

Results are presented in the form of delamination growth paths, which may be 

interpreted physically to describe the onset, extent, and stability of the delamination 

growth resulting from each scenario.  The effect of various physical parameters on 

delamination behavior is explored.  The results show that a temperature difference has a 

profound effect on the delamination behavior of the patched plates when subject to 

transverse pressure, as it significantly alters the delamination growth thresholds.  There 

are scenarios where delamination propagation begins in the absence of transverse 

pressure, due solely to the applied temperature difference.  Conclusions are drawn and 

physical explanations are given for the behavior of each patched plate system.  The 

nonlinear model reveals different delamination growth thresholds and stabilities than the 

linear model.  It observed that the linear model does not adequately describe the salient 

behavior in comparison to the nonlinear model.            
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Chapter 1 

Introduction 

1.1 Motivation  

Composite structures play a vital role in many modern technologies.  Such 

structures can be used to provide additional stiffness and strength to any system.  They 

are already widely used in aircraft and ships as primary as well as secondary members, 

and for repair of components.  Laminates also have widespread use as “smart” structures 

in structural, electronic and computer applications.  While an assembly of materials 

possessing disparate properties provides many structural advantages, it may present 

undesirable effects as well.  Having a material mismatch may adversely affect the 

structure’s ability to perform, depending on usage.  With such responsibility placed on 

composite assemblies, it is paramount to be able to predict and characterize failure.  

Delamination, or the separation of the layers, is a crucial aspect of any composite 

structure.  What originally manifests as an interfacial flaw ultimately governs the useful 

life of such a structure.  The conditions under which a structure is loaded will determine 

when and how much delamination will propagate.  This knowledge is crucial to the 

effective design and operation of structures and loadings of the class considered.     

This issue motivates the study of the growth of interfacial separation as it applies 

to a patched beam-plate structure under several relevant loading configurations.  Such 

plate assemblies have their own importance in the larger realm of general composites.  

The patched beam-plate is an assemblage of two layers, a shorter plate (in the span-wise 

direction) adhered to another.  We examine and characterize the one-dimensional edge 
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delamination propagation of a patched plate subjected to thermo-mechanical loading, for 

various end-support conditions. More specifically, we study patched structures subject to 

a uniform transverse pressure as well as a uniform temperature field, which mimic 

possible conditions based on the use of such a structure.  We also explore the possibility 

of a contact zone, where the debonded segments of the plates remain in sliding contact 

during delamination growth.  The presence of contact may affect the response of the 

structure to the given loading.   

The approach to the problem is to model the governing equations using thin-

structure theory as it applies to a local force balance on an element of the composite 

structure.   

A Griffith-type delamination criterion will be used.  Griffith (1920) offers a model for 

fracture relating to the elastic strain energy of a structure that is used today to predict the 

onset, extent, and stability of delamination failure.  The energy release rate is of special 

importance to this problem, as it is used in our growth law, which is a Griffith-type 

delamination criterion.  This law tells us when delamination growth begins, and how long 

it continues.  Elastic strain energy is stored in a bonded structure.  As it delaminates, 

energy is released; hence the energy release rate represents the rate at which this occurs.  

Bottega (1983) develops a general growth law for propagation using variational 

principles.  Detailed descriptions and formulations of energy release rates in various 

settings are further discussed in Bottega (2003), Giannakopoulos (1994), and Hwu and 

Hu (1992), to name but a few. 

By combining the derived governing equations and growth criterion with 

appropriate relationships established by Bottega (1997), we arrive at a self-consistent 
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model for the structure.  We conduct the pertinent analyses using a mixed formulation, 

i.e. by casting the problem in terms of the transverse deflection and membrane force, 

which renders our equations in appropriate forms.  Such forms allow us to obtain exact 

analytical solutions which apply to problems of this class.  Exact analytical solutions are 

achieved by a non-linear as well as a linear analysis, in an attempt to uncover the full 

behavior of the evolving structure.   

Once all governing equations and boundary/matching conditions are established, 

numerical simulations may be performed.  We can interpret the delamination growth 

paths to get a physical sense of the debonding phenomena.  These growth paths are plots 

corresponding to equilibrium configurations associated with the critical energy release 

rate.  They represent a threshold, at which delamination propagation occurs.  Results 

indicate that various parameters such as elastic modulus and bond strength have an effect 

of the thresholds for delamination growth.  It is also seen that applying a uniform 

temperature field can have a profound effect on those thresholds.   

In the following section we explore the related work in the field of delamination 

of structures. 

   

1.2 A Survey of Related Literature 

1.2.1 Delamination of General Composites 

The problem of delaminating plates is of interest to many in the engineering 

community.  It was in the late 1970’s and early 1980’s that many rigorous works on the 

delamination of composites came to fruition.  Such work continues to the present day. 
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Some works focus exclusively on the composite structure known as the bi-

material strip in the presence of a thermal load, which has been studied extensively, 

dating back to the mid 1920’s from the work of Timoshenko.  Altus and Ishai (1992) 

establish a delamination buckling criterion for a bi-material strip using analytical 

methods, and then compare the predicted results to observed results from 

experimentation.  They observe, as expected, that it is the energy release rates that govern 

a structure’s tendency to delaminate.  According to this study, using a linear analysis to 

predict delamination is sufficient so long as the deflections are small.  Others employing 

a more state-of-the-art approach, Klingbeil and Bontha (2003) use Finite Element 

Analysis (FEA) to determine a permissible initial flaw size for bi-material composite 

layers subject to a uniform edge-load that are to be debond-resistant.  Geometry and 

material properties play a major role in delamination, and alter the maximum allowable 

flaw size.  It is also shown that certain simplifications (i.e. taking certain parameters to be 

zero) allow for a conservative, but realistic solution.  Our focus here is more on the 

delamination of plates, rather than the bi-material strip.  

  

1.2.2 Double Cantilever Beams, Lap Joints, and Patched Plates 

Much of the present work centers on the already established work of Bottega 

(1995), who studies a variety of patched plate assemblies subject to in-plane and three-

point loading, as well as subject to applied transverse pressure loading.  By formulating 

the problem as a moving boundary problem in the calculus of variations Bottega is able 

to derive all the governing equations of the system.  The energy release rates are derived 

in functional form, and are used to establish what are called the delamination growth 
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paths for each system.  These paths may be interpreted to explain the behavior of the 

system.  It is found that the delamination behavior depends heavily on the types of load 

and support conditions present.  The behavior also strongly depends on the material 

properties of the plates, as well as the initial flaw size.  Bottega (1997) also begins to 

examine the concept of an applied uniform temperature field in addition to an applied 

transverse pressure.  It is from this work that we obtain our delamination growth law.           

Bottega and Karlsson (1999) establish the formulation of a similar problem, 

extended to include plates and shells, as well as explore the effects of introducing an 

edge-taper on such composite structures.  Karlsson and Bottega (1999b) then provide the 

findings of such a formulation as it pertains to applied transverse pressure loading of a 

step-tapered structure.  What is shown is that the degree of the edge-taper has an affect on 

the onset and properties of delamination.  Karlsson and Bottega (1999a) study edge-point 

contact, and how it affects the delamination behavior of patched cylindrical panels.  

Edge-point contact may occur in the process of debonding, when the edge of the 

delaminated portion of the patch remains in contact with the baseplate. The panels are 

loaded in circumferential tension in addition to internal pressure.  It is shown how the 

delamination is affected by load or support conditions as well.  Following this work 

Karlsson and Bottega (2000) study the effects of a temperature difference applied to a 

patched plate loaded in in-plane tension.  Various buckling situations are observed, and 

the new phenomenon, “sling-shot buckling,” is first predicted and explained.  Sling-shot 

buckling is the phenomenon when the structure is observed to dynamically “sling” from 

one equilibrium configuration to an opposite deflection of another, in an unstable manner.  

These findings are echoed in Karlsson (1999) as well.  Karlsson and Bottega (2000) then 
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explore the general behavior of delamination of patched plates as subjected to an in-plane 

edge-force, as well as a uniform temperature field.  It is shown how the varying thermal 

load and membrane force affect the behavior of the system, and includes various buckling 

scenarios.  The analytical methods used in the aforementioned works are of special 

relevance to this current work.     

Also employing an analytical approach to such delamination problems are 

Qingchun and Xing (1993), who use a variational method to solve for the extent of 

delaminations in composites, to satisfy a damage tolerant design.  The composites in this 

study are orthogonally and symmetrically stacked plates, and are loaded in in-plane 

tension.  While the solution presented only applies to the problem described, it is 

postulated that the method can work for variations of the given scenario.  It is also shown 

with a computational example that this formulation is convenient to solve numerically.  

Wang and Qiao (2004) use analytical methods to model the energy release rate at the 

delaminating surface of two perfectly bonded plates containing an initial delamination at 

the mating surface.  They use a first-order shear deformation plate theory, and obtain the 

energy release rate in a functional form, by using the J-integral method.  The solution 

accounts for transverse shear deformation in both the cracked and uncracked parts of the 

plates.  What they find is that the energy release rate governing the delamination for a 

generic loading function depends on two parameters; the membrane force and transverse 

shear force.  A numerical example considering a single leg bending test is performed to 

validate the results.  Terms accounting for transverse shear are added to energy release 

rates, which do reduce to classical theory upon simplification.  These terms are necessary 

when the specimen is of moderate thickness.   
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Duong and Yu (2002) use linear elasticity theory to study the problem of 

composite bonded repair subject to thermal loading.  Using a generalized plane stress 

analysis, they are able to estimate the stress intensity factors paired with the thermal 

stresses using different analytical methods for their two-step procedure.  The patch is 

treated as subject to an initial strain field, with the structure being subject to two different 

kinds of thermal loading: a thermal cycle and a uniform low operating temperature.  The 

results are compared with a FEA simulation for an octagonal patch.  Although neglecting 

out-of-plane bending, the model works well, according to the authors.   Kim (2006) also 

uses a closed form solution to model delamination growth for post buckled composite 

flanged joints.  The model is used to calculate the distribution of the energy release rate 

across the crack in the composite.  The distribution of energy release rates is calculated as 

a partial derivative of the total potential energy.  Using compressive loading, the results 

are validated with a simulation based on FEA.  Moore (2005) derives a model to describe 

the peeling of a composite laminate using first principles.  This model is used to calculate 

the peeling moment, which arises when the structure delaminates due to an applied 

uniform temperature difference.  He studies a bonded structure featuring materials with 

mismatched thermal properties, starting with two layers, and then advancing to beyond 

four layers.  The solution is a general one, applicable to any multi-layer beam of this 

class.  The peeling moment expression can be split up such that the contributions of 

reaction moments and of thermal moments can be separated.  Using FEA, the model is 

shown to be accurate, and it is also shown that the model is physically interpretable.    

An overabundance of work in this particular subject does lie in the realm of FEA.  

This is a popular method (but is not without inherent limitations), and is used for a 
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variety of problems within the scope of delamination of composite structures.  Tarn and 

Shek (1991), for instance, study a cracked plate repaired with a patch subject to in-plane 

loading.  They use FEA for the patch and the boundary element method for the cracked 

plate.  They examine the effect of adding the patch on the stress intensity factor at the 

crack tip on the original plate.  Panigrahi and Pradhan (2007) use FEA to analyze 

delamination propagation in three dimensions of a bonded single lap joint, subject to an 

in-plane load.  Others, such as Gregory and Spearing (2006) use FEA to model the 

contribution of inelastic effects on the delamination of a double cantilever beam (DCB) 

specimen.  Tamzus et al. (2001) also study DCB specimens, and offer a numerical 

procedure to model crack propagation.  The FEA considers linear and non-linear bridging 

laws, and compare results for propagation with an approximate energy release rate to 

establish the appropriate relationship to simulate actual crack growth.  La Saponara et al. 

(2002) compare FEA model for crack propagation with experimental results for the 

delamination of a DCB.  They explore different composite schemes, as well as notched 

and un-notched specimens.  It is shown that the FEA results are confirmed by the 

experimental results.  Also predicting delamination failure in a DCB is Song and Waas 

(1994).  They examine “opening” loads applied at the endpoints of the laminated 

structure, and also have FEA results matching closely to observed experimental results.   

Müller (2007) studies the delamination of sandwich plates due to repeated forced 

oscillations.  The proposed model and numerical simulation based on FEA are shown to 

compare favorably with experimental results.  
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1.2.3 Shells 

Related work also focuses on the study of shell structures.  A plate may be seen as 

a special case of a shell problem.  Rutgerson (2001) as well as Rutgerson and Bottega 

(2002) extend the work Karlsson and Bottega, by examining the thermo-elastic buckling 

of shell segments.  The shells are layered and subject to an applied transverse pressure in 

addition to a uniform temperature field.  Performing a non-linear analysis they are also 

able to observe thermally induced “sling-shot” buckling, along with the other behaviors 

of such a structure.  Rutgerson and Bottega (2004) go on to study pre-limit point buckling 

of cylindrical panels loaded under the same conditions.  It is observed that snap-through 

buckling occurs well in advance of reaching a critical limit.  The findings on sling-shot 

buckling have since been unified by Bottega (2006).  It is concluded that this type of 

buckling occurs due to competing mechanical and thermal components of the loading.  

This concept is of importance to our present study.    

Liu and Yu (2003) use FEA to model the delamination of various configurations 

of a layered shell, using an assumed displacement field.  Borg et al. (2004) present a 

modified delamination model for FEA using shell elements, involving the adhesive 

forces.  Tafreshi (2006) uses FEA to study the buckling effects of combining axial 

compression and applied transverse pressure on a composite shell assembly.  Storåkers et 

al. (2004) use a theoretical analysis as well as FEA to examine the growth of a circular 

delamination imbedded in a shallow shell subject to compressive loading.  They use a 

non-linear shell theory combined with a linear fracture mechanics theory to develop a 

model for delamination.  The energy release rates are found by using FEA.  What they 

found is that the energy release rate had a dependency on one geometric parameter 
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relating to the curvature.  Tsamasphyros et al. (2003) consider a metallic bonded 

composite cylindrical panel, a structure commonly used in aircraft repair.  Using three 

dimensional FEA they examine the delamination effects due to an applied pressure as 

well as an applied temperature difference.  

   

1.2.4 Other Areas of Interest  

Fatigue is also a subject of interest to delamination problems.  Carpinteri et al. 

(2004) use a fracture mechanics model to fully describe the behavior of a composite 

beam subject to a cyclic external bending moment.  It is shown how the crack 

experiences fatigue propagation, and how material properties such as brittleness affect the 

behavior.  Numerical simulations are presented to confirm the effectiveness of the 

proposed model.   Blanco et al. (2004) also study fatigue delamination growth, as it 

pertains to a carbon-fiber composite subject to cyclic transverse end loads.  They develop 

a model to describe the non-constant delamination propagation.  After comparing the 

models with experimental results, it is shown that an improved model is necessary to take 

into account Paris-law parameters and delamination modes. 

Experimental studies have been performed in addition to the many 

theoretical/numerical works (see, for example, Bois et al. (2007)).  Our focus is on the 

analytical formulation, followed by interpretations of the numerical simulations of 

derived governing equations.  What is unique regarding this approach on delamination 

propagation is that the mathematical models are designed such that governing behavior of 

the systems is derived in physically interpretable exact functional form.  Numerical 
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simulations are then based on these exact functions, such that the results offered represent 

an exact solution for the problems of this class.  

  

1.3 Outline of the Thesis 

The thesis is presented in six chapters.  Chapter 2 describes the problem at the 

outset, and then presents a derivation of the governing equations.  It begins with a 

description of the geometry, followed by a statement of the normalized parameters used.  

The governing equations of motion are then derived along with an integrability condition.  

The delamination criterion is quoted as well.  Chapter 3 presents the method of solution 

to this problem.  First the analytical solutions to the governing equations are given.  

Relevant system parameters are then defined, and the numerical procedure is discussed 

for both the linear and non-linear solutions.  Chapter 4 is a summary of the results of the 

numerical simulations, for the linear model.  The simplest case of hinged-free ends is 

presented first, followed by the results for the clamped-free ends.  After that the solutions 

for hinged-fixed and clamped-fixed end conditions are given.  The nonlinear results will 

be detailed in Chapter 5.  Conclusions and discussions based on the results are presented 

in Chapter 6.   
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Chapter 2 

Formulation 

2.1 Geometry 

The formulation presented here follows the development in Bottega (1995) and 

Bottega (1997), where the full formulation is achieved via a variational approach.  

However, in this work we use a differential element approach, a local force balance.  We 

examine in this study a structure composed of one plate, the “patch,” adhered to another, 

the “baseplate.”  We assume symmetric debonding, which means that the deflected shape 

is symmetric with respect to the center point of the structure.  Figure 1 depicts the 

geometry of the composite structure, noting that the half-span has been normalized to 

unity.     

 

Figure 1.  Half-span of the structure 
 

To represent the structure mathematically, the following domains are designated: 

Region S1: 0≤ x≤ a represents the “bond zone,” where the patch and baseplate are 

perfectly adhered; S2: a≤ x≤ b represents the “contact zone,” where the plates are no 

longer adhered, yet remain in sliding contact (the debonded surfaces are taken as 

Reference Surface 
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frictionless); and S3: b≤ x≤ 1 represents the “region of separation,” where the plates are 

no longer touching.  For completeness, the domain of the lifted portion of the patch is 

denoted as Sp3: b≤ x≤Lp.  It is seen from the figure that a is the length of the bonded 

region, whereas a* is the length of the debonded region, otherwise known as the 

“conjugate bond length.”  In addition, the parameter b defines the “contact zone/region of 

separation” boundary, and Lp defines the length of the patch.  (Throughout the 

formulation, all quantities containing a subscript “p” refer to the patch.)  The x-coordinate 

is measured outward from the center of the beam.  The transverse thicknesses of the 

plates are designated as h and hp for the baseplate and patch, respectively.  All length 

scales will be normalized with respect to the half-length of the baseplate.  Finally, the 

reference surface is taken as the uppermost surface of the baseplate.  

 

Figure 2.  Structure depicted with applied transverse pressure and uniform temperature field 
(Shown with clamped-fixed ends) 
 

Figure 2 shows the full-span of the structure, consisting of the baseplate with an 

adhered patch centered on top.  The loading scenario shown consists of a transverse 

pressure applied along the baseplate, as well as an applied uniform temperature field 

(denoted by Θ).  We consider end supports which are either hinged or clamped, the latter 

not allowing for rotation at the ends.  The ends are also either free or fixed with respect to 

in-plane translation.  Shown in Figure 2 is the clamped-fixed end support condition.  In 
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addition to clamped-fixed, we will also examine ends which are hinged-free, clamped-

free, and hinged-fixed.     

  

 

2.1 Normalization of Parameters  

It is convenient to normalize relevant parameters of the system, and this 

normalization is performed as in Bottega (1995).  Parameters having units of length will 

be normalized with respect to the dimensional half-span length, L .  (All quantities 

designated with an over-bar represent dimensional values.)  We begin with the non-

dimensional half-span length L, which is defined as 

 1==
L
LL  (1a) 

Our x-coordinate is thus 

 
L
xx =  (1b) 

so our displacements are 

 
L
ww =  (1c) 

in the transverse direction, and 

 
L
uu =  (1d) 

in the plane of the plate. 

Further, the transverse thicknesses of the baseplate and patch are, 

 
L
hh =  (1e) 
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L
h

h p
p =  (1f) 

where h  and ph  are the dimensional transverse thicknesses of the baseplate and patch. 

We also define a thickness ratio 

 
h
h

h p=0  (2) 

Another important parameter is the Ratio of Elastic Moduli, which is the ratio of the 

elastic properties of the patch to that of the baseplate.  Hence, for plane stress it is the 

ratio of Elastic Moduli 

 
E
E

E p=0  (3a) 

In contrast, for plane strain it is the ratio of augmented Elastic Moduli 

 
( )
( )2

2

0 1
1
ν
ν

−

−
=

E
E

E pp  (3b) 

where ν and νp are the Poisson’s ratios associated with the baseplate and the patch, 

respectively.   

The non-dimensional bending stiffnesses of the baseplate and patch will be denoted by D 

and Dp, respectively.  Similarly, the membrane stiffnesses of the baseplate and patch will 

be denoted by C and Cp.  The normalization of these parameters is with respect to the 

dimensional bending stiffness of the baseplate, and hence,  

 1=D  (4a) 

 2

12
h

C =  (5a) 

 D p= E0h0
3 (4b) 
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 Cp = CE0h0 (5b) 

Also consistent with Bottega (1995) is our normalization of membrane force, applied 

transverse pressure, and bond strength between the plates.  We have 

 
D
LNN

2

=  (6a) 

 
D
Lpp

3

=  (6b) 

 
D
L2γγ =  (6c) 

where N , p  and γ  represent the dimensional values of membrane force, pressure, and 

bond strength, respectively.  It is noted that these quantities and hence our results 

correspond to a state of plane stress or a state of plain strain, depending on the 

interpretation of the parameter E0.   

We now establish a temperature scale.  We will use the scale designated by 

Rutgerson and Bottega (2002), such that the non-dimensional temperature change is 

defined by 

 
0

0

Θ
Θ−Θ

=Θ α  (7) 

where 0Θ  represents a reference temperature (at which the system experiences no 

thermal deflections or strains), Θ  represents the current temperature of the system, and α 

represents the coefficient of thermal expansion of the baseplate.  For plane stress, 

 0Θ=αα  (8a) 

and, for plane strain, 

 )1(0 ναα +Θ=  (8b) 
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In Eqs. (8a) and (8b) α  represents the dimensional thermal expansion coefficient of the 

baseplate. 

The normalized thermal expansion coefficient of the patch will be taken as a ratio of its 

dimensional value to that of the baseplate 

 
α
α

α p
p =  (9) 

   

2.3 Development of the Governing Equations 

To obtain the equations of motion, we begin by showing equivalent forces and 

moments for each region of the structure, as shown in Figure 3.  The superscript “*” 

corresponds to values that describe the composite system, as opposed to those for a single 

constituent. 

 

Figure 3.  Equivalent forces and moments in each domain 
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2.3.1 Constitutive Relations 
 

We now state a sign convention: Transverse deflection w(x) is taken as positive 

down, and in-plane deflection u(x) is taken as positive outward from the center (defined 

as x = 0), as shown in Figure 1.   

The membrane strains of the baseplate and patch, ei(x) and epi(x), are defined at 

the centerlines of their respective components.  The range of the index i is 1-3; each 

representing the domains previously defined in Section 2.1.  Deformations shall be 

described by the geometrically nonlinear strain-displacement relations (for small strain 

and moderate rotation) 

 2

2
1

iii wue ′+′=  (10a) 

 2

2
1

pipipi wue ′+′=  (10b) 

where the primes indicate differentiation with respect to the x-coordinate.   

Adhering to the Kirchhoff assumptions for each component, the respective strains at the 

reference surface are described by the following relations 

 iê = ei + 
2
h
κi (11a) 

 pi
p

pipi

h
ee κ

2
ˆ −=  (11b) 

where the carats denote strain measured at the reference surface.  The terms κi and κpi 

refer to the curvatures for each region (depending on the index value) in the baseplate and 

the patch, respectively.  We use the approximation w ′′=κ .    

As evident from Figure 3, the resultant axial force in Region 1 is 

 N1* = N1 + Np1. (12)   
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Keeping in mind that there is also an applied temperature field, the axial forces for the 

baseplate and patch are given by 

 ( )Θ−= α11 eCN   (13a) 

 ( )Θ−= pppp eCN α11  (13b) 

The force N1* acts along the centroidal axis of the composite structure.  Inserting Eqs. 

(11a)-(11b) for the membrane strain into Eq. (12) gives 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ−++⎟

⎠
⎞

⎜
⎝
⎛ Θ−−= pp

p
pp

h
eCheCN ακακ 11111 2
ˆ

2
ˆ*  (14) 

If we assume perfect bonding, and since this relation corresponds to the bond zone, the 

following matching conditions hold at the reference surface 

 1û  = 1ˆ pu  = u1* (15a) 

 w1 = wp1 = w1* (15b) 

and hence 

 1̂e  = 
1

ˆ pe = e1* (15c) 

 κ1 = κp1 = κ1* (15d) 

Incorporating these equalities into Eq. (14), permits N1* to be rewritten in terms of 

deformations at the reference surface as follows 

 ( )Θ+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ppp

p
p CCChC

h
eCCN αακ *

22
*)(* 111  (16) 

We shall define the terms in parentheses as 

 C* = C+Cp (17) 

 ChC
h

B p
p

22
* −=  (18) 
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 ppCCn αα +=*  (19) 

This results in the constitutive relation for N1* 

 Θ−+= ****** 111 nBeCN κ  (20) 

We follow a similar procedure to obtain expressions for the bending moment in 

Region 1.  The resultant bending moment of the composite structure M1* is 

 M1* = M1 +Mp1 (21) 

 where M1 and Mp1 are the resultant bending moments of the baseplate and the patch, 

respectively.  They are taken about an axis through the reference surface.  Thus, 

 111 2
NhDM −= κ   (22a) 

 Mp1 = Dpκp1+ 2
ph

Np1 (22b) 

Utilizing the matching conditions (Eqs. (15a)-(15d)) and the expressions for N1 and Np1 

(Eqs. (13a)-(13b)) in Eq. (21) we obtain 

 Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛+= αακ ChC

h
eChC

h
C

h
DChDM pp

p
p

p
p

p
p 22

*
22

*
22

* 11

22

1  (23) 

Once again, by renaming the quantities in parentheses, and noting that the second term in 

parentheses is B* as defined in Eq. (18), we obtain the stiffness of the composite structure 

in terms of the material/structural/geometric parameters of its constituents.  Hence, 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛+= p

p
p C

h
DChDA

22

22
*  (24) 

 ααµ ChC
h

pp
p

22
* −=  (25) 

 It follows that 
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 Θ−+= ****** 111 µκ eBAM  (26) 

Using Eq. (20), we can eliminate the strain from Eq. (26) to give  

 Θ−⎥⎦
⎤

⎢⎣
⎡ Θ+−+= *

*
**

*
*

*
***** 111 µκκ

C
n

C
B

C
NBAM  (27) 

Defining 

 
*
**

C
B

=ρ  (28) 

 **** BAD ρ−=  (29) 

 **** nm ρµ −=  (30) 

 
*
**

D
m

=β  (31) 

where the quantity ρ* may be seen to give the location of the centroidal axis with respect 

to the reference surface, we can now rewrite the resultant moment in the bonded region in 

the alternate form 

 [ ] ****** 111 NDM ρβκ +Θ−=  (32) 

Now, for the contact zone, the resultant membrane force is given by 

 N2* = N2+Np2 (33) 

No further reduction is possible since the constituents slide freely with respect to each 

other in this domain.  The expression for the resultant bending moment in this region is 

 M2* = M2 +Mp2 (34) 

where M2 and Mp2 represent the resultant bending moments of the baseplate and the 

patch, about an axis through the reference surface, such that 

 M2 = Dκ2- 2
h N2 (35a) 
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 Mp2 = Dpκp2+ 2
ph

Np2 (35b) 

Hence, 

 22222 22
* NhN

h
DDM p

p
pp −++= κκ  (36) 

In the contact zone, the plates move together transversely, and thus, along the interface, 

we have the following matching condition for curvature 

 κ2 = κp2 = κ2* (37) 

Substituting Eq. (37) into Eq. (36) gives the resultant moment in the contact zone as 

 2222 22
** NhN

h
DM p

p
c −+= κ  (38) 

where 

 Dc = D+Dp (39) 

The last domain of consideration is the region of separation.  It is important to 

note that there are no composite terms in the following expressions since the structure 

behaves as two separate plates in this region.  We have, for the resultant bending moment 

of the baseplate and the patch, about an axis through the reference surface 

 333 2
NhDM −= κ  (40a) 

 333 2 p
p

ppp N
h

DM += κ  (40b) 

 

2.3.2 Equilibrium Equations  

The governing equations may be derived by consideration of the free body 

diagram of an element in each domain.  Figure 4 shows regions S1 and S2, while Figure 5 
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shows region S3.  Not pictured is the patch of region S3, which is analogous to the 

baseplate without the applied transverse pressure. 

 

Figure 4.  Free-body diagram of regions S1 and S2 (Index range i=1-2) Note that τ2 = 0  
 
 

 
Figure 5.  Free-body diagram of region S3 
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Once again the primed variables refer to differentiation with respect to the x-

coordinate.  Based on the implicit assumptions made in thin structure theory, we will 

approximate the pressure as a distributed transverse force.  Our strain-displacement 

relations, Eqs. (10a)-(10b), imply that the angles will be small.  By applying the 

appropriate equilibrium equations, we arrive at the governing equations of the system.  

Summing forces in the z-direction (and combining equations for the patch and the 

baseplate) gives, for region S1 

 ( ) pwNV −′′=′ *** 111     (41) 

where we recall that N1* = N1 + Np1, w1 = wp1 = w1*, and also introduce the resultant 

transverse shear 

 V1* = V1 + Vp1 (42) 

Taking moments about the center point of the reference surface, and once again 

combining the equations gives for S1 

   ( ) ( )
22

* 11111
hN

h
NDDV p

ppp
′−′+′+′= κκ  (43) 

Recalling our definition of M1* as defined in Eq. (21), we see that 

 ** 11 ′= MV  (44) 

Substituting this equation into Eq. (41) gives the equation of equilibrium of the composite 

structure in region S1 as 

 ( ) pwNM −=′′−′′ *** 111  (45) 

Summing forces and combining equations in the x-direction gives 

 ( ) 0*** 111 =′+′′ NwV  (46) 
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Considering Eqs. (44) and (45), we are implicitly allowing )(~ VOwN ′ .  It also follows 

from the assumption in plate theory, zzxz σσ << , that V<<N.  And, we have 1<<′w (small 

angle assumption). Thus, the term wV ′  is so much less than N that we neglect the 

corresponding term in Eq. (46) to be consistent with the small strain/moderate rotation 

assumption.  Eq. (46) thus reduces to the final form 

 0*1 =′N    (47) 

Following a similar procedure, we now derive the equations of motion for the 

remaining two regions.  For region S2 we have 

 ( ) pwNM −=′′−′′ ** 222     (48) 

where M2* is defined as in Eq. (38) and w2 = wp2 = w2*.  Using the same argument as 

before, for the membrane force and transverse shear, we have the equation of motion in 

the plane of the plate as 

 02 =′N  (49) 

In region S3 the bending moment is 

 ( ) pwNM −=′′−″ 333  (50) 

where M3 is defined as in Eq. (40a).  Again, for the membrane force 

 03 =′N  (51) 

Finally, the equation for the bending moment of the flap of the patch in region Sp3 

 03 =″pM  (52) 

and in the plane of the plate 

 03 =′pN  (53) 
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The membrane force in the patch outside of Region S1 is taken to be zero, due to the fact 

that the patch is unloaded along the axial direction.  Hence, 

 032 == pp NN     (54) 

Integrating Eqs. (47), (49), and (51), and considering the matching conditions for the 

axial force on the domain boundaries, we have 

 0321* NNNN ===  (55) 

Thus the membrane force is uniform along the structure. 

Using this result, and substituting in the appropriate expressions for the moments 

in terms of transverse deflections, we obtain a set of fourth-order differential equations 

describing the transverse motion of the structure.  The governing equations are then 

 pwNwD iv −=′′− *** 101    (56a) 

 pwNwD iv
c −=′′− ** 202  (56b) 

 pwNDw iv −=′′− *303  (56c) 

 03 =iv
pp wD  (56d) 

It is important to note that we are using a mixed formulation, solving for (w, N) pairs 

rather than (w, u) pairs to describe the system.  This is done to render the governing 

equations to a form that is readily solved analytically.    

Considering a symmetric deflection, the pertinent boundary and matching 

conditions for transverse motion take the form: 

At x = 0 

 0)0(*1 =′w  (57a) 

 0)0(*1 =′′′w  (57b) 
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At x = a 

 )(*)(* 21 awaw =  (58a) 

 )(*)(* 21 awaw ′=′  (58b)  

 )(*)(* 21 aMaM =  (58c) 

 [ ] [ ] axax wNMwNM == ′−′=′−′ ***** 222111  (58d) 

At x = b 

 )()()(* 332 bwbwbw p==  (59a) 

 )()()(* 332 bwbwbw p
′=′=′  (59b) 

 )()()(* 332 bMbMbM p+=  (59c) 

 [ ]
bx

ppp
bx

bx wNMwNMwNM
==

= ⎥⎦
⎤

⎢⎣
⎡ ′−′+⎥⎦

⎤
⎢⎣
⎡ ′−′=′−′ 333333222 **  (59d) 

At x = Lp 

 0)(3 =″
pp Lw  (60a) 

 0333 =⎥⎦
⎤

⎢⎣
⎡ ′−′

=Lpx
ppp wNM  (60b) 

At x = 1 

 0)1(3 =w  (61a) 

 0)1(3 =′w  (clamped ends) or 0)1(3 =″w  (hinged ends) (61b) 

 

2.4 Delamination Criterion 

From Bottega (1997), who approaches the problem as a moving boundary 

problem in the calculus of variations, we obtain the transversality condition.  It represents 
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equilibrium configurations associated with the propagating bond zone boundary a.  It 

should be noted that these equations are normalized in the same manner as our 

formulation.  The condition for x = a implies our delamination criterion.  There are two 

versions; one to be used when a contact zone is present, and the other for when a contact 

zone is not present.  For a contact zone 

 ( ) γηακκ 2
2

12***
2
1}{

2

10

2
02

1
2
2 =⎥

⎦

⎤
⎢
⎣

⎡ Θ
+Θ−++−=

=axe
c N

C
N

DDaG , ( +≥ ab ) (62a) 

In the absence of a contact zone 

 ( ) γηακκ 2
2

12**
2
1}{

2

10

2
02

1
2
3 =⎥

⎦

⎤
⎢
⎣

⎡ Θ
+Θ−++−=

=axe

N
C
N

DDaG , ( ab = ) (62b) 

where 

 Ce = 
)/(

*
CC

C

p

 (63) 

 α1 = 
*
*

C
n  (64) 

and 

 *2
1

2 CCC pp ααη −+=  (65) 

The parameter γ appearing in Eqs. (62a)-(62b) is the bond strength for the patch-

baseplate interface (a material property) while the expressions for G are the energy 

release rates.  The latter are functions of the initial bond length a0 and establish the 

following delamination growth criterion: if G{a0} < 2γ, where a0  is the initial value of the 

bond zone boundary a, then delamination will not occur.  The length of the bond zone 

will remain unchanged.  If however, G{a0} ≥  2γ, the delamination will propagate, and 

continue to do so until G{a}= 2γ.  The value of G differs, depending on if a contact zone 
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is present or not.  The two cases are given by Eqs. (62a)-(62b).  Our energy release rates 

are described in exact functional form, and hence apply to the entire class of problems 

considered.  

  

2.5 Integrability Condition 

Since we are using a mixed formulation, the governing equations describing the 

system do not give any information about the in-plane deflections.  We must however, 

establish a relationship between the in-plane deflections in the respective regions and the 

membrane force N0.  This equation is analogous to the compatibility equation and is 

necessary whether the ends are free or fixed.  If the ends are free and hence the 

membrane force is equal to zero, we have a relation for the in-plane edge deflection.  If 

the ends are fixed and hence the edge deflection is zero, we have an equation for the 

membrane force corresponding to equilibrium positions of the evolving structure in terms 

of the loading parameters of the system.  We obtain this integrability condition by 

integrating the strain-displacement relationships and imposing the appropriate boundary 

and matching conditions on the in-plane displacements along the beams.  We begin with 

the expression for the membrane force in region S1, Eq. (20). In this we substitute in the 

expression for geometrically nonlinear strain, Eq. (10), and also make use of the 

kinematic relation w ′′=κ .  Doing this gives 

   Θ−′′+⎟
⎠
⎞

⎜
⎝
⎛ ′+′= ****

2
1*** 1111 nwBwuCN  (66) 

Dividing this expression by C*, and then solving for *1 ′u  and integrating gives 

 
*

**
2
1**

*
*)0(*)(*
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0
1

1
11 C

andxwdxwa
C
Nuau

aa Θ
+′−′′−=− ∫∫ρ  (67) 
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Similarly, in region S2, we have 

 )(
2
1)(

)(
2

)(*)(
2

2
2

222 abdxw
C

abN
awhaubu

b

a

−Θ+′−
−

=⎥⎦
⎤

⎢⎣
⎡ ′−− ∫ α  (68) 

Likewise, for region S3   

 )(
2
1)(

)()(
2

3
3

33 bLdxw
C

bLN
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We now make use of the following conditions, starting with the matching conditions at 

the boundaries of the regions on the in-plane displacements 

 )(*)(* 21 auau =  and )()( 32 bubu =  (70) 

From Eq. (55), the membrane force is an unknown constant, N0.  Finally, since we are 

considering symmetric deformation, and hence the rotation and in-plane deflection of the 

center point of the structure are zero, 

 0)0(*1 =′w  and 0)0(*1 =u  (71) 

Imposing these conditions and adding Eqs. (67), (68), and (69), results in the integrability 

condition given by 
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where, 
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and 

 r = 
2
h  + ρ* (74) 
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Eqs. (56)-(62) and (72) comprise the complete set of equations for the class of 

problems considered, and are summarized below. 

 pwNwD iv −=′′− *** 101    (56a)  
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 0)1(3 =′w  (clamped ends) or 0)1(3 =″w  (hinged ends) (61b) 
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This concludes the derivation of the governing equations for this class of 

problems.  Analytical solutions to these governing equations will be presented in Chapter 

3, while the results of numerical simulations based on these equations is presented in 

Chapters 4 and 5.       
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Chapter 3 

Analysis 

3.1 Analytical Solutions of the Governing Equations 

The first step in obtaining the response of the system is to solve the governing 

equations.  We will perform a linear as well as a nonlinear analysis and compare the 

results in Chapter 4. 

Since we are using the geometrically nonlinear strain-displacement relation, Eq. (10), and 

noting that the membrane force depends on that strain, we see that the )( ′′wN  term is 

indeed non-linear.  So the linear solution will neglect terms of that nature in Eqs. (56a)-

(56d).  It should be noted that when the ends of the beams are free to move in the x-

direction, the membrane force vanishes, and hence the problem is linear for that case.  It 

is when the ends are fixed with respect to in-plane translation that the nonlinear terms are 

pertinent.   

The solutions to the linearized versions of Eqs. (56a)-(56d) are obtained by direct 

integration, giving 
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The constants of integration a1-a4, b1-b4, c1-c4, and d1-d4 are found by imposing the 

boundary and matching conditions for transverse motion given by Eqs. (57)-(61). 

In contrast, the full geometrically nonlinear response is found by solving the 

ordinary differential equations, Eqs. (56a)-(56d), giving 
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where we define 
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Recall that the membrane force N0 vanishes when the ends are free (and hence the 

problem is linear).  However, for the case of fixed ends, N0 is an unknown, and is found 

via the integrability condition. 
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3.2 The Contact Zone 

The existence of a contact zone will influence the behavior of the evolving 

structure.  In this region, the baseplate and the patch are in sliding contact, yet transverse 

displacements are still equal.  To determine if a contact zone exists, Bottega (1995) 

solves for the contact stress in S2 

 σ2 = - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

c

p

D
D

p  (78)   

This expression is equal to a negative constant.  Clearly, when p = 0, σ2 = 0, however, the 

class of problem considered does indeed include an applied pressure.  When this pressure 

term is present, a contact zone exists if the curvature in region S2 is negative.  Figure 6 

shows such a deflection of the structure. 

 

Figure 6.  Half-span deflection of structure with a contact zone 
 

It is proven in Bottega (1995) that for structures of this class, if a contact zone exists, it is 

a full contact zone, or at most edge-point contact.  That is, independent propagation of the 

contact zone is not an issue in this study. It is also proved for such structures, that a 
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contact zone only exists for the case of clamped-fixed supports.  Due to the effects of a 

temperature difference, however, we may expect a contact zone to be present for the case 

of free ends, depending on the sense of the deflection.  The existence of this contact zone 

affects the predicted behavior of the delaminating structure. 

 

3.3 Delamination Growth Paths 

  The goal of this analysis is to assess the delamination propagation for the 

structure under various loading scenarios.  This will be done by examination of the 

delamination growth paths for the system of plates.  These “paths” are curves that 

correspond to values of the bond zone boundary associated with equilibrium 

configurations of the evolving structure.  From these one can predict the onset, extent and 

stability of delamination of the two plates.  We examine the delamination growth paths 

with respect to the applied load, displacement, as well as the stiffness of the structure.  

The curves are such that we can determine, depending on the initial size of the flaw, a0*, 

when debonding will begin based on the applied pressure and temperature field, and the 

centerspan deflection.  We can also determine, based on the shape of the curves, if the 

ensuing delamination will be stable, unstable, or catastrophic.  These results have 

profound implications on the design and effectiveness of such patched structures.  

           

3.4 Linear Model 

We begin the linear analysis by imposing the linear versions (i.e. those excluding 

the wN ′  terms) of the boundary and matching conditions for the transverse deflection (as 

described at the end of Section 2.3) on the governing equations given by Eqs. (75a)-
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(75d).  This will give a system of 16x16 equations, with 16 unknowns.  From here, a 

numerical analysis is performed using MATLAB (see Appendix).  The program requires 

that the material parameters (E0, αp, and γ) be prescribed at the outset, and then cycles 

through all values of the bond length a within a certain step size on [0, 0.9].  In addition, 

to explore the effect of a temperature change on the pressure loaded plates, Θ will be 

prescribed.  The free end programs use the transversality equation to solve for p as a 

function of a (and hence a*), and the integrability condition to solve for the edge-point 

in-plane deflection.  Should the centerspan deflection be negative, we run a “contact 

zone” version of the same program.  The fixed-end programs use the integrability 

condition to express N in terms of p, and then the appropriate transversality equation (Eq. 

(62a) for a contact zone, Eq. (62b) for no contact zone) to solve for p.  (It should be noted 

that the nonlinear integral term in the integrability condition (Eq. (72)) is neglected for 

the linear model.)  For the problem of clamped-fixed ends, the program tests to see if a 

contact zone solution is valid for the given set of constraints, based on the arguments 

given in Section 3.2.  From these programs we can import the output data into Microsoft 

Excel to obtain the desired plots of λ vs. a*, ∆ vs. a*, and K vs. a*.   These plots show 

when we expect delamination growth to occur for a given loading or displacement of the 

structure, based on the initial size of the flaw.  They also show the extent of growth, and 

whether the growth is stable, unstable, or catastrophic.  In addition, they will show the 

effect of varying the prescribed parameters, as well as the influence of a temperature 

change on the delamination behavior of the system.   
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3.5 Geometrically Nonlinear Model 

Since introducing nonlinearities greatly increases the complexity of the system, 

the approach must be modified here.  First, the full nonlinear boundary and matching 

conditions (developed in Section 2.3), as well as the integrability condition (developed in 

Section 2.5), are applied to the full nonlinear solutions (Eqs. (76a)-(76d)) of the 

governing differential equations.  This produces a system of 16x16 equations, which is 

solved analytically, with the aid of Maple (see Appendix).  From this solution we obtain 

the constants of integration as functions of the given parameters as well as the pressure 

and temperature field.  These expressions are then substituted into the appropriate 

transversality equation and the full nonlinear integrability condition.  These two 

equations are combined and give a function of both N0 and p.  The computations are then 

performed, using MATLAB.  The MATLAB program for this case is similar to its linear 

counterpart in that all the prescribed parameters are to be entered at the beginning.  Once 

all the basic parameters are found, the next step is to cycle through values of the bond 

length a.  In this loop, values of N0 are cycled and the built-in root-solving function 

“fzero” is used on the function of p and N0 to find solutions for p.  Once a solution is 

found, it is saved along with the corresponding values of a and N0, as well as the 

centerspan deflection w1(0).  For the case of a contact zone, the validity of the solution is 

also tested again based on the arguments presented in Section 3.2.  Once the data is 

collected, the same procedure is performed as was done for the linear case – to obtain the 

delamination paths as functions of the flaw size a*.  It is from this point that we can make 

comparisons between the results corresponding to the linear and the nonlinear solutions.  

Figure 7 shows a general schematic of the process for both linear and nonlinear models. 



39 

 

Figure 7.  General schematic depicting the algorithms for solving the linear and nonlinear models 
 

Chapters 4 and 5 present results in the form of load-deflection curves and the 

delamination growth paths obtained from the preceding analysis.  The growth paths will 

be shown in terms of applied pressure and center-span deflection.  The structural 

degradation is also characterized (for the linear model) by the corresponding curves of 

the effective stiffness of the evolving structure. Chapter 4 details the results obtained 

from the linear model, while Chapter 5 contains results from the nonlinear model.                      



40 

Chapter 4 

Results Based on the Linear Model 

4.1 Preliminary 

The purpose of this investigation is to model the delamination of patched 

structures under thermo-mechanical loads and assess characteristic behavior.  This is 

facilitated by the production and interpretation of the corresponding delamination 

“growth paths.” These paths are plotted for various configurations of the patched plate 

system.  In this chapter we will examine the results of the linear analysis.  

    

4.2 Interpreting the Delamination Growth Paths 

Figure 8 depicts a generic delamination growth path.  We can conclude a great 

deal about the behavior of the structure by examination of such a path.  

 

Figure 8.  A generic delamination growth path 
 
This path is plotted for the loading parameter λ  (see Section 4.3) as a function of the 

conjugate bond zone size, a*.  Increasing conjugate bond size represents increasing 



41 

delamination size.  The curve represents a threshold: the point at which the loaded 

patched plate assembly begins to delaminate.  Each point on the path corresponds to an 

equilibrium configuration associated with the critical energy release rate, G = 2γ.  The 

shape of the curve also gives information as to the stability and extent of delamination 

growth.   

The stable region (as shown in the figure) corresponds to the section of the path 

with a positive slope.  The structure begins to delaminate when the loading curve 

intersects the delamination growth path.  Consider the loading path for a structure 

beginning with an initial flaw a0* denoted by point A on Figure 8.  It is loaded until 

reaching the delamination growth path at point B.  The structure will not delaminate any 

further at point B, due to the increasing slope in the growth path. The load must be 

increased in order for the damage to grow.  An increment in load produces a likewise 

increment in delamination, and hence, growth is stable. 

In the unstable region (negative slope), no additional loading is required for damage 

to propagate.  The onset of unstable delamination growth begins upon reaching a certain 

critical load, and continues at the same load level, until a stable configuration is reached.  

Now consider the loading path beginning at the initial flaw designated by point C on 

Figure 8.  It is loaded until reaching the delamination growth path at point D.  For that 

specific load designated by point D on the curve, the structure will exhibit unstable 

debonding along the path DE.  It is at point E where delamination growth becomes stable, 

and additional loading is necessary for delamination growth to propagate any further.  

Catastrophic delamination growth occurs when there is no stable configuration possible 

at the critical load level, and the delamination propagates the full extent of the patch.  For 
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example, consider loading a structure that has an initial flaw denoted by point F.  The 

structure remains intact, until the loading path intersects the delamination path at point G, 

upon which delamination begins.  This is catastrophic delamination growth, as the 

loading path cannot intersect a stable equilibrium position on the growth path again.   

Delamination growth paths can also be expressed in terms of a characteristic 

deflection.  Growth can then be predicted using similar arguments to those above, for 

displacement controlled loading.  It is via these interpretations that we may predict the 

onset, extent, and stability of delamination growth in such a structure, given its initial 

flaw size.  In addition, the deterioration of the structure can be quantified by monitoring 

the corresponding change in global stiffness at the critical level as the conjugate bond 

size increases.   

 

4.3 System Parameters 

To illustrate characteristic behavior, we will consider representative structures for 

which the transverse thicknesses of the baseplate and patch will be taken as h = hp = 0.05.  

(All of the parameters are normalized as shown in Section 2.1).  For the thermal 

parameters, we consider representative thermal expansion coefficient mismatches, such 

that αp = 0.5 or 2.  The latter represents the case when the baseplate has twice the thermal 

expansion coefficient of the patch, and vice versa for the former.  (This is to observe the 

effect of thermally induced stresses of the patch and baseplate in addition to the 

mechanical stresses due to the applied transverse pressure.)  For the present analysis, the 

loading parameter λ will be the applied pressure, acting on the lower surface of the 

baseplate.  Hence,  
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 p=λ   (79) 

Since we formulated our problem using a “positive down” sign convention, the 

characteristic deflection ∆ is defined as the negative of the transverse center-span 

deflection, to be consistent with the direction of the applied mechanical load. That is, 

 )0(1w−=∆   (80) 

Using this definition of characteristic deflection, the delamination growth paths for 

displacement may be interpreted as such: positive values indicate deflection up, while 

negative values indicate deflection down.  We can also define a global stiffness as the 

ratio of the loading parameter to the characteristic deflection 
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=
∆
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Should the structure experience a change in the sign of the deflection, it will be 

manifested as an asymptote in the stiffness plot.  This will occur at the critical value of 

the initial flaw size such that the deflection crosses zero in changing to the opposite 

sense.  The stiffness plot only applies to the linear model.       

The ratio of elastic moduli E0 and energy release rate 2γ will be studied for 

differing orders of magnitude.  The bond strength γ can be interpreted as the energy 

required to produce one unit area of delamination.  The total bond strength (or 

“toughness”) is 2γ since there are two surfaces being created as delamination progresses.  

The energy release rate at the threshold of delamination propagation is equal to the total 

bond strength (see Section 2.4). The applied uniform temperature field Θ will be varied 

since we wish to explore the effect of temperature change on delamination behavior due 

to applied transverse pressure.  Results corresponding to the linear model will be 
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presented in this chapter, followed by those associated with the geometrically nonlinear 

model in the following chapter. 

 

4.4 Results  

4.4.1 Hinged-Free End Supports 

We begin by examining the simplest case: results based on the linearized 

equilibrium equations for the patched plate with hinged-free ends. 

   

Pure Pressure Loading, Θ = 0 

Figure 9 shows the delamination growth paths comparing the effect of different 

orders of magnitude on E0, when there is no thermal load present, and 2γ = 0.1.  
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Figure 9. Delamination growth paths and stiffness degradation for hinged-free ends without applied 
thermal load, 2γ = 0.1 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
We observe the effect of increasing the modulus ratio for a structure under these 

conditions from Figure 9.  It is seen that increasing E0 lowers the threshold for 
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delamination growth for a load or displacement controlled test (Figures 9a and 9b).  Since 

the modulus ratio is defined as the elastic modulus of the patch to that of the baseplate, 

lesser values of E0 denote a patch that is more compliant (or flexible).  Thus, the patched 

plate assembly can more easily bend as a unit into the deformed shape.  For a stiff patch, 

it is more likely that it will delaminate than bend along with the baseplate.  A stiffer 

structure has more “pent up” strain energy.  Since we are examining cases where the 

energy release rates are equal, the stiffer structure will reach the critical value at lower 

load levels than the more compliant structure.     

Debonding is catastrophic for the load controlled test, whereas it is unstable (for 

large bond zones) followed by stable (for small bond zones) for a displacement controlled 

test.  In Figure 9b, as the modulus ratio increases, the onset of stable delamination growth 

shifts to the left, representing a smaller initial flaw size for which growth will still be 

stable.  The critical initial flaw sizes (the points at which the growth paths go from 

unstable to stable) are a0* = 0.57, 0.34, and 0.24 for E0 = 0.1, 1, and 10, respectively.     

Upon consideration of Figure 9c it is seen that the largest order of magnitude on 

the modulus ratio (E0 = 10) shows the most extreme deterioration in global stiffness as 

the patch (or bond zone) size decreases, or delamination progresses.  However, when E0 = 

0.1, we see that the deterioration in stiffness is minimal along progressing delamination.  

For lesser values of the flaw size a*, the modulus ratio has a significant effect on the 

global stiffness.  However, as the flaw size increases, the effect of the modulus ratio on 

stiffness is reduced significantly.  This is because a small flaw size corresponds to a large 

bond size for the patch.  Thus, when the patch is large (or mostly bonded), its elastic 

modulus becomes very significant in determining the overall stiffness of the structure.  
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When the patch is very small (or has almost completely debonded), its modulus is less 

significant.  The structure is mostly just the baseplate, with only a small portion affected 

by whatever the modulus is of the patch.        

Figure 10 shows the delamination growth paths for a structure such that E0 = 1, 

and compares the effect of different orders of magnitude on the bond strength 2γ, in the 

absence of a thermal load.             
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Figure 10.  Delamination growth paths for hinged-free ends without applied thermal load, E0 = 1 a) λ 
vs. a*, b) ∆ vs. a* 
 
As one might anticipate, increasing the bond strength greatly increases the threshold for 

delamination growth for a load or displacement controlled test.  A greater strength of 

bond would obviously require a greater load or displacement to separate the layers.  We 

observe unstable debonding for all cases of load controlled specimens. Once again for 

displacement controlled specimens, we see unstable followed by purely stable 

delamination growth, centered around a0* = 0.34.  The onset of stable growth occurs at 

the same point for all three curves, since only the order of magnitude of each parameter is 

affected by the change in bond strength.  The bond strength has no effect on the global 

stiffness of the structure. 
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Effect of Uniform Temperature Field 

The next phase is to study the effect of a uniform temperature field applied in 

addition to the already present transverse pressure.  Recall the temperature scale is that 

used by Rutgerson and Bottega (2002) and is detailed in Section 2.1.  Figure 11 compares 

delamination growth paths for various values of the applied temperature field, both 

positive and negative.  In this figure, αp = 0.5; also E0 = 1 (to isolate the temperature 

effects) and 2γ = 0.1.   
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Figure 11.  Delamination growth paths and stiffness degradation for hinged-free ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 0.5 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
When αp = 0.5, this corresponds to the baseplate having twice the coefficient of thermal 

expansion than that of the patch.  Since we are considering a hinged-free specimen, there 

CZ 

CZ
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is a possibility of a contact zone.  We observe in Figure 11b that for greater values of a 

positive temperature field, the deflection occurs in the opposite sense, down.  Deflection 

in this sense suggests the presence of a contact zone, where the patch and baseplate 

remain in sliding contact.  If the structure deflects up, we would expect no contact zone, 

since there will be zero curvature outside of the bond zone, due to the hinged ends.  In 

this case, a hinged-free specimen will deflect down depending on the magnitude and sign 

of the temperature field.  When αp = 0.5, a positive temperature difference causes the 

baseplate to expand more than the patch, and since the ends are free to translate in the in-

plane direction, the structure will deflect down.  This opposes the direction of the applied 

transverse pressure.  For this particular case, we see this behavior for Θ = 0.03 and the 

portion on the curve where a contact zone is present is denoted by “CZ” in the figure.  

The gap in the path indicates where the contact zone is no longer present.         

At first glance it appears that heating the structure lowers the thresholds for 

delamination, while cooling achieves the opposite effect.  However, this trend is not 

entirely observed in Figure 11a, where the curve representing Θ = -0.03 is actually at 

lower values than the case of no thermal load.  The effect of a temperature difference is to 

induce thermal stress, which results in bending-stretching coupling in the bond zone.  The 

structure bends more readily due to the thermal moment than the mechanical moment.  

This can have a profound impact on the delamination behavior, as indicated by the plots.  

The aforementioned “trend” is also observed in Figure 11b, until approximately a* = 

0.78.     

 The opposite deflection is evident in the stiffness plot, Figure 11c, as the curve 

for Θ = 0.03 shows an asymptote where the sign of the deflection changes.  Beyond this 
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asymptote, we see that structure is stiffer with a more positive temperature field, since the 

deflections are positive.     

 Figure 12 shows the delamination growth paths for a system under the same 

conditions as Figure 11, however the ratio of coefficients of thermal expansion is taken to 

be αp = 2.  This means that the patch has a thermal expansion coefficient twice that of the 

baseplate.  Thus, the patch is more responsive to the presence of the temperature 

difference.  The growth paths are shown for varying thermal loads. 
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Figure 12.  Delamination growth paths and stiffness degradation for hinged-free ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 2 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
For the most part, we observe the opposite trends to those established for Figure 11a in 

Figure 12a.  Figure 12b shows both delamination paths for a negative temperature field 

CZ 

CZ
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exhibit deflection in the opposite sense, again suggesting that there is a contact zone 

present.  Negative temperature fields may cause the structure to deflect downward; the 

reverse effect of when the baseplate has the greater coefficient of thermal expansion.  The 

existence of a contact zone is once again denoted by the curves being labeled with a 

“CZ”.  Unlabeled curves indicate that there is no contact zone present.  The portions of 

the growth paths for which contact occurs are separated from the other case by the gaps 

in the plots.  Figure 12c shows how the stiffness changes due to these thermal effects, 

where the asymptotes are once again indicative of a change in the sense of deflection of 

the structure.     

 To establish a sense of the delamination growth path as it pertains to the regular 

quasi-static loading curve of such a structure, we superimpose the former onto the latter.  

Figure 13 depicts the load-deflection curve for the patched plate structure when E0 = 1, 2γ 

= 0.1, αp = 0.5. 

(a)

0

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

∆

λ Θ=−0.03

 

Delamination growth path 

Load vs. deflection curve 



55 

(b)

0

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

∆

λ

Θ=−0.01

 

(c)

0

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

∆

λ

Θ=0

 



56 

(d)

0

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

∆

λ

Θ=0.01

 

(e)

0

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

∆

λ

Θ=0.03

 



57 

(f)

0

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

∆

λ

Θ=−0.03

Θ=−0.01

Θ=0

Θ=0.01

Θ=0.03

 

Figure 13.  Load vs. deflection curves and corresponding delamination growth paths for hinged-free 
ends, E0 = 1, 2γ = 0.1, αp = 0.5, a) Θ =-0.03, b) Θ =-0.01, c) Θ = 0, d) Θ =0.01, e) Θ =0.03, f) summary 
 
The load vs. deflection line is plotted for an initial conjugate bond zone (flaw) size of a0* 

= 0.5.  The loading path intersects the delamination growth path at the corresponding 

value of the loading parameter λ previously established for that initial value a0* = 0.5.  

The point where the two paths intersect represents the onset of delamination for the 

structure.  The value of the flaw size decreases along the delamination path as it is 

traversed in a counterclockwise fashion, from left to right.  The offsets from zero 

deflection of the loading paths observed at λ = 0 are due to the presence of the 

temperature fields.  As shown in Figure 13f, in the absence of pressure, the negative 

thermal load causes the hinged-free structure to deflect up, and vice versa.   

 In the following section we will explore delamination behavior for the case of 

clamped-free end supports. 
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4.4.2 Clamped-Free End Supports 

We now add the restriction that the structure may not rotate about its end 

supports; however, the ends may still translate freely in the in-plane direction.  Since the 

ends are free, we expect no contact zone, unless the deflection should occur in the 

negative direction.   

  

Pure Pressure Loading, Θ = 0 

Figure 14 shows the delamination paths for this case comparing the effect of 

different orders of magnitude of E0, when there is no thermal load present, and 2γ = 0.1. 
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Figure 14.  Delamination growth paths and stiffness degradation for clamped-free ends without 
applied thermal load, 2γ = 0.1 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
Figure 14 suggests that, like the hinged-free case, increasing the modulus ratio decreases 

the threshold for the onset of delamination.  However, in this case we observe peaks 
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separating regions of stable and unstable delamination growth on Figures 14a and 14b.  

What is interesting regarding the peaks is that we may now observe the phenomena of 

stable debonding followed by catastrophic debonding.  Take for example, a clamped-free 

patched plate with an initial flaw size located somewhere to the left of the peak.  Upon 

loading up to the delamination growth path, we will first achieve stable delamination 

growth.  As the loading increases and the structure evolves, we will eventually reach the 

apex of the peak, upon which the structure suddenly delaminates catastrophically.    

Upon loading up to the delamination curve from a position after the peak, the 

structure will delaminate catastrophically, unless it intersects the growth path again at a 

greater value of a*.  If that occurs, then stable debonding resumes (this occurs in Figure 

14b).  These are the scenarios depicted by Figure 8 of Section 4.2.  The effect of order of 

magnitude on the modulus ratio is to shift the peaks to the left and lower the amplitude as 

the modulus ratio increases.  Thus, depending on the initial flaw size, catastrophic 

delamination growth begins much sooner for a very stiff structure.  This reflects that 

delamination growth onset occurs at lower values of the loading parameter.  This is 

because of the increased strain energy stored in the stiffer structure.  The global stiffness 

degradation curve (Figure 14c) is similar to its hinged-free counterpart, Figure 9c.   

Figure 15 shows the effect of the order of magnitude of the bond strength, 2γ, on 

the delamination behavior of the structure, when E0=1.    
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Figure 15.  Delamination  growth paths for clamped-free ends without applied thermal load, E0 = 1 a) 
λ vs. a*, b) ∆ vs. a* 
 
The bond strength does not alter the position of the peaks on Figures 15a and 15b; rather, 

it alters the magnitude.  The threshold of delamination increases as the bond strength 
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increases for a load or displacement controlled specimen.  Again, we observe peaks in the 

growth paths, which can be interpreted as in Figure 14.  Like the hinged-free specimen, 

the order of magnitude of the bond strength has no effect on the global stiffness of the 

system.  

  

Effect of Uniform Temperature Field 

Following here we now examine the delamination behavior of the clamped-free 

structure exposed to applied transverse pressure as well as a uniform temperature field.  

Figure 16 compares delamination growth paths for positive and negative temperature 

fields.  For this comparison, αp = 0.5; also E0 = 1 and 2γ = 0.1 
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Figure 16.  Delamination growth paths and stiffness degradation for clamped-free ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 0.5 a) close-up of the peaks of λ vs. a*, b) close-up of the peaks of 
∆ vs. a*, c) K vs. a*, d) general λ vs. a*,  e) general ∆ vs. a* 
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In contrast to the hinged-free case, we once again observe peaks in the delamination 

growth paths for a clamped-free specimen.  Negative temperature fields shift the peaks up 

and to the right, but again, nonmonotonically.  So, initial flaw size may be larger before 

catastrophic delamination begins, in the presence of such a field.  Positive temperature 

fields shift the peaks down and to the left.  The onset of catastrophic delamination will 

occur sooner for the structure subject to a positive temperature field.  All peaks occur in 

the close vicinity of a critical value  a* = 0.2.  As evidenced by the plots depicted in 

Figures 16d and 16e, the behavior differs before and after that critical value of the flaw 

size is passed.  It also appears that stable delamination growth is recovered for much 

smaller initial flaw size values for the displacement controlled specimen, in comparison 

to the load controlled.  The temperature field also plays a role in the recovery of stable 

delamination.  For instance, if a structure with a0* = 0.5 is displaced to the point of 

delamination growth, the stability depends on the temperature change.  If Θ = 0.12, the 

delamination growth is already stable.  If, however, Θ = -0.12, the growth is unstable, and 

will not become stable again until the flaw has progressed to about a* = 0.7.  This is a 

significant difference, and a very important consideration for designing with such a 

structure.   

The stiffness degradation curve (Figure 16c) also shows the area around a* = 0.2 

to be critical.  In the vicinity of this point, the stiffnesses for varying temperature 

differences seem to converge.  Away from this point, the positive temperature fields 

create a stiffer structure, and vice versa.  All plots approach the same limit as 

delamination propagates.    
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Figure 17 explores the effect of changing the thermal expansion coefficient ratio 

to αp = 2.  (Also for the parameters E0 = 1 and 2γ = 0.1)                 
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Figure 12.  Delamination growth paths and stiffness degradation for clamped-free ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 2 a) close-up of the peaks of λ vs. a*, b) close-up of the peaks of ∆ 
vs. a*, c) K vs. a*, d) general λ vs. a*,  e) general ∆ vs. a* 
 
The change in the ratio of coefficients of thermal expansion reverses the trends observed 

in Figure 16.  Positive temperature fields shift the peaks slightly up and to the right, 

whereas positive temperature fields shift the peaks down and to the left.  All peaks again 

occur near a* = 0.2.  In Figures 17d and 17e, positive temperature fields are seen to lower 

the threshold for delamination before the peaks, and raise it after the peaks.  Similar 

trends in stability are observed for Figure 17 in comparison to Figure 16, the difference 

being the reverse effect of a temperature change. 

Figure 18 shows the load-deflection curve superimposed onto the delamination 

growth path in λ-∆ space for each temperature field presented from Figure 16.  The 

parameters are taken as E0 = 1, 2γ = 0.1, and αp = 0.5.  They are also plotted with an 

initial flaw size of a0* = 0.5.     
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Figure 18.  Load vs. deflection curves and corresponding delamination growth paths for clamped-
free ends, E0 = 1, 2γ = 0.1, αp = 0.5, a) Θ=-0.012, b) Θ =-0.01, c) Θ = 0, d) Θ =0.01, e) Θ =0.012, f) 
summary 
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The interpretation of Figure 18 follows from that of Figure 13.  In Figure 18f a similar 

offshoot from zero deflection is observed that is the effect of the thermal load, even in the 

absence of pressure.  (Note: the load vs. deflection curve and the delamination growth 

path do not intersect at all in the vicinity of ∆ = 0.02 in Figure 18a) 

   

4.4.3 Hinged-Fixed End Supports 

The following section studies the structure with hinged supports, however, this 

time with the added restriction that the ends of the structure are not free to move in the in-

plane direction.     

 

Pure Pressure Loading, Θ= 0 

Figure 19 shows a comparison of the delamination growth paths subject to 

different values of the elastic modulus ratio, when there is no temperature field present 

and 2γ = 0.1.  
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Figure 19.  Delamination growth paths and stiffness degradation for hinged-fixed ends without 
applied thermal load, 2γ = 0.1 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
The trends observed in Figure 19 for hinged-fixed ends are similar to those observed in 

Figure 9 for hinged-free ends.  Smaller values of the modulus ratio are seen to raise the 

threshold of delamination in Figures 19a and 19b.  The load controlled test shows 

unstable delamination growth for all initial flaw sizes, while a displacement controlled 

test shows either unstable followed by stable growth, or purely stable growth, depending 

on the initial flaw size.  It is also seen from Figure 19b that if the modulus ratio is high 

enough, the delamination will be stable for almost all initial flaw sizes.  Figure 19c may 

be interpreted the same as Figure 9c.      

Figure 20 shows the effect of the bond strength on the delamination behavior of 

the hinged-fixed specimen in the absence of a temperature field and when E0=1.  Trends 

are similar to those seen for the hinged-free case in Figure 10.      
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Figure 20. Delamination growth paths for hinged-fixed ends without applied thermal load, E0 = 1 a) λ 
vs. a*, b) ∆ vs. a* 
 
Greater values of the bond strength expectedly increase the thresholds for delamination.  

A load controlled specimen delaminates in an unstable manner, regardless of the initial 
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flaw size, whereas the displacement controlled specimen will experience unstable 

followed by stable delamination depending on the size of that flaw.  The magnitude of the 

bond strength serves only to alter the amplitude of the delamination path.  The stiffness is 

unaffected by the bond strength. 

 

Effect of Uniform Temperature Field 

Figure 21 is a plot of the delamination growth paths for hinged-fixed ends under a 

uniform temperature field as well as transverse pressure.  These paths are plotted for 

parameters E0 = 1, 2γ = 0.1, and αp = 0.5.  For hinged ends, we do not expect a contact 

zone unless the deflection is downward.        
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Figure 21.  Delamination growth paths and stiffness degradation for hinged-fixed ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 0.5 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
Unlike the case of hinged-free end supports, in Figures 21a and 21b we observe that 

positive temperature fields actually increase the delamination threshold, and negative 
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fields decrease it.  Debonding is almost entirely unstable for a load controlled specimen, 

save for the case of Θ = -0.03.  The delamination growth for this case is unstable 

followed by stable.  The structure is much more restricted now, since it can not move in 

the in-plane direction.  So, in this case, when a positive temperature difference is applied, 

the baseplate will expand.  However, since the ends are fixed, this generates a 

compressive membrane force in the baseplate.  This causes bending-stretching coupling 

at the reference surface in the bonded region, and hence, upward deflection.  When the 

temperature difference is negative however, the baseplate will contract.  The fixed ends 

will then create a tensile membrane force, which ultimately results in the reverse 

deflection.  This is reflected in Figure 21b for the characteristic deflection.  This also 

suggests the presence of a contact zone.  Our research on this particular case indicates 

that the behavior is more complex however; as it seems to imply that the structure may 

exhibit a propagating contact zone boundary.  This requires additional future study to 

further confirm.  The opposite deflections are also noted in the stiffness plot, Figure 21c.  

The asymptotes occur due to the change in sign of deflection.     

Figure 22 presents the reverse scenario from Figure 21 for the ratio of thermal 

expansion coefficient (i.e. αp = 2).   
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Figure 22.  Delamination growth paths and stiffness degradation for hinged-fixed ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 2 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
  
The trends observed actually follow the trends observed in Figure 21.  That is, it appears 

that the thermal expansion coefficient ratio does not alter the trend of the more negative 

thermal loads greatly decreasing the thresholds of delamination growth.  It is interesting 

to note that the λ delamination growth path for Θ = -0.01 is entirely negative.  So the 

structure will delaminate before the transverse pressure can even be applied.  The 

temperature field is strong enough by itself to cause delamination propagation.   

We once again observe that the structure deflects downward for certain values of 

the initial flaw size.  This also suggests that a contact zone is present.  Again, our tests 

show us that the behavior is rather complex, and must be further analyzed before it can be 

truly characterized.  This is unlike the hinged-free case, where the reciprocal values of the 

thermal expansion coefficient produced reverse trends.  Again, this is due to the fixed-
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ends, which cause a membrane force to be generated when the structure expands or 

contacts.  This membrane force affects the sense of how the structure can deflect.       

Figure 23 presents a comparison of delamination growth paths for hinged-free 

ends and hinged-fixed ends.  The parameters are taken as E0 = 1, 2γ = 0.1, and αp = 0.5.   
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Figure 23.  Comparison of delamination growth paths and stiffness degradation for hinged-free and 
hinged fixed ends, where E0=1, 2γ=0.1, and αp=0.5 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
The plots show that the effect of temperature on the structure is dependent on the type of 

support conditions for these parameters.  For free ends, the more positive temperature 
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field lowered the delamination threshold, while the more negative temperature field 

raised it.  The trend is reversed for the fixed ends.  The positive temperature field causes 

the hinged-free structure to deflect down, whereas it causes the hinged-fixed structure to 

deflect up.  This is because the thermally induced compressive membrane force creates a 

mechanical moment in the bond zone, which is further amplified by the thermal moment 

in that same zone.  This seems to render the hinged-fixed structure more compliant, while 

it renders the hinged-free structure less compliant, thus affecting the thresholds for 

delamination growth.           

Figure 24 shows the load vs. deflection curve and delamination growth paths for 

all temperature fields presented in Figure 21.  The initial flaw size is taken to be a0* = 

0.5.  All parameters are the same as in Figure 21.  Again, the interpretation follows from 

Figure 13.    
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Figure 24.   Load vs. deflection curves and corresponding delamination growth paths for hinged-
fixed ends, E0 = 1, 2γ = 0.1, αp = 0.5, a) Θ=-0.012, b) Θ =-0.01, c) Θ = 0, d) Θ =0.01, e) Θ =0.012, f) 
summary 
 
From Figure 24f it can be seen how the positive temperature field greatly increases the 

threshold for delamination growth.  We can also see the effect of temperature in the 

absence of pressure; recognized as the offset of the load-deflection curve at the zero point 

of pressure.  The offsets are reversed with respect to what was observed in Figure 13.  

Since αp = 0.5, the baseplate has twice the thermal expansion coefficient of the patch, and 

hence expands under a positive temperature field more than the patch.  Since the ends are 

fixed, the baseplate cannot expand, which results in a compressive membrane force.  In 

the bond zone, there is a bending-stretching coupling effect at the reference surface.  This 

is depicted in Figure 25.  The effect is to deflect upward.  Under a negative field, there is 

a resultant tensile force, and the deflection is downward. 
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Figure 25.  Bending-stretching coupling in the bond zone due to thermal expansion with fixed ends  
          
    

4.4.4 Clamped-Fixed End Supports 

In the following section we study the structure with clamped supports, however, 

this time with the added restriction that the ends of the structure are not free to move in 

the in-plane direction.  It is in this case that we examine the effect of the presence of a 

contact zone (See Section 3.2).  For this case we take the patch size to be Lp = 0.9.  This 

parallels the structure studied by Bottega (1995), who proves that for a patched plate 

under mechanical loading, the contact zone is full (b = Lp), or nonexistent (b = a).  The 

validity of the contact zone solution must be verified, and this is done by imposing the 

condition that the curvature in Region S2 is negative, which is consistent with our sign 

convention. 

        

Pure Pressure Loading, Θ= 0 

Figure 26 shows a comparison of the delamination growth paths subject to 

different values of the elastic modulus ratio, when there is no temperature field present 

and 2γ=0.1.  For this case of zero temperature, the equilibrium configurations with a full 

contact zone were found for values of a* on [0.1, 0.33] for E0 = 0.1, and on [0.1, 0.19] for 

E0 = 1.  No equilibrium configurations with a contact zone were found for E0 = 10.  This 
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suggests that as the structure becomes more compliant, contact is more likely to occur.  A 

more flexible structure is likely to be able to bend in a way that promotes the contact 

zone, in other words, in a way such that the curvature “opens up” in region S2, as shown 

in Figure 25.          
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Figure 26.  Delamination growth paths and stiffness degradation for clamped-fixed ends without 
applied thermal load, 2γ = 0.1 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
It is to be assumed that no contact zone is present on the curves unless indicated by a 

“CZ.”  The paths are separated by gaps to represent at which point along the evolving 

CZ 

CZ 
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structure the portion of the patch in contact with the baseplate lifts off.  Once again these 

paths are plotted for the case when 2γ = 0.1.  We observe a shift to the left in the peaks of 

the delamination growth paths, to the point that there is no peak in the domain for E0 = 

10.  Growth is stable until reaching the peak, after which it will be unstable.  Stable 

growth is seen to be recovered for a range of initial flaw sizes after the peak in the 

displacement controlled test.  It is seen that, like the other cases considered to this point, 

the more compliant structure has a lower threshold for delamination growth based on the 

loading parameter and characteristic deflection.  Once again, the global stiffness 

degradation can be interpreted in an identical fashion to Figure 9c.   

Figure 27 shows the comparison of delamination growth paths for different bond 

strengths, again in the absence of a temperature field.  The contact zone is present for 

[0.1, 0.19] for this case.  All points on the plots to the left of the dotted line indicate 

where the contact zone is present.  The bond strength does not affect the existence of the 

contact zone, for this linear solution.   
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Figure 27.  Delamination growth paths and stiffness degradation for clamped-fixed ends without 
applied thermal load, E0 = 1 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
From Figures 27a and 27b, the effect of increasing the bond strength is to increase the 

threshold of delamination growth.  This is expected, as is the path in Figure 27c.  

Although the bond strength does not affect the global stiffness, it has been included in 

Figure 27 to highlight the effect of the contact zone.   The contact zone is evident by the 

jump in the stiffness plot at a* = 0.19 in Figure 27c.  It makes the structure stiffer in that 

region.  This is because the plates are touching for a greater range, which clearly would 

be stiffer than the baseplate alone.   

    

Effect of Uniform Temperature Field  

The following series of plots explores the effect of a uniform temperature field in 

addition to the transverse pressure.   When αp = 0.5, a contact zone is present on the 

domain [0, 0.19] on a*, for all values of Θ.   This seemingly suggests that the existence 

CZ 
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of the contact zone is independent of the temperature; however, in the following section 

we will see that this is not the case.  As usual, for Figure 28, we consider structures for 

which E0 = 1 and 2γ = 0.1.  Again, the contact zone is present on the left of the dotted 

line.  As delamination grows, the patch lifts off the baseplate, to the point where it no 

longer touches at all.     
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Figure 28.   Delamination  growth paths and stiffness degradation for clamped-fixed ends with 
applied thermal load, E0 = 1, 2γ = 0.1, αp = 0.5 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
There are peaks on the delamination growth paths in Figures 28a and 28b that increase 

dramatically with increasingly positive temperature fields.  For the loading controlled 
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test, it is seen that for initial flaw sizes greater than about 0.3, all temperatures increase 

the threshold of delamination growth.  For the displacement controlled test, the more 

negative temperature fields decrease the thresholds, whereas the positive increase them.  

The specimens experiencing a temperature field all approach the same limit for stiffness 

as the bond zone gets smaller.   

 Figure 29 presents the opposite case of Figure 28, when αp = 2.  The presence of a 

contact zone differs vastly from that of the previous case.  No contact zone exists when 

the temperature fields are negative, and the domain increases with increasing positive 

temperature fields.  Recall that the contact zone is present for the domain [0, 0.19] on a* 

in the pure pressure case.  When Θ = 0.003, the domain of contact is [0, 0.38], and when 

Θ = 0.005, the domain of contact is [0, 0.6].  The positive temperature values cause the 

structure to deflect upward while rendering it more compliant, thus producing a curvature 

in region S2 that is conducive to a contact zone.  

 The effects of the contact zone are apparent on the delamination growth paths.  

There are large discontinuities, as the presence of the contact zone lowers the 

delamination growth thresholds significantly.  The portions of the plot marked “CZ” 

indicate a contact zone occurs there.  We see for the case of αp = 2, the linear model 

appears to break down for portions of the delamination growth paths.  This could 

possibly mean arrest of all growth in those regions.                
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Figure 29.  Delamination growth paths and stiffness degradation for clamped-fixed ends with applied 
thermal load, E0 = 1, 2γ = 0.1, αp = 2 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
In Figure 29a, flaw sizes greater than 0.6, the more positive thermal loads decrease the 

threshold of delamination growth.  This trend is halted by the presence of the contact 

zone for the positive values of Θ.  We also see more negative values of the loading 

parameter on the delamination path.  This again suggests that delamination growth occurs 

solely due to the thermal load, in the absence of pressure.  In Figure 29b, the 

displacement controlled test, the opposite effect is observed post a* = 0.6.  The 

asymptotes in the stiffness plot are once again due to the change of sign in the deflection 

plots.  We also observe that the delamination growth paths approach the same stiffness 

limit as the patch size decreases.    

 Figure 30 shows the effect that the end supports have on the system. It is a side-

by-side look at the delamination paths of clamped-free ends and those of clamped-fixed 

CZ 
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ends.  These are plotted for αp = 0.5, E0 = 1, and 2γ = 0.1.  A contact zone is present for 

the fixed end case to the left of the dotted line.   
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Figure 30.  Comparison of delamination growth paths and stiffness degradation for clamped-free and 
clamped-fixed ends, where E0=1, 2γ=0.1, and αp=0.5 a) λ vs. a*, b) ∆ vs. a*, c) K vs. a* 
 
The effect of the fixed ends with a contact zone is to shift the peaks in the path to the left.  

This means that catastrophic delamination growth occurs for larger bonded portions of 

the patch.  We also see that fixing the ends effectively lowers the thresholds for 

delamination growth beyond approximately a0*= 0.2, with the exception of the more 

positive thermal load.  Temperature differences have the reverse effect on the structures, 

like the hinged case.  This is because temperature differences induce opposite deflections 

for free and fixed ends.  The stiffness is increased by fixing the ends; however, the 

thermal effect for the positive temperature field actually causes the fixed end specimen to 

be less stiff than the free end specimen.     

 Figure 31, shows the load vs. deflection curve and delamination growth paths for 

the temperature fields used in Figure 28.  The initial flaw size is taken to be a0*=0.5.  All 

parameters are the same as in Figure 28.   
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Figure 31.  Load vs. deflection curves and corresponding delamination growth paths for clamped 
fixed ends, E0 = 1, 2γ = 0.1, αp = 0.5, a) Θ=-0.005, b) Θ =-0.003, c) Θ = 0, d) Θ =0.003, e) Θ =0.005, f) 
summary 
 



103 

The plots contained in Figure 31 show the typical loading curves as they increase, and 

ultimately, intersect the delamination growth paths.  The interpretation follows that of 

Figure 13.  The directions in which the structure begins to deflect before the transverse 

pressure is applied, is the same as in the hinged-fixed case, which is the reverse of either 

free end case. 

 

4.5  Concluding Remarks 

 We see that various parameters can affect the delamination behavior of the 

patched plate structure.  In the absence of a temperature field, structures that are stiffer 

(i.e. have a high modulus ratio) experience delamination propagation much more easily 

than more compliant structures.  Bond strength of course affects delamination growth as 

well, in a manner that could be expected.  A temperature difference has a profound 

impact on the delamination behavior, which also depends on the support conditions.  We 

also see that including the possibility of a contact zone can alter behavior.  A contact 

zone tends to make a structure stiffer, which will affect the thresholds for delamination 

growth.  A contact zone may be present for the hinged-fixed case, when the deflection is 

opposite to the sense of the applied pressure.  However, our preliminary examination of 

this case is inconclusive, and requires further investigation.  Current results assume the 

contact zone is either full, or nonexistent.  Other configurations may be possible in the 

presence of a temperature field.            

 In the following chapter we present the results obtained from the nonlinear 

analysis.  These will then be compared to the linear results.   
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Chapter 5 

Results Based on the Geometrically Nonlinear Model 

5.1 Preliminary 

Having established the linear response of the system, we now turn out attention to 

the nonlinear response.  The nonlinear response should provide a more complete picture 

of the delamination behavior of the patched plates.  We may then compare and make 

inferences on the results based on the linear and geometrically nonlinear models. Recall 

that the nonlinear response is obtained by way of retaining the )( ′′wN  terms in Eqs. 

(56a)-(56d).  This leads to the solution given by Eqs. (76a)-(76d).  Since the nonlinear 

effect enters the formulation via the membrane force term in the governing equations, and 

since N0 = 0 when the ends are free, there is no effect of nonlinearities on the response.  

In this section we will detail the cases for hinged-fixed and clamped-fixed ends.   

      

5.2 Results 

5.2.1 Hinged-Fixed End Supports 

Pure Pressure Loading, Θ = 0 

We begin by examining the case of hinged-fixed ends.  As mentioned in Chapter 

4, we expect no contact zone, unless the deflection should be down.  Figure 32 shows the 

comparison of the delamination growth paths plotted for various values of the elastic 

modulus ratio, E0.  There is no uniform thermal load present, and 2γ = 0.1. 
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Figure 32.  Nonlinear delamination growth paths for hinged-fixed ends without applied thermal load, 
2γ = 0.1 a) λ vs. a*, b) ∆ vs. a* 
 
Like the previously covered linear cases, we see that in Figures 32a and 32b, the effect of 

decreasing the order of magnitude of the modulus ratio is to raise the threshold for 
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delamination growth. For the load controlled specimen, we see that the nonlinear model 

reveals stable debonding as the flaw size increases.  The nonlinear model introduces 

bending-stretching coupling under compressive loading, which tends to have a stabilizing 

effect.  This effect was not observed with the linear model.  Stable debonding is also 

observed for the displacement controlled test, Figure 32b.  This effect was predicted by 

the linear model.  It begins at smaller flaw sizes than the for the load controlled test.             

 Figure 33 is a plot of the delamination growth paths for varying orders of 

magnitude on the bond strength, 2γ.  For this figure, E0 = 1, and there is no temperature 

field.     
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Figure 33.  Nonlinear delamination growth paths for hinged-fixed ends without applied thermal load, 
E0 = 1 a) λ vs. a*, b) ∆ vs. a* 
 
The trend observed is the expected; increasing the bond strength increases the 

delamination thresholds.  The nonlinear model once again reveals a stability for the load 

controlled test (Figure 33a) as in the previous plot.  The delamination growth becomes 

stable as the flaw size is increased for all plots.   

 

Effect of Uniform Temperature Field  

We turn our attention now to the effect of a temperature change on delamination 

growth due to transverse pressure.  Figure 34 shows the delamination growth paths for 

the parameters E0 = 1, 2γ = 0.1, and αp = 0.5.  This represents the case when the baseplate 

has twice the coefficient of thermal expansion to that of the patch.   
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Figure 34.  Nonlinear delamination growth paths for hinged-fixed ends with applied thermal load, E0 
= 1, 2γ = 0.1, αp = 0.5 a) λ vs. a*, b) ∆ vs. a* 
 
Figure 34a shows that heating the structure lowers the delamination threshold, for initial 

flaw sizes greater than approximately 0.7.  For a* < 0.7, we see that the delamination 
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path for Θ = 0.01 actually begins to fall below the other paths.  In this case, positive 

temperatures cause the baseplate to expand, which results in a compressive axial 

membrane force throughout the structure.  In the bond zone, this membrane force is 

coupled with bending at the reference surface.  We also in observe in Figure 34a the 

phenomenon of the delamination growth path for the force controlled loading falling 

below zero.  This case corresponds to a situation where the thermal load is so extreme 

that the structure will delaminate due to the temperature difference alone, in the complete 

absence of pressure.     

Figure 34b shows that cooling the structure lowers the delamination threshold, 

and vice versa.  A negative temperature difference makes the baseplate contract, which 

results in a tensile force and opposite sense of deflection.  According to our results 

however, the downward deflection induced by thermal stress is not enough to overcome 

the upward deflection induced by pressure.  The structure is seen to deflect up for all 

scenarios in Figure 34b.  The deflection of the structure due to negative temperature 

fields competes with the effect of pressure, and hence delamination propagation occurs at 

a much lower threshold.  The structure is essentially less compliant.  The positive 

temperature fields cause a deflection which enhances the pressure effect, rendering the 

structure more compliant, and thus requiring higher loads for propagation.  The thermal 

stresses induced by the increasing (positive or negative) temperature fields have a 

profound impact on the delamination paths, and hence the behavior of the structure.  This 

suggests that a separate study solely on the effects due to temperature is warranted for 

this type of problem.     
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Following the plots of Figure 34, we examine the reverse case (αp = 2) in Figure 

35.  This corresponds to the patch having twice the thermal expansion coefficient to that 

of the baseplate.  The other parameters are taken as in Figure 34.     
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Figure 35.  Nonlinear delamination growth paths for hinged-fixed ends with applied thermal load, E0 
= 1, 2γ = 0.1, αp = 2 a) λ vs. a*, b) ∆ vs. a* 
 
In Figure 35a, we see the reverse trend from Figure 34a.  Cooling the structure tends to 

lower the delamination thresholds, and vice versa.  The most negative value of the 

thermal load once again, follows a path not like the others, suggesting that this is the 

effect of the thermal stress induced by a cooling temperature.  The path extends below the 

zero axis, again showing that a temperature difference alone is enough to induce 

delamination propagation.  The other paths show unstable debonding followed by stable, 

again a deviation from the linear model for the load controlled test.  The displacement 

controlled test (Figure 35b) shows the same trends as established in Figure 34b, however, 

it also suggests that a contact zone may be present when the deflection is negative.  Like 

the linear case presented in Chapter 4, this phenomena requires additional research.     

 Figure 36 shows the regular nonlinear quasi-static loading curves of such a 

structure superimposed onto the delamination growth paths for the system. 
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Figure 36.  Nonlinear load vs. deflection curves and corresponding delamination growth paths for 
hinged-fixed ends, E0 = 1, 2γ = 0.1, αp = 0.5, a) Θ=-0.01, b) Θ =-0.005, c) Θ = 0, d) Θ =0.005, e) Θ 
=0.01, f) summary 
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Since we are now considering a nonlinear model, the quasi-static loading curves are no 

longer straight lines.  There may be multiple equilibrium positions associated with a 

single load value.  This is evident in Figures 36d and 36e, or the plots for the positive 

temperature fields.  The results based on the linear model suggest that the loading curve 

actually begins at the positive root of ∆ when λ = 0.  This is further examined in the 

following section.     

  

Comparison of Linear and Nonlinear Models 

 We now draw a comparison between the results based on the linear simulation 

and the results based on the nonlinear simulation.  The difference in the governing 

equations for each case is detailed in Chapter 3.  The comparison is shown for αp = 0.5, 

E0 = 1, and 2γ = 0.1.   
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Figure 37.  Comparison of hinged-fixed delamination growth paths for linear and nonlinear 
simulations, where E0=1, 2γ=0.1, and αp=0.5, a) λ vs. a*, b) ∆ vs. a* 
 
With the exception of the positive temperature change, Figure 37a suggests that the linear 

model generally offers a more conservative view of the problem from a pressure-loading 

standpoint.  The linear model predicts lower, but unstable delamination growth 

thresholds.  The nonlinear model stabilizes the behavior due to enhanced bending-

stretching coupling.  However, when Θ = 0.01, the nonlinear model reveals that this is a 

case where the effect of thermal stress becomes too powerful, and the structure begins to 

delaminate before it can be loaded with transverse pressure.  Figure 37b, the 

displacement controlled test, suggests that the linear model generally offers a less 

conservative prediction of delamination growth, except for a region of a* between 0.15 

and 0.45 when Θ = -0.01.   

When a thermal load is present, the linear model seems to be even less accurate.  

This is illustrated in our next plot, Figure 38.  This figure shows a comparison of the 

Linear

Nonlinear
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linear and nonlinear loading curves, with the corresponding delamination growth paths 

superimposed.  The parameters are αp =0.5, E0 = 1, and 2γ = 0.1.  The dotted black lines 

correspond to the response based on the linear model.   
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(c)
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Figure 38.  Comparison of linear and nonlinear load-deflection curves (with corresponding 
delamination growth paths) for hinged-fixed ends a) Θ=-0.01, b) Θ=0, c) Θ=0.01 
 
The plots suggest that the linear model does not accurately capture the essence of the 

uniform temperature field.  While the linear loading path is an accurate simplification for 

a small range when Θ = 0, the corresponding delamination growth paths are still far apart.  

In general, the linear model may not be a good predictor of the full delamination 

evolution.  However, as mentioned in the previous section, these results indicate that the 

nonlinear loading curve begins at the most positive root for the deflection in the absence 

of pressure. This is further expounded in Bottega (2006) and Karlsson and Bottega 

(2000).  Therefore, snap-through buckling is only of concern if we are applying 

“negative” pressure (i.e. on the top surface of the patch).   
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5.2.2 Clamped-Fixed End Supports 

Pure Pressure Loading, Θ = 0 

Finally, we explore the delamination behavior of structures with clamped-fixed 

ends.  Figure 39 gives the comparison on the effect of various values of the elastic 

modulus ratio, E0.  As before, there is no uniform thermal load present, and 2γ = 0.1.  In 

the clamped-fixed case, we have taken the possibility of a contact zone into 

consideration.  The pattern in the presence of the contact zone for the varying modulus 

ratios is similar to that established for the linear case.  We see that the domain has shrunk, 

with the contact zone being present on [0, 0.12] for a* when E0 = 0.1, and [0, 0.11] when 

E0 = 1.  For the most stiff structure, E0 = 10, no contact zone is present over the entire 

domain of initial conjugate bond sizes.  Again, it should be assumed that there is no 

contact zone present unless otherwise marked with a “CZ” on each plot.       
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Figure 39.   Nonlinear delamination growth paths for clamped-fixed ends without applied thermal 
load, 2γ = 0.1 a) λ vs. a*, b) ∆ vs. a* 
 
The peaks that were present in the linear solution are no longer there, except for the case 

of E0 = 0.1, which appears to have a lower peak, of considerably less magnitude.  For 

Figures 39a and 39b, the same trends as seen throughout are visible.   

 Figure 40 shows the effect that the bond strength, 2γ, has on the structure with 

clamped-fixed end supports.  For the linear model, the domain of the contact zone was 

unaltered by the bond strength.  That is not the case here, however.  We observed that for 

weaker bond strength, the contact zone was more likely to be present.  The domain of the 

contact zone on a* is [0, 0.15] when 2γ = 0.01, and [0, 0.12] when 2γ = 0.1.  No contact 

zone is present for the case of 2γ = 1. 

CZ 
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Figure 40.   Nonlinear delamination growth paths for clamped-fixed ends without applied thermal 
load, E0 = 1 a) λ vs. a*, b) ∆ vs. a* 
 
There are no peaks, as there were for the linear clamped-fixed specimen.  It appears as 

though the peak has been shifted to the left, to the point where it is no longer on the 

CZ 

CZ 
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domain of the plates.  The trends otherwise follows that of the linear model.  The 

nonlinear model however predicts that stable delamination growth is recovered in the 

load controlled test, just like the hinged-fixed case.      

    

Effect of Uniform Temperature Field 

We now turn our attention to the effect that a uniform temperature field has on the 

delamination behavior of the patched plate system subject to transverse pressure.  A 

contact zone was found to exist on [0, 0.12] for a*, when αp = 0.5, for all values of Θ.  

This is similar to the linear case, in that the domain is the same for which a contact zone 

is present.  The nonlinear model, however, suggests that the region of initial flaw sizes 

for which there may be a contact zone, is smaller.  This could be due to the peaks having 

been shifted off the domain of the plates.  A contact zone is present for any structure with 

a flaw size located to the left of the dotted line.       
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Figure 41.   Nonlinear delamination growth paths for clamped-fixed ends with applied thermal load, 
E0 = 1, 2γ = 0.1, αp = 0.5 a) λ vs. a*, b) ∆ vs. a* 
 
It once again looks as though there are no peaks on the domain of a* for the nonlinear 

model.  Like the previous case, they seem to have been shifted left, which is off the 

physical domain of the plates.  In Figure 41a, we see that positive temperature differences 

tend to raise the delamination growth threshold, while negative temperature differences 

tend to lower it.  This trend continues until about a* = 0.3, where it then reverses.  The 

displacement controlled test shows more positive temperatures raise the delamination 

growth threshold, and vice versa.   

 In Figure 42, we reverse the coefficient of thermal expansion ratio, such that αp = 

2.  Like the linear case before, the presence of the contact zone solution differs vastly, 

based on the uniform temperature field.  Also like the linear case, the more positive 

temperature differences are more likely to induce a contact zone.  A contact zone exists 

on a* for [0, 0.16] when Θ = 0.005; [0, 0.12] when Θ = 0.003 and Θ = 0; and there is no 

CZ 
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contact zone when Θ = -0.003 and Θ = -0.005.  The effect of the contact zone is most 

drastic for the most positive temperature field, as it causes a sudden drop in delamination 

growth threshold.       
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Figure 42.   Nonlinear delamination growth paths for clamped-fixed ends with applied thermal load, 
E0 = 1, 2γ = 0.1, αp = 2 a) λ vs. a*, b) ∆ vs. a* 
 
If the initial flaw size is past a* = 0.24, then the trends of Figures 42a and 42b suggest 

that more positive temperatures will increase the delamination thresholds.  For the most 

negative value of the uniform temperature field, there is a range of values on a* where 

delamination growth will propagate based on the thermal load alone, without the aid of 

the applied pressure.   

 Figure 43 shows the regular nonlinear quasi-static load-deflection curves 

superimposed onto the delamination growth paths for the case of αp = 0.5.  The loading 

curves are plotted for the value of a* = 0.5, and hence intersect the delamination path at 

that specific value.  These are plotted for parameters for which there is no contact zone.      
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Figure 43.  Load vs. deflection curves and corresponding delamination growth paths for clamped-
fixed ends, E0 = 1, 2γ = 0.1, αp = 0.5, a) Θ=-0.01, b) Θ =-0.005, c) Θ = 0, d) Θ =0.005, e) Θ =0.01, f) 
summary   
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The interpretation follows that of the previously established cases.  Unlike the nonlinear 

hinged-fixed case, we do not see the multiple equilibrium positions that are commonly 

associated with buckled configurations.   

   

Comparison of Linear and Nonlinear Models 

 Figure 44 shows the comparison of the delamination growth paths for the linear 

and geometrically nonlinear solutions.  These are plotted for the same parameters as 

Figure 34.  The first dotted line on the left indicates the domain for a contact zone for the 

nonlinear model.  The second line indicates the domain for the linear model.       
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Figure 44.   Comparison of clamped-fixed delamination paths for linear and nonlinear simulations, 
where E0=1, 2γ=0.1, and αp=0.5, a) λ vs. a*, b) ∆ vs. a*, c) K vs. a*   
 
Like the hinged-fixed case before, the linear model provides a more conservative view in 

Figure 44a, however, this only applies when a* ≥  0.35.  The linear model predicts a 

larger range of conjugate bond sizes for which a contact zone is present than the 

nonlinear model, and this plays a part in delamination growth.  Since the nonlinear model 

seems to shift the peaks out of the domain, it suddenly provides the more conservative 

view in that area.  Like Figure 37b, Figure 44b shows that the delamination thresholds are 

lowered by the introduction of the nonlinear terms.   

 Figure 45 shows the comparison of the linear and nonlinear quasi-static load-

displacement paths, with the superimposed delamination growth paths.  The parameters 

are the same as presented for Figure 38.  Once again, the black dotted lines correspond to 

the linear model.  A contact zone is not present in this case.    
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Figure 45.  Comparison of linear and nonlinear load vs. deflection curves (with corresponding 
delamination growth  paths) for clamped-fixed ends a) Θ=-0.01, b) Θ=0, c) Θ=0.01 
 
The interpretation of Figure 45 follows directly from that of Figure 38.  The zero case 

shows a good correlation between the linear and nonlinear loading curves, however, they 

quickly diverge in the region where delamination growth begins.  The linear model is 

therefore generally a poor simplification when a temperature difference is introduced to 

the problem.  

 

5.3  Concluding Remarks 

 In general, the nonlinear model reveals behavior that is not predicted by the linear 

model, such as the recovery of stable growth for the load controlled tests.  We see that in 

the absence of temperature fields, parameters such as modulus ratio and stiffness have the 

same effect on delamination behavior.  Like the linear model, we see behavior of the 

hinged-fixed specimen that requires additional consideration before it may be fully 
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characterized.  The linear model tends to be more conservative with respect to loading, 

however it seems less conservative with respect to displacement.  The comparison of 

linear and nonlinear results shows that the linear model may not be appropriate to 

describe the effect of a temperature difference.  In addition, the effect of the temperature 

difference is so great, that it may be prudent to examine alone, in the absence of 

transverse pressure.           

 A discussion of the results obtained is presented in Chapter 6.    
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Chapter 6 

Discussion 

6.1 The Goal 

The focus of our research has been to asses the effects of geometric nonlinearities 

and uniform temperature fields on the debonding of pressure-loaded patched plates.  The 

structures of interest are loaded with transverse pressure applied to the lower surface of 

the baseplate, along with an applied uniform temperature field, and can be subject to 

various boundary conditions.   

To accomplish this, we begin by establishing a mathematical model to describe 

the structure, which is viewed as an assemblage of two plates, bonded at a common 

interface.  By considering structures under a general state of plane stress (or plane strain), 

we may perform a one-dimensional theoretical analysis.  Using a local force balance, we 

can derive the governing equations for the system.    Recasting the problem into a mixed 

formulation in terms of the transverse displacement and membrane force allows for an 

exact analytical solution to the geometrically nonlinear problem.  By integrating the 

strain-displacement relationships along the domain of the beam, we establish the 

integrability condition, which is a necessary component and essentially a compatibility 

equation.  A transversality condition is taken from Bottega (1997) and serves as our 

delamination growth condition.  This equation arises from a moving boundary problem in 

the calculus of variations, and represents equilibrium positions of the structure for each 

value of the moving boundary, which in our case is the bond zone boundary.  Along with 
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appropriate boundary and matching conditions this set of equations constitute a complete 

set to describe the problem of interest.     

Using exact analytical solutions, we perform numerical simulations, using 

MATLAB.  Simulations are performed comparing linear and nonlinear versions of the 

governing equations.  We develop the linear model by neglecting the term involving the 

nonlinear strain-displacement relation in the governing equations.  The results of these 

simulations give us the delamination growth paths, which can be interpreted to describe 

the physical delamination process behavior of the evolving composite plates. 

 

6.2 Implications    

 In Chapter 4 we examine four different cases, each using the linear model as a 

basis.  We begin by looking at the patched plate structure with hinged-free end supports, 

and then detail cases for end supports that are clamped-free, hinged-fixed, and clamped-

fixed.  It should be noted that the solution to the linear problem is the only solution when 

the ends are free to translate in the in-plane direction; the non-linearity arising from the 

membrane force is not present, since the membrane force is identically zero.  The 

possibility of a contact zone is explored for certain cases.  Recall that the contact zone 

exists when the plates have debonded, yet remain in sliding contact along the domain of 

the patch.  Based on intuition and current literature (Bottega, 1995), for free ends we only 

expect a contact zone if the structure deflects downward.  When the ends are hinged, it is 

expected that the curvature will not be negative, and hence contact will only occur if the 

deflection is down.  This does actually occur, and it’s proven in Bottega (1995) that only 

a full contact zone is present, if at all, for pressure loading alone.  However, our 
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preliminary results suggest that the behavior may be more complex than a simple full 

contact zone in that region.  Further research is necessary to explore this avenue.  Finally, 

a full contact zone is considered for clamped-free ends.   

 Both hinged-free and clamped-free ends show similar trends with respect to how 

parameters such as the elastic modulus ratio and bond strength affect the delamination 

growth paths.  It is found that, for pure pressure loading, the effect of increasing the 

elastic modulus ratio is to make the structure stiffer, and hence lower the thresholds for 

onset of delamination growth.  Since the modulus ratio is defined as the ratio of elastic 

modulus of the patch to that of the baseplate, higher values of the modulus ratio suggest 

that the patch will not readily bend along with the baseplate, and hence it will begin to 

debond from the baseplate.  As for the bond strength, increasing it expectedly increases 

those thresholds.  A structure with greater bond strength would obviously require more 

load to cause it to debond.   

It is seen for hinged-free ends that some values of the uniform temperature field, 

Θ, lend to the structure deflecting downward, opposing the presence of the transverse 

pressure.  A contact zone solution has thus been included.  The clamped-free case shows 

no evidence of the existence of a contact zone.  The growth paths for the clamped 

structure exhibit peaks, which imply interesting behavior.  Such peaks allow for the case 

of stable debonding followed immediately by catastrophic debonding upon suddenly 

reaching the peak position.  We observe for free ends with large bond zones that the 

effect of a temperature difference on the response is not monotonic. 

 For the patched plate system with free ends (and when the coefficient of thermal 

expansion of the baseplate is twice that of the patch) it is seen that, in the absence of 
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transverse pressure, a positive temperature field causes the structure to deflect down, and 

vice versa.  This is because the ends are free in the lateral direction, so no axial 

membrane force is generated, therefore, when the baseplate expands under a positive 

thermal load, the structure deflects down.  We later witness the reverse phenomena for 

fixed ends. 

 The fixed end solutions for the linear model for both hinged and clamped cases 

show the same trends as their free end counterparts, with respect to the modulus ratio and 

the bond strength.  Again, the hinged case displays behavior that suggests the occurrence 

of a contact zone adjacent to the bond zone.  We also observe the phenomena of the 

loading parameter falling below the zero axis which implies that, under certain 

conditions, the structure will delaminate due to the temperature difference alone, before 

any pressure is applied.  Such a finding has great importance to the practical use of these 

structures. 

 For clamped-fixed end supports, peaks in the threshold curves are observed.  A 

contact zone is found to occur over a greater range of initial flaw size values as the 

modulus ratio decreased.  This is because a more compliant structure can more readily 

achieve the curvature necessary to promote contact.  The contact zone presence is 

unaffected by the bond strength.  Its presence is also unaffected by the temperature 

difference when αp = 0.5, for the range of temperature fields considered.  This is not the 

case when αp = 2.  The latter value describes the case when the patch has twice the 

greater coefficient of thermal expansion than the baseplate.  Contact zones are found to 

be more prevalent for increasingly positive thermal loads.  This represents the situation 
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when the patch expands more than the baseplate due to the applied temperature 

difference.   

 The load-deflection paths (with corresponding delamination growth paths) for 

hinged-fixed and clamped-fixed ends, are also plotted for situations when the coefficient 

of thermal expansion of the baseplate is twice that of the patch, when no contact zone is 

present.  When the pressure is zero, the reverse trend is seen on the sense of the 

deflection, in comparison to the free end case.  Since the ends are fixed, the baseplate 

cannot expand under the temperature difference.  This causes a resultant compressive 

axial force on the structure.  In the composite bond zone, this axial force is coupled with 

a bending moment generated at the reference surface.  This causes a deflection up.  When 

the baseplate contracts, a resultant tensile membrane force is generated, producing the 

opposite effect.  This is in addition to the thermal moment generated in the bond zone.  

The mechanical and thermal moments are competing effects, as shown in the relationship 

[Eq. (32)] for the total moment in region S1. 

 The nonlinear model provides a more robust solution than the linear model.  In 

general, we observe mostly similar relative trends for the effect of such parameters as the 

modulus ratio and the bond strength on the delamination growth behavior.  When the 

ends are hinged-fixed, we once again observe that the effect of temperature is not 

necessarily monotonic.  The effect of the bending-stretching coupling due to the 

temperature difference becomes overpowering, depending on the value of Θ.  We also 

observed that the loading parameter is sometimes negative, suggesting that delamination 

growth begins solely due to the presence of the uniform temperature field.   
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 Upon examination of the quasi-static loading paths (with superimposed 

delamination paths) we see interesting behavior for positive temperature fields when αp = 

0.5.  It appears as though delamination growth may occur post-buckling.  However, 

comparison of this load-deflection curve with that predicted by the linear model suggests 

that is not the case.  It is also discussed in Bottega (2006) and Karlsson and Bottega 

(2000).  It is possible that if the structure were loaded in negative pressure (i.e. applied on 

the top) that there could be buckling behavior.      

 Results for the nonlinear clamped-fixed model also show the effect of temperature 

to be nonmonotonic.  The deflections at zero pressure are in the same sense as the 

nonlinear hinged-fixed solution.  As for the existence of the contact zone, parallels may 

be drawn between linear and nonlinear.  In general the domains where contact zones are 

present are much smaller for the nonlinear model.  We see with the modulus ratio, that a 

contact zone is present over a much wider range as the structure becomes more 

compliant.  Unlike for the linear model however, the results corresponding to the full 

nonlinear model suggest that the bond strength does have an effect on the presence of a 

contact zone.  We observe that contact zones exist for a greater domain when the bond 

strength is weaker.  Like the linear case, the contact zone is seen to occur for the same 

range of values of the conjugate bond zone regardless of temperature when the baseplate 

has twice the coefficient of thermal expansion of the patch.  When the patch has twice the 

thermal expansion coefficient of the baseplate, the results also correlate.  For more 

positive temperature differences, contact zones are observed to exist over a greater 

domain.  The patch is more responsive to the application of a uniform temperature field 
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when αp = 2.  The existence of the contact zone depends largely on the deformed shape 

of the patch; hence this configuration more greatly affects it. 

 The comparison of the results for linear and nonlinear models shows that the 

linear model predicts a much earlier onset of delamination in the load controlled test.  

There is an exception of the case of the more positive temperature change.  The nonlinear 

model suggests that at this value the effect of the thermal stress is to reduce the 

delamination growth threshold significantly, which is an important consideration for 

design.  Also revealed by the delamination growth paths for the nonlinear model is that 

stable debonding is recovered for force-controlled loading.  Thus, additional load would 

be required to separate the plates, while the linear model predicts mostly catastrophic 

delamination growth.  The displacement controlled test suggests the opposite; that the 

linear model is less conservative.   

In general, we see that the nonlinear model predicts a stiffer structure, with some 

areas of exception, of course.  This is because of increased bending-stretching coupling 

for the nonlinear model.  It explains why the contact zones are smaller for the nonlinear 

model.  Stiffness has an impact on the possibility of a contact zone, so it makes sense that 

the model predicting a stiffer structure would have smaller domains of contact.  Most 

importantly, it is seen that contact zone does have a dramatic effect on the delamination 

behavior of the system.  Furthermore, it is present for more cases than initially 

anticipated. 

When the quasi-static loading paths for the linear and nonlinear models are 

compared, we see that there is good correspondence between the cases in the absence of 

temperature for low values of the normalized pressure.  The curves, however, diverge 
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before any significant delamination behavior takes place.  This striking result suggests 

that the linear model is not a good approximation around the critical values on the 

loading curve.  We also see that when a temperature field is present, the linear model is 

not a good approximation at any point on the loading curves.  The effect of temperature 

cannot be properly identified by linear means.  This is because temperature enters the 

problem via an axial force, which is directly dependent on the strain.  Since nonlinear 

strain-displacement relations are used in our formulation, the nonlinear model more 

accurately captures the salient behavior.     

In the pantheon of delamination research, it is always important to contribute a 

simulation of delamination behavior based entirely on exact mathematical results.  The 

computational aspect only serves as a tool in this work, rather than an 

approximation/numerical solution.  Our research offers many detailed and subtle nuances 

about patched plates that have been detected by use of full nonlinear analytical solutions.  

Debonding of patched plates subject to pressure loading [for example, Bottega (1995)], or 

thermal buckling of patched plates have been studied before [for example, Karlsson and 

Bottega (2000)], in a very similar fashion.  But our purpose was to explore the 

combination of effects that these two types of realistic loading have on the delamination 

growth of a patched structure.  This exact problem has not been studied in any great 

capacity, using exact analytical methods.       
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6.3 Future Considerations 

The problem of delamination propagation is of critical importance to design, 

utilization, and survival of patched plate structures.  This is a step taken in an effort to 

understand such behavior of these important structures.    

It is shown that the linear model is a rather crude approximation of the true 

delamination behavior of the system.  It was observed that the linear model does not 

accurately predict the effects of an applied uniform temperature field, in addition to the 

transverse pressure.  To get a clearer view of the behavior, a more mathematically robust 

model is necessary. 

 The problem does not end here – there are other considerations of importance.  

From our analysis, we found that the effect of a temperature difference on delamination 

growth is so potent, that it warrants its own study to be more fully characterized.  We also 

may wish to more extensively explore the stability of the equilibrium positions found, by 

consideration of the second variation of an appropriate potential energy functional.  This 

also lends itself to consideration of thermal buckling, and its interaction with 

delamination propagation. 

 It is of interest to observe a wider range of values on the parameter αp.  By 

looking at a full spectrum, we could further characterize the effects of thermal expansion 

coefficient mismatches.   

We also uncovered behavior of the hinged-fixed specimen that appears to more 

complex than simply having a full contact zone.  This requires additional consideration as 

well.  It is possible that the contact zone could be propagating, rather than stationary.  
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In addition, we have not explored the effect of the mode mix on delamination 

growth.  This generally affects our delamination criterion, since we have not decomposed 

our critical energy release rate into Mode I and Mode II.  This may affect the thresholds, 

and will provide a more accurate physical interpretation of the debonding phenomena.      
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Appendix 
 

The appendix presents a listing of all code created to generate the results for each 

scenario.  It includes all the relevant MATLAB and Maple code.  

 

A.1 MATLAB Code for Free Ends 

% Separation of Patched Structure 
% Patched Plate, transverse pressure/thermal load, hinged-free ends 
  
% This program uses the functions:  HFREE_system1, HFREE_system2,  Pstar_HFREE 
clear 
  
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
  
% stiffnesses of composite structure 
Astar = D+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Dstar = Astar-rhostar*Bstar; 
Ds = Dstar; 
Dc = D+Dp; % bending stiffness of debonded segment 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
  
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 2; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
alpha_1 = nstar/Cstar; 
etaTilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
ms = mstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 



148 

  
a = [0:0.01:0.9]; % values of a (bond length) 
b=0.9; 
resultp = zeros(16,length(a)); % allocate memory for the answers 
resultT = zeros(16,length(a)); % Change to 16 for CZ 
global theta gamma 
theta = -0.01; 
gamma = 0.1/2; 
  
for count = 1:length(a); 
    %No CZ 
   %resultp(:,count) = HFREE_system1(a(count),Dstar,D); 
   %resultT(:,count) = HFREE_system2(a(count),Dstar,D,mstar); %zero when theta=0 
    %CZ 
   resultp(:,count) = HFREE_CZsys1(a(count),b,Dstar,Dc,D); 
   resultT(:,count) = HFREE_CZsys2(a(count),b,Dstar,Dc,D,mstar); %zero when theta = 0 
    
   %P_star(count) = 
Pstar_HFREE(a(count),squeeze(resultp(2,count)),squeeze(resultT(2,count)),squeeze(resultp(6,count)),sque
eze(resultT(6,count)),Dstar,D,etaTilda); 
   
P(count)=P_HFREE(a(count),squeeze(resultp(2,count)),squeeze(resultT(2,count)),squeeze(resultp(6,count)
),squeeze(resultT(6,count)),Dstar,D,Dc,etaTilda); 
   %P(count)=P_star(count)*sqrt(2*gamma); 
   Delta0(count) = -1*HFREE_DELTA(squeeze(resultp(4,count)),squeeze(resultT(4,count)),P(count)); 
   K(count) = P(count)/Delta0(count); 
end 
  
Results(:,1)=P'; 
Results(:,2)=Delta0'; 
Results(:,3)=K'; 
  
astar = ones(1,length(a)) - a; 
  
figure  
plot(astar,P) 
title('Loading Parameter')  
ylabel('P') 
xlabel('Conjugate Bond Length') 
  
%Choose value of a, I choose a=0.5 
q=51;  %when a=0.5 
Pc = [0:.1:10]; 
for ic = 1:length(Pc); 
    def(ic)=-1*(squeeze(resultp(4,q))*Pc(ic)+squeeze(resultT(4,q))*theta); 
end 
 
 
% Separation of Patched Structure 
% Patched Plate, transverse pressure/thermal load, clamped-free ends 
  
% This program uses the functions:  CFREE_system1, CFREE_system2,  Pstar_HFREE 
clear 
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h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
  
% stiffnesses of composite structure 
Astar = D+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Dstar = Astar-rhostar*Bstar; 
  
Dc = D+Dp; % bending stiffness of debonded segment (NA) 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
  
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 0.5; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
alpha_1 = nstar/Cstar; 
etaTilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
a = [0:0.01:0.9]; % values of a (bond length) 
resultp = zeros(12,length(a)); % allocate memory for the answers 
resultT = zeros(12,length(a)); 
  
global gamma theta 
gamma = 0.1/2; 
theta = 0.005; 
  
for count = 1:length(a); 
   resultp(:,count) = CFREE_system1(a(count),Dstar,D); 
   resultT(:,count) = CFREE_system2(a(count),Dstar,D,mstar); 
   %P_star(count) = 
Pstar_HFREE(a(count),squeeze(resultp(2,count)),squeeze(resultT(2,count)),squeeze(resultp(6,count)),sque
eze(resultT(6,count)),Dstar,D,etaTilda); 
   
P(count)=P_HFREE(a(count),squeeze(resultp(2,count)),squeeze(resultT(2,count)),squeeze(resultp(6,count)
),squeeze(resultT(6,count)),Dstar,D,etaTilda); 
   Delta0(count) = -HFREE_DELTA(squeeze(resultp(4,count)),squeeze(resultT(4,count)),P(count)); 
   K(count) = P(count)/Delta0(count); 
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end 
  
Pc=[0:0.1:10]; 
ind=51; %corresponds to a=0.5 
for jj=1:length(Pc); 
    def(jj)=squeeze(resultp(4,ind))*Pc(jj)+squeeze(resultT(4,ind))*theta; 
    deflection(jj) = -def(jj); 
end 
  
astar = ones(1,length(a)) - a; 
  
figure  
plot(astar,P) 
title('Loading Parameter')  
ylabel('Pstar') 
xlabel('Conjugate Bond Length') 
 
function[CONST] = HFREE_system1(a,Dstar,D) 
% System for P 
  
Fp1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Fp2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Fp3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Fp4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Fp5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Fp6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Fp7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Fp8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Fp9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Fp10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Fp11 = [0,0,0,0,0,.5,1,1,0,0,0,0]; 
Fp12 = [0,0,0,0,0,1,0,0,0,0,0,0]; 
     
Fptotal = [Fp1;Fp2;Fp3;Fp4;Fp5;Fp6;Fp7;Fp8;Fp9;Fp10;Fp11;Fp12]; 
Rp = [0;0;(a^4)*(1/Dstar-1/D)/24;(a^4)/(24*Dstar);(a^3)*(1/Dstar-
1/D)/6;(a^3)/(6*Dstar);0;0;0;0;1/(24*D);1/(2*D)];%times p 
CONST = inv(Fptotal)*Rp; % Matrix composed of integration constants, p factored out 
 
function[CON] = HFREE_system2(a,Dstar,D,mstar) 
% System for Thetatilda 
  
F1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
F2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
F3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
F4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
F5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
F6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
F7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
F8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
F9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
F10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
F11 = [0,0,0,0,0,.5,1,1,0,0,0,0]; 
F12 = [0,0,0,0,0,1,0,0,0,0,0,0]; 
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Ftotal = [F1;F2;F3;F4;F5;F6;F7;F8;F9;F10;F11;F12]; 
R = [0;0;0;0;0;0;mstar;0;0;0;0;0];%times thetatilda 
CON = inv(Ftotal)*R; % Matrix composed of integration constants, thetatilda factored out 
 
function[CONSTp] = HFREE_CZsys1(a,b,Dstar,Dc,D) 
% This function creates the system of 16 equations and solves it for the 
% integration constants.  PRESSURE 
  
Fp1 = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Fp2 = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Fp3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0,0,0,0,0]; 
Fp4 = [0,a,0,0,0,-a,-1,0,0,0,0,0,0,0,0,0]; 
Fp5 = [0,Dstar,0,0,0,-Dc,0,0,0,0,0,0,0,0,0,0]; 
Fp6 = [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]; 
Fp7 = [0,0,0,0,0,(b^2)/2,b,1,0,-(b^2)/2,-b,-1,0,0,0,0]; 
Fp8 = [0,0,0,0,0,(b^2)/2,b,1,0,0,0,0,0,0,-b,-1]; 
Fp9 = [0,0,0,0,0,b,1,0,0,-b,-1,0,0,0,0,0]; 
Fp10 = [0,0,0,0,0,b,1,0,0,0,0,0,0,0,-1,0]; 
Fp11 = [0,0,0,0,0,Dc,0,0,0,-D,0,0,0,0,0,0]; 
Fp12 = [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]; 
Fp13 = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]; 
Fp14 = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]; 
Fp15 = [0,0,0,0,0,0,0,0,0,0.5,1,1,0,0,0,0]; 
%Fp16 = [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0]; %Clamped 
Fp16 = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];  % Hinged 
     
Fptotal = [Fp1;Fp2;Fp3;Fp4;Fp5;Fp6;Fp7;Fp8;Fp9;Fp10;Fp11;Fp12;Fp13;Fp14;Fp15;Fp16]; 
%Rp = [0;0;((a^4)/24)*(1/Dstar-1/Dc);((a^3)/6)*(1/Dstar-1/Dc);0;0;((b^4)/24)*(1/Dc-
1/D);(b^4)/(24*Dc);((b^3)/6)*(1/Dc-1/D);(b^3)/(6*Dc);0;0;0;0;1/(24*D);1/(6*D)]; %clamped 
Rp = [0;0;((a^4)/24)*(1/Dstar-1/Dc);((a^3)/6)*(1/Dstar-1/Dc);0;0;((b^4)/24)*(1/Dc-
1/D);(b^4)/(24*Dc);((b^3)/6)*(1/Dc-1/D);(b^3)/(6*Dc);0;0;0;0;1/(24*D);1/(2*D)]; %hinged 
CONSTp = inv(Fptotal)*Rp; % Matrix composed of integration constants, P factored out 
 
function[CONSTth] = HFREE_CZsys2(a,b,Dstar,Dc,D,mstar) 
% This function creates the system of 16 equations and solves it for the 
% integration constants.  THERMAL 
  
Ft1 = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Ft2 = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Ft3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0,0,0,0,0]; 
Ft4 = [0,a,0,0,0,-a,-1,0,0,0,0,0,0,0,0,0]; 
Ft5 = [0,Dstar,0,0,0,-Dc,0,0,0,0,0,0,0,0,0,0]; 
Ft6 = [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]; 
Ft7 = [0,0,0,0,0,(b^2)/2,b,1,0,-(b^2)/2,-b,-1,0,0,0,0]; 
Ft8 = [0,0,0,0,0,(b^2)/2,b,1,0,0,0,0,0,0,-b,-1]; 
Ft9 = [0,0,0,0,0,b,1,0,0,-b,-1,0,0,0,0,0]; 
Ft10 = [0,0,0,0,0,b,1,0,0,0,0,0,0,0,-1,0]; 
Ft11 = [0,0,0,0,0,Dc,0,0,0,-D,0,0,0,0,0,0]; 
Ft12 = [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]; 
Ft13 = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]; 
Ft14 = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]; 
Ft15 = [0,0,0,0,0,0,0,0,0,0.5,1,1,0,0,0,0]; 
%Ft16 = [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0]; %Clamped 
Ft16 = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];  % Hinged 
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Fttotal = [Ft1;Ft2;Ft3;Ft4;Ft5;Ft6;Ft7;Ft8;Ft9;Ft10;Ft11;Ft12;Ft13;Ft14;Ft15;Ft16]; 
Rt = [0;0;0;0;mstar;0;0;0;0;0;0;0;0;0;0;0]; 
CONSTth = inv(Fttotal)*Rt; % Matrix composed of integration constants, thetatilda factored out 
 
function[CONST] = CFREE_system1(a,Dstar,D) 
% System for P 
  
Fp1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Fp2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Fp3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Fp4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Fp5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Fp6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Fp7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Fp8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Fp9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Fp10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Fp11 = [0,0,0,0,0,.5,1,1,0,0,0,0]; 
Fp12 = [0,0,0,0,0,1,1,0,0,0,0,0]; 
     
Fptotal = [Fp1;Fp2;Fp3;Fp4;Fp5;Fp6;Fp7;Fp8;Fp9;Fp10;Fp11;Fp12]; 
Rp = [0;0;(a^4)*(1/Dstar-1/D)/24;(a^4)/(24*Dstar);(a^3)*(1/Dstar-
1/D)/6;(a^3)/(6*Dstar);0;0;0;0;1/(24*D);1/(6*D)];%times p 
CONST = inv(Fptotal)*Rp; % Matrix composed of integration constants, p factored out 
 
function[CON] = CFREE_system2(a,Dstar,D,mstar) 
% System for Thetatilda 
  
F1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
F2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
F3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
F4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
F5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
F6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
F7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
F8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
F9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
F10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
F11 = [0,0,0,0,0,.5,1,1,0,0,0,0]; 
F12 = [0,0,0,0,0,1,1,0,0,0,0,0]; 
     
Ftotal = [F1;F2;F3;F4;F5;F6;F7;F8;F9;F10;F11;F12]; 
R = [0;0;0;0;0;0;mstar;0;0;0;0;0];%times thetatilda 
CON = inv(Ftotal)*R; % Matrix composed of integration constants, thetatilda factored out 
 
function[Pugh] = P_HFREE(a,A2P,A2T,B2P,B2T,Dstar,D,Dc,etatilda) 
% This function calculates P, not Pstar....dont forget to change C and B 
  
global gamma theta 
  
%ugh3 = C2P-((a^2)/(2*D)); 
ugh2 = B2P-((a^2)/(2*Dc)); 
ugh1 = A2P-((a^2)/(2*Dstar)); 
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%Z1 = (1/2)*(D*(ugh3^2)-Dstar*(ugh1^2)); 
%Z2 = (1/2)*(D*ugh3*C2T*theta-Dstar*ugh1*A2T*theta); 
%Z3 = (1/2)*(D*C2T^2*theta^2-Dstar*A2T^2*theta^2+etatilda*theta^2)-2*gamma; 
  
Z1 = (1/2)*(Dc*(ugh2^2)-Dstar*(ugh1^2)); 
Z2 = (1/2)*(Dc*ugh2*B2T*theta-Dstar*ugh1*A2T*theta); 
Z3 = (1/2)*(Dc*B2T^2*theta^2-Dstar*A2T^2*theta^2+etatilda*theta^2)-2*gamma; 
  
Z4 = sqrt(Z2^2-4*Z1*Z3); 
  
Pugh = (-Z2+Z4)/(2*Z1); 
%Pugh = (-Z2-Z4)/(2*Z1); 
 
function[Delta] = HFREE_DELTA(CONST4p,CONST4T,Pin) 
%This function calculates the characteristic deflection, delta, NOT 
%DELTASTAR 
global theta 
w1star_0p = CONST4p; 
w1star_0T = CONST4T; 
Delta = w1star_0p*Pin+w1star_0T*theta; % characteristic deflection (in this case, at x=0) 
 
 
 
 
A.2 MATLAB Code for Fixed Ends – Linear Model 

% Separation of Patched Structure 
% Patched Plate, transverse pressure/thermal load, hinged-fixed ends   
% NO CONTACT ZONE!!!! 
  
% This program uses the functions:   
clear 
  
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
  
% stiffnesses of composite structure 
Astar = D+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Dstar = Astar-rhostar*Bstar; 
  
Dc = D+Dp; % bending stiffness of debonded segment (NA) 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
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%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP =0.5; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
alpha_1 = nstar/Cstar; 
etaTilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
a = [0:0.01:0.90]; % values of a (bond length) 
resultTH = zeros(12,length(a)); % allocate memory for the answers 
resultN = zeros(12,length(a)); 
resultP = zeros(12,length(a)); 
global TTstar theta gamma 
gamma = 0.1/2; 
theta = -0.01; 
TTstar = theta/sqrt(2*gamma); %Dont forget to change Pstar_HFIX function! 
for count = 1:length(a); 
   resultTH(:,count) = HFIXsys_TH(a(count),Dstar,D,mstar); %block tt=0 
   resultN(:,count) = HFIXsys_N(a(count),Dstar,D,rhostar,h); 
   resultP(:,count) = HFIXsys_P(a(count),Dstar,D); 
   N_zero(count) = 
N_ZEROHFIX(a(count),squeeze(resultTH(2,count)),squeeze(resultN(2,count)),squeeze(resultP(2,count)),
Dstar,alpha_1,h,rhostar,Cstar,C); 
   %N_zero(count) = 0;  %When tt=0 
   N_zero2(count) = 
N_ZEROHFIX2(a(count),squeeze(resultTH(2,count)),squeeze(resultN(2,count)),squeeze(resultP(2,count)),
Dstar,alpha_1,h,rhostar,Cstar,C); 
   %pstar(count) = 
Pstar_HFIX(a(count),squeeze(resultP(2,count)),squeeze(resultN(2,count)),squeeze(resultTH(2,count)),sque
eze(resultP(6,count)),squeeze(resultN(6,count)),squeeze(resultTH(6,count)),N_zero(count),N_zero2(count)
,Dstar,D,Ce,alpha_1,etaTilda); 
   P(count) = 
P_HorC_FIX(a(count),squeeze(resultP(2,count)),squeeze(resultN(2,count)),squeeze(resultTH(2,count)),squ
eeze(resultP(6,count)),squeeze(resultN(6,count)),squeeze(resultTH(6,count)),N_zero(count),N_zero2(count
),Dstar,D,Ce,alpha_1,etaTilda); 
   %P(count) = pstar(count)*sqrt(2*gamma); 
   delta(count) = -
1*delta_HFIX(squeeze(resultN(4,count)),squeeze(resultTH(4,count)),squeeze(resultP(4,count)),N_zero(co
unt),N_zero2(count),P(count)); 
   Ncheck(count) = N_HFIX(N_zero(count),N_zero2(count),P(count)); 
   K(count)=P(count)/delta(count); 
end 
Results(:,1)=P'; 
Results(:,2)=delta'; 
Results(:,3)=K'; 
  
astar = ones(1,length(a)) - a; 
q = 51; %when a=0.5 
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figure 
plot(astar,P) 
title('Loading Parameter') 
xlabel('astar') 
ylabel('P') 
  
Pc=[0:0.1:10]; 
  
for jj=1:length(Pc); 
    deflection(jj) = -
1*delta_HFIX(squeeze(resultN(4,q)),squeeze(resultTH(4,q)),squeeze(resultP(4,q)),N_zero(q),N_zero2(q),P
c(jj)); 
end 
Pcfinal=Pc'; 
deflectionfinal=deflection'; 
 

% Separation of Patched Structure 
% Patched Plate, transverse pressure/thermal load, CLAMPED-fixed ends   
% NO CONTACT ZONE!!!! 
  
% This program uses the functions:   
clear 
  
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
  
% stiffnesses of composite structure 
Astar = D+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Dstar = Astar-rhostar*Bstar; 
  
Dc = D+Dp; % bending stiffness of debonded segment (NA) 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
  
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 2; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
alpha_1 = nstar/Cstar; 
etaTilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
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% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
a = [0:0.01:0.9]; % values of a (bond length) 
resultTH = zeros(12,length(a)); % allocate memory for the answers 
resultN = zeros(12,length(a)); 
resultP = zeros(12,length(a)); 
  
global TTstar theta gamma 
gamma = 0.1/2; 
theta = -0.003; 
TTstar = theta/sqrt(2*gamma); %Dont forget to change Pstar_HFIX function! 
for count = 1:length(a); 
   resultTH(:,count) = CFIXsys_THnocz(a(count),Dstar,D,mstar); %block tt=0 
   resultN(:,count) = CFIXsys_Nnocz(a(count),Dstar,D,rhostar,h); 
   resultP(:,count) = CFIXsys_Pnocz(a(count),Dstar,D); 
   N_zero(count) = 
N_ZEROHFIX(a(count),squeeze(resultTH(2,count)),squeeze(resultN(2,count)),squeeze(resultP(2,count)),
Dstar,alpha_1,h,rhostar,Cstar,C); 
   %N_zero(count) = 0;  %When Theta=0 
   N_zero2(count) = 
N_ZEROHFIX2(a(count),squeeze(resultTH(2,count)),squeeze(resultN(2,count)),squeeze(resultP(2,count)),
Dstar,alpha_1,h,rhostar,Cstar,C); 
        %pstar(count) = 
Pstar_HFIX(a(count),squeeze(resultP(2,count)),squeeze(resultN(2,count)),squeeze(resultTH(2,count)),sque
eze(resultP(6,count)),squeeze(resultN(6,count)),squeeze(resultTH(6,count)),N_zero(count),N_zero2(count)
,Dstar,D,Ce,alpha_1,etaTilda); 
        %P(count) = pstar(count)*sqrt(2*gamma); 
   P(count) = 
P_HorC_FIX(a(count),squeeze(resultP(2,count)),squeeze(resultN(2,count)),squeeze(resultTH(2,count)),squ
eeze(resultP(6,count)),squeeze(resultN(6,count)),squeeze(resultTH(6,count)),N_zero(count),N_zero2(count
),Dstar,D,Ce,alpha_1,etaTilda); 
   delta(count) = -
1*delta_HFIX(squeeze(resultN(4,count)),squeeze(resultTH(4,count)),squeeze(resultP(4,count)),N_zero(co
unt),N_zero2(count),P(count)); 
   K(count) = P(count)/delta(count); 
   %Ncheck(count) = N_HFIX(N_zero(count),N_zero2(count),pstarcheck(count)); 
end 
Results(:,1)=P'; 
Results(:,2)=delta'; 
Results(:,3)=K'; 
  
astar = ones(1,length(a)) - a; 
q = 75; %when a=0.5 
  
%figure 
%plot(astar,pstar) 
%title('Loading Parameter') 
%xlabel('astar') 
%ylabel('Pstar') 
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Pc=[0:0.1:10]; 
  
for jj=1:length(Pc); 
    deflection(jj) = -
1*delta_HFIX(squeeze(resultN(4,q)),squeeze(resultTH(4,q)),squeeze(resultP(4,q)),N_zero(q),N_zero2(q),P
c(jj)); 
end 
Pcfinal=Pc'; 
deflectionfinal=deflection'; 
 

% Separation of Patched Structure 
% Patched Plate, thermal load, CLAMPED-FIXED ends, this program includes a 
% CONTACT ZONE!!! 
  
% This program uses the functions:   
clear 
  
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
  
% stiffnesses of composite structure 
Astar = D+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Dstar = Astar-rhostar*Bstar; 
  
Dc = D+Dp; % bending stiffness of debonded segment 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
  
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 0.5; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
alpha_1 = nstar/Cstar; 
etaTilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
b = 0.9; 
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a = [0:0.01:b]; % values of a (bond length) 
resultTH = zeros(16,length(a)); % allocate memory for the answers 
resultN = zeros(16,length(a)); 
resultP = zeros(16,length(a)); 
global TTstar gamma theta 
gamma = 0.1/2; 
theta = -0.03; 
TTstar = theta/sqrt(2*gamma); %Dont forget to change Pstar_CFIX function! 
for count = 1:length(a); 
   resultTH(:,count) = CFIXsys_TH(a(count),b,Dstar,Dc,D,mstar); %block tt=0  
   resultN(:,count) = CFIXsys_N(a(count),b,Dstar,Dc,D,rhostar,h);  
   resultP(:,count) = CFIXsys_P(a(count),b,Dstar,Dc,D); 
   N_zero(count) = 
N_ZEROHFIX(a(count),squeeze(resultTH(2,count)),squeeze(resultN(2,count)),squeeze(resultP(2,count)),
Dstar,alpha_1,h,rhostar,Cstar,C); 
   N_zero2(count) = 
N_ZEROHFIX2(a(count),squeeze(resultTH(2,count)),squeeze(resultN(2,count)),squeeze(resultP(2,count)),
Dstar,alpha_1,h,rhostar,Cstar,C); 
   pstar(count) = 
Pstar_CFIX(a(count),squeeze(resultP(2,count)),squeeze(resultN(2,count)),squeeze(resultTH(2,count)),sque
eze(resultP(6,count)),squeeze(resultN(6,count)),squeeze(resultTH(6,count)),N_zero(count),N_zero2(count)
,Dstar,Dc,Ce,alpha_1,etaTilda); 
   P(count) = pstar(count)*sqrt(2*gamma); 
   Ncheck(count) = N_HFIX(N_zero(count),N_zero2(count),P(count)); 
   delta(count) = -
1*delta_HFIX(squeeze(resultN(4,count)),squeeze(resultTH(4,count)),squeeze(resultP(4,count)),N_zero(co
unt),N_zero2(count),P(count)); 
   K(count)=P(count)/delta(count); 
end 
Results(:,1)=P'; 
Results(:,2)=delta'; 
Results(:,3)=K'; 
  
astar = ones(1,length(a)) - a; 
for q = 1:length(a); 
    a2 = 
(squeeze(resultTH(2,q))+squeeze(resultN(2,q))*N_zero(q))*theta+(squeeze(resultN(2,q))*N_zero2(q)+squ
eeze(resultP(2,q)))*P(q); 
    a4 = 
(squeeze(resultTH(4,q))+squeeze(resultN(4,q))*N_zero(q))*theta+(squeeze(resultN(4,q))*N_zero2(q)+squ
eeze(resultP(4,q)))*P(q); 
    b2 = 
(squeeze(resultTH(6,q))+squeeze(resultN(6,q))*N_zero(q))*theta+(squeeze(resultN(6,q))*N_zero2(q)+squ
eeze(resultP(6,q)))*P(q); 
    b3 = 
(squeeze(resultTH(7,q))+squeeze(resultN(7,q))*N_zero(q))*theta+(squeeze(resultN(7,q))*N_zero2(q)+squ
eeze(resultP(7,q)))*P(q); 
    b4 = 
(squeeze(resultTH(8,q))+squeeze(resultN(8,q))*N_zero(q))*theta+(squeeze(resultN(8,q))*N_zero2(q)+squ
eeze(resultP(8,q)))*P(q); 
    c2 = 
(squeeze(resultTH(10,q))+squeeze(resultN(10,q))*N_zero(q))*theta+(squeeze(resultN(10,q))*N_zero2(q)+
squeeze(resultP(10,q)))*P(q); 
    c3 = 
(squeeze(resultTH(11,q))+squeeze(resultN(11,q))*N_zero(q))*theta+(squeeze(resultN(11,q))*N_zero2(q)+
squeeze(resultP(11,q)))*P(q); 
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    c4 = 
(squeeze(resultTH(12,q))+squeeze(resultN(12,q))*N_zero(q))*theta+(squeeze(resultN(12,q))*N_zero2(q)+
squeeze(resultP(12,q)))*P(q); 
    d3 = 
(squeeze(resultTH(15,q))+squeeze(resultN(15,q))*N_zero(q))*theta+(squeeze(resultN(15,q))*N_zero2(q)+
squeeze(resultP(15,q)))*P(q); 
    d4 = 
(squeeze(resultTH(16,q))+squeeze(resultN(16,q))*N_zero(q))*theta+(squeeze(resultN(16,q))*N_zero2(q)+
squeeze(resultP(16,q)))*P(q); 
     
    x1 = [0:0.01:a(q)]; 
    for j1 = 1:length(x1); 
        w1s(q,j1) = -(P(q)*(x1(j1)^4))/(24*Dstar)+a2*(x1(j1)^2)/2+a4; 
        kappa1(q,j1) =  -(P(q)*(x1(j1)^2))/(2*Dstar)+a2; 
    end 
    x2 = [a(q):0.01:b]; 
    for j2 = 1:length(x2); 
        w2s(q,j2) = -(P(q)*(x2(j2)^4))/(24*Dc)+b2*(x2(j2)^2)/2+b3*x2(j2)+b4; 
        kappa2(q,j2) = -(P(q)*(x2(j2)^2))/(2*Dc)+b2; 
    end 
    x3 = [b:0.01:1]; 
    for j3 = 1:length(x3); 
        w3(q,j3) = -(P(q)*(x3(j3)^4))/(24*D)+c2*(x3(j3)^2)/2+c3*x3(j3)+c4; 
        kappa3(q,j3) = -(P(q)*(x3(j3)^2))/(2*D)+c2; 
    end 
     
    for ja = 1:length(x2); 
        if kappa2(q,ja)<=0; 
            CONBOND(q)=astar(q); 
        else 
            CONBOND(q)=0; 
           break; 
        end 
    end 
     
end 
ii=51; 
x1plot = [0:0.01:a(ii)]; 
x2plot = [a(ii):0.01:b]; 
x3plot = [b:0.01:1]; 
figure 
plot(x1plot,-w1s(ii,1:length(x1plot)),'b'); 
hold on 
plot(x2plot,-w2s(ii,1:length(x2plot)),'g'); 
hold on 
plot(x3plot,-w3(ii,1:length(x3plot)),'r'); 
  
qq=51; 
Pc=[0:0.1:25]; 
for jj=1:length(Pc); 
    deflection(jj) = -
1*delta_HFIX(squeeze(resultN(4,qq)),squeeze(resultTH(4,qq)),squeeze(resultP(4,qq)),N_zero(qq),N_zero2
(qq),Pc(jj)); 
end 
Pcfinal=Pc'; 
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deflectionfinal=deflection'; 
ValidCZ=CONBOND'; 
 

function[CONSTn] = HFIXsys_N(a,Dstar,D,rhon,hn) 
% This function creates the system of 12 equations and solves it for the 
% integration constants. 
  
Fn1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Fn2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Fn3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Fn4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Fn5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Fn6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Fn7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Fn8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Fn9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Fn10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Fn11 = [0,0,0,0,0,0.5,1,1,0,0,0,0]; 
Fn12 = [0,0,0,0,0,1,0,0,0,0,0,0]; 
     
Fntotal = [Fn1;Fn2;Fn3;Fn4;Fn5;Fn6;Fn7;Fn8;Fn9;Fn10;Fn11;Fn12]; 
Rn = [0;0;0;0;0;0;-(rhon+hn/2);0;0;0;0;0]; 
CONSTn = inv(Fntotal)*Rn; % Matrix composed of integration constants, N0 factored out 
 

function[CONSTp] = HFIXsys_P(a,Dstar,D) 
% This function creates the system of 12 equations and solves it for the 
% integration constants. 
  
Fp1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Fp2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Fp3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Fp4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Fp5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Fp6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Fp7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Fp8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Fp9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Fp10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Fp11 = [0,0,0,0,0,0.5,1,1,0,0,0,0]; 
Fp12 = [0,0,0,0,0,1,0,0,0,0,0,0]; 
     
Fptotal = [Fp1;Fp2;Fp3;Fp4;Fp5;Fp6;Fp7;Fp8;Fp9;Fp10;Fp11;Fp12]; 
Rp = [0;0;((a^4)/24)*(1/Dstar-1/D);(a^4)/(24*Dstar);((a^3)/6)*(1/Dstar-
1/D);(a^3)/(6*Dstar);0;0;0;0;1/(24*D);1/(2*D)]; %times P 
CONSTp = inv(Fptotal)*Rp; % Matrix composed of integration constants, P factored out 
 

function[CONSTth] = HFIXsys_TH(a,Dstar,D,mstar) 
% This function creates the system of 12 equations and solves it for the 
% integration constants. 
  
Ft1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
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Ft2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Ft3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Ft4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Ft5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Ft6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Ft7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Ft8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Ft9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Ft10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Ft11 = [0,0,0,0,0,0.5,1,1,0,0,0,0]; 
Ft12 = [0,0,0,0,0,1,0,0,0,0,0,0]; 
     
Fttotal = [Ft1;Ft2;Ft3;Ft4;Ft5;Ft6;Ft7;Ft8;Ft9;Ft10;Ft11;Ft12]; 
Rt = [0;0;0;0;0;0;mstar;0;0;0;0;0]; 
CONSTth = inv(Fttotal)*Rt; % Matrix composed of integration constants, thetatilda factored out 
 

function[CONSTn] = CFIXsys_Nnocz(a,Dstar,D,rhon,hn) 
% This function creates the system of 12 equations and solves it for the 
% integration constants. 
  
Fn1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Fn2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Fn3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Fn4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Fn5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Fn6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Fn7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Fn8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Fn9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Fn10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Fn11 = [0,0,0,0,0,0.5,1,1,0,0,0,0]; 
Fn12 = [0,0,0,0,0,1,1,0,0,0,0,0]; 
     
Fntotal = [Fn1;Fn2;Fn3;Fn4;Fn5;Fn6;Fn7;Fn8;Fn9;Fn10;Fn11;Fn12]; 
Rn = [0;0;0;0;0;0;-(rhon+hn/2);0;0;0;0;0]; 
CONSTn = inv(Fntotal)*Rn; % Matrix composed of integration constants, N0 factored out 
 

function[CONSTp] = CFIXsys_Pnocz(a,Dstar,D) 
% This function creates the system of 12 equations and solves it for the 
% integration constants. 
  
Fp1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Fp2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Fp3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Fp4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Fp5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Fp6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Fp7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Fp8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Fp9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Fp10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Fp11 = [0,0,0,0,0,0.5,1,1,0,0,0,0]; 
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Fp12 = [0,0,0,0,0,1,1,0,0,0,0,0]; 
     
Fptotal = [Fp1;Fp2;Fp3;Fp4;Fp5;Fp6;Fp7;Fp8;Fp9;Fp10;Fp11;Fp12]; 
Rp = [0;0;((a^4)/24)*(1/Dstar-1/D);(a^4)/(24*Dstar);((a^3)/6)*(1/Dstar-
1/D);(a^3)/(6*Dstar);0;0;0;0;1/(24*D);1/(6*D)]; %times P 
CONSTp = inv(Fptotal)*Rp; % Matrix composed of integration constants, P factored out 
 

function[CONSTth] = CFIXsys_THnocz(a,Dstar,D,mstar) 
% This function creates the system of 12 equations and solves it for the 
% integration constants. 
  
Ft1 = [0,0,1,0,0,0,0,0,0,0,0,0]; 
Ft2 = [1,0,0,0,0,0,0,0,0,0,0,0]; 
Ft3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0]; 
Ft4 = [0,(a^2)/2,0,1,0,0,0,0,0,0,-a,-1]; 
Ft5 = [0,a,0,0,0,-a,-1,0,0,0,0,0]; 
Ft6 = [0,a,0,0,0,0,0,0,0,0,-1,0]; 
Ft7 = [0,Dstar,0,0,0,-D,0,0,0,0,0,0]; 
Ft8 = [0,0,0,0,1,0,0,0,0,0,0,0]; 
Ft9 = [0,0,0,0,0,0,0,0,0,1,0,0]; 
Ft10 = [0,0,0,0,0,0,0,0,1,0,0,0]; 
Ft11 = [0,0,0,0,0,0.5,1,1,0,0,0,0]; 
Ft12 = [0,0,0,0,0,1,1,0,0,0,0,0]; 
     
Fttotal = [Ft1;Ft2;Ft3;Ft4;Ft5;Ft6;Ft7;Ft8;Ft9;Ft10;Ft11;Ft12]; 
Rt = [0;0;0;0;0;0;mstar;0;0;0;0;0]; 
CONSTth = inv(Fttotal)*Rt; % Matrix composed of integration constants, thetatilda factored out 
 

function[CONSTn] = CFIXsys_N(a,b,Dstar,Dc,D,rhon,hn) 
% This function creates the system of 16 equations and solves it for the 
% integration constants. 
  
Fn1 = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Fn2 = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Fn3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0,0,0,0,0]; 
Fn4 = [0,a,0,0,0,-a,-1,0,0,0,0,0,0,0,0,0]; 
Fn5 = [0,Dstar,0,0,0,-Dc,0,0,0,0,0,0,0,0,0,0]; 
Fn6 = [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]; 
Fn7 = [0,0,0,0,0,(b^2)/2,b,1,0,-(b^2)/2,-b,-1,0,0,0,0]; 
Fn8 = [0,0,0,0,0,(b^2)/2,b,1,0,0,0,0,0,0,-b,-1]; 
Fn9 = [0,0,0,0,0,b,1,0,0,-b,-1,0,0,0,0,0]; 
Fn10 = [0,0,0,0,0,b,1,0,0,0,0,0,0,0,-1,0]; 
Fn11 = [0,0,0,0,0,Dc,0,0,0,-D,0,0,0,0,0,0]; 
Fn12 = [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]; 
Fn13 = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]; 
Fn14 = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]; 
Fn15 = [0,0,0,0,0,0,0,0,0,0.5,1,1,0,0,0,0]; 
%Fn16 = [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0]; %Clamped 
Fn16 = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];  % Hinged 
     
Fntotal = [Fn1;Fn2;Fn3;Fn4;Fn5;Fn6;Fn7;Fn8;Fn9;Fn10;Fn11;Fn12;Fn13;Fn14;Fn15;Fn16]; 
Rn = [0;0;0;0;-(rhon+hn/2);0;0;0;0;0;0;0;0;0;0;0]; 
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CONSTn = inv(Fntotal)*Rn; % Matrix composed of integration constants, N0 factored out 
 

function[CONSTp] = CFIXsys_P(a,b,Dstar,Dc,D) 
% This function creates the system of 16 equations and solves it for the 
% integration constants. 
  
Fp1 = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Fp2 = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Fp3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0,0,0,0,0]; 
Fp4 = [0,a,0,0,0,-a,-1,0,0,0,0,0,0,0,0,0]; 
Fp5 = [0,Dstar,0,0,0,-Dc,0,0,0,0,0,0,0,0,0,0]; 
Fp6 = [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]; 
Fp7 = [0,0,0,0,0,(b^2)/2,b,1,0,-(b^2)/2,-b,-1,0,0,0,0]; 
Fp8 = [0,0,0,0,0,(b^2)/2,b,1,0,0,0,0,0,0,-b,-1]; 
Fp9 = [0,0,0,0,0,b,1,0,0,-b,-1,0,0,0,0,0]; 
Fp10 = [0,0,0,0,0,b,1,0,0,0,0,0,0,0,-1,0]; 
Fp11 = [0,0,0,0,0,Dc,0,0,0,-D,0,0,0,0,0,0]; 
Fp12 = [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]; 
Fp13 = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]; 
Fp14 = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]; 
Fp15 = [0,0,0,0,0,0,0,0,0,0.5,1,1,0,0,0,0]; 
%Fp16 = [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0]; %Clamped 
Fp16 = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];  % Hinged 
     
Fptotal = [Fp1;Fp2;Fp3;Fp4;Fp5;Fp6;Fp7;Fp8;Fp9;Fp10;Fp11;Fp12;Fp13;Fp14;Fp15;Fp16]; 
%Rp = [0;0;((a^4)/24)*(1/Dstar-1/Dc);((a^3)/6)*(1/Dstar-1/Dc);0;0;((b^4)/24)*(1/Dc-
1/D);(b^4)/(24*Dc);((b^3)/6)*(1/Dc-1/D);(b^3)/(6*Dc);0;0;0;0;1/(24*D);1/(6*D)]; %clamped 
Rp = [0;0;((a^4)/24)*(1/Dstar-1/Dc);((a^3)/6)*(1/Dstar-1/Dc);0;0;((b^4)/24)*(1/Dc-
1/D);(b^4)/(24*Dc);((b^3)/6)*(1/Dc-1/D);(b^3)/(6*Dc);0;0;0;0;1/(24*D);1/(2*D)]; %hinged 
CONSTp = inv(Fptotal)*Rp; % Matrix composed of integration constants, P factored out 
 

function[CONSTth] = CFIXsys_TH(a,b,Dstar,Dc,D,mstar) 
% This function creates the system of 16 equations and solves it for the 
% integration constants. 
  
Ft1 = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Ft2 = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
Ft3 = [0,(a^2)/2,0,1,0,-(a^2)/2,-a,-1,0,0,0,0,0,0,0,0]; 
Ft4 = [0,a,0,0,0,-a,-1,0,0,0,0,0,0,0,0,0]; 
Ft5 = [0,Dstar,0,0,0,-Dc,0,0,0,0,0,0,0,0,0,0]; 
Ft6 = [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]; 
Ft7 = [0,0,0,0,0,(b^2)/2,b,1,0,-(b^2)/2,-b,-1,0,0,0,0]; 
Ft8 = [0,0,0,0,0,(b^2)/2,b,1,0,0,0,0,0,0,-b,-1]; 
Ft9 = [0,0,0,0,0,b,1,0,0,-b,-1,0,0,0,0,0]; 
Ft10 = [0,0,0,0,0,b,1,0,0,0,0,0,0,0,-1,0]; 
Ft11 = [0,0,0,0,0,Dc,0,0,0,-D,0,0,0,0,0,0]; 
Ft12 = [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]; 
Ft13 = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]; 
Ft14 = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]; 
Ft15 = [0,0,0,0,0,0,0,0,0,0.5,1,1,0,0,0,0]; 
%Ft16 = [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0]; %Clamped 
Ft16 = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];  % Hinged 
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Fttotal = [Ft1;Ft2;Ft3;Ft4;Ft5;Ft6;Ft7;Ft8;Ft9;Ft10;Ft11;Ft12;Ft13;Ft14;Ft15;Ft16]; 
Rt = [0;0;0;0;mstar;0;0;0;0;0;0;0;0;0;0;0]; 
CONSTth = inv(Fttotal)*Rt; % Matrix composed of integration constants, thetatilda factored out 
 

function[NNN] = N_HFIX(NOT,NOP,P_ch) 
global TTstar 
NNN = NOT*TTstar+NOP*P_ch; 
 

function[NT] = N_ZEROHFIX(aa,CONST_2th,CONST_2N,CONST_2P,Dstar,alpha11,hh,rrho,Cstar,C) 
  
% This function calculates N0T as a function of thetatilda 
  
% An expression for w1starprime(a) may be expressed as 
% f*thetatilda+g*N0+j*P 
f_a = CONST_2th*aa; % times theta 
g_a = CONST_2N*aa; % times N0 
j_a = -(aa^3)/(6*Dstar)+CONST_2P*aa; %times P 
  
% N0 may be expressed as a function of a, thetatilda, and P, N0 = NoT*thetatilda+NoP*P. This expression 
comes from 
% the integrability condition: 
C_a = aa/Cstar-aa/C+1/C; 
alpha_of_a = 1-aa+alpha11*aa; 
rhat = (hh/2)+rrho; 
  
NT = (rhat*f_a-alpha_of_a)/(C_a-rhat*g_a); 
 

function[NP] = N_ZEROHFIX2(aa,CONST_2th,CONST_2N,CONST_2P,Dstar,alpha11,hh,rrho,Cstar,C) 
  
% This function calculates N0P as a function of P 
  
% An expression for w1starprime(a) may be expressed as 
% f*thetatilda+g*N0+j*P 
f_a = CONST_2th*aa; % times theta 
g_a = CONST_2N*aa; % times N0 
j_a = -(aa^3)/(6*Dstar)+CONST_2P*aa; %times P 
  
% N0 may be expressed as a function of a, thetatilda, and P, N0 = NoT*thetatilda+NoP*P. This expression 
comes from 
% the integrability condition: 
C_a = aa/Cstar-aa/C+1/C; 
%alpha_of_a = 1-aa+alpha11*aa; 
rhat = (hh/2)+rrho; 
  
NP = (rhat*j_a)/(C_a-rhat*g_a); 
 

function[Pout] = P_HorC_FIX(a,A2P,A2N,A2T,C2P,C2N,C2T,N0t,N0p,Dstar,D,Ce,alph1,etatilda) 
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% This function calculates P from the values obtained in the matrix 
% solution, with a little help from Maple. 
global theta gamma 
  
% Trans. Con. is such that Q1P^2+Q2P+Q3=2gamma 
  
Q1 = -1/2*a^2*C2P+1/2*D*C2N^2*N0p^2+1/2*a^2*A2P-
1/2*Dstar*A2N^2*N0p^2+1/8*a^4/D+1/2*D*C2P^2-1/8*a^4/Dstar-1/2*Dstar*A2P^2+1/2/Ce*N0p^2-
1/2*a^2*C2N*N0p+D*C2N*N0p*C2P+1/2*a^2*A2N*N0p-Dstar*A2N*N0p*A2P; 
Q2 = -theta*N0p*alph1-1/2*a^2*C2T*theta-
1/2*a^2*C2N*N0t*theta+D*C2T*theta*C2P+D*C2T*theta*C2N*N0p+D*C2N^2*N0t*theta*N0p+D*C2
N*N0t*theta*C2P+1/2*a^2*A2T*theta+1/2*a^2*A2N*N0t*theta-Dstar*A2T*theta*A2P-
Dstar*A2T*theta*A2N*N0p-Dstar*A2N^2*N0t*theta*N0p-
Dstar*A2N*N0t*theta*A2P+1/Ce*N0t*theta*N0p+theta*N0p; 
Q3 = 1/2*D*C2N^2*N0t^2*theta^2-
1/2*Dstar*A2N^2*N0t^2*theta^2+1/2*etatilda*theta^2+N0t*theta^2+1/2*D*C2T^2*theta^2-
1/2*Dstar*A2T^2*theta^2+1/2/Ce*N0t^2*theta^2+D*C2T*theta^2*C2N*N0t-
Dstar*A2T*theta^2*A2N*N0t-N0t*theta^2*alph1; 
Q4 = Q3-2*gamma; 
  
Pout = (-Q2+sqrt(Q2^2-4*Q1*Q4))/(2*Q1); 
%Pout = (-Q2-sqrt(Q2^2-4*Q1*Q4))/(2*Q1); 
 

function[P] = Pstar_CFIX(a,A2P,A2N,A2T,B2P,B2N,B2T,N0t,N0p,Dstar,Dc,Ce,alph1,etatilda) 
% This function uses the constants determined from "therm_system1" to calculate 
% value of pstar, the quadratic formula is used to find pstar from G. 
  
%kappa2 and kappa1 may be expressed as: J2*thetatilda+Q2*P, and 
%J1*thetatilda+q1*P. 
  
J2 = B2T+B2N*N0t; 
Q2 = -(a^2)/(2*Dc)+B2N*N0p+B2P; 
J1 = A2T+A2N*N0t; 
Q1 = -(a^2)/(2*Dstar)+A2N*N0p+A2P; 
  
%Constants from transversality equation G = 2gamma 
Z1 = (Dc/2)*(J2^2)-(Dstar/2)*(J1^2)+(N0t^2)/(2*Ce)+N0t*(1-alph1)+(etatilda/2); 
Z2 = Dc*J2*Q2-Dstar*J2*Q2+(N0t*N0p)/Ce+N0p*(1-alph1); 
%Z1 = 0; %tt=0 
%Z2 = 0;  %tt=0 
Z3 = (Dc/2)*(Q2^2)-(Dstar/2)*(Q1^2)+(N0p^2)/(2*Ce); 
  
global TTstar 
TTstar_sq = TTstar^2; 
  
%more constants to obtain a quadratic polynomial 
Z4 = Z1*TTstar_sq-1; 
Z5 = Z2*TTstar; 
  
P = (-Z5+sqrt((Z5^2)-4*Z3*Z4))/(2*Z3); % solution 1 
%P = (-Z5-sqrt((Z5^2)-4*Z3*Z4))/(2*Z3); % solution 2, gives unrealistic 
%result 
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function[del] = delta_HFIX(A4N,A4T,A4P,NT,NP,Pres) 
%This function Calculates the deflection w1(0) 
%Delta, NOT delta_star! 
global TTstar theta 
%del = A4N*(NT*TTstar+NP*Pres)+A4T*TTstar+A4P*Pres; 
del = A4N*(NT*theta+NP*Pres)+A4T*theta+A4P*Pres; 
 

function[GG] = OMEG_HFIX(a,CON2th,CON2n,N_0,Dstar,D,etatilda,Ce,alpha1) 
% This function uses the constants determined from "therm_system3's" to calculate 
% value of omega 
w3_2prime_a =0; % times thetatilda 
w1star_2prime_a = CON2th+CON2n*N_0; % times thetatilda 
GG = 0.5*(D*(w3_2prime_a^2)-Dstar*(w1star_2prime_a^2)+(N_0^2)/Ce+2*N_0*(1-alpha1)+etatilda); % 
times thetatilda^2 
 
 
 
A.3 Maple Code for Fixed Ends – Nonlinear Model 

> restart: 
> # These functions F are defined in my notes 
> #Transverse Pressure and Thermal Load, hinged-fixed 
> #also works for clamped-fixed 
> #No CZ 
> #This is the "P" version! 
> c2 := P*F1+F2+theta*F3: 
> c1 := P*F4+F5+theta*F6: 
> a1 := P*F7+F8+theta*F9: 
> c3 := P*F10+F11+theta*F12: 
> c4 := P*F13+F14+theta*F15: 
> a4 := P*F16+F17+theta*F18: 
> a2 := 0: 
> a3 := 0: 
> w1prime := a1*k1*sinh(k1*x)+a2*k1*cosh(k1*x)+a3+P*x/Nn: 
> w1prime_at_a := subs(x=an,w1prime): 
> type(w1prime_at_a,polynom(anything,P)): 
> degree(w1prime_at_a,P): 
> B1 := coeff(w1prime_at_a,P,1): 
> B2 := coeff(w1prime_at_a,P,0): 
> w3prime := c1*k3*sinh(k3*x)+c2*k3*cosh(k3*x)+c3+P*x/Nn: 
> w1prime_sq := expand(w1prime^2): 
> w3prime_sq := expand(w3prime^2): 
> IC1 := int(w1prime_sq, x = 0..an): 
> IC3 := int(w3prime_sq, x = an..1): 
> type(IC1,polynom(anything,P)): 
> degree(IC1,P): 
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> type(IC3,polynom(anything,P)): 
> degree(IC3,P): 
> B3 := coeff(IC1,P,2): 
> B4 := coeff(IC1,P,1): 
> B5 := coeff(IC1,P,0): 
> B6 := coeff(IC3,P,2): 
> B7 := coeff(IC3,P,1): 
> B8 := coeff(IC3,P,0): 
> #Ca = 1/C-a/C+a/C* and rt = h/2+rho* 
> #I will once again use lower case 'b' to keep things tidy 
> # This is the same as in the compression case (sort of)! 
> B0 := (1-an)*1+an*alpha_1: #alpha=1 
> int_con := Nn*Ca+b0*theta-rt*(P*b1+b2)-(1/2)*((P^2)*b3+P*b4+b5)-
(1/2)*((P^2)*b6+P*b7+b8): 
> type(int_con, polynom(anything,P)): 
> #Separate the coeffs of P in the integ con 
> Q1 := coeff(int_con,P,2): 
> Q2 := coeff(int_con,P,1): 
> Q3 := coeff(int_con,P,0): 
> #Transversality equation... 
> kappa3 := c1*(k3^2)*cosh(k3*an)+c2*(k3^2)*sinh(k3*an)+P/Nn: 
> kappa3_sq := expand(kappa3^2): 
> kappa1 := a1*(k1^2)*cosh(k1*an)+a2*(k1^2)*sinh(k1*an)+P/Nn: 
> kappa1_sq := expand(kappa1^2): 
> Trans_eq := (1/2)*(D3*kappa3_sq-Ds*kappa1_sq+(Nn^2)/Ce+2*Nn*(1-
alpha_1)*theta+etatilda*theta^2): 
> type(Trans_eq,polynom(anything,P)): 
> degree(Trans_eq,P): 
> Q4 := coeff(Trans_eq,P,2): 
> Q5 := coeff(Trans_eq,P,1): 
> Q6 := coeff(Trans_eq,P,0): 
 
 
> restart: 
> # This is the ThermPress CONTACT ZONE solution! 
> a2:=0: 
> a3:=0: 
> b2:=F1*P+F2*theta+F3: 
> b1:=F4*P+F5*theta+F6: 
> c2:=F7*P+F8*theta+F9: 
> c1:=F10*P+F11*theta+F12: 
> a1:=F13*P+F14*theta+F15: 
> c3:=F16*P+F17*theta+F18: 
> c4:=F19*P+F20*theta+F21: 
> b3:=F22*P+F23*theta+F24: 
> b4:=F25*P+F26*theta+F27: 
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> a4:=F28*P+F29*theta+F30: 
> w1_prime := a1*k1*sinh(k1*x)+a2*k1*cosh(k1*x)+a3+P*x/Nn: 
> w2_prime := b1*k2*sinh(k2*x)+b2*k2*cosh(k2*x)+b3+P*x/Nn: 
> w3_prime := c1*k3*sinh(k3*x)+c2*k3*cosh(k3*x)+c3+P*x/Nn: 
> w1prime_at_a := subs(x=an,w1_prime): 
> type(w1prime_at_a,polynom(anything,P)): 
> B_1 := coeff(w1prime_at_a,P,1): 
> B_2 := coeff(w1prime_at_a,P,0): 
> w1prime_sq := expand(w1_prime^2): 
> w2prime_sq := expand(w2_prime^2): 
> w3prime_sq := expand(w3_prime^2): 
> IC1 := int(w1prime_sq, x = 0..an): 
> IC2 := int(w2prime_sq, x = an..b): 
> IC3 := int(w3prime_sq, x = b..1): 
> type(IC1,polynom(anything,P)): 
> degree(IC1,P): 
> type(IC2,polynom(anything,P)): 
> degree(IC2,P): 
> type(IC3,polynom(anything,P)): 
> degree(IC3,P): 
> B_3 := coeff(IC1,P,2): 
> B_4 := coeff(IC1,P,1): 
> B_5 := coeff(IC1,P,0): 
> B_6 := coeff(IC2,P,2): 
> B_7 := coeff(IC2,P,1): 
> B_8 := coeff(IC2,P,0): 
> B_9 := coeff(IC3,P,2): 
> B_10 := coeff(IC3,P,1): 
> B_11 := coeff(IC3,P,0): 
> #Ca = 1/C-a/C+a/C* and rt = h/2+rho* 
> B_0 := (1-an)*1+an*alpha_1: #alpha=1 
> int_con := Nn*Ca+B0*theta-rt*(P*B1+B2)-(1/2)*((P^2)*B3+P*B4+B5)-
(1/2)*((P^2)*B6+P*B7+B8)-(1/2)*((P^2)*B9+P*B10+B11): 
> type(int_con, polynom(anything,P)): 
> Q1 := coeff(int_con,P,2): 
> Q2 := coeff(int_con,P,1): 
> Q3 := coeff(int_con,P,0): 
> #Transversality equation... 
> kappa2 := b1*(k2^2)*cosh(k2*an)+b2*(k2^2)*sinh(k2*an)+P/Nn: 
> kappa2_sq := expand(kappa2^2): 
> kappa1 := a1*(k1^2)*cosh(k1*an)+a2*(k1^2)*sinh(k1*an)+P/Nn: 
> kappa1_sq := expand(kappa1^2): 
> Trans_eq := (1/2)*(Dc*kappa2_sq-Ds*kappa1_sq+(Nn^2)/Ce+2*Nn*(1-
alpha_1)*theta+etatilda*theta^2): 
> type(Trans_eq,polynom(anything,P)): 
> degree(Trans_eq,P): 



169 

> Q4 := coeff(Trans_eq,P,2): 
> Q5 := coeff(Trans_eq,P,1): 
> Q6 := coeff(Trans_eq,P,0): 
 

A.4 MATLAB Code for Fixed Ends – Nonlinear Model 

% Separation of Patched Structure 
% Patched Plate, thermal load,                      HINGED-FIXED ends 
% Non-Linear  TENSION!!! 
% This is the "P" version 
% This program uses the functions:   
clear 
global h C D3 Dp 
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D3 = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
global Cstar rhostar Ds 
% stiffnesses of composite structure 
Astar = D3+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Ds = Astar-rhostar*Bstar; %Dstar 
global  Dc Cs Ce DI DII 
Dc = D3+Dp; % bending stiffness of debonded segment (NA) 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
DI = (Dp*D3)/Dc; 
DII = (D3^2)/Dc; 
global mstar alpha_1 etatilda 
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 0.5; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
alpha_1 = nstar/Cstar; 
etatilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
m = 1; %initialize index value for result array 
n=1; 
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q=1; 
%Set 2*gamma 
global gamma 
gamma = 0.1/2; 
  
global theta 
theta = -0.01; 
  
a = [0.01:0.01:0.9]; 
N = [0:.1:100]; 
  
for i = 1:length(a); 
   global an; 
    an = a(i); 
    for j = 1:length(N); 
        [Big(j,1),Big(j,2),Big(j,3),Big(j,4),Big(j,5),Big(j,6)] = BigFuntentherm2(N(j));  
        %[value of big F, P ,Delta~w1(0),err1,err2,K] 
    end 
    for k = 1:length(N)-1; 
        if Big(k,1)*Big(k+1,1)<0; 
            Nroot(k) = fzero(@BigFuntentherm2_root,N(k)); 
            group(m,1) = a(i); %'a' 
            group(m,2)= 1 - a(i); % a* 
            group(m,3) = Nroot(k); % The value of N that's a root 
            [blah,group(m,4),group(m,5),group(m,6),group(m,7),group(m,8)] = BigFuntentherm2(Nroot(k)); 
%[value of BF=0, P, delta,err1,err2,K] 
            group(m,9) = group(m,7)+group(m,6); % Should be 1 
            %To assemble a matix of nice results... 
            if group(m,4)>0; 
            Results(n,1)= 1 - a(i); %a* 
            Results(n,2) = Nroot(k); %N 
            Results(n,3) = group(m,4); %P 
            Results(n,4) = group(m,5); %Delta 
            Results(n,5) = group(m,8); %K 
            n=n+1; 
            end 
            m = m+1; 
        else 
        end 
    end 
end 
q_end=n-1; %or n-1 
for q = 1:q_end; 
    Xend=1-Results(q,1); 
x1 = [0:0.01:Xend]; 
x3 = [Xend:0.01:1]; 
[a1,a4,c1,c2,c3,c4,K1,K3] = BFtenthermCONST(Xend,Results(q,2),Results(q,3),theta); 
            for j1 = 1:length(x1); 
                w1star(q,j1) = a1*cosh(K1*x1(j1))+a4+(Results(q,3)*(x1(j1))^2)/(2*Results(q,2)); 
                %kappa1(q,j1) = 
a1*K1^2*cosh(K1*x1(j1))+a2*K1^2*sinh(K1*x1(j1))+Results(q,3)/Results(q,2); 
            end 
            for j3 = 1:length(x3); 
                w3(q,j3) = 
c1*cosh(K3*x3(j3))+c2*sinh(K3*x3(j3))+c3*x3(j3)+c4+(Results(q,3)*(x3(j3))^2)/(2*Results(q,2)); 
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                %kappa3(q,j3) = 
c1*K3^2*cosh(K3*x3(j3))+c2*K3^2*sinh(K3*x3(j3))+Results(q,3)/Results(q,2); 
            end 
end 
  
ii=51; 
x1plot = [0:0.01:1-Results(ii,1)]; 
x3plot = [1-Results(ii,1):0.01:1]; 
figure 
plot(x1plot,-w1star(ii,1:length(x1plot)),'b'); 
hold on 
plot(x3plot,-w3(ii,1:length(x3plot)),'r'); 
  
%Plot of deflection of Chosen root 
%atest =0.8 ; 
%Ntest = 39.135; 
%TTtest = -0.005; 
%Ptest = 4.0056; 
%[a1,a4,c1,c2,c3,c4] = BFtenthermCONST(atest,Ntest,Ptest,TTtest); 
%k1test = sqrt(Ntest/Ds); 
%k3test = sqrt(Ntest/D3); 
%x1 = [0:0.01:atest]; 
%for j1 = 1:length(x1); 
%    w1(j1) = -1*(a1*cosh(k1test*x1(j1))+a4+Ptest*(x1(j1)^2)/(2*Ntest)); 
%end 
%x3 = [atest:0.01:1]; 
%for j3 = 1:length(x3); 
%    w3(j3) = -
1*(c1*cosh(k3test*x3(j3))+c2*sinh(k3test*x3(j3))+c3*x3(j3)+c4+Ptest*(x3(j3)^2)/(2*Ntest)); 
%end 
%figure 
%plot(x1,w1,'r') 
%hold on 
%plot(x3,w3,'b') 
%title('Deflection' ) 
%xlabel('x') 
%ylabel('deflection') 
  
qq=1; 
global an Pin 
an=0.5; 
Pin_test=[-0.4:0.1:0.2]; 
Nin=[-1:.001:3]; 
for ib = 1:length(Pin_test); 
    Pin = Pin_test(ib); 
    for jb = 1:length(Nin); 
        I_C(jb) = DEF_HFIX(Nin(jb));  
    end 
    for kb = 1:length(Nin)-1; 
        if I_C(kb)*I_C(kb+1)<0; 
            Nroot2(kb) = fzero(@DEF_HFIX,Nin(kb)); 
            group2(q,1)= Nroot2(kb); % N root value 
            group2(q,2) = Pin_test(ib); %"P" 
            [group2(q,3),group2(q,4)] = DEF_HFIX_A4(group2(q,1),group2(q,2)); %deflection, IC=0 
            q = q+1; 
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        else 
        end 
    end 
end 
 
function[BF,PBF,DelBF,MODE1,MODE2,Kstiff] = BigFuntentherm2(Nn) 
    %Ds,D3,rhostar,h,C,Cstar,Ce,gamma,P,mstar,alpha_1,etatilda 
%Using my hand solution, this function solves the non linear IC, and TC for P 
%This is the "P" version 
global an Ds D3 Dc DI DII rhostar h C Cstar Ce gamma theta mstar alpha_1 etatilda 
  
k1 = sqrt(Nn/Ds); 
k3 = sqrt(Nn/D3); 
y = k1*an; 
x = k3*an; 
%Some general stuff to get started 
GC1 = D3*(k3^2)*(k3*sinh(x)*cosh(y)-k1*cosh(x)*sinh(y)); 
GC2 = D3*(k3^2)*(k3*cosh(x)*cosh(y)-k1*sinh(x)*sinh(y)); 
C2den = GC2/GC1-sinh(k3)/cosh(k3); 
A1den = Ds*(k1^3)*sinh(y); 
%Now, the F's 
% c2  
F1 = (-Ds+D3)*(k1*sinh(y))/(Nn*GC1*C2den)+1/(Nn*(k3^2)*cosh(k3)*C2den); 
F2 = ((k1*sinh(y))/(GC1*C2den))*(-h*Nn/2-rhostar*Nn); 
F3 = ((k1*sinh(y))/(GC1*C2den))*mstar; 
% c1 
F4 = (k1*sinh(y)*(-Ds+D3))/(Nn*GC1)-F1*GC2/GC1; 
F5 = (k1*sinh(y)*(-h*Nn/2-rhostar*Nn))/GC1-F2*GC2/GC1; 
F6 = (k1*sinh(y)*mstar)/GC1-F3*GC2/GC1; 
% a1 
F7 = D3*(k3^3)*sinh(x)*F4/A1den+D3*(k3^3)*cosh(x)*F1/A1den; 
F8 = D3*(k3^3)*sinh(x)*F5/A1den+D3*(k3^3)*cosh(x)*F2/A1den; 
F9 = D3*(k3^3)*sinh(x)*F6/A1den+D3*(k3^3)*cosh(x)*F3/A1den; 
% c3 
F10 = F7*k1*sinh(y)-F4*k3*sinh(x)-F1*k3*cosh(x); 
F11 = F8*k1*sinh(y)-F5*k3*sinh(x)-F2*k3*cosh(x); 
F12 = F9*k1*sinh(y)-F6*k3*sinh(x)-F3*k3*cosh(x); 
%c4 
F13 = -1/(2*Nn)-F10-F1*sinh(k3)-F4*cosh(k3); 
F14 = -F11-F2*sinh(k3)-F5*cosh(k3); 
F15 = -F12-F3*sinh(k3)-F6*cosh(k3); 
%a4 
F16 = F4*cosh(x)+F1*sinh(x)+F10*an+F13-F7*cosh(y); 
F17 = F5*cosh(x)+F2*sinh(x)+F11*an+F14-F8*cosh(y); 
F18 = F6*cosh(x)+F3*sinh(x)+F12*an+F15-F9*cosh(y); 
  
%Now the B's 
B0 = 1-an+an*alpha_1; 
B1 = F7*k1*sinh(k1*an)+an/Nn; 
B2 = (F8+theta*F9)*k1*sinh(k1*an); 
  
B3 = -1/6*(-3*k1^2*F7^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F7^2*Nn^2*an-
12*F7*Nn*k1*an*cosh(k1*an)+12*F7*Nn*sinh(k1*an)-2*an^3*k1)/k1/Nn^2; 
B4 = -1/6*(-6*k1^2*F7*F8*Nn^2*cosh(k1*an)*sinh(k1*an)+6*k1^3*F7*F8*Nn^2*an-
6*k1^2*F7*theta*F9*Nn^2*cosh(k1*an)*sinh(k1*an)+... 
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    6*k1^3*F7*theta*F9*Nn^2*an-12*F8*Nn*k1*an*cosh(k1*an)+12*F8*Nn*sinh(k1*an)-
12*theta*F9*Nn*k1*an*cosh(k1*an)+12*theta*F9*Nn*sinh(k1*an))/k1/Nn^2; 
B5 = -1/6*(-3*k1^2*F8^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F8^2*Nn^2*an-
6*k1^2*F8*theta*F9*Nn^2*cosh(k1*an)*sinh(k1*an)+... 
    6*k1^3*F8*theta*F9*Nn^2*an-
3*k1^2*theta^2*F9^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*theta^2*F9^2*Nn^2*an)/k1/Nn^2; 
B6 = -1/6*(-2*k3+2*an^3*k3+6*k3^2*F4*F1*sinh(k3*an)^2*Nn^2-
12*F1*Nn*k3*sinh(k3)+3*k3^3*F4^2*Nn^2-3*k3^3*F1^2*Nn^2+12*F4*Nn*sinh(k3)+... 
    12*F1*Nn*cosh(k3)-6*F10^2*Nn^2*k3-6*F10*Nn*k3-12*F4*Nn*sinh(k3*an)-
12*F1*Nn*cosh(k3*an)+6*F10*an^2*Nn*k3-12*F4*F10*cosh(k3)*Nn^2*k3-... 
    12*F1*F10*sinh(k3)*Nn^2*k3-12*F4*Nn*k3*cosh(k3)+6*F10^2*an*Nn^2*k3-
3*k3^3*F4^2*Nn^2*an-6*k3^2*F4*F1*sinh(k3)^2*Nn^2-... 
    3*k3^2*F4^2*Nn^2*sinh(k3)*cosh(k3)-
3*k3^2*F1^2*Nn^2*sinh(k3)*cosh(k3)+12*F4*F10*cosh(k3*an)*Nn^2*k3+12*F1*F10*sinh(k3*an)*Nn
^2*k3+... 
    
3*k3^3*F1^2*Nn^2*an+3*k3^2*F4^2*Nn^2*sinh(k3*an)*cosh(k3*an)+3*k3^2*F1^2*Nn^2*sinh(k3*an)
*cosh(k3*an)+12*F4*Nn*k3*an*cosh(k3*an)+... 
    12*F1*Nn*k3*an*sinh(k3*an))/Nn^2/k3; 
B7 = -1/6*(-12*F2*F10*sinh(k3)*Nn^2*k3-6*theta*F12*Nn*k3-
6*k3^3*F1*F2*Nn^2+6*k3^3*F4*F5*Nn^2-12*F10*F11*Nn^2*k3-12*F5*Nn*k3*cosh(k3)+... 
    12*theta*F3*Nn*cosh(k3)-12*theta*F6*F10*cosh(k3)*Nn^2*k3-
12*F4*theta*F12*cosh(k3)*Nn^2*k3+12*theta*F6*Nn*sinh(k3)-... 
    12*theta*F3*F10*sinh(k3)*Nn^2*k3-12*F1*theta*F12*sinh(k3)*Nn^2*k3-
6*k3^2*F4*theta*F3*sinh(k3)^2*Nn^2-6*k3^2*theta*F6*F1*sinh(k3)^2*Nn^2-... 
    6*k3^2*F1*F2*Nn^2*sinh(k3)*cosh(k3)-6*k3^2*F4*F5*Nn^2*sinh(k3)*cosh(k3)-
12*F2*Nn*k3*sinh(k3)+12*F10*theta*F12*an*Nn^2*k3-... 
    6*k3^3*F4*theta*F6*Nn^2*an+6*F11*an^2*Nn*k3+12*F2*Nn*cosh(k3)-
6*k3^3*F1*theta*F3*Nn^2+6*k3^3*F4*theta*F6*Nn^2-6*F11*Nn*k3+... 
    12*F5*Nn*sinh(k3)-12*F4*F11*cosh(k3)*Nn^2*k3-12*F10*theta*F12*Nn^2*k3-
6*k3^2*F4*theta*F6*Nn^2*sinh(k3)*cosh(k3)+... 
    6*k3^3*F1*theta*F3*Nn^2*an+6*k3^2*F4*F5*Nn^2*sinh(k3*an)*cosh(k3*an)-
12*theta*F6*Nn*k3*cosh(k3)+6*k3^2*F1*F2*Nn^2*sinh(k3*an)*cosh(k3*an)-... 
    12*theta*F6*Nn*sinh(k3*an)-12*F5*F10*cosh(k3)*Nn^2*k3+12*theta*F6*Nn*k3*an*cosh(k3*an)-
12*theta*F3*Nn*cosh(k3*an)+... 
    
12*theta*F3*Nn*k3*an*sinh(k3*an)+12*theta*F3*F10*sinh(k3*an)*Nn^2*k3+12*F1*theta*F12*sinh(k3
*an)*Nn^2*k3+... 
    
12*theta*F6*F10*cosh(k3*an)*Nn^2*k3+6*k3^2*theta*F6*F1*sinh(k3*an)^2*Nn^2+12*F4*theta*F12*
cosh(k3*an)*Nn^2*k3+... 
    6*k3^2*F4*theta*F3*sinh(k3*an)^2*Nn^2-12*F5*Nn*sinh(k3*an)-12*F2*Nn*cosh(k3*an)-
12*theta*F3*Nn*k3*sinh(k3)-6*k3^2*F5*F1*sinh(k3)^2*Nn^2-... 
    6*k3^2*F4*F2*sinh(k3)^2*Nn^2-
12*F1*F11*sinh(k3)*Nn^2*k3+6*k3^3*F1*F2*Nn^2*an+6*theta*F12*an^2*Nn*k3+12*F10*F11*an*N
n^2*k3-... 
    
6*k3^2*F1*theta*F3*Nn^2*sinh(k3)*cosh(k3)+12*F4*F11*cosh(k3*an)*Nn^2*k3+6*k3^2*F5*F1*sinh(
k3*an)^2*Nn^2-6*k3^3*F4*F5*Nn^2*an+... 
    
12*F2*F10*sinh(k3*an)*Nn^2*k3+12*F1*F11*sinh(k3*an)*Nn^2*k3+12*F5*F10*cosh(k3*an)*Nn^2*k
3+6*k3^2*F4*theta*F6*Nn^2*sinh(k3*an)*cosh(k3*an)+... 
    
6*k3^2*F4*F2*sinh(k3*an)^2*Nn^2+12*F5*Nn*k3*an*cosh(k3*an)+12*F2*Nn*k3*an*sinh(k3*an)+6*
k3^2*F1*theta*F3*Nn^2*sinh(k3*an)*cosh(k3*an))/Nn^2/k3; 
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B8 = -1/6*(3*k3^3*F5^2*Nn^2-3*k3^3*F2^2*Nn^2-12*F2*theta*F12*sinh(k3)*Nn^2*k3-
6*F11^2*Nn^2*k3+3*k3^3*theta^2*F6^2*Nn^2-3*k3^3*theta^2*F3^2*Nn^2-... 
    6*theta^2*F12^2*Nn^2*k3-12*F11*theta*F12*Nn^2*k3+6*k3^3*F5*theta*F6*Nn^2-
6*k3^3*F2*theta*F3*Nn^2-12*F5*F11*cosh(k3)*Nn^2*k3-... 
    12*F5*theta*F12*cosh(k3)*Nn^2*k3-12*theta*F6*F11*cosh(k3)*Nn^2*k3-
12*theta^2*F6*F12*cosh(k3)*Nn^2*k3-12*F2*F11*sinh(k3)*Nn^2*k3-... 
    12*theta^2*F3*F12*sinh(k3)*Nn^2*k3-6*k3^2*F5*F2*sinh(k3)^2*Nn^2-
12*theta*F3*F11*sinh(k3)*Nn^2*k3-6*k3^2*theta^2*F6*F3*sinh(k3)^2*Nn^2-... 
    6*k3^2*F5*theta*F3*sinh(k3)^2*Nn^2-6*k3^2*theta*F6*F2*sinh(k3)^2*Nn^2-
3*k3^2*F5^2*Nn^2*sinh(k3)*cosh(k3)-3*k3^2*F2^2*Nn^2*sinh(k3)*cosh(k3)-... 
    3*k3^2*theta^2*F6^2*Nn^2*sinh(k3)*cosh(k3)-3*k3^2*theta^2*F3^2*Nn^2*sinh(k3)*cosh(k3)-
6*k3^2*F5*theta*F6*Nn^2*sinh(k3)*cosh(k3)-... 
    6*k3^2*F2*theta*F3*Nn^2*sinh(k3)*cosh(k3)+6*F11^2*an*Nn^2*k3+3*k3^3*F2^2*Nn^2*an-
3*k3^3*F5^2*Nn^2*an+6*theta^2*F12^2*an*Nn^2*k3+... 
    12*F11*theta*F12*an*Nn^2*k3-6*k3^3*F5*theta*F6*Nn^2*an-
3*k3^3*theta^2*F6^2*Nn^2*an+3*k3^3*theta^2*F3^2*Nn^2*an+6*k3^3*F2*theta*F3*Nn^2*an+... 
    
12*F5*F11*cosh(k3*an)*Nn^2*k3+6*k3^2*theta^2*F6*F3*sinh(k3*an)^2*Nn^2+12*F2*F11*sinh(k3*a
n)*Nn^2*k3+6*k3^2*theta*F6*F2*sinh(k3*an)^2*Nn^2+... 
    
12*F5*theta*F12*cosh(k3*an)*Nn^2*k3+12*theta*F6*F11*cosh(k3*an)*Nn^2*k3+12*theta^2*F6*F12*
cosh(k3*an)*Nn^2*k3+... 
    
12*F2*theta*F12*sinh(k3*an)*Nn^2*k3+12*theta*F3*F11*sinh(k3*an)*Nn^2*k3+12*theta^2*F3*F12*s
inh(k3*an)*Nn^2*k3+... 
    
6*k3^2*F5*F2*sinh(k3*an)^2*Nn^2+6*k3^2*F5*theta*F3*sinh(k3*an)^2*Nn^2+3*k3^2*F2^2*Nn^2*si
nh(k3*an)*cosh(k3*an)+... 
    
3*k3^2*F5^2*Nn^2*sinh(k3*an)*cosh(k3*an)+6*k3^2*F5*theta*F6*Nn^2*sinh(k3*an)*cosh(k3*an)+3*
k3^2*theta^2*F6^2*Nn^2*sinh(k3*an)*cosh(k3*an)+... 
    
3*k3^2*theta^2*F3^2*Nn^2*sinh(k3*an)*cosh(k3*an)+6*k3^2*F2*theta*F3*Nn^2*sinh(k3*an)*cosh(k3
*an))/Nn^2/k3; 
  
Ca = 1/C-an/C+an/Cstar; 
rt = h/2 + rhostar; 
%Now the Q's, such that the integrability condition is 0= Q1P^2+Q2P+Q3 
Q1 = -1/2*B3-1/2*B6; 
Q2 = -rt*B1-1/2*B4-1/2*B7; 
Q3 = Nn*Ca+B0*theta-rt*B2-1/2*B5-1/2*B8; 
  
%And the transversality equation is 0=Q4P^2+Q5P+Q6bar 
Q4 = 
1/2*D3*(1/(Nn^2)+2*k3^2*cosh(k3*an)*F4/Nn+2*k3^2*sinh(k3*an)*F1/Nn+2*k3^4*cosh(k3*an)*F4*si
nh(k3*an)*F1+k3^4*sinh(k3*an)^2*F1^2+... 
    k3^4*cosh(k3*an)^2*F4^2)-
1/2*Ds*(k1^4*cosh(k1*an)^2*F7^2+2*k1^2*cosh(k1*an)*F7/Nn+1/(Nn^2)); 
Q5 = 
1/2*D3*(2*k3^4*cosh(k3*an)*theta*F6*sinh(k3*an)*F1+2*k3^2*cosh(k3*an)*F5/Nn+2*k3^4*cosh(k3*
an)*F4*sinh(k3*an)*theta*F3+... 
    
2*k3^4*cosh(k3*an)^2*F4*F5+2*k3^2*sinh(k3*an)*F2/Nn+2*k3^4*sinh(k3*an)^2*F1*F2+2*k3^4*cosh
(k3*an)*F4*sinh(k3*an)*F2+... 
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2*k3^4*cosh(k3*an)^2*F4*theta*F6+2*k3^4*cosh(k3*an)*F5*sinh(k3*an)*F1+2*k3^4*sinh(k3*an)^2*F
1*theta*F3+2*k3^2*cosh(k3*an)*theta*F6/Nn+... 
    2*k3^2*sinh(k3*an)*theta*F3/Nn)-
1/2*Ds*(2*k1^4*cosh(k1*an)^2*F7*F8+2*k1^4*cosh(k1*an)^2*F7*theta*F9+2*k1^2*cosh(k1*an)*F8/
Nn+... 
    2*k1^2*cosh(k1*an)*theta*F9/Nn); 
Q6 = 
1/2*D3*(k3^4*sinh(k3*an)^2*F2^2+k3^4*cosh(k3*an)^2*F5^2+2*k3^4*cosh(k3*an)*F5*sinh(k3*an)*F
2+2*k3^4*cosh(k3*an)^2*F5*theta*F6+... 
    
2*k3^4*sinh(k3*an)^2*F2*theta*F3+2*k3^4*cosh(k3*an)*theta*F6*sinh(k3*an)*F2+2*k3^4*cosh(k3*a
n)*F5*sinh(k3*an)*theta*F3+... 
    
k3^4*sinh(k3*an)^2*theta^2*F3^2+k3^4*cosh(k3*an)^2*theta^2*F6^2+2*k3^4*cosh(k3*an)*theta^2*F6
*sinh(k3*an)*F3)-1/2*Ds*(k1^4*cosh(k1*an)^2*F8^2+... 
    2*k1^4*cosh(k1*an)^2*F8*theta*F9+k1^4*cosh(k1*an)^2*theta^2*F9^2)+1/2*Nn^2/Ce+Nn*(1-
alpha_1)*theta+1/2*etatilda*theta^2; 
Q6bar = Q6-2*gamma; 
  
%Now we solve simultaneously the IC and TC 
Q7 = Q5*Q1-Q2*Q4; 
Q8 = Q6bar*Q1-Q3*Q4; 
PBF = -Q8/Q7; 
BF = Q4*(PBF^2)+Q5*PBF+Q6bar; %Sub solution into TE  
  
%delta = a1+a4, loading param. is opposite of w1(0) 
DelBF = -(PBF*F7+F8+theta*F9+PBF*F16+F17+theta*F18); 
Kstiff = PBF/DelBF; 
  
 
function[a_1,a_4,c_1,c_2,c_3,c_4,k1,k3] = BFtenthermCONST(ac,Nc,Pc,TTc) 
% Uses the hand soltuion to find the const. of integ. 
global an Ds D3 rhostar h C Cstar Ce gamma P mstar alpha_1 etatilda 
  
k1 = sqrt(Nc/Ds); 
k3 = sqrt(Nc/D3); 
y = k1*ac; 
x = k3*ac; 
%Some general stuff to get started 
GC1 = D3*(k3^2)*(k3*sinh(x)*cosh(y)-k1*cosh(x)*sinh(y)); 
GC2 = D3*(k3^2)*(k3*cosh(x)*cosh(y)-k1*sinh(x)*sinh(y)); 
C2den = GC2/GC1-sinh(k3)/cosh(k3); 
A1den = Ds*(k1^3)*sinh(y); 
%Now, the F's 
% c2  
F1 = (-Ds+D3)*(k1*sinh(y))/(Nc*GC1*C2den)+1/(Nc*(k3^2)*cosh(k3)*C2den); 
F2 = ((k1*sinh(y))/(GC1*C2den))*(-h*Nc/2-rhostar*Nc); 
F3 = ((k1*sinh(y))/(GC1*C2den))*mstar; 
% c1 
F4 = (k1*sinh(y)*(-Ds+D3))/(Nc*GC1)-F1*GC2/GC1; 
F5 = (k1*sinh(y)*(-h*Nc/2-rhostar*Nc))/GC1-F2*GC2/GC1; 
F6 = (k1*sinh(y)*mstar)/GC1-F3*GC2/GC1; 
% a1 
F7 = D3*(k3^3)*sinh(x)*F4/A1den+D3*(k3^3)*cosh(x)*F1/A1den; 
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F8 = D3*(k3^3)*sinh(x)*F5/A1den+D3*(k3^3)*cosh(x)*F2/A1den; 
F9 = D3*(k3^3)*sinh(x)*F6/A1den+D3*(k3^3)*cosh(x)*F3/A1den; 
% c3 
F10 = F7*k1*sinh(y)-F4*k3*sinh(x)-F1*k3*cosh(x); 
F11 = F8*k1*sinh(y)-F5*k3*sinh(x)-F2*k3*cosh(x); 
F12 = F9*k1*sinh(y)-F6*k3*sinh(x)-F3*k3*cosh(x); 
%c4 
F13 = -1/(2*Nc)-F10-F1*sinh(k3)-F4*cosh(k3); 
F14 = -F11-F2*sinh(k3)-F5*cosh(k3); 
F15 = -F12-F3*sinh(k3)-F6*cosh(k3); 
%a4 
F16 = F4*cosh(x)+F1*sinh(x)+F10*ac+F13-F7*cosh(y); 
F17 = F5*cosh(x)+F2*sinh(x)+F11*ac+F14-F8*cosh(y); 
F18 = F6*cosh(x)+F3*sinh(x)+F12*ac+F15-F9*cosh(y); 
  
a_1 = F7*Pc+F8+F9*TTc; 
a_4 = F16*Pc+F17+F18*TTc; 
c_1 = F4*Pc+F5+F6*TTc; 
c_2 = F1*Pc+F2+F3*TTc; 
c_3 = F10*Pc+F11+F12*TTc; 
c_4 = F13*Pc+F14+F15*TTc; 
 
% Separation of Patched Structure 
% Patched Plate, thermal load, CLAMPED-fixed ends 
% Non-Linear  TENSION!!! 
%                                            NO CONTACT ZONE!!!!!! 
% This is the "P" version 
% This program uses the functions:   
clear 
global h C D3 Dp 
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D3 = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
global Cstar rhostar Ds 
% stiffnesses of composite structure 
Astar = D3+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rhostar = Bstar/Cstar; % location of centroid of composite structure wrt ref. surface 
Ds = Astar-rhostar*Bstar; %Dstar 
global Cs Ce 
% Dc = D+Dp; % bending stiffness of debonded segment (NA) 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
global mstar alpha_1 etatilda 
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 2; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rhostar*nstar; 
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alpha_1 = nstar/Cstar; 
etatilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
m = 1; %initialize index value for result array 
n = 1; 
%Set 2*gamma 
global gamma 
gamma = 0.1/2; 
  
global theta 
theta = -0.0045; 
  
a = [0.69:0.001:0.70]; 
N = [50:.1:70]; 
  
for i = 1:length(a); 
   global an; 
    an = a(i); 
    for j = 1:length(N); 
        [Big(j,1),Big(j,2),Big(j,3)] = BigFuntenthermCFIX(N(j));  
        %[value of big F, P ,Delta~w1(0)] 
    end 
    for k = 1:length(N)-1; 
        if Big(k,1)*Big(k+1,1)<0; 
            Nroot(k) = fzero(@BigFuntenthermCFIXroot,N(k)); 
            group(m,1) = a(i); %'a' 
            group(m,2)= 1-a(i); %a* 
            group(m,3) = Nroot(k); % The value of N that's a root 
            [blah,group(m,4),group(m,5),group(m,6)] = BigFuntenthermCFIX(Nroot(k)); %[value of BF=0, P, 
delta,K] 
            %if group(m,4)>0; % & group(m,5)<1); 
            Results(n,1)= 1 - a(i); %a* 
            Results(n,2) = Nroot(k); %N 
            Results(n,3) = group(m,4); %P 
            Results(n,4) = group(m,5); %Delta 
            Results(n,5) = group(m,6); %K 
            n=n+1; 
            %end 
            m = m+1; 
        else 
        end 
    end 
end 
q_end=n-1; %or n-1 
for q = 1:q_end; 
    Xend=1-Results(q,1); 
x1 = [0:0.01:Xend]; 
x3 = [Xend:0.01:1]; 
[a1,a4,c1,c2,c3,c4,K1,K3] = BFtenthermCONST(Xend,Results(q,2),Results(q,3),theta); 
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            for j1 = 1:length(x1); 
                w1star(q,j1) = a1*cosh(K1*x1(j1))+a4+(Results(q,3)*(x1(j1))^2)/(2*Results(q,2)); 
                %kappa1(q,j1) = 
a1*K1^2*cosh(K1*x1(j1))+a2*K1^2*sinh(K1*x1(j1))+Results(q,3)/Results(q,2); 
            end 
            for j3 = 1:length(x3); 
                w3(q,j3) = 
c1*cosh(K3*x3(j3))+c2*sinh(K3*x3(j3))+c3*x3(j3)+c4+(Results(q,3)*(x3(j3))^2)/(2*Results(q,2)); 
                %kappa3(q,j3) = 
c1*K3^2*cosh(K3*x3(j3))+c2*K3^2*sinh(K3*x3(j3))+Results(q,3)/Results(q,2); 
            end 
end 
  
ii=3; 
x1plot = [0:0.01:1-Results(ii,1)]; 
x3plot = [1-Results(ii,1):0.01:1]; 
figure 
plot(x1plot,-w1star(ii,1:length(x1plot)),'b'); 
hold on 
plot(x3plot,-w3(ii,1:length(x3plot)),'r'); 
 
an = 0.90; 
for n = 1:length(N); 
        [Big2(n,1),Big2(n,2),Big2(n,3)] = BigFuntenthermCFIX(N(n));  
        %[value of big F, P ,Delta~w1(0),energy rel. rate] 
end 
figure 
plot(N,Big2(:,1),'b') 
  
q=1; 
qq=1; 
global an Pin 
an=0.5; 
Pin_test=[-1.4:0.1:0.2]; 
Nin=[-50:1:0]; 
for ib = 1:length(Pin_test); 
    Pin = Pin_test(ib); 
    for jb = 1:length(Nin); 
        I_C(jb) = DEF_CFIX(Nin(jb));  
    end 
    for kb = 1:length(Nin)-1; 
        if I_C(kb)*I_C(kb+1)<0; 
            Nroot2(kb) = fzero(@DEF_CFIX,Nin(kb)); 
            group2(q,1)= Nroot2(kb); % N root value 
            group2(q,2) = Pin_test(ib); %"P" 
            [group2(q,3),group2(q,4)] = DEF_CFIX_A4(group2(q,1),group2(q,2)); %deflection, IC=0 
            q = q+1; 
        else 
        end 
    end 
end 
 
function[BF,PBF,DelBF, Kstiff] = BigFuntenthermCFIX(Nn) 
    %Ds,D3,rhostar,h,C,Cstar,Ce,gamma,P,mstar,alpha_1,etatilda 
%Using my hand solution, this function solves the non linear IC, and TC for P 
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%This is the "P" version 
global an Ds D3 rhostar h C Cstar Ce gamma theta mstar alpha_1 etatilda 
  
k1 = sqrt(Nn/Ds); 
k3 = sqrt(Nn/D3); 
  
%Now, the F's 
% c2  
F1 = -(k1^2*Ds^2*sinh(k3)*sinh(k1*an)-k3^2*sinh(k1*an)*D3^2*sinh(k3*an)-
k1*Ds*D3*k3^2*sinh(k3*an)*cosh(k1*an)+k1^2*Ds*D3*k3*sinh(k1*an)*cosh(k3*an)+sinh(k3*an)*k1^
2*Ds*sinh(k1*an)*D3+k3^2*sinh(k1*an)*D3*sinh(k3*an)*Ds-sinh(k3*an)*k1^2*Ds^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*D3)/k3^2/Nn/D3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
F2 = -
1/2*sinh(k1*an)*Nn*(2*k1^2*Ds*sinh(k3)*rhostar+k1^2*Ds*sinh(k3)*h+k3^2*D3*sinh(k3*an)*h+2*k3
^2*D3*sinh(k3*an)*rhostar-2*sinh(k3*an)*k1^2*Ds*rhostar-
sinh(k3*an)*k1^2*Ds*h)/k3^2/D3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
F3 = sinh(k1*an)*mstar*(k3^2*D3*sinh(k3*an)-
sinh(k3*an)*k1^2*Ds+k1^2*Ds*sinh(k3))/k3^2/D3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
% c1 
F4 = -(-
k1^2*sinh(k1*an)*cosh(k3*an)*Ds^2+k1^2*Ds*D3*sinh(k1*an)*cosh(k3*an)+k1^2*sinh(k1*an)*sinh(k3
*an)*Ds*D3*k3-k1^2*sinh(k1*an)*D3*Ds*cosh(k3)+k1^2*sinh(k1*an)*Ds^2*cosh(k3)-
cosh(k1*an)*k3^2*Ds*D3*cosh(k3*an)*k1-
sinh(k1*an)*cosh(k3*an)*D3^2*k3^2+sinh(k1*an)*cosh(k3*an)*Ds*D3*k3^2)/k3^2/Nn/D3/(-
D3*k3^2*sinh(k1*an)+k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)-
k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)-
k1^2*Ds*cosh(k3)*sinh(k1*an)*cosh(k3*an)+k1^2*Ds*sinh(k1*an)+k3*k1*Ds*cosh(k3)*sinh(k3*an)*co
sh(k1*an)); 
F5 = -1/2*Nn*(k1^2*cosh(k3*an)*h*Ds+2*k1^2*cosh(k3*an)*rhostar*Ds-k1^2*h*Ds*cosh(k3)-
2*k1^2*rhostar*Ds*cosh(k3)-cosh(k3*an)*h*D3*k3^2-
2*cosh(k3*an)*rhostar*D3*k3^2)*sinh(k1*an)/k3^2/D3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
F6 = mstar*(k1^2*cosh(k3*an)*Ds-k1^2*Ds*cosh(k3)-
cosh(k3*an)*D3*k3^2)*sinh(k1*an)/k3^2/D3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
% a1 
F7 = -(cosh(k3*an)*Ds*sinh(k3)-cosh(k3*an)*sinh(k3)*D3+D3*k3+sinh(k3*an)*D3*cosh(k3)-
sinh(k3*an)*Ds*cosh(k3))*k3/Nn/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-
k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an))/k1; 
F8 = -1/2*Nn*(2*cosh(k3*an)*sinh(k3)*rhostar+cosh(k3*an)*sinh(k3)*h-sinh(k3*an)*h*cosh(k3)-
2*sinh(k3*an)*rhostar*cosh(k3))*k3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-
k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an))/k1; 
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F9 = mstar*(-sinh(k3*an)*cosh(k3)+sinh(k3)*cosh(k3*an))*k3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-
k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an))/k1; 
% c3 
F10 = -(-k1^2*cosh(k3*an)*sinh(k3)*D3*Ds+k1^2*cosh(k3*an)*sinh(k3)*Ds^2+k1^2*D3*k3*Ds-
k1^2*cosh(k3)*sinh(k3*an)*Ds^2+k1^2*cosh(k3)*sinh(k3*an)*Ds*D3-
cosh(k3*an)*sinh(k3)*Ds*D3*k3^2+cosh(k3*an)*sinh(k3)*D3^2*k3^2+cosh(k3)*k3^2*D3*sinh(k3*an)*
Ds-cosh(k3)*k3^2*D3^2*sinh(k3*an)-D3^2*k3^3)*sinh(k1*an)/k3/D3/Nn/(-
D3*k3^2*sinh(k1*an)+k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)-
k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)-
k1^2*Ds*cosh(k3)*sinh(k1*an)*cosh(k3*an)+k1^2*Ds*sinh(k1*an)+k3*k1*Ds*cosh(k3)*sinh(k3*an)*co
sh(k1*an)); 
F11 = -1/2*Nn*(k1^2*cosh(k3*an)*Ds*sinh(k3)*h+2*k1^2*cosh(k3*an)*Ds*sinh(k3)*rhostar-
2*k1^2*cosh(k3)*sinh(k3*an)*Ds*rhostar-k1^2*cosh(k3)*sinh(k3*an)*Ds*h-
2*cosh(k3*an)*sinh(k3)*rhostar*D3*k3^2-
cosh(k3*an)*sinh(k3)*h*D3*k3^2+cosh(k3)*k3^2*D3*sinh(k3*an)*h+2*cosh(k3)*k3^2*D3*sinh(k3*an)
*rhostar)*sinh(k1*an)/k3/D3/(-D3*k3^2*sinh(k1*an)+k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)-
k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)-
k1^2*Ds*cosh(k3)*sinh(k1*an)*cosh(k3*an)+k1^2*Ds*sinh(k1*an)+k3*k1*Ds*cosh(k3)*sinh(k3*an)*co
sh(k1*an)); 
F12 = mstar*(k1^2*cosh(k3*an)*Ds*sinh(k3)-k1^2*cosh(k3)*sinh(k3*an)*Ds-
cosh(k3*an)*sinh(k3)*D3*k3^2+cosh(k3)*k3^2*D3*sinh(k3*an))*sinh(k1*an)/k3/D3/(-
D3*k3^2*sinh(k1*an)+k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)-
k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)-
k1^2*Ds*cosh(k3)*sinh(k1*an)*cosh(k3*an)+k1^2*Ds*sinh(k1*an)+k3*k1*Ds*cosh(k3)*sinh(k3*an)*co
sh(k1*an)); 
%c4 
F13 = -
1/2*(k1^2*sinh(k1*an)*D3*k3^2*Ds+2*k1^2*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds^2+k1*cosh(k3*an)*
sinh(k3)*cosh(k1*an)*k3^3*Ds*D3-
2*k1*cosh(k3*an)*cosh(k3)*cosh(k1*an)*k3^2*Ds*D3+4*k1^2*sinh(k1*an)*cosh(k3)*sinh(k3*an)*Ds*
D3*k3-2*k1^2*sinh(k1*an)*k3*cosh(k3)*sinh(k3*an)*Ds^2-
k1^2*sinh(k1*an)*sinh(k3)*k3^2*sinh(k3*an)*Ds*D3+2*k1*k3^2*sinh(k3)*sinh(k3*an)*cosh(k1*an)*D
s*D3-
k1*cosh(k3)*cosh(k1*an)*k3^3*D3*sinh(k3*an)*Ds+2*sinh(k1*an)*cosh(k3*an)*k3^2*cosh(k3)*Ds*D3
-2*sinh(k1*an)*sinh(k3)*k3^2*sinh(k3*an)*Ds*D3-
2*sinh(k1*an)*cosh(k3*an)*cosh(k3)*D3^2*k3^2+2*sinh(k1*an)*cosh(k3*an)*k3^3*sinh(k3)*D3^2-
2*sinh(k1*an)*cosh(k3*an)*k3^3*sinh(k3)*Ds*D3+2*sinh(k1*an)*sinh(k3)*k3^2*D3^2*sinh(k3*an)+2*
sinh(k1*an)*k3^3*cosh(k3)*D3*sinh(k3*an)*Ds-2*sinh(k1*an)*k3^3*cosh(k3)*D3^2*sinh(k3*an)-
2*k1^2*sinh(k1*an)*cosh(k3*an)*cosh(k3)*Ds^2+2*k1^2*sinh(k1*an)*cosh(k3*an)*k3*sinh(k3)*Ds^2-
2*k1^2*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds*D3+2*k1^2*sinh(k1*an)*cosh(k3*an)*cosh(k3)*D3*Ds+
k1^2*sinh(k1*an)*cosh(k3*an)*k3^2*cosh(k3)*Ds*D3-
4*k1^2*sinh(k1*an)*cosh(k3*an)*sinh(k3)*Ds*D3*k3+2*k1^2*sinh(k1*an)*Ds^2-
sinh(k1*an)*D3^2*k3^4-2*k1^2*sinh(k1*an)*Ds*D3)/k3^2/D3/Nn/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
F14 = -1/2*Nn*(2*k1^2*cosh(k3*an)*k3*sinh(k3)*rhostar*Ds+k1^2*cosh(k3*an)*k3*sinh(k3)*h*Ds-
2*k1^2*cosh(k3*an)*cosh(k3)*rhostar*Ds-
2*k1^2*k3*cosh(k3)*sinh(k3*an)*Ds*rhostar+2*k1^2*Ds*rhostar-
k1^2*k3*cosh(k3)*sinh(k3*an)*Ds*h+k1^2*sinh(k3)*sinh(k3*an)*Ds*h+2*k1^2*sinh(k3)*sinh(k3*an)*
Ds*rhostar+k3^3*cosh(k3)*D3*sinh(k3*an)*h+2*k3^3*cosh(k3)*D3*sinh(k3*an)*rhostar-
sinh(k3)*k3^2*D3*sinh(k3*an)*h-2*sinh(k3)*k3^2*D3*sinh(k3*an)*rhostar-
cosh(k3*an)*k3^3*sinh(k3)*h*D3+2*cosh(k3*an)*cosh(k3)*rhostar*D3*k3^2+cosh(k3*an)*cosh(k3)*h*
D3*k3^2-2*cosh(k3*an)*k3^3*sinh(k3)*rhostar*D3+k1^2*Ds*h-
k1^2*cosh(k3*an)*cosh(k3)*h*Ds)*sinh(k1*an)/k3^2/D3/(D3*k3^2*sinh(k1*an)-
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k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
F15 = mstar*(k1^2*cosh(k3*an)*k3*sinh(k3)*Ds-
k1^2*k3*cosh(k3)*sinh(k3*an)*Ds+k1^2*Ds*sinh(k3)*sinh(k3*an)+k3^3*cosh(k3)*D3*sinh(k3*an)-
sinh(k3)*k3^2*D3*sinh(k3*an)-
cosh(k3*an)*k3^3*sinh(k3)*D3+cosh(k3*an)*cosh(k3)*D3*k3^2+k1^2*Ds-
k1^2*Ds*cosh(k3)*cosh(k3*an))*sinh(k1*an)/k3^2/D3/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an)); 
%a4 
F16 = 1/2*(-4*k1^3*sinh(k1*an)*Ds^2+2*k1^3*sinh(k1*an)*k3*cosh(k3)*sinh(k3*an)*Ds^2-
2*k3^3*cosh(k3)*sinh(k3*an)*cosh(k1*an)*Ds*D3+2*cosh(k3*an)*k3^3*cosh(k1*an)*D3*Ds*sinh(k3)+
2*k1*sinh(k1*an)*an*k3^3*cosh(k3)*D3*sinh(k3*an)*Ds-
2*k1*sinh(k1*an)*an*k3^3*cosh(k3)*D3^2*sinh(k3*an)+2*k1*sinh(k1*an)*sinh(k3)*k3^2*sinh(k3*an)*
Ds*D3-
2*k1*cosh(k3*an)*sinh(k1*an)*k3^3*sinh(k3)*D3^2+2*k1*cosh(k3*an)*sinh(k1*an)*cosh(k3)*D3^2*k3
^2-
4*k1^3*sinh(k1*an)*cosh(k3)*sinh(k3*an)*Ds*D3*k3+k1^3*sinh(k1*an)*sinh(k3)*k3^2*sinh(k3*an)*D
s*D3+2*k1*sinh(k1*an)*k3^3*cosh(k3)*D3^2*sinh(k3*an)-
2*k1*cosh(k3*an)*sinh(k1*an)*k3^2*cosh(k3)*Ds*D3+2*k3^3*sinh(k3*an)*cosh(k1*an)*cosh(k3)*D3^
2-4*k1^3*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds^2+4*k1^3*sinh(k1*an)*D3*Ds-
2*k1^2*Ds*D3*k3^2*cosh(k1*an)-2*k1*sinh(k1*an)*k3^2*D3^2+k1*sinh(k1*an)*D3^2*k3^4-
k1^3*sinh(k1*an)*D3*k3^2*Ds-
2*k1*sinh(k1*an)*an*k3^4*D3^2+2*k3^4*cosh(k1*an)*D3^2+2*k1*sinh(k1*an)*D3*k3^2*Ds+2*k1^3
*sinh(k1*an)*an*k3^2*D3*Ds+2*k1^3*sinh(k1*an)*an*k3*cosh(k3)*sinh(k3*an)*Ds*D3-
2*k1^3*sinh(k1*an)*an*k3*cosh(k3)*sinh(k3*an)*Ds^2+2*k1*cosh(k3*an)*sinh(k1*an)*k3^3*sinh(k3)*
Ds*D3+2*k1*cosh(k3*an)*sinh(k1*an)*an*k3^3*sinh(k3)*D3^2+4*k1^3*cosh(k3*an)*sinh(k1*an)*sinh
(k3)*Ds*D3*k3-
4*k1^3*cosh(k3*an)*sinh(k1*an)*cosh(k3)*D3*Ds+4*k1^3*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds*D3-
2*k1*sinh(k1*an)*k3^3*cosh(k3)*D3*sinh(k3*an)*Ds-
2*k1*cosh(k3*an)*sinh(k1*an)*an*k3^3*sinh(k3)*Ds*D3-
2*k1*sinh(k1*an)*sinh(k3)*k3^2*D3^2*sinh(k3*an)-
k1^2*cosh(k3*an)*k3^3*cosh(k1*an)*D3*Ds*sinh(k3)+2*k1^2*cosh(k3*an)*cosh(k3)*cosh(k1*an)*k3^
2*Ds*D3-
2*k1^2*k3^2*sinh(k3)*sinh(k3*an)*cosh(k1*an)*Ds*D3+k1^2*k3^3*cosh(k3)*sinh(k3*an)*cosh(k1*an)
*Ds*D3-
2*k1^3*cosh(k3*an)*sinh(k1*an)*an*k3*sinh(k3)*D3*Ds+4*k1^3*cosh(k3*an)*sinh(k1*an)*cosh(k3)*
Ds^2-2*cosh(k3*an)*k3^3*cosh(k1*an)*D3^2*sinh(k3)-
k1^3*cosh(k3*an)*sinh(k1*an)*k3^2*cosh(k3)*Ds*D3+2*k1^3*cosh(k3*an)*sinh(k1*an)*an*k3*sinh(k3
)*Ds^2-2*k1^3*cosh(k3*an)*sinh(k1*an)*k3*sinh(k3)*Ds^2)/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-
k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an))/k1/Nn/D3/k3^2; 
F17 = 1/2*Nn*(-
4*k1^3*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds*rhostar+2*k1^3*cosh(k3*an)*sinh(k1*an)*cosh(k3)*h*Ds
+2*k1^3*sinh(k1*an)*k3*cosh(k3)*sinh(k3*an)*Ds*rhostar+k1^3*cosh(k3*an)*sinh(k1*an)*an*k3*sinh(
k3)*h*Ds+2*k1*cosh(k3*an)*sinh(k1*an)*k3^3*sinh(k3)*rhostar*D3+k1*sinh(k1*an)*sinh(k3)*k3^2*D
3*sinh(k3*an)*h+2*cosh(k3*an)*k3^3*cosh(k1*an)*D3*sinh(k3)*rhostar-
k1^3*sinh(k1*an)*an*k3*cosh(k3)*sinh(k3*an)*Ds*h-k3^3*sinh(k3*an)*cosh(k1*an)*cosh(k3)*h*D3-
2*k1^3*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds*h+k1*cosh(k3*an)*sinh(k1*an)*k3^3*sinh(k3)*h*D3-
2*k1^3*sinh(k1*an)*h*Ds-
2*k1*cosh(k3*an)*sinh(k1*an)*an*k3^3*sinh(k3)*rhostar*D3+2*k1*sinh(k1*an)*k3^2*D3*rhostar-
k1^3*cosh(k3*an)*sinh(k1*an)*k3*sinh(k3)*h*Ds-k1*cosh(k3*an)*sinh(k1*an)*cosh(k3)*h*D3*k3^2-
k1*sinh(k1*an)*k3^3*cosh(k3)*D3*sinh(k3*an)*h+k1*sinh(k1*an)*k3^2*D3*h-
2*k1*sinh(k1*an)*k3^3*cosh(k3)*D3*sinh(k3*an)*rhostar-
2*k3^3*sinh(k3*an)*cosh(k1*an)*cosh(k3)*rhostar*D3-
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2*k1^3*sinh(k1*an)*an*k3*cosh(k3)*sinh(k3*an)*Ds*rhostar+cosh(k3*an)*k3^3*cosh(k1*an)*D3*sinh(
k3)*h+4*k1^3*cosh(k3*an)*sinh(k1*an)*cosh(k3)*rhostar*Ds-
k1*cosh(k3*an)*sinh(k1*an)*an*k3^3*sinh(k3)*h*D3+2*k1^3*cosh(k3*an)*sinh(k1*an)*an*k3*sinh(k3
)*rhostar*Ds-2*k1^3*cosh(k3*an)*sinh(k1*an)*k3*sinh(k3)*rhostar*Ds-
2*k1*cosh(k3*an)*sinh(k1*an)*cosh(k3)*rhostar*D3*k3^2-
4*k1^3*sinh(k1*an)*rhostar*Ds+k1^3*sinh(k1*an)*k3*cosh(k3)*sinh(k3*an)*Ds*h+2*k1*sinh(k1*an)*s
inh(k3)*k3^2*D3*sinh(k3*an)*rhostar+k1*sinh(k1*an)*an*k3^3*cosh(k3)*D3*sinh(k3*an)*h+2*k1*sinh
(k1*an)*an*k3^3*cosh(k3)*D3*sinh(k3*an)*rhostar)/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-
k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an))/k1/D3/k3^2; 
F18 = -mstar*(-k1^3*sinh(k1*an)*an*k3*cosh(k3)*sinh(k3*an)*Ds-
k3^3*sinh(k3*an)*cosh(k1*an)*cosh(k3)*D3+k1*sinh(k1*an)*k3^2*D3-
2*k1^3*sinh(k1*an)*sinh(k3)*sinh(k3*an)*Ds+k1*cosh(k3*an)*sinh(k1*an)*k3^3*sinh(k3)*D3-
2*k1^3*sinh(k1*an)*Ds-k1^3*cosh(k3*an)*sinh(k1*an)*k3*sinh(k3)*Ds-
k1*cosh(k3*an)*sinh(k1*an)*cosh(k3)*D3*k3^2-k1*sinh(k1*an)*k3^3*cosh(k3)*D3*sinh(k3*an)-
k1*cosh(k3*an)*sinh(k1*an)*an*k3^3*sinh(k3)*D3+cosh(k3*an)*k3^3*cosh(k1*an)*D3*sinh(k3)+k1^3*
sinh(k1*an)*k3*cosh(k3)*sinh(k3*an)*Ds+k1*sinh(k1*an)*an*k3^3*cosh(k3)*D3*sinh(k3*an)+2*k1^3*
cosh(k3*an)*sinh(k1*an)*cosh(k3)*Ds+k1^3*cosh(k3*an)*sinh(k1*an)*an*k3*sinh(k3)*Ds+k1*sinh(k1*
an)*sinh(k3)*k3^2*D3*sinh(k3*an))/(D3*k3^2*sinh(k1*an)-
k1^2*Ds*sinh(k3)*sinh(k1*an)*sinh(k3*an)+k3*k1*Ds*sinh(k3)*cosh(k1*an)*cosh(k3*an)+k1^2*Ds*co
sh(k3)*sinh(k1*an)*cosh(k3*an)-k1^2*Ds*sinh(k1*an)-
k3*k1*Ds*cosh(k3)*sinh(k3*an)*cosh(k1*an))/k1/D3/k3^2; 
  
%Now the B's 
B0 = 1-an+an*alpha_1; 
B1 = F7*k1*sinh(k1*an)+an/Nn; 
B2 = (F8+theta*F9)*k1*sinh(k1*an); 
  
B3 = -1/6*(-3*k1^2*F7^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F7^2*Nn^2*an-
12*F7*Nn*k1*an*cosh(k1*an)+12*F7*Nn*sinh(k1*an)-2*an^3*k1)/k1/Nn^2; 
B4 = -1/6*(-6*k1^2*F7*F8*Nn^2*cosh(k1*an)*sinh(k1*an)+6*k1^3*F7*F8*Nn^2*an-
6*k1^2*F7*theta*F9*Nn^2*cosh(k1*an)*sinh(k1*an)+... 
    6*k1^3*F7*theta*F9*Nn^2*an-12*F8*Nn*k1*an*cosh(k1*an)+12*F8*Nn*sinh(k1*an)-
12*theta*F9*Nn*k1*an*cosh(k1*an)+12*theta*F9*Nn*sinh(k1*an))/k1/Nn^2; 
B5 = -1/6*(-3*k1^2*F8^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F8^2*Nn^2*an-
6*k1^2*F8*theta*F9*Nn^2*cosh(k1*an)*sinh(k1*an)+... 
    6*k1^3*F8*theta*F9*Nn^2*an-
3*k1^2*theta^2*F9^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*theta^2*F9^2*Nn^2*an)/k1/Nn^2; 
B6 = -1/6*(-2*k3+2*an^3*k3+6*k3^2*F4*F1*sinh(k3*an)^2*Nn^2-
12*F1*Nn*k3*sinh(k3)+3*k3^3*F4^2*Nn^2-3*k3^3*F1^2*Nn^2+12*F4*Nn*sinh(k3)+... 
    12*F1*Nn*cosh(k3)-6*F10^2*Nn^2*k3-6*F10*Nn*k3-12*F4*Nn*sinh(k3*an)-
12*F1*Nn*cosh(k3*an)+6*F10*an^2*Nn*k3-12*F4*F10*cosh(k3)*Nn^2*k3-... 
    12*F1*F10*sinh(k3)*Nn^2*k3-12*F4*Nn*k3*cosh(k3)+6*F10^2*an*Nn^2*k3-
3*k3^3*F4^2*Nn^2*an-6*k3^2*F4*F1*sinh(k3)^2*Nn^2-... 
    3*k3^2*F4^2*Nn^2*sinh(k3)*cosh(k3)-
3*k3^2*F1^2*Nn^2*sinh(k3)*cosh(k3)+12*F4*F10*cosh(k3*an)*Nn^2*k3+12*F1*F10*sinh(k3*an)*Nn
^2*k3+... 
    
3*k3^3*F1^2*Nn^2*an+3*k3^2*F4^2*Nn^2*sinh(k3*an)*cosh(k3*an)+3*k3^2*F1^2*Nn^2*sinh(k3*an)
*cosh(k3*an)+12*F4*Nn*k3*an*cosh(k3*an)+... 
    12*F1*Nn*k3*an*sinh(k3*an))/Nn^2/k3; 
B7 = -1/6*(-12*F2*F10*sinh(k3)*Nn^2*k3-6*theta*F12*Nn*k3-
6*k3^3*F1*F2*Nn^2+6*k3^3*F4*F5*Nn^2-12*F10*F11*Nn^2*k3-12*F5*Nn*k3*cosh(k3)+... 
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    12*theta*F3*Nn*cosh(k3)-12*theta*F6*F10*cosh(k3)*Nn^2*k3-
12*F4*theta*F12*cosh(k3)*Nn^2*k3+12*theta*F6*Nn*sinh(k3)-... 
    12*theta*F3*F10*sinh(k3)*Nn^2*k3-12*F1*theta*F12*sinh(k3)*Nn^2*k3-
6*k3^2*F4*theta*F3*sinh(k3)^2*Nn^2-6*k3^2*theta*F6*F1*sinh(k3)^2*Nn^2-... 
    6*k3^2*F1*F2*Nn^2*sinh(k3)*cosh(k3)-6*k3^2*F4*F5*Nn^2*sinh(k3)*cosh(k3)-
12*F2*Nn*k3*sinh(k3)+12*F10*theta*F12*an*Nn^2*k3-... 
    6*k3^3*F4*theta*F6*Nn^2*an+6*F11*an^2*Nn*k3+12*F2*Nn*cosh(k3)-
6*k3^3*F1*theta*F3*Nn^2+6*k3^3*F4*theta*F6*Nn^2-6*F11*Nn*k3+... 
    12*F5*Nn*sinh(k3)-12*F4*F11*cosh(k3)*Nn^2*k3-12*F10*theta*F12*Nn^2*k3-
6*k3^2*F4*theta*F6*Nn^2*sinh(k3)*cosh(k3)+... 
    6*k3^3*F1*theta*F3*Nn^2*an+6*k3^2*F4*F5*Nn^2*sinh(k3*an)*cosh(k3*an)-
12*theta*F6*Nn*k3*cosh(k3)+6*k3^2*F1*F2*Nn^2*sinh(k3*an)*cosh(k3*an)-... 
    12*theta*F6*Nn*sinh(k3*an)-12*F5*F10*cosh(k3)*Nn^2*k3+12*theta*F6*Nn*k3*an*cosh(k3*an)-
12*theta*F3*Nn*cosh(k3*an)+... 
    
12*theta*F3*Nn*k3*an*sinh(k3*an)+12*theta*F3*F10*sinh(k3*an)*Nn^2*k3+12*F1*theta*F12*sinh(k3
*an)*Nn^2*k3+... 
    
12*theta*F6*F10*cosh(k3*an)*Nn^2*k3+6*k3^2*theta*F6*F1*sinh(k3*an)^2*Nn^2+12*F4*theta*F12*
cosh(k3*an)*Nn^2*k3+... 
    6*k3^2*F4*theta*F3*sinh(k3*an)^2*Nn^2-12*F5*Nn*sinh(k3*an)-12*F2*Nn*cosh(k3*an)-
12*theta*F3*Nn*k3*sinh(k3)-6*k3^2*F5*F1*sinh(k3)^2*Nn^2-... 
    6*k3^2*F4*F2*sinh(k3)^2*Nn^2-
12*F1*F11*sinh(k3)*Nn^2*k3+6*k3^3*F1*F2*Nn^2*an+6*theta*F12*an^2*Nn*k3+12*F10*F11*an*N
n^2*k3-... 
    
6*k3^2*F1*theta*F3*Nn^2*sinh(k3)*cosh(k3)+12*F4*F11*cosh(k3*an)*Nn^2*k3+6*k3^2*F5*F1*sinh(
k3*an)^2*Nn^2-6*k3^3*F4*F5*Nn^2*an+... 
    
12*F2*F10*sinh(k3*an)*Nn^2*k3+12*F1*F11*sinh(k3*an)*Nn^2*k3+12*F5*F10*cosh(k3*an)*Nn^2*k
3+6*k3^2*F4*theta*F6*Nn^2*sinh(k3*an)*cosh(k3*an)+... 
    
6*k3^2*F4*F2*sinh(k3*an)^2*Nn^2+12*F5*Nn*k3*an*cosh(k3*an)+12*F2*Nn*k3*an*sinh(k3*an)+6*
k3^2*F1*theta*F3*Nn^2*sinh(k3*an)*cosh(k3*an))/Nn^2/k3; 
B8 = -1/6*(3*k3^3*F5^2*Nn^2-3*k3^3*F2^2*Nn^2-12*F2*theta*F12*sinh(k3)*Nn^2*k3-
6*F11^2*Nn^2*k3+3*k3^3*theta^2*F6^2*Nn^2-3*k3^3*theta^2*F3^2*Nn^2-... 
    6*theta^2*F12^2*Nn^2*k3-12*F11*theta*F12*Nn^2*k3+6*k3^3*F5*theta*F6*Nn^2-
6*k3^3*F2*theta*F3*Nn^2-12*F5*F11*cosh(k3)*Nn^2*k3-... 
    12*F5*theta*F12*cosh(k3)*Nn^2*k3-12*theta*F6*F11*cosh(k3)*Nn^2*k3-
12*theta^2*F6*F12*cosh(k3)*Nn^2*k3-12*F2*F11*sinh(k3)*Nn^2*k3-... 
    12*theta^2*F3*F12*sinh(k3)*Nn^2*k3-6*k3^2*F5*F2*sinh(k3)^2*Nn^2-
12*theta*F3*F11*sinh(k3)*Nn^2*k3-6*k3^2*theta^2*F6*F3*sinh(k3)^2*Nn^2-... 
    6*k3^2*F5*theta*F3*sinh(k3)^2*Nn^2-6*k3^2*theta*F6*F2*sinh(k3)^2*Nn^2-
3*k3^2*F5^2*Nn^2*sinh(k3)*cosh(k3)-3*k3^2*F2^2*Nn^2*sinh(k3)*cosh(k3)-... 
    3*k3^2*theta^2*F6^2*Nn^2*sinh(k3)*cosh(k3)-3*k3^2*theta^2*F3^2*Nn^2*sinh(k3)*cosh(k3)-
6*k3^2*F5*theta*F6*Nn^2*sinh(k3)*cosh(k3)-... 
    6*k3^2*F2*theta*F3*Nn^2*sinh(k3)*cosh(k3)+6*F11^2*an*Nn^2*k3+3*k3^3*F2^2*Nn^2*an-
3*k3^3*F5^2*Nn^2*an+6*theta^2*F12^2*an*Nn^2*k3+... 
    12*F11*theta*F12*an*Nn^2*k3-6*k3^3*F5*theta*F6*Nn^2*an-
3*k3^3*theta^2*F6^2*Nn^2*an+3*k3^3*theta^2*F3^2*Nn^2*an+6*k3^3*F2*theta*F3*Nn^2*an+... 
    
12*F5*F11*cosh(k3*an)*Nn^2*k3+6*k3^2*theta^2*F6*F3*sinh(k3*an)^2*Nn^2+12*F2*F11*sinh(k3*a
n)*Nn^2*k3+6*k3^2*theta*F6*F2*sinh(k3*an)^2*Nn^2+... 
    
12*F5*theta*F12*cosh(k3*an)*Nn^2*k3+12*theta*F6*F11*cosh(k3*an)*Nn^2*k3+12*theta^2*F6*F12*
cosh(k3*an)*Nn^2*k3+... 



184 

    
12*F2*theta*F12*sinh(k3*an)*Nn^2*k3+12*theta*F3*F11*sinh(k3*an)*Nn^2*k3+12*theta^2*F3*F12*s
inh(k3*an)*Nn^2*k3+... 
    
6*k3^2*F5*F2*sinh(k3*an)^2*Nn^2+6*k3^2*F5*theta*F3*sinh(k3*an)^2*Nn^2+3*k3^2*F2^2*Nn^2*si
nh(k3*an)*cosh(k3*an)+... 
    
3*k3^2*F5^2*Nn^2*sinh(k3*an)*cosh(k3*an)+6*k3^2*F5*theta*F6*Nn^2*sinh(k3*an)*cosh(k3*an)+3*
k3^2*theta^2*F6^2*Nn^2*sinh(k3*an)*cosh(k3*an)+... 
    
3*k3^2*theta^2*F3^2*Nn^2*sinh(k3*an)*cosh(k3*an)+6*k3^2*F2*theta*F3*Nn^2*sinh(k3*an)*cosh(k3
*an))/Nn^2/k3; 
  
Ca = 1/C-an/C+an/Cstar; 
rt = h/2 + rhostar; 
%Now the Q's, such that the integrability condition is 0= Q1P^2+Q2P+Q3 
Q1 = -1/2*B3-1/2*B6; 
Q2 = -rt*B1-1/2*B4-1/2*B7; 
Q3 = Nn*Ca+B0*theta-rt*B2-1/2*B5-1/2*B8; 
  
%And the transversality equation is 0=Q4P^2+Q5P+Q6bar 
Q4 = 
1/2*D3*(1/(Nn^2)+2*k3^2*cosh(k3*an)*F4/Nn+2*k3^2*sinh(k3*an)*F1/Nn+2*k3^4*cosh(k3*an)*F4*si
nh(k3*an)*F1+k3^4*sinh(k3*an)^2*F1^2+... 
    k3^4*cosh(k3*an)^2*F4^2)-
1/2*Ds*(k1^4*cosh(k1*an)^2*F7^2+2*k1^2*cosh(k1*an)*F7/Nn+1/(Nn^2)); 
Q5 = 
1/2*D3*(2*k3^4*cosh(k3*an)*theta*F6*sinh(k3*an)*F1+2*k3^2*cosh(k3*an)*F5/Nn+2*k3^4*cosh(k3*
an)*F4*sinh(k3*an)*theta*F3+... 
    
2*k3^4*cosh(k3*an)^2*F4*F5+2*k3^2*sinh(k3*an)*F2/Nn+2*k3^4*sinh(k3*an)^2*F1*F2+2*k3^4*cosh
(k3*an)*F4*sinh(k3*an)*F2+... 
    
2*k3^4*cosh(k3*an)^2*F4*theta*F6+2*k3^4*cosh(k3*an)*F5*sinh(k3*an)*F1+2*k3^4*sinh(k3*an)^2*F
1*theta*F3+2*k3^2*cosh(k3*an)*theta*F6/Nn+... 
    2*k3^2*sinh(k3*an)*theta*F3/Nn)-
1/2*Ds*(2*k1^4*cosh(k1*an)^2*F7*F8+2*k1^4*cosh(k1*an)^2*F7*theta*F9+2*k1^2*cosh(k1*an)*F8/
Nn+... 
    2*k1^2*cosh(k1*an)*theta*F9/Nn); 
Q6 = 
1/2*D3*(k3^4*sinh(k3*an)^2*F2^2+k3^4*cosh(k3*an)^2*F5^2+2*k3^4*cosh(k3*an)*F5*sinh(k3*an)*F
2+2*k3^4*cosh(k3*an)^2*F5*theta*F6+... 
    
2*k3^4*sinh(k3*an)^2*F2*theta*F3+2*k3^4*cosh(k3*an)*theta*F6*sinh(k3*an)*F2+2*k3^4*cosh(k3*a
n)*F5*sinh(k3*an)*theta*F3+... 
    
k3^4*sinh(k3*an)^2*theta^2*F3^2+k3^4*cosh(k3*an)^2*theta^2*F6^2+2*k3^4*cosh(k3*an)*theta^2*F6
*sinh(k3*an)*F3)-1/2*Ds*(k1^4*cosh(k1*an)^2*F8^2+... 
    2*k1^4*cosh(k1*an)^2*F8*theta*F9+k1^4*cosh(k1*an)^2*theta^2*F9^2)+1/2*Nn^2/Ce+Nn*(1-
alpha_1)*theta+1/2*etatilda*theta^2; 
Q6bar = Q6-2*gamma; 
  
%Now we solve simultaneously the IC and TC 
Q7 = Q5*Q1-Q2*Q4; 
Q8 = Q6bar*Q1-Q3*Q4; 
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PBF = -Q8/Q7; 
BF = Q4*(PBF^2)+Q5*PBF+Q6bar; %Sub solution into TE  
%delta = -(a1+a4) opposite of deflection 
DelBF = -(PBF*F7+F8+theta*F9+PBF*F16+F17+theta*F18); 
Kstiff = PBF/DelBF; 
%Energy Release Rate... 
err = Q4+Q5+Q6; 
 
% Separation of Patched Structure 
% Patched Plate, thermal load, CLAMPED-fixed ends 
% Non-Linear  TENSION!!! 
  
%                                     CONTACT ZONE!!!!!! 
  
% This is the "P" version 
% This program uses the functions:   
clear 
global h C D3 Dp 
h = 0.05; % height of baseplate 
hp = 0.05; % height of patch 
h0 = hp/h; % ratio of heights 
E0 = 1; % elastic modulus 
C = 12/(h^2); % membrane stiffness of baseplate 
Cp = C*E0*h0; % membrane stiffness of patch 
D3 = 1; % bending stiffness of baseplate 
Dp = E0*(h0^3); %bending stiffness of patch 
global Cstar rhostar Ds rho 
% stiffnesses of composite structure 
Astar = D3+Dp+((h/2)^2)*C+((hp/2)^2)*Cp; 
Bstar = -(h/2)*C+(hp/2)*Cp; 
Cstar = C+Cp; 
rho = Bstar/Cstar; % rhostar, location of centroid of composite structure wrt ref. surface 
rhostar = rho; 
Ds = Astar-rho*Bstar; %Dstar 
global Cs Ce Dc 
Dc = D3+Dp; % bending stiffness of debonded segment (NA) 
Cs = (C*Cp)/Cstar; 
Ce = Cstar/(Cp/C); 
global mstar alpha_1 etatilda 
%Using the Normalization ThetaTilda = alpha*Theta 
alpha = 1; %ratio alpha/alpha (baseplate to baseplate) 
alphaP = 2; %ratio alphaP/alpha (patch to baseplate) 
nstar = C+alphaP*Cp; 
mustar = -(h/2)*C+(hp/2)*Cp*alphaP; 
mstar = mustar-rho*nstar; 
alpha_1 = nstar/Cstar; 
etatilda = C+(alphaP^2)*Cp-(alpha_1^2)*Cstar; 
  
% a is the length of the bonded segment 
% b is the length of the bonded segment plus contact zone (NA) 
% Lp is the length of the patch 
% L is the length of the baseplate (normalized to 1) 
% p is the applied pressure 
  
m = 1; %initialize index value for result array 
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n=1; 
%Set 2*gamma 
global gamma 
gamma =0.1/2; 
  
global theta b 
theta = -0.005; 
b=0.9; 
a = [0.63:0.01:b]; 
N = [115:.1:150]; 
  
for i = 1:length(a); 
   global an; 
    an = a(i); 
    for j = 1:length(N); 
        N1=N(j); 
        [Big(j,1),Big(j,2),Big(j,3)] = BigFuntenthermCFIXCZ_2(N1);  
        %[value of big F, P ,Delta~w1(0)] 
    end 
    for k = 1:length(N)-1; 
        if Big(k,1)*Big(k+1,1)<0; 
            Nroot(k) = fzero(@BigFuntenthermCFIXCZroot_2,N(k)); 
            group(m,1) = a(i); %'a' 
            group(m,2)= 1-a(i); %a* 
            group(m,3) = Nroot(k); % The value of N that's a root 
            [blah,group(m,4),group(m,5),group(m,6)] = BigFuntenthermCFIXCZ_2(Nroot(k)); %[value of 
BF=0, P, delta,K] 
            %if group(m,4)>0; % & group(m,5)>0); 
            Results(n,1)= 1 - a(i); %a* 
            Results(n,2) = Nroot(k); %N 
            Results(n,3) = group(m,4); %P 
            Results(n,4) = group(m,5); %Delta 
            Results(n,5) = group(m,6); %K 
            n=n+1; 
            %end 
            m = m+1; 
        else 
        end 
    end 
end 
% Now to check the validity... 
for q = 1:n-1; 
    a_temp=1-Results(q,1); 
x1 = [0:0.01:a_temp]; 
x2 = [a_temp:0.01:b]; 
x3 = [b:0.01:1]; 
[a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,K1,K2,K3]= 
BFtenthermCONST_CFIXCZ_2(Results(q,2),Results(q,3),a_temp); 
            for j1 = 1:length(x1); 
                w1star(q,j1) = 
a1*cosh(K1*x1(j1))+a2*sinh(K1*x1(j1))+a3*x1(j1)+a4+(Results(q,3)*(x1(j1))^2)/(2*Results(q,2)); 
                kappa1(q,j1) = a1*K1^2*cosh(K1*x1(j1))+a2*K1^2*sinh(K1*x1(j1))+Results(q,3)/Results(q,2); 
            end 
            for j2 = 1:length(x2); 
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                w2star(q,j2) = 
b1*cosh(K2*x2(j2))+b2*sinh(K2*x2(j2))+b3*x2(j2)+b4+(Results(q,3)*(x2(j2))^2)/(2*Results(q,2)); 
                kappa2(q,j2) = b1*K2^2*cosh(K2*x2(j2))+b2*K2^2*sinh(K2*x2(j2))+Results(q,3)/Results(q,2); 
            end 
            for j3 = 1:length(x3); 
                w3(q,j3) = 
c1*cosh(K3*x3(j3))+c2*sinh(K3*x3(j3))+c3*x3(j3)+c4+(Results(q,3)*(x3(j3))^2)/(2*Results(q,2)); 
                kappa3(q,j3) = c1*K3^2*cosh(K3*x3(j3))+c2*K3^2*sinh(K3*x3(j3))+Results(q,3)/Results(q,2); 
            end 
            for ja=1:length(x2); 
                if  kappa2(q,ja)<=0;  
                ValidCZ(q)=Results(q,1); 
                else 
                ValidCZ(q)=0; 
                break 
                end 
            end 
end 
New_ValidCZ=ValidCZ'; 
  
ii=5; 
x1plot = [0:0.01:1-Results(ii,1)]; 
x2plot = [1-Results(ii,1):0.01:b]; 
x3plot = [b:0.01:1]; 
figure 
plot(x1plot,-w1star(ii,1:length(x1plot)),'b'); 
hold on 
plot(x2plot,-w2star(ii,1:length(x2plot)),'g'); 
hold on 
plot(x3plot,-w3(ii,1:length(x3plot)),'r'); 
  
function[BF,PBF,DelBF,stiff] = BigFuntenthermCFIXCZ_2(Nn) 
    %Ds,D3,rhostar,h,C,Cstar,Ce,gamma,P,mstar,alpha_1,etatilda 
%Using my hand solution, this function solves the non linear IC, and TC for P 
%This is the "P" version 
global an b Ds Dc D3 rho h C Cstar Ce gamma theta mstar alpha_1 etatilda 
  
k1 = sqrt(Nn/Ds); 
k2 = sqrt(Nn/Dc); 
k3 = sqrt(Nn/D3); 
  
%Now, the F's 
%b2 
F1 = -1/2*(-
2*Ds*k1^2*Dc^2*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)+2*Ds*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k
3*D3*sinh(k1*an)*cosh(k2*an)+2*Ds^2*k1^2*Dc*k2^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*si
nh(k1*an)-2*Ds*k1^2*Dc^2*k2^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)-
2*Ds*k1*Dc*k2^2*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)+2*Ds*k1^2*Dc*k2*D3*k3^2*sinh(k
3*b)*sinh(k1*an)*cosh(k2*an)-
2*sinh(k2*an)*Ds^2*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)+2*sinh(k2*b)*Ds^2*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)-
2*Ds^2*k1^2*Dc*k2^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)+2*Ds^2*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*
b)*sinh(k1*an)+2*k2^2*sinh(k1*an)*Dc*D3*k3^2*sinh(k3*b)*Ds*sinh(k2*an)-
2*k2^2*sinh(k1*an)*Dc^2*D3*k3^2*sinh(k3*b)*sinh(k2*an)-
2*Ds^2*k1^2*Dc*k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)+2*sinh(k2*an)*Ds*k1^2*D3*k
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3^2*sinh(k3*b)*sinh(k1*an)*Dc-
2*sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*Dc+2*Ds*k1^2*Dc^2*k2^2*sinh(k3*b)*sinh(
k2*b)*sinh(k1*an)-
2*Ds*k1*Dc^2*k2^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)+2*Ds*k1^2*Dc^2*
k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)+2*Ds^2*k1^2*Dc*k2*sinh(k3)*cosh(k3*b)*k3*sin
h(k3*b)*cosh(k2*b)*sinh(k1*an)-
2*Ds*k1^2*Dc^2*k2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)+2*Ds*k1*Dc^2*k2^
2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*an)*cosh(k1*an)+2*Ds*k1^2*Dc^2*k2*sinh(k3)*cosh(k3*b)*k3*s
inh(k3*b)*sinh(k1*an)*cosh(k2*an)+2*Ds*k1*Dc*k2^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*D3*sinh(k
2*an)*cosh(k1*an)-
2*Ds*k1^2*Dc*k2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*D3*sinh(k1*an)*cosh(k2*an)-
2*Ds^2*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)+2*Ds*k1^2*Dc^2*k2*cosh(k
3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)-
2*Ds*k1^2*Dc^2*k2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k1*an)*cosh(k2*an)-
2*Ds*k1*Dc*k2^2*cosh(k3)*sinh(k3*b)^2*k3*D3*sinh(k2*an)*cosh(k1*an))/Nn/k2^2/Dc/(-
Dc*k2*Ds*k1^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^3*Ds*k1*sinh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+cosh(k2*b)*Ds*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)*cosh(k2*an)-Dc*k2^2*Ds*k1^2*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^2*sinh(k1*an)*D3*k3^2*sinh(k3*b)*sinh(k2*an)^2+Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*cos
h(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b)^2*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*sinh(
k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*D
s*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*sinh(k
3)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+k2*sinh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*cosh(k1*an)*cosh(
k2*an)-k2*cosh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*cos
h(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*sin
h(k1*an)*D3*k3^2*sinh(k3*b)*cosh(k2*an)^2+Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*
sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*
Ds*k1*sinh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2*Ds*k1^2*sinh(k3
)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b
)*cosh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+sinh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(
k1*an)-cosh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)-
sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b
)^2*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k
2*an)); 
F2 = -1/2*(-
2*k2^2*sinh(k1*an)*Dc*D3*k3^2*sinh(k3*b)*mstar*Nn*sinh(k2*an)+2*sinh(k2*an)*Ds*k1^2*D3*k3^
2*sinh(k3*b)*sinh(k1*an)*mstar*Nn-
2*sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*mstar*Nn+2*Ds*k1^2*Dc*k2^2*sinh(k3*b)*s
inh(k2*b)*sinh(k1*an)*mstar*Nn-
2*Ds*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*mstar*Nn+2*Ds*k1^2*Dc*k2^2*sinh(k3)*cosh(
k3*b)^2*sinh(k2*b)*sinh(k1*an)*mstar*Nn-
2*Ds*k1^2*Dc*k2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*mstar*Nn+2*Ds*k1^2
*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)*mstar*Nn-
2*Ds*k1^2*Dc*k2^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*mstar*Nn)/Nn/k2^2/Dc/
(-Dc*k2*Ds*k1^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^3*Ds*k1*sinh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+cosh(k2*b)*Ds*k1^2*D3*k3^2*sinh(
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k3*b)*sinh(k1*an)*cosh(k2*an)-Dc*k2^2*Ds*k1^2*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^2*sinh(k1*an)*D3*k3^2*sinh(k3*b)*sinh(k2*an)^2+Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*cos
h(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b)^2*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*sinh(
k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*D
s*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*sinh(k
3)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+k2*sinh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*cosh(k1*an)*cosh(
k2*an)-k2*cosh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*cos
h(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*sin
h(k1*an)*D3*k3^2*sinh(k3*b)*cosh(k2*an)^2+Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*
sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*
Ds*k1*sinh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2*Ds*k1^2*sinh(k3
)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b
)*cosh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+sinh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(
k1*an)-cosh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)-
sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b
)^2*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k
2*an)); 
F3 = -
1/2*(2*k2^2*sinh(k1*an)*Dc*D3*k3^2*sinh(k3*b)*rho*Nn^2*sinh(k2*an)+k2^2*sinh(k1*an)*Dc*D3*k
3^2*sinh(k3*b)*h*Nn^2*sinh(k2*an)-
2*sinh(k2*an)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*rho*Nn^2-
sinh(k2*an)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*h*Nn^2+2*sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh
(k3*b)*sinh(k1*an)*rho*Nn^2+sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*h*Nn^2-
2*Ds*k1^2*Dc*k2^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*rho*Nn^2-
Ds*k1^2*Dc*k2^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*h*Nn^2+2*Ds*k1^2*Dc*k2*sinh(k3)*cosh(k3*b
)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*rho*Nn^2+2*Ds*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1
*an)*rho*Nn^2+Ds*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*h*Nn^2-
2*Ds*k1^2*Dc*k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)*rho*Nn^2-
Ds*k1^2*Dc*k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)*h*Nn^2+Ds*k1^2*Dc*k2*sinh(k3)*
cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*h*Nn^2-
2*Ds*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)*rho*Nn^2-
Ds*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)*h*Nn^2+2*Ds*k1^2*Dc*k2^2*cos
h(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*rho*Nn^2+Ds*k1^2*Dc*k2^2*cosh(k3)*sinh(k3*
b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*h*Nn^2)/Nn/k2^2/Dc/(-
Dc*k2*Ds*k1^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^3*Ds*k1*sinh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+cosh(k2*b)*Ds*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)*cosh(k2*an)-Dc*k2^2*Ds*k1^2*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^2*sinh(k1*an)*D3*k3^2*sinh(k3*b)*sinh(k2*an)^2+Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*cos
h(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b)^2*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*sinh(
k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*D
s*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*sinh(k
3)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+k2*sinh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*cosh(k1*an)*cosh(
k2*an)-k2*cosh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*cos
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h(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*sin
h(k1*an)*D3*k3^2*sinh(k3*b)*cosh(k2*an)^2+Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*
sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*
Ds*k1*sinh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2*Ds*k1^2*sinh(k3
)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b
)*cosh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+sinh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(
k1*an)-cosh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)-
sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b
)^2*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k
2*an)); 
%b1 
F4 = -1/2*(-
2*k1*sinh(k1*an)*Ds+2*k1*sinh(k1*an)*Dc*k2^2*sinh(k2*an)*Nn*F1+2*k1*sinh(k1*an)*Dc-
2*cosh(k1*an)*Nn*Dc*k2^3*cosh(k2*an)*F1)/Dc/k2^2/Nn/(-
sinh(k2*an)*cosh(k1*an)*k2+k1*sinh(k1*an)*cosh(k2*an)); 
F5 = -1/2*(2*k1*sinh(k1*an)*mstar*Nn+2*k1*sinh(k1*an)*Dc*k2^2*sinh(k2*an)*Nn*F2-
2*cosh(k1*an)*Nn*Dc*k2^3*cosh(k2*an)*F2)/Dc/k2^2/Nn/(-
sinh(k2*an)*cosh(k1*an)*k2+k1*sinh(k1*an)*cosh(k2*an)); 
F6 = -1/2*(-2*k1*sinh(k1*an)*rho*Nn^2+2*k1*sinh(k1*an)*Dc*k2^2*sinh(k2*an)*Nn*F3-
k1*sinh(k1*an)*h*Nn^2-2*cosh(k1*an)*Nn*Dc*k2^3*cosh(k2*an)*F3)/Dc/k2^2/Nn/(-
sinh(k2*an)*cosh(k1*an)*k2+k1*sinh(k1*an)*cosh(k2*an)); 
%c2 
F7 = (-k3*sinh(k3*b)*Dc*k2^2*cosh(k2*b)*Nn*F4-k3*sinh(k3*b)*Dc*k2^2*sinh(k2*b)*Nn*F1-
k3*sinh(k3*b)*Dc+k3*sinh(k3*b)*D3+cosh(k3*b)*Nn*Dc*k2^3*sinh(k2*b)*F4+cosh(k3*b)*Nn*Dc*k2
^3*cosh(k2*b)*F1)/Nn/k3^3/D3/(-sinh(k3*b)^2+cosh(k3*b)^2); 
F8 = (-k3*sinh(k3*b)*Dc*k2^2*cosh(k2*b)*Nn*F5-
k3*sinh(k3*b)*Dc*k2^2*sinh(k2*b)*Nn*F2+cosh(k3*b)*Nn*Dc*k2^3*sinh(k2*b)*F5+cosh(k3*b)*Nn*
Dc*k2^3*cosh(k2*b)*F2)/Nn/k3^3/D3/(-sinh(k3*b)^2+cosh(k3*b)^2); 
F9 = (-k3*sinh(k3*b)*Dc*k2^2*cosh(k2*b)*Nn*F6-
k3*sinh(k3*b)*Dc*k2^2*sinh(k2*b)*Nn*F3+cosh(k3*b)*Nn*Dc*k2^3*sinh(k2*b)*F6+cosh(k3*b)*Nn*
Dc*k2^3*cosh(k2*b)*F3)/Nn/k3^3/D3/(-sinh(k3*b)^2+cosh(k3*b)^2); 
%c1 
F10 = (Dc*k2^3*sinh(k2*b)*F4+Dc*k2^3*cosh(k2*b)*F1-
D3*k3^3*cosh(k3*b)*F7)/D3/k3^3/sinh(k3*b); 
F11 = (Dc*k2^3*sinh(k2*b)*F5+Dc*k2^3*cosh(k2*b)*F2-
D3*k3^3*cosh(k3*b)*F8)/D3/k3^3/sinh(k3*b); 
F12 = (Dc*k2^3*sinh(k2*b)*F6+Dc*k2^3*cosh(k2*b)*F3-
D3*k3^3*cosh(k3*b)*F9)/D3/k3^3/sinh(k3*b); 
%a1 
F13 = 1/2*(-
2*Ds+2*Dc*k2^2*cosh(k2*an)*Nn*F4+2*Dc*k2^2*sinh(k2*an)*Nn*F1+2*Dc)/Ds/k1^2/cosh(k1*an)/N
n; 
F14 = 
1/2*(2*mstar*Nn+2*Dc*k2^2*cosh(k2*an)*Nn*F5+2*Dc*k2^2*sinh(k2*an)*Nn*F2)/Ds/k1^2/cosh(k1*a
n)/Nn; 
F15 = 1/2*(-2*rho*Nn^2+2*Dc*k2^2*cosh(k2*an)*Nn*F6+2*Dc*k2^2*sinh(k2*an)*Nn*F3-
h*Nn^2)/Ds/k1^2/cosh(k1*an)/Nn; 
%c3 
F16 = -(k3*sinh(k3)*Nn*F10+k3*cosh(k3)*Nn*F7+1)/Nn; 
F17 = -(k3*sinh(k3)*Nn*F11+k3*cosh(k3)*Nn*F8)/Nn; 
F18 = -(k3*sinh(k3)*Nn*F12+k3*cosh(k3)*Nn*F9)/Nn;   
%c4 
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F19 = -1/2*(2*cosh(k3)*Nn*F10+2*sinh(k3)*Nn*F7+2*F16*Nn+1)/Nn; 
F20 = -1/2*(2*cosh(k3)*Nn*F11+2*sinh(k3)*Nn*F8+2*F17*Nn)/Nn; 
F21 = -1/2*(2*cosh(k3)*Nn*F12+2*sinh(k3)*Nn*F9+2*F18*Nn)/Nn; 
%b3 
F22 = -k2*sinh(k2*b)*F4-k2*cosh(k2*b)*F1+k3*sinh(k3*b)*F10+k3*cosh(k3*b)*F7+F16; 
F23 = -k2*sinh(k2*b)*F5-k2*cosh(k2*b)*F2+k3*sinh(k3*b)*F11+k3*cosh(k3*b)*F8+F17; 
F24 = -k2*sinh(k2*b)*F6-k2*cosh(k2*b)*F3+k3*sinh(k3*b)*F12+k3*cosh(k3*b)*F9+F18; 
%b4 
F25 = -cosh(k2*b)*F4-sinh(k2*b)*F1-b*F22+cosh(k3*b)*F10+sinh(k3*b)*F7+b*F16+F19; 
F26 = -cosh(k2*b)*F5-sinh(k2*b)*F2-b*F23+cosh(k3*b)*F11+sinh(k3*b)*F8+b*F17+F20; 
F27 = -cosh(k2*b)*F6-sinh(k2*b)*F3-b*F24+cosh(k3*b)*F12+sinh(k3*b)*F9+b*F18+F21; 
%a4 
F28 = -cosh(k1*an)*F13+cosh(k2*an)*F4+sinh(k2*an)*F1+an*F22+F25; 
F29 = -cosh(k1*an)*F14+cosh(k2*an)*F5+sinh(k2*an)*F2+an*F23+F26; 
F30 = -cosh(k1*an)*F15+cosh(k2*an)*F6+sinh(k2*an)*F3+an*F24+F27; 
  
%Now the B's 
B0 = 1-an+an*alpha_1; 
B1 = F13*k1*sinh(k1*an)+an/Nn; 
B2 = (F14*theta+F15)*k1*sinh(k1*an); 
B3 = -1/6*(-3*k1^2*F13^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F13^2*Nn^2*an-
12*F13*Nn*k1*an*cosh(k1*an)+12*F13*Nn*sinh(k1*an)-2*an^3*k1)/k1/Nn^2; 
B4 = -1/6*(-6*k1^2*F13*F14*theta*Nn^2*cosh(k1*an)*sinh(k1*an)+6*k1^3*F13*F14*theta*Nn^2*an-
6*k1^2*F13*F15*Nn^2*cosh(k1*an)*sinh(k1*an)+6*k1^3*F13*F15*Nn^2*an-
12*F14*theta*Nn*k1*an*cosh(k1*an)+12*F14*theta*Nn*sinh(k1*an)-
12*F15*Nn*k1*an*cosh(k1*an)+12*F15*Nn*sinh(k1*an))/k1/Nn^2; 
B5 = -1/6*(-3*k1^2*F14^2*theta^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F14^2*theta^2*Nn^2*an-
6*k1^2*F14*theta*F15*Nn^2*cosh(k1*an)*sinh(k1*an)+6*k1^3*F14*theta*F15*Nn^2*an-
3*k1^2*F15^2*Nn^2*cosh(k1*an)*sinh(k1*an)+3*k1^3*F15^2*Nn^2*an)/k1/Nn^2; 
B6 = -1/6*(6*F22*an^2*Nn*k2-2*b^3*k2+2*an^3*k2+12*F1*Nn*cosh(k2*b)+12*F4*Nn*sinh(k2*b)-
12*F1*Nn*cosh(k2*an)-12*F4*Nn*sinh(k2*an)+3*k2^3*F1^2*Nn^2*an-
3*k2^3*F4^2*Nn^2*an+3*k2^3*F4^2*Nn^2*b-3*k2^3*F1^2*Nn^2*b-12*F1*Nn*k2*b*sinh(k2*b)-
12*F4*Nn*k2*b*cosh(k2*b)+12*F1*Nn*k2*an*sinh(k2*an)+3*k2^2*F4^2*Nn^2*cosh(k2*an)*sinh(k2*
an)-
3*k2^2*F4^2*Nn^2*cosh(k2*b)*sinh(k2*b)+12*F4*Nn*k2*an*cosh(k2*an)+3*k2^2*F1^2*Nn^2*cosh(k
2*an)*sinh(k2*an)-
12*F4*F22*cosh(k2*b)*Nn^2*k2+12*F1*F22*sinh(k2*an)*Nn^2*k2+6*F22^2*an*Nn^2*k2-
3*k2^2*F1^2*Nn^2*cosh(k2*b)*sinh(k2*b)+6*k2^2*F4*F1*cosh(k2*an)^2*Nn^2-
6*k2^2*F4*F1*cosh(k2*b)^2*Nn^2-
12*F1*F22*sinh(k2*b)*Nn^2*k2+12*F4*F22*cosh(k2*an)*Nn^2*k2-6*F22^2*b*Nn^2*k2-
6*F22*b^2*Nn*k2)/Nn^2/k2; 
B7 = -1/6*(-
6*k2^2*F1*F2*theta*Nn^2*cosh(k2*b)*sinh(k2*b)+12*F5*theta*F22*cosh(k2*an)*Nn^2*k2+6*k2^2*F
4*F2*theta*cosh(k2*an)^2*Nn^2+12*F4*F23*theta*cosh(k2*an)*Nn^2*k2+12*F3*Nn*k2*an*sinh(k2*a
n)-
12*F5*theta*Nn*k2*b*cosh(k2*b)+12*F5*theta*Nn*sinh(k2*b)+6*k2^2*F6*F1*cosh(k2*an)^2*Nn^2+6
*k2^2*F4*F3*cosh(k2*an)^2*Nn^2-6*k2^2*F6*F1*cosh(k2*b)^2*Nn^2-
6*k2^2*F5*theta*F1*cosh(k2*b)^2*Nn^2-12*F5*theta*F22*cosh(k2*b)*Nn^2*k2-
12*F4*F23*theta*cosh(k2*b)*Nn^2*k2-
12*F22*F23*theta*b*Nn^2*k2+12*F22*F23*theta*an*Nn^2*k2-
12*F22*F24*b*Nn^2*k2+12*F22*F24*an*Nn^2*k2-6*F24*b^2*Nn*k2-
6*k2^2*F4*F3*cosh(k2*b)^2*Nn^2+12*F1*F23*theta*sinh(k2*an)*Nn^2*k2-
12*F2*theta*F22*sinh(k2*b)*Nn^2*k2+12*F2*theta*F22*sinh(k2*an)*Nn^2*k2+6*k2^2*F5*theta*F1*
cosh(k2*an)^2*Nn^2+12*F6*Nn*k2*an*cosh(k2*an)+12*F2*theta*Nn*k2*an*sinh(k2*an)+12*F5*theta
*Nn*k2*an*cosh(k2*an)-12*F6*Nn*k2*b*cosh(k2*b)-
12*F2*theta*Nn*k2*b*sinh(k2*b)+12*F2*theta*Nn*cosh(k2*b)-12*F3*Nn*k2*b*sinh(k2*b)-
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6*k2^2*F1*F3*Nn^2*cosh(k2*b)*sinh(k2*b)+6*k2^2*F1*F2*theta*Nn^2*cosh(k2*an)*sinh(k2*an)+6*k
2^2*F1*F3*Nn^2*cosh(k2*an)*sinh(k2*an)-12*F2*theta*Nn*cosh(k2*an)-
12*F1*F24*sinh(k2*b)*Nn^2*k2-12*F3*F22*sinh(k2*b)*Nn^2*k2-
12*F4*F24*cosh(k2*b)*Nn^2*k2+12*F3*F22*sinh(k2*an)*Nn^2*k2+12*F4*F24*cosh(k2*an)*Nn^2*k
2-
12*F6*F22*cosh(k2*b)*Nn^2*k2+12*F6*F22*cosh(k2*an)*Nn^2*k2+12*F1*F24*sinh(k2*an)*Nn^2*k
2-12*F1*F23*theta*sinh(k2*b)*Nn^2*k2-6*k2^2*F4*F2*theta*cosh(k2*b)^2*Nn^2-
12*F5*theta*Nn*sinh(k2*an)+6*F23*theta*an^2*Nn*k2+6*F24*an^2*Nn*k2-
6*F23*theta*b^2*Nn*k2+6*k2^3*F4*F5*theta*Nn^2*b+6*k2^3*F4*F6*Nn^2*b-
6*k2^3*F1*F3*Nn^2*b-6*k2^3*F4*F5*theta*Nn^2*an-
6*k2^3*F4*F6*Nn^2*an+6*k2^3*F1*F3*Nn^2*an-
6*k2^3*F1*F2*theta*Nn^2*b+6*k2^3*F1*F2*theta*Nn^2*an+12*F6*Nn*sinh(k2*b)+12*F3*Nn*cosh(k
2*b)-12*F6*Nn*sinh(k2*an)-12*F3*Nn*cosh(k2*an)-
6*k2^2*F4*F5*theta*Nn^2*cosh(k2*b)*sinh(k2*b)-
6*k2^2*F4*F6*Nn^2*cosh(k2*b)*sinh(k2*b)+6*k2^2*F4*F5*theta*Nn^2*cosh(k2*an)*sinh(k2*an)+6*k
2^2*F4*F6*Nn^2*cosh(k2*an)*sinh(k2*an))/Nn^2/k2; 
B8 = -
1/6*(12*F2*theta*F24*sinh(k2*an)*Nn^2*k2+6*k2^2*F6*F2*theta*cosh(k2*an)^2*Nn^2+6*k2^2*F6*F
3*cosh(k2*an)^2*Nn^2+6*F24^2*an*Nn^2*k2-
6*F24^2*b*Nn^2*k2+3*k2^3*F3^2*Nn^2*an+3*k2^3*F6^2*Nn^2*b-3*k2^3*F3^2*Nn^2*b-
3*k2^3*F6^2*Nn^2*an+6*k2^3*F2*theta*F3*Nn^2*an+6*k2^3*F5*theta*F6*Nn^2*b-
6*k2^3*F5*theta*F6*Nn^2*an-6*k2^3*F2*theta*F3*Nn^2*b-
3*k2^3*F5^2*theta^2*Nn^2*an+3*k2^3*F2^2*theta^2*Nn^2*an+3*k2^3*F5^2*theta^2*Nn^2*b-
3*k2^3*F2^2*theta^2*Nn^2*b+3*k2^2*F3^2*Nn^2*cosh(k2*an)*sinh(k2*an)-
3*k2^2*F6^2*Nn^2*cosh(k2*b)*sinh(k2*b)-
3*k2^2*F3^2*Nn^2*cosh(k2*b)*sinh(k2*b)+3*k2^2*F6^2*Nn^2*cosh(k2*an)*sinh(k2*an)+6*k2^2*F2*
theta*F3*Nn^2*cosh(k2*an)*sinh(k2*an)-
6*k2^2*F5*theta*F6*Nn^2*cosh(k2*b)*sinh(k2*b)+6*k2^2*F5*theta*F6*Nn^2*cosh(k2*an)*sinh(k2*a
n)-
6*k2^2*F2*theta*F3*Nn^2*cosh(k2*b)*sinh(k2*b)+3*k2^2*F5^2*theta^2*Nn^2*cosh(k2*an)*sinh(k2*a
n)+3*k2^2*F2^2*theta^2*Nn^2*cosh(k2*an)*sinh(k2*an)-
3*k2^2*F5^2*theta^2*Nn^2*cosh(k2*b)*sinh(k2*b)-
3*k2^2*F2^2*theta^2*Nn^2*cosh(k2*b)*sinh(k2*b)-12*F3*F24*sinh(k2*b)*Nn^2*k2-
12*F6*F24*cosh(k2*b)*Nn^2*k2+12*F6*F24*cosh(k2*an)*Nn^2*k2-
6*k2^2*F6*F2*theta*cosh(k2*b)^2*Nn^2-
6*k2^2*F5*theta^2*F2*cosh(k2*b)^2*Nn^2+6*k2^2*F5*theta*F3*cosh(k2*an)^2*Nn^2+6*k2^2*F5*the
ta^2*F2*cosh(k2*an)^2*Nn^2-
6*k2^2*F5*theta*F3*cosh(k2*b)^2*Nn^2+12*F3*F24*sinh(k2*an)*Nn^2*k2-
12*F3*F23*theta*sinh(k2*b)*Nn^2*k2-12*F2*theta^2*F23*sinh(k2*b)*Nn^2*k2-
12*F6*F23*theta*cosh(k2*b)*Nn^2*k2-
12*F2*theta*F24*sinh(k2*b)*Nn^2*k2+12*F3*F23*theta*sinh(k2*an)*Nn^2*k2+12*F2*theta^2*F23*si
nh(k2*an)*Nn^2*k2+12*F6*F23*theta*cosh(k2*an)*Nn^2*k2-
12*F5*theta^2*F23*cosh(k2*b)*Nn^2*k2-
12*F5*theta*F24*cosh(k2*b)*Nn^2*k2+12*F5*theta^2*F23*cosh(k2*an)*Nn^2*k2+12*F5*theta*F24*c
osh(k2*an)*Nn^2*k2-6*k2^2*F6*F3*cosh(k2*b)^2*Nn^2+6*F23^2*theta^2*an*Nn^2*k2-
12*F23*theta*F24*b*Nn^2*k2-
6*F23^2*theta^2*b*Nn^2*k2+12*F23*theta*F24*an*Nn^2*k2)/Nn^2/k2; 
B9 = -1/6*(-2*k3-6*F16*Nn*k3+3*k3^2*F10^2*Nn^2*sinh(k3*b)*cosh(k3*b)-
12*F10*Nn*k3*cosh(k3)+3*k3^3*F7^2*Nn^2*b+12*F7*Nn*k3*b*sinh(k3*b)+12*F7*F16*sinh(k3*b)*
Nn^2*k3+3*k3^2*F7^2*Nn^2*sinh(k3*b)*cosh(k3*b)+12*F10*Nn*k3*b*cosh(k3*b)+6*k3^2*F10*F7*
cosh(k3*b)^2*Nn^2+12*F10*F16*cosh(k3*b)*Nn^2*k3+6*F16^2*b*Nn^2*k3+6*F16*b^2*Nn*k3-
6*F16^2*Nn^2*k3-12*F10*F16*cosh(k3)*Nn^2*k3-12*F7*F16*sinh(k3)*Nn^2*k3-
12*F7*Nn*k3*sinh(k3)-3*k3^3*F10^2*Nn^2*b-3*k3^2*F10^2*Nn^2*sinh(k3)*cosh(k3)-
6*k3^2*F10*F7*cosh(k3)^2*Nn^2-12*F7*Nn*cosh(k3*b)-12*F10*Nn*sinh(k3*b)-
3*k3^2*F7^2*Nn^2*sinh(k3)*cosh(k3)-
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3*k3^3*F7^2*Nn^2+12*F7*Nn*cosh(k3)+3*k3^3*F10^2*Nn^2+12*F10*Nn*sinh(k3)+2*b^3*k3)/Nn^2/
k3; 
B10 = -1/6*(-6*k3^3*F7*F8*theta*Nn^2-6*F18*Nn*k3+12*F9*Nn*cosh(k3)+12*F12*Nn*sinh(k3)-
12*F12*Nn*sinh(k3*b)-12*F9*Nn*cosh(k3*b)+6*k3^3*F10*F11*theta*Nn^2-
12*F16*F17*theta*Nn^2*k3-12*F8*theta*F16*sinh(k3)*Nn^2*k3-
6*k3^2*F10*F12*Nn^2*sinh(k3)*cosh(k3)-6*k3^2*F12*F7*cosh(k3)^2*Nn^2-
12*F7*F17*theta*sinh(k3)*Nn^2*k3-12*F10*F18*cosh(k3)*Nn^2*k3-
12*F12*Nn*k3*cosh(k3)+12*F8*theta*Nn*cosh(k3)-6*k3^2*F7*F9*Nn^2*sinh(k3)*cosh(k3)-
6*k3^2*F7*F8*theta*Nn^2*sinh(k3)*cosh(k3)-
12*F12*F16*cosh(k3)*Nn^2*k3+12*F8*theta*F16*sinh(k3*b)*Nn^2*k3+12*F9*Nn*k3*b*sinh(k3*b)-
6*k3^3*F10*F11*theta*Nn^2*b-6*k3^3*F10*F12*Nn^2*b-12*F10*F17*theta*cosh(k3)*Nn^2*k3-
12*F11*theta*F16*cosh(k3)*Nn^2*k3-6*k3^2*F10*F9*cosh(k3)^2*Nn^2-
12*F11*theta*Nn*sinh(k3*b)+12*F12*Nn*k3*b*cosh(k3*b)+6*k3^2*F12*F7*cosh(k3*b)^2*Nn^2+6*k
3^2*F7*F8*theta*Nn^2*sinh(k3*b)*cosh(k3*b)+6*k3^2*F7*F9*Nn^2*sinh(k3*b)*cosh(k3*b)-
12*F8*theta*Nn*cosh(k3*b)+12*F8*theta*Nn*k3*b*sinh(k3*b)+12*F11*theta*Nn*k3*b*cosh(k3*b)+12
*F11*theta*F16*cosh(k3*b)*Nn^2*k3+12*F9*F16*sinh(k3*b)*Nn^2*k3+6*k3^2*F10*F8*theta*cosh(k
3*b)^2*Nn^2+12*F10*F18*cosh(k3*b)*Nn^2*k3+12*F12*F16*cosh(k3*b)*Nn^2*k3+12*F7*F18*sinh(
k3*b)*Nn^2*k3+6*F18*b^2*Nn*k3+6*F17*theta*b^2*Nn*k3-
6*k3^3*F7*F9*Nn^2+12*F16*F18*b*Nn^2*k3+12*F16*F17*theta*b*Nn^2*k3-
6*k3^2*F10*F11*theta*Nn^2*sinh(k3)*cosh(k3)-12*F9*Nn*k3*sinh(k3)-
12*F8*theta*Nn*k3*sinh(k3)+6*k3^3*F7*F8*theta*Nn^2*b+6*k3^3*F7*F9*Nn^2*b+6*k3^3*F10*F12
*Nn^2+6*k3^2*F10*F11*theta*Nn^2*sinh(k3*b)*cosh(k3*b)+6*k3^2*F10*F12*Nn^2*sinh(k3*b)*cosh(
k3*b)+6*k3^2*F10*F9*cosh(k3*b)^2*Nn^2+12*F10*F17*theta*cosh(k3*b)*Nn^2*k3+6*k3^2*F11*thet
a*F7*cosh(k3*b)^2*Nn^2+12*F7*F17*theta*sinh(k3*b)*Nn^2*k3-6*F17*theta*Nn*k3-
12*F16*F18*Nn^2*k3-12*F7*F18*sinh(k3)*Nn^2*k3-12*F9*F16*sinh(k3)*Nn^2*k3-
12*F11*theta*Nn*k3*cosh(k3)-6*k3^2*F10*F8*theta*cosh(k3)^2*Nn^2-
6*k3^2*F11*theta*F7*cosh(k3)^2*Nn^2+12*F11*theta*Nn*sinh(k3))/Nn^2/k3; 
B11 = -1/6*(-3*k3^3*F9^2*Nn^2+3*k3^3*F12^2*Nn^2-6*k3^3*F8*theta*F9*Nn^2-
3*k3^2*F8^2*theta^2*Nn^2*sinh(k3)*cosh(k3)-3*k3^2*F11^2*theta^2*Nn^2*sinh(k3)*cosh(k3)-
3*k3^2*F12^2*Nn^2*sinh(k3)*cosh(k3)-6*k3^2*F11*theta*F9*cosh(k3)^2*Nn^2-
12*F11*theta*F18*cosh(k3)*Nn^2*k3-12*F11*theta^2*F17*cosh(k3)*Nn^2*k3-6*F18^2*Nn^2*k3-
3*k3^3*F8^2*theta^2*Nn^2+3*k3^3*F11^2*theta^2*Nn^2-
12*F12*F17*theta*cosh(k3)*Nn^2*k3+6*k3^3*F8*theta*F9*Nn^2*b+3*k3^3*F8^2*theta^2*Nn^2*b-
12*F12*F18*cosh(k3)*Nn^2*k3-
6*k3^2*F11*theta^2*F8*cosh(k3)^2*Nn^2+6*k3^2*F11*theta^2*F8*cosh(k3*b)^2*Nn^2+6*k3^2*F11*
theta*F12*Nn^2*sinh(k3*b)*cosh(k3*b)+3*k3^2*F11^2*theta^2*Nn^2*sinh(k3*b)*cosh(k3*b)+6*k3^2*
F11*theta*F9*cosh(k3*b)^2*Nn^2+6*k3^2*F12*F8*theta*cosh(k3*b)^2*Nn^2+12*F12*F18*cosh(k3*b)
*Nn^2*k3+12*F9*F18*sinh(k3*b)*Nn^2*k3+12*F9*F17*theta*sinh(k3*b)*Nn^2*k3+12*F11*theta^2*F
17*cosh(k3*b)*Nn^2*k3+12*F11*theta*F18*cosh(k3*b)*Nn^2*k3+12*F12*F17*theta*cosh(k3*b)*Nn^
2*k3+6*k3^2*F12*F9*cosh(k3*b)^2*Nn^2+6*F17^2*theta^2*b*Nn^2*k3-
6*k3^3*F11*theta*F12*Nn^2*b+6*k3^2*F8*theta*F9*Nn^2*sinh(k3*b)*cosh(k3*b)+3*k3^2*F8^2*thet
a^2*Nn^2*sinh(k3*b)*cosh(k3*b)+3*k3^2*F9^2*Nn^2*sinh(k3*b)*cosh(k3*b)+3*k3^2*F12^2*Nn^2*si
nh(k3*b)*cosh(k3*b)+12*F8*theta^2*F17*sinh(k3*b)*Nn^2*k3+12*F8*theta*F18*sinh(k3*b)*Nn^2*k3
-12*F8*theta^2*F17*sinh(k3)*Nn^2*k3-6*F17^2*theta^2*Nn^2*k3-12*F17*theta*F18*Nn^2*k3-
3*k3^2*F9^2*Nn^2*sinh(k3)*cosh(k3)-12*F8*theta*F18*sinh(k3)*Nn^2*k3-
12*F9*F17*theta*sinh(k3)*Nn^2*k3-3*k3^3*F11^2*theta^2*Nn^2*b-
6*k3^2*F12*F8*theta*cosh(k3)^2*Nn^2-
6*k3^2*F12*F9*cosh(k3)^2*Nn^2+6*k3^3*F11*theta*F12*Nn^2+6*F18^2*b*Nn^2*k3+12*F17*theta*
F18*b*Nn^2*k3+3*k3^3*F9^2*Nn^2*b-3*k3^3*F12^2*Nn^2*b-
6*k3^2*F8*theta*F9*Nn^2*sinh(k3)*cosh(k3)-12*F9*F18*sinh(k3)*Nn^2*k3-
6*k3^2*F11*theta*F12*Nn^2*sinh(k3)*cosh(k3))/Nn^2/k3; 
  
Ca = 1/C-an/C+an/Cstar; 
rt = h/2 + rho; 
%Now the Q's, such that the integrability condition is 0= Q1P^2+Q2P+Q3 
Q1 = -1/2*B3-1/2*B6-1/2*B9; 
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Q2 = -rt*B1-1/2*B4-1/2*B7-1/2*B10; 
Q3 = Nn*Ca+B0*theta-rt*B2-1/2*B5-1/2*B8-1/2*B11; 
  
%And the transversality equation is 0=Q4P^2+Q5P+Q6bar 
Q4 = 
1/2*Dc*(1/(Nn^2)+k2^4*cosh(k2*an)^2*F4^2+k2^4*sinh(k2*an)^2*F1^2+2*k2^2*sinh(k2*an)*F1/Nn+2
*k2^4*cosh(k2*an)*F4*sinh(k2*an)*F1+2*k2^2*cosh(k2*an)*F4/Nn)-
1/2*Ds*(k1^4*cosh(k1*an)^2*F13^2+2*k1^2*cosh(k1*an)*F13/Nn+1/(Nn^2)); 
Q5 = 
1/2*Dc*(2*k2^4*cosh(k2*an)*F4*sinh(k2*an)*F3+2*k2^4*sinh(k2*an)^2*F1*F2*theta+2*k2^2*sinh(k2
*an)*F2*theta/Nn+2*k2^2*sinh(k2*an)*F3/Nn+2*k2^4*cosh(k2*an)^2*F4*F5*theta+2*k2^4*cosh(k2*a
n)^2*F4*F6+2*k2^4*cosh(k2*an)*F4*sinh(k2*an)*F2*theta+2*k2^4*cosh(k2*an)*F5*theta*sinh(k2*an)
*F1+2*k2^2*cosh(k2*an)*F5*theta/Nn+2*k2^4*cosh(k2*an)*F6*sinh(k2*an)*F1+2*k2^2*cosh(k2*an)*
F6/Nn+2*k2^4*sinh(k2*an)^2*F1*F3)-
1/2*Ds*(2*k1^4*cosh(k1*an)^2*F13*F14*theta+2*k1^4*cosh(k1*an)^2*F13*F15+2*k1^2*cosh(k1*an)*
F14*theta/Nn+2*k1^2*cosh(k1*an)*F15/Nn); 
Q6 = 
1/2*Dc*(k2^4*sinh(k2*an)^2*F3^2+k2^4*cosh(k2*an)^2*F5^2*theta^2+k2^4*sinh(k2*an)^2*F2^2*theta
^2+2*k2^4*sinh(k2*an)^2*F2*theta*F3+k2^4*cosh(k2*an)^2*F6^2+2*k2^4*cosh(k2*an)^2*F5*theta*F
6+2*k2^4*cosh(k2*an)*F5*theta^2*sinh(k2*an)*F2+2*k2^4*cosh(k2*an)*F5*theta*sinh(k2*an)*F3+2*k
2^4*cosh(k2*an)*F6*sinh(k2*an)*F2*theta+2*k2^4*cosh(k2*an)*F6*sinh(k2*an)*F3)-
1/2*Ds*(k1^4*cosh(k1*an)^2*F14^2*theta^2+2*k1^4*cosh(k1*an)^2*F14*theta*F15+k1^4*cosh(k1*an)
^2*F15^2)+1/2*Nn^2/Ce+Nn*(1-alpha_1)*theta+1/2*etatilda*theta^2; 
Q6bar = Q6-2*gamma; 
  
%Now we solve simultaneously the IC and TC 
Q7 = Q5*Q1-Q2*Q4; 
Q8 = Q6bar*Q1-Q3*Q4; 
PBF = -Q8/Q7; 
BF = Q4*(PBF^2)+Q5*PBF+Q6bar; %Sub solution into TE  
%delta = -(a1+a4) 
DelBF = -(PBF*F13+F15+theta*F14+PBF*F28+F30+theta*F29); 
stiff = PBF/DelBF; 
 
function[a_1,a_2,a_3,a_4,b_1,b_2,b_3,b_4,c_1,c_2,c_3,c_4,k1,k2,k3] = 
BFtenthermCONST_CFIXCZ_2(Nn,Pc,new_a) 
% Uses the hand solution to find the const. of integ. 
global an b Ds Dc D3 rho h C Cstar Ce gamma theta mstar alpha_1 etatilda theta 
an=new_a; 
k1 = sqrt(Nn/Ds); 
k2 = sqrt(Nn/Dc); 
k3 = sqrt(Nn/D3); 
%Now, the F's 
%b2 
F1 = -1/2*(-
2*Ds*k1^2*Dc^2*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)+2*Ds*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k
3*D3*sinh(k1*an)*cosh(k2*an)+2*Ds^2*k1^2*Dc*k2^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*si
nh(k1*an)-2*Ds*k1^2*Dc^2*k2^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)-
2*Ds*k1*Dc*k2^2*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)+2*Ds*k1^2*Dc*k2*D3*k3^2*sinh(k
3*b)*sinh(k1*an)*cosh(k2*an)-
2*sinh(k2*an)*Ds^2*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)+2*sinh(k2*b)*Ds^2*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)-
2*Ds^2*k1^2*Dc*k2^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)+2*Ds^2*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*
b)*sinh(k1*an)+2*k2^2*sinh(k1*an)*Dc*D3*k3^2*sinh(k3*b)*Ds*sinh(k2*an)-
2*k2^2*sinh(k1*an)*Dc^2*D3*k3^2*sinh(k3*b)*sinh(k2*an)-
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2*Ds^2*k1^2*Dc*k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)+2*sinh(k2*an)*Ds*k1^2*D3*k
3^2*sinh(k3*b)*sinh(k1*an)*Dc-
2*sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*Dc+2*Ds*k1^2*Dc^2*k2^2*sinh(k3*b)*sinh(
k2*b)*sinh(k1*an)-
2*Ds*k1*Dc^2*k2^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)+2*Ds*k1^2*Dc^2*
k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)+2*Ds^2*k1^2*Dc*k2*sinh(k3)*cosh(k3*b)*k3*sin
h(k3*b)*cosh(k2*b)*sinh(k1*an)-
2*Ds*k1^2*Dc^2*k2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)+2*Ds*k1*Dc^2*k2^
2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*an)*cosh(k1*an)+2*Ds*k1^2*Dc^2*k2*sinh(k3)*cosh(k3*b)*k3*s
inh(k3*b)*sinh(k1*an)*cosh(k2*an)+2*Ds*k1*Dc*k2^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*D3*sinh(k
2*an)*cosh(k1*an)-
2*Ds*k1^2*Dc*k2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*D3*sinh(k1*an)*cosh(k2*an)-
2*Ds^2*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)+2*Ds*k1^2*Dc^2*k2*cosh(k
3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)-
2*Ds*k1^2*Dc^2*k2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k1*an)*cosh(k2*an)-
2*Ds*k1*Dc*k2^2*cosh(k3)*sinh(k3*b)^2*k3*D3*sinh(k2*an)*cosh(k1*an))/Nn/k2^2/Dc/(-
Dc*k2*Ds*k1^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^3*Ds*k1*sinh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+cosh(k2*b)*Ds*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)*cosh(k2*an)-Dc*k2^2*Ds*k1^2*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^2*sinh(k1*an)*D3*k3^2*sinh(k3*b)*sinh(k2*an)^2+Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*cos
h(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b)^2*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*sinh(
k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*D
s*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*sinh(k
3)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+k2*sinh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*cosh(k1*an)*cosh(
k2*an)-k2*cosh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*cos
h(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*sin
h(k1*an)*D3*k3^2*sinh(k3*b)*cosh(k2*an)^2+Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*
sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*
Ds*k1*sinh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2*Ds*k1^2*sinh(k3
)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b
)*cosh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+sinh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(
k1*an)-cosh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)-
sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b
)^2*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k
2*an)); 
F2 = -1/2*(-
2*k2^2*sinh(k1*an)*Dc*D3*k3^2*sinh(k3*b)*mstar*Nn*sinh(k2*an)+2*sinh(k2*an)*Ds*k1^2*D3*k3^
2*sinh(k3*b)*sinh(k1*an)*mstar*Nn-
2*sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*mstar*Nn+2*Ds*k1^2*Dc*k2^2*sinh(k3*b)*s
inh(k2*b)*sinh(k1*an)*mstar*Nn-
2*Ds*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*mstar*Nn+2*Ds*k1^2*Dc*k2^2*sinh(k3)*cosh(
k3*b)^2*sinh(k2*b)*sinh(k1*an)*mstar*Nn-
2*Ds*k1^2*Dc*k2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*mstar*Nn+2*Ds*k1^2
*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)*mstar*Nn-
2*Ds*k1^2*Dc*k2^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*mstar*Nn)/Nn/k2^2/Dc/
(-Dc*k2*Ds*k1^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
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Dc*k2^3*Ds*k1*sinh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+cosh(k2*b)*Ds*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)*cosh(k2*an)-Dc*k2^2*Ds*k1^2*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^2*sinh(k1*an)*D3*k3^2*sinh(k3*b)*sinh(k2*an)^2+Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*cos
h(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b)^2*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*sinh(
k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*D
s*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*sinh(k
3)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+k2*sinh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*cosh(k1*an)*cosh(
k2*an)-k2*cosh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*cos
h(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*sin
h(k1*an)*D3*k3^2*sinh(k3*b)*cosh(k2*an)^2+Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*
sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*
Ds*k1*sinh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2*Ds*k1^2*sinh(k3
)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b
)*cosh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+sinh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(
k1*an)-cosh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)-
sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b
)^2*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k
2*an)); 
F3 = -
1/2*(2*k2^2*sinh(k1*an)*Dc*D3*k3^2*sinh(k3*b)*rho*Nn^2*sinh(k2*an)+k2^2*sinh(k1*an)*Dc*D3*k
3^2*sinh(k3*b)*h*Nn^2*sinh(k2*an)-
2*sinh(k2*an)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*rho*Nn^2-
sinh(k2*an)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*h*Nn^2+2*sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh
(k3*b)*sinh(k1*an)*rho*Nn^2+sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*h*Nn^2-
2*Ds*k1^2*Dc*k2^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*rho*Nn^2-
Ds*k1^2*Dc*k2^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*h*Nn^2+2*Ds*k1^2*Dc*k2*sinh(k3)*cosh(k3*b
)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*rho*Nn^2+2*Ds*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1
*an)*rho*Nn^2+Ds*k1^2*Dc*k2^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*h*Nn^2-
2*Ds*k1^2*Dc*k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)*rho*Nn^2-
Ds*k1^2*Dc*k2^2*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*sinh(k1*an)*h*Nn^2+Ds*k1^2*Dc*k2*sinh(k3)*
cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*h*Nn^2-
2*Ds*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)*rho*Nn^2-
Ds*k1^2*Dc*k2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*sinh(k1*an)*h*Nn^2+2*Ds*k1^2*Dc*k2^2*cos
h(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*rho*Nn^2+Ds*k1^2*Dc*k2^2*cosh(k3)*sinh(k3*
b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*h*Nn^2)/Nn/k2^2/Dc/(-
Dc*k2*Ds*k1^2*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^3*Ds*k1*sinh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+cosh(k2*b)*Ds*k1^2*D3*k3^2*sinh(
k3*b)*sinh(k1*an)*cosh(k2*an)-Dc*k2^2*Ds*k1^2*sinh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^2*sinh(k1*an)*D3*k3^2*sinh(k3*b)*sinh(k2*an)^2+Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*cos
h(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b)^2*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*sinh(
k3)*cosh(k3*b)*k3*sinh(k3*b)*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)-
Dc*k2^2*Ds*k1*sinh(k3)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*D
s*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*sinh(k
3)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+k2*sinh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*cosh(k1*an)*cosh(
k2*an)-k2*cosh(k2*b)*Ds*k1*D3*k3^2*sinh(k3*b)*sinh(k2*an)*cosh(k1*an)-
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Dc*k2^2*Ds*k1*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2^2*Ds*k1*cos
h(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2^2*Ds*k1^2*cosh(k3)*sinh(k3*b)*cosh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*sin
h(k1*an)*D3*k3^2*sinh(k3*b)*cosh(k2*an)^2+Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*cosh(k2*b)*
sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*
Ds*k1*sinh(k3*b)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)-
Dc*k2*Ds*k1^2*cosh(k3)*sinh(k3*b)^2*k3*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k3*b)^2*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+Dc*k2*Ds*k1^2*sinh(k3
)*cosh(k3*b)*k3*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*cosh(k2*an)+Dc*k2^3*Ds*k1*cosh(k3)*sinh(k3*b
)*cosh(k3*b)*sinh(k2*b)*cosh(k1*an)*cosh(k2*an)+sinh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(
k1*an)-cosh(k2*an)^2*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)-
sinh(k2*b)*Ds*k1^2*D3*k3^2*sinh(k3*b)*sinh(k1*an)*sinh(k2*an)-
Dc*k2^3*Ds*k1*sinh(k3)*cosh(k2*b)*sinh(k2*an)*cosh(k1*an)+Dc*k2^2*Ds*k1^2*sinh(k3)*cosh(k3*b
)^2*sinh(k2*b)*sinh(k1*an)*sinh(k2*an)+Dc*k2^2*Ds*k1^2*sinh(k3*b)*sinh(k2*b)*sinh(k1*an)*sinh(k
2*an)); 
%b1 
F4 = -1/2*(-
2*k1*sinh(k1*an)*Ds+2*k1*sinh(k1*an)*Dc*k2^2*sinh(k2*an)*Nn*F1+2*k1*sinh(k1*an)*Dc-
2*cosh(k1*an)*Nn*Dc*k2^3*cosh(k2*an)*F1)/Dc/k2^2/Nn/(-
sinh(k2*an)*cosh(k1*an)*k2+k1*sinh(k1*an)*cosh(k2*an)); 
F5 = -1/2*(2*k1*sinh(k1*an)*mstar*Nn+2*k1*sinh(k1*an)*Dc*k2^2*sinh(k2*an)*Nn*F2-
2*cosh(k1*an)*Nn*Dc*k2^3*cosh(k2*an)*F2)/Dc/k2^2/Nn/(-
sinh(k2*an)*cosh(k1*an)*k2+k1*sinh(k1*an)*cosh(k2*an)); 
F6 = -1/2*(-2*k1*sinh(k1*an)*rho*Nn^2+2*k1*sinh(k1*an)*Dc*k2^2*sinh(k2*an)*Nn*F3-
k1*sinh(k1*an)*h*Nn^2-2*cosh(k1*an)*Nn*Dc*k2^3*cosh(k2*an)*F3)/Dc/k2^2/Nn/(-
sinh(k2*an)*cosh(k1*an)*k2+k1*sinh(k1*an)*cosh(k2*an)); 
%c2 
F7 = (-k3*sinh(k3*b)*Dc*k2^2*cosh(k2*b)*Nn*F4-k3*sinh(k3*b)*Dc*k2^2*sinh(k2*b)*Nn*F1-
k3*sinh(k3*b)*Dc+k3*sinh(k3*b)*D3+cosh(k3*b)*Nn*Dc*k2^3*sinh(k2*b)*F4+cosh(k3*b)*Nn*Dc*k2
^3*cosh(k2*b)*F1)/Nn/k3^3/D3/(-sinh(k3*b)^2+cosh(k3*b)^2); 
F8 = (-k3*sinh(k3*b)*Dc*k2^2*cosh(k2*b)*Nn*F5-
k3*sinh(k3*b)*Dc*k2^2*sinh(k2*b)*Nn*F2+cosh(k3*b)*Nn*Dc*k2^3*sinh(k2*b)*F5+cosh(k3*b)*Nn*
Dc*k2^3*cosh(k2*b)*F2)/Nn/k3^3/D3/(-sinh(k3*b)^2+cosh(k3*b)^2); 
F9 = (-k3*sinh(k3*b)*Dc*k2^2*cosh(k2*b)*Nn*F6-
k3*sinh(k3*b)*Dc*k2^2*sinh(k2*b)*Nn*F3+cosh(k3*b)*Nn*Dc*k2^3*sinh(k2*b)*F6+cosh(k3*b)*Nn*
Dc*k2^3*cosh(k2*b)*F3)/Nn/k3^3/D3/(-sinh(k3*b)^2+cosh(k3*b)^2); 
%c1 
F10 = (Dc*k2^3*sinh(k2*b)*F4+Dc*k2^3*cosh(k2*b)*F1-
D3*k3^3*cosh(k3*b)*F7)/D3/k3^3/sinh(k3*b); 
F11 = (Dc*k2^3*sinh(k2*b)*F5+Dc*k2^3*cosh(k2*b)*F2-
D3*k3^3*cosh(k3*b)*F8)/D3/k3^3/sinh(k3*b); 
F12 = (Dc*k2^3*sinh(k2*b)*F6+Dc*k2^3*cosh(k2*b)*F3-
D3*k3^3*cosh(k3*b)*F9)/D3/k3^3/sinh(k3*b); 
%a1 
F13 = 1/2*(-
2*Ds+2*Dc*k2^2*cosh(k2*an)*Nn*F4+2*Dc*k2^2*sinh(k2*an)*Nn*F1+2*Dc)/Ds/k1^2/cosh(k1*an)/N
n; 
F14 = 
1/2*(2*mstar*Nn+2*Dc*k2^2*cosh(k2*an)*Nn*F5+2*Dc*k2^2*sinh(k2*an)*Nn*F2)/Ds/k1^2/cosh(k1*a
n)/Nn; 
F15 = 1/2*(-2*rho*Nn^2+2*Dc*k2^2*cosh(k2*an)*Nn*F6+2*Dc*k2^2*sinh(k2*an)*Nn*F3-
h*Nn^2)/Ds/k1^2/cosh(k1*an)/Nn; 
%c3 
F16 = -(k3*sinh(k3)*Nn*F10+k3*cosh(k3)*Nn*F7+1)/Nn; 
F17 = -(k3*sinh(k3)*Nn*F11+k3*cosh(k3)*Nn*F8)/Nn; 
F18 = -(k3*sinh(k3)*Nn*F12+k3*cosh(k3)*Nn*F9)/Nn;   
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%c4 
F19 = -1/2*(2*cosh(k3)*Nn*F10+2*sinh(k3)*Nn*F7+2*F16*Nn+1)/Nn; 
F20 = -1/2*(2*cosh(k3)*Nn*F11+2*sinh(k3)*Nn*F8+2*F17*Nn)/Nn; 
F21 = -1/2*(2*cosh(k3)*Nn*F12+2*sinh(k3)*Nn*F9+2*F18*Nn)/Nn; 
%b3 
F22 = -k2*sinh(k2*b)*F4-k2*cosh(k2*b)*F1+k3*sinh(k3*b)*F10+k3*cosh(k3*b)*F7+F16; 
F23 = -k2*sinh(k2*b)*F5-k2*cosh(k2*b)*F2+k3*sinh(k3*b)*F11+k3*cosh(k3*b)*F8+F17; 
F24 = -k2*sinh(k2*b)*F6-k2*cosh(k2*b)*F3+k3*sinh(k3*b)*F12+k3*cosh(k3*b)*F9+F18; 
%b4 
F25 = -cosh(k2*b)*F4-sinh(k2*b)*F1-b*F22+cosh(k3*b)*F10+sinh(k3*b)*F7+b*F16+F19; 
F26 = -cosh(k2*b)*F5-sinh(k2*b)*F2-b*F23+cosh(k3*b)*F11+sinh(k3*b)*F8+b*F17+F20; 
F27 = -cosh(k2*b)*F6-sinh(k2*b)*F3-b*F24+cosh(k3*b)*F12+sinh(k3*b)*F9+b*F18+F21; 
%a4 
F28 = -cosh(k1*an)*F13+cosh(k2*an)*F4+sinh(k2*an)*F1+an*F22+F25; 
F29 = -cosh(k1*an)*F14+cosh(k2*an)*F5+sinh(k2*an)*F2+an*F23+F26; 
F30 = -cosh(k1*an)*F15+cosh(k2*an)*F6+sinh(k2*an)*F3+an*F24+F27; 
  
%So the constants are: 
a_1 = F13*Pc+F14*theta+F15; 
a_2 = 0; 
a_3 = 0; 
a_4 = F28*Pc+F29*theta+F30; 
b_1 = F4*Pc+F5*theta+F6; 
b_2 = F1*Pc+F2*theta+F3; 
b_3 = F22*Pc+F23*theta+F24; 
b_4 = F25*Pc+F26*theta+F27; 
c_1 = F10*Pc+F11*theta+F12; 
c_2 = F7*Pc+F8*theta+F9; 
c_3 = F16*Pc+F17*theta+F18; 
c_4 = F19*Pc+F20*theta+F21; 
 
 
 

 

 


