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Let Qn be a random symmetric matrix whose entries on and above the main diagonal

are independent random variables (e.g. the adjacency matrix of an Erdős-Rényi random

graph). In this thesis we study the behavior of the rank of the matrix in terms of the

probability distribution of the entries. One main result is that if the entries of the

matrix are not too concentrated on any particular value, then the matrix will with high

probability (probability tending to 1 as the size of the matrix tends to infinity) have

full rank.

Other results concern the case where Qn is sparse (each entry is 0 with high proba-

bility), and in particular on the adjacency matrix of sparse random graphs. In this case,

we show that if the matrix is not too sparse than with high probability any dependency

among the rows of Qn will come from a dependency involving very few rows.
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Chapter 1

Preliminaries

1.1 Random Matrices

The matrices we will consider in this thesis will be those characterized by a probability

distribution ξij that is assumed to independent for each entry on or above the main

diagonal, with the entries below the main diagonal either being taken as also being

independent or as satisfying ξij = ξji (to create a symmetric matrix). Although there

are other models of random matrices (e.g. distributions only taking values on the class

of unitary matrices), we will be focusing exclusively on the entrywise independent model

here.

Typically, the goal is to study the limiting spectral behavior of the matrix (e.g.

the number of real eigenvalues, the size of the largest eigenvalue, or the number of 0

eigenvalues) as the size of the matrix tends to infinity. A standard result along this line

is the following, a rescaling of a result due to Wigner [34]

Theorem 1.1.1 (Wigner’s Semicircle law): Let ξij be a doubly infinite symmetric ar-

ray of real-valued random variables, satisfying the conditions:

• The ξij with i ≤ j are all independent

• The distribution of each ξij is symmetric about 0

• Each ξij has variance equal to 1

• For each k ≥ 2 there is a uniform bound Ck on the kth moment of each ξij

Let An denote the n × n matrix whose (i, j) entry is ξi,j, and for α < β let En(α, β)

denote the number of eigenvalues of An lying between α
√

n and β
√

n. Then for any α
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and β, with probability 1 we have

lim
n→∞

En(α, β)
n

=
∫ β

α

√
4− x2dx

In other words, once certain assumptions are made on the distribution of each entry,

the limiting global distribution of the spectrum of the matrix becomes clear.

Another result in this vein is the following, due to Komlós [22]

Theorem 1.1.2 Let ξij be a doubly infinite array of independent, identically distributed,

non-degenerate random variables, and let An be the n × n matrix whose (i, j) entry is

ξi,j. Then

lim
n→∞

P(rank (An) = n) = 1.

This is in some sense a local eigenvalue result as opposed to the global result of Wigner.

While Wigner’s law gives that, for example, the number of 0 eigenvalues will be o(n)

for sufficiently large n, Komlós’s result gives that with high probability there will not

be a single eigenvalue which is exactly 0. In this thesis we will be focusing on such local

results, and in particularly will be focusing on the behavior of the rank of the matrix

(i.e. the number of 0 eigenvalues) for large n.

Besides the global vs. local dichotomy, there are two other divisions that characterize

the study of random matrices:

Symmetric vs. Asymmetric Matrices: In a random symmetric matrix, the

entries on or above the main diagonal are viewed as independent random variables, but

those below the main diagonal are chosen to satisfy aij = aji; in a random asymmetric

matrix, all n2 entries are viewed as being independent. The symmetric matrix has

the advantage of having real eigenvalues, which makes the use of the moment method

much simpler in determining the global spectrum. Hence, for example, the proof of

Wigner’s theorem is much simpler than obtaining the corresponding spectral density

in the nonsymmetric case (Girko’s so called ”Circular Law”, see [17, 2]) However, in

general it seems harder to analyze many of the local properties in symmetric models

rather than the corresponding asymmetric models.

The main advantage to working in an asymmetric model is the independence of the

rows of A. Many of the important properties of a matrix (e.g. the determinant or the
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smallest singular value) can be estimated in terms of the distance from each of its rows

to the subspace spanned by some other collection of its rows. In an asymmetric matrix,

the row and the subspace will be independent of one another. In the symmetric case,

however, the last row will be almost completely determined by the remaining n−1 rows,

which makes attaining such distance bounds much more difficult. We will be focusing

mostly on the symmetric case here.

Continuous (Gaussian) vs. Discrete Entries: A further dichotomy arises when

considering the distribution of the entries. If the entries are independent Gaussians with

nonzero variance then some questions (the expected rank, for instance) become trivial,

while others become much easier. This is in part due to the presence of a known

joint singular value density for Gaussian matrices (see, for example, [26]), and in part

because Gaussian vectors are rotationally symmetric. This greatly simplifies the row-

by row analysis of properties such as the determinant, as the distance from a random

vector to a fixed subspace is independent of the subspace in question.

In the case of more general entries (especially discrete entries), we lose both of these

advantages. In particular, the distance from a random vector to a fixed subspace can

depend greatly on the structure on the subspace. Some of these difficulties can be

overcome using the so-called Littlewood-Offord Lemma [12], which by bounding the

probability that a random linear form is small in absolute value gives an upper bound

on the probability that this distance is small for certain subspaces. One of the key

lemmas which will be needed to deal with symmetric matrices is a generalization of this

lemma to quadratic forms, which will be discussed in Chapter 2.

1.2 Random Graphs

There are several different models of random graphs, though we will mainly be focussing

on a single model here. The original G(n, M) model due to Erdős and Rényi [13]

focused on graphs chosen uniformly from the collection of all graphs with n vertices

and M edges. In practice, however, this model can prove difficult to work with, as the

individual edges in the graph are no longer independent. Instead, it is more common
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to work with the G(n, p) model introduced by Gilbert [16], where each edge is included

uniformly in the graph with probability p.

In general, any graph referred to as an Erdős-Rényi graph in this thesis will be drawn

from the G(n, p) model, as the independence of the edges is essential to our result. The

lack of independence is also an obstacle here in analyzing random d−regular graphs

(graphs chosen uniformly from the collection of all d−regular graphs), so the coverage

of these graphs in this thesis will be limited to a few conjectures near the end.

To each graph in G we associate its adjacency matrix A(G), the matrix which is 1 in

the (i, j) position if and only if i is connected to j. We denote the adjacency matrix of

a graph in G(n, p) as Q(n, p), which can be thought of as a random symmetric matrix

with 0’s on the main diagonal whose entries above the main diagonal are each 1 with

probability p, 0 with probability 1 − p. The above-diagonal entries in this matrix are

all independent (this would not hold for the G(n, m) or d−regular model). We will also

abuse notation slightly be referring to the rank of A(G) as the ”rank of G”, and to the

rank of Q(n, p) as the “rank of G(n, p).

Random graphs are often analyzed in the limit as n tends to infinity, with p = p(n)

being a function allowed to depend on n. We say that a property P holds for ”almost

all” graphs G(n, p) if the limit as n tends to infinity of the probability that G(n, p)

satisfies P tends to 1.

We say that a function f(n) is a threshold function for the property P if

lim
n→∞

P(G(n, p) satisfies P ) =

 0 if limn→∞
p

f(n) = 0;

1 if limn→∞
p

f(n) = ∞.
,

One result of chapter 4 of this thesis will be to determine the exact threshold function

for the property of a full rank adjacency matrix. Interestingly, it is not obvious that

any threshold should exist in the first place. Although thresholds are known to exist

for all monotone graph properties (properties which are closed under the addition of

edges) [8], the rank of a graph is in general not a monotone property. For example,

adding an edge to complete the path of length 4 to the 4-cycle decreases the rank from

4 to 2. This lack of monotonicity also implies that the results obtained here for the

rank of G(n, p) will not extend automatically to results for G(n, M).
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A major theme in analyzing the rank near the threshold will be the following intu-

ition: failure to satisfy the property of full rank is caused mainly by local obstructions

(dependencies involving only a few rows) rather than by global ones (dependencies in-

volving many rows). This same theme shows up in the behavior of random graphs

near the thresholds for other properties as well. Consider, for example, the question of

whether G(n, p) is connected. On one hand, it is clear that any graph with an isolated

vertex cannot be connected, and direct calculation shows that

P(G(n,
lnn + c

n
) has an isolated vertex) = (1 + o(1))(1− e−e−c

). (1.1)

In [16], Gilbert showed that this natural lower bound on the disconnectivity proba-

bility was an upper bound as well, so that

P(G(n,
lnn + c

n
) is not connected) = (1 + o(1))(1− e−e−c

).

Furthermore, if the graph were not connected in this probability range, then it would

almost surely consist of a single connected component along with some number of

isolated vertices.

These results can be thought of as follows: There is a clear ”local” obstruction to

connectedness in the behavior at any one vertex. However, this obstruction is the only

obstacle to connectedness in two distinct senses:

(1) For any fixed c, almost every graph with edge probability ln n+c
n either contains

an isolated vertex or is connected.

(2) If a graph with probability in this range does contain isolated vertices, it can

almost surely be made into a connected graph by removing those vertices.

Analogues of (1) also hold for many other combinatorial properties of the random

graph G(n, p). For example, the threshold for a graph in G(n, p) having a perfect

matching corresponds to the local obstruction of the graph having an isolated vertex

[13], and the threshold for having a Hamiltonian cycle corresponds to the local ob-

struction of a vertex having degree less than 2 [23]. The results in Chapter 4 of this

thesis can be thought of as an analogue of these results for the question of singularity

of random matrices: Again the main causes of singularity will be local (dependencies

involving few rows) rather than global (dependencies involving many rows).
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1.3 Prior Work on Discrete Models

The ranks of many families of matrices (e.g. those with independent entries drawn

from a continuous distribution with nonzero variance) are trivial to analyze, as the

singular matrices form a set of measure 0 for any finite n. The question becomes more

complicated when the entries are allowed to be drawn from a discrete distribution. The

first nontrivial case analyzed was that of a non-symmetric matrix where the entries are

equally likely to be 0 and 1. In 1967, Komlós [21] proved that the limit as n tended to

infinity of the singularity probability of such matrices was 0.

A second paper one year later by Komlós [22] allowed the entries to be drawn

from a more general distribution ξ, which was assumed to be identical for each entry

and independent of the size of the matrix. Again, the result was that the singularity

probability tended to 0 as n increased, assuming ξ was nondegenerate. Komlós later

refined his argument to give a singularity probability of O(n−1/2) [6] in the specific case

of 0/1 matrices (matrices whose entries are equally likely to be 0 or 1).

The next key breakthrough was due to Kahn, Komlós , and Szemerédi, who showed

in 1995 that the singularity probability in the ±1 case (where each entry is equally

likely to be 1 or -1) is exponentially small [19], giving an upper bound of O(0.999n) on

this probability (this result also implies that the singularity probability in the 0/1 case

is exponentially small).

This upper bound was later improved by Tao and Vu [30, 31], with the current

best known upper bound being (3
4 + o(1))n. Interestingly, the strongest results seem

to require tools from additive combinatorics, including a variant of Freiman’s theorem

that helps provide a classification of all subspaces which contain an unusually large

number of vertices of the standard hypercube.

However, the exact singularity probability is still at this point unknown. The best

known lower bound is O(n2

2n ), which comes from the probability that the matrix has

two equal rows. This bound is also conjectured to be sharp.

The case of symmetric matrices, and in particular that of the adjacency matrix

of G(n, p), has been much less studied. Bauer and Golinelli examined the rank of a
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random tree in [5], where they used a leaf removal argument to obtain both exact and

asymptotic expressions for the expected rank. The critical fact used in their argument

was that if v is a vertex in a graph G which has exactly one neighbor w then removal

of v and w decreases the rank of G by exactly 2. For a tree, one can continue removing

vertices in this fashion until all edges have been removed from G, at which point the

rank is clearly 0.

In [3] Bauer and Golinelli performed a detailed analysis of the leaf removal process

for G(n, p) in the case p = c
n . They showed that if c < e, then successive removal of

leaves will almost surely result in a graph consisting of isolated vertices and a ”core”

graph on o(n) vertices without any leaves. In particular, they obtained an asymptotic

(up to a multiplicative factor of 1+o(1)) expression for the rank of G using this method.

For c > e the core contains a positive fraction of the vertices of G, so the effect of the

core is no longer negligible on the rank of G, and Bauer and Golinelli could only obtain

lower and upper bounds on the rank. Although they conjectured [4] that the core had

full rank, they were unable to analyze it rigorously. Furthermore, as np →∞, the core

contains almost all of the vertices of G, so Bauer and Golinelli’s bounds do not give

much information about the rank.

1.4 Our Results

Our results can be thought of as expanding the prior matrix results in two distinct

directions. In Chapter 3 of this thesis, we will extend the results of Komlós to cover

the case of random symmetric matrices where no entry concentrates too highly on any

particular value. In particular, we will show the following generalization of a result

obtained by the author with Tao and Vu in [9]:

Theorem 1.4.1 Let 0 < α < 1/2 be any fixed constant. Let Qn be an n × n matrix

whose upper diagonal entries xij , 1 ≤ i < j ≤ n, are independent random variables

satisfying

sup
c∈C

P(xij = c) ≤ 1− n−α, (1.2)

and whose lower diagonal entries are fixed according to the relationship xij = xji.
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Then for any ε > 0 the probability that Qn is singular is O(n
1
4
(2α−1+ε)), where the

implied constant in the O notation is dependent only on ε and α.

In particular, this covers the case of the adjacency matrix of G(n, p) for n−1/2 <

p < 1− n−1/2.

Recall that Q(n, p) denotes the adjacency matrix of G(n, p). In chapter 4, we will

examine the rank of Q(n, p), where p is allowed to go as far down as c ln n
n for any c.

One main result here will be the following exact expression for the rank of G in terms

of the structure of G, which holds for almost all graphs:

Theorem 1.4.2 If p = Ω
(

ln n
n

)
, then the rank of G will almost surely be exactly

min
S⊆V (G)

n− |S|+ |N(S)|,

where N(S) denotes the number of vertices in G having at least one neighbor in S.

Our second result will be a complete characterization of the dependent sets of rows

of the adjacency matrix:

Theorem 1.4.3 Let s be any positive integer. If p > ln n
sn , then almost every graph in

G(n, p) satisfies the following property:

A set of rows S of the adjacency matrix of G is dependent if and only if S contains

a subset S′ with |S′| ≤ s− 1 such that fewer than |S′| vertices of G have a neighbor in

S′.

In other words, almost surely every dependency that comes about in the adjacency

matrix of G(n, p) comes about due to the presence of a set of at most s−1 vertices which

doesn’t contain enough neighbors. The case s = 2 of this theorem was obtained by the

author and Vu in [10]. It can be thought of as saying that the isolated vertices provide

an obstacle to non-singularity in the same way that they provide one to connectedness

in both of the senses mentioned before. This means that

(1) For any fixed c, almost every graph with edge probability ln n+c
n either contains

an isolated vertex or has a nonsingular adjacency matrix.
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(2) If a graph with probability in this range does contain isolated vertices, it can

almost surely be ”fixed” into a graph with nonsingular adjacency matrix by removing

those vertices.

1.5 Our General Method

The proofs of the exponential results in [19], [30], and [31], as well as the revised

proof of Komlós [6], are all in some sense based on a row by row exposure of the

matrix in question. Unfortunately, this approach does not carry over well to symmetric

matrices, as exposing n− 1 rows of a symmetric n×n matrix makes the remaining row

almost entirely deterministic. Instead, we will take the approach of Komlós’s original

1967 paper [21] in which we build up our matrix minor by minor, exposing a new

row and new column simultaneously. In other words, we view our n × n matrix as

being embedded into a larger sequence {Q1, Q2, . . . , Qm, . . . }, where each element of

the sequence satisfies the block matrix relationship

Qm =

 Qm−1 vm

vT
m xmm

 .

Here vm is a vector of length (m − 1) whose entries are independent and random and

xmm is independent from vm and Qm−1 (though in some cases xmm may be fixed rather

than random). If we think of Qn as the adjacency matrix of a graph G on n vertices,

then Qm corresponds to the adjacency matrix of the induced subgraph on m vertices,

and the building up of our matrix corresponds exactly to the vertex exposure process

of G.

The advantage of working with this augmentation process is that it is very well

behaved with respect to the ranks of the matrices in the sequence. Those ranks satisfy

rank (Qm−1) ≤ rank (Qm) ≤ min{rank (Qm−1) + 2,m}, (1.3)

as the new row and new column individually can increase the rank of Qm by at most 1

each.

When trying to show that Qn almost surely has full rank, we will follow the rough

heuristic that the second inequality in (1.3) will usually be an equality. This means that
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if Qm−1 is conditioned to be any fixed full rank matrix, then almost surely Qm will also

have full rank. If, on the other hand, Qm−1 is conditioned to be any fixed matrix that

falls short of full rank, then the augmentation will almost surely have increased the rank

of Qm by 2. This can also be thought of in terms of the function Xm = m− rank (Qm).

By the inequalities in (1.3), Xm is a random walk on the non-negative integers that

moves by at most one unit in each step. Our heuristic is that this random walk has

a very strong bias towards 0. If the walk is already at 0, then it tends to stay there.

Otherwise, it will almost surely move one unit to the left. Therefore, it will probably

finish at 0 if n is large enough.

In other cases, we will be trying to show that the rank of Qm is almost surely equal

to some other logical upper bound f(Qm) on the rank (for example, f(Qm) could be the

number of nonzero rows of Qm). In this case, the Xm in our heuristic can be replaced

with X ′
m = f(Qm)− rank (Qm), and for the right choice of f we might hope that the

heuristic still holds.

Unfortunately, the heuristics above do not always hold. There are possible choices

of Qm−1 which do not augment well at all, and for which the second inequality in (1.3)

almost surely does not hold with equality. For example, if our matrix is singular due to

having a row which is entirely 0, then adding a single new column may well not fix this

problem (especially when we move to the case of G(n, p) for p close to 0). What we

will do to account for this is to divide the dependencies of Qm into two classes based

on the size of the support of a vector of the nullspace. We will show in each case that

there is an m0 and a k such that

(1) If Qm has a dependency involving at least k rows, then augmentation will almost

surely increase the rank of Qm by 2

(2)Almost surely there will be no m > m0 such that Qm has a dependency among

fewer than k rows which is not covered by Theorem 1.4.3.

A similar pair of results will enable us to show that it is rare for a full-rank matrix

to augment to one which is not of full rank, so our heuristic will usually hold once we

get sufficiently far in the augmentation process.
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1.6 Some Useful Inequalities

There are a few standard inequalities that we will make use of throughout.

First, for any real x we have that

ex ≤ 1 + x. (1.4)

We will also make extensive use of the following upper bound on the binomial coefficient(
a

b

)
≤

(ea

b

)b
. (1.5)

We will also need the following three large-deviation bounds on probability distributions

(all of which can be found in [1] and [32])

Theorem 1.6.1 (Markov s Inequality) Let X be a non-negative random variable with

finite expectation. Then for any c,

P(X > c) ≤ c

E(X)

Theorem 1.6.2 (Chebyshev’s inequality) Let X be a non-negative variable with finite

expectation and with variance σ2. Then

P(|X −E(X)| > cσ) ≤ 1
c2

Theorem 1.6.3 (Chernoff’s bound) Let X1, X2, . . . Xn be independent random vari-

ables satisfying |Xi| ≤ 1 for all i, and let X =
∑n

i=1 Xi, and let σ2 be the variance of

X. Then for any positive λ,

P(|X −E(X)| > λσ) ≤ 2 max(e−λ2/4, e−λσ/2)
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Chapter 2

Littlewood-Offord Type Problems

2.1 Linear Forms

In order to effectively analyze the augmentation problem described in the previous

chapter, we need to be able to answer the question of whether an augmentation is or

is not likely to increase the rank of the matrix being augmented. This can in turn be

thought of as the question of whether a random vector chosen from some probability

distribution is orthogonal to a given (fixed) vector (one lying in the orthogonal comple-

ment of the space spanned by the existing rows or columns), thus reducing the question

to estimating the probability that some form

f(x1, x2, . . . xn) = a1x1 + a2x2 + · · ·+ anxn (2.1)

is equal to 0.

This problem was originally studied in the case where each xi is equally likely to

be 1 or -1. For this case, Erdős [12], improving a result of Littlewood and Offord [25],

obtained the following result, which is the best possible without imposing some sort of

further restriction on the ai.

Theorem 2.1.1 Let a1, a2, . . . an be real numbers, all of which are at least 1 in absolute

value. Then the number of sums of the form

±a1 ± a2 ± · · · ± an (2.2)

which lie in any open interval of length 2 is at most
(

n
bn

2
c
)
.

The same bound was later shown to hold for complex ai by Kleitman [20]. Using

Stirling’s approximation to bound the central binomial coefficient and rescaling leads

to the following probabilistic restatement of Kleitman’s result:
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Theorem 2.1.2 Let a1, a2, . . . an be complex numbers, at least q of which are nonzero.

Let xi be independent random variables which are equal to 1 or -1, each occurring with

probability 1
2 . Then for any interval I of length at most 2,

P(
n∑

i=1

aixi ∈ I) = O(
1
√

q
),

where the implied constant is absolute.

Remark 2.1.3 Although Erdős’ result was originally stated for ±1 random variables,

his argument works equally well for variables which are equally likely to be 1 or 0.

Additionally, the result can be extended to intervals of length longer than 2, although

the constant in the O notation is of course dependent on the length of the interval.

Since the determinant of a matrix with independent entries is linear in each entry,

one might hope that Theorem 2.1.2 could be combined with a result stating that al-

most surely many of the coefficients of the form given by the determinant are nonzero to

obtain that the determinant of an augmented matrix is almost surely non-zero. How-

ever, Theorem 2.1.2 is not quite adequate for our purposes for two reasons. Firstly,

the matrices we will consider will often be symmetric and thus not quite have indepen-

dent entries. Indeed, the determinant of a symmetric matrix is a quadratic form in its

entries rather than a linear one, and in the next section we will revise Theorem 2.1.2

to handle quadratic forms. The second difficulty is that in many cases (e.g. random

graphs with edge probability not equal to 0.5) the entries will not have the distribution

corresponding to that in Theorem 2.1.2.

This second problem can be handled by replacing the Littlewood-Offord Theorem

with the following corollary of a result due to Halász [18]:

Theorem 2.1.4 Let 0 < ρ < 1 and let xi be independent random variables such that

there are at least q different i for which

sup
c∈C

P(|aixi − c| < 1
2
) ≤ 1− ρ.

Then for any interval I of length at most 2,

P(
n∑

i=1

aixi ∈ I) = O(
1
√

qρ
),
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where the implied constant is absolute.

If the variables instead satisfy

sup
c∈C

P(aixi = c) ≤ 1− ρ

for q distinct i, then

sup
c∈C

P(
n∑

i=1

aixi = c) = O(
1
√

qρ
).

The proof of Theorem 2.1.4 is complicated and relies on Fourier analysis. When

working with random graphs, however, we only need the following special case of The-

orem 2.1.4 where the xi are Bernoulli variables.

Theorem 2.1.5 Suppose that a1, . . . an are constants, at least q of which are at least 1

in absolute value, and that x1, . . . xn are independent Bernoulli random variables each

equal to 1 with probability p. Then for any interval I of length at most 2,

P(
n∑

i=1

aixi ∈ I) = O(
1
√

qρ
), (2.3)

where ρ = min{p, 1− p} and the implied constant is absolute.

Theorem 2.1.5 has a short proof that is not reliant on the Fourier Analytic methods of

[18].

Proof (of Theorem 2.1.5): We may assume without loss of generality that the first q

variables are at least 1 in absolute value. We will first examine the case where p ≤ 1/2.

By conditioning on xq+1, . . . xn and replacing I by I −
∑n

i=q+1 aixi, it suffices to

show the result is true in the case where xq+1 = · · · = xn = 0.

Let r1, r2, . . . rq be independent, identically distributed Bernoulli variables which

are equal to 1 with probability 2p. Let s1, s2, . . . sq be independent, identically dis-

tributed Bernoulli variables each equal to 1 with probability 1/2. As risi has the same

distribution as xi, it suffices to show

P(
q∑

i=1

airisi ∈ I) = O(
1
√

qp
).

But by Bayes’ inequality we have

P(
q∑

i=1

(airi)si ∈ I) ≤ P(
q∑

i=1

(airi)si ∈ I|
q∑

i=1

ri ≥ qp) + P(
q∑

i=1

ri < qp)
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The sum of the ri has expectation equal to 2qp and variance equal to

2qp(1− 2p) ≤ 2qp. By Chebyshev’s inequality, therefore,

P(
q∑

i=1

ri < qp) ≤ P(|
q∑

i=1

ri − 2qp| ≥ qp) = O(
1
√

qp
).

By using airi as the coefficients and applying Theorem 2.1.2 (more precisely, the

0/1 version of the theorem described in the remark following that Theorem), we see

that the first term is O( 1√
qp) as well, so we are done.

Now let us assume p > 1/2. Letting p =
∑n

i=1 ai, we have

P(
n∑

i=1

aixi ∈ [b1, b2]) = P(
n∑

i=1

ai(1− xi) ∈ [a− b2, a− b1]),

so the result follows immediately from the p < 1/2 case applied to the variables 1− xi.

Remark 2.1.6 A similar argument shows that the same result holds when the xi are

random variables which are equal to 1 with probability p, -1 with probability p, and

0 with probability 1 − 2p. The only difference is that the ±1 version of the original

Littlewood-Offord result is used instead of the 0/1 version.

This result is (up to a constant factor) the best possible, as can be seen from the

case where q/2 of the ai are equal to 1 and q/2 are equal to -1. However, it is possible

to obtain stronger results by restricting the structure of the ai. For example, if all

of the nonzero ai are distinct, then the probability drops to O((qp)−3/2). This result

can be obtained by following the argument of the proof of Theorem 2.1.5, replacing

Chebyshev’s inequality by the Chernoff bound and the Littlewood Offord Lemma with

a stronger result due to Sárközy and Szemerédi [28]. Alternatively, it can also be

obtained as a consequence of Theorem 2 from [18]. However, in our arguments we

generally will not have control over the values of the ai, so we cannot use this stronger

result.

2.2 The Quadratic Case

Although the solution to the Littlewood-Offord problem for linear forms described in

the previous section is sufficient to answer the singularity question for asymmetric 0/1
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matrices in [21], it is not enough to answer the corresponding question for adjacency

matrices of random graphs, or indeed for symmetric matrices in general. The difficulty

arises in the augmentation of symmetric matrices, where the determinant is a quadratic

form rather than a linear form in the entries of the newly added row and column. To

overcome this difficulty, what we need is a version of Theorem 2.1.5: If a quadratic

form has a large number of nonzero coefficients, then the form should probably not be

equal to any fixed value, nor should it lie in any small interval. Such a result was first

proved in [9]. The following strengthened version of that result was originally proved

in [10].

Theorem 2.2.1 Let x1, x2, . . . xn be independent, Bernoulli variables, each of which is

1 with probability p < 1/2. Let aij be a symmetric n × n array of constants. Assume

that there is a partition {1, 2, . . . n} = S1
⊔

S2 such that for each j ∈ S2 there are at

least q different i in S1 for which |aij | > 1. Let

Q(x1, x2, . . . xn) =
∑

1≤i,j,≤n

aijxixj

be the quadratic form whose coefficients are the aij. Then for any interval I of length

1,

P(Q(x1, x2, . . . xn) ∈ I) = O((p min(|S1|, q))−1/4),

where the implied constant is absolute.

Proof (of Theorem 2.2.1): Ideally, what we would like to do is to view Q as a pair of

nested linear forms. We can write Q =
∑

xiηi, where ηi =
∑

aijxj , and would like to

apply Theorem 2.1.5 twice: Once to show that most of the ηi will not be 0 and then

again to show that Q is therefore nonzero. Unfortunately, we can not do this directly,

as the ηi and xi are not independent. We therefore make use of the following decoupling

inequality:

Lemma 2.2.2 Let X and Y be independent random variables, and let F (X, Y ) be an

event dependent on X and Y . Let X ′ be a variable independent of X and Y , but having

the same distribution as X. Then

P(F (X, Y ))2 ≤ P (F (X, Y ) ∧ F (X ′, Y ))
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Remark 2.2.3 This is actually a special case of a much more general conjecture of

Sidorenko [29], which states that if H is any bipartite graph, then

P(F (X, Y ))|E(H)| ≤ P(
∧

(Xi,Yj)∈E(H)

F (Xi, Yj)).

Sidorenko showed the lemma to be true for complete bipartite graphs, and Lemma 2.2.2

is the case H = K2,1.

Proof (of Lemma 2.2.2) We will first prove the case where X and Y have finite support.

Letting x1, x2, . . . xm be the support of X and y1, y2, . . . yr be the support of Y , we have

by Bayes’ theorem and the independence of X and X ′ that

P(F (X, Y ) ∧ F (X ′, Y )) =
r∑

j=1

[P(F (X, Y )|Y = yi)]2P(Y = yi)

≥ (
r∑

j=1

P(F (X, Y )|Y = yi)P(Y = yi))2

= [P(F (X, Y ))]2,

where the middle line follows from the Cauchy-Schwartz inequality.

The case where the support of X or Y is infinite now follows from discretization or

by replacing the summations from the finite case with integrals.

In our case, we take X to be those xi with i ∈ S1 and Y to be those xi with i ∈ S2.

F (X, Y ) now becomes the event

Q(x1, x2, . . . xn) ∈ I,

while F (X ′, Y ) becomes the event,

Q(x′1, x
′
2, x

′
|S1|, x|S1|+1, . . . xn) ∈ I,

where the x′i are independent copies of the xi. Lemma 2.2.2 now states that

P(F (X, Y ) ∈ I)2 ≤ P(F (X, Y ) ∈ I ∧ F (X ′, Y ) ∈ I) (2.4)

≤ P(F (X, Y )− F (X ′, Y ) ∈ [−1, 1]). (2.5)
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It therefore suffices to show the probability of this last event is O((p min(q, |S1|))−1/2).

Note that we have

F (X, Y )− F (X ′, Y ) = g(X, X ′) + 2
n∑

j=|S1|+1

xj

|S1|∑
i=1

aij(xi − x′i)

:= g(X, X ′) + 2
n∑

j=|S|+1

xjηj ,

where g(X, X ′) is some function of the variables in X and X ′ and ηi is defined to be

equal to the inner sum in the above equation.

Let ν be the number of ηj which are at most one in absolute value. By Bayes’

theorem we have

P(F (X, Y )− F (X ′, Y ) ∈ [−2, 2]) ≤ P(F (X, Y )− F (X ′, Y ) ∈ [−2, 2] | ν ≤ |S1|
2

)

+P(ν >
|S1|
2

).
(2.6)

We bound these terms in reverse order. For the second term, we use Chebyshev’s

inequality. We can think of ν as the sum of |S1| indicator variables, each corresponding

to the event that a given ηj is at most one in absolute value. Since each ηj is a linear

form with (by hypothesis) at least q nonzero coefficients, Theorem 2.1.5 (see Remark

2.1.6) guarantees that each ηi is 0 with probability at most O((qp)−1/2). In particular,

the expectation of ν is at most O(|S1|(qp)−1/2). By Markov’s inequality, it follows that

P(ν >
|S1|
2

) = O((qp)−1/2). (2.7)

We bound the first term by viewing our process as exposing X and X ′ before Y .

For any x and x′ taken on by X and X ′ and satisfying ν ≤ |S1|
2 , we have by 2.1.5 that

P(F (X, Y )− F (X ′, Y ) ∈ [−2, 2] |X = x ∧X ′ = x′) = O((p|S1|)−1/2),

as our assumption that ν ≤ |S1|
2 guarantees at least |S1|

2 nonzero ηi.

Summing over all x and x′ satisfying this property and using Bayes’ theorem, it

follows that

P(F (X, Y )− F (X ′, Y ) ∈ [−2, 2] | ν ≤ |S1|
2

) = O((p|S1|)−1/2). (2.8)
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Combining inequalities (2.6), (2.8), and (2.7) completes the proof.

In the remainder of this section, we will give several simple corollaries which place

Theorem 2.2.1 in forms more suitable for application. The first two corollaries aim to

remove the need for an explicit partition of the variables.

Corollary 2.2.4 Let x1, x2, . . . xn be independent Bernoulli variables, each of which is

1 with probability p < 1/2. Let aij be a symmetric n × n array of constants. Assume

that there are at least d different i, for each of which there are at least d distinct j such

that |aij | > 1. Let

Q(x1, x2, . . . xn) =
∑

1≤i,j,≤n

aijxixj

be the quadratic form whose coefficients are the aij. Then for any interval I of length

1,

P(Q(x1, x2, . . . xn) ∈ I) = O((pd)−1/4),

where the implied constant is absolute.

Proof Let S2 be a arbitrary collection of d
2 distinct i, each having at least d distinct

j for which aij is at least 1 in absolute value. The corresponding partition satisfies the

hypotheses of Theorem 2.2.1 with q = d
2 and |S1| ≥ d

2 .

Corollary 2.2.5 Let the xi be as in Corollary 2.2.4, and let aij be a symmetric n× n

array of constants, at least mn of which are greater than 1 in absolute value. Then

P(Q(x1, x2, . . . xn) ∈ I) = 0) = O((pm)−1/4),

where the implied constant is absolute.

Proof Let S consist of those i for which there are more than m
2 distinct j for which cij

are at least 1 in absolute value. We count the number total number of coefficients cij

which are at least one in absolute value in two different ways. On the one hand, there

are at least mn of them by assumption. On the other hand, we know that there are at

most

n|S|+ m

2
(n− |S|) ≤ n(|S|+ m

2
)
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such coefficients. It follows that |S| ≥ m
2 , so we can take d = m

2 in Corollary 2.2.4.

Actually, these results are somewhat stronger than what we need for our random

matrix problems. Typically the quadratic forms we consider will be the determinants

of these matrices, and we will only attempt to prove that these determinants do not

concentrate on a single point, rather than to show they are not likely to all lie in entire

interval. In this case, we can use a simple scaling argument to relax the hypothesis that

many of the coefficients are at least 1 in absolute value, instead only requiring them to

be nonzero.

Corollary 2.2.6 Let x1, x2, . . . xn be independent Bernoulli variables, each of which is

1 with probability p < 1/2. Let aij be a symmetric n × n array of constants. Assume

that there are at least d different i, for each of which there are at least d distinct j for

which aij is nonzero. Let

Q(x1, x2, . . . xn) =
∑

1≤i,j,≤n

aijxixj

be the quadratic form whose coefficients are the aij. Then

sup
c∈C

P(Q(x1, x2, . . . xn) = c) = O((pd)−1/4),

where the implied constant is absolute.

Proof Let r be the minimum absolute value among all the nonzero aij . We have

P(Q(x1, x2, . . . xn) = c) = P(
1
2r

Q(x1, x2, . . . xn) =
c

2r
)

≤ P(
1
r
Q(x1, x2, . . . xn) ∈ [

c

2r
− 1

2
,

c

2r
+

1
2
])

= O((pd)−1/4),

where the final step comes from an application of Corollary 2.2.4 to the quadratic

form 1
2rQ(x1, . . . xn) (which has all nonzero coefficients at least 2 in absolute value by

construction).

By replacing Theorem 2.1.5 with the more general Theorem 2.1.4 of Halász, we can

obtain versions of many of the results in this section which apply to a much wider class

of random variables. A typical example is the following Theorem:
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Theorem 2.2.7 Let 0 < ρ < 1, and let xi be independent random variables each

satisfying

sup
c∈C

P(xi = c) ≤ 1− ρ.

Let aij be a symmetric array of coefficients satisfying the hypotheses of either Corollary

2.2.6 or Corollary 2.2.5, and let Q be the corresponding quadratic form. Then

sup
c∈C

P(Q(x1, x2, . . . xn) = c) = O((qρ)−1/4),

where the implied constant is absolute.

It is likely that these results are not the best possible, as there is no reason to expect

equality to hold in both (2.4) and (2.5). These inequalities (and the decoupling process

as a whole) had the effect of replacing the −1/2 exponent of the original Littlewood-

Offord bound with a −1/4, and we conjecture that in fact all of the exponents in this

section could have been replaced by −1/2. This result would be essentially the best

possible, as in the p = 1/2 case we have for any α that

P(2(x1 + x2 + · · ·+ xn)(x1 + x2 + · · ·+ xαn) = 0) = Θ((αn)−1/2),

, since this is the probability that the second factor is 0. On the other hand, this form

has αn2 coefficients which are at least 2 in absolute value.

2.3 Higher Degrees

It is natural to try to extend the results of the previous section to forms of degree larger

than two. Again, the intuition is that if a higher dimensional form has many nonzero

coefficients, then the form will with high probability not lie in any fixed interval. Here

again the intuition turns out to be correct. In this section we will present the following

generalized version of Corollary 2.2.5.

Theorem 2.3.1 Let 0 < ρ < 1, and let x1, x2 . . . xn be random variables satisfying

sup
c∈C

P(|xi − c| ≤ 1
2
) ≤ 1− ρ
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for each i. Let

f(x1, x2, . . . xn) =
∑

1≤i1≤i2···≤ik≤n

ai1i2...ikxi1xi2 . . . xik

be a polynomial of degree k ≥ 2 in n variables. Suppose furthermore that at least there

are at least mnk−1 terms of degree k whose coefficients have absolute value at least 1,

where m ≥ 4k.

Then for any interval I of length 1,

sup
c∈C

P(f(x1, x2, . . . xn) ∈ I) = O((mρ)−2−(k2+k−2)/2
),

where the constant in the O notation depends only on k.

Remark 2.3.2 As in the quadratic case, this result can be extended by scaling to a

result giving the same bound for the probability that f = 0 in the case where f has at

least mnk−1 non-zero coefficients.

Remark 2.3.3 It seems unlikely that the exponent in the bound here is the best possible.

More likely would be a bound of O((mρ)−1/2), corresponding to the polynomial

f(x1, . . . xn) = 2(x1 + · · ·+ xm)(x1 + . . . xn)k−1.

Proof We induct on k. The base case k = 2 is Corollary 2.2.5.

Now assume the result is true for polynomials of degree k − 1 and let f be a poly-

nomial of degree k. Let T denote the collection of all terms of S which both contain

k distinct variables and have coefficient at least one in absolute value. As there are

at most knk−1 terms of f which are degree k and do not contain at least k distinct

variables,

|T | ≥ (m− k)nk−1.

If the variables were partitioned into k sets uniformly at random, the expected

number of members of T having exactly one variable in each element of the partition

would be |T |k!
kk . Therefore there must exist a specific partition

{x1, x2, . . . xn} = U1

⊔
U2 · · ·

⊔
Uk
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for which at least |T |k!
kk elements of T have this property. Call such terms ”balanced”.

As in the quadratic case, our goal will be in some sense to ”decouple” f , so that we

can view it as the composition of a linear form and a form of degree k− 1. In this case,

however, our decoupling will be slightly more complex.

Lemma 2.3.4 Let X1, . . . , Xk be random variables and let E = E(X1, . . . , Xk) be an

event depending on the Xi. For each i let X ′
i be an independent copy of Xi. Then

P(E(X1, . . . , Xk)) ≤ P(
∧

S⊂{1,...,k}

E(XS
1 , . . . , XS

k ))1/2k

where for each S we have XS
i = Xi if i ∈ S and XS

i = X ′
i, if i /∈ S.

Proof We proceed by induction on k. The k = 1 result follows immediately from

the independence of X and X ′. Now assume that the result is true for k variables.

Discretizing as in Lemma 2.2.2, we have

P(E(X1, . . . , Xk+1)) =
r∑

i=1

P(E(X1, . . . , Xk, aj))P(Xk+1 = aj)

Applying the induction hypothesis to each E(X1, . . . , Xk, aj), we get

P(E(X1, . . . , Xk+1)) ≤
n∑

i=1

P(
∧

S⊂{1,...,k}

E(XS
1 , . . . , XS

k , aj))1/2k
P(Xk+1 = aj).

Jensen’s inequality applied to the random variable P(∧S⊂{1,...,k}E(XS
1 , . . . , XS

k , aj)) and

the concave functional f(z) = z1/2k
gives that this is at most∑

j

P(
∧

S⊂{1,...,k}

E(XS
1 , . . . , XS

k , aj))P(Xk+1 = aj)

1/2k

=

P(
∧

S⊂{1,...,k}

E(XS
1 , . . . XS

k , Xk+1))

1/2k

.

The result now follows from application of Lemma 2.2.2 with

X = Xk+1,

Y = (X1, X2, . . . , Xk, X
′
1, X

′
2, . . . X

′
k),

E = (∧S⊂{1,...,k}E(XS
1 , . . . , XS

k , Xk+1)).
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In our case the Xi will correspond to the variables in each Ui. Let XS
i be as in

Lemma 2.3.4. By that Lemma we have

P(f(X1, . . . Xn) ∈ I) ≤ P(
∧
S

f(XS
1 , . . . XS

n ) ∈ I)1/2k
.

Define the new random variable

R :=
∑

S∈{1,2,...k}

(−1)|S|f(XS
1 , XS

2 , . . . XS
k ).

If each f(XS
1 . . . XS

n ) is contained in I, it must be the case that

R ∈ 2k−1I − 2k−1I ∈ [−2k−1, 2k−1].

It therefore suffices to show that

P(R ∈ [−2k−1, 2k−1] = O((mρ)−2−(k2−k−2)/2
).

The advantage to working with R is that the terms of f which are not balanced

cancel. Any unbalanced term of f has some Ui which contains no variable from the

term, and the summands in R for which i ∈ S and i /∈ S cancel. In fact, direct

calculation shows that R can be factored as

R =
∑

i1∈U1

∑
i2∈U2

· · ·
∑

ik∈Uk

ai1...ik(xi1 − x′i1)(xi2 − x′i2) . . . (xik − x′ik)

=
∑
i∈U1

wiRi,

where wi = xi − x′i and

Ri =
∑

i2∈U2

· · ·
∑

ik∈Uk

ai,i2,...,in

k∏
j=2

wj .

Note that the Ri and wi are now independent.

Let Y ⊆ U1 be those variables in U1 which are contained in at least |S|k!
2kk members

of S. As any particular element of U1 is contained in at most nk−1 balanced terms, we

have
|T |k!
kk

≤ |Y |nk−1 + (|U1| − |Y |)
|T |k!
2kk

≤ |Y |nk−1 + n
|T |k!
2kk

,
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so

|Y | ≥ k!|T |
2kknk−1

≥ k!(m− k)
2kk

.

Let Y2 be those i ∈ Y which satisfy |Ri| ≥ 1. By Bayes’ inequality, we have

P(|R| ≤ 2k−1) ≤ P(|R| ≤ 2k−1||Y2| ≥
|Y |
2

) + P(|Y2| ≤
|Y |
2

).

It follows from Theorem 2.1.5 and Bayes’ Theorem, along with our lower bound on |Y2|,

that the first term is O(|Y2|−1/2) = O(m−1/2).

To bound the other term, we first note that if i ∈ Y , then Ri is a polynomial of

degree k − 1 containing (by our definition of |Y | and S) at least O(mnk−1) nonzero

terms. It follows by our inductive hypothesis that for any particular i ∈ Y ,

P(|Ri| ≤ 1) = O((mρ)−2−(k2−k−2)/2
).

By Markov’s inequality, it therefore follows that

P(|Y2| ≤
|Y |
2

) = O((mρ)−2−(k2−k−2)/2
),

and thus that

P(|R| ≤ 2k−1) = O((mρ)−2−(k2−k−2)/2
),

so we are finished.
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Chapter 3

The Rank of Dense Random Matrices

3.1 Introduction and Statement of Main Result

In this chapter, we will focus on symmetric random matrices whose off-diagonal entries

are individually not too concentrated on any particular value. In particular, this class of

matrices will include the adjacency matrices of random graphs G(n, p) where the edge

probability p either remains fixed or tends slowly towards 0 as n tends to infinity. The

adjacency matrices of these graphs are random symmetric matrices whose entries above

the main diagonal are independent Bernoulli variables which are 1 with probability p

and 0 with probability 1− p, with the entries below the main diagonal determined by

symmetry. We will consider the case where p tends to 0 more quickly in the following

chapter. Our main result is the following:

Theorem 3.1.1 Let 0 < α < 1/2 be any fixed constant. Let Qn be an n × n matrix

whose upper diagonal entries xij , 1 ≤ i < j ≤ n, are independent random variables

satisfying

sup
c∈C

P(xij = c) ≤ 1− n−α, (3.1)

and whose lower diagonal entries are fixed according to the relationship xij = xji.

Then for any ε > 0, the probability that Qn is singular is O(n
1
4
(2α−1+ε)), where the

implied constant in the O notation is dependent only on ε and α.

Note that this theorem does not place any restrictions as to the distribution of the

diagonal entries, which can even be entirely deterministic without changing the bound

in the theorem. By applying Theorem 3.1.1 to a matrix with off-diagonal Bernoulli

entries and equal, deterministic diagonal entries, we obtain the following corollary:
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Corollary 3.1.2 Let 0 < α < 1/2 and ε > 0 be fixed. Let p = p(n) satisfy n−α <

p < n1−α. Then for any c ∈ C, the probability that c is an eigenvalue of the adjacency

matrix of G(n, p) is O(n2α−1+ε), where the constant in the O notation is dependent on

α and ε, but is independent of c. In particular, the adjacency matrix is singular with

probability O(n
1
4
(2α−1)+ε).

Letting α tend to 0, we see that in particular the case where p is fixed between 0 and

1 leads to a singularity probability which is O(n−1/4+ε). Thus the adjacency matrix of

G(n, p) is almost surely nonsingular in this range.

3.2 Outline of Proof and Statement of Lemmas

As mentioned in chapter 1, our proof will be based on exposing the matrix minor by

minor. Letting Qm denote the upper left m × m minor of our matrix, we will divide

the possible dependencies among the row vectors of Qm into two classes depending on

the number of vectors involved in the combination.

Definition 3.2.1 Given m vectors {x1, x2, . . . xm}, a linear combination of the vi

is a vector of the form v = c1x1 + c2x2 + · · · + cmxm, where the ci are real numbers.

The degree of a linear combination is the number of nonzero ci.

Let M(m) = m1−α−ε. Our claim will be that the singular m×m matrices without

vanishing linear combinations of degree at most M tend to behave well under augmen-

tation, while matrices with vanishing linear combinations of degree that small will tend

to be rare. This is made precise in the following definition and pair of lemmas.

Definition 3.2.2 A symmetric singular m × m matrix is normal if its rows do not

admit a vanishing linear combination of degree at most M . Otherwise, we call the

matrix abnormal.

Remark 3.2.3 The terms normal and abnormal are used here only to refer to singular

matrices, and there is no corresponding term for non-singular matrices.

In section 3.4.1, we will prove that singular abnormal matrices are rare.
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Lemma 3.2.4 For any m between 0 and n, the probability that Qm is both singular

and abnormal is o( 1
m3 ).

In section 3.5.1, we shall prove that singular normal matrices tend to augment well.

Lemma 3.2.5 Let A be any fixed m×m singular, normal matrix. Then

P(rank (Qm+1)− rank (Qm) < 2|Qm = A) = O(M−1/2) (3.2)

We next turn to the augmentation of nonsingular matrices. We now classify them

based on the degrees of the vanishing combinations of their row-deleted submatrices.

Definition 3.2.6 A row r of a symmetric non-singular m × m matrix A is good if

deleting r from A leads to a (n − 1) × n matrix whose columns do not admit a linear

combination of degree at most M .

An m ×m symmetric non-singular matrix A is perfect if all of its rows are good.

Otherwise, it is imperfect

Remark 3.2.7 The terms perfect and imperfect are used here only to refer to non-

singular matrices, and there is no corresponding term for singular matrices.

The next two lemmas can be thought of as the nonsingular analogues of Lemmas

3.2.4 and 3.2.5. Together, they will state that it is rare the have a nonsingular matrix

that fails to augment well.

Lemma 3.2.8 For any m between 0 and n, the probability that Qm is both non-singular

and imperfect is o( 1
m2 ).

Lemma 3.2.9 Let A be any fixed m×m non-singular, perfect matrix. Then

P(rank (Qm+1) = m + 1|Qm = A) = O(M−1/4). (3.3)

In the next section, we will prove Theorem 3.1.1 assuming that all of the lemmas

from this section are true. The remainder of this chapter will consist of the proofs of

those lemmas.
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3.3 Proof of Theorem 3.1.1 Assuming the Lemmas

Let us now assume that all lemmas from the previous section are true. We will use a

variant of an argument from [9] to show that Qn almost surely has full rank.

Let B1 be the event that every Qm with
√

n ≤ j ≤ n is either both singular and

normal or both non-singular and perfect. By Bayes’ inequality, we have

P(rank Qn < n) ≤ P(rank Qn < n ∧B1) + P(¬B1). (3.4)

However, for each individual m between
√

n and n, we know from Lemmas 3.2.4

and 3.2.8 that the probability that Qm is either abnormal or imperfect is O( 1
m3 ). By

the union bound, then, it follows that

P(¬B1) = O

 n∑
i=
√

n

1
m3

 = O

(
1
n

)
.

It therefore suffices to show that the first term is O(n
1
4
(1−2α)).

Let Ym = m − rank (Qm). We aim to show that Ym is almost surely 0. To do so,

we define a second auxiliary variable Xm as follows:

• Xm = 4Ym = 4m−rank (Qm) if Ym > 0 and every Qj with
√

n ≤ j ≤ n is either

singular and normal or non-singular and perfect.

• Xm = 0 otherwise.

Note that Xm is nonzero precisely when Qn is singular and B1 also holds. We will

show that Xm is almost surely 0 by showing that the expectation of Xm tends to 0. To

obtain this bound on the expectation we will need the following lemma:

Lemma 3.3.1 For any sequence Qm = {Q√
n, Q√

n+1, . . . , Qm} encountered in the aug-

mentation process,

E(Xm+1|Qm) ≤ 3
5
Xm + O(n

1
4
(1−2c)).

Proof (of Lemma 3.3.1): If any matrix in the sequence Qm is either singular and

abnormal or non-singular and imperfect, Xm+1 equals 0 by definition, and we are done.
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If every matrix in the sequence is either perfect or normal, and Qm is of full rank

(and thus perfect), then Xm+1 will be either 0 or 4, with the latter occurring with

probability O(M−1/4) by Lemma 3.2.9. Thus we have

E(Xm+1|Qm) = O(M−1/4).

If on the other hand all matrices in the sequence are perfect or normal and Qm has

rank m−j for some positive j, then by Lemma 3.2.5 Xm+1 will be 4j−1 with probability

O(m−1/2), and will otherwise be at most 4j+1. We therefore in this case have

E(Xm+1|Qm) ≤ 4j−1 + 4j+1O(M−1/2) ≤ 3
5
4j + O(M−1/2) =

3
5
Xj + O(M−1/2).

By Lemma 3.3.1, along with Bayes’ Theorem, we have for any m between
√

n and

n and any Qm′ that

E(Xm+1|Q√
n) ≤ 3

5
E(Xm|Q√

n) + O(n
1
4
(1−2α)).

By induction on m2 −m1, we now have that for any m2 ≥ m1 ≥
√

n that

E(Xm2 |Q√
n) ≤

(
3
5

)m2−m1

E(Xm1 |Q√
n) + O(n

1
4
(1−2α)).

In particular, we can take m2 = n and m1 = n′ in the above inequality, yielding

E(Xn|Q√
n) ≤

(
3
5

)n−
√

n

X√
n + O(n

1
4
(1−2α)).

On the other hand, we know that Y√n ≤
√

n, as the rank of Q√
n is nonnegative. It

follows that for any Q√
n we have

E(Xn|Q√
n) ≤

(
3
5

)n−
√

n

4
√

n + O(n
1
4
(1−2c)) = O(n

1
4
(1−2α)).

Adding up over all possible Q√
n using Bayes’ Theorem, we have that

E(Xn) = O(n
1
4
(1−2α)).

Since Xn will always either be equal to 0 or at least 4, it follows from Markov’s

inequality that the probability that Xn is 0 is also O(n
1
4
(1−2c)). This bound on the first

term of the right hand side of (3.4) completes the proof.
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3.4 Proof of Lemmas 3.2.4 and 3.2.8

3.4.1 Proof of Lemma 3.2.4:

Let g(m, d) denote the probability that the dth row of Qm lies in the span of the first

d− 1 rows. We will first bound g(m,M), then use the union bound to extend this to a

bound on the probability that Qm is abnormal.

The method of bounding g(m,M) is a variation on one first used in [21] and [19]:

As the first M − 1 rows span a space of dimension at most M − 1, there must be a

collection of at most M − 1 columns which parameterize this subspace. In other words,

once some set of at most M−1 entries of the M th row is exposed, the remaining entries

are forced by our requirement that that row lie in the span of the first M − 1 rows.

However, these entries are all independent and random, with the exception of the (at

most) M − 1 entries which are already exposed from our knowledge of the first M − 1

rows and the symmetry of Qm and the entry in that row on the main diagonal.

Thus we have at least m− 2M + 1 random matrix entries, each of which must take

on one specific value. Since by (3.1) each entry can take on its required value with

probability at most 1− n−α, it follows that

g(m,M) ≤ (1− n−α)m−2M+1.

By symmetry, the same holds true for the probability that any given row lies in the

span of any given subset of M − 1 rows. Since there are M
(

m
M

)
choices for the row and

subset in question, we have by the union bound over all subsets of size M that

P(Qm is abnormal) ≤ M

(
m

M

)
g(m,M)

≤ M

(
m

M

)
(1− n−α)m−2M+1

≤ M
(me

M

)M
e−n−α(m−2M),

where to obtain the second inequality we used (1.5) and (1.4). Substituting for M (and

using the fact that M = o(m)), we have

P(Qm is abnormal) ≤ M
(me

M

)M
e−n−αm(1+o(1))

≤ m1−α−εm(α+ε+o(1))m1−α−ε
e−m1−α

.
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It follows that

ln(P(Qm is abnormal)) ≤ −m1−α + (α + ε + o(1))m1−α−ε lnm

= −m1−α(1 + o(1)).

In particular, the probability that Qm is abnormal is o(m−5).

3.4.2 Proof of Lemma 3.2.8:

By symmetry and the union bound, the probability that Qm fails to be perfect is at most

mb(m), where b(m) is the probability that the last row of Qm fails to be good. However,

b(m) is in turn at most m times the probability that the upper left (m− 1)× (m− 1)

minor Qm−1 is abnormal, which by Lemma 3.2.4 is o( 1
(m−1)5

). Thus Qm fails to be

perfect with probability o( 1
m3 ).

Alternatively, b(m) can be bounded directly via an identical argument to that in

the previous section.

3.5 Proof of Lemmas 3.2.5 and 3.2.9

3.5.1 Proof of Lemma 3.2.5:

Let A be the given singular, normal matrix, and let the rank of A be D < m. Without

loss of generality, we can assume that the first D rows x1, x2, . . . xD of A that are linearly

independent, so that the last row xm can be written as a linear combination

xm =
D∑

i=1

aixi

of these rows in a unique way. Let D′ be the number of ai which are nonzero. Because

A is normal by hypothesis, we know that D′ ≥ M .

We next examine the new column (y1, y2, . . . ym, ym+1) added in the augmentation.

If this column does not satisfy

ym =
D∑

i=1

aiyi, (3.5)

then the addition of this column must have increased the rank by 1. By Theorem 2.1.4,

the probability that this fails to happen is O(M−1/2).
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It follows by symmetry that if the addition of the new column increased the rank of

A by 1, the addition of its transpose as a new row must have further increased the rank

by 1 (as the new row killed the same dependency in the columns that the new column

killed in the rows). Thus the probability that the rank of A fails to increase by 2 after

being augmented is O(M−1/2) as well.

3.5.2 Proof of Lemma 3.2.9

We now assume that A = Qm has full rank and is perfect. Let (y1, y2, . . . ym+1) be

the new column which, along with its transpose, is added in the augmentation of A to

form Qm+1. Let Q be the determinant of the augmented matrix Qm+1. Expanding via

cofactors in the last column and row, we obtain

Q = (det A)ym+1 +
m∑

i=1

m∑
j=1

cijyiyj , (3.6)

where cij denotes the (i, j) cofactor of A. We wish to bound the probability that Q = 0,

so by Corollary 2.2.6 it suffices to show that many of the cij are nonzero.

As A is a nonsingular matrix, dropping any particular column of A will lead to

an m ×m − 1 matrix whose rows admit (up to scaling) precisely one nontrivial linear

combination. Furthermore, since A is assumed to be perfect, there must be at least M

rows involved in this combination. After removing any row involved in that combination

from A, we are left with a nonsingular m−1×m−1 matrix. It thus follows that for any

column of A, there are at least M rows that have a nonzero cofactor in that column,

and thus at least M different i for which cij is equal to 0.

For any fixed ym+1, therefore, it follows by Corollary 2.2.6 that

P(
m∑

i=1

m∑
j=1

cijyiyj = −ym+1(det A)) = O(M−1/4).

Using Bayes’ Theorem and integrating over ym+1, we obtain the desired result.

3.6 Further Conjectures

There are several ways in which Theorem 3.1.1 seems unlikely to be sharp.
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• The resulting bound is only o(1) when α < 1/2, so the theorem does not give

any meaningful information in the case where some off-diagonal entries are highly

concentrated (with probability at least 1 − n−1/2) on a given value. Although

some sort of concentration bound on the individual entries must be present (or

else the matrix could be effectively deterministic), it seems likely that the given

restrictions are too strong. A more natural bound would be something along the

order of

sup
i,j,c

P(aij = c) ≤ 1− (1 + ε) ln n

n
, (3.7)

since this is as weak a restriction as is possible without allowing some rows to

become effectively non-random. Some support to this bound is given in the next

chapter, where we allow the entries to concentrate highly on 0, but the matrix

remains almost surely non-singular until (3.7) is violated.

• Even when α is close to 0, the bound of O(n2α−1+ε) on the singularity probability

seems unlikely to be optimal. In the nonsymmetric case, it was shown [19, 31] that

the singularity probability was exponentially small if each entry was 1 with prob-

ability 1
2 and 0 otherwise. However, the corresponding bound in the symmetric

case obtained by Corollary 3.1.2 is only n−1/4+ε.

More generally, let Q(n, p) denote the adjacency matrix of G(n, p). A possible

conjecture is that the singularity probability is dominated by the probability that

there is a dependency involving at most 2 rows. By taking the maximum of the

probability that a single row is 0 and the probability that two rows are equal, we

obtain the following conjecture:

Conjecture 3.6.1 The probability that the adjacency matrix of Q(n, p) is singu-

lar is

O(max{n(1− p)n, n2(1− p)(p2 + (1− p)2)n−1}).

This corresponds with the decades-old conjecture that the probability a random

(non-symmetric) Bernoulli matrix is singular is (1/2 + o(1))n.
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• Consider the case of a random symmetric matrix Q(n) whose entries are each 1

or -1, each with probability 1/2. Theorem 3.1.1 states that the matrix almost

surely has nonzero determinant, and parity arguments can give that it has deter-

minant at least 2n−1. However, it should be possible to get some sort of stronger

bound. In [30] it was shown that the corresponding non-symmetric matrix (still

with each entry equally likely to be ±1) almost surely has determinant n( 1
2
+o(1))n

(corresponding to the upper bound given by Hadamard’s inequality), and it seems

a similar result should hold for Q(n).

• The condition number ||A|| · ||A−1|| of a matrix A arises frequently in numerical

analysis. The spectral norm ||Q(n, p)|| is well understood even for p very close to

0, due to results of Füredi and Komlós [15] and Krivelevich and Sudakov [24]. In

order to estimate the condition number of Q(n, p), therefore, it would suffice to

estimate the smallest (in absolute value) eigenvalue of Q(n, p). Even for the case

of p = 1/2, all Theorem 3.1.1 states is that this eigenvalue is with high probability

not 0.

In this case we know by the Wigner semicircle law that almost all of the n eigen-

values of Q(n, 1/2) lie in an interval whose length is of order
√

n, so a natural

conjecture is that with high probability the closest eigenvalue to 0 is at a distance

on the order of n−1/2. This would correspond with the known results for random

asymmetric Gaussian matrices due to Edelman [11], and more general classes of

random matrices due to Rudelson-Vershynin [27] and Tao-Vu [33]
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Chapter 4

The Rank of Sparse Random Graphs

4.1 Introduction and Statement of Main Results

As before, let Q(n, p) denote the adjacency matrix of a graph in G(n, p). In other

words, Q(n, p) is a random symmetric matrix which is 0 on the main diagonal and has

independent entries above the main diagonal, each of which is 0 with probability p and

1 with probability 1− p.

We know from the previous chapter that if p is at least n1/2+ε, then Q(n, p) will

almost surely be non-singular. On the other hand, it is easy to see that Q(n, p) will

almost surely not be of full rank if n is too close to 0. If p is smaller than ln n
n , then the

graph G(n, p) will almost surely contain isolated vertices, which in turn correspond to

rows in the adjacency matrix which are entirely zero, and thus to a singular adjacency

matrix. In this chapter our goal will be to analyze what happens to the rank of this

matrix as p drops to and below ln n
n .

For a set S in a graph G, let N(S) denote the neighborhood of S, that is, the

set of vertices adjacent to S. (We allow N(S) to contain elements of S.) A set S of

vertices of a graph G is nonexpanding if N(S), the neighborhood of S in G, satisfies

|N(S)| < |S|. S is minimally nonexpanding if it contains no proper nonexpanding

subset.

Examples. An isolated vertex forms a nonexpanding set. A set of two vertices of

degree one sharing a common neighbor forms a minimal nonexpanding set of size 2.

A set T of rows of a matrix A is nonexpanding if at most |T | − 1 columns of A have

at least one nonzero entry in T . Note that a set of vertices of a graph is nonexpanding

if and only if the corresponding rows of its adjacency matrix are also nonexpanding.
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Furthermore, if S is a nonexpanding subset of G, then the corresponding rows in the

adjacency matrix of G are dependent, since they span a space of dimension at most

|N(S)|. It is clear that for any set S of vertices

rank (A(G)) ≤ n− |S|+ |N(S)|.

Here and later A(G) denotes the adjacency matrix of the graph G (with vertex set

V ). It follows that

rank (A(G)) ≤ min
S⊂V

(|V | − |S|+ |N(S)|).

Our first main result shows that for a random graph G(n, p), this upper bound is

tight.

Theorem 4.1.1 Assume that 1/2 > p = Ω( ln n
n ). Then almost surely

rank (Q(n, p)) = (rank A(G(n, p)) = min
S⊂V

n− |S|+ |N(S)|) (4.1)

Remark 4.1.2 Both this result and Theorem 4.1.3 can be extended to cover matrices

whose independent entries have the form νijξij, where νij is a Bernoulli random variable

taking on 1 with probability p, and ξij has any distribution, so long as P(ξij = 0) = 0.

The ξij can even be different for different entries in the matrix, though it is critical to

our argument that all entries have the same probability of being 0. In this case, the

underlying graph should be thought of as the graph whose adjacency matrix is given by

the νij.

It can be checked that for any fixed positive integer s and ε > 0, if p < (1−ε) ln n
sn

then G(n, p) almost surely contains minimal nonexpanding sets of all sizes up to and

including s. Each of these nonexpanding sets generates a set of dependent rows in

the adjacency matrix. Our second main result shows that this is the only reason for

dependency.
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Theorem 4.1.3 Let c ln n
n < p < 1/2, where c > 1/s for some positive integer s. Then

with probability 1 − O( 1
(ln ln n)1/4 ) = 1 − o(1), G(n, p) has the property that any set of

dependent rows of its adjacency matrix contains a nonexpanding set of size at most

s− 1.

Remark 4.1.4 Although this theorem holds for p < 1/2 (and can easily be extended to

p < 1− ε for any ε), it is superseded by 3.1.1 in the case where p > n−1/2+ε.

This theorem implies that if c ln n
n < p < 1/2, where c > 1/s for some positive integer

s, then any minimal dependent set of rows has size at most s−1. The case where s ≤ 2

was examined by the author and Vu in [10]. Those cases can be stated in the following

corollary.

Corollary 4.1.5 Let ε be any positive constant. If (1+ε) ln n
2n ≤ p ≤ 1

2 , then the rank of

G(n, p) will almost surely be equal to the number of nonisolated vertices. In particular, if
(1+ε) ln n

n ≤ p ≤ 1
2 , then the adjacency matrix of G(n, p) will almost surely be nonsingular.

Theorem 4.1.3 also implies the following corollary.

Definition 4.1.6 A set S of vertices of a graph G is s-unobstructed if it contains

no nonexpanding subset of size at most s. S is unobstructed if it contains no nonex-

panding subset.

Corollary 4.1.7 Let p = Ω( ln n
n ). With probability 1 − O( 1

(ln ln n)1/4 ) = 1 − o(1), the

rank of the random graph G(n, p) equals the size of its largest unobstructed set.

In the next section we will state a slightly weaker version of Theorem 4.1.3, along

with some lemmas which will be used in the proof of that result. The next several

sections will be given over to proven those lemmas and the weaker theorem, after which

Theorems 4.1.1 and 4.1.3 will be deduced from the weaker theorem along with some of

the lemmas. The last sections will be devoted to several consequences of the two main

theorems, along with a few final conjectures.
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4.2 The Idea of the Proofs and Some Lemmas

Instead of proving Theorems 4.1.1 and 4.1.3 directly, we are going to prove the following

theorem (which is somewhat weaker than Theorem 4.1.3). The proof of this theorem,

combined with some lemmas will imply Theorems 4.1.1 and 4.1.3.

We say that a graph G is s-saturated if the rank of A(G) equals the size of the

largest s-unobstructed set.

Theorem 4.2.1 Let c ln n
n < p < 1/2, where c > 1/s for some positive integer s. With

probability 1−O( 1
(ln ln n)1/4 ) = 1− o(1), the random graph G(n, p) is (s− 1)-saturated.

As in the previous chapter, we are going to expose Q(n, p) minor by minor, so

that Qm+1 is formed by taking Qm and augmenting by a column whose entries are

chosen independently, along with the column’s transpose. Denote by Gm the graph

whose adjacency matrix is Qm. In graph theoretic terms, we are considering a vertex

exposure process of G(n, p).

Our starting observation is that when a good portion of the vertices have been

exposed, the rank of the matrix is close to its size.

Recall that p ≥ c lnn/n for a constant c > 1/s. Let 0 < δ < 1 be a constant such

that 1/s < δc < 1/(s− 1). Define n′ := δn.

Lemma 4.2.2 For any constant ε > 0 there exists a constant γ > 0 such that

P(rank(Qn′) < (1− ε)n′) = o(e−γn ln n)

Remark 4.2.3 This lemma is needed since our remaining bounds will only be able to

control the behavior of the matrix for m > n′. Since we may only be able to control the

behavior of the rank for a small (positive) fraction of the augmentation, we need to be

sure that the rank isn’t too far away from where we want it to be by the time we gain

that control

Our plan is to show that the addition of the remaining n − n′ rows/columns is

enough to remove all the linear dependencies from Qn′ except those corresponding to

nonexpanding subsets of at most s− 1 vertices.
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The next lemmas provide some properties of the (random) graph Gm for n′ ≤ m ≤ n.

Definition 4.2.4 A graph G is well-separated if the following two conditions hold:

W1. Any connected subgraph of G on at most 5s vertices contains at most s − 1

vertices with degree at most ln lnn.

W2. No cycle of length at most 12s in G contains a vertex of degree at most ln lnn.

Lemma 4.2.5 For any constant ε > 0, the probability that there is an m between n′

and n for which Gm is not well separated is O(n−scδ+1+ε).

Note that by our choice of δ this probability will be o(1) for sufficiently small ε.

Definition 4.2.6 A graph G is a small set expander if every subset S of the vertices

of G with |S| ≤ n
ln3/2 n

either has at least |S| edges connecting S to S̄, its complement,

or has a subset S′ ⊂ S with |S′| ≤ s− 1 and at most |S′| − 1 edges connecting S′ to S̄′.

Lemma 4.2.7 For any m > n′ the probability that Gm is well separated but is not a

small set expander is O(n−4).

Definition 4.2.8 A set S of the vertices of a graph G is nice if there are at least two

vertices of G each is adjacent to exactly one vertex in S.

A set S of the vertices of a graph G is nearly nice if there is at least one vertex in

G which has exactly one neighbor in S.

Set k := ln ln n
2p . We will next define a class of ’good’ matrices which behave well

under augmentation.

Definition 4.2.9 A graph G is good if the following four properties hold:

1. Every minimal non-nice subset of the vertices of G either has size at least k + 1

or contains a non-expanding subset of size at most s− 1.

2. Every minimal non-nearly nice subset of the vertices of G either has size at least

k + 1 or is a non-expanding set of size at most s− 1.

3. At most 1
p ln n vertices of G have degree less than s.
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4. G is well separated.

A symmetric (0,1) matrix A is good if the graph for which it is an adjacency matrix

is good.

The next lemma states that in the augmentation process we will likely run only into

good matrices.

Lemma 4.2.10 Let ε be a positive constant. Then with probability 1 − O(n1−scδ+ε),

Qm is good for every m between n′ and n .

We now consider the effect of augmentation on the rank of A when A is a good

matrix.

Definition 4.2.11 A pair (G, G′) of graphs is called normal if the following properties

hold:

1. G is an induced subgraph on |G′| − 1 vertices of G′.

2. The new vertex added to G is not adjacent to any vertex which was part of a

non-nearly nice subset in G′.

A pair (A,A′) of (0, 1) symmetric matrices is normal if the pair of graphs for which

they are the adjacency matrices are normal.

Lemma 4.2.12 Let A be any fixed, good m ×m matrix which is not s − 1-saturated.

Then

P( rank(Qm+1)− rank(Qm) < 2|(Qm, Qm+1) is normal ∧Qm = A) = O((kp)−1/2).

What the above lemma says is that if Qm is good but not s − 1-saturated, then

augmenting it will tend to remove some of the dependencies among the rows of Qm

(note that kp is tending to infinity by assumption). If (Qm+1, Qm) is normal, then the

dependencies removed can’t correspond to small nonexpanding subsets of the rows of

Qm. This implies that in some sense Qm+1 is a little closer to being saturated then Qm

was.

Now suppose on the other hand that Qm is both good and already s− 1-saturated.

We are going to show that (again assuming no change in the nonexpanding subsets)

with high probability Qm does not gain any new dependencies by being augmented.
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Lemma 4.2.13 Let A be any fixed, good m×m matrix which is also s− 1-saturated.

Then

P( rank(Qm+1)− rank(Qm) < 2|(Qm, Qm+1) is normal ∧Qm = A) = O((kp)−1/4).

ln the next section, we prove Theorem 4.2.1 assuming these lemmas. The proofs of

the lemmas will be presented in the sections that follow.

4.3 Proof of Theorem 4.2.1 Assuming All Lemmas

In this section, we assume all lemmas from the previous section are true. We are going

to use a variant of the argument from section 3.3. Let B0 be the event that Gn is

(s− 1)−saturated. Let B1 be the event that the rank of Qn′ is at least n′(1− 1−δ
4δ ). Let

B2 be the event that Qm is good for all n′ ≤ m < n. By Bayes’ theorem we have

P(B0) ≤ P(B0 ∧B2|B1) + P(¬B1) + P(¬B2)

By Lemma 4.2.2 we have that P(¬B1) = o(e−γn ln n) and by Lemma 4.2.10 we have that

P(¬B2) = O(n1−scδ+ε). Both of these probabilities are much smaller than the bound

O((ln lnn)−1/4) which we are trying to prove, so it only remains to bound the first term.

Let Um denote the size of the largest (s− 1)−unobstructed subset of the vertices of

Gm.

Let Ym = Um − rank(Qm). Our goal is now to prove that Yn is almost surely 0.

Define a random variable Xm as follows:

• Xm = 4Ym if Ym > 0 and every Qj with n′ ≤ j ≤ m is good;

• Xm = 0 otherwise.

The core of the proof is the following bound on the expectation of Xm+1 given any

fixed sequence Qm of matrices {Qn′ , Qn′+1, . . . , Qm} encountered in the augmentation

process.

Lemma 4.3.1 For any sequence Qm = {Qn′ , Qn′+1, . . . , Qm} encountered in the aug-

mentation process,

E(Xm+1|Qm) <
3
5
Xm + O((ln lnn)−1/4).
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Let us (for now) assume Lemma 4.3.1 to be true. This lemma together with Bayes

theorem shows that for n′ < m we have

E(Xm+1|Qn′) <
3
5
E(Xm|Qn′) + O((ln lnn)−1/4).

By induction on m2 −m1 we now have that for any m2 ≥ m1 ≥ n′

E(Xm2 |Qn′) < (
3
5
)m2−m1E(Xm1 |Qn′) + O((ln lnn)−1/4).

In particular, by taking m2 = n and m1 = n′ we get that

E(Xn|Qn′) < (
3
5
)n−n′Xn′ + O((ln lnn)−1/4).

If Qn′ satisfies B1, we automatically have Xn′ ≤ 4
(1−δ)n′

4δ = (
√

2)n−n′ , so

E(Xn|Qn′) < (
3
√

2
5

)n−n′ + O((ln lnn)−1/4) = O((ln lnn)−1/4).

By Markov’s inequality, for any Qn′ satisfying B1

P(Xn > 3|Qn′) = O((ln lnn)−1/4)

On the other hand, by definition Xn ≥ 4 if Gn is not (s− 1)−saturated and B2 holds.

It thus follows by summing over all Qn′ satisfying B1 that

P(B0 ∧B2|B1) = O((ln lnn)−1/4),

proving the theorem.

It remains to prove Lemma 4.3.1. If a matrix in the sequence {Qn′ , Qn′+1, . . . , Qm}

is not good, then Xm+1 = 0 by definition and there is nothing to prove. Thus, from

now on we can assume that all matrices in the sequence are good. Let Zm denote the

number of vertices of degree at most s in Qm adjacent to the m + 1st vertex of G.

Claim: Um+1 − Um ≤ Zm + 1.

Proof (of claim): Let Sm+1 denote a s−unobstructed subset of the vertices of Gm+1

such that |Sm+1| = Um+1. Let S′m denote the set formed by removing the m+1st vertex

from S, as well as any vertices of degree at most s adjacent to that new vertex.

S′m is s−unobstructed since each subset of S′m of size at most s either contains

a vertex of degree at least s + 1 (in which case it clearly expands) or has the same
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neighborhood in Gm as in Gm+1. Since at most Zm + 1 vertices were removed to go

from Sm+1 to S′m, the claim follows.

By the above claim, if Zm is positive, then augmenting the matrix will increase Ym

by at most Zm + 1 (Um increases by at most Zm + 1 and the rank does not decrease).

Furthermore, Zm = 0 if and only if (Qm, Qm+1) is normal. By Bayes’ theorem, we have

E(Xm+1|Qm)

= E(Xm+1χ(Zm > 0)|Qm)

+E(Xm+1|Qm ∧ (Qm, Qm+1) is normal)P((Qm, Qm+1) is normal|Qm)

≤ E(Xm+1 χ(Zm > 0)|Qm) + E(Xm+1|Qm ∧ (Qm, Qm+1) is normal)

= E(4Zm+1+Ymχ(Zm > 0)|Qm) + E(Xm+1|Qm ∧ (Qm, Qm+1) is normal).

Since Qm is good, Gm has at most 1
p ln n vertices which have degree at most s. Thus,

we can bound Zm by the sum of 1
p ln n random Bernoulli variables, each of which is 1

with probability p. It follows that

P(Zm = i) ≤
(

(p lnn)−1

i

)
pi ≤ (lnn)−i.

Adding up over all i, we have

E(4Zm+1χ(Zm > 0)|Qm) ≤
∞∑
i=1

4i+1(lnn)−i = O((lnn)−1).

If Ym = 0 and (Qm, Qm+1) is normal, then by Lemma 4.2.13 (which applies since Qm

is good) Xm+1 is either 0 or 4, with the probability of the latter being O((ln lnn)−1/4).

Therefore we have for any sequence Qm = {Qn′ , . . . Qm} of good matrices with Ym = 0

that

E(Xm+1|Qm) = O((ln lnn)−1/4 + (lnn)−1) = O((ln lnn)−1/4). (4.2)

If Ym = j > 0 and (Qm, Qm+1) is normal, then Ym+1 is j − 1 with probability

1−O((ln lnn)−1/2) by Lemma 4.2.12, and otherwise is at most j + 1. Combining this

with the bound on E(4Zm+1χ(Zm > 0)|Qm) we have

E(Xm+1|Qm) = 4j−1 + 4j+1O((ln lnn)−1/2) + 4jO((lnn)−1) ≤ 3
5
4j (4.3)

The lemma now follows immediately from (4.2) and (4.3).
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4.4 Proof of Lemma 4.2.2

By symmetry and the union bound

P(rank(Qn′) < (1− ε)n′) ≤
(

n′

εn′

)
×P(B∗

1),

where B∗
1 denotes the event that the last εn′ columns of Q′

n are contained in the span

of the remaining columns.

We view Qn′ as a block matrix,

Qn′ =

 A B

BT C

 ,

where A is the upper left (1− ε)n′× (1− ε)n′ sub-matrix and C has dimension εn′× εn′.

We obtain an upper bound on P(B∗
1) by bounding the probability of B∗

1 conditioned

on any fixed A and B (treating C as random).

B∗
1 cannot hold unless the columns of B are contained in the span of those of A,

meaning the equation B = AF holds for some matrix F . If this is the case, then B∗
1

will hold only when we also have C = BT F . This means that each entry of C is forced

by our choice of A, B and our assumption that B∗
1 holds.

However, C is still random, and the probability that any given entry takes on its

forced value is at most 1−p. The entries are not all independent (due to the symmetry

of C), but those on or above the main diagonal are. Therefore the probability that B∗
1

holds for any fixed A and B is at most (1− p)
(εn′)2

2 .

We therefore have

P(rank(Qn′) < (1− ε)n′) ≤
(

n′

εn′

)
((1− p)

(εn′)2
2

≤ (
n′e

εn′
)εn′e

−p(εn′)2
2

≤ c2
ne−c1n ln n.

where c1 and c2 are positive constants depending on ε, δ, and c (but independent

of n).
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4.5 Proof of Lemma 4.2.5

If p ≥ (ln n)2

n , then G(n, p) will with probability at least 1 − o(n−3) have no vertices

whose degree is at most ln lnn, in which case G is trivially well-separated. We will

therefore assume p ≤ (ln n)2

n for the remainder of this section.

If Gm fails to be well-separated for some m between n′ and n, there must be a first

m0 with this property. We are going to bound the probability that a fixed m is this

m0.

Case 1: m0 = n′. We can bound the probability Gn′ fails condition W1 above by

the union bound over all sets of at most 5s vertices of the probability that those vertices

form a connected subgraph with at least s small-degree vertices.

The probability that any single vertex has sufficiently small degree is at most

ln ln n∑
i=0

(
n′ − 1

i

)
pi(1− p)n′−i ≤ (1 + o(1))

ln ln n∑
i=0

(n′p)i(1− p)n′ ≤ (lnn)2 ln ln n

ncδ
, (4.4)

so the probability that a set of size i contains at least s such vertices is at most(
i

s

)
n−scδ+ε.

The probability that a set of size i is connected is (by the union bound over all

spanning trees) at most

ii−2pi−1 ≤ (lnn)2i

(n′)i−1
.

By the FKG inequality [14], these two events are negatively correlated (as one is

monotone increasing under edge inclusion, while the other is monotone decreasing), so

the probability that some subset fails the first well-separation criterion is at most

5s∑
i=s

(
n′

i

)(
i

s

)
n−scδ+ε (lnn)2i

(n′)i−1
= O(n1−scδ+ε). (4.5)

Similarly, for each 3 ≤ j ≤ 12s the probability that a given set of size j contains a

spanning cycle is by the union bound at most

(i− 1)!
2

pi ≤ (i− 1)!(ln n)2i

ni
,

and again by the FKG inequality this event is negatively correlated with the set con-

taining a vertex of degree at most ln lnn in G. Therefore the probability some set fails
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W2 is at most
12s∑
i=3

(
n′

i

)
(i− 1)!(ln n)2i

ni

(lnn)2 ln ln n

ncδ
= O(n−cδ+ε) (4.6)

Case 2: m0 = m > n′. In this case, we can bound the probability that m0 = m

above by the probability that Gm−1 is well separated but Gm fails to be well separated.

As in the previous case, we can take a union bound over all sets of at most 5s vertices,

but now we need only consider sets which contain the vertex newly added to create

Gm (all other sets are covered by our assumption that Gm−1 is well separated). This

means that the probability of failure of either requirement for any particular m in this

range is at most 12s/n times the corresponding union bound in (4.5) and (4.6), which

is O(n−scδ+ε).

By the union bound, the property that Gm is not well -separated for some m is at

most

O(n1−scδ+ε) + O(n−cδ+ε) + n×O(n−scδ+ε) = O(n1−scδ+ε),

completing the proof.

4.6 Proof of Lemma 4.2.7

In order to prove the edge expansion property we first show that almost surely no small

subgraphs of G(n, c ln n
n ) will have too many edges.

Definition 4.6.1 A graph G is locally sparse if every subgraph on at most n
ln3/2 n

vertices has average degree less than 8.

Lemma 4.6.2 For fixed c the probability that G(n, c ln n
n ) is not locally sparse is O(n−4).

Proof (of Lemma 4.6.2) Let qj be the probability that a subset of size j has at least

4j edges. By the union bound, this is at most
(
n
j

)
times the probability of a particular

subset having at least 4j edges, so



48

qj ≤
(

n

j

)(
j2/2
4j

)
p4j

≤ (
ne

j
)j(

ejc lnn

8n
)4j

≤ (
c4e5j3 ln4 n

n3
)j .

For j < n1/4 this gives qj ≤ n−2j , while for j > n1/4 we have (using our upper

bound on j) qj ≤ (lnn)−j/2 = o(n−5). By summing over all j at least 2, we conclude

that the failure probability is o(n−4), completing the proof.

Armed with this lemma we can now prove Lemma 4.2.7. We do so in two cases

based on the size of p.

Case 1: p < 12 ln n
n :

If Gm fails to expand edgewise there must be a minimal subset S0 which both fails

to expand and contains no nonexpanding subset of size at most s− 1.

We claim that the subgraph formed by the vertices of S0 must have average degree

at least 8. For the sake of contradiction, let us suppose that this were not the case.

Because fewer than |S0| edges leave S0, it follows that the average degree of the vertices

of S in G is at most 9, meaning that at most 9|S0|
ln ln n vertices in S0 have degree at least

ln lnn in G.

We next consider the connected components of the induced subgraph of G on the

vertices in S0. Unless G fails to satisfy condition W1 (in which case we are done), at

most 9(s−1)|S0|
ln ln n of the vertices with degree at most ln lnn can be in the same component

as a vertex with degree at least ln lnn.

Furthermore, the remaining vertices must be in components of size at most s − 1

(again due to W1). Let T be one of those components. By assumption, T has at least

|T | edges leaving T , and each of these edges must also leave S0. But this implies that

S0 − T is a smaller edgewise nonexpanding set, a contradiction.

What we have actually shown in the above is the following deterministic statement:

any locally sparse, well-separated graph must also be a small set expander. We can
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therefore bound the probability of the existence of a minimal S0 by the probability of

G failing to be locally sparse, which by Lemma 4.6.2 is O(n−4).

Case 2: p ≥ 12 ln n
n :

In this range we will estimate the probability directly via the union bound over all

subsets of size at most n
(ln n)3/2 . The probability that some set fails to expand can be

bounded above by

n ln−3/2 n∑
i=1

(
n

i

)
ini− 1(1− p)i(n−i)−(i−1) ≤ ni(en)i−1e−inp(1+o(1)

=
1
ne

n ln−3/2 n∑
i=1

(n2e−np(1+o(1))i.

The lower bound we have on p in this case implies that each term in this last bound is

O(n−(4+o(1))i), so the sum is o(n−4).

4.7 Proof of Lemma 4.2.10

Let C0 be the event that Gm is good for every m between n′ and n. Let C1 be the

event that Gm has at most 1
p ln n vertices of degree less than s for every m between n′

and n, C2 be the event that Gm has maximum degree at most 5knp for each m, and

C3 be the event that Gm is well separated, locally sparse, and a small set expander for

every m between n′ and n. We have

P(¬C0) ≤ P(¬C0 ∧ C1 ∧ C2 ∧ C3) + P(¬C1) + P(¬C2) + P(¬C3).

We are going to bound each term on the right hand side separately, in reverse order.

Lemmas 4.2.7, 4.2.5, and 4.6.2 together show that P(¬C3) = O(n1−scδ+ε).

P(¬C2) is at most the expected number of vertices of degree at least 5knp in Gn,

which is at most

n

(
n

5knp

)
p5knp ≤ n(e/5knp)5knpp5knp ≤ ne−5knp = o(n−4).

To bound P(¬C1), we note that the probability that some Gm contains a set of

vertices of size t = p−1 ln−1 n, all of whose degrees are less than s, is bounded from

above by the probability that at least t vertices in Gn each have at most s neighbors
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amongst the vertices of Gn′ . This probability is clearly decreasing in p, and for p = ln n
sn

it is by Markov’s inequality at most

n

t

s∑
i=1

(
n′

i

)
pi(1− p)n′−i < n

(lnn)2

sn

s∑
i=1

ni (lnn)i

(sn)i
e−(1+o(1)) ln n′/s

= O((lnn)2n−1/s
s∑

i=1

(lnn)i) = n−1/s+o(1).

It remains to estimate the first term, which we will do by the union bound over all

m. Since property C1 implies Gm has few vertices of small degree, it suffices to estimate

the probability that Gm contains a non-nice set while still satisfying properties C1, C2,

and C3. Let pj be the probability that conditions C1, C2, and C3 hold but some subset

of j vertices causes Gm to fail to be good. Symmetry and the union bound give that

pj is at most
(
m
j

)
times the probability that the three conditions hold and some fixed

set S of j vertices causes the graph to fail condition C0. We will bound this in three

cases depending on the size of j.

Case 1: 1
p
√

ln n
≤ j ≤ k.

We will show that there are almost surely no non-nice subsets at all in this range,

minimal or otherwise. Direct computation of the probability that a fixed set of j vertices

has either 0 or 1 vertices adjacent to exactly one vertex in the set gives:

pj ≤
(

m

j

)
((1− jp(1− p)j−1)m + mjp(1− p)j−1(1− jp(1− p)j−1)m−1)

≤ (mep
√

lnn)j((1− jp(1− p)j−1)m + mjp(1− p)j−1(1− jp(1− p)j−1)m−1)

≤ (mep
√

lnn)j((1− jpe−jp(1+o(1)))m + mjpe−jp(1+o(1))(1− jpe−jp(1+o(1)))m−1)

≤ (mep
√

lnn)j(e−mjp(1+o(1))e−jp(1+o(1))
)(1 + mjpe−jp(1+o(1))).

It follows from our bounds on j and p that mjpe−jp tends to infinity, so the second half

dominates the last term of the above sum and we have

pj ≤ (mep
√

lnn)j(e−mjp(1+o(1))e−jp(1+o(1))
)(2mjpe−jp(1+o(1))).
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Taking logs and using δn ≤ m ≤ n gives:

ln(pj) ≤ (1 + o(1))j(ln(enp
√

lnn)− δnpe−jp(1+o(1)) − p +
ln(2njp)

j
)

≤ (1 + o(1))j(4 ln(np)− δnpe−kp(1+o(1)))

= (1 + o(1))j(4 ln(np)− δnp

(lnn)
1
2
+o(1)

).

Since np > ln n
s , taking n large gives that the probability of failure for any particular j

in this range is o(1/n4), and adding up over all j and m gives that the probability of a

failure in this range is o(1/n2).

Case 2: 1 ≤ j ≤ 1
p
√

ln n
.

Let b be the number of vertices outside S adjacent to at least one vertex in S, and

let a be the number of edges between S and the vertices of G outside S. For j ≥ s let

Ej be the event that the graph satisfies conditions C1 through C3 but some fixed set S

of j vertices fails to be nice.

By Bayes’ theorem, we have

pj ≤
(

m

j

) nj∑
w=0

P(Ej |a = w)P(a = w).

We bound the terms in two subcases depending on the size of w relative to j.

Case2a: w < 10j. The claim here is that in this range it is impossible for Ej to

occur.

Let G2 denote a graph with on the same vertex set as G, but with i connected to j

in G2 if and only if i and j are of distance at most 2 in G.

As in Lemma 4.2.7, if G is locally sparse then S must have at most 18j
ln ln n vertices of

degree at most ln lnn. Condition W1 now implies that at most 18sj
ln ln n vertices of S can

lie in the same component of the induced subgraph of G2 on S as a vertex of degree at

least ln lnn.

Thus the induced subgraph of G2 must contain a component S1 which does not

contain a vertex having degree in G at least ln lnn. S1 must have size at most s− 1 by

condition W1. Note that this component shares no neighbors in G with the rest of S.

Suppose that every vertex in G adjacent to S1 had two neighbors in S1. It would
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then follow that the induced subgraph of G on S1 ∪N(S1) contained at least

2|N(S1)| − |S1 ∩N(S1)|

edges. On the other hand, condition W2 implies that this induced subgraph is a forest,

so has at most

|S1 ∪N(S1)| − 1 = |S1|+ |N(S1)| − |S1 ∩N(S1)| − 1

edges. Combining these two inequalities would yield |N(S1)| ≤ |S| − 1.

Thus either S1 is a nonexpanding subset of S of size at most s − 1, or there is a

vertex adjacent to exactly one vertex in S1 (and thus in S). This fulfills the second

requirement for G to be good.

If |S| ≥ s, then we can find a second component S2 satisfying the same conditions

as S1. Unless either S1 or S2 fails to expand, there will be a vertex in G adjacent to

exactly one vertex in S1 and another vertex adjacent to exactly one vertex in S2, so S

must be nice. Thus the first requirement for G to be good is also satisfied.

Case 2b: w ≥ 10j. If S is not nice, then at least b − 1 of the neighbors of S must

be adjacent to at least two vertices in S. This implies that b ≤ a+1
2 . It follows that we

can bound P(Ej) by P(b ≤ w+1
2 |a = w). To do this, we fix a set of w+1

2 vertices and

bound the probability that w vertices randomly selected from V (G)\S are in that set.

Using the union bound over all possible sets of w+1
2 vertices, we obtain

P(b ≤ w + 1
2

|a = w) ≤
(

m− j
w+1

2

)
(

w + 1
2(m− j)

)w

≤ (
2e(m− j)

w − 1
)

w+1
2 (

w + 1
2(m− j)

)w

≤ (
4w

m
)

w−1
2 .

This bound is decreasing in w for the entire range under consideration (our bounds on j

guarantee w is at most 10n√
ln n

). Therefore, we can bound P(qj |a = w) by the probability

given a = 10j, giving

pj ≤ 3
√

n

(
m

j

)
(
40j

m
)5j

≤ 3
√

n(
me

j
)j(

40j

m
)5j

≤ 3
√

n(
130j

n′
)4j .
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This bound is decreasing in j in the range under consideration, and substituting j = s

gives that pj = o(1/n4) for each j and m in the range. By the union bound the

probability of failure in this range is o(1/n2).

4.8 Proofs of Lemmas 4.2.12 and 4.2.13

4.8.1 Proof of Lemma 4.2.12

Let A be a fixed nice matrix which is not (s− 1)-saturated. Since A is not saturated,

there is a vector v := (v1, v2, . . . vm)T in the nullspace of A whose support does not

contain the coordinates corresponding to any nonexpanding subset of at most s − 1

rows. Let D be the number of nonzero coordinates in v. If D were at most k, then the

goodness of A would guarantee that the support of v would be nearly nice, meaning that

some vertex i had only one neighbor in the support of v. But this is a contradiction,

as the product of row i with v would then be vi, which is nonzero by assumption since

i is in the support of v.

We may therefore assume that D > k and, without loss of generality, that it is the

first D coordinates of v which are nonzero. We now consider the linear equation

D∑
i=1

vixi = 0. (4.7)

If the new column x does not satisfy this equation, then augmenting A by this

column will increase the rank by 1 and (by the symmetry of A) augmenting A simulta-

neously by the x and its transpose will increase the rank by 2. Therefore it suffices to

bound the probability that (4.7) is satisfied. Although the xi aren’t all random in our

case (our conditioning on the normality of (Gm, Gm+1) guarantees that all variables

corresponding to vertices in non-nice subsets of G are 0), most of them will be random.

Since we are assuming G to be good, the number of non-random xi is bounded above

by the number of vertices of degree at most s, which is in turn bounded above by

1
p ln n = o(D).

After removing the xi which are forced to be 0 we are left with D(1 + o(1)) inde-

pendent variables with nonzero coefficients. By Theorem 2.1.5, the probability (4.7) is
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satisfied is therefore at most O((Dp)−1/2) = O((kp)−1/2).

4.8.2 Proof of Lemma 4.2.13

Just as in the proof of Lemma 4.2.12, the goal will be to eventually use a Littlewood-

Offord Lemma to show that a certain expression is almost surely not equal to 0. In

this case, the expression in question will be the determinant of an appropriately chosen

submatrix of the augmentation of A. Before we apply it, however, we first attempt to

obtain additional information on the structure of A.

Let T be the union of all minimal nonexpanding subsets which contain at most s−1

vertices. We begin by proving two lemmas on the structure of T under the assumption

that G is well-separated.

Lemma 4.8.3 Let T be defined as above. Then N(T ) ∩ T = ∅.

Proof Assume to the contrary that there are two vertices v and w in T which are

adjacent in G. Let Tv and Tw be minimal nonexpanding subsets of G such that Tv

contains v, Tw contains w, and |Tv| and |Tw| are both at most s− 1 (Tv and Tw may in

fact be equal here). By the minimality of Tv, we have |N(Tv− v)| ≥ |Tv|− 1 ≥ |N(Tv)|,

so it follows that w must also be in N(Tv − v). A similar argument shows that any

vertex in Tv with a neighbor in Tw has at least one other neighbor in Tw, and vice versa.

We now consider the graph on vertex set Tv∪Tw whose edges correspond to edges in

G with one vertex lying in Tv and the other vertex in Tw (one or both of these vertices

may be in Tv ∩Tw). By the above argument, no vertex in this graph has degree exactly

1. However, the well-separation condition W2 guarantees that this graph is a forest

(since any vertex in T has degree at most s − 1 in G), which implies that the graph

must in fact be empty.

Lemma 4.8.4 Let T be defined as above. Then there is a T1 ⊂ T with |T1| = |N(T )|

such that G has exactly one matching between T1 and N(T ).

Proof Consider the graph on T ∪ N(T ) which includes all edges with at least one

endpoint in T . We perform the following algorithm to construct T1: At each step we
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pick an unused vertex in T with exactly one unused neighbor in N(T ). We then add

that vertex to T1 and consider both it and its neighbor as used.

Assuming this algorithm eventually matches every vertex in N(T ) with a vertex in

T , we are done, since the uniqueness of the matching is clear from our matching process.

Showing the algorithm does not terminate prematurely is equivalent to showing that

after each step either every vertex in N(T ) is used or there is an unused vertex in T

with exactly one unused neighbor in N(T ).

To do this, we first note that any unused vertex in N(T ) has at least two unused

neighbors in T (the argument in the previous lemma shows that it has at least two

neighbors in T , and by construction our algorithm marks a vertex in N(T ) as used as

soon as its first neighbor in T is used). Furthermore, by well separation the induced

subgraph on the unused vertices of T and N(T ) is a forest, which is nonempty unless all

vertices of N(T ) have been used. It therefore must have a vertex of degree one, which

must be in T since every unused vertex in N(T ) has degree at least two. This allows

us to continue the algorithm until all of N(T ) is matched.

Without loss of generality we can now view A(G) as the block matrix below

A(G\(T ∪N(T ))) A(G\(T ∪N(T )), N(T )) 0 0

A(N(T ), G\(T ∪ T1)) A(N(T )) A(N(T ), T1) A(N(T ), T\T1)

0 A(T1, N(T )) 0 0

0 A(T\T1, N(T )) 0 0


,

where A(G, H) denotes the adjacency matrix of the induced bipartite subgraph between

G and H. The blocks in the lower right are 0 because of Lemma 4.8.3. By construction

the fourth row of blocks is contained in the span of the third row.

Let B be the matrix formed by the first three rows and columns of blocks of A

(note that rank (B) = rank (A)). To prove Lemma 4.2.13 it suffices to show that

augmentation will almost surely increase the rank of B. Our assumption of normality

guarantees we can think of the augmentation as
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B′ =



A(G\(T ∪N(T ))) A(G\(T ∪N(T )), N(T )) 0 x

A(N(T ), G\(T ∪ T1)) A(N(T )) A(N(T ), T1) y

0 A(T1, N(T )) 0 0

xT yT 0 0


,

where x and y are random vectors each of whose entries are 1 with probability p and

0 otherwise. We now expand det(B′) by minors simultaneously along all rows and

columns in the third row and column of blocks. By Lemma 4.8.4, only one nonzero

term remains, so we are left with

det(B′) = ±det

 A(G\(T ∪N(T ))) x

xT 0

 = ±
m∑

i=1

m∑
j=1

A(i, j)xixj ,

where A(i, j) denotes the (i, j) cofactor of A(G\(T ∪N(T ))).

This is the expression that we are aiming to show is almost surely non-zero. Our

goal will be to show that probably enough of these cofactors are nonzero that we can

apply Lemma 2.2.6 to say that the determinant of B′ is probably not zero. To do so,

we first establish some properties of the matrix C := A(G\(T ∪N(T ))).

Lemma 4.8.5 C is nonsingular.

Proof Any subset of T1 must be expanding due to the matching between T1 and N(T ).

This implies that the first three rows of blocks of A cannot contain any nonexpanding

subsets of size at most s− 1 (such a subset would have to be in T by the definition of

T , but could not be entirely within T1 since T1 expands. Since A is (s− 1)−saturated,

it follows that the rank of A is at least n− |(T\T1)|.

On the other hand, we know the third row of blocks is independent (the uniqueness

of the matching in Lemma 4.8.4 implies A(T1, N(T )) has determinant ±1) and contains

the fourth row of blocks in its span. Since this already accounts for the entire nullspace

of A, the first three rows of blocks of A must be independent.

This implies we can perform row reduction to eliminate the A(G\(T ∪N(T )), N(T ))

block of A, and that the rows of the reduced matrix (including the rows of C) are still

independent.
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Lemma 4.8.6 G\(T ∪N(T )) is ”almost good” in the following sense:

(1) Every minimal non-nice subset of the vertices of G\(T ∪N(T )) has size either

at most s− 1 or at least k − 1
p ln n .

(2) Every minimal non-nearly nice subset of the vertices of G\(T ∪N(T )) has size

at least k − 1
p ln n .

(3) At most 1
p ln n vertices of G\(T ∪N(T )) have degree less than s.

Proof Let S be a subset of the vertices of G\(T ∪N(T )) of size at most k− 1
p ln n , and

let S1 denote those vertices in N(T ) which have exactly one neighbor in S. We now

perform the following algorithm: So long as S1 remains nonempty, we choose a vertex v

in S1, choose a vertex of T adjacent to v which is not already in s, add that vertex in T

to S, and update S1 accordingly. Since each vertex in N(T ) has at least two neighbors

in T , we will always be able to continue this process so long as S1 remains nonempty.

In particular, the process must terminate by the time we have added all the vertices in

T to S.

Let S′ be the set which results once the algorithm terminates. We first note that

S′ can have size at most k (the vertices in T which we add to S always have degree at

most s − 1, and the number of such vertices is bounded by our assumption that G is

good). Furthermore, there is a natural matching between S′ ∩ T and N(T ) given by

matching each vertex of S′ ∩ T with the v in N(T ) which caused it to be added to S′.

This implies that S′∩T (and thus S′) does not contain any nonexpanding subset of size

at most s− 1. Since G is good, this implies that S′ must be nearly-nice, meaning there

is some w with only one neighbor in S′. This w can’t be in N(T ) by construction, and

it can’t be in T since S′ contains no vertices from N(T ) . It follows that w’s neighbor

must be in S, so S is also nearly-nice.

A similar argument gives that all minimal non-nice subsets in G\(T ∪N(T )) either

have size at least k− p
ln n or at most s−1. To show there aren’t many vertices of degree

at most s in G\(T ∪ N(T )), we first note that by condition W1 of well separation a

given vertex can only have s−1 neighbors in N(T ). It follows that any vertex of degree

at most s in G\(T ∪ N(T )) had degree at most 2s in G, and this can be bounded by
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the same argument as in (4.4).

Since C has full rank, dropping any of the columns of C will lead to a m ×m − 1

matrix whose rows admit (up to scaling) precisely one nontrivial linear combination

equal to 0. If any of the rows in that combination are dropped, we will be left with an

m− 1×m− 1 nonsingular matrix, i.e. a nonzero cofactor.

As in Lemma 4.2.12, the rows with nonzero coefficients in this linear combination

must form a non-nearly nice subset of the rows of the column deleted matrix of C. By

Lemma 4.8.6 the only way that the combination can involve fewer than k− 1
p ln n rows is

if the rows involved formed a non-nice subset of G\(T ∪N(T )), one of whose neighbors

was the removed column. We can upper bound the number of columns whose removal

could possibly cause this difficulty by the number of vertices in G\(T ∪N(T )) that have

at least one neighbor with degree at most s in G\(T ∪N(T )), which by Lemma 4.8.6

is O( s
p ln n) = o(n).

Dropping any other column will lead to many nonzero cofactors, so we can apply

the Quadratic Littlewood Offord Lemma with q = k− 1
p ln n = k(1− o(1)) to bound the

probability that the determinant is 0, proving Lemma 4.2.13.

4.9 Proofs of Theorem 4.1.3 and 4.1.1

Proof of Theorem 4.1.3: What we will show here is that every (s − 1)−saturated

good matrix satisfies the conclusion of the theorem. This is sufficient since by Theorem

4.2.1 and 4.2.10 the graph will be both (s − 1)−saturated and good with probability

1−O(ln lnn−1/4). We will prove this result by contradiction.

Suppose that some subset W of the rows of Qn is dependent but does not contain

a nonexpanding subset of size at most s − 1. Since G is good, it much be true that

|W | > ln ln n
p .

Since G is (s − 1)−saturated, there must be a subset S0 ∈ W which is both inde-

pendent and maximal subject to not containing any nonexpanding sets of size at most

s− 1. In particular, any row in W which is not in S0 would create a nonexpanding set

when added to S0. Since nonexpanding sets are dependent, any row in W\S0 can be
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written as a linear combination of at most s− 1 rows of S0.

Now by assumption the rows of W satisfy some linear relationship

∑
i∈W

aivi = 0. (4.8)

For each row which is in W but not in S0, we substitute the corresponding linear

combination of at most s− 1 rows in S0 which equals it into (4.8). This yields a linear

relationship between the rows of the independent set S0, which must therefore have

zero coefficients. There were initially at least ln ln n
p nonzero coefficients in (4.8), and

each substitution can change at most s of them to zero. It follows that

|W\S0| ≥
ln lnn

sp
.

Each vertex in W\S0 is part of a nonexpanding set of size at most s− 1, and thus

has degree at most s − 2. However, G is by assumption good, so has at most 1
p ln n

vertices of degree this small. This is a contradiction, so Theorem 4.1.3 is proved.

Proof of Theorem 4.1.1: Again, we will show that any (s − 1)-saturated, good

matrix satisfies the conclusion of the theorem.

On one hand, it is clear that, for any S, the expression n − |S| + |N(S)| is an

upper bound for the rank of A(G). Thus it suffices to exhibit some set S for which

that expression is at most as large to the rank. To do so, we return to the block

decomposition of the proof of Lemma 4.2.13. Note that by the proof of Lemma 4.8.5

the rows of the first three blocks of A in this decomposition are independent, so we

have

rank (A) ≥ n− |T\T1|.

Conversely, if we take S = T then we have

n− |S|+ |N(S)| = n− |T |+ |T1| = n− |T\T1|,

where the first equality comes from the matching between N(S) and T1. Combining

these two equations yields the desired result.
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4.10 Further Results on the Nullspace of Q(n, p)

In this section we will use Theorem 4.1.3 and Lemma 4.2.10 to give a description of

the nullspace of Q(n, p) which holds for almost every graph. We begin by presenting a

series of facts about the minimal dependent subsets in any well-separated graph which

satisfies the conclusions of Theorem 4.1.3

Lemma 4.10.1 Let s > 0 be fixed. G be a graph which is both well-separated and

satisfies the conclusions of 4.1.3, and let S be a minimal dependent subset of V (G).

Then for sufficiently large |G|,

(1) N(S) is disjoint from S

(2) |N(S)| = |S| − 1

(3) The induced subgraph of G on S ∪N(S) is a tree.

(4) Each vertex in N(S) is adjacent to exactly 2 vertices in S.

Proof Condition (1) is just a restatement of Lemma 4.8.3. For (2), we know from the

dependency of S and the conclusions of Theorem 4.1.3 that S contains a nonexpanding

subset. By the minimality of S, that subset must be S itself, so |N(S)| < |S|. On the

other hand, if |N(S)| were at most |S| − 2, then removing a vertex from S would lead

to a smaller nonexpanding set which would therefore be dependent.

Since S is by assumption nonexpanding and of size at most s, each vertex of S must

have degree at most s, so it follows from W2 that the induced subgraph S ∪ N(S) is

a forest. If it were disconnected, then one of the components would correspond to a

non-expanding subset of S, which would contradict minimality.

We know from (2) and (3) that the induced graph on S ∪N(S) has 2|S| − 2 edges,

and that the average number of neighbors in S of a vertex in N(S) is therefore at most

2. If any vertex in N(S) has exactly one neighbor in S, then we could remove that

neighbor from S and get a smaller non-expanding subset, contradicting minimality. It

follows that each vertex in N(S) must therefore have exactly 2 neighbors in S.

It follows from Lemma 4.10.1 that for any minimal nonexpanding set S with |S| = r

there is a corresponding tree H on r vertices such that each vertex in H corresponds
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to a vertex in S, and two vertices i and j in the tree are adjacent if and only if

their corresponding vertices in S share a common neighbor in G. We refer to such a

correspondence as a neighborhood embedding of H in G. It can easily be checked

that if p < (1−ε) ln n
rn , then almost surely every such tree on r vertices will have a

neighborhood embedding in G(n, p).

For any tree H, let f : H → ±1 be the unique (up to sign) two-coloring of H. For

any S which is a neighborhood embedding of H, the vector vS which is f(H) on S

and 0 on all other vertices of G is in the nullspace of A(G), as each vertex in N(S)

corresponds to an edge adjacent to exactly one vertex of each color. Conversely, this

vS must be (up to scaling) the only vector in the nullspace whose support is equal to

S, due to the minimality of S. Combining these observations with 4.2.5 and 4.1.3, we

have therefore established

Theorem 4.10.2 Let c ln n
n < p < 1

2 , with c > 1
s . Then almost surely the every mini-

mally dependent collection of rows in Q(n, p) corresponds to a neighborhood embedding

of a tree on at most s− 1 vertices, and the corresponding vS will almost surely span the

nullspace of Q(n, p).

4.11 A Few Further Conjectures and Avenues for Research

While the results here give a description of the behavior of the rank of G(n, p) for p

down to and close to ln n
n , there remain several open questions for other values of p and

other models of random graphs.

• Is there a characterization of the dependent sets similar to Theorem 4.1.3 in the

case where p = o( ln n
n )? It seems likely that Theorem 4.1.3 can be extended to an

s which grows sufficiently slowly with n. However, that theorem is no longer true

in the case s = Θ( 1
n), as G(n, c

n) will with positive probability contain an isolated

4-cycle, which would be an expanding dependent set.

• An argument similar to Lemma 4.2.2 shows that Q(n, p) will almost surely be of

asymptotically full rank (having rank equal to n(1 − o(1)) as long as np → ∞.
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On the other hand, G(n, c
n) almost surely has a positive fraction of its vertices

isolated, so will not have close to full rank. It seems likely that

f(y) := lim
n→∞

E(rank (Q(n, c
n))

n

exists, and it would be of interest to determine this limit. Note that since the

rank changes by at most two in each step of the vertex exposure process, Azuma’s

Inequality immediately implies that the rank is highly concentrated around this

expectation, wherever it may be.

• Conversely, what is the behavior of the rank of G(n, 1−p) as p approaches 0? We

know from Theorem 3.1.1 that the matrix will almost surely be of full rank for

n−1/2+ε < p < 1
2 , but the case of smaller p seems less clear. If we assume that our

graph contains no self-loops, then one natural obstruction to non-singularity is the

presence of an isolated edge in the complement of G (which would correspond to

a pair of identical rows in G). It seems likely that this is the primary obstruction,

and that we thus have

Conjecture 4.11.1 ln n
2n is a sharp threshold for the non-singularity of G(n, 1−p).

By this we mean that if p = c ln n
2n with c > 1, then G(n, 1− p) will almost surely

have full rank (as noted above, this will almost surely not be the case if c < 1).

If we allowed self-loops (by treating the diagonal entries as being identically dis-

tributed to those above the diagonal), then the conjectured threshold would be

ln n
n , corresponding to the presence of multiple rows in Qn which are entirely 1.

• Let d > 0 be fixed, and let Gn,d be a graph uniformly chosen from the collection of

d−regular graphs on n vertices. Let Qn,d be the corresponding random adjacency

matrix. It is known that for d ≥ 3 that Gn,d will almost surely be a good expander,

at least locally. Since in the case of G(n, p) non-expansion was the main source

of singularity, this seems to suggest:

Conjecture 4.11.2 For any d ≥ 3, Qn,d is almost surely nonsingular.
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This conjecture is false in the case d = 2, as in that case Gn,d will almost surely

have components which are cycles of length 4k for some k [7, 35]. Direct compu-

tation gives that any graph containing such a component has singular adjacency

matrix.
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[15] Z. Füredi and J. Komlós, The Eigenvalues of Random Symmetric Matrices, Com-
binatorica, 1 (1981), no. 3, 233-241

[16] E. N. Gilbert, Random Graphs, Annals of Mathematical Statistics 30 (1959), 1141-
1144

[17] V. L. Girko, Circular Law Theory Probab. Appl. 29 (1984) 694-706



65

[18] G. Halász, Estimates for the concentration function of combinatorial number the-
ory and probability, Period. Math. Hungar. 8 (1977), no. 3-4, 197-211.
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