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Many studies have found that infants in the first year of life use continuous amount, 

rather than discrete number, to represent small sets of objects. Using a looking-time 

paradigm, we show that twelve-month-olds use discrete quantity representations even 

when continuous quantity information is available, while nine-month-olds are just 

beginning to attend to discrete quantity. In the first study, twelve-month-old infants were 

required to track the changing locations of objects and sets of objects on a trial-by-trial 

basis. Infants were surprised to see both one and three objects when two were expected, 

despite the total surface area of the sets remaining constant. A second study found that 

twelve-month-old infants tracked the locations of a singleton and a pair and were 

surprised when the sets unexpectedly swapped positions. In a third study using the same 

methodology as the first, nine-month-old infants detected changes from two to three 

objects, but fail to detect changes from two to one. A fourth study investigated whether 

twelve-month-old objects can track sets adding up to more than three objects. Twelve-

month-olds infants used shape information to individuate across pairs and track a total of 

four objects. Infants who were familiarized to two distinct pairs (for a total of four 
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objects) looked longer at an outcome of only two objects, while infants who were 

familiarized to two mixed pairs (for what appeared to be a total of two objects) did not 

look longer. Finally, twelve-month-old infants were tested on their ability to represent 

sets of two and three, for a total of five objects. Pilot data suggest that infants can do so. 

These studies suggest that by twelve months of age, infants can reason about discrete 

quantity in addition to tracking continuous quantity. We propose that even young infants 

may have access to mechanisms of innate number, and represent at least small numbers 

using integer concepts. 
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Chapter One - Introduction 

 
According to traditional Piagetian views of infant development, babies could not track 

even one object as it passed out of view (Piaget, 1955). For them, the world was 

considered to be literally “out of sight, out of mind.” However, we know now that infants 

can track even multiple objects through occlusion (Baillargeon, 1986, 1987; Spelke, 

1990). How do they accomplish this feat? Do babies use discrete or continuous quantity 

information to form representations of these objects? Recent research has shown that not 

only do infants apparently individuate objects and discriminate between different 

numerical outcomes, they also seem to perform arithmetic computations, suggesting that 

they possess high-level concepts of number. However, many of the studies providing 

evidence for these capabilities have been assailed as failing to sufficiently rule out 

alternative interpretations for their data. Specifically, infants may be responding on the 

basis of continuous variables, such as area or perimeter, rather than on the basis of 

discrete variables, such as number. Alternatively, even if infants do possess the ability to 

track discrete properties of sets of objects, this does not entail that they possess concepts 

of number. Rather, the ability to track discrete number may simply be served by a 

limited-capacity attentional mechanism. What is the true nature of infants’ early 

numerical competence? 

 

A growing body of research has traced continuity between animal and human quantitative 

abilities, suggesting that number is an innate, evolutionarily-specified endowment. 

Specifically, human adults, like rats and pigeons, seem to represent number using a 

mental mechanism which can be characterized as an accumulator (Meck & Church, 1983; 
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Gallistel and Gelman, 1992; Cordes, Gallistel, Gelman, & Whalen, 2001). The 

accumulator is amodal and represents quantity (both discrete and continuous) using 

continuous mental magnitudes, which by nature are imprecise and noisy. As the 

magnitudes grow larger, the variability around the magnitudes increases. As a result of 

this increase in variability, human ability to discriminate between two numbers exhibits 

both size and distance effects consistent with Weber’s law. In other words, the 

discrimination of two magnitudes depends on their proportional difference, rather than 

the absolute difference between them. The question of whether infants perceive objects 

based on their continuous or discrete properties intersects with and informs the debate 

over whether number is innate. If infants fail to represent objects as discrete individuals 

and instead attend only to their continuous properties, this supports a more empirical 

view of the infant’s concept of number. According to such accounts, infants develop or 

extract discrete representations from continuous ones, which are apprehended through 

sensory input (Mix, Huttenlocher, and Levine, 2002). However, if infants do individuate 

objects in the world, at a minimum they have a capacity to attend to discrete objects, 

either using the accumulator to non-verbally enumerate objects, or via an attentional 

mechanism for tracking objects akin to one found in human adults (Pylyshyn and Storm, 

1988; Trick and Pylyshyn, 1994). 

 

Many studies have found that infants demonstrate sensitivity to discrete numerosity in 

multiple modalities, but the interpretation of these findings remains controversial. The 

bulk of these studies have looked at whether infants visually detect numerical 

equivalence of objects in sets. Four-month-old infants who are habituated to sets of two 
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or three dots dishabituate when shown a novel numerosity (Starkey and Cooper, 1980); 

even newborns make this discrimination (Antell and Keating, 1983). 10 to 12-month-old 

infants succeed at comparing two and three when presented with arrays of both 

homogeneous and heterogeneous objects (Strauss and Curtis, 1981). Converging 

evidence from a reaching task shows that infants in this age correctly select a larger 

number of crackers when presented with comparisons of 1 vs. 2, 1 vs. 3, and 2 vs. 3 

crackers (Feigenson, Carey and Hauser, 2002). This ability also extends beyond objects. 

5-month-olds habituated to either two groups of objects or four groups of objects look 

longer at a novel number of groups, even though the total number of items remains 

constant (Wynn, Bloom, and Chiang, 2002). Six-month-olds dishabituate to novel 

numbers of visual events, such as jumps (Wynn, 1996). Seven-month-old infants even 

cross-modally match equivalent sets of two and three, preferring to look at a display that 

shows the same number of objects as sounds heard (Starkey, Spelke and Gelman, 1983). 

Infants also seem to enumerate auditory stimuli, such as syllables, at four days (Bijeljac-

Babic, Bertoncini, & Mehler, 1993), and tones, at seven months (vanMarle and Wynn, 

2003). Even very young babies clearly demonstrate some sensitivity to discrete number. 

 

However, this ability seems to be limited to small numbers, as infants fail to discriminate 

between sets of four and six (Starkey and Cooper, 1980; Antell and Keating, 1983) and 

four and five (Strauss and Curtis, 1981). More surprisingly, infants choose randomly 

when presented with a comparison of one cracker versus four crackers, even though they 

correctly choose three crackers over two; the global set size is the same for both 

comparisons (Feigenson, Carey and Hauser, 2002). However, they do correctly choose 
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four crackers over one cracker when both sets are in plain view, and four crackers over 

no crackers in occlusion, suggesting that they have some limited ability to reason about 

sets of four, even in occlusion (Feigenson and Carey, 2003). Interestingly, these failures 

do not extend to the large number range. Infants can discriminate between sets of 8 and 

16 at 6 months (a ratio of 1:2) and between sets of 8 and 12 by 9 months (a ratio of 2:3) 

for visual and auditory stimuli (Xu & Spelke, 2000; Lipton and Spelke, 2003; Xu, 2003).  

Six-month-olds can even discriminate between four and eight jumps, although they fail to 

discriminate between two and four jumps. By nine months, infants discriminate between 

sequences of four jumps and six jumps (Wood and Spelke, 2005). These findings (with 

the exception of Wood and Spelke’s (2005) six-month-olds’ failure on 2:4 jumps) are 

consistent with the Weber fraction signature demonstrated by the accumulator. 

Furthermore, they indicate that sensitivity to large number comparisons increases over 

development. Why, then, do infants fail at small number comparisons with a decidedly 

favorable ratio, such as 1 vs. 4, when they make much finer distinctions between large 

numbers? The question of why infants demonstrate different patterns of behavior when 

discriminating small and large numbers deserves further consideration and will be 

addressed later. 

 

However, nearly all of the studies finding evidence that infants are sensitive to discrete 

variables are subject to the same criticism, namely, that these studies necessarily 

confound continuous variables, such as area and perimeter, with number. In the real 

world, changes in discrete quantity invariably co-occur with changes in continuous 

quantity. Adding a cracker to an existing set of crackers always increases the total 



 

 

5 

 

amount of cracker stuff; taking a cracker away from a set of crackers always results in 

less cracker stuff. If infants simply track a continuous amount of stuff, they do not even 

need to individuate objects, let alone possess any numerical competency. And indeed, 

when continuous variables are controlled, infants fail to respond to discrete quantity. 

Clearfield and Mix (1999) attempted to replicate Starkey, Spelke and Gelman (1990) 

while controlling for continuous quantity – specifically, total perimeter. They found that 

infants failed to detect a change in number when perimeter was held constant, but looked 

longer at changes in perimeter when number was held constant. Infants show the same 

pattern of results for changes in area (Clearfield and Mix, 2001). In light of these results, 

the claims that infants have sophisticated and complex number concepts must be 

reexamined. Instead, Mix, Huttenlocher and Levine (2002) argue that infants may be 

equipped only with the ability to monitor continuous quantities, such as area or perimeter, 

and through experience, such as applying counting routines, eventually derive or extract 

ever more precise concepts of number. Is there any evidence that infants represent 

discrete number? 

 

Few studies to date have shown unambiguously that infants represent small sets of 

objects as discrete entities – that is, infants respond based on discrete number when 

continuous variables are controlled. To further complicate the issue, it is very difficult to 

control for changes in number, area and perimeter simultaneously, particularly for 

smaller sets (but see Chapter 5). Studies investigating infants’ numerical competency 

using large numbers of texture elements, such as dots on a screen or squares on pieces of 

paper, can control not only for total area and perimeter, but also for variables such as 
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luminance and density, and are therefore immune to criticisms based on continuous 

extent (Xu & Spelke, 2000; Lipton & Spelke, 2003; Xu, 2003). Only three studies 

looking at the small number range have found unassailable evidence for discrete number, 

rather than continuous quantity. Of these, only two studies showed that infants responded 

on the basis of discrete representations when they could have responded on the basis of 

continuous ones. Brannon, Abbott and Lutz (2004) found that six-month-old infants 

could detect a two-fold change in number when area was held constant, but not a two-

fold change in area when number was held constant. A second set of studies used a 

reaching paradigm to investigate discrete number representations. Infants aged 12 to 14 

months were shown items being introduced sequentially into a box and then encouraged 

to search for the objects. Infants represent up to three hidden objects, even when objects 

retrieved are larger than the objects that were concealed (Feigenson and Carey, 2003). 

However, they failed when four objects were hidden. For numbers up to three, infants 

tracked how many objects came out of the box, not a total amount of stuff. In this case, 

infants could have responded on the basis of either discrete or continuous representations 

but chose discrete. Perhaps the size of the individual objects is irrelevant in a reaching 

paradigm, though this explanation seems unlikely to gain support from any camp, given 

the weight that is placed on the role continuous extent in infant object representations.  

 

A third study eliminated continuous variables as a possible dimension of interest 

altogether. Feigenson (2005) eliminated continuous extent as a dimension of 

consideration altogether by always varying the total area and perimeter of the habituation 

and test arrays. Seven-month-old infants were habituated to either one or two objects that 
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differed in both color and texture both within and between displays. In the one-object 

habituation condition, the object had a total of two colors and two textures, to provide an 

equivalent control to the two-object condition. Infants in this study detected a change in 

numerosity when shown a novel numerical outcome. These results contrasted with those 

from an earlier study, which found that infants did not notice changes in number when 

objects differed only in color (Feigenson, Carey and Spelke, 2002). When infants cannot 

use continuous quantity information to represent objects, they do seem to respond on the 

basis of discrete variables, suggesting that they can attend to this information under 

certain circumstances. Feigenson (2005) suggested that featural heterogeneity blocks 

summing of continuous quantity across objects and forces the infants to rely on alternate 

sources of information, but this explanation does not account for why infants in the one-

object habituation condition detect a number change when both texture and color differ, 

but not when only color changes. A more likely interpretation of the data is that 

heterogeneity encourages infants to consider objects as distinct individuals, alerting them 

to the fact that number is a salient property of the display. 

 

However, even if infants do use discrete number to discriminate between sets of objects, 

infants may not necessarily possess truly numerical concepts. Instead, infants may 

succeed by using an attention-based object-tracking system such as one demonstrated by 

adults (Pylyshyn and Storm, 1988; Trick and Pylyshyn, 1994). This system tracks items 

by assigning a mental finger, also known as an object index or object file (henceforth 

OF), that points to each object or collection of objects (such as a flock of birds) to be 

tracked. Adults can keep track of up to four objects at a time, but this system may be 
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limited to three objects in infants (Leslie, Xu, Tremoulet and Scholl, 1998; Scholl and 

Leslie, 1999). By nature, this finger is agnostic about the objects it points out (Leslie et 

al., 1998; Scholl and Leslie, 1999; Pylyshyn, 2004). Information about these objects is 

stored in a separate object representation (OR), which is bound to the OF. What property 

information goes into these ORs and when it is used remains largely undefined. OFs are 

only implicitly numerical; in other words, without counting, one cannot know how many 

objects are indexed. Because of this, the object indexing account is equally compatible 

with both discrete and continuous accounts of infants’ quantity representations. If infants 

represent objects only by their continuous quantities, object indexing may be a possible 

explanation for why they also seem to sometimes respond based on discrete variables. If 

infants do represent objects discretely, indexing may complement non-verbal counting, or 

may serve as the mechanism by which infants track sets of objects in the small number 

range. The latter possibility seems unlikely given that infants appear to enumerate non-

objects, such as events (Wynn, 1996; Wood and Spelke, 2005) and sounds (Bijeljac-

Babic et al., 1993; vanMarle and Wynn, 2003), though these may be discriminated on the 

basis of continuous variables such as duration, tempo, etc. Wood and Spelke (2005) 

suggest that infants may form “event files”, parallel representations similar to object files, 

which pick out transitory events in the world rather than enduring objects; however, no 

empirical evidence to defend this claim has been offered. 

 

More convincing evidence for true numerical competence in infants comes from studies 

of arithmetic. Infants do demonstrate some capacity for performing arithmetic 

computations even at a very young age, though, like studies of numerical equivalence, the 



 

 

9 

 

results are open to multiple interpretations. Five-month-old infants, when shown displays 

of simple addition and subtraction problems, looked longer at unexpected and impossible 

outcomes of 1+1=1 and 2-1=2 (Wynn, 1992; also Simon, Hespos and Rochat, 1995). 

Infants even perform these computations across the large number range. McCrink and 

Wynn (2004) found that nine-month-old infants look longer at outcomes of 5+5=5 and 

10-5=10. Intriguingly, infants even add across sensory modalities. Kobayashi, Hiraki, 

Mugitani, and Hasegawa (2004) trained five-month-old infants to associate a tone with 

the introduction of an object and found that infants looked longer at one object + one tone 

= three objects and one object + two tones = two objects than at expected outcomes.  

 

While studies showing evidence for infant arithmetic are more convincing proof of true 

numerical competency than studies showing discrimination of sets, these studies are still 

subject to criticisms based on failure to control continuous extent. In fact, Feigenson, 

Carey and Spelke (2002) replicated Wynn’s task using controlled stimuli, showing 

infants one small doll + one small doll = one large doll (with the same total area as the 

two small dolls together). They failed to find longer looking times for the numerically 

unexpected outcome with an expected continuous extent. Studies of infant arithmetic are 

subject to an additional criticism, that infants may prefer familiar displays over novel 

ones. Cohen and Marks (2002) found that a preference for familiar numerical outcomes, 

rather than sensitivity to numerosity, might have driven infants’ looking time. In other 

words, infants in Wynn’s study looked longer at an unexpected outcome of 1+1=1 not 

because they expected to see 2 dolls, but because they preferred to look at the display to 

which they had been familiarized. McCrink and Wynn (2004) controlled for continuous 
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quantity by always varying the continuous extent of the elements in their study, but failed 

to control for familiarity. They argue that by 9 months of age, infants begin to 

demonstrate a novelty preference, rather than a familiarity preference, and so their study 

cannot be criticized on the basis of familiarity. For advocates of familiarity, this argument 

may be less than convincing. Kobayashi et al. (2004) controlled for familiarity by 

showing infants both of the possible numerical outcomes. They also controlled for 

continuous quantities because infants always saw the same initial display but never saw 

the “objects” being added. Instead, they had to infer this information from auditory cues. 

However, an alternative interpretation of the results is that infants do not use number to 

form a correct expectation, but instead use object tracking. Hearing a tone may be enough 

to open a new object file for an expected object. Infants’ expectations may be based on 

whether their open object indexes match the display, rather than number. A more 

rigorous test of infant numerical competency would have to investigate infants’ ability to 

do arithmetic on numbers larger than can be tracked by the object indexing system in 

controlled conditions. Success would indicate that infants can perform arithmetic 

computations on the small as well as the large number range, and that representations of 

both number ranges are subserved by the same system.  

 

Infants do seem to represent the discrete properties of objects when continuous variables 

are controlled, both for studies looking at equivalence of sets and studies of arithmetic. 

Further, infants’ ability to represent continuous quantity may not be as robust as claimed. 

Brannon, Abbott and Lutz (2004) compared six-month-old infants’ ability to discriminate 

between outcomes differing in discrete or continuous quantity. They found, as expected, 
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that six-month-old babies, when familiarized to displays of constant number but with 

large variations in area (up to a five-fold change) were able to discriminate 8 elements 

from 16 elements, but failed to notice an equivalent two-fold change in total area when 

familiarized to displays of constant area with large variations in number (again, up to a 

five-fold change). Brannon, Lutz and Cordes (2006) found that six-month-old infants 

could discriminate between successive presentations of Elmo faces varying in size for 

ratios of 1:2, 1:3 and 1:4, but failed for ratios of 2:3.  

 

Infants also do not show great accuracy when asked to track substances that can be 

measured only by continuous properties, such as sand or liquid. In fact, only one study 

points to infant competence in this domain. Gao, Huttenlocher and Levine (2000) 

familiarized infants to half a cup of pink liquid being poured into another container 

containing a quarter of a cup of pink liquid, and found that infants looked longer when 

shown a result of a quarter cup of liquid than the correct outcome of three-quarters of a 

cup, a 1:3 ratio. However, infants do not look longer at an incorrect outcome when the 

substances are piles of sand. In fact, even when a cup of sand is poured behind a screen 

next to and distinct from another pile of sand, infants do not look longer when only the 

original pile is shown, suggesting that their ability to reason about continuous substances 

is very different from their ability to reason about discrete entities (Huntley-Fenner, 

Carey and Solimando, 2002). 10- to 12-month-old infants also appear not to represent 

amount of food very precisely, choosing the larger quantity of Cheerios only when the 

two amounts differ by a ratio of at least 1:4 (vanMarle, in preparation). At this age, 

infants’ ability to quantify food substances also seems to rely largely on perimeter and 
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density cues, as their ability to distinguish between discrete representations diminishes 

with changes to these variables in a display. When these cues are removed, infants 

perform only at chance.  

 

Infants show no greater precision in their representations of continuous extent than in 

their representations of discrete number. In fact, their ability to discriminate between two 

different continuous extents seems to be governed by exactly the same Weber fractions as 

their ability to discriminate between discrete numbers (Brannon et al., 2006). If so, then it 

is unclear how discrete number concepts could have their origins in continuous quantity 

representations, as Mix et al. claim (2002). According to their theory, humans start with 

approximate numerical concepts based on representations of continuous amount, and 

through experience converge on ever more precise representations of number. However, 

it appears that even for very young infants, representations of continuous amount and 

number seem to develop in parallel. Children clearly do not have to learn to ignore 

continuous amount as a property of a set of objects in favor of discrete number. In fact, 

under certain circumstances, they may not even encode continuous amount as a relevant 

dimension of a set of objects (Feigenson and Halberda, 2004; Brannon et al., 2006). 

 

In addition, studies of whether infants are able to retain accurate representations of the 

continuous properties of sets of objects through occlusion events yields mixed results. 

While Brannon and her colleagues found that infants could succeed in discriminating 

between the continuous extent of visual elements in large ratios, none of their studies 

involved occlusion (Brannon et al., 2004; 2006). vanMarle’s (in press) results suggest 
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that even at 12 months of age, representations of continuous quantity, sensitive as they 

are to visual cues such as density, may be subject to more variability than representations 

of discrete quantity. Feigenson and her colleagues found that infants tested in different 

reaching paradigms often ignored continuous quantity, for example, when choosing 

between a quantity of one and four crackers (Feigenson, Carey, and Hauser, 2002), or 

when searching for a number of toys hidden in a box (Feigenson and Halberda, 2004) It 

is therefore an open question whether infants’ relatively noisy representations of 

continuous amount are robust enough to survive occlusion events. 

 

The case for continuous extent as the sole basis on which infants compare objects has 

been considerably weakened by new experimental evidence, and has given fresh impetus 

to the question of whether infants do detect and track discrete quantity. But how much 

competence this ability to discretize reflects still remains controversial. Do infants 

actually have number concepts, meaning that they can non-verbally count (Brannon, 

1992; Gallistel and Gelman, 1992; Simon, Hespos and Rochat, 1995; Wynn, 1992; Xu 

and Spelke, 2000; Leslie, Gallistel, and Gelman, in press)? Or is their ability non-

numerical in nature, and simply subserved by a limited capacity attentional mechanism 

(Leslie, Xu, Tremoulet, and Scholl, 1998; Scholl and Leslie, 1999; Uller, Carey, Huntley-

Fenner & Klatt, 1999)? The two accounts are not mutually exclusive and it is quite likely 

that infants may use both systems.  

 

Recently, however, the relationship between the two systems has been further 

complicated by the proposal that infants represent different parts of the number range 



 

 

14 

 

with each mechanism. Specifically, infants may use non-verbal counting via the 

accumulator solely for large numbers while representing the small number range through 

indexing or otherwise individuating small sets (Carey, 2001; Carey, 2004; Feigenson, 

Dehaene and Spelke, 2004; Feigenson and Carey, 2005; LeCorre and Carey, in press). 

Such a discontinuity may account for a wide range of results showing that infants’ 

representations of large numbers appear to obey Weber’s law (Xu & Spelke, 2000; 

Lipton and Spelke, 2003; Xu, 2003), but studies looking at whether their small number 

representations do so as well have found mixed results. Many studies have found infants 

repeatedly fail when required to represent individual sets larger than four (Starkey and 

Cooper, 1980; Strauss and Curtis, 1981; Antell and Keating, 1983; Feigenson and Carey, 

2003; Feigenson and Halberda, 2004). This set size limitation is usually attributed to the 

inability of the infants’ object indexing system to track more than three objects 

concurrently. A disconnect between the small and large number range is also seen in 

children’s understanding of count terms, suggesting that the discontinuity exhibited by 

infants may extend into development. Children learning English seem to laboriously learn 

the referents for one, two, and three, but after acquiring four, they appear to grasp the 

idea of all numbers larger than four as well (Wynn, 1992b; Wynn and Bloom, 1997). The 

data do appear to favor the hypothesis that there is some difference in the systems infants 

use to operate over the small and large number ranges. However, an apparent 

discontinuity does not necessarily entail two distinct systems of representation of number. 

The fact that infants can make comparisons across the small and number ranges (from 2 

to 8) suggests that these two systems are not incommensurable after all (Cordes, Lutz and 

Brannon, 2007).  
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Indeed, while object indexing is compatible with non-verbal counting, it cannot replace 

counting. Neither object files nor object representations can provide the basis for small 

number concepts; both are only implicitly numerical. In order to enumerate the number of 

assigned indexes, one must already be able to count. The object indexing system may be 

the source of the set size limitation, not because it provides an absolute limit on how 

many objects can be individuated, but because it may interact with representations of 

number in such a way that it prevents infants from demonstrating true competence. It is 

possible that exceeding the number of available object indexes results in a failure to enter 

a representation into memory. However, one of the puzzling features of the set size 

limitation is that it is not hard and fast. Feigenson and Halberda (2004) found that 14-

month-old infants search for four objects when searching for objects hidden sequentially 

as a group of two and a group of two. “Chunking” the objects in this manner results in 

success nearly 10 months earlier than when the objects were introduced simultaneously 

into the box.  

 

The set size limitation also applies only to individual sets, not to the overall number of 

objects. When asked to compare a total of five crackers, infants succeed on comparisons 

when shown two vs. three, but perform only at chance at one vs. four, even though they 

are asked to compare the same total number of crackers (Feigenson and Carey, 2003). 

What explains this particular pattern of success and failure? Infants cannot simply be 

individuating each object using attentional indexes – they would be unable to track any 

quantity greater than three, and would fail on both comparisons. They cannot be 
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chunking object files, because they are merely attentional indexes and cannot be 

concatenated. If infants succeed in comparing these two sets, they must be doing so on 

the basis of the information stored in the ORs. Feigenson and Halberda (2004) remain 

agnostic about whether these chunked representations are based on continuous or discrete 

quantity. However, their results indicate that infants cannot simply be responding on the 

basis of total continuous extent. But if infants can only represent small numbers by using 

object indexes, how do they compare sets of objects without resorting to counting or 

concepts of number? 

 

These criticisms have led Carey and her colleagues to revise their theories to rely less 

heavily on object indexing as the source of infants’ small number representations. They 

now posit a core numerical representation system, “parallel individuation,” which gives 

infants the ability to store representations of at least two sets of objects in working or 

long-term memory (Feigenson and Carey, 2003; 2005; LeCorre and Carey, in press). In 

such systems memory, not attention, determines the limits of infants’ representations. 

Exactly how infants represent elements within the set has not been established 

(essentially, how specific the ORs for each element are), but “each individual is 

represented by a unique mental symbol.” In essence, sets appear to be summaries or lists 

of these mental tokens. Set limitations indicate that items are represented discretely - each 

can hold only up to three or perhaps four individuals (Feigenson, Carey and Hauser, 

2002; Feigenson and Carey, 2003; Ross-Sheehy, Oakes and Luck, 2003). In addition, 

these sets cannot be added to without destroying the existing representation (Feigenson, 

2005). Like object-indexing, parallel individuation is only implicitly numerical. The 
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system contains no symbols for number, such as those represented by the analog 

magnitudes, but infants are able to evaluate objects on the basis of numerical identity, i.e. 

whether the object they saw is the same as one they saw earlier (Xu and Carey, 1996), 

and can compare the sizes of represented sets by one-to-one correspondence (Feigenson 

and Carey, 2005). This system attempts to explain how infants can simultaneously 

represent at least two sets with a total of more than three objects without resorting to 

counting.  

 

However, it is not clear how infants make the transition from these one-to-one 

comparisons to judgments on the basis of numerical concepts, or how infants go from 

these small sets to larger number representations. Carey and her colleagues propose that 

three core endowments do the work. The first is the ability to represent large numbers as 

mental magnitudes, the accumulator mechanism (Meck & Church, 1983; Gallistel and 

Gelman, 1992). Secondly, infants represent the existence of small discrete sets using 

parallel individuation; these sets are represented on the level of the individual. They also 

have access to yet another core system of numerical knowledge, “set-based 

quantification,” which allows children to form summary representations of the sets 

picked out by parallel individuation, and which provides the meanings of natural 

language quantifiers, the morphemes denoting sets (such as “a” and plural “-s”), and in 

languages that feature such terms, markers for concepts such as “dual” and “trial” 

(Corbett, 2000). Infants who grow up speaking languages with these morphemes first 

map between these terms and the small sets which they can individuate in parallel, and 

from there induce concepts of small integers (up to the limit of three). Infants further 
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come to understand that sets of two are one item larger than sets of one, and sets of three 

are one larger than sets of two, and from this realization induce the successor function, 

which allows them to map into even larger integers, assuming the count terms for such 

concepts are available in one’s language – if not, these larger numbers are never learned. 

LeCorre and Carey (in press) call this integration process “enriched parallel 

individuation”. 

 

This process of “bootstrapping” into specific small number concepts and from there into 

larger number concepts via quantifiers and the count list (Carey, 2004; Feigenson and 

Carey, 2005) suggests a relationship between language and numerical competence, a 

relationship apparently supported by data from Carey and her colleagues. Infants will 

search for one, two, and three objects hidden in a box, but when four objects are hidden, 

they fail to search longer than for one object (Feigenson and Carey, 2003). Infants begin 

to pass this task at around 24 months of age; this ability is highly correlated with 

acquisition of the plural marker –s (Barner, Thalwitz, Wood and Carey, in press) and 

varies cross-linguistically, although non-human primates also make the singular/plural 

distinction, suggesting that this ability cannot be linguistically-determined (Barner, 

Wood, Hauser and Carey, under review). Infants learning languages with redundant 

linguistic cues for plurality pass this task earlier than English learners (Kouider, 

Halberda, Wood and Carey, 2006). In addition, studies from adult speakers of languages 

with impoverished count list inventories have found that adults in these cultures show 

less precision in their mathematical abilities than do individuals speaking languages with 

terms for large numbers (Dehaene, 1999; Gordon, 2004), though these conclusions have 
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been challenged (Gelman and Gallistel, 2004). Once infants have established the 

correspondence between the count list items “one”, “two”, “three”, and “four”, and the 

relationship between those concepts, they are then able to induce the counting principles 

which allow them to learn terms for even larger integers and map them correctly to the 

appropriate numerical representation, most importantly, the counting principles.  

 

However, Rips, Asmuth and Bloomfield (2005) argue that using language to “bootstrap” 

into an infinite system of number concepts does not work without specifying a more 

restricted definition of the concept “next number word”. Simply learning a count list 

could not give you the means to induce the successor function, because the count list, 

being meaningless, cannot specify whether the next item in the list is in fact a larger 

number (for instance, FIVE following FOUR) or simply the restarting of a cyclical 

system (such as SUNDAY following SATURDAY). Children learning a finite set of 

words for numbers can only distinguish between these options if he or she understands 

that the “next” word maps to the output of the successor function. Such a restricted 

definition of the “next number word”, however, implies an innate or at least prior 

understanding of the successor function, rendering bootstrapping unnecessary. 

 

LeCorre and Carey’s (in press) argument still holds if one assumes that young children 

learning the count terms map them only to the limited and finite set of small numbers that 

they have mapped to their set representations. However, this limitation again raises the 

question of how children ultimately break out of these small number representations into 

larger numbers. Infants may start with a limited number of small number concepts, but 
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they still at some point must deduce the larger integers on the number line, and Rips et 

al’s (2005) criticism still holds for that process. Indeed, why are infants limited to the 

small number range for their set representations? The answer appears to have something 

to do with the capacity of working memory – one might think of attention as a funnel 

allowing only a certain number of items to fit into a slot. If the funnel overloads, then 

nothing gets placed into the slot, resulting in the failure to represent larger sets of four 

and greater (Feigenson, Carey and Hauser, 2002; Feigenson and Halberda, 2005). 

However, long-term memory should not be subject to such limitations. In addition, the 

capacity of working memory increases over time (Kaldy and Leslie, 2003, 2005; Leslie 

and Kaldy, in press; Ross-Sheehy et al., 2003), while nothing suggests that the set 

limitation must change along with it. Indeed the data from numerous studies reviewed 

earlier suggest this limit is already at three by the age of six months. If working memory 

dictates what can be placed into these set representations, then the set limitation must 

start at one for six-month-old infants and increase over time to three only by about 10 

months of age. LeCorre and Carey do not offer this restriction and it is unclear whether 

any data support this claim. But if working memory constrains long-term memory then 

the issue of how six-month-old infants can form representations of sets up to three must 

be clarified while restricting older infants from representing still larger sets in long-term 

memory. 

 

A further question is why it is necessary to posit three core endowments for number that 

carry out different but related functions, all in the name of avoiding assigning infants 

numerical competence. Assuming an innate understanding of number eliminates the need 
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for at least two of Carey and her colleague’s posited systems of numerical representation, 

namely, parallel individuation and set-based quantification, leaving only a core system 

that represents all numbers, large and small, using analog magnitudes (and perhaps 

represents small numbers up to three with integer concepts) (Leslie et al., in press). Under 

such a system, the acquisition of verbal counting does not require mapping from small 

sets to items in the count list, and from there the induction of counting principles. Rather, 

the counting principles (namely, one-to-one correspondence of items in the count list to 

items being counted, stability of the count list, and cardinality, the last term used in 

counting the set establishes the cardinal value of the set), as well as the successor 

function, come for free, and guide the acquisition of the verbal count list (Gelman and 

Gallistel, 1978; Leslie et al., in press).  

   

Understanding what kind of information forms the basis of the representations infants use 

to track sets of objects in the world sheds light on what humans know about objects and 

number from an early age, and sets the tone for research investigating older children’s 

numerical abilities. Is it more accurate to depict number learning as a developmentally 

protracted, culturally determined process of drawing connections between the 

environment and linguistic terms? If so, then the behavior of children before and after 

learning this mapping should be discontinuous, and qualitatively different. Or is knowing 

about number governed by evolutionarily advantageous systems that allow us to 

recognize and exploit numerical information in the environment? If that is the case, then 

the behavior of infants, young children, older children, and adults should exhibit strong 

continuity. Establishing the nature of infants’ numerical competence provides us with 



 

 

22 

 

certain assumptions regarding these questions, and has far-reaching implications for the 

fields of cognitive science, developmental psychology, mathematics, and education. 

 

What do we know about infants and how they perceive the world? Infants clearly track 

the continuous properties of sets, though this ability may not be as robust as originally 

believed. And although the evidence is not conclusive, infants may track discrete 

quantities as well. This ability may be subserved by an attention-based object-indexing 

system, or it may reflect true numerical competency. If infants represent both kinds of 

property information about objects, the question of the nature of their object 

representations must be reformulated. If infants track both discrete and continuous 

quantity information, what kind of information is stored in their object representations? 

Do infants tailor their behavior to the task at hand and utilize different systems of 

representation when appropriate? For instance, when choosing amount of food, it is more 

sensible to rely on continuous extent than number; one large cracker is preferable to two 

small crackers. Studies of infant arithmetic make changes in discrete numerosity very 

salient, and may access counting. When infants are asked to track objects through 

occlusion, they may do so by indexing the objects. The set of studies described here 

investigate the nature of infants’ small number representations. Can infants track discrete 

quantity for small numbers when continuous variables are controlled? If so, what 

mechanisms underlie this ability? Do infants non-verbally count, do they simply index 

objects, or do they form set representations?  
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Chapter Two 

Experiments 1 and 2: 12-month-olds’ discrete number representations 

 

Background 

Do infants track objects through occlusion based on discrete or continuous quantity 

information? To investigate, we used Kaldy and Leslie’s (2003) two-screen methodology. 

This paradigm was originally used to investigate whether infants use color and shape 

information to identify and individuate objects. In their study, nine-month-old infants 

were familiarized to two sequentially-presented shapes, a red disk and a blue triangle, 

which were introduced and then moved to the sides of the stage. The shapes switched 

sides on alternate familiarization trials in order to prevent infants from associating a 

shape to a particular location. During test trials, two screens were brought down and the 

two shapes introduced in the same way as during the familiarization trials. They were 

then moved behind the screens and the screens lifted to reveal either the expected 

outcome, or one of three unexpected outcomes – shape change (a red triangle in the red 

disk location and a blue disk instead of a blue triangle), color change (a blue disk in the 

red disk location, a blue disk instead of a blue triangle), or shape and color change (the 

expected objects swapped sides). In order to succeed at tracking, infants had to attend to 

objects based on their features and their location. They found that at nine months, infants 

used shape information to identify the objects, but ignored color information.  

 

A preliminary study (Lerner, 2003) was conducted in our lab to determine whether the 

two-screen methodology could appropriately be used for studies of number. Specifically, 
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the study sought to confirm whether infants could track discrete number for two separate 

sets of one and one. Twelve-month-old infants were familiarized to two red-painted 

wooden discs with a radius of 2” (henceforth R2” discs). Infants saw one disc lowered to 

the center of the stage, tapped twice, and left for two seconds. The second disc was 

presented next to the first disc in the same way. The discs were then moved one at a time, 

in the order they were presented, to the opposite sides of the stage, tapped twice, and left 

there for 12 seconds. The familiarization trial ended when a yellow felt curtain was raised 

to occlude the stage. Infants saw a total of four familiarization trials; sidedness of first 

presentation varied across trials. On trials one and three, the first disc was presented to 

the infants’ left; on trials two and four, to the infants’ right. 

 

The test trials differed from the familiarization trials only in that before the discs were 

presented, two screens covered in blue paper were lowered onto the stage in a position to 

hide the discs when moved to their final resting places on opposite sides of the stage. The 

discs were presented in the same way as in the familiarization trials, and then moved 

behind the screens. The screen hiding the last-placed disc was then removed, showing 

one of four possible outcomes in a between-subjects design. In the Control condition, 

infants saw the expected R2” disc. In the Unexpected Area and Number Change 

condition, infants saw two R2” discs, an outcome which differed in both expected 

number and expected total continuous extent. In the Number Change condition, infants 

saw two R1.41” discs, an outcome which differed in expected number, but which has the 

same total continuous extent as the R2” control disc. In the Unexpected Area Change 
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condition, infants saw one R1.41” disc, the expected number, but with an unexpected 

total area.  

 

On the first trial, infants looked longer at outcomes of two, but not to outcomes of one 

despite changes in area, perimeter, and diameter. These results suggested that infants 

could track discrete number for groups of one. They also confirmed that the two-screen 

methodology could be used for studies of number. We decided to extend the study to 

investigate whether infants could reliably track even larger numbers of objects. In the 

new study, infants were asked to track a group of one and a group of two for a total of 

three objects, three being the limit of distinct objects that infants can track concurrently 

(Scholl and Leslie, 1999).  

 

The new study was designed to take advantage of the two-screen methodology by 

highlighting the discrete properties of objects. In order to track the objects successfully, 

the infants had to discriminate between the two sets and also attend to their location on a 

trial-by-trial basis. The study also sought to rule out confounds of continuous quantity, 

discrete number, and familiarity. Infants could track the sets either by discrete number or 

total continuous quantity; unlike studies that showed successful tracking by discrete 

number, we did not eliminate continuous quantity as a reliable source of information 

(Feigenson, 2005). The study’s design eliminated the confound between changes in 

continuous extent and changes in discrete extent by showing infants outcomes that 

differed either in number or in area, but not both at the same time. We controlled for 

changes in perimeter by showing displays that changed in perimeter for all non-control 
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groups. Our design also allowed us to rigorously test whether infants formed a familiar 

number preference or demonstrated a novelty preference. In the previous experiment, it is 

possible that infants formed a familiar number preference for the total number of objects 

to which they were familiarized, rather than showing a novelty preference for an 

unexpected numerical outcome. The new study eliminated this confound by showing two 

different unexpected number outcomes, only one of which was “familiar”. 

 

Method 

 Design 

The design of Experiment 1 was based on the previous study, but instead of being 

presented with two R2” discs, infants instead saw three R1.41” discs. The discs were 

placed on the stage, one at a time, in a group of one and a group of two, with a space in 

between. The discs were then moved individually to the sides of the stage, the single disc 

to one side and the pair to the other side, where they rested for 12 seconds. Sidedness of 

the presentation of the two groups of discs alternated trial by trial for a total of four 

familiarization trials. Infants saw each group equally often on each side. Test trials were 

identical to familiarization trials except at the beginning of each test trial, two screens 

were introduced in a position to occlude the discs when placed in their final resting places 

at the sides of the stage. The discs were then presented as during the familiarization and 

then moved behind their respective screens. The screen occluding the pair was then lifted 

to reveal one of four outcomes. Figure 1 illustrates the design. The four possible 

outcomes are shown in Figure 1C. 
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Figure 1. The design of Experiment 1. 
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Infants saw only one of four test outcomes in a between-subjects design. Two test 

outcomes presented the expected number of discs. In the Control outcome, the display 

consisted of the two expected R1.41” discs. In the Area and Perimeter Change outcome, 

infants saw a display containing two slightly smaller (R1.14”) discs. The expected 

number of discs was shown, but the total area decreased to about 66% of the expected 

total area, and the perimeter decreased to about 19% of the expected total perimeter. Two 

test outcomes showed infants an unexpected number of discs with the total expected area. 

In the Familiar Number Change condition, infants saw three R1.14” discs (the same discs 

as in the Area and Perimeter Change outcome) with the same total area as the two control 

discs and a 19% increase in perimeter. We considered three to be the familiar number 

because if infants were likely to form a familiarity preference, it would be for the total 

number of discs to which they were familiarized. The unexpected numerical outcome of 

three contrasted with the Unfamiliar Number Change condition, in which infants saw the 

unexpected numerical outcome of one large R2” disc, which had the same total area as 

the two control R1.41” discs and the three R1.14” discs. The perimeter of this R2” disc 

was about 70% of the total perimeter of the control discs (a 30% decrease). The total 

perimeter change in this condition was larger than in either of the other two non-control 

conditions. The changes in number, area and perimeter of each outcome are presented in 

Table 1. 
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Condition Number Change Area Change Perimeter Change 

Control 0 0 0 

Area Change 0 -33% -19% 

NumCh1 -1 0 -30% 

NumCh3 +1 0 +19% 

Table 1. Number change, area change, and perimeter change for Experiment 1 test conditions. 

 

Our outcomes were designed to control for confounds and make specific predictions 

about how infants tracked the presented sets based on measured looking times. If infants 

attend to discrete number and form a preference for novel displays, we predict longer 

looking in the two Number Change conditions. If infants track changes in area, we expect 

longer looking times only in the Area and Perimeter Change group. As it was impossible 

to simultaneously equate area and perimeter of the numerical outcomes, our outcomes 

were designed to allow us to take into account infants’ reactions to changes of total 

perimeter. If infants react to changes in perimeter, we should see longer looking in all 

non-control groups. More specifically, they should look longest at the Unfamiliar 

Number Change outcome, which had the greatest change in perimeter. And if infants 

form a familiarity preference for the total number of objects to which they were 

familiarized, they would look longest at the Familiar Number Change group. However, it 

is possible that the infants instead formed a familiarity preference for one of the local sets 

that they tracked (either the group of one or the group of two). If so, then infants would 

demonstrate longer looking to either the outcome of one or the outcomes of two. 
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Materials 

The familiarization stimuli consisted of three R1.41” wooden discs. The front of each 

disc was painted red, and concealed a small weighted wooden base, which allowed each 

disc to be presented upright and apparently balancing on its edge. The test stimuli 

consisted of one large R2” disc, and two or three R1.14” discs. These test discs were 

constructed in the same way as the familiarization discs. Two posterboard screens were 

also used in the study. These measured approximately 8” tall and 10” wide, and were 

covered by a 7”x9” blue paper rectangle centered on the front of each screen. Stimuli 

were presented on a posterboard stage measuring 40.5”W x 19.5”H x 19”D. Infants sat 

on their parents’ laps facing the stage, which was placed 2.5 feet away and at about the 

infants’ eye level. The floor of the stage was covered in blue paper; the back and sides 

were white. The back of the stage was covered in a lattice of interwoven strips of paper 

concealing two secret doors, through which surreptitious substitutions could be made. 

The stage was illuminated by two 40-watt lamps; the room was illuminated by a single 

dim halogen lamp. A noise machine ran during the experiment to cover up noises made 

by the experimenter and observers; a metronome beating once a second ensured 

consistent timing. During the experiment, the experimenter wore two elbow-length white 

gloves and a string of bells on the right wrist, which was shaken when moving objects 

around.  

 

 Procedure 

Infants were first familiarized to three R1.41” discs presented on a posterboard stage. 

Infants saw the first disc individually lowered onto the center of the stage. As the 
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experimenter lowered each disc, she shook her wrist to attract infants’ attention to what 

was happening on stage. The disc was tapped twice, and then displayed for two seconds 

as measured by the metronome. A second disc was placed 3 inches away from the first 

disc, tapped twice, and left there for two seconds.  The third disc was placed half an inch 

away from the second, tapped twice, and displayed for two seconds. The distance 

between discs created a natural visual grouping of one and two. After all three discs were 

introduced, each disc was moved individually (always shaken, in order to ring the bells 

on the experimenter’s wrist) to the sides of the stage, maintaining the group of one and 

two. The group of one disc was always moved first. The discs rested in this final position 

for 12 seconds and the curtain was raised. Infants saw a total of four familiarizations. 

Sidedness of the group of one and the group of two varied across familiarizations, to 

prevent subjects from associating one side of the stage with a particular numerical 

outcome. On trials one and three, the group of one was placed to the infants’ left; on trials 

two and four, to the infants’ right. 

 

At the beginning of all test trials, two screens covered in blue paper were simultaneously 

lowered onto the stage. The discs were then presented in the same way as during the 

familiarization trials. As the discs were moved to the sides of the stage, they were placed 

behind the screen. In trials of the non-control conditions, the experimenter, using the 

concealed doors, surreptitiously replaced the group of two discs with novel stimuli. In the 

Familiar Number Change condition, the discs were replaced by three R1.14” discs; in the 

Unfamiliar Number Change condition, by one R2” disc; in the Area and Perimeter 

Change condition, by two R1.14” discs. The experimenter then shook her wrist before the 
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screen concealing the group of two discs to attract infants’ attention to it, lifted the 

screen, and said, “Now” to cue a hidden observer to begin timing looking times to the 

display. The observer was always blind to the test condition. A trial was not considered 

valid unless the infant looked continuously at the display for at least two seconds. Trials 

ended when the infant looked away for two seconds. This presentation was repeated for a 

total of three test trials. 

 

After the experiment was completed, all test trials were blindly rescored by at least one 

other observer. Original times were used in the data analysis unless the majority of 

rescorers agreed that the original times were incorrect. In such cases, the first rescore was 

typically chosen for inclusion in analysis. Rescorer percentage agreement averaged 88%. 

 

Subjects 

83 infants (40 girls, age 47-56 weeks, mean age 51 weeks) from the Central New Jersey 

area were recruited through direct mailing. An additional 39 infants were tested, but 

excluded from analyses due to fussiness/sleepiness (18), experimenter error (9), 

equipment failure (8), parental interference (3), and being a statistical outlier (1). Subjects 

were randomly assigned to one of four conditions, with 20 in the Control condition, 21 in 

the Area and Perimeter Change condition, 22 in the Unfamiliar Number Change 

condition, and 20 in the Familiar Number Change condition. 

 

 

 



 

 

33 

 

Results 

Mean looking times on all three test trials were analyzed in a repeated measures ANOVA 

with factors Trials (3) x Condition (4). One infant was dropped from the analysis because 

the full three trials were not completed. There was no significant main effect of Trials and 

no significant interaction. There was a significant main effect of Condition (F3,78 = 3.45, 

p = 0.02, η² = .117). Post-hoc Dunnett’s t for mean looking times averaged across the 

three test trials revealed that infants in the Unfamiliar Number Change (1) condition 

looked significantly longer than Control infants (p = 0.02). Infants in the Familiar 

Number Change (3) condition also looked significantly longer than Control infants (p = 

0.005). Infants in the Area and Perimeter Change group, by contrast, did not look 

significantly longer than Controls despite changes in both area and contour (p = 0.16).  

 

The same pattern of results was found when only first test trial looking times were 

analyzed. The infant who was dropped from the analyses of the overall mean looking 

times was included in these first test trial analyses. Again, a significant main effect of 

Condition was found (F3,79 = 3.04, p = 0.03, η² = .104). Post-hoc Dunnett’s t revealed that 

infants in the Unfamiliar Number Change (1) group looked significantly longer than the 

Control group (p = 0.03).  Infants in the Familiar Number Change (3) group also looked 

significantly longer than Controls (p = 0.02). Infants in the Area and Perimeter Change 

group did not look significantly longer than Controls despite changes in both area and 

contour (p = 0.43). Figure 2 shows mean first test trial looking times by condition.  
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Figure 2. Experiment 1 mean Trial 1 looking times by condition 
 

In planned comparisons, we found no difference in first trial looking to the Familiar and 

Unfamiliar Number Change conditions  (t40 = 0.3, p = 0.38, one-tailed). We therefore 

collapsed data from these groups (mean 11.8 seconds) and compared them with first trial 

looking in the Area and Perimeter Change condition.  Exploration of this data set 

indicated severe departures from normality. We therefore examined the data in two ways. 

First, we entered log transformed looking times into a t-test which showed longer looking 

in the Number Change condition (t61 = 2.37, p = 0.021, two-tailed). Second, we entered 

the raw looking times into a non-parametric analysis, which confirmed longer looking to 

Number Change (Mann-Whitney U = 281.5, z = 2.33, p = 0.02, two-tailed). 
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Discussion 

Infants look longer at both unexpected number outcomes (2 to 1 and 2 to 3). This 

increase in looking cannot be attributed to changes in continuous extent; the area of the 

discs in both Number Change conditions equaled the area of the discs in the Control 

condition. Changes in perimeter also could not account for this result because perimeter 

changed in all three non-control conditions. In addition, the change in perimeter in the 

Area and Perimeter Change condition was equal to the change in perimeter in the 

Familiar Unexpected Number condition. If perimeter change drove longer looking times, 

infants should have looked equally long at these two conditions, but they did not. Infants 

also failed to respond on the basis of changes in average area, despite the fact that adults 

are quite good at estimating and tracking the average size of sets (Chong and Treisman, 

2002). We found no similarities in looking times to the Area and Perimeter Change 

condition and the Familiar Number Change condition, despite the fact that the average 

disc area was the same in both. 

 

However, it is possible, though unlikely, that the change in continuous quantity (-33%) 

that we presented was below the threshold that infants can detect, whereas we always 

showed at least a 50% change in discrete number. When Experiment 1 was designed, 

infants’ competence at detecting changes in continuous quantity had not been established. 

However, readings of the continuous account of success on number tasks suggested that 

infants should be able to detect even very small changes in continuous quantity 

(Clearfield and Mix, 1999; 2001). We now know that at six months, infants can only 

detect changes in area that are quite large (1:2) and fail when shown a 2:3 change 
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(Brannon, Lutz and Cordes, 2006). 10-month-old infants should be able to detect a 2:3 

change by 10 months (Libertus, Suanda and Brannon, in prep), but our 12-month-olds 

failed to do so for a 3:2 change. This inconsistency in results could be due to 

methodological differences. Perhaps three presentations were insufficient for them to 

detect a change, or the occlusion of the groups behind a screen prevented them from 

making a successful comparison. Whatever the reason, it is clear that infants should have 

been able to discriminate the presented changes in continuous quantity and could have 

used this information to track groups over successive presentations in occlusion, but did 

not. Another possibility is that this fraction holds only for increases in continuous 

quantity, not for decreases. However, there is no principled reason to believe that this is 

the case. We are confident that if presented with even larger changes in continuous 

quantity, infants could detect them even when pitted against number. However, our goal 

in this study was to show that infants could attend to and track based on discrete quantity, 

not to show that infants will detect changes in continuous quantity, which has already 

been firmly established. Under these circumstances, they do pay attention to discrete 

number. 

 

The results of Experiment 1 also cannot be attributed to infants’ forming a familiar 

number preference. Our results indicate that unexpected number outcomes were indeed 

unexpected, and are consistent with a novelty preference for unexpected outcomes. 

Infants did not appear to form a familiar number preference for the global set (three) or 

for either of the local sets (one or two). 12-month-old infants do not react to changes in 

number only on the level of familiarity. 
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However, one possibility that our design for Experiment 1 did not rule out is that infants 

simply looked longer when presented with completely novel groups. Perhaps infants did 

not track the locations of the group of one and the group of two at all, and were satisfied 

if they saw a group that looked similar to either of the groups to which they were 

familiarized. Although the Area and Perimeter Change display was novel, perhaps it was 

insufficiently discriminable from the Control display. Because we did not present infants 

with an outcome of one single R1.41” disc (i.e., showing them a familiar group not in its 

expected location), we cannot rule out this possibility. Under this interpretation, infants’ 

looking longer at changes in number could simply be attributed to the infants “matching” 

the test group with one of the familiarization groups, and looking longer when they found 

a mismatch. Experiment 2 investigated whether infants actually tracked both groups, and 

if they formed specific expectations about each group’s location. 

 

Experiment 2 

Background 

Experiment 1 showed that babies looked at changes in discrete number, but did not 

establish that infants tracked both sets simultaneously or that they formed specific 

expectations about the location and contents of these sets. We did not add a condition to 

Experiment 1 in which infants saw an unexpected outcome of one R1.41” disc because 

such a condition could result in a confound. If we found that infants did look longer at 

this display, two interpretations would be equally likely – infants might have reacted to 

unexpected number, or they might have reacted to seeing a familiar group in an 
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unexpected location. Instead, we imposed a more stringent test on whether infants 

simultaneously tracked both sets.  

 

Design 

In Experiment 2, we modified the design of Experiment 1 by removing both screens to 

show both sets of discs in test trials, rather than lifting just the screen hiding the last-

hidden group. In the Control condition, infants saw the expected groups in their expected 

locations. In the Swap condition, the locations of the expected groups were swapped. 

Infants should be surprised to see the expected groups swap locations only if they have 

formed a specific expectation for both the number and location of the items behind the 

screens. If infants fail to track both groups simultaneously and simply react to seeing an 

unfamiliar group, they should not look longer at a swap in locations. This design also 

controls precisely for continuous quantity, as the total area and perimeter of the displays 

remain identical throughout and across conditions. The design is illustrated in Figure 3. 

The Control and Swap test conditions are illustrated in Figure 3C.  

 

Apparatus 

Same as Experiment 1.  

 

Stimuli 

Same as Experiment 1. 
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Figure 3. The design of Experiment 2. 
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Procedure 

The familiarizations were the same as in Experiment 1; two test trials followed. Test 

trials were identical to those in Experiment 1, except that at the end of each test trial, both 

screens were removed simultaneously to reveal either the Control outcome or the Swap 

outcome. Infants saw only one outcome in a between-subjects design. Looking time to 

the display was recorded until the infant looked away for two seconds. Rescorer 

percentage agreement averaged 86%. 

 

Subjects 

24 infants (9 girls, 44 weeks to 57 weeks, mean age 51 weeks, s.d. 3.75 weeks) were 

tested, with 12 randomly assigned to each condition. A further four infants were excluded 

for fussing.  

 

Results 

Infants in the swap condition looked significantly longer than infants in the control 

condition (15.54s vs. 7.65s); ANOVA with Condition (2) x Trials (2) showed only a 

significant effect of Condition (F1, 22 = 6.68, p = .017, η² = .23). There were no other 

significant main effects or interactions. Figure 4 shows mean looking time results for 

Experiment 2. 
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Figure 4. Mean looking times for Experiment 2 by condition. 
 

Discussion 

Experiment 2 confirmed that infants tested using the two-screen methodology do track 

sets on a trial-by-trial basis. Infants not only encoded the discrete numerosity of each set, 

they also used number to track the sets’ locations, looking longer only when groups 

unexpectedly swapped sides. If infants did not simultaneously track both sets, but instead 

represented the occluded groups as simply “a group of one and a group of two” (or some 

other representation to that effect) and formed no specific expectations about where each 

should be, they would not have looked longer at a swap outcome. The results of 

Experiment 2 suggest that it is unlikely that infants in Experiment 1 simply looked longer 

when shown completely novel displays, as they also look longer when familiar groups 

appeared in unexpected locations.  
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General Discussion  

The ability of infants to detect changes in the continuous variables of displays has been 

well established (Clearfield and Mix, 1999; 2001; Feigenson, Carey and Hauser, 2002; 

Feigenson, 2005). The results of Experiment 1 and 2 show that by the end of the first year 

of life, infants can also attend to and represent the discrete properties of occluded sets. 

They do so even when they could track sets based on continuous variables such as area 

and perimeter; they also do not form a familiarity preference for number. At twelve 

months, infants have access to both continuous and discrete representations and may use 

whichever is most appropriate to the task at hand. Experiment 3 extends our findings to 

even younger infants, nine-month-olds.  

 

Because of the heterogeneity of the paradigms used and populations involved in number 

research, it can be difficult to reconcile the many conflicting results in the field. The 

studies most relevant to the work presented here utilize the graham cracker task 

developed by Feigenson, Carey and Hauser (2002). As in our studies, Feigenson and her 

colleagues tested 10- and 12-month-old infants on their ability to track two occluded sets 

(in their case, a quantity of graham crackers hidden in two pots). Our study utilized 

looking time at wooden disks as the dependent variable; Feigenson and her colleagues 

gave babies one trial to crawl to their preferred location to select a quantity of crackers. 

As discussed in Chapter 1, infants in Feigenson’s study chose pots on the basis of 

continuous quantity (with one exception), while we found evidence that they attended to 

discrete number. What accounts for the discrepancy in these results? It seems likely that 
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infants foraging for food would seek to maximize the amount of food given to them as a 

reward, explaining why they always chose based on continuous quantity even when it 

conflicted with discrete number (i.e. one very large cracker vs. 2 very small ones). 

However, Feigenson et al’s (2002) results do not mean that infants fail to attend to 

discrete number – just that they are not foolish scavengers. Choosing a smaller amount of 

food simply because it is contained in a larger number of discrete items makes little 

ecological sense. Perhaps, also, infants attend to total amount over discrete number 

because they understand that numerosity can be altered, for example in breaking events. 

Number therefore does not provide a reliable cue to total amount (Cheries, Mitroff, Wynn 

and Scholl, in press). 

 

By contrast, tracking the identity of displays across successive presentations may 

highlight the discrete properties of sets, and infants may choose to represent objects in 

these groups discretely. In our task, infants must decide whether the group of objects they 

see when a screen is lifted is identical to the one that went behind it. They could do so 

based on the total number of objects they saw go behind the screen, or they could do so 

based on the total amount of stuff they saw hidden. Furthermore, they must remember 

which of two familiar sets they most recently saw hidden in a particular location. 

Actively attending to the groups’ locations may increase the likelihood that infants 

respond based on discrete number, possibly because discrete quantity representations for 

such small numbers are less variable and therefore more robust when tracking objects 

through occlusion events, as opposed to continuous representations, which, due to 

infants’ relatively poor ability to discriminate differences in continuous amount (Brannon 
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et al., 2006), may be less reliable sources of information in tracking tasks. Although 

Brannon and her colleagues argue that infants utilize the same Weber fraction to 

discriminate discrete and continuous quantities, we found evidence that they could 

discriminate a 2:3 increase in discrete quantity, while ignoring a 3:2 decrease in 

continuous quantity. Our results also show strong continuity with evidence from older 

children’s (from two and a half to five years of age) ability to detect transformations in 

arrays of number (Bullock and Gelman, 1977; Gelman, 1972; Gelman and Gallistel, 

1978). Children were first shown two plates with a number of toys placed on them (one 

plate designated “the winner”, the other designated “the loser”), which were then covered 

and shuffled around. In other words, children were asked to track two sets of objects, 

either 2 vs. 3 or 3 vs. 5, just as our infants were. The children were then asked to select 

the “winner” plate, and were allowed to look at the other plate if they chose incorrectly. 

Even very young children were quite effective at detecting if a change had been made to 

the number of items on the winner plate, while ignoring changes to other dimensions, 

such as length, color, identity of the objects, and density, as irrelevant. 

 

Another possibility is that infants utilize an attentional tracking mechanism that helps 

them attend to discrete number without resorting to number concepts. This mechanism 

allows them to individuate up to three objects concurrently (Scholl and Leslie, 1999). If 

infants can only resort to this mechanism when asked to attend to discrete quantity 

(Huntley-Fenner et al., 2002), then they should rely on continuous variables when 

required to track more than three objects. This set size limitation has been amply 

demonstrated in the literature (Feigenson and Carey, 2003; Feigenson and Halberda, 
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2004), although as discussed in Chapter 1, appears to hold only for local sets and not for 

global sets. However, the results of Experiments 1 and 2 do not allow us to distinguish 

between these two possibilities. In both experiments infants tracked a total of three 

objects – below the threshold (Scholl and Leslie, 1999). In other words, just because 

infants in our study respond on the basis of discrete quantity does not mean that they are 

responding on the basis of numerosity. Experiment 4 explores whether infants’ discrete 

number abilities can be attributed merely to attention or indexing limits by upping the 

number of objects which infants are required to track. Experiment 4 takes as its starting 

point the ability of infants to individuate single objects (Tremoulet et al., 2000), and 

investigates whether infants can individuate across pairs of objects. In addition, 

Experiment 4 supports and extends the findings of Feigenson and Halberda (2004) that 

infants can overcome the set size limitation under certain circumstances.  
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Chapter Three 

Experiment 3: Nine-month-olds’ representations of small sets 

 

Experiment 3 

Background 

Experiments 1 and 2 indicated that by 12 months, infants simultaneously track the 

discrete properties of two sets of objects. Are nine-month-olds also able to track discrete 

number? While nine-month-olds have been shown to discriminate between large numbers 

at a ratio of 2:3, relatively little is known about their ability to track discrete quantity for 

the small number range, as they fall right in between the two age groups typically tested 

in number studies (six to seven months, and ten to twelve months). Do nine-month-old 

infants show the same limitations on tracking discrete number as the six- and seven-

month-olds (Feigenson, Carey and Spelke, 2002), or have they already begun to show 

some of the capability to track discrete number displayed by the older infants (Strauss 

and Curtiss, 1981; Feigenson, Carey and Hauser, 2002; Feigenson and Halberda, 2004)? 

 

We used the design of Experiment 1 to investigate this question. Evidence from working 

memory studies show that by about 10 months of age, infants show the same capacity for 

visual short-term memory as 12-month-olds (Ross-Sheehy et al. 2003), suggesting that 

tracking three objects should be well within the capabilities of infants at this age. In 

addition, the two-screen methodology has been used successfully with nine-month-olds 

on studies of identification based on shape (Kaldy and Leslie, 2003). In this study, infants 

were familiarized to a single disc and a single triangle placed on opposite sides of a stage. 
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During test trials, the shapes were hidden behind separate screens, and one of the screens 

lifted to reveal the hidden object. Infants looked longer when the object unexpectedly 

changed shape, but not when it unexpectedly changed color, suggesting that infants use 

shape, but not color, to identify objects by nine months of age. However, the nine-month-

olds differed from the 12-month-olds in one particular way: because of the trial-by-trial 

nature of this methodology, the younger infants typically do not detect changes in 

displays on the first trial, requiring at least two and sometimes three trials before they 

notice a change.  

 

Methods 

Design 

The design of the study was identical to that of Experiment 1. 

 

Materials 

Same as Experiment 1. 

 

Procedure 

Same as Experiment 1. Rescorer percentage agreement for Experiment 3 averaged 83%. 

 

Subjects 

36 infants (15 girls, 34 weeks to 44 weeks, mean age 39 weeks, s.d. 2.43 weeks) were 

recruited via direct mailing from the Central New Jersey area. Infants were randomly 

assigned to one of four conditions - 10 in the Control condition, 9 in the Area and 



 

 

48 

 

Perimeter Change condition, 8 in the Familiar Number Change condition, and 9 in the 

Unfamiliar Number Change condition. An additional 12 subjects were tested, but 

excluded for equipment failure (5), fussing (4), experimenter error (2), and parental 

interference (1). 

 

Results 

Figure 5 displays mean looking times across trials for nine-month-olds. 

 
Figure 5. Mean looking times for Experiment 3. 

 

Exploration of the data identified 3 outliers who were eliminated from analyses. One-way 

ANOVA on Condition (4) found F3, 29 = 2.135, p < .12, η2 = .18. Observed power was 

low at .49 at α = .05. Post-hoc analyses with Dunnett’s t showed significantly longer 

looking than controls only for the Familiar Number Change group (p = .042).  Planned 



 

 

49 

 

comparison collapsing the two No Number change groups and the two Number Change 

groups showed significantly longer looking in Number Change groups (7.88 s vs. 10.05, 

t31 = 1.71, p = .048, one-tailed). 

 

Discussion 

Infants do not respond solely on the basis of continuous quantity at nine months, because 

infants in the Area and Perimeter Change condition do not look significantly longer than 

infants in the Controls. This failure to respond based on area could be due to the fact that 

our infants may simply be too young to detect the relatively small amount of continuous 

change presented in our displays. However, infants also do not seem to be responding 

solely on the basis of discrete quantity, as they look longer only at a change in number 

from two to three, but fail to look longer at a change from two to one. It is possible, 

however, that our sample size was too small for us to be confident, given the low 

observed power. Planned comparison suggested that while an effect of Number Change 

may be confirmed with a larger sample, our current results suggest that we can be 

confident only that infants of this age respond to a 2 vs. 3 comparison. The failure of 

nine-month-olds in our study to detect a surreptitious replacement of two smaller discs 

with one large discs is consistent with the results of Feigenson, Carey and Spelke’s 

(2002) replication of Wynn’s 1+1=2 study, in which they found that seven-month-old 

infants did not look longer when two small dolls were placed behind a screen and the 

screen lifted to show one large doll. However, Li, Baillargeon and Leslie (2007) found 

that infants do detect the change in number, but that the change in continuous extent has a 

bigger effect on looking times; our results point to a similar phenomenon. 
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The results of Experiment 3 suggest that if nine-month-old infants represent discrete 

properties of occluded sets of objects, these representations are far more fragile than 

those of 12-month-olds. It is possible that our infants were insufficiently familiarized to 

the displays by the time test trials began and that their looking expressed a preference for 

a globally familiar number of 3 discs. Adding trials in the familiarization and the test 

phases, in addition to adding subjects, might be required by this age group in a two-

screen methodology applied to number. However, invoking familiarity as the reason for 

longer looking in this condition seems unlikely given that infants only begin to look 

longer at the outcome of three on the third trial (vs. controls, t15 = 2.42, p = .029, two-

tailed). On trials 1 and 2, there are no significant differences between looking times in 

these conditions. If infants are reacting based on familiarity, one would expect to find 

longer looking on even earlier trials. Alternatively, infants at this age may not be able to 

track on a trial-by-trial basis the locations of a set of one and a set of two objects 

simultaneously. It might be that our infants did not know which screen the set of two and 

the set of one were behind on a given trial but did know that neither screen hid three 

objects. Recall that we found that, even in the case of 2 vs. 3, our infants were surprised 

only by the third test trial. Kaldy and Leslie (2003) found that their infants were surprised 

by a shape swap only by the second test trial and suggested that with the trial by trial 

alternation infants may take some time to become alerted to violations: they have first to 

become “suspicious” following the outcome of the previous trial before they pay close 

enough attention to the start of the next trial to note exactly what went behind which 

screen and thus be able to detect a violation when the screen is removed. 
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If tracking difficulties imposed by the two-screen methodology are to blame, switching to 

a single-screen with alternating-trials methodology (Kaldy & Leslie, 2005) might yield 

different results. In this design infants would be familiarized with a single set of objects 

on stage in any one trial, but the size of the set would alternate from trial to trial. Thus, on 

familiarization trial one, infants might see a single disc followed on trial two by two 

discs, trial three one disc, and so on throughout familiarization trials. On test trials the 

alternation is continued but now a screen is first placed on stage and after introducing the 

disc or discs they are moved behind the screen. When the screen is removed it can reveal 

either the for-that-trial expected number or the for-that-trial unexpected number. Kaldy & 

Leslie (2005) found that infants of 6 months found the single screen alternation task 

easier than its two-screen counterpart.   

 

However, our results do contain several points of interest. While we cannot completely 

rule out that infants at this age will respond solely on the basis of continuous quantity 

(because of the relatively small change in continuous quantity), it seems possible that at 

nine-month-old infants begin to attend to changes in discrete quantity information. 

Infants look significantly longer at the Familiar Number Change condition, and slightly 

(though not significantly) longer in the Unfamiliar Number Change condition. By trial 

three, infants in the Unfamiliar Number Change condition are looking, on average, 14.68 

seconds (vs. 6.95 seconds on trial 3 for the control group). This difference is not 

significant due to high variability in looks to the Unfamiliar Number Change display on 

the third trial. 
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Figure 6 shows looking times for all three trials split by conditions. 

 
Figure 6. Nine-month-old looking times across trials by condition. 
 
 

However, it is puzzling that the nine-month-olds notice a number change of two to three 

but not a change of two to one, just as Feigenson, Carey and Spelke’s (2002) seven-

month-olds failed to notice a change of two to one.  As we have discussed, there are 

several possible explanations. The first was that nine-month-olds, unlike 12-month-olds, 

are susceptible to forming a preference for familiar number (Cohen and Marks, 2002), 

based on global set size. If infants were insufficiently familiarized to the displays, they 

may not exhibit the novelty preference demonstrated by the 12-month-olds. While this 

explanation seems unlikely, as such an interpretation does not account for why infants 

only begin to display a familiarity preference on the third test trial, it cannot be ruled out. 

Alternatively, infants may simply need more exposures to detect changes in number. 
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While they detected shape changes on the second trial (Kaldy and Leslie, 2003), perhaps 

their ability to track number lags behind. Another possibility is that infants looked longer 

simply because there were more objects to look at. Even the 12-month-old infants looked 

slightly longer at the outcome of three than at the outcome of one (although this 

difference was not significant).  

 

We believe the most likely explanation is that infants do know that they are tracking three 

objects, in a group of one and a group of two. However, they are unable to track the 

changing locations of these groups simultaneously, and therefore do not form an 

expectation about the specific location of either group at any time. In other words, they 

make no specific prediction about which group they should see when the screen is lifted, 

as long as the number of objects matches the number of one of the groups to which they 

were familiarized. Their failure to react when shown either a group of one or a group of 

two (regardless of individual size of the discs) contrasts with their longer looking when 

they see what appears to be all three of the discs on one side, an impossible result.  

 

Further methodological adjustments to the number of familiarization and test trials might 

yield clearer results. A single screen study showing infants successive presentations of a 

group of one and a group of two, such as the one described above, should eliminate any 

possibility of a familiarity preference for a group of three; infants should not form a 

familiarity preference for three if they never see three discs simultaneously. A swap study 

using the design of Experiment 2 would establish whether or not infants at this age track 

both groups simultaneously. A failure to do so would lend strength to our assertion that 
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infants know they are tracking three objects, but do not form specific expectations as to 

their locations. 

 

Our results suggest that infants at nine months of age have begun to detect changes in 

discrete quantity. However, their representations of discrete quantity remain fragile. In 

particular, their success at detecting changes of two to three coupled with their failure to 

look significantly longer when presented with a change of two to one suggests that at this 

age, infants’ ability to discretize sets still rests at this age on attentional mechanisms, or 

suffers from interference from such mechanisms. 
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Chapter Four 

Experiment 4: 12-month-olds’ individuation by pairs 

 

Experiment 4 

 

Background 

Experiments 1 and 2 showed that by 12 months, infants simultaneously keep track of a 

group of one and a group of two, for a total of three objects. Experiment 4 investigates 

whether they can keep track of two groups of two, for a total of four objects. Several 

studies have found that infants display a set size limitation for sets of four or more objects 

(Feigenson, Carey and Hauser, 2002; Feigenson and Halberda, 2004). However, 

Feigenson and Halberda (2004) found that “chunking” a display of four objects into two 

simultaneously-presented groups of two objects aided 14-month-olds in searching 

successfully for four objects. Can infants do the same for sequentially-presented groups 

of distinct objects? Can younger infants form expectations of two pairs of objects if 

looking-time methods are used?   

 

We took as our starting point the shape identification studies of Tremoulet, Leslie and 

Hall (2000). In this study, twelve-month-old infants were tested on whether they could 

use shape to individuate and identify how many objects were behind a screen. Infants saw 

two objects (a disc and a triangle) presented sequentially from behind a screen; the two 

objects were never seen together. Infants were then tested on the control outcome of a 

disc and a triangle, or on test outcomes of two discs or two triangles. If infants used shape 
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only to individuate the presented items, then they should be satisfied to see any outcome 

of two objects. If infants used shape to identify as well as individuate presented items, 

they should look longer at an outcome of two identical objects. Tremoulet et al. found 

that infants looked longer at the unexpected outcome of two identical items, suggesting 

that infants used shape information to both individuate and identify objects. In other 

words, infants individuated objects because they recognized that they saw two distinct 

shapes, and used that information to form an expectation that there should be at least two 

shapes behind the screen. They also identified the objects using shape information 

because not only did they expect to see two things behind the screen, they had specific 

expectations about which objects they should see. We wanted to see if infants could 

extend this ability over pairs of objects.  

 

In a preliminary study (Leslie and Chen, 2007; experiment 1), we showed infants pairs of 

objects to see if they would form expectations based on how many things they should see. 

In the XX/YY familiarization condition, infants were familiarized to two homogeneous 

pairs of objects. In this condition, infants saw two of the same object (either two discs or 

two triangles) being brought out behind the screen one at a time, and displayed together 

for two seconds. The pair was then returned behind the screen, and the other pair brought 

out in the same way. Infants never saw both shapes displayed together. First-presented 

shape varied across familiarization trials and across subjects. If infants realized that they 

saw two distinct pairs of shapes, they should expect to see two distinct pairs when the 

screen was lifted, a total of four objects. In the XY/XY familiarization condition, infants 

were familiarized to two heterogeneous pairs, each consisting of a disc and a triangle. In 
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this condition, infants saw first one shape being brought out behind a screen, followed by 

the second shape. Both shapes were displayed together for 2 seconds and then returned 

behind the screen. The two shapes were then brought again, one at a time, in the reverse 

order. Again, first-presented shape varied across familiarization trials and across subjects. 

Although the displays appeared to observers to be simply the same (single) pair of shapes 

again, infants actually saw two distinct XY pairs. However, they should only expect to 

see a single disc and a single triangle when the screen was lifted, and should be surprised 

to see two discs and two triangles. Subjects in both familiarization conditions were shown 

the same displays in the test trials – one of two configurations made up of two discs and 

two triangles together (XXYY or XYXY). Leslie and Chen (2007) found that infants in 

the XX/YY familiarization condition did not look longer, suggesting that they were able 

to individuate across pairs and correctly predict that they would see four items, or at least 

two pairs, when the screen was lifted. However, infants in the XY/XY familiarization did 

look longer, suggesting that they expected to see only two objects, and were surprised to 

see more shapes than they expected. The design of this preliminary study is illustrated in 

Figure 7. 

 

Experiment 4 extended the results of Leslie and Chen (2007; experiment 1) by testing 

infants on a simplified test display. In order to confirm the results from the previous 

study, we familiarized infants to the same two conditions, XX/YY and XY/XY. During 

test trials, infants saw a display of only two items – a single disc and triangle pair. This 

new outcome should reverse the expectations of the previous study – infants in the 

XY/XY condition should now expect to see the test outcome, and should not look longer, 
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while infants in the XX/YY condition, if expecting two distinct pairs of items, should 

now look longer at an unexpected display of only two objects. 

 
Figure 7. The design of Leslie and Chen (2007; experiment 1). The figure is drawn from the 

perspective of the experimenter. 

 

Method 

 Design 

The design of Experiment 4 is illustrated in Figure 8. This design is modeled after Leslie 

and Chen (2007; experiment 1) but simplifies the test outcomes to reverse looking-time 

expectations. 
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Figure 8. The design of Experiment 4. 
 
 
In a between-subjects design, we familiarized infants to one of two conditions. In the 

XX/YY condition, infants saw a pair of identical shapes (either discs or triangles) brought 

out from behind a screen and displayed for two seconds. The pair was then returned 

behind the screen and a different pair of identical objects (whichever pair was not brought 

out the first time) was then brought out, displayed for two seconds and returned behind 

the screen. The sequence was repeated to complete one familiarization trial. In the 

XY/XY condition, infants saw a mixed pair of shapes – one disc and one triangle – 

brought out from behind a screen and displayed for two seconds. The pair was then 

returned behind the screen, and a different pair of a disc and a triangle was brought out in 

the reverse order of the first mixed pair (in other words, if the first pair was displayed in 

the order disc-triangle, the second pair was displayed in the order triangle-disc), 

displayed for two seconds, and then returned behind the screen.  
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Infants in both conditions saw a total of four familiarization trials; first-presented shape 

in both conditions varied across trials and subjects. All infants, regardless of 

familiarization condition, saw the same test condition – a pair made up of a single disc 

and a single triangle. The infants who were familiarized to the XX/YY condition were 

therefore the Unexpected Pairs condition – they should look longer at an outcome of only 

two discs if they detected two distinct pairs in the familiarization condition. The infants 

were familiarized to the XY/XY condition were the Expected Pairs condition, and should 

not look longer, as the test display of one disc and one triangle should be consistent with 

their representation of the objects behind the screen.  

 

  Materials 

The materials consisted of two wooden discs, 10.5 cm in diameter, and two wooden 

triangles, 11.5 cm high and 10.5 cm at the base. All were painted red. Items were 

presented from behind a screen 21 cm high x 48 cm wide on a stage 55 cm high, 90 cm 

wide, and 45 cm deep. The stage was illuminated by two 40-watt bulbs; both the stage 

and screen were constructed from white posterboard. The screen was covered in a blue 

paper rectangle. The back of the stage was constructed so that the experimenter could 

reach through it to manipulate objects on the stage through a slit concealed by white 

elastic cloth. The slit ran the entire width of the stage. The experimenter wore white 

elbow-length gloves when presenting objects. 
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 Procedure 

Familiarization trials began when the experimenter lowered a curtain covering the stage 

and signaled to the observer to turn on the lights illuminating the stage. In the initial 

display, infants saw just the posterboard screen sitting in the center of the stage. The 

experimenter then began to remove objects from behind the screen, always to the infants’ 

left. Each object was moved one at a time, tapped twice on the stage, and then displayed 

for two seconds. Infants saw objects presented together for two seconds, before being 

replaced behind the screen in order of appearance. A second pair of objects was then 

brought out and presented in the same way. These presentations were repeated to 

complete the familiarization trial; infants saw each pair presented twice in a 

familiarization. In the XX/YY condition, infants first saw a XX/YY familiarization trial, 

followed by a YY/XX familiarization trial. These two trials were repeated for a total of 

four trials. In the XY/XY condition, infants first saw a XY/YX familiarization trial, 

followed by a YX/XY familiarization trial. These two trials were also repeated for a total 

of four trials. Thus the first-presented object was counterbalanced across familiarizations. 

In addition, the first-presented object was counterbalanced across subjects in each 

condition. In both conditions, infants actually saw two distinct pairs, although in the 

XY/XY condition it appeared that they only saw one identical pair presented in different 

orders. However, two pairs of objects were used to ensure that the mechanics of 

presentation were identical across conditions. 
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During test trials, infants saw the objects presented as in their familiarization trial – a XX 

display followed by a YY display for the XX/YY condition infants, a XY display 

followed by a YX display for the XY/XY condition infants. In both conditions, the 

experimenter surreptitiously placed one disc and one triangle on the ledge of the screen, 

and then shook her left wrist, wearing a string of bells, in front of the screen to attract the 

infants’ attention to the display. She then raised the screen, showing infants a single disc 

and a triangle. A hidden observer, blind to condition, began timing the infants’ looking at 

the display once the screen was lifted. A trial continued until the infant looked away for 

more than two seconds. Infants had to look at the display for at least two seconds in order 

for the trial to be recorded. When the infant looked away for more than two seconds, the 

stage lights went dark, and the experimenter drew up the curtain to conceal the stage. 

Two more test trials were given for a total of three trials. The arrangement of the disc and 

triangle varied across presentations, and were based on which item was presented first. If 

the first-presented object was a disc, then the disc was presented to the infants’ left and 

the triangle to the infants’ right, and vice-versa if the first-presented object was the 

triangle. After the experiment was completed, all test trials were blindly rescored by at 

least one other observer. The percentage agreement averaged 79%. In cases of large 

discrepancy, differences were resolved by a third scorer. 

 

Subjects 

24 infants (43-57 weeks, mean age 50 weeks, s.d. 4.3 weeks, 10 females) were randomly 

assigned to one of two conditions, with 12 in each condition. An additional five subjects 
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were tested, but not included in the data analysis due to fussing (3), equipment failure (1), 

and being distracted (1). 

 

Results 

First, in order to determine that infants displayed no baseline looking preference between 

the different familiarization conditions, we recorded the average total looking times 

during familiarization trials for all subjects from the taped sessions. One subject’s 

videotape was not included due to equipment malfunction. We found no significant 

difference in baseline looking times during familiarization between conditions (XX/YY = 

37.2 s, SD = 3.4, XY/XY = 35.0 s, SD = 2.8, t21 = 1.65, p = .113, two-tailed), indicating 

that infants did not find either the XX/YY or XY/XY displays intrinsically more 

interesting. These baseline looking times were consistent with those from the preliminary 

study. 

 

Test trial looking times were converted to log form for analysis to correct for rightward 

skew. Repeated measures ANOVA with factors Trials (3) x Pairs (2) (XX/YY or 

XY/XY) and Sex (2) found no significant main effect of Trials or Sex. There were no 

significant interactions. There was a significant main effect of Pairs (F1,23 = 8.3, p = .009, 

η2 = .29). Planned comparisons on first trial looking times showed that infants in the 

XX/YY condition looked longer (13.4, SEM = 1.8) than infants in the XY/XY condition 

(7.4 s, SEM = 0.9). This difference was significant (t22 = 2.61, p = .008, one-tailed). Mean 

looking times for Experiment 4 are shown in Figure 9. 
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Figure 9. Mean looking times by condition for Experiment 4. 

 

Discussion 

The results of Experiment 4 support the idea that 12-month-old infants are able to use 

shape information to individuate across sequential presentations of pairs of objects. 

Infants who are shown two distinct pairs use that information to form an expectation that 

they will see a total of four objects behind the screen; when this expectation is not 

fulfilled, they are surprised and look longer. However infants who see two mixed pairs do 

not individuate across the displays; they expect to see only two items behind the screen 

and look longer only when this expectation is violated. Our results converge with and 

extend those of Feigenson and Halberda (2004), who used a reaching paradigm to show 

that 14-month-old infants succeeded at searching for four objects only when those objects 

were broken up into two simultaneously-presented spatiotemporally distinct “chunks” of 



 

 

65 

 

two objects. We found that even younger infants can perform much the same task but 

with sequential presentations, using a looking-time task. 

 

How did infants succeed in this task? Infants could not have indexed each individual 

object, because they have only three indexes available in total (Scholl and Leslie, 1999). 

Nor could infants have succeeded simply by assigning an index to each set without also 

forming a specific representation of what was indexed. Because the index is agnostic, 

infants could only make comparisons on the basis of the information contained in the 

object representation. Infants might have used continuous quantity information to 

succeed, but this explanation seems unlikely given that they made their judgments based 

on specific shape information. In addition, a simple explanation on the basis of 

continuous quantity fails to explain why Feigenson and Halberda’s (2004) 14-month-olds 

apparently could not use the total continuous amount of hidden toy to guide successful 

search. Ruling out continuous quantity leaves the alternative that infants had to make the 

comparison based on discrete quantity, exactly the kind of explanation object indexing 

has been proposed to avert. 

 

Infants, then, could only have succeeded on our task in one of two ways. One possibility 

is that infants simply counted the number of objects that they saw across trials and 

summed up a total number across presentations. In other words, the XX/YY infants 

detected that they saw two objects in one presentation and another two objects in the next 

presentation. Unable to form simultaneous indexes for all of the presented objects, on 

subsequent presentations they counted the total number of objects in the display, summed 
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across them, and expected to see 2+2 objects when the screen lifted. Infants may not 

necessarily have formed a specific expectation for “4”; rather, they may simply have 

realized that 2+2 should equal something more than 2, and looked longer on that basis.  

 

Alternatively, infants may have formed some kind of set representation for the pair that 

provided the basis for comparisons across presentations – rather than expecting 2+2=4, 

perhaps they expected that a pair + another pair should add up to more than one pair. 

What might such a set representation look like? Feigenson and Halberda (2004) suggest 

that by “chunking” the groups presented to their infants, they lowered the cost of 

representing more objects than could be concurrently represented by object indexes. By 

binding these representations into two sets, infants can exceed the “hard and fast” set size 

limitation. However, Feigenson and Halberda refused to commit to a description of how 

sets are represented.  

 

LeCorre and Carey (in press) propose that infants form sets consisting of a non-numerical 

summary representation of the individuals in the set; while these sets are not numerical, 

infants can compare the items within the set to each other or to objects in the real world 

using one-to-one correspondence. LeCorre and Carey’s model offers a good explanation 

for success on tasks such as the graham cracker task, in which infants must choose 

between two sets on the basis of size, but is not explicitly formulated to deal with tasks 

such as ours, which require infants to compare multiple sets in memory not to each other, 

but rather to a displayed set. Similarly, Feigenson and Halberda’s task requires infants to 

compare items extracted from the box with items stored in their memory. In principle, 
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LeCorre and Carey’s model can be flexible enough to account for how infants can 

simultaneously hold two distinct sets in their long-term memory and compare the items in 

both sets to items in the real world. However, their model does not provide predictions 

for what infants should do in this case.  

Although our results do not necessarily conflict with their model, one must question how 

many sets this system can represent in parallel, and what kinds of comparisons that can 

be made between them. What are the limits on the power of their model? How many 

different sets infants can hold in memory, and what limits this number? In addition, long-

term memory should not be subject to capacity limits, and yet LeCorre and Carey 

explicitly limit the number of individuals per set to three. As discussed in Chapter 1, this 

threshold is an arbitrary one from the point of view of number and is presumably 

imposed by working memory or attentional limitations. Studies of adult visual short-term 

memory find a trade-off between the complexity of the objects being represented in 

memory and the capacity of short-term memory (Xu and Chun, 2006). One might expect 

that such a bottleneck at the level of short-term memory might affect representations in 

long-term memory, especially for infants. However, the theory is inappropriately vague 

about the representations of individuals at the set level. What information gets sacrificed 

in order to store information in memory? LeCorre and Carey’s model can be extended to 

provide an explanation for any data, yet is vague enough that it is hard to derive clear 

predictions regarding the abilities of 12-month-olds. 

 

Another possible explanation for how infants succeed comes from the third core 

endowment offered by LeCorre and Carey – the “set-based quantification” ability that 
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allows infants to form representations of the kinds of sets described by single, plural, 

“dual” and “trial” markers. However, these abilities supposedly manifest themselves only 

in 22-month-olds who have acquired the linguistic terms that capture these descriptions 

(Kouider et al., 2006), so it is extremely unlikely that our infants, who are 10 months 

younger and largely still pre-verbal, have access to this system. It is more likely that 

infants possess a concept such as PAIR, which would allow them to represent two 

individuals with a single index. This representation could be further specified as DISC 

PAIR, TRIANGLE PAIR, or DISC, TRIANGLE, and would allow infants to track a total 

of four objects while still representing the total numerosity of the set. 

 

This latter proposal could be strengthened by further studies investigating whether infants 

also identify objects across pairs. In addition, such a study could also help clarify the 

representations that infants form for objects in sets, about which LeCorre and Carey 

remain agnostic. To test these questions, infants would be familiarized to the XX/YY 

condition, but tested on outcomes of four discs or four triangles. If infants look longer at 

such outcomes, this result would provide strong evidence that infants identify objects as 

well as individuate them across pairs, and indicates that they represent individuals in sets 

more specifically than “individual1, individual2”. A further study could also rule out the 

possibility that infants in Experiment 4’s XX/YY condition were simply reacting to 

seeing a heterogeneous pair, having only been familiarized to homogeneous pairs. In this 

study, infants would again be familiarized to the XX/YY condition, but instead tested on 

outcomes of just two discs or just two triangles. If infants look longer at such outcomes, 

this result would confirm that their longer looking in Experiment 4 was due to an 



 

 

69 

 

unexpected numerical outcome, rather than to any effect of homogeneity or 

heterogeneity. 

 

By 12 months, infants are able to track sets of objects greater than the posited threshold 

imposed by object tracking. While it is possible that this ability is subserved by working 

memory capacity rather than numerical understanding, our results indicate that the ability 

to detect discrete quantity does not disappear as set sizes increase.  
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 Chapter Five – Discussion 

 

When we began the studies described here, our intention was, first and foremost, to prove 

that infants could track and reason about discrete as well as continuous quantity. Since 

that time research on infants’ number concepts has flourished, and it is now clear that 

infants do not attend to objects in the world simply on the basis of continuous quantity. 

Rather, infants track continuous and large discrete quantities with equal ability (Brannon 

et al., 2006). However, infants’ ability to represent the small number range has not been 

well established, and appears to have some surprising failures. In addition, it is still not 

clear whether young infants’ ability to track discrete quantity reflects early numerical 

competence or whether this phenomenon can be attributed to some other non-numerical 

core endowment. What contributions can our results make to this discussion? 

 

The results of Experiments 1-4 add to the overall picture of infants’ ability to track 

discrete quantity for small sets. Under certain circumstances, infants track quantities of 

up to four by the end of the first year of life; Experiment 3 indicates that this ability has 

only begun to develop by nine months of age. At nine months, infants do not respond 

solely to changes in continuous quantity, but their ability to track discrete quantity has 

not yet been firmly established and has not been widely studied. While infants at this age 

may have begun to attend to discrete number, these representations differ from those of 

older infants in their stability, as infants detect certain changes (a change from two to 

three) but not others (a change from two to one). This failure to detect a change of 2:1 

while total area remains constant is consistent with results from seven-month-olds 
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(Feigenson, Carey and Spelke, 2002), but success in detecting the 2:3 change indicates 

that nine-month-olds might have begun to represent the total number of objects in the set. 

While this pattern of looking could be dismissed as insufficient familiarization resulting 

in a familiarity preference rather than a novelty preference, this explanation seems 

unlikely as infants do not display a familiarity preference throughout trials, looking 

significantly longer only on the third trial. As discussed, the failure of our nine-month-

olds may be due to methodological issues, as their looking-time patterns are consistent 

with representing the total number of objects present, but not their specific locations. We 

believe that nine-month-olds have already begun to attend to discrete quantity, but that 

their competence may not be demonstrated in Experiment 3 due to task demands imposed 

by the two-screen methodology. Wynn and Chiang (1988) report essentially the opposite 

result in eight-month-olds, who are surprised by a “magical disappearance” but not a 

“magical appearance” with a two-screen display. In their study each screen either hides a 

single object or one of the screen hides nothing. Infants are surprised by unexpected 1 vs. 

0 outcomes, but not by unexpected 0 vs. 1 outcomes. Clearly this age group deserves 

further study. 

 

Our studies indicate that by 12 months, infants can track a total number of objects 

exceeding the threshold imposed by object indexing, up to four individuals. They attend 

to the contents of simultaneously presented sets of one and two and sequentially 

presented sets of two and two, and detect the following transformations: change in 

number of a subset group (Experiment 1), change in number of the overall set 

(Experiment 4) and a swap in location of two sets (Experiment 2). However, infants do 
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not attend to changes in continuous properties, even though the transformation presented 

should be large enough for them to detect (Libertus et al., in prep). Our looking time 

results support and extend results from reaching tasks (Feigenson, Carey and Hauser, 

2002; Feigenson and Halberda, 2004; Feigenson and Carey, 2005). Further, we suggest 

that infants may also be able to track changes in discrete quantity even over sets of two 

and three. The 2 vs. 3 comparison is of particular interest because of the success of 10- 

and 12-month-olds in choosing 3 over 2 in Feigenson, Carey and Hauser’s (2002) graham 

cracker task. A simple explanation for this success is that infants chose simply on the 

basis of continuous quantity. However, they reliably failed to choose 4 crackers over 1, a 

surprising result for several reasons. Both the 2 vs. 3 and 1 vs. 4 comparisons involve the 

same total number of crackers, suggesting that global amount is not the limiting factor. If 

infants were attending simply to continuous quantity, they should always choose 4 over 1 

(and do when the crackers are presented on plates, not occluded in pots), so they cannot 

be responding based on total amount. Finally, 1 vs. 4 is a much more favorable ratio than 

2 vs. 3, according to Weber’s Law, making this failure even more puzzling. What is the 

source of infants’ errors in this comparison? 

 

Feigenson and her colleagues argued that infants succeeded in the 2 vs. 3 comparison and 

failed in the 1 vs. 4 comparison because they used object-tracking. Infants failed to 

represent the set of four into memory because the number of objects in the set was more 

than they could concurrently individuate. In other words, the threshold on how many 

objects can be concurrently tracked applies only to individual sets, not to the overall 

number of items tracked. This set size limitation is consistent with the failures of 14-
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month-olds in Feigenson and Halberda’s (2004) study to search longer for four objects 

hidden one at a time in a box. The results of our Experiment 4 and Feigenson and 

Halberda’s (2004) chunking condition suggest that this limit can be overcome under 

certain circumstances, namely, when the objects are chunked into smaller sets, and these 

successes give some clues as to how infants might succeed in the 2 vs. 3 comparison. 

However, how infants compare the representation of the set of two and the set of three 

crackers remains an open question. A rigorously specified version of object indexing 

cannot account for how infants track above the number of objects that can be 

concurrently individuated. Even if representations of these objects get entered into 

memory, freeing up indexes to individuate other items, these representations must be 

encoded in an accessible way. Object files cannot provide this service; neither can 

unspecified SET concepts (Leslie and Kaldy, in press). Infants must have access to 

another means of solving this problem. The results of Experiment 4 suggested several 

possibilities. First, continuous quantity representations, though unlikely, have not been 

completely ruled out for displays containing sets of fewer than four objects. Second, 

infants may form some kind of summary representation, perhaps LeCorre and Carey’s 

parallel individuation of individuals, or an overarching conceptual representation such as 

PAIR, which specifies the contents of a set. Third, infants may actually count the total 

number of items in a set, and compare on the basis of a numerical representation. 

 

We have already begun to investigate how infants might track sets of two and three 

simultaneously. For our pilot experiment, we returned to Kaldy and Leslie’s (2003) two-

screen methodology. This experiment tries to replicate the results of Feigenson, Carey 
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and Hauser’s (2002) graham cracker study using a looking-time paradigm rather than a 

reaching paradigm. There are several benefits to changing methodology. Experiment 4 

found competence in tracking two sets of two a full two and a half months earlier than 

Feigenson and Halberda’s reaching task. In addition, reaching experiments such as the 

graham cracker task only allow for a single trial, because of the likelihood of 

perseverative behaviors on the part of the infants. Looking-time studies offer infants 

multiple trials to track the necessary changes. In addition, the looking-time methodology 

offers the benefit of making fewer task-specific demands than the reaching methodology.  

 

Lastly, this experiment utilizes stimuli that simultaneously account for changes in 

number, area, and perimeter. To our knowledge, such displays are unprecedented in the 

literature. While it is not possible to equate both total area and perimeter simultaneously 

for sets of one and two discs, for sets of two and larger, groups of different numbers can 

be constructed whose total area and perimeter are exactly equal. There are only two 

caveats, one principled, the other practical. No two pairs of discs with distinct diameters 

can in principle ever have equal areas and perimeters simultaneously. The practical 

limitation is that we need to make physical discs and their measurements are subject to 

the accuracy limits of our workshop. We estimate accuracy to be better than 1%.  

 

One consequence of such sets is that stimuli within sets are no longer of homogeneous 

sizes; however, one common criticism of Experiment 1, 2 and 3 involved the possibility 

of whether infants detected changes in the overall contour of the displays. These stimuli 

therefore allow us to investigate this possibility. In addition, some of the displays 
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presented show infants changes such as an identical pair of discs to a pair of discs that 

differ in size. A pilot study looked at whether infants detected changes from homogeneity 

to heterogeneity and vice versa, and found no evidence that they did so. 

  

The design of the pilot experiment was based on that of Experiment 1, but instead of 

showing infants three discs in a group of one and a group of two, we presented infants 

with five discs in a group of two and a group of three. The discs were presented 

individually in the same way as in Experiment 1, and the group of two was always 

presented first. Infants saw a total of four familiarizations. Test trials were identical to the 

familiarization trials except that two screens were first lowered onto the stage as in 

Experiment 1. Discs were then presented as in the familiarization trials and moved behind 

the screens. The screen hiding the group of three (the last-hidden screen) was then 

removed. Infants saw one of three outcomes in a between subjects design. In the Control 

condition, infants saw the expected set of three discs. In the Number Swap (Unexpected) 

condition, infants saw the group of two discs, which had previously been hidden behind 

the other screen. In the Configuration Change (Unexpected) condition, infants saw a 

group of three created by taking the two discs from the group of two and adding the 

smallest disc from the group of three. The total area change in this condition was +2.6% 

and the perimeter change was +12.5%. The reason we chose this condition requires some 

explanation. Equating a set of two with a set of three discs on area and perimeter 

simultaneously results in sets with characteristic configurations which result from the 

geometry of the circle. The set of three is constrained to have one large disc and two very 

small discs. The set of two can have two medium discs of equal size or one large disc and 
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one medium. We chose the latter type for the pair to be more similar to the triple (see 

Figure 10). It occurred to us that infants might encode the triple as having a 

configurational feature comprising the two tiny nearly equal sized discs and then miss 

that feature when the pair of discs was revealed. Looking times might be driven by this 

feature rather than by a change in number as such. Our choice of stimulus for this 

condition was dictated by the attempt to assess this possibility. Figure 10 shows the 

displays used in the pilot experiment. 

 

Figure 10. Stimuli from our pilot study – from left to right; group of two (Number Swap), group 
of three (Control), group of three (Configuration Change) 
 

Initially, we had considered a condition with an Area Change group consisting of three 

discs with a 33% decrease in total area to match the total change in discrete number 

shown in the Swap condition. We chose instead to use the Configuration Change display 

because it offers an even more stringent test of number. The Configuration Change 

display is identical to the Swap display, except with the addition of a very small disc, 

making the two non-control conditions visually very similar. If infants are reacting only 

to overall contour of the display, then we should see that reflected in differences in 

looking times to these conditions. The display is made up of three heterogeneous stimuli, 
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unlike the Control group of three, which is composed of one large disc and two identical 

small discs. If infants only track a subset of the discs, perhaps the homogeneous group of 

two R0.47” discs, they should look longer if those discs change identity. In addition, the 

Configuration Change display is the only completely novel test display, which means that 

infants should be biased towards looking longer. If infants fail to look significantly longer 

at this display than Controls, while the Number Swap infants look longer, then it is likely 

that they do attend to the number of objects being tracked. 

 

The stimuli consisted of five wooden discs. The group of two consisted of one R2.72” 

and one R1.06” disc. The group of three consisted of one R2.84” and two R0.47” discs. 

The groups were designed so that, despite changes in number, the total area and perimeter 

of each set were closely equivalent to each other; indeed, the only limiting factor was 

accuracy of our machine shop in making the discs. The total area of the group of two was 

67.9 in2 and the total perimeter 23.75 in. The total area of the group of three was 67.68 in2 

(99.7% of the area of the group of two); the total perimeter was also 23.75 in. The front of 

each disc was painted red, and concealed a small weighted wooden base, which allowed 

each disc to be presented upright and apparently balancing on its edge. The test stimuli 

were identical to the familiarization stimuli. The control display consisted of the group of 

three discs; the swap display consisted of the group of two discs. The configuration 

change group was made up of the group of two discs plus one of the R0.47” discs; the 

total area and perimeter of this group were 69.68 in2 and 26.72 in (102.6% and 112.5% of 

the expected area and perimeter, respectively).  
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Subjects were randomly assigned to one of three test conditions in a between-subjects 

design. At the beginning of all test trials, two screens were simultaneously lowered onto 

the stage in a position to conceal the discs when moved to their final resting places. The 

discs were then presented in the same way as during the familiarization trials. As the 

discs were moved to the sides of the stage, they were placed behind the screen. In trials of 

the non-control conditions, the experimenter surreptitiously replaced the group of three 

discs with novel stimuli. In the Swap condition, the group of three discs was replaced 

with a set of one R2.72” and one R1.06” disc; these discs make up the group of two discs, 

hidden behind the other screen. As it would appear to an adult observer that the two 

groups magically changed sides, we called this condition a “swap”. In the Configuration 

Change condition, the experimenter substituted a set of one R2.72”, one R1.06”, and one 

R0.47” disc. This group is equivalent to the group of two plus the smallest disc from the 

group of three. The experimenter then shook her wrist before the screen to attract infants’ 

attention to it, lifted the screen, and said, “Now” to cue a hidden observer to begin timing 

looking times to the display. The observer was always blind to the test condition. A trial 

was not considered valid unless the infant looked continuously at the display for at least 

two seconds. Trials ended when the infant looked away for two seconds. This 

presentation was repeated for a total of three test trials. 

 

So far we have tested 14 infants (6 girls, 46 weeks to 58 weeks, mean age 52 weeks, s.d. 

3.9 weeks), who were recruited via direct mailing from the Central New Jersey area. 

Infants were randomly assigned to one of three conditions - 3 in the Control condition, 5 

in the swap condition, and 6 in the Configuration Change condition. An additional 3 
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subjects were tested, but excluded for fussing. Because of the very small number of 

subjects who participated in this study, an overall analysis was not possible. Looking 

times were right-skewed and converted to log form for analysis. 

 

Comparison of overall looking to the Control and Swap conditions found a nearly 

significant difference (t6 = -2.26, p = .065, two-tailed). By contrast, infants did not look 

significantly longer in the Configuration Change condition than to the Control display (t7 

= -1.36, p = .217). Infants also did not look significantly longer in the Swap condition 

than in the Configuration Change condition (t9 = .94, p = .374).   

 

Due to the very small N, only very tentative conclusions can be drawn from our results.  

However, our preliminary results indicate that infants might track both sets 

simultaneously on the basis of numerical identity, looking nearly significantly longer at a 

change in number when no change in area or perimeter occurs. By contrast, even the 

presentation of a completely novel set does not result in significantly longer looking 

when no number change occurs. The fact that infants do not look significantly longer at 

the Configuration Change condition than the Swap indicates that while the difference is 

not significant indicates one of two possibilities. One, infants do react to overall contour 

of the display, and their looking times may reflect that. The second possibility is that 

infants do realize that they are looking at a completely novel display and look longer 

accordingly, meaning that infants may represent some specific information about the 

individuals being tracked. Examining individual looking times reveals that four out of six 

subjects looked relatively little at the Configuration Change display (an average of 7.5 
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seconds, compared to an average of 4.9 seconds in the Control condition), while the other 

two subjects looked an average of 20.98 seconds (compared to an average of 17.7 

seconds in the Swap condition). We cannot therefore predict how adding subjects would 

affect our overall results. However, the individual performance of our subjects indicates 

that while some infants apparently do notice the novel display, not all do. 

 

Our results support those of Feigenson, Carey and Hauser (2002), and give some insight 

into how infants performed in their task. Based on these pilot indications, it seems 

unlikely that infants succeed on the 2 vs. 3 cracker comparison by using continuous 

quantity. Our infants appeared to detect a surreptitious switching of groups even though 

continuous extent for both area and perimeter was nearly perfectly controlled. Our results 

are consistent with set-based representations. Infants may have succeeded in tracking two 

groups of two in Experiment 4 because they have a concept of PAIR. If so, our results 

indicate that infants may have the concept of TRIPLE. If infants represent sets according 

to LeCorre and Carey’s parallel individuation, our results suggest that this representation 

may not retain specific information beyond the list summary of individuals: that is, 

individual1, individual2, individual3, since infants did not look significantly longer when a 

different group of three was shown. In other words, when comparing sets to each other 

using one-to-one correspondence, the representation of the control group of three was not 

different enough from the displayed Configuration Change group of three for infants to 

discriminate the sets from each other.  
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The results from Experiments 1-4 and our pilot experiment encourage us to pursue the 

idea that infants enumerate items within a set and compare these items on the basis of 

numerosity. 12-month-old infants appear to be able to exceed the object indexing 

threshold when the total number of objects is broken down into smaller sets. Therefore, 

object indexing alone cannot account for how infants track small sets of objects, although 

it may aid infants in attending to discrete quantity over continuous amount. Infants may 

individuate separate sets using object indexing and then place representations of those 

sets into working or long-term memory to free up indexes to individuate other objects. 

However, even this stipulation does not explain how comparisons can be made between 

those sets. There are three possibilities for how these comparisons can be made. First, 

infants may simply make one-to-one comparisons between individuals (LeCorre and 

Carey, in press). These comparisons are non-numerical in nature and do not require the 

infants to represent individuals at any level of specificity beyond individual1, individual2, 

individual3. Second, infants may represent sets using a summary representation such as 

SINGLE, PAIR, TRIPLE, but not QUADRUPLE (Leslie and Chen, 2007; Leslie and 

Kaldy, in press). Infants cannot simply represent a non-specific SET, because such a 

representation does not provide a basis for comparing sets on number. Third, infants may 

represent sets using integer representations for ONE, TWO and THREE (but not FOUR) 

(Leslie et al., in press). We assume here that infants cannot represent individual sets of 

four or more. In all of our experiments, infants were never tested using individual sets 

exceeding three items, so we do not know how infants would perform on comparisons 

involving these sets. Infants in Feigenson’s reaching tasks failed to choose quantities of 
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four reliably over quantities of one, suggesting that the set size limitation is a robust 

phenomenon. Whether infants in a looking-time task would behave as though they cannot 

represent a group of four is an open question. A previous study run in our lab indicates 

that infants can understand and reason about displays of four objects (Leslie and Chen, 

2007). Therefore, it is possible that infants might succeed in a looking-time version of the 

one vs. four comparison, perhaps because the task demands of looking time tasks are far 

lower than those of reaching tasks. Even if they do not, however, it is not clear that the 

sole reason for their failure is the capacity limitation of working memory. Infants may 

simply lack a way to represent displays of more than three objects unless they are broken 

down into smaller sets, for which they do have concepts. 

 

What is the mechanism by which infants compare small sets of objects? As discussed in 

Chapter 1, the answer to this question will help researchers understand something about 

the nature of human numerical representation. When infants successfully discriminate 

small sets on the basis of discrete number, does this success reflect true knowledge of 

number? Or should their success simply be attributed to some kind of mechanism that 

allows infants to solve these problems without number? The first possibility, using one-

to-one correspondence as the basis of comparison, is explicitly non-numerical and is 

consistent with theories of number learning based on exposure to culturally-determined 

terms for quantifiers and numbers. The second is non-numerical because the SINGLE, 

PAIR, TRIPLE are not ordered by magnitude. One may as well write PAIR, SINGLE, 

TRIPLE, etc. Yet they allow infants to represent sets of different magnitudes. If infants 

represent sets as PAIR and TRIPLE, exactly how these representations eventually match 
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up with integer has yet to be determined. Only the third assumes that the child possesses 

numerical representation and supports ordering. 

 

 How can we decide amongst these hypotheses? LeCorre and Carey (in press) cite two 

different kinds of data which could help distinguish the possibilities. The first concerns 

the mapping of numerals to cardinal values. If children do not have access to analog 

magnitude representations or precise integer representations of number, then they should 

be limited to assigning cardinal meanings to the amounts that can be represented by the 

capacity-limited enriched parallel individuation system (that is, three or four and below). 

The second type of data concerns whether representations of small numbers exhibits 

scalar variability consistent with the Weber fraction that governs representations of the 

large number range.  

 

Unfortunately, results from infant looking-time tasks cannot provide this kind of 

disambiguating data. All three explanations are consistent with the data from 12-month-

olds. However, while we cannot rule out that infants enter a representation of a set of two 

individuals and a set of three individuals into long-term memory during our pilot 

experiment, it is implausible that they would also enter into long-term memory the 

transient locations of these sets. Yet they have to track the transient locations of the sets 

in order to succeed in Experiments 1, 2, and the pilot study described here. Repeatedly 

overwriting the locations of the sets should produce severe proactive interference in long-

term memory, yet we see no evidence for such interference. LeCorre and Carey’s model 
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provides no way of accounting for how infants track the locations of sets in addition to 

their identities. 

 

If we assume the more optimistic view of our nine month data, that they are tracking the 

total number of displayed objects but not their locations, Carey and her colleagues’ 

theory of parallel individuation does not handily explain why infants would display 

working memory limitations when comparing sets of one and two but not sets of two and 

three. It is also unlikely that infants represent sets such as SINGLE, PAIR, as such 

representations would lead to success in discriminating 2 and 1. Representing the total 

number of tracked objects, but not the specific location of sets, would best explain why 

nine-month-olds behave as they do. If, on the other hand, we assume that our nine-

month-old infants simply fail to attend to discrete quantity altogether and instead fall 

back on familiarity and/or representations of continuous quantity, then it is unlikely that 

they represent the sets as integers or sets. Further studies must clarify the precise nature 

of nine-month-olds’ ability to track discrete quantity. 

 

However, parallel individuation also fails to provide a satisfactory explanation for why 

infants might utilize continuous amount representations in one case and familiarity in 

another. In other words, while parallel individuation accounts for the behavior of the 12-

month-olds, it does not appear to offer a good explanation for our nine-month data. 

Indeed, it is questionable whether parallel individuation can even account for Feigenson, 

Carey and Spelke’s (2002) failure to replicate Wynn. They argued that infants did not 

represent two individuals behind the screen as discrete entities; rather, infants sum across 
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the total continuous amount of the objects and do not look longer when they see a 

numerically unexpected display with expected area. Infants are required to track only two 

objects at the most, well within the number of objects that can be tracked. Why does the 

parallel individuation system fail in this case? LeCorre and Carey (in press) do not offer 

reasons why this system might sometimes yield to continuous representations. In other 

words, there is no indication that if infants use parallel individuation, that they may tailor 

their representations to whichever is most appropriate to the task at hand. One possible 

explanation that utilizes the parallel individuation system is that seven-month-old infants’ 

working memory limitations may keep them from entering more than one object into 

their working memory (Ross-Sheehy et al., 2003); when the time comes for them to make 

a one-to-one comparison, only one object has made it into long-term memory, and its 

representation is insufficiently distinguished from the displayed object for the infants to 

detect a mismatch. However, to reiterate a point raised in Chapter 1, if long-term memory 

storage capacity is determined by the limits of working memory capacity, why does the 

threshold of the number of objects that can be indexed not increase along with it? It is 

unclear why long-term memory should have the same limits as working memory. Why 

are infants unable to concatenate smaller sets in long-term memory to represent larger 

sets of 4, 5, 6, etc.? Why should parallel individuation mechanisms be required to 

establish one-to-one correspondence between long-term memory set representations and 

perceptual sets: why could this not be done serially? Basic questions like these need to be 

addressed before the account can be assessed. Moving sets from working to long-term 

memory grants the system a little flexibility in terms of the number of sets that can be 

simultaneously represented, but gains no other benefits of long-term memory.  
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The theory of parallel individuation seems to fall short of offering a convincing 

explanation for how infants compare sets. Several innate endowments must be invoked to 

explain how infants can succeed at tasks involving number without representing number, 

each of which is limited to related but distinct functions for no apparent reason except to 

conform to existing data. In addition, the description of how older children eventually 

learn concepts of number through bootstrapping lacks explanatory power, and is 

inconsistent with research indicating that even very young children command an explicit 

understanding of number (Gelman and Gallistel, 1987; Gallistel and Gelman, 1992; 

Cordes and Gelman, 2005).  

 

An undue amount of energy is expended on explaining away infants’ and young 

children’s competence, far more than explaining the nature of that competence. A simpler 

explanation may be that if infants appear to behave as if they understand something about 

number, perhaps they do. Perhaps infants’ success on small and large number 

comparisons can be attributed to an innate numerical endowment. Like adult humans and 

animal species, they may have access to innate mechanisms for number, which govern 

nonverbal counting (Meck & Church, 1983; Gallistel and Gelman, 1992; Cordes, 

Gallistel, Gelman, & Whalen, 2001), which are not subject to cultural influence (Gelman 

and Gallistel, 2004). They may also represent the range of small numbers under four 

using integer concepts (Leslie et al., in press). The process of learning numbers may not 

be a laborious endeavor dependent on whether one’s linguistic inventory permits the 

mapping process between two mechanisms for representing sets; rather, early 
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understanding of number forms the basis for later numerical and mathematical 

competence in life. We are aware that, conservatively speaking, the strongest claim that 

can be made based on the results of the studies presented here is that 12-month-old 

infants are far better at tracking and reasoning about small numbers than previously 

believed. However, we believe that further studies should continue to investigate the idea 

that infants are numerical creatures. Specifically, three studies should be conducted to 

pursue the ideas outlined here. First, the pilot experiment described in this chapter should 

be expanded with more subjects. Can infants really simultaneously represent sets of two 

and three? If so, then a second experiment should investigate whether infants can 

simultaneously represent another global set of five, broken up into sets of one and four. If 

infants succeed on a one vs. four comparison using a looking-time paradigm, this finding 

would weaken the claim that the numbers smaller and larger than four are represented by 

different number systems. Finally, the results of our nine-month-olds from Experiment 3 

require explication. Do infants fail to detect a change of two to one simply because they 

have not yet made the transition from a familiarity preference to a novelty preference? Or 

is their failure due to their inability to track two sets by number? If it can be shown that 

infants track the total number of objects, but not by location, this result would lend strong 

support to the idea that infants represent integers even at a very young age. 
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