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ABSTRACT OF THE THESIS

Crisp - A Fault Localization Tool for Java Programs

by Ophelia C. Chesley

Thesis Director: Barbara G. Ryder

Crisp is a tool (i.e., an Eclipse plug-in) for constructing intermediate versions of a Java

program that is being edited in an IDE such as Eclipse. After a long editing session, a

programmer usually will run regression tests to make sure she has not invalidated previ-

ously checked functionality. If a test fails unexpectedly, Crisp uses input from Chianti, a

tool for semantic change impact analysis [13], to allow the programmer to select parts of

the edit that affected the failing test and to add them to the original program, creating

an intermediate version guaranteed to compile. Then the programmer can re-execute

the test in order to locate the exact reasons for the failure by concentrating on those

affecting changes that were applied. Using Crisp, a programmer can 1) iteratively se-

lect, apply, and undo individual (or sets of) affecting changes and, thus effectively find

a small set of failure-inducing changes, or 2) request Crisp to automatically suggest a

set of failure-inducing changes.
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Chapter 1

Introduction

Software evolves over time due to user requirements changes, feature enhancements,

and bugs fixes. In a development environment, it is common for programmers to test

their edited version of the software against a set of regression tests to ensure that the

changes they made do not introduce unexpected behavior in the software. When a test

fails, it is the programmer’s responsibility to locate the failure as well as the changes

that may have caused the failure. For small sized software, an interactive debugger

is usually used to trace the execution path of the failed test. This process requires

programmer’s knowledge of both the edit and the source code of the software. It does

not scale to medium or large software for the following reasons:

1. The combined size of the edit could be large with different groups of developers

working on different components of the software.

2. Components within a piece of software are usually connected by programming

interfaces. These interfaces could be misused due to the lack of, or poor documen-

tation. Very often, each component is tested separately with its own unit testing,

while regression testing is performed after integrating all the changed components

into the previously tested version of the software. It is only through vigorous re-

gression testing that the proper use of these interfaces can be confirmed. When a

test fails during this phase, it is difficult to identify all the changed components

that have been touched by the test and to sort out which components require

further analysis.

3. For large software development, regression testing could be performed by a group

of testers that are not familiar with the source code. When a test that exercises
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different components of the software fails, it would be beneficial for the testers to

identify the problematic portion of the edit and the corresponding components.

This could facilitate the distribution and communication of the results to the

responsible developers.

4. When using current object-oriented programming languages, source code edits

could have non-local effects during execution due to dynamic dispatch of virtual

methods based on the run-time type of the receiver object. Any addition or

deletion of virtual methods as well as changes in the type hierarchy could have

rippling effects beyond the original intent of the changes.

5. Statement-level tracing and analysis commonly used in debuggers and other fault

finding techniques are not scalable once the software grows beyond a few thousand

lines of code. An edit needs to be modeled at a granularity that is effective for

analysis, yet safe and efficient to provide interactive feedbacks to the users.

Crisp is an interactive tool developed as an Eclipse plugin to identify failure-inducing

changes for Java programs. Crisp is an extension to Chianti [13], a change impact

analysis prototype that provides safe and summarized information pertaining to a set

of tests. Chianti decomposes an edit into a set of atomic changes and calculates the

subset of these atomic changes, namely affecting changes, that are exercised by each

test. These atomic changes, or affecting changes, model changes at the class, field,

and method levels of the Java constructs. This allows the analysis to provide timely

interactive feedback to users. Initial experimental results on Chianti using several

medium to large scale software projects are promising. On average, changes that are

related to a test constitute only 3.95% of the size of the edits.

When a test fails in the edited version of the software, the set of affecting changes

provided by Chianti can be reviewed by the programmer to identify the suspicious ones

that might have caused the failure. However, the number of affecting changes for the

failing test can be large. Without a priori knowledge of the total number of failure-

inducing changes, following a systematic approach to identify all of them can be time

consuming. Furthermore, once the suspicious changes have been identified, there is no
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efficient approach of confirming that they are indeed failure-inducing without falling

back to the traditional debugging process of statement-level analysis.

Crisp is developed to provide an alternative choice to the situation above. Once

the suspicious affecting changes are identified, Crisp can extract these changes from

the edited version and apply them to the original version of the software, simply by

adding the changes or by replacing the original constructs with the edited ones. The

resulting version, namely the intermediate version, is neither original nor edited. When

a failing test is executed against this intermediate version and continues to fail, the

failure-inducing changes are among those that have been applied. Otherwise, there

are failure-inducing changes among those that have not been applied. By iteratively

exploring and observing the test outcomes on intermediate versions created by applying

subsets of affecting changes, programmers are able to focus on the few that cause the test

to fail. Furthermore, in the event that knowledgeable programmers are not available or

there are too many affecting changes, Crisp can automatically suggest a set of failure-

inducing changes with minimal user input.

The key to the above iterative approach is the creation of valid intermediate versions.

These intermediate versions need to be free of compilation errors, or else the users

would have to edit them before continuing their exploration. To ensure compilability,

Crisp requires that Chianti annotates each atomic change with its relationships to,

or dependences on other atomic changes during the decomposition of the edit. Using

these dependences, Crisp calculates sets of changes that can be applied to the original

program to create valid intermediate versions of the software program.

Overall, the contribution of Crisp encompasses the provision of an interactive envi-

ronment that:

1. Organizes affecting changes and their dependences to facilitate the creation of

compilable intermediate versions;

2. Provides the programmers with a graphical user interface where they can se-

lect affecting changes of interest to explore various intermediate versions semi-

automatically;
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3. Includes programmable interfaces where affecting changes can be ranked, based

on different heuristics, in terms of their likelihood of being the failure-inducing

changes. This provides additional guidance to programmers who may not be

familiar with the development of all the components within the software;

4. Automatically generates for each failure-inducing changes set, a complementary

set. This feature is necessary to confirm the completeness of a failure-inducing

changes set;

5. Upon requests from users, often can locate failure-inducing changes automatically

using an exploration algorithm.
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Chapter 2

Background

2.1 Change Impact Analysis

In order to locate failure-inducing changes for a failing test, Crisp relies on Chianti

to provide source code change information that is relevant to a test. This chapter is

an overview of the aspects of Chianti that are relevant to Crisp. Detailed explanation

of the implementation and experimental results of Chianti can be found in [13]. The

conceptual design of the analyses in Chianti can be found in [15].

In summary, Chianti :

1. Takes as input an original version and an edited version of a program and a test

suite that exercises the program code. It is assumed that the test suite can run

on both versions of the program.

2. Decomposes the edit between the original and the edited version into atomic

changes of types shown in Figure 2.1 by comparing their abstract syntax trees.

3. For every test in the test suite, uses its original call graph (which contains all the

calls when the test is executed against the original version) to determine whether

the test is affected by the edit or not.

4. For each affected test, uses its edited call graph (which contains all the calls when

this test is executed against the edited version) to calculate a set of affecting

changes. All the changed methods CM that correspond to the nodes in this call

graph and lookup changes LC that correspond to the edges in the graph are

considered affecting changes to the test.

Based on their definitions, affecting changes are a subset of atomic changes that are
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relevant to a test. Specifically, affecting changes that are generated by using a dynamic

call graph, constructed by tracing the execution of a test, are in fact all the changes

that are exercised by the test. If this test fails, examining its affecting changes could

be the first step in the debugging process.

Category Notation Explanation

AC AC(A) Add an empty class A

DC DC(A) Delete an empty class A

CTD CTD(A) Change type declaration/hierarchy of class A

AM AM(A.foo()) Add an empty method foo() in class A

DM DM(A.foo()) Delete an empty method foo() in class A

CM CM(A.foo()) Change the body of a method foo() in class A

LC LC<B, A.foo()> Change the virtual method lookup of
a run-time receiver of type B that calls A.foo()

AF AF(A.x) Add a field x in class A

DF DF(A.x) Delete a field x in class A

CFI CFI(A.x) Change the definition of an instance field x’s ini-
tializer in class A

CSFI CSFI(A.x) Change the definition of a static field x’s initial-
izer in class A

AI Add an empty instance initializer

DI Delete an empty instance initializer

CI Change the definition of an instance initializer

ASI Add an empty static initializer

DSI Delete an empty static initializer

CSI Change the definition of an static initializer

Table 2.1: Categories of atomic changes.

Each of the 17 types of atomic changes, except LC, has a direct connection to a

source code change between the original and the edited versions of the program. LC

models a change in the dynamic dispatch of a virtual method during runtime due to

an addition or a deletion of a method within a type hierarchy as well as a change of

the type hierarchy. Assume a method is added to an original program consisting of a

single public class A with a non-private method foo(). In the edited version, another

non-private method bar() is added in A. Chianti reports two atomic changes based

on the source code change: AM(A.bar()) for declaring a new method A.bar() and

CM(A.bar()) for implementing the method body. In addition, at runtime, the edited
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version could have a receiver object of type A that calls the method bar(). In this case,

A.bar() is executed. This additional possible dispatch of A.bar() for a run-time receiver

of type A is modeled by an atomic change LC<A,A.bar()>.

Here is another example to illustrate a change of the type hierarchy. Again, the

original program consists of a single public class A with a non-private method foo(). In

the edited version, a class B is added as a subclass class of A. Chianti reports an atomic

change AC(B). In addition, at runtime, the edited version could have a receiver object

of type B that calls the method foo(). In this case, A.foo() is executed. This additional

possible dispatch of A.foo() for a run-time receiver of type B is modeled by an atomic

change LC<B,A.foo()>. Other LC changes include changing a private method that

is originally not dispatched dynamically to public; making an abstract class C concrete

such that a run-time receiver object could be of type C. In all of these examples, the

LC change is a result of a source code change that can have a run-time impact.

Other than modeling a change in run-time dispatch behavior, Chianti also inserts

special AM and CM changes to model two initializers that do not correspond to any

source code edit. The Java compiler creates a no-argument implicit constructor in the

absence of an explicit constructor in a class. This no-argument implicit constructor

is called, at runtime, when the object is instantiated. Since this implicit constructor,

named <init>, may be present in the call graphs of a test, it is essential for Chianti to

capture it as an atomic change. Therefore, if class A is added in the edit without an ex-

plicit constructor, Chianti generates two changes: AC(A) and AM(A.<init>()). Sim-

ilarly, if class A contains an instance variable x of type integer with an initial value 10,

Chianti generates three more changes: AF(A.x), CFI(A.x), and CM(A.<init>()). Be-

sides the implicit constructor, the Java compiler also inserts a method named <clinit>

for class variables initialization. If class A also contains a class variable c of type String

with an initial value of “How are you?”, Chianti generates four changes: AF(A.c),

CSFI(A.c), AM(A.<clinit>()), and CM(A.<clinit>()). In summary, the insertion of

atomic changes for <init>() and <clinit>() in Chianti guarantees that any source code

edit pertaining to initialization can be mapped to the call graphs generated during the

execution of a test. This is critical to the calculation of affected tests and their resulting
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affecting changes.

2.2 Atomic Changes and Their Dependences

In order to allow programmers to examine the effects of certain affecting changes on

a failing test, Crisp applies selected affecting changes to the original program. The

resulting intermediate version, however, may not compile. In order to ensure compi-

lability, Crisp uses the dependences among the atomic changes that are captured by

Chianti. An atomic change A1 is a prerequisite of A2 (denoted by A1 ≺ A2) if when a

programmer selects to apply A2 to the original program, A1 needs to be applied also in

order for the intermediate version to be compilable. In other words, A2 is dependent

on A1. For a complete discussion on dependences, please refer to [5] and [12]. The four

kinds of dependences used by Crisp: structural, buddy, declaration, and mapping, are

explained below. This is a summary of the discussion on dependences found in [5] and

[12].

2.2.1 Structural Dependences

Intuitively, structural dependences capture the necessary sequences that occur when

Java elements are added or deleted in a program. When A2 has a structural prerequisite

A1 (A1 ≺Structural A2), Crisp has to apply A1 to the original program first, or else it

will be impossible to add A2 later. A simple example of this relationship is that adding

a new class AC(A) has to occur before adding a new member field AF(A.x) or a

new member method AM(A.foo()). Hence AC(A) ≺Structural AF(A.x) and AC(A)

≺Structural AM(A.foo()). Since Java allows anonymous classes and local classes be

added or deleted within a method, the method needs to exist in the program before

adding the classes it encloses. For example, if a new method A.foo() is added in which a

local class C is defined in the method body, then AM(A.foo()) ≺Structural AC(A$1$C).

Finally, structural dependences are created when there is a change in the definition of

a field or method. A definition change is handled in Chianti by first deleting the

old definition and then adding the new definition. Hence, Chianti decomposes a type
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change of a field into two atomic changes: DF and AF. Similarly, Chianti decomposes

a return type change of a method into two atomic changes: DM and AM. In order

to ensure that the intermediate version never contains two fields or two methods with

the same name but different definitions, structural dependences are used, namely DF

≺Structural AF and DM ≺Structural AM.

2.2.2 Buddy Dependences

A buddy dependence is essentially a form of structural dependence. However, Crisp

handles buddy dependences in a different way than other structural dependences. A

full discussion on how Crisp uses them to construct intermediate versions can be found

in Chapter 3. When an atomic change A1 is a buddy prerequisite to A2 (A1 ≺Buddy

A2), they are inseparable. Applying A2 requires A1 because of a structural reason; in

addition, applying A1 requires A2 because of a compilation reason. For example, an

added method A.foo() generates two buddies: AM(A.foo()) and CM(A.foo()). The

body of A.foo() cannot be applied until after the declaration of A.foo(). However, the

declaration of A.foo() may not compile without the presence of the body due to a non

void return type of A.foo(). As a result, these two atomic changes have to be applied

together. There are many kinds of buddy dependences used in Crisp; a complete list

can be found in Table 3.1 of Chapter 3.

2.2.3 Declaration Dependences

In general, any Java element declarations that are required to create valid interme-

diate versions are captured in this category. A1 is a declaration prerequisite of A2

(A1 ≺Declaration A2) generally means that A2 uses the Java element declared in A1

in its source code. An example is that a newly added method A.foo()’s body uses a

newly added field A.x. This field must be declared in the intermediate version for it

to compile. Hence, AF(A.x) ≺Declaration CM(A.foo()). Other examples of declaration

dependences include adding a new class B that is a subclass of another new class A

requires the declaration of A (AC(A) ≺Declaration AC(B)); using a new type A as a

return type or a parameter in a new method X.foo() (AC(A) ≺Declaration AM(X.foo()).
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Declaration dependences are also necessary to ensure the presence of concrete method

implementations within a type hierarchy that contains abstract methods. An abstract

method foo() cannot be added to an abstract class A (or interface A) unless all of A’s

subclasses add a concrete method foo(). Assume A has only one concrete subclass B

to begin with. Then, AM(B.foo()) ≺Declaration AM(A.foo()). If a new class C is also

added which is a subclass of A, it needs to implement C.foo() in order for the edit to

compile. This results in AM(C.foo()) ≺Declaration AC(C). 1 Remember that there is

also a structural dependence between C and C.foo() (AC(C) ≺Structural AM(C.foo())).

These two dependences combined guarantee there will never be an intermediate version

that does not contain both class C and method C.foo() together. Similarly, B.foo()

cannot be deleted without A.foo() being changed to a concrete method. In this case,

CM(A.foo()) ≺Declaration DM(B.foo()).

2.2.4 Mapping Dependences

The above 3 types of dependences are generated by syntactic relationships among parts

of an edit. Since Chianti also captures dynamic dispatch and initializer methods that

are in addition to explicit source changes, it needs a mechanism to map them to the

corresponding source code changes. This gives rise to mapping dependences. Informally,

an atomic change A1 is a mapping prerequisite to A2 (A1 ≺Mapping A2) means that the

source code change generated by A1 results in A2. In Section 2.1, an LC change can be

generated by an added method or a change in the type hierarchy. Hence, AM(A.bar())

≺Mapping LC<A,A.bar()> when a new non-private method A.bar() is added. Similarly,

AC(B) ≺Mapping LC<B,A.foo()> when a new subclass B of A is added. For initializer

methods, AC(A) ≺Mapping AM(A.<init>()) is generated when a new class A is added

without an explicit constructor; CFI(A.x) ≺Mapping CM(A.<init>()) when there is

a changed in the initialized value of an instance variable A.x. When the first class

variable A.s with an initialized value of “How are you?” is added, the <clinit>()

initializer method is created. This results in CSFI(A.s) ≺Mapping AM(A.<clinit>())

1Note that A.foo() does not depend on C.foo()
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as well as CSFI(A.s) ≺Mapping CM(A.<clinit>()) begin generated.

When Chianti reports a set of affecting changes of an affected test, it includes the

affecting changes exercised by the affected test as well as the transitive closure of these

changes’ prerequisites based on the dependences [13]. This initial set is used by Crisp

to create intermediate version. In addition, the design of Crisp also has to take into

consideration the granularities of the changes that are applied, the positions of source

code additions, changes to the import statements in a Java class, and the usability of

the tool itself in an interactive environment.
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Chapter 3

Design of Crisp

3.1 Limitations of Affecting Changes

Crisp is written with three major application modes in mind: (i) an automatic mode

where failure-inducing changes are calculated and presented to programmers for inspec-

tion (see Chapter 5 for details), (ii) an interactive session where programmers are free to

explore by selecting one or more affecting changes to be applied to the original program

and re-execute the failing tests in many different intermediate versions, and finally, (iii)

a batch mode where a set of changes can be applied to the original program to create

a particular intermediate version. Since Chianti already provides all the dependences

among the atomic changes, it is relatively direct to obtain a prerequisites set for one or

more affecting changes by traversing the dependence graph. These prerequisites sets in

theory contain only affecting changes, since they are the changes that are executed by

an affected test, as well as the transitive closure of their prerequisites, as explained in

Section 2.2.

Chianti ’s definitions for affecting changes sets, although comprehensive, are insuffi-

cient when it comes to generating compilable intermediate versions of Java programs.

First, Chianti very often generates more than one atomic change for each unit of source

code change. This potentially introduces unexpected compilation errors in the inter-

mediate versions. Second, Chianti reveals redundant affecting changes information to

programmers in the interactive mode which can affect the usability of Crisp. Third,

applying each affecting change means updating a source file or compilation unit in Java.

Such a file has to exist in the program before it can be updated. Therefore, a specific

ordering is needed when applying an affecting change and its prerequisites.
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To guarantee the creation of compilable intermediate versions, Crisp takes the af-

fecting changes set generated by Chianti and creates a corresponding to-be-applied list

for each affecting change. The elements within these lists are still referred to as prereq-

uisites, but they can be either affecting or non-affecting changes. The prerequisites in

each list have a pre-determined order and are therefore applied to the original program

according to this order. Before presenting them to the user, Crisp sweeps through the

affecting changes and their to-be-applied lists and eliminates all the redundant affecting

changes and prerequisites. The next few sections of this chapter provide the details of

the processes in which Crisp creates the to-be-applied lists for the affecting changes.

Chapter 4 describes the presentation of changes in Crisp and the construction of valid

intermediate versions.

3.2 Prerequisites from Chianti to Crisp

The shortcomings of using affecting changes and their prerequisites for creating inter-

mediate versions can be illustrated using an example. Figure 3.1(a) shows a changed

program. The boxed text indicates program codes that have been added in the edited

version. The struck out program codes are those that have been deleted. Each piece

of code change results in one or more affecting changes, indicated by the numbers as-

sociated with each piece of boxed text. The test case TestSimple.test() passes in the

original version and fails in the edited version. Chianti generates the dependence graph

shown in Figure 3.1(b). There are eight affecting changes for this failing test, and they

are connected by four types of arrows representing the categories of dependences de-

scribed in Section 2.2. 1 Essentially, Figure 3.1 illustrates a simple example of Chianti ’s

input and output. Using the affecting changes and dependences in Figure 3.1(b), Crisp

generates the prerequisites sets and eventually the to-be-applied lists in Figure 3.2. In

Figure 3.2(a), each affecting change and its corresponding prerequisites set are calcu-

lated by simply traversing the dependence graph. Note that the affecting change itself

is included in the prerequisites set. This table mimics the lookup table maintained in

1Other non-affecting atomic changes are not shown in Figure 3.1
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Crisp. When a user selects an affecting change from the left hand column, the prereq-

uisites in the corresponding row in the right hand column would be applied resulting

in an intermediate version.

There are several problems if Figure 3.2(a) is presented in the interactive mode and

the prerequisites sets are used to apply changes to the original program. As defined

by the original atomic changes, a single change does not necessarily represent an entire

unit of source code change in the program. For example, AM(B.getX()), affecting

change 1, has a prerequisites set that contains AC(B) and AM(B.getX()). Adding an

empty method B.getX() results in syntax errors since the method requires the return

of a ’String’ object. In order to eliminate syntax errors, an arbitrary method body that

contains nothing but a ’return null;’ statement could be added; however, executing

this intermediate version would result in different semantics than the edited version of

B.getX().

Similarly, B.init() in affecting changes 3 and 4 are used by Chianti to represent the

implicit constructor that has been added or changed due to the absence of an explicit

constructor. As discussed in Section 2.1, these init() (as well as the static implicit

initializer, clinit()) methods are not directly related to any visible edits in the source

code. Applying AM(B.init()), affecting change 3, results in the same intermediate

version as if applying AC(B), affecting change 1. Similarly, applying CM(B.init()),

affecting change 4, results in the same intermediate version as if applying CFI(B.x),

affecting change 6. Hence, their presence in Crisp for intermediate version exploration

is redundant.

Without ordering, the prerequisites set of CM(A.foo()), affecting change 7, could

be applied in the order shown in Figure 3.2(a) where AM(B.getX()) is added before

AC(B). Since adding a class usually results in adding a Java file or compilation unit to

the program, it is impossible to create the method B.getX() without first creating class

B.

Due to the above reasons and more that are explained later, Crisp takes the original

lookup table of prerequisites sets created by walking the dependence graph, expands it

by adding more prerequisites, and then reduces it by deleting some prerequisites as well
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public class A {
public String foo() {
return ‘‘abc’’; }

B b = new B(); return b.getX(); 7

}
}

public class B { 3,8

private String x=’’def’’; 4,5,6

public String getX() { 1

return x; 2

}
}
public class TestSimple extends TestCase {
public void test() {
A a = new A();

Assert.assertEquals(a.foo(),’’abc’’); }
}

(a) Original and Edited Program:
added code in the edited version appears in boxes;

deleted code is crossed out

(b) Dependence Graph Provided by Chianti

Figure 3.1: Affecting Changes and Dependences Generated by Chianti
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ID Affecting Changes Prerequisites sets

1 AM(B.getX()) {AC(B),AM(B.getX())}

2 CM(B.getX()) {AC(B),AM(B.getX()),AF(B.x),CM(B.getX())}

3 AM(B.init()) {AC(B),AM(B.init())}

4 CM(B.init()) {AF(B.x),CFI(B.x),AC(B),AM(B.init()),CM(B.init())}

5 AF(B.x) {AC(B),AF(B.x)}

6 CFI(B.x) {AC(B),AF(B.x),CFI(B.x)}

7 CM(A.foo()) {AM(B.getX()),AM(B.init()),AC(B),CM(A.foo())}

8 AC(B) {AC(B)}

(a) Prerequisites Sets Generated by the Dependence Graph

ID Affecting Changes To-be-applied lists

1 AM(B.getX()) {AC(B),AF(B.x),AM(B.getX())}
5 AF(B.x) {AC(B),AF(B.x)}
7 CM(A.foo()) {AC(B),AM(B.getX()),CM(A.foo())}
8 AC(B) {AC(B)}

(b) To-be-applied Lists Generated by Crisp

Figure 3.2: Prerequisites Sets and To-Be-Applied Lists Generated by Figure 3.1

as affecting changes, to create a final lookup table with meaningful affecting changes

and their corresponding to-be-applied lists. During this process, Crisp maintains any

necessary ordering among the prerequisites. Figure 3.2(b) shows the resulting lookup

table presented by Crisp. Notice that all of the to-be-applied lists require the application

of AC(B) first. Also, the number of prerequisites in the to-be-applied lists may be

smaller or larger than their initial prerequisites sets. Finally, only 4 affecting changes

are presented to the users, rather than the original 8 of them. The prerequisites in

these to-be-applied lists are the ones that are applied to create intermediate versions.

3.3 Expansion of Prerequisites

The very first step when Crisp processes the original prerequisites sets from Chianti is

to order the prerequisites and initialize the to-be-applied lists based on the dependence

graphs. Ordering of prerequisites is discussed in Section 3.4. Then Crisp checks each

prerequisites and decides whether more prerequisites need to be added to the lists. This

expansion is necessary to generate semantically accurate intermediate versions and to
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keep the granularity of changes within the program code at the method level.

3.3.1 Expansion Due to Buddy Changes

For an intermediate version to be semantically meaningful at the method level, an edit

of a method has to be applied in its entirety. By contrast, Chianti splits the addition of

a method into two atomic changes: AM denotes adding an empty method; CM denotes

adding/changing a method body. Similarly, a newly added field with an initialized value

should be considered a single edit - yet Chianti calculates two separate changes: AF

denotes declaring a field; CFI denotes adding or changing the initial value of the field.

To ensure compilability, Crisp considers each pair of AM and CM of an added method

inseparable, or buddy. Chianti, therefore, lists the CM as AM’s buddy dependent and

AM as CM’s buddy prerequisite. Similarly, for an added field, AF is CFI’s buddy

prerequisite and CFI is AF’s buddy dependent.

There is also another case of buddy dependences which involves more than a pair

of atomic changes. The Java language includes initializer and static initializer blocks

within a class in which source code changes could occur. Unlike most of the other source

code elements, these blocks do not have names associated with them. In the Eclipse

environment, they are numerically represented within the abstract syntax tree according

to their relative positions among themselves. This gives rise to ambiguity when there

are more than one of these blocks within a class and their relative positions are not

consistent between the original and the edited versions. To ensure compilability and

the accurate representation of changed source code, Crisp considers all of the changes

to these blocks within the same class as one single inseparable change. In total, Crisp

handles 7 buddy change types as shown in Table 3.1.

In most cases, an affecting change’s buddy is also an affecting change. Figure 3.2(a)

shows the buddy pairs of affecting changes for B.getX(), B.init(), and B.x. Note that

the prerequisites set for a buddy dependent contains the buddy prerequisite as well as

other changes. To make the buddies inseparable, each prerequisite that has a buddy

needs to have this buddy in the to-be-applied lists also. After buddy expansion, these

to-be-applied lists include the buddies as well as the transitive closure of the buddy’s
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public class A {
public String foo() {

return ‘‘abc’’; }

if (true) return ‘‘def’’; else return getX();} 1

public String getX() { 2

return getY();

}

public String getY() {

return ‘‘def’’;

}
}
public class TestSimple extends TestCase {
public void test() {

A a = new A();

Assert.assertEquals(a.foo(),’’abc’’); }
}

(a) Original and Edited Program

ID Affecting Changes Prerequisites sets

1 CM(A.foo()) {AM(A.getX()),CM(A.foo())}

2 AM(A.getX()) {AM(A.getX())}

(b) Prerequisites Sets Provided by Dependence Graph

ID Affecting Changes To-be-applied Lists

1 CM(A.foo()) {CM(A.foo()), AM(A.getX()), CM(A.getX()),

AM(A.getY()), CM(A.getY())}

2 AM(A.getX()) {AM(A.getX()),CM(A.getX()), AM(A.getY()),

CM(A.getY())}

(c) To-be-applied Lists Generated by Crisp

Figure 3.3: An Example of Non-Affecting Changes Included in To-be-applied Lists
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Prerequisites Dependents

addMethod AM changeMethod CM

changeMethod CM deleteMethod DM

addField AF changeFieldInitializer CFI

addField AF changeStaticFieldInitializer CSFI

changeFieldIntializer CFI deleteField DF

changeStaticFieldInitializer CSFI deleteField DF

Any one of the initializer block changes All the other initializer block
AI, CI, DI, ASI, CSI, DSI changes in the same class

Table 3.1: Buddy Changes.

prerequisites and their buddies. For example, AM(B.getX())’s to-be-applied list should

include both AM(B.getX()) and CM(B.getX()). However, adding CM(B.getX()) will

not compile unless AF(B.x) and its buddy, CFI(B.x), are also applied. Hence, the

to-be-applied list for AM(B.getX()) now contains 5 prerequisites: AC(B), AF(B.x),

CFI(B.x), AM(B.getX()), and CM(B.getX()).

Even though the buddy dependents and their transitive closure prerequisites are now

correctly included in the to-be-applied list for each of the affecting changes, these addi-

tional changes are not necessarily affecting changes themselves. Consider the program

illustrated in Figure 3.3(a). The only affecting changes are those that are numbered,

namely 1 and 2. CM(A.foo()) is an affecting change because A.foo() has been edited

and is exercised when TestSimple.test() is executed. AM(A.getX()) is an affecting

change because A.getX() is a declaration prerequisite of CM(A.foo()) and is within an

edit. A.getX() is never executed; the code in its method body cannot affect the outcome

of the test. Therefore, the method body of A.get() and the entire method A.getY()

are atomic changes of the edit, but are not affecting changes of this test. The original

prerequisites sets of the two affecting changes are shown in Figure 3.3(b). Since the

affecting change AM(A.getX()) is buddy with CM(A.getX()), CM(A.getX()) needs

to be in CM(A.getX())’s to-be-applied list. However, CM(A.getX()) has a declaration

prerequisite, AM(A.getY()) which also has a buddy CM(A.getY()). After buddy ex-

pansion, not only CM(A.getX()), a non-affecting change, is added to the to-be-applied

lists (Figure 3.3(c)), but also the changes related to A.getY(). It is important to note
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that these additional atomic changes that are dragged into the to-be-applied lists of

affecting changes are there only to ensure compilation of the intermediate versions.

Programmers who use the interactive mode of Crisp are not allowed to select any of

these dragged in non-affecting changes as part of their exploration.

3.3.2 Expansion Due to Anonymous Changes

Any sub-method-level changes to anonymous classes of a Java program are captured

not only by the changes themselves, but very often by a CM change of the enclosing

method in Chianti. However, the dependence graph generated by Chianti is insufficient

for creating valid intermediate versions. Figure 3.4(a) shows an example of anonymous

changes (changes that are within an anonymous class, including the anonymous class

itself) of a program. The original version of class A is shown in Figure 3.4(a)(i) and the

edited version is in Figure 3.4(a)(ii) to highlight the fact that the positions of A.bar()

and A.foo() have been reversed by the edit. There are two anonymous classes of type

C used in A.bar() and A.foo() in Figure 3.4(a)(i). In the abstract syntax tree provided

by Eclipse, A$1 denotes the class C in A.bar() whereas A$2 denotes the one in A.foo().

Since the anonymous classes are named after their relative positions within a class, A$1

denotes the class C in A.foo() and A$2, A.bar() in the edited version, Figure 3.4(a)(ii).

The original and edited versions of the remainder of the program can be found in

Figure 3.4(a)(iii). Since interface C declares a new method C.get() in the edited version,

both the type C anonymous classes used in class A need to implement this get() method.

Figure 3.4(b) shows the dependence graph after Chianti calculates the atomic changes

and affecting changes. Note that the addition of the method C.get() (affecting change

5) in the edited version generated two declaration dependences: 1) the implementation

of anonymous C class’ get() method in A.foo() and 2) the implementation of anonymous

C class’ get() method in A.bar(). These dependences ensure that C.get() be only added

to the intermediate versions after the concrete types implementing the method, and

thus prevent any compilation errors. Out of the eleven atomic changes, only six of

them are considered affecting changes(1,5,6,7,8,10). After buddy expansion, the lookup

table of the affecting changes is the one shown in Figure 3.5(a). If users are allowed to
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public class A {
public void bar() {

B b = new B();

b.add(new C() {});}
public String foo() {

B b = new B();

b.add(new C() {});
return ‘‘abc’’; }

}

(i) Original Version of class A

public class A {
public String foo()6 {

B b = new B();

b.add(new C() {

public String get() { 1,4,7

return ‘‘bcd’’;} 8});

return b.get().get(); 6 }

public void bar()9 {
B b = new B();

b.add(new C() {

public String get() { 2,3,10

return ‘‘abc’’;} 11});}

}

(ii) Edited Version of class A

public class B {
private C c;

public void add(C c) {
this.c = c;

}
public C get() {

return c;

}
}

public interface C {

public String get(); 1,3,5

}

public class TestA extends TestCase {
public void testA() {

A a = new A();

Assert.assertEquals(a.foo(), ‘‘abc’’);

}
}

(iii) Original and Edited Versions of Class B

Interface C, and test TestA

(a) Original and Edited Versions of Program

Declaration Dependence

Mapping Dependence

Buddy Dependence

AM

C.get()

5
CM

A.foo()

6
AM

A$1.get()

7
CM

A$1.get()

8

LC

A$1,C.get()

1
LC

A$2,A$2.get()

2
LC

A$2,C.get()

3
LC

A$1,A$1.get()

4

CM

A.bar()

9
AM

A$2.get()

10
CM

A$2.get()

11

(b) Dependence Graph from Chianti

Figure 3.4: Anonymous Changes Example
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ID Affecting Changes To-Be-Applied Lists

5 AM(C.get()) {AM(A$1.get()), CM(A$1.get()),AM(A$2.get()),

CM(A$2.get()),AM(C.get())}

6 CM(A.foo()) {AM(C.get(), AM(A$1.get()),CM(A$1.get()),

AM(A$2.get()),CM(A$2.get()), CM(A.foo())}

7 AM(A$1.get()) {AM(A$1.get()), CM(A$1.get())}

8 CM(A$1.get()) {AM(A$1.get()),CM(A$1.get())}

1 LC<A$1,C.get()> {AM(C.get), AM(A$1.get()),CM(A$1.get()),

AM(A$2.get()), CM(A$2.get()), LC<A$1,C.get()>}

10 AM(A$2.get()) {AM(A$2.get()), CM(A$2.get())}

(a) Affecting Changes and To-Be-Applied Lists After Buddy Expansion

public String bar() {
B b = new B();

b.add(new C() {
public String get() {

return ‘‘bcd’’;}
});

}

public String foo() {
B b = new B();

b.add(new C() {
public String get() {

return ‘‘abc’’;}
});

}

(b) A.bar() after A$1.get() is applied (c) A.foo() after A$2.get() is applied

ID Affecting Changes To-Be-Applied Lists

5 AM(C.get()) {AM(A$1.get()), CM(A$1.get()),CM(A.foo()),

AM(A$2.get()), AM(A$2.get()),CM(A.bar()),

AM(C.get())}

6 CM(A.foo()) {AM(C.get(), AM(A$1.get()),CM(A$1.get()),

AM(A$2.get()),CM(A$2.get()), CM(A.bar()),

CM(A.foo())}

7 AM(A$1.get()) {AM(A$1.get()), CM(A$1.get()),AM(A$2.get()),

CM(A$2.get()), CM(A.bar()), AM(C.get()),

CM(A.foo())}

8 CM(A$1.get()) {AM(A$1.get()),CM(A$1.get()),

CM(A.foo()),AM(A$2.get()), CM(A$2.get()),

CM(A.bar()), AM(C.get())}

1 LC<A$1,C.get()> {AM(C.get), AM(A$1.get()),CM(A$1.get()),

CM(A.foo()), AM(A$2.get()), CM(A$2.get()),

CM(A.bar()),LC<A$1,C.get()>}

10 AM(A$2.get()) {AM(A$2.get()), CM(A$2.get()),CM(A.bar())}

(d) Affecting Changes and To-Be-Applied Lists After Buddy and Anonymous
Expansion

Figure 3.5: Affecting Changes and Intermediate Versions
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explore any combinations of the affecting changes, the intermediate versions’ A.bar()

would become Figure 3.5(b) and A.foo() would become Figure 3.5(c). This is due

to the mismatch of A$1 and A$2 between the original and edited versions. Both of

these methods are now semantically inconsistent with the edited version. This can be

remedied by adding CM(A.foo()) and CM(A.bar()) in the to-be-applied lists of these

anonymous affecting changes.

Since locating anonymous changes within a method is tedious and prone to errors,

Crisp ignores the application of these changes individually and instead, applies a change

of the enclosing method’s body. Therefore, the enclosing method’s CM change and its

transitive closure of prerequisites needs to be included in the to-be-applied list of an

affecting change that is an anonymous change itself or that contains a prerequisite

anonymous change. The result of anonymous expansion is shown in Figure 3.5(d).

Notice that selecting any of the affecting changes 5, 6, 7, 8, or 1 essentially results in

the same intermediate version, which causes the failing of testA(). During debugging

(discussed in Chapter 5), anonymous expansion may lead to the identification of a

change (CM) that encompasses a larger portion of the edit than the failure-inducing

anonymous change itself.

3.4 Ordering Changes Based on Dependences

Some orderings among changes are necessary while others are undesirable. Ordering is

in fact, the first step that Crisp takes when it receives Chianti’s prerequisites set. Yet,

it is discussed here after buddy changes because it is only after the merging of buddy

changes that certain orderings of changes become problematic.

Figure 3.6 shows an addition of an abstract method A.bar(). AM(A.bar()) has

a declaration prerequisite of AM(B.bar()) because without it, a compilation error

will be generated due to the missing implementation of bar() in B. Due to buddy

changes, CM(B.bar()) is added to the to-be-applied list of AM(A.bar()). However,

CM(B.bar()) has also a declaration prerequisite of AM(A.bar()) without such a com-

pilation error will be generated since the variable c is of type A at compilation time.
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abstract public class A {
public String foo() {

return ‘‘abc’’;

return bar();

});
}

abstract public String bar();

}

public class B extends A {

public String bar() {

A c = new C();

if (...) return c.bar();

else return ‘‘abc’’;}

}

public class C extends A {

public String bar() {

return ‘‘def’’;}

}

Figure 3.6: Ordering Changes in Crisp

This has now created an unnecessary dependence ordering cycle which might confuse

Crisp when it attempts to choose which of A.bar() or B.bar() to add first. However,

the absence of such an ordering does not hinder the application of A.bar() and B.bar()

to class A and B respectively, as long as both of these methods are present in the final

intermediate version. Hence, Crisp makes sure that AM(B.bar()) and CM(B.bar()) is

in AM(A.bar())’s to-be-applied list but that their order is arbitrary.

Structural dependence is the only category of dependence that Crisp uses to order

between a prerequisite and its dependent. Adding a class before its member fields and

methods is a typical use of structural dependence. Another example is changing the

type of a field that requires the field in the original program be deleted, before adding

the field from the edited program. This ensures that there are no duplicate fields in the

resulting intermediate versions.
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Chapter 4

Interface of Crisp

In the previous chapter, Crisp focuses on the completeness of the prerequisites in the

to-be-applied lists. After the expansion process, the to-be-applied lists may grow sig-

nificantly in size. The intuitive effect of expansion is that the number of intermediate

versions are reduced to only those that are compilable. Once expanded, Crisp presents

these to-be-applied lists to the programmer and facilitates the exploration process in

a graphical user interface (GUI). The usability of this interface and the efficiency of

applying changes and creating intermediate versions are essential in the design of Crisp

as an interactive tool.

4.1 Reduction of Affecting Changes and To-Be-Applied Lists

Once the to-be-applied lists are expanded with all the necessary prerequisites to create

intermediate versions, Crisp goes through a process to eliminate redundant prerequi-

sites. This process is deemed necessary especially in the the interactive mode to avoid

confusing the user. It is also used in the other modes to increase the efficiency of Crisp.

Unlike prerequisite expansion which is necessary to ensure compilability, this reduction

of redundant changes is optional and is coupled with the presentation of the affecting

changes to the user (discussed in Section 4.3). Since the affecting changes that remain

in Crisp after this phase have slightly different syntactic meaning from the affecting

changes in Chianti, they are referred to as editable changes to avoid confusion.

4.1.1 Reduction Due to Buddy Changes

During the interactive mode in Crisp, the programmer is presented with a list of af-

fecting changes and this list is sorted according to some pre-defined heuristics for fault
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localization. Explicitly presenting the buddy changes in this list can be confusing. First

of all, buddy changes have exactly the same to-be-applied lists. Showing both of them

in a GUI is therefore, redundant. Even worse, showing them together requires an un-

derstanding of their definitions in Chianti because they represent the same edit of the

source code in Crisp. Hence the change categories presented by Chianti go through a

process to merge the buddy changes into editable changes during this phase of Crisp:

Buddy Changes Editable Changes Meaning

AM-CM AM Add a method and its body

CM-DM DM Delete a method and its body

AF-CFI AF Add a field and its initialized value

CFI-DF DF delete a field and its initialized value

AF-CSFI AF Add a field and its initialized value

CSFI-DF DF Delete a field and its initialized value

AI,CI,DI, Initializer Change All initializer blocks from the
ASI,CSI,DSI edited program are applied

Table 4.1: Re-definitions of Changes in Crisp.

Since a buddy prerequisite and its buddy dependent may both be included in Chi-

anti ’s affecting changes set, this phase may result in a decrease in the number of changes

a programmer can select in the interactive mode. Furthermore, it may decrease the sizes

of the to-be-applied lists where buddy changes are present.

4.2 Reduction Due to Mapping Dependences

There are two major mapping dependences provided by Chianti. An LC change is the

result of adding or deleting a class, or adding or deleting methods; a method change for

init() or clinit() is the result of changing the implicit constructor or static initializer in

a class. An LC change indicates a change of dispatch behavior in the program, and this

information may be valuable to the programmer. However, method changes of init()

and clinit() are included as affecting changes only to ensure the complete calculation

of changes that involve initialization of fields. They have no visible effects in terms of

the changes to the source code, nor do they provide any additional information for the

programmer. Hence, Crisp processes all the affecting changes and their to-be-applied
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lists and eliminates all the method changes related to init() and clinit().

Similar to the reduction of buddy changes, this process may reduce the number of

affecting changes a programmer is allowed to select, but cannot hinder the finding of

faults in the program. However, depending on the type of reductions used, the number

of affecting changes, and hence failure-inducing changes, reported in this thesis may

be different from previous publications [5] and [12]. This will be discussed further in

Chapter 6. The default implementation of Crisp’s interactive mode uses both buddy

and mapping reductions and presents the user with the most concise sets of editable

changes and their to-be-applied lists.

4.3 Presentation of Affecting Changes

Upon determining for each affecting change its to-be-applied list, the entire list of

affecting changes (or editable changes) will be presented to a programmer in a GUI like

the one shown in (Figure 4.1). The size of this list depends on the original number of

affecting changes calculated by Chianti as well as the type of reductions used during the

processing of the affecting changes as discussed in Section 4.1. Currently, two ways of

ordering the affecting changes have been implemented in Crisp: (1) random and (2) by

the size of their to-be-applied lists in ascending order. In Figure 4.1, the ordering shown

is by the size of the to-be-applied lists in ascending order. Both of these orderings are

created with reduction of buddies and mapping changes. Assume that the programmer

chooses to explore intermediate version creation manually. From the ordered list on the

left hand side of the GUI, the programmer can select an affecting/editable change and

its to-be-applied list will be shown in the “Selected Prerequisites” lists. Since a to-be-

applied list can contain both affecting and non-affecting changes, they are distinguished.

Once the selected prerequisites lists are non-empty, the programmer can initiate the

application of changes to the current source code of the program by clicking the “Apply

Selection” button. Upon successful application of changes, the applied changes will be

shown in the “Applied Prerequisites” lists.

Crisp keeps track of all the changes that have been applied in the source code. The
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Figure 4.1: A Screenshot of Crisp Graphical User Interface
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programmer has the option to undo the previous application of changes by clicking

the “Undo Previous” button, or undo all the applied changes and restore the original

program by clicking the “Undo All” button. Each change is applied once and only once.

Since affecting changes may share prerequisites, only the changes that have not been

applied are shown in the “Selected Prerequisites” lists.

Any changes listed under the “Affecting Changes” lists can be dragged and dropped

into the “Failure-Inducing Changes” list. The programmer can gather all the suspicious

failure-inducing changes in this list, restore the original program by clicking the “Undo

All” button, and then click the “Get Complement” button to request Crisp to calculate

the complement set of the corresponding failure-inducing changes. The complement set

will then be listed under the “Selected Prerequisites” lists. The programmer now has

the option to apply the complement set to the original program. The complement set

can be used to confirm whether the programmer has identified all the failure-inducing

changes. A detailed discussion of complement set can be found in Section 5.3 of the

next chapter.

Immediately under the ordered list on the left hand side of the GUI is the “Locate

FICS” button. Selecting this button will launch the automatic mode of Crisp. A

detailed discussion of the automatic algorithm for locating failure-inducing changes can

be found in Section 5.5.

4.4 Intermediate Program Versions

Although dependence is critical in the creation of semantically and syntactically sound

intermediate program versions, there are circumstances where Crisp relies on the Eclipse

environment to provide additional assistance when applying changes. First and fore-

most, the Eclipse Java Development Tool (jdt) provides abstract syntax tree information

and source code manipulation capability which allow Crisp to accurately pinpoint the

position of changes within a piece of source code. Overall, Crisp makes four types of

changes:

• Class changes
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• Initializer block changes

• Field changes

• Method changes

To manipulate source code changes, Crisp first identifies the compilation units (.java

files) that are involved in the changes. Only AC changes are allowed to be applied

without an existing compilation unit. Before changes are applied to a compilation unit,

the source code is cached such that any subsequent exception results in Crisp restoring

a previously created valid intermediate version. After Crisp applies an affecting change

and its to-be-applied list, it invokes a build of the program within Eclipse. During the

build, import statements are organized if necessary. This phase of Crisp may result in

a prompt for input from the user when Eclipse cannot resolve a type that has the same

name as other classes declared in different packages.

Crisp only makes changes to the program that Chianti considers as the original

program. The edited program is left untouched structurally. Chianti and Crisp require

both the original and the edited programs to exist in the same Eclipse workspace in

order to perform the analysis. Since these versions are essentially the same program with

the same name within Eclipse, users who use the tools need to rename the two different

versions such that they appear to be different programs in the Eclipse environment.

4.4.1 Class Changes

Java requires that the name of the class and the name of the compilation unit where

its source code is located be the same. However, there are also inner classes that reside

within another class, as well as special non-public classes that share a compilation unit

with another class. Inner classes are added at the end of their enclosing class. Special

non-public classes are appended to the end of the compilation unit in which they appear.

Crisp checks to make sure that these classes are added without creating unnecessary

compilation units.

To add a regular new class, Crisp creates a new compilation unit and then adds

the class declaration with an empty class body. Deleting a regular class also results in
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deleting the compilation unit from the underlying file system.

4.4.2 Initializer Block Changes

For any initializer block changes in a class, all the initializer blocks from that class

in the original program are deleted and those from the edited program are grouped

together and are appended to the end of the class. This avoids dealing with individual

blocks that may have different relative positions (hence different numerical names) in

the original program and the edited program.

4.4.3 Field Changes

All fields are added to the end of their enclosing class. This is to prevent compilation

errors when a field i’s initializer depends on another field j, while j is located after i in

the source code. For CFI or CSFI changes, the position of the field does not change

in its enclosing class.

4.4.4 Method Changes

Method changes are handled the same way as field changes. All new methods are

appended to the end of their enclosing class. Changed methods stay in their same

position. A method that changes its return type results in Chianti generating a DM

and then an AM connected by a structural dependency. Crisp first deletes the method

from its current position and adds the method to the end of its enclosing class.
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Chapter 5

Locating Failure-Inducing Changes in Crisp

5.1 A Basic Definition of Failure-Inducing Changes

A failing test (T ) is a test that passes when executed against an original version of a

program (PO) and fails when executed against an edited version of the same program.

Let FT be the set of failure-inducing affecting changes with respect to T , and let AT

be T ’s set of affecting changes. Let PF be the intermediate version of the program

formed when FT is applied to P0, and PC be the intermediate version formed when the

complement set CT = AT -FT is applied to P0, denoted by:

PF = P0 ⊕ FT

PC = P0 ⊕CT (5.1)

FT contains all the failure-inducing affecting changes, if T fails executing against PF ,

yet passes on PC . FT is minimal when:

∼ ∃S ⊂ FT , where

PF−S = P0 ⊕ (FT − S) and

PC+S = P0 ⊕ (CT + S) (5.2)

such that:

1. T fails in PF−S , and

2. T passes in PC+S
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5.2 Revised Definition of Failure-Inducing Changes

The basic definition 5.1 of failure-inducing changes in Section 5.1 is applicable only

when there are no compilation errors in PT and PC . To apply these definitions in the

context of Crisp, the to-be-applied list of FT should be considered. When FT contains

multiple affecting changes, the to-be-applied list of FT , or TBA(FT ), is the union of

all the to-be-applied lists of the affecting changes. For the basic definition 5.1 to create

a valid intermediate version when FT is applied to the original program, TBA(FT )

must equal FT . As explained in Chapter 3, the fact that most affecting changes have

dependences on other changes, including non-affecting changes, in their to-be-applied

lists complicates how failure-inducing changes should be defined in Crisp. In addition,

finding CT does not depend only on AT and FT , but also on the dependences between

FT and TBA(CT ). Here is a simple example to illustrate that obtaining a valid CT

is not trivial. Let AT = {A1, A2} and A1 is failure-inducing, or A1 ∈ FT . Using

definition 5.1, A2 ∈ CT . Assume that A1 ≺ A2, hence A1 ∈ TBA(A2). This means

that FT and TBA(CT ) are not mutually exclusive. Now, executing test T against PC

will also fail due to the presence of A1. In this situation, creating PC is redundant as

it does not provide additional information regarding A2. Since isolating A2 from A1 is

deemed impossible in Crisp’s approach, A2 should be taken out of CT and inserted into

FT . Technically, this means FT may contain some changes that are not failure-inducing,

but are strongly related to failure-inducing changes. In this way, the FT built by Crisp

may be larger than minimal, but will allow the building of a valid CT crucial to the

exploration process. This is explained further in Section 5.5

Hence, a more practical definition of FT with valid intermediate versions in mind

would be:

PF = P0 ⊕ TBA(FT )

PC = P0 ⊕ TBA(CT )

where

FT ∩ TBA(CT ) = ∅ (5.3)
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5.3 Complement Set

As shown in Sections 5.1 and 5.2, the use of complement set is critical in ensuring

the completeness of the failure-inducing changes set. However, when the number of

affecting changes are more than a few, manually composing the complement set becomes

non-trivial. This process also is complicated by the inter-dependences among affecting

changes. To further assist programmers in locating failure causes, Crisp automatically

generates the complement set based on a given FT .

By definition, FT and CT are mutually exclusive. In definition 5.1, CT is readily

obtainable given an FT . However, problems arise when this definition is applied to

form valid intermediate versions on which to execute test T . As stated in the revised

definition 5.3, FT and TBA(CT ) need to be disjoint.

To ensure that Crisp finds a meaningful complement set, it has to take into account

the dependences among the affecting changes. Algorithm 1 shows how Crisp calculates

the complement set cT given fT , a subset of FT . Note that line 3 calculates the to-be-

applied list for cT , but not for fT . This algorithm not only returns a complement set

cT , but also changes, or expands, fT if necessary. If there are changes in fT which are

prerequisites of changes in cT , then the corresponding cT changes must be removed and

added to fT .

getComplementSet(fT ) {1

cT = AT − fT ;2

if TBA(cT ) ∩ fT 6= ∅ then /* test for mutual exclusiveness */3

for ∀aci ∈ fT do4

if aci ≺ acj then5

fT = fT ∪ acj ;6

cT = cT − acj ;7

end8

end9

end10

return cT ;11

}12

Algorithm 1: Algorithm for calculating the complement set of fT

Fortunately, certain expansions of fT due to the inter-dependence between fT and

TBA(cT ) are merely a matter of completeness. For example, if A1 ≺Buddy A2 and
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A1 ∈ fT , then A2 should be added to fT also as Crisp considers buddy changes to

be inseparable. Moving A2 from cT to fT simply follows the approach set forth by

prerequisite expansion (Section 3.3). If a buddy reduction is applied to the affecting

changes, A1 and A2 are reduced to A1 and A2 is not visible to the users. In this case,

having A1 in fT already implies that A2 is failure-inducing. Similarly, if fT contains

another affecting change A3 and A3 ≺Mapping A4, having A3 as failure-inducing implies

that A4 also is failure-inducing. Again, if a mapping reduction has been applied to the

affecting changes, then A4 will not be visible to the users; the failure-inducing nature of

A4 is implied through A3. In practice, an FT generated by definition 5.3 should not be

much larger than the one created from the basic definition 5.1 unless the dependence

graph for the affecting changes is very complex.

5.4 Types of Failure-Inducing Changes

Using definition 5.3, it is assumed that Crisp is capable of locating multiple failure-

inducing changes. Assume that test T passes on the original program and fails on the

edited program. Then, there are two major categories of the failure-inducing changes

sets:

1. FT contains only one affecting change. When this change is applied to the original

program, test T fails on the intermediate version. Also, TBA(CT ) does not

intersect with FT . This single affecting change in FT is called an explicit failure-

inducing change.

2. FT contains multiple affecting changes. There are three types of affecting changes

that constitute a multiple failure-inducing changes set:

• Explicit : a failure-inducing change that by itself, when applied to the original

program, results in test T failing in the intermediate version. However, none

of the other changes in its to-be-applied list are failure-inducing.

• Implicit : a failure-inducing change that by itself, when applied to the original

program, does not result in test T failing; however, this change interacts with
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other failure-inducing changes in FT and in combination they cause test T

to fail. None of the other changes in its to-be-applied list are considered

failure-inducing.

• Dependent : a failure-inducing change that is dependent on another failure-

inducing change; that is, its to-be-applied list contains a failure-inducing

change. This change is added to FT by Algorithm 1 in order to generate a

valid complement set.

5.5 Automatic Algorithm

Given the complement sets, a programmer now has a mechanism to confirm whether

or not he has uncovered all the failure-inducing changes for a failing test. This elim-

inates the need to explore all combinations of affecting changes when the number of

failure-inducing changes is not known in advance. However, manually determining

and recording which affecting changes belong to FT , re-executing the test after each

application of changes, and requesting complement sets from Crisp is still a tedious

process for a programmer when the failing tests contain numerous affecting changes.

This process is further complicated by multiple failure-inducing changes that exhibit

different behaviors as discussed in Section 5.4. Crisp, therefore, provides an automatic

algorithm that attempts to locate failure-inducing changes with minimal programmer

input. This automatic algorithm terminates when a FT is found such that (i) T fails in

P0 ⊕ TBA(FT ) and passes in P0 ⊕ TBA(CT ) and (ii) FT and TBA(CT ) are disjoint.

From Algorithm 1, it is clear that FT could become large after expansion to include

all the dependent affecting changes. In the worst case, FT = AT and the programmer has

to fall back to the semi-automatic interactive process to find failure-inducing changes.

Although Crisp does not guarantee to find a FT smaller than AT , it does make an

effort to do so. The key to achieving this goal is to minimize the size of the set of changes

that needs to be applied between two consecutive test executions. Ideally, one affecting

change should be applied at a time - when a test passes before the application and

fails afterwards, Crisp can easily pinpoint the culprit. Ordering the affecting changes
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based on the dependence graph could be time-consuming given the complexity of the

graph with its different types of edges. As discussed in Section 3.4, ordering affecting

changes can result in cycles due to buddy expansion. Instead of using dependences

directly, Crisp orders the affecting changes by the size of their to-be-applied lists. An

affecting change with a large to-be-applied list should be applied to form an intermediate

version only after first applying those without any prerequisites. Crisp arbitrary selects

an affecting change to break a tie. Once Crisp has an order for applying the affecting

changes, the reversal of this order determines the next affecting change to undo when

necessary. In the implementation of the algorithm, Crisp uses this reverse order to

control the undo operation.

The control of the automatic algorithm is based on the outcomes of test results

on certain valid intermediate versions. When a single failure-inducing change f (and

its prerequisites) is applied to the original program and the test fails in the resulting

intermediate version, f can be either an explicit or a dependent failure-inducing change.

If the complement set does not fail, then f is an explicit failure-inducing change and

there are no more failure-inducing changes among the remaining affecting changes.

If the complement set also fails, then the algorithm needs to continue the exploration

process to find additional failure-inducing changes. The type of f cannot be determined

at this point. Notice that if f is a dependent failure-inducing change, the algorithm

will find the failure-inducing prerequisite of f . This is because the complement set of

f includes the prerequisites of f .

Crisp needs to handle implicit failure-inducing changes differently. Assume that

intermediate version P1 is formed by applying aT , a subset of AT , and P2 is formed by

applying aT and f . Also assume that the test passes in P1 but fails in P2. When this

happens, we need to examine f alone by applying f to the original program to form Pf .

If the test also fails in Pf , then we can follow the aforementioned procedure for checking

the complement of a single failure-inducing change. However, if the test passes in Pf ,

then f is an implicit failure-inducing change, meaning that there are other changes in

aT that f needs to interact with in order to exhibit failure-inducing behavior. The

algorithm then needs to make sure that f is present in all future intermediate versions
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explored, and then all the affecting changes in aT have to be re-explored in the presence

of f . In order to make sure that f is in all future intermediate versions, the order that

was originally established based on the sizes of the to-be-applied lists has to be altered

and f should be inserted as first in the ordering. Since implicit failure-inducing changes

require special handling, Crisp keeps track of them separately. In addition, Crisp cannot

use the complement of f or the complement of (aT + f) to confirm the completeness of

the implicit failure-inducing set. This step of validating with the complement set has

to be deferred until Crisp locates all the implicit failure-inducing changes.

Input: O: an ordered list of affecting changes based on the size of their
to-be-applied lists

P ′ ← P0;1

while there are still affecting changes in O to apply do2

ac = next affecting change to apply ;3

P ′ = P ′ ⊕△TBA(ac) /* apply changes in ac’s to-be-applied list4

that have not been previously applied */

end5

Algorithm 2: apply(O)

In the automatic algorithm, Crisp has to to keep track of the intermediate versions

that are generated, as well as the order in which affecting changes are applied. Here are

a few functions and notations that are used in the algorithm, defined as Algorithm 3:

1. O: An ordered list of affecting changes. This list may be re-ordered as the algo-

rithm finds implicit failure-inducing changes.

2. reverse(O): Returns a reversed ordered list Or, based on O. In practice, Crisp

explores changes in a reversed order of O. This is explained further below.

3. apply(O): This function, shown in Algorithm 2, applies all the affecting changes to

the original program according to their ordering in O. Basically, each application

of an affecting change results in Crisp applying the prerequisites in the affecting

change’s to-be-applied list that have not been applied already. (Recall a change

is its own prerequisite)

4. P ′ ⊖ ac: Affecting change ac is being removed from the intermediate version P ′.
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Since Crisp keeps track of △TBA(ac) when applying an ac in Algorithm 2, it

uses the same △TBA(ac) to remove ac from P ′.

5. fT : This set keeps track of all the failure-inducing changes, and it grows to become

FT .

6. fImplicit: This set keeps track of the implicit failure-inducing changes.

Algorithm 3 outlines the details of the algorithm. Here is an overview of it:

• By integrating with Chianti, Crisp can be invoked for any affected tests, not just

the failing tests. Also, there are instances where the failure of a test is caused by

changes other than the source code edit. Hence, the first step in the automatic

algorithm (lines 4 - 5) is to confirm that by applying all the affecting changes to

the original program in fact, the test fails. If not, the algorithm will terminate.

• Once the changes have been applied, it is more efficient to simply undo them while

locating the failure-inducing changes (lines 7 - 9). In the automatic algorithm,

Crisp applies and keeps track of the changes according to the order in O such

that it can also undo the changes based on Or, the reverse ordering of O. An

affecting change is considered failure-inducing when the test result changes from

failing to passing (lines 10 - 11).

• The algorithm identifies the difference between an explicit or an implicit failure-

inducing changes in lines 13 - 14, by executing the test against an intermediate

version where the current failure-inducing change is applied to the original version.

• Explicit failure-inducing changes are handled in lines 14 - 21. The algorithm at-

tempts to confirm the completeness of fT by using its complement set (line 16

- 17). When the complement set does not fail the test, the full failure-inducing

changes set has been found, the algorithm exits and returns fT (line 18). Oth-

erwise, the algorithm continues to undo changes from an intermediate version P ′

that is free from any explicit failure-inducing changes (line 20).
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Input: O = ordered list of all affecting changes (AC) from the smallest
to-be-applied list to the largest

fT = ∅;1

fImplicit = ∅;2

P ′ = P0; /* T runs on P ′ */3

apply(O); /* P ′ is now the edited program with all changes */4

if T passes then return;5

Or ← reverse(O);6

while fT 6= AT do7

ac← next AC to explore;8

P ′ = P ′ ⊖ ac ;9

if T passes then10

/* found a failure-inducing change */11

fT = fT ∪ ac ;12

P ′ = P0 ⊕ TBA(ac) ;13

if T fails then14

/* failure-inducing change is explicit */15

cT ← getComplementSet(fT ) ;16

P ′ = P0 ⊕ TBA(cT ) ;17

if T passes then return fT ;18

else19

/* continue exploration */20

end21

else22

/* failure-inducing change is implicit */23

fImplicit = fImplicit ∪ ac ;24

P ′ = P0 ⊕ TBA(fImplicit) ;25

if T fails then26

/* found a group of implicit failure-inducing changes */27

/* that causes T to fail */28

cT ← getComplementSet(fT ) ;29

P ′ = P0 ⊕ TBA(cT ) ;30

if T passes then return fT ;31

end32

else33

/* continue exploration */34

end35

end36

end37

end38

Algorithm 3: Automatic Algorithm for Locating the Failure-Inducing Changes
Set for Test T
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• Implicit failure-inducing changes are handled in lines 23 - 34; they are added to

fImplicit (line 24) in addition to fT . Lines 25 - 26 attempt to test for the com-

pleteness of fImplicit. An implicit failure-inducing change by itself does not fail

a test, but a complete set of implicit failure-inducing changes does. When this

happens, the algorithm calculates the complement set (lines 28 - 30) to determine

whether or not to continue the exploration. Like line 20, line 33 allows the algo-

rithm to continue the exploration from an intermediate version that is free from

any explicit failure-inducing changes. However, all the implicit failure-inducing

changes are applied to the future intermediate versions in order to help identify

other implicit failure-inducing changes.

This algorithm eventually terminates since the sizes of fT and O are limited by the

size of AT . Each occurrence of a test passing results in fT , fImplicit, or both, expanding

their sizes. Each iteration over the while loop in line 7 therefore, decreases the set

of remaining affecting changes to explore. Because of implicit and multiple failure-

inducing changes, Crisp needs to alter O based on the changes in fT and fImplicit.

Hence the intermediate version needs to be reset in line 20 and line 33 before the

algorithm continues to explore changes.

5.6 Interactively Locating Failure-Inducing Changes

Since the automatic algorithm does not guarantee finding a minimal set of failure-

inducing changes, the programmer may need to manually explore the effects of applying

different affecting changes to the original program. As mentioned before, when the size

of the affecting changes set is not small and the software is complex, manually applying

and undoing each of these changes can be a tedious task. Therefore, the use of a

heuristic to rank the likelihood of an affecting change being failure-inducing may be

beneficial.

Crisp comes with two standard built-in heuristics. Additional heuristics can be

added by extending the AbstractGrouping class and implementing the public void

order() method. The effectiveness of the two standard built-in heuristics will be
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discussed in Section 6.3. The most basic heuristic is random in that a random generator

is used to assign ranking to each of the affecting changes of a failing test. These

affecting changes are then ordered in a “Tree” display format for programmer selection.

The second heuristic is ranking by the size of the to-be-applied set. This heuristic is

also used in the automatic algorithm to generate the next smallest number of affecting

changes to apply to the original program.
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Chapter 6

Experimental Results

The advantages of Crisp can only be realized in the development of medium to large size

source code programs where test failure occurs due to more than a handful of affecting

changes. Furthermore, since Chianti and Crisp are both designed to work within the

Eclipse IDE, these programs need to include a set of tests that can exercise the code

base in Eclipse.

Daikon, a dynamic invariant detector program developed by Michael Ernst at MIT,

as well as the Eclipse jdt.core plug-in program, have been identified as open source

Java projects where both the development history and test environment setup fit the

required assumptions of Chianti and Crisp. Each of these programs provides more than

one year’s worth of change history with identifiable versions and corresponding tests

that are adequate for analysis. For Daikon, each version pair contains a week’s worth

of changes during the year 2002. For Eclipse jdt.core, nightly builds are extracted

for the years 2003 and 2004.

As mentioned in previous publications [5] and [12], failing tests are rarely found in

the versions that are checked into the public repositories. To induce artificial failure,

tests in version n are applied to version n + 1. Daikon has been extensively analyzed

during the development of Chianti [13]. Unfortunately, it turns out that only 1 out

of more than 50 versions of Daikon in 2002 contains two artificial failing tests. The

Eclipse jdt.core plug-in, on the other hand, contains some failing tests directly in

the repository; to further increase the number of failing tests, artificial failing tests

are also used. In the experiments described in this chapter, failing tests can be either

artificial or non-artificial, except when stated specifically. Within Eclipse jdt.core,

over 20 version pairs have been identified that contain failing tests. Table 6.1 shows
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the sizes of these programs in terms of their lines of code and number of Java elements.

These numbers do not include any libraries used. For Daikon, the numbers shown are

the averages of their Nov 11 and Nov 19 versions. For Eclipse jdt.core, the first

number in each cell represent the size of the earliest version we used in our experiments

for that year and the second number represents the size of the last version we used in

our experiments for the same year. This provides a general idea of the range of sizes

and the growth of Eclipse jdt.core in 2003 and 2004. The KLOC column is the

number of thousands of lines of non-blank and uncommented code. These statistics are

collected using the Metrics 1 plugin of Eclipse.

Program Year KLOC # of Classes # of Methods

Daikon 2002 72 650 6,100

Eclipse jdt.core plug-in 2003 148−159 849−908 9,958−10,604

Eclipse jdt.core plug-in 2004 166−206 934−1,080 11,002−13,772

Table 6.1: Sizes of Experimental Data

All the tests used in the experiments are JUnit tests that come with Daikon and

Eclipse jdt.core. The organization of tests within the JUnit framework requires the

grouping of related test methods into JUnit TestCases, which further can be grouped

into TestSuites. The granularity of analysis performed by Chianti is at the test method

level. An affected test is therefore, a test method within a JUnit TestCase. For non-

JUnit tests, the granularity is the main() method of a test class. Since Crisp is an

extension to Chianti, Crisp calculates all the affecting changes, prerequisites, and to-

be-applied lists on a per test method basis. Therefore, all the experiments described in

this chapter are performed on a per test method basis.

It is not surprising that the sets of affecting changes for some test methods within

the same TestCase are similar. It is also not surprising that test methods with similar

sets of affecting changes share the same failure-inducing changes set (i.e., a FICS ). For

test methods where the affecting changes and FICS are the same, a representative test

method is chosen to be the failing test for analysis. However, two failing test methods

1http://metrics.sourceforge.net/
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are considered different failing tests when they have different FICS, even though they

may have the same affecting changes.

Eclipse jdt.core comes with seven test packages. Only two of these packages,

tests.compiler.parser and tests.compiler.regression, are used in the experi-

ments as they have a long history of development with the Eclipse jdt.core plug-

in and they are written to be executed as JUnit tests instead of JUnit plugin tests,

which are created specifically for Eclipse plug-ins. Other failing tests that are ex-

cluded from the experiments either have fewer than three affecting changes or have

test failure caused by changes other than a source code edit. Table 6.2 shows the

version pairs that contain failing tests and the representative test method used in the

experiments. The column “# AC” indicates the number of affecting changes obtained

from Chianti. A total of 31 failing tests have been identified and analysed in our

experiments: two from the daikon.test.diff package of Daikon 2002, eleven from

the tests.compiler.parser (or parser) package of Eclipse jdt.core, and eighteen

from tests.compiler.regression (or regression) of Eclipse jdt.core. Five out

of eleven failing tests in the parser package have over 140 affecting changes. Six out of

eighteen failing tests in the regression package have twenty or more affecting changes.

It is clear from Table 6.2 that the number of affecting changes can be too high for

easy manual exploration. From the results of the experiments, there is evidence that the

affecting changes set alone is not adequate for constructing valid intermediate versions.

In Figure 6.3, the original sizes of affecting changes sets from the 31 failing tests are

grouped into 3 categories: small: with 3 to 11 affecting changes; medium: 13 to 74;

large: over 140. Twenty-two out of these 31 failing tests need to have non-affecting

changes dragged into their to-be-applied lists. On average, the number of the dragged

in changes increases with the number of affecting changes, indicating an increase in

syntactic dependences of affecting changes on non-affecting ones. Most of these non-

affecting changes are dragged in due to buddy expansion. Anonymous expansion occurs

only for 1 failing test.

All tests except seven benefited from the reductions of buddies and implicit con-

structors, effectively reducing the number of affecting changes to a smaller number of
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Index Package Version Pairs Failing Test Case with Method # AC

1 daikon.test.diff Daikon Nov 11-19 MinusVisitorTester.testMinus() 36
2 XorVisitorTester.testXor() 37

3 parser jdt.core 2003 Jan 21-22 CompletionParserTest.testDB 1FHSLDR() 164
4 CompletionParserTest.testV 1FGGUOO1() 146
5 CompletionParserTest.testZA 1 142
6 jdt.core 2003 Jan 22-23 CompletionParserTestKeyword.test0026() 6
7 jdt.core 2003 Feb 14-15 FieldAccessCompletionTest.testArrayAccess() 11
8 jdt.core 2003 Jun 24-25 DietRecoveryTest.test62() 3
9 jdt.core 2004 Sep 8-9 ComplianceDiagnoseTest.test0043() 3

10 jdt.core 2004 Sep 27-28 ComplianceDiagnoseTest.test0047() 5
11 jdt.core 2004 Nov 19-20 ComplianceDiagnoseTest.test0005() 153
12 SourceElementParserTest.test19() 144
13 jdt.core 2004 Dec 8-9 AnnotationDietRecoveryTest.test0005() 4

14 regression jdt.core 2004 Jan 13-14 JavadocTestOptions.
testInvalidTagsRefMethodErrorTagsPublic() 74

15 jdt.core 2004 Mar 04-05 JavadocTestForClass.test002() 13
16 jdt.core 2004 Mar 19-20 AssignmentTest.test002() 5
17 jdt.core 2003 Mar 31-Apr 01 DeprecatedTest.test1() 43
18 jdt.core 2004 Apr 10-11 ClassFileReaderTest.test002() 36
19 jdt.core 2004 Apr 13-14 ClassFileReaderTest.test002() 27
20 jdt.core 2004 Jun 08-09 Compliance 1 3.test77() 13
21 Compliance 1 3.test78() 11
22 jdt.core 2004 Jun 09-10 Compliance 1 3.test77() 9
23 Compliance 1 3.test78() 10
24 jdt.core 2004 Jul 08-09 JavadocTestMixed.testBug62812() 6
25 jdt.core 2004 Jul 09-10 LookupTest.test046() 16
26 jdt.core 2004 Jul 21-22 TryStatementTest.test023() 16
27 jdt.core 2004 Aug 23-24 ClassFileReaderTest.test048() 8
28 jdt.core 2004 Nov 16-17 Compliance 1 3.test089() 13
29 jdt.core 2004 Nov 18-19 JavadocTestForMethod.test034() 36
30 jdt.core 2004 Nov 29-30 AssignmentTest.test017() 11
31 jdt.core 2004 Nov 30-Dec 01 ClassFileReaderTest.test058() 20

Table 6.2: Overview of Version Pairs with their Failing Tests

# of Affecting # of Tests Avg. # of
Category Changes # of Tests With Dragged In Dragged In Changes

Small 3 to 11 13 7 0.7
Medium 13 to 74 13 10 7.7
Large 142 to 164 5 5 24.6

Table 6.3: Relationship of Affecting Changes and Non-Affecting Changes Dragged into
their To-Be-Applied Lists
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editable changes. Recall that these editable changes are the ones that are presented

to the user for exploration. In Table 6.4, the average sizes of the affecting changes

and editable changes sets per failing test in each category are listed. Interestingly, the

percentage of reduction increases with sizes of affecting changes. Also, the majority of

the reduction is due to buddies as shown in the “Due to Buddy Reduction” column.

Overall, there is a 25% size reduction.

Avg. # of Avg. # of Percent of Due to Buddy
Category Affecting Changes Editable Changes Reduction Reduction

Small 7.15 6.38 10.7% 90.9%
Medium 29.23 22.77 22.1% 87.9%
Large 149.80 106.80 28.7% 96.3%

Table 6.4: Summary of Affecting Changes and Editable Changes

Only two failing tests have completely independent affecting changes, where each

to-be-applied list contains only one affecting change itself. The rest of the failing tests

have some form of dependences among their affecting changes. In addition, there seems

to be a correlation between the average size of the to-be-applied lists and the size of

the affecting changes sets as shown in Table 6.5. The sizes of the to-be-applied lists

reported in this table are collected after buddy and mapping reduction. The larger the

sizes of the to-be-applied lists means that more editable changes are dependent upon

each other. In some situations, changes can form dependence cycles which result in

fewer valid compilable intermediate versions. Two out of the five tests in the “Large”

category contain exceptionally large dependence cycles among their editable changes;

these editable changes are prerequisites of one another, and the sizes of their to-be-

applied lists are 114 and 120 respectively.

Category Avg TBA Max Range of TBA

Small 1.57 1 to 3
Medium 2.90 2 to 25
Large 52.54 25 to 120

Table 6.5: Summary of Sizes and Ranges of To-Be-Applied Lists
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6.1 Locating the Failure-Inducing Changes Set (FICS)

The most interesting result of using Crisp is the fact that it identifies multiple failure-

inducing changes (see Section 5.4). Out of the 31 failing tests, only 20 of them have

a single explicit failure-inducing change. The remaining 11 failing tests have multi-

ple changes in their FICS. Among them, 6 failing tests have multiple explicit failure-

inducing changes, 4 have multiple implicit failure-inducing changes, and 1 contains

multiple dependent failure-inducing changes. Although it is possible for failing tests to

have more than one type of failure-inducing change, none of the tests in our experiments

have multi-type FICS. Figure 6.1(a) shows the size of the FICS for all the failing tests.

Based on the results of the experiments, the sizes of the FICS sets do not appear to

have a direct relationship with the number of the affecting changes or editable changes.

This is reflected in Figure 6.1(b) in which most of the failing tests that are affected

by a large number of changes have a single failure-inducing change. In Figure 6.1(c),

the sizes of the FICS are listed in comparison to the average number of affecting and

editable changes. Note that the FICS of size two corresponds to the smallest sets of

affecting and editable changes. Neither does the average sizes of the to-be-applied lists

provide an indication as to the resulting size of the FICS. Only one in 31 failing tests

with multiple FICS of size 8 has an unusual high average size for its to-be-applied lists.

On average, the size of the FICS is about 5.7% of the size of editable changes

sets generated. Crisp improves considerably over the focus provided by Chianti which

selects the affecting changes from all the changes in an edit. These results show that

Crisp can be a viable solution to focus programmers on the few changes that are relevant

to the causes of failure.

Of all the failing tests, locating the failure-inducing changes in

CompletionParserTest.testDB 1FHSLDR() in version pair jdt.core 2003 Jan 21-22

was the most tedious if done semi-automatically. First of all, the number of affecting

changes, (164), is the highest among all the failing tests that were identified. Second,

all of the 3 changes in the FICS are implicit. Finally, all the changes come from the
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CompletionParser and its parent AssistParser class that contains multiple affect-

ing changes. The fact that only these 3 are failure-inducing is not obvious. Without

an automatic algorithm, the only other way to locate these changes efficiently is to

use heuristics and hope that all of these changes are ranked in the first few that the

programmer should explore.

The other interesting outcome of the experiment comes from the failing test

DeprecatedTest.test1() in version pair jdt.core 2003 Mar 31-Apr 01 where there

are eight failure-inducing changes out of 43 affecting changes. Thirty-five non-affecting

atomic changes are dragged into the to-be-applied lists due to buddy and anonymous

expansion. All of the eight failure-inducing changes are related to a change of type

hierarchy (CTD) of an abstract class AbstractVariableDeclaration. Among them,

seven form a cycle of dependence where each has a to-be-applied list that contains the

other 6 changes as prerequisites. All these changes are considered dependent failure-

inducing changes as Crisp is incapable of applying them separately. The eighth change

is also considered a dependent failure-inducing change since its prerequisites set contains

the other seven changes. In other words, these eight changes are inter-dependent failure-

inducing changes. Intuitively, all syntactic changes due to a type hierarchical change

have to be applied together.

6.2 Efficiency of the Automatic Algorithm

The automatic algorithm systematically locates the FICS with minimal input from the

user. The efficiency of the algorithm depends mainly on six factors:

1. The execution time of the test case in JUnit;

2. The program build time after each application or undo of changes;

3. The number of editable changes;

4. The rank of the failure-inducing changes within the editable changes;

5. The size of the failure-inducing changes set;
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6. The nature of the failure-inducing changes.

The execution time of a JUnit TestCase depends not only in the nature of the test

methods but the number of test methods that are within it. Although Chianti and

Crisp both perform analysis at a test method level, the current interface between Crisp

and JUnit does not isolate the execution of a single test method within a TestCase.

All test running times presented here are therefore, the running time of the TestCase

containing the failing test method. This basically mimics the way a user would use

Crisp in the semi-automatic interactive mode. After the user instructs Crisp to apply

or undo a set of changes, he/she has to invoke JUnit to re-run the TestCase and observe

the result of the test method(s). The average time to execute the TestCase of interest

in Daikon is less than 1 second, in the Eclipse jdt.core parser package is less than

3.5 seconds, and in the Eclipse jdt.core regression package, 32 seconds.

The number of times a TestCase needs to be executed within the automatic algo-

rithm depends on the ranking of the FICS within the editable changes as well as the

size of the FICS set. Since the automatic algorithm begins by undoing a change from

all the applied editable changes, a high ranking of the FICS in the algorithm should

yield better efficiency. Hence, the quality of change rankings can significant affect the

efficiency of the algorithm.

The program build time depends on the number of compilation units that have

been altered from one intermediate version to the next, as well as whether import

statements need to be added due to compilation errors caused by unknown types. This

could potentially result in the algorithm prompting and waiting for user’s input when a

specific import statement is needed for a type name that is found in multiple packages

of the build path. During the 31 runs of the automatic algorithm, there were three

occasions when Eclipse prompted for such input. Every application and undo of changes

may require two program builds: one to build after the changes are applied/undone,

the other to build after organizing the import statements if necessary. Since the second

build may not happen, the total number of builds should be between one to two times

the number of test runs. In other words, the number of builds also depends on the

rankings and the size of the FICS set.
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For each test result that changes from fail to pass, Crisp has to apply the changes

in the FICS set and then apply the changes in the complement set to confirm that

the FICS set is complete. Hence, no matter what the rankings of the FICS within the

editable changes, the number of editable changes certainly has an effect on the total

execution time of the algorithm.

The relationship among the multiple changes in a FICS affects the efficiency of the

algorithm in different ways. Explicit failure-inducing changes, the simplest among the

three types of failure-inducing changes, cause the algorithm to continue until it finds a

complement set that does not fail the test. Implicit failure-inducing changes certainly

require more bookkeeping and processing time since the ordering of the editable changes

needs to be revised in order to continue the exploration systematically. On the other

hand, multiple dependent changes in a FICS set that resulted from expanding the FICS

set to calculate a valid complement set may not affect the running time of the algorithm

significantly. More dependency among changes means fewer valid intermediate versions

to explore, which in turn results in fewer test executions during the algorithm.

All the experiments are performed on a machine with Pentium IV 2.8 GHz processor

and 1.5G memory. The response time (from the time the user clicks the “Locate FICS”

button in the user interface to the time Crisp reveals the FICS on the screen) of the

algorithm ranges from 25 seconds to 22 minutes for our test data. The majority of this

response time is spent in re-executing the TestCases and building the programs after

changes are added or taken out. On average, the total time spent in executing the tests

constitutes 56.7% of the response time while building the programs constitutes 19.9%.

The response time of using the automatic algorithm to locate the FICS for the 31

identified failing tests is shown in Figure 6.2. It is clear that in general, total response

time increases with total test running time. Since the total build time depends on the

number of compilation units affected and whether or not import statements need to be

organized, it does not appear to correlate with total response time.

When the total test run and program build time dominates the total response time, it

is interesting to understand how long a single test run and program build takes for each

failing test. Figure 6.3 shows the average test run time which is the total test run time
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divided by the number of application/undoing of changes, for each test. Similarly, the

average build time is the total build time divided by the number of application/undoing

of changes. The results are presented for all 31 failing tests ordered by their total

response time, same as what is shown in Figure 6.2. It is clear that many tests take

more than 30 seconds to run. Specifically, there are five tests that take more than 50

seconds to execute. For the failing test Compliance 1 3.test78() in the jdt.core

Jun08-09 Version pair which contains only eleven affecting changes, the reason why

it may take more than 4 minutes to locate the FICS is that it takes almost a minute

just to run the test itself! Again, the average time to build fluctuates from one failing

test to the other. A spike in the average build time sometimes means that the user is

being prompted for input to select specific import statements during the build of the

program.
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From Figures 6.2 and 6.3, the average test running time and average build time are

under ten seconds for the first eleven failing tests with total response time under two

minutes. Interesting observations can be made on the relationship between the total

response time and other factors that affect the efficiency of the algorithm within this

two-minute range. Figure 6.4 shows the relationship between the total response time

and the size of the editable changes set multiplied by the size of the FICS. Within

the two-minute range, the automatic algorithm is capable of locating the FICS for two

failing tests that have almost 100 editable changes. There are also two failing tests that

contain multiple failure-inducing changes: one FICS contains explicit changes and the

other FICS contains implicit changes. This shows that the algorithm can be efficient

for an interactive tool provided the test run time does not exceed a few seconds.

For the remaining failing tests, all of them with more than 100 editable changes

have a total response time of under seven minutes. The most difficult failing tests that

we mentioned earlier with 111 editable changes and a FICS that contains three implicit

failure-inducing changes, was completed in 255 seconds. The failing test that contains

a cycle of eight changes in its FICS with 40 editable changes was completed in 145

seconds. In these two cases, the test execution time is either exceptionally small, or the

number of times the test is executed is small. Hence, the total response time can be

affected by factors other than the sizes of the editable changes set and FICS.

So far the parameters discussed are determined by the nature of the program and

the failing tests: the duration of test execution, the program build time, and the nature

and sizes of the editable changes set and the FICS. The one parameter that Crisp can

improve upon in the automatic algorithm is the ranking of the editable changes. This

ranking affects the algorithm in two ways. First, the higher the ranking of the FICS,

the sooner the algorithm detects a change of test results when it begins to undo the

changes, and the fewer editable changes it needs to explore. This efficiency can easily be

leveraged when there is more than one change in the FICS for the failing test. Second,

the fewer the number of editable changes to explore, the fewer test runs and program

builds are necessary to observe whether there is a change in the test result. When the

average time for running the tests and building the program is significant, an effective
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ranking heuristic becomes essential for an interactive tool like Crisp.

The default ranking used in this section is based on the sizes of the to-be-applied

lists. As mentioned before, the main reason for using this ranking is the fact that it

is readily available as a result of compiling the to-be-applied lists. The other reason

is that it approximates the minimum number of changes that are needed for forming

the intermediate version for each iteration. Having these two advantages does not

necessarily mean that this type of ranking is effective. Since the total response time

of the experiment ranges widely, it is interesting to understand the importance of a

ranking based on the nature of the failing tests. The 31 failing tests are extracted

from 3 very different test programs. Daikon has two failing tests for which Crisp is

able to locate the FICS automatically in 36 and 66 seconds respectively. However,

the response time per failure-inducing change does not vary significantly for these two

tests. The average test run time is about 0.6 seconds. Crisp needs to explore 15

out of 24 editable changes to locate the single failure-inducing change in one case; 22

out of 25 in the other case where the FICS contains two changes. Even though the

ranking is far less than optimal, the low average run time and build time makes the

response time of the algorithm acceptable, when compared to the exploration time in

a semi-automatic setting. In such a setting, the time for exploration involves having

the programmer review the to-be-applied lists and select the various UI buttons for

applying the changes, invoking JUnit, as well as calculating the complement sets.

In the Eclipse jdt.core parser and regression test programs, response time

varies significantly. For the parser package, response time ranges from 25 to 399

seconds; on the regression package, 25 to 1,323 seconds. The expensive running

time of the failing tests in the regression package underscores the importance of an

effective ranking heuristic. The product of the number of editable changes and the size

of the FICS has no direct impact on the total response time in the automatic mode (see

Figure 6.4). If we multiply this product by an additional factor, the rankings of the

failure-inducing changes (in terms of the percentage of editable changes explored), the

resulting value referred to as REF , seems to have an impact on the number of times a

test is executed. In Figure 6.5, the REF value is plotted against the logorithm of the
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number of test executions for both the Eclipse jdt.core regression and parser

test packages. It is noticeable that as the REF value increases, the number of test runs

increases for the regression test package. The only exception in the trend is when

REF is around 64. This point corresponds to a failing test with eight dependent changes

in its FICS. Since these eight changes were found at the same time by expanding the

FICS set to calculate a valid complement set, the algorithm does not have to traverse

the editable changes eight times to locate the entire FICS. Also, the system recorded

that eight out of forty editable changes have been explored when in fact, only two

editable changes truly have been explored. The other six are considered to be in the

FICS because of the dependence cycle.

The effect of REF on the total response time is shown in Figure 6.6. As expected,

the total response time also increases as the REF value increases for the regression

test package. The exceptions are failing tests that have very few editable changes

or an exceptionally small duration running time. In general, the algorithm explores

fewer than 50% of the editable changes in ten out of the eighteen failing tests in the

regression test package. However, the failing tests with the worst response time per

failure-inducing change are those for which the algorithm explores more than 50% of

the editable changes due to poor ranking, despite below average test running time.

In contrast, the parser test package exhibits different outcomes. In this package,

test runs usually occur fewer than 10 times despite significant changes in the REF

value. In Figure 6.5, the only obvious effect of the REF value on the number of test

runs pertains to a failing test that has 111 editable changes and a FICS of size three.

For these parser failing tests, their REF values have some, but limited effects on the

total response time as shown in Figure 6.6. In fact, the total response time is dominated

by the average test run time instead of the REF values for most of the failing tests in

this test package. Unlike the regression package, the failing tests with the worst

response time per FICS in this package have higher than average test execution and

build times. Finally, four out of the eleven parser tests have fewer than 50% of their

editable changes being explored. This indicates that the size of the to-be-applied list

ordering heuristic is less effective for the parser than the regression tests.
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In summary, using a simple ranking heuristic such as the size of the to-be-applied

lists results in 14 out of 31 cases when the automatic algorithm explores fewer than 50%

of the editable changes, or 8 out of 31 instances when fewer than 25% of editable changes

are explored. An ineffective ranking does not necessarily result in excessive response

time; it has to be coupled with other factors such as the nature of the programs, the

duration of the test run and build time, the number of editable changes to explore, as

well as the size of the FICS.

6.3 Comparison of Heuristics

Aside from providing an automatic algorithm to locate failure-inducing changes, users of

Crisp can explore the impact of applying affecting changes in different orders (or rank-

ings) in the semi-automatic mode. In this mode, the users are given different heuristics

to view the editable changes. As discussed in previous chapters, the default view for

the changes in Crisp is by the size of the to-be-applied list (i.e., the prerequisite-size

heuristic). In general, addClass(AC) and addField(AF) changes have fewer prerequi-

sites than the addMethod(AM) or changeMethod(CM) changes; therefore, ACs and

AFs are listed first when Crisp presents the changes using this heuristic. Also imple-

mented in Crisp is the random heuristic. Using the pseudo-random number generator

provided by Java, this heuristic orders the editable changes without any consideration

of their properties.

To compare the two heuristics, the automatic algorithm is re-executed for all the

31 failing tests using the random heuristic to rank the editable changes instead of the

prerequisite-size heuristic. Table 6.7 shows the results of these two heuristics in terms

of the number of editable changes that are explored before the automatic algorithm

terminates as well as the total response time. Using the same categories used in Ta-

ble 6.3, Table 6.7(a) lists the differences of the heuristics by categories. Other than the

thirteen failing tests with “Small” number of affecting changes, the prerequisite-size

heuristic appears to perform a little better than random. On average, it traverses a

fewer number of editable changes before locating the failure-inducing changes. This
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Category Avg # of Editable Changes Explored Avg Total Response Time (in sec)

Random Prerequisite-Size Random Prerequisite-Size

Small 50 53 2,498 2,919
Medium 174 163 6,964 6,316
Large 321 272 1,246 1,009

(a) Comparison Based on Category

Package Avg # of Editable Changes Explored Avg Total Response Time (in sec)

Random Prerequisite-Size Random Prerequisite-Size

daikon.test.diff 6 37 69 101
parser 338 292 1,707 1,412
regression 203 159 8,932 8,731

(b) Comparison Based on Different Packages/Programs

Figure 6.7: Differences Between the Random and Prerequisite-Size Heuristics

directly translated into a better total response time than the random heuristic. In Ta-

ble 6.7(b), the differences are listed based on the origin of the failing tests. The random

heuristic performs extremely well for the two tests in Daikon. However, the reverse is

true for the parser and regression packages of Eclipse jdt.core. More interest-

ingly, the gains of exploring many fewer editable changes (over 20% of gain) using the

prerequisite-size heuristic do not translate into any significant gains in total response

time (less than 2.3% of gain). Again, this could be attributed to the dominance of the

test run and build time of the program. In fact, the total response time for locating

the FICS for all these 31 failing tests using these two heuristics differs by only 5%, not

significant to draw conclusion as to which heuristic is more efficient when used by the

automatic algorithm.

Finally, Figure 6.8 shows the detailed differences of the number of changes explored

between the two heuristics. The positive differences signified that the prerequisite-size

heuristic performed better than random; the negative differences signified the random

heuristic did better than prerequisite-size. In 15 out of 31 cases, the prerequisite-size

heuristic explored fewer editable changes. The prerequisite-size heuristic is also more

efficient in cases where there are multiple failure-inducing changes (the gray bars). One
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simple explanation is that it is not likely that more than two failure-inducing changes

are randomly ranked close to one another. One conclusion that can be drawn directly

from Figure 6.8 is that neither the random or the prerequisite-size heuristic provides

consistency in suggesting the most likely FICS to users. Especially in semi-automatic

mode with a high number of editable changes, a more effective heuristic is needed to

locate the FICS efficiently.
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Chapter 7

Limitations of Crisp

Using syntactic dependences to create intermediate versions for isolating fault-inducing

changes can be an effective step in the beginning of the debugging process. However,

this methodology works on certain assumptions and exhibits some limitations that are

discussed in the following sections.

7.1 General Assumptions for Crisp

The test suite that exercises the original and edited versions of a program needs to be

comprehensive such that edited portion of the code base is touched by the tests. Crisp

cannot be used as a debugging tool until a stable regression test suite is available for

the entire program.

Since Crisp applies changes at the method level, it has assumed that the sizes of

methods are in general small enough such that identifying a method is helpful in the

debugging process. For programs where methods are monolithic and changes occur only

in a few places, Crisp may provide little assistance by identifying a changed method as

failure-inducing.

Since Chianti only decomposes edits of the source code, both Crisp and Chianti

can identify affecting changes and failure-inducing changes based on the changes in the

source code. Changes to the test inputs, the configuration of the program, as well as the

execution environment are not captured under this methodology. In fact, some of the

failing tests discovered are excluded from our experimental results because the failures

were not caused by the source code edit.
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7.2 Failure-Inducing Changes Versus Bugs

Being able to pinpoint where unexpected behavior manifests itself does not necessarily

mean that the program bugs are located in the same place. Many approaches have been

proposed, which are discussed in the next chapter, to locate software bugs. Most of

these approaches do not scale to large programs and/or report significant false positives.

Crisp provides a mechanism for focusing programmers on a few places where they can

begin a detailed analysis. However the debugging process should not stop after Crisp

suggests the set of failure-inducing changes. On the other hand, unexpected behavior

does not necessarily translate into undesirable behavior. During our testing of Crisp,

only a few versions of Daikon and Eclipse jdt.core contained failing tests from the

repository; the reason being that some of the tests were altered from one version to the

other. This indicates that in practice, the regression test suite evolves with the software

program. Thus, certain unexpected behavior may actually be desirable after all.

7.3 Intermediate Versions

To create compilable intermediate versions based on dependences is not trivial. In [12],

we have listed a couple of limitations of Crisp when handling changes to the type hi-

erarchies as well as the positioning of fields that depend on each other. Since then, we

have implemented a new atomic change, ChangeTypeHierarchy (CTD) that captures

any textual changes when a subclass extends a different superclass or implements a

different interface. One of the failing tests in our experiment contains such changes and

Crisp was successful in generating valid intermediate versions using this ChangeType-

Hierarchy change and its dependences.

Dependences among changes are captured during the traversal of the abstract syn-

tax trees of the original and edited programs; they are syntactic and fit well into the

four categories of dependences defined in Section 2.2. However, the current depen-

dences calculated by Chianti and augmented by Crisp do not capture certain semantic

dependences.

The code presented in Figure 7.1 illustrates a change in the initialized values of
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public class A {
private int x = 1;

private int one = 1;

private int two = 2;

private int one = 2;

private int two = 1;

public String foo() {
switch(x) {
case one: return ‘‘one’’;

case two: return ‘‘two’’;

default: ‘‘none’’; }
}

}
public class TestA extends TestCase {
public void test() {

A a = new A();

Assert.assertEquals(a.foo(),’’one’’); }
}

Figure 7.1: Original Program (contains the struck out code) and Edited Program (con-
tains the boxed code)

member fields A.one and A.two. TestA.test() passes in the original program but fails

in the edited one. Although there is no code change within the method A.foo(), Chi-

anti accurately captures the affecting changes CFI(A.one) and CFI(A.two) by using

the mapping dependences between A.one, A.two and A’s implicit constructor init().

However, none of the dependence categories captures the value dependences between

A.one and A.two. A.one cannot change its value from 1 to 2 without the compiler com-

plaining that there are duplicate cases among the case statements. These two changes

need to be applied to the original program together, but understanding their semantic

relationships is beyond our current methodology.
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Chapter 8

Related Work

This chapter summarizes related work in fault localization that had been extensively

discussed in [12]. For related work in change impact analysis and Chianti, please refer

to [15], [14], [13], [5] as well as [12].

Other areas of research relevant for comparison with Crisp are delta debugging,

techniques for avoiding recompilation, and fault localization.

8.1 Delta Debugging

In the work by Zeller et al. on delta debugging, the reason for a program failure is iden-

tified as a set of differences between program versions [18] that distinguish a succeeding

program execution from a failing one.

A set of failure-inducing differences is determined by repeatedly applying different

subsets of the changes to the original program and observing the outcome of executing

the resulting intermediate programs. By correlating the outcome of each execution,

with the set of changes applied, one can narrow down the set of changes responsible for

the failure. Delta debugging has been applied successfully to very large programs [18].

In the examination of differences between program versions, both delta debugging

and our work aim at identifying failure-inducing changes; however, there are several

important differences between the two approaches. First, delta debugging searches the

entire set of changes to find the failure-inducing changes. In our approach, we first

obtain the set of affecting changes for a failed test with Chianti, and then generate the

intermediate versions of programs just from this small set of changes. By associating

each test with its corresponding affecting changes, a large set of uncorrelated changes

can be ignored, so that a programmer can focus on only those changes related to the
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given test. This is extremely useful when re-execution of the regression test suites

is costly. Second, delta debugging builds the intermediate versions by only using the

structural differences between succeeding and failing program executions (e.g., chang-

ing one line or one character to generate an intermediate program version) and it is

language-independent. Our model of dependences between atomic changes ensures that

Crisp only builds meaningful intermediate versions of Java programs, which reduces the

number of intermediate programs that need to be constructed. When a programmer

selects a set of interesting changes, Crisp automatically augments these changes with

all the prerequisites necessary to build a syntactically valid program version. Locat-

ing multiple failure-inducing changes using delta debugging has exponential complexity

in the worst case, since all combinations of changes need to be explored one by one.

By using change dependences and complement sets, Crisp is able to locate multiple

failure-inducing changes efficiently. Unlike delta debugging, Crisp cannot guarantee

the identification of a minimal set of failure-inducing changes due to the presence of

inter-dependent failure-inducing changes.

8.2 Techniques for Avoiding Recompilation

Existing techniques to avoid unnecessary recompilation use dependences between com-

pilation units of a program to calculate which other units (i.e., clients) might require

recompilation. This may be necessary, for example, if a specific compilation unit that

defines functions or types is changed. This calculation uses inter-unit dependences that

can be supplied by the programmer (i.e., as in the UNIX make [8]) or based on derived

syntactic or semantic relationships. These dependences, describing clients of changed

program constructs, are incomparable to the dependences used in Crisp that capture

necessary additions to user-selected fine-grained changes required to form a minimal

syntactically valid edit, because each captures different information.

Here, we summarize briefly several approaches to avoiding recompilation as repre-

sentative of this research area. These techniques differ in their definitions of dependence

and the granularity of the compilation units used, (i.e., files, classes or modules [4, 10]).
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The earliest work was smart recompilation by Tichy [16, 1] which defined depen-

dences between compilation units, induced by Pascal include files that contained global

constants and type definitions. Syntactic dependences were constructed between in-

clude files and those Pascal code files (i.e., ∗.p files) which contained references to the

include-defined constructs (e.g., types, constants). Tichy et. al later compared several

smart recompilation approaches [1] empirically to quantify their benefits on several

Ada programs, finding a savings of approximately 50% of the recompilation effort.

Burke and Torczon [3] described semantic dependences between procedures derived

from interprocedural dataflow information for Fortran programs. Their dependences

were calculated using the alias, side-effect, reference and constant-value information as-

sociated with each subroutine, assuming that this information might have been used to

enable optimizations during compilation. Their technique was capable of fine-grained

recompilation decisions on a procedure level. More recently, Dmitriev [7] used infor-

mation provided in Java class files to calculate syntactic dependences between program

constructs (e.g., fields, methods). His approach, called smart dependency checking, was

to aggregate these dependences in order to ascertain the clients of a class (i.e., classes

referencing members of another class). Thus, when the code for a class changes, its

client classes are marked for recompilation. This automates the creation of depen-

dences which can be used with make for Java programs.

8.3 Fault Localization

Program slicing [17] has been suggested as a technique for localizing faults: Computing

a slice with respect to an incorrect value determines all statements that may have

contributed to that value, and will generally include the statement(s) that contain the

error. Since slices may become very large, techniques such as program dicing [11] have

been developed, where a slice with respect to an erroneous value is intersected with a

slice with respect to a correct value. DeMillo et. al. [6] suggest critical slicing as a

technique to localize faults in a program. A statement is critical if, without it program

execution reaches the same failure statement sF , but with different values for referenced

variables. They report that their technique is able to reduce relevant program size by
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around 64% and retain the failure-inducing statement in 80% of the cases. Bunus

and Fritzson [2] suggest a semi-automatic debugging framework for equation-based

languages used to model physical systems. Their approach uses program slicing and

dicing on a combination of execution traces, dependence graphs and assertions to help

programmers find and correct bugs in an interactive debugging session. Gupta et. al. [9]

uses delta debugging to simplify or isolate inputs that are failure-inducing, and then

uses forward and backward dynamic slices to suggest a set of statements that could

potentially contain the fault.

There are two major differences between our approach and slicing’s approach to

finding faults. Program slicing is a fine-grained analysis at the statement level that can

be used to inspect a failing program to help locate the cause of the failure. Our work

focuses on failures that occur due to a specific edit between program versions, and our

analysis is at the method level.
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Chapter 9

Conclusion

This thesis describes Crisp, a tool to automatically construct intermediate versions of

a program that has been edited, in order to find those parts of the edit that have

caused a test method within a test suite to fail. Crisp is built using results generated

from a change impact analysis tool, Chianti. Chianti provides Crisp with a set of

affecting changes that affects the behavior of a failing test as well as the dependences

among these changes. Then, Crisp automatically constructs the to-be-applied lists for

these affecting changes. In the semi-automatic mode, the programmer is provided

with a graphical user interface where she can choose interesting affecting changes to

be applied to the original program, thereby creating various intermediate versions of

the program. Each of these intermediate versions is free of compilation error and can

be exercised by the failing test. Crisp also automatically calculates the complement

set for a given set of failure-inducing changes. The complement set can be applied to

the original program to determine whether all the failure-inducing changes have been

identified. Finally, the implementation of an exploration algorithm in Crisp provides

an automatic mode for programmers in which the set of failure-inducing changes can

be determined with minimal user input. This eliminates the tedious task of exploring

individual change when the affecting changes set is large and there may be more than

one failure-inducing changes.

Experiments using Crisp have been performed on two moderate-sized Java pro-

grams, Daikon and the Eclipse jdt.core. Among the versions extracted from the

repository history of these two programs, 31 unique failing tests were identified. Us-

ing Crisp, failure-inducing changes were identified for these failing tests without any

prior knowledge of the source code. The size of the failure-inducing changes set ranged
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from one to eight. Twenty-eight out of 31 failing tests had one or two failure-inducing

changes. On average, the size of the failure-inducing changes set is about 5.7% of the size

of the editable changes set provided by Crisp, which in turn has been reduced by 25%

from the original affecting changes set provided by Chianti. Thus, Crisp can achieve

an order of magnitude reduction in the number of changes to be examined, a critical

result to the programmer who is dealing with large code base. From a performance

standpoint, the automatic algorithm has provided response time that is consistent with

the execution time of the failing test; however, the performance of the algorithm can be

further improved by an effective ordering heuristic. The results of the experiments also

reveal some of the limitations of syntactic dependences. Investigation into the semantic

dependences among the affecting changes will be part of the future work.
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