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ABSTRACT OF THE DISSERTATION

A Practical Method for Developing Context-Sensitive Residential Parking Standards

By MATTHEW RAYMOND CUDDY

Dissertation Director: 

David Listokin

Responsibility for establishing minimum parking requirements for new 

development largely falls on local governments.  Unfortunately, many municipalities do 

not create parking standards that are appropriate to the various uses and locations that 

they regulate.  Local parking standards are rarely derived from parking utilization studies, 

and are instead based on small, nationwide samples drawn from varying land use contexts 

offering varying transportation options.  The standards applied to a particular 

development often do not depend on its physical environment.

The present research takes an important step in improving parking regulation:  it 

develops a method for computing context-sensitive residential parking standards.  First, it 

reviews transportation analysis literature to discern the latest thinking on the relationship 

between vehicle ownership—the main component of residential parking demand—and 

environmental and demographic variables.  Second, it translates these lessons into a form 

appropriate for land use regulation.  Third, it proposes and validates a method for 

estimating household vehicle ownership using only regulation-appropriate variables.
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The proposed method, called the VULO method, for Vehicles from Unit choice 

with a Location-based Offset, is a useful tool for evaluating current residential parking 

standards and developing new standards.  It is based in the latest understanding of the 

relationships between residential unit choice and vehicle ownership.  It is procedurally 

simple:  use microdata to estimate household vehicle ownership, and correct that estimate 

to align the estimated and actual average vehicle ownership at the Census block group 

level.  It is designed to use only publicly available data, allowing planners throughout the 

US to implement it immediately.  Finally, it offers better estimates of household vehicle 

ownership than alternative methods.

The VULO method offers the promise of rationalizing residential parking 

standards throughout the US.  If implemented, it could reduce residential parking 

oversupply, especially in infill situations.  In turn, this should result in accelerated infill 

development, less expensive housing, and more pleasant urban environments.  At a 

minimum, it will advance the discussion of whether and how to improve parking 

standards.
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Chapter 1. Introduction and summary

Off-street parking standards specify the number of parking spaces required by a 

municipality for a particular residential development.  They are designed to ensure that 

new development does not impose undue costs on the general public: spillover parking1 

and traffic congestion due to the use of on-street parking (Willson, 1995; 2000).  These 

parking standards affect parking supplies directly and indirectly:  They influence the 

developer proposing a new project to a planning board, and they influence the planning 

board in evaluating the application.  Also, a developer's lender usually wants to see 

plenty of parking in a project it finances, to ensure its viability (EPA, 1999:2; Schwanke, 

2003:79; Stein Engineering, 1997:17), and local standards can be gauges of parking 

adequacy.  Parking standards hold substantial power to guide residential development.

The main goal of this research is to create a scientifically sound, practical method 

for forecasting household vehicle ownership to help in setting appropriate parking 

standards.  The method is intended to be immediately and broadly usable throughout the 

U.S.  This chapter sketches the relationship between this research and the use and impacts 

of parking standards in the U.S.  It concludes with a preview of the dissertation.

A brief history of U.S. parking standards

When automobiles first came into existence, curb parking was easy and free. 

Only the wealthy owned cars, and parked them at the curb in spaces also used for 

tethering horses (Kay, 2001).  As automobiles multiplied however, free parking became 

1This is the situation wherein residents or patrons park in a way that places unwanted demand on shared on-
street parking or in private lots.
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harder to find.  Drivers cruised the streets looking for vacant spots, wasting time and 

creating congestion.  The solution was to institute parking requirements as part of zoning.

The first off-street parking standard was promulgated in 1923, in Columbus, Ohio 

(Shoup, 2005: 607).  Los Angeles was the first major city to follow suit, in 1935 

(Ferguson, 2004).  However, the predominance of minimum parking standards appeared 

just after World War II.  Of 76 cities surveyed in 1946, 17 percent had standards; by 

1951, 71 percent of these cities had or were adopting them (Shoup, 2005:22).  Oakland, 

California, was among the late adopters, setting minimum parking standards for 

apartments in 1961 (Bertha, 1964).

Beginning in the 1960s, state and local governments have worked to reduce 

excess development standards, such as roads that were too wide.  Some trace this 

movement to the failure of urban renewal projects, growing environmental awareness, 

and later, the oil embargo in the early 1970s (Kay, 2001).  The continued study of off-

street parking standards and utilization is a part of that movement.  Ferguson (2004) cites 

seven reviews of parking standards published between 1964 and 1972.

The 1990s spawned a new perspective on parking and planning in general.  The 

well-regimented development engendered by old-fashioned zoning codes is decried as 

sprawl and damned by modern-day planners and scholars for its aesthetic, social, 

economic and health consequences.  The responses come in movements spanning 

architecture and planning, carrying various names—new urbanism, neotraditionalism, 

smart growth, and others.  The responses share a common thread.  They all involve 

reducing our collective dependence on automobiles.
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Accordingly, parking standards are among the zoning elements under attack.  The 

American Planning Association recently published The High Cost of Free Parking, the 

culmination of an planning professor's quest, begun in 1978, to debunk the idea that free 

parking is everywhere essential to business and prosperity.  The author, Donald Shoup, 

argues that the current practice of setting minimum parking standards subsidizes 

automobile use and contributes to sprawl (Shoup, 2005).

Improving versus abolishing parking standards

Why not abolish residential parking standards, then?  Why conduct research to 

refine them rather than to advocate for their elimination?  As a step toward eliminating 

standards, Shoup (2005) and Litman (2006) argue for unbundling the cost of residential 

parking—allowing residents to lease as many parking spaces as they choose for a fee 

separate from their rent.  This would allow existing parking spaces to be rationed by 

increasing prices, much as increasing parking meter fees in a commercial business district 

reduces street parking utilization rates or subsidizing commuting by transit decreases 

automobile commuting.

The main difference is in the time scale of the decisions in question.  For retail 

parking, a change in parking rates can almost immediately influence a shopper's choice 

about where to park or, with more lead time, what travel mode to use to reach the store. 

For employee parking, carpools or other alternate arrangements can be established over 

the course of days or weeks.  Residential parking demand, however, is driven by vehicle 

ownership.  Cars are expensive, and vehicle ownership habits are difficult to change.  The 

market for residential parking has relatively high barriers to entry and exit, which make it 
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a less theoretically perfect market than the markets for other parking, with the practical 

implication of making rationing by price difficult.  

While unbundled parking can be a goal to strive for, it is not the only response.  It 

confronts significant practical challenges, as regulators will be slow to absolutely 

eliminate parking standards—a radical change in practice.  Consider the example of 

shared parking, the idea that land uses with different parking demand time profiles can 

share parking lots.  Instead of each use having a dedicated lot sized to accommodate the 

projected peak parking demand, shared lots can be sized for the maximum aggregate 

demand of the uses, which is less than the sum of the peaks.  (See Figure 1.1 for an 

illustration2.)  The practice was formally established and endorsed by the Urban Land 

Institute in their 1983 publication, Shared Parking.  However, reviews of parking 

planning more than ten and twenty years later revealed that parking was rarely shared in 

practice (Institute of Transportation Engineers, 1995; M. S. Smith, 2005).

2Parking requirements for a restaurant with 10,000 sq. ft gross leasable area and an office building with 
400,000 sq. ft gross leasable area (by the author, using default data from ULI, 1983:86, for a weekday in 
June).

Figure 1.1. Shared parking analysis:  Parking requirements
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One of unbundled parking's proponents, Todd Litman (2006), calls for more 

accurate parking standards as a step preceding unbundled parking.  This is a more 

evolutionary approach, as contrasted to the elimination of residential parking standards or 

implementation of parking maximums, which is happening in very few urban areas 

(Millard-Ball, 2002).  Improved parking standards fit into the current development 

regulation process, and therefore hold the promise of making incremental yet important 

improvements in the near term.

Uncertainty and excess in parking standards

Problems with parking standards arise when they lead to too much or too little 

parking.  Unfortunately, planners are generally unsophisticated in setting parking 

requirements.  Despite parking researchers’ agreement that an array of local variables 

influence parking demand (ITE, 1995; CalTrans, 2002), planners tend to use “rules of 

thumb” to set standards (Willson, 1995).  A survey of the planning departments of 138 

southern California cities clarifies this finding (Willson, 2000).  The most common 

source of information to set minimum parking standards was a survey of nearby cities’ 

standards.  National standards were used almost as often.  Commissioning parking 

studies, the most promising approach for setting context-sensitive standards, scored only 

about one-tenth as important an approach as surveying nearby cities.  Planners appear 

overwhelmingly likely to use parking standards that are not comprehensively related to 

the project being regulated.

Planners cope with the imprecision in parking standards by erring on the side of 

oversupply.  Shoup (2005:81) reviews research showing that minimum parking 

requirements for office buildings often exceed the parking generation rates published by 
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the Institute of Transportation Engineers (ITE), which are based on measurements of 

peak usage across the nation.  Willson's (2000) survey of planners in southern California 

indicates that the planners are generally satisfied with their parking standards, while a 

sizeable minority express concern that they lead to parking undersupply.  Less than 3% of 

respondents report concern about parking oversupply.  Willson (2000) argues that 

planners are risk averse, and much more sensitive to the immediate costs of undersupply 

than to the more diffuse and delayed costs of oversupply, discussed below.   

Willson (2000) also reviews research that indicates important negative effects of 

excessive nonresidential parking standards.  For example, increasing the price of parking 

also increases transit use; given that oversupplying off-street parking makes pricing 

difficult, this suggests that oversupplying nonresidential parking increases auto use. 

Other research shows that minimum parking requirements often exceed measurements of 

peak parking demand and national standards.  Willson argues that negative impacts from 

parking oversupply combined with generous parking standards lead to regional costs.

Shoup and Willson's work focuses on nonresidential parking standards, for the 

most part.  Whereas excessive nonresidential parking standards may well encourage 

driving and disrupt the urban fabric, why are residential parking standards important? 

There are at least two good reasons to reduce excessive residential parking standards.

Impacts of excess parking supply

Bertha (1964) studied the implications of residential off-street parking 

requirements by examining apartment buildings built before and after the city of 

Oakland, California, first required off-street parking.  In June of 1961, apartment 

buildings in one multifamily zone were required to provide one off-street parking spot for 
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every dwelling unit, and those in another zone were required to provide 0.75 spaces per 

unit; before that, there was no such requirement.  Bertha considered 45 buildings 

permitted between June 1957 and June 1961, which had no parking requirement, and 19 

buildings permitted after the zoning change.  He analyzes development density, costs and 

revenues, and draws a number of conclusions.  After the zoning change, median 

development density fell and median number of units per development fell.  In an effort 

to command higher unit prices to maintain profitability in the face of greater land costs, 

developers increased their unit sizes but were unable to pass all added development costs 

to the consumer, and profitability fell.

Two of Bertha's results stand out as particularly important.  First, increasing 

parking supply decreases density.  Where land prices dictate surface parking, the parking 

reduces the effective development density and therefore the number of activities within 

walking distance of other activities.  Compounding the problem is the finding that people 

may be willing to walk less far through a parking lot than along a more pleasant 

streetscape (Parsons Brinckerhoff Quade and Douglas, 1996).

Table 1.1. Total cost estimates per parking stall (1997 US Dollars)
Surface Lot Above-Ground 

Multi-Level  
Structure

Below Ground

Land $6,300 $750 $0

Construction $2,750 $14,400 $28,000
Design, Contingency $500 $3,400 $6,600
Interest Payments* $8,400 $16,200 $30,250
Operating Costs* $1,750 $4,200 $4,200
Total $19,700 $38,950 $69,050
*The initial present value of a 24-year stream of costs.
Source: Adapted from Victoria Transport Policy Institute, 2006: Table 5.4-7
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Second, increasing parking supply decreases profitability, or conversely, increases 

costs.  Bertha (1964) found a loss in profitability as land costs were divided among a 

smaller number of units—a direct implication of decreasing density.  Added parking 

entails other costs as well.  See Table 1.1 for what may be conservative estimates of 

parking costs.  For some projects in New Jersey at least, the costs for structured parking 

have doubled in the period from 1999 to 2005 (Goldsmith, 2007).  

These added costs can have two effects:  developers may be less willing to build 

and/or units may become more expensive.  Where developers are unwilling to work, 

urban redevelopment stalls.  Where the market will bear a high enough price to pay the 

added costs of parking, developers will build more expensive housing.  Neither result is 

desirable.

Preview of the research

Researchers have proposed a range of responses to the problem of excessive 

nonresidential parking standards (Litman, 2006).  Because nonresidential parking 

demand is driven by vehicle use decisions that may change from day to day, many of 

these approaches revolve around charging for parking.  Residential parking is driven by 

household vehicle ownership, decisions about which are of a much longer time scale than 

the day.  As a result, many of the solutions proposed to correct nonresidential parking 

excesses are not appropriate for residential developments.

This dissertation is designed to help correct existing residential parking standards. 

“Establishing more accurate standards” is third in a list of twenty-one innovations that the 

Victoria Transport Policy Institute recommends to reduce excess parking (Litman, 2006). 

That is the aim of this work.
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The dissertation research begins, in Chapter 2, with a review of literature on 

projecting and explaining household vehicle availability3.  The aim of the review is to 

discern the current knowledge of the household, demographic and locational factors that 

influence vehicle availability.  This understanding is a prerequisite for developing a 

credible and reliable method for establishing residential parking standards, as residential 

parking demand is dominated by the demands due to household members' vehicles.

Chapter 2 includes summaries of predictive models used by Metropolitan 

Planning Organizations (MPOs) and explanatory models created by academics and other 

researchers.  It includes a synthesis of the reviewed work, and presents a number of 

conclusions:

• Location within a land use and transportation landscape, characterized variously by 

development density, land use mix, and local and regional employment accessibility, 

is systematically associated with differences in household vehicle availability.

• Household sociodemographic characteristics, such as income and number of workers, 

have more substantial influence4 on vehicle availability than do location-related 

variables.

3In this dissertation, vehicle availability and vehicle ownership will be used interchangeably to mean the 
number of cars and trucks owned by, leased by, or otherwise available to household members, as in the 
case of company cars.  Although "vehicle ownership" is perhaps more intuitive, "vehicle availability" is 
becoming the preferred term (Cambridge Systematics, 1997b).
4For the sake of readability, this dissertation uses terms like "influence" to mean degree of association 
between predictors and the dependent variable.  Nothing in this work should be taken to imply causation.  It 
includes no experiments or statistical methods designed to differentiate causation from association, nor 
does it attempt to evaluate others' analyses of causation.

There are spirited and important debates on the causality of any relationship between land use and 
travel behavior.  However, for the purposes of this research I assume that the question of whether different 
land use causes different household vehicle ownership decisions can be ignored at the margins.  An initial 
defense of this assumption is the fact that anyone projecting travel behavior of any sort currently makes the 
assumption that current relationships among key variables will persist for some time into the future.  If 
anything, this should apply more to vehicle ownership, being a long-lived investment decision, than to 
more transient manifestations of travel decisions such as trip frequency or mode choice.
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• There is as yet no consensus on whether housing location is endogenous to vehicle 

availability, nor on the best way to cope with any endogeneity that exists.

Chapter 3 draws on the understanding developed by the literature review to 

answer key operationalization questions.  The studies reviewed in Chapter 2 all rely on 

data that is not available to planners who set or enforce parking standards.  Demographic 

variables such as household income, number of workers in the household, and age are not 

determined by the sorts of land use characteristics that appear in parking standards.  This 

raises the question of how to capture the effects of these demographic characteristics 

using only the land use variables that are available to typical parking regulators.  Also, 

characteristics of the built environment such as job accessibility or development density 

must be calculated at some geographic scale.  The studies in Chapter 2 assume 

environmental uniformity at scales ranging from the zip code area to the land parcel, 

partly because the aims of the studies differ.  Because the choice of geographic scale does 

influence projections from the method, this raises the question of the appropriate 

geographic unit when the purpose is to establish residential parking standards.

Chapter 3 addresses in four steps the question of how to capture variation in 

household vehicle availability with regulation-appropriate variables.  First, the chapter 

reviews existing residential parking standards; the results indicate that bedrooms, unit 

type and location are the three variables to use.  They appear frequently in existing 

standards—suggesting that they can be used consistently by regulating boards—and they 

are physically linked to the housing unit.  The conclusion is that these three variables are 

sufficient, in the sense that no other variables are appropriate for addition to the set.
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Second, the chapter considers the variation in household vehicle availability in 

New Jersey along the dimensions of bedrooms, unit type and location.  The distributions 

of average vehicle availability by bedrooms and unit type are summarized at the Census 

tract, with a population of 4,000 on average, and the Public Use Microdata Area 

(PUMA), with a minimum population of 100,000.  The conclusion is that all three 

dimensions—bedrooms, unit type and location—capture substantial variation in vehicle 

availability; each of them is necessary.

Third, the chapter explores the relationship between the regulation-appropriate 

variables and some of the predictor variables used in studies in Chapter 2.  Using 

ordinary least-squares regression5 on households in north and central New Jersey, located 

by their PUMA, the chapter estimates the relationships between the regulation-

appropriate variables—bedrooms, unit type and location—and demographic variables—

household workers, nonworking adults, children and income—and household vehicle 

availability.  The main conclusions are that bedrooms, unit type and location have 

expected relationships with demographic variables, for the most part, and that the three 

regulation-appropriate variables have significant influence on vehicle availability both 

directly and through their relationship with the demographic covariates.  This section 

establishes the theoretical basis for using bedrooms, unit type and location in a parking 

standard.

Finally, Chapter 3 addresses the question of how we should characterize 

household location, given that our aim is to establish residential parking standards based 

5The reviews in Chapter 2 suggest that ordinary least squares (OLS) is not the most appropriate regression 
technique for estimating household vehicle availability, in part because it takes on discrete values.  OLS is 
used in the text to fit into the omitted variable bias analysis and for ease of exposition.  Appendix A 
demonstrates that the conclusions drawn in the text, based on OLS, are also supported by a method 
appropriate to discrete dependent variables.
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on household vehicle availability.  The chapter reviews theoretical considerations 

surrounding the choice of geographic scale, and presents a quantitative study of the 

geographical scale of variation in household vehicle availability.  Using data from the 

Census Transportation Planning Package (CTPP), the chapter conducts an F test to 

evaluate the accuracy benefit decreasing the geographic unit from the tract to the block 

group.  The result of the test suggests that the block group is preferable to the tract.

Chapter 4 draws on the lessons of previous chapters to propose and evaluate a 

regulation-appropriate method for projecting household vehicle availability. Following a 

set of method design criteria based on the work of preceding chapters, the method, 

termed Vehicles from Unit choice with a Location-based Offset, is described and 

illustrated.  The method's performance is evaluated analytically, through the derivation of 

an expression for its error field, and numerically.

Chapter 4 validates the method using a special tabulation of Census data 

purchased for that purpose.  The data encompass 3,900 block groups across New Jersey, 

selected from among the 6,448 inhabited block groups because they have a sample size of 

50 or more households.  This set of 3,900 block groups includes a set of 729 tracts for 

which data for all constituent block groups are reported.

First, the data are used to answer more conclusively the question of whether block 

groups or tracts are preferable for establishing residential parking standards.  As in 

Chapter 3, an F test is employed to determine whether the move from a smaller number 

of larger tracts to a larger number of smaller block groups is justified by improved 

fidelity.  Unlike in Chapter 3, where the utility of areal averages for a single combination 

of household population and unit type are compared, the method here evaluates the use of 
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all combinations of bedrooms and unit type.  This analysis disconfirms that the block 

group is the preferable areal unit for the method proposed here.

Second, the data are used to evaluate the fidelity of the household vehicle 

estimation method.  The method is exercised to project household vehicle availability for 

every unit type and bedroom combination for every block group in New Jersey, and 

compared to the data.  The fidelity is evaluated by quantitatively comparing it to  using 

PUMA-level regressions of vehicle availability on bedrooms and unit type.  These 

analyses show that the method fits the data better than the alternatives.

Chapter 5 concludes by reviewing the dissertation and presenting 

recommendations for further research.  In particular, two further tasks must be 

accomplished before the research presented here can be implemented.  First, a method 

must be developed to account for projected household incomes.  Developers of urban 

infill housing often aim their products at a higher price point than is typical for the block 

group.  The omitted variable bias work in Chapter 3 points toward a way to cope with 

expected income aberrations, but a full method must be developed.  Second, visitor 

parking must be estimated in a methodical way.  This will be challenging and potentially 

labor intensive, as there is no widely measured proxy for visitor parking as there is for 

owner parking.  Nonetheless, some measurements have been made.  The measurements 

must be extrapolated in a theoretically grounded way.  Chapter 5 discusses a stochastic 

model that may be a starting point for this work.

Even without these extensions, however, this dissertation research represents a 

significant step forward in conceptualizing residential parking demand and enabling more 

thoughtful residential parking regulations.  The research demonstrates the possibility of 
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more accurate parking standards.  It provides methods necessary for benchmarking 

existing standards.  Finally, it represents the vast majority of the work necessary to revise 

existing residential parking standards throughout the US.
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Chapter 2. Vehicle availability in the transportation literature

Parking planners have only recently acknowledged the systematic relationship 

between a site’s parking needs and its location.  Nonetheless, other analysts have long 

been studying spatial variation in an excellent proxy for residential parking demand6.  In 

general, parking demand can be decomposed into two parts: the demand created by 

vehicles owned by or otherwise available to regular users, and the demand created by 

occasional users.  For retail, the episodic parking demand by shoppers overwhelms the 

regular demand of workers.  For most office uses, regular workers fill far more parking 

spaces than do visitors.  For housing, residents’ parking demand dominates visitor 

demand.  The parking demand due to residents is driven by “vehicle availability”: 

automobiles owned, leased, or otherwise available to households.

How should existing vehicle availability patterns relate to residential parking 

standards for new development?  This question has at least four parts.  First, we need to 

know how the standards are going to be used.  Traditionally, residential parking standards 

specify a minimum number of parking spaces that must be supplied off-street for a given 

residential development.  Some municipalities use parking standards to establish 

maximum allowable parking supply, but this is very rare, and moreover much more 

common for commercial than for residential uses (Millard-Ball, 2002; City of Seattle, 

2006; City of Portland, 2005).  Also, some standards allow a fraction of required spaces 

to be supplied on-street or in shared lots (for example, see State of New Jersey, 1997). 

For the sake of discussion, we assume that the traditional use—minimum off-street 

6Unless otherwise noted, the term “parking demand” is used to mean the peak number of parking spaces 
that users of a given facility would seek to fill, given prevailing prices.  In most but not all cases, residential 
off-street parking is provided without the imposition of a use charge.
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standards—will prevail, although the analyses in this dissertation apply, perhaps with 

some translation, if parking standards are construed differently.

Second, we need to know the current and planned fraction of parking demand due 

to residents, as opposed to visitors.  Existing parking standards implicitly or explicitly 

make allowances for occasional visitors who may share non-dedicated parking spaces 

with residents.  The greater the visitor fraction is, the greater the parking standard must 

be for a given vehicle availability.  In this research, we neglect visitor parking because of 

a lack of data.  Vehicle availability projections created here can be adjusted according to 

appropriate estimates of visitor parking demand as they become available.

Third, we need to know the current and planned fraction of parking demand that 

is or will be accommodated off-street.  Drivers are prone to use on-street parking 

depending on its cost relative to off-street parking.  This applies to visitors and to 

residents as well.  Appendix B presents a preliminary analysis of how the availability (or 

unavailability) of off-street parking relates to household vehicle ownership.  For the 

purposes of this analysis, we assume that residents of future developments will be 

presented with the same patterns of on- and off-street parking costs as currently exist. 

The results in Appendix B and further analyses could be employed to modify that 

assumption in the future, if need be.

Fourth, we must specify how existing patterns of parking supply should change. 

It may be a desirable planning goal, for example, to encourage transit use for a particular 

residential project or throughout a municipality or region.  Reducing residential parking 

supply, and thereby increasing the time and/or monetary cost of vehicle ownership, may 

help advance that goal.  For this research, we assume that the goal is to duplicate existing 
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patterns of parking supply and vehicle ownership.  As with the previous assumptions, a 

different situation could be modeled with straightforward adjustment of the vehicle 

availability projections developed here.

In summary, we link existing patterns of vehicle availability to future minimum 

residential parking supply by neglecting visitor parking needs; assuming that current 

patterns of on-street versus off-street parking supply will persist into the future; and 

assuming that the regulators' intent is to duplicate existing patterns of vehicle availability. 

The balance of this chapter is aimed to identify the key dimensions of these vehicle 

availability patterns.  It identifies environmental and demographic characteristics that 

relate to vehicle availability, by reviewing the literature on forecasting and explaining 

household vehicle availability analysis.  The chapter concludes by synthesizing the 

studies' findings into guidance for this dissertation research.

Two fields of transportation analysis

Forecasting travel behavior

The federal government catalyzed the first transportation analysis and forecasting 

in the U.S.  Responding to concerns about the explosion of suburban housing after World 

War II, the Federal-aid Act of 1944 provided the first federal funding for urban highways, 

and also advocated transportation planning (Jones, 1998).  The Federal-aid Act of 1954 

made the first federal grants to metropolitan planning agencies to promote regional 

cooperation and planning; the Highway Act of 1962 made cooperative, continuous, and 

comprehensive transportation planning a prerequisite for urban areas with populations 

over 50,000 to receive federal highway funds (Solof, 1998).



18

Consequently, the 1950s marked the first substantial travel demand forecasting in 

the US.  The State of California's travel forecasting program began its work then (Jones, 

1998 ).  In 1959, the Chicago Area Transportation Study printed for perhaps the first time 

what would become the dominant paradigm in urban travel demand analysis and 

projection: the four-step approach (Boyce, 2002).  The four-step approach is a sequential 

approach for estimating network loading: first, use household characteristics in a given 

location to estimate trip generation rates; second, distribute those trips to destinations; 

third, select a transportation mode for each trip; fourth, select a route in the multimodal 

network.  Although methods for computing and connecting the models in each step have 

been thoroughly refined, the four-step approach remains the basis of travel forecasting 

practice today (Boyce, 2002).

Explaining travel behavior

Forecasting methods have little to say about why different geographies engender 

different travel behavior.  Scholars from a range of fields—engineering, economics, 

Figure 2.1. The four-step planning process (Boyce, 2002)
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psychology, and others—have tried to explain travel behavior, the argument being that 

understanding the fundamental decision processes allows for more robust projections.  It 

is well beyond of the scope of this work to review the whole body of explanatory 

transportation analysis.  (See Pas, 1996, and Waddell, 2001, for reviews of subfields.) 

The relatively recent literature on the relationship between land use and travel behavior, 

however, warrants discussion here.

The growing awareness of the costs of sprawl, starting in the 1990s, spawned a 

movement advocating "smart growth" and "new urbanism."  Although the two terms are 

not identical, they overlap quite a bit, and entail reducing automobile travel and 

increasing the use of alternative modes.  Researchers have completed scores of studies to 

evaluate the potential for land-use interventions to change travel behavior.  (See Crane, 

2000, and Ewing & Cervero, 2001, for reviews.)  This body of work, outlined below, will 

inform the present research.  

For the purposes of the present research, previous findings on household vehicle 

availability are of most interest.  Here, the forecasting literature has an advantage.  In the 

four-step model, household vehicle availability is an essential element of the 

sociodemographic inputs to the trip generation models.  In the explanatory literature, by 

contrast, household vehicle availability is usually a by-product of analyses of more 

fundamental household characteristics (e.g. income, persons in household, age) and trip-

taking behavior.  Table 2.1 contrasts the two approaches.
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Table 2.1. Contrasting two approaches to travel analysis
Forecasting Explanatory

Focus Trip-based Activity- and/or behavior-based
Goal Improve methods for 

acceptable forecasts
Relate fundamental decision 
processes to manifest behavior

Model structure Segmented Integrative
Role of vehicle availability Essential Secondary

The present research creates and tests a vehicle availability forecasting method 

appropriate for the development of parking standards.  Therefore, both the forecasting 

models and the explanatory analysis must guide this work.  Insights from the explanatory 

modelers will lead to a method that attends to household travel investment decision 

processes, which is therefore most valid for extrapolation in time and space.  The existing 

forecasting models point this work toward the most influential correlates with household 

vehicle availability, given a limited budget for data collection.

Forecasting models

The earliest forecasting models analyzed data at the zonal level to accomplish 

their task.  Such “aggregate models” lack explanatory power because their foundational 

data do not allow the influences of separate variables to be distinguished from each other. 

Disaggregate models rely on microdata, measured at the household level, and allow for 

the study of interactions among variables.  The disaggregated approach is currently the 

favorite, though aggregate models are still in use (Cambridge Systematics, 1997b).

Detroit’s regional government uses an aggregate model to estimate vehicle 

availability.  It cross-classifies survey data to estimate the fraction of households in a 

zone owning 0, 1, 2, or 3+ vehicles as a function of income, household size, and location 

(i.e., City of Detroit or not).  This is combined with Census data to estimate number of 
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households in each zone with each number of vehicles (Cambridge Systematics, 1997b). 

In 1995, the model was identified as a “best practice” approach (KJS Associates, 1995).

The Metro (Portland, Oregon) Auto Ownership Model, from 1989, is a 

disaggregate model using a multinomial logit structure.  It includes the following 

predictors: number of persons in household, number of workers in household, income 

class of household, and number of employment opportunities within 30 minutes of transit 

time from the residence zone.  The Metro model is heralded as “the state of the art of 

disaggregate models which include accessibility variables” (Cambridge Systematics, 

1997b).

The Puget Sound Regional Council’s model, developed in 1995, is an aggregate 

model that includes employment accessibility by mode (KJS Associates, 1995).  In the 

first step, the distribution of households by income, persons in household, and workers in 

household, as measured at the Public Use Microdata Area (PUMA7), is computed and 

assumed to apply to all Traffic Analysis Zones (TAZs8) within the PUMA.   This 

provides a preliminary estimate of the fraction of households in each TAZ that land in 

each vehicle availability class.  The second step corrects those fractions with a logit-style 

factor derived from measures of the zonal average employment intensity and employment 

accessibility by mode. 

In 1997, Cambridge Systematics developed a disaggregate vehicle availability 

model for the Delaware Valley Regional Planning Commission (DVRPC).  They tested 

7 A PUMA is an area defined by the Census Bureau that must contain at least 100,000 people; to protect 
respondents’ confidentiality, the PUMA is the smallest geographic unit linked with household-level 
responses.  In New Jersey, PUMAs have an average population of 137,940, and an average land area of 
121.6 square miles.
8 TAZs, unless otherwise noted, are defined by the Census Bureau.  They have roughly the same population 
as a Census tract, 4,000 people or so, but have boundaries defined by transportation related features in the 
landscape.
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both multinomial logit and sequential logit models, where “sequential logit” refers to the 

estimation of a separate binary logit model for each increment in vehicle availability, 

representing the choice between 0 and 1+ vehicles, 1 and 2+ vehicles, and so on.  The 

sequential logit model fit the data somewhat more closely (Cambridge Systematics, 

1997a). 

Table 2.2 summarizes the sequential logit model.  “Jobs access ratio” is the ratio 

of the number of jobs within 80 minutes by transit divided by the number of jobs within 

60 minutes by car.  The table indicates that household income is the most statistically 

significant predictor for the two low-vehicle choices, while workers per household 

dominates the higher-vehicle choices.

Table 2.2. Sequential logit vehicle availability model: Coefficients and (z-statistics)
0/1+ 1/2+ 2/3+ 3/4+

Alternatives to automobile & relative costs
Employment density -- -- -0.02 (9.5) -0.04 (0.6)
Population density -0.03 (4.0) -0.03 (4.3) -- --
Jobs access ratio -1.34 (2.0) -1.1 (2.7) -0.71 (1.6) --
Pedestrian environment factor -0.44 (1.7) -0.28 (1.8) -- --

Activity demand
Persons per household 0.10 (1.2) 0.19 (3.2) -- 0.11(0.6)
Workers per household 0.12 (0.8) 0.68 (7.1) 1.03 (9.5) 0.53 (2.9)

Income constraint
Household income (natural logarithm) 1.45 (10.0) 1.38 (10.4) 0.44 (2.5) 0.13 (0.3)

Persons less than lesser vehicles -- -2.7 (8.8) -0.88 (4.9) -0.40 (0.8)
Constant -0.28 (0.4) -4.2 (7.4) -4.2 (6.2) -3.6 (2.1)
N 1,993 1,837 1,162 308
Source:  Cambridge Systematics, 1997b: Table 3.5. Items in bold are significant at the 
5% level.

The New York Metropolitan Transportation Council (NYMTC) recently updated 

its disaggregate household vehicle availability model (Parsons Brinckerhoff Quade and 
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Douglas, 2005b).  It is estimated as a multinomial logit model on data from household 

surveys conducted in 1997 and 1998—the Regional Travel-Household Interview Survey 

(RT-HIS).  The most important predictors in the model are household income class, 

density (jobs and residents), access to jobs by car relative to other modes, and car 

sufficiency.  The last item is a measure of the extent to which there is a household-level 

match between the number of automobiles and the need created by workers, nonworkers, 

and children.  The model also includes residence area type-specific constants, where area 

types are defined by ranges of jobs and residents within 0.75 miles of the household.  

The forecasting model reports are striking in their omission, for the most part, of 

discussions of model fit and the significance of various predictors used in the model. 

Such information is critical to informed decisions on predictor variables to use in any 

future model; any consensus on predictors could be born of expedience rather than 

explanatory power.  We turn now to the academic, explanatory literature, which generally 

includes richer discussions of model parameters and offers more insight into causal 

relationships.

Explanatory models

To facilitate study-to-study comparisons, this review relies on insights from the 

broader travel behavior analysis literature.  Crane (1996; 2000) suggests that the 

microeconomic theory of demand applies to trip-taking.  This review applies the demand 

model to vehicle availability.  The decision to keep a vehicle is assumed to be based on 

the costs of vehicle availability and its alternatives, the preferences of the decision-maker, 

and the income constraint.
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Crane's (2000) review also suggests some of the key characteristics of urban form 

that likely influence vehicle availability decisions, thereby providing an organization 

scheme for the sections that follow.  They consider studies that highlight the influences 

on vehicle availability of density, land use mix, and activity accessibility.  The 

subsequent section addresses model estimation, another key issue in vehicle availability 

analysis.  Finally, the growing literature on the relationship between residential location 

choice and vehicle availability is briefly reviewed. 

Density

Schimek (1996)  analyzes the impact of residential density on vehicle ownership, 

using linear regression on a nationwide sample taken from the 1990 National Personal 

Transportation Survey (NPTS).  Table 2.3 summarizes the model.  Population density is 

computed as the ratio of population in a zip code area to its total area, and is 

instrumented, to manage the assumed simultaneity of vehicle ownership and location 

decisions.

Schimek (1996) concludes that vehicle availability has a modest association with 

population density.  See Table 2.3.  His analysis shows that doubling a zip code area’s 

density reduces household vehicle availability by 0.07 vehicles, all else being equal.  As 

controls, he includes three common predictors from the forecasting models: workers and 

persons in households, and household income.  He neglects measures of job accessibility 

and land-use mix.  To the extent that these variables are correlated with density, their 

exclusion from the study should lead density's influence to be overestimated.
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Table 2.3. Linear vehicle availability model, 1990 NPTS: N=15,916, r2=0.38
Coeff. t-stat.

Alternatives to automobile & relative costs
Transit within 3 blocks (I) -0.20 -12.9
Population density (natural logarithm) -0.11 -18.8
In a central city (I) -0.16 -10.8

Activity demand
Persons in household 0.17 32.1
Workers in household 0.26 27.7

Preferences
Household head older than 64 (I) -0.03 -1.6
Household head younger than 35 (I) -0.14 -8.9

Income constraint
Household income (natural logarithm) 0.41 43.7

Constant -2.21 -22.8
Source: Schimek, 1996: Table 2.  Items in bold are significant at the 5% confidence level. 
Binary indicator variables are marked with (I).

Use mix

Cervero (1996) examines the influence of mixed land uses on household vehicle 

availability using linear regression on 1985 American Housing Survey data for eleven 

metropolitan statistical areas.  His model is summarized in Table 2.4.  “Public services 

adequate” is defined according to the respondent’s opinion.  “Distance from home to 

work” is endogenous to a two-stage system of simultaneous equations performed by 

instrumental regression.
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Table 2.4. Linear vehicle availability model, 1985 AHS: N=9,804, r2=0.21
Coeff. t-stat.

Alternatives to automobile & relative costs
Public transit services adequate (I) -0.05 3.3
Distance from home to work, one way in miles (I) 0.01 2.8
Residence in central city of MSA (I) -0.11 7.6
Low-rise attached residential buildings within 300 ft of unit (I) -0.10 5.2
Mid-rise multi-family buildings within 300 ft of unit (I) -0.27 10.7
High-rise multi-family buildings within 300 ft of unit (I) -0.48 6.9
Non-residential buildings with 300 ft of unit (I) -0.12 2.7

Activity demand
Persons in household 0.11 25.0

Income constraint
Household income ($1000s) 0.01 41.3

Constant 0.76 177.0
Source: Cervero, 1996: Table 5.  Items in bold are significant at the 5% confidence level. 
Binary indicator variables are marked with (I).

Cervero (1996) finds that having commercial uses nearby is associated with 

reduced vehicle availability, but more weakly than with high residential density or the 

demographic income and household size controls.  However, the model is crude in some 

respects.  Binary representations of land use may be inadequate.  Also, the assumption 

that vehicle ownership is linearly related to household income is questionable.

Hess and Ong (2002) assess the extent to which the land use mix typified by 

traditional neighborhood development influences vehicle availability.  They study the 

Portland, Oregon, area using an ordered logit model.  Households are characterized by 

their income and size, and by the age (as a binary indicator), race (binary), and sex of 

householder.  The household’s choice of housing unit type is reflected by a variable 

distinguishing single-family units from units in multi-family buildings.  Neighborhood 

variables include tract median income, tract household density, percentage white, land 

use mix (binary), transit accessibility (binary), proximity to a light rail corridor (binary), 
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and a pedestrian environment factor.  In the final model, which fit the data with a pseudo-

r2 of 0.39, only land use mix and household characteristics other than householder age are 

significant.  Tract median income is marginally significant.

Accessibility

Kockelman (1997) develops two linear models of vehicle ownership to evaluate 

the importance of accessibility and other land use-related variables.  She uses the 1990 

San Francisco Bay Area Travel Surveys and land use data from hectare-level descriptions 

provided by the Association of Bay Area Governments to develop model parameters. 

Table 2.5 summarizes the models.  Accessibility is computed with a gravity model 

formulation, where the friction factor is time-based with a form depending on the trip 

mode.  The dissimilarity index is a hectare-level measure of use segregation.  Land use 

balance is an entropy-style measure of the proportion of different land use types in a 

census tract.

Table 2.5. Linear vehicle availability model, 1990 SF BATS: N=8,050
Excluding land 

use
Full model

Coeff. t-stat. Coeff. t-stat.
Alternatives to automobile & relative costs

Accessibility (all jobs) -9.1E-07 -7.5
Land use dissimilarity -0.11 -1.3
Land use balance -0.092 -2.4
Population density -0.0026 -14.0

Activity demand
Persons in household -0.11 -21.2 -0.12 -23.4

Income constraint
Income per member ($1000s) 0.0060 19.1 0.0055 17.9

Constant 1.02 59.8 1.27 57.9
r2 0.15 0.22

Source:  Kockelman, 1997: Table 2. Items in bold are significant at the 5% confidence 
level.
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Kockelman (1997) concludes that land use variables exert a significant influence 

on household inclination toward vehicle availability.  However, the model appears to lack 

important control variables such as number of workers or other household-level variables. 

Further, the fact that location and vehicle availability decisions are related is not 

accommodated.  

Chu (2002) considers accessibility and land-use mix at the residence, along with 

environmental variables at the workplace, to estimate vehicle availability for New York 

City households.  He develops an ordered probit model on data from the survey 

commissioned and used by NYMTC in its model development discussed above.  See 

Table 2.6.  Variables to characterize the built and travel environment are calculated at the 

TAZ level.  The “automobile importance index” is a measure of relative accessibility to 

regional jobs.  It is the ratio of the gravity model-based job accessibility by automobile to 

the sum of job accessibility over transit, walking, and automobile modes.  The “mixed 

density index” is the product of residential density and employment density divided by 

their sum; it could be considered a density measure weighted by the degree of 

jobs/housing balance.  Chu interprets “single-family house” as representing parking 

access.
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Table 2.6. Ordered probit vehicle availability model, 1997/98 RT-HIS: N=3,397, r2=0.33
Coeff. z-stat. Influence 

index
Alternatives to automobile & relative costs

Automobile importance index, for job access 0.013 7.0 <0.1
Mixed uses near residence:  mixed density index -0.008 -11.5 <0.1
Mixed uses near residence:  entropy index -0.40 -3.7 44
Single family house (I) 0.38 6.7 21
Reside in Brooklyn, Bronx, or Queens (I) 0.17 3.3 8
Reside on Staten Island (I) 0.29 5.2 17
Vehicle need at workplace (I) 0.50 8.6 29
Employment density at workplace -2e-4 -3.1 <0.1
Work in Manhattan (I) -0.24 -6.6 9

Activity demand
Licensed drivers in household 0.87 30.5 25
Children in household 0.044 1.5 1

Preferences
White-collar occupation (I) 0.15 2.8 8

Income constraint
High income (I) 1.04 12.1 89
Middle income (I) 0.65 8.7 49

Constant -2.02 11.4
μ1 1.59 39.6
μ2 2.99 56.3

Source:  Chu, 2002: Table 1.  Items in bold are significant at the 5% confidence level.

Chu (2002) uses an influence index to illustrate the relative contributions of 

different variables to overall error reduction.  The index in Table 2.6, proportional to 

Chu’s version, is the absolute value of one thousand multiplied by the product of a 

predictor’s standard deviation in the sample and its coefficient in the model.   The most 

influential predictors are income, vehicle need at the workplace, number of licensed 

drivers, and housing unit type, followed by land use and other variables.  The value of the 

influence measure is illustrated by the fact that whereas the mixed density index is the 

third most statistically significant predictor in the model, it is among the least influential.
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Estimation method

Bhat and Pulugurta (1998) estimate vehicle availability using ordered logit and 

multinomial logit models.  They use three US samples and one Dutch sample.  They 

consider a range of predictor variables, and find only four that consistently influence 

vehicle availability:  household income, number of workers, number of non-working 

adults, and neighborhood type.  

More importantly, Bhat and Pulugurta (1998) systematically compare the 

performance of the two methods to the data.  The models predict significantly different 

elasticities, indicating that they behave differently at the household level.  Superior 

estimates of vehicle availability class and a better overall goodness-of-fit (controlling for 

the number of model parameters), for every data set, indicate that the multinomial logit 

approach is preferable to the ordinal logit approach over a range of household 

characteristics.  The authors conclude that the behavioral assumption underlying 

multinomial logit, that choices are made among unordered alternatives, fits the household 

decision process better than the assumption underlying ordered logit, that  vehicle 

availability is the manifest expression of a latent vehicle desirability function.

Location choice

Since the seminal work by McFadden (1978) decades ago, a great number of 

studies have investigated the household location decision.  Guo (2004) reviews the 

literature, and identifies ten groups of commonly used predictors.  All else being equal, 

she concludes that households generally prefer shorter commutes, affordable housing and 

lower crime rates.  Households prefer space in terms of rooms, detached housing, and 

low residential density; larger households and those with children are especially desirous 
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of space.  Households tend to cluster in areas of their own race, socioeconomic status, 

and family structure.  The effect of access to employment and services is ambiguous, as 

is the effect of school quality.  

Waddell (2001) argues that for land use and transportation modeling to move 

forward, the two disciplines must explicitly confront the simultaneity of and 

interrelationships among residential location, job location, vehicle availability, and 

activity and travel choices.  He provides an overview of work thus far to consider each 

element in the context of the others, offering 1,400 words on the subject.  Vehicle 

availability earns 74 words, ending with these (p. 5):

To date, little systematic effort has been made to treat vehicle ownership within a 
broader framework of household choice regarding housing location, workplace 
and daily travel patterns.

Unfortunately, Waddell and Nourzad’s (2002) contribution does not directly 

confront the disconnect between vehicle availability and location choice.  They specify a 

model of residential location, using data from the Salt Lake City area, that incorporates 

local (pedestrian) and regional accessibility measures, household composition, and 

vehicle availability, which is exogenous to the model.  They find that households 

generally seek to reduce their housing cost burden, avoid densely packed housing, and 

have access to employment.  Households that have many members, include children, own 

more cars, or have older household heads are especially averse to dense areas.

Sermons and Seredich (2001) estimate a joint multinomial logit model of vehicle 

availability and residential location using data from the San Francisco area.  Distinct 

residential area types are identified via cluster analysis on TAZs.  A single multinomial 

logit (MNL) model allocates households to a vehicle/location combination defined by 

crossing 0, 1, 2, and 3+ vehicles by four clusters.  The model violates MNL's independent 
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irrelevant alternatives assumption, but alternative model structures that were attempted, 

such as nested logit, did not reject the MNL specification.  Household-level predictors are 

workers, non-working adults, teens, children, and household income by vehicle level. 

Residential cluster characteristics are persons per room, residential density by vehicle 

level, and the prediction of a utility submodel estimated with housing supply, housing 

price, accessibility, and race information.  The model explains 30% of the variation in the 

data.

Cervero and Duncan (2002) use nested and multinomial logit models and a San 

Francisco Bay-area data set to study residential location, commute mode choice, and 

household vehicle availability.  Data problems prevent them from including vehicle 

availability in the nested structure.  Instead, they develop an independent MNL model of 

household vehicle availability.  They characterize the household by its size, income, and 

race.  They include the housing unit tenure (owned versus rented).  For locational 

variables, they consider whether the house and/or job site are within one half mile of a 

rail station, the number of jobs within 30 minutes by car, and the number of jobs within 

45 minutes by train.  Only the job accessibility measures had no statistically significant 

relationship with vehicle availability.  The model fits the source data with a pseudo-r2 of 

0.34.

Handy, Mokhtarian, and Buehler (2004) analyze the relationships among 

residential location, attitudes, and travel behavior using a variety of statistical methods 

applied to the survey respondents in eight Northern California neighborhoods.  They 

estimate vehicle availability with an ordered probit model that includes demographic, 

land use, and attitudinal variables, all of which are exogenous to the model.  The model 
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fits the 1495 observations with a pseudo-r2 of 0.21.  No land use variables are significant 

when attitudinal variables are included.  A preference for space is positively correlated 

with auto ownership.

Handy et al. (2004) also use ordinary least squares regression to estimate the 

change in vehicle availability by households that have recently moved.  Demographic 

characteristics and changes therein dominate the model in terms of error reduction.  In 

this model, land use effects survive the addition of attitude measurements:  perceived 

changes in space and diversity of nearby use types are statistically significant, in the 

expected directions.

Gao, Mokhtarian and Johnston (2007) propose and test a system of simultaneous 

equations relating interdependent variables describing the built environment, 

demographics and automobile ownership.  They develop a model using 2000 Census 

tract-level aggregate data for Sacramento county.  They characterize the built 

environment by job accessibility, which is computed with a mode-independent gravity 

model.  They find direct effects models of four endogenous variables as shown in Table

2.7.

Table 2.7. Standardized direct effects in the SEM
Predictors =>

Dependent 
variables

Percentage  
of rental  
housing 
units

Median 
rent

Educational  
attainment

Household 
size

Job 
accessibility

Workers 
per 
capita

Income 
per 
capita

Autos per 
capita

Job 
accessibility

0.64*** -0.21*** 0.38***

Workers per 
capita

0.29*** 0.05* 0.56***

Income per 
capita

0.40*** 0.76***

Autos per 
capita

-0.60*** -0.80*** 0.17*** 0.37***
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Their work suffers from limitations that threatens its applicability to the present 

research.  First, it draws on aggregate data rather than microdata, but implies conclusions 

about person-level behaviors.  This is an example of the ecological fallacy, wherein zonal 

average characteristics and relationships are attributed to actors within the zone. 

Conducting analysis at the zonal level obscures the decision processes of the actors.  The 

second issue is related:  analysis is conducted on a per capita basis rather than a per 

household basis.  The per capita basis is preferable to the extent that the individual actor 

is an independent decision-maker, rather than interdependent with other household 

members.  Of course, household members generally share automobiles.  The present 

research is aimed at projecting vehicle ownership at the household level.

Notwithstanding these concerns, Gao et al. (2007) draw conclusions that we 

should consider in developing this research.  Table 2.7 shows that the number of 

automobiles per capita has no direct impact on job accessibility or income per capita, but 

directly positively influences workers per capita.  The authors conclude that job 

accessibility affects autos per capita but not the other way around.  This suggests that the 

household choice of residential location, at least relative to job centers, may be 

independent of the household choice of the number of vehicles to own.  That is, it 

provides some evidence that household vehicle availability is exogenous to residential 

location.  The results also suggest that vehicle availability may be endogenous to number 

of workers in a household.

Synthesis

The tables below summarize the studies and models reviewed above.
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Table 2.8. Predictive vehicle availability models
Region Year Level of  

analysis
Household 

variables
Environmental  

variables Method Comment

Detroit 1984 Zone Income (5)
Persons Location (2) Cross-

classification

"Best 
practice" 
but crude

Portland, OR 1989 Household
Income (4)
Persons
Workers

Jobs within 30 min. MNL

Seattle 1995 Zone
Income (4)
Persons
Workers

Jobs within 10 min. 
by foot

Jobs within 30 min. 
by transit

Jobs within 6 miles 
of urban centers

Cross-
classification 
+ logit-style 
correction

Recent 
aggregate 
model

Philadelphia 1997 Household
Income (log)
Persons
Workers

Job density
Pop. density
Transit vs. auto job 

access 
Pedestrian 

environment

MNL & 
sequential 
logit

Sequential 
logit 
slightly 
preferred

New York 
City 2005 Household

Income (3)
Workers
Non-

working 
adults

Children

Job + household 
density

Area type:  jobs and 
people nearby (11)

MNL

Includes area 
types 
defined to 
fit the data 
(likely not 
transferable 
to other 
samples)

Note: Numbers in parentheses indicate the number of levels in a predictor variable.
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Table 2.9. Explanatory vehicle availability models:  summary
Data source & scope Household variables Environmental variables Method Data 

fit

1990 NPTS 
– nationwide
(Schimek, 1996)

Income (log)
Persons
Workers
Age of head(3)

Transit nearby (2)
Pop. density (log)*
Central city (2)

Linear 0.38

1985 American 
Housing Survey 

– 11 MSAs 
(Cervero, 1996)

Income
Persons

Transit nearby (2)
Commute distance*
Central city (2)
Low-rise res. nearby (2)
Mid-rise res. nearby (2)
High-rise res. nearby (2)
Non-res. nearby (2)

Linear 0.21

1994 Portland (OR) 
Household Activity 
Survey

(Hess & Ong, 2002)

Income
Persons
Single-family residence
Race of head (2)
Sex of head (2)
Age of head (2)

Median income
Household density
% White
Land use mix (2)
Pedestrian environment
Transit nearby (2)
Light rail corridor (2)

Ordered logit 0.39

1990 San Francisco 
Bay Area Travel 
Surveys

(Kockelman, 1997)

Income per person
Persons

Job accessibility
Land use mix (hectare)
Land use mix (tract)
Pop. density

Linear 0.22

1997 RT-HIS – all 
NYC boroughs

(Chu, 2002)

Income (3)
Licensed drivers
Children
White-collar occupation
Single-family residence
Need vehicle at workplace 

(2)

Job access by auto relative to 
other modes

Land use mix at residence
Borough of residence (3)
Work in Manhattan (2)
Job density at workplace

Ordered 
probit 0.33

1990 MTC survey 
– San
Francisco area
(Sermons & Seredich, 

2001)

Workers
Non-working adults
Teens
Children
Persons per room

Pop. density

MNL: 
vehicles & 
res. location 
type

0.30

2000 San Francisco 
Bay Area Travel 
Surveys

(Cervero & Duncan, 
2002)

Income (3)
Persons
Race of head (2)
Owned unit (2)

Transit near residence (2)
Transit near work (2)
Jobs within 30 min. by auto
Jobs within 45 min. by transit

MNL 0.34

2004 custom survey of 
eight Northern 
California 
neighborhoods

(Handy et al., 2004)

Income
Persons
Workers
Persons of driving age
Disability (4)
Sex of head (2)
Owned unit (2)
Car dependent attitude
Driving-safety attitude
Accessibility preference
Space preference

Numerous measures of 
neighborhoods and 
perceptions thereof were 
tested and found insignificant

Ordered 
probit 0.21

Notes:  Numbers in parentheses indicate the number of levels in a predictor variable.  Items in bold are 
significant at the 5% level.  Asterisks indicate instrumented variables.
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This chapter's review considers vehicle availability research in terms of the 

influence of density, land use mix, job accessibility, and location choice.  It presents a 

variety of estimation methods and specifications used in the transportation modeling 

literature.  It suggests a few practical observations.

Practical modeling considerations

First, vehicle availability, as it relates to location in a built environment, has been 

the central focus of relatively little research.  Instead, the great majority of research has 

aimed to estimate vehicle availability as a means to predict travel behavior; vehicle 

availability tends to be treated as a sidebar.  Handy et al. (2004) assert that “[t]he 

connection between neighborhood design and auto ownership has not been extensively 

studied.”9

Second, there is some confusion among vehicle availability modelers about what 

constitutes a noteworthy effect.  Kockelman (1997) concludes that the impact of land use 

on vehicle availability is significant, owing to the statistical significance of residential 

density, land use balance, and job accessibility in her model.  Handy et al. (2004) 

consider standardized coefficients to conclude that land use is much less influential than 

demographic variables.  Chu (2002) develops an influence coefficient for his ordered 

probit model results, analogous to a standardized coefficient in linear models, and reaches 

the same conclusion.

9 Interest in Location Efficient Mortgages (LEMs) has spurred some analysis focused on vehicle 
availability.  The premise of LEMs is that households in locations near transit, jobs, and services can meet 
their travel needs with a lesser number of automobiles than is typical.  The theory, then, is that households 
in these locations may own fewer cars, incur lower transportation expenses, and direct the savings toward 
increased mortgage payments.  However, the most cited analysis supporting LEMs uses few predictors and 
uses a TAZ as its unit of analysis, which largely precludes analysis of household vehicle availability 
decisions (Holtzclaw, 1994; Holtzclaw, Clear, Dittmar, Goldstein, & Haas, 2002).
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Analysts using the language of “influence,” considering standardized coefficients, 

are focusing on explaining variance.  The standardized coefficient is the product of a 

predictor’s model coefficient, its sample standard deviation, and the reciprocal of the 

dependent variable’s standard deviation.  For a linear model with one predictor, this 

equates to Pearson’s r.

A statistically significant association between an independent and dependent 

variable in a regression model can lead to a small proportion of variance explained in two 

limiting cases.  In the first, a small but consistent relationship exists between the 

variables, while there is substantial variation in the independent variable.  For example, 

consider a model of housing unit price.  It might be the case that the number of children 

in the household, which varies substantially among households, consistently but slightly 

increase willingness to pay for extra floor area in the housing unit.  In the limiting second 

case, a rare variation in the independent variable is associated with a substantial variation 

in the dependent variable.  For example, it might be that households near transit, given 

that the local density of retail services exceeds a certain threshold, and given that that 

transit accessibility to jobs exceeds another threshold, are willing to pay an extra 50% per 

unit of living area.  A tiny fraction of the sample would be very susceptible to the 

interaction of retail density, transit job accessibility.  The coefficient would be highly 

significant, but the proportion of variance explained would be negligible.

Location in a land use/transportation context may or may not be consistently 

“influential” on vehicle availability, depending on the sample.  But there is ample 

evidence that it is “significant.”  Whether we consider density, use mix, accessibility to 
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activities, or a combination of the three—the usual situation in practice—location 

consistently affects household vehicle availability.

Third, household choices about the type of housing unit seem to bear on vehicle 

availability.  Studies reviewed here use a housing unit’s detached status as a measure of 

parking supply, and find a significant association with vehicle availability (Chu, 2002; 

Soltani, 2005).  Relatedly, Handy et al. (2004) find that a preference for space is 

associated with greater vehicle availability.

Fourth, the literature indicates some disagreement about the proper way to 

account for the feedback between the automobile ownership decision and the residential 

location decision.  Schimek (1996) and Cervero (1996) use instruments in their 

regressions; they instrument different measures of residential location, however.  Other 

efforts to estimate a vehicle availability model with residential location as endogenous, 

through nested logit and other approaches, have met little success10.  The forecasting 

models and most land use/transportation researchers treat location as exogenous to the 

vehicle availability decision, and this is supported by some recent research (Gao et al., 

2007). 

Fifth and finally, no consensus has emerged on the most appropriate estimation 

technique for vehicle availability analysis.  Explanatory modelers have increasingly used 

multinomial logit, and there is evidence to support that decision (Bhat & Pulugurta, 

1998).  Nonetheless, experienced analysts continue to use ordinal approaches as well 

(Handy et al., 2004).  There is evidence from the forecasting modelers that a sequential 

logit approach bests MNL (Cambridge Systematics, 1997b), but sequential logit is not 

popular among explanatory modelers.  Also, some explanatory modelers are returning to 

10However, see Bhat and Guo (2005) for a mixed MNL/ordinal logit model.
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linear approaches, to help them directly confront endogeneity using structural equation 

modeling (Cao, Mokhtarian, & Handy, 2007; Gao et al. 2007).

A working theory of vehicle availability

In addition to leading to the foregoing practical observations, this chapter offers 

the basis for a working theory of vehicle availability.  Figure 2.2 illustrates the conceptual 

model  employed in this research, which is described below.

Chapter 1 generally discusses the relationship between residential parking 

standards and the amount of parking supplied.  Here we clarify that discussion.  Parking 

standards—specifying a minimum allowable number of parking spaces—are set 

Figure 2.2. Conceptual model of households' decisions on vehicle availability
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according to regulators' best judgment.  The developers' teams create their own 

assessments of the value of parking supplied in a residential project, influenced in their 

judgment by the regulators' standards and by local conditions.  In some cases, banks 

require more than planning regulators.  Also, developers may choose to provide 

additional parking beyond what is required or otherwise necessary, in the interest of 

accelerating approvals.  The hope may often be that the layperson planning board would 

consider any additional parking, regardless of the standard, as a bonus.  Rarely, 

developers present expert testimony to request a variance, the permission to provide less 

parking than the standards suggest.  The result of this process is that parking minimum 

standards influence but do not strictly determine off-street parking supply at a residence. 

Other parking may also be available on-street or at nearby lots.

The housing location choice is considered a consumption decision, where the 

location represents a bundle of spaciousness and access to activities, following Cao et al. 

(2007).  The choice is made from the set of available options, defined by the geographic 

distribution of housing stock, including its parking characteristics, and the related 

distribution of activity opportunities such as jobs and services.  A household's desire for 

space is driven by attitudes and demographics such as household size and especially 

number of children.  A household's desire for access to activities is called out in Figure

2.2 as the activity demand, which is driven by attitudes and demographics such as 

number of workers.

The household vehicle availability choice is a consumption decision aimed to 

meet the demand for activities, subject to the distribution of travel distances (or more 

generally, frictions) to those activities, with minimum cost.  The degree of household 
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demand for activities outside of the home drives vehicle need; however, its effect is 

moderated by a household's aversion to travel by mode.  To the extent that household 

members are inclined and able to meet their demand for activities by non-automotive 

means, the relationship between activity demand and vehicle availability is weakened. 

For example, household vehicle availability should be less sensitive to the number of 

workers in a household well served by transit, or in an area with thoroughly mixed land 

uses, than in a remote household.   

Household location also bears on the cost of accessing and using parking, in 

dollar and/or difficulty terms.  Where ample off-street parking is supplied, parking is 

relatively cheap.  Where access to parking is easy, as for single-family detached houses 

with driveways or attached garages, we can consider the cost of using parking to be zero. 

Where parking is shared, however, in on-street situations or where housing is served by 

residential parking lots, access to parked vehicles is more cumbersome.

The willingness to endure the monetary and nonmonetary costs of keeping and 

using an automobile is driven by household income.  Generally, greater income should 

lead to an increased number of household vehicles.  However, in urban situations this 

relationship may be weaker, as using an automobile becomes more burdensome in time 

terms while higher-income households may be more likely to hold professional jobs in 

urban cores served by transit.

Conclusions

The main goal of this research is to create a scientifically sound, practical method 

for forecasting household vehicle availability, for the purpose of land-use regulation.  For 

maximum credibility, it should address all theoretically and empirically important 
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predictors of vehicle availability.  To be workable, it should sparingly define 

“theoretically and empirically important,” bearing in mind the limited data available to 

regulators.  It must attend to the competing virtues of expedience and comprehensiveness.

The next step in this research is to explore the relationships among household 

vehicle availability and the housing choices generally available to land-use regulators: 

location and housing unit type.  The study is guided by the foregoing review as follows.

1. It must consider activity demand and other preferences, relative costs of alternatives 

to vehicle availability, and the income constraint.

2. It must reflect the finding that density, land-use mix, and employment accessibility 

have consistently significant associations with vehicle availability.

3. It must highlight the effects of urban environments.  Residential parking requirements 

that neglect the influence of location—assuming complete or average auto 

dependence—are most problematic where alternatives to auto travel are readily 

available and/or auto ownership or use is burdensome.  In a statewide or regional 

sample, these urban households will represent only a small fraction, and their choices 

will have a small impact on overall model error.  Focusing on influence—reduction in 

overall model error—rather than statistical significance obscures location-related 

effects.

The next chapter follows these maxims as it considers household vehicle 

availability.



44

Chapter 3. Vehicle availability and practical housing unit descriptors 

The express goal of this research is to develop a practical method for developing 

context-sensitive residential parking standards, which results in an improvement over 

current methods.  The previous chapter outlined a comprehensive approach to estimating 

vehicle availability, moving us toward improvements through context-sensitivity:  It 

identified significant predictors from among environmental, demographic, attitudinal, and 

residential choice variables from the literature.  It also yielded a conceptual model of 

vehicle availability.  Whereas the previous chapter centered on the prerequisites for a 

context-sensitive method of estimating parking demand, this chapter focuses on 

practicality.

This chapter presents analyses aimed to create a practical method.  The first 

section presents a working definition of practicality.  The second section reviews existing 

parking standards and argues that bedrooms, unit type and location are appropriate and 

sufficient for the method.  The third section demonstrates that, in north and central New 

Jersey at least, all three variables–bedrooms, unit type and location–are necessary to 

capture substantial variation in household vehicle availability.  The fourth section uses 

linear regression in an omitted variable bias framework to evaluate the direct and indirect 

relationships among our regulation-appropriate variables and household vehicle 

availability.  The fifth and final section addresses the question of the geographic level at 

which household location must be defined.  It suggests that the Census block group is the 

best choice of geographical unit.  By virtue of the work presented in these five sections, 



45

we prepare to propose and evaluate a method for projecting household vehicle 

availability.  That method and its validation are presented in Chapter 4.

On practicality

The context for implementing new parking standards is decidedly one where 

group decision-making dominates.  Developers, along with their lawyers and engineers, 

present and defend their proposals for new housing projects to boards of laypeople—

planning boards, zoning boards of appeal, town councils, and the like—who are in turn 

informed by their own experts.  Roughly speaking, this is a situation that Andrews (2002) 

refers to as joint fact-finding:  “the activities and perceptions of technically trained 

analysts working in a group decision support context.” (p. xiv)

Andrews (2002) argues that the essential distinction between analysis in support 

of joint fact-finding and  traditional technical analysis lies in the communicative context. 

Power trumps knowledge in group decision processes.  To have an impact, therefore, the 

knowledge produced by analysts must be communicated in such a way that it can be 

adopted by powerful parties.  The joint fact-finding cases that Andrews reviews involve 

analysts who interact to some degree with policy makers.  In this case, however, there is 

essentially no interaction.  Parking standards are published, and later used by municipal 

and consulting engineers who have no opportunity to interrogate or influence the 

analysts.  This makes effective communication all the more important.

Andrews (2002) derives eight lessons for successful analysis to support joint fact-

finding.  The lessons center on communicating about the analysis to ensure maximum 

adoptability:  the analysis must be readily understood, accepted, and implemented.  See 

Table 3.1.
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Table 3.1.  Lessons for analysts supporting joint fact-finding
Goal Lesson
Understanding Rely on inductive reasoning in analysis

Share information widely
Persuasively translate analytical results

Accepting Actively manage normative content in the analysis
Broaden the analytical scope
Perform cross-disciplinary reviews of results

Implementing Marry analytical work to decision process
Enjoy support of those in power

Source:  Adapted from Andrews, 2002, p. 15.

The guidance summarized in Table 3.1 can be applied to the current research to 

varying degrees.  Some lessons apply strictly to post-analysis communication, while 

others apply strictly to the analysis.  For the sake of concision, I discuss here only those 

lessons that bear on the execution of this research11.

Relying on inductive reasoning is important because different users of analysis 

results arrive at the group decision-making context with different theories. A purely 

theory-driven analysis can be limited, therefore, in its ability to forge common 

understanding.  (On the other extreme, analysis that entirely excludes theory is also 

difficult to use because generalizing necessitates theory.)

Similarly, managing normative content of the analysis avoids conflicts in its 

interpretation: Normative content is based on value judgments that will not necessarily be 

shared by all parties to the decision.  The concern about normative content applies much 

more to the design of an administrative process to use new parking standards than it does 

11This discussion is drawn from Andrews (2002).
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to the analytical process to create the standards.  It is not a primary concern here, but 

important to bear in mind nonetheless.

Andrews calls on analysts to broaden their analytical scope, by which he means to 

avoid defining the problem so narrowly as to exclude some stakeholder interests.  This 

guidance does not apply here, as the problem is defined a priori:  create more accurate 

residential parking standards by incorporating context sensitivity.  The new standards will 

have numerous implications, relevant to different stakeholders.  Following Andrews's 

advice, the broad range of implications should be considered as the administrative 

process in which the new standards are embedded is designed.  That is beyond the scope 

of this work.

Successful analysts in joint fact-finding also perform cross-disciplinary reviews of 

results.  These reviews are not part of the present research, but to be useful, this research 

must stand up to subsequent reviews.  This in turn depends on what Andrews calls the 

adequacy of the analysis—effectively its scientific soundness.  A scientifically sound 

method should entail a transparent process to process data of known quality to produce 

estimates along with the uncertainty in those estimates.  In addition, Andrews's criterion 

of “value” applies here:  in this case, a valuable analysis produces accurate estimates with 

low uncertainty.

Finally, successful analysts in joint fact-finding situations marry their analytical 

process to the decision process.  To have an impact, the analytical results must be 

inserted into the decision process.  This happens through a process of communication that 

is facilitated when the analytical process was developed with the institutional context in 

mind.  When the analyst does his or her work while considering which parties, with what 
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set of interests and influence, will be interacting, along with the rules and norms that 

guide those interactions, he or she can work to ensure that the results can be easily 

introduced into the group decision-making context.  This simplifies the purely 

communicative task that follows the technical analysis.

In summary, Andrews's (2002) guidance demands that this method exhibit the 

following qualities.  

1. Inductive:  The method should be guided by theory but rely heavily on observation.

2. Adequate & valuable:  The method should process data in a scientifically sound way 

to create accurate estimates with low uncertainties. 

3. Married to decision process:  The method should reflect the group decision-making 

context in which the resulting new standards will be used.

The balance of this chapter presents preliminary analyses aimed to ensure that the method 

is scientifically sound.  The first and third criteria above are considered in Chapter 4, 

where the method is presented.

Review of existing residential parking standards

Many of the studies reviewed in Chapter 2 include demographic predictors that 

are likely to change whenever a residence changes hands, such as householder race and 

income.  Land use regulations, on the other hand, must respond only to fixed attributes of 

development.  Given that the task at hand is to create an improved method for developing 

residential parking standards, the disconnect between research and regulation variables 

raises the question of what residential development characteristics to use in our method. 

Residential characteristics with a strong relationship to household vehicle availability, 

while being unchanging and readily measurable, should be the best candidates.  This 
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section draws on a review of existing parking standards, along with insights from Chapter 

2, to propose the residential development characteristics around which we will build a 

method for developing parking standards.

Seattle

The City of Seattle considers a number of factors in setting minimum parking 

requirements for residential development (City of Seattle, 2006).  Single-family units, 

regardless of location and occupants, must have a minimum of 1 parking space provided. 

The default requirement for multifamily units is an increasing function of number of units 

on the parcel:  1.1 spaces per unit for 2 to 10 units, up to 1.25 spaces per unit for more 

than 60 units on the parcel.  Additionally, the parking requirement is adjusted by an linear 

increment for floor area per unit:  at 500 square feet, there is no increment, and at 1250 

square feet and above, the increment is 0.15 spaces per unit.  Where half or more of all 

units have 3 bedrooms, an additional 0.75 spaces per 3-bedroom unit is required.  Any 4-

bedroom unit requires an additional space, in addition to the unit number- and floor area-

based calculations above.  Even without considering exceptions, Seattle's code is quite 

sophisticated.

Location is a key determinant of Seattle's parking standard exceptions.  For 

example, there is no minimum parking supply requirement for housing of any sort in 

downtown zones.  Also, seven neighborhoods or "urban villages" in the "Center City" 

have reduced standards for multifamily housing.  Conversely, units in the University 

District have higher, bedroom-sensitive requirements than the default.  This reflects the 

likely make-up of those units—unrelated students whose number depends strongly on 

bedrooms, and whose inclination to own vehicles is relatively independent of roommates' 
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vehicle ownership.  The effects of other household characteristics on parking standards 

generally depend on neighborhood location.

Income is also important in Seattle's code.  Multifamily units rented to tenants 

with less than 30 percent or 50 percent of the area median income qualify for reduced 

parking standards.  The amount of the reduction depends on the location of the unit, 

whether the tenant is elderly and/or disabled, and the number of bedrooms in the unit.

Portland, Oregon

The City of Portland has a less sophisticated but perhaps more aggressive set of 

parking standards than does Seattle (City of Portland, 2005).  Its default minimum 

requirement for multifamily units is 1 space per unit, less than Seattle's lowest, and 

Portland does not increase the requirement for larger floor area or greater numbers of 

bedrooms.  Similarly, although Portland does not allow location-specific reductions for 

income, single-room occupancy (SRO) hotels have zero minimum parking requirements 

throughout the city.

Location does factor into Portland's standards, however.  Portland divides the city 

into 17 zones.  For residences in six of those zones, there is no minimum parking 

requirement.  Two additional zones have reduced requirements:  zero spaces per unit for 

parcels with 3 or fewer units and 0.5 spaces per unit otherwise.  Further, one zone has a 

parking supply maximum of 1 space per unit.  Also, for any residential development in 

the city that is within 500 feet of a transit street with service intervals no more than every 

20 minutes in peak hours, the minimum parking requirement is zero.
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Greater Portland

Oregon's Transportation Planning Rule directs local governments to reduce 

automobile travel and limit the construction of parking spaces in their management of 

new development (Metro, 2004).  To that end, the regional government that manages 

planning regulations in the greater Portland area, Metro, has established residential 

parking standards for cities and counties in its jurisdiction.  The affected governments are 

not allowed to require more than the given number of spaces per residential unit 

constructed.  Metro's standards are as follows:  1 space per unit for hotel/motels, single-

family detached units and 1-bedroom units encompassing less than 500 square feet.  For 

multifamily and townhouse developments, the standards depend on bedrooms:  1.25 

spaces per unit for 1 bedroom, 1.5 spaces for 2 bedrooms and 1.75 for three bedrooms. 

Metro does not require constituent governments to reduce standards in particular 

locations according to transit access or other factors, but it does not prohibit them from 

doing so, either.

Montgomery County, Maryland

Montgomery County, Maryland, offers an example of a county-wide residential 

parking standard (County of Montgomery, 2005).  For units in an apartment hotel, the 

parking requirements range from one space per unit for zero-bedroom units up to two 

spaces for units with three or more bedrooms.  Multifamily units are also required to 

provide between one space per unit, for zero-bedroom units, to two spaces for three or 

more bedrooms.  Single-family units, including townhouses, must provide two spaces. 

The standards are significantly reduced, and still bedroom-dependent, for housing for 

elderly or disabled people.
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Montgomery County's base standards can be reduced depending on the unit's 

location.  Senior and/or disabled housing parking requirements are reduced sequentially: 

by 5% if units are within 1,000 feet of a Metrorail station entrance; by another 10% if an 

adequate private shuttle service is provided; by up to another 20% if units meet the legal 

definition of “moderately priced”; and by 20% for assisted living.  Other residences can 

earn parking requirement reductions sequentially as well:  by 10% if units are in a central 

business district or a “transit station development area”; and by another 5% if units are 

within 1,600 feet of a Metrorail station entrance.

New Jersey

The State of New Jersey offers an example of a statewide parking standard (State 

of New Jersey, 1997).  The parking requirements include no explicit reference to 

location; however, the differentiation in unit types does imply differences in the local 

environment.  For example, garden apartments and high-rise apartments are treated 

separately, and have standards for one-, two-, and three-bedroom units, where the high-

rise requirements are lower than the garden apartment requirements.  (See Table 3.2 for 

details.)  Also, municipalities are welcome to create their own special area standards. 

The City of Hoboken is among those that has done so–its standards include prohibitions 

on off-street parking in some parts of the city.  Finally, these standards do not apply 

where residential and nonresidential uses share parking facilities (Goldsmith, 2007).
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Table 3.2.  New Jersey's Residential Parking Standards
Housing unit type 1 BR 2 BR 3 BR 4 BR 5 BR
Single-family detached or two-family 1.5 2.0 2.5 3.0
Townhouse 1.8 2.3 2.4
Garden or mid-rise apartment 1.8 2.0 2.1
High-rise apartment 0.8 1.3 1.9
Assisted living 0.5
Source: State of New Jersey, 1997: Table 4.4
Notes:  Multifamily standards include 0.5 spaces per unit for visitor parking, which may 
be accommodated on- or off-street.

Table 3.3 summarizes the residential parking standards reviewed above.  The 

most common indicators in Table 3.3 and elsewhere (Davidson & Dolnick, 2002) are unit 

type12, bedrooms and location.  These are essentially fixed properties of a housing unit. 

Although single-family detached dwelling units can add a bedroom with relative ease, it 

is all but impossible for attached housing units to do so.

Table 3.3.  Summary: variables used in selected parking standards
Jurisdiction Parameters Jurisdiction Parameters
Seattle, Washington Unit type 

Floor area per unit
Bedrooms
Income
Age
Location

Metro:  Area around 
Portland, Oregon

Unit type
Bedrooms
Floor area per unit

City of Portland, 
Oregon

Unit type
Location

Montgomery 
County, Maryland

Unit type
Bedrooms
Age
Disability
Location

New Jersey Unit type
Bedrooms

12The term “unit type” as used here refers to the number of units in a structure and/or descriptions such as 
“high-rise apartment” and “garden apartment.” 
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Household income and householder age are less common in standards, but special 

standards for age-restricted housing and low- to moderate-income housing are not 

unusual, according to the discussion above and parking references with nationwide scope 

(Davidson & Dolnick, 2002).  Income and age depend on the occupants of the unit, of 

course, and could change frequently.  To allow age and income to be considered in 

setting parking standards, laws and contracts fix them to the housing unit, effectively 

making them characteristics of the unit.

Floor area may also be useful.  Metro (governing metropolitan Portland, Oregon) 

and Seattle consider the floor area of multifamily units, which is as fixed as is the number 

of bedrooms.  Researchers in Ontario found that total floor area was the best predictor of 

the total parking demand exhibited in a multifamily complex, followed by number of 

bedrooms and then number of units (T. P. Smith, 1983).  The apparent rarity of unit floor 

area among parking standard regimes may well relate to the cost of collecting reliable 

data.  As most geographically broad data sets are based on take-home surveys, 

measurements of unit size in those data sets are only as precise as volunteer respondents 

are willing to make them.  It seems likely that many residents are unsure of their total 

living area.  Given that floor area is a measure of unit size, as is number of bedrooms, and 

the latter is likely measured more reliably, we consider bedrooms preferable to floor area.

The household characteristics used in the regulations cited above share two 

essential traits:  they relate to drivers of household vehicle availability prima facie, and 

they are physically or otherwise affixed to the unit.  These two conditions are essential 

for effective vehicle availability estimates.  Further, the most widely used household 

characteristics—unit type, number of bedrooms and location—are also easy to ascertain. 
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They can be measured reliably, allowing the regulation to be administered consistently. 

Any additional household characteristic to be used in setting parking standards must be 

justified in terms of the accuracy improvement it offers and the consistency of its 

influence.

The vehicle availability studies cited in Chapter 2 offer no clearly worthwhile 

additions to the set of household characteristics in Table 3.3.  The studies include various 

environmental characteristics such as access to jobs and proximity to transit, all of which 

are bound to location.  They also make use of a number of household-specific variables: 

household income, ownership status and number of persons of various sorts (workers, 

children, licensed drivers), and householder age, sex, race, and occupation.  None of this 

personal data can be fixed to a household with three exceptions.  Income and age have 

been included in parking standards above in a limited way, and could be here as well. 

Ownership status—rented versus owned—could be fixed by regulation in the same way.

This research is aimed to determine how location interacts with household 

variables to influence residential parking demand, with the ultimate goal of developing a 

broadly applicable method for setting residential parking standards.  The foregoing 

review suggests that, to meet this goal, the method should rely on bedrooms, unit type 

and location.  It does not specifically address the special cases of deed-restricted 

affordable or elderly housing, although the methods here could be modified to do so. 

Rental housing can be easily converted to owned housing—possibly changing the 

parking demand without official oversight.  Taking a cue from the standards reviewed 

above, ownership status will also be neglected in this research.  Based on the foregoing 
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review, we contend that bedrooms, unit type, and location are appropriate and sufficient 

for the method under development here.  

Impacts of regulation-appropriate variables on household vehicle availability

That leaves open the question of whether all three variables are necessary in our 

method.  This study has already presented evidence that unit type, bedrooms and location 

influence vehicle availability.   The parking standards reviewed above indicate a general 

acceptance among practitioners that the three variables bear on vehicle availability.  Also, 

the studies cited in Chapter 2 explicitly test and find relationships between vehicle 

availability and various aspects of housing location and, in some cases, unit type.  The 

relationship between bedrooms and vehicle availability is untested, but common 

experience with the housing market suggests that number of bedrooms is positively 

correlated with housing price and, therefore, income.  Combine that with the link between 

income and vehicle availability demonstrated in Chapter 2, and we have an indirect link 

between bedrooms and vehicles.  Notwithstanding this evidence, the question remains of 

how much unit type, bedrooms and location influence vehicle availability.

This is an essential question in preparing a new method for calculating parking 

standards.  The development and implementation of a new regulation is expensive.  Like 

many other investment decisions, it must be justified with a cost-benefit analysis.  Does 

the benefit of capturing whatever interhousehold vehicle availability variation we can 

represent with the regulation-appropriate variables outweigh the cost of implementation?

This section demonstrates the extent of the association between household 

vehicles and our regulation-appropriate variables:  location, unit type and bedrooms.  The 

studies cited in Chapter 2 speak to the statistical significance of some of these 



57

relationships, while controlling for selected covariates.  By contrast, this section assesses 

how much variation in average household vehicle availability is associated with variation 

in our chosen regulation-appropriate variables, ignoring all other factors.

At the PUMA:  Location, unit type and bedrooms

Here we consider the associations between vehicle availability and unit type, 

bedrooms and location in the State of New Jersey.  New Jersey is the most densely 

populated state in the country, and exhibits a wide range of built environments.  It is 

bounded by two major employment centers—New York City and Philadelphia—and also 

hosts significant job concentrations within its borders, in cities such as Jersey City and in 

sprawling pharmaceutical campuses in central New Jersey.  It is served by an extensive 

public transit system including trains and buses, as well as a massive road network.  New 

Jersey makes an interesting case because of its activity intensity and land-use diversity.

This analysis is conducted using data from the Census Bureau, reported at the 

Public Use Microdata Area (PUMA) level.  A PUMA is defined by the Census Bureau to 

contain no fewer than 100,000 residents.  This level is set to ensure household 

confidentiality, as individual household responses to the long-form survey used in the 

Decennial Census are linked to the households' home PUMA before being released to the 

public.  The PUMA is the smallest geographic unit at which publicly available household 

data on unit type, bedrooms and vehicles available are or can be tabulated13.  Using data 

at the PUMA level offers the strength of comprehensive data on household composition 

and housing unit, but allows the responding household to be located within a 

13The State Data Centers created by the U.S. Census Bureau can actually tabulate households in vehicles 
available x unit type x bedrooms x location for areal units as small as block groups.  However, 
confidentiality concerns lead the Census Bureau to set the minimum cell size relatively high and the 
number of levels in each variable to a low value.  As a result, special tabulations available from State Data 
Centers are not adequate for the purposes of this research.
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transportation and land-use context in only a gross way.  Table 3.4 summarizes the 

PUMAs in New Jersey.

Table 3.4. New Jersey's 61 Public Use Microdata Areas

Area 
(mi2)

Population 
density  

(persons/  
mi2)

Average 
vehicles per  
household1

Minimum 3.4 254 0.78

Percentiles
25 24.3 983 1.47
50 60.3 2250 1.71
75 138.3 5686 1.83

Maximum 633.8 35135 2.02
1Mobile homes, boats, RVs, tents and other non-structure residences are excluded.

Table 3.4 introduces a method of presenting distributions that we return to a 

number of times in this chapter.  The practice of presenting quartiles rather than means 

and standard deviations is intended to illustrate as intuitively and compactly as possible 

the actual distribution of geographic entities' characteristics.  In particular, in subsequent 

discussions we use the difference between 25th and 75th percentile values as a measure 

of dispersion, rather than the standard deviation.  The percentile-difference is explicit 

about what fraction of the sample falls in the tails, whereas to infer the same information 

from the standard deviation would require knowledge of skew and kurtosis along with 

some calculations.  So here we choose to trade a small loss of compactness for ease of 

interpretation.

Table 3.5 was created by computing average household vehicle availability by 

PUMA for the four unit type/bedroom combinations shown, after ensuring an adequate 
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number of responses in the class.  PUMAs containing fewer than 30 survey responses in 

the given unit type/bedroom combination were excluded on a case-wise basis; because 

the Census Bureau provides a 5% sample of the 1 in 6 households that completed the 

long form, some PUMAs did not meet the 30-response criterion despite their 100,000-

person size.  The lower bound on sample size was enforced to help ensure a reliable 

estimate of the mean.

Table 3.5 proxies location in a land-use and transportation context in terms of the 

residential density of the PUMA:  the percentile score for each PUMA is computed 

according to its relative residential density.  Chapter 2 reviews numerous studies that 

identify characteristics of the physical environment other than density, such as 

employment accessibility and land use mix, that have independent influence on vehicle 

availability.  We limit the discussion of location here and later in the chapter to 

residential density for clarity of presentation.

Table 3.5.  PUMA-average household vehicle availability by unit type and bedrooms
Percentile Single-family detached

3-bedroom 4-bedroom
10-19 units in structure
1-bedroom 2-bedroom

25th 1.80 1.93 0.83 0.99
50th (median) 1.91 2.11 1.04 1.30
75th 1.95 2.19 1.16 1.42

Difference 
between 25th and 
75th percentiles

0.15 0.26 0.33 0.43

N 60 61 51 45
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Table 3.5 indicates substantial variation in household vehicle availability along all 

three dimensions.  In each column, the differences among the rows shows the location-

related variation in vehicle availability for a given unit type/bedroom combination.  For 

example, the second column shows that the PUMA with the 25th percentile PUMA-wide 

average vehicle availability for 4-bedroom single-family detached units is 1.93, whereas 

in the 75th percentile PUMA, the average is 2.19 vehicles per household.  In all but the 3-

bedroom single-family case, the 75-25 percentile difference exceeds 10% of the median 

value.  Also, the table shows greater inter-PUMA differences for units with more 

bedrooms, and for the attached units rather than the single-family detached residences. 

The table indicates substantial vehicle availability variation according to number 

of bedrooms as well.  For both unit types, the difference between the median vehicle 

availability for the greater number of bedrooms is more than 10% greater than the value 

for the case with fewer bedrooms.  Also, at every PUMA percentile, the multifamily unit 

gains more vehicles from adding a bedroom than does the detached unit.

The table also shows that different unit types tend to have greatly different 

average vehicle availabilities.  The 1-bedroom multifamily unit averages about half as 

many vehicles as the 3-bedroom detached unit, at every percentile level.  Granted, this 

conflates the influence of bedrooms and unit type.  For clarity, a comparison of two unit 

types with the same bedroom levels would have been preferable.  However, that was not 

possible given the need for 30 respondents in each PUMA x unit type x bedrooms cell: 

4-bedroom multifamily units and 1-bedroom detached units are quite rare in New Jersey. 

This review of PUMA-level data suggests that location, unit type and bedrooms 

are independently useful for predicting household vehicle availability.  However, this 
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analysis is limited by the large size of PUMAs.  Because they are much larger than the 

distance scale of changes in household vehicle availability, potentially significant 

locational effects are averaged away.  It may be that this PUMA-level analysis 

underestimates the importance of location.

At the Census tract:  Closer look at location, ignoring bedrooms

To get a better estimate of the importance of location, data from the 2000 Census 

Transportation Planning Package (CTPP) are analyzed here.  The CTPP is a special data 

product based on the long-form responses collected from 1 in 6 households during the 

Decennial Census.  Unlike the PUMS, the CTPP reports all long-form responses and it 

does not report disaggregated household-level data.  It does include a number of cross-

tabulations that address aspects of transportation-related behavior, however.  Included 

among those cross-tabulations is one that indicates the number of households within a 

tract—a Census Bureau-defined area designed to hold a population of 4,000—that land in 

various levels of household vehicle availability and unit type.  The analysis here uses data 

from that cross-tabulation for all 1,950 tracts in New Jersey.

Before data from the CTPP are used to calculate tract-average vehicle availability 

broken down by unit type, tracts with too few respondents in a unit-type level are 

excluded from analyses on a case-wise basis.  Here the threshold minimum is 180 

“equivalent” households.  The CTPP reports estimates of actual numbers of households 

in each level in each tract.  Given the 1 in 6 sampling strategy, 180 households in the 

CTPP is equivalent to roughly 30 survey respondents14.

14The weighting factor is approximately 6 because of Census Bureau efforts to account for sampling 
irregularities such as nonresponse.
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Table 3.6.  Tract-average household vehicle availability by unit type
Percentile Single-family 

detached
2-4 units in structure 5+ units in structure

25th 1.78 1.00 0.54
50th 1.94 1.25 0.95
75th 2.09 1.49 1.21

Difference 
between 25th and 
75th percentiles

0.31 0.49 0.67

N 1600 1818 1814

Table 3.6 shows the distribution of tract-average vehicle availability in New 

Jersey, broken down by unit type.  Each column taken by itself indicates that for every 

unit type, household vehicle availability differs substantially from tract to tract.  The 75th-

to-25th percentile difference approximates the extent of the intertract difference.  This 

difference increases as the number of attached units increases.  That is, average 

household vehicle availability for units in larger buildings is more sensitive to location 

than it is for smaller and detached buildings.

The rows show that vehicle availability tends to decrease as the number of units 

attached to each other increases.  At every percentile, units in larger in buildings have 

fewer vehicles available to them.  As with the PUMA-level analysis, this table conflates 

unit type and bedrooms.  Nonetheless, the vehicle availability differences are stark. 

Across almost all percentile/unit combinations, a one-level increase in building size is 

associated with a reduction in household vehicle availability of 0.3 or more.

To sum up this section, the analyses at the PUMA and the tract level show that 

each of our regulation appropriate variables contributes to household vehicle availability. 

Moreover, the vehicle availability differences are substantial.  Consider the case of a 10-
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unit structure composed entirely of 2-bedroom units.  If that structure is located in the 75th 

percentile PUMA, its expected structure-wide vehicle availability would be (10 * 14.2 =) 

14.2.  Put the same structure in the 25th percentile PUMA, and we would expect it to have 

(10 * 0.99=) 9.9 vehicles on site.  Regulate the 25th percentile-PUMA structure as if it 

were in the 75th percentile PUMA, and we require it to have (14.2 – 9.9 ~) 4 spaces more 

than necessary.  Assuming those spaces are supplied in a surface lot, that amounts to 

about $80,000 in added initial cost15, or $8,000 per unit, and this translates to a greater 

increment in unit price.  Four surface parking spaces also consume about 1700 square 

feet, more than enough for another residential unit per floor of the structure.  The 

potential revenue loss for the developer or added expense for the home buyer is 

substantial.  In sum, the impacts of bedrooms, unit type and location are substantial: 

Each variable is necessary to the method under development here.

Relating regulation-appropriate variables to vehicle availability

We have concluded that unit type, bedrooms and location are the housing 

characteristics necessary and sufficient–in the sense that no additional, influential 

variable is appropriate to include–for the method under development here.  However, the 

review in Chapter 2 illustrates clearly that household demographics influence vehicle 

availability decisions more than location within a particular land use and transportation 

context does.  The residential unit choice variables of unit type and number of bedrooms 

are included in the studies cited in Chapter 2 only in the difference between detached and 

attached housing.  Again, the impact of that difference is small compared to 

demographics.  The dominance of demographics in the vehicle availability decision, 

15This figure comes from slightly inflating the data in Table 1.1, which presents an estimated initial present 
value of the 24-year costs of surface lots at $19,700 per space, in 1997 dollars.
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coupled with our inability to include demographics in a residential parking standard, puts 

us in a quandary.  How much can we say about household vehicle availability if we know 

only a household's location and the unit type and number of bedrooms it chooses?  

Data

To answer that question we must study how much we miss by leaving out the 

most influential demographic predictors.  Therefore, we must draw on a data set that 

includes household demographics, location, unit type, number of bedrooms, and vehicles 

available.  The Census Public Use Microdata Sample (PUMS) offers that data.  The 

PUMS includes a broad range of household and person-level data, including vehicles 

available, unit type and number of bedrooms.  Unfortunately, it locates respondents only 

to their Public Use Microdata Area (PUMA), which by design holds at least 100,000 

people.  As a result, household location information will be biased toward a regional 

mean.

We focus on New Jersey because it is the most densely populated state in the 

union, which fits our focus on urbanized areas where alternatives to automobile travel 

tend to be more widely available.  To further support our interest in urbanized areas, we 

consider only the northern and central counties, which lie within the New York City 

metropolitan commuter shed.  The sample is described in Appendix C.

In performing this study we follow the lessons from Chapter 2, to the extent the 

data allow.  We include drivers of activity demand, preferences, the costs of vehicle 

availability and its alternatives, and the income constraint.  We account for the effects of 

density, land-use mix, and employment accessibility.  The following paragraphs outline 

the relationship of the variables used in this section's analysis to Chapter 2's lessons.
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Working adults.  The number of working adults is associated primarily with the 

demand for activity outside the home.  Workers must travel to work, generally.  Also, 

they tend to need services to maintain their employability, such as haircuts, dry-cleaning, 

etc.

We expect the number of workers to be positively associated with household 

vehicle availability.  Studies reviewed in Chapter 2 find this to be true, controlling for 

other household characteristics such as income (Handy et al., 2004; Schimek, 1996; 

Sermons & Seredich, 2001).

Working adults are defined in the PUMS as people aged 18 or older who worked 

in the week preceding the Census or who looked for work in that time.

Nonworking adults.  The number of nonworking adults is likewise related to the 

household's demand for activities outside the home.  As such, we expect it to be 

positively associated with vehicle availability, all else being equal.  Studies reviewed in 

Chapter 2 confirm this expectation (Handy et al., 2004; Schimek, 1996; Sermons & 

Seredich, 2001).

Nonworking adults are defined here as people aged 18 or older who did not work 

or look for work in the week preceding the Census.

Children.  The number of children in the household is linked to demand for 

activity outside the household.  However, the direction of causality is ambiguous.  On 

one hand, greater numbers of children may lead to greater need for shopping of various 

sorts, participation in extracurricular sports, doctor's visits, etc.  On the other hand, 

having children in the home may consume a nonworking adult's time and energy, and 

decrease his or her ability and inclination to participate in activities outside the home.
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The ambiguous and complex relationship between children and activity demand is 

reflected by the way the New York Metropolitan Transportation Commission (NYMTC) 

Best Practices Model accounts for children in estimating household vehicle availability. 

The model responds only to the presence of children, not to the number of children. 

Further, the need for automobiles of nonworking adults in households with children is 

assumed to be less than in households without children, because the children are 

presumed to require care by nonworking adults (Parsons Brinckerhoff Quade and 

Douglas, 2005b).

In addition to its relationship with activity demand, household children are also 

associated with household preferences.  There is evidence, for example, that households 

with children present are especially averse to crowded conditions (Guo, 2004; Waddell & 

Nourzad, 2002).  In other, attitude-focused research, the preference for space is found to 

be positively associated with vehicle availability (Handy et al., 2004).  From this line of 

reasoning, we might expect the number of household children to be positively associated 

with household vehicle availability.

We expect number of children to be weakly associated with vehicle availability. 

Studies reviewed in Chapter 2 bear this out.  Chu (2002) finds only a marginally 

significant association between children and vehicle availability.  Sermons and Seredich 

(2001) develop a 17-variable joint model of vehicle availability and residential location in 

which the number of children is the 15th most significant predictor.

Children are defined here as household members aged 17 or fewer years.

Household income.  Household income relates to the income constraint on 

expenditures, according to the microeconomic model of household consumption choice. 
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We expect that greater household income is associated with greater household vehicle 

availability.  Numerous studies confirm this expectation (e.g., Cervero, 1996; Cervero & 

Duncan, 2002; Chu, 2002; Handy et al., 2004; Hess & Ong, 2002; Kockelman, 1997).

Household income is operationalized here as the natural logarithm of annual 

income in 1999.  Using the logarithm of income leads income to have a diminishing 

impact on vehicle availability as income increases.

Density.  Density, land-use mix and accessibility all bear on the relative cost of 

alternatives to vehicle availability.  Density of residences, employment or development is 

important in that it is associated with making automobile use more difficult by clogging 

road networks (Chatman, 2005).  Local, pedestrian-scale accessibility speaks to the 

ability to get to jobs or services by walking.  Regional job accessibility, on the other 

hand, indicates the relative importance of having a vehicle available to reach employment 

opportunities.  

Land-use mix near the residence is closely related to job and service accessibility, 

the difference between mix and accessibility being largely in the nature of accessible 

activities.  A single house or housing complex surrounded by services is likely to have 

those services be regional-scale specialized services, as most shoppers must reach the 

establishments by car.  In places where there is sufficient residential density to support 

the nearby services, those services are more likely to be oriented toward a pedestrian 

market.  For example, a downtown surrounded by housing is likely to host stores that 

meet basic needs such as a convenience store or pharmacy.  By contrast, having an 

apartment complex situated next to a regional mall is unlikely to foster walking rather 
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than driving.  Some researchers capture the difference between these two cases by using 

land-use mix measures at different spatial scales (Kockelman, 1997).

As density, land-use mix, and local accessibility increase, the relative cost of 

driving rather than traveling via other modes increases.  As a result, the relative benefit of 

vehicle availability falls, and we should expect that vehicle availability itself falls as well. 

Studies cited in Chapter 2 confirm this expectation (Chu, 2002; Kockelman, 1997; 

Schimek, 1996).

In this section, we use PUMA density as a proxy for land use mix and local 

accessibility.  On average, high density PUMAs should have greater land use mix and 

higher average local job accessibility than lower density PUMAs.  Drawing on Chatman's 

(2005) conclusion that density impacts travel behavior by making automobile travel more 

difficult, we use here an activity density that combines worker and residential populations 

and their impacts on the road network loading.  Further, we take the natural log of this 

activity density before employing it in the model; each doubling of density leads to a 

scale-independent increment in expected vehicle availability.  Finally, we create a z-score 

from the logarithm of the activity density.  The computation of the density measure is 

summarized below.

LD= ln  number of PUMAresidentsnumber of PUMAemployees 
PUMA square miles of land 



(3.1)

density=LD−meanLD 
 s LD (3.2)
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Unit type  Unit type–single-family detached, single-family attached/townhouse, 

multifamily, etc.–relates to two of the fundamental drivers of household vehicle 

availability decisions.  First, it relates to preferences, in particular, a preference for space 

and/or privacy.  Generally, a greater number of attached units indicates a greater number 

of households sharing common areas such as parking lots and grassy areas.  Households 

that put a higher priority on space should be more likely to choose unit types that offer 

more privacy from neighbors.  Combine this with the observation that households that 

prefer space tend to have higher vehicle availability (Handy et al., 2004), and we are led 

to expect that unit types that offer more privacy should have higher average vehicle 

availability, all else being equal.

Second, unit type relates to the relative benefit of vehicle availability and use.  We 

would expect single-family detached houses generally to have private, dedicated parking 

spots.  In this situation, it is relatively easy to move large loads of groceries from the car 

to the house.  Changing the oil in the driveway is no problem.  Easy access from the 

house to the car almost makes it a household appliance rather than a discrete conveyance. 

As the number of attached units rises, this becomes less and less true.  Parking areas are 

more likely to be shared.  The distance from the car to the unit increases.  Servicing the 

car may be forbidden in shared lots.  Generally, using the car becomes harder.  Following 

this line of argument, we should expect the benefits of vehicle availability, and vehicle 

availability itself, to fall as units are attached to a greater number of other units.

Whereas unit type is being introduced here as a substitute for demographic 

variables that cannot land in a residential parking regulation, we must consider its likely 

relationship with these demographic variables.  First, consider household income.  We 
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can assume that space is a normal good, of which more is purchased as more spending 

power is acquired.  Higher incomes should be associated with more private housing, all 

else being equal.  Second, consider children.  Studies cited in Chapter 2 found that 

households with children particularly value space (Handy et al., 2004; Waddell & 

Nourzad, 2002).  This suggests that as the number of children rises, so does the likelihood 

of choosing a more private housing unit, all else being equal.

Here, unit type is operationalized as a categorical variable, using the eight 

categories of immobile housing available in the Decennial Census PUMS.

Bedrooms  The number of bedrooms in the unit should relate to three drivers of 

household vehicle availability:  demand for activity outside the home, preference for 

space, and the income constraint.  We expect, all else being equal, that the number of 

bedrooms should tend to increase as the number of household residents increases, and 

that more people should mean more activity demand.  As to preference for space, the 

relationship between residents and bedrooms, and therefore between activity demand and 

bedrooms, will be stronger for households with a greater preference for space.  Finally, 

we should expect number of bedrooms to be a measure of household income, inasmuch 

as living space is a normal good.  Taken individually and together, these three 

relationships suggest that number of bedrooms should be positively associated with 

vehicle availability, all else being equal.

Method

The task at hand is to explore the relationships among household demographics, 

household choices about the residential unit (unit type, bedrooms and location), and the 

household choice of how many vehicles to own.  We approach this task using linear 
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regression for three reasons.  First, we are modeling expected values of a discrete choice 

averaged over all households of a large class.  The ultimate output of our modeling must 

be a continuous, not a discrete, variable.  Multiple tests of ordinal and multinomial logit 

modeling approaches, with the discrete output categories weighted by their probabilities, 

gave results indistinguishable from the results of linear models.  Second, linear models 

are significantly easier to interpret and combine than logit or probit models.  This is 

important especially because the present research is targeted to an audience of innovators 

in practice, who may not be well versed in discrete methods.  Finally, linear models lend 

themselves to an omitted bias framework, which is natural for the present set of 

questions.

An omitted bias analysis is appropriate here:  We need to understand how well a 

vehicle availability model performs given that it employs only residential unit choice–

unit type, bedrooms and location–while ignoring household demographics.  Omitted bias 

analysis is designed to estimate the bias in a model's coefficients due to the omission 

from the model of important predictors16.

Omitted variable bias analysis includes three essential steps.  First, the full 

equation is estimated, with no variables excluded.  Second, a short regression is 

estimated, using only the independent variables to be used in standard-setting protocols–

unit type, bedrooms and location.  Third, “artificial” regressions are estimated to 

explicate the relationships between the excluded demographic variables and the 

regulation-appropriate variables.

16This discussion follows Imbens (2005); introductory econometrics texts such as Hill, Griffiths & Judge 
(2001) cover the method as well.
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Results & discussion

Short regression:  vehicles regressed on only residential choice.  In practice we 

will exclude the highly influential but unknowable demographic variables, and use only 

the variables fixed to the housing unit.  The short regression represents this situation.  It 

allows us to examine the relationships between our available predictors and the 

dependent variable, assuming that we allow the demographic variables to covary with the 

predictors.  Some of the effects of the demographic covariates are included in the 

regression coefficients in Table 3.7.

Table 3.7. Vehicles per household, r2=0.250
Parameter B Std. Err. t Sig.
Intercept .415 .022 19.226 .000
[Single family detached] .557 .025 21.883 .000
[Single family attached] .474 .037 12.695 .000
[2 units in struct.] .396 .029 13.608 .000
[3-4 units in struct.] .260 .031 8.484 .000
[5-9 units in struct.] .328 .034 9.575 .000
[10-19 units in struct.] .318 .034 9.369 .000
[20-49 units in struct.] .254 .035 7.209 .000
[50+ units in struct.] 0(a) . . .
[Single family detached] * BR .299 .004 74.754 .000
[Single family attached] * BR .241 .012 20.544 .000
[2 units in struct.] * BR .282 .008 35.154 .000
[3-4 units in struct.] * BR .282 .012 24.253 .000
[5-9 units in struct.] * BR .218 .015 14.181 .000
[10-19 units in struct.] * BR .265 .017 15.441 .000
[20-49 units in struct.] * BR .282 .020 13.836 .000
[50+ units in struct.] * BR .378 .017 22.011 .000
[Single family detached] * BR * density -.028 .001 -23.322 .000
[Single family attached] * BR * density -.051 .004 -12.547 .000
[2 units in struct.] * BR * density -.055 .004 -14.959 .000
[3-4 units in struct.] * BR * density -.085 .005 -16.144 .000
[5-9 units in struct.] * BR * density -.123 .006 -19.673 .000
[10-19 units in struct.] * BR * density -.132 .008 -17.112 .000
[20-49 units in struct.] * BR * density -.129 .010 -12.548 .000
[50+ units in struct.] * BR * density -.082 .009 -9.134 .000

a  This parameter is set to zero because it is redundant.
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The model results in Table 3.7 conform to the predictions enunciated above. 

First, controlling for bedrooms and location, vehicle availability generally decreases as 

the number of attached units increases17.  Single-family detached units have more 

vehicles than single-family attached units, which have more than all other attached 

units18.  Units in 50 or more-unit structures have fewer vehicles available than units in 

any other unit type.

This is consistent with the predictions made above.  Controlling bedrooms 

roughly controls for activity demand and income variations, assuming that bedrooms are 

associated with household size and income.  (This is confirmed below.)  Controlling 

PUMA density roughly controls for land use variations and the associated differences in 

the relative utility of owning and using autos19.  That leaves differences in parking 

supply, or ease of accessing parking from the unit, associated uniquely with unit type.  Of 

course, the effects here include the effect of influential covariates that this analysis 

neglects, such as household income and number of workers.  These covariates are likely 

responsible for a substantial portion of the effect that this analysis ascribes to unit type.

17We use a t test to compare the estimates of the regression equation coefficients.  If we assume that the 
regression errors are normally distributed, then the coefficients are normally distributed.  The t-statistic is 
the difference in the coefficients divided by the standard error of that difference.  The standard error of the 
difference is roughly the square root of the sum of the squared standard errors (Miller, 2006a:243).  The 
degrees of freedom for the t-statistic is of the same order as the degrees of freedom for either regression 
coefficient.  The model has 27 degrees of freedom while the PUMS sample has over 115,000 observations 
in it, and therefore roughly 115,000 degrees of freedom.  The critical t-statistic value for a two-tailed t-test 
at α=0.05 for DF>120 is less than 1.98.  We assume that regression coefficients b1 and b2 differ 
significantly where t = b1 – b2 / (seb1

2+ seb2
2)0.5 exceeds 1.98.  Unless otherwise noted, where the text refers 

to a difference in regression coefficients it is a statistically significant difference.
18The difference between single-family detached and single-family attached units' vehicle availability is 
marginally significant, p<0.1.  The same is true for the difference between single-family attached units and 
those in 2-unit structures.  Single-family detached units have more vehicles than all multifamily units, 
p<0.05.
19A caveat here is that PUMAs are large enough to encompass wide density variations within their borders. 
Given that multifamily housing is more common in denser areas, the effects associated with unit type here 
may also reflect local land use effects.
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A second way in which the results conform to predictions is in the association 

between bedrooms and vehicles available.  Bedrooms are taken to be associated with the 

number of household residents, their preference for space, and their income.  As such, we 

expect bedrooms to be positively associated with vehicles.  That is the case in this 

analysis, across all unit types, and at all densities.  The normalized PUMA densities in the 

sample range from about -2 to 2, whereas the coefficients on [unit type] * BR have more 

than double the magnitude of the coefficients on [unit type] * BR * density for all unit 

types.  As a result, the model suggests that increasing bedrooms increases vehicles for all 

households in the sample20.

A third predicted finding is that increasing density reduces household vehicle 

availability, controlling for bedrooms and unit type.  Density is taken here as a proxy for 

the difficulty of using autos, the ease of accessing jobs by alternative means, and the ease 

of accessing staple (pedestrian-oriented) services such as convenience stores and dry 

cleaners.  Across all unit types, controlling for bedrooms, increased density is associated 

with reduced auto ownership.

It bears repeating that these associations have at least two parts.  One is the 

indirect effect of important demographic variables that covary with the residence choice 

variables used as predictors in this model.  For example, increasing bedrooms are 

presumed to be associated with increasing household size—a driver of activity demand—

and income (this association is confirmed in a subsequent section).  Part of the 

association between bedrooms and vehicles is due to these links, and the links between 

activity demand and income and vehicle availability.  A second part of the total effect 

20Units in 5- to 9-unit structures are an exception.  However, the total bedroom effect at density=2 is not 
significantly different from zero, at p=0.05.  
[0.218 + 2*(-0.123) = ] -0.028.  | -0.028 | = 0.028 < 0.032 [ = 1.98*(0.0152+0.0062)].
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could be termed a direct effect, but in this case we use the term to refer to effects that are 

not otherwise captured.  The choice of bedrooms has absolutely no direct causal 

relationship to vehicle availability.  However, it may reflect an attitude, such as a 

preference for space or privacy, that does factor more directly in the choice of how many 

autos to own.  

Our next step is to investigate the indirect effects of bedrooms, unit type and 

density, by considering their demographic covariates.

Artificial regressions:  demographics on residential choice.  As mentioned above, 

the regression coefficient differences between the full regression and the short regression 

are driven by the covariation of the predictors—unit type, bedrooms and location—and 

the excluded demographic variables.  The task remains to quantify that covariation in 

order to analyze the biases introduced by omitting the demographic variables.  The 

following artificial regressions, with the excluded variables regressed on the predictors, 

accomplish that task.
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Table 3.8.  Workers per household, r2=0.080.

Parameter B
Std.  
Error t Sig.

Intercept .350 .023 15.039 .000
[Single family detached] .254 .028 9.219 .000
[Single family attached] .247 .040 6.136 .000
[2 units in struct.] .470 .031 14.988 .000
[3-4 units in struct.] .451 .033 13.601 .000
[5-9 units in struct.] .479 .037 12.966 .000
[10-19 units in struct.] .400 .037 10.929 .000
[20-49 units in struct.] .383 .038 10.081 .000
[50+ units in struct.] 0(a) . . .
[Single family detached] * BR .249 .004 57.732 .000
[Single family attached] * BR .265 .013 20.955 .000
[2 units in struct.] * BR .208 .009 24.030 .000
[3-4 units in struct.] * BR .200 .013 15.933 .000
[5-9 units in struct.] * BR .179 .017 10.768 .000
[10-19 units in struct.] * BR .242 .019 13.066 .000
[20-49 units in struct.] * BR .226 .022 10.268 .000
[50+ units in struct.] * BR .286 .019 15.433 .000
[Single family detached] * BR * density .000 .001 -.205 .837
[Single family attached] * BR * density .014 .004 3.281 .001
[2 units in struct.] * BR * density -.009 .004 -2.199 .028
[3-4 units in struct.] * BR * density .004 .006 .665 .506
[5-9 units in struct.] * BR * density -.002 .007 -.351 .726
[10-19 units in struct.] * BR * density -.014 .008 -1.671 .095
[20-49 units in struct.] * BR * density -.021 .011 -1.849 .065
[50+ units in struct.] * BR * density .029 .010 3.028 .002

a  This parameter is set to zero because it is redundant.

The number of workers per household generally follows expectations.  First, 

across unit type, workers per household increases with increasing bedrooms.  This is 

consistent with the idea that adding household members increases the demand for space.  

Second, for single-family attached units and those in structures with more than 50 

units, higher densities are associated with more workers per bedroom.  This effect is 

intuitive:  where densities are higher and land is presumably more valuable, workers are 

more crowded into bedrooms.  However, most unit types show insignificant sensitivity of 
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workers per bedroom to density; units in 2-unit structures show the opposite behavior. 

That is, they hold fewer workers per bedroom in denser PUMAs; conversely, households 

who choose 2-unit structures in denser PUMAs choose more bedrooms per worker than 

do their low-density counterparts.  Assuming that bedrooms are a normal good, this 

suggests that residents of 2-unit structures in urban environments may hold a greater 

income advantage over their low-density counterparts than do urban residents of single-

family attached houses (where crowding results from higher densities).

Table 3.9.  Nonworking adults per household, r2=0.026

Parameter B
Std.  
Error t Sig.

Intercept .732 .021 35.521 .000
[Single family detached] .060 .024 2.473 .013
[Single family attached] -.082 .036 -2.311 .021
[2 units in struct.] -.134 .028 -4.815 .000
[3-4 units in struct.] -.276 .029 -9.425 .000
[5-9 units in struct.] -.210 .033 -6.429 .000
[10-19 units in struct.] -.226 .032 -6.965 .000
[20-49 units in struct.] -.204 .034 -6.062 .000
[50+ units in struct.] 0(a) . . .
[Single family detached] * BR .016 .004 4.125 .000
[Single family attached] * BR .049 .011 4.356 .000
[2 units in struct.] * BR .097 .008 12.707 .000
[3-4 units in struct.] * BR .153 .011 13.810 .000
[5-9 units in struct.] * BR .073 .015 4.972 .000
[10-19 units in struct.] * BR .045 .016 2.773 .006
[20-49 units in struct.] * BR .060 .019 3.107 .002
[50+ units in struct.] * BR .032 .016 1.945 .052
[Single family detached] * BR * density .024 .001 20.811 .000
[Single family attached] * BR * density .042 .004 10.792 .000
[2 units in struct.] * BR * density .057 .003 16.450 .000
[3-4 units in struct.] * BR * density .057 .005 11.279 .000
[5-9 units in struct.] * BR * density .090 .006 15.050 .000
[10-19 units in struct.] * BR * density .082 .007 11.076 .000
[20-49 units in struct.] * BR * density .074 .010 7.507 .000
[50+ units in struct.] * BR * density .001 .009 .161 .872

a This parameter is set to zero because it is redundant.
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Table 3.9 indicates that unit type, bedrooms and PUMA density explain only 

2.6% of the household variation in the number of nonworking adults.  The lower fit may 

be attributable to the variety of lifestyles that compose the category of nonworking adults. 

They should be mostly retirees and nonworking spouses.  The group would also include 

disabled adults living in households, rather than group quarters.

Despite the poor fit, the model shows a few statistically significant relationships. 

First, for all unit types, number of nonworking adults is positively associated with 

number of bedrooms; units with more bedrooms tend to house more nonworking adults. 

(This is only marginally true for units in 50 or more-unit structures.)  This is consistent 

with the theory that marginal household members demand marginal living space.

Second, the interaction of bedrooms and density is positively associated with 

nonworking adults.  That is, at higher densities there are more non-working adults per 

bedroom (except in 50 or more-unit structures).  Higher densities and presumably higher 

land costs and costs per bedroom lead to crowding.

Finally, nonworking adults command less living space than do working adults. 

Across all levels of unit type, the values of the coefficients on bedrooms are significantly 

greater in Table 3.8 than in Table 3.9.  On average, working adults hold more bedrooms 

than do nonworking adults.
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Table 3.10.  Children per household; r2=0.067

Parameter B
Std.  
Error t Sig.

Intercept -.097 .023 -4.139 .000
[Single family detached] -.024 .028 -.875 .382
[Single family attached] .056 .040 1.376 .169
[2 units in struct.] .392 .032 12.452 .000
[3-4 units in struct.] .221 .033 6.647 .000
[5-9 units in struct.] .143 .037 3.860 .000
[10-19 units in struct.] .114 .037 3.113 .002
[20-49 units in struct.] .107 .038 2.792 .005
[50+ units in struct.] 0(a) . . .
[Single family detached] * BR .246 .004 56.901 .000
[Single family attached] * BR .251 .013 19.773 .000
[2 units in struct.] * BR .129 .009 14.894 .000
[3-4 units in struct.] * BR .218 .013 17.272 .000
[5-9 units in struct.] * BR .270 .017 16.209 .000
[10-19 units in struct.] * BR .281 .019 15.081 .000
[20-49 units in struct.] * BR .259 .022 11.738 .000
[50+ units in struct.] * BR .254 .019 13.632 .000
[Single family detached] * BR * density -.009 .001 -6.983 .000
[Single family attached] * BR * density .032 .004 7.404 .000
[2 units in struct.] * BR * density .030 .004 7.616 .000
[3-4 units in struct.] * BR * density .044 .006 7.769 .000
[5-9 units in struct.] * BR * density .054 .007 7.997 .000
[10-19 units in struct.] * BR * density .054 .008 6.481 .000
[20-49 units in struct.] * BR * density .051 .011 4.542 .000
[50+ units in struct.] * BR * density .043 .010 4.358 .000

a  This parameter is set to zero because it is redundant.

Table 3.10 confirms a few intuitive trends.  First, number of children per 

household increases with increasing bedrooms, for all unit types.  On average, children 

consume some amount of living space.  

Second, children per bedroom increases with PUMA density for nearly all unit 

types.  For all but single-family detached units, increased development densities are 

associated with more crowded living conditions for children. In detached units, children 

per bedroom is higher in less dense areas.  This suggests that as density increases, the 
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number of children per detached housing unit falls faster than the number of bedrooms 

per housing unit.  This is consistent with the finding from the literature that households 

with children are particularly desirous of space–children are less common in denser areas.

Finally, controlling for density and bedrooms, units in 50 or more-unit structures 

have fewer children than any other unit type except single-family detached housing. 

Setting aside the exception, this is again consistent with the finding that households with 

children particularly desire space, as multifamily housing is more common in denser 

areas.  On its face the rough equivalence of detached units and units in large multifamily 

buildings seems to contradict the common wisdom that detached units have significantly 

more children than do attached units.  

However, detached units do indeed tend to have significantly more bedrooms than 

do attached units.  In the New Jersey sample used here, in the PUMA of average density, 

detached units average 3.279 bedrooms whereas households in 50 or more-unit structures 

average 1.178 bedrooms.  In concert with Table 3.10, these numbers suggest that, in a 

PUMA of average density, a single-family detached household will host [-0.097 + 

(-0.024) + (0.246) * (3.279 bedrooms) = ] 0.69 children. Calculations using the same 

method indicate that households in 50 or more-unit structures average only 0.2 children.
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Table 3.11.  Natural logarithm of household income; r2=0.208

Parameter B
Std.  
Error t Sig.

Intercept 9.646 .021 454.365 .000
[Single family detached] .380 .025 15.185 .000
[Single family attached] .718 .037 19.585 .000
[2 units in struct.] .518 .029 18.105 .000
[3-4 units in struct.] .485 .030 16.058 .000
[5-9 units in struct.] .550 .034 16.343 .000
[10-19 units in struct.] .438 .033 13.130 .000
[20-49 units in struct.] .357 .035 10.308 .000
[50+ units in struct.] 0(a) . . .
[Single family detached] * BR .342 .004 87.066 .000
[Single family attached] * BR .198 .012 17.134 .000
[2 units in struct.] * BR .192 .008 24.335 .000
[3-4 units in struct.] * BR .170 .011 14.880 .000
[5-9 units in struct.] * BR .162 .015 10.690 .000
[10-19 units in struct.] * BR .248 .017 14.687 .000
[20-49 units in struct.] * BR .281 .020 14.012 .000
[50+ units in struct.] * BR .443 .017 26.273 .000
[Single family detached] * BR * density -.007 .001 -5.501 .000
[Single family attached] * BR * density -.025 .004 -6.322 .000
[2 units in struct.] * BR * density -.012 .004 -3.321 .001
[3-4 units in struct.] * BR * density -.026 .005 -5.049 .000
[5-9 units in struct.] * BR * density -.076 .006 -12.440 .000
[10-19 units in struct.] * BR * density -.089 .008 -11.700 .000
[20-49 units in struct.] * BR * density -.077 .010 -7.603 .000
[50+ units in struct.] * BR * density -.011 .009 -1.197 .231

a  This parameter is set to zero because it is redundant.

Table 3.11 describes the relationship between the logarithm of household income 

and the regulation-appropriate variables, and permits a few observations.  First, the 

intuitive result:  increasing bedrooms is associated with increasing income for all unit 

types.  Bedrooms are indeed normal goods.

Second, income is less sensitive to bedrooms at higher densities for all unit types 

except 50 or more-unit structures.  This is indicated by the statistically significant 

coefficients of opposite sign for bedrooms and the product of bedrooms and density, for 
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nearly all unit types.  Conversely, bedrooms are a better proxy for income in low density 

PUMAs than in high density PUMAs for nearly all unit types.  

This implies that urban household incomes are less driven by space than are rural 

incomes.  Let us assume that the housing unit value is characterized in terms of space and 

accessibility, as described in Chapter 2, and that bedrooms are a decent measure of 

household space (while holding unit type constant).  Then to the extent that spaciousness 

drives urban household incomes less than it does rural incomes, it follows that 

accessibility affects urban incomes more, in relative terms.  If we further assume that 

housing values are correlated with incomes, this suggests that location-related amenities 

play more of a role in determining housing value in urban locations than in rural ones. 

This is intuitive, as greater variety in land use coupled with greater potential proximity 

should intensify the value increment associated with nearby uses.

This section's analysis of the relationship between household sociodemographics 

and residential unit characteristics provides a basis for using the latter in determining 

household vehicle availability.  The sociodemographic variables vary with unit type, 

bedrooms and location in ways that are consistent with theory and previous studies. 

Building on these explorations, the final step here is to analyze the relationship between 

residential unit characteristics and vehicle availability while controlling for the 

sociodemographic covariates. 

Full regression:  vehicles regressed on residential choice and demographics. This 

step is to estimate the influence of each variable of interest while controlling for 

covariates that are impractical to measure.  It provides our best estimate of the 
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relationships between the predictors and the dependent variable, vehicles.  This is the 

benchmark against which the short regression results are compared.

Table 3.12. Vehicles per household; r2=0.440

Parameter B
Std.  
Error t

Intercept -1.746 .033 -52.790
[Single family detached] .363 .022 16.481
[Single family attached] .250 .032 7.741
[2 units in struct.] .135 .025 5.355
[3-4 units in struct.] .041 .027 1.547
[5-9 units in struct.] .068 .030 2.286
[10-19 units in struct.] .115 .029 3.934
[20-49 units in struct.] .069 .030 2.277
[50+ units in struct.] 0(a) . .
[Single family detached] * BR .130 .004 35.750
[Single family attached] * BR .086 .010 8.427
[2 units in struct.] * BR .139 .007 19.882
[3-4 units in struct.] * BR .137 .010 13.511
[5-9 units in struct.] * BR .102 .013 7.641
[10-19 units in struct.] * BR .112 .015 7.498
[20-49 units in struct.] * BR .125 .018 7.100
[50+ units in struct.] * BR .170 .015 11.442
[Single family detached] * BR * density -.032 .001 -30.769
[Single family attached] * BR * density -.060 .003 -17.212
[2 units in struct.] * BR * density -.060 .003 -19.095
[3-4 units in struct.] * BR * density -.093 .005 -20.374
[5-9 units in struct.] * BR * density -.125 .005 -23.169
[10-19 units in struct.] * BR * density -.126 .007 -18.789
[20-49 units in struct.] * BR * density -.120 .009 -13.532
[50+ units in struct.] * BR * density -.092 .008 -11.821
Working adults .424 .003 144.069
Nonworking adults .216 .003 70.814
Children -.024 .002 -9.975
Household income (natural log) .192 .003 67.044

a  This parameter is set to zero because it is redundant.

Table 3.12 summarizes the model, which explains 44% of the variance in 

household vehicle availability.  Controlling for bedrooms, location and demographics, 
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unit type is significant.  Single-family detached housing units have significantly more 

vehicles associated with them than do single-family attached units.  Single-family 

attached units have significantly more vehicles than do all other forms of attached 

housing.  Except for the 3-4 family group, all unit-type levels have significantly higher 

vehicle availability than do residences in structures with 50 or more units.  All else being 

equal, increasing the number of attached units generally reduces vehicle availability.

This is consistent with the discussion of variables above.  The effect may be 

related to the ease of access to nearby parking, whether off-street or not, as proposed 

above.  It may also be related to the fact that multi-family housing is more common in 

denser areas.  Our spatial unit, the PUMA, admits significant density variation within its 

borders, and multifamily housing should tend to be located in the denser parts of PUMAs. 

Therefore, the unit-type associations may be partly attributable to intra-PUMA density 

variations.

Across all levels of unit type, increasing density decreases the number of vehicles 

available per bedroom in the unit.  Vehicles per bedroom is less sensitive to density for 

single-family detached units than for all attached housing types.  For single-family 

attached units and those in 2-unit buildings, vehicles per bedroom is less sensitive to 

density than it is for units in larger buildings.

Overall, the fact that increasing PUMA density is associated with decreasing 

vehicles per bedroom is consistent with expectations.  The construction of the model 

shows that, controlling for unit type, bedrooms and demographics, increasing density 

decreases vehicle availability.  In this analysis, PUMA density stands as a proxy for the 

difficulty in automobile use due to road network loading, job accessibility which 
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facilitates work travel by non-automotive means, and land use mix which brings more 

pedestrian-oriented businesses closer to residences.  Individually and together, these three 

effects should reduce the relative benefit of household vehicle availability and the chosen 

level thereof.  This analysis is consistent with that expectation.

Further, the fact that single family detached units show the least sensitivity to 

density, controlling for all other variables, is also consistent with the predictions 

presented above.  Unit type is described here and elsewhere as being associated with the 

supply of parking, or the ease of accessing parking (Chu, 2002).  Density interacts with 

unit type in proxying parking supply: for single-family detached houses, increased 

density reduces the likelihood of having dedicated off-street parking available. 

Regardless of density, parking for multi-family housing tends to be in shared lots.  For 

these units, increasing development density leads to increased building heights, which 

increases the difficulty of accessing parking from the home.  Increased density is also 

associated with increased monetary cost of providing parking:  land tends to be more 

expensive, which tends to lead to reductions in surface parking and the possibility of 

structured parking, which is both more expensive to provide and less pleasant to use, 

generally, than surface parking.  Further, all else being equal, as development density 

increases, the demand for on-street parking increases, as there are more building users per 

linear foot of roadway.  Therefore, on-street parking becomes more costly to use, either 

in monetary terms or in terms of search time.

The demographic control variables have influences on vehicle availability that 

comport with predictions as well.  The number of working adults is positively associated 

with vehicle availability, with greater impact and statistical significance than nonworking 
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adults.  This is consistent with the ideas proposed above that greater numbers of adults 

lead to greater travel demand, and that workers induce greater household travel demand 

than do nonworkers.  The number of children has a weakly negative association with 

vehicle availability.  Although the coefficient is statistically significant, the impact of 

children is almost negligible:  all else being equal, the model suggests that a household 

with four children averages about 0.1 vehicles fewer than a zero-child household. 

Finally, as predicted, increasing household income is associated with increasing vehicle 

availability.

Conclusions  

Overall, the residential choice variables capture some but not much of the 

variance in the key demographic variables, all of which are positively correlated with 

bedrooms at a given level of unit type.  This is consistent with the fact that the regression 

coefficients on unit type and its interaction with bedrooms are greater when 

demographics are excluded, as discussed above in the comparison of Table 3.12 and 

Table 3.7.  In the short regression (Table 3.7), the coefficients on our regulation-

appropriate predictors include the effects of the covarying demographic predictors, 

whereas the coefficients in the full regression (Table 3.12) do not.  Tables 3.8 through 

3.11 indicate that an increase in bedrooms is associated with increases in all the 

demographic covariates.   Table 3.12 indicates that household vehicle availability is 

positively associated with the demographic covariates (except children, which has an 

insubstantial association with vehicles) when controlling for bedrooms.  Taken together, 

these facts explain that as bedrooms increases, household vehicle availability tends to 

increase by the direct effect of bedrooms plus the indirect effect created by bedrooms' 
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association with the demographic covariates.  The long regression's coefficients shows 

the direct effect of bedrooms whereas the short regression's coefficients show the sum of 

the direct and indirect effects.

Selecting a geographic scale

At this point we have concluded that the method being developed to estimate 

parking standards should rely on unit type, bedrooms and location of a housing unit to be 

regulated.  But the location variable must be defined to be useful.  This chapter includes 

analyses of the impact of location conducted at the PUMA and Census tract level.  It also 

refers to existing residential parking standard regimes that consider a unit's location 

variously as its state, region, county, city or urban neighborhood of residence.  In 

preparing to specify and evaluate a method for establishing residential parking standards, 

we must consider the question of what geographic unit is most appropriate.

Our task is to project average household vehicle availability for a new residential 

development.  We know that vehicle availability is determined primarily by household 

demographic characteristics and secondarily by location-related differences in the relative 

utility of vehicle ownership.  We know that the relationship between demographic 

characteristics and residential unit choice is moderated by location-related factors, a 

major one being local real estate prices.  These are in turn determined by access to local 

amenities and disamenities such as a lake view or train tracks.

The question then is what is the best geographic unit to use so as to be able to 

accurately infer the value of local amenities and their impact on average household 

vehicle availability.  This of course raises the question of the transience of local amenities 

and the challenge of predicting future values of anything.  This does not mean, however, 
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that we must limit ourselves to evaluating only the land-use/transportation related 

impacts of roads, transit and various types of development.  These features are clearly 

long-lived, and should be expected to endure at least one cycle of revaluation and 

devaluation.  However, I would argue that such cycles are relatively slow.  By and large, 

homebuyers seek out neighbors of similar means.  As a result, local home values tend to 

be relatively stable in their relationship to the regional mean.  It is therefore meaningful 

and appropriate to estimate geographical housing market variations, and include these 

impacts in our location-based estimates of average household vehicle availability21.

21No doubt that some new developments are large enough to effectively create their own neighborhood 
context.  In such cases the projections resulting from any backward-looking modeling approach should be 
treated with suspicion.  If possible, those projections should be corrected for differences in income.  Such a 
correction is possible using the equations derived in Chapter 4.

Figure 3.1. Geographic units in the U.S. Decennial Census 
(Source: http://www.census.gov/geo/www/geodiagram.pdf)
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Figure 3.1 diagrams the various geographic units that the U.S. Census Bureau 

uses to report tabular results.  Although other data sources may use different geographies, 

the Census Bureau's system is undoubtably the most comprehensive, and many private 

data collection projects use Census units or variations thereof (Renne, 2005; Parsons 

Brinckerhoff Quade and Douglas, 2005a).  It is a natural place for us to start the 

discussion of appropriate geographic units.

Table 3.13.  Characteristics of geographic units in New Jersey
Unit Number Census-

defined 
population
(residents)

Average 
population in 
New Jersey 
(residents)

Average area in 
New Jersey
(mi2)

Distance scale*
(mi)

County 21 not defined 400,683 353.19 10.60
PUMA 61 >100,000 137,940 121.59 6.22
Tract 1950 4,000 

(design target)
4,315 3.80 1.10

Block 
group

6510 1,500 
(design target)

1,293 1.14 0.60

Block 141,342 not defined 59 0.05 0.13
*Distance scale is the radius of a circle with the given area.
Source:  US Census Bureau, http://www.census.gov

Table 3.13 shows a sample of our options that are smaller than a state–the largest 

jurisdictional level at which land use is regulated.  Counties are defined politically, 

whereas the block is defined by the street network; the other three options have the 

advantage of being systematically defined by the Census Bureau.  PUMA is included 

here, although it is missing from Figure 3.1, because household data are reported at this 

level which allows tabulations to be computed.
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Table 3.14.  Density and size of New Jersey's Census tracts and block groups

Land area (mi2) Population density  
(persons/mi2)

Tract Block group Tract Block group
Minimum 0.02 .004 .00 .00
25th percentile .40 .10 1528 2034
50th percentile 1.01 .23 3826 4722
75th percentile 2.69 .61 9276 10545
Maximum 100.14 100.14 114588 136385

Before moving forward with a statistical test, we should compare the sizes of 

Census tracts and block groups to the smallest geographic scales at which vehicle 

availability relationships differ.  Table 3.14 indicates Census block group and tract sizes 

in New Jersey, by quartile.  In the places where it matters most, the densest 25% of the 

state, Census tracts are 0.4 square miles or less.  Assuming a circular tract, this equates to 

a radius of 0.36 miles, less than the 0.5-mile metric used by many to delineate the impact 

of a rail station, representative of a typical maximum walking distance (Renne, 2005). 

This suggests that for the densest quarter of the state the tracts are small enough to 

capture the smallest direct locational effect on household vehicle availability—

pedestrian-scale effects.  

However, Tables 3.8 through 3.11 remind us that location also relates to vehicle 

availability through household demographics.  Outside of large housing developments, 

average home values can differ dramatically over less than a half mile, indicating that the 

vehicles/unit-choice relationship can as well (see Table 3.12). 
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Theoretical considerations

Given these options, what unit is best?  This question is related to the modifiable 

areal unit problem, one that Fotheringham and colleagues (Fotheringham, Brundson, & 

Charlton, 2000) cite as a current challenge in quantitative geography.  The issue is that 

spatial regressions often give different results depending on the way that the data are 

aggregated.  Generally, larger areal units are associated with higher r2 for models that 

seek to explain variation among the units.  Also, the zoning system—the particular 

boundary network—can influence the results.  Fotheringham et al. present a range of 

proposals for choosing the ideal areal unit, but find no consensus.

Babbie (2000) provides more general guidance on the quality of measurement. 

First, to be useful, a measurement should be valid—it should be related conceptually to 

the question of interest in the asserted manner.  Second, it should be reliable.  Its result 

should not depend on the method or timing of data collection.  Third, it should be precise; 

it should be developed with minimum uncertainty.  Fourth, it should be accurate rather 

than incorporating any persistent bias.

The questions of validity and reliability can be answered relatively quickly.  The 

data and data reduction methods used here are valid to the extent that they can be used to 

predict household vehicle availability for housing units yet to be built.  Most of the 

foregoing discussion in this chapter and in Chapter 2 revolves around the most valid way 

to conceive of the determinants of residential parking demand.  The only further point to 

make here is that we do assume that existing relationships between vehicle availability 

and residential unit choice (bedrooms, unit type and location) describe future patterns in 

newly constructed housing units.  The data are reliable to the extent that respondents can 
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and will consistently provide the survey data requested.  The method's reliability rests on 

a consistent relationship between the data and the projections derived therefrom.

The methods presented here are precise to the extent that they estimate household 

vehicle availability, given bedrooms, unit type and location, with low uncertainty.  This is 

largely a question of data availability.  All else being equal, a larger sample with more 

measurements in each combination of levels of independent variables gives a lower 

standard error of the estimate, which is a typical measure of model uncertainty.  The 

demand for precision is a call for larger samples.

In contrast, to achieve accuracy and avoid bias we must use as small an areal unit 

as possible, as it is assumed that locational effects are uniform in each areal unit of 

analysis.    When aggregation areas are larger than the scale of locational effects, 

relationships computed within the areas are biased toward the global average.  Consider 

the example of a small city with a lake that has residential development on its shore. 

That lakeshore development will tend to be more expensive than housing without a view. 

Its residents will tend to have higher incomes, controlling for bedrooms and unit type, 

than elsewhere in the city.  Given that higher incomes correlate with higher vehicle 

availability (again controlling for bedrooms and unit type), residents of lakeshore 

properties are likely to have more vehicles per bedroom than similarly housed residents 

of other parts of the city.  If the entire city is used as the areal unit of analysis, this 

difference is averaged away.  Accuracy demands small areal units.

The tension between the need for large samples, for precision's sake, and the need 

for small areal units generally cannot be resolved simply by spending more on sampling. 

Resources are generally unavailable for such intensive sampling.  Given this research's 
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aim of developing a method that can be used by regulators throughout the US, a way to 

evaluate the trade-off between sample size and areal unit size in existing publicly 

available data sets must be developed.

Ideally, the question of how small to make the areal unit would be answered with 

a statistical test.  We would effectively compare two regression models on a cost-benefit 

basis.  How certainly can we say that the additional error reduction offered by the model 

using smaller areal units (and therefore effectively more regression coefficients) is worth 

the cost of losing degrees of freedom?  An F-test is commonly used to answer this 

question (Hill et al., 2001).

Data

The data to compare useful areal units in this way are not publicly available. The 

Decennial Census PUMS offers household-level data with households located to the 

100,000 or more-person PUMA.  The 2000 Census Transportation Planning Package 

includes numerous cross-tabulations involving vehicle availability at the tract and block 

group levels, but it lacks bedroom data.  Other public data sources were also considered–

the National Household Travel Survey, the American Housing Survey, and the American 

Community Survey–but they locate survey respondents in areas too large for our 

purposes.  The Regional Travel-Household Interview Survey conducted by MPOs in 

northern New Jersey and New York City, which locates responding households to their 

Census tract, also lacks bedroom data (Parsons Brinckerhoff Quade and Douglas, 2005a).

Therefore, it was necessary to purchase a custom tabulation from the Census 

Bureau.  The purchased sample includes data from all block groups in New Jersey that 

held at least 50 households that responded to the long-form survey.  This is roughly 
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equivalent to requiring at least 300 households be present in the block group.  Of New 

Jersey's 6,445 block groups with at least one household, the sample includes 3,900.

For each block group that met the threshold, the distribution of households by unit 

type, bedrooms and vehicles available is reported.  Unit type includes single-family 

detached, single-family attached, units in two- to four-unit structures, and units in 

structures with five or more units.  These are also the levels reported in the Census 

Transportation Planning Package (CTPP).  Bedrooms and vehicles available are reported 

in five levels:  from zero to four or more.  Following standard Census practice to protect 

confidentiality, cell totals above eight are rounded to the nearest multiple of five.

For this comparison, it was necessary to identify the block groups that compose 

complete tracts.  Of the 3,900 block groups in the sample, 1,719 block groups compose 

729 complete tracts.  These 729 tracts represent 37.6% of the 1,938 tracts in New Jersey 

containing households, and 36.0% of all the housing units in New Jersey.  Table 3.15 

compares the sample to the state on the basis of tract housing density.

Table 3.15.  Density comparison:  sample versus entire State of New Jersey
Housing density (units/mi2) Logarithm of housing density

Sample NJ Sample NJ
Mean 3,424 3,148 7.04 7.15
Standard deviation 5,810 4,553 1.60 1.58
N 729 1,938 729 1,938

One-sample t tests indicate that housing density in the sample tracts does not 

differ significantly from the set of all tracts in New Jersey (p=0.217), whereas the natural 

logarithm of housing density does differ (p<0.05).  The sample has a lower average 
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logarithm of housing density—the functional form used earlier in the chapter—than does 

the set of all tracts in the state.

Method

The overall approach here is to use an F test to determine whether measuring 

average household vehicle availability at the block group level, rather than the tract level, 

improves our estimates of vehicle availability in a statistically significant way.  An F test 

is used to compare a restricted model against an unrestricted model.  Often, the 

unrestricted model is a regression equation with a number of coefficients, while the 

restricted model requires that some of those coefficients are zero.  The application is 

slightly different here, but the principle is the same.  (This discussion is drawn from Hill 

et al., 2001.)

An F distribution is generated when two χ2-distributed variables, with degrees of 

freedom m1 and m2, are divided by their degrees of freedom and then one such ratio is 

divided by the other.  That is, if V1 is χ2-distributed with m1 degrees of freedom and V2 is 

χ2-distributed with m2 degrees of freedom, then (V1/m1)/(V2/m2) is F distributed with (m1, 

m2) degrees of freedom.  A  χ2 distribution is generated when a series of independent 

normally distributed variables are squared and summed.  Therefore, the applicability of 

an F test relies principally on the normality of the fundamental distributions.

The distributions in this case are no less normal than in a case wherein two 

regression equations, one of which is a restricted version of the other, are being 

compared.  An F test compares the F statistic to a critical value which depends on the 

degrees of freedom.  The F statistic is computed as [(SSER – SSEU)/(KU – KR )]/[(SSEU/(T 

– KU)], where SSER is the sum of squared errors (SSE) for the restricted model, SSEU is 
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the SSE for the unrestricted model, KR is the number of nonzero coefficients in the 

restricted model, KU is the number of nonzero coefficients in the unrestricted model, and 

T is the number of observations.  The SSE terms are taken to be  χ2-distributed, as they 

are given by the sum over all observations of (y – ŷ)2, where y is the observed value and 

ŷ is the predicted value.  Therefore, (y – ŷ), the model error, is taken to be normally 

distributed.  This is no worse an assumption when the two models being compared are 

roughly independent, the case here, than when one is a restricted version of the other.

We implement the F test with the following steps.  First, for every block group in 

the study area, the block-group average household vehicle availability is computed for all 

combinations of unit type and bedrooms.  These are the model predictions for all 

households in the unit type/bedrooms cells in the given block group.  The SSE for each 

household in the block group is computed, and then summed.  Second, this process is 

repeated using the tract-average household vehicle availability for all combinations of 

unit type and bedrooms.  The tract-average vehicle availabilities by unit type and 

bedrooms are used as the model predictions in the computation of the SSE.  This is again 

summed over all households.  Third, the F statistic described above is computed.  The 

model with block group-level averaging gives us SSEBG and KBG, and the tract-level 

averaging gives us SSETR and KTR.

Results & discussion

Table 3.16 shows that household vehicle availability, controlling for bedroom and 

unit type, is statistically significantly better estimated using block group-level averages 

rather than tract-level averages.  The sample used here contains 1,719 block groups that 

compose 729 complete tracts.  The number of coefficients in each model is the number of 
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unit type x bedrooms x areal unit cells that contain households.  Each of these cells has a 

computed average household vehicle availability, and these averages constitute the 

models.  If every cell in the sample contained households, the block group-level model 

would contain 1,719 x 4 (levels of unit type) x 5 (levels of bedrooms) = 34,380 averages. 

Because some cells contain no households, KBG in Table 3.16 (15,611) is less than this 

number (34,380).  One-sixth of the number of households in the study area is used as T, 

with this ratio coming from the sampling design for the Census long form.  Properly 

estimating the degrees of freedom in this way leads to a computed F of 1.50.  Given the 

degrees of freedom listed in Table 3.16 , this is significant at p<0.01.

Table 3.16.  F test comparing vehicle averages at tract or block group
Number of block groups 1,719 Number of tracts 729

KBG 15,611 KTR 8,992
SSEBG 580,220 SSETR 615,299

Number of households 1,077,453
T 179,576

DOF_numerator = KBG – KTR 6,619
DOF_denominator = T – KBG 163,964

F = [(SSETR – SSEBG)/(KBG – KTR )]/[(SSEBG/(T – KBG)] 1.50

Conclusions

This chapter addresses the issue of how to characterize a given household for the 

purpose of setting a practical parking standard.  What are the best descriptors to use? 

How are they related to household vehicle availability?  And how should they be 

defined?  These are among the last questions to answer before proposing a method for 

estimating household vehicle availability, and they must be answered in terms of our 
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criteria for practicality.  In short, bedrooms, unit type and location must be used in a data-

driven residential parking regulation scheme.

  They respect criterion #3 from above:  the method must be married to the 

decision process.  Bedrooms, unit type and location are fixed characteristics of a housing 

unit, as opposed to changeable demographic characteristics of occupants.  Regulators can 

readily recognize these unit characteristics without considering demographic trends, 

relying on contractual arrangements or using a tape measure.  The review of existing 

residential parking standards indicates that they are currently in wide use, which shows 

that the current participants in the regulation process are able to use them.

The parking standard review also provides evidence that this choice of descriptors 

respects criterion #2:  the method must be scientifically sound.  Combined with the 

literature review in Chapter 2, the review indicates that bedrooms, unit type and location 

are sufficient, in the sense that no additional influential variables are appropriate for 

inclusion in the method.  Furthermore, the second section of this chapter demonstrates 

that all three variables are necessary in the method.  Bedrooms, unit type and location 

relate to household vehicle availability independently and in concert, and the effects are 

substantial.  Excluding any of the three would needlessly average away substantial 

variations.  Bedrooms, unit type and location are necessary and sufficient housing unit 

descriptors.

The third section explores the relationships among our regulation appropriate 

variables, influential demographic drivers of vehicle availability, and household vehicle 

availability itself.  It provides the rationale for using bedrooms, unit type and location in 

the method under development, in terms of these variables' associations with important 
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demographic variables and in terms of their direct effects.  It shows that the three 

descriptors have a consistent and predictable relationship with household vehicle 

availability—this is an essential element of being scientifically sound.

The fourth section completes the development of scientifically sound descriptors. 

It shows that the best areal unit with which to define household location is the Census 

block group (assuming a perfect estimation method).  Working at the block group offers 

statistically significant improvement in estimating household vehicle availability from 

areal averages relative to the next larger unit, the Census tract.  This is consistent with our 

suspicion that housing markets–prices for given units and the people willing to pay them–

can vary dramatically from one block group to another.  The Census block group is the 

most scientifically sound choice for areal unit, given the units and data available to 

decision makers:  it conforms to practicality criteria #2 and #3.

Two of the three practicality criteria are met.  As criterion #1, regarding the 

inductive basis of the method, does not apply (yet), this chapter identifies method inputs 

that meet our standard of practicality.  Bedrooms, unit type and block group are practical 

housing unit descriptors.  The method's output is the expected vehicle availability for a 

household in a given block group, of a given unit type, including a given number of 

bedrooms.  The next chapter completes our method development by proposing a method 

to link our inputs to the desired output, and validating the method using independent 

household survey data.
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Chapter 4. A validated method for estimating household vehicle availability

Preceding chapters have laid the groundwork on which to develop a practical 

method for estimating household vehicle availability.  Chapter 1 set the regulatory 

context and illustrated the need for an improved method for setting residential parking 

standards.  Chapter 2 reviewed the literature on the estimation of household vehicle 

availability to discern the current thinking on the most important predictors of and 

covariates with household vehicle availability.  Chapter 3 demonstrated how these 

important predictors can be proxied with variables that are practical for parking 

regulations:  unit type, bedrooms and location.

This chapter takes the next and final step in this research:  to present and validate 

a novel and practical method for estimating household vehicle availability.  We consider 

all three practicality criteria here.  First, the method should be inductive:  relying heavily 

on observation.  Second, the method should be adequate and valuable:  processing data in 

a scientifically sound way to create accurate estimates with low uncertainties.  Third, the 

method should be married to the decision process:  reflecting the group decision-making 

context in which the resulting new standards will be used.  The following sections 

describe the method and its relationship with findings presented earlier in this text, 

present data and methods used to evaluate this new method, and discuss the results.

VULO: Vehicles from Unit choice with a Location-based Offset

This section presents a method for estimating household vehicle availability from 

publicly available data: the culmination of the preceding chapters.  In the first step, 

PUMS data are used to develop a preliminary estimate of vehicle availability by 
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bedrooms, unit type and PUMA.  Second, the results of the first step are used to develop 

an estimate of block groups' average vehicle availability.  In the final step, the difference 

between the block group vehicle availability averages reported by the Census and the 

estimates are used as location-based offsets to refine the estimates from step 1.  This 

method is called the VULO method, for Vehicles from Unit choice with a Location-based 

Offset.  It is described in detail below.  Appendix D contains a worked example.

Step 1: Regress vehicles on unit type and bedrooms at the PUMA

Method  The first step is to make the best estimate of household vehicle 

availability possible with a straightforward application of publicly available data.  In this 

step, household vehicle availability is regressed on unit type and number of bedrooms on 

a PUMA by PUMA basis.  That is, vehicles are estimated as

vu , BR , PUMA=au , PUMAbPUMA BR (4.1)

where subscripts indicate the dimensions of the variables.  For example, au,PUMA is a 

matrix that may take on unique values for all combinations of unit type and PUMA.

This analysis is conducted at the PUMA because it is the smallest unit of analysis 

at which vehicles can be tabulated by unit type and bedrooms using publicly available 

data, and smaller is better.  Table 3.5 shows that the effect on vehicle availability of 

increasing the number of bedrooms depends on the population density of the PUMA of 

residence.  Table 3.7 demonstrates the same fact using a regression analysis.  There is 

ample evidence that the relationship among unit type, bedrooms and vehicles available is 

moderated by location.  The work in Table 3.16 indicates that the influence of location on 
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vehicle availability is better captured at the block group than the tract level.  Analysis of 

the PUMS indicates that the same is true at larger geographies:  tabulating vehicle 

availability by unit type and bedrooms at the PUMA rather than at the state captures more 

of the variance in the data for the New Jersey case:  27.8% versus 23.4%22.  The best we 

can do as a starting point is to use data tabulated at the PUMA.

Table 3.7 indicates that the relationship between vehicles and bedrooms is 

moderated by unit type.  However, the formulation of VULO's Step 1 does not 

accommodate that fact.  It assumes that the sensitivity of vehicles available to bedrooms 

is independent of unit type, within a PUMA.  This simplification is necessary to conduct 

Step 2, given the limitations of the data available.  In particular, the distribution of 

bedrooms by unit type is not publicly available at any unit smaller than the PUMA.  This 

problem is clarified in the discussion of Step 2.

Data required  Step 1 of the VULO method requires only the PUMS for the area 

of the regulator's interest.  For example, developing statewide standards would require 

PUMS data from the entire state.  The PUMS records required are vehicles available, 

bedrooms, and units in structure.

Step 2: Estimate average vehicles per household at the block group

Method  The middle step in the VULO method is to estimate average vehicles per 

household for the block groups in the given PUMA.  As described below, this allows us 

to estimate the positive or negative influence that the block group's location within the 

PUMA has on its households' vehicle ownership, on average.  In this step, we simply 

populate the equation presented in Step 1 with block group-average bedrooms per 

22These r2 values are computed by computing average vehicle availability by unit type (eight levels) and 
bedrooms (six levels), for all structured (immobile) housing units in the New Jersey PUMS.
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household and the fraction of all households that fall into each unit type.  This produces 

an estimate of the average vehicles per household in the block group.  It is expressed as 

an equation as follows:

  vBG=au , PUMAufracu , BGbPUMABRBG (4.2)

where 

● vBG  is the estimated average vehicle availability for all households in the given 

block group; 

● ufracu , BG is the fraction of all households in block group BG that fall into unit type 

u; 

● BRBG is the average number of bedrooms per household in block group BG; and

● the regression coefficients a and b have the same meaning as in Equation 4.1.

Equation 4.2 is a proper extension of Equation 4.1 to compute average block 

group vehicle availability.  First, Equation 4.1 linear in parameters and variables, and can 

be averaged over any area within a PUMA.  Second, based on the discussion in Chapter 

3, the block group is our optimal areal unit.  The result of Equation 4.2, therefore, is a 

consistent estimate of the average household vehicle availability at the geographic unit 

level—our specification of location—at which we wish to compute estimates of 

household vehicle availability.

However, this estimate of average vehicle availability is biased.  It is built on 

Equation 4.1, which is derived from an analysis of households across the PUMA.  To 

extent that the unit type-bedrooms-vehicles relationships that characterize the entire 
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PUMA sample differ from the unit type-bedrooms-vehicles relationships that characterize 

the block group, the result of Equation 4.2 will be biased.  The magnitude of the bias 

depends entirely on the systematic differences between the PUMA sample and the block 

group sample.  That is, Equation 4.2 produces an estimate of block group average vehicle 

availability that ignores the difference between the block group's local vehicle-related 

characteristics and the PUMA's vehicle-related characteristics.  This bias, the block 

group-averaged influence of the differences between the block group characteristics and 

the PUMA characteristics, is termed the “local offset,” and is the essence of the VULO 

method.

Data required  The data required for Equation 4.2 are the block-group average 

bedrooms per household and the fraction of block group households that fall into each 

category of unit type.  These data are available from the Decennial Census Summary File 

3 (SF3), which includes tabulations of all long-form responses, weighted to approximate 

the total household population of the area.  The fact that the SF3 does not tabulate 

bedrooms per household by unit type is what prevents Equation 4.1 from including the 

fact that the relationship between bedrooms and vehicles is moderated by unit type.

Step 3: Compute and apply the local offset

The final step in the VULO method is to quantify the bias discussed above and 

use it to capture the effect of location on vehicle availability.  The difference between the 

measured block group average vehicle availability and the average vehicle availability 

computed via Equation 4.2 is the local offset.  Adding this local offset to Equation 4.1 

produces an estimate of household vehicle availability that goes beyond it by reflecting 

the differences between the block group and its home PUMA.
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LOBG=v BG− vBG (4.3)

where vBG is reported by the Census Bureau and vBG  is computed according to 

Equation 4.2.  The final equation is

vu , BR , BG=au , PUMAb PUMABRv BG− vBG (4.4).

The rationale for the implementation of the local offset in Equation 4.4 has been 

discussed above; a further benefit of this implementation is that the block group average 

of its household vehicle availability estimates is equal to the measured block group 

average vehicle availability.

The VULO method is designed to be easy to apply while maintaining a strong 

link to the theory of vehicle ownership:  it is practical while being context-sensitive.  As 

to practicality:  meeting the first criterion, it is inductive.  It relies heavily on measured 

household vehicle availability, but uses known relationships among predictors of vehicle 

availability to extend and refine estimates from the data.   It is adequate, in that it uses a 

scientifically sound description of the housing unit and plausible data processing methods 

to estimate a result.  (The second half of criterion #2, regarding value/accuracy, is left to 

later in this chapter.)  It is married to the decision process, relying on housing unit 

descriptors commonly used by parties to parking regulation negotiations.  It satisfies our 

working definition of practicality.
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The VULO method's design anticipates communicative challenges as well. 

Andrews (2002) calls for practical analysis to be shared widely.  (See Table 3.1.)  The 

VULO method heeds that call in two ways.  It is simple to implement, involving few 

steps and publicly available data23.  It is simple to explain, which helps with adoptability 

and also lends face validity.

The balance of this chapter tests the VULO method's value, or, in shorthand, 

accuracy.

Data

This chapter contains a handful of distinct analyses that draw on the same three 

sets of data.  This section describes those data sources, all of which come from the 2000 

Decennial Census for New Jersey:  a custom tabulation of Census data, the PUMS, and 

Summary File 3.  New Jersey is the most densely populated state in the country, and 

exhibits a wide range of built environments.  It is bounded by two major employment 

centers—New York City and Philadelphia—and also hosts significant job concentrations 

within its borders, in cities such as Jersey City and in sprawling pharmaceutical campuses 

in central New Jersey.  It is served by an extensive public transit system including trains 

and buses, as well as a massive road network.  New Jersey makes an interesting case 

because of its activity intensity and land-use diversity.

23In 2010 and beyond, the Decennial Census will not include long-form questionnaires, results from which 
form the basis of the VULO method.  However, this will not affect future implementation of the VULO 
method.  Instead of the long form, the Census Bureau has implemented the American Community Survey 
(ACS).  The ACS is administered to 1% of households annually, and contains many of the items formerly 
contained in the long-form Decennial Census survey, including the items used in the VULO method. 
Microdata are released annually, one year after surveys are completed, and are linked to the same 5% 
PUMAs used in this research.  ACS PUMS data from 2005 are currently publicly available; for New 
Jersey, the 2005 ACS PUMS data include roughly 1/10th the number of households included in the 2000 
Decennial Census PUMS.  Five-year averages of data aggregated at the levels of Census tract and block 
group will be released annually starting in 2010.  That is, the ACS provides the data necessary for the 
VULO method roughly as well as the Decennial Census PUMS does.  The only practical difference is that 
the ACS is distributed over time, with small annual administrations, whereas the Decennial Census offers a 
clear snapshot once every ten years.
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Special Census Tabulation

The key data that make this analysis possible are the special Census tabulations of 

number of households by vehicles available, bedrooms, unit type, and block group.  This 

is a set of data custom ordered from the Census Bureau.  It includes the 3,900 block 

groups in New Jersey that had at least 50 long-form respondents in 2000; this is 61% of 

New Jersey's block groups containing at least one household.  Note that the 50-

respondent threshold equates roughly to a minimum block group population of 300 

households, given the 1 in 6 sampling goal for the long-form questionnaire.

In addition to the block group code, the special tabulation contains three essential 

data fields:  vehicles available, unit type, and bedrooms.  Vehicles available and 

bedrooms both have five levels:  0, 1, 2, 3, and 4 or more.  Unit type comes in four levels: 

single-family detached, single-family attached, in a building with a total of two to four 

units, or in a building housing five or more units.

PUMS

The second data set involved is the 2000 Decennial Census's 5% Public Use 

Microdata Sample (PUMS).  In this sample, the detailed responses of one in every twenty 

households are provided to the public, along with the household location in terms of its 

resident Public Use Microdata Area (PUMA).  PUMAs have a population of at least 

100,000 people.

In the PUMS there are four data fields useful for our purposes here.  Household 

vehicles available, which includes those owned, leased, provided by an employer, or 

otherwise regularly available to household members, are reported in seven levels:  zero 

through six or more.  Bedrooms in the household are reported at six levels:  zero through 
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five or more.  Unit type ("units in structure") is reported in two mobile categories and 

eight levels of fixed-structure housing:  single-family detached, single-family attached, 

two units in structure, three to four units, five to nine units, 10 to 19 units, 20 to 49 units, 

and 50 or more units.  To facilitate comparisons with the purchased special tabulation, 

these eight levels were collapsed to the four in the tabulation.

Census Summary File 3

An additional publicly available data set is needed here:  the standard tabulations 

of long-form responses contained in the 2000 Census Summary File 3 (SF3).  This 

product differs from the PUMS in three respects relevant to this research.  First, it is 

drawn from all long-form responses representing about 17% of the population, rather 

than merely 5%.  Second, it presents results at geographies as small as the block group, 

which has a target population of 1,500, rather than only the PUMA, which has a 

minimum population of 100,000.  Third, not all long-form responses are tabulated against 

each other, as is possible with the microdata in the PUMS.

SF3 contains three tables that are used here.  First, aggregate vehicles available in 

the block group, when combined with total occupied households in the block group, 

provides a reported average vehicles per household.  Second, households by unit type 

allows the calculation of the fraction of all block group households that fall into each unit 

type category.  The Census reports households in each of eight categories of fixed-

structure housing; for this research, these eight categories are collapsed into the same four 

in the special tabulations.  Third, households by bedrooms allows calculation of the block 

group average number of bedrooms per household.
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Method

In this section we consider five benchmark methods for estimating household 

vehicle availability, against which we can compare the VULO method.  Two of the 

benchmarks represent the upper limit on data fit possible with any method—the block 

group and tract average household vehicle availability, controlling for bedrooms and unit 

type.  As the VULO method considers only location, unit type and bedrooms, no other 

variable is available to explain any within-cell variation, and averaging all households 

within a given unit type/bedrooms/location cell gives the best fit to the data in a least 

squares sense. A third benchmark represents state of the practice in New Jersey: 

statewide average vehicle availability by unit type/bedroom combination.  The fourth 

benchmark is presumably inferior to the VULO method implemented at the block group 

level—the VULO method implemented at the tract.  The fifth method, perhaps the most 

viable alternative to the VULO method, requires significant explanation.

The PUMA-regression method, uses bedroom, unit type, and vehicles available 

data at the smallest geographic unit at which it is publicly available—the PUMA.  The 

simplest way to use these data would be to create a look-up table for each PUMA, 

indicating for each combination of unit type and bedrooms what is the average household 

vehicle availability.  However, not all PUMAs have households in all unit type by 

bedrooms combinations of interest.  Therefore, and to minimize the influence of 

spuriously high or low cell vehicle averages due to low but nonzero cell counts, the 

PUMA level data are represented by a regression equation:

v=au , PUMAbu , BR , PUMABR (4.5).
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This equation handles bedrooms differently than does the equation used in the 

VULO method (Equation 4.4).  In that method, the sensitivity of vehicle ownership to 

number of household bedrooms is independent of unit type.  This is necessitated by the 

limitations of the publicly available Census data used to estimate the block group-average 

vehicle availability: the Census Bureau does not report the distribution of bedrooms by 

unit type.  The PUMS does allow that computation for a PUMA, however, which enables 

the regression equation in the PUMA-regression method, Equation 4.5, to include the 

influence of unit type on the sensitivity of vehicle availability to bedrooms.  In other 

words, Equation 4.5 represents separate regression equations for each unit type.

 The VULO method is compared against the PUMA-regression method using all 

3,900 block groups in the special tabulations.  However, the VULO method is compared 

against block group and tract averages, and against the tract-level version of the VULO 

method, using only those block groups that compose complete tracts.  Of the 3,900 block 

groups in the purchased sample, 1719 block groups compose 729 complete tracts.  These 

729 tracts represent 37.6% of the 1938 tracts in New Jersey containing households, and 

36.0% of all the housing units in New Jersey. 

Aggregate validation

The initial step in validating the VULO method is to consider its fit to the data in 

an aggregate sense.  In this section, benchmarks for data fit are proposed and evaluated, 

the VULO method is implemented, and their results are compared.  The aggregate 

validation results suggest that the VULO method outperforms the two alternative 

methods.
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Table 4.1.  Comparing methods for estimating household vehicle availability
Method r2

Block group averages by unit type and BR 0.4212

Tract averages by unit type and BR 0.3862

State averages by unit type and BR 0.2701

VULO at the tract 0.3372

PUMA-level regressions 0.3001

VULO (at the block group) 0.3321 / 0.3452

1Computed using all 3,900 block groups present in the special tabulations.
2Computed using a subset:  1,719 block groups that fully compose 729 tracts.

Table 4.1 reports the VULO method results alongside the benchmarks.  The first 

row indicates the fit between the survey data and the data's averages by block group and 

unit type/bedroom combination.  Using block group averages captures 42.1% of the 

variation in household vehicle availability.  Using tract averages instead captures 38.6% 

of that variation.  (As discussed above, the difference between the two approaches is 

statistically significant.  See Table 3.16.)  Averaging household vehicles over the entire 

sample produces the result in the third row, capturing 27.0% of the variance. 

Implementing the VULO method at the tract captures 30.0% of the variation in the data, 

as does the PUMA-regression method.  (Note, though, that they were exercised on 

different data sets.)  The VULO method captures less variation than the straightforward 

averages of the data, which are upper limits on the method's data fit.  It performs better 

than the two alternative methods:  VULO at the tract (although this difference is not 

significant—see below) and the PUMA-level regressions method, which allows for the 

influence of unit type on the sensitivity of vehicle availability to bedrooms.
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By comparing Table 4.1 to the regression results in Chapter 3, we can roughly 

assess the trade-off between context-sensitivity and practicality.  First, consider Table

3.12.  It presents a model of household vehicle availability in north and central New 

Jersey where location is proxied as the density of the residence PUMA, and household 

income and work status is included.  It captures 44% of the variance in the data. 

Excluding household sociodemographic variables from that model leads to a model that 

captures 25% of the variance, as shown in Table 3.7.  The VULO method falls between 

these points.  Relative to the full regression in Table 3.12, the VULO method is more 

geographically precise, but includes no demographic information.  The result is that the 

benefit that the VULO method offers due to its refined geographic controls, relative to a 

baseline method that weakly controls location (PUMA density only), is roughly24 half as 

great as the benefit offered by introducing demographic data.

Table 4.2 shows that the VULO method does not offer a statistically significantly 

better fit to the data when exercised at the block group level rather than the tract.  The 

sample used here contains 1,719 block groups that compose 729 complete tracts.  The 

number of coefficients in each model is the number of unit type x bedrooms x areal unit 

cells that contain households.  Each of these cells has a computed average household 

vehicle availability, and these averages constitute the models.  If every cell in the sample 

contained households, the block group-level model would contain 1,719 x 4 (levels of 

unit type) x 5 (levels of bedrooms) = 34,380 averages.  Because some cells contain no 

households, KBG in Table 4.2 (15,611) is less than this number (34,380).  Properly 

24This comparison is particularly rough because the studies in Chapter 3 use a different sample of 
households than do those in Chapter 4.
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estimating the degrees of freedom in this way leads to a computed F of 0.30.  Given the 

degrees of freedom listed in Table 4.2, this is not significant at p=0.1.

Table 4.2.  F test comparing method executed at tract or block group
Number of block groups 1,719 Number of tracts 729

KBG 15,611 KTR 8,992
SSEBG 657,084 SSETR 665,059

Number of households 1,077,453
T 179,576

DOF_numerator = KBG – KTR 6,619
DOF_denominator = T – KBG 163,965

F = [(SSETR – SSEBG)/(KBG – KTR )]/[(SSEBG/(T – KBG)] 0.30

This analysis demonstrates that the method developed in this research does not 

capture variation in the available data better when applied at the block group level than at 

the tract level.  That is, reducing the geographic area of analysis and the sample size from 

the tract to the block group does not statistically significantly increase the proportion of 

variation in household vehicles that is associated with bedrooms and unit type.  This 

contrasts with the analysis in Chapter 3, which demonstrated that the measured variation 

in the available data is better captured at the block group level.  Whereas the analysis in 

Chapter 3 shows that household vehicle availability, controlling bedrooms and unit type, 

varies significantly among block groups, Table 4.2 shows that the VULO method does 

not capture this variation.

This section demonstrates three important points about the VULO method.  First, 

it is not better implemented at the block group than at the tract.  Second, it fits the data 

less well than the relevant optimal benchmark approaches:  averaging vehicle availability 
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by block group and tract.  Third and most importantly, it fits the data better than viable 

alternatives such as the current New Jersey practice of using statewide vehicle 

availability averages or the more sophisticated PUMA-regressions approach.

Disaggregate validation

It is useful to disaggregate the VULO method's predictions and errors.  From a 

practical perspective, users need to know as much as possible about the conditions under 

which the VULO method performs well and badly.  It is also valuable to know whether 

alternative methods outperform the VULO method in some situations.

Results:  VULO mean and standard error

Figure 4.1 shows how the VULO method error varies with unit type, bedrooms 

and population density.  Each image in the figure represents a different sample of block 

groups taken from the 3,900-block group sample in the special Census tabulation.  The 

3,900 block groups were broken into population density deciles.  The first image 

represents the second decile, comprising 390 block groups with an average block group 

population density of 1,028 residents per square mile.  This decile was chosen for display 

because its mean density falls near the Census bureau's criterion density for an urbanized 

area.  The other deciles, the sixth and eighth from the sample, were chosen for the 

proximity of their mean densities to 5,000 and 10,000 residents per square mile.

Each image shares three dimensions.  The horizontal axis indicates the number of 

bedrooms in the unit, from zero to four.  The vertical axis indicates the unit type:  single-

family detached unit (SFD), single-family attached unit (SFA), unit in a two- to four-unit 

building, and unit in a building with five or more units.  The values indicated by the 
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contours are the mean method error at the given combination of unit type and bedrooms, 

averaged across all households in the 390 block groups in the decile.

Figure 4.1 indicates that the VULO method is biased as follows.  In the low 

density sample, the VULO method substantially underpredicts household vehicles for 

zero-bedroom SFDs and overpredicts vehicles for four or more-bedroom units in five or 

more-unit buildings.  The VULO method also substantially underpredicts household 

vehicles for zero-bedroom SFAs in the high density sample.  One likely contributor to 

this pattern is the assumption that vehicle availability is linearly related to bedrooms over 

a range from zero to four or more.  The substantial error gradients at the extreme values 

of bedrooms suggests that this assumption is less tenable there than in the middle of the 

bedroom range.  Other explanations for the error patterns are explored below.

Figure 4.2 presents the standard error from the VULO method, using the same 

format as Figure 4.1.  This figure is of particular practical importance because vehicle 

Figure 4.1. Mean error (household vehicles) from VULO method
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estimates from the VULO method, when presented with 95% confidence intervals, are 

given as the estimate +/- twice the standard error.  Figure 4.2 reflects the findings in 

Figure 4.1 to some extent, as the cases with the largest mean errors are also among the 

cases with the largest standard errors:  consider zero-bedroom SFDs at low density and 

zero-bedroom SFAs at high density.  High standard error also occurs at four or more 

bedrooms in multifamily units in the densest sample.  These are likely driven by 

unobserved differences in household income and number of workers and nonworking 

adults—units with more bedrooms are prone to admit more variability in these 

characteristics than units with, say, one or two bedrooms.

Discussion:  Understanding error

It is useful at this point to present a rough theory of the VULO method.  Doing so 

should allow a more thoughtful discussion of its performance in different realms of unit 

Figure 4.2. Standard error (in household vehicles) from the VULO method
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type, bedrooms and location.  We can develop this theory using tools previously 

presented:  the description of the VULO method, at the start of this chapter, combined 

with omitted variable bias analysis discussed in Chapter 3.

We start with an expression for the number of vehicles available to household i in 

block group j.  

vij=1u ij1 BRijD ij L jij (4.6)

In this expression, uij is the unit type25.  BRij  is the number of bedrooms in the 

household.  Dij  is a set of demographic variables such as household income.  L j is 

a set of location-related variables such as population density.  For consistency with the 

VULO method, this and subsequent equations each take a single PUMA as their domain. 

In step 1 of the VULO method, we approximate household vehicle availability by 

omitting demographic and locational variables.  

vij=2u ij2 BRij (4.7)

Note that Equation 4.7 is a restatement of Equation 4.2.

The conclusion of the VULO method is to adjust Equation 4.7 by the location-

based offset appropriate to block group j.  That offset is the difference, averaged over all 

households in block group j, between vij  given by Equation 4.6 (and actually 

measured and reported by the Census Bureau) and vij from Equation 4.7.  Accordingly,

25It is easiest to think of it as a scalar multiplied by a scalar α1, although the equations hold equally well if 
both are vectors, as is the case with the VULO method.
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vijVULO=2u ij2 BRij[1−2 u j1−2 BR j D j L j j] (4.8).

The error from using the VULO method is the difference between vijVULO and 

vij from Equation 4.6.  Combining and rearranging, we have

E ij=uij− uij 2−1BR ij− BR j2−1Dij− D j−  j−ij (4.9).

2−1 and 2−1 are omitted variable biases attending the 

simplification of Equation 4.6 that results in Equation 4.7.  This motivates the regression 

of the omitted variables on the included variables, following the traditional approach in 

omitted variable bias analysis (Imbens, 2005).

Dij=duuijd B BRijDij (4.10)

Lij=luuijlB BRijLij (4.11)

Combining Equations 4.10-11 and Equation 4.6, we have:

vij=1dul uu ij1d Bl BBRij (4.12).

Combining this with Equation 4.7 gives:

2−1=dul u (4.13),
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2−1=d Bl B (4.14).

Finally, combining Equations 4.9 and 4.13-14 gives

E ij=uij−u jd u luBRij− BR jd Bl BDij− D j−  j−ij (4.15).

Before exploring the implications of this expression, let us confirm its 

reasonableness.  The first term is an estimate of the error introduced by the fact that the 

given household's unit type is not the average unit type that is used in the computation of 

the location-based offset.  It is the product of the difference between the household unit 

type and the block group average unit type and the indirect sensitivity of vehicles to unit 

type.  d u is the sensitivity of vehicles to demographics multiplied by the sensitivity 

of demographics to unit type; it could be restated as 
∂ v
∂D
∂ D
∂u .  Likewise,  lu is 

equal to 
∂ v
∂L
∂ L
∂ u .  An equivalent discussion applies to the bedroom term.  The third 

term is the difference between household demographics and block group average 

demographics, multiplied by the sensitivity of household vehicles to those demographics.

What does Equation 4.15 tell us?  First, the VULO method's error is not directly 

related to the environmental variables L .  This is not to say that the VULO method's 

error is independent of location; Figures 4.1 and 4.2 show that it does vary with location. 

Equation 4.15 merely indicates that these effects are mediated by demographic and other 

variables (in the error term).
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Second, Equation 4.15 shows that the block group average VULO method error is 

zero.  Each of the terms, including the error term, falls to zero when the equation is 

averaged over block group j.

Third, the magnitude of error from the VULO method tends to increase as the 

household in question differs more from the block group average household.  This is true 

in both residential unit choice and demographic terms.

Further observations require us to say something about the values of the 

parameters in the equation.  Thanks to work in Chapter 3, that is possible if we assume 

that density is the only locational variable and household income is the only demographic 

variable in the equations.  For the purposes of exposition, let us further assume that unit 

type is a scalar variable takes the value of 1 for an SFD, 2 for an SFA, and so on.

For one, we can argue that the indirect sensitivity of vehicles to unit type, 

du lu  is likely negative.   , the sensitivity of vehicle availability to 

household income, controlling unit type, bedrooms and location, is positive.  d u , the 

sensitivity of household income to unit type, is (generally) negative, and their product is 

negative.    is the sensitivity of vehicles to density controlling for unit type, bedrooms 

and income, and is negative. l u is the sensitivity of block group density to average unit 

type, and is positive. Their product is also negative, and the sum of these two products, 

dul u , is negative.

On the other hand, the indirect sensitivity of vehicles to bedrooms, 

d Bl B , is likely positive.  The preceding paragraph argues that  is positive 

and  is negative. d B is the sensitivity of household income to bedrooms, and is 
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positive, whereas lB , the sensitivity of density to bedrooms, is likely negative.  This 

gives us the product of two positive numbers as the first term and the product of two 

negative numbers as the second term, the sum of which is positive.

The fourth and final observation on Equation 4.15, then, is that the VULO method 

error depends in opposite ways on bedrooms and unit type.  We should expect to see 

negative errors with the greatest magnitude for households with many fewer bedrooms 

than the block group average and in a unit that is more attached than average. 

Conversely, we should expect positive errors with the greatest magnitude for households 

with many more bedrooms than the average, living in an SFD in a block group dominated 

by multifamily units.

 Figure 4.1 does not show the predicted pattern.  This indicates that the systematic 

error due to the indirect impacts of unit type and bedrooms are overwhelmed by the 

errors introduced by unobserved variables such as household income26.  As mentioned 

above, the shape of the error fields in Figure 4.1 suggests that the linear influence of 

bedrooms coupled with the wide range of bedroom levels may be problematic.  Figure

4.3 shows that zero-bedroom units are rare in all three samples27, indicating that perhaps 

the zero-bedroom category should be removed in future analysis.

26This is consistent with the analysis in Chapter 3.  Compare Tables 3.7 and 3.12 to see that demographics 
are very important in explaining vehicle availability.
27Note that with twenty cells for each sample, the average cell population is 5%.
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Discussion:  Comparing VULO to alternative methods

Under what conditions does the VULO method perform best and worst?  This 

section answers that question by comparing it against two benchmarks.  

Statewide averages  The first is based on the approach used in the State of New 

Jersey's Residential Site Improvement Standards (RSIS).  The RSIS establishes a 

minimum off-street parking spaces per unit of housing on the basis of bedrooms and unit 

type.  The standard is applied to all newly constructed housing in the state, with city- and 

project-specific exceptions.  (See Table 3.2 for details.)  We approximate an updated 

version of that approach by computing a table of statewide average household vehicle 

availability, using the data from all households in the 3,900 block-group special 

tabulation, and crossing the household characteristic levels available in the special 

tabulation of Census 2000 data:  zero to four bedrooms by unit type—single-family 

detached, single-family attached, in a structure containing two to four units, or in a 

Figure 4.3. Percentage of sample households in each unit type/bedroom cell
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structure containing five or more units28.  (This is the same method used to produce the 

third row in Table 4.1.)

Figure 4.4 illustrates the precision benefit provided by the VULO method relative 

to the NJ RSIS approach, at three population density levels in the sample.  Negative 

numbers indicate where the VULO method produces a lower standard error than the 

statewide average.  Each image in the figure is based on the difference between the 

standard error from the RSIS approach and the standard error from the VULO method. 

To compute the standard error for either method, household-level error was computed by 

subtracting the reported vehicle availability from the amount estimated by the method at 

hand.  These errors were then partitioned by unit type, bedrooms, and population density 

of the block group.  Block groups were aggregated into density deciles.  Errors in a given 

28Note that RSIS standards were computed using statewide averages of vehicle availability considering only 
recently constructed housing.  In contrast, the statewide average approach here includes units of all ages.

Figure 4.4. Change in std. error:  VULO - statewide averages
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combination of bedroom, unit type, and density decile were squared, summed, divided by 

one less than the number of households in the cell, and then raised to the ½ power.

Figure 4.4 shows that the VULO method is more precise than the statewide 

method across block group density, unit type and bedrooms.  The only exceptions are at 

low and medium density, for zero-bedroom single-family detached units (SFDs), and at 

high density, for zero-bedroom SFAs.  The VULO method's precision advantage over the 

statewide lookup is generally higher for multifamily units and for units with more 

bedrooms.  As denser areas tend to host more multifamily housing (see Appendix C), this 

suggests that VULO's advantage is greater in urban areas.

PUMA-regressions  The second alternative method for estimating household 

vehicle availability is called the PUMA-regressions method.  It is described above, and 

reviewed here.  In the PUMA-regresssions method, household vehicle availability is 

estimated as a unit type-specific constant plus the product of a unit type-specific 

coefficient and the number of bedrooms.  The PUMA-regressions method has the 

advantage over the VULO method of allowing the sensitivity of vehicles to bedrooms to 

be unit-type dependent.  It has the relative disadvantage of accounting for the effects of 

location at the PUMA (population >100,000), however, rather than at the much smaller 

block group (population ~1,500).  

These competing differences raise the question of how the PUMA-regressions 

method compares with the VULO method.  Table 4.1 indicates that overall, the VULO 

method fits the special tabulation Census data better than the PUMA-regressions method. 

Here we consider how the two methods compare in a disaggregated way.
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Figure 4.5 shows that almost universally, the VULO method is more precise than 

the PUMA-regression method.  Negative numbers indicate that the VULO method 

produces estimates with lower standard error than the PUMA-regressions method.  The 

major exceptions are in three cases:

1. in the low density sample, four or more-bedroom units in five-plus-unit buildings

2. in the medium density sample, the same bedroom/unit type combination, and

3. in the high density sample, zero-bedroom units in SFAs.

For these cases we can conclude that the VULO method's benefit of including 

local effects at the block group is outweighed by its limitation of assuming that a single-

bedroom increment is associated with the same vehicle increment, regardless of unit type. 

This latter assumption appears particularly untenable for the three cases in part because 

of their rarity:  observe in Figure 4.3 how far the 1% contour is from the three cases.

Figure 4.5. Change in std. error:  VULO - PUMA-regressions
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Conclusions

This chapter represents the culmination of this research.  It presents and validates 

the VULO method, a practical method for estimating household vehicle availability.  This 

method involves three steps.  First, household vehicle availability is estimated by linearly 

regressing vehicles on bedrooms and unit type on a PUMA by PUMA basis.  Second, 

block group-average household vehicle availabilities are estimated by averaging the 

equations from step 1.  Third, the equation from step 1 is corrected by the difference 

between actual and estimated block group average vehicle availability.  The result is a 

data-driven method that uses household unit and vehicle data at the smallest geography at 

which household data are publicly available to infer the influence on vehicle availability 

of location within that area.

The method meets our three criteria for practicality.

First, it is inductive:  The VULO method is based primarily on data, relying on 

theory only tangentially.

Second, it is “adequate” and “valuable.”  Here we use scientifically sound as 

shorthand for “adequate,” and the VULO method is scientifically sound.  It uses housing 

unit descriptors that exhibit consistent and predictable relationships with vehicle 

availability.   Consistent with the literature review in Chapter 2, it decomposes the 

determinants of vehicle ownership into location-related variables and demographic 

variables (including attitudinal variables).  The VULO method first accounts for the 

somewhat location-specific effect of demographics, proxied by residential unit choice. 

Then it corrects the estimate based on a refined measure of location.  Also, its data 

processing procedures are defensible. 
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As to value, we address that criterion by considering standard error in method 

projections.   In an aggregate sense, the VULO method outperforms both the current 

practice—statewide averages by unit type and bedrooms—and also a refinement of that 

practice (PUMA-regressions).  The disaggregated validation results show that the VULO 

method consistently outperforms both the current practice and its refinement.  In the rare 

unit type/bedrooms/density combinations where the VULO method does not outperform 

the alternatives, the problem appears strongly linked to the VULO method's assumption 

that throughout the PUMA, the sensitivity of vehicles to bedrooms is constant.

The VULO method's relatively low error is the result of a series of method design 

decisions aimed to manage aggregate error throughout the process.  Considering input 

variables, number of bedrooms is chosen over unit floor area because survey respondents, 

whose responses would create tables for regulation, are presumed to be unable to answer 

the question reliably.  

Similarly, part one of the VULO method was redesigned to manage uncertainty. 

An initial version of the method tabulated average vehicle availability by bedrooms and 

unit type for every PUMA.  However, because some cells in these tables contained a very 

small number of households, the standard error of the means were substantial.  In fact, 

some tables showed counterintuitive trends, and numerous cells were empty.  Using 

regression instead averages away idiosyncratic behavior and offers a consistent method 

for filling empty cells.  On the other hand, as discussed above, the assumption that the 

sensitivity of vehicles to bedrooms is independent of unit type, as required by the data 

available for the regression method, surely introduces some error.  The validations above 

show that the costs of the design decisions made here do not outweigh the benefits.
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Third, it is married to the decision process.  It uses housing unit descriptors that 

are widely used in current parking regulation practice.  It is conceptually simple: 

estimate household vehicle availability using PUMS data and then correct that estimate 

according to the difference between block group average vehicle availability and the 

PUMA-level trends.  Also, it can produce readily usable tables—see Appendix D.

Looking ahead to broad implementation, we should also consider the utility of the 

VULO method in places other than New Jersey, the source of all data used in this 

research.  The validation results and analysis of the VULO method itself show that it 

should work in rural locations beyond New Jersey.  The disaggregate validation results 

show that the VULO method outperforms the alternatives at each density level.  The 

steps in the VULO method ensure that the method correctly estimates block group 

average vehicle availability in every block group, as it contains an error correction term. 

Also, the expression for the error from the VULO method, Equation 4.15, includes no 

expressly location-related terms.  The VULO method should be effective everywhere.
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Chapter 5. Conclusions

This research lays out the methods and theoretical background for a new, practical 

method for developing context-sensitive residential parking standards.  Literature on 

vehicle availability analysis indicates that the decision to own a given number of cars, 

and therefore require a given number of parking spaces, is influenced by a number of 

local factors:  transit access, development density, on-street parking supply, housing 

prices, and others.  Any system that neglects those influences is bound to make 

systematic errors in establishing adequate parking standards:  requiring too much in some 

places and too little in others.

Unfortunately, parking standards are generally insensitive to the physical 

environment.  Willson (2000) observes that planners are overwhelmingly inclined to use 

national parking standards or standards borrowed from nearby municipalities, rather than 

location- and project-sensitive standards.  Therefore, current parking standards generally 

incorporate systematic biases.  Willson (2000) further observes that parking regulators 

are more motivated to avoid the immediate costs of parking shortages than the indirect 

and often invisible (in the short term) costs of parking oversupply.  That is, parking 

regulators are motivated to cope with the unknown errors in their methods by erring on 

the side of oversupply.

Assessing parking demand more accurately for a particular residential 

development promises to reduce oversupply.  A more accurate assessment reduces 

uncertainty, weakens the case for safety factors, and reduces the magnitude of the safety 

factor (or additional term) necessary to give equivalent safety in the estimate.  That is the 



130

aim of this research:  to devise a method for producing more accurate projections of 

parking demand for a new project.

In addition, this research aims to make the new method practical—usable in the 

decision-making context.  This adds significant constraints on the data and methods.  For 

this research, a practical method is one that meets three criteria.

1. Inductive:  The method should be rely heavily on observation.

2. Adequate & valuable:  The method should process data in a scientifically sound way 

to create accurate estimates with low uncertainties. 

3. Married to the decision process:  The method should reflect the group decision-

making context in which the resulting new standards will be used.

Together, these three criteria help ensure that the method can be understood, trusted and 

implemented.

First, a practical method must be principally inductive.  Given that parties to the 

parking regulation process may bring different theories and technical sophistication to the 

decision-making forum, theory should be invoked only as necessary to generalize from 

data.  Data, rather than theory, should form the principal basis of the method.

Second, a practical method must be scientifically sound and must result in 

accurate estimates.  In Andrews's (2002) terms, it must be “adequate” and “valuable.” 

Any method that is not scientifically sound cannot be trusted to consistently transform 

measured data into valid estimates.  Furthermore, the method must indeed produce 

accurate estimates to be worthwhile.  That is, both the method's procedure and results 

must be trustworthy.



131

Third, a practical method must designed to fit within the decision-making context: 

it must be “married to the decision process.”  For example, methods that draw on 

principles and data that are familiar to decision process participants are more likely to be 

readily accepted and incorporated.  Methods that respect the participants' technical 

sophistication are more likely to be trusted.  In contrast, methods that rely on alien 

language and abstruse theories face substantial obstacles to implementation.

In short, this research is aimed to develop a new, improved method for projecting 

the parking demand associated with a new residential development, a method that 

balances context sensitivity with practicality.  It accomplishes that goal in three steps.

The first step is to identify the characteristics of the environment and local 

populations that influence parking demand.  In Chapter 2 we argue that this is primarily a 

question of household vehicle availability, and we review the literature on vehicle 

availability analysis and prediction.  Chapter 2 concludes by observing that although the 

demographic characteristics of household occupants are the dominant factors in 

household vehicle availability decisions, numerous locational factors combine to exert 

significant influence as well, especially development density, land-use mix and 

employment accessibility.

The second step is to devise a way to represent the factors identified above in 

parking standard regulations.  Chapter 3 engages this task by addressing three 

subquestions.  First, what development characteristics must be included when setting 

parking standards?  A review of existing standards coupled with an analysis of household 

vehicle availability in New Jersey identifies unit type, bedrooms, and location as 

necessary and sufficient.  Second, how do these regulation-appropriate variables relate to 
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the predictor variables identified in Chapter 2?  Regression analysis on 2000 Decennial 

Census PUMS data from north and central New Jersey shows that unit type, bedrooms, 

and location relate systematically to household composition and income.  Third, what is 

the best way to express household location?  An F test on a special tabulation of 2000 

Decennial Census data in New Jersey shows that the block group, the smallest 

geographical unit at which vehicle availability data are publicly available, is preferable to 

the next larger option—the Census tract.

The final step in the research is to propose and test a method based on preceding 

lessons:  this takes place in Chapter 4.  The method is named Vehicles from Unit choice 

with a Location-based Offset, or the VULO method for short.  The VULO method's first 

step entails regressing household vehicle availability on unit type and bedrooms, on a 

PUMA by PUMA basis. Second, these regression equations are employed to produce 

estimates of block-group average household vehicle availability.  Third, the difference 

between reported and estimated average block group vehicle availability is identified as 

the location-based offset, and added to the PUMA-level regression to complete the 

estimate of household vehicle availability.  This method uses the required variables, unit 

type, bedrooms and location, which are previously shown to relate directly and indirectly 

to vehicle availability.  It defines location in terms of the block group.  Finally, it uses 

only freely available data to create its estimates.

Chapter 4 concludes the research effort by demonstrating that the VULO method 

produces better estimates than alternatives in nearly all cases.  Considering aggregate 

measures, the VULO method outperforms:
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1. a statewide averages approach (akin to current practice in the Residential Site 

Improvement Standards in New Jersey) and

2. a PUMA-regressions method, which is approximately equivalent to the statewide 

averages approach implemented at the PUMA level instead.

Disaggregate validations show that the VULO method outperforms the statewide 

averages and PUMA-regressions approaches across practically all combinations of unit 

type and bedrooms at three block group densities.

By and large, this research has met its goal.  It has produced a practical method 

for projecting the household vehicle availability, and therefore the majority of residential 

parking demand.  It is practical in three senses.  First, it is inductive, relying almost 

totally on Census data to create estimates.  Second, it is scientifically sound—attending to 

previous work on estimating household vehicle availability—and more accurate than the 

alternatives.  Third, it respects the decision process by using publicly available data and 

relying on commonly used housing characteristics.  However, this work leaves important 

questions unanswered.

Future research

First, can we rationalize visitor parking standards as we have resident standards? 

Visitor parking requirements are a substantial portion of total residential parking 

requirements in some cases.  For example, over 50% of New Jersey's parking 

requirement for 1-bedroom high rise apartments is due to visitor parking (State of New 

Jersey, 1997).  For completeness, a method for establishing residential parking standards 

should address visitor parking as well as parking by residents.
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Unfortunately, there is no widely measured proxy for visitor parking as there is 

for residents' parking.  Visitor parking demands must be measured directly.  At one end 

of the cost/accuracy spectrum, mail-back household surveys regarding the number and 

duration of visits hosted in the previous week, for example, would shed light on the 

question.  In the most expensive and reliable approach, peak total (visitor + resident) 

parking demand could be measured by direct inspection.   Either way, visitor parking data 

is expensive.

This suggests the need for a theoretically sound way to extend whatever scant 

data are available.  Elsewhere we propose a stochastic model tuned to available data 

(Listokin, Walker, Ewing, Cuddy, & Cander, 2006).  The model includes three 

parameters:  likelihood of a resident being home in a given hour, the likelihood of having 

a visitor in a given hour, and the number of residential units sharing a parking lot.  Figure

5.1 indicates the data fit assuming a 50% chance of a unit's resident parking at home and 

a 40% chance of having a visitor.  The triangles, squares, and Xs are placed at the 

midpoints of ranges of development size, with the y-value indicating average 

measurements for rental and condominium townhouses and rental apartments.  The 

model results are computed by simulating a 500-hour period five times and averaging the 

results hour by hour.  The stochastic modeling approach appears promising, but it should 

be explored and validated with additional data.
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In particular, the influence of physical context should be considered.  Just as 

residences in locations with good transit options and pedestrian access to jobs and 

services tend to host fewer automobiles, those residences have an increased chance of 

being visited by modes other than automobile.  Even without any difference in visitation 

rates, which may well be related to, say, yard size, visitor parking demands should vary 

by location.  Available data do not reflect that fact.

A second practical question bears on the VULO method's assumption that the 

proposed residential development in question is typical of the existing housing stock. 

Although this is an assumption typical of transportation planning in general—that 

historical trends continue into the future—it is problematic here.  Controlling for 

bedrooms, unit type and location, new housing units are often more expensive than older 

units.  The analysis that underlies New Jersey's RSIS accounts for this fact by considering 

only units constructed within the previous five years (State of New Jersey, 1997). 

However, the VULO method cannot operate under this constraint, because it 

Figure 5.1. Stochastic visitor parking model results compared to tuning data
Source:  Listokin et al., 2006: Chapter 9, Table 9.12
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unacceptably reduces the sample size for the foundational data while introducing an 

additional dimension, making the necessary aggregate block group-level data 

unavailable.

Thankfully, Equation 4.15, developed in Chapter 4 and restated below, allows this 

income bias to be reduced if not eliminated.  The equation expresses the VULO method's 

errors in terms of PUMA-level regression results and differences between the residential 

development in question and the average characteristics of its block group.

  

E ij=uij−u jd u luBRij− BR jd Bl BDij− D j−  j−ij  (4.15)

Dij is the set of household demographic characteristics that are assumed to influence 

vehicle availability.  If that set is limited to household income, it is possible to estimate 

the income-related bias and correct for it.  Doing this, however, requires an estimate of 

the incomes of future residents.  The method for creating these estimates should be driven 

by rent or sale price projections; based on data on the relationship between income, other 

demographics, location, unit type, and bedrooms; informed by previous scholarly work 

on housing markets; and validated with data and by discussions with developers, who 

have their own methods for understanding their target markets.

On the more academic side, the theory presented in Chapter 2 suggests a warning 

and an opportunity for further research:  household vehicle availability should be studied 

further in the context of parking supply.  As depicted in Figure 2.2, the spatial 

distribution of on- and off-street parking supply influences a household's residential 

location and unit choice, which determines the on- and off-street parking supply available 



137

to the particular household.  Therefore, a household's parking supply is to some extent 

driven by household demographics and attitudes, and by the household's location.  Some 

combination of these factors also drive the vehicle availability decision.  To what extent 

does parking supply independently influence vehicle availability?  As its influence 

increases, independent of the demographic and locational factors that are associated with 

vehicle availability, so does the noise inherent in vehicle availability analyses that neglect 

parking supply.  Appendix B indicates that off-street parking supply varies with location 

and unit choice, suggesting that parking supply's independent influence may be limited. 

A more rigorous analysis is appropriate to verify this suspicion and thereby test part of 

the working theory presented in Figure 2.2.

Implications

Despite these remaining questions, this research has significant potential to 

improve the practice of parking planning.  First, the method can be used as intended:  to 

evaluate and revise existing standards.  It is methodologically straightforward, based on 

freely and publicly available data, and validated.

Second, this research demonstrates the value of changing reporting practices in 

the Census Transportation Planning Package.  This set of special tabulations is designed 

to facilitate transportation planning.  It includes a tabulation of vehicles available by unit 

type by number of residents in the household.  However, residents per household is not 

nearly so constant in time as is number of bedrooms: unit type and bedrooms are 

essentially fixed properties of housing.  Partly on that basis we have argued that these two 

variables are theoretically appropriate for linking housing stock to vehicle availability. 

Given that the first step in the four step planning process is to estimate trip generation 



138

rates (see Figure 2.1), usually by zone, and that zones contain a relatively stable 

distribution of housing, it would seem that the CTPP might better serve its intended 

purpose by tabulating vehicles available by unit type by bedrooms.

Even if not, the CTPP would certainly facilitate proper residential parking 

planning by including this new tabulation.  As vehicle ownership is related to parking 

supply (which is related to parking standards), and vehicle use rates are related to vehicle 

ownership rates, changing the CTPP to support parking planning would also indirectly 

support transportation planning as well.  Directly, indirectly, or both, adding this new 

tabulation to the CTPP would help it achieve its goals.

Third, this research establishes minimum requirements for future vehicle 

availability analyses.  See Figure 2.2.  It suggests first that household vehicle availability 

decisions must be considered in terms of the household demographics, the location of the 

household relative to transportation networks and activities such as jobs and services, and 

the type of housing unit inhabited.  No dimension can be excluded.

Finally, the foregoing analysis of the uncertainty in residential parking demand 

should facilitate further discussion of the attitudinal and institutional barriers to more 

careful management of parking supplies.  Traditional parking regulation practice is to err 

on the side of supplying excess parking.  Under conditions of unknown parking demand 

and unknown uncertainty in the estimates thereof, fear of the immediate repercussions of 

parking shortages dominate the parking regulation process.  This research presents 

methods for estimating the uncertainty in vehicle availability estimates, and explores the 

practical lower bounds on that uncertainty.  Having estimated the quality of our 

knowledge of vehicle availability (and therefore the majority of residential parking 
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demand), we are now prepared to ask how much uncertainty we will accept.  To answer 

that question we must engage in values discussions:  who benefits and who loses, in what 

ways and when, from parking excesses or shortages.  These are important questions to 

address, and this research adds value by hastening them.

In sum, this research has been conducted to facilitate the improvement of 

residential parking regulation practice, through the development of a draft procedure for 

developing parking standards.  In the process, it has raised questions about the limits of 

parking standards' precision and about how best to conceive of household vehicle 

availability decisions.  It has the potential to advance the theory and practice of 

residential parking demand estimation.
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Appendix A. Modeling vehicle availability with categorical-variable methods

The literature review in Chapter 2 indicates that ordered response models (ordered 

logit or ordered probit) are increasingly chosen for vehicle availability analysis.  It also 

presented evidence that multinomial logit models may be more appropriate for vehicle 

availability analysis than ordered response models.  Early vehicle availability analysis 

used ordinary least squares approaches, but that approach was all but abandoned (until 

recently, as analysts use structural equation modeling to try to deal with endogeneities in 

travel behavior models).  

Nonetheless, Chapter 3 uses ordinary least squares methods.  This facilitates the 

identification of the direct and indirect relationships between residential choice variables 

and vehicle availability using an omitted variable bias framework.  OLS fits the 

expository purpose of the regressions, but coefficient estimates from OLS on a 

categorical dependent variable may be biased and inefficient: using these coefficients to 

make inferences may be problematic.  Any problems are mitigated by the fact that the 

VULO method proposed in this research does not rely on the regression coefficients 

except as guidance about the relationships among variables.  This appendix confirms that 

the conclusions about those relationships drawn from the OLS models in Chapter 3 

persist when the relationships are analyzed with a categorical modeling approach.

Table A.1 shows the results of an ordered logit analysis that is equivalent to the 

OLS results presented in Table 3.12.  This is the full equation, where residential choice 

variables including unit type, bedrooms and location are used alongside their 

demographic covariates to explain variations in vehicle availability.  The sample used 
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here is the same as in Table 3.12 and described in Appendix :  115,349 households 

reported in the 2000 Decennial Census Public Use Microdata Samples in the 14 counties 

in New Jersey in the New York City commuter shed—north and central New Jersey.

Table A.1. Comparison of ordered response logit and ordinary least squares models
ORL ORL ORL OLS OLS OLS
Est. SE Sig. Est. SE Sig.

SFD 1.424 .059 .000 .363 .022 .000
SFA .989 .084 .000 .250 .032 .000
2 units .657 .066 .000 .135 .025 .000
3-4 units .366 .070 .000 .041 .027 .122
5-9 units .353 .078 .000 .068 .030 .022
10-19 units .465 .077 .000 .115 .029 .000
20-49 units .271 .080 .001 .069 .030 .023
50+ units 0(a) . . 0(a) . .
[SFD] * BR .281 .009 .000 .130 .004 .000
[single-family attached] * BR .216 .026 .000 .086 .010 .000
[2 units] * BR .356 .018 .000 .139 .007 .000
[3-4 units] * BR .358 .026 .000 .137 .010 .000
[5-9 units] * BR .304 .034 .000 .102 .013 .000
[10-19 units] * BR .355 .038 .000 .112 .015 .000
[20-49 units] * BR .454 .046 .000 .125 .018 .000
[50+ units] * BR .598 .039 .000 .170 .015 .000
[SFD] * BR * density -.080 .003 .000 -.032 .001 .000
[SFA] * BR * density -.164 .009 .000 -.060 .003 .000
[2 units] * BR * density -.169 .008 .000 -.060 .003 .000
[3-4 units] * BR * density -.275 .012 .000 -.093 .005 .000
[5-9 units] * BR * density -.379 .014 .000 -.125 .005 .000
[10-19 units] * BR * density -.376 .017 .000 -.126 .007 .000
[20-49 units] * BR * density -.409 .023 .000 -.120 .009 .000
[50+ units] * BR * density -.307 .020 .000 -.092 .008 .000
Number of working adults 1.196 .008 .000 .424 .003 .000
Number of nonworking adults .617 .008 .000 .216 .003 .000
Number of children -.039 .006 .000 -.024 .002 .000
Household income (logarithm) .601 .008 .000 .192 .003 .000

Note:  The significance on the item in bold differs between the OLS and ORL models.

The different functional forms of OLS and ordered logit models make directly 

comparing the coefficients from the two models difficult.  (This discussion follows Liao, 
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1994.)  Ordinary least squares models directly estimate the dependent variable as a linear 

function of the independent variables.  The coefficients are computed analytically so as to 

minimize the sum of squared differences between the estimates and the observed values 

of the dependent variable.  See Equation A.1.

y= bk xk (A.1)

An ordered logit model computes the probability of the dependent variable taking 

on a particular categorical value.  That probability is computed by mapping the results of 

a latent linear equation onto a logistic (logit) probability distribution.  (See Figure A.1.)

The probability of residing in the jth category is estimated as

Prob  jth category =L j−−L  j−1− (A.2),

where

Figure A.1. Logistic cumulative probability distribution
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=bk xk (A.3), 

0=−∞ , 1=0 , and J=1 .  Increasing values of  lead to decreasing 

likelihood of residing in the first category and increasing likelihood of residing in the last 

category, all else being equal.  The parameters in the model, the bk

and  j , are estimated via optimization routines to maximize the estimated likelihood 

of the observed distribution of dependent and independent variables.

Notwithstanding these differences, we can consider differences between 

coefficients within a given model, and can find a number of similarities on that basis.  To 

put the comparison in the context of the dissertation research, we consider the 

observations made about the OLS results one by one.  The comparisons in Table A.2 are 

based in the results in Table A.1.  (Except as noted, differences are statistically 

significant.)
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Table A.2. Comparing within-model observations from OLS and ORL models

OLS ORL
Single-family detached (SFD) units have higher VA than all attached 
units do, ceteris paribus.  

Single-family attached (SFA) units have higher vehicle availability than 
do all other attached units, ceteris paribus.  

Vehicle availability for units in 3- and 4-unit structures is not 
significantly greater than for units in 50 or more-unit structures.  

For all unit types, increasing density decreases vehicles per bedroom.  
Vehicles per bedroom is least sensitive to density for SFDs.  
Vehicles per bedroom is less sensitive to density for SFAs and units in 3- 
and 4-unit buildings than for units in larger structures.  

Increasing numbers of children weakly decreases VA, ceteris paribus, but 
the impact is insubstantial compared to workers or non-working adults.  

Number of workers is about twice as influential on VA as is number of 
non-working adults.  

It appears that using ordinary least squares rather than ordinal logit does not 

significantly distort the inferences drawn from the model in this research.  Judging from 

Table A.2, the discussion in Chapter 3 would flow essentially as it does if ORL were used 

instead of OLS.  This does not in any way repudiate categorical models or demonstrate 

the theoretical appropriateness of OLS models for any particular class of categorical 

questions.  It merely confirms that the use of OLS here, in this case, is defensible on 

practical grounds.  Any benefits accruing from the greater intuitiveness of OLS are not 

outweighed by accuracy costs.
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Appendix B. Relating vehicle availability and off-street parking supply

Presumably, the availability of parking affects household's decisions on 

residential location and vehicle availability.  This research uncovered no analyses of 

vehicle availability that explicitly considers parking availability.  The work presented 

here represents an initial look at the relationship between housing choices, location 

choices, vehicle availability choices, and parking availability.

The American Housing Survey (AHS) includes the data to allow an analysis of 

on-street versus off-street parking.  It asks household residents about the sort of off-street 

parking they have available to them:  a garage, carport, driveway, lot or other included 

off-street parking.  It also includes items on nearby parking lots and the number of 

household vehicles.  Here we analyze the 2001 AHS for northern and central New Jersey. 

(See Appendix  for a description of the population in the sample area.  After removing 

nonresponses in key categories, this AHS sample includes 952 households.

The AHS locates responding households only to their Primary Metropolitan 

Statistical Area, which prevents direct assessment of local environmental variables' 

impacts.  However, it includes a number of questions about the sorts of development that 

are within ½ block of the household.  We use a number of these items in assessing the 

relationships between off-street parking availability, vehicle availability, location, and 

unit type.
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The first density measure in the AHS is the number of floors in the resident's 

building.  The first columns in Figure B.1 show that the fraction of the population with no 

off-street parking increases as the number of floors in the resident's building increases. 

Of all households in buildings with two or fewer floors, 10.5% have no off-street parking. 

That figure increases to 15.4% for three-story buildings, and 38.1% for buildings with 

four or more stories.  The second set of columns shows the fractions of households 

without off-street parking that own at least one vehicle.  That fraction decreases as the 

number of building stories increases:  from 68.2% for up to two stories to 49.2% for four 

or more stories.  Higher number of floors, which is a proxy for higher density, decreases 

off-street parking supply and the likelihood of parking on-street or in a lot.

Figure B.1. Floors in building, off-street parking, and vehicle ownership (N2floors=421, 
N3floors=336, N4floors=160)
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Figure B.2 shows how being within ½ block of apartment buildings with seven or 

more stories relates to parking availability and vehicle ownership.  Having a high-rise 

apartment building nearby increases the likelihood of not having off-street parking 

available, from 15.8% to 39.2%.  Given that a household has no off-street parking, being 

near a high-rise apartment reduces its likelihood of vehicle ownership from 62.7% to 

40.0%.  Being near a high-rise apartment building, which is a proxy for higher density, 

decreases off-street parking supply and the likelihood of parking on-street or in a lot.

Figure B.2. Proximity to  high-rise apartments, off-street parking, and vehicle ownership 
(Nnot-near=901, Nnear=51)
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Figure B.3 compares parking supply and vehicle ownership for two samples.  The 

first has single-family detached (SFD) housing within ½ block, and no other type of land 

use within that radius.  The second sample has at least one use type other than SFD 

within ½ block.  Having uses other than SFDs nearby increases the likelihood of having 

no off-street parking, from 4.7% to 26.0%.  It decreases the likelihood of owning a car, in 

the case where there is no off-street parking available, from 68.4% to 58.7%.  Being near 

something other than purely SFDs, which is a proxy for higher density, decreases off-

street parking supply and the likelihood of parking on-street or in a lot.

Figure B.4 indicates off-street parking supply and the use of non-off-street 

parking according to residential unit type.  Generally, units in larger buildings are more 

likely to have no off-street parking available, and are less likely to have vehicles 

available to them in the event that there is no off-street parking.

Figure B.3. Purely SFD neighborhood, off-street parking, and vehicle ownership 
(NSFD=402, Nother=550)
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Overall, these analyses suggest that households in more dense environments are 

less likely to have off-street parking available to them, and are less likely to own vehicles 

where there is no off-street parking.  Aside from these trends, the analyses begin to 

explain the relationship between location, unit type, off-street parking availability, and 

the household vehicle ownership decision.  The results also suggest that further analysis 

of off-street and other parking supply is warranted to relate vehicle availability analyses 

to residential parking standards.  For example, Figure B.1 indicates that 15.4% of units in 

three-story buildings include no off-street parking, while 64.9% of those households 

(three stories without off-street parking) have vehicles available to them nonetheless.  

Figure B.4. Unit type, off-street parking, and vehicle ownership (NSFD=542, NSFA=83, 
N2-4=135, N5+=127)
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Appendix C. The Decennial Census PUMS sample used in Chapter 3

The study area includes sparsely populated areas and a wide range of 

development forms.  Table C.1 summarizes the sample we use to explore relationships 

among bedrooms, unit type and location.

Table C.1. Characteristics of the sample

 N Mean
Std. 
Deviation

Vehicles available 116857 1.61 1.03
Bedrooms 116857 2.64 1.18
Number of working adults 116857 1.28 1.00
Number of nonworking adults 116857 0.80 0.86
Household income (1999) 116857 76849 76511
Population density (persons per square mile 
of land area in the household's PUMA) 116857 5163 6339

Relating density and unit type

Figure C.1 indicates the relationship between the fraction of the housing stock in 

detached housing and the density of an area.  In the figure, each point represents one of 

the 6,510 block groups in New Jersey, whose average land area is 1.1 square miles and 

average population is 1,293 people.  Denser areas tend to hold a higher fraction of 

multifamily units.  All block groups with more than 14,606 residents per square mile of 

land have at least some attached housing.
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Relating bedrooms to density and unit type

Table C.2 indicates the association between household bedrooms, unit type, and 

density.  Density is defined here as it is in the regressions in Chapter 3:  it is a z-score of 

the natural logarithm of the PUMA density.  Controlling for PUMA density, the average 

number of household bedrooms falls as the number of units in the building rises.  Single-

family detached units tend to have fewer bedrooms in PUMAs of higher density than they 

do in lower density PUMAs.  Attached units in buildings containing as many as nine 

units show the opposite trend.

Figure C.1. Detached housing inventory as percentage of total by block group density
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Table C.2. Bedrooms per household, r2=0.442, N=116,857

Parameter B
Std. 
Error t

[Single family detached] 3.279 .004 882.938
[Single family attached] 2.461 .010 251.547
[2 units in struct.] 2.281 .009 246.932
[3-4 units in struct.] 1.759 .011 154.703
[5-9 units in struct.] 1.583 .013 126.392
[10-19 units in struct.] 1.377 .012 114.238
[20-49 units in struct.] 1.291 .016 79.025
[50+ units in struct.] 1.178 .013 89.202
[Single family detached] * density -.025 .004 -6.410
[Single family attached] * density .093 .010 9.254
[2 units in struct.] * density .090 .009 10.088
[3-4 units in struct.] * density .161 .010 16.143
[5-9 units in struct.] * density .036 .011 3.305
[10-19 units in struct.] * density -.009 .012 -.795
[20-49 units in struct.] * density .022 .015 1.435
[50+ units in struct.] * density .017 .012 1.424
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Appendix D. Example of the VULO method

This appendix clarifies the VULO method developed in this research by executing 

the method on a sample development.  Consider a 200-unit residential complex, 

containing 72 1-BR units and 128 2-BR units, proposed in South Orange, New Jersey.  It 

lies in the 2000 Decennial Census 5% Public Use Microdata Area (PUMA) 1402, Essex 

County, Tract 193, Block group 3.  The detailed steps in estimating the average vehicle 

availability for the units in this new development are presented below.

Step 1: Regress vehicles on unit type and bedrooms at the PUMA

The 2000 Decennial Census 5% Public Use Microdata Sample (PUMS) for 

PUMA 1402 contains 1,906 responding households distributed among the four unit types 

as shown in Table D.1.

Table D.1. Households by unit type in PUMA 1402
Unit type N
SFD 514
SFA 53
2- to 4-fam 509
5+ fam 830

Table D.2 presents the regression coefficients used to estimate household vehicles 

for all households in PUMA 1402.  Spelled out, the equation is:

v=0.3930.177∗BR0.587∗dummySFD0.319∗dummySFA0.257∗dummy2to4 (D.1). 

It can also be expressed in tabular form, as shown in Table D.3.
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Table D.2. Household regression:  vehicles on bedrooms and unit type

Parameter B
Std. 
Error Sig.

95% 
Confidence 
Interval

Intercept .393 .039 .000 .317 .469
Bedrooms .177 .020 .000 .138 .216
SFD .587 .068 .000 .454 .720
SFA .319 .124 .010 .075 .563
2-4 units .257 .053 .000 .153 .361
5+ units 0(a) . . . .

a  This parameter is set to zero because it is redundant.

Table D.3. Household vehicles by bedrooms and unit type

Unit type
Bedrooms

0 1 2 3 4+
SFD 0.98 1.16 1.33 1.51 1.69
SFA 0.71 0.89 1.07 1.24 1.42
2-4 units 0.65 0.83 1.00 1.18 1.36
5+ units 0.39 0.57 0.75 0.92 1.10

Step 2: Estimate average vehicles per household at the block group

According to the 2000 Decennial Census Summary File 3 (SF3), the block group 

in question, Block Group 3 in Census Tract 193 in Essex County, New Jersey, has the 

characteristics listed in Table D.4.  Although SF3 reports 317 households in this block 

group, the 1-in-6 sampling density indicates that approximately 53 households actually 

responded to the long form questionnaire.

Table D.4. Block group characteristics, N=317
Average 

Bedrooms 
per HH

Fraction of HH that are

SFD SFA 2-4 units 5+ units

Average 
vehicles 
per HH

3.40 0.79 0 0.21 0 1.60
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In Step 2, we estimate the block group average household vehicle availability by 

populating Equation D.1 with the block group average characteristics in Table D.4.  The 

dummy variables, when averaged over the block group, become the fraction of 

households in each unit type class.  The result is

v=0.3930.177∗3.400.587∗0.790.319∗00.257∗0.21=1.51 .

Step 3: Compute and apply the local offset

The local offset is the difference between the measured block-group average 

vehicle availability, 1.60, and the estimated value, 1.51.  The measured value reflects the 

actual vehicle ownership decisions made by the households in the given block group, 

including the influences of their demographics and their location in the land-use and 

transportation context.  By contrast, the estimated value is driven by the demographics of 

the entire PUMA, and the household-average locational effects on all households in the 

PUMA.  The difference, 0.09, is a measure of the systematic differences between the 

block group and the PUMA.  Controlling bedrooms and unit type, the block group in 

question tends to have higher average household vehicle availability than the PUMA—

the average difference is 0.09 vehicles per household.

Adding the location-based offset to the equation from Step 1, Equation D.1, 

results in the following final estimate:

v=0.3930.177∗BR0.587∗dummySFD (D.2)
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0.319∗dummy SFA0.257∗dummy2to40.09

In our case, we have 1- and 2-BR units in a building with more than five units. All 

dummy variables equal zero.  For the 1-BR units, we estimate 0.393 + 0.177 + 0.09 = 

0.66 vehicles per household.  For the 2-BR units, we compute 0.393 + 0.177 * 2 + 0.09 = 

0.84 vehicles per household.  As the development contains 72 1-BR units and 128 2-BR 

units, the total estimate is 72*0.66 + 128*0.84 = 155.0 vehicles owned.
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