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ABSTRACT OF THE DISSERTATION

What algorithms could not be

by Walter Dean

Dissertation Director: Robert Matthews

This dissertation addresses a variety of foundational issues pertaining to the notion of al-

gorithm employed in mathematics and computer science. In these settings, an algorithm is

taken to be an effective mathematical procedure for solving a previously stated mathemat-

ical problem. Procedures of this sort comprise the notional subject matter of the subfield

of computer science known as algorithmic analysis. In this context, algorithms are referred

to via proper names (e.g. Mergesort) of which computational properties are directly pred-

icated (e.g. Mergesort has running time O(n log(n))). Moreover, many formal results are

traditionally stated by explicitly quantifying over algorithms (e.g. there is a polynomial

time primality algorithm; there is no linear time comparison sorting algorithm).

These observations motivate the view that algorithms are themselves abstract mathe-

matical objects – a view I refer to as algorithmic realism. The status of this view is clearly

related to that of Church’s Thesis – i.e. the claim that a function is computable by an algo-

rithm just in case it is partial recursive. But whereas Church’s Thesis is widely accepted on

the basis of several well-known mathematical analyses of algorithmic computability, there

is presently no consensus on how (or if) we can uniformly identify individual algorithms

with mathematical objects.

In the first chapter of this work, I attempt to illustrate the theoretical significance

of algorithmic realism. I suggest that this view is not only of foundational significance to

ii



computer science, but also worth highlighting due to the role algorithms play in the fixation

of mathematical knowledge and their relationship to intensional entities such as propositions

and properties. Chapter Two presents a formal framework for reducing computational

discourse to mathematical discourse modeled on contemporary discussion of mathematical

nominalism. Chapter Three is centered on a case study intended to illustrate the technical

exigencies involved with defending algorithmic realism. Chapter Four explores various

ways in which algorithms might be identified with models of computation. And finally,

Chapter Five argues that no such identification can uniformly satisfy all statements of

algorithmic identity and non-identity affirmed by computational practice. I suggest that the

technical crux of algorithmic realism lies in the necessity of reducing recursive specifications

of algorithms to iterative models of computation in a manner which preserves algorithmic

identity.
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Chapter 1

Algorithmic Realism

1.1 Introduction

In the beginning, there were informal mathematical procedures. Descriptions of prac-

tical methods for computing quotients, products, roots and areas can be traced to near

the beginning of the Sumerian and Egyptian mathematical traditions around 3000 BCE.

Computational methods of these sorts were first systematically described by the Greeks

and later transmitted to the Arabs who described them algebraically. By the early Mid-

dle Ages, classical methods of calculation began to be reintroduced to Europe where they

quickly replaced the ad hoc techniques which had been used for calculating with Roman

numerals or other non-positional forms of notation. These included a number of methods

which are still in use today, including Euclid’s greatest common divisor algorithm, the

“grade school” long division algorithm and the Russian peasant multiplication algorithm.

The application of computational methods of these sorts arguably represents one of the

most fundamental means we have of coming to know mathematical propositions which re-

late a function to its values – i.e. propositions we would typically state in the form f(a) = b

such as 510510/17 = 30030, 59×289 = 17051 or gcd(43928, 27149) = 17. However, through-

out much of the history of mathematics, mathematical procedures were not recognized as

constituting a class of entities which could be studied in their own right. Much of this has

changed with the advent of modern computer science. Within computer science, what were

originally treated as informal calculating techniques extraneous to the subject matter of

mathematics itself are now referred to as algorithms. These entities serve as a focus of study

in at least three of its major subfields: the analysis of algorithms, complexity theory and

the semantics and verification of programs. In the practice of these fields, it is typical for in-

dividual algorithms to be given proper names (e.g. Euclid’s algorithm), quantified over (as
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in “There does not exist a polynomial time algorithm for deciding whether a propositional

formula is a tautology”) and treated as the bearers of various computationally significant

properties (e.g provable correctness with respect to a function, running time complexity,

etc.). For all of these reasons, it seems reasonable to maintain that algorithms constitute

the notional subject matter of a field such as the analysis of algorithms in much the same

sense that we customarily speak of groups forming the subject matter of group theory or

topological spaces the subject matter of topology.

This dissertation will be devoted to trying to make sense of what it would mean to take

this view seriously in light of traditional concerns about the status of abstract objects in

mathematics. In particular, I will be concerned with the view that algorithms correspond

to a distinctive class of abstract objects, related to, but potentially distinct from, the

mathematical objects on which they operate. This view should be contrasted with the

view that algorithms – qua abstract methods of computing – either do not exist or should

be identified with the members of some other already recognized class of abstract or concrete

objects. I will refer to variants of the former view as forms of realism about algorithms and

variants of the latter view as forms of nomialism or reductionism about algorithms. My

primary technical interest will be in assessing the viability of the former thesis against the

latter two.

My primary motivation for elevating algorithmic realism to an explicit thesis about

the foundations of computer science and mathematics derives from the central role which

computational methods appear to play in our acquisition of mathematical knowledge – in

particular with respect to the verification of simple propositions of the form considered

above. In Sections 3 and 4 of this chapter, I will describe the role of algorithms in mathe-

matical practice in detail. And in Chapter 2, I will examine the various ways in which the

practice of contemporary computer science appears to take algorithmic realism for granted.

But in order to get an initial impression of what is on the table in proposing that mathe-

matical procedures like Euclid’s algorithm are themselves abstract objects, it will be useful

to first try to characterize the general notion of an algorithm from outside any particular
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theoretical framework. To this end, consider the following dictionary definition

A procedure for solving a mathematical problem (such as finding the greatest com-
mon divisor) in a finite number of steps that frequently involves the repetition of an
operation; broadly: a step-by-step procedure for solving a problem or accomplishing
some end. [151]

This definition suffers from many of the standard failings of dictionary entries – for instance,

it defines an algorithm as being a procedure, without further specifying what makes some-

thing a procedure. This is a problem we will frequently encounter in seeking a fully explicit

definition of algorithm in terms of elementary or non-procedural notions. However, it turns

out that the foregoing definition does a substantially better job at characterizing how the

notion of algorithm functions in contemporary mathematical practice than do many stan-

dard computer science textbooks, most of which either provide overly general definitions

or circumvent matters of definition by citing features of individual examples.1

I will thus take the preceding definition as the basis for collecting several common

observations about algorithms which will serve to guide my discussion in this chapter:

Algorithms are mathematical procedures Algorithms are typically described as pro-

cedures, rules, techniques or methods for performing mathematical calculations. While

it is difficult to break into this circle of terms from the outside, conventional wisdom

suggests that an algorithm is a procedure for operating on mathematical objects in

much the same way that a recipe is a procedure for operating on culinary ingredi-

ents or a voting method is a procedure for operating on ballots. In particular, each of

these sorts of entities is standardly described as taking a class of items as inputs (e.g.,

natural numbers, eggs, marked ballots, etc.) and returning an output (e.g., a natural

number, completed dish or elected candidate). They are also typically composed of

instructions which are expressed as imperative statements (e.g., “Add the values of

1The former characterization applies to most popular modern textbooks such as [24], [125], [46] or [57]. A
partial exception to this generalization is Donald’s Knuth’s seminal and encyclopedic survey of algorithmic
analysis [72]. Knuth devotes most of the first chapter of the first volume of this work to an attempt to
provide a foundationally sensitive analysis of the notion of algorithm. He cites five properties of algorithms
which are also present (at least implicitly) in the definition cited above: finiteness, definiteness, input,
output and effectiveness. However, not only does Knuth fail to provide a general definition of procedure,
several of the specific claims he makes about algorithms (e.g. that an algorithm halts on all inputs) are
not in accord with contemporary usage. For both of these reasons, I will postpone a detailed exposition of
Knuth’s otherwise well-developed analysis until Chapter 5.
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n and m,” “Beat the eggs,” “Count the number of first place votes received by each

candidate”) and that are repeatable in the sense that may be applied to different

inputs to yield different outputs on different occasions.

Algorithms are used to solve mathematical problems In almost all instances where

we employ a name or definite description to denote an algorithm, this procedure was

introduced expressly to solve a mathematical problem (canonically, that of computing

the values of a function) in which we had some prior interest. For instance, Euclid’s

algorithm was introduced to compute the greatest common divisor of given pairs

of natural numbers, Mergesort was introduced to sort lists of natural numbers,

Strassen’s algorithm was introduced to multiply matrices, etc. In order to use an

algorithm to solve a problem it must be carried our or executed for a particular

input. This typically involves carrying out the constituent steps in terms of which it

is specified.

Algorithms are finitary Most authors distinguish algorithms from mathematical proce-

dures in general by requiring that the former but not the latter must satisfy three

related finiteness conditions. The first of these is that an algorithm must be finitely

specifiable – i.e. describable using a finite number of primitive expressions of which

the canonical example is a statement in a programming language. This is meant

to rule out mathematical procedures in whose execution each step is mediated by

one of infinitely many cases instructions or whose execution depends on evaluating

a conditional with infinitely many which must be specified individually. The second

standard finiteness condition which is imposed concerns the nature of the primitive

instructions themselves. These are typically required to describe effective mathemat-

ical operations – i.e. operations which can be carried out by a idealized finitary agent

using only finite resources. Finally, it is also occasionally required that an algorithm

return an output after executing at most finitely many primitive steps for all inputs in

its domain. It should be noted that there are examples of procedures which are cus-

tomarily referred to as algorithms which lack either or both of the latter properties.

Thus despite the fact that almost all individual procedures which will be considered
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outside of this chapter satisfy all three finitariness requirement, I will not take the

latter conditions as essentially attaching to our most general concept of algorithm.

Algorithms involve repetition Most well-known algorithms are related to methods for

solving mathematical problems which repeatedly reduce problem instances to other

simpler instances. Such a reduction is typically achieved either through the use of it-

eration – i.e., the repeated execution of one or more computational steps as controlled

by a parametric or “loop” variable – or recursion, i.e. the repeated structural decom-

position of a problem instance into a simpler one generated by a predetermine means

of structural or mathematical decomposition. While the use of these techniques is

not strictly required for a procedure to be counted as an algorithm in practice, virtu-

ally all non-trivial examples of algorithms which are used in mathematics use either

iteration or recursion. Accounting for the formal properties of these operations thus

turns out to be one of the central sources of technical complexity in constructing

mathematical models of informally-specified algorithms.

Algorithms are abstract Algorithms are standardly specified linguistically, canonically

as sequences of imperative-like statements over a natural or formal language. It is,

however, conventional to distinguish between such specifications and the algorithms

which they are taken to denote, in much the same way that we typically distinguish

between a sentence and the proposition which it is taken to express. For this reason,

algorithms are often treated in practice as being abstract in much the same sense as

propositions, i.e., they are taken to be mind- and language- independent bearers of

procedural “meanings.”

Again, I will not treat the foregoing list of characteristics as a definition of the concept

algorithm. But since the characteristics just described are at least typical of the sorts of

procedures which are referred to as algorithms in practice, it is reasonable to begin our

discussion of algorithmic realism by considering what it would mean for there to exist

abstract objects possessing these properties simultaneously. One apparent commitment of

this view is that there is an abstract object corresponding to the denotation of each term we

employ in practice to make apparent reference to a mathematical procedure. For instance,



6

when a computer scientist or mathematician makes a statement like “Euclid’s algorithm

computes the greatest common divisor of pairs of natural numbers” or “Mergesort has

running time complexity O(n log2(n)),” the algorithmic realist must presumably maintain

that there are abstract objects corresponding to the denotation of the terms “Euclid’s

algorithm” and Mergesort. He must additionally hold that there is some sense in which

these objects have some or all of the common properties of algorithms just enumerated

in addition to those which are explicitly predicated of them. For instance, the algorithm

realist must hold that corresponding to the term “Euclid’s algorithm” there is an abstract

object AEuclid which not only is a finitely specifiable procedure which operates on pairs

of natural numbers but which also may be repeatedly executed so that it outputs single

natural numbers. And moreover he must also hold that, suitably interpreted, the operation

of AEuclid may be taken to induce the mathematical function gcd(x, y) which will be defined

explicitly below.

In Chapter 2, I will present a general framework for making sense of these requirements

in the context of traditional standards for assessing ontological commitment both inside

and outside mathematics. For the time being, however, it should be clear that one central

burden of the algorithmic realist is to show how there can be a class of abstract objects

A such that for all procedure-denoting terms t, there exists an A ∈ A such that t can be

taken to denote A. But since it is the realist’s view that the reference of t is identical to

A, he must additionally hold that A possesses structural features which may be identified

with properties which are predicated of t in practice – e.g. properties like having running

time O(log2(min(n,m)), using recursion, employing a stack, etc. In order to argue for

this, he will have to present an argument that properties of these sorts can reasonably

be identified with features of the members of A, i.e. that a property like having running

time O(log2(min(n,m)) can be conceptually analyzed in terms of the structural properties

possessed by certain members of A. And in addition to this, an algorithmic realist will

need to make sure that his assignment of denotations to procedure denoting terms is inter-

nally consistent in the sense of comporting with our pre-formal judgments of when distinct

procedure-denoting terms t1 and t2 refer to the same algorithm, and when they refer to

different algorithms.
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As will become clear in subsequent chapters, the practice of even isolated fragments

of mathematics and computer science already impose sufficiently many constraints on the

properties that A must possess that even defining such a class will be a tall order for

potential algorithmic realists. This said, our everyday discourse about algorithms has many

of the hallmarks of what might be called “naive realism” about algorithms – i.e. we are

willing to speak without hesitation as though algorithms were abstract objects of a certain

definite sort. That such a view is indeed characteristic of our current practices is evident

from the fact that statements such as the following can readily be found in computer science

textbooks and journal articles:

(1.1) a) Mergesort has running time O(n log2(n)).

b) There is an algorithm for deciding whether a sentence of propositional logic is

valid.

c) There is a polynomial time algorithm for determining whether a natural

number is prime.

d) There does not exist an algorithm for determining whether a sentence of

predicate logic is valid.

e) There does not exist a comparison sort algorithm with running time less than

O(n log2(n)).

f) The algorithm expressed by the LISP program π1 is the same as the algorithm

expressed by the C program π2.

Without going into great detail, each of the foregoing sentences instantiates a linguistic

form whose grammatical acceptability (potentially within a specialized practice) is tradi-

tionally thought to signal ontological commitment. For instance, sentence (1.1a) contains

an (apparent) proper name (i.e., Mergesort) which serves as the (apparent) subject of a

subject predicate statement. Sentences (1.1b,c,d,e) all contain quantifiers whose (apparent)

ranges are either the class of all algorithms (1.1b,d) or a subclass thereof (1.1c,e). And

sentence (1.1e) has the (apparent) form of an identity between two complex singular terms

which are claimed to denote the same item.
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It goes almost without saying that the acceptability of statements analogous in form to

those in (1.1) containing terms making (apparent) reference to or quantifying over entities

like sets, numbers, propositions, persons, colors, etc. have attracted a great deal of attention

among philosophers. It is, for instance, the acceptability of statements about natural

numbers analogous in form to (1.1a) and e) (e.g., “17 is prime,” “The number of Supreme

Court justices is equal to the number of planets”) which motivated Frege [39] to claim that

natural numbers not only existed but had the logical type of objects. And the acceptability

of sentences about propositions analogous in form to (1.1b) or d) (e.g. “Bush believes all

the propositions Cheney believes,” “There is something which Libby knew which Fitzgerald

did not”) has motivated a number of elaborate programmes which seek to develop the view

that propositions must be treated as abstract objects (e.g. [119], [25], [6]).

As I will examine further in the next section, questions about the ontological status

of algorithms bear a number of affinities to analogous questions about the status of both

natural numbers and propositions. Such parallels aside, however, what is potentially most

surprising is how little attention statements like (1.1) have received from not only math-

ematicians and computer scientists, but also logicians and philosophers of mathematics.

For there are a variety of well known proposals which attempt to elucidate the nature of

natural numbers and propositions, most famously by attempting to identify them with the

members of classes N or P consisting of various sorts of pure or impure set theoretic struc-

tures. But as matters currently stand, very little thought has been put into how to define

an analogous class A of abstract objects which can reasonably be taken to correspond to

algorithms.2 There is thus currently no consensus on how, or if, this can be accomplished.

And consequently, questions about the ontological status of algorithms – and in particular

about the sustainability of algorithmic realism itself – remain largely unsettled.

Even though my ultimate intention in this work will be to argue against algorithmic

realism, the lack of a broad philosophical (or even foundationally oriented) literature about

2There are two partial exceptions to this in the form of programmes of Yainnis Moschovakis and Yuri
Gurevich, both of which attempt to provide a definition of A which is grounded in foundational considera-
tions about the general notion of algorithm. However neither of these proposals is widely known or accepted.
And since a variety of conceptual and technical desiderata need to discussed before these proposals can be
properly evaluated, I will postpone a detailed consideration of these proposal until Chapter 6.
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algorithms means that part of my burden will be to illustrate why algorithmic realism is a

significant view and also to scout out ways in which it might be developed which are sym-

pathetic to its goals. Note, however, that while there is very little literature which directly

addresses ontological concerns about algorithms, the general notion of effective mathemati-

cal procedure is invoked in a variety of different theoretical contexts for a variety of different

purposes. This is obviously most apparent in branches of theoretical computer science such

as the analysis of algorithms of which, as I have already observed, algorithms form the

presumptive subject matter. But it is easy to see that an abstract notion of procedure

possessing most or all of the properties described above is also an important part of the

theoretical inventory of other fields such as constructive and intuitionistic mathematics,

cognitive science, functionalism in philosophy of mind and language, and various subfields

of economics and social choice theory such as game theory, mechanism design and voting

theory.

A truly general survey which is sensitive to the detailed role played by mathematical

procedures in each of these disciplines would be quite wide-ranging. For not only would

such a survey need to classify and synthesize the role of procedures in the context of a

variety of different theoretical developments, but it would also have to account for cases in

which there was not unanimity within a given field about their status. Sorting out details

of this sort would thus require not only that we enter into a detailed examination of the

theoretical commitments of each of the fields just mentioned, but also in some cases that we

sort out tensions between different views about their foundations. And since this would be

a major undertaking in its own right, in the sequel I will for the most part treat questions

pertaining to the ontological status of algorithms largely as sui generis problems arising in

computer science and, to lesser extent, in classical mathematics.

But although this decision will help to streamline my presentation below, it has the

unfortunate consequence of ignoring many of the theoretical applications of the notion of

algorithm which are likely to be most familiar to philosophers. Among these are the use of

a notion of abstract algorithm to define an intermediate level of psychological explanation

in cognitive science and philosophy of mind (cf., e.g., [110], [83]), to give the meanings of

the propositional connectives in intuitionistic logic (cf., e.g, [143]) and to state the truth



10

conditions of sentences in the context of verification theories of meaning (cf, e.g., [30]).

As these are conceptually distinct applications of the general notion of algorithm, it is

likely that these and other theoretical developments impose a variety of demands on a

general theory which seeks to regard algorithms as abstract objects in their own right.

And a detailed examination of these fields would be likely to yield a rich array of adequacy

conditions which constrain any such theory that is adequate for their foundational purposes.

While I do not wish to downplay the significance of these constraints, there are reasons

beyond exegetical expediency which advocate in favor of limiting the set of theoretical

desiderata that will constrain my discussion of algorithmic realism. Primary amongst these

is that while it is easy to find evidence of realism about algorithms in the foundational

literature of a variety of different subjects other than computer science and mathematics,

it is rare to find detailed discussion about the nature of algorithms themselves or what is

entailed by regarding them as abstract objects. What is most common in cognitive science

and philosophy of mind is to simply assume that theoretical computer science already

provides a theoretically perspicuous notion of algorithm.3 And what is most common in

intuitionistic and constructive mathematics is to either treat the notion of algorithm as a

conceptual primitive in terms of which other notions (such as that of intuitionistic proof)

are defined, or alternately to replace it with one of several technical notions which are

motivated by epistemic concerns which are largely extraneous to any conceptual analysis

of the notion of algorithm itself.4

Although much more can be said about how algorithms function as a sort of theoretic

posit in the practice of cognitive science and intuitionism, it is doubtful that a more careful

examination of these fields will will shed substantial light on the sorts of basic ontological

questions which directly bear on algorithmic realism. In the sequel, I will thus take classical

3This is, of course, something of a simplification. Among book length treatments, for instance, Pylyshyn
[110] and Harnish [58] both discuss the general notion of algorithm in detail as well proposing constraints
which are proposed by an independently motivated theory of so-called cognitive architecture. However both
this notion and the general notion of algorithm they employ are explicitly motivated by a series of analogies
to notions drawn from theoretical computer science, most notably those of a machine model and a formal
programming language.

4The former route is adopted by theorists like Dummett [31] and Martin-Löf [84] who favor a linguistic
or epistemic characterization of intuitionistic truth, while the latter is adopted both in the constructive
mathematics practiced by the Markov school [82] or intuitionistic mathematics based on the well-known
realizability semantics introduced by Kleene [65] (also cf., e.g., [142]).
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mathematics and computer science as both the primary sources of conceptual and technical

constraints which bear on the form a foundational theory of algorithms might take as well

as the primary contributors of formal models of the sort which might inform such a theory.

I have already noted the rationale for choosing to look on work in computer science in

this manner: not only do individual algorithms form the presumptive matter of one of its

major subfields (the analysis of algorithms), but the general notion of algorithm described

above has informed the development of several of its other branches (computability theory,

complexity theory, programming language semantics, formal verification, etc.). Theoretical

computer science thus provides not only the more clearcut cases of apparent ontological

commitment to algorithms, but also the precisely articulated bulwark of theoretical con-

straints that a general theory of algorithms would have to satisfy.

In comparison to the relatively straightforward theoretical role which algorithms appear

to play in computer science, the status of algorithms within classical mathematics is more

complex. For note that unlike intuitionistic mathematics (wherein mathematical objects

are often identified with so-called mental constructions which have an overly procedural

character), the subject matter of classical mathematics is often described in terms which

explicitly forbear a procedural understanding of mathematical objects. This is to say that

mathematical objects conceived classically correspond to structures which are held to be

both abstract (in the sense of existing outside of space and time) and extensional (in the

sense of existing independently of means by which we might grasp or describe them). But

as I will discuss further below, algorithms are standardly understood as temporal (in the

sense that they operate within time, at least in an abstract sense) and intensional (in the

sense of corresponding to means by which extensional functions or properties are grasped or

determined). It thus reasonable to think that whatever metaphysical view we adopt about

mathematical objects in general, there will be no reason to say anything about the status

of algorithms in particular for the simple reason that they do not appear to constitute part

of the domain of classical analysis or number theory.

For this reason, the relationship between mathematical practice and algorithmic realism

may initially seem obscure. But as I will discuss at greater length in Sections 3 and 4, the

algorithm contributes to contemporary mathematics not by serving to fix a new domain of
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abstract objects which are themselves the subject of mathematical investigation, but rather

by serving as provably sound or correct methods by which we come to know various facts

about other mathematical objects. In other words, although algorithms may not contribute

to the ontology of contemporary mathematics, they form an important part of the epistemic

apparatus which allows us to discover which mathematical statements are true.

The fact that algorithms serve this epistemic role in mathematics is also reflected promi-

nently in computer science. For note the study of individual algorithms has historically

been motivated primarily by a desire to discover new means of deriving novel mathematical

statements in traditional subjects like graph theory or abstract algebra, not by a desire to

discover or analyze the properties of procedures in their own right. For instance, it was

a preexistent desire on the part of mathematicians to multiply large matrices which ulti-

mately lead to the discovery of efficient (i.e. < O(n3)) matrix multiplication algorithms

such as that of Strassen [137]. And thus although a wide array of distinctive techniques and

formal methods has been developed by computer scientists to study algorithms on their

own, much, if not all of this research is aimed at developing and verifying computational

methods which are ultimately employed in mathematics.

As consequence of such research, computational methods have come to play a significant

role in areas of mathematics such as number theory or topology which have traditionally

been conceived of as abstract and lacking in concrete computational content. The extent of

this role started to be acknowledged by philosophers of mathematics somewhat belatedly

as a consequence of the original Haken-Appel proof of the Four Color theorem [2], [3]. As

is well-known, this proof involved an exhaustive case analysis of over 1400 distinct graph

configurations which was originally conducted by the use of a graph theoretic algorithm –

call it A – which attempted to reduce each of these configurations G to a simpler planar

graph G′ with the property that G′ is four-colorable if and only if G is. Due to the large

number of cases which had to be surveyed, Haken and Appel implemented the process of

generating the configurations and applying A by writing a computer program π which was

then implemented on a digital computer P . The output of the execution of π on P (which

indicted that each of the 1400 configurations reduced to one which was four-colorable) was

then cited as a step in the proof of the theorem.
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As is also well-known, the publication of this proof was considered controversial by both

the mathematical and philosophical communities for a number of reasons. Among them

was the fact that an essential part of the Haken-Appel proof which consisted in the case

analysis described above which was carried out by a physical computing device – namely,

the computer P . On this basis Tymoczko [145] famously argued that in accepting the

Four Color theorem on the basis of the Haken-Appel proof, we were essentially expanding

the canons mathematical justification. In particular, Tymoczko argued that in accepting a

proof partly consisting of a report on the behavior of the P , we were allowing that a variety

of empirical statements concerning P could serve as premises to a legitimate mathematical

proof. These premises would, among other things, describe the initial physical configuration

of P (e.g. how the program π was stored in its registers) and also its physical evolution

during the course of its operation. Tymoczko argued that as we cannot know that these

premises are satisfied a priori, the Haken-Appel proof confers a different “quasi-empirical”

sort of justification on its conclusion than do traditional mathematical proofs.

Tymoczko has subsequently been taken to task by a number of other commentators

for misidentifying the moral of the Haken-Appel proof and its subsequent acceptance by

the mathematical community.5 For present purposes, however, I do not so much wish

to take issue with the conclusion he draws about the status of Haken-Appel proof, but

rather to point out that the attention paid to this case has the unfortunate consequence

of causing many commentators on mathematical knowledge to either downplay or overlook

the distinctive role played by algorithms in mathematical demonstrations at large. But it is

precisely in the context of this proof which general questions about the nature and status of

algorithms have come to the surface in the recent literature of philosophy of mathematics.

In order to delimit yet further the range of issues with which we will have to be concerned

in subsequent chapters, it will thus be useful to conclude this introductory section by briefly

outlining why I believe that questions about the ontological status of algorithms typically

supersede their physical implementation in the context of discussion about mathematical

knowledge.

5See in particular Detlefsen and Luker [28] for a treatment which is largely in line with the interpretation
adopted herein.
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The fundamental observation in this regard is that before any algorithm A can be

justifiably used in order to derive a purely mathematical conclusion, A must be proven

correct within classical mathematics itself. I will have much more to say about what

this means in Section 4, but for the time being the central point can be understood by

considering a simple example concerning prime numbers. To this end, let p denote the

characteristic function for the set {n ∈ N : n is prime} (i.e. for all n, p(n) = 1 if n is

prime and p(n) = 0 otherwise). Now consider the statement

(1.2) p(170141183460469231731687303715884105727) = 1

which expresses the fact that the natural number 170141183460469231731687303715884105727

(which is equal to 231 − 1) is prime. This statement was originally shown to be true by

Lucas in 1879 without the use of any form of mechanical computing machinery. However

Lucas’ demonstration did make use of an algorithm which has come to be known as the

Lucas-Lehmer primality test. This method allows us to determine whether a Mersenne

number n (i.e. an integer of the form 2p− 1 for prime p) is prime by computing a sequence

of numbers S0 = 4, Si+1 = S2
1 − 2 for i ≤ 2. Upon computing this sequence, the algorithm

tells us that we should output 1 (indicating that this number is prime) just in case Sp−2 is

divisible by 2p − 1 and 0 (indicating that it is not prime) otherwise. Call this algorithm L.

The fundamental observation mentioned above can be applied to this case as follows.

Given that Lucas derived (1.2) on the basis of carrying out the algorithm just described

for p = 31, he would not have been justified in claiming that this statement was true (or

equivalently that he knew (1.2)) unless he had also been able to demonstrate that the

algorithm L was reliable in the following sense:

(1.3) For all primes p, the result of applying L to p is 1 if and only if 2p − 1 is prime.6

6The “only if” direction of this biconditional expresses what is traditionally described as the correctness

of L – i.e. the claim that L is sound in the sense that if it outputs 1 on input p, then 2p − 1 really is
prime. The “if” direction, on the other hand, expresses that L is complete in the sense that if 2p − 1 really
is prime, L will produce output 1 on input p. Since in this case the correctness of L is consistent with the
case in which it always outputs 0 or produced no output at all, correctness and completeness not only are
distinct requirements but both are required to ensure that L is usable in practice. In the typical case we
will consider below, we will speak of proving an algorithm A correct with respect to a function f . In this
case, correctness and completeness are both expressed by the statement “for all x ∈ dom(f), the result of
applying A to x is equal to f(x).”
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The necessity of proving such a statement before concluding on the basis of the fact that

L outputs 1 for input 31 as indicating that (1.2) is true ought to be apparent from the

description of L alone. For note that since this description is not transparently related to

the traditional definition of primality, we possess no warrant for using this procedure to

test 2p − 1 for primality until such a result were to be demonstrated.

The foregoing observations appear to apply regardless of whether L is to be carried out

by computer or “by hand” (as in the case of Lucas’s original derivation). For note that

even though the latter sort of derivation is transacted by a human mathematician (and

hence, we may assume, will not depend on the same sort of extra-mathematical hypotheses

which are required to ensure the correct outcome of a computer derivation), there will be

no warrant for believing in its conclusion unless L has previously been proven to have the

property expressed by (1.3). And as such, the availability of the same sort of correctness

proof for the algorithm A employed in the Haken-Appel proof is also a prerequisite for

demonstrating that our belief in its conclusion is also justified.

The general question of whether and how we can prove that an algorithm A is correct

with respect to an antecedently-defined mathematical function f is thus the issue which

arises when we wish to use A to derive a statement about the values of f . And since we have

been using such methods in mathematics for millennia, the necessity of asking this question

both predates Tymoczko’s particular concerns about the status of the Haken-Appel proof

and also has a considerably wider significance with respect to the epistemology of mathe-

matics. In Section 4, I will argue in detail that the necessity of proving algorithms correct

before they can be used in mathematical demonstration represents the single most signifi-

cant respect in which classical mathematics appears to be invested in algorithmic realism.

For as I will argue there, it is precisely in the context of constructing correctness proofs

that we must construct abstract mathematical representations of individual algorithms.

And this at least appears to suggest that mathematics is implicitly committing to recog-

nizing that, like the items on which they operate, individual algorithms are mathematical

objects in their own right.

However, in order to understand what is involved in such a claim, we must first get some

impression of what it means to regard an individual algorithm as an object of any sort. The
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relevant considerations here derive from a diverse range of sources, including traditional

metaphysics, the philosophy of language and of mathematics, as well as the theoretical

practices of mathematics and computer science themselves. A thorough exposition of this

subject must hence await subsequent chapters. However as I hope to demonstrate in the

next section, some purchase on what it means to regard an algorithm as an abstract object

can be gained by recording a number of systematic affinities which discourse about algo-

rithms bears to discourse about other traditionally recognized classes of abstract objects.

And it is to this task that I now turn.

1.2 Algorithms and formal ontology

In order to best understand the claims of algorithmic realism and also to motivate

the sort of theory which I believe has the best chance of vindicating such a view, it will be

useful to begin by considering some reasons why we do not at present possess a foundational

theory of how procedures “fit in” relative to the classes of abstract entities whose existence

is traditionally recognized in philosophy and mathematics. One way to begin to get a

handle on this is to note that it is traditional to compare algorithms to two different sorts

of intensional entities: propositions, and functions in intension. Of course since these

notions are themselves often taken to be unclear or otherwise problematic, it is doubtful

whether prior work in philosophy of language or intensional logic can be of direct help to

the algorithmic realist. But at the same time, it also turns out that there that are a number

of operational affinities between algorithms and how these other entities are traditionally

described. And since it will often be useful to allude to them at various points, it will be

useful to go about making these parallels explicit.

I have already noted a number of similarities which are often drawn between algorithms

and propositions: both sorts of entities are standardly described as being specifiable by

another class of linguistic expressions which are taken to express them. In the case of

propositions, this other class is taken to correspond to sentences of either a natural or a

formal language. And in the case of algorithms, this class may include programs expressed

in either a formal programming language such as C or LISP or, more broadly, sequences of

instructions written in a natural language idiom known as pseudocode of which more will
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be said below. There is thus canonically a many-one relationship between a proposition P

and the class of sentences ϕ1, ϕ2, . . . which express it, just as we will see that is also typically

a many-one relationship between an algorithm A and the class of programs π1, π2, . . . which

express it. As noted above, it is for this reason that both propositions and algorithms are

commonly taken to be abstract. For both sorts of entities are the kinds of things which

not only must be referred to indirectly (i.e., by constructing a sentence or program which

expresses them) and are also such that they maybe specified in different ways (i.e., by

distinct sentences or programs). Thus in neither case does it seem reasonable to identify a

proposition with a sentence or an algorithm with a program.

If we now attempt to explain further what it means for a proposition to be an object

unto itself, we arrive at the customary characterization that such an entity is a language-

independent entity which intrinsically carries the meaning of the sentences which express

it. As such, propositions are typically assigned the theoretical role of being the primary

bearers of truth and falsity (sentences having these properties only in the derivative sense

of expressing propositions). However, they are also traditionally conceived as intensional

entities in the sense that if we wish to speak of them (as did Frege [37]) as denoting a truth

value, then we must recognize that many non-identical propositions – e.g., those expressed

by “There are eight primes less than 20” and “There are eight planets” – denote the same

truth value. For this reason, propositions are also standardly taken to correspond to objects

of propositional attitude such as belief and knowledge (for note that we famously cannot

infer from “S believes that there are eight primes less than 20” that “S believes that there

are eight planets”).

If we similarly try to think in abstract terms about what it means to treat algorithms

as objects, we may note that they possess some, but not all, of the features traditionally

associated with propositions. On the one hand, we will see in the next chapter that it is

largely consistent with the methodology of computer science to characterize algorithms as

being programming-language-independent entities which bear the meaning of the programs

which express them. Consistently, however, with the comparison of programs to sequences

of imperative statements in natural language, it is not customary to speak of a programming

language as expressing statements which are either true or false. Thus there is no precedent
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for claiming either that algorithms are bearers of truth or falsity, or that they denote truth

values.

Further reflection reveals that the system of analogies between propositions and al-

gorithms can be extended if we adopt the popular view that propositions are structured

entities. For suppose that we regard a proposition P as being composed of constituents

which are composed of components corresponding to the grammatical structure constituents

of a sentence ϕ by which it is expressed. For instance, in the case that ϕ has the form ψ(a)

(where ψ(x) is a predicate and a is a singular term), we may take P to correspond to a

structured complex formed from an entity a which serves as the argument to (or saturates)

an entity corresponding to ψ.

Although the view that propositions must be taken to be structured objects is itself

quite standard, there is no equally standard view about the sorts of entities to which a

and ψ must correspond. For present purposes, however, let us also adopt the Fregean

view according to which for all linguistic expressions α, we must distinguish between their

reference α and their sense α (where, of course, the reference of an expression is what it

denotes – e.g. an object in the case of a name, a set (let’s say) in the case of a predicate – and

its sense is a mode of presentation of its reference). On the Fregean view, the components

of a proposition (or what he referred to as a thought) are the sense of the grammatical

constituents of the sentence which expresses it. So in the case under consideration, a

should be taken to be a – i.e., a means of picking out a, potentially, as the object satisfying

a complex description customarily associated with a – and P should be taken to be P , i.e.,

per Dummett [29], a means of deciding for an arbitrary object, whether it is a member of

the set P .

If we adopt this familiar (although largely schematic) view of structured propositions,

it is now possible to extend our previously stalled discussion of the relationship between

algorithms and propositions. For consider the logical-cum-grammatical role procedure-

denoting terms typically play in sentences. As I will discuss at greater length in Chapter

2, a term like Euclid (which purportedly denotes Euclid’s algorithm) canonically appears

in two grammatical frames, one of which is exemplified by a sentence of the form

(1.4) Euclid(6647, 5491) = 17.
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Note that in this sentence, the term Euclid does not function as a grammatically well-

formed sentence on its own (either declarative or imperative). Rather it plays the role of

a so-called functional expression – i.e. an expression like sin(x) or x + y, which denotes

a function – and in (1.4) it acts as an (apparently proper) name. On the basis of this

observation, there should be no expectation that the item denoted by the expression Euclid

itself either bears or denotes a truth value. Rather, the form of (1.4) suggests that the

reference of Euclid should be taken to be a function of type N × N → N, i.e. the sort

of entity which may be applied to pairs of natural numbers (such as those denoted by the

numerals 6647,5491) so as to return another natural number.

There is, however, a problem with this view unless we say something additional about

the general notion of function. For note that on the standard modern understanding, a

function f : X → Y is a set of ordered pairs which is a member of the set XY . On this view,

the denotation of a functional expression of type N×N→ N, such as x+y, is simply the set

p = {〈n,m, q〉 : n,m, q ∈ N ∧ n+m = q}. And from this, it would follow that we ought

to assign as the denotation of Euclid the set g = 〈〈n,m, q〉〉n,m, q ∈ N ∧ gcd(n,m) = q

(where gcd(x, y) denotes the greatest common divisor function). But now note that it is easy

to define other algorithms A which also compute the function g, meaning that a statement

of the form A(n, m) = q will be true just in case a statement of the form Euclid(n, m) = q

is true. One such algorithm is the function NaiveGCD which I will discuss in Section 4.

But now consider another grammatical frame in which the expression Euclid may also

appear:

(1.5) Euclid has running time O(log2(min(n,m)).

In this instance, it may appear as though Euclid is functioning as a proper name instead

of a functional expression. This corresponds to the view I will ultimately adopt in Chapter

2. However, the mere grammatical acceptability of (1.5) is not enough to yield this conclu-

sion. For note that it is routine in mathematical practice for one and the same functional

expression to appear polymorphically – i.e. as a grammatical constituent of two different

logical types. This is witnessed, for instance, by the acceptability of both

(1.6) a) sin(π) = 0,
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b) sin(x) is continuous.

According to the standard analysis of these sentences, sin(x) would be taken to denote the

same function (i.e., set) s ∈ RR in both cases. In the case of (1.6a), this expression is applied

to the constant π, yielding a complex functional expression which denotes a number. This

sentence is true because the value of this functional expression (as determined by applying

s to the denotation of π) is equal to the denotation of the constant 0. And in the case of

(1.6b), sin(x) functions as an argument to the predicate “is continuous.” This sentence is

true because the set s is a member of the denotation of this predicate (i.e., the set of sets

corresponding to continuous functions on R).

This leads us to ask whether the same analysis can be applied in order to provide a

uniform account of the role of Euclid in statements (1.4) and (1.5). To see that it cannot,

it suffices to consider the additional statement

(1.7) NaiveGCD has running time O(log2(min(n,m)).

As we will see in Section 4, this statement is false. Per my original characterization of the

manner in which an algorithmic realist must treat a statement of this form, this must be

taken to mean that whatever object is taken as the denotation of the term NaiveGCD

fails to have the property expressed by “has running time O(log2(min(n,m)).” But ac-

cording to the current proposal, this object is just the function g which we are also taking

as the denotation of Euclid. It should follow, however, from this fact together with

(euclidGrammar2) (which we will see to be true in Section 4), that (1.7) is true.

Philosophical sophisticates will immediately recognize the foregoing as a standard case

of substitutivity failure. In somewhat more detail, if we assume that algorithm-denoting

terms like Euclid denote functions (in particular, the functions which we would standardly

say are computed or induced by the algorithm denoted by the term), then we ought to be

able to conclude that both Euclid and NaiveGCD denote the function g. But from this,

we ought to be able to infer (1.7) from (1.5) in conjunction with the identity Euclid =

NaiveGCD.) But since this latter statement is not true, something must have gone wrong

with the argument.

On the model of many other well-known instances of substitutivity failure, the foregoing
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consideration would standardly be taken to demonstrate that the denotations of procedure

denoting terms – at least as they occur in statements like (1.5) and (1.7) – cannot be taken

to be functions. Note, however, that these statements do not, at least on the face of things,

appear to introduce the sort of semantic environments in which substitutivity failures are

known to occur. In particular, they contain neither propositional attitude verbs nor modal

operators of the sort which are standardly taken to flag so called intensional contexts –

i.e. grammatical frames Φ(x) in which substitution of co-denoting expressions does not

preserve truth value.

In treating cases of this sort it appears that we have two options. On the one hand, we

can take expressions of the form “ is/hasΨ”, where Ψ denotes a property of procedures

(such as having running time O(log2(min(n,m))), as introducing a new class of intensional

contexts. And on the other, we can reject the claim that a procedure-denoting term like

Euclid denotes the function which this procedure computes in favor of assigning it some

other form of denotation. On the basis of a combination of conceptual and technical

considerations, I will argue in Chapter 2 that the latter option provides for a more uniform

interpretation of procedural discourse of the sort we have been considering and is thus the

preferable option.

But note that regardless of how we resolve this logical issue, we are still left with the

problem of saying what sort of item must be assigned to the terms Euclid and NaiveGCD

as they appear in (1.5) and (1.7) so that the former is true and the latter is false. If we

adopt the former proposal and regard these statements as composed of names and matrices

introducing intensional contexts, this questions amounts to inquiring after the sense of

Euclid and NaiveGCD. However since we are going to proceed in the manner announced

in the previous paragraph, this question amounts to inquiring after their reference.

As I suggested in Section 1, accounting for the reference of such expressions is the

question which the algorithmic realist must ultimately answer. And while the foregoing

considerations do not bring us any closer to answering it directly, they at least suggest

another avenue to consider. For although we have seen that it is not viable to identify the

reference of Euclid and NaiveGCD with a function when this notion is understood in

the now standard set theoretic sense, there is another traditional way of explicating this
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notion. In particular, while it is common to all understanding of the notion function that a

function f with domain X and range Y is mapping that takes members of X as arguments

and yields members of Y as values, the notion of such a mapping was not always understood

extensionally – i.e. identified as a set theoretic correspondence given by a subset of X ×Y .

As I will discuss somewhat further in Section 3, it is generally said that the original

notion of function employed in mathematics was intensional. On this understanding, a

function f : X → Y is understood as being something closer to a rule which induced a

mapping from X to Y – i.e. some means of taking members of X and constructing or

deriving members of Y . In canonical cases, such rules were given by expressions of cer-

tain privileged forms – originally polynomials, but later expressions formed transcendental

functions, differentials and infinite sums and products. For note that, at least to a first

approximation, an expression such as a polynomial a1x
n + a2x

n−1 + . . . an−1x+ an can be

seen as a rule for mapping real numbers to other real numbers by applying the operations

of multiplication and addition.

Although a characterization does not amount to a definition of what it is to be a so-called

function in intension, there at least exists a tradition (which has now largely been taken

over by constructive and intuitionistic mathematics) for regarding functions as something

other than sets. And it may also be noted that there exists an independent motivation for

acknowledging such a distinction between extensional and intensional notions of functions

which is grounded in classical substitutivity failure arguments of the sort just considered.

For note that we cannot conclude from the premises “S believes that n2 is monotonic”

and n2 =
∑n

i=1 2i − 1 that “S believes that
∑n

i=1 2i − 1 is monotonic.” We are forced

to conclude that in intensional contexts, functional expressions like n2 and
∑n

i=1 2i − 1

must denote something other than the sets which they are now taken to denote. Following

Frege, we should take these entities as the senses of n2 and
∑n

i=1 2i − 1. And although

Frege mentions the necessity of extending the distinction between sense and reference to

functions only in passing (cf. [40]), it has generally been thought (cf., e.g., [150]) that

the appropriate candidate for the role of sense of a functional expression is the notion of

function in intension as explicated above.

Since there is already a precedent for acknowledging the difference between the sense
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and reference of a functional expression in this manner, it seems reasonable to consider the

possibility that the denotations of procedure terms like Euclid and NaiveGCD be taken

to be functions in intension. In certain respects this may seem like a useful proposal. For

it at least seems possible that we may explicate the notion of an intensional function in a

manner which allows for the well-formedness of both (1.4) and (1.5) and for the possibility

of analyzing intensional function application in a manner which results in intuitively rea-

sonable truth conditions for the latter. If all this were possible, we could then claim to have

vindicated algorithmic realism by showing how procedure-denoting terms could be taken

to denote items in some previously recognized class of intensional objects.

But although setting things up in this manner provides a certain degree of insight

into how the general notion of algorithm may be taken to relate to traditional treatments

of meaning and reference, the assimilation of algorithms to functions in intension makes

little real progress towards providing a systematic basis for understanding discourse about

procedures in contemporary computer science. The fundamental problem with this proposal

is, needless to say, that as presented above the notion of function in intension is even more

schematic than the informal notion of algorithm with which we began. For as we will see

in section 3, the class of expressions which were considered acceptable means of denoting

functions grew considerably over the course of the eighteenth and nineteenth centuries. And

thus not only was no consensus even reached on the definition of this class of functions, but

at various points there was disagreement as to whether a certain correspondence ought to

be accepted as a genuine function.

While there is broad and systematic basis for thinking that the theoretical role which

algorithms play in our practices can be aligned with that of traditionally recognized classes

of intensional entities, I will henceforth assume that prior studies of these entities shed little

light on the concerns specific to algorithmic realism. This situation arises not only because

of our failure to develop a formal theory of functions in intension but also because the

formal study of algorithms has been conducted as a technical subfield of computer science

with its own goals and methods. As a consequence, there now exists a variety of technical

classifications and results pertaining to algorithms for which there exist no analogues in

regard to our reasoning about propositions. This means that the task of constructing
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a foundational theory of algorithms which is consistent with our theoretical practices is

almost certainly going to be harder than the task of constructing an analogous theory

about propositions or Fregean senses. For note that once we have decided what theoretical

role we wish entities like propositions to serve (e.g. that of serving as the correlates of

sentence meaning or the objects of propositional attitudes) then the rest of the data which

such a theory must satisfy is determined by intuitions about meaning and entailment. But

such intuitions are both inevitably partial (in the sense of not necessarily extending to an

entire language) and also potentially defeasible (in the sense there can be disagreement

between theorists as to whether a given inference is an entailment or an implicature).

On the other hand, the data constraining a general theory of algorithms comes from

a number of well developed subfields of computer science which are standardly regarded

as issuing mathematical theorems concerning algorithms as typified by (1.1a-e). As I have

already noted, for instance, one important dimension along which different algorithms for

computing the same function are routinely compared is that of asymptotic (or “big O”)

running time complexity – i.e. the rate of growth of the number of computational steps

they require to return an output as a function of the size of their input. This feature

of individual procedures is treated as fundamental metric for distinguishing procedures

which compute the same function. For instance it is because Mergesort has asymptotic

running time O(n log2(n)) and Insertionsort has asymptotic running time O(n2) that

the former procedure is generally considered to be a more efficient algorithm. For this

reason, asymptotic running time is standardly considered to be a fundamental invariant of

individual algorithms. This means that however an algorithmic realist might propose to

assign a denotation to the term Mergesort it must turn out that the object associated

with the former has whatever property is taken to correspond to the predicate “has running

time O(n log2(n))” to ensure that (1.1a) turns out to be true. And similarly, with respect

to the term Insertionsort and the predicate “has running time O(n log2(n))”. And from

this it follows indefeasibly that no adequate foundational theory of algorithms can treat

the terms Mergesort and Insertionsort as denoting the same algorithm.

This is just one of many observations derived from the practice of computer science

which places a substantial constraint on the sort of detailed formal theory of algorithms
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which would be required to defend algorithmic realism. In the next chapter I will attempt

to characterize, at least in broad outlines, a class of statements similar to those given in

(1.1) which represent the theoretical role played by algorithms in computer science. Taken

in conjunctions with statements such as (1.4) which express mathematically significant

results about applying an algorithm to certain set of arguments, these sentences can be

taken to comprise a logical theory which I will refer to as Tp. I will then explore the logical

features of this theory in detail and propose the task of vindicating algorithmic realism can

be reduced to that of arguing that 1) it successfully codifies our computational practices in

a manner which assigns procedures the logical type of objects and 2) may be proven to be

consistent.

Note in regard to the first desideratum that there are a number different criteria relative

to which we might take an axiomatic theory as successfully codifying our discourse involving

algorithm. One important dimension is whether such a theory treats the sorts of terms

appearing in our informal discourse which we took to denote procedures as denoting objects,

as opposed to say, properties or functions. For as I have already noted, part of what

is involved with realism about algorithms is a willingness to treat occurrences of names

like Mergesort or Euclid as they appear in sentences like (1.1a) or (1.5) as denoting

objects. In particular, since these sentences have the appearance of being subject predicate

statements, it is traditionally taken to follow that we must regard terms like Mergesort

and Euclid as denoting an objects. For as Frege [39] is famously said to have argued with

respect to sentences of the form P (a) (where in the case relevant to him, a was a numerical

term like 17 and P (x) a numerical predicate like Prime(x)), we could not account for their

truth or falsity if it were not possible to assign reference of a so that the item it denoted

either fell under or failed to fall under the concept denoted by P (x).

One problem which we will encounter in subsequent chapters, is that even if it is possible

to formulate a candidate theory which codifies our practices involving algorithms in both

mathematics and computer science, it is not at all clear that such a theory would ensure

that procedure-denoting terms functioned in this manner. We have already encountered

one prima facie problem of this sort. For note that we have already seen that although a

term like Euclid may appear as a name (as in (1.4), it may also appear as a functional
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expression (as in (1.7). The apparent necessity of accommodating both forms might lead

one to worry about whether it is possible to construct Tp in a manner which preserves the

apparent logical forms of these statements without leading to some sort of paradox arising

from the fact that Euclid is used as a term denoting entities at two different type theoretic

levels.

In Chapter 2, I will argue that this is not the case. In particular, I will suggest that

there is a straightforward way of analyzing occurrences of algorithm denoting terms such

as the functional expression appearing in (1.7) proper names which function as arguments

to a higher order application functional. I will argue that doing so both allows for a more

consistent semantic analysis of procedural discourse and is foreseen by a number of technical

developments in type theory and the semantics of programming languages.

The issue which I believe represents a much more substantial hurdle for the construction

of Tp – and in fact corresponds to the Achilles heel of algorithmic realism – turns on a much

more mundane kind of worry about the logical consequences of taking procedure denoting

expressions to refer to objects. Simply put, this worry boils down to the fact that while

our informal discourse about procedures contains apparent singular terms which we wish

to treat as denoting abstract objects, our use of these terms does not in itself guarantee

that we use them consistently with respect to stating equalities and inequalities between

algorithms and also predicating properties of algorithms.

Note in particular that as we have already observed on the basis of examples like (1.5)

and (1.7), the entities assigned as the references of Euclid and NaiveGCD must be finer

grained than the functions which we take these procedures to compute. But once we have

realized that algorithms are individuated more finely than functions in extension, there

immediately arises the question of how algorithms themselves are to be individuated. And

failing an obvious answer, we may note that there is substantial precedent for worrying

about the consequences of discourse which attempts to treats algorithms as objects prior

to fixing their identity conditions.

Several substantial components of our computational practices bear directly on this

issue. For note that there are in fact a wide variety of different ways by which a procedure

may be specified in practice. I have thus far concentrated on the use of proper names
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like Euclid and Mergesort. But as we will see in Chapters 2 and 3, these expressions

function in much the same way as constants like π or e in arithmetic or analysis – i.e. they

are introduced by explicit definitions which are taken to fix their meanings in terms of

complex descriptions. In the case of procedures, such descriptions standardly take the form

of two classes of formalisms which I will refer to respectively as programs and machines.

Roughly speaking, a program is a complex linguistic entity build up by using individual

statements (which in the general case may have either an imperative, descriptive of recursive

syntax) defined over a formal grammar. As discussed above, programs are standardly said

to express algorithms. Even more roughly speaking, a machine is an abstract combinatorial

entity (akin, say to a group or graph) consisting of a class of computational states together

with an abstract definition of state transition in terms of which a notion of execution may

be defined. Machines are typically said to implement algorithms in something very roughly

like the sense in which an electronic device might be said to implement a schematic diagram.

Unlike algorithms, we know that individual programs and machines correspond to math-

ematical objects from the outset. We may thus assume that they are members of well

defined mathematical classes P and M which we can assume for the moment are defined

in the language Lp of Tp. And since we also see that programs and machines are finite

combinatorial entities, we may further assume that there are classes of TP and TM which

uniquely denote each member of P and M. The foregoing observations suggest that for

every algorithm A, there will be non-empty classes of terms TA
P and TA

M such that each

term π ∈ TA
P corresponds to a program (or a description of a program) which we take in

practice to express A and that similarly, each term m ∈ TM
P correspond to a machine (or a

description of a machine) which we take in practice to implement A. For this reason, I will

argue in Chapter 3 that Tp will have to contain classes of sentences formalizing statements

of the forms

(1.8) a) A is the algorithm expressed by program π.

b) A is the algorithm implemented by machine m.

for each term π ∈ TA
P and m ∈ TM

P . As a consequence, this means that in any mathematical

interpretation of Tp, the terms which we take to formalize the complex descriptions “the
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algorithm expressed by π” and the “the algorithm implemented by m” must denote the

same object (i.e. the mathematical correspondent of A in the interpretation).

On the basis of these and related observations concerning how reference to algorithms

is mediated, I will argue in Chapters 2 and 3 that any attempt to defend algorithmic

realism by directly identifying individual algorithms with individual mathematical objects

is doomed to fail. For note that if A is any algorithm, then if either of the classes of terms

TA
P and TA

M contains more than a single term (or even if they both contain a single term),

then there will be more than one way of referring to A – say as both the “the algorithm

implemented by m1” and “the algorithm implemented by m2” where m1,m2 ∈ TA
M denote

distinct machines. Thus if we proposed to identify A directly with the denotation M1 of

m1 in some model of Tp, then the question would inevitably arise how it is that A can be

identical with M1 without being identical to M2, the interpretation of m2 in this model.

But clearly A cannot be identical to both by virtue of the fact that they are distinct

mathematical objects.

I will suggest that instead of pursuing a so-called reductionist strategy of this sort, an

algorithmic realist will be much better off pursuing what I refer to as an abstractionist

strategy. Such a proposal attempts to understand algorithms as having the logical type

of objects by the use of so-called abstraction principles, similar to those which figure in

Frege’s well known analysis of classes and natural numbers. Skipping over many details,

if we let prog(π) be the Lp term formalizing “the algorithm expressed by π” and imp(m)

be the Lp term formalizing “the algorithm implemented by m”, then these principles will

have the form

(1.9) a) prog(π1) = prog(π2)↔ π1 ≈ π2

b) imp(m1) = imp(m2)↔ m1↔m2

Here ≈ and ↔ correspond to binary predicates intended to denote equivalence relations

over P and M which hold respectively just in case the programs denoted by π1 and π2

express the same algorithm and the machine denoted by m1 and m2 implement the same

algorithm. In the context of Tp, the statements (1.9a,b) are intended to serve the same

function Frege claimed was served the statement of Frege arithmetic now know as Hume’s
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principle (i.e. “the number of F equals the numbers of G if and only if the F s and the

Gs can be put into 1-1 correspondence”) – i.e. it serves to i) give the identity condition

of algorithms in terms of that of programs and machines and ii) to implicitly define the

functions prog and imp which map these entities into the domain of algorithms.

These remarks concerning the details of how algorithmic realism works are, of course,

extremely schematic. In Chapter 2 I will present a uniform development of Tp which will

include axioms of the form (1.8) and (1.9) together with an argument that the structure

of discourse about algorithms suggests that this is by far the most promising means by

which to develop a formal theory in which they are treated as abstract objects. Readers

familiar with the recent development of Frege’s philosophy of mathematics will, however,

realize that this proposal also raises a number of familiar conceptual and technical problems

which will ultimately have to be addressed by an algorithmic realist who wished to adopt

it. In particular, one may inquire i) whether (1.9a,b) can plausibly be taken as analytic

of our background notion of algorithm, ii) whether the adoption of such principles gives

determinate truth conditions to so-called mixed identity statements (e.g. ones of the form

prog(π) = imp(m)) and iii) whether it can be shown that that these statements are logically

consistent together with the rest of Tp.

Analogues of each of these questions are generally taken to pose serious threats to the

ontology Frege proposed for natural numbers and sets. And thus if the ontological strategy

which I am proposing is indeed the unique best way of developing algorithmic realism,

one might think that these sorts of challenges must be met head on. But note that the

ontological aims of the algorithmic realist are somewhat different from those of Fregean

(or neo-Fregean) logicism. In particular, the the latter sort of theorist wishes to show that

mathematics is reducible to logic, where (at least roughly speaking) the former sort merely

wishes to show that computer science is reducible to mathematics. This means that the

algorithmic realist has a much greater range of technical and rhetorical options available

to him in replying to questions i)-iii). However a detailed discussion of what these are will

also have to wait until Chapter 2.

Announcing my contention that an abstractionist theory is the most promising frame-

work in which to attempt to seriously develop algorithmic realism does, however, allow me
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to lay out in advance where I think the central difficulty for this view lies. For note that

another substantial set of constraints which would be imposed on the theory Tp concern the

codification of results in the analysis of algorithms and complexity theory which reports

on the properties of individual algorithms. As noted above, this will include statements

like “Mergesort has running time O(n log2(n))” which the realist is inclined to analyze

as subject predicate statements of the form ϕ(a). As noted earlier in this section, many of

these predicates are intensional in the sense ϕ(a1) may be true but ϕ(a2) may be false even

though a1 and a2 denote algorithms which determine the same (extensional) function.

Note, however, that we have also observed that there will generally be multiple ways of

denoting the same algorithm A. For instance A can be denoted as the algorithm expressed

by the distinct programs π1 and π2 or machines m1 and m2. These facts will also have

to codified in Tp by statements of the form prog(π1) = prog(π2) and imp(m1) = imp(m2)

for all such pairs of terms denoting programs and implementations. But because such

statements will be theorems of Tp, it follows in conjunction with (1.9a,b) that the predicates

≈ and ↔ must not only denote equivalence relations (respectively over the classes of

programs and machines), but also function as a congruence with respect to predicates which

may be proved to hold of the members of TA
P and TM

P in Tp. This is to say that whenever Tp

proves a statement of the form t1 = t2 (for ti = prog(π) or ti = imp(mi), i ∈ {1, 2}), and

also ϕ(t1), it must also prove ϕ(t2) and conversely. Put into words, this means that Tp must

not only have the resources to track our intuitions about the circumstances under which

different programs or machines may be used to denote the same algorithm, but it must

also ensure that exactly the same computational properties are provable of the algorithms

specified in these different manners.

But merely pointing out that the theory Tp must have these properties in order to fulfill

the algorithmic realist’s purposes in no way entails that such a theory actually exists. In

particular, I have thus far said nothing about how the relations≈ and ↔ are to be defined or

even what sort of relationship among programs or machines them are intended to formalize.

And as such, it seems that the realist can offer no a priori guarantee that relations which

simultaneously satisfy the constraints described in the previous paragraph, let alone also

have appropriate conceptual properties which allow to view (1.9a,b) as implicitly giving



31

identity conditions for algorithms.

In Chapters 3, 4 and 5, I will offer a concerted argument that no such relations can

exist. But many of the considerations which enter here are of a technical nature which

pertains to the way in which the notions of program and machine have been developed in

various subfields of computer science. In order to motivate the general style of argument I

will employ, I will devote Chapter 3 to a detailed case study. In particular, I will introduce

a pair of intuitively distinct algorithms Pal1 and Pal2 for deciding whether a finite string

is a palindrome. I will then introduce classes of Turing mahcines S and U such that all

the machines in S may plausibly be claimed to implement Pal1 and all those in U Pal2.

On the basis of the abstraction principles (1.9a,b), it follows that for all S, S′ ∈ S, we must

have S↔S′ and for all U,U ′ ∈ U that U↔U ′. But since Pal1 and Pal2 are distinct, it

should also follow that for no pair of machines S ∈ S and U ∈ U do we have S↔U . I

will argue that it is impossible to define ↔ so that it not only satisfies these constraints

but also serves as a congruence with respect to complexity theoretic properties as discussed

above.

Chapters 4 and 5 will be devoted to an argument that the problem encountered in

Chapter 3 is not an isolated artifact of the choice of algorithms or machine model considered

therein. I will set out in Chapter 5 to present a systematic analysis of the concept of model

of computation. In the course of this study, I will identify three general classes of models

which I will refer to respectively as transition based, register based and recursion based

models. I will argue along the way that it is possible to assimilate all of these models to a

more general definition of transition system in a sense which generalizes on the definition

which will be given in section 4 of this chapter.

Chapter 5 will contain my direct argument against algorithmic realism. It will be in two

parts. In the first, I will summarize and compare the two positive programmes mentioned

above which have been put forth as systematic defenses of algorithmic realism – the first

owing to Yainnis Moschovakis (cf. [92], [93],[95], [96]) and the second to Yuri Gurevich

(cf.c [51], [9], [10]). I will first argue that these programmes correspond respectively to

the views that algorithms may be identified with individual instances of a certain class of

recursion based model R and with individual instances of a certain class ASM of register
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based model. As such, I will argue that both views suffer from essentially the same defect.

In particular, they turn out to be variants of what I refer to above as reductionism – i.e. the

view that algorithms may be identified with particular programs or machines. Such views

may be compared to forms of logicism about natural numbers which hold that particular

natural numbers are to be identified with particular sets. In particular, I will argue that

this view falls victim to a version Benacerraf’s [7] well known critique according to which

a natural number (e.g. 2) cannot be held to be identical a set s1 (e.g. {∅, {∅}}) if there is

another set s2 (e.g. {{∅}}) which does an “equally good” job at reflecting its arithmetic

properties.

The other half of Chapter 5 will be aimed at a hypothetical (but to my mind better

positioned) theorist who proposes to adopt an abstactionist strategy with respect to one of

the sophisticated models of computational models – call it M – considered in Chapter 5. For

the reasons we just discussed, the onus will be on such a theorist to propose a definition of

↔ over M which meets the same technical and conceptual conditions which will be in force

in Chapter 3. In particular, he must define ↔ so that whenever M,M ′ ∈M are machines

which we would take to implement the same algorithm M↔M ′ holds and whenever they

are machines which we would take to implement different algorithms M =M ′ holds. Based

on considerations pertaining to the relationship between recursion based models and register

based ones, as discussed in Chapter 4, I will argue that this can never be achieved. The

detail of this will be grounded both in my prior argument that recursion based models

should be assimilated to transition systems in order to be counted as legitimate machine

models and also on the precise manner in which this must be carried out. And since these

are matters of substantial technical detail, further description of the argument must await

Chapter 5 itself.

1.3 Mathematical procedures and mathematical practice

The role of algorithms in mathematics is complex. It appears uncontroversial that a

general notion of a procedure as an abstract, repeatable method for constructing a math-

ematical object or structure is among the set of informal background notions in terms of

which we may explain or motivate various mathematical ideas. One way in which this is
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evident is that there have been periods in the history of mathematics during which certain

mathematical concepts have been defined as corresponding to forms of procedures. And it

is also evident from the fact that a large of number of computational methods which were

originally discovered in classical mathematics have subsequently been explicitly recognized

as algorithms worthy of study.

It is thus common in the informal discourse of both mathematics and computer science

to speak of algorithms as if they were abstract objects in much the same sense as natural

numbers, groups or graphs. But some care must be exercised before we can reach the con-

clusion that algorithms constitute part of the subject matter of contemporary mathematics.

For on the one hand there appears to be no prohibition against using procedures to derive

certain forms of mathematical results and more generally in heuristic description of math-

ematical proofs. Many popular presentations of analysis and algebra will thus not hesitate

to refer explicitly not only to mathematical constructions, methods, procedures, etc., but

give examples which involve executing or carrying out such techniques. But it is also no-

table that as common as such language may be in the informal exposition of mathematical

proofs and results, it is much more difficult to find instances in which explicit reference to

procedures or their application is made in the statement of mathematical results. This is

to say that there are few (if any) theorems of classical mathematics which are standardly

expressed in a manner which contains either a singular term or quantifier which appears to

denote an algorithm.

This observation may lead one to suspect that while mathematicians may feel perfectly

at home using procedural language in giving informal demonstrations, the role assigned

to such entities is purely heuristic or instrumental. However, as I mentioned in Section 1,

the view for which I ultimately want to argue is that classical mathematics is genuinely

committed not only to regarding procedures as abstract objects about which we can reason

formally, but also to the view that they are genuine mathematical objects. However I believe

this conclusion must be based on a examination of a special class of cases where procedures

are not simply mentioned in the course of a demonstrating general propositions, but are

rather used to derive singular (or “concrete”) propositions concerning explicitly presented

objects like natural numbers.
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My plan of attack for elucidating the way in which classical mathematics is committed

to an ontology of procedures will thus be indirect. In this section I will outline a number of

ways in which procedures appear to play a role in mathematical discourse which I believe

are not indicative of a genuine ontological commitment. This will help to single out the

narrower classes of cases of the sort just alluded to whose significance I will then examine

in detail in Section 4.

A reasonable place to begin our investigation of the role of procedures in classical

mathematics is with an instance in which a commitment to procedural entities appears to

accompany the manner in which a particular mathematical concept is defined. Perhaps the

best known instance of this sort concerns the definition of the concept function. According

to the accepted history, an abstract notion of a function as a correspondence between quan-

tities was not employed in mathematics until the late 17th century when it was introduced

by Leibniz to describe a relationship between purely geometric quantities.7 In its original

setting, the notion of function was closely tied to geometric properties of curves which were

given either physically, by tables, or by polynomial equations. Euler is generally credited

with having been the first to provide a formal definition of this notion relative to which

functions were identified with so-called analytic expressions.8 The paradigmatic example

of such an expression at this time would have been a polynomial, although Euler explicitly

allowed that functions could also correspond to expressions formed from (terms denoting)

transcendental functions and power series.

Most scholars agree that Euler’s definition initiated a period during which the notion

of function was understood as being connected to certain classes of linguistic expressions.

The development of the calculus and discoveries in mathematical physics led to gradual

expansions in this class to include, e.g., expressions containing differential and integral

terms, case definitions which (as we would now put it) describe discontinuous functions, etc.

7There are, of course, many important precursors to the introduction of the function concept. For
instance, numerous examples of verbal or tabular descriptions of functions can be found in classical and
Arabic mathematics. However, no general notion appears to have emerged from examples of this sort until
the first applications of algebra to geometry by Descartes in the mid-17th century. For more on the history
of the notion of function, cf. [159] on which the following discussion is based.

8“A function of a variable quantity is an analytic expression composed in any way from this variable
quantity and numbers or constant expression.” [159], p. 61
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However, most of these expansions in usage were accompanied by a corresponding limitative

doctrine according to which the only functions which existed were those corresponding to

expressions in the sanctioned class. Often such views were based on the supposition that

functions corresponded to dependencies between physical or geometric quantities. And

since it was also held that only continuous dependencies of this sort existed in nature, this

led to a limitative conception of function according to which only those functions which are

expressible by analytic terms were held to exist. For instance, a view along these lines led

Fourier [15] to claim, as late as 1822, that all functions must be given by (what we would

now call) Fourier series.

This view about the nature of functions stands in sharp contrast to our modern un-

derstanding in two significant respects. First, we now typically distinguish between what

I refer to as functional expression and the functions which they are used to denote. The

former are linguistics items such as x2, x17 + 3x2 + 2, sin(x),
∑n

i=1 i, etc., which may or

may not be drawn from some class of expressions which we have chosen to label as “ana-

lytic.” We would now say that such expressions refer to functions in much the same way

that singular terms refer to objects, and predicates refer to properties or sets. From this

it follows that whatever functions are taken to be, the relationship which functional terms

bear to functions is not that of identity but rather analogous to that borne by numerals to

natural numbers.

The first contrast between the contemporary view of functions and that which prevailed

in the 18th and 19th centuries thus turns on how we are to distinguish between the math-

ematical expression and what this expression denotes. Of course, in order to clearly frame

the matter in this way, we must have some candidate in mind for what the denotation of a

functional term should be. The modern view is, of course, that a function f with domain

X and range Y is a single-valued relation Rf ⊆ X×Y , i.e., a relation such that if Rf (x, y1)

and Rf (x, y2), then y1 = y2. But relations are sets and set theory wasn’t firmly established

as a universal foundation for mathematics until at least the 1920s. Thus, throughout the

period in question, there would not have been a precise means of distinguishing between

functional expressions and what they denote.

One consequence of this is that although authors like Leibniz, Euler, Dirichlet, and
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Fourier occasionally wrote as though they thought of functions as linguistic items, there

are other instances in which they appear to acknowledge a distinction between functional

expressions and (as it was often described) the functions which these expressions repre-

sent or determine.9 But of course, once such a distinction is recognized, it also becomes

legitimate to ask what sort of entities these authors would have taken functions to be if

(contrary to their own pronouncements) they may not be assimilated to linguistic terms.

In this regard, there are at least two classes of historically plausible alternatives: 1)

functions could have been regarded (as we now put it) extensionally – i.e., as collections

of ordered pairs corresponding to a particular correspondence between domain and range;

2) they could have been regarded intensionally – i.e., as abstract rules or procedures which

give rise to such correspondences. It may at first appear that the former alternative rep-

resents the anachronistic proposal that functions were understood set theoretically before

the advent of axiomatic theory. But this would only be so if we were unable to distin-

guish between the class of all (as we now describe it) combinatorially possible functions

between two sets and various subclasses of this class consisting of those correspondences

which met some further conditions. Of course, some degree of set theoretic understanding

is required to conceive of a particular function f : X → Y as a collection of ordered pairs

〈x, y〉 ∈ X × Y . However, equating an individual function with such a collection does not

require that we recognize that the class Y X of all functions from X to Y is a set or even

that even conceive of it as a well-defined totality. Once the former step has been taken, it

becomes possible both to systematically distinguish between a functional expression f(x)

and the function Rf ⊆ X×Y which it denotes, and also to make sense of various limitative

doctrines about function existence. For if it were maintained that all real valued functions

had to be representable by a particular class of functional expressions – say polynomials or

power series – such a limitation would correspond to a proper subclass of ⊆ RR.

Following Maddy [81], we might call this view of function existence definablism. Ac-

cording to this view, functions are identified with correspondences between sets and the

9For instance, in stating the result which we now phrase as “Every periodic function of one real variable
can be written as a Fourier series,” Fourier writes “[E]ven discontinuous arbitrary functions can always be
represented by expansions into sines or cosines of multiple arcs . . . A conclusion that the celebrated Euler
always rejected” [15], italics mine.



37

notion of correspondence can be understood as essentially corresponding to the modern

notion of a set of ordered pairs. However, the central tenet of this view is that correspon-

dence existence is governed by a linguistic principle akin to a modern comprehension axiom

– i.e., that a correspondence f between sets X and Y exists only if there is a term f(x)

in some pre-identified class F of functional expression which “represents” or “determines”

f . On this way of looking at things, the general definition of function retains a linguistic

component, even though individual functions are taken to be items of essentially the same

sort as they are on the modern conception. And from this latter fact it follows that even

though the definablist holds that for every function, there exists a functional expression of

the appropriate sort which represents it, identity between functions is determined exten-

sionally in the sense that functional expressions which determine the same correspondence

(e.g. sin2(x) and 1− cos2(x)) must be taken to denote the same function.

The other option by which we might attempt to understand the pre-twentieth century

notion of function is one on which functional expressions are not taken to denote directly

any sort of set-like correspondence, but rather are taken to denote some other sort of non-

linguistic entity which determines such a correspondence. Given a functional expression

f(x), one possibility for what such an entity might be is a procedure Af which, given any

value a ∈ X, returns the value b ∈ Y such that f(a) = b. This view provides another means

of explaining how someone could simultaneously maintain that functions are distinct from

functional expressions qua mathematical objects and also that all functions are determined

by functional expressions drawn from a certain class F. For if the procedures determining

correspondences between X and Y in the sense just described were treated as abstract

mathematical entities in their own right, then functions could be identified with these

objects which in turn could be held to be determined by expression contained in F. One

consequence of this view which distinguishes it from the former alternative is that it allows

for functional identity to remain intensional since it is possible that there are pairs of

distinct procedures which determined the extensional correspondence.

Making sense of this second view as a genuine alternative to the modern extensional

definition of function would require two things. First, it would require that it be possible to

give a general definition of a mathematical procedure which rivaled in clarity and precision
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the notion of set on which the extensional definition is based. And second, in order to

understand this proposal in its historical context, we would also have to develop an account

of what it means for a functional expression to denote or otherwise determine a procedure

which could replace the way in which we now speak of functional expressions denoting sets.

But there appears to have been no systematic attempt to work out this possibility prior

to the the development of the lambda calculus in the 1930s. And there does not appear

to have been discussion of the distinction between intensional and extensional identity

conditions for functions which would have decided between the two views prior to Frege

(e.g. [36]), and Russell and Whitehead (e.g [152]) both of whom favored variants of the

modern set theoretic treatment. It would thus be at best speculative to conclude that there

was any point in the history of pre-twenthieth century mathematics at which functions were

explicitly held to be procedures.

But at the same time, the developments which led to the final demise of the view that

functions can be equated with any sort of linguistic entity may be naturally understood

relative to the view that functional expressions determine procedures rather than definable

correspondences. For the developments which ultimately led to the acceptance of the mod-

ern set theoretic definition were initiated by definitions of correspondences by both Baire

and Lesbegue which could only be shown to exist by appealing to the Axiom of Choice. The

claim that such correspondences were genuine functions was originally regarded skeptically,

not merely on the basis that there was no linguistic means of describing them, but rather

because there was no evident way of explicitly computing their values.10

10The gravity with which this concern was treated is evident from the manner in which Baire and Les-
begue described the competing view in their defenses of the set theoretic conception. For instance Baire
distinguishes his view from what he took to be the prevailing one as follows:

There is a function when there is a correspondence between some numbers . . .. On
this definition, one doesn’t ask after the means by which the correspondence might
be effectively established; one doesn’t even ask if it is possible to establish it.

And similarly,Lesbegue writes as follows:

Although . . . it is generally agreed that there is a function when there is a correspon-
dence . . . without concern for the procedure that serve to establish this correspon-
dence, many mathematicians seems to consider only those established by analytic
correspondence as true functions.

These passages provide some indication that while there may never have been a completely unitary pre-set
theoretic notion of function, one set of intuitions bearing on how this notion was understood in practice of



39

But as we now know, the computability of a function’s values certainly does not follow

immediately from its representablity as a certain sort of functional expression. There are,

for instance, functions definable over the natural numbers using a single universal quanti-

fier which (as we would now put it) are not effectively computable. However it also bears

noting that virtually all of the forms of expression which were recognized as analytic in

the 19th century had associated with them various procedural means of computing their

values. For instance, the representablity of f as a polynomial p(x) provides an immediate

means of computing the values of f(a) in terms of the structure of p(x). The same ob-

servation obviously applies to cases in which f is represented as a power series or other

form of summation. And when we take into account the existence of numerical methods

for computing roots, transcendental functions, and differentials and integrals – all of which

were well developed by the end of the 19th century – it is clear that there would have

existed procedures for explicitly computing the values of most functions denoted by most

expressions which were recognized as analytic.

It should be borne in mind, however, that the foregoing observations belong exclusively

to the history of mathematics and not to its subject matter as currently conceived. Thus,

even if an historical case can be made that functions were, at least in some inchoate sense,

understood as procedures in pre-20th century mathematics, this would not in itself represent

something an algorithmic realist could legitimately cite in favor of the conclusion that our

present mathematical practices are committed to an ontology of procedures. Nonetheless,

the historical development of the understanding of functions does attest to the fact that

some notion of procedure has traditionally been part of the conceptual background in terms

of which it has been thought possible to explicate mathematical notions. The question thus

arises whether there remain any instances in contemporary mathematics in which a concept

is explicitly defined relative to a prior understanding of mathematical procedure.

I believe that this question ultimately ought to be answered in the negative. But I have

already discussed one apparent exception to this claim in the form of the modern theory of

computability which grew out of the foundational analyses of effectivity mentioned in the

nineteenth century mathematics drew upon the view that for a function f to exist, it had to be determined
in some that manner would allow its values to computed.
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previous section. As discussed there, the goal of the original research in this field was to

provide a mathematical definition of what it means for a given function from f : Nm → N

to be effectively computable. The informal notion of effectivity which was employed at

this time was partially grounded in the understanding that simple arithmetic functions like

addition, subtraction, multiplication, and exponentiation for which there were known pro-

cedures allowing their values to be explicitly computed ought to be regarded as effective.

Although the term “algorithm” was not as widely used at this time, we may anachronis-

tically characterize the class of functions of which a mathematical description was wanted

as those computable by an algorithm.

One might reasonably think that the most straightforward way to analyze this latter

notion is first to provide a formalization of the notion of algorithm itself. On this basis, one

could then provide a further analysis of what it meant to carry out or execute an algorithm

which would in turn provide an analysis of the notion function computable by algorithm.

It is thus also reasonable to presume because the analysis of effective computability, equiv-

alents of which were given by Church, Turing, Gödel, Kleene, and Post, is now widely

considered to have been successful, this must be because one or more of these theorists also

succeeded in giving a mathematical analysis of the concept of algorithm. And for this rea-

son, it is also commonly assumed that not only was one or more successful analysis of this

given during the 1930s, but also that the subsequent development of computability theory

has been concerned, at least in part, with studying the properties of individual algorithms

and how they may be mathematically represented.

I will argue in Chapter 2 that all of these suppositions turn out to be false. In particular,

the classical analysis of effective computability did not proceed by first attempting to

formalize individual effective procedures and then generalizing with the hope of obtaining

a universal analysis. As a matter of historical fact, it was rather accomplished by presenting

several general models of finitary computation which were based on an analysis of locally

effective steps as typified by the basic read/write/move operations of a Turing machine or

the rewriting of a lambda term under β-conversion. But as it turns out, these analyses

give rise to very general classes of formal models which only in retrospect may be argued

to contain members which induce intuitively effective functions. And as I will argue, this
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means that not only were these models not intended by their expositors to formalize the

notion of an individual computation procedure, but also that we may see in hindsight that

they do a relatively poor job of doing so.

One upshot of this is that even though the modern theory of effective computability

which grew out of the foundational analyses of the 1930s seems like a natural setting in

which to find mathematical discourse whose interpretation relies on a realistic understand

of algorithm, this turns out not to be the case. This subject, which until recently has been

referred to as recursive function theory (as developed in textbooks such as those of Rogers

[113], Odifreddi [103], and Soare [135]), is most aptly described as being concerned with

the relative definablity of subsets of the natural numbers. And although such sets which

are studied must be specifiable intensionally (i.e., as the sets of natural numbers which

may be enumerated by an effective procedure, possibly with the addition of a non-effective

“oracle”), the vast majority of its results are extensional in the sense that they are invariant

with respect to how these set are presented. There is hence a straightforward and generally

acknowledged sense in which computability theory is not concerned with the properties of

individual algorithms but whether with what can be computed by some effective algorithm.

The foregoing considerations suggest that if we wish to identify some way in which

mathematical practice is committed to the existence of algorithms, such a commitment

cannot arise because any of its modern subfields takes mathematical procedures themselves

to be its official subject matter.11 But as I noted initially, it is also clear that reasoning

which involves procedures has traditionally played an important part in the practice of

mathematics. In this regard, we may identify two substantial roles played by reference to

procedures in the context of mathematical proof: 1) a procedure may serve as a component

11One obvious exception to this generalization is intuitionistic mathematics. In this setting a commitment
to an abstract mathematical procedure occurs already at the level of propositional logic. For note that on the
standard Brouwer-Heyting-Kolmogorov interpretation of the logical connectives, a proof of an implication
ϕ → ψ is defined to be a procedure for transforming a proof of ϕ into a proof of ψ. This idea is carried
over into intuitionistic number theory and analysis wherein effectiveness is not only standardly imposed as
a requirement on function existence, but functions themselves are identified with effective procedures. But
as I noted above, however, not only does it remain controversial how these idea should be formalized when
providing a semantics for such theories, most of the leading proposals (like realizability semantics) simply
take over formalisms which were developed independently in proof theory or theoretical computer science.
Thus while intuitionism does serve as a clear example of a theoretical development in which procedures are
treated as mathematical objects, I will argue that it is not a source of constraints on the notion of algorithm
which cannot be derived from other sources.
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of a proof in the sense of either being specified as one of its components or being referenced

so as to ensure the existence of a particular object or class of objects; 2) a procedure may

be applied within a proof so as to derive an explicit solution to an instance of a numerical,

algrebraic, or combinatorial problem.

These two roles are quite distinct operationally. But taken together, they make a sig-

nificant contribution to fixing the class of mathematical statements which mathematicians

would conventionally describe as having been acceptably demonstrated at any given time.

And for this reason, it will be difficult to deny that reasoning involving procedures plays

a central role in the acquisition of mathematical knowledge through proof. The question I

will attempt to address over the course of the rest of this Section and the next is whether

acknowledging the epistemic significance of procedures in mathematical practice in any way

commits us to regarding them as mathematical objects in their own right.

Speaking first of the role of procedures in mathematical proofs, classical theorems are

often demonstrated in a manner which specifies either implicitly or explicitly, a method

for constructing a mathematical object or structure given other objects or structures. A

simple example of this kind occurs in the elementary proof of König’s Lemma – i.e., every

infinite, finitely branching tree has an infinite branch – found in most set theory textbooks

(cf., e.g, [71]).12 This proof proceeds by showing that for every infinite, finitely branching

tree T there exists a branch b such that b(0) corresponds to the root v of T. This existence

claim is demonstrated by specifying a so-called construction by which b is “built up” by

showing how the values b(i) may be chosen in stages parameterized in i = 0, 1, . . ..

This construction would typically be specified in the following way:

(1.10) Konig(T )

• At stage 0, let b(0) = v.

• At stage i, choose b(i+ 1) = u such that u < b(i) and {v ∈ T : v < u} is

infinite.

Note that since v ∈ T , the set of nodes {u ∈ T : u < v} below b(0) must be infinite. Also

12Recall that a tree T is a structure 〈T,≤〉 such that ≤ is an anti-symmetric partial order and the sets
{u ∈ T}u < v are well ordered by <. We may additionally define a branch through T to be a function
b : N→ T such that for each i ∈ N, b(0) < b(1) < . . . < b(i− 1) < b(i).
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note that at stage i there must always exist a u satisfying the condition in the second part

of (1.10), as otherwise the set of nodes accessible from b(i) would finite, and thus the set

{v ∈ T : b(i) < v} would be a finite union of finite sets, contra to our choice of b(i). It

thus follows that since stage i can always be carried out for all i ∈ N, we may therefore

look upon (1.10) as specifying a means by which b may be built up in an inductive or

step-by-step manner.

We would typically call such a specification a means of building or constructing the

branch b given T. It is common in such contexts for verbs like “choose,” “pick,” and

“assign” to be used in the active voice. This suggests that such a specification is most nat-

urally interpreted as describing a process by which a mathematical object is actively being

constructed in time. However, it is already unclear in the case under consideration how an

object like b may be literally formed during or as a result of the exposition of the proof in

question. For note that relative to the standard realistic understanding of mathematical

objects, it makes no sense to describe the act of carrying out a procedure as bringing a

mathematical object satisfying a condition Φ into existence. For on this understanding,

such an object either exists or fails to exist independently of our mathematical activity. On

this interpretation, for instance, a given tree T is a static abstract structure and as such

either contains or fails to contain an infinite branch. And thus, the procedure described in

(1.10) cannot be taken as describing a process whereby a branch b is literally brought into

being in anything like the sense in which a complex physical object is created by a process

of assembling its phyiscal constituents.

One way in which to reconcile the use of operative language (as exemplified by the use of

“choose” in (1.10) with a realistic understanding of mathematical existence is to interpret

talk of constructing mathematical objects not as describing a process by which they are

literally constructed, but rather as specifying procedures which, were they to be carried

out, would result in certain kinds of specifications of these objects. For instance, in the case

under consideration, we can view (1.10) as specifying a method of constructing a branch b

through T not in the sense of literally generating b, but rather in the sense of describing

a sequence which is assumed to already exist. Suppose we agree to call this procedure

“König’s algorithm” or Ak for short. We could now speak of the proof as presenting a
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method which, were it to carried for a particular tree T, would result in assignment of

nodes to nodes as the value arguments of b(i) corresponding to an infinite branch. The

argument sketched above proves that Ak is correct in the sense that as long as T satisfies

the hypotheses of König’s Lemma, then it may always be carried out to fruition, i.e., that

b(i) may be assigned a value for each i ∈ N.

Treating (1.10) as specifying an abstract mathematical procedure has several interpre-

tative advantages with respect to explaining its role in the proof of König’s Lemma. For

note that part of what is involved with treating Ak as a procedure is the ability to treat

it as a method which can be uniformly applied to different trees on different occasions as

opposed to treating it as a description of a single construction by which a single branch is

“built up” from scratch. Once we have taken this step, it is then possible to reason about

this procedure abstractly that does not entail that it has been, or even could be, carried

out in practice. In particular, statements like “ choose b(i + 1) = u such that u < b(i)

and {v ∈ T : v < u} is infinite” may now be interpreted as instructions stating what a

hypothetical agent would do were he to carry out the specified procedure as opposed to

commands to an actual agent (e.g. the reader of the proof) to perform various “mathemat-

ical actions.” Thus the problem of interpreting the language used in proofs which contain

so-called constructions is reduced to that of providing a general account of procedural ex-

ecution as opposed to that of directly assigning meaning to statements appearing in such

proofs (such as those in (1.10)) which appear to be commands to carry out mathematical

operations.

In Chapter 2, I will present a general theory of exactly this sort. For the time be-

ing, however, we may understand a procedure as corresponding to a set of instructions

which can be carried out by an appropriately idealized mathematical agent by following

the instructions corresponding to its constituent steps. For instance, in the case of Ak, the

procedure specifies that the agent must choose v as the value of b(0), and given that the

value of b(i) is u, it specifies a method by which the value of b(i + 1) may be selected.

Since the proof described above guarantees that this method may be carried out for all i,

the existence of Ak turns out to be sufficient to demonstrate the existence of the object

b called for by König’s Lemma. However, on the realistic understanding of mathematical
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existence which we are presuming, the reverse implication is not taken to be true. In other

words, on the assumption that quantification over procedures makes sense, the existence of

a procedure like Ak for constructing b is in no way asserted to be equivalent in meaning to

the existence of such a sequence.

Returning to the question of accounting for the significance of procedures like Ak to the

practice of classical mathematics, it seems reasonable to draw the following conclusions.

First, the foregoing considerations suggest that if we wish to think of mathematical objects

realistically, then the existence or non-existence of a procedure for constructing a certain

object cannot be taken to have any bearing on mathematical existence claims. From this

it follows that although it is often useful to interpret talk of mathematical constructions

in terms of the existence of mathematical procedures, the role of these procedures must

be explained solely in terms of the role which they play in the specification of proofs.

But since the study of mathematical proofs and their properties is generally taken to be

a topic in the analysis of mathematical knowledge as opposed to mathematical ontology,

this suggests that the significance of mathematical procedures to mathematical practice

must be understood in terms of their epistemic contribution to the proofs in which they

are employed.

This is, of course, a broad and somewhat schematic conclusion. Nonetheless, I will

suggest below that not only are there well-known examples of mathematical procedures

whose epistemic contribution to mathematical proof can be analyzed quite precisely, but

also that accounting for this role indirectly raises questions about mathematical ontology

which bear on the status of algorithmic realism. But before discussing these matters, I

also want to briefly describe a general problem which arises, when we attempt to account

in more precise terms for the contribution of a procedure like Ak, to a result like König’s

Lemma.

I have thus far described Ak as a procedure which can, at least in principle, be applied by

a mathematical agent so as to produce a branch through any infinite, finitely branching tree.

It is important to realize, however, that Ak is traditionally taken to have this significance

despite the fact that it is not effective in either a formal or informal use of this term. For

note that it is not even clear what it means to say that a mathematical agent could carry
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out Ak for an arbitrary infinite tree T. One simple reason for this is that even though this

procedure specifies how to construct b by determining the value of b(i) for each i ∈ N, there

will be no finite stage at which this process is complete. But note that it unclear whether

the specification of how the value b(i + 1) is to be chosen on the basis of the value of b(i)

corresponds to a method which can actually be carried out in any reasonable sense that we

might assign to the act of “choosing” a value.

One way of precisely characterizing these problems is to specify the manner in which T

may be given as an input to Ak and in which b must be specified as its output. For instance,

we might require that T be presented in a manner such that for all u, v ∈ T , the relation

u < v may be effectively determined. And we might allow that it is sufficient to specify b by

providing a finite description which allow us to construct the initial segment 〈b(0), . . . , b(1)〉

for each i ∈ N. These requirements can be formalized even further by requiring that a)

T = N, that b) ≤⊂ N × N be a recursive relation, and finally that c) the branch b be

specified as an index to a recursive function which on input i returns a code for a finite

sequence corresponding to a path of length i through T starting at v. Even relative to these

liberal assumptions for making precise the sense in which Ak might be taken to describe a

procedure for constructing b, it still turns out that this procedure cannot be accepted as

effective. For it is a theorem of elementary recursion theory that there are recursive trees

in the sense of b) through which there exist no recursive branches in the sense of c). It thus

follows that not only cannot Ak be taken to be an effective procedure for finding an infinite

branch through an arbitrary infinite tree, but that this remains true when we consider only

trees which themselves are effectively presented.13

In this respect Ak is similar to many other components of mathematical proofs which

are typically referred to as constructions. In fact, constructions very similar to (1.10) occur

in the standard proofs of a number of several well known results including the Bolzano-

Weiertrauss Theorem in analysis (“Every bounded subset of R has an accumulation point”),

Lindenbaum’s Lemma in logic (“Every consistent set of sentences can be extended to a

13The above cited result is usually summarized by the statement that recursive König’s Lemma is false
for recursive trees – cf., e.g., [103]. This is related to the fact that when presented in full detail, the proof
of König’s Lemma not only requires a weak form of the Axiom of Choice (know as the Axiom of Dependent
Choice), but also that it may be proven to be equivalent to this statement over a weak base theory.
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maximally consistent set of sentences”) and the existence of prime ideals in commutative

rings. In each case, the central component of the proof involves the specification of a

construction which can be interpreted as an abstract procedure in almost exactly the same

sense as (1.10). And in each case, the method so described can be shown to be non-effective

in essentially the same manner as Ak.
14

Given the non-constructive nature of the procedures which often occur in standard

mathematical proofs, it is difficult to provide a uniform account of their epistemic signifi-

cance. I have already noted that recasting so-called mathematical constructions occurring

in informal proofs as specifications of mathematical procedures allows for a somewhat

smoother interpretation of the operational language which often occurs in such proofs. But

it is also notable that statements like König’s Lemma may easily be formulated in the

language of set theory and then supplied with formal proofs in an axiom system like ZFC

(or ZF plus Axiom of Dependent Choice). Formal proofs obviously contain no mention

of mathematical constructions and no operational language, and yet such proofs are also

standardly assumed to provide the same sort of epistemic justification of their conclusions

as do informal ones.

On this basis, it is tempting to conclude that even the epistemic role of mathematical

procedures is exhausted by their heuristic significance in allowing us to understand what

would otherwise be bare existence claims (such as the existence of an infinite branch through

an infinite tree) in terms of the existence of a general sort of non-effective procedure. There

are, however, a number of other well-known existence theorems whose proofs describe

constructions which are effective in both in formal and informal sense. A well-known

example of such a result is Gentzen’s Hauptsatz or Cut Elimination Theorem for first-

order logic which states that any formula provable in the classical or intuitionistic sequent

calculus using the so-called Cut Rule can also be derived without using this rule. Gentzen’s

proof contains an explicit specification of a method for transforming proofs containing the

cut rule into proofs of the same formula without the cut rule. But in this case, the procedure

14In fact, when these results are translated in the language of second-order arithmetic, all three of the
results may be shown be equivalent to be König’s Lemma restricted to binary trees – cf. [131]. This allows
us to see that, in this setting, all four statements are equivalent to the same set existence principle.
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itself turns out not only to be effective, but also to be of substantial practical utility in

various branches of formal logic. For instance the cut elimination procedure may be used to

construct proofs with desirable structure features (most notably the subformula property)

and to aid in the automation of proof search for a variety of different logical calculi.

A number of other classical theorems have the same property of possessing proofs which

specify, either implicitly or explicitly, effective procedures which are sufficiently useful in

their own right to have earned an independent recognition within mathematics. Such

theorems lead a sort of double life in mathematical practice. On the one hand they announce

a general fact – e.g. that a certain object or class of objects exists or that a given function

takes on a certain value or range of values. And on the other, they indicate how these

objects or values may effectively be determined by a method which is contained in their

proofs. Since the interplay between these dual applications can be complex, it will be useful

to consider an example in detail. To this end, consider the statement of Sturm’s theorem

from abstract algebra:

Theorem 1. Let f(x) be a polynomial with real valued coefficients. Then the number of

distinct real roots of f(x) over the interval (a, b) (where f(a) 6= 0 and f(b) 6= 0) is equal to

σ(a) − σ(b) where σ(x) is equal to the number of changes of the members of the elements

of the Sturm function chain for f(x) evaluated at x.

The statement of this theorem relies on the definition of the Sturm function chain for

f(x) which is defined to be a sequence of polynomials r1(x), . . . , rn(x) defined as follows:

r0(x) = f(x), r1(x) = f ′(x) (the derivative of f(x)) and ri(x) = −(ri−2(x) mod ri−1(x)).

It will be noted that the Sturm function sequence is composed of the polynomials

which serve as the intermediate steps in the application of Euclid’s algorithm to f(x) and

f ′(x) over the field R[x].15 This is by no means a coincidence. In fact general reasoning

involving this algorithm serves as a central part of the standard proof of Sturm’s theorem.

15As we have seen, in its most familiar form, Euclid’s algorithm is a method for computing the greatest
common divisor of two natural numbers n and m. However it was observed in the nineteenth century that
essentially the same procedure could be applied over any so-called Euclidean domain – i.e., a ring R for
which there exists a map N : R → N (known as a norm) such that for any a, b ∈ R such that b 6= 0, there
exists unique q and r such that a = qb+r and N(r) < N(b). N is clearly such a structure where N(n) = n as
is R[x] where N(f(x)) is taken to be the degree of f(x). It is, of course, a matter of some delicacy whether
Euclid’s algorithm applied over these two structures is really the same procedure. A detailed treatment of
this question will have to await the development of a general approach to algorithmic identity in Chapter



49

In particular, this proof relies on the fact that Euclid’s algorithm is both total (i.e., that

it halts after a finite number of steps, meaning that the Sturm function sequence for f(x)

will always be finite) and correct (i.e., that if the result of applying Euclid’s algorithm to

g(x) and h(x) is d(x), then d(x) is in fact the greatest common divisor of g(x) and h(x)).

And as should be evident from the statement of Sturm’s theorem itself, a concrete

application of this algorithm will also be required in order to apply the theorem to derive

a statement of the form “The number of roots of f(x) in the interval (a, b) is n.” This is

to say that we want to apply Sturm’s theorem to derive a statement like

(1.11) x5 − 3x− 1 has three roots in (−2, 2).

we must actually calculate the Sturm function chain for f(x) = x5 − 3x − 1, and this

requires carrying out Euclid’s algorithm. There are, of course, any of number of ways to

derive (1.11) without carrying out this process, e.g., we might use Descartes’ test or factor

f(x) explicitly. However, both the original discovery of Sturm’s theorem (as detailed in

Sturm’s own account [139]) and the way it is motivated in contemporary textbooks (e.g.

[19]) suggest that its significance derives precisely from its practical utility in deriving

statements like (1.11) without the need to apply other methods of this sort.

The proof of Sturm’s theorem is thus similar to that of König’s Lemma in that, when

written out in full, it would contain a specification of a mathematical procedure. In this

case, however, the procedure so specified not only can be carried out in the sense of being

effective, but in fact must be carried out in order to apply the theorem to specific instances.

This observation again motivates us to inquire whether either of these features requires that

we reevaluate whether Euclid’s algorithm must be acknowledged to be a mathematical

entity itself in order to account for the significance conventionally attached to Sturm’s

theorem.

Although matters are more complicated in this case here than in the case of König’s

Lemma, I believe that this question must again be answered in the negative. This con-

clusion appears to contradict the impression – which is likely to be reported by working

3. I will return to consider the original numerical form of Euclid’s algorithm in greater detail in the next
section.
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mathematicians – that Sturm’s theorem is somehow about how Euclid’s algorithm may

be applied to R[x]. However, in attempting to make this point precise, we encounter the

immediate problem that the statement of Sturm’s theorem does not contain any term or

quantifier which obviously is intended to refer to Euclid’s algorithm. And there is also no

reason to suppose that a procedure-denoting term would be introduced where we to render

Theorem 1 into whatever format might be taken to be its logical form.16 And as such, if

we continue to apply traditional criteria of ontological commitment, there thus appears no

way in which a commitment to recognizing Euclid’s algorithm can simply be “read off”

from Sturm’s theorem itself.

To this it might replied that although no relationship between Sturm’s theorem and

Euclid’s algorithm can be extracted from the linguistic form in which the former is stated,

criteria of commitment in mathematics should be applied not only to the statement of

its theorem, but also to the techniques which are required in their proofs. As I have al-

ready indicated, the conventional proof of Sturm’s theorem does explicitly refer to Euclid’s

algorithm. For this reason it seems reasonable to expect that the most straightforward for-

malization of the proof of Sturm’s theorem would require us to represent Euclid’s algorithm

as a mathematical object about which a property (such as correctness or totality) could be

formally established. Such a formalized proof would thus contain either a term referring to

an algorithm or an explicit description of this procedure.

In the next section I will propose that our acceptance of certain mathematical statements

whose demonstration depends on computational methods does bring with it a commitment

to recognizing that mathematical procedures are mathematical objects. However, it should

16To be absolutely secure in this, we would, of course, need to possess not only a well-developed theory
of logical form applicable to complex algebraic statements, but also a means of regimenting mathematical
prose appearing such as that appearing in (1) as a statement of first- or potentially higher-order logic.
As long as we are willing to quantify over quasi-linguistic items like polynomials, there seems to be no
particular obstacle impeding the performance of the second task. However, there is room for debate about
whether algebraic results like Sturm’s theorem are to be interpreted as corresponding to statements about
extensional functions on Rn or about the polynomials by which such functions are represented. The former
alternative is, of course, more in keeping with the standard extensional ideology of classical mathematics.
But it should also be clear that analyzing Sturm’s theorem in this manner would require the introduction
of quantifiers over functions which make for a poor fit between the grammatical structure of Theorem 1
as stated and the formula assigned as its logical form. It seems safe to say, however, that no divergence
tolerated in service of interpreting this statement extensionally would introduce an expression denoting
Euclid’s algorithm or any other procedure.
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also be fairly obvious that nothing we have thus far seen about how Sturm’s theorem is

demonstrated provides a reasonable basis for reaching such a conclusion. One reason for

this is that despite the fact that there is a well known proof of Sturm’s theorem which

employs Euclid’s algorithm in the manner just discussed, this is by no means the only

acceptable proof of this theorem. And a novel proof may, of course, fail to refer to this

or any other mathematical procedure. Thus despite the conventional sentiment that there

is some relation in content between Sturm’s theorem and Euclid’s algorithm based on the

proof that we currently accept, there seems to be little reason to think that this connection

is anything more than heuristic.

As things stands, we have thus yet to see any considerations which suggest that a realistic

interpretation of classical mathematics requires an ontological commitment to algorithms.

But in this section, I have concentrated on instances in which reference to procedures

appears to be involved with the proof of what might be called general mathematical propo-

sitions – i.e. statements which express either that an object with a particular property

exists or that every member of a class of mathematics objects has a given property and

which thereby would be most naturally formalized as starting with an initial quantifier.

But as we saw at the end of section 1, algorithms are standardly used to derive statements

that might be called singular mathematical propositions – i.e. statements which have either

the simple subject predicate form P (a) or the form f(a) = b which state that a function

has a given value.

Now although (1) obviously has the former form, (1.11) has the latter. A typical

demonstration of the latter statement (as might appear as an example or an exercise in a

textbook) might proceed by simply citing Sturm’s theorem and then instantiated f(x) as

x5 − 3x − 1. What is of most interest is the part of such a demonstration which would

follow this step. For in order to apply Sturm’s theorem to f(x), the Sturm function for

x5−3x−1 must be calculated so that we may compute the values of σ(2) and σ(−2). And

as mentioned above this would typically be accomplished by applying Euclid’s algorithm

to this polynomial.

A fully explicit but informal derivation of (1.11) would thus feature not one but two
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references Euclid’s algorithm. In the first of these, the algorithm would have to be pre-

sented in a manner which allows us to reason about it formally so as to prove that it is

total and correct. And in the second, the algorithm would have to be presented in a man-

ner that allowed it to be carried out with respect to input f(x). I suggested above that

the first invocation of Euclid’s algorithm is potentially eliminable in the sense that it is

possible that we might provide a proof of Sturm’s theorem which did not proceed by citing

Euclid’s algorithm in order to guarantee the function chain associated with an arbitrary

polynomial has the appropriate properties. We can, for instance, envision an indirect or

non-constructive proof that such a chain existed without providing any indication of how

it might be constructed. But on the other hand, it is also clear that without access to

some method for explicitly calculating the members of this sequence, we would be unable

to apply the theorem to derive singular statements like (1.11).

This observation raises the following question: are there mathematical propositions

which we currently take ourselves to be justified in believing but whose demonstrations

ineliminably depend on actually having carried out the steps of an algorithm? While we

have seen that this is probably not the case for general propositions like Sturm’s theorem,

it is as least plausible that certain simpler propositions like (1.11) do have this property. In

order to see why this is so, we will have to examine an aspect of the role of computational

methods in mathematics which I have thus far mentioned only in passing – i.e. that not only

may a procedure A be justifiably used to determine the values of a function h : A→ B, but

it may also be the case that there are values a ∈ A such that using A is the only practical

way we have to determine the value of h(a). This is typically the case when calculations

which employ A turn out to be shorter than other known means of determining the values

of f . In the next Section I will argue that there are choices for h, a and A such that it is

uncontentious that we know the value of h(a), but for which we would be unable to account

if we did not acknowledge that A was a genuine mathematical object.

1.4 A problem about mathematical knowledge

My goal in this section is to demonstrate the existence of mathematical statements which

we currently take ourselves to be justified in believing but whose justification we cannot
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account for unless we are are willing to acknowledge that the algorithms by which they have

been derived are mathematical objects in their own right. Although such statements are

to be found throughout contemporary mathematics, my paradigm example will have the

form of identities of the form h(x, y) = z, where h(x, y) is an explicitly defined arithmetic

function. My contention will be that there are such functions such that at any stage in

the development of our mathematical knowledge, there will be particular values n,m with

the following properties: 1) it will be uncontentious within the mathematical community

that we know a statement of the form h(n,m) = q; 2) the only justification for this fact

that can be cited at the time in question will involve the fact that an algorithm A has

been applied to n,m to yield q. It thus follows that if we are to accept that our belief that

h(n,m) = q is actually justified, the process of applying A to pairs of natural numbers

to yield other numbers as output must itself be subsumed to a conventional mathematical

derivation. Over the course of the section I will argue that this means that A itself must

be regarded as a mathematical object.

The necessity of proving an algorithm correct before it can be used to learn the values

of a function which it has been introduced to compute is a widely recognized requirement

in theoretical computer science. This is reflected prominently both in informal algorithmic

analysis (in the sense of [72]) and also in the field known as program verification (in the sense

of [4]). In the first instance, informal mathematical techniques are used to prove that the

execution of an algorithm A, generally presented in pseudocode, determines a prespecified

mathematical function f(x). Although often routine, such proofs can occasionally be quite

involved in the sense that the claim that A is indeed correct with respect to f(x) can

both be non-obvious and remain open for some time. In the context of formal program

verification, such informal reasoning is eliminated by using formal programs to represent

algorithms and reasoning axiomatically about the results of their execution.

A number of interesting issues arise due to the interplay of these two approaches to

proving correctness. On the one hand, there appears to be a consensus that axiomatic proofs

of correctness are to be preferred to formal ones because they replace informal procedural

notions (e.g. the notion of one computational step being performed before another in

the course of carrying out an algorithm) with precise mathematical ones (e.g. descending
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in a well-ordering of computational states). This sentiment is explicitly expressed in the

well-known papers of Hoare [62] and Floyd [116] which are credited as founding program

verification as field. But such proofs are often impractical to construct in practice. This is

due in large part to the fact that the process of expressing an informally stated algorithm

of even moderate complexity into a formal programming language often complicates the

task of reasoning about it. In particular, since formal programs often involve reference

to programming language-specific features like pointers, formal proofs of correctness often

obscure the central mathematical ideas occurring in informal proofs. For this reason, it has

occasionally been argued (cf, e.g., [33]) that the formal verification of an algorithm adds

little to the sort of justification for its application which is conferred by a formal correctness

proof.

Two topics which are particularly germane to the topic of this Chapter tend to be

overlooked in technical and non-technical literature on verification. The first of these is

whether we need to acknowledge that computational methods are anything more than time

saving or heuristic expedients in the conduct of mathematical practice. In particular, it

is often efficient to determine the value of a function f at an argument a by applying

an algorithm A to a than by explicitly deriving a statement of the form f(a) = b in the

appropriate axiom system. But this observation leaves open whether the our knowledge of

f(a) = b depends on having access to A, or whether all such knowledge must ultimately be

justified on the basis of traditional deductive methods.

The second overlooked issue concerns the status which must assigned to A in order to

accept that a given form of correctness licenses its application in concluding that f(a) =

b. For as we will see in detail below, in order to prove that an algorithm A is correct

with respect to f requires that a mathematical model MA of A be constructed which can

be reasoned about within mathematics. But even it can be shown classically that the

application of MA induces the function f , this does not in and of itself address why we

are justified in using the algorithm A to compute f . In particular, A may been specified

informally in a manner quite distinct from that in which MA is defined. And as such, an

auxiliary argument to the effect that MA accurately reflects the computational properties

of A must be given if a mathematical proof involving the former is to be accepted as part
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of a justification for the use of A in computing values of f .

Over the course of this section, I will highlight several complexities involved with con-

structing mathematical representations of informally specified algorithms so as to prove

that they are correct. In general, however, not only is it difficult to assign a precise sense

to what it means to say that MA represents A, but it is unclear what it means to claim

that one such object more accurately represent a given algorithm than another. At least

in paradigmatic cases, there is thus little basis on which to block the suggestion that algo-

rithms should simply be identified with the mathematical objects we construct to represent

them in course of constructing correctness proofs. And since it appears that such proofs are

needed to explain the extent of our mathematical knowledge, it appears that operational

and explanatory forces may be combined in order to make a case in favor of algorithmic

realism.

The argument just outlined is both indirect and also turns on a number of poten-

tially contentious assumptions about the nature and extent of mathematical knowledge.

Nonetheless, I believe that it corresponds not only to the strongest case which can be given

for algorithmic realism but that it also touches most directly on why this view is of im-

portance to contemporary mathematics. Below, I will examine a particular case of this

argument involving an explicitly defined function f and several algorithms which might be

used to compute it. But before entering into this degree of detail, it will be worthwhile to

first briefly layout the steps in the overall argument.

1) Let f be any total function on an infinite domain X – for convenience we can assume

X = N – and let I be any group of human mathematical agents who we will suppose

are interested in computing the values of f . Since the domain of X is infinite, and the

agents in I are of finitary cognitive capacity, it follows that any time t in the complete

history of the mathematical activity of the members of I, these agents will only know

the value of f on a finite set of arguments D0 ⊆ N. The exact extent of D0 will

be determined by a number of practical exigencies both about the members of I, the

methods of mathematical proof which they accept and the way in which f has been

defined.
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2) Suppose that the members of I share a common mathematical language L and theory

T and that the function f has been introduced into L by an explicit definition θf . A

traditional deductive derivation of a statement of the form f(n) = m by which the

members of I might learn about the values of f will correspond to a proof in T + θf

in which the definition of f is first expanded as θf and then it is shown that m is the

unique number such that θf (n,m) holds. Clearly the construction of such a derivation

by a member of I is sufficient for the inclusion of n in D0. But at the same time, the

set of numbers D1 ⊆ D0 for which the members of I can actually construct such a proof

of the sort just described in T + θf will be limited by the length of these proofs. In

particular, suppose that the length of the shortest derivation of f(n) = m of the sort

just described in T + θf is given by a function `1(n). We may also assume that there

exists an upper bound on the length of the derivations the members of I could have

constructed up to time t which given by a function b(t). For all times t, we should thus

have D0 ⊆ {n : `1(n) < b(t)}.

3) Now suppose that there also exists an algorithm A which is believed by the members

of I to compute f . (They might believe this, for instance, either because of the way in

which A was specified or inductively on the basis of comparing the values produced by

A with those for which they can prove f(n) = m for n ∈ D1.) Suppose also that the

number of computational steps which it takes for A to produce an output on n is given

by `2(n) and that for some n0 < b(t), we have that ∀n > n0[`2(n) < `1(n)]. In this case,

it is possible that the set D2 of values n for which some member of I has used A to

compute the value of f(n) at time t is a proper superset of D1. In this case the numbers

n ∈ D2 − D1 will be ones for which the members of I believe that a statement of the

form f(n) = m is true, but for which they have not constructed a standard deductive

proof in T + θf of this statement (in virtue of its prohibitive length), but rather have

derived m as the output of A.

4) Suppose we take t to be the present day and I to be the set of all working mathemati-

cians. A standard necessary condition on the proper analysis of “i knows that ϕ” is

that i knows (or with sufficient effort could construct) a proof of ϕ. But in the case
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ϕ ≡ f(n) = m for n ∈ D2 −D1, we have supposed that “direct” proofs of ϕ in T + θf

(i.e. those that proceed by directly demonstrating that θf (n,m)) are too long to grasp.

If we want to understand how (if at all) we are justified in believing that f(n) = m, then

we must do so by providing a mathematical argument that justifies the use of A to com-

pute the values of f . However, it we suppose that T represents our entire mathematical

background theory, then this argument must itself be formalizable within T + θf .

5) The mathematical argument we must give should have the conclusion

(*) For all n ∈ N, the value obtained by applying A to n is equal to f(n).

But note that as written, (*) cannot be taken to abbreviate any sentence in L + {f}.

For based on what has been said thus far, we have no idea whether how (or even if) the

procedure A and the notion of applyingA to input n can be formalized in T+θf . In order

to do so, we must present an independent argument that there exists a T + θf -definable

structure MA which can be taken to represent A and a T + θf -definable functional

App(MA, x) which can be taken to represent the operation of applying A to x ∈ N. If

we are able to do so, then (*) may be formalized in T + θf as

(**) ∀n[App(MA, n) = f(n)]

Such a statement is standardly described as a formal statement of the correctness of A

with respect to f as defined by θf .

6) The provability of (**) in T + θf constitutes a necessary condition on our ability to

justifiably learn the values of f through the application of A. But the relationship

between MA and A (and also between the informally defined function given by the

expression “the value obtained by applying A to n” and the formally defined function

App(MA, n)) must be further analyzed before it can also be accepted as a sufficient

condition. It particular, we must show that MA is what we might colloquially call

a faithful representation of A. The exact significance of this requirement will vary

depending on what constraints our informal practices determine are the essential or

computationally invariant properties of A. (I will argue in subsequent chapters that

paradigmatic examples of such properties include running time complexity and the use
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of certain data structures.) For note that it is only if such additional facts about A may

be demonstrated that the sort of warrant which we wish to secure for using using A to

learn compute the values f is adequately formalized by (**).

7) If we take as fixed the assumption that we do in fact have knowledge of the statements

f(n) = m for n ∈ D2 − D1 (and this knowledge is on an epistemic par with that we

have of mathematical propositions which we have derived through traditional deductive

proofs), then from 1)-6) it follows that we must be able to demonstrate both (**) and

these additional facts about MA required by 6) within T + θf . If we are able to justify

the application of A in the manner just described, we will have thus also shown that

discourse about A and it properties is systematically replaceable with talk about the

subject matter of T+θf (which we can assume is exhausted by traditional mathematical

objects like numbers and sets). In this case we would thereby have developed the basis

of what is standardly referred as an ontological reduction of algorithms to mathematical

objects – i.e a means of showing that individual algorithms may be uniformly associated

with individual mathematical objects. This, however, is precisely the view which has

been identified as algorithmic realism.

Before the foregoing argument can be accepted as an argument for algorithmic realism,

a number of gaps need to be filled in. In addition to providing concrete examples of f , θf , T

and A, we must, for instance provide an abstract characterization of the difference between

what I have been referring to as a deductive derivation of a mathematical statement and

a derivation carried out by applying an algorithm. Another related problem concerns how

we may say definitively of a particular number that it falls in the set D2 − D1 (i.e. that

it is such that we take ourselves to know the value of f(n) on the basis of having applied

A but not by virtue of having derived the statement f(n) = m in T + θf ). However, gaps

of this sort become somewhat easier to fill once examples for the various parameters have

been specified.

To this end, consider the greatest common divisor [gcd] function g : N × N → N –

i.e. the function which for the arguments n,m returns the largest natural number dividing

both. In what follows, I will use g to denote the gcd function in extension – i.e. the set of
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pairs 〈(n,m), q〉 such that q is the gcd of n and m. Of course this function is sufficiently

important in elementary number theory to be assigned is own symbol – i.e. gcd(x, y). Our

subsequent discussion will be largely focused on statements of the schematic form

(1.12) gcd(n,m) = q

We will be primarily interested in epistemic of statements like

(1.13) gcd(43928, 27149) = 17

which may be derived from (1.12) by the substitution of numerals (of various forms) for

n,m and q – i.e. whether such statements are known to mathematical agents resembling

ourselves and if so, how they might be justified. But before we can begin to explain what

it means to say that a mathematical agent knows a statement such as (1.13), we must first

examine how functional symbols like gcd(x, y) are treated in conventional mathematical

discourse. We must decide, for instance, whether gcd(x, y) should be treated as a basic

functional expression or be taken to be defined in terms of other arithmetic expressions.

Although this is a fundamental distinction from the standpoint of constructing a logical

system in which to reason about statements like (1.12), it is often unclear in the practice

of mathematics when a given function expression is being treated as primitive notion and

when it is being treated as defined in terms of other symbols in the language. In the case

of elementary number theory, however, there is a tradition to regard only the successor

function, addition and multiplication as primitive functions and regard other functions

such as subtraction and exponentiation as defined. And since our informal understanding

of the function g itself would normally be stated in terms of these functions, it seems

reasonable to start out by regarding gcd(x, y) as a defined expression.

In the context of a formal theory of arithmetic, such a definition will take the form

gcd(x, y) =d ft(x, y) where t(x, y) is an expression in the language containing symbols

denoting the successor, addition, and multiplication functions. Before deciding on the

language in which such a definition should be given, however, it will be useful for the

moment to remain at the level of informal number theory wherein gcd(x, y) might be

defined as
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(1.14) gcd(x, y) =df max{z ∈ N : z|x ∧ z|y}

While the right-hand side of this definition relies on the non-arithmetic notion of set compre-

hension, the use of this and related set theoretic notations is common throughout informal

mathematics. Taken in this context, (1.14) appears to do as good a job as any formula at

directly expressing our original definition of g.

Another advantage (1.14) has over many standard definitions of otherwise simple arith-

metic and analytic functions is that is that an intuitive understanding of the terms it

employs allows us to see immediately how it is possible to compute the value of gcd(n,m).

For note that since z|x, z|y implies z ≤ min(x, y), then it can easily be seen that the set

over which the maximum needs to be taken in (1.14) is finite. Hence in order to compute

gcd(n,m), it suffices to explicitly check for each of the numbers z = 2, 3, . . . ,min(n,m)

whether z|n and z|m.

This procedure is likely to correspond to the manner in which we would proceed were

we to find the definition (1.14) written in a textbook and were then asked to compute the

value of gcd(12, 5). For while this procedure is not itself directly expressed by (1.14), it may

be readily extracted by operationalizing our understanding of the terms it contains. One

way we might describe the outcome of this process of operationalization is via the following

procedural specification:

(1.15) NaiveGCD(n,m)

Step 1: Let q = 1;

Step 2: Let i = 2;

Step 3: If i ≥ min(n,m) then output q and halt;

Step 4: If i | n and i | m, then let q = i;

Step 5: Let i = i + 1;

Step 6: Goto to step 2.

(1.15) is our first example of a procedure specified in the quasi-formal idiom of pseu-

docode – i.e. a hybrid of mathematical English and the syntax of formal programming

languages which is most often employed in mathematics and computer science to specify
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procedures more precisely than is customary in standard prose. I will discuss the conven-

tions by which such specifications are standardly interpreted at greater length in Chapters

2. For the time being, however, we may understand (1.15) as a set of imperative state-

ments α, β, . . . which specify that certain mathematical operations are to be performed by

an agent who elects to carry the procedure so denoted. These operations are joined together

by groups of constructs known as control structures which serve the grammatical role of

conjoining instructions and function semantically as directing an agent carrying out the

procedure to perform the conjoined instructions either in sequence (as denoted by “α;β”),

conditionally (as denoted by If ϕ then α) or to switch control to another instruction (as

denoted by Goto to step `).

Following the conventions of modern computer science, I will also begin referring to

procedures specified in this manner via the proper name NaiveGCD. It will be my ultimate

contention that in nearly all instances in which a human mathematical agent believes a

statement like (1.13), this belief is grounded in carrying out either NaiveGcd or another

more efficient procedure to be described below. As a first step in this argument, the

following two questions may now be posed directly: 1) what does it mean for an agent i

to “carry out” a procedure like NaiveGCD?; and 2) given that i has carried out such a

procedure with input n,m and obtained output q, how can this result serve to justify i’s

belief that gcd(n,m) = q. The force of the second question becomes apparent as soon as

we recognize that as close as we may think the relation between the procedure NaiveGCD

and the definition (1.14) to be, the sequence of corresponding steps which would arise by

carrying out the former is not likely to resemble a deductive proof of gcd(n,m) = q based

on the latter. If we are going to accept applications of NaiveGCD as forming part of the

evidentiary basis for belief in such statements, an additional argument must be given which

shows that the value determined by applying this procedure to n,m will coincide with that

determined by the definition of gcd(n,m).

Although it is ultimately straightforward to provide such an argument, doing so re-

quires that we take several steps towards formalizing both what it means to carry out

NaiveGCD and also what it means to derive a statement of the form gcd(n,m) = q via

conventional mathematical proof. To this end, first note that what we might informally
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describe as a calculation via this procedure can be taken to correspond to sequences of

tuples of 〈n,m, i, q, `〉 where n and m correspond to the input variables n,m, i to the

current value of i, q to the current value of q and ` to the current line number be-

ing carried out. I will refer to such tuples as the computational states of NaiveGCD.

As I will discuss in more detail below, a complete calculation carried out in accordance

with this procedure may then be taken to correspond to a sequence of tuples of the form

〈〈n,m, i0, q0, `0〉, 〈n,m, i1, q1, `1〉, . . . , 〈n,m, ik−1, qk−1, `k−1〉〉 where the transition between

computational states is mediated by carrying out one of the component instructions of

NaiveGCD and k − 1 corresponds to the first tuple in such a sequence for which no such

transition is defined.

Suppose we let execNaiveGCD(n,m) denote the sequence of states induced by the op-

eration of NaiveGCD on n,m. Stated in these terms the fact that this procedure may

be used to compute the value of gcd(n,m) may now be taken to be equivalent to the two

following assertions:

(1.16) i) For all n,m ∈ N, the sequence of computational states execNaiveGCD(n,m)

whose first component is 〈n,m, 1, 1, 1〉 is finite.

ii) For all n,m ∈ N, if 〈n,m, ik−1, qk−1, `k−1〉 is the last member of

execNaiveGCD(n,m), then qk−1 = gcd(n,m).

Take together, these statements express that NaiveGCD is correct with respect to the

function denoted by gcd(x, y). I have already noted the specification of this procedure is

so closely related to definition (1.14) as to give the appearance that it would be trivial

to prove (1.16i,ii). But of course corresponding claims for some other algorithm need not

have this property. And since there are a number of subtleties which arise only when we

attempt to say in precise terms what is required to prove such statements from more basis

assumptions, it will be useful to examine further what is involved in proving the correctness

of NaiveGCD.

The first thing we must do is to take a step backwards with respect to the manner in

which we have decided to introduced gcd(x, y) to our mathematical language. For note that

any formal proof of (1.16ii) will require that this functional expression be treated as defined
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in some definite manner. And although (1.14) reflects how this term might be introduced

in everyday mathematical practice, it is difficult to translate this definition directly into

a formal language. It will thus be useful to choose as our “official” definition of gcd(x, y)

a statement in a traditional first-order language which reflects as much as possible the

mathematical content of (1.14). A standard choice in this regard would be something like

(1.17) gcd(x, y) =df ιz.[∃u∃v(z × u = x ∧ z × v = y)∧

∀w[∃u∃v(w × u = x ∧ w × v = y)→ w ≤ z]]

I will treat this statement as a definition of a new function symbol given over the language

LA = {0, 1, <, s,+,×} of first-order arithmetic. Such a statement should be viewed as an

axiom which may be adjoined to a background arithmetic theory T which is sufficient to

formalize elementary number theoretic reasoning.

I will start out by assuming that T extends first-order Peano arithmetic [PA]. So as

to facilitate the introduction of mathematical natural function definitions, it will also be

useful to assume that the e L
+
A over which T is formulated contains a definite description

operator axiomatized in the standard manner – i.e. by taking as logical axioms all instances

of ϕ(ιy.ψ(x, y))↔ ∃y[ψ(x, y) ∧ ∀z[ψ(x, z)→ z = y] ∧ ϕ(y)]. Using this device, a functional

symbol fϕ can then be added to LA by the axiom ∀x∀y(fϕ(x) = ιy.ϕ(x, y)) whenever

T ` ∀x∃!yϕ(x, y). If we let θ(x, y, z) correspond to the formula on the right-hand of (1.17),

then we may easily prove the corresponding statement for this formula in T . I will thus

assume that LA contains a functional expression gcd(x, y) whose interpretation is governed

by the axiom taking (1.17) as an axiom.

I have now presented a basic mathematical language LA and theory T in which the func-

tional expression gcd(x, y) is a formal term. We can thus begin the process of formalizing

statements like (1.13) and (1.16) so as to begin to answer three of the questions have been

posed previously: 1) what does it mean to formally prove the correctness of NaiveGCD

with respect to a particular definition of gcd(x, y)?; 2) what does it mean to provide a

formal deductive derivation of a statement of the form gcd(n,m) = q?; and 3) how does

a proof of this sort differ from a calculation carried out by a procedure like NaiveGCD?

Since answering the second and third questions will lead us to expand LA and T in various
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ways which facilitate answering the first, I will begin there.

The first obstacle we face in answering 2) and 3) is that we cannot yet regard (1.13) as a

statement of LA. For note that we would conventionally say that (1.13) contains numerals

denoting each of the numbers 43928, 27149 and 17 and in the context of this statement

these numerals are treated as grammatically primitive expressions. LA, however, only

contain constants 0 and 1 corresponding to the natural numbers 0 and 1. This means that

in order to refer to the numbers 43928, 27149 and 17 in LA, we must employ complex

terms to denote them. While there are obviously many LA which perform this function,

the canonical choice is to use the unary numeral sn(0) to refer to the natural number n.

Relative to this convention (1.13) would rendered as the LA statement

(1.18) gcd(s43928(0), s27149(0)) = s17(0)

It may appear that (1.18) does a reasonable job of expressing (1.13). But it must be kept in

mind that the statement (1.18) is not itself a sentence in the official syntax of syntax LA,

but rather a metalinguistic abbreviation for such a sentence. And since the sentence which

(1.18) abbreviates will contain the terms of the form s(s(. . . (0) . . .)) denoting each of the

numbers 43928, 27149 and 17, it will be over 200, 000 symbols in length. And although this

will be a perfectly well-formed sentence of LA, it is doubtful that any human mathematical

agent could even survey this sentence let alone dependably grasp that it expressed (1.13).

Thus if our desire is to formalize this statement in some manner so that its formal role in T

reflects its epistemic significance in our informal mathematical practices, we need to refine

LA so that (1.13) can be expressed more compactly.

Accomplishing this in an intuitively satisfactory manner turns out to be a surprising

elusive goal. It is not sufficient, for instance, to simply introduce three new constant symbols

– say 43928, 27149 and 17 – into LA. For although this would allow us to write a sentence

(1.19) gcd(43928, 27149) = 17

which contains a surveyable number of primitive symbols, the mere presence of such a

statement in an arithmetic language is of little use unless T is also amended in some way

to ensure its derivablity. This can, of course, be achieved by simply taking (1.19) to be an
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axiom of T . But in this case, the sentence which we would have chosen to express (1.13)

would have a single line derivation in T . T thus fails to accurately reflect the fact that

(1.13) is not only likely to be informative to a human mathematical agent (in the sense

that prior to deriving it, he may fail to realize that the term gcd(43923, 27149) denotes 17),

but also that it may require substantial mathematical effort on the part of such an agent

to demonstrate that it is true.

If we wish derivations in T to reflect the epistemic significance of derivations in informal

number theory, then some other means of codifying the contribution of numerical expres-

sions to the meaning of LA sentences must be found. One desirable refinement would be a

means of reflecting the distinctive role which numerals play in our informal understanding

of arithmetic identities like (1.13). Note, for instance, that our understanding of expressions

like 43928 is not exhausted by the recognition that they are names for natural numbers.

Rather we recognize 43928 as being a certain kind of numeral, in particular a member of

the denary (i.e., base ten or Arabic) numeral system. And with this recognition comes an

understanding that such a system includes both recursive rules which allow us to see this

symbol as having internal structure as well as a means of using this structure to effectively

determine what number it denotes. The treatment of numerals as constant expressions in

conventional first-order languages overlooks both of these aspects of their conventional use.

If we wish to construct T and LA so as to be maximally faithful to our informal modes

of number theoretic reasoning, then a number of emendations must be made to both.

At minimum, the basic inductive definition of LA terms would have to modified so as

to recognize both primitive symbols (i.e. the digits 0, . . . , 9) and concatenations of such

symbols as singular terms. And in addition to the familiar PA axioms governing the base

cases for addition and multiplication (i.e. ∀x[x + 0 = x], ∀x[x × 0 = 0]), we would also

need to have axioms summarizing the addition and multiplication tables for the digits

0, . . . , 9. And in addition to this, we would also have to emend T with axioms which codify

how we perform addition and multiplication on arbitrary denary numerals. Such axioms

should somehow mirror the way in which the standard PA axioms governing addition

and subtraction reflect a means of computing on unary numerals. For instance the axiom

governing addition (i.e. (i.e. ∀x∀y[x + s(y) = s(x + y)] ) allows us to proof-theoretically
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“work out” the value of arbitrary terms of the form sn(0)+sm(0) by successive applications

of this axiom along the and first-order equality rules.

In order to capture analogous forms of computation involving arbitrary numerals in

T , we might attempt to express various familiar calculating techniques such as the famil-

iar “grade school” algorithms for performing addition and multiplication via carrying as

axioms. But note that although we may think of these methods as the canonical means

of computing sums and products, this view reflects a certain narrow-mindedness with re-

spect to other traditional computational techniques. For instance, the methods of lattice

multiplication and Russian peasant multiplication (c.f. [18]) have many of the concrete

advantages of the grade school algorithm and were widely used in Europe well into the

nineteenth century. The existence of such alternative computational techniques makes it

difficult to provide sharp criteria for deciding whether a given method is sufficiently ele-

mentary to warrant direct axiomatization as opposed to the sort of indirect formalization

of the sort we hope to provide for NaiveGCD. As such if we wish T to reflect even some

of the practical expedients embodied by our informal number theoretic practices, we must

decide between a maximalist theory which enshrines all such methods as axioms and an

arbitrary version which makes unprincipled distinctions between them.

For present purposes, I will circumvent this problems by defining LA and T in a manner

which idealizes certain aspects of how we perform addition and multiplication but which

still attempts to reflect the difficulties we would face in deriving a statement like (1.13)

in practice. In particular, I will henceforth assume that L
+
A contains a constant symbol

n corresponding to every n natural number. Pace the foregoing, I will also assume that

these symbols are treated as conventional constants in the sense of being unstructured.

However I will additionally assume that T contains as axioms all true atomic statements

involving these symbols and the basic function symbols denoted by s,+ and × – i.e., all

true sentences of the form s(t1) = t2, t1 + t2 = t3 and t2× t2 = t3 for all terms t1, t2, t3 over

this expanded language, and similarly for inequalities.17

Having defined LA and T in the manner just described, not only is

17In model theoretic terms, this corresponds to augmenting T with the elementary diagram of the standard
model of PA in which constants are introduced to stand for all members of N.
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(1.20) gcd(43928, 27149) = 17

now a well-formed sentence of LA, but T now also contains appropriate axioms governing

the behavior of all of the symbols it contains. Since we have agreed to take (1.17) as the

sole axiom pertaining to the functional symbol gcd(x, y), it thus follows that to derive a

statement of the gcd(n, m) = q we must proceed by demonstrating that the terms n, m and q

satisfy the right hand side of this definition. To simplify this task, let θ(x, y, z) denote the

LA predicate ∃u∃v[z×u = x ∧ z×v = y]. Such a proof must then proceed by demonstrating

a statement of the form

(1.21) θ(n, m, q) ∧ ∀w[θ(n, m, w)→ w ≤ q]

As is true of all well-known proof systems for arithmetic, T has the property that

a derivable formula ϕ will have infinitely many distinct proofs in the standard sense of

line-by-line identity. It is thus impossible to use T itself to uniquely characterize the

manner in which we might go about deriving a statement like (1.13). What we can do,

however, is to ask whether the manner in which we would go about calculating the value

of gcd(43928, 27149) based on an understanding of (1.14) alone (i.e. without the use of

shortcuts based on auxiliary lemmas about the properties of gcd(x, y)) can be naturally

formulated as a derivation of T .

The answer is clearly affirmative since we may readily see that the sort of calculation

via NaiveGCD (which was itself grounded in an informal understanding (1.14) may be

readily mimicked in T . The first step in such a derivation would be to prove as a lemma

the statement

(1.22) ∀x∀y∀z[∃u∃v(z × u = x ∧ z × v = y)→ z ≤ min(x, y)]

where min(x, y) is the function introduced by the axiom min(x, y) = ιz.((x < y ∧ z =

x) ∨ (z = y)). Once this statement was derived, it is then straightforward to demonstrate

in T that (1.21) is implied by the statement

(1.23) θ′(n, m, q) ∧ ∀w ≤ min(n,m)[θ′(n, m, w)→ w ≤ q]

where θ(x, y, z) corresponds to the formula derived from θ(x, y, z) by bounding its initial

existential quantifies by min(x, y). Such a derivation will take a constant number of steps
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k0, independent of n,m. Note also that because T contains axioms corresponding to the

complete multiplication table on N, the first conjunct of this statement may be demon-

strated by simply presenting a number q such that θ′(n, m, q). Such a derivation will thus

have constant length k1, also independent of the values of n,m.

The only real work in demonstrating (1.23) is thus that of verifying that the second

conjunct holds. But now note that if we attempt to derive the second conjunct directly

(i.e. in accordance with its logical structure), then we must proceed by demonstrating the

finite conjunction

(1.24) θ′(n, m, 2)→ 2 ≤ q ∧ . . . ∧ θ′(n, m, i)→ i ≤ q ∧ . . . ∧ θ′(n, m, r)→ r ≤ q

where r corresponds to the value of min(n, m). Since each of these conjuncts corresponds

to a statement of the form ∃u < min(n, m)∃v < min(n, m) . . ., in the case that i - n and

i - m they may themselves take as many k2 · min(n,m) steps to derive in accordance

with their logical structure (where k2 is a constant independent of n and m). And thus

a complete derivation of gcd(n, m) = q in T of the indicted form will have overall length

k0 + k1 + min(n,m)(k2 ·min(n,m)) = O(min(n,m)2).

Let DT (n,m) correspond to the sequence of statements comprising a “naive” derivation

of a statement of the form gcd(n, m) = q of the sort just described. While we will see below

that such a derivation is by no means the optimal means of deriving such a statement in

T in the sense of length, DT (n,m) is a reasonable reflection of how an agent might go

about computing the value of gcd(n,m) based on the definition (1.17) alone. And at the

same time DT (n,m) should also clearly qualify as what I referred to at the beginning of

this section as a “traditional deductive derivation” in the sense that it corresponds to a

deductive proof in an axiom system which arises as a minor extensions by definition of

Peano arithmetic. As such, if an agent were to succeed in deriving (1.20) in this manner,

there should be no further question as to whether his belief in this statement is justified

for the simple reason that we accept that the axioms of T are true and that its rules of

inference are valid.

As I mentioned above, it is at best unclear whether the same can be said about a

calculation performed via NaiveGCD. For as noted, such a calculation is not composed
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of statements either in English or in a formal language, but rather of structures which

encode the present values of the variables occurring in the pseudocode specification of this

procedure.18 The components of such a sequence are thus not interpretable as having truth

values and consequently do not bear inferential relationship to one another. As such, there

is no clear sense in which we can speak of a calculation as being deductively valid or invalid.

But having now described the structure of the derivations of DT (n,m), it is also apparent

how narrow the gulf between derivations in T and calculations via NaiveGCD really is. For

note that if an agent were to attempt to compute the value of gcd(n,m) by constructing a

derivation in T , he would naturally proceed by successively deriving each of the conjuncts

in (1.24). Each such sub-derivation naturally corresponds to one iteration through the

main loop of NaiveGCD consisting of steps 3 through 6. Thus in order to justify the

use of this procedure for computing gcd(n,m), all that is required is that we formalize the

definition of execNaiveGCD(n,m) in T . Upon doing this, we can proceed to both prove the

formal correctness claims (1.16) and also formally demonstrate that the sort of structural

relationship just described holds between DT (n,m) and execNaiveGCD(n,m).

Both tasks can most easily be accomplished in a background theory which allows us to

reason directly about tuples and finite sequences. One way to facilitate the construction

of correctness proofs is thus to expand T so that incorporates a portion of axiomatic set

theory sufficient for reasoning directly about hereditarily finite sets. However, this leads

to a variety of minor logical complications since we have to adopt a multi-sorted language

to distinguish between sets and natural numbers. So for present purposes, it will be most

convenient to work in a informal set theory and suppose that the constructions described

may then be formalized in T through the use of standard techniques for arithmetically

encoding finite sequences of numbers. This will allow us to concentrate on what is of

18If we were to attempt to analyze the intuitive notion of a calculation more generally, we would also have
to take into account two additional features of such sequences: 1) in the paradigm case, calculations may be
comprised of arbitrary (finite, discrete) configurations of symbols; 2) the constituents of such configurations
may to be assigned a mathematical interpretation before the calculations in which they appear may be
viewed as determined mathematical functions. Both points are raised already in Turing’s [144] original
paper on the analysis of the notion “finite mechanical procedure.” While Turing himself ends up adopting
a very narrow analysis of calculation, subsequent authors (e.g. Gandy [42], Seig and Byrnes [130]) have
generalized along the lines manner just described. In Chapter 5 I will return to the question of characterizing
these generalizations. However, for purposes of analyzing the simple procedures which are consider in this
Chapter, the analysis given in the text will suffice.
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most significance to out current discussion, namely showing that it possible to construct

an explicit mathematical representation of NaiveGCD relative to which correctness may

be demonstrated.

Although we will see in subsequent chapters that there is no unique or canonical form

of representation which must be used for this purpose, it is straightforward to specify a

finite combinatorial structure which is sufficient for proving correctness. One convenient

choice for is what is known as a transition system. Although I will present a somewhat

more general definition in the next Chapter, for present purposes we can take such a system

to correspond to a pair MA = 〈ΣA, δA〉 where ΣA correspond to the class of computations

associated with a given algorithm A and δA (the so-called transition function of MA) is

a function of type ΣA → ΣA which specifies how the state of A evolves in course of its

execution. In particular, if σ corresponds to the state of MA before a given instruction is

executed, then δA(σ) will denote the state after this instruction has been executed.

We will see in the next chapter that in cases where A is specified by a formal program

π, δA can be defined directly from the structure π by an operational semantics for the

programming language over which this program is defined. In the case at hand, however, it

easy to see we ought to have ΣNaiveGCD = {〈n,m, i, q, `〉 : n,m, i, q ∈ N, i ≤ min(m,n), ` ≤

7}. And it also straightforward to see from (1.15) that δEuclid should be defined follows:

(1.25) δNaiveGCD(〈n,m, t, l〉) =















































































































〈n,m, i, q, 2〉 if ` = 1

〈n,m, 2, q, 3〉 if ` = 2

〈n,m, i, q, 4〉 if ` = 3 ∧ i < min(n,m)

〈m,m, i, q, 7〉 if ` = 3 ∧ i = min(n,m)

〈n, t, i, q, 5〉 if ` = 4 ∧ (i - n ∨ i - m)

〈n, t, i, i, 5〉 if ` = 4 ∧ (i|n ∧ i|m)

〈n,m, i+ 1, q, 6〉 if ` = 5

〈n,m, i, q, 3〉 if ` = 6

Having now seen an example of a transition system, it will now be useful to define several

auxiliary notions which are applicable to such structures in general. To this end, let A be an
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algorithm which takes inputs in a setX and produces outputs in a set Y . LetMA = 〈ΣA, δA〉

be the associated transition system. For present purposes, we may assume that states

σ ∈ ΣA have the form 〈x1, . . . , zn〉 and that inputs x =∈ X correspond to sub-vectors of

σ of the form 〈x1, . . . , xin〉 (in ≤ n). We may further assume that an output of A is given

by a single component xout (out ≤ n) of σ. An execution of A on input x ∈ ΣA may now

be defined to be a sequence of computational state execA(x) = 〈σ0(x), σ1(x), . . . , σlenA
(x)〉

where σ0(x) corresponds to the initial state of A with the first in values set to x1, . . . , xn

and all i > 0, σi+1(x) = δA(σi(x)) if this value is defined and σi+1(x) = σi(x) otherwise.

lenA(x) is defined to be k + 1 where k is least such that δA(σk(x)) = σk(x). We finally

define the function computed by A on X to be given by AppA(x) =df π
out
n (σ(x)lenA(x)).

On the basis of these definitions, it is now straightforward to demonstrate the two

claims (1.16i,ii) which comprise the formal statement of the correctness of NaiveGCD

relative to the definition of (1.17). In order to demonstrate (1.16i), it suffice to show that

lenNaiveGCD(n,m) if defined for all n,m ∈ N. This may be seen by observing i incremented

in the states 5, 9, 13, . . . , (4i + 1), . . . (4min(n,m) + 1) of execNaiveGCD (with from initial

state σ0(n,m) = 〈n,m, 1, 1, 1〉). And from this it follows that we have

(1.26) ∀n∀m[lenNaiveGCD(n,m) = 4min(n,m) + 3]

In order to demonstrate (1.16ii), it suffices to show that if we set out = 4, then for all

n,m ∈ N, if AppNaiveGCD(n,m) = q then gcd(n,m) = q. This can be shown by inductively

by noting that for all i ≤ min(n,m), the value of the parameter q in the state σ4i+1(n,m)

is equal to the largest j ≤ i such that j|n and j|m. And thus for i = min(n,m), it follows

that q = gcd(n,m).

Relative to conventional standards of mathematical rigor, the foregoing correctness

proof would suffice to justify the use of NaiveGCD for computing the values of gcd(x, y).

But as already noted, this proof involved only finite combinatory reasoning, and as such,

it may readily be formalized in the theory T + θf . It is, moreover, possible to carry out

this formalization in a manner such that the definitions of MNaiveGCD, execNaiveGCD and

AppNaiveGCD are translated in definitions M∗
NaiveGCD, exec∗NaiveGCD and App∗NaiveGCD.

And on this basis we may then prove the translates of (1.16i,ii) directly in T + θf .
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Both of these are significant findings from the standpoint of algorithmic realism as they

lend credence to the overarching claim that statements about algorithms may be system-

atically interpreted as referring to ordinary mathematical objects. But in addition to this,

the manner in which the latter result is derived is significant because it also shows that we

may demonstrate in T that we are justified in using NaiveGCD to determine the values

of g. This is true not just in the global sense that the proof shows that AppNaiveGCD(x, y)

determines the same function as is denoted by the term gcd(x, y), but also in the local

or intensional sense that we can prove in T that there is a correspondence between se-

quences of statements in the deductive derivation DT (n,m) and subsequences of states in

execNaiveGCD(n,m) of the sort described above.19

The example of gcd(x, y) and NaiveGCD we have been considering answers the three

questions posed above about the relationship between proofs of identities like (1.13) involv-

ing the former and computations of the latter which may also be taken to justify our belief

in them. If we generalize away from the details of this example, we arrive at the conclusion

that in order to justifiably employ an algorithm A to compute the values of a mathematical

function f , we must typically construct a mathematical representation MA of A by which

A can be proven correct in the context of our mathematical background theory S. Once

we have done so, we can also go on to provide a explanation of the relationship between A

and the definition under which we have introduced f by reasoning about the operation of A

internally in S using MA. This leads us naturally to ask about the ontological relationship

between MA and A. For if we have succeeded in formalizing not only a definition of A but

also in formalizing important procedural notions such as the definitions of application and

running time, and shown that these definition have the correct properties in S, then this

provides motivation for advancing the thesis that A may be simply identified with MA.

It seems, however, that our views about the role which algorithms play in the practice

of mathematics are more settled than any intuitions we might have about their ontological

19In particular, suppose that the order of statements in DT (n,m) is fixed in the manner described above
– i.e. a subproof of (1.22), followed by a subproof of (1.23) followed by a subproof of each of the conjuncts
of the form θ′(n, m, i) appearing in (1.24) for i <≤ min(n,m). The latter class of derivations can now
be correlated with the sub-sequences of execNaiveGCD(n,m) of the form σ3+4(i−1)(n,m), . . . , σ5+4(i−1)(n,m)
which perform the same computational labor (i.e. checking n and m for divisibility by i).
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status. And for this reason it is doubtful that a clear cut case can be made for the thesis

that A should be identified with MA based only on considerations discussed thus far.

Nonetheless, I do think an argument to this effect can be adduced which is grounded directly

in the need to prove its correctness. In order to see this, we need to return to the schematic

argument with which I began this. The central premise of this argument corresponds to the

observation that if we refuse to accept that algorithms are mathematical objects in their

own right, then we will be left without a means of justifying our belief in certain identities

of the form f(x) = y which, in the course of our mathematical practices, we take to be

true. The paradigmatic example of such a statement is one whose conventional deductive

proof is prohibitively long where the notion of “conventional deductive proof” may now be

understood to resemble DT (n,m) – i.e a derivation eventuating in f(x) = y which proceeds

by directly decomposing a fixed mathematical definition of f(x).

Although I did not originally propose an example of such a statement, it should not be

surprising that one is close at hand. In particular, as I will now attempt to demonstrate,

(1.13) has exactly this property. To see this, it suffices to recall our estimate on the length

of the derivation DT (n,m). Although the exact values of the constants k0, k1 and k2

appearing in this estimate will depend on the properties of the particular proof system on

which T is based, each of these values must obviously be at least 1. It thus follows that the

DT (n,m) will be at least min(43923, 27149)2 = 737, 068, 201 lines long. I will assume that

it is infeasible that any human agent could possible even survey or check such a derivation,

let alone explicitly construct it “from scratch.”

But in order for (1.13) to be a legitimate contender for the status of a verifiably true

statement which is not known on account of such a proof, it must also the be case that we

are able to calculate the value of gcd(43923, 27149) by some other means. But note that

it is obviously also possible to compute this value by applying the procedure NaiveGCD.

As we now know, the length of the execution of this procedure on the input 43923, 27149

will be given by lenNaiveGCD(43923, 27149) (which in turn corresponds to the running time

complexity of this algorithm as discussed in Section 1). By calculation given above, we have

that lenNaiveGCD(43923, 27149) = 108599.20 Such a calculation is obviously far shorter than

20Note also that the savings incurred by using NaiveGCD over DT (n,m) is largely illusory. For note that
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the length of DT (n,m), but it too is presumably still far longer than any computation a

human mathematical agent could reliably carry out by hand.21

This observation should not come as a surprise, since we have already noted that

NaiveGCD is truly naive in the sense that it can be directly “read off” from the defi-

nition (1.14). And for this reason, it is also not surprising that calculating via this pro-

cedure is, at heart, no more efficient than explicitly deriving a statement of the form

gcd(n, m) = q in an appropriately formulated axiom system. But as the reader has surely

anticipated, there are considerably more efficient algorithms for computing the gcd func-

tion. One example of such a procedure is, of course, Euclid’s algorithm. As described in the

previous section, this procedure corresponds to a general method for computing greatest

common divisors in an arbitrary Euclidean domain. When applied to N, this procedure can

thus be informally described as computing gcd(n,m) by successively calculating the values

m0 = n mod m,m1 = m mod m0,m2 = m0 mod m1, . . . until the point at which mi−1 = 0

and then returning mi. A pseudocode specification of Euclid’s algorithm would thus be as

follows:

(1.27) Euclid(n,m)

Step 1: If m = 0, then output n and halt;

Step 2: Let t = n mod m;

Step 3: Let n = m;

Step 4: Let m = t;

Step 5: Goto to Step 1.

while the running time of NaiveGCD is O(min(n,m)) as opposed to the O(min(n,m)2) length of DT (n,m),
this improvement is rooted in the fact that we have elected to treat divisibility check as a primitive operation
in our specification of NaiveGCD while also electing to leave such a predicate out of L

+
A. The length of

DT (n,m) can thus be shortened by a multiplicative factor of O(min(n,m)) by introducing a modulus
function mod into LA and adding the axiom x mod y = ιr.[∃q(q × x + r = y) ∧ r < y] to T along with all
true sentences of the form n mod m = q and ¬(n mod m = q).

21If the reader doubts that it is truly infeasible to derive (1.13) by applying NaiveGCD, then this
example can be replaced with one involving numbers which are several orders of magnitude higher – e.g.
gcd(560171761683, 346205188258) = 17. Since such a statement would require over a trillion steps to verify
using NaiveGCD and is thus even less likely to be verifiable by a human carrying out this procedure.
Pursuant to the proviso issued in Section 1, I have thus have refrained from mentioning the potential use
of a computer to carry out NaiveGCD in this section. But it should able be clear that for any physical
computing device P , it will also be possible to choose values of n and m, such that P will be unable to
carry out the corresponding calculation, due either to physical limitations on the numbers it can store or to
the prohibitive number of steps it would require to carry out to completion.
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I will assume that this specification succeeds in denoting a determinate procedure which

I will subsequently refer to as Euclid.22 We are now in a position to demonstrate both of

these facts mathematically. In particular, we may prove the following:

(1.28) a) ∀m∀n[AppEuclid(n,m) = gcd(n,m)]

b) ∀m∀n[lenEuclid(n,m) ≤ 5dlog2(min(n,m))e] + 6

The first of these statements is standardly proven with the aid of the following number

theoretic lemma:

(1.29) Lemma For all n,m ∈ N such that 0 < m, gcd(n,m) = gcd(m,n mod m).

On this basis, (1.28a) may now be proven as follows. Define sequences of natural numbers

n0, n1, n2 . . . and m0,m1,m2 . . . as follows: i) for i = 0, let n0 = n, m0 = m and ii) for

i > 0, let mi and ni be the values assumed by the variables n and m immediately after

Step 5 of Euclid is carried out in successive iterations of the loop expressed by Steps

1-5. By the Lemma, we have that for all i, gcd(ni+1,mi+1) = gcd(ni,mi). Note also

that since if n > m then n mod m < min(m,n), and thus we have mi+1 < mi for all

i. Since the natural numbers are well-ordered, this sequence must thus terminate after

a finite number of steps k. But due to the form of the conditional in Step 1, this can

only happen if mk = 0, at which point the procedure outputs nk. Note, however, that

gcd(nk,mk) = gcd(nk, 0) = nk = gcd(n,m). And thus at the beginning of the kth pass

through the loop, Euclid will output gcd(n,m).

22A close variant of Euclid appears in Book VII of Euclid’s Elements, although it is now thought to have
been known at least two hundred years earlier (i.e. around 700 BCE, c.f. [18]) The procedure described
by Euclid differed from Euclid in two respects on which it is worth briefly commenting. First, Euclid
described this procedure as operating on magnitudes as opposed to natural numbers. And second, the
procedure was defined so that in the second step, the value m (described algebraically) was set equal to
t −m as opposed to t mod m. The first difference required Euclid to limit the application to magnitudes
AB and BC which we were not relatively prime to one another (i.e., for which there existed a magnitude
measuring both), as he did not take the unit magnitude as corresponding to a number. However, since the
procedure works even where AB and BC possess no common measure, he could have stated the procedure
so as to apply to the general case. The other difference between Euclid’s presentation and (1.27) is more
significant. In particular, the subtractive form of the Euclid’s algorithm turns out to have worst case
running time complexity O(min(n,m)), as opposed to the O(log2(min(n,m))) complexity of the modular
form. Computations performed by this procedure may thus be substantially shorter than those performed
via NaiveGCD.
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The degree of formality employed in the argument just given is typical of that employed

in correctness proofs given in modern textbooks on the analysis of algorithms such as [24],

[125], [46]. But note that foregoing proof relies on an informal understanding of what it

means to carry out the individual steps of Euclid and also on a informal understanding of

their modes of composition – i.e. what it means to execute Steps 1-5 in sequence, to pass

control from one instruction to another the a Goto statement, etc.. If we wish to view the

correctness proof outlined above as serving to justify the use of Euclid to derive the values

of gcd(x, y), then we must show how it may be transformed into a purely mathematical

argument which does not depend on an intuitive understanding of how Euclid is specified.

Although somewhat less obvious than the corresponding correctness proof for NaiveGCD,

this may readily be accomplished using the definition of MEuclid given above.23 And it

should again be clear that this new correctness proof can be straightforwardly formalized

within a mathematical theory like T which is capable of formalizing finite combinatorial

reasoning. Thus despite the fact that the relationship between the specification of Euclid

and the definition of gcd(x, y) is much less direct than in the case of NaiveGCD, the

epistemic warrant which we possess for using the former procedure to compute the values

of this function is as every bit as strong as that we possess for the latter.

The dimension along which NaiveGCD and Euclid clearly differ is that of running

time complexity. For as we may see from results (1.26) and (1.28b), the complexity of

these procedures is respectively O(min(n,m)) and O(log2(min(n,m))).24 While both of

these functions are relatively slow growing compared to the complexities hierarchies we will

23Consider the partial ordering <E on ΣEuclid × ΣEuclid given by

〈n,m, t, `〉 <E 〈n′,m′, t′, `′〉 ⇐⇒ (m < m′ ∨ (m = m′ ∧ (`+ 3) mod 5 > (`′ + 3) mod 5))

We may proceed by showing that for all σ ∈ ΣEuclid, if δEuclid(σ) = σ′, then σ′ <E σ. And since it may be
readily seen that <E is well-founded, it follows that for all n,m ∈ N, the execution execEuclid(n,m) is finite.
Now applying (1.29) we again have that if δEuclid(σ) = σ′, then gcd(π1

4(σ), π2
4(σ)) = gcd(π1

4(σ
′), π4

2(σ
′)).

And from we may conclude that if k = lenEuclid(n,m), then we must have σk = 〈q, 0, 0, 6〉 and that
AppEuclid(n,m) = q = gcd(n,m) as desired.

24(1.28b) is derivable from a result known as Lamé’s theorem which states that if fib(i) denotes the ith
Fibonacci number, n > m, and m < fib(i + 1), then the sequence m0 = n mod m,m1 = m mod m0,m2 =
m0 mod m1, . . . , 0 is of length less than i. Since it may be shown that fib(i) ≤ ϕi/

√
5 (where ϕ is golden

ratio), this means that if i = min(n,m), then such a sequence will be of length O(log2(i)). It may also
shown that the exact upper bound lenEuclid(n,m) ≤ 5dlog2(min(n,m))e] + 6 is achieved in cases where
n = fib(i+ 1) and m = fib(i) – e.g. n = 34, m = 21. For a proof of Lamé’s theorem and related discussion
of the historical development of analyses of Euclid’s algorithm, see Knuth [72], I.1.2.8.
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consider in subsequent Chapters, the difference of between logarithmic growth and linear

growth should not be underestimated. This is already manifest for the values n = 43923 and

m = 27149, for as we have seen, in this case lenEuclid(n,m) = 83 and lenNaiveGCD(n,m) =

108599.

I have already argued that the latter result shows that (1.13) has the property of being

unknowable through any “direct” means (i.e. either by deductive derivation or a corre-

sponding calculation which are based directly on the definition of gcd(x, y)). But it should

be equally clear that the former result can be taken as evidence that this statement is

knowable by the application of the “indirect” procedure Euclid. In particular, it presum-

ably is within the reach of arithmetic ability to carry out the 83 steps of Euclid (which

requires performing 15 long divisions) in order to calculate that the value gcd(43923, 27149)

is 17.25 And for this reason if we wish to maintain that we do have genuine mathematical

knowledge of statements like (1.13), it seems that we must be explicitly acknowledging the

role of a procedure like Euclid in its fixation.

As I have already argued above, this observation may already be taken as an indication

that in accepting that we know (1.13), we are already committed to regarding algorithms as

mathematical objects. This follows simply by virtue of the fact that we need to construct

MEuclid in order to rigorously show that Euclid is correct. But what remains to be seen is

whether there are any features of our use of this or other procedures which further elucidate

the nature of the relationship between Euclid and MEuclid.

As we will see in subsequent chapters, there are a number of factors which complicate

the discussion of this issue. Not the least of these is that given an informal specification of

an algorithm A, the precise structure of the object MA which must be constructed in order

to prove that A is correct with respect to a given function f will generally not be uniquely

determined. And thus although it may seem that given the pseudocode specifications of

NaiveGCD and Euclid, MNaiveGCD and MEuclid are indeed “canonical” representations

of these procedures, this is at least in part an artifact of the simplicity of these procedures

25If, again, the reader doubts either of the feasibility or infeasibility claims, the same argument can be
recycled with different values of n and m in (1.13) so as to magnify the difference even further. For instance,
computing gcd(560171761683, 346205188258) via NaiveGCD takes requires over a trillion long divisions,
but only 19 via Euclid.
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and the relative precision of their specifications. Since there generally will not be as strong a

connection between A andMA, one might reasonably wonder whether they must actually be

held to be identical in order for a correctness proof given for MA to accepted as establishing

that A computes f .

In order to frame this question more precisely, we may distinguish between two broad

alternatives. On the one hand, one might hold that although we must construct some

mathematical object MA in order to prove that A is correct with respect to f , MA must

merely represent A “well enough” to allow such a proof to go through. On this alternative,

the relationship between A and MA would be something like which must hold between a

physical system Ψ (such as a pendulum or spring) and its representation as a mathematical

dynamical system MΨ in order for us to be able to reliably use the latter to predict the

behavior of the former. Since Ψ is composed of physical constituents and MΨ of mathe-

matical ones, certainly no one would claim that they are identical. Nonetheless, MΨ may

represent Ψ with sufficient fidelity that it still useful to speak of the former as mathematical

model of the latter.

To a first approximation, it may seem as if this sort of faithful representation is all that

is required of the object MA. For note that in order in order to prove that A is correct with

respect to f , we will generally not need to assume that all of A’s computational properties

(whatever they may be) are accurately reflected in the structure of MA. After MA is

defined, all that is required is that it may be employed as a constitutent in a conventional

mathematical proof with conclusion ∀x[AppA(x) = f(x)]. And if this is all that is needed

in order for a correctness proof to sanction the use of A in order to compute the values

of f , then it seems that there is no route from the considerations adduced above to the

conclusion that A itself must be regarded as identical to MA.

There are, however, reasons to doubt that this interpretation of the relationship between

A and MA is sufficient to explain why we are justified in using A to compute the values of f .

The fundamental observation in this regard is that while the mathematical role of MA may

be exhausted by its contribution to the correctness proof for A with respect to f , such a

proof should not be taken to justify the use of A to compute the values of f if we did not also

take MA to resemble A in a variety of other respects. This point can be seen most vividly
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by considering the position in which we would find ourselves were we to be presented with

the specification (1.27) without having any prior knowledge of Euclid’s algorithm. In such

a situation it seems reasonable to suppose that although we might comprehend that (1.27)

specified a mathematical procedure, neither this understanding nor whatever additional

practical ability is require to carry out the specified procedure is sufficient to conclude that

the procedure so specified determines a given mathematical function.

It is, of course, precisely in this kind of context where the necessity of constructing a

mathematical correctness proof before applying Euclid would be felt most strongly. But

if we had no antecedent knowledge of what function Euclid computed, then such a proof

could only serve to justify the use of this procedure to compute gcd(x, y) (or whatever other

function we took Euclid to compute), if we also understood the mathematical model M

which it employed to reflect our intuitive understanding of the operation of the algorithm

which we understood to be expressed by (1.27). For note that it is only in such a situation

that such a correctness proof could have the intuitive significance of proving Euclid (as

opposed to some other algorithm) correct.

By way of example, it presumably would not be sufficient in such a context to take

M to be MNaiveGCD. For despite the fact that we have seen that this structure can be

used to prove a correctness result of the appropriate form, MNaiveGCD does a bad job at

representing the operation of Euclid as it is expressed by (1.27). This observation can be

made more precise by noting a number of “intensional” features of Euclid which would be

preserved if we were to represent this procedure as MEuclid but which would not preserved

if we were to represent it as MNaiveGCD. Among this are the fact that Euclid employs

the modulus function (as opposed to a divisiblity predicate), that it halts when one its

parameters has been decremented to 0 (instead of incremented to min(n,m)) and that

it has running time O(log2(min(n,m))) (and not O(min(n,m))). Thus although it is a

possible to prove a sort of ersatz correctness result for Euclid by taking MNaiveGCD as its

mathematical representation, were we to proceed in this manner, we would then have no

basis for claiming that the algorithm which we took to be expressed by (1.27) was itself

correct.
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These considerations appear to point to the necessity of imposing some kind of inten-

sional adequacy condition on the mathematical representations of algorithms which are

employed in correctness proofs. To reiterate, the example just considered suggests that

before a correctness proof for A with respect to f can be endowed with the operational

significance of allowing us to use A to compute the values of f , the object MA which we

use to represent A in the course of proving its correctness must reflect at least certain of

the properties which we would attribute to A based on our prior understanding of its mode

of operation. If this is indeed so, then our willingness to accept mathematical statements

like (1.13) demonstrates not only that the algorithms A which we employ to derive them

are mathematically representable in some way, but also that for each such procedure there

must exist what we might refer to as a faithful representative of A – i.e. a mathematical

object MA whose structure accurately reflects our informal understanding of A’s mode of

operation.

This latter interpretation of what is required of a correctness proof obvious comes closer

to entailing the conclusion announced above that in accepting that we know statements like

(1.13) we are indirectly committed to algorithmic realism. For if what is required to accept

such a proof as justifying the use of A to compute f is not only that MA induces the same

function as A but also reflects in its definition our intuitive understanding of A’s mode

of operation, then we are one step closer to justifying the realists proposal to identify A

with MA. However, at least three significant questions remain open: 1) are the operational

constraints imposed by either the necessity of proving correctness or our other theoretical

practices involving algorithms sufficient to require that MA represent A faithfully in all

respects?; 2) if so, is it possible to uniformly construct mathematical representations with

the correct properties; and 3) what relationship ought we to take these representations to

bear to A? I will take up each of these questions starting in Chapter 2.
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Chapter 2

Algorithms as objects

2.1 Introduction

Algorithmic realism was introduced in Chapter 1 as consisting of two claims: i) that

individual algorithms are mathematical objects; and ii) that the computational properties of

algorithms are structural properties of the mathematical objects to which they correspond.

A proponent of algorithmic realism will thus be likely to hold that the individual algorithms

studied in a field like the analysis of algorithms or complexity theory are like the structured

or “algrebraic” objects studied in graph theory, algebra or topology. And consequently, he

is also likely to hold that computational properties like running time complexity, which

are typically ascribed to algorithms directly, are structural properties of these objects in

much the same way that we standardly speak of commutativity being a property of groups,

connectedness being a property of graphs, or compactness a property of topological spaces.

Neither of these claims is likely to sound particularly revolutionary to readers familiar

with contemporary computer science. For as noted in Chapter 1, at least in their theoretical

idiom, computer scientists treat algorithms in a highly realistic manner. This is reflected

in a variety of ways which I will examine over the course of this chapter. One of the most

prominent is the widely employed practice of referring to individual algorithms by using

expressions which have all of the hallmarks of proper names. These terms correspond to

expressions like Euclid’s algorithm, Mergesort or Heapsort which are conventionally

used as shorthand to refer to specific procedures which have been introduced by a variety

of different means. As such, these terms function in much the same way that constants and

other mathematical “names” are used in conventional mathematical discourse.

I will take this latter category to include not only numerals (e.g. |||, 2, II) but also

terms denoting well-known set theoretic or combinatorial structures – e.g. ω, ε0, C6, K5, S1
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etc. Terms of this sort are generally introduced to our mathematical language by explicit

definitions and are conventionally taken to refer to particular structured objects (i.e. sets,

groups, graphs, topological spaces, etc.). As I will consider in detail below, it is possible

to locate many systematic parallels between our introduction and use of these terms and

procedural names. Perhaps the most apparent of these is our willingness to use such names

to form what appear grammatically to be subject-predicate sentences such as “Mergesort

has running time O(n log2(n)).” Such procedural statements can be compared to purely

mathematical ones such as “2 is prime”, “C6 is abelian”, “K5 is connected” or “S1 is

compact” which are also standardly treated as having the subject-predicate form P (t).

In the mathematical case, our willingness to treat such statements as having this log-

ical form has traditionally been taken to go along with a willingness to regard apparent

singular terms like 2, C6, and K5 as denoting mathematical objects, and predicates like “is

prime,” “is abelian,” and “is connected,” as denoting mathematical properties which are

true or false of these objects. In fact, the observation that numerical terms can serve as

grammatical subjects is one of the observations which motivated Frege [39] to argue that

natural numbers are abstract objects. Of course, many theorists have found this sort of

argument, which jumps directly from observations about the surface syntax of a class of

statements to ontological conclusions about their presumptive subject matter, far too quick

to the punch. And in fact, when applied to simple arithmetic statements like “2 is prime”

there are at least two well worked-out ways in which: 1) we can deny that such statements

express propositions which are of subject-predicate form (as did Russell, who held that

natural numbers were not objects, but rather classes of classes); 2) we can acknowledge

that such statements express subject-predicate propositions but deny either that they are

true or that their truth requires that numerical terms be taken to refer to abstract objects

(as have a variety of mathematical nominalists and fictionalists, ranging from Quine and

Goodman [112], to Field [34] to Yablo [157]).

Our present project is, of course, not to evaluate the prospects for algorithmic realism

in general, but rather those of algorithmic realism. And to iterate, it is the algorithmic

realist’s central contention that algorithms are mathematical objects. Since algorithmic

realists presumably take the fact that we name and quantify over algorithms as good
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evidence that such entities exist, they also hold (presumably ipso facto) that mathematical

objects exist.1 And for this reason I will accept (for the most part naively) not only

the received platonistic interpretation of classical mathematics on which, e.g., numerals

denote individual natural numbers, numerical quantifiers range over a well-defined class of

objects, etc. but also that one of the reasons why it ought to be accepted is on the basis

of the standard sort of linguistic or (largely) Fregean argument gestured at in the previous

paragraph.

The central task of the present Chapter will be to consider to what extent an analogous

sort of argument can be mounted in favor of regarding algorithms as abstract objects on

the basis of routine but largely unconsidered observations about how we speak of them in

the course of our computational practices. As an entree into this topic, I will begin by

recording the standard observation that even if we agree that the fact that terms such as

2, π or ω denote abstract objects, the mere fact that they can appear in the same sorts of

linguistic contexts as names for people, cities, and cats tells us essentially nothing about

which such objects they denote. And for this reason, virtually all contemporary theorists

who describe themselves as mathematical realists also accept some degree of indeterminacy

in the reference of mathematical expressions.

With this said, however, there is also a near universal consensus within mathematical

logic that the structure of all (or virtually all) of the objects studied in classical mathematics

can be represented as pure sets in a manner which preserves the truth values of all (or

virtually all) propositions in which they figure (the exceptions concern those structures

which are “too big” to be represented as sets.). Of course this discovery on its own is by

1Of course this argument may also be seen as too quick to the punch. For it is at least open to a theorist
to simultaneously hold that algorithms are mathematical objects and also that mathematical objects either
don’t exist or must be identified with concrete ones via the application of some form of nominalistic reduction.
However, I propose to not take this view seriously here for two reasons. First, to equate the algorithms with
mathematical objects and then deny existence to this these objects runs counter to the spirit of the realist’s
desire to view algorithms as themselves abstract in the sense discussed in Chapter 1 – i.e. existing outside
of space and time, possessing computational properties which are independent of our linguistic modes of
specifying them, etc. And second, I will argue below that a large part of the motivation for adopting
algorithmic realism is reconstructive in the sense that it attempts to account for our use of procedural
methods within classical mathematics. As such, many of the technical challenges an algorithmic realist will
face will be the same regardless of whether he takes the mathematical objects with which he seeks to identify
algorithms as themselves possessing genuine existence, or merely serving as ontological way stations within
a larger nomimalistic programme.
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no means a cure for referential indeterminacy. For it is well known that there are many

different ways of assigning sets as the denotations of numerical terms so as to preserve

the truth values of mathematical statements. This difficulty is paradigmatically framed

by Benacerraf’s [7] famous observation that it is difficult to see how a case can be made

for identifying the natural numbers with finite von Neumann ordinals as opposed to finite

Zermelo ordinals. For under both means of “reducing” numbers to sets, all number theoretic

statements receive the same truth value. And for this reason it is generally conceded that

there can be no non-stipulative answer to the question “What set is denoted by ‘2’?”

Somewhat less attention has been devoted by philosophers to the use of apparent sin-

gular terms to denote mathematical objects other than natural numbers. But as I have

already indicated, such symbols are routinely used in mathematical practice to denote not

only real, rational and complex numbers, but also used to denote so-called “combinatorial”

or “algrebraic” objects such as graphs (e.g. K5), groups (e.g C6), or topological spaces (e.g.

S1). This is significant because I have already indicated in Chapter 1 that common math-

ematical representations of algorithms such as transition systems are structurally similar

to these objects. It is, of course, well known that these structures may also be represented

by sets by the use of standard “coding” techniques. For instance, rational numbers can be

represented as pairs of natural numbers, and real numbers can be represented as sets of

rational numbers. Similarly, graphs and groups can be represented as relations or functions

over the natural numbers which can then be represented as sets of ordered pairs of num-

bers. But since at every step in such a procedure the variety of unconstrained encoding

choices grows exponentially (e.g. are real numbers to be represented by Dedekind cuts

versus Cauchy sequences; ordered pairs a la Weiner or a la Kuratowski, etc.), the degree of

referential indeterminacy of expressions like π, C6, K5 or S1 is presumably at least as great

as it is for 2.

This is just one of several well-known problems involved with extending standard doc-

trines about reference and truth to mathematical discourse. However in attempting to forge

a link between discourse about structured objects like graphs and groups with discourse

about algorithms, it will not matter so much whether we can take a term like C6 or K5 to

denote a specific set or other sort of abstract object. What will matter, however, is that



85

standard mathematical theories such as those of analysis, graph theory or group theory are

axiomatizable, say by a theory T over a (possibly second-order) language L. And in such

cases, there are well-known ways of systematically interpreting L into the language of set

theory so that the terms intended to denote these structures (i.e. individual real numbers,

graphs, groups, etc.) are mapped to terms denoting sets.

Given the broad success we have experienced in constructing such set theoretic reduc-

tions of this sort for a variety of mathematical disciplines, it seems natural to suppose that

discourse involving algorithms could also be treated in a similar fashion. For although I

argued in Chapter 1 that algorithms are not properly conceived of as being part of the

subject matter of any traditionally recognized branch of mathematics, they presumably

are part of the subject matter of several subfields of computer science – most notably the

analysis of algorithms and complexity theory. These fields are generally thought of as being

formal not only in the sense of applying mathematical methods, but also in the sense of

yielding non-trivial theorems which admit to formal proof. However, as we will see below,

the conventional statement of such results often refers to or quantifies over algorithms. And

thus it seems natural to suppose that the traditional methods of set theoretic interpretation

could be extended to cover these subject matters in much the same way we assume that

they could be applied to a novel branch of mathematics.

As things currently stand, however, no truly systematic attempt has been made to carry

through a programme which shows how the discourse of theoretical computer science can be

uniformly interpreted in set theory or any other axiomatically presented mathematical the-

ory. This is problematic in two respects. First, it leaves us without a precise compositional

analysis of what it means for a statement like “Mergesort has running time O(n log(n))”

to be true – i.e. a means of semantic interpretation which tells us what object is denoted

by Mergesort and what property is denoted by “has running time O(n log(n)).” This

is especially significant because such statements are often taken to express non-obvious

theorems of algorithmic analysis which are standardly proven by non-trivial arguments.

One would thus expect it to be possible to say in precise terms not only what it means

for this argument to be valid, but also explain why it should be taken to prove whatever

proposition is expressed by “Mergesort has running time O(n log(n)).” But as we will
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see below, terms like Mergesort are not (at least in any straightforward way) taken to

abbreviate descriptions of particular mathematical structures. And thus there is no means

of using an “off the shelf” set theoretic reduction in order to associate Mergesort with a

mathematical object.

It should be clear how the algorithmic realist hopes to remedy this situation. In partic-

ular, in holding that algorithms are mathematical objects, he maintains that there is some

way of carrying out the reduction just described, relative to which Mergesort can be

taken to denote a particular set. Relative to such a reduction, this would clearly be a boon

for theoretical computer science in at least two respects. For on the one hand, it would

show that statements like “Mergesort has running time O(n log(n))” can themselves be

taken to express mathematical theorems. And on the other, it would show that this can

be achieved without having to interpret them via a potentially elaborate paraphrase which

treated Mergesort in some manner other than as a singular term.

Having re-issued these advertisements for algorithmic realism, my perspective on this

view remains that of a skeptic. The basis of my skepticism lies in the suspicion that it is

inappropriate to view individual algorithms as mathematical objects not because they can

be shown to lack one or more of the properties traditionally associated with such entities

(e.g. lack of spatial or temporal location, causal inertness, etc.) but rather I fear that they

cannot legitimately be taken to correspond to objects in the first place. Having said this, it

must be acknowledged that questions about the general notions of objecthood (e.g. “What

is an object?”, “What objects are there?”, “What does it mean for an object to ‘fall under’

a property?”, etc.) are among the most vexed in analytic philosophy. And as such, one

might reasonably wonder what it even means to deny that algorithms are objects.

I hope to illustrate over the course of this chapter that the source of my concern does

not arise from the details of any particular doctrine about ontology or objecthood. Rather,

it originates with the otherwise banal observation that it turns out to be impossible to

state identity conditions for algorithms which track the way we speak about them in the

course of our theoretical practices. An analogous observation can, of course, be made about

concrete items like sand dunes, ocean waves, and ice cubes, which we may want to conceive

of as “entities” but for which it seems likely that no such criterion can be given (cf., e.g.,
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Lowe [77]). This claim is also sometimes generalized to apply to everyday items like tables

and chairs (cf., e.g., Unger [147]) and to persons (cf., e.g. Unger [146]).

However, things stand quite differently with respect to mathematics. Items like natural

numbers or groups are distinct from items like sand dunes and chairs not only in being

abstract, but also in the sorts of terms we use to refer to them and the characteristic modes

of inference into which these terms enter. In general, once we have fixed a language L for

speaking about the members of a mathematical domain D, not only are all statements of

the form t1 = t2 expected to be meaningful and potentially informative for all L-terms t1, t2,

but, above all, they are expected to all have truth values. In standard case, these values

can be taken to be fixed either axiomatically relative to an L-theory T , or by reference to

a standard model M of L. In such cases, T (or T together with M) can thus be taken

to supply identity conditions for the Ds. And in a variety of other familiar cases, the

definition of D itself will come along with a definition =D of identity for this class (e.g., in

the case of sets, =D is the relation of co-extensivity, in the case of finite groups, =D is group

isomorphism, in the case of topological spaces =D is homeomorphism, etc.). Thus while it

may at least be coherent to claim that some everyday “entities” lack identity conditions,

the thought of a class of mathematical objects for which no such criterion can be given is

almost inconceivable.

In claiming that algorithms correspond to a class of mathematical objects M, the onus

thus lies squarely with the algorithmic realist to provide a criteria of identity for these

objects as identified with members of M. In particular, although the realist may have

some latitude as to how M itself is defined, once defined, it is not open to him to assign

denotations to procedural terms like “Euclid’s algorithm” and Mergesort in an arbitrary

or stipulative manner. Rather, he must do so in a manner which respects our preexisting

conventions and results for regarding the procedures denoted by terms t1 and t2 as the same

or different. Thus whatever formal criterion of identity the realist might attempt to give

over M must accord with certain fixed data about algorithmic sameness and difference.

I have already acknowledged that it will be my ultimate contention that algorithms fail

to be mathematical objects precisely because such a criterion cannot be formulated. How-

ever this amounts to a claim with the following logical form: for any class of mathematical
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objects M and means of uniformly associating algorithms with the members of M, there

does not exist a equivalence definable relation =M on M such that for all algorithms A1, A2,

we are willing to accept that A1 = A2 if and only if the associated objects M1,M2 ∈ M

are such that M1 =M M2. Note that this statement has negative existential form – i.e. it

states that given M, no definition of equality over M can be given which has the appropriate

properties. And since it is up to the realist himself to define both M and =M, one might

reasonably expect that such a claim would be difficult to demonstrate, essentially because

one would have to show that no such relation exists uniformly in the definition of M.

In arguing against algorithmic realism, it will thus be useful to start out by delimiting

the choices of M and =M as sharply as possible. The purpose of this chapter is to initiate

this task by reviewing a variety of conceptual considerations which point to constraints

on how these items must be defined so as to meet certain general adequacy conditions

on the sort of general theory of algorithms which a realist will need to construct. I will

proceed in two phases. First, in Section 2, I will consider various ways in which we refer

and reason about algorithms in the course of both our theoretical and everyday practices.

These considerations both serve as the fundamental data for which the realist hopes to

account. And also, as we will see, they impose a variety of constraints on how the domain

of algorithms must be characterized by help us locate notion of algorithm in the context of

traditional discussion about language and ontological commitment.

In Section 3, I then will attempt to parlay the conclusions of Section 2 into a more

focused discuss of how the algorithm realist might go about the task of reducing algorithmic

discourse to mathematical discourse. In this context, it possible to note a number of

systematic affinities between the status which the algorithmic realist wishes to assign to

algorithms and that which a mathematical nominalist wishes to assign to mathematical

entities. Most prominently, the algorithmic realist can be understood as claiming either that

algorithms “just are” mathematical objects in the sense that discourse about algorithms

is just discourse about mathematical objects “deep down” or that at least such discourse

can be systematically reconstructed in terms of mathematical discourse. These correspond

to rhetorical positions which Burgess and Rosen [16] label hermenutic and reconstructive

nominalism which a mathematical nominalist might adopt about the status of mathematical
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objects relative to the non-mathematical domain to which he claims they can be reduced.

Appellation notwithstanding, I will suggest below that the view I have been calling

algorithmic realism can thus in fact be understood as a form of nominalism in the following

sense. If we wish to understand what it means for statements appearing in our discourse

about algorithms to be true, it might at first glance appear that we need to posit a novel

domain A of free-standing abstract objects to which terms like Mergesort refer. The

algorithmic realist, on the other hand, claims that such statement can be interpreted in

a manner such that all terms of this sort are assigned denotations in a class M of math-

ematical objects. Such a theorist can thus be understood as hoping to show that we can

interpret procedural discourse in a manner that does not force us to enlarge our ontological

commitments beyond those already entailed by our practices involving quantification over

M.

If we adopt this understanding of the realist’s aims, it is also possible to usefully employ

the framework of potential strategies for nominalistic reduction developed by Burgess and

Rosen. The bulk of Section 3 will be taken up by my argument to the effect that one of

these strategies is better suited to dealing with the conceptual constraints about algorithms

in Section 2 than the other. In particular, I will first suggest that in order to understand

the role of algorithms in mathematical practice, it is not sufficient to simply seek to reduce

discourse about algorithms to discourse about mathematical objects in the familiar sense of

interpreting one theory within another (this corresponds to the alternative which Burgess

and Rosen refer to as Tarskian reduction). Rather I will argue that the realist must in

fact show that algorithms need to be correlated with mathematical objects in some manner

which explains how they can be employed in mathematical practice in the sense developed

in Chapter 1.4.

In Section 4, I will propose instead that the algorithmic realist will be best off pursuing

the strategy which Burgess and Rosen dub contextual reduction. Relative to this strategy,

the algorithms in A are not held to be identified with members of M themselves. Rather

members of this latter class are to be understood as precise mathematical representations

of algorithms (or implementations as I will suggest they be called in Section 2) which allow

us to refer to particular algorithms. I will suggest in Section 2, that such reference is
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canonically effected by the use of the functional expression “the algorithm implemented

by M” where M ∈ M. According to this proposal, the class A may be understood as

corresponding to the range of this function and the identity conditions of its members can

be taken to be fixed in terms of an equivalence relation defined over M directly. I will argue

that such a so-called two-level criterion of identity not only provides the algorithmic realist

with a means of avoiding the indeterminacy and artefactuality problems discussed in the

prior paragraph, but it is also most in keeping with the conceptual constraints adduced in

Section 2. As such, I will conclude that what I will refer to as the abstractionist proposal for

identifying algorithms with mathematical objects is the realist’s best hope for vindicating

his view.

2.2 Procedures, language and ontology

2.2.1 The linguistic view versus the metaphysical view

Before we can get very far in determining whether procedures are properly regarded

as objects, we must first come to some a basic understanding of what it means to say

of something that it is an object. This is a famously slippery and contentious issue, as

witnessed by the fact that it is already difficult to even ask of a certain thing whether “it”

is an object without prejudicing an affirmative answer by referring to it in such a manner.

In recent times, the question “what is an object?” has also become tightly wrapped up with

the related question “what objects are there?” This may be a methodological inevitability.

For note that a given criterion of objecthood will obviously have as a consequence that a

given class of items D are genuine objects and as such serve to answer the latter question.

But our acceptance or rejection of this criterion will be at least in part based on whether

the members of D satisfy our background intuitions about objecthood.

This situation has a particular significance with respect to the ontological status of

algorithms. For as I have remarked above, it appears that conventional wisdom reflects no

clear consensus on whether not just mathematical procedures (i.e. algorithms), but also

everyday procedures like recipes or voting methods are properly regarded as objects as

opposed to say, functions or properties. And for this reason, it does not appear that its
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pronouncement either for or against the view that procedures are objects can be taken as

part of the data relative to which a theory of objecthood should be assessed. In seeking to

answer the question “Are procedures objects?” we must thus look to a theory motivated by

independent conceptual criteria. However, my goal in this in this section will not be reach

ultimate clarity on what form such a theory should take. To the contrary, all I wish to show

is that relative to traditional views about objecthood and ontology there is a reasonably

strong basis for regarding procedures as objects.

The traditional means of answering the question “what is an object?” is decidedly anti-

metaphysical in its motivation. It suggests that in order to determine whether something is

an object, we should start out by examining the language L which we use to talk about it.

According to the most straightforward version of this view, we are committed to regarding

as objects all entities which are the denotations of possible terms of L. This proposal is

customarily traced to Frege’s argument in the [39] that since numerical expressions such as

“the number of planets” or “17” function as terms when they appear as the grammatical

subjects of what appear to be subject-predicate sentences such as “The number of planters

is odd” or “17 is a prime” these terms must be taken to refer to objects in order to explain

how these sentences can be true.

If we assume that we are given L as a formal first-order language, this argument can be

explained in somewhat more detail as follows. In this setting, the class of closed L-terms

CTL is standardly defined to be the smallest set containing i) all of the constants c1, c2, . . .

(i.e. “names”) of L, ii) all expressions of the form f(t1, . . . , tn) whenever t1, . . . , tn ∈ CTL

and f is an n-ary function symbol of L and iii) (assuming that definite descriptions are in the

language) all expressions of the form ιx.ϕ(x) where ι is the Russellian definite description

operator and ϕ(x) a L-formula containing only x free. Now consider a particular CTL term

t such that there exists some L-atomic predicate P (x) such that the sentence P (t) is true.2

2The requirement that P (t) be true is needed since it is not the intention of the Fregean argument to
license the conclusion that all closed terms denote objects. For instance, even though we can imagine that
Winged(Pegasus) and Rational(1/0) might be grammatically well-formed atomic sentences of L, Frege’s
argument is not intended to license the conclusion that either Pegasus or 1/0 denotes an object. He achieved
this in [38] by stipulating that sentences containing non-denoting terms lack truth value. But it could also
obviously be achieved by insisting either that constants are denoting or by adopting a variant of free logic
in which statements of the form P (t) are regarded as false if E(t) is false.
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It is then claimed that in order for this sentence to be true, it must be possible to assign

a reference to t so that it falls under the reference assigned to P . And according to the

standard understanding of truth and predication as canonized in the Tarskian semantics

of first-order logic, this means that the denotation of t must be an element of the domain

over which L is interpreted which is contained in the extension of the predicate P – i.e. an

object of which the property of P holds.3

A related linguistic criterion of objecthood is customarily traced to Quine’s [111] well

known argument that ontological commitment is carried by existential quantification. In

order to apply this view to a particular statement S in natural language which we regard

as true (e.g. “there are cats” or “there are numbers”) we must first regiment S′ using

semi-formal canonical notation which represents its logical form by, among other things,

making quantification explicit. S′ may then be translated into a first order sentence ϕ.

And finally, the so-called existential commitments of S may be read off as the values which

the quantifiers in ϕ must range over for it to be true.

The central feature of both the Fregean and Quinean proposals is that they propose to

answer the question of what constitutes an object entirely on the basis of examining the

language in which we standardly converse or theorize. Following Lowe [77], I will refer to

proposals of this sort as instances of the linguistic view of objecthood. The first check on

plausibility for proposals of this sort is to compare the class of items they entail must be

objects against those nominated by intuition. And in this regard, it is well known that in

3The Fregean argument is often presented in a manner so that it applies in the first instance to natural
languages as opposed to formal ones. In this context, it is often summarized by saying that it is the so-called
singular terms of a language which potentially denote objects and thereby carry ontological commitment.
However, this formulation presents an obvious problem for the linguistic view since it presupposes the
availability of a purely grammatical means of characterizing the singular terms of a language. Although
this presents no problem for formalized languages for which we possess a inductive definition of term-hood,
the availability of much a criterion for natural language is a much more contentious issue. Dummett [29]
seems to have been the first to realize that if we blind ourselves entirely to meaning, and consider only
grammatical structure, defining singular terms as expressions which can appear as the subjects of subject-
predicate sentences fails to exclude quantifiers (as in “Someone is Iraqi”) or indefinite descriptions (as in “A
dog is a man’s best friend”). As a remedy, he proposed further inferential criteria which he hoped would
rule out these expressions. These criteria have subsequently been modified and extended by Hale [55] and
[155]. Although it is a still unsettled whether such analyses succeed in providing sufficient conditions for
singular term-hood, I will suggest below that the class of expressions by which we can make reference to
procedures is surprising limited. Thus despite the fact that we typically reason about procedures in natural
language rather than in first-order logic, it would be straightforward to verify that all the terms in this
restricted class pass even the most sophisticated tests which have been proposed to identify singular terms.
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adhering to either version of the linguistic view we run the risk of embracing overly lavish

domains of objects. This is perhaps most evident in the case of the Fregean variant as

evidenced by the apparent acceptability of statements such as the following:

(2.1) a) The whereabouts of Osama are currently unknown.

b) The identity of the UNABOMBER was disclosed by the FBI.

c) The status of Padilla was disputed by Bush.

d) The sake of liberty was the stated motivation for the war in Iraq.

e) The situation in Iraq continues to decline.

f) The fact that Clinton was impeached was instrumental in Bush’s victory.

The italicized expressions all serve as the grammatical subject of each of these sentences.

According to both the Fregean criterion and the more refined inferential criteria mentioned

in note 3, all of these expressions should be taken to denote objects. And it thus follows

on this basis that a proponent of the Fregean criterion will be obliged to accept that these

terms denote objects.

The obvious problem with this conclusion is that it flies in the face of our everyday

intuitions. For note that to the extent that we do possess a native, unitary conception of

what objects are, we would tend to cite macroscopic concrete items with definite boundaries

like tables and chairs as its prototypical instances. We are often willing to generalize

substantially from such paradigm cases in extending this status to very small items (e.g.

electrons, quarks), very large ones (e.g. countries, planets), ones lacking definite boundaries

(forests, oil spills), ones recognized by only social convention (e.g. the Supreme Court, the

IBM corporation) and various classes of abstracta (e.g. letters, words, sentences, numbers,

sets, etc.) which are typically held to lack spatial or temporal location. But it should

be clear that in various ways and to varying degrees, entities of these sorts are all tightly

integrated into our normal mode of describing and reasoning about the world. This is

perhaps most basically reflected in the fact that in most cases where we agree that a terms

denotes an object, we are able to state what sort of object it is – e.g. “17” denotes a number,

“France” denotes a country, “IBM” denotes a corporation, etc. And it is also reflected in

the fact that we can typically cite a large variety of characteristic features involving the
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members of most of these categories – for instance the denotation of “17” is odd, is less than

18, etc. and the denotation of “France” is a country in Europe, is bordered by Germany,

etc.

But despite the fact that the sentences in (2.1) demonstrate that terms like “the where-

about of Osama” and “the sake of liberty” have the same grammatical distribution as that

of terms denoting table, chairs and numbers, we are generally not willing to countenance

the proposal that such entities as whereabouts or sakes correspond to objects. This is

reflected in the fact that not only do we appear to be at a loss as to what kind of object

expressions like “the whereabouts of Osama” or “the sake of liberty” denote, it is also un-

clear what it means for such items to stand in various relation to one another. This is true

despite the fact that we occasionally say things like “The sake of liberty played a greater

role in Bush’s decision to invade than the sake of human rights” or “The whereabouts of

the UNABOMBER remained unknown for longer than the whereabouts of Saddam.” Note

that in such cases it appears doubtful that we have any definite conception of what relation

must hold between pairs of sakes or whereabouts in order for these sentences to be true.

In fact, the further we go in adopting such manners of speech, the greater our tendency

becomes to think that we must explain what we mean in terms of paraphrases that do not

involve reference to items like sakes or whereabouts.

Since a proponent of the linguistic view might thus take it as an embarrassment that

his view has a consequence that these so-called “Fregean monsters” must be accepted as

objects, we might additionally ask whether the Quinean strategy faired better in ruling

them out. The first problem we encounter in attempting to implement this strategy is that

although we can suppose that there is no problem in recognizing the language L over which

sentences like those in (2.1) are stated, it is more difficult to say with any certainty that they

are part of a particular informally stated theory T. As a consequence, it is difficult to know

how to regiment such sentences so as reveal their logical form, let alone uniformly translate

them into a first-order theory T ′ formulated over a language L′ which might employ a more

impoverished class of predicates than L (i.e. a leaner “ideology” in Quine’s sense).

For note that on the one hand it appears plausible to think that in some instances

reference to problematic entities like sakes and identities can be eliminated by regimenting
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statements like those in (2.1) in a manner which quantified over less problematic classes

of entities. For instance we might attempt to regiment (2.1a) in L′ as ∃x[Location(x) ∧

Knows(Bush, InLocation(x,Osama))]. But since it is difficult to construe such statements

as being part of a systematic theory the truth value of whose theorems have to preserved

under the proposed mode of paraphrase, it is not always clear when we should accept such

a formalization as a legitimate representation of the content of the original sentence.

To make matters worse, there are other apparently acceptable L sentences which quan-

tify over the problematic entities explicitly – – e.g.

(2.2) a) There is some fact which Cheney knows which Bush does not.

b) There is some situation in Iraq which would prompt the United States to

withdraw.

If anything, it seems even harder to know what (if any) principles constrain how sentences

like these should be regimented and formalized compared to those appearing in (2.1). And

for this reason, it is even less promising that we can seek to rule out the conclusion that facts

and situations must be accepted as objects without appealing to extra-linguistic intuitions

about how such statements may be allowably paraphrased or otherwise analyzed in order

to eliminate the apparent need to quantify over such items.

I will refer to a strategy which accepts that such intuitions must be exploited in order

to answer the question “what is an object?” as a metaphysical view of objecthood. One

way in which the metaphysical view differs from the linguistic one is that it does not adopt

a unitary approach to answering either this question or the related ontological questions

about objects we are committed to accepting by speaking in a certain manner. For instance,

according to the metaphysical view, if we want to know whether sakes are objects, we must

look beyond the grammatical distribution of statements which purport to speak about

such entities and examine our more general intuitions about what we take such statements

to mean. I will argue in Section 2.3 that our practices for referring to procedures make it

almost certain that proponents of the linguistic view embrace the conclusion that algorithms

are objects. But if we want to know if this conclusion follows only because procedures are

caught up in an explosion of ontological commitments which proponents of this are obliged
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to embrace, we attend in more detail to particular features of how we refer to and reason

about algorithms.This is how I will proceed in section 2.4.

But before starting out it will also be useful to consider a miniature example of the

debate which might go between proponents of the linguistic and metaphysical views with

respect to a fixed class of terms. To borrow an example from Lowe [77], consider the class

of expressions ∆ which can be used to denote facial expressions (e.g. grins, smiles, frowns

etc.) in a natural language like English. It is easy enough to come up with a variety of

sentences paralleling the form of those in (2.1) and (b) – e.g.

(2.3) a) The grin on Bush’s face is broad.

b) Bush is wearing a broad grin.

c) The smirk on Bush’s face belied his anger.

d) The reporter’s question caused a frown to cross Bush’s face.

These examples illustrate that it is possible to construct sentences which treat terms

in ∆ as grammatical subjects. And if we follow Quine in holding that when regimenting a

statement for purposes of assessing ontological commitment, definite descriptions should be

eliminated in favor of their Russellian analyses, these statements will also be regimented in

a manner which employs quantification over facial expressions. This means that proponents

of both the Fregean and Quinean versions of the linguistic view will be forced to concede

that facial expressions such as grins are indeed objects.

But note that whatever grins are, they lack many of the features possessed by canonical

examples of objecthood. For instance, while there is a sense in which a grin is located in

space and time, it is difficult to say exactly what its boundaries in either dimension are.

And while it thus might be said that grins are concrete entities, it is at least complicated

to explain the relationship they bear to the material media (in facial muscles, skin, bones,

etc.) in which they are embodied. As a consequence of the first observation, we appear

to be without clear cut intuitions to guide us in answering questions such as whether a

given person can wear the same grin on different occasions, whether a grin-like expression

punctuated by a grimace should be regarded as one or two grins, whether two people can

both wear the same grin, how grins are different than smiles, etc. And as a consequence of
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the second observation, there also seems to be a sense in which we are unable to say what

a grin might be other than that it is a kind of facial expression – i.e. is a grin a bounded

volume of matter? a state or other form of temporal cross section of such a volume? a

temporally extended material process? These considerations mirror many of the intuitive

reasons we may wish to balk at treating sakes, whereabout, etc. as objects. On this basis, a

partisan of the metaphysical view could reasonably balk at the conclusion that grins ought

to be regarded as objects.

At this juncture, the proponent of the linguistic view must decide whether to bite the

bullet and admit the existence of cases in which his characterization of objecthood differs

from that embedded in everyday intuitions or attempts to sophisticate his proposal in some

manner which can accommodate our misgivings about grins. One strategy he might attempt

is to argue that sentences such as those in (2.3) can be paraphrased so as to avoid the use of

grin-denoting expressions as grammatical subjects. For instance, without apparent change

in meaning, both (2.3a) and b) can be rendered as “Bush is grinning broadly.” If it could

be shown that such paraphrases were available and could be constructed uniformly for all

sentences containing terms in ∆, then one might plausibly suggest that we can interpret

everyday discourse about facial expressions without trafficking in ontology which regarded

individual grins, smiles, frowns, etc. as objects.

One problem with applying this strategy is that paraphrasability is generally a symmet-

ric relation in the sense that if we can replace one sentence ϕ by another ϕ′ with apparent

preservation of meaning, than the converse will also generally be true. This means that in

the absence of additional constraints, it may be impossible to tell whether ϕ or ϕ′ more

accurately reflects the ontological commitments of someone who holds one or the other to

be true. This means that unless we defer to extra-linguistic (i.e. semantic or metaphysical)

considerations specific to facial expressions, there appears to be no principled way to ex-

plain why we should take the sentence “Bush is grinning broadly” to be more ontologically

transparent than the sentence “The grin on Bush’s face was broad.” But it is just these

sort of consideration which a proponent of the linguistic view seeks to avoid in attempting

to reduce questions of ontology to those of grammar.

Another way in which the linguistic view proponent might seek to rein in the ontological
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explosion which takes in grins, along with sakes, whereabouts, etc. in its wake is to argue

that the expressions such as those in ∆ are not singular terms after all. One way in which

this might be accomplished is to argue that all “genuine” singular terms must be introduced

to the language of which they are a part along with conditions which determine when all

sentences of the form t1 = t2 are true for all t1, t2 ∈ ∆. In other words, this view proposes

that it is part and parcel of regarding an expression as a singular term that we are able to

state conditions which govern the truth value of identity statements in which it appears.

Such a move is generally made in conjunction with the recognition that it only makes

sense to speak of an expression t as denoting an object if there is a so-called sortal concept

F under which the denotation of t falls. Such a concept is generally defined as one which

applies to entities which we can count. By way of example, terms like “man”, “tree”

and “book” all are paradigmatic terms denoting sortal concepts because it makes sense

to ask “how many?” with respect to the men in the room, the trees in the yard or the

books (qua physical volumes) on the shelf. But note that in order to count or enumerate

items so as to answer such a question, we must be able to individuate between different

men, trees or books in such a manner that it is clear what distinguishes one from another.

Sortal terms are thus typically contrasted with terms like “red”, “loud” or “salty” which

express concepts G which can be applied to groups of objects but for which we appear to

no means of responding to question like “how many Gs?” (e.g. how many salty things)

absent additional contextual qualification about the sort of items we are speaking. Since

the ability to count F s appears to requires that there be a stable means of individuating

items falling under this concept, it seems reasonable to suppose that our justification for

regarding F as a sortal is at least partly constituted by our faith that identity conditions

are available which allow us to definitively decide when two items are or are not the same

F .4

4The use of the term “sortal” to refer to an expression of the former sort has a somewhat complicated
history. The modern usage can be traced back to Aristotle and Locke who used it to refer (roughly) to
classes of objects which had essences. Frege [39] is now commonly exposited (e.g. by Wright [154]) as having
proposed that the concept natural number is a sortal in the sense that he proposed both that numbers were
objects and their status as such was to be explained in terms of a criterion for statements of the form “the
number of F s.” The introduction of the term “sortal” to describe a concept whose members can be counted
is generally credited to Stawson [138].
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We can now see that there is a potential problem with treating terms in ∆ as denoting

objects because although these terms putatively denote members of the concept facial ex-

pression, there appears to be no criterion of identity which accompanies either this concept

or any of the subordinate concepts grin, smile, frown, etc. For instance, our understanding

of what it is to be a grin does not systematically determine under what conditions (if any)

we ought to accept sentences such as

(2.4) a) Bush wore the same grin throughout the press conference.

b) The grin that Bush was wearing at the inauguration was the same as the grin

he was wearing during his State of the Union address.

c) The grin on Bush’s face was the same as that worn by Rove.

Our inability to answer such questions seems to be wrapped up with our lack of firm

intuitions about the properties of grins mentioned above.

These observations suggest that we are unable to cite proper identity conditions for the

concept grin but also presumably for its superordinate concept facial expression more gener-

ally. If a proponent of the linguistic view adopts the proposed amendment to the definition

of singular term, it thus seems as if we might be avoid to conclusion that facial expressions

ought to be counted as objects in virtue of the facts that grins, smirks, smiles, etc. do

not possess well-defined identity conditions. But note that the sort of considerations on

which this conclusion is based again appear to rely on extra-linguistic considerations about

the relevant concepts. For since sentences like those in (2.4) are certainly grammatical,

we must go outside of language in order see that we do not know relevant identity condi-

tions for grins that would enable us to answer them. But identity conditions are precisely

metaphysical principles telling us what identity consists in for objects falling under a given

concept.

Considerations of this sort can obviously be used to put the proponent of the linguistic

view back on the defensive. But I will not attempt to draw any general conclusions here

either about whether linguistic considerations alone suffice to plausibly delimit the class

of entities which can justifiably be regarded as objects. For as we will see over the next

subsection, there is indeed a strong linguistic case for regarding procedural expressions as
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denoting objects. But at the same time, there is also a strong case both for regarding

the notion of algorithm as falling under the superordinate concept procedure and also for

regarding the latter concept as what is referred to as an abstract sortal – i.e. a sortal

concept whose identity conditions are given in terms of a class of other abstract objects (in

this case, that of implementations). We will ultimately be in a position to see that rather

than standing in conflict, both the linguistic and metaphysical views strongly support the

thesis that algorithms ought to be regarded as objects. And therefore, there is no present

reason while we should try to decide between them.

2.2.2 Referring to procedures: names and quantification

In this section, I will examine our practices for making reference to algorithm in the

technical discourse of computer science. The major finding will be that linguistic con-

siderations of the sort reviewed in the prior section point strongly to the conclusion that

proponents of the linguistic view will endorse the claim that algorithms are objects based

on the characteristics of this discourse alone. This is already a significant observation.

For as I have already noted, conventional wisdom seems to reflect no view as to whether

either algorithm or procedures more generally ought to be regarded as more like tables,

people, and numbers, which we are comfortable regarding as objects or more like sakes,

whereabouts or grins, to which we are disinclined to extend this status.

Based on our discussion, however, tradition reflects that any fundamental examination

of the ontological status of algorithms ought to begin with an examination of the class of

expressions whereby we appear to make reference to such entities. And in this regard, there

are a number of striking regularities which become apparent almost immediately when we

begin to look systematically at how we speak about procedures in both our everyday and

technical discourse. The first of these is that it appears to be possible to divide all terms

referring to individual procedures into three types, two of which are present in everyday

speech and one mainly reserved for technical discourse in computer science.

The most familiar way we have of referring to procedures is via expressions which bear

all the linguistic hallmarks of proper names. Terms of this sort are used widely in everyday
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discourse in mathematics and computer science. Familiar examples of such terms in math-

ematics include “Newton’s method” in analysis, “The Runge-Kutta method” in differential

equations, “Gauss-Jordan elimination” in linear algrebra, “The Henkin construction” in

model theory and “The Gentzen cut elimination algorithm” in proof theory. In computer

science the practice of naming individual procedures is taken to an even greater length.

A cursory examination of any standard text on algorithms will reveal a raft of apparent

proper names for procedures: “Bubble sort”, “Insertion sort,” “Selection sort,” “Merge

sort,” “Heap sort,”, “Radix sort”, “Breadth first search”, “Depth first search”, “Euclid’s

Algorithm”, “Prim’s algorithm”, “Dijkstra’s algorithm”, “Strassen’s algorithm”, etc.

Although little explicit attention is paid to the use of these expressions in the conduct of

computer science, I have previously called attention to the fact that the use of these terms

has become so conventionalized in fields like the analysis of algorithms that they are often

written in a special font (e.g. Euclid, Mergesort, etc.). The use of such a stylistic device

encourages the comparison of these expressions with special symbols such as Π or e which

are used to denote numerical constants or K5, D3 or ω which denote fixed structures or sets.

Terms of these sort are generally are introduced by explicit mathematical definitions. And

consequently one might think that our use of procedural terms like Euclid or Mergesort

could be explained in a similar manner. But a number of considerations point to the fact

that our use of procedural names cannot be understood in such simplistic terms.

I examine the issue of how procedural names are introduced in detail in the next subsec-

tion.5First, however, it will be useful to note several features of our usage of such expressions

which reinforce the fact that they are indeed treated as singular terms in the course of the-

oretical practices. I have already noted the most fundamental of these in Section 1 – i.e.

that expressions like Mergesort often appear in subject-predicate statements. This is

witnessed by the fact that statements such as the following might all readily be found in a

textbook on algorithmic analysis:

(2.5) a) Euclid computes the greatest common divisor function.

b) Heapsort has running time O(n log(n)).

c) Insertionsort is a comparison sort.
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d) Mergesort is recursive.

e) Prim’s algorithm uses a priority queue.

f) Kruskal’s algorithm is a greedy algorithm.

The use of such procedural names is in fact pervasive in computer science, that it is

common to come across passages where such terms are use uniformly to describe, compare

and contrast the merits of various algorithms. Here are two example drawn from popular

textbooks:

In this chapter we’ll study the sorting algorithm which is probably more widely used
than any other, Quicksort . . . Quicksort is popular because it is not difficult to im-
plement, it’s a good “general-purpose” sort (it works well in a variety of situations),
and it consumes fewer resources than any other sorting method in many situations
. . . The desirable features of the Quicksort algorithm are that it is in-place (uses
only a small auxiliary stack), requires only n log2(n) operation on the average to sort
n items, and has an extremely short inner loop. The drawbacks of the algorithm
are that it is recursive . . ., it takes about n2 operations in the worst case, and it is
fragile: a simple mistake in the implementation can go unnoticed and can cause it
to perform badly . . ..[125], p. 115

In this chapter, we introduce another sorting algorithm [Heapsort]. Like merge
sort, but unlike insertion sort, Heapsort’s running time is O(n log(n)). Like inser-
tion sort, but unlike merge sort, Heapsort sorts in place: only a constant number
of array elements are stored outside the input array at any time. Thus, Heapsort

combines the better attributes of [Insertionsort and Mergesort which] we have
already discussed.[24], p. 140

These passages leave little doubt that in practice we are willing to use procedural names

to form subject predicate sentences. Upon mild regimentation, these examples have the

form P (a) with a corresponding to terms like Euclid, Heapsort, etc. and P (x) taking

on the values “x computes the greatest common divisor function”, “x has running time

O(log(min(n,m))),” etc. Similarly, the passages just cited also suggest that we ought to

be willing to form relational sentences of the form R(a, b) for comparing two algorithms,

5One relevant observation is that use of procedural names extends outside of the purely mathematical
domain as witnessed by our tendency to refer to various sorts of everyday procedures by names as well.
This is witnessed, for instance, by the fact that many industrial and chemical procedures have been given
names such as the Le Blanc Process (for producing potash) and the Solvay Process (for producing sodium
bicarbonate). Similar comments apply to the use of expressions such as “Borda count”, “instant run-off
voting”, “approval voting”, “Vickrey auction” and “Dutch auction” in social choice theory and economics.
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stating, for instance, that a has faster running time than b.6

Another equally notable facet of our linguistic practices involving reference to procedures

is our willingness to quantify over them.7 Statements involving explicit quantification over

procedures are often used to express technical results, some typical examples of which are

as follows:

(2.6) a) There exists an algorithm for determining whether two non-deterministic push

down automata accept the same language.

b) There exists a polynomial time algorithm for deciding whether n ∈ N is prime.

c) There exists a matrix multiplication algorithm with running time less than

O(n2.8).

d) There is no algorithm for determining where a polynomial with integer

coefficients has a root.

e) If P 6= NP , then there is no polynomial time algorithm for determining

whether a propositional formula is satisfiable.

f) There is no comparison sorting algorithm with running time complexity less

that O(n log(n)).

It is a notable fact that all of the statements in (2.6) are operationally non-trivial in the

sense that they report results to problems which had either been open for a long time when

they were solved or at least have reasonably involved proofs. (2.6a), for instance, reports

the solution to a problem in automata theory which had been open for over forty years

before it was answered positively by Senizergues [126] in 2003. (2.6b) reports a similar

positive solution to a long standing problem in computational number theory solved by

Argawal et al. [1]. And finally (2.6c) reports a watershed result of Strassen [137], which

6Although in talking about everyday procedures we are somewhat less systematic in identifying properties
which apply to procedures directly, there are clear cut analogues to these statements which can occur in
everyday discourse. For instance, we do not hesitate to say things like “the Solvay procedure produces
sodium carbonate,” “instant run-off voting is resistant to strategic voting” or “the Vickrey auction uses
sealed bids” all of which appear to employ procedural names as grammatical subjects.

7This too is witnessed with respect to our discourse involving everyday procedures. Note the apparent
acceptability of statements such as “There does not exist a chemical procedure for turning lead into gold”,
“There are six recipes for mayonnaise in The Joy of Cooking”, and “All methods for producing electricity
yield heat as a byproduct.”
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was entirely unexpected at the time of its publication since it was thought that it was

impossible to multiply matrices in time faster than that achieved by the obvious O(n3)

algorithm. Since practitioners of theoretical computer science would regard each of (2.6a-f)

as expressing a significant technical result, it seems reasonable to regard such statements

as being embedded within the context of a well-developed scientific theory.

This is significant from the standpoint of our ontological investigations because it means

that when we go about assessing the commitments of (2.6), we ought not to regard these

sentences as appearing in isolation. Rather, these statements should be seen as part of

a larger theory to which our proposed mode of regimentation and formalization ought to

be applicable uniformly. I will discuss what this theory might look like as a whole in

more depth in Section 4. But for the time being, we may simply note that the surface

structures of these sentences clearly express explicit quantification over algorithms. This is

to say that (2.6a-c) would all naturally be regimented as existential statements of the form

∃XΦ(X) which express that an algorithm with a certain computational property Φ exists.

And thus if this is indeed the appropriate means of rendering them into first-order logic,

then proponents of the Quinean version of the linguistic view will conclude that not only

should we regard algorithms as objects, but also that in accepting (2.6a-c) as true we are

committed to the existence of at least the three algorithms which are required to witness

their existential quantifiers.

With this said, however, cognoscenti of mathematical logic and theoretical computer

science are also likely to protest that it is at best unclear whether (2.6a-c) commit us

not to the existence of algorithms as opposed to some other sort of mathematical objects.

In particular, although it may be most faithful to our informal understanding of these

statements to treat them as quantifying over algorithms, they may also be paraphrased

in a manner which replaces quantification over algorithms with quantification over various

formal models of computation. This is most straightforwardly true for the case of (2.6a)

which can be taken to have the basic form ∃X[∀x[Exec(X,x) = 1 ↔ x ∈ S]] where

Exec(X,x) gives the value of executing the algoritm correspond to X on input x and

S corresponds to the set of encodings of ordered pairs 〈M1,M2〉 of pushdown automata

accepting the same language. We would standardly say that the algorithm claimed to exist
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is thus a decision procedure for this set and the statement (2.6a) states that the set S is

decidable.

Note, however, that decidability is usually understood extensionally in the sense that

what we usually mean in saying that a set S is decidable is that there exists some effective

procedure for deciding membership in S. By using Church’s Thesis, it is thus possible to

replace the quantifier in “There exists an algorithm for deciding membership in S” with

“There exists a Turing machine for deciding membership in S” without apparent shift in

mathematical meaning. (This is so because Church’s Thesis tells us that in quantifying over

all functions computed by Turing machines we are, ipso facto, quantifying over all functions

computed by (effective) algorithms.) On this basis, it may be argued that a statement like

(2.6a) may be paraphrased by a statement of the form ∃T∀x[T (x) = 1↔ x ∈ S]] where here

T varies across Turing machines and not algorithms. But not only does this latter statement

fail to quantify algorithms, if our interest in (2.6a) is exhausted by the proposition that S is

decidable, then it follows that this statement also succeeds in expressing its mathematical

significance. And thus if this or a similar mode of paraphrase can be applied to our discourse

about algorithms uniformly, then there can be no direct argument from our belief that (2.6)

is true to the either of the conclusions that algorithms either exist or that they are properly

regarded as objects.

There are, however, substantial reasons to think that there is no uniform mode of para-

phrase which is applicable to (2.6b,c). For note that these statements would be regimented

as having the form ∃X[K(X) ∧ . . .] where K is a predicate (such as having polynomial

running time or running time less than O(n2.8)) which in practice we apply directly to

procedure-denoting terms. If we are to paraphrase these statements in a manner so that

the derived statements express the same mathematical propositions as (2.6b,c), we must

thus do so in a very particular manner. Specifically, we must replace the quantifiers ap-

pearing in (2.6b,c) so that the objects appearing in their intended domains M are of the

appropriate sort such that predicates like K can be applied directly to terms denoting ob-

jects in M. This may arguably be achieved for (2.6a) where M can be taken to be the class

of polynomially bounded Turing machines. But as will again be appreciated by cognoscenti,

it is considerably harder to know what class can be taken to serve this function in case of
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statements like (2.6c) where our interest resides in the existence of an algorithm falling

within one of the levels of Knuth’s [72] asymptotic time hierarchy.

Before completing my survey of the linguistic evidence for treating procedures as ob-

jects, it will be useful to also reflect briefly on the significance of statements (2.6d,e,f).

Knowledgeable readers will again realize that these statements each express solutions to

non-trivial technical problems problems.8 But whereas (2.6a,b,c) express the existence of

a procedure with certain properties, these latter statements express the nonexistence of

one. As such, they are most naturally rendered in the form ¬∃X . . . which are, of course,

equivalent to universal statements of the form ∀X . . ..

Since these statements do not have existential form, our acceptance of them does not

in and of itself commit us to the existence of any particular algorithms. But taken in

conjunction with the provisional conclusion that our acceptance of statements like (2.6a,b,c)

does have such commitments, statements (2.6d,e,f) take on a greater significance. For note

that once we know that the domain of mathematical procedures form a non-empty class A,

the fact that there can be precise mathematical results about all members of this class (or

an appropriately delimited subclass) suggests that A itself must be a well defined totality

over which we can determinately quantify. For note that it would not be possible to prove

a theorem all about all algorithms (providing that there are any) which failed to possess a

certain property (e.g. that of deciding whether a polynomial with integer coefficient has a

root) if the extension of A were not itself well defined. While we are not yet in a position to

give an explicit definition of this class, the fact that limitative results of this kind are both

quite common in theoretical computer science and also that we accept them as genuine

theorems suggests that it ought to be possible to provide one.9

8(2.6d) expresses the negative solution to Hilbert’s 10th problem (i.e. does there exist an effective algo-
rithm for determining whether a polynomial over Z has a root) jointly due to Matiyasevich, Davis, Robinson
and Putnam. (2.6d) states the famous result of Cook [21] that the satisfiablity problem for proportional
logic is NP-complete and is thus as difficult to solve as the halting problem for non-deterministic polyno-
mial bounded Turing machines. (2.6e) expresses the well-known lower bound theorem for the complexity of
comparison sorting which was one of the first uses of the important decision tree method in the analysis of
algorithm developed by Johnson and Ford [35].

9Here again cognoscenti will realize that some of these statements can be paraphrased in a manner
which appears to eliminate direct quantification over procedures while retaining their intuitive mathematical
significance. This is most straightforwardly true of (2.6d) which would standardly be interpreted as being
equivalent to a statement of the form “the problem of deciding membership in X is undecidable” which in
turn can be taken to be equivalent to “there does not exist a Turing machine for deciding membership in
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2.2.3 Algorithmic reference via description

From the perspective of a proponent of the linguistic view the, evidenced adduced in

the prior preceeding section presents a fairly strong case for the dual theses that algorithms

ought to be regarded as objects and that at certain objects of this sort exist. I will thus

henceforth assume that if a proponent of the metaphysical view wishes to take exception

to this conclusion, the onus lies on him to adduce additional considerations about the

concept of algorithm which demonstrates why these conclusions should not be accepted.

Ultimately, of course, I believe that such considerations can be advanced. But before we

are in a position to do so, a number of additional observations about our practices involving

algorithms have to be put in place.

To this end, I wish to consider further our conventions for using procedural names of

the sort described in the previous section. In particular, given that our practices reflect

that we can use terms like Mergesort, Euclid, etc. to refer to algorithms, it is open to a

proponent of the metaphysical view to seek an explanation of how, and ultimately to what

such expressions refer. I have already observed that our use of these expressions appears

to have much in common with the use of mathematical terms like e, Π, C6, ω. And as I

have also noted, it is generally possible to trace back our use of these terms to an explicit

definition whereby they are introduced to our mathematical language. In particular, it

requires only a slight regimentation of standard textbooks to view terms of this sort as

being introduced by definitions of the form t = ιx.ϕ(x) such as the following:

(2.7) i) e =df the y such that
∫ y
1

1
xdx = 1

ii) ω =df the least limit ordinal

iii) C6 =df the cyclic group of order 6

In such case, the expression provided on the left-hand side of the definition serve can,

at least to a first approximation, be taken as a mere abbreviation for the expression on the

X” as above. Since in this case A could be taken to consist of all Turing machines, this example does not
itself suggest that there is any great mystery involved with accounting for apparent quantification over all
procedures. As with the corresponding existential statements (2.6b,c), the problem consists in determining
the appropriate domain for the quantifiers in (2.6e,f) so that the properties of having polynomial running
time and being a comparison sort may be directly predicated of its members.
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right-hand side. In particular, these statements allow us eliminate the symbol appearing on

their left-hand side for that appearing on their right hand in a manner which will preserve

the truth value of the expressions in which they appear. And note that such a substitution

must be often made in order to prove new statements involving the defined symbol (for

instance to prove the statement “e is transcendental,” we must prove “the y such that
∫ y
1 1/x is transcendental”). However the introduction of such symbols is standardly thought

to have considerable heuristic significance since, among other things, the allow what would

otherwise be long and unwieldy statements (e.g. “the group G that there exists g ∈ G such

that for all h ∈ G, h = gn for n ≤ 6 is abelian”) with succinct ones (e.g. “C6 is abelian”).

This analysis obviously fails to account for many interesting properties of mathematical

definitions.10 But in the case where a term a term t has been introduced by an explicit

definition it does at least allow us to give an account of the reference of t relative to our

account of the reference of the expression in terms of which it has been introduced. In

particular, if t is defined as ιx.ϕ(x), then the mathematical object to which t refers will be

precisely the item satisfying this definite description.

I have already noted that terms like Mergesort and Euclid have a similar gram-

matical distribution to terms like e and C6. And if we examine a standard textbook on

algorithmic analysis, it is possible to the usage of such expression back to particular con-

texts in which these terms are introduced to our computational language. But at the same

time, it is not all clear whether we can understand these terms as having been introduced

by explicit definitions in the same way the way as mathematical names. In particular, while

a typical algorithmic name a is standardly introduced via the use of some other linguistic

expression t (which may be a term in either a mathematical or natural language), t is

normally neither a definite description or functional expression. And as such, the reference

of A cannot be determined merely by determining the reference of t.

One of the major theses I wish to advance in this chapter is that although the methods

by which we are able to make (apparent) reference to algorithms are complex, they are also

10For instance it fails to take into account that a single symbol c can often have more than one definition
given by t1 and t2 (e.g. e is often defined as limn→∞(1 + 1/n)n) and that identities of the form t1 = t2 can
often be informative. And it also fails to provide any direct insight into why we elect to introduce novel
symbols to abbreviate some definite descriptions but not others.
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sufficiently conventionalized that they may be profitably studied in order to gain better

appreciation for the ontological status of algorithms. Reflection on our practices reveals

that the linguistic mechanism by which terms such as a are introduced generally takes one

of two forms which may be schematized as follows:

(2.8) a) a =df the procedure expressed by Π

b) a =df the procedure implemented by M

In scheme (2.8a), Π is meant to represent what an instance of what I will refer to as a

program – i.e. a linguistic description of a procedure given in either natural language,

pseudocode or a formal programming language. In scheme (2.8b), M is meant to what I

will to as an implementation – i.e. a specification of a member of a formally defined model

of computation (i.e. a Turing machine, RAM machine, logic circuit, etc.).

The thesis which I wish to advance is that if algorithms are indeed objects, our ability to

refer to them must be understood as being mediated by these schemas. From this it would

follow, for instance, that to say that in order to refer to the algorithm Mergesort we

must first make reference to either a particular program which expresses it or a particular

implementation which (as I will say) implements it. But programs are merely sequences of

linguistic expression types and implementations are (generally) finite combinatorial objects

akin to graphs. Given that I assume that reference to mathematical objects in general is

unproblematic for the purposes of this chapter, I will assume that there is little mystery

about how we can refer to programs or implementations. For according to the claim I

advance, our ability to refer to algorithms must be explained in terms of our ability to refer

to members of these other classes of objects.

The task of defending the claim that reference to procedures must be mediated by

applications of one of (2.8a,b) divides into two components: 1) that it is indeed possible

to refer to algorithms by the use of these schemas; and 2) that such reference cannot be

effected by any other means. If 1) and 2) can be established, then I will argue below

that a number of consequences follow about the general notion of algorithm which may be

of potential use to the proponent of algorithmic realism. But as thing stand, we face a

number of challenges in demonstrating these claims. With regard to 1), for instance, we
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face the initial task of demarcating appropriate notions of program and implementation so

that (2.8a,b) may plausibly be taken to approximate the manner in which procedures are

introduced in practice. On the basis of these definitions, something additional will then

have to said about how, on the basis of fixing one of these objects, we are then able to

refer to individual algorithms. And with regard to 2), we must at ask after the possibility

of referring to algorithms by conventional means such as ostension.

In regard to the first problem, it is easiest to regard notions of “program” and “imple-

mentation” as terms of art in computer science. This is to say that although these notions

both admit to loosely confederated classes of technical definitions, it is difficult to give a

precise formal definition which applies to all formalisms which, in practice, are referred as

programs or implementations. In practice, these notions are thus most commonly intro-

duced by classes of simiarly structured programs or implementations known respectively as

programming languages and models of computation. These definitions do arguably draw

on a core set of intuitions about the theoretical purpose which individual programs and

implementations play in our computational practices. And as I now wish to illustrate, not

only are these roles quite different, but they also provide very different impressions on how

we are to refer and reason about algorithms.

Algorithms and programs

The interplay between formal and pre-theoretical computational notions is most readily

appreciated with respect to the concept of program. From a formal perspective, a program

is simply a sequence of expressions who individual syntax and modes of composition are

determined by a formal grammar known as a program language. Programs are thus in-

trinsically linguistic entities. There are, however, a variety of such languages, which are

themselves clustered around different notions of what it means to interpret or carry out a

program. For present purposes, two main classes will be significant: imperative program-

ming languages such as C, Pascal and FORTRAN and functional programming languages

such as LISP, Scheme and Haskell.11 Since interpretation of imperative languages is more

11The other major class (or so-called programming paradigm) is that of declarative languages such as
PROLOG. Declarative programs resemble statements in a fragment of first-order logic and as such do not have
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straightforward, it will be useful to start out there.

A declarative programming language L can be taken to be given by a definition of

a class of primitive statements α1, . . . , αn whose intended interpretation is to perform a

given action. A program over L is then defined recursively as a the smallest of expressions

containing each of the αi and closed under certain formation rules for forming complex

programs. A simple example of such a language is the programming language While whose

only primitive statements are of the form x := t. Such statements are known as assignments

and have the intended intepretation that upon execution, the value associated with the

variable x will be the value of t. Here t is generally taken to be a term over a first-

order language Sig(L) which I will refer to as the signature of L and for present purposes

can be taken to be {0, 1,+,−,×}. The programs over While is then by the grammar

Π = (x := t) | Π1; Π2 | if ϕ then Π | while ϕ do Π od where ϕ is quantifier free formula

over Sig(L). The symbols ; , and if · then , while · do · denote what are known as control

structures. They function grammatically as connectives between programs. Semantically

they respectively serve to sequentially conjoin programs Π1 and Π2, condition the execution

of Π on the basis of truth value of ϕ and to cause Π to be successively executed until ϕ

becomes true.

A simple example of a While program is as follows:

(2.9) q := 0;

r := x;

while y <= r do

r := r - y;

q := q + 1;

od.

In contexts such as programming manuals or textbooks, it would be typical to see a name

attached to this program such as Divide(x,y).12 It would also be common for an informal

as natural a procedural interpretation as do imperative or functional programs. Since they are rarely used
in stating algorithms directly, I will thus not mention such programs further.

12In more complex languages like C or Pascal, which allow for the definition of subroutines, we might be
formally required to give this program a name so that it could be called by other blocks of code. Although



112

interpretation of what this program does to be expressed using this name, along the lines

of the following: “Divide(x,y) computes the quotient of the values stored as the variables

x and y.”

In addition to introducing names to denote programs, we use programs to denote proce-

dures in a more abstract sense. This is evident in the apparent acceptability of statements

such as

(2.10) The Euclidean division algorithm (Divide) is the algorithm expressed by (2.9).

Although it is as yet unclear what it means for a program to “express” an algorithm, (2.10)

at least exemplifies how schema (2.8a) is employed in practice. Sometimes such a statement

would be issued when the name of the algorithm in question is already in our language.

In such a case, a use of a statement like (2.10) would be one in which we reidentified

an algorithm which we had already picked out in some other way (say as “the division

algorithm described in Book VII of Elements).

More often than not, however, names for algorithms are introduced directly by formal

programs like (2.9) or by informal procedural specifications of the sort I referred to in

Chapter 1 as psuedocode programs. For instance, the Euclidean division algorithm might

also be introduced as follows:

(2.11) In order to determine the integer quotient of n and m do as follows:

Step 1: Let q = 0 and r = n

Step 2: While r ≥ q, repeatedly perform the following two steps:

Step 2a: Subtract m from r and let the result be the new value of r;

Step 2b: Increment q by 1.

Step 3: Return q and halt.

Pseudocode programs such as this one contain a mixture of prose, mathematical symbol-

ism and programming language constructs such as line numbers, block structure, looping

constructs, etc. In the practice of a field such as the analysis of algorithms or complexity

theory, it is generally specifications of this kind which are used to introduce algorithms.

the term Divide(x,y) in such cases would receive a precise meaning relative to a semantics for the language
in question, it is still customary to use this name informally to denote the procedure expressed by (2.9).
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This is to say that in addition to the (2.9), the algorithm Divide could also be introduced

as “the algorithm expressed by (2.11).”

In the context of our general desire to better understand what algorithms are in an

ontological sense, this is a very significant observation. For if we can refer to Divide as

the algorithm expressed by either (2.9) or (2.11), then it at least seems plausible to think

that this algorithm corresponds to whatever object corresponds to the denotation of the

functional expression “the algorithm expressed by Π” where Π is taken to be either of

these specifications. To think about algorithms in this manner is, of course, to employ

the well-known analogy introduced in Chapter 1 according to which the relation in which

an algorithm stands to a program is the same as that in which a proposition stands to a

sentence.

This analogy would be of little use in helping us to understand how algorithmic ref-

erence is possible if we do not also assume that some clear notion of a proposition as a

mind- and language-independent abstract entity is available and it is these entities which

sentences express. But many attempts to work out such a theory of propositions have been

proposed.13Although theories of these sorts differ substantially in detail, what is relevant

for present purposes is that they may all be seen as determining a mapping prop from the

class SentL of declarative sentences of a natural language K into a class of abstract struc-

tured entities P. Such a mapping is generally supposed to have two features: i) prop(S)

is determined from S compositionally in terms of its grammatical constituent structure;

ii) for each natural language sentence S, prop(S) is taken to be the proposition expressed

by S; iii) as such, the formal properties of prop(S) such as its truth conditions or the in-

ferential relationship which it stands to other propositions ought to reflect those which we

intuitively assign to S. There is, of course, substantial disagreement among contemporary

theorists about how each of these requirements should be made precise.14But theories of

the sort just described at least provide a means of speaking about propositions as the sorts

of things which are expressed by sentences in natural language.

14The tradition reflects that Frege [37] and Russell [115] are the originators of a view of propositions.
Modern theories of structured propositions have been put forth by Soames [134], Salmon [117], Bealer [6]
and Cresswell [25].

14E.g. about what it means for the value of prop to be determined compositionally from S, whether prop
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If we take the algorithm/proposition analogy seriously, one way in which we might hope

to understand how reference to algorithms is possible is by providing a formal semantic

theory which interprets procedural specifications such as (2.9) and (2.11). According to

this view, what is required to make sense of a statement such as (2.10) is that we develop

something akin to a semantic theory which can be applied to (2.9) or (2.11). Such a

theory could be described as a mapping prog for the class of well-formed programs ProgL

over a programming language L into a domain A of abstract objects such that for each

program Π, the value of prog(Π) was the algorithm which it expressed. Presumably such

a theory would also be subject to same sort of constraints as a semantic theory for natural

language – i.e. i) the value of prog(Π) should be determined compositionally in terms of

the structure of Π; and ii) the object prog(Π) must reflect at least certain aspects of our

informal interpretation of Π.

One substantial obstacle the we face in attempting to work out the details of such a

proposal is that a pseudocode program like (2.11) is neither completely in a natural lan-

guage nor completely in a formal programming language. This is problematic, for, as noted

above, such specifications correspond to the primary means of introducing algorithms in

the computer science literature. However, it is also generally acknowledged that such spec-

ifications are not an entirely precise means of introducing an algorithm, precisely because

our understanding of many of the constructs they employ is informal. As such, there is also

a consensus among practitioners that any sufficiently “high level” programming language

L provide sufficiently expressive resources that any pseudocode program can be replaced

with a formal program over L which express the same algorithm.15And if this is indeed the

case, then we proceed with the current strategy for understanding algorithmic reference by

constructing a formal semantic theory of L.

must take contextual parameters as arguments in addition to S itself and about which informal characterized
aspects of the meaning of S must be preserved by prop(S).

15This view reflects the widely subscribed ideology that programming languages are media for expressing
algorithms and that modern high level languages like C, C++ and Java are expressively complete – i.e. that
for each informal algorithm A they contain at least one program Π which expresses A. It must be kept
in mind, however, that since the underlying notion of algorithm in question is informal, this view must be
understood as an informal thesis rather than a precisely articulated technical hypotheses. Note, however,
that if it turns out to be false, this presumably only makes life hard for the algorithmic realist who wishes
to understand algorithmic reference by (2.8a).
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Having now settled on the project of proving a formal semantic theory for formal pro-

grams as the most promising means of accounting for reference to algorithms via (2.8a), a

number of problems remain. For note that even if we also agree that such a theory should

take the form of a mapping prog : ProgL → A, we must also determine which program

language or languages should serve as our linguistic basis for stating algorithms. And more

fundamentally yet, we must also provide some background characterization appropriate to

these language of what it means to say that a particular form of abstract object prog(Π)

serves as the semantic interpretation of Π. For note that whereas in the case of a natural

language sentence S, we know at least some of the properties which prop(S) ought to be

possess in order to serve as a plausible candidate of the proposition expressed by S – e.g.

prop(S) must be truth evaluable, must have the same truth conditions as S, must stand in

the same entail relations as S, etc. But in the case of a program it is not immediately clear

what the relevant notion of meaning is which must be preserved between Π and prog(Π).

Both of these questions represent prima facie problems for a theorist who wishes to

explain algorithmic reference via (2.8a). For on the one hand, we have already noted that

there are a great variety of distinct programming languages, some of which are inspired by

quite different computational paradigms. And as such, not only is there no clear background

notion of program meaning, it may also be that what intuitions we have about this notion

vary from one programming language to another. But since I will ultimately argue that the

algorithmic realist will be better off looking at (2.8b) as the fundamental device by which

we are able to refer to individual algorithm, it will not be a constitute a great disservice to

his cause if we answer these question partially by fiat.

For purposes of elucidating the consequences of adopting (2.8a) as a means of referring

to algorithms, it will, for instance, suffice to confine our attention to the language While.

And for this reason, it will also suffice to assume that the domain of prog is the class

ProgWhile of well-formed While programs. One useful consequence of this stipulation is

that since this language has been studied extensively within the subfield of theoretical

computer science known as programming language semantics, it is possible to experiment

with a number of different alternatives for how prog ought to be formulated. For note that

within this subject there are at two means of approaching the general conceptual problem
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of assigning a formal interpretation as the “meaning” of a program. These correspond to

the paradigms known as denotational and operational semantics.16

The difference between the goals of denotational and operational semantics for While

can most easily be understood in terms of the sort of object which is assigned as the value

of prog(Π) for Π ∈ ProgWhile. In the case of denotational semantics, prog(Π) is taken to be

the (extensional) function fΠ : Nn → N which Π would compute were it to be carried out

in the manner which I will discuss further below. And in the case of denotation semantics,

prog(Π) is taken to be an abstract description of a computational mechanism by which

this function is carried out. As I will explore further below, this is commonly achieved by

associating Π with a so-called transition system MΠ which, when executed, induces the

function fΠ.

In the practice of computer science, both forms of the semantics can be said to “give

the meaning” of Π in different contexts. This leads us naturally to ask whether either

fΠ or MΠ can be taken to correspond to the reference of the expression “the algorithm

expressed by Π” as it appears in a statement such as (2.10). The first alternative can be

easily ruled out, however, on the basis of the fact that While, like all other general purpose

programming languages contains programs Π1 and Π2 such that fΠ1 = fΠ2, despite the Π1

and Π2 express intuitively distinct procedures. For instance, let Π1 = Divide(x,y) and let

Π2 be as follows:

(2.12) a := 0;

q := 0;

while a < x do

16These correspond to two of the four major branches of programming language semantics, the other two
being axiomatic and algebraic semantics. Like denotational and operational semantics, these approaches
can seen as attempting to formalize different notions of “meaning” which might can be applied to programs.
Roughly speaking, for instance, an axiomatic semantics for a programming language can be seen as a means
of specifying the effect of carrying out a single instruction Π in the execution of a program in terms of
logical descriptions (known as pre- and post- descriptions) of the states which obtained before and after
Π is carried out. Algebraic semantics, on the other hand, is an attempt to understand programs and
data structure by using algebraic axioms to characterize their structural properties. But rather than make
conflicting explanatory claims in the way that different form of semantics for natural language often appear
to, different forms of programming language semantics are often used concert with one another. For instance,
a programs are generally proved correct with respect to either a denotation or axiomatic semantics, where
as they are analyzed structurally by employing an operational or algebraic semantic. It is not surprising
that a number of general results can be proven about the relationship between the different objects which
are the outcome of the different forms of analyses. For a uniform presentation, c.f., e.g., [100], [88] or [48].
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q := q + 1;

a := a + y;

od;

It can be shown that fΠ1(x, y) = fΠ2(x, y) = bx/yc with respect to a denotation semantics

for the While language. But if we attempt to interpret (2.12) informally, it should be

obviously that this program expresses a different procedure than (2.9). For instance, we

would say that (2.9) describes a procedure that computes the quotient of the values of x

and y by “counting down” from the value of x while (2.12) describes a procedure which

“counts up” up to this value.

This sort of example is not isolated in the sense that for an arbitrary general purpose

programming language L, it will generally be possible to construct infinitely many intu-

itively distinct programs Π1,Π2 ∈ ProgL such that fΠ1 = fΠ2 . As such, a semantics for

L which takes prog(Π) = fΠ can be likened to a semantic theory prop for English which

takes prop(S) to be either a truth value or a set of possible worlds. In particular, theories

of both types have the consequence of associating syntactic objects which we intuitively

think of having different “meanings” (e.g. Π1 and Π2 in the case of While and “2 + 2 = 4”

and “There are infinitely many primes.”) with the same abstract semantic representation.

Arguments have been made (e.g. by Stalnaker [136]) that such a coarse-grained assignment

of semantic values is indeed the appropriate way of associating sentences with propositions

so as to explain, e.g., propositional attitude attributions.

There are also theoretical contexts in computer science where a denotational form of

semantic interpretation is useful. For instance, if our primary desire is to prove that Π is

correct with respect to a mathematical function g which has been defined independently

of Π in the sense illustrated in Section 1.4, we will interested precisely in the function

fΠ. However, it ought to be equally clear that such an assignment of interpretations to

programs will not serve the theoretical purpose which the realist wishes an explanation of

algorithmic reference via (2.8a) to fulfill. For it is precisely the fact that (2.9) and (2.12)

express different algorithms (as would, for instance, the examples Euclid and NaiveGCD

from Chapter 1, were they to be appropriately translated into While programs) for which

the realist wishes to account. And as such, no theory which assimilates the objects which
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are taken as “the algorithm expressed by Π1” and “the algorithm expressed by Π2” can

appropriately serve this function.

This leads us naturally to inquire whether adopting an operational semantics for While

will lead to better results. However, in this case we face the substantial challenge, that

even after we have fixed a language L in which we are interested, there will in general be

a wide variety of different choices of operational semantics. For note that in practice of

computer science, operational semantics are often provided so as to prove the correctness

not of a program itself, but rather of its interpretation relative to a particular model of

computation relative to which we wish to implement the programs over L. Such models

will correspond to different choices of the class ML which will serve as the range of what I

will refer to as an interpretation function opL : ProgL →ML of L.

In many cases of interest, however, ML will not directly support the mathematical

operations corresponding to the interpretations of the terms in Sig(L). And in such cases,

opL will often be defined as the composite function opL(Π) = op′L(τL,L′(Π)) where L′

is an intermediate level language into which L′ is translated (or compiled) before being

interpreted operationally. One sense in which the term “operational semantics” is used

in practice is to refer to the mapping τL,L′ which renders members of ProgL into a form

where they can be associated with machines in a more directly or transparent manner. In

practice, semantics of this latter are by far the most common way in which programs in

high-level languages such as While are interpreted. But by itself, the compilation function

τL,L′ can no more be taken to give the meanings of the programs in L than can a method

of translating one natural language into another. For note that not only would a mode

of interpreting the programs of L′ still require a formal semantics for this language, but

operational semantics for common “low level” languages (e.g. MIPS or MIX assembly) are

renowned for their intuitive opacity.

What is of more theoretical interest are theories of operational semantics which inter-

pret the program of L directly so as to eventuate in a class of models ML which support

mathematical operations which are in approximate correspondence with those denoted by

the symbols in Sig(L). In such cases, the values of opL(Π) are generally abstract machines

whose structure is determined inductively according to the structure of Π. This sort of
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semantic theory for a programming language L1 may thus be roughly compared with a

semantic theory for a natural language L2 which seeks to correlate a declarative sentence S

with a structured proposition prop(S) such that the compositional structure of the latter is

determined according to the grammatical or logical structure of the former. For note that

in both cases, the abstract object which is assigned as the semantic value Prop(S) and

opL(Π) is capable of distinguishing between co-denoting linguistic objects (i.e. sentences

with the same truth value, or programs determining the same function) by associating them

with an abstract object which is derived according to their compositional structure.

There are, however, a number of theoretical obstacles which prevent us from directly

employing an operational semantics for L to directly interpret expression of the form “the

algorithm expressed by Π.” For note that we cannot judge whether opL(Π) is plausible

candidate for the denotation of “the algorithm expressed by Π” unless we have some back-

ground intuitions about the meanings of programs over L. The gravity of this concern is

partially obscured by the fact that both the lexicon and syntax of simple programming lan-

guages l are designed to mimic that of natural languages. This is true of many imperative

languages like While whose programs resemble strings of imperative statements conjoined

by control structure. But it is less true of more complex imperative languages such as C or

C++ which allow for the use of subroutines, pointers and recursion calls, none of which have

clear analogues in natural language. And it is even less true still of functional languages

like Scheme or Haskell whose programs are more aptly liken to complex functional terms

than to natural language sentences in either the declarative or imperative moods.

Yet at the same time it is fairly common for practitioners to employ expressions like

“the algorithm expressed by Π” and think they have successfully referred to an algorithm

regardless of the language L from which Π is drawn. If we assume that such expressions

actually do succeed in making determinate reference to algorithms, we must additionally ask

whether it is possible to determine the reference of this expression in some non-stipulative

manner based on an operational semantics for L. Although I think this question must

ultimately be answered in the negative, it is already gaining some insight into the difficulties

involved by studying the paradigmatic case where L is a language like While. For since

this language is at least outwardly similar to the idiom we use in specifying pseudocode
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programs like (2.11), a case can at least be made that certain forms of operational semantics

do a better job at formalizing our intuitions about the meanings of While programs than

others.

In order to see this concretely it will be useful to examine a particular form of operational

semantics which can be given for While in more detail. In particular, consider the so-called

natural semantics for While as given in [100]. The basic idea motivating this form of

semantics is that the interpretation of an individual program Π is to be understood relative

to the effect its execution would have on the so-called computational state of an abstract

computational device which was carrying it out. Such a state can be represented as a finite

vector of abstract locations or registers of the form σ = 〈l1, . . . , ln〉, each of which may be

used to store a integer value when n is the highest index of any variable appearing in Π

(assuming that they are numbers x1, x2, . . .). I will use ΣΠ to denote the class of all such

states of a program Π.

The interpretation that the natural semantics assigns to arbitrary While programs Π

can be understood in terms of the transformation it induces on such states. As mentioned

above, the most primitive statement in this language is that of an assignment expressed by

xi := t where xi is a variable corresponding to the ith location and t is a term over Sig(L).

The intended effect of carrying out such a statement is that the value stored in location li

will be updated to contain value the value denoted by t. If we adopt the notation σ[li 7→ a]

to denote the state just like σ except that the location of li has been updated with the

value a, then this fact is standardly codified by a so-called state transformation axiom of

the form

(2.13) 〈x := t, σ〉 =⇒ σ[li 7→ [[t]]]

Here [[t]] denotes the denotation of t relative to a particular interpretation of Sig(L). =⇒

is the so-called transition relation and is a subset of (ΣΠ × ProgWhile)×ΣΠ. The intended

interpretation of 〈Π, σ〉 =⇒ σ′ is that in state σ, Π can be executed so as to yield state σ′.

By way of example, we have 〈z := x, 〈1, 2, 3〉〉 =⇒ 〈1, 2, 1〉.

It is largely because of the intuitive interpretation which can be given to the state

transition rule that the natural semantics for While may be taken to provide a connection
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between our informal understanding of programs over this language and the pseudocode

specifications which they might be claimed to formalize. For note that while specifica-

tions like (2.11) are structurally similar to formal programs, their individual statements

correspond to English statement like “Increment q by 1” or “Let r = n” which are in the

imperative mood. The semantic interpretation of these statements has been studied ex-

tensively in formal semantics and pragmatics, where it is generally agreed that a semantic

analysis of an imperative utterance should be given not in terms of its truth value, but

rather in terms of the effects of carrying it out.

One well-known theory advanced by Searle [123] holds that an imperative utterance S

functions as a command or directive on the part of one party (the speaker s) to get another

party (the addressee a) to perform some action α. But although this is a plausible analysis

of the so-called illocutionary force of an imperative utterance, Searle [124] also holds that

this notion itself must be further analyzed in terms of a speaker’s intentions in producing

the utterance. For instance if s utters “Shut the door,” it is only in virtue of an appropriate

set of beliefs and incentives on the part of s and a that this command will be carried out.

It is, however, also possible to abstract away from this aspect of the role imperatives play

in ordinary language and to attempt to analyze the semantic contribution of an imperative

of the form “Do α” solely in terms of the effect its proper execution would have on the

current state of affairs. On this analysis, for instance, the meaning of “Shut the door” can

understood as a function mapping an arbitrary physical world state σ into σ′ identical to

σ save for the fact that the door in question is shut.

Since this analysis abstracts away from the intentions of individual speakers and ad-

dressees, it is possible to apply it to cases where an imperative statement is not actually

uttered, but merely appears in the context of a set of written instructions such as a recipe

or a sequence of driving directions. While such sequences of instructions clearly are part

of natural language, they are also much pseudocode programs in both their structure and

intended significance. In particular, both everyday procedures and pseudocode programs

are formed of sequences of imperative statements composed according to simple controls

which are intended to mediate the order in they would be carried out, were the procedure

in question to be executed. As such, it is also reasonable to view an occurrence of the a
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statement S of the form “Do α” in such a context as a sort of standing command to an

arbitrary agent to perform the action denoted α were the set of instructions in which it was

embedded to be carried out. For note that when we reason about the effects of carrying

out such a sequence, we explicitly fail to assume anything about the individual intentions

of an agent a who might carrying and rather simply assume that a carried out each step

correctly in accordance with the control structure in which it is embedded.

In such a context, it is therefore reasonable to attempt to formalize the meaning of S

purely in terms of the effect the execution of the action denoted α would have were it to

be carried out. Note that this can be achieved by generalizing the form of our formal state

transition axiom to take into account the effect of performing arbitrary operations α on

a physical state σ. In particular, if we agree that natural language imperatives ought to

be analyzed in terms of the function their successful execution induces on states, then a

general analysis can be framed precisely by adopting an axioms of the form 〈σ, α〉 =⇒ σ′

under the interpretation that σ′ is the state derived from σ by applying α and holding

everything else constant.

It is on the basis of this sort of affinity between the effect of assignment in the language

While and the analysis of natural language imperatives that we are able to build a partial

bridge between our informal understanding of a pseudocode specification like (2.11) and its

putative formalization as (2.9). For note that former is specified precisely as a sequence of

imperative statements conjoined by the three forms of control structures mentioned above

– i.e. composition statements of the form Π1; Π2; conditional statements of the form if ϕ

then Π1; and iterative statements of the form while ϕ do Π. The intended interpretation

of these statements may be expressed in natural language respectively as follows: 1) “do

Π1 and then do Π2”; 2) “if ϕ holds in the current state then do Π”; and 3) “while ϕ holds

in the current state, repeatedly do Π.”

Of these, the most significant with respect to how the natural semantics for While codify

intuitions deriving from our understanding of pseudocode specifications is the operation of

composition. For consider a complex statement in either While or natural language of the

form Π ≡ Π1; Π2 (e.g. {z:=x;x:=y} or “shut the door; turn the key”). We can think of

the effect brought about by executing Π in terms of the individual effects brought about by



123

executing Π1 and Π2 individually as follows: if the result of executing Π1 in state σ1 is σ2

and the result of executing Π2 in state σ2 is σ3, then the result of executing the Π1; Π2 in

state σ1 is σ3. This sort of reasoning can codified by the following rule of inference which

is part of the natural semantics for While:

(2.14)

〈Π1, σ1〉 =⇒ σ2 〈Π2, σ2〉 =⇒ σ3

〈Π1; Π2, σ1〉 =⇒ σ3

For example this rule tells us that since 〈z:=x, 〈1, 2, 3〉〉 =⇒ 〈1, 2, 1〉 and 〈x:=y, 〈1, 2, 1〉〉 =⇒

〈2, 2, 1〉, we can infer that 〈z:= x;x:=y, 〈1, 2, 3〉〉 =⇒ 〈2, 2, 1〉. And similarly, it tells us that

if the result of carrying out “shut the door” in a physical state σ1 is another physical state

σ2, and if the result of carrying out “turn the key” in state σ2 is state σ3, then the result

of carrying out “shut the door; turn the key” in σ1 is σ3.

Similar rules can be stated for conditional and iterative statements.17 Together the

state transition axiom and the compositional rules can be taken to form a proof system

Tns in which derivations correspond to executions of While programs. The derivation of

corresponding to the execution of Π in initial state σ0 and resulting in a terminating state

σn will have 〈Π, σ0〉 =⇒ σn, internal nodes corresponding to of the form 〈Π′, σi〉 =⇒ σi+1

for Π′ a subprogram of Π. For instance the tree corresponding to the execution of the

program {z:=x;x:=y};y:=z in initial state σ0 = 〈1, 2, 3〉 will be as follows:

(2.15)

〈z:=x, σ0〉 =⇒ σ1 〈x:=y, σ1〉 =⇒ σ2

〈{z:=x;x:=y}, σ0〉 =⇒ σ2 〈y:=z, σ2〉 =⇒ σ3

〈{z:=x;x:=y};y:=z, σ0〉 =⇒ σ3

where σ1 = 〈1, 2, 1〉, σ2 = 〈2, 2, 1〉 and σ3 = 〈2, 1, 1〉. I will write Tn,s ` 〈Π, σ〉 =⇒ σ′ if

there is a tree that can be constructed with the specified root and denote the tree itself by

Tns
Π,σ.18

It should be clear that Tns
Π,σ can be taken to represents the execution of Π on input σ in

the sense that if such a tree exists, then its internal nodes specify the intermediate states

in what we would informally describe as the execution of Π on σ. If we abstract one level

17For a complete presentation of the operational semantics of While see [100].

18Note that it can be shown under the current semantics that While is deterministic in the sense that if
Tns ` 〈Π, σ〉 ⇒ σ′ and Tns ` 〈Π, σ〉 ⇒ σ′′, then σ′ = σ′′. As such the, there is at most one tree with root
〈Π, σ〉 ⇒ σ′ and the definition of T

ns
Π,σ just given is well defined.
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from this we can look at Tns
Π,σ as being given uniformly in σ. And on this basis we can view

the result of applying the natural semantics for While to Π to be given by the function

(2.16) opns
While

(Π) = λσ.















Tns
Π,σ If there exists σ′ such that Tns ` 〈Π, σ〉 =⇒ σ′

undefined otherwise19

Since the result of interpreting Π relative to opns
While

is a derivation tree, it thus follow

that we should take the class of such a tree to comprise the class MWhile of mathematical

interpretations of While programs. This definition thus provides some insight into the

sense in which an operational semantics provides a means of associating programs with

mathematical objects.

We may now return to the question of whether the function opns
While

(Π) can plausibly

be used to help us understand algorithm reference via (2.8a). This question can be framed

concretely by taking Π to be equal to the program given in (2.9). As noted above, the

problem that we face in answering this question is that any intuitions we have about

the meaning of (2.9) are presumably grounded in the fact that we view it as a means of

formalizing (2.11). So in order to determine whether opns
While

(Π) is a viable candidate for

serving as the algorithm expressed by Π, we need to need inquire about the relationship

between this mathematical object and the procedure informally described by (2.11). But

as noted above, it does seem as if the natural semantics for While can plausibly be thought

of as deriving from an analysis of the semantic contribution of imperative statements in

natural language as they appear in sets of instructions.

Unfortunately, however, this observation alone is not sufficient to demonstrate that a

systematic justification can be provided for taking the reference of “the algorithm expressed

by Π” to be given by opns
While

(Π). In order to see this, most convenient to some of the initial

worries I voiced about mathematical reference above. For as I noted there, even when a

mathematical name t is introduced by an explicit definition of the form t =df ιx.ϕ(x), we

19The “otherwise” clause of this definition comes into effect when there is no well-defined derivation tree
for Π on input σ. This occurs in cases where we would informally describe the operation of Π as “looping
forever” and thus failing to terminate. It is the presence of the iterative construction while ϕ do Π od

which can lead to the possibility of non-terminating executions of While programs. In such cases it is
unclear whether it is more natural to assign some representation of the infinite computation of Π on σ as
the meaning of Π or to simply stipulate that SWhile(Π, σ) is undefined. But since non-terminating executions
rarely arise in the sort of the cases we will be considering, there is no reason to dwell on this point here.
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still face the problem of determining the reference of the description ιx.ϕ(x). In standard

cases such as those given in (2.7), this may be facilitated by the fact that we already possess

either a model or an axiomatic theory of the language over which ιx.ϕ(x) is stated. But in

the general case, the problem of referential indeterminacy remains in a sense which is aptly

demonstrated with respect to (2.7b). For note that if we explicitly agree that the symbol ω

has been introduced to abbreviate the description “the least infinite ordinal” (which itself

can be taken as an abbreviation for a definite description in the language of set theory), it

will still generally be conceded that it is arbitrary whether we take this description to be

satisfied by the least infinite von Neumann ordinal ωN or the least infinite Zermelo ordinal

ωZ .

I have proposed above that we seek to understand algorithmic reference by treating

“the algorithm expressed by Π” as denoting a functional expression which can be taken to

denote a function prog(Π) mapping from programs into algorithms. If this expression can

in fact be so interpreted, this allows us to also view (2.10) as an explicit definition on a

linguistic par with those in (2.7). But it is also important to realize that there are still more

axes of indeterminacy which will plague an account of algorithmic reference developed on

this basis than arise in standard accounts of how terms like e, ω or C6 refer to mathematical

objects. As we have seen, one such axis arises because the Π can be drawn from any of a

wide class of programming languages or can even be a pseudocode specification. Relative to

a choice of language L, I have suggested that we might attempt to specify prog by using an

operational semantics for L. Such a semantics can be thought of as giving rise to a mapping

opL : ProgL → ML. But as pointed out above, the class ML taken as the semantic values

of L programs will vary not only with L, but also with the form of operational semantics

we choose to supply for it. Unless additional considerations can be adduced in favor of

a particular form of operational semantics, this consideration leads to another substantial

axis of indeterminacy.

The forgoing argument attempted to make a case for taking the so-called natural se-

mantics for the language While given by opns
While

as allowing us to interpret its programs

in a manner which coincided with some of our background intuitions about imperative
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statements in natural language. But even a cursory examination of the literature of pro-

gramming semantics reveals that this is just one of several different forms of operational

semantics which can be given for imperative languages. In addition, for instance, there

are so-called structural semantics for While. In this setting programs are interpreted as

inducing transitions of the form 〈Π, σ〉 =⇒ γ where γ ≡ σ if the execution of Π in σ has

terminated and γ ≡ 〈Π′, σ′〉 if the execution of Π in σ has not terminated and 〈Π′, σ′〉 rep-

resents the next intermediate step in its remaining computation. It is possible to workout

a similar definitions of a deductive system Tss and deduction tree Tss
Π,σ for the structural

semantics. And on this basis, we may also define opss
While

(Π) which is parallel in structure

to (2.16). But obviously since the trees Tns
Π,σ and Tss

Π,σ will in general be distinct, this means

that the object opns
While

(Π) which the natural semantics gives as the meaning of Π will be

distinct from that given by opss
While

(Π).

The structural semantics for While offer certain technical advantages over the natural

semantics. For instance, deduction trees of the form Tss
Π,σ will correspond to linearly ordered

sequences of configurations of the form γ0, γ1, . . . such that γ0 = 〈Π, σ〉 and such that

γi =⇒ γi+i for all i > 0. As such sequences will be finite just in case the computation of Π

on σ halts, this property facilitates the construction of correctness proofs. However both

the natural and structural semantics include the same state transformation axiom (2.13).

And since this was the point of contact with natural language imperatives on the basis

of which I motivated the natural semantics above, it appears unlikely that any intuitions

which we have about the meanings of While programs can be cited in favor of adopting one

of opns
While

(Π) or opss
While

(Π) over the other as formalizing what we mean by “the algorithm

expressed by Π.”

I will take this consideration to demonstrate that if algorithms are indeed abstract

mathematical objects, our ability to refer to them cannot be completely explained in terms

of the schema (2.8a). But since we still need to give an account of algorithmic reference so

as to explain the status of statement like those given by (2.5), it remains incumbent upon an

algorithmic realist to either show how the present account can be repaired or to formulate

a more successful one which can replace it. The thesis for which I wish to argue in the rest

of this section is that additional headway can be made on both front by considering how
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(2.8b) can be used both on its own and in conjunction with those of (2.8a) in course of

referring to algorithms.

Algorithms and implementations

It is somewhat more difficult to construct a completely explicit example of an instance

where apparent reference to an algorithm A is made via the expression “the procedure

implemented by M .” This owes both to the fact that this means of referring to procedures

is generally used in specialized contexts within computer science. And it is also due to

the fact it is somewhat more difficult to explicitly specify an implementation than it is a

program. These caveats aside, however, the idea motivating the proposal that we can refer

to an algorithm by refering to an implementations is reasonably straightforward. For note

that common sorts of inplementations such as Turing mcahinces may also be thought of

as mean of explicitly representing particular computational methods which may be carried

out uniformly over a class of input values. In specifying an instance M of such a model, it

is thus reasonable to claim that we have provided a means of referring to a general method

which M instaniates – i.e. the algorithm implemented by M .

In the course of our computational practices, the sorts of contexts in which (2.8b)

is standardly applied are ones in which the implementation M has already been explicitly

specified. We might, for instance, speak of the algorithm Quicksort as being the procedure

expressed by a particular instance of a Java virtual machine or a MIPS machine. Such

models are, howver, quite complex. And thus due to the sheer number of combinatorial

details which must be attended to in order to precisely define one of their members, it is

relatively rare in everyday procedural discourse for individual algorithms to specified by

(2.8b). However we will instances of this schema at work in Chapters 3 and 4. And I

will also argue below that it ought to be viewed as our paradigm device for referring to

algorithms.

The first issue to which we must attend is that of circumscribing what is meant by an

implementation. As I have mentioned above, the notion of an implementation is essentially

that of an instance of a model of a computation and as such implementations bear the same

relation to such a model as do programs to programming languages. Roughly speaking,
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a model of computational may in turn be characterized as a class of uniformlt structured

mathematical structure taken together with a definitio of application which allows them to

be viewed as representations of temporally extended computational processes. Since it is

possible to take different about what constitutes a computational process, it is possible to

give different general definitions of what constitutes a model of computation. This makes it

difficult to provide a truly comprehensive definition of this notion. For present purposes, it

will useful to follow the route taken by standard textbooks on computational models (such

as those of Savage [118] and Hopcroft and Ullman [63]) and attempt to define a model of

computation by example.

Some of the best known examples of formalism which we now think of s models of

computation date from the foundational period in the history of comutability theory. These

includes the Turing machine and the untyped λ-calculus. These models were designed so

that the primitive mathematical operations relative to which they are defined could each

be given a constructive justification so as to facilitate the defense of the claim that the class

of functions which their operation induce could are intuitively effective. The majority of

the models which now find application in computer science, however, were developed after

the period when the analysis of effectivity was a primary theoretical concern. The features

of recent models of computation are thus generally justified on the basis of either their

in principle physical implementability or their resemblance to extant physically embodied

computing devices.

Since the 1930s, literally hundreds of such models have been defined. And although it

is again probably safest to refrain from attempting to provide a uniform characterization

of what such models have in a common, several general areas of commonality can be noted:

1) A model of computation can be formally taken to consist in a quadruple M = 〈M ,X, Y,App〉

which I will respectively refer to as its implementations (or occasionally as the machines),

the input set, the output set and the definition of application. I will generally abuse

notation and write M ∈M (as opposed to M ∈M) to denote that implementation M

is drawn from model M.
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2) Individual implementations M ∈ M are intended to be interpretable as inducing func-

tions from X to Y . This is accomplished by an operation known as application whereby

M the computational operations described by M are applied to a value x ∈ X, giving

rise to a sequence of intermediate configuration σ(x)0, σ(x)1, . . . which may be of either

finite or infinite length. I will refer to such sequences as the execution of M on input

x and denote it by execM (x). The formal definition of how this sequence is derived in

terms of the structure of M is given by the definition of App. If execM (x) is finite, I

will write App(M,x) to denote the value y ∈ Y corresponding to its final member.

3) Generally, but not always, the elements of execM (x) will correspond to what I will refer

as the computational states Σ of M . These will correspond to various configurations of

its combinatorial components which are modified during the course of an execution.

4) A transition-based model is one whose computational states can be characterized as

structures upon which it is possible to define a notion of locality around which updates

(corresponding to computational steps) are made. The definition of App for such a

model can thus be given relative to a state transition function ∆ : Σ → Σ whose

values are constrained by the relevant notion of locality. An execution of a transition

based model can thus be thought of as a sequence σ0, σ1, . . . where σ0 corresponds to

an initial state of M (possibly parameterized in its input) and σi+1 = ∆(σi) for i > 0.

A paradigm instance of such a model is the single-tape, single-head Turing machine

originally introduced by Turing [144]. This class also includes well-known classes of

automata (deterministic and non-deterministic finite state, push-down, linear bounded,

etc.) as well as the historically important Schönage storage modification machine [120].

5) A register-based model is one whose computational states can be characterized as finite

or infinite vectors of storage locations 〈l1, l2, . . .〉 which can be accessed and operated on

by numerical index. The definition of App for such a model can be given relative to an

update function Update : Σ→ Σ which takes an input an index i, an operation f (which

are encoded as part of its computational state σ) and returns as value a computational

state σ′ where the value stored li has been updated by applying f to one or more other

values. Paradigm examples of models in this class include the random access machine



130

of Hartmanis [59] and its many variants.

6) A recursion-based model is one whose definition of App is based on recursion on a class

of objects D relative to some well-founded relation <D defined on this class. Paradigm

examples of models in this class include the primitive recursive definitions of Skolem

[132] and Gödel [45], the general recursive definitions of Gödel [44] and Kleene [65], and

pure LISP of McCarthy [85]. With suitable modifications, well known formalisms based

on term rewriting such as the typed and untyped λ-calculus can be assimilated to this

paradigm.

Although lacking precision along several dimensions, the terminological framework in-

troduced in 1) - 6) will provide us with a uniform basis for talking about implementations

in the sequel. Returning now the topic of procedural reference as mediated by implemen-

tations, it will useful to fix an example of (2.8b). To this end, consider the statement

(2.17) Insertionsort is the procedure implemented by M .

Here I will assume that M is an example of a fixed implementation – say a RAM machine –

which is a member of some formally defined model of computation M. It is somewhat more

common to see simple procedures like Insertionsort described linguistically – i.e. by a

program or pseudocode specifications – and as noted above this is indeed how algorithms

are generally introduced in textbooks and journal articles. But in the actual practice

of computer science, it is fairly common to explicitly specify implementations by standard

mathematical definitions. As we will see in Chapter 4, for instance, this can be accomplished

in the case of RAM machines by specifying a certain form of transition function defined

over a vector of storage locations.

The conceptual question which arises when we reflect on our use of statements like (2.17)

is, of course, how is it that we are able to make reference to an algorithm by referring to a

structured mathematical object like a RAM machine. One point which may immediately

be noted in this regard is that the expression “the algorithm implemented by ·” serves

grammatically as a functional expression in much the same way as “the algorithm expressed

by ·.” I suggested in the previous subsection that in the latter case some purchase may

gained on understanding how such an expression refers to an algorithm by attempting
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to semantically interpret programs in something like the way we attempt to semantically

interpret sentences. But it is clear that no parallel analysis can be applied in cases like

(2.17) because implementations are mathematical as opposed to linguistic objects. Thus if

“the algorithm expressed by M” as used in (2.17) succeeds in referring to an algorithm, it

cannot be because we have semantically interpreted M to refer to such an object because

implementations no more admit to interpretation than do natural numbers.

Given that implementations like M simply are mathematical objects, it seems natural

to suggest that we take expressions like “the algorithm implemented by M” to denote the

identity function. This would have the effect of simply equating algorithms with imple-

mentations. Whatever its other consequences, this proposal would have the consequence

of satisfying one of the central tenets of algorithmic realism. For if in order to refer to an

algorithm A, we needed to refer to an implementation M , which was then discovered to be

identical to A, then A would ipso facto be a conventional mathematical object like M . But

one does not need to look very far to see that this would be a Pyrrhic victory for algorith-

mic realism. For a number of theoretical practices in computer science appear to rely on

the fact that a distinction between algorithms and implementations be preserved. As such,

any attempt to collapse such a distinction from the outside would correspond to a form of

realism about algorithms which failed to conform to the details of our computational and

mathematical practices.

One easy observation which can be made in this regard is that not only does it appear

possible to discover an algorithm without thereby discovering an implementation, but that

this is almost always the way things happen in practical mathematical practice. Euclid’s

algorithm, for instance, was first described over 2500 years before the first formal definitions

of implementations were given in 1930s and bore the name “Euclid’s algorithm” for at least

100 years prior to this point. The same is true for a variety of numerical procedures which

were developed prior to the twentieth century: tableau and Russian peasant multiplication,

Newton’s method, the Sieve of Erosathenes, the Lucas-Lehmer test, Gaussian elimination,

Mergesort, etc.. Each of these cases represents an instance in which a particular math-

ematical procedure was presented in mathematical practice (even up to the point of being

given a proper name) without the explicit representation in terms of what we now refer to
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as implementation. And as such, this at least suggest that our ability to refer to algorithms

cannot be tied to any particular class of these objects.

The other readily framed observation about our computational practices which suggests

that the denotation of “the algorithm implemented by M” cannot be taken to be M itself

is that it is typically possible to refer to a single algorithm using more than one implemen-

tation. The situation here is very much the same as it is with programming languages. For

recall that I alluded above to the widespread belief that all sufficiently “high-level” lan-

guages are capable of expressing any intuitively effective algorithm. But since the notions

of “high-level” and “express” are only vaguely defined with respect to the conventional in-

terpretation of this statement, it is safest to regard such a generalization as at best folkloric.

An analogous statement about implementations would have the following form:

(2.18) For all models of computation M meeting conditions Φ, and for all intuitively

effective algorithms A, there is a M ∈M such that M implements A.

With sufficient attention to the definition of the statement of Φ and analysis of intuitions

about implementation, it is possible to make (2.18) into a reasonably precise statement

about the relationship between algorithms and implementation. And as I now wish to briefly

discuss, with sufficient attention to these details and to the choice of M, various versions of

(2.18) have been put forward by practitioners as informal but rationally defensible theses

about the relationship between implementations and algorithms.

The first point to note about (2.18) is its relation to Church’s Thesis. Traditionally this

proposal is reported in the summarized form “All algorithmically computable functions are

general recursive” which equates the algorithmic computability of a given function f on the

natural numbers with the fact that f (extensionally) coincides with the function determined

by some general recursive function definition. It is well-known, however, that many of the

most familiar models of computation are extensionally equivalent in the sense of containing

members which (subject to an appropriate effect encoding) determine the class of functions

on the natural numbers.20 For present purposes we may therefore present Church’s Thesis

in a more general form as follows:

(2.19) For all models of computation M meeting Ψ, and for all intuitively effective
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algorithm A determining a possibly partial function fA : X → Y , there exists an

implementation M ∈M such that ∀xinX[fA(x) = App(M,x)] and conversely for all

M ∈M, there exists a intuitively effective algorithm such that

∀x ∈ X[App(M,x) = fA(x)].

Here the predicate Ψ can be taken to incorporate two kind of conditions: 1) that the

structures and operations in terms of which M and App are defined are constructive in

the appropriate sense; 2) that M contains members which can be shown to emulate the

operations of any member of a reference model of computation such as the single-tape,

single-head Turing machine.22 Since these properties are known to be satisfied by many of

the models of computation mentioned above, (2.19) can be taken as stating that any one of

these models is sufficiently expansive to contain a member computing the function induced

by any intuitively effective algorithm.

This may seem like a very broad and powerful statement relating implementations to

algorithms. But as pointed out in Chapter 1, it must be kept in mind that (2.19) itself

does not directly relate algorithms with implementations. Rather it relates the function

computed by algorithms with that computed by implementations. Even stated in this gen-

eralized form, Church’s Thesis is thus most accurately perceived as an extensional statement

about the class of functions computed by individual algorithms and not a statement about

how individual algorithms can be implemented by Turing machines or some other model of

computation. But by directly invoking the notion of implementation, on the other hand,

(2.18) apparently does make a claim about not just what function can be computed by the

members of M but also how they may be computed by its members. In particular, it makes

the claim that given an algorithm A, there is a member of M, in virtue of implementing A,

22Suppose that ci : N → Xi and d : Yi → N for i ∈ {1, 2} are respectively effective bijective encoding
functions for the inputs and output sets of M1 and M2. Then using the notation introduced adopted above,
the result just alluded to can be formulated as follows: ∀M1 ∈ M1∃M2 ∈ M2∀n[d1(App1(M1, c1(x))) =
d2(App2(M2, c2(x)))].

22The first of these results states a necessary condition required to ensure that M is a so-called effective

model of computation. Since is an intuitive notion, effectively must here be taken as a term of art which is
typically described by example. Paradigmatically, for instance, the various features of the Turing machine
model – e.g. the finiteness of a Turing machine’s alphabet, the fact that it may only observe one square at
a time, etc. – are described as individually effective in the sense of being both finitary and applicable to a
resource bounded computed agent. This sort of analysis can, however, be substantially generalized so as to
encompass all of the models of computation mentioned above – cf., e.g, Gandy [42].
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which somehow represents its mode of operation.

As things currently stand, however, no precise sense has been assigned to the notion

“mode of operation.” And thus to a potentially greater extent than Church’s Thesis itself,

(2.18) must be taken as an informal thesis rather than any sort of formal adequacy theo-

rem. But for present purposes, what is more significant is that a variety of theorists have

endorsed versions of (2.18) as characterizing the relationship between implementations and

algorithms.23Although their endorsements have often been categorical, we will see in sub-

sequent chapters that there are substantial matters of detail to attend with respect to how

the requirements on models Φ are formulated. In particular, it must be ensured that M is

sufficiently power that individual steps in the executions of implementations M ∈ M can

mirror those of the algorithms studied in algorithmic analysis and complexity theory. And

as we will see, this is true of some, but not all of the models which satisfy the requirements

Ψ.

What is significant for present purposes, however, is that (2.18) can plausibly be taken

to be true with respect to certain explicitly definable models of computation. One notable

example, for instance, is the class of so-called MIX machines introduced by Donald Knuth.

This class was introduced as a reference model in Knuth’s seminal (and encyclopedic) work

on algorithmic analysis [72] in an attempt to isolate a computational formalism which

was both mathematically streamlined and also took into account some of the features of

real world electronic computers. What is remarkable about [72] is that for virtually every

algorithm A which he considers in detail, Knuth presents a explicit implementation MA of

A as a MIX machine. Although Knuth himself does not use this to argue for an explicit

thesis like (2.18), the work he has performed in constructing MIX implementations which

accurately reflect the properties of the informally specified algorithms he discusses is strong

inductive evidence that such a proposal ought to be accepted.24

23The textual situation with respect to (2.18) is complicated somewhat by a tendency of theorists to refer
to this statement (as opposed to one resembling (2.19)) as “Church’s Thesis.” Since the notion of individual
algorithm was not clearly delineated by any of the framers of Church’s in 1930s (i.e. Gödel, Church, Turing,
Kleene and Post), this is almost certainly a historical confusion. Bearing this in mind, versions of (2.18)
(sometimes advertised as “Church’s Thesis”) can be found in the writings of Gödel [44] (postscript), Kreisel
[69], Rogers [113], Matchey [80] and Lewis and Papadimitriou [74].

24Knuth’s own views on this are this subject are not entirely clear. For note that in the introduction to
the first volume of [72], he does state a thesis akin to (2.18) but with respect to a simpler class of what he
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Conventional wisdom thus reflects that there is at least one of the model of computation

in contemporary use which satisfies Φ. But note there is also no reason to suppose that

MIX corresponds to the only model with this property. For instance, in the more recent

volumes of [72], Knuth employs a updated form of the MIX model known as the MMIX

machine by which to provide implementations of the algorithms he considers. And although

many details have to be checked in each case, it is currently possible to provide plausible

arguments that a number of other models can be used in this capacity – e.g. the Java

machine [76], the MIPS machine [107], the Schönage storage modification machine [120],

the interpreted While programs of Jones [64].

This situation has substantial ramifications with respect to for how we ought to un-

derstand statements like (2.17). For suppose that there are at least two models M1 and

M2 which satisfy Φ and without loss of generality, assume that there classes of imple-

mentations M1 and M 2 are disjoint. Then it follows from (2.18) that for every informal

algorithm A, both M1 and M2 contain at least one machine implementing A. If we call

these implementations M1 and M2, we would then have

(2.20) a) A is the algorithm implemented by M1;

b) A is the algorithm implemented by M2.

From this it follows that the denotation of the expression “the algorithm implemented by

·” as it appears in these statements cannot be the identity function. For since M1 and M2

are, by supposition, distinct mathematical objects we cannot consistently have A = M1

and A = M2.

If we wish to understand how reference to algorithms is possible via (2.17), something

additional must thus be said about the meaning of the expression “the algorithm expressed

by ·.” One possibility is that we treat this expression as denoting a mapping imp : M→ A

which maps classes of implementations M (which may include machine drawn from more

than one model) of into algorithms in a possibly many-one manner. Such a mapping is

obviously similar in form and motivation to the mapping prog : ProgL → A discussed in the

refers to as computational methods (cf. p. 7-9). However, this model is not referenced again throughout
the rest of the work. I will discuss the evolution of Knuth’s at greater length in Chapter 5.
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prior section which is intended to map programs over a language L (which might be taken

to consist in the union of several traditional programming languages) into algorithms. But

note that in this latter case, there was an obvious manner in which we could set out to define

prog on the basis of the fact that programs are linguistic entities and thus admit to several

forms of compositional semantic interpretation. And it was on this basis that I proposed

taking prog to be given by the interpretation function opL induced by an appropriate form

of operational semantics for L.

But matters stand somewhat differently with respect to giving an explicit definition

of imp. For in particular, implementations of the sort we have been considering are not

linguistic entities and as such there is no clear sense in which they admit to linguistic

interpretation.25This means that there is little hope that imp might be defined on M so

that the value of imp(M) is determined compositionally in terms of the structure of M . For

while implementations generally are structured mathematical entities, there is no reason

to think that the structure of a Turing or RAM machine can recursively determine an

algorithm in anything like the way we think of the structural decomposition of a sentence

as determining a proposition.

As things stand, there is thus much left to be explained about how reference to algo-

rithms can be achieved by (2.8b). The considerations just adduced suggest that there is

little hope of attempting to produce an explicit definition of imp which resembles the defini-

tions of opL applicable to programs. In Section 3, I will argue that rather than attempting

to give an explicit definition of the function imp, the realist will be better off attempting to

define this function implicitly. As of yet, it is difficult to give concrete meaning to such a

suggestion. For, in particular, we have yet to see whether there any other means of effective

reference to algorithms with which such a definition would ultimately have to comport. I

will argue in section 2.4 that, other things equal, there are not. And in sections 3 and 4, I

will attempt to show on this basis how such an implicit definition might be given.

2.2.4 Algorithmic reference by other means?

Over the course of the previous section, I attempted to illustrate how it may be possible

to refer to algorithms through the use of programs and implementations. Provisional on
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our ability to resolve the determinacy problems just reviewed, these considerations suggest

that an ability to refer to such entities is sufficient to enable us to refer to algorithms. I now

want to consider the claim that it is also necessary – i.e. that it is impossible to refer to

an algorithm A without having first referred to a program which expresses it or a machine

which implements it. Although the significance of this result may not be immediately

apparent, it will turn out to be important with respect to locating the concept of algorithm

with respect to traditional classifications of sortal concepts, a task I will begin to undertake

in Section 3.

In attempting to argue that procedural reference must indeed be mediated by reference

to programs or implementations, we face the initial methodological problem that this claim

has universal scope. To demonstrate it, one might think that we must thereby examine all

other potential mechanisms of reference to algorithm and conclude individually that each

was deficient. But of course it is far from clear what ought to be counted as a “referential

mechanism” even in paradigm cases of concrete macroscopic objects. And thus since the

prospects of uniformly enumerating different ways in which we could potentially refer to

algorithms seems dismal at best, one might think it implausible that such a claim could

ever be determinately demonstrated.

And as such, it seems that we can do little better than to consult our intuitions about

other possible means by which we might succeed in referring. The most obvious such

device is that of ostention. However, given our current understanding of an algorithm as

a procedure which operates on mathematical objects, it is far from clear what it would

mean to ostend an entity such as Euclid’s algorithm. For note that although we may not

yet have a solid grasp on the ontological status of such a procedure, we do know that this

procedure operates by transforming pairs of natural numbers 〈n,m〉 according to a rule

which tells us how to sequentially update the values of n and m. Since this rule is itself

given by a mathematical function g (i.e. that satisfying the implicit definition g(n, 0) = n

and gcd(n,m) = gcd(m,m mod n)) which would typically be part of the presentation of

this algorithm, it seems doubtful that we could refer to Euclid’s algorithm unless we are

also able to refer to g. But g is a abstract mathematical object, and thus presumably not

a possible target of ostension. As such, it seems doubtful at best that our ability to refer
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to Euclid’s algorithm can be explained in this manner.

A potentially more promising route by which we might seek to explain algorithmic

reference involves the use of the notion of execution introduced above. For note that as

I discussed in Chapter 1, accompanying every informal algorithm A we generally possess

some grasp of what it means to carry out or execute A. It is, of course, this notion which

is formalized as the definition of App(M,x) relative to a particular model of computation.

Generally speaking, however, our informal notion of executing A corresponds to the sort

of calculation which we might carry out by hand in the course of performing an arithmetic

problem – i.e. a sequence of intermediate numerical or symbolic configurations σ0, . . . , σn−1

from whose final step the output of A is derived.26

The fact we possess such an independent conception of carrying out an algorithm,

suggests that it may be possible to refer to an algorithm by referring to an execution. In

particular he might imagine that in parallel of (2.8a,b), we can also refer to an algorithm

through the use of the schema

(2.21) A =df the procedure with execution σ0, . . . , σn−1.

One point in favor of (2.21) is that if we were indeed able to refer in this manner, then this

lowers the requirements on algorithmic reference in general. For at least in the paradig-

matic case, an execution consists of a finite sequence of computational states. And while

these states will presumably still be abstract mathematical structures, one might think

that there were fewer background hurdles to be overcome in explaining reference to such

sequences than to the infinitary sets of states and transition functions out of which the

formal specification of an implementation will often be comprised. In particular, it seems

possible to refer to a (finite) execution by ostending the physical tokens of the symbols of

which it consists (e.g. the entries on an adding machine tape). And given the well-known

problems about reference to infinitary mathematical objects through their putative physi-

cal embodiment as concrete devices, one might think we were better off attempting to refer

26I will here ignore the case where executions are infinite. For famous reasons, this possibility cannot
be ruled out for sufficiently general models of computation. However, this simplification will not affect the
point of my argument.
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to algorithms via (2.21) then by either of (2.8a,b).27

This advantage turns out to illusory, however, because it is quite clear that (2.21) cannot

be accepted as a viable means of referring to an individual algorithm. There are two reasons

for this. First, it will generally be the case that infinitely many distinct algorithms can gen-

erate any fixed execution σ0, . . . , σn−1 on the appropriate input. This means, for instance,

that although we may identify a sequence of pairs 〈289, 131〉, 〈131, 27〉, 〈27, 23〉, 〈23, 4〉, 〈4, 3〉, 〈3, 1〉, 〈1, 0〉

as corresponding an execution of Euclid’s algorithm, we may not justifiably work backward

from this sequence to the conclusion that it was generated by carrying out this algorithm.

For in the general case, there will be infinitely many intuitively distinct mathematical

procedure which could give rise to such an execution.

One solution to this might be to attempt to specify an entire class of executions of the

form σ0(x), σ1(x), . . . parameterized by what we take to be A’s input x. But even if we

were somehow able to determinately refer to such an infinite set of sequences, this would

not solve the more fundamental problem. For note that given any extensional description

of the potential behavior of some mathematical procedure – say the function f : N → N

which the procedure was claimed to compute or even the entire class of sequences state

~σ(n) for each n ∈ N through which is claimed to induce – it still generally impossible to

determine what algorithm induced the behavior.28As such, it appears that neither (2.21)

nor any obvious variant involving executions allows us to make determinate reference to

individual algorithms.29

The foregoing observations provide at least some inductive evidence that since other

referential mechanism do not seem to be forthcoming, (2.8a,b) may indeed exhaust the

27The locus classicus for such worries is Kripke [70]. In assuming that we can determinately refer not
only to abstract implementations such as individual Turing machines but also that a determinate notion of
execution is specifiable for such machines, I largely ignored the problems about mathematical meaning and
reference raised therein. These are, however, worries which an algorithmic realist would ultimately have to
confront if he wished to argue that not only are algorithms abstract objects, but also that our ability allows
us to ground the meaning of other non-procedural mathematical notions.

29This is essentially the content of a formal result in computability theory known as Rice’s Theorem. Call
S ⊆ P(N) a extensional property of a computable function just in case if for all i, j ∈ N, if ϕi = ϕj (i.e. the
partial recursive function with the indices i and j determine the same function), then ϕi ∈ S if and only if
ϕj ∈ S. Call S non-trivial if S 6= ∅ and S 6= P(N). Rice’s Theorem then states that if S is non-trivial, then
problem of deciding whether ϕi ∈ S given i is undecidable. Examples of non-trivial properties are the set
of computable functions which determine a non-empty language, the class of computable functions which
halt on all inputs and, most germanely, the class of recursive functions which compute a given function.
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means at our disposal for referring to algorithms. But what I now want to suggest is

that potential modes of algorithmic reference are yet more circumsribed than this. The

basis of this claim is the observation, that when properly understood, putative instances

of reference to algorithms mediated via (2.8a) can be subsumed under reference mediated

via (2.8b). In order to see this, first recall that I argued in section 2.3.1 that it was at

best unclear whether reference to programs actually allows us to refer to algorithms. The

crux of my argument turned on the fact that even if we view operational semantics as an

attempt to analyze the meaning of programs in a compositional manner which conforms to

pre-theoretical intuitions grounded in a comparison of programming languages to natural

language, the abstract objects assigned as the result of interpreting Π relative to such a

semantics cannot be taken as the algorithm which Π expresses. For we appear to have such

intuitions about programs only over a small class of languages L like While. And even in

such case, there will generally be different forms of operational semantics which give rise to

distinct interpretation functions opi
L : ProgL → Mi which map L programs into different

classes of formal objects. But whatever semantic intuitions we have about L will generally

be insufficient to distinguish which, if any, of the object opi
L(Π) ought to be taken as the

denotation of “the algorithm expressed by Π.” And it therefore seems that seems that

compositional semantics for programming languages cannot be of direct use in helping to

us understand how we can refer to an algorithm by referring to a program.

Another way of putting the observation is that we have not, at least as of yet, not

seen any justification for treating any of the classes M1
L,M

2
L, . . . as themselves constitut-

ing the domain of algorithm A which the realist wants to characterize. But note that we

now do possess another means of characterizing these classes – i.e. as constituting models

of computation. In particular, it should now be evident that objects opi
L(Π) derived by

interpreting programs Π according to a particular form of operational semantics will gen-

erally be characterizable as an implementation. Since we currently lack a sharp definition

of implementation it is difficult to make this claim as precise as desirable. But this will be

obviously true for forms of operational semantics which operate through the “interpretation

via compilation” paradigm briefly discussed above. For in such cases, programs are first

translated into a form of so-called machine code – i.e. sequence of instructions which can
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be directly executed by a given form of real or notional miscroprosessor such as the MIX or

MIPS machine. Such programs generally stand in a one-to-one correspondence with specific

instances of these models. And thus the practice of interpreting a “high level” program

such as Divide in this manner leads directly to an recognizable form of implementation.

After we study implementations in more detail in Chapter 4, it will be evident, however,

that even other forms of operational interpretation functions such as opns
While

determine a

class of implementations as their range.30

One consequence of this observation is that although operational semantics cannot be

taken as means of specifying algorithms as the interpretation of programs, it does map

programs into another well-known class of computational object. Such interpretations may

thus be seen as a potential stepping stone in an explanation of how we can use programs

to refer to algorithms. But taking into account the considerations adduced in this section,

it cannot itself yield a complete account of how such reference is possible. For as we

have seen, implementations identified with algorithms by virtue of the fact that different

machines M1,M2 can be taken to implement the same algorithm A. And thus on the basis

of foregoing observations, this gives us another reason to dissent from the conclusion that

the semantic interpretation of a programs eventuates in an algorithm.

Taken collectively, the observations recorded in this section 2.3.1, 2.3.2 and this sec-

tion thus suggest that the realist will be best off adopting the following overall picture of

algorithmic reference:

(2.22) a) Reference to algorithms must be understood indirectly in the sense that there

seems to be no plausible way we can refer to an individual procedure like

Euclid or Mergesort by a process like ostension.

b) In practice, we typically employ one of the two schema (2.8a,b) to refer to

individual algorithms. However, instances of these schemas cannot directly be

viewed as complex mathematical descriptions. For among other things, they

contain the undefined functional expressions “the algorithm expressed by

30This can already be seen by observing that the class of derivation trees T
ns are essentially an abstract

representation of individual executions. In particular, the nodes of these tree can be taken as computational
states and the definition of the deductive calculus Tns can be taken to induce a definition of application
defined over such trees.
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program Π” and “the algorithm implemented by machine M .”

c) If we seek to understand the meaning of these expressions, we are led to the

conclusion that inasmuch as it makes sense to employ conventional notions of

semantic meaning program, the interpretation of a program ought to be taken

to be an implementation and not an algorithm.

d) For this reason, all instances of procedural reference must ultimately be

understood as being mediated by (2.8b). This means in particular that if we

wish to understand instances of (2.8b) as successfully referring to algorithms,

we must first interpret Π as denoting an implementation M = opL(Π) by

specifying an appropriate form of operational semantics. And only then may

we ask after the algorithm which M implements by seeking an interpretation of

(2.8b) of the sort described at the end of Section 2.3.2.

In the next section I will begin to convert these considerations into a positive account of

the ontology of algorithms. Along the way I will that the strategy outlined appears to be

the best and only option for vindicating algorithmic realism in the manner discussed in

Section 1.

2.2.5 Algorithm as an abstract sortal

The significance of this observations collected in (2.22) should not be understated for

these technical conclusions can also be taken to correspond desiderata allow us to locate the

notion of algorithm with respect to a variety of traditional metaphysical distinctions. The

first such classification which I want discuss is that of whether individual algorithms ought

to be regarded as abstract or concrete entities. As will be familiar to readers familiar with

the recent debate about nominalism in the philosophy of mathematics (as chronicled, for

instance, by Burgess and Rosen [16]), there is some disagreement about how this distinction

should best be drawn. And thus although it appears as if algorithms appear to satisfy many

of the conditions which are traditionally put forth as necessary conditions on abstractness,

it is not entirely clear whether they should be placed with respect to the abstract/concrete

distinction.
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To see this we may begin by noting recalling that abstract objects have traditionally

been characterized on their basis of inaccessibility to the sense, causal inertness, and lack of

spatial and temporal location. Mathematical objects are standardly thought of as satisfying

all three sets of desiderata and are thus standardly regarded as a paradigm case of the

abstract. Of course, at this stage to simply assume the same was true of algorithms in

virtue of the fact that are mathematical objects beg the very question against algorithmic

realism which we are trying to answer. But at the same time, I have already observed that

it seems reasonable to suppose that whatever algorithms are, they both operate on any

are specifiable in terms of mathematical objects, it is reasonable to assume that they too

satisfy the traditional “negative” criteria of abstractness.

There, is however, at least one consideration which appears to stand in the way of

settling on this classification. For note that while it seems appropriate to say that a

procedure such as Euclid has no spatial location, we often do speak of executing algorithms

using language which suggests that they are located in time. For instance, not only does it

make sense to speak of executing Euclid at temporally located times occasions, but we also

ought to use various temporal locutions to describe of executions themselves – e.g. we speak

of one step in an execution as occurring after another and even of one execution as having a

longer duration than another. In this sense, a variety of affinities can be cited with respect

to the concept algorithm and a class of other concepts such as those of language, game

and musical or dance compositions whose members are taken to be temporally but not

spatially located. For instance, while the game of chess or the English language certainly

do not appear to be located in space, a case can be made for the fact that they are not

atemporal in the sense that they came into being at a certain points in human history and

have subsequently evolved over time. And similarly, while a musical composition is itself

presumably not located in space, we do speak of different performance of it as occurring in

time and have duration.

In Chapter 4 I will attempt to illustrate that the use of similar temporal terminology

to describe the operation of algorithms is both widespread and systematic. But barring

the potential for a systematic means of de-temporalizing our discourse about algorithms, it

would also be useful to determine how algorithms whether algorithms ought to be classified
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as abstract or concrete on the basis of extent means of classification. In regard to both

algorithms and the other sort of problematic or borderlines cases of abstractness mentioned

in the previous paragraph, it is useful to also consider a family of tell known criteria first

introduced by Dummett [29].

Dummett’s criterion is based on a distinction between objects which are the possible

objects of ostension and those which are not. On the basis of observation that we can os-

tend an object only if it is located and space and time (in which case it can also presumably

enter into causal interactions as well), it seems plausible to regard the possible ostendability

as at least a sufficient condition for concreteness. But what is of more interest is Dum-

mett’s negative characterization of abstract objects as those which cannot be referred to

via ostension. But given that be cannot refer to the members of a class of objects C via

ostension, one might reasonably wonder how it was possible to refer to the Cs at all.

Dummett’s answer is that there are many such classes such that the only way of referring

to the Cs is by the use of a functional expression applied to a term denoting a member of

another class D. In schematic form, Dummett’s positive characterization of the abstractness

is as follows:

(2.23) If a class of objects C are such that it is only possible the v ∈ C by an expression of

the form f(t) (i.e. such that f(t) = u is true) where t denotes a member v of some

other class D, then the Cs are abstract.

Paradigm example of the application of this criteria correspond to the Frege’s [37] well-

known examples of the class C1 or directions and C2 of shapes.31For note that while it

appears impossible refer to a particular direction (e.g. north) via ostension, we can read-

ily refer to them by specifying lines of which we customarily say the directions are “of.”

Similar remarks apply to reference to shapes via geometric figures. In particular, we may

schematically represent the expression by which we are able to refer to the directions and

shapes as follows

(2.24) a) x1 = the direction of t1;

b) x2 = the shape of t2
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where t1 and t2 are terms objects in the classes D1 and D2 correspond to particular lines

and shapes. On the basis of availability of these schemas and our apparent inability to refer

to the members of C1 and C2 by some other way, we may conclude that these classes are

abstract by Dummett’s criterion.32

If Dummett’s functional criterion does indeed provide a sufficient condition for regarding

a class of objects as abstract, then that the considerations adduced above would constitute

a strong case for regarding them as abstract. For note that the referential situation in

which we appear to stand with respect to algorithms is very much like that in which, per

Frege and Dummett, we stand in with respect to directions and shapes. For according to

their view, if we want to speak of a particular direction d or shape s, we must produce a

particular line ` or figure g and then speak of d and s as being determined relative to these

entities. This view not only seems plausible in own right, but it appears an obvious affinity

to the situation in which, per sections 2.4, we find ourselves with respect to algorithms. In

particular, it seems that if we want to refer to Mergesort we have little choice but produce

a either a program Π which we then use to refer it to as “the algorithm expressed by Π”

or an implementation M which we then to use to refer to as “the procedure implemented

by M .” And on this basis, we claim to have discovered a reason to regard the class A of

algorithms as abstract which is independent of the traditional criteria.

Matters are not entirely this simple, however, because it now generally thought that the

fact that a class of objects C satisfies Dummett’s criterion is not sufficient to classify the

C’s as abstract. The standard counterexamples are due to Noonan [102] who observed that

out that there are classes of C consisting of intuitively concrete objects are also such that

they can only be referred by the use of an expression denoting a function which defined

over a distinct class D. This is, for instance, arguably true of concepts volumes and masses

of physical substance such as water or gold. For instance, it appears that in order reference

32An obvious challenge to the functional criterion from the fact that it also appears possible to refer to
specific directions by the use of apparent proper names such as “east” or “north by northwest.” But in
seems reasonable to suppose that terms of this sort may be likened to mathematical constants in the sense
of having been introduced by explicit definition such as “north = the direction of the line running from
Greenwich to the north pole.” On the basis of this consideration, Dummett modifies the above criterion
so as to require, for an object to abstract, that there some functional such that “an understanding of any
name of that object involves a recognition that the objects is in the range [of the function denoted by] that
functional expression,” [29], p. 485.
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to a certain spatio-temporally located volume of water (e.g. one liter) or a mass of gold

(e.g. one gram), we must respectively employ expressions like “the volume of v” or the

“the mass of m” where v and m respectively vary over water filled vessels and gold objects.

Several theorists have attempted to refine Dummett’s criterion in order attempt to

exclude such objects from the range of the abstract. For our purposes, however, the most

important development is that in cases Dummett’s criterion appears applicable to a class

C, we have reason to think that this class is determined by a sortal concept C – i.e. one for

which we can ask “how many?” and, per section 2.1, for which we thus presumably possess

a criterion of identity. And in fact something somewhat stronger appears to true of such

concepts in that in cases where it seems necessary to pick out the Cs via expressions of the

f(t) for t denoting a member of D, our means of individuating the Cs is usually given in

terms of the Ds by which they are given.

This situation is again paradigmatically illustrated using the concepts direction and

shape. For note that not only does it seem that if we wish to refer to a direction d we

have no choice but specify it as the direction of the line `, but also if we wish to determine

whether two directions d1 and d2 are the same, are only means of two doing so is by

reference of the lines `1 and `2 in terms of which they have been given. Similar remarks

apply to distinguishing shapes s1 and s2 in terms of the figures g1 and g2 in terms of they

have been given. On their own, of course, these observations do not tell us what the criteria

of identity of identity for lines and directions are. But they do, however, tell us that they

ought to taken to have the following schematic forms

(2.25) f(x1) = f(x2)⇐⇒ x1Rx2

where f is the functional expression mapping the D into the C and R is an equivalence

relation defined over the Ds.

Such a statements with the form are typically known as an abstraction principle for

C and R is referred as its grounding relation. Following Hale [55] the idea is if C is the

extension of the sortal concept C, then R is a grounding relation for C just in case for any

pair of C-denoting terms f(x1) and f(x2), the truth of x1Rx2 is necessary and sufficient for

the truth of f(x1) = f(x2). On the basis of this analysis, it is canonically contended that
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the relation of parallelism grounds the concept direction in terms of lines and the relation

of geometric congruence ground the concept shape in terms of geometric figures.

Much of interest can be said about the plausibility of the claim that a statement of the

form (2.25) be formulated for every concept determining a class C satisfying Dummett’s

criterion. For instance, we can ask what sort of conceptual relationship R must bear to C

in for a statement having the form of (2.25) to state what we would intuitively take be a

genuine criteria of identity for the Cs. This question is closely related to the status of the

instances of (2.25) by which Frege [39] wanted to give the identity conditions for numbers

and classes. And due in part to variety of logical and conceptual issues which arises in

these cases, the general situation with respect the use of such principles to define domain

of so-called “logical objects” is quite complex. I will return to consider these issues with

respect to the relevant cases at great length in section 3.2.

First, however, I wish to record the standard us of grounding relations to characterize

the notion of an abstract sortal. For recall the putative counterexamples to Dummett’s

criteria were based on the concepts like V volume of water and M mass of gold. Note that

it does indeed seem plausible to say that we can no more refer to a particular volume of

water v than as, say, “the water in this bucket” or particular mass of gold m than as, say,

“the gold of this ingot” than we can refer to refer a shape than as, say “the shape of this

figure.” On this basis, we can look at these functional expressions “the water in x” and

“the gold of x” as mapping from domains D1 and D2 (respectively consisting approximately

of vessels and gold objects) into objects falling under V and M . But note that when the

grounding relations RV and RM for V and M are such that, at any given time, they can

only hold of a particular members of D1 and D2 and themselves. In others words, unlike

the relations ‖ and ∼=, RV and RM are such that they cannot hold of spatially but not

temporally separated objects.

This observation led Hale [55] to propose the following basic definition of a so-called

abstract sortal (which itself derives from an early proposal of [154]):

(2.26) The objects falling under a sortal concept Cs are abstract if and only iff any

relation R grounding C is such either

(i) R can hold between things which are spatially, but not temporally separated.
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(ii) R cannot hold between spatially located items at all.

On the basis of the foregoing example, the motivation behind (2.26i) should now be appar-

ent. For consider a concept C like direction or shape which is grounded by a relation R

which can hold between indisputably concrete objects. It seems reasonable to characterize

the fact that the Cs are not located in space in terms of the fact that R can hold between

items x1 and x2 which are different places at the same time. For in this case there could be a

y ∈ C such that y = f(x1) and y = f(x2) meaning that if y were spatially located, it would

have to be simulateneously in the location of x1 and x2 which is apparently inconsistent

with our normal sense of spatial location.

It is important to realize, however, that if we were to formulate (2.26) with only con-

dition (i) that this condition would yield the counter-intuitive result that concepts such

as natural number and set whose members we would paradigmatically classify as abstract

would be judged concrete. For at least according to their Fregean or (modified Fregean)

analyses, there concepts are grounded by relations (i.e. those of equinumerousity and co-

extensivity) which cannot hold between spatially located items at all. The problem in this

case is, of course, that the items between which these relations hold (i.e. sets or Fregean

classes) are themselves standardly understood as abstract, and hence incapable of spatial

location. And thus without clause (ii), these items would ruled as concrete.

This is amendment is relevant because the thesis for which I wish to argue is that

algorithm ought to be taken to correspond to abstract sortal in much the same way as

direction, shape, natural number of class. I have already laid much of the ground work

involved with showing this on the basis of the foregoing argument that this concept satisfies

Dummett’s functional criterion (2.23). And if we follow the realist in regarding the concept

algorithm as having a well defined class A as its extension, we can also now put several

other pieces in place. In particular, on the basis of section 2.4, we can now see that the class

D in terms of which As are specified must be taken to be some sufficiently comprehensive

class of implementations M, possibly formed by taking the disjoint union of a variety of

different models of computation. And the function f which maps from the Ms to the As

should be taken to be that denoted by function imp which I have introduced to schematize

the expression “the algorithm implemented by M .”
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As we will see in the next section, these are already significant finding which the al-

gorithmic realist may potentially put to use in constructing the sort of interpretation of

mathematical discourse considered in section 1. However, if we wish to see that concept

algorithm as naturally falling under Hale’s characterization of abstract sortal, what thus

remains is to identify an appropriate relation RM which grounds the class this concept with

respect to the class M. And with respect to this question it is possible to note a substan-

tial disanalogy between the concept algorithm and the concepts direction, shape, natural

number and class which are classified as abstract sortal according to (2.26). For note that

regardless of the conceptual status of we wish to assign to the corresponding of instance of

(2.25) in these cases, the appropriate grounding relation for these concepts is close at hand.

For instance, although we may refrain from regarding a statement like Hume’s Principle33as

analytic of the concepts natural number, we at least do not have to look very far to find a

natural candidate for a relation R which serves the task of individuating number in terms

of the cardinalities of the classes which they measure.34

Matters stand quite differently with respect to the concept algorithm. For although it

seems reasonable to take the considerations adduced in section 2 to show that our practices

for referring to and reasonable algorithms in terms of implementations are programs are

highly conventionalized, it is not entirely obvious by what relation we go about individu-

ating algorithms in terms of the machine which we take to implement them. But as I will

begin to discuss in the next section, our general conception of algorithm does indeed rise

to some intuitions about how RM ought to be defined. But as we are about see, there also

are substantial matters of logical, conceptual and technical detail which must be taken into

account with respect to identifying such a relation.

34I.e. the statement “the number of F s = the number of Gs if and only if the F s and Gs are equinumerous”
– cf. [13] and section 4.
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2.3 Toward a theory of procedural identity

2.3.1 Varieties of reduction

In section 4 of this chapter I will embark on the project which will also occupy most

of Chapter 4 and 5 – i.e. that of attempting to define the equivalence relation RM which

serves to appropriately ground the concept algorithm with respect to an appropriately

comprehensive class of implementations M. Before getting under way this task, however,

it will useful to briefly reconsider how and why this is likely to be of central to the fate

of algorithmic realism. The most convenient way of doing this will be to describe several

different ways in which the sort of reduction of algorithmic discourse to mathematical

discourse described in section 1 might be carried out.

In understanding what it would mean satisfy the realist’s desire to reduce discourse

about algorithms to discourse about mathematical objects, it will again be useful to draw

several parallels between goals of algorithmic realism and those of various nominalist pro-

grammes in mathematics. I suggested in section 1 that of the desiderata motivating algo-

rithmic realism is the desire to provide a purely mathematical interpretation of statements

such as (2.5) and (2.6) which contain terms which appear to name or quantify over mathe-

matical procedures. The fact that a realist will wish to find such an interpretation of these

statements is likely to be due to the fact that such statements in a broad theoretic practice

which seeks not only to prove results about the intrinsically computational properties of

algorithms but also seeks to relate and justify their application to the derivation of various

statements of pure mathematics.

We studied a paradigmatic example of this kind in Chapter 1.4 wherein I considered the

use of the algorithm Euclid to derive mathematical statements of the form gcd(n,m) = q.

I argued that by using such a procedure we were practically equipped to derive a range of

purely mathematical statements such as

(2.27) gcd(43928, 27149) = 17

which would be difficult or impossible to derive directly from the definition of the functional

expression gcd(x, y). But since (2.27) is a purely mathematical statement (i.e. one that



151

does contain any procedural terms or quantifiers), one might reasonably wonder why we

were justified in using Euclid to derive it. In particular, we might wonder if in accepting

that Euclid can be use to derive such a statement, whether we have properly expanded

the class of proof methods we take to be justifiable means of demonstrating mathematical

statements.

One of the concerns of the realist is to justify the use of computational methods in

mathematics by showing that this is not the case. And one way he might seek to show

this is by showing that use of the use of computational methods in classical mathematics is

conservative with respect to our original non-computational practices – i.e. that the use of

such methods does not allow us to derive purely mathematical statements which we could

not (in principle) derive without them. I argued in Chapter 1 that in practice there is no

great mystery in how the conservativity of individual algorithms can be demonstrated. For

by conventional standards, all that is required in order to justify the application of Euclid

to derive a purely mathematical statement like (2.27), is that we first prove this algorithm

to be proven correct via a conventional mathematical methods.

Depending on how Euclid has been presented, there will be several different ways in

which this might be accomplished. For instance, if Euclid has been presented as a program

a formal program – i.e. as “the algorithm expressed by Π” over a programming language

L – it can verified by using an axiomatic or denotational semantics for L. And if it has

been presented informally as a pseudocode specification, it can be verified in the informal

mathematical manner discussed in Chapter 1.4. And finally, if it has been presented as an

implementation – i.e. as “the algorithm implemented by M” where M is a mathematically

specified machine – then it can be proven correct by arguing about M directly.

Note, however, that in each of these cases it is necessary to construct some sort of

mathematical representation of Euclid which represented its mode of operation in order

to prove that it is correct. I argued in Chapter 1 that this appears to be a necessary

condition on a correctness proof for an algorithm A with respect to a function f to have

the epistemic significance of justifying our use of A to compute the values of f . For note

that if a correctness proof for Euclid did not proceeded by constructing a mathematical

object which could plausibly be taken to represent the computational properties which we
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conventionally assign to this algorithm, then it would remain mysterious why were entitled

to use Euclid (as opposed to some other algorithm, say NaiveGCD) to derive a statement

like (2.27).

The significance this sort of this sort of observation to the realist’s goal of constructing

a mathematical interpretation of procedural discourse should not underestimated. For

it means that in order for such an interpretation to judged successful, it must not only

show the conservativity of computational methods over mathematical ones, but it must

also do so in a manner which allows us to correlate individual algorithms with individual

mathematical objects which represent the computational properties in terms of which we

describe and classify with respect to their practical utility. Note that it is for this latter

reason which why the realist presumably will also wish to construct an interpretation which

is applicable to “purely procedural” statements such as those occurring in (2.5) and (2.6).

For it by statements of these forms by which we standardly report on the complexity

theoretic properties of algorithms which we take to bear on their potential applicability for

deriving conventional mathematical statements.

We may additionally note that such statements of these sorts are often expressed by

explicit quantification over procedures. This is true both in the case of positive statements

such as (2.5a,b,c)) which the quantify over algorithms in order to express the existence of

an algorithm with certain properties which it feasible for us to compute the values of a

given function. And it is also true in case of negative or limitative results like (e.g. (2.6e,f)

which quantify over algorithms in order to express that there is no algorithm which we can

feasibly use to compute the values of a given function.

Taken together, these observations suggest that a theorist who wishes to explain the

utility of computational methods within classical mathematics must ultimately seek to con-

struct what would traditionally be referred to as a reconstrual of computational discourse in

a purely mathematical idiom.35In particular, they must seek to interpret procedural state-

ment in a manner whereby singular terms which, per section 2, appear to convey reference

to an algorithm are replaced by terms denoting mathematical objects. And similarly, realist

must presumably seek to interpret statements containing quantifiers over algorithms with

statements those containing quantifiers over some other suitably delimited mathematical
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domain..

This is a significant methodological observation because it allows us to draw a number

of systematic parallels to between the aims of algorithmic realism and a various traditional

forms of mathematical nominalism. For note that the overarching aim of traditional forms of

nominalism has been to show that we “get by” in the empirical sciences without embracing

an ontology of mathematical objects which outstrips that required in order to explain the

truth of concrete statements. And as we can now see, it is possible to conceive of the

algorithmic realist as seeking to demonstrate we can “get by” in classical mathematics

without embracing an ontology of procedures which outstrips that required to account for

the truth of mathematical statements. But in addition to this, we have may also note that

the manner in which most programmes which have attempted to nominalize mathematical

discourse have proceeded precisely by providing a systematic reconstrual of statements

involving mathematical terms and quantifiers. And as such, it is possible also possible for

the algorithmic realist to attempt to proceed in the manner of one the traditional strategies

by which mathematical nominalists have attempted to reduce discourse about mathematical

objects to discourse about concreta.

By far the most common case strategy of this sort is what Burgess and Rosen refer

to as Tarskian reduction (after Tarski, Mostowski and Robinson [141]). This approach is

nothing other than the familiar technique of interpreting the language of one mathematical

T1 into that of another T2 so that terms and quantifiers which purport to refer to the items

which T1 talks about (say the real numbers) are translated into terms and quantifiers which

purport to refer to the items which T2 talks about (say sets of natural numbers). In the

case of traditional nominalistic reductions, T1 is taken to correspond to a theory Te with a

mixed empirical-mathematical vocabulary (say that of classical mechanics) and that T2 is

taken to correspond to the subtheory Tc of Te with terms and quantifiers referring only to

concrete objects. Suppose that these theories are respectively stated over the languages Le

and Le. In this setting, the mathematical nominalist generally perceives his task of being

35My use of the term “reconstrual” to describe a means of interpreting one language L1 in another L2

in a manner such that the terms and quantifier of L2 are translated into terms of the same grammatical
category as well as much of the other terminology employed in this section from derives Burgess and Rosen
[16].
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that of showing that Te is conservative over Tc for Lc sentences – i.e. for all Lc sentences

ϕ, if Te ` ϕ, then Tc ` ϕ.

Based on the foregoing discussion, it seems reasonable to liken the use role which the

algorithmic realist takes computational methods to play in mathematics to that which

mathematical nominalist takes mathematical method to have in the empirical sciences. To

make this analogy precise in a manner that would allow us to formally demonstrate the

sort of conservation results discussed above, the algorithmic realist might thus contemplate

proceeding as follows: 1) formulate a procedural-cum-mathematical theory Tp in which

both specific results about mathematical statements (2.27) and also general results about

algorithms like (2.5) and (2.6) could be demonstrated; 2) prove that Tp was conservative

over its mathematical subtheory Tm for purely mathematical statements.

It is, of course, a massive idealization to think that we currently possess a theory Tp

which simultaneously provides an axiomatic formulation of the methods of various dis-

parate subfields of theoretical computer science by which statements like (2.5) and (2.6)

are demonstrate. But it also seems that we can imagine what such a theory might look like

with sufficient precision to at least aid us in formulating the theoretical goals of algorith-

mic realism. For as noted above, we would ideally like to able view statements a statement

such as (2.5) as having the subject-predicate form K(a) where a is a name for an algorithm

(e.g. Mergesort) and K is a possibly complex procedural predicate (e.g. “has running

time O(n log(n))”). And similarly, we would like to able to view the statements of (2.6) as

having the respective forms ∃X[K(X) ∧ . . .] and ∀X[K(X) → . . .] where X is a variable

over algorithms.

On my argument in section 2 that mechanisms of procedural reference are highly con-

ventionalized, it thus seems possible to have a rough description of the language Lp in

which Tp ought to be framed. In particular, we can assume that LP is a two-sorted lan-

guage containing a purely mathematical part Lm and a mixed procedural-mathematical

part Lp. In particular, I will assume that Lp will contain variables X1,X2, . . . over algo-

rithms as well as constants a1, a2, . . . corresponding to common names of the sort consider

in 2.1 as well standard mathematical variables x1, x2, . . . and terms t1, t2, . . .. Moreover,
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this language will also have to contain predicate symbols corresponding to common prop-

erties K1,K2, . . . which are standardly predicated directly of procedures. Paradigmatic

examples of such predicates will include T imeO(f(|x|))(a) and SpaceO(f(|x|))(a) least com-

mon complexities bounds (e.g. f(n) = c, log(n), nk, 2k etc.). These are meant to formalize

the properties expressed by “algorithm A has running time complexity O(f(|x|))” and

“algorithm A has space complexity O(f(|x|))” for at least common complexities bounds

(e.g. f(n) = c, ln(n), nk, 2k etc.) which are the primary topics of concerns in algorithmic

analysis and complexity theory. This will mean that a statement like “Mergesort has

running time O(n log(n))” will be formalized in Lp as a statement of the form K(a) and a

statement like “There is a polynomial time primality algorithm” will be formalized in Lp

as ∃X[K1(X) ∧ K2(X)].36

Of equal significance, Lp will also have to contain a set of relations which serve to re-

late procedural entities with mathematical ones. Such terms will be required in order to

frame the results of the sort of informal reasoning about procedures which Tp is intended to

formalize. In this regard, there are at least two significant classes of statements which we

would like to formalize which span the gap between procedural entities and mathematical

ones: 1) those expressing that a particular mathematical object (as per section 2, canoni-

cally an implementation) is used to introduce a name for a procedure; 2) those expressing

either that the result of applying a procedure to a given mathematical argument yields

another mathematical value or, more generally, that a procedure is correct with respect to

a given mathematical function;

Pursuant to the discussion in section 2, I will assume that all instances of the former

sort are informally expressed by statements of the form “A =df the algorithm implemented

by M .” These constructions can be mimicked in Tp by including in the Lp functional

expressions imp(m) meant to formalize the schema (2.8b) where I will now assume m is

a (possible complex) mathematical term over Lm which denotes an implementation. The

intended interpretation of imp will thus be a function mapping mathematical entities of

36The intention in the latter case is that K1 correspond to the predicate “polynomial time algorithm”
and K2 to the predicate “primality algorithm.” As mentioned above, there are well known mathematical
analyses of these notions. While it thus the possible to formalize these properties as complex Lp predicates,
but for simplicity I will not bother to do so here.
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the appropriate types into objects in the domain of the algorithmic quantifiers.37In order

accommodate mixed statements of the second form, I will also assume that Lp contains a

formal term meant to represent an application functional. This term will have the form of

a functional expression Exec(A,x) whose first argument is in the algorithmic domain and

whose second is in the mathematical domain and which returns values in the mathematical

domain. The intended interpretation of sentence of the form Exec(A,x) = y will be that

the result of executing the procedure denoted by A to the arguments denoted by x yields

the value y.

The necessity for including mixed mathematical-procedural terms in Lp also puts sub-

stantial demands on the mathematical language Lm which must be employed to talk about

such entities in Tp. For not only will language need to be sufficiently rich to define the

structure of individual implementations, but we will also need to be able to define an appli-

cation functional AppM(m,x) for various models of computation M. In short, this means

that Lm must be sufficiently rich to describe not only the mathematical objects on which

the algorithms we want to formalize operate, but also the combinatorial structure of vari-

ous forms of implementations (i.e. Turing machines, RAM machines, etc.). This Lm must

thus either contain primitive terms denoting a great variety of mathematical structures,

or, more plausibly, be taken to contain the a language like that of first-order set in which

such structures can be defined. And correspondingly, Tm must be rich enough to prove

that the definitions we give over Lm have the appropriate properties – e.g. that the various

structured objects exist, that inductively defined define terms have unique extensions, etc..

This in turn suggests that Tm should be taken to contain (or interpret) at least a fraction

of the first-order ZF axioms.

The sketch of Tp just given is admittedly schematic and it would require substantially

37If we Tp were going to develop in more detail, it would also be desirable that we develop some means of
accounting for procedural reference via (2.8b). One way this could be accomplished would be to include a
functional expression prog as a Lp term in parallel to imp. Note, however, that pursuant to the conclusion
elicited in section 2.4, such as an expression should not be treated as a primitive expression but rather
defined in terms of an appropriate family of interpretation functions opL. The necessity of including such
terms into Lp would require that we develop the syntax and operational semantics of various programming
languages in Tp. There is no reason to think that this requirement could not be accommodated if we assumed
that Lm was sufficiently expressive and Tm sufficiently powerful. But since this added layer of complexity
need to accomodate the possibility of indirect reference to algorithms via program within Tp will not effect
the basic point I will make below, I will suppress these details in the sequel.
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more effort to formally define such a theory in detail. However, the framework presented

thus far is just strong enough to describe the relevant set of analogies between, on the

one hand, the procedural and mathematical theories Tp and Tm, and on the other, the

empirical and mathematical theories Te and Tc. In particular, the algorithmic realists

claim that the use of computational methods in mathematics can be eliminated in favor of

purely mathematical ones, can be taken to be equivalent to the claim that Tp is conservative

of Tm for purely mathematical statements – i.e. for all Lm-sentences ϕ, if Tp ` ϕ, then

Tm ` ψ. This may be compared to the mathematical nominalists claim that the use of

mathematical methods in empirical sciences can be eliminated in favor of purely concrete

ones.

The question to which we may now address ourselves is how the algorithmic realist

might go about proving such a result based on what we know both about Tp and also

about the other explanatory pressures which he is under. One option is to construct an

interpretation of the language Lp in the language Lm. This would correspond to a mapping

of terms and sentences (·)∗ : Lp → Lm with the following properties:

(2.28) i) For all primitive Lm-terms t and Lm-predicates P , t∗ = t, and P ∗ = P .

ii) For all primitive Lp-terms a and Lp-predicates K, a∗ is some (possibly

complex) Lm-term and K∗ is some (possibly complex) Lm.

iii) s(t1, . . . , tn)∗ = s∗(t∗1, . . . , t
∗
n), P (t1, . . . , tn)∗ = P ∗(t∗1, . . . , t

∗
n).

iv) If ϕ ≡ ψ ◦ χ, then ϕ∗ ≡ ϕ∗ ◦ ψ∗ where ◦ = ∧ , ∨ ,→ and (¬ϕ)∗ ≡ ¬ϕ∗.

v) If ϕ ≡ ∀xψ, then ϕ∗ ≡ ∀xψ∗.

vi) If ϕ ≡ ∀Xψ, then ϕ∗ ≡ ∀x[A(x)→ ψ∗(x)] for some Lm-predicate A.

One of the significant clauses in this definition is ii), which tells us that procedural terms

and predicates are to be interpreted as mathematical terms and predicates. The other is

vi), which tells us that quantification of algorithms in Lp is to interpreted as restricted

quantification over mathematical objects in Lm with the mathematical predicate A(x) as a

“guard.” In particular, this clause tells us that only those objects satisfying the predicate

A(x) are to be treated as the mathematical correlates of algorithms.
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Upon constructing an interpretation of Lm, the realist could then attempt to show that

for all axioms ϕ of Tp, Tm ` ϕ
∗. And from this it follows by an immediate induction on

derivations that for all Lp sentences ϕ, if Tp ` ϕ then Tm ` ϕ
∗. This would immediately

demonstrate the conservativity result in the strong sense if Tp ` ϕ for some purely math-

ematical statement ϕ then not only do we have Tp ` ϕ (for in this case ϕ∗ ≡ ϕ), but

also that any computational premises ψ1, . . . , ψn occurring in the original Tp proof can be

simply eliminated in favor of the derivable mathematical statements ψ∗, . . . , ψ∗.

This means of showing a conservativity result also has the beneficial consequence of

providing a reconstrual of Lp in terms of Lm. For note that under the mapping (·)∗,

Lp-terms will be systematically correlated with Lm-terms in a manner so that terms

denoting algorithms will be systematically correlated with terms denoting mathematical

objects, and procedural quantifiers will be correlated with mathematical quantifiers. So

suppose for instance, that a is a Lp denoting Euclid and that Tp proves (2.27) via a

derivation containing the statement the statement ∀n∀m[Exec(a, 〈n,m〉) = gcd(n,m)] and

Exec(a, 〈43928, 27149〉) = 17. If were we able to prove the conservativity of Tp over Tm

in manner described in the previous paragraph, not only would be able to conclude that

Tm proved (2.27), but we would also know that Tm was able to “internalize” the correct-

ness proof by proving a statement of the form ∀n∀m[Exec∗(a∗, 〈n,m〉) = gcd(n,m)] where

Exec∗ and a∗ where is a mathematical translation of a and Exec∗ a mathematical trans-

lation of Exec∗. By using these expressions we would thus be able to mimic a calculations

carried out by Euclid within Tm.

The central question with which the algorithmic realist must thus seek to answer is

whether it is indeed possible to construct such an interpretation so as to prove the required

conservativity theorem. Ultimately I believe this question must be answered in the negative.

This is not, however, because Tm turns out too weak to prove that any specific algorithm

is correct in a manner which would allow us to eliminate reference to it in the proofs of

a statements like (2.27).38And it is not the related to any of the traditional reasons why

specific nominalistic programmes in mathematics are often taken to be either question
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beginning or fail outright for plausible choices of Te and Tc.
39

Rather, the more general worry which I think the realist must face is that theory Tp

may turn out to beinconsistent.40 In order to see the basis for both sorts of worries, it

will be helpful to temporarily abandon the proof theoretic perspective on Tp we have been

employing to thus favor of a model theoretic one. For to ask for ask whether Tp is consistent

is precisely to ask whether there exist exists an Lp structure in which it is satisfied. Note

that a model of Tp will be of the form P = 〈A,N, I〉. Here A and N will correspond

to non-empty sets which are respectively intended to serve as domains of procedural and

mathematical objects and I is an interpretation function assigning arbitrary Lp terms and

predicates extensions in these two sets of the appropriate type. For instance, if K is a

unary procedural predicate (e.g. “has running time n log(n)”), then KI will be a subset of

A, if t is the term 0, then tI will be a member of N, etc.

In order to get a better impression of there can be such a structure satisfying Tp, we

must next consider the sorts of statements axioms it is likely to contain in more detail. As

I have noted, the situation which we stand in with respect to specifying Tp is unlike that in

39The primary hurdle which must be cleared by such theories is often that of showing that showing that
Tc is sufficiently strong to guarantee the existences of sufficiently concrete objects to serve as representatives
of the mathematical items in the intended domain of the mathematical subtheory Tn of Te. This may occur,
for instance, when Tn is or contains a fraction of the theory of second-order arithmetic or real analysis and
as such implies the existence of uncountably many things. The need to accomodate this sort of eventuality
has traditionally lead nominalists such as Field [34] and Hellman [60] to enrich the intended domain of
Tc to include various forms of geometric or intensional entities which are likely to have been spurned by
traditionally minded nominalists such as Quine and Goodman [112].

39Extreme care must be taken in order to make this generalization precise. For note that almost certainly is
the case that we can refer to and reason about algorithms A which it point of fact do determine total functions
f (say of type N→ N) but which we cannot prove to be correct with respect to f . This observation follows
from a classical result in computability theory that the class of Σ1-definable functions f which are provably
total over a recursively axiomatized arithmetic theory Z (e.g. PA) – i.e. for which Z ` ∀x∃!y∃zθ(x, y, z)
where f(x, y) has been defined as f(x) = y ↔ ∃zθ(x, y) – is a proper subset of the functions which are
actually total – i.e. for which N |= ∀x∃!yϕ(x, y). This result can be generalized some what to show that
the function computed by f can be any partial recursive function on N. This means, for instance, that
there will be algorithms A which compute the function gcd(x, y) but which cannot be proven correct with
respect to its definition. If we were to employ such an algorithm to derive (2.27) in Tp, then this result
might be taken to show that Tp does indeed outstrip Tm with respect to derive mathematical statements.
The question which realist must face is whether in this sort of case – i.e. one which an algorithm A has been
used to derive a statement of the form f(a) = b of an actual calculation of A with input a and output b and
unproven claim that A is correct with respect to f , the statement in question should be taken to be part of
Tp itself. Although I will not take the time to provide a complete analysis of this situation, it seems that
the realist is entitle to respond in the negative for the simple reason that without a proof of the correctness
claim, we have no way of relating the outputs of A with the values of f .

40Note that in the case that Tp is inconsistent, it is trivially not conservative over Tm as long as Tm is
itself consistent. For in this case, Tp ` ⊥ but Tm 6` ⊥.
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which we stand with respect to specifying the mathematical Tn component of an empirical

theory Te. For while in standard cases, it will be reasonably clear what mathematical

principles must be embodied by Tn and also for axiomatize them over a standard first-

or second-order mathematical signature. But in the case of Tp we do not start out with

anything like a full axiomatization or even a completely clear delineation of the signature

corresponding to Lm. What we know about the form which this language and theory should

take is gleaned from piecemeal observations about the role of algorithms which algorithms

play in different subfields in computer science whose interrelationships themselves may not

entirely worked out.

One way in which this problem may be canonically illustrated is by asking after which

Lm statements ought to be regarded as axioms of Tp and which as theorem. Certainly,

for instance, our practices suggest that we take the statement in (2.6) as expressing true

statements about algorithms. But as I have noted above, many of these statements are

non-obvious in the sense that they admit to non-trivial proofs. And certainly this is good

evidence that these statements should not themselves be counted as axioms. But at the

same time, it also seems doubtful that we are currently in a position where we can provide

a plausible positive criteria for judging a statement about an algorithm to be sufficiently

fundamental to treated as an axiom.41

However, there do appear to be two categories of statements involving algorithmic terms

which appear to admit no non-trivial analysis into more basic mathematical or procedural

components. These correspond to statements of the form a = imp(m) and a 6= imp(m)

which respectively report that the algorithm named by a is or is not implemented by the

machine denoted by m. We will have to wait until the next chapter to see in detail how

statements of this figure in our computational practices. It is, however, useful to point

41This is evident, for instance, by examining the statements in (2.5). Again we certainly do view these
statements as expressing propositions about algorithms. And above I have even argued that these statements
are logically of subject-predicate form. But note, however, that it is also possible to provide a further
mathematical-cum-procedural analysis of each the predicates in question. For instance the property of
being a comparison sort (which is predicated of the algorithm Insertionsort in (2.5c)) can be further
analyzed in terms of the operations which a sorting algorithm uses in the course of its execution. Thus
not only should this property presumably be defined via a complex Lp predicate Φ(X), but since this is
presumably a property which can be proven to apply to an algorithm based on its structure, there seems to
be no basis for taking this statement as axiomatic.
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out in advance that statements of these sorts will be quite common in the practice of

computer science wherein we routinely construct implementations of individual algorithms

using common models of computation of the sort mentioned above. Recall, however, that

I argued in section 2.3.2 that we appear to be incapable of giving a explicit definition for

the functional expression “the algorithm implemented by m” which the expression imp

(which I will now regard as a Lp functional expression) is intended to formalize. As such, it

seems reasonable to conclude such statements must be taken as primitive judgments about

the relationship between algorithms and implementations. And this in turn suggests that

should be among the axioms of Tp.

Now consider the class of Lp statements Γ containing all equalities of the form a =

imp(m) and inequalities of the form a 6= imp(m) that are so reflected by our practices.

Although we have yet to see concrete examples of intuitively plausible cases our intuitions

which either a given algorithm either is or is not implemented by a given machine, I will

argue in Chapter 3 that cases of this sort abound in computational practice. And in fact

it seems reasonable to assume that every algorithmic name of the sort considered section

2.2 is introduced by at least one statement of the form a = imp(m) which I will assume

is contained in Γ. Since I just argued that such statements ought to regarded as axioms

of Tp, Γ will be contained in this theory. And thus in order to show that Tp is consist, an

algorithmic realist will have to show that Γ is itself consistent. But in order to do this, it

seems he will have to construct Lm-structure in which all the sentences in Γ are satisfied.

And as I now which to suggest, there is indeed some room to doubt whether this task can

be can accomplished.

The first point to note in this regard is that since imp is intended to denote a function

mapping implementations into algorithms, its interpretation in any Lm-structure P =

〈A,N, I〉 must be of type impI : N → A – i.e. a function from mathematical objects to

procedural ones. But of course not our intention for imp to defined on all mathematical

objects in N, but only those which are properly regarded as implementations. It is, however,

reasonable to think that these structures will form subclass MI ⊆ N which is explicitly

definable by an Lp open sentences Impl(x). And thus without loss of generality, we may

assume that for any Lp interpretation P, imp can be taken to have the type impI : MI →
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A.42

The next point to note is that the specific statements in Γ do not provide an explicit

definition of imp, but merely give its values on those implementations m1,m2, . . . such that

the sentence aj = imp(mi) appears in Γ. If we are seeking to construct the structure of

P based solely of what we know about Tp, we can thus not assume that this theory is

sufficiently strong to constraint the definition of A or of I uniquely. It thus appears that

in seeking to show that Γ is consistent, the realist will have little choice but to adopt the

strategy proposed in section 2.3.2 and regard the statements in Γ as points of data which

constrain a potential implicit definition of impI and A.

In asking whether we can construct a structure P satisfying Tp it is reasonable to

concede to the algorithmic realist that there Tp will uniquely determine an interpretation

N = 〈N, Im〉 of the mathematical theory Tm ⊆ Tp. This in turn means that, in N, he will

be able to identify a determinate class of mathematical objects Impl(x)Im as corresponding

to the domain M of imp in P. The task of showing that Tp is consistent thus reduces to

that of showing that relative to N and M we will be able to define A and I extending Im

such that P = 〈A,N, I〉 is a model of Tp.

Given these concessions, it may still not be entirely clear how the realist ought to do

about defining the class A and I. But it is precisely at this point where the conclusions

of section 3.1 may be brought to bear. To recapitulate, these were as follow: 1) the that

extension of the concept algorithm must be given as the range of values of the functional

expression “the algorithm implemented by M”; and 2) the identity conditions for objects

in this class are given by equivalence relation RM over extension of the concept implemen-

tation. The first observations can be readily parlayed our current framework by noting first

that in an Lp-structure P, the extension of algorithm out to be taken to correspond to the

procedural domain A. The second observation can also be accommodated by showing how

the relation RM can be defined using over Lm as a predicate β(x, y) which may then shown

42This can most readily be accomplished by taking Tp to include the axiom ∀x∃X[imp(x) = X ∧
¬Impl(x) → X = A↑] where A↑ is interpreted as an arbitrary or undefined algorithm. It is, of course,
also somewhat unclear how the predicate Impl(x) ought to be defined so as to uniformly characterize the
class of mathematical structures which can serve as implementations. I will examine this question in more
detail in Chapter 4. For the time being, however, it will is safe to assume this predicate is defined as a long
disjunction of structure descriptions of common models of computation.
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to be an equivalence relation over the class M by reasoning in Tp.

But in taking this steps, the realist faces the initial challenge of demonstrating that

a given definition of β(x, y) bears the appropriate relation to our background concept

algorithm so as that an appropriately instance of (2.25) can taken to serve as a definition

of identity for members of the class A which he hopes to define. If such a case can in fact

be made then the statement

(2.29) imp(m1) = imp(m2)⇐⇒ β(m1,m2)

can be adjoined as an axiom to Tp obtain a theory T+
p . Since β(x, y) will be defined

uniformly over M, the realist may then attempt to prove that T+
p (and thus Tp) is consistent

by using (2.29) to induce explicit definitions of impI and A as follows: i) he can take

impI(m) to be the equivalence class [m] of implementations which bear β to mI in N (i.e.

set [mI ] = {m′ : N |= β(m,m′)}); and ii) he can take A to be the set of all such equivalence

classes for mI ∈M.

Several point can be noted about the proposal. The first of these is the obvious ob-

servation that if it is indeed successful (i.e that the mapping impI can be shown to exist

and β(x, y) shown to have the appropriate properties) then it will follow that the construc-

tion just outlined will suffice to demonstrate the realist’s central claim that algorithms are

mathematical objects. In particular, since all elements of A will be given as the values

of the form impI(m) are here taken to simply correspond to equivalence classes [m], it

seems safe to conclude that the members of this set are indeed bona fide mathematical

objects.43There is, however, a substantial question of detail her as with respect to whether

these classes can additionally be taken to members of the mathematical domain N. For

note that the statement (2.29) bears at least a superficial resemblance to other so-called

abstraction principles whose adjunction to seeming mundane background theories can be

shown to lead to inconsistency (the most famous, of course, being Frege’s [38] Basic Law V).

One route by which it might be shown that the realists desire to assimilate algorithms to

mathematical objects is that the sort of abstraction principle which appears to be required

to do so may lead to a form of logical or set-theoretic contradiction.

43What is on offer to a realist via (2.29) is a form of what Burgess and Rosen refer to as contextual
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In the next section, I will attempt to show that if he sufficiently careful in giving the

definition of Impl(x), the realist will not have to worry inconsistencies introduced in this

manner. But what I believe does turn out the be a much significantly more worry is the

possibility that inconsistencies will arise due to a clash between the class of identities which

will be induced by (2.29) given a particular definition of β(x, y) and those which are already

codified in Γ. For note that as matter currently stand, it is open for a realist to nominate any

definable equivalence relation over M to this role. This gives rise to worry that for certain

definitions of β(x, y) the following situation will arise: 1) for some terms Lm terms m1,m2

denoting implementations, Tp ` β(m1,m2) and thus via (2.29) T+
p ` imp(m1) = imp(m2);

but 2) the statements a = imp(m1) and a 6= imp(m2) are both in Γ. If this were to arise

for rise for given definition of β(x, y), then T+
p will obviously turn out to be inconsistent.

And the realist will thereby be deprived of the option of defining A and impI in the manner

suggested above as the resulting structure will not satisfy Γ.

Such a situation will correspond to one in which the identity conditions for algorithms

which are induced by a given conceptually motivated definition of algorithmic identity

diverge from the constraints imposed on such a definition by our case-by-case intuitions

about which algorithms are implemented by which machines. On the basis of what I have

said thus far, we have no reason to suspect that this is likely to be a cause for concern.

For in particular, it may turn out the realist is able to define β(x, y) so that it uniformly

satisfies all of the statements in Γ. It will be the burden of Chapters 3 and 5 to argue

that a variety of details conspire to make such a clash inescapable. But before turning to

the negative considerations which show why this is so, it will useful to end this chapter by

considering the conceptual desiderata which constrain the proper definition of β(x, y).

reduction – i.e. a means of reinterpreting algorithmic discourse in a manner so that the truth conditions
of identity statements of the form imp(m1) = imp(m2) which does ipso facto fix the denotation of the
terms it equates. It is this by this mode of reduction which neo-Fregean philosophers of mathematics (e.g.
Wright [154]) have sought to interpret number theoretic discourse by using Hume’s principle to give truth
conditions for statements of the form “the number of F s = the number of Gs.” The additional proposal
outline in the preceeding paragraph that relative to a background mathematical structure N which fixed the
domain of M, terms of the form imp(m) can be explicitly defined as equivalence classes of implementation
under the relation βIm can be likened to Frege’s own proposal that the denotation of “the numbers of F s”
can be explicitly defined as the classes of (Fregean) concepts equinumerous with F . This correspond to
what Burgess and Rosen call objectual reduction. I will discuss distinction between these two options and
their relationship to algorithmic realism at greater length in the next section.
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2.3.2 Identity and bisimulation

The purpose of this section is to outline in broad terms the task of providing a sat-

isfactory definition of algorithmic identity. In the previous section we have seen why the

framing of such a definition will be central to the defense of algorithmic realism. And in

the following chapters I will explore the exigencies involved with providing a satisfactory

definition of this sort in considerable depth. But before getting under way in earnest, it

will be useful to attempt to tie together the largely conceptual considerations which have

driven the account provided in this chapter with the more technical ones which will be at

play in Chapters 3, 4 and 5.

Recall that I argued in Section 1 that if an algorithmic realist wishes to maintain

that individual algorithms are mathematical objects, he will presumably be charged with

providing a theory which determines the truth values of all statements of the form t1 = t2

and t1 6= t2 where t1 and t2 are drawn from class of all terms τp which we take to denote

algorithms. But on the basis of Section 2, we can now say quite a bit both about the

form which the terms in τp must take and also about how they should be introduced to

our computational-cum-mathematical language Lp. For on the one hand, we now know

that these terms must correspond either to algorithmic “names” (i.e. terms like Euclid or

Mergesort which correspond to Lp constants a1, a2, . . .) or functional expressions of the

form “the algorithm implemented by M” (which we are now assuming to be formalizable in

Lp as terms of the form imp(m)). And on the other, we also know that terms of the former

sort must be introduced by explicit definitions of the form “A is the algorithm implemented

by M” (which we would now formalize in Lp as a = imp(m)).

On the basis of Section 3, we also know quite a bit about how we ought to go about

devising a theory which would fix the truth values of the statements in question given these

assumptions about how reference to algorithms is effected. The first step in providing

such a theory is to identify the class of sentences Γ which will state various equality and

inequality statements between terms of the form a and imp(m). There will generally be at

least one recognized implementation M by which we make reference to each algorithm A

for which we possess a name, it is also reasonable to suppose that Γ will contain at least
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one sentence of the form a = imp(m) for each procedural constant of Lp.

There are, however, also substantial limitations on how far we can hope to use Γ to

constrain the details of a definition of algorithmic identity. For, on the one hand, there will

often be more than one implementation by which we can denote A, meaning that Γ will

contain groups of the sentences of the form a = imp(m1), a = imp(m2), . . . for distinct terms

m1,m2, . . . abbreviating descriptions of implementations. (Note in particular this means

that Γ will entail statements of the form imp(m1) = imp(m2) which, as we saw above, may

come into conflict with those induced by a general definition of algorithmic identity.) But

at the same time, we since we cannot always expect there to be some algorithm A which

we take to be that implemented by each implementation M , we cannot always expect Γ to

contain a sentence of the form a = imp(m) for every term m denoting an implementation.

And thus we cannot expect Γ to decide the truth value of every equality between τp terms.

There is thus substantial work left for an independently motivated theory of algorithmic

identity to do.

In Section 3.1 I describe how such an account could be developed in the context of the

axiomatic theory Tp which is intended to uniformly formalize the theoretical practices of

the various subfields of computer science in which we reason about algorithms directly. But

even the most committed realist must acknowledge that we are currently able to gesture

at what the details of such a theory might look like. And I have correspondingly conceded

to the realist that we may assume that the mathematical component Tm of Tp has a

determinate interpretation N in which Lm-terms are all interpreted. Putting these two

observations together means that, without loss of generality, I can return to my original

practice of referring to implementations directly – i.e. via expressions M1,M2, . . . which I

take to denote objects in the domain of N, as opposed to referring to them via expressions

m1,m2, . . . which should be officially regarded as complex definite descriptions over Lm.

In seeking to determine a definition of algorithmic identity which determines a truth

value for every identity statement between τp terms we may also return to the setting

of Section 2.5 and speak directly of equivalence relations defined over an appropriately

defined class of implementations M. In concrete terms this means that the realist will be

responsible for providing both a principled mathematical definition of this class together
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with a definition of an equivalence relation over M which I will subsequently denote by

↔ . He can then attempt to adopt the following statement as part of an attempt to

simultaneously define the class A and the definition of the function imp : M→ A:

(2.30) ∀M1∀M2[imp(M1) = imp(M2)⇐⇒M1↔M2]

For reasons which will emerge below, I will refer to the relation ↔ as a bisimulation relation

and (2.30) as the bisimulation principle [(BP)].

To meet the minimal requirement of showing that algorithmic terms can be assigned

reference in a mathematical domain in a manner which preserves the truth value of Lp

statements, the realist would thus have to show the following:

(2.31) i) the resulting class of identities of the form imp(M1) = imp(M2) is consistent

with Γ;

ii) M is sufficiently broad to contain all forms of implementations by which we

refer to algorithms in practice;

iii) the relation ↔ is an adequate grounding relation for the concept algorithm

with respect to M.

We have already seen why it is important that the first of these requirements is satisfied.

The second requirement is significant because it ensures that manner in which the realist

proposes to define M is sufficiently broad so as to cover all instances in which we appear to

make reference to algorithms via (2.8b). I will defer a thorough discussion of the technical

issues which arise with respect to how requirements (2.31i,ii) constrain the definition of ↔

until Chapter 3, at which point we will have a somewhat better handle on the notion of

implementation in general.

For the time being, however, I will concentrate on requirement (2.31iii). In this regard,

it will first be necessary to expand slightly on my prior discussion of grounding relations for

sortal concepts. For instance, consider again the abstraction principles for directions which

was discussed in Section 2.5 above. If we let dir(·) denote the function expressed by “the

direction of ·” and ‖ denote the relation of parallelism between lines, the corresponding

instance of (2.29) for the sortal direction now takes the form



168

(2.32) ∀`1∀`2[dir(`1) = dir(`2)⇐⇒ `1 ‖ `2]

According to the terminology adopted above, (2.32) is an abstraction principle for the sortal

direction as grounded by the relation of parallelism with respect to the sortal line. As I

mentioned above, such a statement can be thought of as giving the identity conditions of

directions in terms of the geometric relations which hold among the lines by which they are

give (via dir(·)). But it can also be seen as a method for delimiting a domain of abstract

objects relative to a domain of concrete ones – namely those things which fall in the range

of the function denoted by dir(`) when it is applied to a concrete line `.

The question to which we must now address ourselves is that of qualifying the relation-

ship between the relation of parallelism has to bear to that of the concept direction in order

for (2.32) to play these respective roles. Following Hale, I required above that in the case all

items falling under the sortal C must be referred to as f(x) for x denoting an object falling

under the sortal D, then R is a grounding relation for C just in case the truth of x1Rx2 is

necessary and sufficient for the truth of f(x1) = f(x2). If all we require of a principle like

(2.32) is that it provide a means of individuating the directions whose extensions coincide

with our pre-theoretical judgments of sameness and difference of directions, than this is

presumably a sufficient condition on a grounding relation.

Note, however, that relative to this understanding of the role of (2.32), a large variety

of other relations will also serve to ground direction. For instance, consider the family of

relations Qθ which holds between lines `1 and `2 just in case there exists another line `3

which intersects both `1 and `2 and is such that the smaller angle formed between both `1

and `3 and `2 and `3 is θ. Note that since we have `1Qθ`2 iff `1 ‖ `2, then clearly for all θ,

Qθ grounds direction just in case ‖ does. And this might be thought to cause a problem

if we were taking (2.32) as a means of implicitly determining the extension of direction in

terms of the class of lines. For, at the very least, it would invite the question whether the

class of abstract objects falling in the range of the function dir(·) implicitly defined via

(2.32) is the same as those falling in the range of the function dir′(·) implicitly defined by

the analogously formed principle which employed the grounding relation Qπ/17 instead of

‖.
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Due to these sorts of considerations, theorists who have wished to appeal to an abstrac-

tion principle for an abstract sortal C as a means of delimiting a domain of abstract objects

have generally wished to impose some additional adequacy conditions on a grounding rela-

tion R for C. Such requirements have generally had a broadly epistemic character. Noonan

[101], for instance, requires that a relation R must be “epistemically prior” to a sortal C

which it is claimed to ground. In this case, R is characterized as bearing this relation to

C if the “necessary order of language acquisition” reflects that we must grasp R prior to

grasping C.

Although it is unclear whether Noonan’s criterion actually sanctions the use of paral-

lelism to ground the concept direction, it presumably does rule out the use of the analogous

principle based on Qθ. More importantly, however, it suggests that in attempting to de-

termine whether a grounding relation R is adequate for a sortal C, we ought to look for

a relation in content between C and R. This sort of view is taken to an extreme by the

neo-Fregeans who wish to revive Frege’s [39] tentative proposal that the natural numbers

can be taken to be introduced by the statement now known as Hume’s Principle. Recall

that this principle has the form

(2.33) ∀F∀G[#F = #G⇐⇒ F ≈ G]

where #(·) denotes the function expressed by “the number of F s” and ≈ denotes the

relation of equinumerosity. Frege [39] tentatively proposed that this statement could be

taken as a means of defining the natural numbers. His official view was that (2.33) is not

epistemically fundamental since it was derivable from a similar principle about sets which

he took to be a principle of pure logic. But it is now well-known that the adjunction of

this other principle (i.e. Basic Law V) to the second-order system in which Frege sought to

develop arithmetic leads to a contradiction. Although Frege did not take this route himself,

neo-Fregean philosophers such as Wright [154] have thus wished to reclaim the elementary

status of (2.33) so as to restore the possibility of reviving Frege’s view that arithmetic can

be reduced to logic.

In the course of doing so, such theorists have wished to defend the view that (2.33) is

analytic. When understood in the traditional sense, this means simply that it is true in
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virtue of the meaning of “the number of (·)” and “is equinumerous with.” But note that if

we now look on (2.33) as an abstraction principle for the sortal natural number, this former

expression ought to be taken as serving a role analogous to dir(·) in (2.32) – i.e. that of

delimiting a domain of abstract objects as the items its range. The neo-Fregean answer as

to why (2.33) – potentially as opposed to some similarly-formed statement employing an

equivalence relation materially equivalent to equinumerosity – performs this function with

respect to natural number turns on the semantic relationship which they claim to hold

between the concepts natural number and equinumerous with.

The claims that there is indeed such a close conceptual connection in content between

these statements and that such a connection renders (2.33) analytic have, of course, proven

to be highly contentious.44However, it is not the actual status of these proposals which

bears on our current interests, but rather their potential use in helping us in locating a

definition of ↔ to serve as a grounding relation in (2.30). For note that if what makes

(2.33) a successful means of introducing the natural numbers as the items in the range of

#(·) turns out to be the semantic relation which natural number bears to equinumerous,

then it follows that in seeking to construct a similar principle for algorithms, we must look

for a means of defining ↔ so that this definition bears a similar semantic relation with

respect to our background concept of algorithm (say as roughly characterized in Chapter

1.1).

As we will see in Chapters 3, 4 and 5, the task of formulating a truly general definition of

this relation turns out to be a surpassingly complex task. However, one substantial source

of technical difficulties is the need to define ↔ so that it holds uniformly across different

forms of implementations. I have already pointed out in (2.31ii) that it will be important to

the general goals of algorithmic realism to ensure that this relation is defined over as broad

a class M as possible. For not only will any artificial delimitation of this class (of the sort

which would, for instance, be imposed by equating M with a single model of computation)

restrict the ability of the resulting formulation of algorithmic realism to explain reference to

algorithms via implementations which are not in M, but we will also see in Chapter 3 that

44For the positive claim, see Wright [154]. For a rebutal see Boolos [12]. For a reply see Wright and Hale
[155].
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excessive parochialism in this respect may also complicate the formulation of a definition

which satisfied (2.31i).

In attempting to provide some insight into how ↔ might be defined so as to satisfy

(2.31i,iii), it will, however, be useful to consider a class of implementations which, while not

quite broad enough to cover all of the models mentioned in Section 2.3.2, is still sufficiently

general to subsume several major computational paradigms. The class I will employ for this

purpose is a generalization of the simple transition model introduced in Chapter 1.4. In

particular, such a system can be taken to be a septuple M = 〈X,Y,Σ, δ,H, in, out〉 where

X and Y are respectively the domain and the range of the function which we want to view

M as computing. The other components are defined as follows:

(2.34) i) Σ the set of states of M ;

ii) in : X → Σ is the input function of M ;

iii) δ : Σ→ Σ is the transition function of M ;

iv) H ⊆ Σ is the set of halting states of M ;

v) out : Σ→ Y is the output function of M

Transition systems operate on input x ∈ X by iterating δ on the state in(x) so as to

obtain a sequence σ0(x), σ1(x), . . . ∈ Σ≤ω defined via

(2.35) i) σ0(x) = in(x)

ii) σn+1(x) =















σn(x) if σn(x) ∈ H

δ(σn(x)) else

As defined, the sequence σ0(x), σ1(x), . . . is always infinite, even in cases where there exists

i such that σi(x) ∈ H. To formalize the distinction between halting and non-halting

computations we may additionally need to define the length of the application of M to x

to be

(2.36) lenM (x) =















1 + the least n ∈ N such that σn(x) ∈ H if such an n exists

undefined else
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In cases where lenM (x) is defined, I will refer to the sequence exec(x) = σ0(x), . . . , σlenM (x)−1(x)

as the execution of M on x. And on this basis we may now define the result of applying

M to x ∈ X as out(σlenM (x)(x)). This also allows us to define the function induced by the

application functional for M as App(M,x) = out(σlenM (x)(in(x)). Note that App(M,x)

thereby induces a possibly partial function of type X → Y .

Although the structure of the states and transition functions will vary substantially from

one model to another, I will argue in Chapter 4 that all well-known forms of transition- and

register-based models of computation can be naturally represented as transition systems of

this form.45 This is partly due to the fact that if we fail to impose any additional constraints

on the definition of Σ and δ, then the current definition corresponds to what I will refer

to as an open model of computation – i.e. one whose members may individually operate

on arbitrary mathematical structures (i.e. the states in Σ) via the application of arbitrary

mathematical operations (i.e. the transition function δ). While this is a desirable feature

in many contexts, it obviously implies that there are transition systems which compute

arbitrary non-recursive functions by making use of infinitary operations or structures. It

is, however, straightforward to restrict the definition of Σ and δ so that this is no longer

possible (cf., e.g., Gandy [42], Boker and Dershowitz [11]). And although I will not go into

the details concerning how this may be achieved, I will subsequently assume that such a

restriction has been effected so as to ensure that we may pick out a determinate class of

transition systems M.

It is easiest to gain insight into what is meant by implementing an algorithm as a

transition system by considering concrete examples. This is how I will proceed in Chapter

3. But so as not to become bogged down in details prematurely, it will be useful to now

attempt to characterize this relation informally. I have alluded above to the idea that

part of what is involved by grasping an algorithm A is that we have some idea of what it

would mean to carry it out on a given input. For suppose A is given to us as a formal

program or pseudocode specification taking inputs in set X. In this case, one way of

45For this reason, several definitions very similar to this one have been proposed by a variety of different
theorists – e.g. Gandy [42], Moschovakis [95], Gurevich [51]. I will return to discuss the status which these
theorists assign the transition model in Chapter 5.
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understanding what it means to carry out A is as a process which, given an arbitrary value

x ∈ X, eventuates in an informal calculation whose intermediate stages α0(x), . . . , αn−1(x)

are derived by executing the individual steps in terms of which A is specified.

But now consider the case where we are given a transition system M and then asked to

consider what algorithm it implements. In this case, M itself is specified in terms of for-

mally defined computational states and transitions. In particular, presuming that M halts

on all inputs, there will be a finite sequence of states exec(x) = σ0(x), . . . , σlenM (x)−1(x)

corresponding to the execution of M on each x ∈ X. The claim which I will advance in

the next chapter is that what would justify us in regarding M as an implementation of A

is that if for all x ∈ X, there is a means of systematically correlating the formally defined

states σi(x) appearing in M ’s execution on x with the informal stages of the form αj(x)

derived by carrying out A on x. Although there is still much latitude in how we define a

“systematic correlation” of stages and states, the general idea is that M may be said to

implement A just in case the execution of M on x may be seen as a precise “working out”

of the execution of A on x.

The foregoing is an attempt to provide a rough intuitive characterization of what is

presumably meant in practice when we speak of a machine implementing a particular

algorithm. As such, these observations can also be taken as a possible first step in an

attempt to characterize the function imp(·) which, per (2.30), should now be thought of as

delimiting the class of algorithms as its range. Note, however, that we concluded in Section

3.1 that an algorithmic realist should not be held responsible for defining this function

explicitly as long as he can show that it is definable implicitly by giving an appropriate

definition of ↔ .

Returning now to the question of how such a definition might be given, consider an

instance in which we are given two transition systems M1,M2 ∈ M and are asked if they

implement the same algorithm. In this case, there is no external procedure to which we can

compare the operations of M1 and M2 singularly. We may, however, attempt to compare

the operation of M1 with that of M2. In particular, we can attempt to determine if M1

and M2 operate in a manner which would justify us in saying that they “work the same

way” in the sense of having similarly structured executions σ0(x), . . . , σlenM (x)−1(x) and



174

τ0(x), . . . , τlenM (x)−1(x) on all inputs x ∈ X. For note that if their executions were found

to be systematically related to one another in an appropriate manner, then it would be

reasonable to conclude that they implemented the same algorithm despite the fact that

they were not explicitly introduced as doing so.

Here again there is much room left in which to wiggle with respect to the formalization

of such notions as “works the same way” and “similarly structured.” And thus parlaying

the foregoing observations into a formal definition of ↔ over M will require additional

work. The task of doing this will, again, be greatly facilitated by considering concrete

examples, as I will do Chapter 3. But since it is not until a precise definition is produced

that we can attempt to determine whether ↔ satisfies requirements (2.31i) and iii), it will

be useful to proceed one step further on the basis of general considerations alone.

To this end, it is useful to note that while the observations adduced in the previous

paragraphs certainly do not determine a unique definition for ↔ over M, they do share

a motivation with an important class of computational relations studied in theoretical

computer science under the name of machine simulations. Roughly speaking, a machine

simulation between implementations M1 and M2 (which for present purposes can be as-

sumed to be transition systems) is a way of relating their respective sets of states Σ1 and Σ2

so that pairs of states σ, σ′ ∈ Σ1 such that δ1(σ) = σ′ are S-related to pairs of statements

τ, τ ′ ∈ Σ2 such that δ2(τ) = τ .

In other words we require that S satisfy the following requirement:

(2.37) ∀σ∀σ′∀τ [(δ1(σ) = σ′ ∧ σSτ)→ ∃τ ′(σ′Sτ ′ ∧ δ2(τ) = τ ′)]

This condition ensures that every state transition which might occur in some execution of

M1 will be mirrored by a transition in M2 which is ensured to be analogous in the sense

that if the initial states σ and τ are S-related, then the subsequent states σ′ and τ ′ will

be as well. Such a condition is often referred as the “forth” condition in a stronger form

of simulation relation referred as a back and forth equivalence. In particular, a back and

forth equivalence between M1 and M2 is a relation S ⊆ Σ1 × Σ2 satisfying (2.37) and also

the converse “back” condition

(2.38) ∀τ∀τ ′∀σ[(δ2(τ) = τ ′ ∧ σSτ)→ ∃σ′(σ′Sτ ′ ∧ δ1(σ) = σ′)]
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which ensures that every transition in M2 is mirrored under the converse of the relation S

in M1.

In the literature of modal logic and process algebra in which such notions were first

introduced, a relation S between implementations M1 and M2 satisfying both (2.37) and

(2.38) is also known as a bisimulation. Correspondingly, M1 and M2 are said to be bisimilar

just in case such a relation exists. Such a definition can either be made more specific or

generalized in a number of ways giving rise to a family of relations with similar definitions

all of which are conventionally termed “bisimulation.” One can, for instance, replace the

requirement that single state transitions inM1 are mirrored by single state transitions inM2

by the less restrictive requirement that they are mirrored by finite sequences of transitions

(and vice versa). Another common variation is to introduce a system for labeling transitions

in M1 and M2 according to the type of computational action they represent and to then

require that the labels of each transition be preserved under the simulation relation as well

as the ordering of states. I will discuss how such modifications to the conditions (2.37) and

(2.38) can be formalized as well as why they may be desirous in the next chapter.

It should be clear, however, that under most foreseeable sophistication of the definition

of bisimulation, the corresponding definition of bisimulation will turn out to be an equiv-

alence relation on the class over M of implementations. Such a definition thus at least

has the appropriate formal properties to serve as a definition of ↔ in (2.30). Of course

it remains to be seen whether any relation in this family satisfies any of (2.31i-iii). For

although I have motivated the definition of bisimulation given above on the basis of general

reflections about the notions of algorithm and implementation, these considerations are not

sufficiently refined to determine a precise mathematical definition of this relation. Thus we

are still a fair distance from being able to judge whether any form of bisimulation relation

can be taken as a conceptually adequate grounding relation for the notion of algorithm.

In Chapter 3, I will attempt to push considerably harder on intuitions about the re-

lationship between algorithms and implementations. Out of this will come a number of

concrete examples against which we can test not only our intuitions about the conceptual

adequacy of various definitions of ↔ , but also about its extensional adequacy in the sense
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of (2.31i). However, as we are about to find out, doing so embroils us in considerable ques-

tions of detail about the features of the individual models of computation. And matters

will become yet more complex in Chapter 4 when I consider the potential for generalizing

such definitions over a larger class of implementations so as to address (2.31ii).
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Chapter 3

A cautionary example

3.1 Introduction

The purpose of the previous chapter was to delimit the possible strategies open to a

proponent of algorithmic realism. In the course of so doing, I presented a positive proposal

on behalf of the realist which was intended to illustrate what I argued was the most plausible

means of demonstrating the dual theses that algorithms are mathematical objects and

that computational properties like running time complexity are structural properties of

these objects. The view I presented was grounded in an array of linguistic, metaphysical

and technical considerations about how we employ, make reference to, and reason about

procedures both inside and outside mathematics and computer science. And arguably due

to the very richness of these desiderata, both the proposal I outlined and the considerations

offered in its favor were fairly complex.

It is, of course, my ultimate intention to show that algorithmic realism is false. And

it is to this task which this and the following two chapters will be devoted. But before

commencing in earnest, it will be useful to briefly reprise several of the conclusions of

Chapter 2. The most significant of these pertains to the logical form of algorithmic realism.

As we have seen, this view can be taken as an ontological thesis about how discourse about

algorithms can be uniformly reinterpreted as discourse about mathematical objects. In

particular, I suggested that the realist’s central theses would be vindicated if it could

be shown that there exists some means of systematically identifying individual algorithms

with mathematical objects in a manner which simultaneously preserves their computational

properties while also maintaining intuitions about algorithmic identity and non-identity as

they are reflected in computational practice.

It thus follows that the claim that algorithmic realism is false is equivalent to the
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negative universal statement that no such mode of identification exists. And from this it

follows that in order to demonstrate that this view is not tenable, it is not sufficient to

simply refute individual proposals which have been (or might be) put forth with regard

to how such a system of identifications can be set up. Rather, we must attempt to argue

for the general claim that no such proposal could ever be adequate. And since it seems

unlikely that this can be done in exhaustive manner – i.e., by anticipating all potential

modes of identification which an algorithmic realism might put forth in favor of his view

– it may seem proportionally improbable that we can construct a truly general argument

against algorithmic realism.

One way around this problem would be to demonstrate that the background, informal

notion of algorithm was somehow paradoxical in something like the same way as the “naive”

notion of set. But I argued in Chapter 2 that there are good reasons to think this is unlikely.

Primary among them are a variety of results in recursion and type theory which may be

interpreted as showing that no inconsistency arises when algorithms (here interpreted,

e.g., as Turing machines or untyped lambda terms) are allowed to apply to themselves.

In a typical context, self-applicability is achieved by defining a map c from a domain of

procedural entities D2 into a domain of D1 of objects on which the members of D2 operate.

For instance, if D2 is taken to be the set of all Turing machines, c can be taken to be

a form of godel-numbering which maps (structural descriptions of) Turing machines into

natural numbers. A given machine T can then “operate on itself” by taking as input c(T ).

But it can be shown that not only does this result not lead to any sort of contradiction,

it in fact leads to a positive result in the form of the Kleene Recursion Theorem.1 Since

most well-known semantic or logical paradox (e.g., the Liar, Cantor’s Paradox, Russell’s

Paradox, Curry’s Paradox, etc.) are typically analyzed as arising due to the possibility

of self application made possible by a mixing of logical “levels” (e.g., those that of object

and function or object language and metalanguage), the fact that the self applicability of

1I.e. for all Turing machines T : N × N → N, there exists a Turing machine R such that for all
n, ϕT (c(R), n) = ϕR(n) (where ϕM denotes the (extensional) function computed by machine M). The
Recursion Theorem is a fundamental tool in recursion theory as it allows us to obtain a fixed point of any
effective function t mapping (descriptions of) Turing machines to (descriptions of) Turing machines – i.e. a
Turing machine R such that for all n, ϕR(n) = ϕt(c(R))(n). The paid for self-applicability of this form is
the existence of effectively computable but non-total functions.



179

procedures does not lead to paradox is at least suggestive of the fact that the “naive” notion

of procedure I have sought to analyze in previous chapters suffers from the same sort of

logical difficulties which plague the analogous naive notions of set and truth or satisfaction.2

If algorithmic realism turns out to be unsustainable, it thus seems unlikely that this is

because of what might be broadly described as logical grounds. Rather, I will argue that

the flaw which infects the notion of algorithm derives essentially from the fact that this

notion is called upon to play too many distinct theoretical functions in our computational

practices. As I have discussed in previous chapters, these roles may be divided into two

broad categories: 1) that of serving as the abstract machine- and language- independent

entities which are expressed or implemented by mathematical items like programs or ma-

chine models; 2) that of serving as the direct bearers of computational properties such as

running time complexity and provable correctness.

The argument which I will present in general form in Chapter 5 is meant to show that

any means of associating individual procedures with mathematical objects that satisfies

the first class of requirements will of necessity fail to satisfy at least certain instances of

the second class, and conversely, any such association satisfying the second requirement

will, of necessity, fail to satisfy at least certain instances of the first. I will argue that

a consequence of this is that it turns out to be impossible to construct a mathematical

theory of algorithms which simultaneously ensures that individual algorithms have the

computational properties which we take them to have in practice and also ensures that

various robust intuitions about procedural sameness and difference are preserved. It will

thus be my contention that the Achilles heel of algorithmic realism is its acceptance of the

view that there is a stable notion of algorithmic identity of the sort, which I have argued

in Chapter 2, is implicit in our willingness to treat procedures as objects.

In order to bolster this view, I will ultimately argue in Chapter 5 that it is impossible

to provide a definition of a bisimulation relation defined over an acceptable class of imple-

mentations M which comports with the full range of theoretical and conceptual constraints

which must be placed on a general theory of algorithm such as the theory Tp described in

2For general discussion of the relationship between self reference in computability theory and the semantic
paradoxes, cf., e.g., [41], [158], [49].
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Chapter 3.3 As a precursor to this, in Chapter 4 I will attempt to systematically delimit

the forms the class M could potentially take based on a variety of background constraints

deriving both from computational practice and more from the theoretical role I argued

implementations must play in Chapter 3.2. Both of these arguments will be relatively in-

volved as they rely on a variety of technical considerations deriving both from the practice

of theoretical computer science in general and also from the specific details of proposals

which have been put forth by the theorists who explicitly attempt to argue in favor of

algorithmic realism.

These exegetical complications aside, the general form of the argument which I will offer

in Chapter 5 is relatively straightforward. In particular, suppose that we have agreed that

any acceptable theory by which algorithmic realism might be vindicated must resemble the

sort of general theory of algorithms I described in Chapter 2 whose primary feature I will

now briefly review. Primary amongst these features is the recognition that all reference to

procedure must be mediated by reference to programs or implementations. This means in

particular that whenever we take ourselves to succeed in referring to an algorithm A, this

must be because there exists either a specific program Π or a implementation M such that

A has been introduced either as

(3.1) a) a =df the procedure expressed by π

b) a =df the procedure implemented by m

where a is a proper name (like “Euclid’s algorithm’) which we take to denote A and π

and m are (typically complex) mathematical description of Π and M . I argued in Chapter

2 that programs only allow us to refer to procedures in conjunction with an operational

semantics for the language over which they are stated. But since the result of interpreting

a program relative to such a semantics is itself an implementation (typically drawn from

an antecedently defined class of “abstract machines”), I also argued that schema (3.1a) can

be assimilated to (3.1b).

Even after taking this simplification into account, however, there is still another sub-

stantial problem in understanding how (3.1b) allows us to refer to procedures. For as we

have seen, the relationship between machines and algorithms is typically many-one – i.e.,
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for every algorithm A, there will generally exist an open class of distinct implementations

M1,M2, . . ., each of which can be taken to implement A with equal plausibility. It is for this

latter reason that I argued in that any foundational theory which wants to accommodate

even the most general contours of our everyday discourse about algorithms must adapt to

what I referred to as an abstractionist theory about the nature of algorithms.

This view can be readily understood in opposition to a more straightforward reductionist

approach according to which individual algorithms are directly indentified with individual

mathematical objects. According to this view, for instance, the algorithm denoted by the

name Mergesort might be directly identified with a particular RAM machine, lambda

expression or (more plausibly) set of recursive equations. In contrast to such a proposal,

the abstractionist view seeks to intepret the expression “the algorithm implemented by

m” as denoting a mapping from individual implementations onto an abstract domain of

algorithms. According to such a view, a statement such as (3.1b) should thus be treated

as having the logical form

(3.2) A = imp(M)

where imp is intended to denote a function from a domain of implementations to the domain

of algorithms.

Such a view is designed to accommodate the fundamental observation recorded above

that the relationship between implementation and algorithms is typically many-one. In the

abstractionist setting, this is allowed since we may have distinct implementations M1,M2

such that imp(M1) = imp(M2). However, once an algorithmic realist acknowledges that

such a situation is possible – i.e. that two implementations may be used to refer to the

same algorithm – it then become incumbent upon him to say how this can be so. Since

according to the abstractionist strategy, algorithms just are objects which inhabit the range

of the function denoted by imp, this task must presumably be accomplished in terms of

the structural features of implementations themselves. If we assume that the latter sort of

entities form a well-defined mathematical domain M, then one way in which this can be

accomplished is by defining an equivalence relation ↔ over this class which holds between

the implementations denoted by M1 and M2, just in case these objects implement the same
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algorithm.

These observations naturally motivate the formulation of a so-called abstraction prin-

ciple for algorithms with the following form:

(BP) imp(M1) = imp(M2)⇔M1↔M2

For reasons which will emerge below, I will refer to a specific relation ↔ which might be

proposed to figure in such a principle as a bisimulation relation and to (BP) itself as the

bisimulation principle. I argued in Chapter 2 that a proponent of abstractionism will wish

to employ (BP) to fill the same theoretical role to which latter-day interpreters of Frege’s

theory of natural numbers have wished to appoint the analogously formed statement often

known as Hume’s Principle. This statement has the form

(HP) #F = #G↔ F ' G

where F and G are variables over Fregean concepts (which for present purposes may be

thought of as classes), ' denotes the (second-order-definable) relation of equinumerosity

and # is intended to denote a function mapping concepts into numbers. Frege himself did

not take (HP) as a definition of natural number, but rather sought to derive this statement

from what he took to be a more basic principle about the identity of sets. However since

this principle (known as Basic Law V) was later shown to be inconsistent, followers of the

so-called neo-Fregean movement in the philosophy of mathematics have sought to isolate

a consistent subtheory of Frege’s logic which treats (HP) as an axiom. In this context,

various theorists (most notably Wright [154] and Hale [155]) have attempted to argue that

(HP) performs two important theoretical purposes: 1) it serves as an implicit definition of

the function # thereby explicating the ontological status of natural numbers as the items

in its range; and 2) in virtue of its form, (HP) also fixes the truth conditions of statements

of the form “the number of F s = the number of Gs” and can thereby be seen as a means

of fixing the identity conditions of natural numbers.

I argued that algorithmic realists must ultimately look to a principle like (BP) to achieve

the same two functions with respect to the general notion of algorithm. I argued in Chapter

2.3 that, modulo a number of technical and conceptual issues, such a view holds a certain de-

gree of intuitive plausibility. For since there is no well-established background theory which
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answers even basic metaphysical and logical questions about our computational practices,

our best hope for systematically understanding our discourse about algorithms appears to

reside in the hope that our current theoretical practices involving reasoning about imple-

mentations can be taken to be embodied in an implicit definition. But since we have also

agreed that there is an independent argument to the effect that reference to algorithms

must be mediated in the manner of (3.1b), it appears that such a definition must take the

form of a principle like (BP) which attempts to fix their identity conditions of algorithms

in terms of the implementations by which we have specified them.

The considerations leading to this conclusion are admittedly complex and in some cases

not as clearly elucidated in the technical literature of computer science as one might hope.

However the burden of Chapter 2 was to argue that these practices are sufficiently conven-

tionalized to entail that if it proves possible to develop a mathematical theory of algorithms

of the sort required to sustain algorithmic realism, then we would have little choice but to

proceed in the manner just outlined. But of course this is merely a methodological obser-

vation about what sort of positive theory of algorithms a realist might hope to construct.

As such, the conclusion that abstractionism is the most promising theoretical framework

in which to pursue a vindication of algorithmic realism itself does little to determine how

the relation ↔ must be defined so that (BP) entails statements about implementation

which are consistent with our extant practices. And perhaps more seriously yet, the mere

observation that reference to procedures must be secured by applying the function denoted

by imp to concrete implementations does little to determine how its domain M is formally

determined. For these reasons, it seems reasonable to conclude that the central theoretical

burdens of algorithmic realism are precisely those of defining ↔ and M so that (BP) can

play the two roles described above.

While I will suggest below that providing proper definitions of ↔ and M corresponds to

substantial (and in my own view, unsurmountable) hurdles which algorithmic realism must

clear, we also do not start from scratch in constructing these definitions. In particular, the

definition of M which the realist seeks to provide ought to serve as a general analysis of

what I have been referring to as an implementation of an algorithm – i.e,. an instance of a

model of computation of the sort briefly described in Chapter 2.2 and which we will study
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more extensively in Chapter 4. Accordingly, the definition a realist offers of ↔ ought to

correspond to an analysis of whatever relation of computational equivalence we take to hold

between a pair of machines M1 and M2 in virtue of which we are willing to regard them as

implementations of the same algorithm.

In Chapter 2.3 I attempted to push these observations further by arguing that M ought

to be analyzed in terms of a notion I refered to as a transition system. Roughly speaking,

a transition system M is a collection of objects referred to as computational states ΣM

which are meant to correspond to states of a machine-like model during the course of

its computation together with a so-called transition function ∆M : ΣM → ΣM which is

meant to correspond to the rule by which such states are updated or transformed during

the course of M ’s computations. Variants of this notion which have been employed by a

variety of theorists as a generalized form notion of model of computation. And for this

reason, there is an outstanding question as to how an algorithmic realist might define M

with sufficient generality to ground (BP). I also offered some considerations in Chapter 2 in

favor of taking ↔ to be among a family of definitions related to the notion of bisimulation

which have been studied extensively in process algebra (cf., e.g., [86]) and modal logic (cf.,

e.g., [8]). However these remarks must also be seen as provisional in advance of a more

definite analysis of the notion of implementation itself.

In Chapter 4, I will present arguments in favor of adopting the transition system model

as a conceptually adequate definition of M, and some form of bisimulation as a conceptually

adequate definition of ↔ . To reiterate, I take not only the adoption of the general abstrac-

tionist framework, but also these particular choices for M and ↔ and how they should be

defined within this framework as decisions which are essentially forced on the algorithmic

realist by various features of our practices and intuitions about algorithms. Once these

decisions are made, however, we can finally enter into a detailed analysis of whether this

view is viable in the sense of making predictions which are consistent with these practices

and intuitions.

In Chapter 5, I will argue that algorithmic realism is not sustainable in this sense.

In particular, I will argue it is impossible to choose precise definitions for M and ↔ so

that the resulting version of (BP) is consistent with the overarching aim of the algorithmic
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realist to offer a systematic reconstruction of our theoretical practices involving algorithms

in a completely mathematical language. The specific version of this argument I will offer

there is grounded in technical details about how recursive models of computation should

be assimilated to transition systems. However, the form of this argument is more general

than this specific application might appear to suggest. And for this reason it will be useful

to both describe the form of this argument by considering a simpler example in detail. And

it is to this purpose which the present chapter is devoted.

As an initial step, note that among the statements of ordinary computation discourse

for which an algorithmic realist will presumably wish to account are those stating that a

particular implementation M implements a particular algorithm A1. For instance A1 might

be the algorithm Mergesort and M1 might be some particular RAM machine which has

been constructed explicitly as an implementation of this algorithm. As per the preceeding

discusion, we can assume that reference to A must be mediated by reference to imple-

mentations such as M1, but that M1 is not the unique implementation with this property.

Suppose, for instance, that we had also constructed another distinct implementation M2

as another implementation of A1. Then, using the terminology adopted above, we would

have

(3.3) 1. A1 = imp(M1).

2. A1 = imp(M2).

But now also suppose that A2 is an algorithm which we regard in practice as distinct from

A1. For instance, if A1 was Mergesort, then A2 might be like Insertionsort which

has a different running time complexity or differs in some other computationally significant

manner from A1. In such a case we should expect the following two statements to also turn

out to be true:

(3.4) a) A1 6= A2

b) A2 = imp(M3)

Since we will soon enounter an example of the sort of situation just outlined, I will take it

to be uncontroversial that such instances do arise in the course of computational practices.
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However, it should already be evident that the existence of pairs of distinct algorithms and

triples of implementations with the properties just described places substantial constraints

on how ↔ may be defined so as to ensure that the principle (BP) by which the realist

intends to give the identity conditions of algorithms is satisfied. For note that if a definition

of M has been given such that this class contains M1,M2,M3 then it follows that any

adequate definition of ↔ over this class must satisfy

(3.5) a) M1↔M2

b) M1 =M3

c) M2 =M3

For note that it follows from (3.3a,b) that imp(M1) = imp(M2). And thus (3.5a) follows

from the left-to-right direction of (BP). Similarly, (3.5b) follows from (3.4a) together with

(3.4b) and (3.3a) and the right-to-left direction of (BP).

I will call a definition of ↔ which satisfies the statements of identity and non-identity

which are embedded in computational practice an extensionally adequate definition of

bisimulation. This is clearly a requirement which must be met by any definition of ↔

which will be acceptable to an algorithmic realist. For recall that in Chapter 2, I argued

that a commitment to the determinateness of algorithmic identity statements is entailed by

the realist’s underlying belief that algorithms themselves constitute a domain of abstract

objects with properties from implementations or programs. And since at least some identity

and non-identity statements about algorithms are entrenched within our computational

practices, no definition of ↔ which violated such a statement will acceptable to a realist.

But it should also be clear that the precise definition of ↔ adopted by an algorithmic

realist must also satisfy a variety of additional properties. Perhaps the most significant

of these is that such a definition ought to function as a plausible conceptual analysis of

what we take it to mean that two implementations implement the same algorithm. For

note that if the realist hopes to regard (BP) as serving the purpose of fixing the identity

conditions of algorithms, then the condition appearing as its right-hand side ought to serve

to analyze what it means for the algorithms determined as imp(M2) and imp(M2) to be

the same algorithm. Suppose A1 and A2 are the algorithms determined as the denotation
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of these terms in some model of (BP) taken in conjunction with the theory Tp by which

the realist proposes to axiomatize our computational practices. As per the observations

cataloged above, A1 and A2 must be determined by some such implementations. And from

this it follows that for (BP) to perform the function of determining whether A1 and A2

are the same algorithm, ↔ must be defined so that it holds between any arbitrary pair of

implementations just in case they implement the same algorithm.

The intention behind (BP) is thus semantic in character in the sense that finding a

successful definition of ↔ would render the corresponding version of (BP) analytic. And for

this reason, I will call a definition of ↔ which succeeds in giving the meaning of algorithmic

identity in terms of the structural properties of implementations an intensionally adequate

definition of bisimulation. However I also acknowledged in Chapter 2 that our intuitions

about the properties of algorithms may not be sufficiently robust to uniquely determine a

relation which serves this function. But taken in conjunction with the rest of contemporary

computational practice, such intuitions are strong enough to impose a number of non-trivial

adequacy conditions on ↔ .

The most substantial of these follows from the fact that our intuitions pertaining to

when M1 and M2 implement the same algorithm presumably derive from whatever informal

understanding we have about their mode of operation. Whatever is meant by this will, of

course, vary with the choice of the class M from which these structures are drawn. But in

the case where M coincides with (or even subsumes) the transition system model mentioned

above, it is clear what form a general analysis of coincidence in mode of operation should

take. In particular, if M1 and M2 are transition systems, then to say that they operate in

the same manner is to say that a relation between their states may be set up so that for all

inputs, the transitions of M1 are thereby correlated with transitions of M2 (and conversely).

As we will see below, this sort of definition naturally has the form of a bisimulation relation

in the technical sense of modal logic and process algebra mentioned above.

This can be taken to mean that the definition of ↔ must be given in a certain way

in terms of the features of the class chosen as M. For instance, if the members of M

corresponded to transition systems in the manner described above, then ↔ ought to hold

between M1 and M2 just in case there existed an appropriate way of correlating their states
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so that transitions in the former were paired with structurally analogous transitions of the

latter. For note that it is precisely in virtue of the existence of such a relation linking

states (or more generally, transition-linked sequences of states) which perform the same

computational function relative to the computational problem solved by M1 and M2 that

we are generally willing to regard M1 and M2 as implementations of the same algorithm.

Considerations of this of this kind thus lead to a rough initial characterization of the

form which an intensionally adequate definition of ↔ should take. As we will see below,

however, such intuitions are far too schematic to determine its precise formulation. In order

to determine whether such a definition is indeed possible, we may also look to computation

as source of additional intensional constraints on the definition of ↔ . In particular, it

follows from our practice of ascribing computational properties like running time complexity

directly to algorithms that ↔ ought to be a congruence with respect to these properties.

For suppose that Φ(X) denotes a property such that our practices suggest that Φ(A) holds

for some particular algorithm A (e.g., if A were Mergesort, then Φ(X) might be “X has

running time O(|x| log2(|x|))), then it ought to be the case that for all implementations M1

of A, if M1↔M2, then Φ(imp(M2)). This requirement can be stated more generally as

follows:

(3.6) For all implementations M1 and M2 and for all computational properties Φ, if

M1↔M2, then Φ(imp(M1)) if and only if Φ(imp(M2)).

Viewed as an adequacy on a definition of ↔ , (3.6) states that such a relation may only

link implementations which determine algorithms with the same computational properties.

For instance, this requirement would rule out a candidate definition of ↔ which held

between implementations M1, M2 such that M1 implemented a linear time algorithm and

M2 implemented a quadratic time algorithm.

The central arguments of both this chapter and Chapter 5 will be aimed at showing

that once we have fixed a particular definition of M, it then becomes impossible to define a

relation ↔ which is simultaneously intentionally and extensionally adequate. The version

I will consider in this Chapter is based on fixing M to correspond to the class of single tape,

single head Turing machines. We will see in Chapter 4 that this model is too simplistic
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to be taken seriously as an analysis of the general notion of implementation on which the

definition of M ought to be based. But it is sufficiently expressive so as to allow us to

formulate a wide variety of plausible implementations of two intuitively distinct algorithms

for deciding whether a string is a palindrome. Taking these procedures to be A1 and A2,

I will then construct two classes of implementations S and U over T such that there are

S1, S2 ∈ S and U1 ∈ U which I will argue play roles analogous to M1,M2 and M3 in

statements (3.3) and (3.4). From this it follows that any extensionally adequate definition

of ↔ must satisfy the corresponding instance of (3.5). And on this basis I will argue that

any intensionally adequate definition of this relation will either fail to satisfy either (3.3a)

(by virtue of being “too fine grained”) or one of (3.5b,c) (by virtue of being “too coarse

grained”).

Even though the choice of algorithms and implementations is designed in this case to

be as straightforward and familiar as possible, there are still many matters of detail which

must be laid before the latter argument can be made. This will be accomplished over the

course of Section 2 and 3 where I will first introduce the palindrome decision problem and

the algorithms which will serve as A1 and A2 (Section 2) and then go about constructing the

classes S and U and argue that they have the appropriate properties (Section 3). Section

4 will then be devoted to the exigencies which an algorithmic realist would have to face in

constructing ↔ .

Many of the considerations which arise in the course of this exposition are matters of

detail which may appear to pertain to the particular choice of algorithms and implementa-

tions involved. However, I will argue over the course of Chapter 4 and 5 that many of these

concerns generalize even when we attempt to construct a maximally general definition of

M. And it is precisely for this reason why it is useful to study a simple example of the sort

I am about to present in detail.

3.2 The decision problem for palindromes

Many of the problems which arise when we attempt to carry the abstractionist pro-

gramme are most readily appreciated by considering specific examples of algorithms whose
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status as mathematical objects a realist will presumably wish to account. I have postponed

presenting such an example until this point due to the variety of technical details which

arise immediately when we start to consider even the simplest algorithms and classes of

implementations. But if the algorithmic realist is to convince us of the plausibility of his

programme, the onus lies squarely on his shoulders to show us that these details can be

sorted out.

The example I will develop is comprised of four components whose definition we must

supply: i) a formal language L whose decision problem we wish to design algorithms to

solve; ii) two distinct, informally specified algorithms A1 and A2 for deciding membership

in L; iii) a formal definition of a class of implementations M containing disjoint subclasses

M1 and M2 which may plausibly be taken to implement A1 and A2; and iv) a series of

proposed definitions of a bisimulation relation ↔ defined on M. I will initially attempt to

emulate the strategy of a potential algorithmic realist by showing how the judgment that

A1 and A2 are distinct mathematical objects may be borne out by showing that for all

M1,M2 ∈ M1, M1↔M2 and for all N1, N2 ∈ M2, N1↔N2 but for no pair M ∈ M1 and

N ∈M2 is it the case that M↔N . However, once we have fixed L, A1 and A2 and M, my

ultimate goal will be to show that it is impossible to construct an intensionally adequate

definition of bisimulation satisfying these constraints.

For L, I will take the language Lpal of palindromes over {0, 1}∗ – i.e., finite strings of

even length comprised of 0 and 1 which read the same both backwards and forwards. For

instance, the strings ε (the empty string), 00, 1001 and 0101001010 are all members of Lpal,

while the strings 0, 1, 000, 101101101 are not. Recall that we say that an algorithm A is a

decision procedure for Lpal just in case for all w ∈ {0, 1}∗, when applied to w, A produces

the output yes if w ∈ Lpal and no otherwise.

Next consider the following two procedures for deciding membership in Lpal, which I

will henceforth refer to as Pal1 and Pal2. Pal1 consists of taking a string w = a1 . . . an

and comparing symbols inwards from its two ends – i.e., making the comparisons a1
?
=

an, a2
?
= an−1, . . . , abn/2c

?
= abn/2c+1 – and responding no as soon as one of the comparisons

fails and yes otherwise. Pal2 consists in first writing down the string wR corresponding

to the reversal of w – i.e. wR = b1 . . . bn such that bi = an−(i−1) for all 1 ≤ i ≤ n –
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and then comparing w and wR symbol by symbol – i.e., making the comparisons a1
?
=

b1, a2
?
= b2, . . . an

?
= bn – and responding no as soon as one of the comparisons fails and yes

otherwise.

Our first task is to assess whether there is any objective way of determining whether

Pal1 and Pal2 are indeed distinct procedures. Since I have already indicated that ac-

counting for the identity conditions of informally presented algorithms is one of the primary

technical obstacles confronting the algorithmic realist, it is obviously important that this

question not be begged at the outset. We must hence seek to determine whether there

is an objective basis for regarding Pal1 and Pal2 as distinct algorithms. The first thing

to note in is that, my choice of distinct appellation notwithstanding, we have no prior

history of using the names Pal1 and Pal2. And there is thus no explicit component of

our present computational practices which forces us to regard the procedures described in

the previous paragraph as distinct algorithms.3 And thus if we to wish isolate a principled

reason for distinguishing between these procedures, it seems that we have little choice but

to start down the path of converting the informal descriptions given above into more precise

specifications so that we might examine their properties in more detail.

As we have seen in previous chapters, a typical first step in this process would be to

regiment the natural language descriptions given above into the idiom of pseudocode. The

outcome of this process would be something like the following:

(3.7)

Pal1(w)

Step 1: Let n be the length of w.

Step 2: For i = 1 to dn/2e do

if ai 6= an−(i−1), then output no and halt.

Step 3: Output yes and halt.

3This situation should be compared with that of sorting or graph algorithms of the kind described in
Chapter 2. Here I argued that not only do our practices explicitly reflect that we distinguish different algo-
rithms for solving the same computational problem, but that a principled basis for this could be developed
by considering how these procedures are analyzed in terms of their complexity theoretic properties, use of
data structures, etc..
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(3.8)

Pal2(w)

Step 1: Let n be the length of w.

Step 2: For i = 1 to n do

Let bi = an−(i−1).

Step 3: For i = 1 to n do

if ai 6= bi, then output no and halt.

Step 4: Output yes and halt.

In previous chapters, I have freely employed pseudocode listing of this sort in an at-

tempt to more precisely describe procedures which, like Pal1 and Pal2, have been initially

introduced via informal descriptions. As discussed in Chapter 2, this practice is widely em-

ployed in the analysis of algorithms and is generally justified on the basis of the fact that

pseudocode provides a sort of expressive intermediary between natural language and formal

programming languages. This level of detail forces us to adopt an explicit ordering of steps

(which may not be intended in a natural language description), but it allows us to explicitly

express looping constructions and variable scope which are difficult to clearly indicate in

natural language. In this sense, pseudocode serves something like the intermediate level of

regimentation into which Quine [111] urged us to render informally stated theories prior to

their formalization in first-order logic.

One may, of course, challenge the use of such regimentations as a basis for judging the

distinctness of Pal1 and Pal2. For in order to employ pseudocode listings in this manner

it appears we must possess a prior understanding of what makes one listing rather than

another a faithful expression of an informally described procedure. There are, however, are

a number of features which can be cited in favor of the distinctness of Pal1 and Pal2 which

do not turn on the details of how this process is carried out. For instance, I have mentioned

several times in previous chapters that it is generally possible to grasp an algorithm in the

sense of understanding its informal description to the point where one can carrying it out

“by hand” without at the same time grasping what function it computes. For this reason,

I have also stressed the importance of proving that an algorithm A1 is correct with respect

to a mathematical function f before we can use A1 to learn about the values of f . But since

finding such proofs is often non-trivial, it is conceivable that even after having proved A1
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correct with respect to f , one could be presented with another specification of an algorithm

which also computes f and yet fail to realize that A1 and A2 computed the same function.

If such a situation is indeed possible in this instance where we have grasped A1 and A2 by

distinct pseudocode specifications p1 and p2, then it seem that we have little choice but to

acknowledge that p1 and p2 express different algorithms for computing f .4

We may now ask whether such a situation can arise with respect to Pal1 and Pal2. In

other words, we may inquire as to whether is it possible for someone to recognize that Pal1

as expressed by (3.7) was a correct decision procedure for Lpal without thereby coming to

realize that Pal2 as expressed by (3.8) had the same property. Note in this regard that

informal proofs of the correctness of these procedures are likely to turn respectively on

the observations that i) w = a1 . . . an is a palindrome if and only a1 = an . . . abn/2c =

an−(bn/2c−1) and ii) w = a1 . . . an is a palindrome if and only if w = wR. But it certainly

does seem possible that one could recognize the truth of one of these equivalences without

recognizing the truth of the other. And for this reason, it also seems possible that since

the method employed by Pal2 more closely mirrors our original definition of a palindrome

(i.e., a string such that w = wR), one might come to know that this algorithm computed

the characteristic function of Lpal without thereby realizing the analogous fact about Pal1.

And if this is indeed the case, then it seems that we have little choice but to regard Pal1

and Pal2 as distinct algorithms.

Additional support for this conclusion may also be garnered by moving from the in-

tuitive to the formal domain. For note that if we could find some definite computational

property like running time complexity, or the use of data structures, which was possessed

by one of these algorithms but not the other, then this would also provide a basis for

concluding that they were distinct which did not require us to make judgments about the

prerequisite epistemic conditions for grasping them. However proceeding in this manner

also requires that we have an objective means of distinguishing the properties possessed in-

trinsically by the algorithms from those which might occur as artifacts of their pseudocode

4For note in particular that if p1 and p2 expressed the same algorithm, then grasping the correctness
proof for A1 ought to enable us to see that A2 was correct with respect to f . But this seems not to be the
case.
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representations. Note, for instance, that when we assess the running time complexity of

Pal1 and Pal2 directly in terms of their pseudocode specifications (i.e. by measuring the

length of their executions by counting the number of times each informally demarcated step

of (3.7) or (3.8) is executed), then then they differ in the sense that Pal1 has exact running

time complexity 2 + bn/2c whereas Pal2 has exact running time complexity 2 + 2n. And

thus if we were able to additionally argue that this was a genuine difference in procedural

properties (as opposed to an artifact of how we have chosen to represent them), then we

conclude that Pal1 and Pal2 were distinct by this route as well.5

3.3 A provisional model

Having reached the provisional conclusion that Pal1 and Pal2 are indeed distinct

algorithms, our next task is to consider what it means to implement these procedures

as formal instances of a formal model of computation. As we have seen, this requires

formulating a definition for a class of implementations M which meets the sorts of adequacy

conditions discussed in Section 1. Note, however, that relative to the sort of complex

mathematical procedures which are routinely used in contemporary mathematical practice,

Pal1 and Pal2 are both quite simple, both in their manner of operation and in that they

operate over a simple class of data-type – i.e., finite strings of 0s and 1s.

It will be useful to start out by considering a correspondingly rudimentary model. As an-

nounced previously, for this purpose I will employ the class T of deterministic, single-tape,

single-head Turing machines. There will, of course, be intuitively acceptable implemen-

tations of Pal1 and Pal2 drawn from many other models of computation. In the next

chapter we will see that there are straightforward formal reasons why the algorithm realist

will want to employ a class as simple as T as part of his preferred definition of M. Note,

however, that we have also seen in Chapter 2 that traditional arguments in favor of Church’s

5Other complexities enter in here since there is surely some flexibility in the process of regimentation
by which we go from descriptions of procedures in natural language to pseudocode specifications. Note, for
instance, if we had rendered the instruction contained in our original description of Pal2 to reverse w as
a single, non-iterative step, then we would calculate that Pal2 had exact running time 2 + n. This sort of
relativity of computational properties on the details of regimentation makes it difficult to construct a purely
formal argument for or against the distinctness of procedures that were initially presented informally. In
the sequel I will thus mostly treat Pal1 and Pal2 as if they were introduced by (3.7) and (3.8).
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Thesis suggest that T is already rich enough to contain at least one intuitively acceptable

representative of every effective procedure. And since this class also has the advantages of

being simple to define and mathematically streamlined, it will be convenient to start out

by examining what happens when we attempt to implement Pal1 and Pal2 relative to T.

Before we may begin in earnest, it will be useful recall the definition of a Turing machine:

Definition 3.3.1. A Turing machine is a tuple T = 〈K,Σ, δ, s, h〉 such that

i) K ⊂ N is a finite set;

ii) Σ is a finite set of symbols;

iii) s, h ∈ K;

iv) δ : K × Σ→ K × (Σ ∪ {I,J}).

The members of K are the states of T with s, h ∈ K respectively identified as the start

and halt state. Σ is known as the alphabet of T and can be comprised of any finite set of

symbols which can be written on its tape. δ is known as the transition function of T and

maps pairs of states and symbols into actions – i.e., symbols to be marked on the tape at

the current head position or instructions to move the head right or left as denoted by I,J.

The class T which I will consider in this section and the next is defined to be the set of

Turing machines T with symbol sets Σ ⊆ {0, 1,−, ∗,#} where − will be used as the blank

symbol and ∗ and # as auxiliary delimiters. Following a convention proposed in [5], we can

display such machines as labeled graphs whose vertices correspond to the states in K and

whose edges correspond to pairs of symbols and actions. Formally, if T = 〈K,Σ, δ, s, h〉, the

corresponding graph consists of the set of vertices K such that there is an edge between

ki, kj ∈ K labeled 〈σ, α〉 (for σ ∈ Σ, α ∈ Σ ∪ {I,J}) just in case δ(ki, σ) = 〈kj , α〉.

Now consider the two machines S1 and U1 depicted in Figures 3.1 and 3.2 which are

respectively intended to implement the procedures Pal1 and Pal2. While there is no

apparent sense in which these machines can be claimed to be the unique “canonical” repre-

sentations of Pal1 and Pal2 as Turing machines, a strong heuristic case can be presented

that S1 implements Pal1 and that U1 implements Pal2. Such observations are premised

on the observation that while in neither case is there a one-to-one correspondence between

the stages occurring in executions of Pal1 or Pal2 and those executed by S1 and U1 on the
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Figure 3.1: The machine S1 depicted as a graph. When executed with input string w, S1

indicates that it accepts the input by halting in the state label ACCEPT – i.e. 10 – and
that it rejects the input by halting in the state labeled REJECT – i.e. 9. These correspond
respectively to output yes and no to the decision question w ∈ Lpal.

same input, such a correspondence can be set up between individual stages of the former

and sequences of steps of the latter.6

This fact is best appreciated by considering the execution of Pal1 and of S1 on a

particular string w ∈ {0, 1}∗ – say w = 1001. Here we face the initial problem that

since Pal1 has been presented as an informal procedure, no precise definition of what it

means to execute it on a particular input has yet been given. But based on its pseudocode

specification, it is reasonable to describe its mode of operation on the string 1001 as follows:

6The term “step” is typically used to denote both an individual instruction in a pseudocode or formal
program and the class of occasions on which such an instruction is carried out in the course of executing
the procedure denoted by such a listing. In order to distinguish the two usages in the case of informal
procedures like Pal1 and Pal2, I will henceforth use the term stage to denote an execution of a single
step understood in the former sense. Since no such confusion arises for non-linguistic means of specifying
procedures I will also reserve step to denote transitions (as formally defined below) in the execution of a
particular Turing machine or other form of implementation.
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Figure 3.2: The machine U1 depicted as a graph.

Stage 1: Executing Step 1, Pal1 assigns the value 4 to the variable n (corresponding to

the length of w).

Stage 2 : Executing Step 2, Pal1 assigns the value 1 to the loop variable i. It then

compares the values a1 = 1 and an−(i−1) = a4 = 1. Since they are equal, it continues.

Stage 3: Executing Step 2, Pal1 assigns the value 2 to the loop variable i. It then

compares the values a2 = 0 and an−(i−1) = a3 = 0. Since they are equal, it continues.

Stage 4: Executing Step 2, since i = 2 = dn/2e, Pal1 breaks out of the loop and

continues with Step 3.

Stage 5: Executing Step 3, Pal1 outputs yes and halts.

When started on other an otherwise blank tape with its head at the leftmost symbol of

the string, the operation of S1 on w can be described in a similar manner:7

7It is conventional to denote Turing machine states by natural numbers, and we are considering machines
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Step 1: Beginning in its starting state 0, S1 reads the first symbol (a 1) of w, stores

this fact in its state by entering state 1 (as opposed to state 2, which it would have

entered had it been reading a 0) and writes over this symbol with a −.

Step 2: In state 1, S1 reads a −, moves its head one square to the right, and enters state

3.

Steps 3 - 6: In state 3, S1 moves its head rightward successively reading 0 or 1 until it

reaches a − symbol, signifying that it has moved past the right end of the current

tape contents. At this point, it moves its head leftward one square so that it is reading

the current rightmost non-blank symbol and enters state 5.

Step 7: In state 5, S1 does one of three things according to whether it is currently

reading a 1, 0 or −: i) if it is currently reading a 1, it overwrites this symbol with a −

and enters state 7 (this corresponds to the situation in which the current rightmost

symbol of the string matches the previous rightmost symbol which S1 has overwritten

and stored its state, in which case the computation should be continued); ii) if it is

currently reading a 0, it enters state 9 (this corresponds to the situation in which the

current rightmost symbol of the string does not match the previous leftmost symbol

which S1 has stored its state, in which the computation can be halted and the reject

state 9 entered); iii) if it is reading a −, S1 enters state 10 (this corresponds to the

situation in which w was of odd length and there is thus no symbol to match against

the one overwritten in Step 1, meaning that all other symbols have been successfully

matched and the string can be should be rejected by entering state 9). Since in the

case under consideration, S1 is reading a 1, it operates as per i).

Step 8: In state 7, S1 reads a # (corresponding to the symbol with which it has just

overwritten the last 1 of w) and enters state 8.

Steps 9-11: In state 8, S1 moves its head leftward while successively reading 0 or 1 until

it reaches a − symbol, signifying that it has moved past the left end of the current

over an alphabet which contains numerals. In order to distinguish between states and symbols, I will
henceforth adopt the convention of denoting the former as numeral with underscores (as in 0 and 1).
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tape contents. At this point, it moves its head rightward one square so that its head

is reading the current leftmost non-blank symbol and re-enters state 0.

Step 11: This time in state 0, S1 is reading a 0. Analogously to Step 1, it stores this

symbol in its state, this time by entering state 2 and overwrites it with a −.

Step 12: Analogous to Step 2, in state 2 S1 reads a − and moves its head one square to

the right and enters state 4.

Steps 13-15: Analogous to Steps 3-6, S1 moves its head to right (this time reading 0)

until it reaches a − symbol. At this point it moves its head leftward one square so

that it is reading the current rightmost non-blank symbol and enters state 6.

Step 16: Analogous to Step 7, S1 compares the currently scanned symbol (in this, case

a 0) with that stored in its state (in this case, also a 0). Since they match, S1 moves

into 7.

Step 17: In state 7, S1 reads a − (corresponding to the symbol with which it has just

overwritten the last 1 of w) and enters state 8.

Step 18: Analogous to Steps 9-11, in state 8, S1 moves its head rightward and enters 0

since it is already scanning a −.

Step 19: In state 0, since it reading a −, S1 moves into the accept 0 and halts.

On the basis of this example, we can see that while there cannot be an exact correlation

of the steps taken by S1 on a given input and the stages of Pal1, there are obvious

similarities in, as we might put it informally, “how they work.” One way to begin making

this observation precise is to note that S1 and Pal1 make the same sequence of comparisons

in determining whether w is a palindrome – i.e., they work inwards by comparing elements

at the ends of w, breaking out of this loop and rejecting as soon as a mismatch is found and

accepting only if the loop is carried out until all bits have been compared. This observation

can be used to give a correspondence between the stages of Pal1 and sequences of steps

of S1.
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We must first note that since S1 accesses bits of w by moving its head over them as

opposed to by index, it never explicitly requires access to the length of w. Thus S1 has

no explicit analogue to Stage 1 of Pal1. But it should be evident that the sequence of

steps comprised by transitions between states 0, 1, 3, 5, 7, 8 and 0, 2, 4, 6, 7, 8 are respectively

responsible for carrying out iterations of the loop expressed by Step 2 of Pal1 and carried

out over the course of Stages 2 and 3 in its execution. In particular, the steps corresponding

to the transitions from states 5 and 6 to state 7 are respectively responsible for performing

the comparison of bits performed in the antecedent of the condition in the body of this

loop. And the other states in these sequences perform a task analogous to arithmetically

updating the index i which controls its operation in a sense which may be formalized by

considering the position of S1’s head on its tape. Finally, the transition to the accepting

state 10 from 0 in the execution of S1 plays a role analogous to passing from Step 2 to Step

3 in the execution of Pal1. Although the relationships just exhibited between sequences of

S1 and stages in the executions of Pal1 only hold for their executions on the input 1001,

it should be clear that not only can an analogous set of correlations between stages and

sequence of steps be set up for arbitrary inputs w ∈ {0, 1}∗, but also that such a correlation

is parameterized uniformly in w.

It should also be clear that a similar, albeit somewhat more complex, characterization

of the relationship between the operation of Pal2 and that of U1 may also be given. For

instance, it can be seen that states 0-11 are responsible for constructing the string wR to

the right of w on U1’s tape. This is achieved by first moving to the right end of w (state 0)

and then copying bits from the beginning of the string wR (states 1-11) using the auxiliary

symbol # to keep track of its position in the former string. The bits of w and wR are then

compared from the left, bit by bit, rejecting as soon as a mismatch is found and accepting

only when all bits have been successfully compared (states 13-23). In any given execution

of U1 and Pal1, sequences of states which progress through 1-11 may be correlated with

the stages corresponding to the execution of Step 2 in Pal2. And similarly, sequences of

states which progress through the 13-23 may be correlated with the stages corresponding

to the execution of Step 3 in Pal2.
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Relative to the informal notion of implementation discussed in chapter 3, these obser-

vations suffice to demonstrate that S1 implements Pal1 and U1 implements Pal2. For on

the one hand, these machines bear exactly the sort of step-by-step operational affinities

to Pal1 and Pal2 which was described in Chapter 2.3 as forming the basis of our intu-

itions about the implementation relation. And on the other, both machines are sufficiently

straightforward in their design that it is reasonable to assume that they would have been

constructed by a theorist who set out to implement Pal1 and Pal2 as Turing machines.

And for similar reasons in each case, it is also reasonable to conclude that S1 ought not to

be counted as implementing Pal2 and U2 ought not to be counted as implementing Pal1.

It is, of course, one thing to assert that these facts hold in virtue of the existence (or,

respectively, lack of existence) of the sort of informal operational affinities just illustrated,

and quite another to provide a formal characterization of a relation which S1 bears to Pal1

and which U1 bears to Pal2 in virtue of which these machines implement these algorithms.

Note, however, that it is one of the potential virtues of the abstractionist programme that

such an account does not need to provided. For according to the abstractionist, Pal1 and

Pal2 should not be thought of as “given” directly. The abstractionist rather holds that

we ought to think of Pal1 precisely as the algorithm implemented by S1 and Pal2 as the

algorithm implemented by U1.
8

But although an abstractionist may thus avoid having to characterize the relationship

between implementations explicitly, we have seen that he must still do so implicitly by

providing a definition of ↔ which characterizes what S1 and U1 have in common with

8We might also think that such a theorist can also start out by claiming that Pal1 and Pal2 can be
thought of as corresponding to the sorts of thing which are expressed by pseudocode specifications such
as (3.7) or (3.8). But I argued in Chapter 2.4 that in order to work out this alternative, we must assume
that we have a prior informal understanding of what it means to carry out a procedure by interpreting
the instructions appearing in such specifications. This problem may be circumvented by presenting formal
programs Π1 and Π2 which are also claimed to express these algorithms in a manner which more directly
reflects their structure than S1 or U1. As I argued there, however, programs do not express algorithms
intrinsically (i.e., in virtue of some prior notion of “procedural meaning” which can be assigned to their
constituents) but do so (if at all) in virtue of an operational semantics for the language over which they are
defined. Relative to such a semantics, Π1 and Π2 would determine machines M1 and M2 drawn from some
model of computation M. If Π1 and Π2 were constructed over an appropriately “high-level” programming
language, it might be that M1 and M2 differ from S1 and U1 in some manner which made them appear
better suited to implementing Pal1 and Pal2. For instance, they might employ mathematical operations
which more closely resembled those appearing in (3.7) and (3.8). Note, however, that regardless of the
individual features of these machines, the general problem of accounting for their relationship with Pal1

and Pal2 will still be the same as that which we face in with respect to S1 and U1.
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other machines we also take to be implementations of Pal1 and Pal2. The first fixed

points of data we have to constrain such a definition follows from the conclusion that Pal1

and Pal2 are distinct algorithms. For note that once we have agreed to the statements

which would be formalized in the language discussed in the prior Section as Pal1 6= Pal2

and S1 = imp(Pal1) and U1 = imp(Pal2), it follows from (BP) that ↔ must be defined

so that it does not hold between S1 and U1 – i.e. so that S1 =U1.

But negative data of this sort compromise only one class of constraints to which a

proponent of abstractionism must be sensitive in formulating an extensionally adequate

definition of ↔ . In order to provide a definition which is even minimally responsive to our

intuitions about procedural identity, he must also consider the classes of Turing machines

S2, S3, . . . and U2, U3, . . . which we would also intuitively accept as implementing Pal1 and

Pal2. And for these classes he would have to show that for each pair Si, Uj we have Si =Uj

and that for each pair Si, Sj and Ui, Uj that Si↔Sj and Ui↔Uj.

In order to see that Pal1 and Pal2 have open classes of implementations of this sort,

it suffices to observe that the machines derived by making certain trivial modifications

of either S1 or U1 presumably bear equal title to serve as implementations of these algo-

rithms. For instance, even the most cursory reflection on our actual computational prac-

tices suggests that we will generally accept two Turing machines T = 〈K,Σ, δ, s, h〉 and

T ′ = 〈K ′,Σ′, δ′, s′, h′〉 as “essentially the same” if they differ only in the labeling of states

– i.e. if K = K ′, Σ = Σ′ and there exists a permutation ρ : K → K such that ρ(s) = s′,

ρ(h) = h′ and for all k1, k2 ∈ K, δ(k1, σ) = 〈k2, α〉 if and only if δ′(ρ(k1), σ) = 〈ρ(k2), α〉.

It thus follows that ↔ should be defined so that it holds between any two machines T , T ′

which are related in this sense.

It should not be particularly surprising that there exist a number of similar transfor-

mations of Turing machines which preserve, at least intuitively, the algorithm which they

implement. For instance, T ′ might be derived from T by adding or deleting states or

transitions which (provably) are not accessed for any input. Similarly, T ′ could be derived

from from T by adding or deleting sequences of transitions which (provably) counteract one

another (such as moving the head left and then immediately moving to the right, writing

over a symbol and immediately writing it back, etc.). And additionally T might be derived
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Figure 3.3: The machines S2, S3 and S4 depicted as graphs.

from T ′ by splitting (or combining) the function performed by one (or two) state(s) and its

(their) incoming and outgoing transitions into two (one) state(s).9 Examples of machines

S2, S3 and S4 derived from S1 in each of these ways are given in Figure 3.3. Since the

transformations applied to S1 to yield each of these machines is straightforward, it should

not also not be surprising that in each case an argument similar to the ones above can be

constructed leading to the conclusion that each of S2, S3 and S4 implement Pal1. And

on this basis, it also seems as if we ought to accept as additional data constraining the

definition of ↔ that imp(S2) = Pal1, imp(S3) = Pal1 and imp(S4) = Pal1.

9These observations recapitulate a claim made by Kreisel [69] which was discussed briefly in Chapter 2.
Recall that in arguing for a form of Extended Church’s Thesis, Kreisel claims that Turing’s work establishes
that “to each mechanical rule or algorithm is assigned a more or less specific programme, modulo trivial

conversions, which can be seen to define the same computation process as the rule” (my italics). Two
questions that arise in the current context (and which are not even broached by Kreisel) are as follows: 1)
is it possible to formulate a structural criterion which distinguishes trivial from non-trivial conversions of
machines?; and 2) given machines T and T ′, can we effectively determine whether T ′ has been derived from
such a conversion? As we will shortly see, I believe that both questions should be answered in the negative.
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Before investigating further how ↔ can be defined so as to accommodate these facts, it

will also be useful to consider a different class of implementations of Pal1 and Pal2 which

cannot be seen as arising through straightforward modifications of S1 and U1. Consider,

for instance, the machine S5 depicted in Figure 3.4. As the reader is invited to verify, if we

suppose that the current non-blank contents of the tape are a1 . . . an, then the operation

of this machine may be described as follows:

1) Over the course of transitions mediated by states 0 - 14, a1 is “pushed” leftward by

swapping its value successively with that of each symbol to its right.

2) When the right end of the non-blank portion of the tape is reached (as signaled by the

fact that the head is reading a −), S5 moves its head one square to the left, entering

state 15.

3) S5 then decides whether the currently scanned symbol (which will correspond to a1)

is a 0 – in which case it is overwritten with a − and state 16 is entered – or a 1 – in

which case it also overwritten with a − and state 17 is entered.

4) The head is moved leftward again and the symbol just “remembered” in the state is

compared over the course of the transition from states 16− 18 (or 17− 19) or with the

currently scanned symbol (which now corresponds to an).

5) If a1 and an disagree, then S5 rejects by entering state 23.

6) If they agree, an is overwritten with a − and S5’s head is returned to the leftmost

non-blank symbol (over the course of transitions mediated by states 20 and 21) and

the process is started over again for the string a2 . . . an−1.

It should be evident that the same sort of heuristic case given above to argue that S1 is

an implementation of Pal1 can also be used to argue that S5 implements this procedure.

For note that S5 may also be described as “working inwards” on w ≡ a1 . . . an in the sense

that it makes comparisons in the order a1
?
= an, a2

?
= an−1, . . . , abn/2c

?
= abn/2c+1. And

since this is the same order in which symbols are compared during the executions of Pal1

it is possible to set up the same sort of correlations between stages in operation of Pal1

and sequences of steps in the operation of S5 on the same input.

There is, of course, a clear difference in how we might describe the operation of S1 and

S5 from the perspective of Turing machines. For note that S1 stores the contents of the



205

Figure 3.4: The machines S5 depicted as a graph.

current leftmost symbol ai in its state by selectively entering either state 1 or 2 and then

moving to the right end of the string. But in order to achieve what from the outside we

would describe as the same function, S5 transports this symbol to the right end of the tape

and compares it directly with an−(i−1). These different operations clearly require different

sorts of implementations in the sense of specific Turing machine configurations. And for

this reason, there is no apparent sense in which S5 can be viewed as a “trivial” variant of

S1 (or vice versa).

We may thus ask whether the existence of “machine level” differences of this sort ought

to influence our decision to view either of S1 or S5 as implementations of Pal1. To see that

they should not, it is sufficient to observe that although our initial specification of Pal1

tells us that during the i + 1st stage of the execution of this procedure, symbols ai−1 and

an−(i−1) are compared, it does not tell us anything about how this comparison is transacted.

In particular, the pseudocode specification (3.7) does not tell us if such comparisons are to

be made “directly” (i.e. by accessing ai−1 and an−(i−1) by index) or in some other manner
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Figure 3.5: The machines U2 depicted as a graph.

which is itself procedurally mediated. And thus there is no principled basis on which one

might claim that the mechanism employed by one of S1 or S5 to achieve this purpose is a

more faithful or transparent implementation of Step 2 of Pal1 than that employed by the

other.

As one might expect, it is also possible to construct a machine U2 which bears a similar

relationship to U1 as S5 does to S1. Such a machine is depicted in Figure 3.5. Although

the details are more involved, an account similar to that given in the preceding paragraphs

can be told about the relationship between U2 and Pal2. Again, the reader is invited to

investigate this for himself, but the high points are as follows: 1) over the course of the

transitions mediated by states 0 - 16, U2 makes a copy w′ of w to its right on the tape using

the auxiliary symbol # as a divider to keep track of its work; 2) during the transitions

mediated by states 21 - 52, U2 reverses w′ so as to obtain a string w′′ which equal is to wR

using the auxiliary symbol ∗ as a divider; and 3) during the transitions mediated by states

53 - 64, U1 compares w and w′′ bit by bit from left to right, rejecting as soon as a mismatch
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is found and accepting only after all bits have been compared without finding a mismatch.

Although U2 looks a good deal more complicated than U1, it may again be argued that

it is an equally faithful implementation of Pal2. In this case, the salient difference between

the machines is how they perform the function specified by Step 2 of Pal2 – i.e., For i = 1

to n { Let bi = an−(i−1) }. In the case of U1, this is achieved by copying bits from the

right end of w to the left end of a new string w′, an arrangement which directly yields

w′ ≡ wR. In the case of U2, it is achieved by i) copying w bit by bit to form a new string

w′ immediately to its right, and then ii) reversing the bits of w′ to yield a string w′′ ≡ wR.

Clearly both subprocedures achieve the intended result of Step 2, i.e., that of producing a

string b1 . . . bn ≡ an−(i−1) . . . a1 in another location which can be compared with a1 . . . an

. The operational difference between them thus appear to be implementation-dependent.

Consequently, there again appears to be no way of arguing that U1 is an implementation of

Pal2 which does not also function to show that U2 is an implementation of this procedure

and conversely.

We can now collect together the constraints which the examples surveyed thus far place

on the definition of ↔ . The foregoing discussion has been aimed at establishing the

following “positive” facts:

(3.9) i) Pal1 and Pal2 are distinct algorithms. Thus for no machine T can we have

imp(T ) = Pal1 and imp(T ) = Pal2.

ii) For i ∈ {1, 2, 3, 4, 5}, imp(Si) = Pal1.

iii) For i ∈ {1, 2}, imp(Ui) = Pal2.

From this it follows that if an a algorithmic realist wishes to identify Pal1 and Pal2 with

mathematical objects via (BP) in the manner described in Section 1, the definition of ↔

which he proposes must satisfy the following “positive” requirements

(3.10) i) For all i, j ∈ {1, 2, 3, 4, 5}, Si↔Sj.

ii) U1↔U2,

as well as the following “negative” requirement

(3.11) For all i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2}, Si =Uj .
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Informally described, requirements (3.10i,ii) tells us that the definition of ↔ must

be sufficiently broad so as to allow Turing machines which implement certain portions

of Pal1 and Pal2 in different ways to bisimulate one another. As one might guess, this

constraint is particularly significant with respect to the need to accommodate S1↔S5 since

the operation of these machines is based on different methods for making comparisons at

opposite ends of a string. Similar remarks apply to the relationship between U1 and U2

with respect to methods of reversing strings. Requirements (3.10i,ii) thus appear to lobby

for a definition of bisimulation which allows machines which operate quite differently from

one another in a step-by-step sense to still bisimulate one another.

But in adopting a definition which can accommodate these sorts of constraints, there is

an obvious risk of defining ↔ so broadly that it will hold between implementations which

it should not. In particular, in defining this relation so that it can link machines which

differ in structure as radically as S1 and S5 or U1 and U2 we run the risk of sanctioning

“unintended” bisimulations – i.e. pairs of machines like S1 and U1 which we would not

informally accept as implementing the same algorithm. The necessity of defining ↔ so

that it satisfies the negative requirements summarized in (3.11) thus constitutes another

sort of constraint on what should be counted as an extensionally adequate definition of

bisimulation.

Any definition of ↔ which satisfies even these minimal standards of extensional ade-

quacy must thus balance factors which militate for a “coarse grained” equivalence relation

over implementations with those which militate for a “fine grained” one. The danger, of

course, is that it will turn out that there is no stable middle ground in the sense that

any reasonable definition of bisimulation will turn out to violate either one of the positive

constraints (by virtue of being too narrow) or one of the positive ones (by virtue of being

too broad). It will be my ultimate contention that is this not only how matters work out

in the particular case of Pal1 or Pal2, but also that this situation is typical even when we

consider more sophisticated algorithms and more sophisticated classes of implementation

relative which we might attempt to define them.

But before we can reach a position where it is possible to argue for either conclusion

directly, much more needs to be said about what should count as an intensionally adequate
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definition of bisimulation. And in this regard, it seems that we have little choice but

to begin by directly consulting our intuitions about what it means for particular pairs of

implementations to be computationally equivalent to one another. For note that since there

appears to be no means of directly fixing the class of machines which we would intuitively

accept as implementing a given algorithm A, it will not suffice to start out by attempting

to define ↔ simply as the relation which holds between the machines in such a class.

Rather we must seek to extrapolate an abstract characterization of such a relation which

by examining individual examples. And while I will ultimately argue that there can be no

stable end point to such an inquiry, we are now at least in a good position to scout out

possible alternatives.

3.4 Defining bisimulation

3.4.1 On bisimulation

In attempting to define ↔ over T so as to account for the positive constraints (3.10)

as well as the negative constraints (3.11), we might start out by asking whether we can

recognize any obvious invariants in the structures of the machines comprising the class

T 1 = {S1, S2, S3, S4, S5} which distinguish them from those in the class T 2 = {U1, U2}.

For instance, since S2, S3 and S4 were all introduced as variants of S1, one might initially

think that it is possible to do this by simply enumerating the allowable transformations

among members of T which preserve various “local” relationships among their states. But

even a cursory examination of the formal properties of T demonstrates that this approach

is futile. For on the one hand, our intuitions seem to provide no clear answer to the host

of technical questions which arise when we attempt to precisely specify the relationships

which, say, S2, S3 and S4 bear to S1.
10And on the other, many of the questions about

the relationships between machines which can be taken to formalize basic intuitions are
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formally undecidable.11

There is, however, an even greater informal obstacle to accounting for the full range of

positive bisimulation relationships exhibited even in (3.10) by directly cataloging allowable

“algorithm preserving” structural transformations between machines. Note in particular

that not only was S5 not introduced as deriving from such a transformation from S1, but

it seems difficult to imagine how even a sequence of transformations of the sort considered

above could lead from one machine to the other. For recall that S5 can be informally

described as implementing an intensionally distinct method for performing one of the basic

operations in terms of which Pal1 was initially specified. And for this reason alone, it

also seems doubtful that we can ever hope to account for the precise relationship which

the operation of this machine bears to that of S1 in terms of localized relationships among

states. Also recall that the goal of the algorithmic realist is to define ↔ so that the

machine in T = T 1 ∪ T 2 satisfies (3.10) and (3.11), but also so that this relation tracks

our intuitions about algorithmic identity across all members of T. And since all of the

suggestions considered thus far are specifically tied to the machines in the former class, it

therefore seems that a more general methodology is called for.

There is, however, another significant set source of intuitions to which we can turn

in attempting to define ↔ . For recall that in order to even define the classes T 1 and

T 2, a positive account had to be given of why the various machines they contain should

11Consider, for instance, the relationship between machines S1 and S4. Recall that when S1 reaches the
end of its input string, it overwrites the last symbol and then moves into state 7, regardless of whether this
symbol was a 0 or a 1 and then moves left enters state 8. On the other hand, when S4 overwrites the last
symbol of its input, it moves into 11 if this symbol was a 1 and into 12 if it was a 0, before moving into
the state s8. We might informally describe this as an instance in which s7 of S1 had been “split” between
the s11 and s12 of S4. But in attempting to make this observation precise, we are forced to ask a variety of
additional questions such as the following: what does it mean to say that the “computational function” of
one state is distributed among several? how many states are allowable as the product of such a splitting?
must the computational state entered after such a splitting be identical to its un-split counterpart? Although
it is possible to answer these questions in a manner which fits the needs of particular examples, it seems
doubtful that there is a means of doing so which non-stipulatively generalizes to even readily foreseen cases.

12This includes, for instance, the question of determining, given a Turing machine T and one of its states
k, whether there exists an input string w such that k is accessed by T during its computation on a given
input w. It also includes the question of given two machines T and T ′ containing initial states s and s′

whether for all inputs u, the tape contents of T after executing transitions between states k1 . . . kn will be
the same as that of T ′ after executing the transitions between states k′1 . . . k

′
n′ . Note that specific instances

of these questions which must be answered in order to conclude that S2 is derived from S1 by the addition
of “dummy” states which are never accessed, or whether S3 is derived from S1 by states which give rise to
mutually counteracting transitions.
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respectively be taken to implement either Pal1 or Pal2. The account provided above

was based on the observation that in the case of each of the machines in these classes it

was possible to correlate sequences of steps in their execution with individual stages in the

operation of Pal1 or Pal2 which we would informally characterizer as playing the same

functional role in the operation of the algorithm as a whole.

This observation itself is not immediately useful in helping us define ↔ over T because

it relates structural features of the machines in, say, T 1 with those of Pal1 instead of

with one another. In addition to this, it is also unclear how (or even if) we may allowably

formalize the operation of algorithms which, like Pal1, have been specified informally in

a manner that allows us to non-circularly identify the “functional role” of their stages.

However, recall that the abstractionist’s background view is that algorithms are not given

to us directly (e.g. by informal linguistic descriptions) but rather as the denotation of

expressions of the form “the algorithm implemented by M” where M is some explicitly

defined implementation.

On this basis, one might reasonably conjecture that it was possible to use the sorts

of informal operational affinities between the members of Turing machines and algorithms

which were used to argue for the relationships summarized in (3.10) to define a relation

which held directly between the members of T . For essentially the same reasons explored

in Chapter 2.4, this observation provides a background motivation for attempting to take

↔ to be some form of inter-simulation relation between Turing machines. To a first ap-

proximation, such a relation should relate T1, T2 ∈ T just in case there exists a relation S

linking the states of T1 and T2 such that if S relates states µ and ν, any transition between

states µ and µ′ in T1 is mirrored by a transition between states ν and ν ′ of T2 such that S

relates ν and ν ′, and conversely for transitions of T2 with respect to T1.

An initial definition of bisimulation was given in Chapter 2 which was meant to capture

these intuitions relative to a very general class of computational models I referred to as

transition systems. I will argue in Chapters 4 and 5 that all models of computation can be

assimilated to this definition, albeit with varying degrees of transparency and mathemat-

ical naturalness. And since it turns out to be relatively straightforward to recast Turing

machines as transitions systems, it will be useful to explicitly fix a means of doing so that
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we may give a definition of bisimulation for T which generalizes on our previous definition.

To this end, I will repeat here the definition of (deterministic) transition system from

Chapter 2.3.

Definition 3.4.1. A transition system M is a septuple 〈X,Y, St,∆,H, in, out〉 whose com-

ponents satisfy the following properties:

i) X and Y are sets respectively known as the input and output sets of M

ii) St is a finite or infinite set consisting of the states of M ;

iii) in : X → Σ is the input function of M ;

iv) ∆ : St→ St is the transition function of M ;

v) H ⊆ St is the set of halting states of M ;

vi) out : St→ Y is the output function of M

Recall that relative to this definition we defined the execution of M on x ∈ X to be the

finite or infinite σ1(x), σ2(x), . . . defined by σ1(x) = in(x) and σi+1(x) = δA(σi(x)) if this

value is defined and σi+1(x) = σi(x) otherwise. I will denote this sequence by ~σ(x), which

will be finite or infinite depending on whether M halts on x. We may also define lenA(x)

to be k + 1 where k is least such that δM (σk(x)) = σk(x) and is undefined if such a k

does not exist. And finally, we defined the function computed by M on X to be given by

AppM (x) =df out(σ(x)lenM (x)) if lenM (x) is defined and undefined otherwise.

Comparing (3.4.1) with the standard definition of Turing machine, it should be clear

how individual Turing machines can be recharacterized as transition systems. In particular,

given any machine T ∈ T which we wish to view as a decider for the language L as follows,

we can define the transition system MT via the following definition:

Definition 3.4.2. Given a machine T = 〈K,Σ, δ, s, h〉, and a language L ⊆ {0, 1}∗ we

define MT = 〈XT , YT , StT ,∆T ,HT , inT , outT 〉 as follows:

i) XT = {0, 1}∗;

ii) YT = {yes, no};

iii) StT = {〈k, x, y〉 : x, y ∈ Σω and k ∈ K};

iv) ∆T = {〈µ, d(µ)〉 : µ ∈ StT } where if µ = 〈k, x, y〉 for x ≡ ax′ and y ≡ by′ for a, b ∈ Σ,
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x′, y′ ∈ Σω and δ(k1, b) = 〈k2, α〉 then d(µ) =































〈k2, x, cy
′〉 if α = c

〈k2, b · a · x
′, y′〉 if α =I

〈k2, x
′, a · b · y′〉 if α =J

v) HT = {〈h, x, y〉 : x, y ∈ Σω};

vi) inT (w) = 〈s, (−)ω, w(−)ω〉 where w ∈ {0, 1}∗ and (−)ω denotes an infinite sequence of

blank symbols;

vii) outT (〈k, u, v〉) = yes if k = h and is labeled yes and outT (〈k, u, v〉) = no if k = h and

is labeled no.

Several points should be flagged about this definition. First note that the class of states

StT of MT are taken to be tuples of the form µ = 〈k, x, y〉 for k ∈ K and x, y ∈ Σω. These

structures are thus what are sometimes referred to as Turing machine configurations – i.e.,

complete temporal cross sections of a machine’s state including a specification of its current

state (given by k), the contents of its infinite two-way tape (given by its the infinite strings

x and y), and its head position. The former part is encoded directly by the first component

of µ, while the latter two parts are encoded indirectly in the second and third components

of µ subject to the following conventions: 1) x corresponds to the contents of T ’s tape

properly to the left of its head read in reverse order, i.e., such that the first symbol of x

is directly to the left of the head and its last symbol is the leftmost non-blank symbol on

the tape; 2) if y ≡ by′, then b ∈ Σ is the symbol currently scanned by T ’s head and y′

corresponds to the tape contents properly to the right of T ’s head. For the most part, I

will continue to refer to the members of StT as transition system states, despite the clash

of names with the notion of Turing machine state (which encode neither head position or

tape contents). However, when there is potential for confusion, I will employ the terms

local state to denote a state of T (i.e., a member of K) and global state to denote a state

of MT (i.e., a member of StT ). I will also continue to employ the symbols 0, 1, . . . (possibly

with subscripts indicating the machine in which they occur) to denote local states and use

variables µ, ν, . . . to refer to the global states.

Note that as defined by Definition 3.2, the transition system MT associated with any

Turing machine T will have infinitely many global states µ, each of which will correspond
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to an infinite structure. But the course of execution of MT is still finitely determined in

the sense that the value of the transition function ∆T applied to µ is determined by a

finite amount of “local” information and effects only a finite “local” change of state in

the following sense: for all states µ1 = 〈k, a1x1, by1〉, µ2 = 〈k, a2x1, by2〉, if there exist

µ3 = 〈j, a3x3, b3y3〉 and µ4 = 〈l, a4x4, b4y4〉 such that 〈µ1, µ3〉, 〈µ2, µ4〉 ∈ ∆T , then j = l and

either a3 = a4 or b3 = b4. Also recall that according to our convention for interpreting

machines T ∈ T as deciders for languages over strings w ∈ {0, 1}∗, T will always be started

with a state of the form 〈s, (−)ω, w · (0)ω〉. Thus at any point during its computation, it

will be in a state of the form 〈k, (−)ω · uR, v · (−)ω〉 for finite string u, v such that uv is the

contents of its tape from the leftmost to its rightmost non-blank symbol. As a notational

expedient, we can thus represent the elements of St as strings of the form ukv for u, v ∈ Σ∗

(where the blank symbol may occur in either u or v) subject to the convention that the

head is assumed to be reading the first symbol of v, or if v = ε, the head is scanning a

blank symbol and all symbols to its right are also blank.

We may now also begin to refine the informal characterization of inter-simulation given

above so to provide a formal definition of what it means for two transition systems M1 and

M2 to be computationally equivalent. Recall that the idea such a definition is supposed to

formalize is that M1 and M2 ought to be held to be computationally equivalent (or more

generally to “work the same way”) just in case these systems have similar step-by-step

behavior for all inputs on which they operate. In the strictest sense, this can be taken to

mean that any state µ ∈ St must be correlated with a state in ν ∈ St which is claimed to be

equivalent and conversely, although we will consider several ways in which this requirement

might be relaxed below.

The formal notion of inter-simulability which I will employ to attempt to formalize

the sort of computational equivalence relation just described is a variant of the notion of

bisimulation which is a formal of structural equivalence applied in process algebra and

modal logic. In order to simplify notation, it will we useful to henceforth write ξ
i
−→ ξ′

to denote that 〈ξ, ξ′〉 ∈ ∆i (for i ∈ {1, 2}). A so-called bisimulation relation between two

transition systems M1 and M2 with same class of states St can be generally characterized

as a relation S ⊆ St× St which satisfies the two following properties:
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(3.12) a) If µ
1
−→ µ′ and µSν for some ν ∈ St, then there exists ν ′ ∈ St such that

ν
2
−→ ν ′ and νSν ′. And conversely, if ν

2
−→ ν ′ and µSν for some µ ∈ St, then

there exists a state µ′ ∈ St such that µ
1
−→ µ′.

b) There is an equivalence relation R ⊆ St× St whose definition is fixed

independently of M1 and M2 such that if µSν then the states µ and ν bear R

to one another.

I will call these requirements respectively the transitional and representational requirements

on a bisimulation relation. The transitional requirement may be seen as requiring that S

is large enough to ensure that all transitions M1 are mirrored by some transition in M2

and conversely, that all the transitions of M2 are mirrored by transitions of M1. The

representation requirement is most naturally understood relative to the assumption that

the non-relational properties of the states of M1 and M2 (i.e., those properties that the

states µ and ν possess in virtue of the definition of these classes as opposed to the transitions

in which they figure) encode information about the mathematical structures on which these

systems operate. In this case, the relation R should be formulated so that states µ and ν are

R-related just in case they correspond to the same intermediate step in an appropriately

abstract description of the executions of M1 and M2. (For instance, in the case of the

machines in T , we might attempt to define R so that µRν held just in case µ and ν

contained similar fragments of the initial string w.)

Although (3.12) goes some distance towards constraining the properties which our prior

investigations suggest that a definition of ↔ must possess in order to ensure that ↔ -related

transition systems can plausibly be taken to implement the algorithm, it remains for an

algorithmic realist to transform these conditions in a precise definition of bisimulation.

This is straightforward in the case of the transitional requirement which can be stated

more succinctly as consisting of the requirement that

(13a) ∀µ∀µ′∀ν[(µ
1
−→ µ′ ∧ µSν)→ ∃ν ′(µ′Sν ′ ∧ ν

2
−→ ν ′)]

This condition is often referred as the forth direction in a definition of bisimulation since

it expresses how transitions in M1 must be mirrored by transitions in M2. The symmetric

back condition may be expressed as
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(13b) ∀ν∀ν ′∀µ[(ν
2
−→ ν ′ ∧ µSν)→ ∃µ′(µ′Sν ′ ∧ µ

1
−→ µ′)]

a definition which is intended to reflects the fact that transitions in M2 should be mirrored

by transitions in M1.

Although we will find reasons to substantially modify (3.13a,b), these condition express

in as straightforward a form as possible the intuition that ↔ -related implementations

ought to operate similarly in the sense of making analogous transitions between statements

on all inputs. But it is difficult to find as straightforward a means of formalizing the

representational requirement. This is not surprising, since the definition of transition system

imposes no conditions on the form that the classes of states of such a system may take,

meaning that the sort of equivalence relation which is appropriate will vary at least with

the general class of transition systems from which M1 and M2 are drawn.

To illustrate this fact, note that in the most familiar settings in which the notion of

bisimulation is applied is that in which the transition systems in question correspond to

models M1 and M2 of propositional modal logic. In this case, the members of St can be

taken to correspond to valuations v and v′ on a common class A = {Ai : i ∈ N} of atomic

propositions. And in this setting, the relation R is commonly taken to be that of agreement

on A – i.e. R(v, v′) if and only if for all A ∈ A, v(A) = v′(A).13 However in most of the

cases which we want to study, the structures corresponding to states will be more complex.

One important tradition in theoretical computer science suggests that states of this sort

can be taken to be first-order structures for a fixed mathematical signature LM .14In this

setting, there are a variety of well known notions of structural equivalence which we might

take for R – e.g. isomorphism, first- or higher-order equivalence, n-ary back and forth
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equivalence, etc.

But as formalisms needed to describe computational states are largely orthogonal to

generalizations we wish to state about transition systems, it is also evident that none

of these well known “off the shelf” relations has the right properties to characterize the

classes of states which we will want to relate. Thus despite the fact that it would be highly

desirable for an algorithmic realist to be able to characterize this relation abstractly – i.e.

in a manner which does not rely on the details of the class of implementations from which

M1 and M2 are drawn – for the moment, I will leave R as a free parameter in the definition

of bisimulation which, for the record, I will fix as follows:

Definition 3.4.3. Let M1 and M2 be transitions systems defined as above and R an

equivalence relation over St× St. A relation S ⊆ St× St is said to be an R-bisimulation

between M1 and M2 just in case it satisfied the forth and back conditions (3.13a,b) and

if µSν then R(µ, ν). Additionally, M1 and M2 are said to be bisimilar just in case such a

relation exists.

Before returning to the question of how we can apply this definition to the class of

14In modal logic and process algebra there are many well known results which connect the bisimilarity
of transition system-like structures and various notions of “local” language equivalence. For instance if
M1 = 〈W1, R1, v1〉 and M2 = 〈W2, R2, v2〉 are models of propositional modal logic and S a bisimulation
linking w1 ∈W1 and w2 ∈ W2, then it can be shown that for all modal formals ϕ, M1, w1 |= ϕ iff M2, w2 |= ϕ.
More significantly, however, there is a partial converse to this result stating that if M1 and M2 are image

finite models (i.e. are such that all world in Wi bear Ri to at most finitely many other worlds for i ∈ {1, 2}),
if w1 ∈ W1 and w2 ∈ W2 agree on all modal formulas, then there is bisimulation linking them. See [8] and
[148] for references on this and a variety of other similar results linking bisimilarity to various forms of
state-based linguistic equivalence. Note that on the basis of such results it seem promising to approach the
problem of transition system equivalence by working backwards from a notion of linguistic indiscerniblity to
an appropriate form of structural equivalence. There are, however, two substantial obstacles to this approach
in the current context. First, note that implementations drawn from different models of computation will
most naturally be described using different languages, meaning that there is no model independent way of
selecting a “universal” language in which to describe the local properties of states. And second, note that
results allowing us to infer from linguistic equivalence to bisimilarity generally apply only to languages that
contain one or more modal operators. In the current context, the use of such operators would allow us
describe properties of states which pertain not only to their “intrinsic” structural properties, but also to
those of other states accessible via computational transitions. But in seeking to define R so that it bears
only states structural properties, it is exactly this sort of information we are seeking to exclude.

15This proposal is defend by by Gurevich [51]. Note, however, that say that the members of St are
LM -structures entails neither that they are models of a particular first-order theory or that these classes of
structures are even first-order definable. In fact, the second requirement will not be met in many common
cases where we wish to impose the requirement that the classes of states in question have finitely many
memory locations.
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implementations T under consideration, it will be useful to impose one other general re-

quirement on the sort of simulation relations in which we are interested. Note that our

current definition does not require that a bisimulation S linking transition systems M1

and M2 relate any particular pairs of their states. It is thus consistent with this definition

that a bisimulation relation may be empty, from which it follows that any pair of transition

systems will trivially be bisimilar. One way to avoid this problem is to require that S relate

all the initial states of M1 with the analogous initial states of M2. In order to do this in

a systematic manner, it will be useful to require that M1 and M2 have the same domain

X, meaning that their input functions in1 and in2 are respectively of types X → St and

X → St.16 In this case, we can define an initial bisimulation between M1 to be a relation

S ⊆ St× St such that for all x ∈ X, in1(x) S in2(x). In the sequel, I will assume that all

bisimulations in question are initial.

3.4.2 Refining the definition of bisimulation

To begin our assessment of how the general definition of bisimulation just outlined can

be adapted so as to apply to the machines in T , it will be useful to start out considering a

version of Definition 3.4.3 which is based on the strictest possible choice of representation

relation R. To this end, consider the relation which holds between Turing machine config-

urations µ and ν just in case the components of µ and ν other than that representing the

state are identical. I will denote this relation by ∼. Formally we have that if µ = u1k1v1

and ν = u2k2v2, µ ∼ ν if and only if and u1 = u2 and u2 = v2.

With a complete definition of ↔ finally in place, we can begin to assess how well

this relation fares with respect to satisfying the extensional adequacy requirements (3.10)

and (3.11). First recall that per (3.10i), an algorithmic realist needs it to turn out that

S1↔S2.
17 In order to see this, first note that S2 differs from S1 only in the presence of an

16While this does limit the domain to which the various definition of bisimulation which will be considered
below may be applied, it is important to keep in mind that the algorithmic realist’s interest in the notion
of bisimulation derives from its potential role in formulating a definition of algorithmic identity. A trivial
adequacy condition on such a definition is that identical algorithms A1 and A2 compute the same function,
say of type X → Y . From this it follows that any machines M1 and M2 which we might take to implement
A1 and A2 will also induce a function of type X → Y . There is thus no relevant loss in generality entailed
by restricting the definition of bisimulation so that bisimiliar implementations must have the same domain.

17Although strictly speaking bisimulations are defined over transition systems and not Turing machines,
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additional state 112 connected to 12. And it is easy to see that if S2 is started in any initial

state of the form in2(w), then it will never enter this state. Translating this observation

into transition system talk, we can see that for no initial state of the form ν1 = in2(x) will

there be a sequence of transitions ν1
2
−→ ν2

2
−→ . . .

2
−→ νn−1

2
−→ νn such that νn = u112v

for some strings u, v ∈ Σ∗. Since all configurations of this form are thus inaccessible in S2

from states in St2, it follows that there is no requirement that such states needs to be in

the range of an initial bisimulation S linking S1 and S2. Hence the trivial relation

S = {〈µ, ν〉 : µ = uk1v ∧ ν = uk2v ∧ k ∈ {0, . . . , 10}}

which simply omits state of the form u112v from the range of S will be an initial bisimulation

between S1 and S2.

Testing the adequacy of our baseline definition of bisimulation starts to become more

complicated when we consider the case of S1 and S3. Again, the algorithmic realist wishes to

formulate a definition of bisimulation so that S1↔S3. Like S2, S3 may be seen as deriving

from S1 through the addition of “inessential” states, this time in the sense that states 113

and 123 have the effect of immediately counteracting one another. For consider a case in

which both S1 and S3 are operating on a string of the form w ≡ 1u1. Having stored the

initial 1 in their state and moved their heads to the right of the tape, they will respectively

enter states of the form u511 and u531. But whereas S1 then overwrites the final 1 with a −

and then transitions immediately to a state of the form u7, S3 first overwrites this symbol

with a − and then, transitioning through states 113 and 123, successively overwrites the −

with a 0 and the 0 with a − before entering a state of the form u73. With respect to the

problem of deciding whether w is a palindrome, it seems reasonable to say that the same

computational function performed by S1 in course of performing a single transition of the

form u511
1
−→ u71 is performed by S3 by executing a sequence of transitions of the form

u531
3
−→ u113

3
−→ u1230

3
−→ u73.

On this basis, we can now see that S1 and S3 are not related by the definition of ↔

as it now stands. For note that we assume that any initial bisimulation S linking S1 and

we have seen that a given Turing machine uniquely induces a transition system. I will henceforth abuse
notation and write for Turing machines T, T ′ ∈ T T ↔T ′ to mean that MT ↔MT ′ where MT and MT ′ are
the transitions systems associated with T and T ′ in the sense described above.
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S3 must be such that u511 S u531.
18 But it then follows that since u511

1
−→ u7 is the

unique transitition emanating from states of the first form, then since u531
3
−→ u113 is the

unique transition emanating from u531, by (3.13a) we must have u71 S u113. But then

since u73
3
−→ u1230 is the unique transition of emanating from the former state in S3 and

u71
1
−→ u′81a (for u ≡ u′a, a ∈ {0, 1}) is the unique transition from the former state in

S1, it follows that we must have u′81a S u1230. But note that clearly these two states

cannot be linked by any relation satisfying the representation relation ∼ defined above as

they have different tape components. And from this it follows that S1↔S3 cannot hold

according to our current definition.

This is the first of several instances in which the need to accommodate the equivalence

of a given pair of machines T1 and T2 appear to necessitate the revision of our baseline

definition (3.4.3) of bisimulation. The general problem posed by such situations is that

isolated observation that M1 and M2 fail to fall under our current definition generally

provides only a partial indication of what form such a revision should take. In the current

case, for instance, it is possible to either revise the representation requirement as given by ∼

so as to allow µ S ν in cases where µ and ν differ in more than just their state component

or to modify one or both of the transitional requirements (3.13a,b). The decision as to

how to proceed in such situations is, of course, ultimately in the hands of a realist whose

job it is to show that the details of the abstractionist programme can be carried out by

defining an adequate definition of bisimulation. In arguing against the realist, it would thus

be rhetorically desirable to consider all possible revisions. But since this is obvious not a

feasible rhetorical strategy, I will proceed in each case by revising in the manner which

seems most favorable to the realist’s cause.

To this end, it seems reasonable to start out by attempting to formalize the suggestion

made two paragraphs back that we should view single transitions of the form u511
1
−→ u71

of S1 as mirroring sequences of transitions of the form u531
3
−→ u113

3
−→ u1230

3
−→ u73

18This follows by considering the execution of these machines on any input of the form w ≡
1a2 . . . an−11. For note that we must then have 01wS03w, from which it follows inductively that
11 − a2 . . . an−11S13 − a2 . . . an−11, 31a1 . . . an−11S33a1 . . . an−11, a131a2 . . . an−11Sa133a2 . . . an−11, . . .,
a1 . . . an−1131Sa1 . . . an−1133 and thus finally that a1 . . . an−1511Sa1 . . . an−1531. The fact this chain of
relations must obtain follows from the conditions (3.13a,b) and the fact that S1 and S3 are deterministic.
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of S3. To motivate this proposal more generally, note that even though in this case it

is tempting to view the latter sequence of transitions as a “computational detour” in the

operation of S3, there also will be situations in which single stages in the operation of an

informally described procedure like Pal1 will be carried out by a single transitions with

respect to one of its implementations but multiple transitions with respect to some other.

One way we can to accommodate this observation in a general setting is to relax (3.13a,b)

so that if µ
1
−→ µ′ in M1 and µSν for some state ν of M1, then the state mirroring µ′ in M2

need not be an immediate successor under
2
−→ of ν. We could, for instance, instead require

merely that there existed a stated ν ′ and sequence of intermediate states ν2, . . . , νn−1 such

that ν = ν1
2
−→ ν2

2
−→ . . .

2
−→ νn−1

2
−→ νn = ν ′ and µ′Sν ′.

The simplest way to accommodate this into a definition of bisimulation is simply to

revise the back and forth requirement replacing the transition relation
2
−→ in (3.13a) with

its transitive closure
2∗
−→ and the relation

1
−→ in (3.13b) with its transitive closure

1∗
−→. This

yields this following set of new transition requirements for our definition of bisimulation

(3.13c) ∀µ∀µ′∀ν[(µ
1
−→ µ′ ∧ µSν)→ ∃ν ′(µ′Sν ′ ∧ ν

2∗
−→ ν ′)]

(3.13d) ∀ν∀ν ′∀µ[(ν
2
−→ ν ′ ∧ µSν)→ ∃µ′(µ′Sν ′ ∧ µ

1∗
−→ µ′)]

According to this revised definition, it may readily be seen that S1↔S3. In particular, there

now exists an allowable simulation relation which S such that u511 S u53 and u71 S u73.

Note that this simulation simply omits the states of the form u′113 and u′123 from its range.

Such a simulation thus formalizes the intuition that we may regard S1 and S3 as step-by-

step equivalent in their operation if we think of the work performed by the transitions

u531
3
−→ u113

3
−→ u1230

3
−→ u73 in S3 as being performed by the transition u511

1
−→ u71

in S1.

It is fairly easy to see, however, that loosening the definition of ↔ in such a simple

manner will have several undesirable consequences. Perhaps the most serious of these is that

under this definition, the transitional requirement on a simulation relation becomes very

easy to satisfy. For let T1, T2 be any pair of machines which determine the same mapping

between classes of states. Then it follows that T1 and T2 will be bisimiliar regardless of our

choice of representation requirement, even if we continue to take R to be ∼. For let M1 and
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M2 be the transition systems based on T1 and T2 and such that the functions induced by

their operation on their statements of states is identical (modulo ∼). Now define S to be

the relation such that for all x ∈ X, in1(x)Sin2(x) and AppM1(in1(x)) S AppM2(in2(x)).

Since we also have in1(x) ∼ in2(x) and AppM1(in1(x)) ∼ AppM2(in2(x)) by assumption

it follows that T1↔T2.

On the basis of this example, we may see that a definition of bisimulation based on these

modified requirements fails to place any substantial requirement on how the step by step

behavior of M1 is mirrored by M2 (or conversely). In particular, this definition is so broad

as to allow the existence of bisimulations linking implementations which induce the same

mapping on states (up to ∼). And from this it follows there will exist an “unintended”

bisimulation linking machines such as S1 and U1 even though this is explicitly ruled out by

the one of our extensional adequacy requirements (3.11).19

The situation just described suggests that if wish to define a bisimulation relation which

is compatible with (3.10) and (3.11) then we must seek to formulate a more sophisticated

characterization of what it means for a sequence of transitions of M1 to mirror a sequence

of transitions of M2. On the basis of the cases we have considered thus far, it might seem

that since it is only sequences of transitions of S3 of length two that are mirrored by single

transitions of S1, it would suffice to replace
2∗
−→ in (3.13c,d) with

22

−→ (denoting the relation

obtained by iterating ∆2 two or fewer times). But of course it is easy enough to construct

implementations similar S3 which are such that single transition of u511
1
−→ u71 S1 is

mirrored by a sequence of mutually counteracting transitions of arbitrary length. And for

this reason it is evident that merely replacing
2∗
−→ with

2n

−→ for any fixed n will not lead to

a satisfactory definition.

The example of S1 and S3 does, however, suggest another more sophisticated way in

which (3.13a,b) could be modified in order to accommodate not just this case but a variety

19A related problem with basing a definition of bisimulation on (3.13c,d) is that since these conditions
allow arbitrary length sequences of M1 to be mirrored by single transitions of M1 (and vice versa), it is
clear that a relation satisfying these conditions need not preserve running time complexity when measured
directly in terms of the individual transitions of M1 and M2. As I will discuss further below, this makes it
unlikely that such a definition will satisfy the intensional adequacy condition that ↔ be a congruence with
respect to complexity theoretic properties as expressed by (3.6) (taking ϕ to be, e.g. “has running time
O(f(|x|))”).
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of other similar ones. For note that although the cases we have just considered suggest

that any way of adapting this definition so that single transitions may be mirrored by

sequences of transitions of arbitrary length will make the resulting definition too broad,

it is also possible to define S so that it directly relates sequences of transitions with a

particular form rather than individual states. In order to understand the motivation for

undertaking this sort of modification, it will also be useful to examine the relationship

between the pairs of implementations S1, S5 and U1, U5 in greater detail. For recall that

while it may be natural to describe S3 as a “trivial” variant of S1 derived by purposefully

adding superfluous states, we have seen that the relationship between S1 and S5 cannot be

described in such a simple manner. Nonetheless, if we describe the relationship between

the operation of these two machines more abstractly, it does seem possible to provide a

positive characterization of the relationship which they bear to one another in virtue of

which we take them to implement Pal1.

To get a concrete impression of this, let us again consider the operations of these ma-

chines on the input w ≡ a1a2a3a4 ≡ 1001. Using our standard conventions for representing

configurations and transitions, the operation of these two machines on w is summarized in

Figure (3.6). Upon examining these executions, it should be evident that there can be no

way of setting up a one-to-one correlation of configurations between S1 and S5 in original

the sense of (3.13a,b). For note that not only are lengths of the executions of these ma-

chines different (18 transitions versus 38 transitions), but it is also not possible to identify

a sequence of transitions of one these machines which we would say is “collapsed” into a

single transition of the other. Thus despite the fact that these machines fall under the

overly permissive definition of bisimulation based on (3.13c,d), they do so only because of

the existence of “unintended” bisimulations of the sort we have considered above.

But it should also be evident on the basis of Figure 3.6 that there is a systematic means of

correlating the transitions of S1 with those of S5 in a manner that preserves the “functional”

descriptions of their operation provided in the rightmost column. Note, for instance, that

both S1 and S5 compare the outermost values a1 and a4 before they compare the inner

values a2 and a3. These tasks are respectively performed by the transitions µ7
1∗
−→ µ9 and

µ16
1∗
−→ µ18 of S1 and ν19

5∗
−→ ν23 and ν33

5∗
−→ ν37 of S5. Similarly, the task of returning
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S1 transitions States Description

01001
1
−→ 1− 001

1
−→ 3001

1
−→ 0301

1
−→

0031
1
−→ 0013

1
−→

µ1 − µ6
remember a1 in state and move right to
the right end of the input

0051
1
−→ 007

1
−→ µ7 − µ8 compare a1 and a4

080
1
−→ 800

1
−→ 8− 00

1
−→ µ9 − µ11 move head left

000
1
−→ 2− 0

1
−→ 40

1
−→ 04

1
−→ µ12 − µ15

remember a2 in state and move right to
the right end of the input

60
1
−→ 7

1
−→ µ16 − µ17 compare a2 and a3

8
1
−→ µ18 move head left

0
1
−→ 10 µ19 − µ20 accept and halt

S5 transitions States Description

01001
5
−→ 11001

5
−→ 31001

5
−→

50001
5
−→ 07001

5
−→ 00101

5
−→

01101
5
−→ 03101

5
−→ 03101

5
−→

05001
5
−→ 00701

5
−→ 00011

5
−→

00111
5
−→ 00911

5
−→ 001111

5
−→

001131
5
−→ 00101

5
−→ 00111

5
−→

ν1 − ν18 push a1 to the right end of the input

001151
5
−→ 00117

5
−→ 00191

5
−→

0020
5
−→

ν19 − ν22 compare a1 and a4

0210
1
−→ 2100

5
−→ 21− 00

5
−→ ν23 − ν25 move head left

000
5
−→ 020

5
−→ 1000

5
−→ 1200

5
−→

0140
5
−→ 000

5
−→ 002

5
−→

ν26 − ν32 push a1 to the right end of the input

0150
5
−→ 016

5
−→ 180

5
−→ 20

5
−→ ν33 − ν36 compare a2 and a3

21
5
−→ ν37 move head left

0
5
−→ 22 ν38 − ν39 accept and halt

Figure 3.6: Transitions executed by S1 and S5 on input 1001.

the head to the left end of tape after these comparisons are performed respectively by the

transitions µ9
1∗
−→ µ12 and µ18

1∗
−→ µ19 of S1 and ν23

5∗
−→ ν25 and ν37

5∗
−→ ν38 of S5.

On the basis of such observations, it seems reasonable to attempt to revise (3.4.3) so that

a bisimulation S relation between transitions systemM1 andM2 is now taken to relate finite

sequences of transitions among states instead of individual states. The intention, again,

is that by defining bisimulation in this manner it will be possible to formalize uniform

regularities in the operations of machine such as S1 and S5 which we intuitively wish to

fall under a definition of computational equivalence, but whose state-to-state transitions
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cannot be directly correlated. However, as soon as we consider how to adapt our current

definition of bisimulation to accomodate this possibility, a number of conceptual, technical

and notational complications arise. So as to movitate the definition on which I settled

below, I will begin by flagging several of these concerns.

i) Since we now wish to view two transition systems M1 and M2 as being computationally

equivalent in virtue of a relation linking not individual states but sequences of states

occurring in their executions, the type of a simulation relation S must be redefined

accordingly. To this end, let St∗ denote the set of finite sequence of states over St. I

will use variables ~µ, ~ν, . . . to vary over such sequences. A simulation relation between

M1 and M2 will thus should now be of type S∗ ⊆ St ∗ ×St∗. I will refer to such a

relation between as a sequence simulation.

ii) As we have already noted, correlating sequences instead of states does not automat-

ically rule our “unintended” simulations where complete executions of one transition

system are correlated with those of another operationally distinct system. In order

to do this, we must find some way of uniformly decomposing an arbitrary finite ex-

ecutions ~ξ(x) of a transition system M into subcomponents ~ξ1(x) · ~ξ2(x) · . . . such

|~ξi(x)| < |~ξ(x)| and each ~ξi corresponds to a functional delimited porition of M ’s oper-

ation on x (and where if ~ξ(x)i ≡ 〈ξi,1(x), . . . , ξi,mi
〉 then ∆(ξi,j) = ξi,j+1 for 1 ≤ j < mi

and if ξi,mi
6∈ HM , then δ(ξi,mi

) = ξi+1,1).

iii) Then the manner in which a desired decomposition ~ξ(x) = ~ξ1(x) · ~ξ2(x) · . . . · ~ξm(x)

will often depend on the input x. For note that if we consider the operation of S1 as

summarized in Figure 3.6, the length of, say, the sequence of transitions corresponding

functionally as “remember a1 in state and move right” will depend on the length of

x. Such a parameterization can be achieved by providing what I will call a sequence

decomposition function for M – i.e. a function g : X × N → N+ which decomposes

~ξ(in(x)) into subsequences such that ~ξi(x) so that |~ξ(x)i| = g(x, i).20If we additionally

define a function h : X × N → N such that for all x ∈ X, h(x, 0) = 1 and for j > 0,

h(x, j) =
∑j

i=1 g(x, i) then the complete execution ~ξ(x) will be uniformly decomposed

as ~ξ(x) = 〈ξh(x,0)(x), . . . , ξh(x,1)−1(x)〉 · 〈ξh(x,1)(x), . . . , ξh(x,2)−1(x)〉 · . . ..
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iv) If a sequence simulation S∗ relates the subsequences ~µi(x) and ~νj(x) appearing in a

given decompositions of the executions ~µ(x) and ~ν(x) of transition systems M1 and

M2, then our new definition of ↔ ought to formalize the fact that ~µi(x) plays the

same role in operation of M1 as does ~νi(x) in M2 and conversely. This can again be

decomposed into a transitional requirement pertaining to the relationship which ~µi(x)

and ~νj(x) bear to other subsequences in these decompositions and a representational

requirement pertaining to these subcomponents either individually or relative to one

other state in the subsequence.

v) The most straightforward way of formalizing the transitional requirement is to modify

the original back and forth requirements (3.13a,b) so that they specify that consecutive

subsequences occurring in executions of M1 relative to a decomposition given by g1

are related to consecutive subsequences of M2 relative to a decomposition given by

g2. Let j ∈ {1, 2} and gj be a sequence decomposition function for Mj . I will write

~ξ
j,gj
=⇒ ~ξ′ to symbolize the fact that there exists an x ∈ X and i ∈ N such that

~ξ = 〈ξh(i)(x), . . . , ξx,h(i+1)−1(x)〉 and ~ξ′ = 〈ξ′h(i+1)(x), . . . , ξ
′(x)x,h(i+2)−1(x)〉. Then the

back and forth requirements should take the form

(13e) ∀~µ∀~µ′∀~ν[(~µ
1,g1
=⇒ ~µ′ ∧ ~µS∗~ν)→ ∃~ν ′(~µ′S∗~ν ′ ∧ ~ν

2,g2
=⇒ ~ν ′]

(13f) ∀~ν∀~ν ′∀~µ[(~ν
2,g2
=⇒ ~ν ′ ∧ ~µS∗~ν)→ ∃~µ′(~µ′S∗~ν ′ ∧ ~µ

1,g1
=⇒ ~µ′)]

vi) A representational requirement can now be taken to be an equivalence relation R∗

which is an equivalence relation on St∗ × St∗. Such a relation is intended to formalize

the fact that S∗-related subsequences ~µi(x) and ~νi(x) have a similar overall structure.

This may be taken to mean either that the individual states of which they are composed

are pairwise similar (or, in the case where |~µi(x)|¬|~νi(x)|, an appropriate generalization

of pairwise), or that the structure these sequences are similar some other respect which

is local in the sense of not pertain to the other sequences related by S∗. I will call a

sequence simulation S∗ R∗-allowable (or just allowable if R∗ is clear from context) if

for all ~µ, ~ν ∈ St∗ × St∗, if ~µS∗~ν, then ~µR∗~ν.

vii) We must additionally require that however the executions of M1 and M2 are decom-

posed by g1 and g2, a bisimulation relation should link the initial subcomponents of
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executions M1 with those of M2 determined by the same input. To this end, define a

initial sequence simulations for g1 and g2 to be a relation S∗ ⊆ St∗andSt∗ such that

all x ∈ X, if ~µ = 〈µh1(x,0), . . . , µh1(x,1)〉 and ~ν = 〈µh2(x,0), . . . , µh2(x,1)〉, then ~µS∗~ν.

Based on the foregoing observations and definitions, we may now formulate a revised

definition of bisimulation as follows:

Definition 3.4.4. Let M1 and M2 be transition systems and R∗ ⊆ St∗1 × St
∗
2 be a rep-

resentation requirement. A initial sequence simulation S∗ ⊆ ∆∗
1 × ∆∗

2 is said to be an

initial sequence bisimulation just in case it is R∗-allowable and there exist decomposition

functions g1, g2 such that S∗, g1 and g2 jointly satisfy the transitional requirement given

by (3.13e,f). We will continue to say that M1 and M2 are sequence bisimiliar with respect

to S∗, g1, g2 and simply that they are sequence bisimiliar (which I will continue to write as

M1↔M2) if such a relation and functions exist.

Although definition is still parameterized in the representation relation R∗, it is evident

that sequence bisimularity will be an equivalence relation on St∗ as long as is R∗.

In attempting to determine what form such a requirement should take, it seems that

we have little choice but to start out by examining a situation in which we wish to view

two machines as bisimiliar for purposes of satisfying one of the constraints (3.10). We have

already undertaken such an analysis by analyzing the operation of S1 and S5 in the manner

displayed in Figure 3.6. In this case, I have argued that the algorithmic realist will hold

that the fact that S1 and S5 are implementations of the same algorithm in virtue of the

fact that their operations can be decomposed into subsequences of the sort given in the

left hand columns of Figure 3.6 which can in turn be aligned with the informally delimited

stages in the operation of Pal1 as described in Section 3. It thus follows that a realist who

also embraces the (BP), will wish to analyze the fact that imp(S1) = imp(S2) in terms of

the relationship between the subsequence of states given in the left hand column of Figure

3.6. In concrete terms, this means that a realist will wish R∗ to be defined so that there

exists an allowable sequence simulation S∗
1,5 relating not only the individual 〈µ1, . . . , µ6〉

20Formally, such a function should meet the following conditions: i) g is strictly monotone; ii) if the

complete execution ~ξ(x) is of length n, then g(x, i) ≤ m for all i; iii) there exists q ≤ n for that
Pq

i=1 g(x, i) =
n; and iv) for all i > q, g(x, i) = 0.
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and 〈ν1, . . . , ν18〉, 〈µ7, µ8〉 and 〈ν19, . . . , ν22〉, etc. which arise in operation of S1 and S5 on

w ≡ 1001, but also other similarly structured subsequences which arise for other inputs

w ∈ {0, 1}∗.

In order to accommodate this possibility under (3.4.4), we first need to show that there

exist decomposition functions g1 and g2 which give rise to the partitioning of states given

in Figure 3.6. If, for simplicity, we restrict attention to the case where the input string

w ∈ Lpal,
21then such functions may be given as follows:

(3.14) a) g1(w, i) =































|w| − 2(bi/3c) + 2 if i ≡ 1 mod 3

1 if i ≡ 2 mod 3

|w| − 2(bi/3c) + 2 if i ≡ 0 mod 3

b) g2(w, i) =































5(|w| − 2(bi/3c − 1) + 2 if i ≡ 1 mod 3

3 if i ≡ 2 mod 3

|w| − 2(bi/3c) + 2 if i ≡ 0 mod 3

If we assume w ∈ Lpal, then relative to this pair of decomposition functions, any allow-

able initial sequence bisimulation S∗
S1,S5, will have to relate subsequences ~µ, ~ν of ~µ(w) and

~n(w) just in case they result from a partitioning analogous to that in Figure 3.6. This, of

course, is a necessary condition to inscribe S1 and S5 under a definition of bisimulation.

But we still need to formulate a representation requirement R∗ which, taken in conjunction

with Definition (3.4.4) will serve as an appropriate sufficient condition. As I have already

mentioned, one of the paramount concerns in formulating such a definition is to rule out

relations like S∗
S1,U1 = {〈~µ(w), ~ρ(w)〉 : w ∈ {0, 1}∗} which relate complete executions of

S1 and U1 on all inputs.

One way to characterize the reason a realist will wish to rule out S∗
S1,U1 as an allowable

bisimulation is because we cannot use such a simulation as part of an argument that S1 and

U1 operate in the same way as we can in the case of S1 and S5 relative to S∗
S1,S5. But in

21It is straightforward to extend the given definition of g1 and g2 to cover functions g′1 and g′2 which cover
cases where w 6∈ Lpal. If w ≡ a1 . . . an , then this extension involves the addition of several cases which
describe the operation of S1 and S5 when they encounter the least i such that ai 6= an−(i−1) . But since
the details of the definition of g′1 and g′2 will not effect our discussion below, I will not give their definitions
here.
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both these cases, we start out with a functional decomposition of the operation each of the

machines in question, and it only relative to this means of understanding the operations of

the machines in question that we are able to make these judgments. In attempting to frame

a definition of R∗ which embraces S∗
S1,S5 but rejects S∗

S1,U1 as an allowable bisimulation,

we may assume that the realist must avoid reliance on such pre-specified decompositions.

For note that decompositions of the sort provided in (3.6) are derived via a prior initive

understanding of what it means for these machines to implement the algorithms Pal1 and

Pal2. And it is exactly such an alliance on such intuitions which the realist presumably

wishes to eliminate in attempting to characterize algorithms via (BP).

But in seeking to formulate general conditions which a definition of R∗ must meet

in order to correctly partition T into equivalence classes of co-implementing algorithms,

it seems that the realist can do little better than to extrapolate the lessons learned by

considering cases of the sort of we have been considering. One preliminary observation

which we can make on his behalf is that one way in which S∗
S1,U1 differs from S∗

S1,S5 is that

the length of the sequences related by the former is longer than those related by the latter.

In particular, in the former case, it follows immediately from the definition of this relation

that if ~µS∗
S1,U1~ρ, then |~µ| = lenS1(w) and |~ρ| = lenU1(w) (where w if µ1 = 〈k, x, y〉, then

w = xRy). If we continue to assume w ∈ Lpal and let |w| = n, then we may explicitly

compute that lenS1(n) = (n2 +5n+6)/2− 2 and lenU1(n) = (3n2 +6)/2. And from this it

follows that S∗
S1,U1 relates sequences which are of length O|w|. On the other hand, it may

be seen directly from (3.14) that S∗
S1,S5 relates only sequences which are of length at most

O(|w|).

On the basis of this example, it seems reasonable to suppose that the realist might seek

to formulate the definition of R∗ so as to rule out S∗
S1,U1 on the basis of the fact that it

related subsequences which are of length quadratic to the input size of S1 and U1. There

are, however, a number of problems involved with making this proposal compatible with

our current definition of bisimulation. The first of these depends on the fact that since even

S∗S1, S5 will relate subsequences of arbitrary length and thus there is no way to fix this

requirement in terms of the absolute length of the sequences related. Rather, in order to

formalize the current suggestion, we must thus look for some parameter of arbitrary states
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sequences ~σ which can be taken as a measure the quantity relative to which we wish to

formalize the relevant prohibition. This is easy in the case of S∗
S1,U1, since the initial states

of the related sequences ~µ(x), ~ρ(x) directly encode the input string. But we can just as

easily imagine another “unintended” sequence simulation relating S1 and U1 where there

appears to be a uniform way of identifying the parameter in question in a manner that

does not depend on the specific details of their operation.22

This problem, however, is just one of the many which an algorithmic realist is likely

to face in attempting to formulate a definition of R∗ so that the resulting definition of

bisimulation will satisfy the extensional adequacy conditions (3.10) and (3.11). For note

that although in the case just considered, it seems there is a good rational for ruling out

sequence simulations which relate sequences of states which are of length O(|w|2), there

are other instances in which it appears that such simulations must be tolerated in order

to accommodate these constraints. This may be seen, for instance, by considering again

the operation of the machines U1 and U2 which, per (3.10ii), ought to be related under

a satisfactory definition of ↔ . Recall that I initially argued for this on the basis of the

fact that both of these machines can reasonably be taken to be implementations of the

algorithm Pal2 on the basis of an informal comparison of stages and state sequences.

But like S1 and S5, neither of these machines can be described as a simple variant

of the other. And this means that if we wish to assimilate the operation of U1 and U2

under an appropriate sequence simulation relation S∗
U1,U2, we must again look for a way

of correlating stages in their execution in a manner similar that given for S1 and S5. The

decomposition on which such a relation would be based will be considerably more than the

analogous case involving S1 and S5 which we have just considered. But luckily the general

point which I wish to frame does not require that it be given explicitly. For even without

fully decomposing the executions of U1 and U2, we know that S∗
U1,U2 ought to relate these

machines in virtue of linking sequences which implement individual stages in the operation

22For instance consider the sequence simulation which related all first halves ~µ1(w) of executions of ~µ(w)

of S1 to those of first halves ~ζ1(w) of executions ~ζ1(w) of S5 and similarly for second halves ~µ2(w) and
~ζ2(w) (rounding lengths as necessary). This simulation is also unintended in that such a decomposition is
arbitrary from the standpoint of the operation of these machines. Also note that the components of each
execution will still have length O(|w2|). The problem in this case, however, is that there appears to be no

non-arbitrary way of extracting |w| from ~µ2(w) or ~ζ2(w).
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of Pal2 uniformly for all inputs.

But now note that in order for S∗
U1,U2 to satisfy this requirement, it must, for all inputs w

link the initial segments of the execution of U1 and U2 which are responsible for transacting

the operation described by Step 2 of Pal1. Recall that this step is expressed in pseudocode

as

(3.15) For i = 1 to n do

Let bi = an−(i−1)

and has the effect of constructing a reversed copy of input string w ≡ a1 . . . an in the

registers indexed by b1, . . . , bn. But it is also apparent that Turing machines cannot directly

perform operations like copying symbols directly by accessing tape cells by index. In order

to perform the operation just described U1 and U2 must thus proceed indirectly. In the case

of U1, this is achieved by constructing a new string to the right of w by successively copying

symbols from the right of w. And in the case of U2, however, it is is accomplished by first

constructing a copy of w imedidate to its right using states. This copy is then reversed

by directly swapping symbols from its left to its right ends. For ease of reference call the

submachines of U1 and U2 responsible for carrying out the procedures just described U ′
1

and U ′
2.

23

The problem which the case of U1 and U2 illustrates is as follows. In order to conform

with our prior conclusion that these machines both implement Pal2, we wish to allow that

subsequences of their overall executions induced by the operation on U ′
1 and U ′

2 (call these

~ρ′(w) and ~τ ′(w)) must be somehow correlated by S∗
U1,U2 for all w. This can be achieved

in one of two ways. First we may define this relation so that it links such subsequences

directly – i.e. without further decomposing them into shorter subsequences. And second,

we may attempt to decompose ~ρ′(w) and ~τ ′(w) into shorter subsequences which are then

linked by S∗
U1,U2.

Although it may seem most in keeping with the goal of the realist to align the operations

of U1 and U2 as tightly as possible to pursue the second strategy, a number of new problems

23More precisely, U ′
1 is the machine 〈K′

1, {0, 1}, δ′111, 111〉 where K′
1 = {11, . . . , 111} and δ′1 is derived

from δ1 by restricting to K′
1. U ′

2 is similarly defined as the machine 〈K′
2, {0, 1}, δ′212, 522〉 where K′

2 =
{12, . . . , 162}.
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emerge when we attempt to do so. In particular, the structure of the individual states

comprising these sequences is quite distinct. For on the one hand U ′
1 moving its head from

the right end of w to the right of new string it is constructing, using an auxiliary symbol (∗)

as a place holder to keep track of its position in w. And on the other hand U ′
2 first moves

its back and forth repeatedly over w to create a copy of this string to its right, using ∗ as

place folder, and then proceeds to move back and forth repeatedly over the copied string

using # as a place holder. Certainly it is possible to try to either correlate these states

individually in grouping shorter than ~ρ′(w) and ~τ ′(w) themselves. But there seems to be no

way of doing so in an canonical or even defensibly non-arbitrary manner.24 It thus seems

that realist will be better served by adopting the view that an “intended” bisimulation

linking U1 and U2 – i.e. one that characterizes their operation in terms of subsequences

which carry out the individual steps of the procedures which they are claimed to implement

– must link ~ρ′(w) and ~τ ′(w) directly.

But if we conclude that R∗ must be defined so as to allow ~ρ′(w) that ~τ ′(w) can be

linked directly, the realist faces another significant problem. For note that we have that

lenU ′(n) = 2n2 + 9n + 2 = |~ρ′(|w|)| and lenU2′(n) = d5n2/2e + 16n + 8 = |~τ ′(|w|)| where

n = |w|. And thus if these sequences are to be related by S∗U1, U2, then R∗ must be

formulated so as to allow quadratic length sequences to simulate one another. However, this

contradicts the conclusion reached above that if we wish to exclude the sequence simulation

S∗
S1,U1 which links S1 and U1, then R∗ must be defined to prohibit such simulations.

This is the first instance in which we have seen explicitly that the desire to satisfy

the positive requirements (3.10) and the negative requirements (3.11) come into direct

conflict. For note that the problem we have encountered has arisen precisely due to the

competing constraints to define ↔ so that it is broad enough to accomodate U1↔S2 and

narrow enough to accomodate U1 =U2. As I announced in Section 1, however, I believe

this problem to be pandemic to the enterprise of attempting to defend algorithmic realism

24The central problem here is that the structure of states comprising ~ρ′(w) and ~τ ′(w) is sufficiently
different that any particular partitioning into subsequences must be rationalized on the basis of a specific
provision built into R∗. For if we were to allow any partitioning of these sequences then under R∗, then
the realist will be again be hard put to block various other unintended simulations which will exist between
otherwise unrelated machines.
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via the abstractionist strategy. But for a variety of reasons, the current example may not

be taken as a satisfactory demonstration of the universality of this problem. At the very

least, the reader might still reasonably suspect that the realist can still provide a definition

of bisimulation which will satisfy all of the extensional adequacy conditions by further

modification of the representation requirement R∗.

This is, of course, true in the trivial sense that it is possible to simply define ↔ “by

hand” on the machines in T so as to satisfy (3.10) and (3.11). In order to do this he would

have to proceed as follows: 1) define arbitrary sequence decomposition functions g1, . . . , g5

for S1, . . . , S5 ∈ T 1 and h1, h2 ∈ T 2; 2) define S∗ to be the smallest equivalence relation

which held between the subsequences induced by the operation of S1, . . . , S5 as respectively

partitioned by the g1, . . . , g5 and also the subsequences induced by the operation of U1, U2

as respectively induced by h1, h2; 3) define R∗ = S∗. Such a definition is, of course, stipu-

lative in the extreme since the definitions of neither S∗ nor R∗ are based on more general

principles about either the structure of the machines in T or background intuitions about

computational equivalence. And thus while it is the desirable of satisfying the extensional

adequacy conditions (3.10) and (3.11), it has the presumably disastrous feature of ruling

all pairs of machines T1, T2 which are not members of T inequivalent.

The considerations adduced thus far suggest that if the realist adopts T as his choice of

computational model M, then he will be hard pressed to define ↔ so that it even satisfied

the extensional adequacy criteria (3.10) and (3.11). But as things stand, it is as yet unclear

whether this is due to a fundamental problem with the abstractionist strategy or merely

reflects the limitations of the model T with which we have attempted to work it out in this

chapter. Although I believe that the difficulty can ultimately be seen to reside with the

abstractionist strategy itself, we have already noted several properties of T which appear

to suggest that it is in fact a poor choice of computational model with respect to which to

implement the abstractionism.

This observation stands somewhat in contrast to my initial observation that despite its

simplicity, the one-tape, one-head Turing machine model does seem well tuned to providing

implementations of algorithms which solve decision problems over strings. But it should

now be clear that there are clear operational constraints on the members of T which prevent
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them from directly carrying out what otherwise seem like simple computational operations

such as storing or retrieving a value from a storage location accessed by numerical index. As

we have, this it is essentially this feature which prevents the machines in T from carrying

out single operations such as checking the symbols ai and an−(i−1) for equality. Since

such operations are subsumed into a single stages in the operation of Pal1 and Pal2, this

necessitates the use of various indirect mechanisms for performing such checks. And as we

have seen, the execution of these mechanisms is computationally expensive in the sense of

requiring long sequence of intermediate Turing machines steps. And more germanely to

the problems particular to the abstractionist strategy, it also necessitates that we go to

elaborate lengths to subsume the co-implementing machines under the same definition of

computational equivalence.

On the basis of the computational overhead entailed by adopting T as our choice of

background model, the reader might reasonably surmise that this class of implementations

can be ruled out as a reasonable choice for M on the basis of some precisely characterizable

limitation on its ability to carry out certain kinds of intuitively straightforward computa-

tions. In the next chapter, I will cite a variety of formal results which suggests that this

is in fact the case. But before abandoning the current setting entirely, however, I wish to

attempt to illustrate the depth of the difficulty we face in accounting for the relationship

between the machines in T 1 and T 2 on the basis of one final example.

By way of motivation, note that all of the examples of “unintended” simulations we have

seen thus far have been trivial in the sense that they attempt to correlate all (or almost

all) of an execution of one of the machines in T 1 with one of the machines in T 2. Thus far,

I have only argued that the realist faces a substantial problem in stating general principles

which allow even such trivial simulations from being excluded by an appropriately general

definition of bisimulation. But it is also possible to come at the situation from the opposite

direction and demonstrate that there are indeed simulations between the machines in these

two classes which correlate fine-grained subsequences of states in a manner which has at

least the initial appearance of demonstrating a true form of computational equivalence.

In order to see this, it will be useful to consider a new Turing machine T which is not in

either of T 1 or T 2 but which can be shown to serve as a sort of computational interporlant
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between them. (3.7). T is given in Figure (3.7). As should be immediately apparent, we

Figure 3.7: The machines T depicted as a graph.

may look upon it as being derived from S1 by adding states 116 and 126, which respectively

move T ’s head to the right end of the tape and then back to the left prior to start the

normal operation of S1. As such, T is most naturally described as a trivial variant of S1

containing a computational detour in the style of S3.

For this reason, it follows that any extensionally adequate definition of bisimulation

ought to satisfy the additional the positive requirements that

(3.10′) Si↔T for all i ∈ {1, 2, 3, 4, 5}

And in order to see that this condition can indeed be accommodated relative to both our

current definition of bisimulation and the constraints we thus far contemplated placing on

R∗, first note that an initial sequence of any execution ~ν(w) of T will consist in a sequence

of states of the form

(3.16)

~τ ′(w) ≡ 11a1 . . . an −→ a111a2 . . . an −→ · · · −→ a1 . . . an−111an −→ a1 . . . an11 −→

a1 . . . an−112an −→ . . . −→ 12a1 . . . an −→ 12− a1 . . . an −→ 0a1 . . . an

Over the course of this sequence, T moves its head rightward until it encounters a blank

symbol, then leftward until it until encounters another blank symbol, and then into the

state 0a1 . . . an which corresponds to the initial state of S1.
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It is now easy to see how to construct a sequence simulation S∗
S1,T linking S1 and T .

In particular, first define the decomposition function g1 for S1 as g1(w, i) = 1 for i and

g2(w, i) = 2|w| + 1 if i = 0 and g2(w, i) = 1 otherwise. We may now define the relation

S∗,0
S1,T so that it relates initial sequences of S1 of the form 〈111a2 . . . an, 21 − a2 . . . an〉 with

sequences of T of the form ~τ(1a2, . . . an) ·1−a2 . . . an and initial sequences of S1 of the form

〈110a2 . . . an, 21−a2 . . . an〉 with initial sequences of T of the form ~τ(0a2, . . . an)·2−a2 . . . an.

S∗
S1,T can now be defined as the union of S∗,0

S1,T and the relation S∗,1
S1,T which for all µ1, µ2 ∈

St is defined by condition

(3.17) if µ1
1
−→ µ2 then 〈µ1, µ2〉 S

∗
s1,t 〈µ̂1, µ̂2〉 where if µ ≡ uk1v ∈ St1, then

µ̂ = uk̂v ∈ StT where k̂ is the member of StT with index corresponding to that of k.

Described informally, S∗
S1,T correlates single initial transitions in executions of S1 (which

will always be from state 01 to either state 11 or state 21) with length 2|w|+1 sequences of

transitions in the execution of T which correspond to its initial back and forth movement

across its input string transacted in states 11T and 12T . Since after going though these

transitions, T behaves identically to S1, all other transitions may be correlated one a one-

to-one basis as given by S∗,1
S1,T . And finally we may note that although S∗

S1,T relates O(1)

length sequences with O(|w|) length sequences, such a simulation must presumably be

allowable under any representation requirement meeting the conditions discussed above.

Although slightly more involved, it is also straightforward to see that T bisimulates

with at least one of the machines in T 2. This is most readily seen with respect to U1 by

defining another sequence simulation S∗
U1,T . In order describe this simulation, first note that

complete executions ~τ(w), ~ρ(w) of T and U1 on the input can be naturally decomposed as

~τ(w) = ~τ0(w) ·~τ1(w) · . . . ·~τi(w) · . . . ·~τm(w) and ~ρ(w) = ~ρ0(w) · ~ρ1(w) · . . . · ~ρ0(w) · . . . · ~ρm(w).

Here ~τ0(w) = ~τ ′(w) (as defined in (3.16) and ~ν0(w) = ~ν ′(w) (as defined relative to the

operation of the submachine U ′ above) and for i > 0, ~τi(w) and ~ρi(w) respectively denote

the subsequences of ~τ(w) and ~ρ(w) during which the symbols a1 and an−(i−1) are compared

by T and S1. Note that if all of these pairs of symbols match we will have w ∈ Lpal and

hence also m = n. If, however, j is least such that aj 6= an−(j−1), then we will have m = j.

There are thus four distinct structures which the sequences ~τi(w) and ~ρi(w) may have
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depending on the values of ai and an−(i−1). These may be enumerated as follows:
(3.18) i) If ai = an−(i−1) = 1, then

~τi(w) = (−)i−1111ai . . . an−i1(−)i−1 ∗T
−→ (−)i−18− ai+1 . . . an−i(−)i and

~ρi(w) = #(−)i−11311ai+1 . . . an(−)i1an−(i−1) . . . a1
1∗
−→ #(−)i231ai+1 . . . an(−)i+1an−i . . . a1.

ii) If ai = an−(i−1) = 0, then

~τi(w) = (−)i−1110ai . . . an−i0(−)i−1 ∗T
−→ (−)i−18− ai+1 . . . an−i(−)i and

~ρi(w) = #(−)i−11310ai+1 . . . an(−)i0an−(i−1) . . . a1
1∗
−→ #(−)i231ai+1 . . . an(−)i+1an−i . . . a1.

iii) If ai = 1 and an−(i−1) = 0, then

~τi(w) = (−)i−1111ai . . . an−(i−2)0(−)i−1 ∗T
−→ (−)iai . . . an−(i−2)910(−)i

~ρi(w) = #(−)i−11311an−1 . . . an(−)i0an−i . . . a1
1∗
−→ #(−)i+1an−i . . . an(−)i+12410ai+1 . . . a1.

iv) If ai = 0 and an−(i−1) = 1, then

~τi(w) = (−)i−1110ai . . . an−(i−2)1(−)i−1 ∗T
−→ (−)iai . . . an−(i−2)910(−)i and

~ρi(w) = #(−)i−11310an−1 . . . an(−)i1an−i . . . a1
1∗
−→ #(−)i+1an−i . . . an(−)i+12411ai+1 . . . a1.

These four cases respectively correspond to sequences of states undertaken by T and S1

during their ith pass over the input string w during which the symbols are ai and an−(i−1)

are compared. As the reader is invited to confirm, in each case not only are |~τi(w)| and

|~ρi(w)| of length linearly proportional to n− i, but the exact length of these sequences can

be effectively encoded in sequence decomposition functions g1(w, i) and g2(w, i).

On the basis of the foregoing observations, we may define the sequence simulation S∗
T,U1

to be the smallest relation S∗ ⊆ StT × StU1 which holds between ~τi(w) and ~ρi(w) for all

w ∈ {0, 1} and i ≤ |w|. It should also be evidence that in conjunction with g1 and g2, this

simulation will satisfy Definition 3.4.4 together with all of the conditions on R∗ considered

above. For as noted, each of the sequences ~τi(w) and ~ρi(w) for i > 1 will be of length

O(n). Without adducing additional constraints on R∗ so as to rule out a bisimulation

which relates ~τi(w) and ~ρi(w) on the basis of some other features of their structure, it

seems that the realist will have no choice but to admit that T and S1 will be bisimilar.

The moral of this final example can now be summed up as follows. Collecting what we

have just seen about the relationship between T , S1 and U1, note that it seems inescapable

that we will have T ↔S1 and T ↔U1. But since we have been careful to ensure that
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our refined definition of bisimulation is transitive, then without additional modification to

this definition, we will also have S1↔U1, in direct contradiction of (3.11). We have now

reached this conclusion on several distinct occasions with increasingly strict definition of

bisimulation. In the prior instances, however, the relation which witnessed S1↔U1 was

manifestly unintended in the sense that it failed to meaningfully decompose the executions

of S1 and U1. In the current case, however, we can explicitly define a bisimulation S∗

linking S1 and U1 by composing those linking S1 and T and U1 and T . As the reader is

invited to confirm, S∗ is closely related to the relation S∗
T,U1

defined above. In particular, it

links functionally related subsequences in the executions of S1 and U1 essentially like those

given in (3.18).

We may note in conclusion that the existence of such a relation does not automatically

scuttle the what hope the algorithmic realist may have left in defining ↔ over T so as to

non-stipulatively satisfy (3.10) and (3.11). For in particular, it is open to him to attempt

to refine the representation requirement R∗ so as to rule out the simulation S∗. In this

sense, S∗ cannot be ruled as intuitively unintended, at least relative to the standards we

have considered thus far. In seeking to disallow such a simulation, a realist will have to

find some basis in which to prohibit linkages between state sequence such as those given in

(3.18).

This may, of course, be accomplished citing such some feature particular to the individ-

ual machines S1 and U1 or their executions. But in this case there is again no guarantee

that it will yield correct results outside the class of T . And it may also be done by citing

some more general structural features of the subsequences ~τi(w) and ~ρi(w) – e.g. the fact

that the members of ~ρ(w) but not ~τ(w) contain an internal − symbol separating sequences

of 0s and 1s. Ultimately, however any specific proposal for how this might be accomplished

has to be justified on the basis of more general principles not specifically tied to S1 or U1.

And equally importantly, any prohibition of this sort also has to be shown to prohibit the

existence of a simulation between pairs of machines such as S1 and S5 or U1 and U2 which

implement the same algorithm but which we have seen to operate in a very different manner

in a step-by-step sense. While a case study of the sort which we have just undertaken may

itself be insufficient to rule out the possibility of giving such a definition in principle, it is at
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least adequate to demonstrate the in-principle problems which stand in the way of giving

one.
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Chapter 4

On implementations

4.1 Lessons and morals

One of my principle goals in Chapter 3 was illustrate how easy it is to construct a

wide class of formally distinct implementations of the same algorithm over a single model

of computation. This is not necessarily a surprising observation, since many common

models of computation are advertised precisely on the basis of their putative operational

universality – i.e. their inclusion of machines whose executions mimic the operation of

any effective procedure. But since many distinct procedures on one so-called “level of

abstraction” can be viewed as implementing the same procedure described at a different

level, it is hardly surprising that a computational model designed to directly reflect as

many of the lower level procedures as possible will contain multiple intuitively adequate

representations of the operations of a higher level procedure.

But it is not so much the general phenomenon of multiple implementability which is

significant to prospects of algorithmic realism, but rather what it entails about the formula-

tion of an adequate definition of bisimulation. For note that once the realist has nominated

a class of implementations M relative to which he proposes to represent algorithms in ac-

cordance with the “abstractionist” program outlined in Chapter 2.3, he is then responsible

for formulating a definition of bisimulation which satisfies both intensional and extensional

adequacy conditions over this class. But the more heterogeneous the class of implemen-

tations M1,M2, . . . ∈ M which can plausibly be claimed to implement a single algorithm

A1, the broader the definition of bisimulation will have to be. And the broader such a

definition gets, the greater the danger that it will hold between one of the Mi and some

other algorithm Nj which can plausibly be claimed to implement a distinct algorithm A2.

Or so went the argument of Chapter 3.4. But however persuasive the reader may
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have found this argument in the case of the particular algorithms and implementations

studied in Chapter 3, there are also substantial reasons to think that the conclusion which

I tentatively drew from it – i.e. that the realist will be unable to define any intensionally

and extensionally adequate definition of bisimulation – has been drawn far too hastily.

The fundamental problem is not that of attempting to generalize from a case study. For

if indeed all the premises on which I based this argument are accepted – i.e. Pal1 and

Pal2 really are distinct algorithms, S1, . . . , S5 implement Pal1, U1, U2 implement Pal2,

etc. – then the argument would indeed demonstrate the non-existence of an extensionally

adequate definition of bisimulation. And thus given my prior argument that the so-called

“abstractionist” strategy is in fact the only one open to the algorithmic realist, this set of

affairs would be sufficient to show the view to be false.

But as I acknowledged early on in Chapter 3, the example to be considered was a indeed

a toy, optimized for familiarity and ease of exposition. Its artificiality is evident in at least

two respects: 1) not only is the decision problem for the language LPal computationally

“easy,” but the algorithms Pal1 and Pal2 are themselves far simpler than most procedures

which are employed in computational practice to derive mathematically significant results;

2) the single-head, single-tape Turing machine model T which was used to implement

these algorithms is also far simpler than most models of computation which are currently

employed in computational practice. And it is thus fair to conclude that while the argument

of Chapter 3 certainly does raise several concerns to which the algorithmic must reply, it

is as yet unclear how substantial they are.

The purpose of this chapter and the next is to demonstrate that while the example of

Chapter 4 certainly does suffer from these limitations, its moral for algorithmic realism is

still generalizable. In this regard, we see immediately that the first of two artifacts about

this example noted in the previous paragraph does not appear to rhetorically weigh in favor

of the realist. Of course Pal1 and Pal2 certainly are far simpler to formulate than most

algorithms which are of genuine utility in mathematical practice (e.g. Strassen’s matrix

multiplication algorithm, the AKS primality algorithm test, CYK context free parsing algo-

rithm, Dijkstra’s shortest path algorithm, etc.) and they are also far easier to prove correct

then these other algorithms. However implementations of such non-trivial algorithms will



242

be substantially more complex than those of Pal1 and Pal2 both in the sense that the

control structures they employ are more complicated and also in that they operate on more

complex data structures. As these control and data structures must themselves must be

implemented relative to a given choice of computational model, the greater complexity

of these algorithms gives rise to a greater potential for multiple forms of implementation

overall. And thus rather than simplifying the task of formulating an adequate definition

of bisimulation, it appears that the need to accommodate less trivial algorithms will only

exacerbate many of the problems encountered in Chapter 3.1

But in seeking to determine whether the conclusions of Chapter 3 can indeed be gener-

alize, we must also weigh carefully the contribution of the second assumption mentioned –

i.e. the fact that the example considered was worked with respect to the model T of single

head, single-tape Turing machines. In taking stock of the significance of this assumption,

it will be useful to briefly recall the purpose which the choice of a class of implementations

M is supposed to play with respect to the abstractionist strategy. Recall in this regard

that we concluded in Chapter 2 that all reference to algorithms must be mediated by in-

stances of the schema “the algorithm implemented by M” which we have long since agreed

to formalize via the function imp(·). The ostensible purpose of this function is to map im-

plementations into the algorithms which they implement. But I argued that our intuitions

about the values of this function were sufficiently limited to offer little hope that it could

be explicitly defined. And I therefore concluded that our best chance of understanding

how it was possible to refer to individual algorithms was to view this function as implicitly

defined by a so-called abstraction principle.

In Chapter 2, I originally formulated the statement which I suggested the algorithmic

realist employ in this capacity as follows:

(4.1) imp(M1) = imp(M1)⇐⇒M1↔M2

1Although these remarks appear quite qualitative, they can be made precise along several dimensions.
For instance, we may note that there is no nesting of iterative control structures in Pal1 and Pal2 (i.e.
an occurrence of a control structure like While do . . . od within another such structure. However, imple-
mentations of Strassen’s algorithm will typically have at least two such nestings. We may similarly note
that although Pal1 and Pal2 operate directly on the input strings which are supplied as their inputs,
many other algorithms use more complex data structures. For instance,the CYK algorithm uses techniques
from dynamic programming which require the maintenance of an auxiliary table of strings, and Dijkstra’s
algorithm requires the maintenance of an auxiliary Fibonacci heap.
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And I also argued that such a principle could be taken to have the conceptual function anal-

ogous to that of traditional abstraction principles such as that for the governing direction

– i.e.

(4.2) Dir(`1) = Dir(`2)⇐⇒ `1 ‖ `2

I argued in Chapter 2 that such a statement can be taken as serving the dual rule of fixing

the truth conditions of statements of the form Dir(`1) = Dir(`2) and also of delimiting the

domain of directions as the range of the function Dir(·). In this setting, it is standard to

speak of the relation of parallelism as grounding the abstract sortal direction on the base

of the fact parallelism bears some conceptual or semantic relation to that of direction.

Of course spelling out exactly what relation parallelism must bear to the concept di-

rection in order for (4.2) to serve these roles is something of a vexed problem itself (as

witnessed by the dispute about the putative analyticity about the corresponding principle

for natural numbers – i.e. Hume’s principle). And of course one of the morals of Chapter 3

is that if we want to treat algorithm as an abstract sortal in a similar manner, then it will

be difficult to identify a relation which entails the correct identity conditions for statements

of the form imp(M1) = imp(M2). But what I want to concentrate on initially, however,

is not this aspect of justification of (4.1), but rather on the proposed formulation of this

statement itself. For note that in (4.1), the variables M1 and M2 are implicitly assumed to

vary across implementations just as the variables `1 and `2 are assumed to vary across lines

in (4.2). But of course if we want to consider adjoining either (4.1) or (4.2) to a formal

theory such as Tp as discussed in Chapter 2.3, we must obviously modify them so that their

scope is appropriately restricted.

In the case of (4.1), this is most readily achieved by introducing a predicate Impl(x)

which is meant to hold of a mathematical structure x just in case x is of the appropriate

type to serve as an implementation. In this case (4.1) could be restated in the form

(4.3) ∀x∀y[(Impl(x) ∧ Impl(y))→ (imp(x) = imp(y)⇐⇒ x↔ y)].

If we assume that this principle is to be evaluated over a mathematical domain (say that of

a model A of set theory), then the idea is that the predicate Impl(x) is supposed to hold
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of just those structures which correspond to potential implementations.2 The minimum

qualification for a definition of such a predicate is that it hold of just structures which

we treat as implementations in the course of our computational practices (i.e. individual

Turing machines, RAM machines, etc.) and which thereby allow us to refer to algorithms.

But per Chapter 2.3.2, this class appears to be open ended in the sense we often define new

forms of implementations. It thus seems that providing an enumerative definition of the

notion of implementation based on extant model of computation is thus likely to provide

only a temporary, stipulative answer to this question.

One problem which the realist faces in regard to defining Impl(x) is if this class is

defined too narrowly, the realist will be unable to account for the status of expressions of

the form imp(M) where M corresponds to an implementation which does not fall under a

given definition. However there is a more substantial background problem. For if the class

of implementations somehow turns out to resist a precise mathematical definition, then the

ability of a principle like (4.3) to delimit a well-defined class of abstract objects may also

be called into question. For if the domain M of imp(·) is not well-defined, such a principle

can hardly be taken to implicitly determine a class of objects as its range.

The upshot of these considerations is that if (4.3) is to actually serve the role which is

envisioned by the algorithmic realist, the definition of Impl(x) must function as something

like a conceptual analysis of the notion of implementation. Pace Chapter 2.2.3.2, we cannot

simply look to theoretical computer science to provide such a definition. For, in particular,

the notion of implementation is generally only determined by providing examples of models

of computation without at the same time specifying what they have in common by virtue of

which their members are properly classified in this manner. However, one of my purposes

in this chapter will be to dispel the impression that the realist’s situation in this regard is

hopeless. For in particular, as I hope to show, sufficient common structure can be found

among common models of computation such that we can at least attempt to extract a

general definition.

2The same effect of limiting the scope of objects whose identity conditions are given by (4.1) can also
obviously be achieved by other devices – e.g. by adopting a multi-sorted language or defining imp(x) so it
that was undefined on values of x which were not implementations. But note that in both cases, we would
still face the task of delimiting the domain of objects suitable to serve as implementations.
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Returning now to the significance of the fact that in Chapter 3, M was stipulated to be

T, one problem can be immediately observed. For even though we do not yet have a good

sense as to how Impl(x) should be defined and thus also cannot explicitly define M at this

point, it is quite evident that T will comprise a proper subset of this class. With respect to

the relevant examples, for instance, it is easy to envision implementations of Pal1 and Pal2

which are other than Turing machines – for instance we will see below that these algorithms

are naturally implementable as simple forms of RAM machines operating on binary strings.

And since the necessity of taking other forms of implementation of these algorithms into

account will presumably induce different pressures on the appropriate definition of ↔ ,

it may be that the essentially negative conclusion of Chapter 3 that no non-stipulative

extensionally inadequate definition is possible will need to be rethought.

In order to get an impression of why this may be so, it will be useful for the time being

to suppose that while reference to algorithms Pal1 and Pal2 can in principle be effected

by expressions of the form imp(M) for M drawn from an arbitrary model of computation

Q ⊆M, it is up to realist to choose which model is actually to be employed for this purpose.

Under this assumption, the difficulties we encountered in defining ↔ over T may be seen

as demonstrating not that no such definition is possible in general, but merely that T is

not an appropriate model by which to mathematically ground our understanding of these

algorithms.

More precise technical reasons can be cited to support this view. For observe that

much of the trouble which arose in defining ↔ so that it correctly accounted for the

operational affinities among the members of the classes S1, . . . , S5 and U1, U2 were due

precisely to the fact that Turing machines are unable to access squares of their tape by

numerical index in the manner indicated by Pal1 and Pal2. This is to say that while

we informally describe Pal1 as proceeding on input a1, . . . , an by making the comparisons

a1
?
= an, . . . , abn/2c

?
= an−(bn/2c−1), these comparisons cannot be transacted directly by

members of T. Rather, machines in this class must use an indirect method to compare

these symbols, such as storing the leftmost symbol in its local state and moving to the

right end of the tape (in the case of S1) or “pushing” the leftmost symbol to the right-hand

end (in the case of S5). Although the comparisons described above are transacted by Pal1
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in a single step, machines like S1 or S5 require O(n) steps to transact the sort of indirect

methods just described. Since n comparisons must be made overall, this means that these

machines will have overall running time O(n2), as opposed to the O(n) running time of

Pal1 itself.

These calculations obviously apply only to S1 and S5. But the fundamental observation

on which they are based – i.e. that a member of T cannot compare the values of symbols

written on arbitrary squares of distance of n from one another in fewer than O(n) steps

– can be used to prove a general theorem. In particular, it may be shown that for all

machines T ∈ T, if T decides LPal, then the worst case running time of T is at least

Ω(n2).3 This result, first obtained by Hennie and [61], is one of several well-known lower

bound results for T. Results of this sort show that individual Turing machines cannot

be used to compute certain functions in asymptotic running time less than O(f(n)). For

instance, an Ω(O(n log(n)/(log(log(n)))2) lower bound has been established for computing

multiplication “on line” which holds not just for T, but also for the class of multiple-tape

Turing machines which I will discuss below.4

Although these are purely technical results, they potentially have substantial founda-

tional significance to how we should understand the notions of implementation and model of

computation. For note that not only are there informally described decision algorithms for

Lpal with O(n) running time – e.g. Pal1 and Pal2 – but we will see below that there are

models of computation which contain concrete implementations of these algorithms which

preserve this complexity. And similarly, there are known to be multiplication algorithms

which have sufficiently clever implementations which have running time O(n).5

One obvious consequence of these results is that the value of the function imp(·) applied

3In somewhat more detail, it can be shown that for any machine T ∈ T, if T decides Lpal, then there
exists a string w such that lenT (w) > k|w|2 for some k ≥ 1. This result was first shown using a combinatorial
argument by Hennie. It may also be proven by the so-called incompressibility method from Kolmogorov
complexity – cf. [75].

4In the on line computational paradigm, a machine T computing a function f(n) whose inputs and
outputs are represented in binary must produce the nth digit of its output before it scans the n+ 1st digit
of its input. The result cited is due to Cook and Aandreaa [22].

5For instance, Schönhage [122] showed that there is a storage modification machine which multiplies in
time O(n). Several other O(n) multiplication algorithms are now know which are based on fast Fourier
Transforms – cf. [24].
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to a machine T ∈ T cannot be taken to be the identity function. For since the realist

presumably wishes to hold that imp(S1) = Pal1, it would following from the fact that

he also (presumably) wishes to maintain that “Pal1 has running time O(n)” is true, we

would be able to conclude that “S1 has running time O(n)” contrary to the quadratic lower

bound cited above. But this result is hardly surprising since we have already noted that for

arbitrary implementationsM , we generally cannot have imp(M) = M as there will typically

be distinct implementationsM1,M2 for which we are willing to accept imp(M1) = imp(M2).

More generally, however, lower bound results point to the fact that while the class T

is obviously universal in the extensional sense that it contains a member which computes

every function determined by an intuitively effective algorithm, it may not be operationally

universal in the sense of containing a machine which directly mirrors the mode of oper-

ation of every informally specified algorithm A. It is, of course, difficult to state such a

claim precisely because it is seems difficult to formalize the relevant notion of operational

universality. I have, however, argued that the attribution of asympoptic running time com-

plexity to individual algorithms is one of the most important components of our practices

of taxonomizing informally specified algorithms according to their operational properties.

And thus the fact that T does not contain a machine which matches the running time of

even simple algorithms like Pal1 and Pal2 serves as fairly strong evidence that T is not

universal in this sense.

Of course running time complexity is only one of many properties which we attribute

directly to algorithms in practice. As I have previously noted, for instance, we also speak

of individual algorithms as operating on or employing various sorts of data structures (e.g.

“Strassen’s algorithm takes a matrix as input,” “Heapsort uses a priority queue,”), and

computational techniques (“Mergesort is recursive,” “The CYK parsing algorithm uses

dynamic programming,” “Kruskal’s algorithm is greedy”). It is, of course, something of an

idealization to imagine that we can construct an exhaustive list of such properties. And

some additional explanation is required in order to ensure that a property of this sort is

appropriately applied to an algorithm rather than an implementation.6

6For instance, it is unclear whether the analogously formed statement “Dijkstra’s algorithms uses a
Fibonacci heap” should be taken as a claim about a particular algorithm (i.e. Dijkstra’s method of finding
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An operationally universal model of computation in the sense alluded to above should

correspond to one in which contains a member Q ∈ Q which reflects all of the computational

properties of every informally specified algorithm. In making such a characterization more

precise, it will be useful to retain the logical terminology developed in Chapter 2. For

recall that I suggest there that the use of such statements such as those appearing in

the previous paragraph is sufficiently regular and conventionalized that we can at least

imagine formulating an axiomatic theory Tp in which these statements would correspond

to theorems of the form θ(A) where θ(X) corresponded to a particular computational

property such as having running time n log(n) or using a priority queue and A is a term

denoting an individual algorithm. Using this terminology, the operational universality of

Q can be characterized as follows:

(4.4) For all informally stated algorithm A and for all Lp definable properties θ(X), if

Tp ` θ(a) (where a is a Lp-term denoting A), then there exists a Q ∈ Q such that

Tp ` θ
∗(q) (where q is an Lp-term denoting Q and θ(x) is an appropriate

mathematical analysis of the mathematical property θ(x) with respect to Q).

The formal necessity of replacing θ(X) with θ∗(x) derives from the fact that Lp was

originally described as a two-sorted language with variables X1,X2, . . . ranging over al-

gorithms and x1, x2, . . . ranging over mathematical objects such as implementations. We

may note more generally, however, that many of the computational properties which we

apply directly to algorithms will need to be mathematically reformulated before they can

be applied to members of Q in a manner which may depend on the features of this model

itself. For instance, it would be natural in practice to speak directly of Kruskal’s algorithm

as having the property of greediness. 7 Of course when we speak in this manner, we attach

a definite meaning to this property (i.e. that the algorithm in question operates by making

shortest paths in a weighted directed graphs G = 〈V, E〉) or merely an implementation thereof. For note
that pseudocode specifications of this algorithm typically only specify that this algorithm operate on a
priority queue Q. However, if we assume that Q is employed in the standard manner such that extracting
its minimum takes O(|V |) steps, then Dijkstra’s algorithm runs in time O(|V |2+E). However, this algorithm
is often reported to have running time O(|E| + |V | log(|V |)), although only if we assume that Q is itself
implemented as a Fibonacci heap.

7e.g.: “Kruskal’s algorithm is a greedy algorithm, because at each step it adds to the forest an edge of
least possible weight.” [24], p. 504
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a locally-optimal choice at each stage with the hope of finding the global optimum), but it

is to the algorithm itself which we attribute the property.

But consider a given implementation of this procedure as a MIX machine M which

represents G as an adjacency matrix A which, as per [72], is itself implemented as a doubly

linked list of weights (i.e. wherein each element A[j, k] belongs to the lists A[j, 1], . . . , A[j, n]

and A[1, k], . . . , A[n, k]). In such a case, it obviously makes no sense to apply the predicate

“greedy” directly to M as it will have no predetermined sense relative to such a machine.

But we can imagine what it would take to analyze our informal understanding of the Lp

predicate γ(X) (i.e. “X is greedy”) into a complex open sentence γ∗(x) over Lm. Roughly

speaking, such a sentence would say that if m denotes a MIX machine, then m implements

an array A of the form described above which functions as its input and another array

B which functions as its output. In addition, γ∗(x) would stipulate that at every step

of m’s main loop, it attempts to place the entry of A corresponding to a minimal weight

unattached edge of G into the array B.

The necessity of analyzing computational properties in this manner substantially com-

plicates the characterization of what we might mean by saying that one model of compu-

tation was more operationally universal than another. For in particular, there seems to be

little hope that it would be possible to construct a uniform translation (·)∗ taking primitive

predicates of Lp into open sentences of Lm (one which was effectively determined over the

entire language Lp) even if we allow for such a map to be parameterized in Q. And thus it

seems that in order to formulate a principle like (4.4) will require that we construct analyses

of each Lp predicate “by hand.”

This observation detracts from the hope that a principle like (4.4) can serve as a truly

robust thesis about the representability of algorithms relative to a given model of compu-

tation. However I intend to largely overlook the problem potentially posed by the necessity

of adopting an ad hoc property translation function. For as I now want to briefly discuss,

the possibility of demonstrating a principle like (4.4) appears to provide the realist with a

promising way out of many of the difficulties encountered in the previous chapter.

For suppose that it were possible to demonstrate (4.4) with respect to a particular

model of computation Q. In this case, the algorithmic realist would be assured that for
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every informally specified A, there existed at least one implementation Q ∈ Q which, as we

might put it, faithfully represented A in the sense of reflecting its computational properties

(as represented relative to the translation funciton (·)∗). Now for familiar reasons, it will

most likely not be open to the realist to simply identify A with Q. For it certainly does not

follow from the fact that Q contain at least one representative of A that it contains exactly

one. And from this it follows that if the realist seeks to reduce algorithms to members of

Q, he will still presumably have to proceed according to the general abstractionist strategy

outlined in Chapters 2 and 3 – i.e. by defining an equivalence relation ↔ over Q and then

arguing that it has the appropriate properties.

But as I will attempt to demonstrate over the rest of this chapter, if Q is chosen ap-

propriately, then there appears to be hope that this task can be accomplished in a manner

which avoids many of the problems encountered in Chapter 3. For looking back on the

examples considered there, we may now note that the task of defining ↔ over T was com-

plicated precisely by the fact that the Turing machines which we considered were anything

but direct implementations of Pal1 and Pal2. For as I noted above, each of these machines

had to implement the task of comparing symbols at opposite ends of the input string by

performing auxiliary operations which had little to do with the specification of Pal1 and

Pal2 themselves. But it was due to the extra states and transitions which were required to

support these operations that we were ultimately able to define “unintended” bisimulations

linking pairs of machines like S1 and U1 which putatively implemented distinct algorithms.

If the realist were able to locate a model Q whose members were able to directly support

the sorts of operations and structures which appear in informal specifications of Pal1 and

Pal2, the necessity of taking such computational detours could possibly be eliminated.

And in this case, it is at least reasonable to hope on the realist’s behalf that the classes of

machines Q1 and Q2 which we judged to be implementations of Pal1 and Pal2 over Q are

substantially more homogeneous than the classes T 1 = {S1, . . . , S5} and T 2 = {U1, U2}.

And in this case, we might correspondingly hope that ↔ could be defined in a manner

so that it related all pairs of machines Q1 and Q2 without relating any pairs across these

classes.

In more general terms, the strategy on offer to the algorithmic realist is thus as follows.
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Rather than attempting to define ↔ across the class of all mathematical structures M

which might be classified as implementations, he may take as a new goal that of identifying

some proper subclass Q of M which can be shown to contains at least one “natural” or

“direct” representative of every informally specified algorithm in the sense of (4.4). He can

then proceed by attempting to define ↔ over Q. And as described in Chapter 3.2, he will

again be responsible for demonstrating both that this relation is extensionally adequate in

the sense of tracking our intuitions about which machines implement the same algorithms

and also intensionally adequate where this property may now be understood in two consis-

tent of two components: 1) Q1↔Q2 may be understood as an analysis of what we mean by

saying that the implementations Q1, Q2 “work the same way” in the sense of Chapter 2.3;

2) this relation serves as a congruence with respect to properties provable of imp(Q1) – i.e.

if Tp ` θ(imp(Q1) and Q1↔Q2, then Tp ` θ(imp(Q2)). And if such a definition is indeed

obtainable, he may then claim to have reduced algorithms to mathematical objects in the

sense of having constructed an implicit definition of the function imp(·), now interpreted

as a mapping from members of Q into algorithms.

Over the rest of this chapter, I will set out to survey the realist’s options in defining Q

so that it has the appropriate properties to render this task feasible. In so doing, however,

we are faced with lingering conceptual and technical problems. For on the one hand, if

the realist is to adopt the strategy outlined in the previous paragraph, then it follows that

he will be left without a means of accounting for the meaning of expressions of the form

“the algorithm implemented by M” where M is some bona fide implementation which is

not contained in Q. As I suggested above, this is presumably a problem in the sense that

although he may wish to associate algorithms with mathematical objects by taking them

to be appropriate equivalence classes over Q, it will still presumably be allowable to make

reference to them by using machines drawn from other classes.

There are a variety of ways a proponent of the strategy just outlined might attempt to

respond this to situation. For instance, the realist might attempt to deny the supposition

that all forms of implementation really are created equal with respect to the task of making

reference to algorithms. On this basis, he might argue that although Turing machines

can be used to refer directly to certain simple algorithms on strings, the considerations
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advanced above suggest that procedures like Pal1 and Pal2 are already beyond the power

of such implementations to describe in a determinate manner. And on the other hand he

might attempt to adopt a “multi-tier” theory of procedural reference whereby reference to

members of one class of implementations Q′ (e.g. Turing machine) is claimed to sufficient

to effect reference to the members of Q which may be then be used to refer to algorithms,

with indeterminacy possible at the first but not the second step.

In either case, however, the class Q will be given a preferred position in the general

theory of algorithmic reference and ontology which the realist hopes to develop. And for

this reason, it will be incumbent upon him not simply to define this class, but also to

offer some sort of explanation for why this should be so. For if he fails to do so, he leaves

himself open to the familiar charge of ontological arbitrariness in the sense that he will

not have offered any positive explanation as to why algorithms should be identified with

mathematical objects relative to Q as opposed to some other class of implementations. And

for this reason, if he follows the strategy just outlined, he must also provide an argument

that Q is a maximally general or otherwise “natural” class of implementations by which to

directly represent algorithms.

As we will see in the next chapter, the two most outspoken proponents of algorithmic

realism – i.e. Yiannis Moschovakis and Yuri Gurevich – not only proceed according to this

strategy, but they also attempt to make precisely this form of argument in favor of the

classes of their preferred classes of implementations. These correspond respectively to the

class of recursors R and the class of Abstract State Machines ASM. From both a technical

and a conceptual perspective these models are very different. And as such, they certainly

cannot both be the maximally general or natural medium in which to represent individual

algorithms.

At this point, we are not yet in a position to see what sort of desiderata can be brought

to bear to argue either for against such a claim. However, the recursor and ASM models

may both be located within a more general framework for classifying model of computation

according to both their formal properties and their affinities to other traditional models.

Over the course of the rest of this chapter, I will attempt to develop a general framework

for comparing and contrasting models of computation which will allow us to do this. In



253

particular, I will proceed by first attempting to provide an abstract characterization of the

notion model of computation. And on this basis, I will then propose that virtually all

extant models can be naturally classified as one of three types which I will respectively

refer to as transition-based, register-based and recursion-based models.

Along the way, I will also offer a variety of observations about the various desiderata

about models which have already come up in this section. For an arbitrary model Q these

include the following: 1) Q’s ability offer “direct” models of informally specified algorithms

in the sense of (4.4); 2) the prospects of defining an adequate definition of bisimulation

over Q; and 3) the formal relationships in which members of Q stand to members of other

models of computation. This will be significant for it should now be apparent that in

order to carry out the modified abstractionist programme which I have just described, the

realist will want to choose Q so that it is maximally direct in the sense of 1), admits to the

narrowest possible adequate definition of bisimulation in the sense of 2), and is maximally

general in the sense of assimilating other models in the sense of 3).

4.2 On models of computation

I will henceforth assume that all implementations are members of broader classes of

mathematical formalisms traditionally known as models of computation. This notion has

arisen several times previously. But in accordance with tradition, I have elected to simply

illustrate the notion of a model of computation with examples rather than attempting to

provide anything resembling a general definition or analysis. One of the greatest obstacles

to doing so is the sheer diversity of formalisms which are conventionally characterized

as models of computation. As mentioned in Chapter 2.2.3.2, many of the best known

formalisms which are now accepted as falling under this concept grew out of foundational

investigations of the notion of effective computation as briefly discussed in Chapter 1.3.

As such, it is possible to understand what these models have in common in virtue of

their initial motivation with respect to the analysis effective computability. But since the

majority of the models which are now in common use were not proposed with foundational

aims in mind, the task of unifying them under a single characterization is substantially

more complex.
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A number of authors have attempt to provide longitudinal surveys of major classes of

models of computation, e.g. [118], [63], [149]. The formalisms surveyed in these sources give

rise to at least three major classes of models which I consider individually below. Since many

of the models are parameterized with respect to one or more of their formal components (e.g.

the number of tapes or heads of a Turing machine, the number of accumulator registers of

a RAM machine, etc.), in a formal sense there are at least countably many distinct models

of computation currently recognized in the literature of theoretical computer science.

Although there are substantial structural difference between the major classes of models,

they also share certain structural affinities which allow us to talk about them in a quasi-

uniform manner. Extending the account given in Chapter 2, I will henceforth assume that

a model of computation Q is specified by giving a class Q of mathematical structures whose

members are conventionally referred to as machines (although we will see below that there

are many instances in which this is a poor choice of terminology). As we have seen with the

special case Q = T, a machine Q ∈ Q is to be thought of as inducing a function between

sets X and Y which we can think of respectively as the class of objects which members

of Q take as input and produce as output. The other standard component of a model of

computation is what I will refer to as a definition of application – i.e. a specification of a

function AppQ : Q × X → Y which takes an individual machine Q ∈ Q and input value

x ∈ X and returns the value which we would normally describe as that derived by applying

Q to x if this computation halts, and is undefined otherwise. Given a particular definition

of Q, AppQ is thus generally defined in a manner which attempts to provide an abstract

mathematical characterization of the execution induced by applying Q to x.

The structure which I will refer to as the model Q itself will thus have the form

〈Q, AppQ,X, Y 〉. And as in Chapter 2, I will often abuse notation by speaking of indi-

vidual machines Q as being members of Q as opposed to Q. It is generally straightforward

to explicitly present various prototypical examples of models of computation in this form.

And given this fact, it is also possible to go about characterizing the general notion of

model of computation by simply enumerating all currently defined models characterized in

this standard form.
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But this approach turns out to have the serious disadvantage that this structural char-

acterization of a model of computation does not even come close to providing sufficiently

stringent conditions to rule out formalisms which are unlikely to be accepted as serving the

role of such a model in practice. In particular, the characterization provided above does

not to enforce that the definition of AppQ is given in a manner which analyzes what we

mean informally by applying a machine to an input. In other words, a definition of this

functional ought to reflect the fact that we typically think of applying a machine Q to x as

corresponding to a procedurally mediated process whereby the value Q operates on x over

the course of a sequence of intermediate steps. It is, for instance, such a characterization

which allows us to reject structures such as N = 〈NN, AppN,N,N〉 wherein the definition of

application is given by extensional function application (i.e. AppN(f, n) =df f(n)) as serv-

ing as intuitively accepted models of computation. As such, any general characterization

of this notion which does provide a pretext for doing so cannot be accepted as providing

an adequate definition of this concept.

The fundamental conceptual problem with providing such a definition is, of course,

characterizing the circumstances under which we are willing to accept that a definition of

Q as characterizing the operation of a model which we would standardly speak of operating

in time. For note that to say the definition of AppQ ought to reflect the fact that applying

Q to x leads to a computational process is to say not only that such an application can

be characterized as a sequence of states σ0(x), σ1(x), . . . but also that we generally view

the members of such a sequence as being generated one after another. At first glance,

this may seem to stand in contrast to the assumption that models of computation are

themselves mathematical structures and that their members must perforce be understood

as atemporal and non-spatial. It thus may initially seem puzzling on what basis we can

ascribe temporal-like features to some models and not others.

There is, however, no reason to think that this is an insurmountable problem. However,

in order to solve it we must take a step backwards and ask what it is that we expect

implementations to be model of. The answer which the realist is presumably trying to

work out is that the members of a given model of computation ought to be thought of

as models of individual algorithms. And as I have observed previously in Chapter 2, we
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standardly do speak of algorithms as operating in time. So in this sense, a tentative analogy

may be drawn between, on the one hand, an algorithm and a model of computation and on

the other, a mathematical model of a physical dynamical system, and the physical system

it is used to represent.

It is important to keep in mind, however, that the execution of an algorithm A is

unlike a physical or biological process in that it does not concern the evolution of a system

composed of physical constituents but rather is better described as a process by which

mathematical structures are sequentially transformed so as to yield a sequence of new

structures. We also often speak of such transformations as occurring. This impression is

encouraged by the equally conventional practice of speaking of the execution of A as being

mediated by an abstract computing agent who explicitly follows instructions to perform

certain transformations. But as I argued in Chapter 2, talk of this sort is best seen as

figurative both in the sense that it is possible to specify an algorithm in a manner which

does not consist of such instructions and also in that many of the properties attributable

to actual agents are irrelevant to how we reason about algorithms in the abstract.8

In elucidating the use of the term “model of computation” to describe a formalism which

is capable of representing the operation of an informally specified algorithm, we must start

off by isolating those characteristics of our informal descriptions of algorithms which, upon

more extensive reflection, we take to have genuine temporal significance. I started to do this

in Chapter 2 where I argued that what is of central theoretical importance in computer

science is our ability to associate with each informal procedure A and input x a metric

called the running time complexity of A on x.

To a first approximation, this quantity can be said to measure the time it takes to carry

out A on x until it halts and returns a value (presuming that it does). However in order to

ascribe such properties uniformly, we must first agree on some means of determining what

is to count as a primitive computational operation of A. This will result in a enumeration of

mathematical “actions” α1, . . . , αn such as incrementing a counter, adjoining an edge to a

8For instance, we make no allowances for a computing agent getting tired or making a mistake. And
in reasoning about procedures in a general setting, we are also willing to think of such an agent as being
completely free of particular resource bounds.
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graph, etc. which in typical cases correspond to the denotation of mathematical expressions

in terms of which A has been specified. However, if we were to think of A being carried

out by an actual computation agent operating on concrete representations of mathematical

structures, we could then go on to assign a definite duration di to the task of carrying out

action αi. And on this interpretation, the running time of A on x would thus correspond to

an actual temporal duration D derived by summing the di’s in accordance to the number

of times they are executed in the course of carrying out A on x. But of course this is not

at all the way we actually apply the notion of running time complexity in practice. What

we actually do is to treat all of the actions α1, . . . , αn as having unit cost. And on this

view, the running time of A on x is a unitless quantity N derived by simply summing the

number of times each of the αi is carried during the operation of A on x.

Suppose we write tA(x) to denote this sum. Then in somewhat greater generality, the

aspect of our discourse about running time which is taken to be significant concerns the

running time complexity of A as a function of the size of x. The relevant notion of size will

vary with the structure of the input set X as can be given by a metric | · | : X → N. For

instance, a standard size metric for strings w over a finite alphabet Σ∗ is the length of w

and a standard metric for natural numbers n is blog2(n)c which corresponds to the length

of n’s binary representation. Subject to a choice of metric, we are generally most interested

in the rate of growth of the derived function timeA : N → N defined as timeA(n) =

max{tA(x) : |x| = n} which gives A’s maximal (or “worst case”) running time for all

inputs of size |n|. Such running times are generally reported using so-called asymptotic or

“big-O” notation where the class O(f(n) is defined to be the class of all functions g : N→ N

such that there exists an n0 and c such that for all n > n0, f(n) < cg(n). As we saw in

Chapter 2, it is through the use of this notation by which we standardly ascribe running

times to individual algorithms when we say, for instance, “Mergesort has running time

O(n log(n))” (meaning that timeMergesort(n) ∈ O(n log(n))).

Thus although we do standardly ascribe temporal properties to individual algorithms

A, this is done only in the abstract manner just described. In particular, we standardly

factor out the actual durations which would be required to transact the various operations
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in terms of algorithm A may be specified. And through the use of a size metric and asymp-

totic notation, we also abstract away from the contribution of additive and multiplicative

factors which appear in tA(x). As such, it turns out that relatively little is required of an

implementation Q in order to serve as a model of the temporally significant properties of

A.

In order to see concretely what is required of an implementation in order to serve in

this capacity, we must note one more consequence of our informal understanding of what

it means to execute A. I have already noted that an execution of A on x may be taken to

correspond to a sequence of stages sO(x), s1(x), . . . Implicit in this understanding is that

stages are temporally ordered at least in the sense that it makes sense to speak of stage

si(x) as occurring before stage si+n(x) for n > 0. Note that this is a necessary condition to

impose on our analysis of an execution since an algorithm will typically be defined in such

a way that the action it performs at stage si+1(x) may depend on aspects of the structure

of this stage which themselves will have been determined by actions carried out at stages

before the i+ 1 step in its execution. Also note that since we speak of the execution of A

for a particular x ∈ X as beginning with a particular stage whose structure will typically

depend on x, we are also justified in recognizing every execution as having a unique first

stage. And finally, the stages of A’s execution can standardly be discretely ordered in the

sense that if s(x) precedes s′(x) in the execution of A on x, then there will exist a stage

s(x)′′ occurring after s(x) but before or at the same time as s′(x) for which there exists no

stage occurring after s(x) but before s(x)′′. This allows us to speak of one state as being

the immediate predecessor of another. And thus in the most general setting, we can thus

view A’s operation on x as corresponding to a discrete partial order <A,x with minimal

element s0(x).

If we make the additional assumption that A is also deterministic – i.e. for every stage

s(x) there is at most one stage s(x)′ occurring immediately after s(x) relative to <A,x –

then <A,x will have the structure of a discrete linear order of the form s0 <A,x s1 <A,x

s2 <A,x . . ..
9Since there will generally be no a priori guarantee that A will halt on input x,

such an ordering may have an infinite order-type. But even when we take this into account,

we can still define a partial function tA : X → N which takes elements of X and returns
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the length of the sequence of stages corresponding to A’s execution on x if this sequence is

finite and is otherwise undefined.

Given this characterization of what it means for a informal procedure A to operate

in time, our next task is to analyze what it means to say that a member Q of a class of

mathematical structures Q can be used as a model of A’s operation. As is now familiar, this

may generally be accomplished by finding some means of formalizing A’s stages as a class

of mathematical structures St and its stage-by-stage operation as a transition function

δ : St → St. To a first approximation, the execution of A on x corresponding to the

sequences of stages s0(x), s1(x), . . . may thus be modeled in the conventional manner as

a sequence of states of the form σ0(x), σ1(x), . . .. Note, however, that whereas we would

naturally use the temporal notions before, immediate predecessor, etc. to describe the

sequence of stages s0(x), s1(x), . . ., the corresponding properties of σ0(x), σ1(x), . . . may be

defined directly in terms of the structure of Q. For instance to say that state σ occurs

before σ′ in the execution of Q on x is simply to say that there are i and m such that

σ = σi(x), σ
′ = σi+m(m) and to say that σ is the immediate predecessor of σ′ is to say

that δ(σ) = σ′.

In this sense, a model of computation Q can now be characterized as a class of math-

ematical structures for which a formal notion of execution is definable relative to which

we can interpret the temporal properties we apply when we describe the operation of an

algorithm informally. But since such models are indisputably abstract, this means that

temporal language can only be used to describe the operation of its members in an indirect

or metaphorical sense. I have just indicated how this may be done in a particularly simple

case, essentially by likening the transformation of one stage in the execution of an algorithm

into another to the iteration of a transition function. However, this is by no means the

only way in which to draw an analogy between the abstract mathematical operations in

terms of which the machines in Q are defined and the temporally interpretable actions out

9I adopt this restriction primarily here primarily as an expository expedient since it will allow us to
considerably curtail the class of models which must be considered. The status of non-deterministic algo-
rithms actually in computational practice is, however, quite interesting in large part precisely because it
is unclear what ought to be counted as a implementation of such an algorithm. A thorough examination
of this issue would require substantial digressions into both non-deterministic models of computation and
their relationship to deterministic ones.
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of which an algorithm’s operation may be described.

The major classes of models of computation mentioned above can be seen as arising

from different views about how such an analogy can be developed. These correspond to

models based on a fundamental notion of state transition (of which the Turing machine

model considered in the previous is paradigmatic) models based on a fundamental notion

of assignment (of which the RAM machine and its variants are paradigmatic) and models

based on recursion (on which Gödel-Kleene general recursive definitions are paradigmatic).

One of the best known facts about these models (or more accurately, their paradigms just

cited) is that they are also computationally universal in the standard extensional sense

discussed above. But over the course of the next three sections, I hope to demonstrate that

extensional equivalence results of this form belie operational distinctions. In particular,

I will suggest that these three classes do not stand as equals with respect to satisfying

the three desiderata which I suggested at the end of the last section ought to guide the

algorithmic realist’s selection of a model of computation by which to carry out the modified

abstractionist programme described above.

4.3 Transition based models

One of the most straightforward ways to account for how an instance Q of a math-

ematical model of computation Q can serve as a model of an algorithm A whose exe-

cution we would informally describe as taking place in time is to define the structure

of Q so that it mirrors that of a physical dynamical system Q̂ whose evolution actu-

ally does occurs in time. In order to facilitate formulating an analogy, it is useful to

assume that Q may be described as a transition system. In particular, I will assume that

Q = 〈XQ, YQ,ΣQ, δQ,HQ, inQ, outQ〉 and that AppQ(Q,x) is defined as in Chapter 2.4.

In order to liken the execution of Q to the temporal evolution of the a physical system,

we must demonstrate the potential existence of a concrete dynamical systems Q̂ with the

following three properties: 1) Q̂’s phase space is described as a set StQ̂ of physical states

such that for every abstract state µ ∈ StQ there is a physical state µ̂ ∈ StQ̂ whose physical

structure can be taken to represent the mathematical structure of µ; 2) for every state of
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the form in(x) (for x ∈ XQ), the physical state în(x) corresponds to an initial state of

Q̂; 3) when initiated from a initial state înQ(x), the temporal evolution of Q̂ under the

physical dynamical laws may be divided into discrete steps of duration d seconds indexed

by times t = 0, 1, . . . and such that evolution of Q̂ from time t to t+1 is given by a function

δQ̂ : StQ̂ → StQ̂ such that δQ̂(µ̂) = µ̂′ if and only if δQ(µ) = µ′. Where Q̂ to be start in

an initial state of the form în(x)Q = µ̂0(x), its subsequent evolution would take the course

µ̂0(x), µ̂1(x), . . . where µ̂i+1(x) = δ̂(µ̂i(x)). In such a case, this sequence would unfold in

actual time in the the sense that it would be stated as a definite moment t0 with Q̂ in state

µ̂0(x) and such that the state µ̂i+1(x) would obtain (literally) d seconds after µ̂i(x).

To the extent which the relationship between Q and Q̂ can be made precise, the existence

of such a physical model of Q of this sort would provide an obvious basis for grounding the

use of temporal language to describe the operation of Q. But of course it is well known

to be difficult to specify even sufficient conditions for Q̂ to represent Q in this sense and

presumably harder yet to demonstrate a general statement about the circumstances under

which such a system can be guaranteed to exist for all Q in a specified model Q.10 But my

present goal is not to show that the members of common models of computation have or even

could have physical models of the sort just described but rather to explore different contexts

in which it is possible to systematically justify the use of a certain kinds of mathematical

formalism in describing computational processes which we informally describe as taking

place in time. And in this regard, the potential availability of the set of physically inspired

analogies between certain kinds of transition systems and physical dynamical systems has

historically been seen as a paradigm case of such a framework.

The system of analogies which likens computational states to physical states and compu-

tational transitions to physical transitions mediated by dynamical laws can seen as provid-

ing a criterion for membership in an historically important class of models of computation

which I will refer to collectively as transition based models. We have already met the

paradigm example of this class in the form of the model T consisting of single tape, single

10The problems which arise here are both well known and largely orthogonal to our present concerns. For
a general discussion of the difficulties which arise when wish to precisely formulate the sort of relationship
which must obtain between Q and Q̂ in order for the latter to be justifably employable as a modeling of the
former in the sense described in the previous paragraph, cf., e.g., [58].
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head Turing machines. Starting in the 1950s, a number of models were proposed which

sought to generalize this model. The earliest of these retained the finite control mechanism

and possessed the same basic sort of computational medium – i.e. a read/write tape or

grip divided into cells. However, they generalized beyond the specific properties of T by

allowing such devices to have multiple heads or tapes. These abstractions led naturally

to the definition of multi-tape and multi-head Turing machines and machines with two

dimensional tapes as described in, e.g., [63]. These models in turn served as the basis for

another round of generalizations which retained the finite control structure of a Turing

machine, but generalized more radically on a Turing machine’s tape by replacing it with

different forms of finite labeled graphs upon which different “local” operations could be

performed such as adding or deleting nodes or edges or changing the labeling of a path.

This latter class includes the Kolmogorov machines of Kolmogorov and Uspensky [68], the

storage modification machines of Schönage [121] and the K-graph machines of Sieg and

Byrnes [130].

Since all of these latter day models were explicitly motivated by the creators as general-

izing on various features of the definition of T, there is a historical precedent for taking them

to form a natural class. But this observation alone does not provide a basis for presenting a

definition of this class of models which usefully distinguishes it from register-based models.

For instance, we will see below that both transition- and register-based models can readily

be represented as transition systems. And thus if we wish to distinguish these paradigms

with respect to their suitability for providing a general characterization of a class of models

which an algorithmic realist can take to serve of the class Q described above, some ad-

ditional feature of transition based models must be cited which distinguishes them from

register-based models.

Although I will ultimately suggest that certain aspects of this distinction must ulti-

mately be regarded as vague in the sense that there are models which can be naturally

classified as falling into either class, it is at least possible to provide a uniform basis for

regarding the individual models mentioned above as forming a natural class. And as I

now wish to argue, this possiblity is grounded in the plausibility with which the physically

inspired analogies can be applied to these models. I will ultimately argue that it is this
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property which makes them poor candidates to serve in the role of Q. In order to get some

impression of why this is so, it will be useful to start out by briefly examining the sense in

which the paradigm model T is often cited as an example of a so-called “mechanistic” or

machine-like model of computation.

Consider an arbitrary machine T ∈ T and let MT = 〈XT , YT , StT ,∆T ,HT , inT , outT 〉

be the transition system based on T in the sense of Definition 4.2 of Chapter 3. As we

have seen, StT will be comprised of structures of the form ukv where u and v are abstract

string types over Σ, k ∈ K represents one of finitely many local states of T ’s finite control

mechanism (as formalized by ∆T , which we can assume is single valued) and the position

of k relative to u and v encoded the position of T ’s head on its tape. It is a common

observation that such states can be taken to reflect the spatial organization of the states

of a (notional) physical states system T̂ which consists of an unbounded physical tape on

which tokens of finitely many physical symbols types Σ̂ corresponding to the symbols in

Σ may be written and overwritten. T̂ will also contain a physical subsystem consisting of

a finite control mechanism interpretable as a set of states K̂ such that |K̂| = |K| and a

physical read/write head which moves along T̂ ’s tape. Characterized in this manner, the

physical states of T̂ can be represented as sequences ûk̂v̂ where û and v̂ are physical strings

comprised of physical symbol tokens, k̂ ∈ K̂ and the relative physical position of û, v̂ and k̂

represent the spatial locates of T̂ ’s tape and read/write head. Let ˆStT represent the class

of physical structures of this form. We must additionally assume that T̂ is such that its

dynamical evolution ia determined by the physical dynamical laws is be given by a physical

transition function ∆̂T : ŜtT → ŜtT . Finally, we must require that if ∆T (u1k1v1) = u2k2v2,

then the system T̂ satisfies all counterfactuals of the form: “if at time ti T̂ is in state û1k̂1v̂1,

then at time ti+1 T̂ will be in state û2k̂2v̂2.”

Treating the availability of a physical interpretation of this sort as a basis for categorizing

T as a model of an informally described computational process which we originally described

as occurring in time differs substantially from that originally provided by Turing [144]. For

recall that Turing attempted to justify the properties T not in terms of their physical

interpretablity, but rather relative to the potential actions of an idealized computing agent.

Such an agent – which following Gandy [43] I will refer to as a computor – can be thought of
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as working in actual time but without being subject to any physical limitations other than

those imposed by his own cognitive capacities. Turing thus stipulates that the computor

operates in a step by step manner on a quasi-abstract (i.e. non-physical, but presumably

not atemporal or static) computing medium with the same structural properties as a Turing

machine’s tape. Consequently the analogies which are open to him in explaining why we

are justified in describing Turing machines as operating in time at all depend on a prior

analysis of the abilities of such a notional computing agent.

As a number of commentators have pointed out, the specific constraints which Turing

chooses to impose on the computor are closely tied to the specific foundational (or more

broadly, epistemic) considerations which were important during in the 1930s.11 This is

most evident in his description of the computor as capable of being in only finitely many

“states of mind” (which serves as the informal motivation for treating a Turing machine’s

state as a member of the finite set K), in the narrow “window” of symbolic configurations to

which he may attend in selecting his next action (which serves as the informal motivation

for allowing δ to depend only on the contents of the currently scanned square) and on

the narrow class of symbolic operations he can undertake (which serves as the informal

motivation for allowing δ to change only the scanned square or to move the head a single

square left or right).

These decisions can readily be justified in the context of an attempt to delineate oper-

ations which conservatively fall under the pre-theoretic notion of effectivity whose proper

definition was up for debate in the 1930s. But since our current desire is to characterize

models of computation relative to the more general goal of explaining why we are justified

in using certain mathematical formalisms as models of temporally extended computational

processes, there is no reason why we must remain faithful to Turing’s original motivations

in characterizing T’s properties. In fact in this broader context, there are a number of

reasons to prefer the quasi-physicalistic analogies we have been considering over Turing’s

quasi-psychological ones. The first of these derives from the fact that Turing’s computor

must still be understood as abstract at least in the weak sense of not corresponding to an

11For discussion, see [129], [43], [26].
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actual physically embodied agent. Consequently we face the same sort of interpretive chal-

lenges in making sense of temporal discourse involving his actions as we do for statements

about the operation of strictly mathematical models – e.g., we must still explain what it

means for such a agent to operate in time but to be free of the sort of “performance” limi-

tations such as fatigue, breakdown, recourse bounds, etc. which would effect the operation

of an actual computing agent. And second, even if we do retain Turing’s psychologistic in-

terpretation of the features of the computor, it seems doubtful that any general description

of such an agent’s abilities could could ever serve to uniquely determine a mathematical

model of computation.

It thus follows that although each of the models mentioned above can be motivated

on the basis of positing computing agents with greater and greater calculating abilities, it

is difficult to isolate anything about the notion of computor qua computing agent which

serves to unify them. For although we may figuratively speak of a computor in a state

µ as explicitly following a rule that tells him to assess the properties of µ by applying

a predicate ϕ and then depending on the outcome to perform an action α to µ to yield

a new state µ′, the mere fact that the computor is characterized as an agent does itself

entail that ϕ be effectively decidable or that the mapping induced by α is effective. If the

computor were either mathematically omniscient or capable of directly performing various

infinitary operations, then there would be nothing to prevent him from operating in a

manner which could not be represented by any nominalistically possible physical process.

Additional constraints must thus be imposed on how the computor operates to ensure either

effectiveness or even the possiblity of physical representability.

Another problem with Turing’s characterization is that not even he looked upon the

specific constraints imposed on the computor’s operation as constituting a principled upper

bound on what such an agent should be able to do. For instance, there seems to be no

a priori reason to suppose that the computor should only be to read or operate on the

immediately adjacent tape cell or move the read/write head only one square at a time.

Note, however, that if we seek to construct a revised model based on a more general

characterization of such an agent’s abilities, the fact that the computor is characterized

as agent again seems to be of little help. Rather, what is required is an account of what
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would make his operations suitably mechanistic – i.e. such that if the system of which

the computor is part (which may be taken to include his “state of mind”) is given by µ,

then a subsequent state µ′ (if any) which is brought about by his actions is determined by

a finitely describable process free from creative insight or causal influences outside of the

computational system. But note that once the class of allowable operations is described in

these terms, it seems possible dispense with the computor in favor of a purely extension or

non-psychologistic description.

Several theorists have attempted to do this by proposing a set of conditions which can be

placed on the states and transition functions of a model of computation so as to guarantee

that its operation is mechanistic in an intuitively plausible sense. In particular, Gandy

[42], Sieg [129] and Gurevich [51] have all argued that four types of constraints are required

in order to meet this requirement. I will refer to these respectively as the discreteness,

determinism, boundedness and locality conditions.

Any model which can be characterized as a deterministic transition system will auto-

matically satisfy the first two conditions.12 For note that the discreteness of a model Q is

generally taken to mean that the states of its members Q may be described as abstract

structures in a manner which allows their operation to be described by the iteration of

a transition function ∆Q on the class of states StQ. This means that execution of Q is

comprised of stages which may be indexed by finite ordinals, and thus that the evolution

of Q in time may be likened to that of a discrete dynamical system rather than a contin-

uous one. The determinism condition may be described informally as the constraint that

a mechanistic computing device must operate so that at any point during its computation,

its next state (if any) is completely determined by its current state. This can easily be

enforced by requiring that ∆Q is single valued – i.e. if 〈σ, σ′〉, 〈σ, σ′′〉 ∈ ∆, then σ′ = σ′′.

It is more difficult to provide equally general formalizations of the boundedness and

12All of the models which I have mentioned in this section may be straightforwardly presented as transition
systems in the manner of Definition 3.3. This generally involves taking the original formulation of the
model in question and showing that its computational medium (e.g. n tapes in the case of an n-tape Turing
machine, a finite labeled graph in the case of storage modification machines and K-graph machines, etc.)
can be combined with a relevant notion of local state so as to derive a definition of global state analagous
to that defined for Turing machines in Chapter 4.3. For illustrations of how various other models can be
subsumed under the definition of transition system, see [11] and [51].
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locality conditions on mechanism. This is due to the fact that the properties which these

constraints are intended to formalize cannot be defined solely in terms of the of the structure

of a transition system. In fact, in order to even describe the constraints these conditions

are intended to enforce on a model Q, we must first assume that it is possible to define a

function cenQ and relations Neara
Q

and Nearc
Q

with the following intended interpretations:

(4.5) a) The function cenQ maps a complete states µ of a machine in Q ∈ Q into a

structure cenQ(µ) which is a substructure of µ. The intention is that if

cenQ(µ) = ν then ν represents the portion of µ whose structure a machine Q

may immediately query and modified in the course of a single transition. For

this reason, I will refer to cenQ(µ) as the center or computational locus of µ. I

will also denote the class of all such substructures of for all machines Q ∈ Q as

CenQ.

b) The relation Neara
Q
⊆ StQ × StQ is intended to hold of states µ1 and µ2 which

are in computational proximity in the sense that µ1 can be derived from µ2 (or

vice versa) by a single application of ∆Q

c) The relation Nearc
Q
⊆ StQ × StQ is intended to formalize the fact that if

Nearc
Q
(µ1, µ2) then µ1 and µ2 are in computational proximity in the sense that

their centers cenR(µ1) and cenR(µ2) are in computational proximity to one

another in a sense which will depend on the structure of StQ.

The appropriate definitions of cenR and Neara
R

and Nearc
R

will obviously vary from

one model of computation to another but are generally such that they can be immediately

“read off” from a definition of a genuinely mechanistic model. If we assume that we

have obtained a definition of these terms, then the more general intention behind the

boundedness and locality constraints can now be explained as followed. The boundedness

condition is supposed to ensure that operation of machines Q ∈ Q is finitary in the sense

that the operation which is applied to a state µ1 ∈ StQ to yield µ2 = ∆Q(µ1) requires only

a finite amount of “local” information. This may be achieved by requiring first that |CenQ|

be finite. And we must also ensure that cenR(µ1) does indeed determine which operation α

is selected by Q so as to derive ∆Q(µ) from µ. This can be achieved by requiring that ∆Q
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must be such that if cenQ(µ1) = cenQ(µ2) and ∆Q(µ1) = µ3 and ∆Q(µ2) = µ4, then if µ2

is derived by the applying α to µ1, then µ4 is also derived by applying of α to µ3. Finally,

the locality condition is intended to formalize the fact that if ∆Q(µ1) = µ2, then µ2 is in

computational proximity to µ1 in both the sense that the components on which it differs

from µ1 are near µ in the sense of cenR(µ1) and also that the center of µ2 has not moved

too far from that of µ1. This can be achieved by requiring that if ∆Q(µ1) = µ2, then we

must have Neara
Q
(µ1, µ2) and Nearc

Q
(cenR(µ1), cenQ(µ2)).

If we understand the intention behind the definitions of cenQ, Neara
Q

and Nearc
Q

ac-

cording to the quasi-spatial, quasi-causal interpretations given above, then the role of the

boundedness and locality conditions with respect to formalizing the claim that a given

model of computation is mechanistic may be explained as follows. First note that the

boundedness condition is intended to rule out models whose members are able to make ar-

bitrarily fine discriminations between states or can be aware of differences in a state which

are arbitrarily distant from a machine’s current computational locus. Similarly, the locality

condition is intended to rule out models whose members are capable of transitions which

result in “action at a distance” either in the sense of modifying components of their current

state which are arbitrarily remote from their current computational locus or moving this

locus itself an unbounded distance from its current position. Since both conditions have a

clear physical interpretation, one might hope that if we can provide a suitably general way

of formalizing the definition of cenQ and Neara
Q

and Nearc
Q
, we would then have isolated

individually necessary and jointly sufficient conditions which ensure the physical imple-

mentability of the model Q in something like the sense described at the beginning of this

section.

The central challenge we face in proceeding in this manner is that our original definition

of transition system imposes no constraints on the definition of a computational state. Thus

if we take an arbitrary transition system Q, there is no guarantee that the state µStQ has

the appropriate sort of structure so that cenQ, Neara
Q

and Nearc
Q

can be defined in manner

which is consistent with the intended physical interpretations of these terms. For note

that the availability of these interpretations relies on our ability to view the structure of

state µStQ as having a spatial structure to which notions like location and nearness of
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constituents can be applied. But as things now stand, there is no guarantee that the

elements of StQ even have a compositional structure which we can be decomposed into

subcomponents, let alone ones on which a natural metric structure can be imposed.

One possible way to proceed is to attempt to directly define the nearness relations and

center function for models for which we already have an intended physical interpretation

and then see how they might be generalized. This can readily be accomplished for T in its

transition system presentation given in Chapter 4.3 since have already seen that structure of

its states admits to a natural spatial interpretation. In particular, states µ ∈ StT have the

form u1a1kb1v1 which directly encodes the geometric properties of T ’s tape in two senses: 1)

uv gives the contents of T ’s tape as read from leftmost non-blank symbol to the rightmost

nonblank symbol meaning that if uv ≡ a1 . . . an, then symbols the ai, aj for i, j ≤ n are

naturally interpreted as being at distance |i − j| from one another; 2) if u ≡ a1 . . . am and

v ≡ am+1 . . . an, then T ’s head is naturally interpreted as being located over the m + 1st

symbol non-blank symbol counting from the left. On this basis, it is straightforward to

formulate physically plausible definitions of centerT, Neara
T

and Nearc
T

as follows:

(4.6) a) centerT(u1a1kb1v1) = 〈k, b1〉;

b) Neara
T
(u1a1k1b1v1, u2a2k2b1v1)⇔ i) u1a1 = u2a2, v1 = v2 or

ii) u2 = u1a1, a2 = b1, b2 = ε, v2 = v1 or

iii) u2 = u1, a2 = ε, b2 = a2, v2 = b1v1

c) Nearc
T
(u1a1k1b1v1, u2a2k2b1v1)⇔ |len(u1a1)− len(u2a2)| ≤ 1 and

|len(v1b1)− len(v2b2)| ≤ 1

These definitions respectively record facts about the operation of a Turing machine which

can be read off directly from Definition 3.1 – i.e. that if T is in global state µ = u1a1kb1v1,

its next global state will be determined entirely by the local state j and the scanned symbol

b, that individual transitions of T can change µ only by changing k, overwriting b1 or by

moving the current head position at most one square right or left.

Definitions similar to these can be given for the models mentioned above as being inspire

by T. For instance, consider the classes T2 of two head Turing machines as defined by ,

e.g., [63]. The state of such a machine can be given by a string of the form uk1bvk2dw
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where u, v,w ∈ Σ∗, b, d ∈ Σ and the relative positions of k1 and k2 to these strings gives the

position of the machines two heads.13 Over the course of a single transition, a two headed

machine T 2 ∈ T2 may move only one of its heads or write a single symbol on the square

which one of them is scanning. The action undertaken by such a machine is hence local in

the sense that it occurs at only one of the two head positions. But note that the decision

as to which of these four types of actions (i.e. move the first head, move the second head,

write on the square scanned by the first head, write on the square scanned by the second

head) is determined on the basis of both the symbols b and d which the heads k1 and k2

are scanning.14 This means that the definition of the center of a state of a machine T ∈ T2

thus must include both the local state and these two symbols – i.e. centerT2(µ) = 〈k, b, d〉.

And similarly, the definitions of Neara
T2 and Nearc

T2 must respectively take into account

that over the course of a single transition, a two-headed machine can overwrite either of

the two symbols scanned by its head or move either of its heads one square to the left or

the right.

Although the class T2 is one of the simplest possible generalizations of T, it is appar-

ent that the definitions of centerT2 , Neara
T

and Nearc
T

just sketched already represent

a substantial abstraction away from the quasi-spatial interpretation of the corresponding

definitions given above for T. For note that over the course of a single transition of a

machine T 2 ∈ T2, a state of the form k1a1v1k
1b1w1 can be transformed into one of the form

≡ u1k
2a1v1k

2b2w1. In such a case, the value of b2 may depend on the value of a1 in the

sense that if a2 6= a1, we have δT 2(u1k
1a2v1k

1b1w1) = u1k
2a1v1k

2b3w1 for some b3 6= b2.

Note, however, that as with T, there is a natural geometric interpretation of the states of

machines in T2 according to which the proximity of two symbols is given by the absolute

13The local state of members of T
2 is defined in the same manner as T – i.e. as a member of a finite

set K. But since a member of T
2 machine has two distinct read/write heads, we must adopt a notational

convention for distinguishing between them. Since our original convention for denoting the states of single-
head machines already “overloads” the use of k to indicate both the current location state and this head
position, two distinct markers of this sort are required for T

2. Relative to the convention just proposed, k
1

and k
2 should thus seen as distinct markers naming the same member of K.

14Formally, this corresponds to the fact that a transition function for a two head machine is defined to be
a function δ : (K ×Σ× Σ)→ (Σ× {1, 2}) ∪ {I1,J1,I2,J2} where the first two coordinates of its domain
correspond to the symbols read by the machine’s two heads and the range corresponds to a choice of actions
parameterized for i ∈ {1, 2} as follows: i) if δ(k, a1, a2) = 〈b, i〉, then the symbol b is written on the square
currently scanned by the ith head; ii) if δ(k, a1, a2) =Ii, then the ith head is move one square to right; iii)
if δ(k, a1, a2) =Ji, then the ith head is move one square to left.
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difference of their position from the left most non-blank symbol. But the possibility of

the sort of transition just exhibited demonstrates that if δT 2(µ1) = µ2, then the value of a

symbol in µ2 may depend on the value of an arbitrarily distant symbol in µ1. This means

that cenT2 must be defined to include tape squares which are arbitrarily distant from one

another in the geometric sense and similarly that Neara
T2 must be defined so that it relates

states which differ in components which are arbitrarily distant from each other. And finally,

since T2 may also decide to move its second head (i.e. the one whose position is denoted by

k2) based on the value of a1, Near
c
T2 must be defined so as accommodate the fact that one

component of the center of the current state may move to a position which is arbitrarily

distant from the other.

Without going into more detail about the exigencies of constructing a physical instantia-

tion of a formal model of computation, it is hard to say whether the situation just described

represents a substantial departure from the intended quasi-spatial and quasi-causal inter-

pretation which was originally assigned to the boundedness and locality conditions. What

is clear, however, is that if we look more broadly at the other models M of computation

which are often described as generalizing T, the respective definitions of cenM, Nearc
M

and

Neara
M

which must be given strain the limits of physically plausibility. One case in point

is that of the Schönhage [121] storage modification machine model S which is sometimes

presented as being a natural generalization of the Turing machine to the domain of graphs.

A machine S ∈ S is comprised of a read-only input tape, a write-only output, a class of

states corresponding to finite, labeled, directed graphs and a control mechanism allowing

for the iterated application of various operations on the input and output tapes and the

modification of the graph. In somewhat more detail, the states of S (which are known as

∆-structures where ∆ is a finite set of symbols corresponding to edge labels) have the form

〈X,a, p〉. Here X denotes a finite set of nodes which comprise a graph whose edges are

determined by the family of functions p = 〈pα|α ∈ ∆〉 which are of type pα : X → X where

pα(x) = y means that there is a directed edge from x to y with label α. Finally a ∈ X is

the so-called center of S is this node around which operations on X take place. This mode

functions something like the head of a Turing machine which can be moved locally during

the course of a computation.
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One feature of the model S which complicates the task of formulating plausible bound-

edness and locality conditions concerns the possible operations in terms of which a machine

S ∈ S may be defined. In particular, among the possible instructions which may be trans-

acted over the course of a single application of the transition function ∆S are the following:

1) add a new node to X connected to a via a sequence of labels δ ∈ ∆∗; 2) if the node

reached via the sequence δ is the same as that reached by sequence δ′, then do α (where α

can be an operation which like 1) adds a node, reads or writes a symbol from S’s input or

output tape, halts, etc.). Since the first action can be iterated arbitrarily, it follows not only

that the class of states StS must be taken to be infinite, but also that over the course of

the execution of S, an application of the second form of instruction many require surveying

arbitrarily many paths originating at a in order to determine what action is to be applied

to the current state. This means that while cenS can be defined so that it will never contain

more than finitely many nodes, it may get arbitrarily large. Under a simplistic physical

interpretation, this means that unboundedly many distinct physical configurations must be

recognized in a single step in any physical instantiation Ŝ of certain storage modification

machines S. And since prima facie it seems implausible that any physical system with this

property could exist, it is unclear whether the model S should be taken to satisfy the spirit

of the boundedness condition. Since S also allows for operations which move the current

center to an any node to which it is currently connected and to arbitrarily reassign the

destination of a label sequence, similar problem arise with respect to providing physically

plausible definitions of Neara
S

and Nearc
S
.

It is, of course, still possible to define cenS, Neara
S

and Nearc
S

so that S formally satisfies

the boundedness and locality conditions. In so doing, however, we are all but abandoning

hope that the satisfaction of these conditions serves as a guarantee that they may serve as

sufficient conditions to ensure the physical representability of a class of machines. For as we

will see below, models like the RAM machine whose states and transitions do not admit to

any plausible spatial interpretation may also be defined so that they formally satisfy these

conditions. This suggests that with sufficient ingenuity, it may be possible to formulate a

definition of an arbitrary model of computation M so that it is satisfies these conditions.

And as such, it seems safest to conclude without additional amendment, the boundedness
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and locality conditions are best seen as sharpening certain affinities between historically

significant models without truly analyzing what they have in common.

This leaves open the possibility that there is no means of making a precise distinction

between models like T, T2 and S which are traditionally classified as transition based models

from the RAM and flowchart machines I will discuss in the next section. Nonetheless the

affinities between models of the former class are sufficiently strong that I believe it is also

possible to argue that no model of this sort can serve as a plausible candidate for the class

Q which the algorithmic realist wants to establish as containing “direct” representatives of

as many algorithms in Q as possible. The groundwork for this observation was already laid

in Chapter 3. There we saw anecdotal evidence to the effect that no single-head, single-

tape Turing machine could directly simulate the operation of an informal algorithm like

Pal1 in a truly step-by-step sense. The essential problem was that while Pal1 is capable

of accessing the elements of its input string a1 . . . an by index i, allowing it to directly

compare the symbols ai and an−(i−1) in a single step. However as we saw, it appears that

any palindrome deciding Turing machines like S1 or S5 must perform this task indirectly

over a sequence of operation of length O(n) whereby ai is stored in the machines states or

transported to the right end of the tape for comparison. These informal observations are

confirmed by the theorem mentioned above that no single tape, single head machine can

decide the language Lpal in less than Ω(n2) steps. Although I have yet to propose on the

realist’s behalf a formalization of what it means for an implementation to directly represent

the operation of an algorithm, it seems that this result is sufficiently strong to rule out the

possibility that T contains a direct representative of Pal1 on any plausible analysis.

But in moving from the model T to the model T2 something substantial is gained. For

as mentioned above it is easy to construct a two-head, single-tape Turing machine which

decides Lpal in time O(n). And with a little more work, it is also possible to construct

specific two-head machines S2
1 and U2

1 which directly reflect the operation of Pal1 and

Pal2 in the sense that a single stage in the operation of these procedures corresponds to

a constant length sequence of steps for these machines (as compared to O(n), as was the

case for the simulations we considered in section 3).15 This might be taken to suggest that

15With more work yet, these observations can be carried over to construct multi-tape Turing machines
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T2 is already a plausible candidate for Q.

In order to see that this is not the case directly would require going through a detailed

case study of the sort conducted in Chapter 3 whereby we would attempt to show that

there existed informally specified algorithms which operated over strings which could not

be directly simulated by any machine in T2. But in so doing, we would again run into

the problem of deciding when a given implementation is sufficiently reflective of the step

by step behavior of an informal algorithm to be counted as a direct representation of that

algorithm. In particular, even if we are able to exclude simulations in which O(n) time

algorithms are implemented by O(n2) machines, the examples considered in Chapter 3

suggest that failures of direct step-by-step simulatability can arise from other sources as

well.

A simple example of this already occurs for the problem of deciding the language Ltrip =

{uuu : u ∈ {0, 1}∗}. There is clearly an exact time 2bn/3c informal algorithm for deciding

membership in Ltrip: on input a1 . . . an, successively compare a1,abn/3c+1 and a2bn/3c+1,

a2,abn/3c+2 and a2bn/3c+2, . . ., abn/3c−1,a2bn/3c−1 and an−1, . . .. It is also clear that Ltrip is

decidable in asymptotic time O(n) by a two-head, single-tape machine T 2. For instance T 2

could operate in two phases as follows: 1) during the first phase, T 2 compares a1 . . . abn/3c

with abn/3c+1 . . . a2bn/3c using its two heads; and 2) during the second phase it compares

a1 . . . abn/3c with a2bn/3c+1 . . . an. T 2 can make these comparisons directly in a sense which

would be impossible for a one head machine. For note that by positioning its heads so

that it is simultaneously scanning the pairs of symbols 〈a1, abn/3c+1〉 . . . 〈abn/3c−1, ab2/3c−1〉

and 〈a1, a2bn/3c+1〉, . . . , 〈abn/3c−1,an
〉, it can decide in one step if they are equal. However, it

follows by a crossing sequence argument that any k-head, single-tape machine which decides

Ltrip must move its heads a distance O(n) in order to make any of these comparisons.

Nonetheless it is also apparent that there is no k-head, single-tape machine which whose

exact running time can come within a scalar multiple of the exact running time of the

informal algorithm described above. For note that while a machine like T 2 can directly

compare the symbols in the first and second and the first and third blocks of symbols, it

with one head per tape which also decide Lpal in linear time. This was first shown by Slisenko [133] and
later improved by Leong and Seiferas [73].
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must also expend at least O(n) steps moving its second head between these blocks, resetting

the first head between the second phases and doing bookkeeping to keep track of how the

tape should be divided into thirds. The question of whether T 2 or any other two head

Turing machine directly implements this algorithm thus inevitably foils our standards of

directness. And for reasons with which we are now well acquainted, it is too much to ask

that any implementation M of an algorithm A be such that the transitions which comprise

M ’s executions are in one-to-one correspondence with those that comprise executions of

A. But at the same time, allowing arbitrarily long (or even linearly bounded) sequences

of transitions of M to correspond to single transitions of A is likely to require a liberal

standard of simulatability which in turn is likely to allow for unintended simulations of

sort considered in Chapter 3. And thus despite the fact that taking Q to be T2 instead of

T allows us to construct what appear to be more direct implementations of the particular

algorithms Pal1 and Pal2, it is unclear to what extent this advantage generalizes to other

algorithms.

This situation is typical of a general concern which arises when we try to carry out the

abstractionist strategy by taking Q to be any transition-based model R. I have attempted

to characterize such a model on the basis of its satisfaction of boundedness and locality

conditions. On their intended interpretation, these conditions require that machines Q ∈ Q

have a finite locus around which computational activity takes places and which may only

be moved bounded distance over the course of a single transition. We have seen that a

definition of such a locus can be supplied for a model T2, albeit with a loss of intuitive

plausibility with respect to the definition which can be given for T. But at the same time,

it is not at all clear that any such bound or even a general notion of a computational locus

can be applied to informal specifications of algorithms such as Pal1 and Pal2. And we

will see below, this is also true in a stronger sense for many recursive algorithms which also

lack not only a clearly defined analog to a “program counter” (which keeps track of the step

which they are currently executing) but also a clearly delineated notion of computational

state.

In an effort to locate a plausible choice for Q on behalf of the algorithmic realist, it thus

seems that we must look beyond the class of models which are traditionally classified as
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being based on a notion of state transition. But given that the conditions of discreteness,

determinacy, boundedness and locality by which we have sought to characterize such models

were originally formulated in an attempt to state minimal conditions of a formal model

which allow its members to be physically implemented, going beyond the transition-based

paradigm also means abandoning the physical interpretability as the potential basis of

analysis of what it means for a model of computation to represent processes which occur in

time. But as we are about to see, there are at least two other sets of metaphors on which

it is also possible to base such an analysis.

4.4 Register Based Models

In the previous section, I attempted to provide a uniform characterization of one histor-

ically significant class of models on the basis of the possibility that their mode of operation

might be assigned a physical interpretation. Given the foundational emphasis which has

often been placed on transition-based models and their relationship to mechanism, it is a

minor irony that the first general purpose computing devices which were physically imple-

mented were not based on any of the models which are commonly thought of as belonging

to this class. Rather, the design of both early computers such the well known the Zuse Z3,

the Colossus and the ENIAC as well as the vast majority of contemporary digital computers

are based on a mathematical model of computation which takes a general sort of variable

assignment as its basic operation. Although we will see that it makes sense to speak of

such assignments as occurring in time, it is much more difficult to assign physically inspired

interpretations to these models than it is to typical transition-based models, at least when

they are defined in the full generality with which they are studied in computer science.

The new of set of temporal metaphors around the class of models I wish to discuss

in this section is based around the notion of what is conventionally known as a storage

register. The fundamental component common to models in the classes of machines which

I will refer to as register-based models of computation is that of an abstract location in

which a mathematical value may be stored. In this basic sense, storage registers thus

serve a purpose analogous to that of individual tape squares of a Turing machine in that

they correspond to a sort of notional container which may be initially empty (i.e. not
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contain a value) and then repeatedly refilled with different values. There are, however,

three fundamental respects in which storage registers are more general than tape cells: 1)

they may be used to contain not only individual symbols, but mathematical values drawn

from an arbitrary domain D (e.g. natural numbers, rational numbers, strings, etc.); 2) no

a priori upper bound is generally imposed on the size of a value which can be stored in

a register; and 3) although it is typical to refer to (or address) registers as if they were

elements of a linearly ordered array r[0], r[1], r[2], . . ., no spatial significance is assigned to

proximity of an index of a register to that of another.

The action of storing a value a ∈ D in a register r[i] is known as assignment. Another

common feature of register-based models is that their mode of operation is generally speci-

fied in terms of sequences of assignments which can be expressed as statements of the form

“Store a in r[i].” Following a common convention, I will use the notation r[i]← a to abbre-

viate such an instruction. The intended interpretation of this statement is an imperative

which has as its success criterion (or as it usually called in the literature of programming

languages, a post condition) that the register r[i] contains the a.

Of course treating the assignment of a value to a register as the result of satisfying a

certain form of imperative statement begs the question as to how this assignment is carried

out. Although this point is familiar from Chapter 2.2, it is a particularly salient question

with respect to the register-based paradigm since unlike transition-based models, instances

of register based models are typically specified linguistically as programs over a variety

of simple programming languages. Such programs can be taken to have the structure of a

sequence of statements of the form P = l1 : p1; . . . ; ln : pn where the pi are either assignment

statements of the form r[i]← t (for t a possibly complex term) other flow control constructs

to be considered below. The labels l1, . . . , ln are line numbers which are also required for

flow control.

In the paradigmatic case where the instruction pi in question has the form r[j] ← a,

carrying out pi amounts to storing the value of a in the register indexed by j, potentially

replacing a value which is already stored there. Saying what this amounts to in a more

concrete sense (i.e. saying what it is about registers which allows them to contain values

or how a register is “looked up” according to its index so that the value it contains may
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be retrieved or modified) are details which are not specified by the formal development of

register-based machines themselves.16 However if we assume that a basic account of what

it is to perform an assignment has been carried out, than a basic temporal interpretation

of executing a register-based program P can be provided in terms of its structure. For if

to execute a register-based program P is to carry out its constituent instructions in order,

then we may naturally speak of one instruction being as executed before another. Such

talk may clearly be extended so as to understand entire executions of the sorts of machines

we will consider in terms of linearly ordered sequences of instructions which are carried out

over the course of their operation.

With this general understanding of register based models and the way in which they

may be treated as legitimate models of computation in the sense of Section 2 in hand, we

may turn to a consideration of particular register based models and their suitability to the

algorithmic realist’s needs in choosing a model Q. The first thing to note in this regard

is that while the Turing machine model T is often treated as a sort of canonical instance

of the transition based paradigm, for the register-based approach, this role is filled by a

family of register-based models known collectively as random access machines which share

certain central features but differ in substantially in certain detail. I will collectively refer

to these models as comprising the RAM family. It is not on models of this sort which I

think the algorithmic realist’s hopes should ultimately be focused. But since instances of

this family compromise the most familiar examples of register based paradigm, it will be

useful to start out by reviewing the fundamental properties of RAM machines.17

A RAM machine R may be taken to be comprised of three components: 1) an infinite

16This sort of abstraction is codified in the sort of formal semantics which is typically supplied for register
based programs. As we will see below, the interpretation of an assignment statement in such a semantics
is very much like the definition of a variable assignment in first-order logic. For if we think of the value
contained in a register as being given by a function v mapping from registers into natural numbers, then
the effect of executing the assignment r[j] ← a will be to update v to the assignment v′ = v[r(j)/a] – i.e.
the assignment which assigns the same value of r[i] as does v′ for i 6= j, and assigns r[j] the value a. This
affinity between the effects of assignment statements interpreted relative to an imperative semantics and
updating a variable assignment function forms the basis for first-order dynamic first-order logic in the style
as developed by Harel [56].

17The survey which I have provided here is also essentially anachronistic in the sense that the model I
will consider here is in fact a simplification of the earliest RAM models. Of these, the significant are of
Shepherdson and Sturgis (1963) [128], Hartmanis (1971) [59] and Cook and Reckhow (1973) [23]. All of
these models employed some for of indirect indexing. The model I will describe is based on the survey paper
of van Emde Boas [149].
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sequence of registers vecr = r[0], r[1], . . . indexed by natural numbers; 2) a program P given

over a simple imperative programming language L; 3) a designated register acc known

as the accumulator. To a first approximation, the first and second components may be

thought of as having the same functions as a Turing machine’s tape and finite control –

i.e. the registers are a sort of abstract computational medium and, relative to a suitable

mathematical interpretation, the program specifies how they are to be acted upon. The

accumulator in turn serves as a sort of computational locus akin to the center of a storage

modification machine on which mathematical operations are performed and which mediate

access to the registers. The language L is always assumed to contain four sorts of constructs:

i) flow control instructions including instructions to halt and to transfer control to a program

step with a certain label, either unconditionally or conditional on the outcome of a simple

numerical test, usually applicable only to the accumulator register; ii) instructions for

transferring data from the registers to the accumulator and the accumulator to registers;

and iii) instructions for performing arithmetic operations on the accumulator.

The variety of different RAM models arise from different ways in which each of these

dimensions of L may be made precise. For instance, in regard to i), it is traditional to allow

only the test acc = 0? which tests if the current value stored in the accumulator is equal to

0. But we may additionally allow tests like acc ≥ 0? or acc = r[i]? (where the latter test

for equality between the current contents of the accumulator and the contents of register

i). In regard to ii), it traditional to allow both direct and indirect addressing of registers

with respect to both assignment from the accumulator to registers and retrieval from the

registers to the accumulator. These operations are traditionally denoted by acc ← r[i]

(which assigns the accumulator the value currently stored in r[i]), acc ← r[r[i]] (which

assigns the accumulator the value which is currently stored in the register indexed by

the current contents of r[i]) and the store operations r[i] ← acc and r[r[i]] ← acc with

the corresponding interpretations. However, in simplified RAM models the latter indirect

forms of these operations are omitted. Finally, in regard to iii), it is traditional to allow

for both addition and subtraction to be applied on the accumulator and a value stored in

an arbitrary register with the result being stored in the accumulator. These operations
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are respectively expressed as acc ← acc + r[i] and acc ← acc − r[i]. 18 However, weaker

RAM models are also studied in which only the successor and predecessor operations may

be applied to the accumulator as well as stronger ones in which division and subtraction

may be applied as well as addition and subtraction.

Different combinations of the features i), ii) and iii) lead to a variety of different precise

definitions of the language L over which a RAM program may be stated. And these different

languages lead in turn to different classes of programs which, when interpreted in a manner

similar to that which will be discussed below, in turn lead to different models of computation

in the RAM family. All combinations of features are known to lead to models which are

Turing complete. However the complexity theoretic relationships between different the

different models is much more complex.19 Thus despite the fact that the model with the

choices I have flagged as “transitional” (i.e. multiple arithmetic tests on the accumulator,

indirect addressing allow, only additional and subtraction) is generally taken as the basic

model in complexity theory, it is difficult to provide a completely general or systematic

defense of this model over the others.

Luckily, however, the problem of choosing between different variants of the RAM family

is not likely bear directly on how the realist is likely to go about choosing M. To why see

this is so, it is first useful to take stock how far the family of RAM models departs from

the conditions on mechanism discussed in the previous section. As we have seen, it unclear

how precisely these conditions can be no defined so as to ensure that they apply uniformly

to all models which are traditionally classified as transition-based. Nonetheless, it is still

evident that even the most restricted of the RAM models violates the spirit of both the

boundedness and locality conditions in at least three different ways. For let R be the model

with just the test acc = 0?, no indirect addressing and only predecessor and successor

applicable to acc. We can represent the states of such a machine R ∈ R as an infinite

tuple of the form 〈k, v(acc), v(r[0]), v(r[1]), . . .〉 where k represents the current program line

18paradox of assignment

19Results comparing the different RAM models are usually framed in terms of the existence of “efficient”
simulations between different variants. See [149] and [118] for a summary of other known results as well as
a discussion of the effects of defining the traditional structural complexity classes (i.e. P , NP , PSPACE,
etc.) relative to these different models.
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being executed v(acc) represent the current accumulator value and v(r[i]) represents the

current contents of register r. As we will see below, R’s program P may be compositionally

interpreted so as to determine a transition function ∆R : StR → StR. On this basis it

should be clear from the intended meanings of the instructions summarized above that the

application of ∆R to a state µ ∈ StR will induce a change at most in k and in one of the

v(r[i])s.

One initially think on this basis that such a change of state was suitably constrained

so that definitions of the nearness and center for R could be given which were compatible

with the intuitive motivations given in previous section and thereby show that the model

R satisfies the bounded and locality conditions. But this turns out not to be the case for a

several reasons. One of the most most fundamental of these is that as defined members of

R operates directly on natural numbers. This is in contrast to transition based models, all

the example of which we considered operate on a symbols over a finite alphabet. In order

to perform one of the RAM operations denoted by the instructions r[i] ← acc, acc → r[i]

or acc ← acc + 1, it follows that R must over the course of a single unmediated step act

differentially depending on infinitely many possible values of r[i] or acc. For instance, if

the next instruction to executed in state µ is of the form acc ← r[i], the operation which

mediates between µ and µ′ = ∆µ (i.e. that of storing the value of acc in the register r[i])

will be different depending one of infinitely many potential values of v(r[i]). And from this

it follows that R cannot possibly satisfy the boundedness condition which states that if R

in state µ, the operation performed by ∆R in transforming µ into µ′ = ∆R(µ) must be

completely determined by finitely many “local” component of its state.20

It thus appears that all common variants of the RAM model lack the kind of quasi-

physical motivation which can be provided for transition-based models. But in this case

20It somewhat less clear whether we ought to accept the basic RAM model R as satisfying the locality
condition. For note that while a fixed Rmay operate on an arbitrary large number of during its computation,
no only is this number bounded, but it can be determined in advance by simply examining the finite set
S ⊂ N of indices which occur in its program. Thus although there is no natural way of speaking of the
proximity of one register to another, it is possible to define the relation Neara

R so that all pairs of states
which differ only on the values stored in registers with indices in S are all treated as being in proximity to
one another. But of course since there are machines R ∈ R such that |R| > n for any n, this definition may
be at odds with the intent of the locality constraints to rule out “action at a distance.” Note also that this
technique will not work for the RAM variants allowing indirect indexing, for in this case a single machine
R may index arbitrarily many different registers during the course of a single computation.
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we have also seen that it is still possible to provide a principled basis for treating these

formalisms as models of computation for which a temporal interpretation can be given.

And thus while the register based paradigm clearly represents a step away from a physi-

cally grounded explanation of why certain mathematical formalisms can play the role of

procedural implementations, it is exactly this sort of abstraction away from considerations

rooted in the foundational analysis of effectiveness which allows this framework to encom-

pass implementations which more directly reflect the properties of algorithms such as Pal1

and Pal2.

One way to argue for this claim is to show that there exist informal algorithms whose

transition-based implementations must be “indirect” (in the sense of S1 relative to Pal1),

but which may be implemented as RAM machines in a manner which more directly reflects

their informal specification. But in attempting to do this, we immediately run into the

problem that the exemplars of transition based models which we have thus far considered

operate on discrete combinatorial structures (i.e. strings or graphs) whereas all of the

models of the RAM family operate of natural numbers. And thus in order to make direct

comparisons of implementations between, say, the classes T and R, some form of encoding of

inputs and states would be required which either allowed the members of T to be interpreted

as operating on natural numbers or the members of R to be interpreted as operating on

strings.

Since such encodings present another dimension along which it is possible to construct

“unintended” simulations of the sort considered in Section 3, it will be useful to consider

a form of register-based model which may be interpreted as operating over types other

than natural numbers. One model with this property is known as that of the flowchart

machines which were first considered by Luckham et al. [78]. This model is slightly simpler

than most forms of RAM machine as each flowchart machine possesses a finite number of

registers which must be addressed directly and allows an n-ary mathematical operation to

be applied directly to the values stored in n registers without the need to first move them

to a designated accumulator register.

In more detail, flowchart machines are the mathematical objects which result from

assigning an interpretation to a simple class of uninterpreted imperative programs known
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as program schemes which are similar in form to RAM programs. Formally, a program

scheme is defined as follows:

Definition 4.4.1. A program scheme P is determined relative to a first-order language

LP consisting of a finite class PP = {P1, . . . , Pnp} of predicate letters, a finite class

F = {f1, . . . , fnf
} of function symbols (both of arbitrary arities), and a finite class V =

{v1, . . . , vnv} of variable symbols. P itself is then defined to be as length-n ∈ N sequence

of statements labeled with natural numbers k ≤ n of one of the following three forms:

i) k: y ← f(x1, . . . , xn) for f ∈ F and y, x1, . . . , xn ∈ V

ii) k: if P (x1, . . . , xn) then goto l1 else goto l2 for P ∈ P, x1, . . . , xn ∈ V, j, k < n

iii) k: Halt

Program schemes thus employ the same basic imperative syntax as RAM programs.

And since this syntax is very similar to that of informal pseudocode specifications, it is

often easy to understand the intended procedural interpretation of a program informally.

Consider, for instance, the following scheme:

(4.7)

Pfib

1: x2 ← 1

2: x3 ← 1

3: if x1 < 2 then goto 8 else goto 3

4: x2 ← x2 + x3

5: x3 ← x2

6: x1 ← x1 − 1

7: if 1 = 1 then goto 2 else goto 2

8: Halt

Suppose we assign the normal meanings to the predicates < and = and the function symbol

+ and treat 1 as a shorthand for the constant 1 function. If we additionally assume that this

scheme receives its input in register x1 and produces its output in register x2, then under

this interpretation, Pfib ought to determine the standard Fibonacci function fib : N→ N

Although it is generally possible to informally understand the interpretation of a pro-

gram scheme in this manner, a linguistic entity of this sort should be taken to correspond
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to an implementation in the technical sense until we also supply a precise semantics which

show how it gives rise to a mathematical object with minimally possesses the properties

discussed in section 4.1. This achieved for a scheme P by choosing an interpretation I of

LP which assigns a denotation to the sets of symbols P and F relative to a domain D in the

standard sense of first-order logic – i.e. P I ⊆ Dn for all n-ary P ∈ P and f I ∈ DDm
for all

m-ary f ∈ F. We interpret the variable xi appearing in P via a vector of values ~a ∈ Dvn .

Finally, we assume that if a scheme P contains nv variable and we wish to interpret as

inducing a function f : Dn → D for n ≤ nv, then the initial values of x1, . . . , xn are taken

to correspond values a1, . . . , an ∈ D which are treated as the arguments to f .

A flowchart machine may now be defined as a pair P = 〈P, I〉. If for P ∈ P we

take XP = YP = D, all that remains to adapt this formalism to our original definition

of model of computation is to show how a function App : P × Dn → D may be defined

which gives the value which would be returned by a machine P ∈ P when started in an

initial state determined by a vector ~a ∈ Dn. This may be achieved by providing a simple

operational semantics for program schemes. In order to do so, first define a state of a

flowchart machine to be a sequence 〈b1, . . . , bnv , k〉 such that bj (for j ≤ vn) gives the

current contents of register xj and k ≤ vn gives the line number of the instruction currently

being executed. Let StP denote the set of such sequences. The execution of P determined

by initial values ~a ≡ 〈a1, . . . , avn〉 is then defined to be a finite or infinite sequence of such

states µ0, µ1, µ2, . . . which is determined in the following manner.

First, let val(xj , k) denote the value stored in register xj at the kth state in such a

sequence and line(k) denote the line number associated with the kth state. The state µk+1

is defined in terms of µk as follows:

(4.8) 1) If k = 0, then µk = 〈a1, . . . , an, 1〉 – i.e. µk is the state with register i assigned

the initial value ai and current location assigned as line 1.

2) If k > 0 and line(k) of P is xj → f(xq1, . . . , xqn), val(xqi
, k) = bi,

f I(b1, . . . , bn) = c, then µk+1 = 〈d1, . . . , dnv , line(k) + 1〉 where di = val(xqi
, k)

if i 6= j and di = c otherwise.

3) If k > 0 and line(k) of P is xj → xl, val(k, xl) = c then
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µk + 1 = 〈d1, . . . , dnv , line(k) + 1〉 where di = val(xi, k) if i 6= k and di = c

otherwise.

4) If k > 0 and line(k) of P is If P (x1, . . . , xn) then goto l1 else goto l2,

val(xi, k) = bi and P I(bi, . . . , bn) is true, then

µk+1 = 〈val(x1, k), . . . , val(xvn , k), l1〉. Otherwise

µk+1 = 〈val(x1, k), . . . , val(xvn , k), l2〉.

5) If k > 0 and line(k) is Halt, then µk+1 = 〈val(x1, k), . . . , val(xn, k), h〉 where h

is a special marker denoting a halting state.

Suppose that P is a flowchart machine and n < nv. In order to view P as inducing a func-

tion of type Dn → D, we may finally define the function App(P , x1, . . . , xn) as follows. For

input values a1, . . . , an ∈ D, and arbitrary d1, . . . , dvn−n ∈ D we define App(P , b1, . . . , bn)

to be val(k, n + 1) where k is the index of the least component of the execution of P

starting with initial configuration 〈b1, . . . , bn, d1, . . . , dvn−n, 1〉 such that line(k) = h, and is

undefined if there no such k exists.21

We may now return to the question of whether a register-based model P represents

an improvement over transition-based models with respect to the realist’s central desire

to locate more a flexible model of computation for representing the algorithms in A. The

first thing to note in this regard is that since it was essentially locality-based considerations

which prevented direct Turing machine implementations of Pal1 and Pal2, it should not be

surprising that there are much more natural representations of these algorithms as flowchart

machines. In order to see this, we must be somewhat careful about how we formalize the

string-based operations which appear in the informal specifications of these procedures.

For note that there are two ways in which we can construct a flowchart machine which

takes a finite string w ≡ a1 . . . an over {0, 1}∗ as input: 1) we may initial store each of

the symbols ai in a separate register xi and then proceed to compare the values stored in

21The choice of the name flowchart machine to denote members of P may be justified on the basis of this
definition. For note that we may think of the interpretation of each program scheme P as giving rise to a
directed graph whose nodes correspond to individual instructions and whose edges correspond to how the
control is transfered from instruction to instruction during the course of its execution as follows: 1) if a node
corresponding to a statement of the form k: y ← f(x1, . . . , xn) is connected to the node corresponding to
the instruction with label k+1; 2) a node corresponding to a statement of the form k: if P (x1, . . . , xn) then

goto l1 else goto l2 will be connected to the nodes with labels l1 and l2; and 3) a labeled node corresponding
to a statement of the form k: Halt will have no outgoing edge.
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different registers; 2) we may initially store w in a single register and then using appropriate

string-based operations defined on single registers to access and manipulate its constituent

symbols.

A number of both general and technical factors militate in favor of choosing option

2) over option 1). First, note that since any given flowchart machine P will have only a

fixed number of registers nv, no individual flowchart machine will contain sufficiently many

registers to allow it to store strings of arbitrary length. It thus follows that no flowchart

machine could compute the characteristic function of Lpal unless it employed some variant

of 2). While employing this strategy may seem like unnecessary detour since other members

of other register based models (such as RAM machines) already contain enough registers

to store strings of arbitrary length in a bitwise fashion, we will shortly see that adopting

2) also enforces a useful segregation between the data structures which are intrinsically

part of a given model from those are more properly associated with the particular class of

mathematical objects on which we employ it to operate.

Having made this decision, it is now straightforward to construct register machines P pal1

and P pal2 which hae the appearance of implementing Pal1 and Pal2 more directly than

any of the Turing machines considered in Section 3. The first step in doing so is to adopt

some means of distinguishing between registers which contain string values, those which

contain symbol values (i.e. 0 and 1 in the case under consideration) and those which contain

integer values under the intended interpretations of LP1 and LP2. This can be carried out

in any of a number of ways, but the most straightforward is to simply name registers using

separate sets of variables w1, w2, . . ., a1, a2, . . . and x1, x2, . . . and adopt the convention that

the first may only be used to store strings, the second to store symbol values and third to

store numerical values. If we now examine our original pseudocode specifications of Pal1

and Pal2 in light of these conventions, it should be clear that if we wish to naturally express

these procedure as program schemes, the language Lpal over which P pal1 and P pal2 are

stated should contain the function symbols Fpal = {length(w), getbit(w, i), setbit(i, a), x +

y, x− y, dx/2e} and the predicate symbols Ppal = {ai = aj, x ≤ y}.

We now can now proceed to render Pal1 and Pal2 as program schemas. One set of

possible outcomes is indicated in Figure 4.1. Now let I be an interpretation with domain
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Ppal1

1: x1 ← no

2: x2 ← 1
3: x3 ← length(w1)
4: x4 ← dx3/2e
5: If x2 ≤ x4 then goto l6 else goto l12
6: a1 ← getbit(w1, x2)
7: x5 ← x2 − 1
8: x6 ← x3 − x5

9: a2 ← getbit(w, x6)
10: If a1 = a2 then goto l10 else goto l13
11: x2 ← x2 + 1
12: If 1 = 1 then goto l5 else goto l5
13: x1 ← yes

14: Halt

Ppal2

1: x1 ← no

2: x2 ← 1
3: x3 ← length(w1)
4: If x2 ≤ w3 then goto l5 else goto l9
5: a1 = getbit(w1, x2)
6: x4 ← x2 − 1
7: x5 ← x3 − x4

8: w2 = setbit(x5, a1)
9: x2 ← x2 + 1
10: If 1 = 1 then goto l4 else goto l4
11: x2 ← 1
12: If x2 ≤ x3 then goto l11 else goto l16
13: a1 ← getbit(w1, x2)
14: a2 ← getbit(w2, x2)
15: If a1 = a2 then goto l14 else goto l17
16: x2 ← x2 + 1
17: If 1 = 1 then goto l10 else goto l10
18: x1 ← yes

19: Halt

Figure 4.1: Pal1 and Pal2 as program schemes.

{0, 1}∗ ∪ {0, 1} ∪ N of Lpal which assigns the intended meaning to each of its symbols. In

other words I assigns the normal arithmetic interpretations to x + y, x − y, dx/2e and is

such length(w)I = |w|, getbit(a1 . . . ai . . . an, i)
I = ai, setbit(i, b) = a1 . . . ai−1bai+1 . . . an

(where a1 . . . an is the string stored in the register to be updated) and a1 =I a2 if and only

if the symbols associated with a1 are a2 are identical. It should then be clear that under the

under the definition of App given above, the flowchart machines P 1 = 〈Ppal1, I〉 and P 2 =

〈Ppal2, I〉 determine the characteristic function of Lpal under the input/output mappings

which assigns input w to register w1 and reads output from register x1 (interpreting yes

as the name for the constant 1 function and no as a name for the constant 0 function).

It should also be clear that individual executions of these machines as formalized by (4.8)

correlate closely with those of Pal1 and Pal2 on the same inputs as described in Section 3

in terms of informally delimited stages. Of course, at this point we are also well acquainted

with the exigencies involved with making such claims precise. For note that as was the



288

case in Section 3, the necessity of regimenting a method originally described as pseudocode

in the exact format of a program scheme requires that various instructions which were

originally as single pseudocode statements must be expressed as multiple program scheme

instructions. For instance the iterative Step 2 of Pal1 is expressed across lines 5-10 of

Ppal1. In this case, the necessity of expressing a pseudocode statement indirectly arises for

two reasons: 1) there is no native for-do loop construction in the basic language of program

schemes and thus such loops must be expressed indirectly by using a counter register (in this

case x3) together with a conditional goto state (in this case, line 4); 2) since the program

scheme language also does not support the use of complex functional terms, the index value

which we would informally express as n − (i − 1) has be built by storing the values of its

subexpressions in individual registers (in this case, over the course of lines 3, 6 and 7.

One might initially think that the necessity of resorting to such computational detours

in expressing Pal1 and Pal2 suggest that little has been gained in moving from the model

T to the model P. But upon examining the executions of Ppal1 and Ppal2 in more detail it

is also evident that the necessity of expressing certain the pseudocode step just mentioned

indirectly leads only to the necessity of associating constant length sequences of transition

of these machine with single stages in the execution of Pal1 and Pal2. In other words,

even though the loop expressed as line 2 of Pal2 must be expressed over lines 5-10 of

Ppal1, each stage of an execution of the former will correspond to exact five transitions in

an execution of the latter. Thus although there will not be a one to one correspondence

between the informally delimited stages of executions of Pal1 and Pal2 and transitions in

the executions of Ppal1 and Ppal2, there will be a fixed constant k, independent of |w|, such

that one stage can correspond to no more than k transitions. And while there similarly

cannot be a one to one correspondence between stages and Turing transitions, we have

seen above that in this case, certain stages in the execution of Pal1 and Pal2 must be

correlated with sequences of transition of length O(|w|). On this basis of this observation,

the realist might attempt to claim that Ppal1 and Ppal2 come closer to directly implementing

Pal1 and Pal2 than do any of the Turing machines considered in section 3.

But for equally familiar reasons, there is no obvious basis on which Ppal1 and Ppal2 can

be claimed as the unique or flowchart representatives of Pal1 and Pal2. For note that
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a number of minor modifications can be made to either of these schemas which produce

machines with equal title to being counted as implementations of Pal1 and Pal2. For

instance, the ordering of sequential assignment instructions with disjoint sets of variables

such as lines 1-4 of Ppal1 of lines 13-14 of Ppal2 can be permuted. And similarly, the guards

used on the conditional used to implement the for-do of Pal1 and Pal2 can be modified

in a variety of different ways which will lead to schemes with related but non-identical

executions.

These considerations suggest that if the realist wishes to employ P as the class of im-

plementations M with respect to which he wishes to pursue the abstractionist programme,

he still have some work to do in proposing and justify a definition of ↔ . In doing so,

he will have to confront some of the same issues which arose in section 3 – e.g. the need

to formulate a representation requirement over structurally distinct classes of states, the

possibility of one step in the operation of one flowchart machine corresponds to more than

one steps in the operation of another machine and vice versa, etc..

To see in a precise sense that progress has indeed been made would require us proceed

as we did in section 3 – i.e. by examining both the executions of P pal1 and P pal2 and those

of other flowchart machines which can plausibly be taken to implement Pal1 and Pal2.

But based on the structure of the argument adduced against the abstractionist programme

in section 3, we can also see in advance that the outcome of such a study is likely to turn on

whether there exists machines Qpal1 and Qpal2 which stand in analogous relations to P pal1

and P pal2 as the Turing machines S5 and U2 do to S1 and U2. Such a pair of machines

would respectively implement Pal1 and Pal2 with the same degree of intuitive plausibility

as do P pal1 and P pal2. But at the same time, they would have to operate so differently

from P pal1 and P pal2 in a local step-by-step sense as to confound any proposed definition

of ↔ which did not also assimilate P pal1 and P pal2 themselves.

While it initially seem implausible that the existence of such machines can be ruled out

a priori, in choosing M to be P he now at least has a plausible means of reply. For note

that the flowchart model makes available two constructs which were not present in T: 1)

a means of directly accessing and manipulating the elements of strings by index; 2) a flow

control mechanism which allows for the direct implementation of iteration over indices. As
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we have seen, the presence of the first feature allows for comparison of the bits ai and

an−(i−1) to be performed without the use of an auxiliary method for transporting the value

of a symbol from the left end of the string to the right end. And the presence of the second

feature allows for expression of loops whose guard conditions resemble those of Pal1 and

Pal2 in the sense that a counter variable (e.g. x2 in the case of Ppal1 and Ppal2) may be

directly compared to the length of a1 . . . an instead of relying on an indirect method such

as the overwriting symbols at the end of the tape in order to keep track of progress.

The realist might hope to use these observations as the basis for formulating a precise

definition of what it means for a flowchart to “directly” implement the loops expressed in

Pal1 and Pal2. For instance we have seen that there will thus only be a need to recognize

constant (i.e. O(1)) length sequences of their transitions as corresponding to single stages

in the execution of Pal1 and Pal2 as opposed to linear (i.e O(n)) length sequences in the

case of T. These observations in turn suggest that a definition of ↔ may be formulated

which restricts the quantification over decomposition functions (c.f. Definition ???) much

more tightly than is possible for Turing machines. And on the basis of such an observation,

it is at least plausible to hope that a definition of ↔ can be formulated over P which avoids

many of the problems of grain encountered in Section 3.

There are, of course, sufficiently many what-ifs built into the scenario just described to

shift the rhetorical onus back on to the algorithmic realist, who has the responsibility of

producing an explicit definition of ↔ . But at this point it should also be clear that the

added sophistication of P over T can only serve as an advantage in this regard. In partic-

ular, it appears that in moving from one to the other, the classes of intuitively acceptable

implementations of algorithms like Pal1 and Pal2 can only become more computation-

ally homogeneous and thus (as the realist may hope) easier to define implicitly via an

appropriate definition of bisimulation.22

22But these appearances may be deceiving. One genuine area for concern arises from the presence of the
arithmetic symbols +, − and d·/2e in Lpal which we are obliged to assume are interpreted according to their
standard means. For note that once such operations are admitted to the basic set of operations in terms
of which a register machine is defined, the model of computation which results from considering only the
interpretation of these symbols will not only be Turing complete but also will require only a small number
of auxiliary registers (in fact 2 – c.f. [87]) to compute any recursive function. This leads to the possibility
that seemingly-innocuous variables can be used to formulate guard conditions of arbitrary computational
complexity. As such, there will be instances of programs schemas which appear structurally similar to
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Even if an adequate definition of bisimulation cannot be given for P as things stand, the

forgoing observations also suggest an additional strategy which is open to the realist. For

just as the putative gain in directness between, say, S1 and Ppal1 qua implementation of

Pal1 can be traced to the presence in the flowchart model of mathematical constructions

which already appear in the pseudocode specification of this procedure, it also seems rea-

sonable to suspect that adjoining additional operations and procedural constructs present

in the informal specifications of the algorithms in A can only lead to programs schemes

capable of representing these algorithms more directly. For instance, if we modified Lpal so

that it contained complex functional expressions (i.e. expressions of the form f(g1, . . . , gn))

which were then interpreted in the standard first-order manner, we could then formulate

program schemes which eliminated the minor detours which required the use of extra reg-

isters in Ppal1 and Ppal2 to build up the desired index values. There are additionally many

other readily foreseeable generalizations in which the model P could be generalized – e.g.

by introducing additional looping constructs, reintroducing indirect indexing of registers,

allowing for subroutines, etc.. And on this basis, the realist might propose that if we sim-

ply keep expanding the set of available operations and constructs available as primitive

components then we will ultimately converge to a model which contains machines which so

accurately reflect the intended interpretations of our informal specifications of algorithms

that the problem of defining ↔ will ultimate become manageable, if not entirely trivial.

This strategy raises several questions about the general problems involved with provid-

ing a definition of implementation which we are now in a position to begin to discuss in

detail. One of these concerns the relationship between the class P of flowchart machines

and our original definition of transition systems. We observed above that register based

such as those of the RAM family can not reasonably be taken to satisfy the boundedness

condition on mechanism and as such are not naturally classified as transition based model.

It should be clear on the basis of (4.8) that the same if true of the flowchart machine model.

For although the which can occur to a state over the course of a single transition are still

Ppal1 and Ppal2 but whose equivalence even with respect to the function they compute will be formally
undecidable. This suggests that unless the realist can propose a general means of ruling out pathological
machines which disguise complex computations inside simpler ones, an extensionally adequate definition of
bisimulation for flowchart machines may actually be more complex than one for Turing machines.
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“local” in the sense of effective only two of its components (i.e. the value contained in

a single register and the current line number), the ability to compute on arbitrary data

types as determined by the symbols in LP and the interpretation I means that there will

be members of P which do not satisfy the intent of the boundedness condition for essen-

tially the same reason as the simple RAM model R discussed above. It is equally clear,

however, that the members of P may be uniformly represented as transition systems in the

sense of Definition 3.4 of Chapter 3. In particular given a flowchart machine P = 〈P, I〉

it is straightforward to define a transition system MP with the same states and transition

function based on (4.8).23

Thus despite the greater flexibility which a register based model like P offers over a

transition base model like T, both models are subsumed under the general definition of

transition system. And it should be equally clear that many of the ways alluded to above

in which we might think to produce a more general register will still result in models which

can also be straightforwardly presented as transition systems. The question thus arises

whether we are indeed justified in treating this definition as a general analysis of the notion

of implementation which the realist hopes to construct so as to define the class M in a prin-

cipled manner. I will ultimately argue that this question should be answered positively, but

that when the relationship between extent models of computation and transition systems

is understood in full detail that this conclusion will offer support to the realists hope that

by taking a very inclusive class of implementation as M he may substantially reduce the

complexity of defining ↔ .

To see why this is so requires that we examine the final class of the three traditionally

recognized classes of models of computation – i.e. those based on recursion. But in order

to set the stage for this, it will useful to first introduce a distinction which distinguishes

between the class P and all of the models we have considered previously. Note in particular

that P differs from the models in the RAM family (and similarly from transition based

23In fact the definition of a flowchart machine is already so to similar to that of a transition system so as
to make this definition trivial. To define MP = 〈XP , YP , StP ,∆P ,HP , inP , outP 〉 we may take XP = Dn

(for n < nv), YP = D, St to be as defined above, ∆P to defined so that ∆P (µ) = µ′ just in case µ = µi

and µ′ = µi+1 in some execution of P , HP to be the set of states of the form 〈a1, . . . , an, h〉 for ai ∈ D,
inP (a1, . . . , an) = 〈a1, . . . , an, dn+1, . . . , dnv 〉 (for dn+1, . . . , dnv some arbitrarily chose values of D) and
outP (a1, . . . , anv ) = an+1.
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models like T or S) in that individual flowchart machines may be defined so that the basic

operations and predicates they employ on registers correspond to arbitrary mathematical

functions and predicates. For instance, the machines P pa1 and P pal2 employ operations

and predicates which operate on natural numbers, strings, and symbols whereas this would

not be possible for either a Turing machine or RAM machine. Moreover, other flowchart

machines could be defined which operate directly on matrices, graphs, groups, etc.

I will call a model of computation whose members may include objects and operations

drawn from a general class which is independent of the definition of the model itself an

open model. Since the algorithms we are taking to constitute the class A are themselves

usually specified in terms of arbitrary (effective) operations and predicates, openness seems

like desirable property of any model of computation which, per the realist’s desire, contains

members which serve as suitably direct members of A. However, openness in this sense

must be distinguished from another important dimension which may add to (or constrain)

the ease with which a given model may be adapted so as to directly express an algorithm.

This other access concerns the manner in which we allow a model to access, store, and

manipulate the mathematical objects on which it operates. For instance, we have a seen

that a model like T is very conservative in this regard in that in order to access a symbol

value, its head must literally be moved to the square that contains it. Register-based models

like P are more flexible in this regard since they allow value to be accessed by index. But

as we are about to see, recursion-based models can be thought of as more flexible yet since

there is a sense in which they can access and manipulate multiple components of their state

at the same time in a manner which properly extends the abilities of flowchart machines.

And since we will also see that there is an in-principle reason why certain variants of these

models cannot be represented as transition systems, there is also a prima facie reason to

doubt that such systems provide a sufficiently broad framework for the realist’s purposes.

4.5 Recursion-based models

In traditional taxonomies of models such as those given in [113] or [63], it is customary

to contrast both transition- and register-based models with models based on various forms

of recursion. This distinction turns on a fundamental difference in the sense that informally
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described computational processes may be viewed as occurring in time. As we have seen,

the notion of execution which is typically defined for both transition- and register-based

models I is grounded in the mathematical notion of iteration. Such models may typically

be presented as transition systems in a manner which allows us to view AppI as defined in

terms of the successive application of a transition function ∆I to an initial state µ0 to yield

a sequence of states µ0,∆B(µ),∆B(∆B(µ0)), . . .. In such cases, µi+1 is derived by applying

a mathematical operation to some structurally delimited component of µi. And for this

reason, we can consequently view the executions of I as a model of processes which occur

in time by likening transitions from µi to µi+1 to either a change in the local physical state

or an updating of a value stored in a distinct location.

In order to understand the conceptual basis of recursion-based models of computation,

we must first recall that the term “recursive” is most fundamentally employed to describe

certain informal modes of defining mathematical functions. A simple recursive definition

of a function f : D → D will typically have the form f(x) =df t(x) where t(x) is a complex

functional term which contains one or more subterms containing the symbol f itself. Such

definitions are circular in the sense that the value of the term f(x) is defined in a manner

which involves reference to whatever function (if any) such a definition succeeds in defining.

But this sort of circularity need not be vicious in the sense of either leading to paradox or

even to the necessity of recognizing that the function determined may not be defined for all

x ∈ D. For t(x1, . . . , xn) will typically have a form resembling f(r1(x)) . . . f(rn(x)) where

r1, . . . , rn are explicitly defined functions which may contain f . But at least in most of the

simple cases with which we will be concerned, f will be defined on Dn and we will know

in advance that for all x ∈ D, ri(x) <D x where <D is some explicitly given well partial

order on the domain D.24 Recursive definitions of this sort succeed in determining total

functions because even though the value of f(x1, . . . , xn) is defined in terms of other values

of the same function, these values will alway be smaller in the sense of <D. And thus by

expanding the definition of f , we will eventually reach values of x1, . . . , xn for which no

further expansion is possible.

24I.e. <D is transitive, antisymmetric, and such that any linearly ordered chain x0 >D x1 >D x2 >D . . .
is of finite length and contains no infinite antichains.
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This informal description of recursive definition leads naturally to a temporal interpreta-

tion of what it means to apply a recursively defined function to an argument in its domain.

This is most readily illustrated by considering a simple example. To this end, consider the

set S = {|}∗ consisting of all finite strings over the alphabet {|} (including the empty string

denoted by ε). Let · denote the concatenation function on D and tail : S → S be defined

by tail(| · σ) = σ. Now consider the following definition of a function double : S → S.

(4.9) double(σ) =















ε if σ = ε

|| · double(tail(σ)) otherwise

It should be clear that this definition determines a function of type S → S and that for

all σ ∈ S, double(σ) = σ · σ. Also note that the ordering on S, with respect to which

tail(σ) (which corresponds to the term r1(x) in the previous paragraph) is less than σ, is

the ordering τ <S σ iff τ is a proper prefix of σ. <S is clearly a well-partial ordering (in

fact a well-ordering), and from this it follows by a standard set theoretic argument that

(4.9) determines a unique total function on S.

Definitions like (4.9) thus serve a dual purpose in our mathematical discourse. On the

one hand, they serve as acceptable means of introducing new function symbols. And on

the other hand they serve as a means of specifying a sort of algorithm by which their

values may be explicitly computed. Given that we are treating algorithms as the sort of

entities whose execution leads to a temporally extended sequence of intermediate stages,

assigning this status to (4.9) requires that we interpret its right-hand side in a certain

manner. In particular, we must regard the occurrence of the functional expression tail(σ)

as corresponding to an operation which serves to decompose σ according to its structure.

Viewed in this light, (4.9) specifies a method whereby the value of double(σ) can be obtained

by first decomposing σ as | · tail(σ) and then concatenating the string || to the left of the

result of applying double to the second component of this decomposition.

On this basis we may, for instance, use (4.9) to calculate double(|||) = || · double(||) =

|| · (|| · double(|)) = || · (|| · (|| · double(ε))) = || · (|| · (||)) = || · (||||) = ||||||. Such a chain of

equalities may be seen as representing the result of a process whereby σ is “broken down”

into its structural constituents until the base case σ = ε is reached. Such a process of
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decomposition is most naturally understood as occurring in time. For note that in order to

employ (4.9) so to derive these equalities we must, for instance, think of the input string

||| as being decomposed as | · tail(|||) and the result of double(tail(|||)) being calculated

before the operation λτ.|| · τ is applied to the value of the latter expression. And this in

turn requires us to think of ||(= tail(|||)) as being decomposed as | · tail(||) and the result

of double(tail(||)) being calculated before the operation λτ.|| · τ can be applied to the value

of the latter expression.

But while the sort of process just described is naturally understood as occurring in

time, there are a variety of factors which stand in the way of representing the expansion of

a recursive definition as a computational process which may be described by a register-based

model or even a transition system. Understanding why this is so will require us to examine

more sophisticated forms of recursive definition as well as their formal representation as

members of models of computation which treat recursion as a mathematical primitive.

One of the simplest and most familiar recursion-based models is the class of primitive

recursive functions first introduced by Dedekind [27] and Skolem [132] as a model of compu-

tation on the natural numbers. The definition of a primitive recursive function can be taken

as simultaneously identifying an extensional subclass of the set of functions PR
N ⊆ Nn → N

as being computable in a particularly elementary manner and also a set PR of functional

terms whose members denote functions in PR
N . It is well known that PR

N turns out to

be too narrow to serve as a conceptually adequate definition of effective computability on

the natural numbers. But for heuristic purposes, the definition of PR taken together with

the manner in which these terms are assigned denotations in PR
N remains the canonical

example of a recursive model.

The set of terms PR is defined as the class of terms over a formal language Lpr according

to the following definition.

Definition 4.5.1. Lpr contains the basis functional symbols z,s (unary) together with the

class of n-ary symbols πn
i for all i < n ∈ N. PR is then defined as the smallest class of

terms containing these symbols and closed under the application of the following functional

combinators:

i) Composition: If PR contains the m-ary symbol g and the n-ary functional symbols
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h0, . . . , hm, then it also contains the n-ary functional symbol Comp[g, h1, . . . , hm].

ii) Primitive Recursion: If PR contains the n-ary functional symbol g and the n + 2-ary

functional symbol h, then it also contains the n+1-ary functional symbol PrimRec[g, h].

I will refer to the members of PR as primitive recursive definitions. Such definitions

play a role analogous to program schemes in the flowchart model P in the sense that they

function as linguistic descriptions of mathematical objects which may be interpreted as

denoting functions via the construction of an appropriate definition of application.

The typical means of doing this is to assign each symbol f of Lpr an arithmetic inter-

pretation fN as follows:

Definition 4.5.2. Let f ∈ PR. fN is defined according to f ’s compositional structure as

follows:

i) If f = z, then fN(x) = 0 for all x ∈ N.

ii) If f = s, then fN (x) = x+ 1 for all x ∈ N.

iii) If f = πi
n, then (πi

n)N (x1, . . . , xi, . . . , xn) = xi.

iv) If f = Comp[g, h1, . . . , hm], for g, h1, . . . , hm ∈ PR, gN m-ary and hN
1 , . . . , h

N
m n-ary,

then fN(x1, . . . , xn) = gN (hN
1 (x1, . . . , xn), . . . , hN

m(x1, . . . , xn)).

v) If f = PrimRec[g, h], for g, h ∈ PR, gN n-ary and hN n + 2-ary, then fN is the

unique function of type Nn+1 → N such that fN (x1, . . . , xn, 0) = gN (x1, . . . , xn) and

fN(x1, . . . , xn, y) = hN (x1, . . . , xn, f
N (x1, . . . , xn, n), y − 1).

Employing this means of interpreting primitive recursive definitions, we may now define

the model of computation PR to consist of the set terms PR, the input set Xpr = ∪mNm

and the output set Ypr = N. In order to define application for this model, first note that

the interpretation fN of a term f ∈ PR is a function fN of type Nn → N. We may thus

define AppPR(fN , 〈m1, . . . ,mn〉) for m1, . . . ,mn ∈ N simply as the value of this function

applied to these arguments – i.e., as fN(m1, . . . ,mn).

Given these components, PR clearly forms a model of computation in the sense discussed

in Section 2. This is true despite the fact that Apppr is defined in terms of extensional func-

tional application. Such a definition thus provides little insight into why we are justified

in taking primitive recursive definitions as formalizing the sorts of computational processes



298

which I suggested are naturally determined by a definition like (4.9). Given any two func-

tions gN and hN meeting the hypotheses of (4.5.2v), an elementary theorem of set theory

states that there will exist a unique function fN which can serve as denotation of the term

f defined therein. But as I will discuss presently, the method by which this theorem is

proved provides little direct insight into why function definitions of this sort ought to be

treated as models of computational processes.

In order to understand why primitive recursive definitions fail to have this property, it

is easiest to consider an example. Take the PR term

(4.10) plus(x, y) = PrimRec[π1
1 , Comp[s, π

3
2]](x, y)

which we would normally write using informal definition by cases notation as follows:

(4.11) plus(x, y) =















x if y = 0

s(plus(x, y − 1)) otherwise

.

In order to see why we are justified in using (4.11) to compute the value of plusN (n,m)

for fixed n,m, it suffices to observe that although this function is defined on N × N, the

expression on the right-hand side of (4.11) (and in fact all primitive recursive definition in

general) “goes down” on its second coordinate – i.e. the value of plus(x, y) is defined in

terms of an operation defined on plus(x, y−1). We may think of the function pred(x) = x−1

as corresponding to a decomposition operator which plays a similar role to that of tail(σ)

as it appears in (4.9). In particular, pred(x) may be thought of “breaking down” a natural

number n into the subcomponents 1 and n − 1.25 Since the domain N is obviously well-

ordered by < and for all x, pred(x) < x, it follows that we may view (4.11) as specifying

a method for computing plusN (n,m) from the “top down.” For instance, to compute

plusN (2, 2), we may use (4.11) to calculate plus(2, 2) = s(plus(2, 1)) = s(s(plus(2, 0))) =

s(s(2)) = s(3) = 4.

25If we think of natural numbers as freestanding mathematical objects, talk of numerical decomposition
must obviously be treated metaphorically. If, however, we think of natural numbers as corresponding to
finite (e.g. von Neumann) ordinals, then the function pred(x) literally does structurally decompose x into y
and {y} where y is not only the ordinal predecessor of x but also y ∈ x. A similar interpretation is possible
if we think of natural numbers as being given as unary numerals. For in case n is represented as σn = | . . . |
(n + 1 times), the operation pred(x) corresponds directly to the operation tail(σ) defined over the set of
strings S.
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It is straightforward to formalize derivations of this sort using an equational calculus

Tpr of uninterpreted PR terms. Such a calculus would include as axioms mimicking the

different clauses of (4.5.2) as well as the first-order identity axioms. And on this basis,

we could redefine AppPR such that AppPR(fN , 〈m1, . . . ,mn〉) = q just in case the equality

f(m1, . . . ,mn) = q was derivable in Tpr. The equations appearing in a derivation of this

latter statement Tpr may thus be viewed as intermediate steps in a calculation such as that

illustrated in the previous paragraph. Such a definition of AppPR is obviously more in line

with our efforts to interpret primitive recursive definition as specifying procedures. But we

may already see that certain problems arise in giving such a definition for the simple reason

that there will be infinitely many distinct Tpr derivations with final step f(m1, . . . ,mn) = q.

And thus, taken by itself, such a calculus cannot be taken as completely specifying a method

of computing with primitive recursive definitions.

This, however, is only one of the problems which occurs when we attempt to view PR

as a model of computation on a descriptive par with a register-based models such as P.

For recall that our ultimate goal in this chapter is to assess the adequacy of various models

of computation with respect to their suitability for serving as the class Q with respect

to which the algorithmic realist wishes to reduce the members of A via an appropriate

definition of ↔ . I have already mentioned one feature which suggests that PR is not

suitable for this task – i.e. the fact that this model is not Turing-complete and as such

does not contain members which determine every intuitively effective function on natural

numbers. Note, however, that the best-known examples of intuitively computable but not

primitive recursive functions (e.g., the Ackermann function) may be shown to grow so fast

that they are unlikely to correspond to the sort of practical algorithms whose status the

realist is most concerned with accounting for.

There are two other straightforward but less often cited properties of PR which suggests

that it is a poor candidate to choose for Q. The first of these is that PR is not an open

model in the sense of the previous section – i.e. it does not contain members which operate

on structures other than natural numbers or employ as basic operations anything other

than the class of basis functions enumerated above. This limitation would, for instance,

prevent us from employing PR to directly model an algorithm such as Pal1 or Pal2 which



300

operated on strings rather than natural numbers.26

Another somewhat less obvious problem with attempting to employ PR as a general

model of computation relative to which we can attempt to find implementation of everyday

algorithms is that not all informal recursive definitions are of a form which can be directly

represented as terms over PR. Consider, for instance, the customary recursive definition

of the Fibonacci function fib(x):

(4.12) fib(x) =































1 if x = 0

1 if x = 1

fib(x− 1) + fib(x− 2) otherwise

.

By the conventional standards discussed above, (4.12) serves not only as a means of in-

troducing the functional symbol fib(x), but also determines a procedure for computing

its values. For instance, we may use (4.12) to compute the value fibN (3) as follows:

fibN (0) = 1, fibN(1) = 1, fibN (2) = fibN (1) + fibN (0), fibN (2) = 1 + 1, fibN (2) = 2,

fibN (3) = fibN (2) + fibN (1), fibN (3) = 2 + 1, fibN (3) = 3.

But now note that even if we elect to define AppPR relative to a equational calculus in the

manner described above, there can be no PR term whose execution directly corresponds to

the statements occurring in the derivation just described. This is not because the function

26Of course this does not mean that the definition of PR is not naturally extended so as to characterize
the language Lpal as being primitive recursive. In order to do so, we would first have to take the standard
step of saying that a set X ⊂ N is primitive recursive just in case its characteristic function is. We can
next define an effective coding c of strings w ∈ {0, 1}∗ into natural numbers. In this setting, it is easy to
construct p ∈ Lpr so that pN(c(w)) = 1 if and only w ∈ Lpal. Moreover it is also possible to do this so that
the derivations of pN(c(w)) = i (for i ∈ {0, 1}) mirror the stages in the execution of, e.g., Pal1 on w. For
instance, pal could be defined so that its formal structure mirrored that of the informal recursive definition

pal(c(w)) =

8

>

<

>

:

1 if c(w) = 0

0 if firstbit(c(w)) 6= lastbit(c(w))

p(t(c(w))) else

where c is defined so that c(w) = 0 just in case w = ε and if w = a1 . . . an, then t(c(w)) = c(a2 . . . an−1). But
a familiar problem arises in making such claims precise: even if p is defined so that its compositional structure
over Lpr mirrors that of pal as closely as possible, in order to informally calculate with this definition in the
manner described above, the subrecursions corresponding to the computations of the auxiliary functions c,
firstbit, lastbit, and t must all be carried out individually. This means that the computation of the value
of pN(c(w)) will be much longer than the corresponding computation of Pal1. And if he were to proceed in
such a manner, the realist will again be responsible for specifying how sequences of steps in the computation
of the former correspond to single stages in the computation of the latter. But this is likely to embroil him
in exactly the same sorts of issues about constraining possible bisimulation relations which arose in Chapter
3.
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fibN itself fails to be primitive recursive (i.e. is not a member of the set of functions

PR
N = {fN : f ∈ Lpr}). In fact, it is a fairly straightforward exercise to show that

fibN ∈ PR
N . The problem concerns the fact that since (4.12) makes two calls to the

implicitly defined function fib(x) on its right-hand side instead of one, there is no way

of representing (4.12) as a PR term so that the course of its execution will mirror the

calculation just described.

A more general way of describing this problem is to note that (4.12) employs a simple in-

stance of what is known as course of values recursion. In the sort of course of values recursion

with which I will be concerned, the value of the defined function f(x1, . . . , xn, y) is deter-

mined as a function of two or more of the finitely many values f(x1, . . . , xn, 0), . . . , f(x1, . . . , xn, y−

1). The general form of the relevant sort of definition is thus given informally as

(4.13) f(x1, . . . , xn, y) =















g(x1, . . . , xn) if y = 0

h(x1, . . . , xn, f(ri(y)), . . . , f(rm(y))) otherwise

wherem ≤ n and ri(y) = y
.
− ni for 1 ≤ i ≤ m. There is again a set theoretic theorem which

ensures the well-definedness of a function satisfying such definitions. But definitions of this

form cannot be converted directly to primitive recursive definitions since the primitive

recursion combinator PrimRec is defined so that the value of PrimRec[g, h](x1, . . . , xn, y)

depends only on the single value of f(x1, . . . , xn, y− 1) and not on f(x1, . . . , xn, y− 1) and

f(x1, . . . , xn, y − 2) as employed in our informal definition of fib(x). 27

It may also be shown that even a simple case of course of values recursion like (4.12) can

only be reformulated as a primitive recursive at the cost of making equational derivations

of the values of fibN (x) substantially more complex than the sample carried out above.

The exact extent of such speedup varies according to how we formulate the proof theoretic

definition of execution for PR. But the basic result is that equational derivations in the

system Tpr will be exponentially longer than the sort of informal calculations of the value of

27It can, however, be shown that not only definitions in the form of (4.13), but also a slightly more
general class where the fixed sequence of arguments f(ri(y)), . . . , f(rm(y)) to h is replaced by f � y do not
lead outside of the class PR

N . This is typically proven by showing that there a primitive recursive coding
function by which the finite sequence f � y = 〈f(0), . . . , f(y − 1)〉 may be represented as a single number
whose components may then be “decoded” in the definition of f . For details, c.f., e.g., [108].
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fib(x) illustrated above.28 But now suppose an algorithmic realist simultaneously wishes

to take (4.12) as directly expressing an informal algorithm Fib for computing the values

of fibN and also wishes to employ PR (with AppPR defined relative to Tpr) as a general

model of recursive algorithms. In this case, he must be prepared to allow that individual

steps in the execution of Fib on input n will be mirrored by exponentially long sequences

of steps in any Tpr derivation of fib(n) = m.

Recall that one of the morals of Chapter 3 was that the realist ought to attempt to define

the class of implementations he ultimately puts forth as Q so as to avoid exactly this sort

of situation. The present example thus suggests that there is a built-in motivation to seek

out a model of computation which encompasses forms of recursion which are not directly

representable as PR-terms. A large variety of such models exists, most of them tracing their

lineage to the class of so-called general recursive definitions. This model was originally

proposed by Gödel [44] and Kleene [65] in an effort to formalize a notion of recursive

function which subsumed recursive definitions (such as that of the Ackermann function)

which determine intuitively effective functions which are not primitive recursive. What is

more relevant given our current interests, however, is that when formulated correctly, the

class of general recursive definitions also includes direct analogs of definitions like (4.12).

However, in order to best facilitate viewing general recursive definitions in this manner, it

will be useful to consider a version of the definition which differs somewhat from that of

Kleene. The particular specific formalism I will employ was introduced by Paterson and

Hewitt [106] as a recursive counterpart to the class of program schemes considered above.

Unlike many other models which have been proposed as generalizations of Gödel/Kleene

general recursive definitions (e.g. [85], [47], [92]), these schemes correspond to uninterpreted

28In order to formulate this matter precisely, it is most convenient to assume that the addition is available
as a basis function for primitive recursive definitions and that we do not count calls to fibN (0) or fibN (1) in
calculating the length of a derivation. In this case, it can be shown that there are derivations of fibN (n) = k
of length 2k − 1 and thus that the running time of the algorithm Fib is O(φn

) where φ denotes the golden
ratio (1 +

√
5)/2. But by proof theoretic means, such as those developed in [104] it may also be shown that

the function fibN (n) is the Grzegorcyk class E3 − E2. This means that even if we include addition as a
basis function in a primitive recursive definition, it follows that there can be no derivation of fibN (n) = k
from a standard primitive recursive definition of fewer than 2k steps. For future reference, these running
time complexities should be compared with the O(n) complexity of the simple flowchart machine based on
Pfib for computing fibN (n).
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functional definitions and may thus potentially be used to define an open model of compu-

tation which employs arbitrary (effective) operations on arbitrary (effectively presentable)

structures. A recursion scheme Ê is thus defined over a first-order language LE , this time

consisting of four finite classes of symbols: a finite class of predicates PÊ = {P1, . . . , Pnp},

a finite class of basic function symbols F0
Ê

= {f1, . . . , fnf
}, a finite set of defined func-

tion symbols F1
Ê

= {F0, F1, . . . , FnF
} (all or arbitrary arities) and a finite set of variables

VÊ = {x1, . . . , xnv}. The constituents of Ê itself are given by a defining equations E over

LE satisfying the following definition:

Definition 4.5.3. A recursive equation E is a statement of the form

F (y1, . . . , yn) = if P (z1, . . . , zm) then T (u1, . . . , um′) else T ′(v1, . . . , vm′′)

satisfying the following conditions:

i) y1, . . . , ym ⊆ VE are distinct variables and

ii) Fk ∈ F0
E is am m-ary defined function symbol

iii) P ∈ PE is an n-ary predicate symbol

iv) T and T ′ are LE terms (i.e. expressions built up inductively from the variables, basic

function symbols and defined function symbols of LE)

v) {z1, . . . , zm} ⊆ {y1, . . . , ym}, {u1, . . . , um′} ⊆ {y1, . . . , ym}, {v1, . . . , vm′′} ⊆ {y1, . . . , ym}

The recursion equation E is said to define Fk.

A complete recursion scheme may be defined as follows:

Definition 4.5.4. A recursion scheme Ê is a finite sequence of recursive equations 〈E0, . . . , En−1〉

over a language LE together with a designated initial defined function symbol F0 ∈ F0
E

such that the following hold:

i) The defined function symbol on the left-hand side of E0 is F0.

ii) No defined function symbol appears on the left-hand side of more than one Ei.

iii) Every defined function symbol appearing in a term on the right-hand side of any Ei

appears exactly once on the left-hand side of some equation Ej .

The recursion scheme Ê as a whole is said to define the function defined by E0.
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Like program schemes, recursion schemes need to be interpreted before they can be

assimilated to our general definition of a model of computation. This is accomplished by

providing an interpretation in the normal first-order sense for the predicate letters PÊ and

basic functions symbols F0
Ê

– i.e. by providing a pair 〈D, I〉 where D is the domain of the

interpreted and I maps each n-ary predicate Pi into a subset Dn and each n-ary function

into a function from Dn onto D. The intention of providing such an interpretation is that

once the meanings of the terms in PÊ and FÊ are fixed, the meaning of the defined functions

symbols in F1
Ê

will become implicitly defined given the definition of AppE which will be

stated below. Once this definition has been given, we will once again have defined a model

of computation E in the sense of Section 2.

Since the definition of AppE turns out to be somewhat complex, it will be useful to first

consider an example of a recursion scheme which illustrates how such schemes circumvent

the limitations imposed by primitive recursive definitions. Consider, for example, the arith-

metic languages LE1 = {<, pred, plus, 0, 1, 2} and LE2 = {<, pred, suc, 0, 1, 2} and the two

schemas

(4.14) Ê1: F0(x) = if x < 2 then 1 else plus(F0(pred(x)), F0(pred(pred(x))))

Ê2: F0(x) = if x < 2 then 1 else F1(F0(pred(x)), F0(pred(pred(x))))

F1(x, y) = if y < 1 then x else suc(F1(x, pred(y))).

If we interpret LE1 and LE2 over N and assign their symbols their normal arithmetic

meanings, it should be clear that the E1 directly formalizes our original definition of the

Fibonacci function via (4.12). E2 may also be seen to define fibN , where this time the

addition function is not taken as a primitive function but rather defined simultaneously by

the auxiliary equation or F1.

We may now start to explore some of the difficulties involved precisely with the ap-

plication function AppE for interpreted recursion schemes. Given an interpreted recursion

scheme E = 〈Ê, I〉, it is natural to view the interpretation of Ê relative to I as giving

rise to an equational calculus such that if E ∈ Ê has the form given in (4.5.3) and we

expand I so that yI
i = ai ∈ D, zI

i = bi ∈ D, uI
i = ci ∈ D and vI

i = di ∈ D, then the

calculus contains axioms of the form Fk(y
I
1 , . . . , y

I
n) = T (uI

1, . . . , u
I
m′) if P I(zI

1 , . . . , z
I
m′) is
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true and Fk(y
I
1 , . . . , y

I
n) = T ′(vI

1 , . . . , v
I
m′) otherwise. Such an equational calculus is non-

deterministic in the sense that if multiple recursions or compositions are involved, there

is no predetermined order in which the defining equations must be expanded. But as al-

ready noted by Kleene [65], two new possibilities arise: 1) it is possible that two different

derivations will eventuate in different irreducible equations (i.e. statements of the form

F0(t1, . . . , tn) = t′ for t1, . . . , tn, t
′ basic terms over F0

Ê
) 2) certain derivations will never

terminate in statements of the form F0(t1, . . . , tn) = t′.

The second problem is closely related to the fact that E, unlike PR, is a Turing-complete

model and thus contains instances which correspond to every partial recursive function

(including those which are genuinely partial). However, the first problem is a feature of

the equational calculus which may be resolved by adopting a stipulation about the order in

which we go about expanding the terms appearing a recursion scheme. One such stipulation

is to always expand terms on the right-hand side of a defining equation from the inside out

– i.e. in an equation of the form F (x1, . . . , xn) = T (. . . , T ′(t1, . . . , tm), . . .) – we always

make substitutions so as to evaluate T ′ before substituting T into another equation.29 This

is facilitated by thinking of Ê as a term calculus such that if T1, T2, T3, T4 are terms over

F0
Ê
∪ F1

Ê
, then T ′ is derivable from T just in case T ≡ T2(. . . , T3, . . .), T

′ ≡ T2(. . . , T4, . . .)

and the equations T1 = T2(. . . , T3, . . .) and T3 = T4 are both derivable. It then follows

that by a result of Rosen [114] that the corresponding system of term reductions has the

Church-Rosser property – i.e. if T ′ and T ′′ are distinct terms derivable from T by sequences

of inside-out substitutions, then there is a term T ′′′ which may be derived from both T ′

and T ′′.

Following a suggestion of Greibach, [47] we may now define application in the model E

as follows. With a given interpreted recursion scheme E = 〈Ê, I〉, we define an associated

context-free grammar GE. To do so, we first expand the LÊ with a set C of constant

29This convention has the result of making derivations within the term calculus deterministic by supplying
a rule for choosing which substitution is to be carried out next in a derivation. But it turns out that there are
many distinct conventions (which are generally called reduction strategies) which have the same effect. In
Chapter 5, I will argue that not only is the adoption of some such strategy required in order to assimilate most
recursive formalisms to our general definition of a model of computation, but also that the adoption of one
strategy over another is highly non-trivial as executions relative to different strategies may be procedurally
distinct.
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symbols for each for member of D. The terminal symbols of GE will be functional terms

over F0
Ê
∪ C and the non-terminal symbols of GE are functional terms over F1

Ê
∪ C. We

will associate two classes of production rules with each Ei ∈ Ê of the form given in (4.5.3),

which for convenience we will assume are of the form

F (x1, . . . , xn) = if P (x1, . . . , xn) then T (x1, . . . , xn) else T ′(x1, . . . , xn)

where the dependence of P , T , and T ′ on some of the xi may be vacuous. Let a1, . . . , an be

constants which will be assigned to the xi, and aI
i be their associated denotations in D. If

P I(aI
i , . . . , a

I
i ) is true, then GÊ will contain the production F (a1, . . . , an)� T (a1, . . . , an),

otherwise it will contain the production F (a1, . . . , an) � T ′(a1, . . . , an). Finally, for all

functional terms S1, S2 over F0
Ê
∪ F1

Ê
∪ C, G will also contain the productions S1U1S2 �

S1U2S2 where U1 and U2 are any two terms such that U1 � U2 as defined previously.

Now define
∗
� to be the reflexive transitive closure of�. For any interpreted recursive

scheme E, we may define the result of applying E to a sequence of values d1, . . . , dn ∈ D

by looking at the result of derivations in GÊ with initial term F (a1, . . . , an) where aI
i = di.

In particular, relative to the interpretation I, AppE(E, a1, . . . , an) will be defined as the

(unique) terminal term T such that E0(a1, . . . , an)
∗
� T if such a term exists and to be

undefined otherwise. So for instance, the result of applying the scheme E1 defined in (4.14)

under the standard arithmetic interpretation to that value 2 will be given by the derivation

F0(2)� plus(F0(pred(2), F0(pred(pred(2))))) � plus(1, F0(pred(pred(2)))) � plus(1, 1).

And thus since F0(2)
∗
� plus(1, 1) and plus(1, 1)I = 2, we have AppE(E1, 2) = 2.

Having given a definition of application for interpreted recursion schemes, we are now

justified in treating E as a model of computation on a par with the set of flowchart machines

P. And we may now also turn to the general question of comparing these two models with

respect to their fitness for use in the abstractionist programme favored by the algorithmic

realist. I will take it for granted that recursion schemes allow for a reasonably direct

formalization of all intuitively effective forms of recursive definition.30 But what is less

30This assumption is not entirely warranted since this model does not incorporate a typing mechanism
such as that provided in a programming language based on either classical type theory (e.g. Haskell) or
constructive type theory (e.g. MetaPRL). However, this deficiency does not impede the expression of any
of the algorithms I will consider in this chapter.
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clear at the moment is the relationship between this class of algorithms and those like

Pal1 and Pal2 which appear to be most naturally represented using program schemes.

It would thus be useful to have a precise means of formalizing the expressive capacities

of P and E so that they could be compared. As I have commented above, both models are

already Turing-complete with respect to an arithmetic language containing only symbols

for successor, predecessor, and zero. And thus for any recursion scheme E computing a

given function of type Nm → N, there will be a program scheme P equivalent in the sense of

computing the same function according to the respective definitions of AppE and AppP and

conversely. What a result of this sort does not demonstrate, however, is that these models

are equivalent in the finer-grained procedural sense in which the realist is interested. For

note that it is at least possible that there are certain functions f : Nm → N which can easily

be computed by members of one model, but only computed by members of the other model

by virtue of various roundabout means involving, say, arithmetic encodings such as those

alluded to in Note 26. And since the use of such coding will almost certainly introduce

computational detours of the sort considered in Section 3, it might still be that one of P or

E contains more direct representatives than the other at least with respect to certain forms

of algorithms.

As it turns out, not only does an asymmetry of this sort exist between P and E, but that

there are well-known algorithms which can be directly represented as recursion schemes but

for which there exists no natural program scheme representation. In order to demonstrate

this, it will be useful to employ a technique for comparing the expressive powers of schematic

models first introduced by Paterson and Hewitt [106]. To this end, consider the following

definition of equivalence between program and recursion schemes which strengthens the

idea of extensional equivalence by quantifying over interpretations.

Definition 4.5.5. Let P be a program scheme and Ê a recursion scheme based on the

same language L. Given an L interpretation I, we say that the resulting machines P and

E are extensionally equivalent just in case for all d1, . . . , dn ∈ D, AppP(P , 〈d1, . . . , dn〉) =

AppE(E, 〈d1, . . . , dn〉) or both values are undefined. The schemes P and Ê are said to be

strongly equivalent if they are extensionally equivalent for every L interpretation.
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The idea behind these definitions is as follows. If the schemes P and Ê are extensionally

equivalent interpreted relative to a fixed interpretation I, this simply means that they

compute the same function in extension. In and of itself, this means little with respect

to their ability to represent the various kinds of algorithms since it may be achieved as a

consequence of the fact that one of them (say P ) contains predicate and function symbols

which allow it to use a roundabout arithmetic encoding to achieve what the other (say

Ê) achieves directly. For instance, it might turn out that certain functions on strings

are computable by flowchart machines only if we allow them to use an arithmetic encoding

function (denoted by e) on strings which lets them emulate recursion on strings by applying

arithmetic functions (denoted by f1, . . . , fn) to codes of strings. Note, however, that the

ability of a given scheme P to make use of these operations depends on the meanings

assigned by interpretation I in the sense that only the “intended” arithmetic interpretation

of these symbols will allow P to compute the same function as Ê. By requiring as part of

the definition of strong equivalence that P and Ê determine the same function under all

interpretations, we thus rule out the possibility that P exploits an encoding which allows it

to compute the function determined by Ê by operating indirectly on objects in some other

domain.

On the basis of these definitions, the following two results can be established:

(4.15) a) For every program scheme P , there exists a strongly equivalent recursion

scheme EP .

b) There is a recursion scheme for which there exists no strongly equivalent

program scheme.

Understood informally, (4.15a) shows that up to the notion of strong equivalence, recursion

schemes can do everything that program schemes can, but not conversely. But since our

interest lies in the relative expressive capacities of P and E rather than in the general

theory of schema, I will illustrate their significance through the use of examples rather

than indicating how they are proven.31

31(4.15a,b) were first demonstrated by Paterson and Hewitt [106] in the paper which launched the field
known as comparative schematology. More extensive treatments may be found in [47] and [32].
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(4.15a) is demonstrated by showing how any program scheme P can be uniformly trans-

formed into a recursion schemes ÊP such that for all interpretations I of P , the sequences

of derivations in the grammar induced by E will mirror the sequences of transitions in the

execution of P as given by the operational semantics in (4.8). This is achieved by letting

ÊP contain a defined function for each of the k lines in P , each of which have as arguments

variables x1, . . . , xn where n is the number of registers of P . These functions Fi(x1, . . . , xn)

(i ≤ k) are defined so that the operation they induced on their arguments corresponds to

the update on the values stored in x1, . . . , xn by the ith line of P .

The details of how ÊP is constructed from P is illustrated by considering the following

scheme corresponding the program scheme Pfib considered above:

(4.16)

Êfib

F0(x1, x2, x3) = F1(x1, x2, x3)

F1(x1, x2, x3) = F2(x1, 1, x3)

F2(x1, x2, x3) = F3(x1, x2, 1)

F3(x1, x2, x3) = if x1 < 2 then F8(x1, x2, x3) else F3(x1, x2, x3)

F4(x1, x2, x3) = F5(x1, x2 + x3, x3)

F5(x1, x2, x3) = F6(x1, x2, x2)

F6(x1, x2, x3) = F7(x1 − 1, x2, x3)

F7(x1, x2, x3) = F2(x1, x2, x3)

F8(x1, x2, x3) = x2.
32

Consider the operation of the flowchart machine P fib and the interpreted recursion scheme

Efib determined by Pfib and Êfib and the interpretation IA which assigns the standard

arithmetic meanings to the non-logical symbols in these schemes. On the understanding

that the input is provided to Ê as the value of x1 and that x2 and x3 are initially assigned the

value 0, it is easy to see that there will be a one-to-one correlation between the derivation

of terms in the grammar GÊfib
and the steps in the execution of P fib relative to the

32I have here adopted the standard expedient of omitting the conditional on the right-hand side
of a recursive equation with the understanding that the given equality is intended to hold re-
gardless of the properties of the values of the variables. This does not involve a proper exten-
sion of the definition of a scheme since F (x1, . . . , xn) = T (x1, . . . , xn) can be taken to abbreviate
F (x1, . . . , xn) = if > then T (x1, . . . , x) else T (x1, . . . , xn) where > is some LÊ predicate which is true
under all interpretations.
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operational semantics supplied in (4.8).33

This observation suggests that not only do P fib and Êfib both determine the same

function relative to the AppP and AppE but that it may reasonably be said that they operate

in the same manner in a step-by-step sense. Since it is clear that these relationships do

not depend on the interpretation relative to which they are evaluated, we can see that the

schemes Pfib and Êfib are also strongly equivalent. It thus seems that a strong case can be

made that a register-based model like P may be assimilated to a sufficiently sophisticated

recursion-based model like E in a manner that preserves the step-by-step behavior of its

members. And it thus seems reasonable to conclude that a model like E will contain at

least as many direct representatives of the members of A as does a model like P. And per

(4.15b), it may also appear that E is strictly more flexible in this regard. I will ultimately

argue in Chapter 5 that this appearance is deceptive. But in order to see why this is so, it

will be useful to first observe the significance of (4.15b) with respect to everyday algorithms.

The canonical example of a recursion scheme which is not strongly equivalent to any

program scheme (again due to [106]) is given as follows:

(4.17) Ê0 : F0(x) = if P (x) then x else f(F0(g(x)), F0(h(x))).

The fact that there is no program equivalent to Ê0 may be seen by considering the operation

of the class of interpreted recursion schemes En
0 = 〈Ê0, In〉 where the interpretation In over

the language L0 = {f, g, h} is defined as follows: i) ID is the set TermL0 of functional

terms over the language L0; ii) PD(t) is true just in case t ∈ TermL0
contains at least

n distinct occurrences of f and g; iii) f In = f , gIn = g, hIn = h. As the reader is

invited to confirm, the value of AppE(En
0 , x) under In will correspond to the L0 term t

whose compositional structure can be visualized as a binary tree whose internal nodes

correspond to applications of f and whose leaves correspond to each of the 2n correctly

parenthesized terms which may be composed by iterating occurrences of g and h n times

33In particular, note that a transition between states 〈a1, a2, a3, k〉 and 〈a′1, a′2, a′3, k′〉 in P fib will be
mirrored by a reduction of the form Fk(a1, a2, a3) � Fk′(a′1, a

′
2, a

′
3) in GÊfib

. In this way, transitions

between states localized by line numbers k and k′ in P fib will correspond to calls by the function Fk calling
to the function Fk′ in GÊfib

. And on this basis we may easily see that not only that is there a one-to-one

correspondence between steps in the execution of P fib from initial state 〈n, 0, 0, 1〉 and steps in the (unique)
derivation in GÊfib

with initial term F0(n, 0, 0) but also that these states and terms will closely reflect each

other’s structure.



311

on the variable x. For instance, we have AppE(E1
0, x) = f(g(x), h(x)), AppE(E2

0, x) =

f(f(g(g(x)), g(h(x))), f(g(h(x)), h(h(x)))), etc. It may now be shown by a combinatorial

argument that any flowchart machine which computes this value as output must contain at

least n+ 1 registers. And from this it follows that there can be no single program scheme

which computes the appropriate output for all interpretations of the form In.

This example is based on a class of so-called free or Herbrand interpretations – i.e.

interpretations where the value of term is given by itself. And since there seems to be no

prior significance attached to the function λx.AppE(En
0 , x), the significance of the fact that

there is no flowchart machine which computes the same function under all interpretations

may also be unclear. Note, however, that the form of the recursion described by the

scheme Ê0 directly matches that of one of the paradigmatic members of the class A – i.e.

Mergesort.

We originally specified the algorithm Mergesort in Chapter 2 using informal definition

by cases notation as follows:

(4.18) mergesort(x) =














` if |x| ≤ 1

merge(mergesort(firsthalf(x)),mergesort(secondhalf(x)))) otherwise

.

On its intended interpretation, (4.18) is to be understood so that x varies over finite lists

composed of elements from an arbitrary domain D ordered by ≺, firsthalf(x) denotes the

function which returns the first half of a list (inclusive of its middle element if it is of odd

length), secondhalf(x) denotes the function which returns the second half of a list, and

merge(x1, x2) denotes the list merging functions described in Chapter 2.34

34merge(x1, x2) may itself be specified recursively. Its definition may be given informally as

merge(x1, x2) =

8

>

>

>

<

>

>

>

:

x1 if |x2| = 0

x2 if |x1| = 0

head(x1) ·merge(tail(x1), x2) if head(`1) � head(x2)

head(x2) ·merge(x1, tail(x2)) otherwise

where tail(d · `) = ` and head(d · `) = a and ≺ is the order defined on D. This definition can readily be
expressed as a recursion scheme Mms which can then be taken together with the definition Ems to give
a system of mutually recursive equations like (4.14) above. But since the ability to further decompose
the merging function will not be significant here, the corresponding function symbol m(x) in the recursion
scheme corresponding to (4.18) will be treated as a basic function symbol.
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We are now in a position to observe that the preceding definition of Mergesort may also

be formally expressed as a recursion scheme over the language Lms consisting of a single

predicate letter Q, a single defined function S, and basic functions m,h1, h2 symbols. This

scheme would have the form

(4.19) Êms : S(x) = if Q(x) then x else m(s(h1(x)), s(x(h2(x)))).

Suppose we interpret Ems relative to the interpretation Ims with domain D∗ consisting

of finite lists of elements of the set D ordered by ≺. And suppose we additionally de-

fine QIms so as to hold of just those members of D∗ of length less than or equal to 1,

hIms

1 (x) = firsthalf(x), hIms

2 (x) = secondhalf(x) and mIms(x) = merge(x). Then under

this interpretation, (4.19) will not only compute the function sort : D∗ → D∗ which takes

unordered lists into ordered ones, but will also do so in the same manner that we think

(4.18) determines this function. In other words, relative to operational semantics by which

AppE has been defined, the value of AppE(Ems, x) under the interpretation Ims will be

derived by a sequence of terms which mirror those by which we would derive the value

mergesort(x) by employing (4.18) as an informal recursive procedure.

But now note that modulo the choice of names for basic functions and predicates,

the schema (4.19) has exactly the same structure as (4.17). It thus follows that we may

apply the above reasoning to conclude that there is no program scheme which is strongly

equivalent to (4.19). The significance of this observation may not be immediately apparent.

For it is only relative to the interpretation Ims that we take the scheme (4.19) to express

the same algorithm as (4.18) – i.e. Mergesort. Thus the non-existence of a program

scheme which is extensionally equivalent to Êms under all interpretations is not necessarily

of interest. In particular, by itself it does not allow us to conclude that no program scheme

computes the same function as Êms under the intended interpretation Ims.

But it turns out this stronger result may also be shown to be true. To see why, it suffices

to note that in the argument sketched above no program scheme that is strongly equivalent

to Ê0 goes through under any interpretation in which the values of the terms labeling

the leaves of the tree associated with AppE(Ê0, x) are distinct. In the current case, these

labels will correspond to terms of the form hi1(hi2 . . . (hidlog2 xe
(x))). Under the intended
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interpretation, hIms
1 (x) = firsthalf(x) and hIms

2 (x) = secondhalf(x), these values will all

be pairwise distinct any time the constituents of x are themselves distinct. From this it

follows that as long as D is infinite (as will generally be the case in natural instances such

as D = N), it follows that no single program scheme will compute the same function as Ems

relative to the intended interpretation Ims. But since this function is exactly the function

sort : D∗ → D∗ which takes arbitrary lists over D into sorted lists, this mean that no single

interpreted program scheme (i.e. flowchart machine) can function as a sorting algorithm

on an infinite domain without resorting to some sort of arithmetic encoding of sequences.

Since sorting procedures comprise an important and well-studied class of informal algo-

rithms, this observation appears to provide substantial evidence that the class P of flowchart

machines does not contain direct representatives of certain algorithms which are directly

represented by members of E. And since we have seen that the converse is not true (i.e.

there is a strong sense in which program schemes can be operationally assimilated to re-

cursion schemes), it follows that the realist is equipped with a natural reason to prefer E

over P as a choice for Q. But this conclusion should not be mistaken for the much stronger

claim that E meets the realist’s more general explanatory needs in selecting the class Q.

For note that thus far I have offered no argument intended to show that E is sufficiently

broad to contain a member which directly represents every algorithm in A. And perhaps

more significantly, I have also not broached the topic of whether E will contain a unique

or identifiably canonical representative corresponding to the algorithms for which it does

contain plausibly direct mathematical models.

Our prior experiences suggest that either of these questions may pose a substantial

challenge to the viability of the thesis that E could be taken by the realist as an adequate

candidate for Q. For note that even though the foregoing considerations suggest that E is an

improvement over P with respect to direct representability, there is no reason to think that

the gain in expressivity achieved by moving from one class to the other is enough to ensure

that the former class will be able directly mirror modes of procedural specification which we

may not yet have considered. And even if it could, the realist might still be left to work out

the technical details of defining ↔ to account for the relationship which different recursion

schemes bear to one another if they are to be taken as equally good representatives of the
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same algorithm. Were I interested in arguing for the positive thesis that Q can be taken to

be E, a more thorough study of the modes would have to be undertaken.

But as I will explore in detail in Chapter 5, there are substantial reasons to be dubi-

ous about the adequacy of taking Q to be E. In order to get an idea of why this is so in

advance, however, we may begin by reflecting further on how the adoption of open computa-

tional models was taken above to lighten the theoretical burden of the algorithmic realist.

This generalization allows the realist to construct mathematical models whose primitive

functions and predicates mirror those appearing in informal specifications of algorithms

arbitrary, thus allowing computational operations to be performed over the course of a

single step which might otherwise require further mediation in the case of a closed model

like PR or T. The other step we have been considering is that of adopting a model whose

basic mode of operation is made on recursion rather than than as iteration (in the case of

transition- and register-based models). Based on the foregoing, it may appear that this

generalization can be given a similar justification in the sense that we have just observed

that as per (4.15) it appears that there are informal specifications of algorithms which can

be directly represented by recursions schemes but not by flowchart machines or any other

similar model of computation.

In Chapter 5, I will argue that while the first of these steps is a legitimate means of

attempting to construct direct models of informally specified algorithms, the second step

trades on a misunderstanding about the theoretical status of recursion-based models. In

particular, I will argue that although it is legitimate to view an informal recursive definition

like (4.11) as a sort of template for a method of calculating the values of fibN (x), certain

definitions of this form – in particular those like (4.12) involving limited course of values

recursion – cannot be seen as expressing fully explicit procedures. As such, models of

computation like E which are designed to directly reflect the informal modes of computation

deriving from these definitions must not be taken as allowable analyses of the general notion

of implementation. In order to be treated in this manner, I will argue that the members

of such models must be converted into deterministic transition systems. For all the models

we have considered other than E, this sort of conversion has been straightforward. But

it turns out that converting certain complex recursion schemes into this sort of transition
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system reintroduces complexities of the sort encountered in Section 3. And for this reason,

it turns out that recursion-based models like E do not offer the realist a genuine means of

escaping the same basic problems about the definition of ↔ which arose there.
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Chapter 5

What algorithms could not be

5.1 Introduction

I have thus far spoken little of theorists who would describe themselves as explicit

proponents of algorithmic realism. Since one of the announced aims of this work is to refute

this view, this is likely to seem peculiar. For as I have noted in Chapter 2, the discourse of

computer scientists is overwhelming realistic in how it speaks about algorithms. And for

this reason, one might naturally think of computer scientists as natural-born algorithmic

realists. However, if most workers in this field harbor these tendencies, they largely keep

their views to themselves. For as I touched on briefly in Chapter 1, questions about the

foundational status of algorithms have tended to fall into a sort of intellectual no man’s

land between mathematics, computer science and formal ontology. For this reason, what

little attention questions about the status of algorithms have provoked has arisen in narrow

theoretical contexts (e.g. the discussion of levels of explanation in cognitive science in the

sense of [83]) wherein the sort of general ontological questions which are relevant to the

evaluation of algorithmic realism have been largely ignored.

To illustrate one reason why this situation has arisen, consider again the status of a

statement ϕ which is accepted by the mathematical community at large but which, at

the current time, can only be practically derived by the application of an algorithm A.

I argued in Chapter 1.4 that such statements abound in contemporary mathematics. For

concreteness, however, we may take ϕ to be a simple statement about the value of a function

f : N → N at a fixed value n, say ϕ ≡ f(n) = m. I also argued in Chapter 1.4 that if

our only evidence for ϕ is grounded in the application of A to n, then A should be proven

correct with respect to a (fixed definition of) f before our belief in f(n) = m derived in

this manner ought to be considered justified. This fact is generally acknowledged within
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the mathematical community.

Such a proof of correctness typically involves the construction of a formal model MA

of A. I argued previously that MA must itself be a mathematical object in order for the

correctness proof to have the significance of demonstrating that our belief in ϕ can be

justified on the basis of having carried out A. However, both the construction of MA and

the task of finding a correctness proof will often be carried out by computer scientists using

the specialized methods of algorithmic analysis and formal verification. Thus although

MA will have been constructed precisely to model the operation of A, the question of

whether this procedure is identical to MA will be of little concern to mathematicians whose

primary concern lies not with the algorithm A itself, but only with knowing whether they

are justified in using it to determine the values of f . But it is widely believed that the use

of A for this purpose can be justified by reasoning about MA alone. And for this reason,

no practical or theoretical necessity has forced computer science to adopt a fixed position

about the relationship between A and MA.

I suggested in Chapter 1 that this way of looking at matters is somewhat misleading. For

without an additional demonstration that MA faithfully represents A’s mode of operation,

we have no reason to accept a correctness proof for MA as justifying the application of A (as

opposed to some other algorithm) to compute the values of f . The necessity of providing

such an argument would naturally focus attention directly on the status of A itself. And

although this fact appears to have been overlooked in computer science proper, its clear

epistemic significance would suggest that it could also have been taken profitably within

logic or philosophy of mathematics. The fact that it has not can be attributed to a variety

of factors which I have touched on briefly in previous chapters.1 With the partial exception

of two programmes I will discuss in this chapter, it thus is difficult to find mention of the

thesis that algorithms ought to be identified with mathematical objects, let alone careful

argumentation for or against such a view.

1Among these are i) confusion about the significance of so-called “computer proofs” in the justification
of mathematical beliefs derived through computation (Chapter 1.1), ii) the predominance of possible world-
based semantics (a la Carnap [17] and Montague [90], [89]) over verification-based semantics (a la Dummett
[30] and Prawitz ([109]) in intensional logic (Chapter 1.2), and iii) the confusion about the relationship
between Church’s Thesis and the intuitive conception of algorithm (Chapter 2.2.3.2).
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Evidence that something like a view resembling algorithmic realism does indeed un-

derly the received view within computer science is provided by the rare instances in which

exegetical factors force questions about the foundational status of algorithms to the fore.

A paradigmatic example of this phenomenon may be found in Donald Knuth’s ground

breaking survey of algorithmic analysis The art of computer programming, Volumes 1-3

[72].2 Midway through the first chapter of the first volume of this work, Knuth makes the

following observation:

So far our discussion of algorithms as been rather imprecise, and a mathematically
oriented reader is justified in thinking that the preceding commentary makes a very
shaky foundation on which to erect any theory about algorithms. (p. 7)

Here Knuth here explicitly acknowledges the need for a formal mathematical model on

which to base the theory of algorithmic analysis that he then goes on to develop. He follows

through in this by providing a definition of a class of models in the form of what he refers

to as computational methods which he explicitly proposes to identify with algorithms.3

Such a method is defined in essentially the same way as a transition system – i.e. as

a quadruple (Q, I,Ω, f) consiting of a class of states (Q), an input function (I), a class

of terminal states (Ω) and a transition function (f). Knuth then goes on to show how

Euclid’s algorithm can be represented by such a model and then formally proven to be

correct in essentially the manner considered in Chapter 1. On this basis, it is tempting

to view Knuth as having committed himself not only to algorithmic realism, but to the

explicit proposal that algorithms are identical to computational methods. But there is also

reason to doubt that he truly intends to to adopt this view as after the section in which the

definition of computational methods is presented, Knuth never refers to the definition of

a computational model again in any of the three volumes of [72] which have thus far been

published. In particular, he makes no attempt to show how computational properties like

2The first edition of the first volume of this work was published in 1969 and was the first textbook-style
presentation of a many topics and techniques in the analysis of algorithms which have now become standard
in computer science curricula. In particular, not only did Knuth [67], [66] offer the first systematic argument
for the use of asymptotic notation to compare the efficiency of practical computing procedures, but he was
also the first to apply this method to many of the well known procedures which I have mentioned in prior
chapters. For this reason, Knuth is not only regarded as the doyen of algorithmic analysis, but his books
remain a standard reference in the field. Knuth states that his survey is ultimately to contain eight volumes;
the fourth and fifth have recently been circulated in draft form.

3In particular, he appears to take the following remark as a definition: “[A]n algorithm is a computational
method which terminates in finitely many steps for all x in I” ([72], p. 8, his italics)
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running time complexity can be analyzed in terms of those of computational methods or

to show how standard informal arguments involving, say, the use of the Master Theorem

or decision tree methods (cf. [24]) can be formalized using these models.

This is particularly significant because the main exposition of [72] is unique among

mainstream texts on the analysis of algorithms in that most of the procedures it treats are

specified both as pseudocode and also as programs in a specially designed formal program-

ming language known as MIX. This language extends that of the RAM machines studied

in Chapter 4.4 with a variety of “high level” features like conditional and unconditional

jump instructions. It is intended, however, to be interpreted so that every MIX program π

uniquely determine a machine Mπ which is a member of a class of sophisticated register

machines MIX. Knuth motivates this model of computation both on the basis of its fidelity

to actual computer hardware and also because it allows for the relatively direct expression

of complex operations and data structures which appear in his pseudocode specifications

of algorithms. Unlike his original definition of computational methods, MIX programs are

consistently employed throughout [72] to make precise procedures which have been stated

in pseudocode, and also to formally prove correctness and complexity results. In fact, in

this work, results pertaining to an algorithm A are standardly presented both for pseu-

docode specifications of A using asymptotic notation and also for using exact notation for

the MIX counterpart of such a specification.

Giving proofs of this sort in full detail is often complex and laborious. And for this

reason, it is reasonable to assume that Knuth assigns more than just instrumental impor-

tance to the MIX model. However, he never explains what he takes the relationship between

algorithms and MIX machines to be. In particular, although he consistently speaks as if

MIX programs can be used to express informal algorithms precisely. For this reason, much

of [72] can viewed as an attempt to work out the details of algorithmic realism according to

the view that algorithms may be identified with the MIX machines which are determined

by the MIX programs which are used to express them. However Knuth never states that he

views this as a foundational thesis in the same manner as his proposal about computational

methods described above. And for this reason, while it seems reasonable to think of Knuth

as attempting to work out an explicit form of algorithmic realism, he does not appear to
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treat this as a proposal which he regards as requiring explicit argument.

Modern textbook treatments of the analysis of algorithms such as [24], [46] and [125] do

not go to the trouble of specifying the algorithms relative to a specific machine model or

programming language. But as we saw in Chapter 2, this does not mean that they do not

share Knuth’s generally realistic tone about their status as mathematical objects. This is

particularly apparent from the justifications which are standardly provided for the use of

asymptotic complexity hierarchies to measure the relative efficiencies of different algorithms.

For recall that the practice of ascribing asymptotic as opposed to exact running time to

individual algorithms is standardly justified by noting that while machines which we would

intuitively taken to be implementations of the same algorithm may differ in exact running

time, they will always fall within the same asymptotic class. And since an independent

argument can be offered why asymptotic running time is better gauge of practical efficiency

than exact running time, this reason is offered as part of a justification for failing to

enter into the detailed implementation-specific issues which Knuth must confront. However

rather than being taken as desiderata pertaining to the ontological relationship between

algorithms and implementations, these considerations are merely presented as practical

justifications for avoiding the need to consider specific implementations in the course of

constructing subsequent proofs establishing the complexity of individual algorithms.

Knuth’s proposal notwithstanding, there have thus been very few sustained attempts

within computer science to show that any particular formal model can be employed to

uniformly reconstruct a substantial portion of the informal reasoning about algorithms in

the manner discussed in Chapter 3. The two notable exceptions to this generalization

correspond to well worked-out proposals put forth by Yiannis Moschovakis and Yuri Gure-

vich for explicitly identifying algorithms with the members of well defined mathematical

classes. Both of these programmes are mature and systematic in the sense that they have

been developed over the course of a number of papers which address both technical and

foundational issues. And although neither Moschovakis nor Gurevich explicitly acknowl-

edge that algorithmic realism is a view which might be false in a sense which would require

an explicit defense, their proposals can both be reasonably be interpreted as providing such

a positive argument for such a view.
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It is in this sense that the programmes of Moschovakis and Gurevich differ from Knuth’s

original proposal to identify algorithms with computational methods. For in addition to

defining classes of models, each theorist goes on to offer a detailed defense of why his own

model (as opposed to some other) is the appropriate one in which to locate algorithms.

And to varying degrees each also attempts to justify this claim by providing a principled

mathematical analysis of how we may justifiably ascribe complexity theoretic properties

directly to algorithms. Unlike other authors whose work touches on the foundational sig-

nificance of algorithms, Moschovakis and Gurevich are thus sensitive to the requirements of

developing algorithmic realism as a philosophical thesis which needs to be precisely framed

and defended.

But having said this, however, it will also be clear that the programmes which these

theorists propose can be easily classified as corresponding to specific instances of the strate-

gies for defending algorithmic realism outlined in Chapter 3. In particular, Gurevich’s

view can be characterized as a straightforward form of reductionism whereby it is claimed

that algorithms may be directly identified with instances of a class of very general models

of computation known as abstract state machines [ASMs]. And similarly, Moschovakis’s

programme may be characterized as a form of abstractionism whereby it is claimed that

algorithms may be identified with models of computation known as recursors under an

equivalence relation known as recursor isomorphism.

But not only are the reductive strategies favored by Moschovakis and Gurevich already

familiar, but so are the ASM and recursor models relative to which they seek to carry

them out. For as we will see below, an abstract state machine is essentially nothing more

than a particular form of transition system. And similarly, a recursor is nothing more

than a form of semantically interpreted recursion scheme of the sort considered in Chapter

4.. It thus follows that the programmes of Moschovakis and Gurevich fit neatly into the

framework of computional models developed in Chapter 4. And for this reason, it is also

easy to predict the sorts of rhetorical exigencies with which the proposals must contend.

For instance, in proposing to identify algorithms with equivalence classes of recursors,

Moschovakis must show that recursor isomorphism is both intensionally and extensionally

adequate in the sense discussed in Chapters 3. And in proposing to identity algorithms
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with ASMs, Gurevich must not only present some means of selecting a unique ASM M

with which to associate every informally specified algorithm A, but he must also argue that

the computational properties of M exactly coincide with those of A (i.e. that M does not

possess any “artefactual” properties not shared by A).

In Sections 2 and 3 I will attempt to show that the specific proposals put forth by

Moschovakis and Gurevich run afoul of these predictable difficulties. And I will argue that

for these reasons, their programmes both fail as defenses of algorithmic realism. But what

turns out to be significant about these proposals is not so much the details of the recursor

and ASM models themselves, but rather the way in which Moschovakis and Gurevich

argue that their chosen model represents the best framework for mathematically analyzing

general discourse about algorithms. Putting aside the details of the ASM and recursor

models themselves, the two proposals stand in stark contrast: Moschovakis argues that

this task is best achieved relative to a recursion-based model and Gurevich argues that it

is best achieved relative to a register-based model. Thus not only are the mathematical

features of the formalism which they employ fundamentally different, each theorist also

marshals different considerations in favor of adopting his computational paradigm in order

to analyze the general concept of algorithm.

In the case of Moschovakis, this amounts to two claims: 1) recursors are a more general

model of computation than transition- and register-based models in the sense that the lat-

ter may be assimilated to the former in the sense discussed in Chapter 5; 2) recursors more

accurately reflect the degree of abstraction from implementation-specific details at which

informal complexity theoretic analyses are standardly given. Gurevich, on the other hand,

offers both positive and negative consideration on behalf of his proposal. On the one hand,

he argues that ASMs most accurately reflect the degree of abstraction at which algorithms

are generally specified in computational practice in the sense that when formulated with

maximum generality, the ASM model contains implementations which may employ arbi-

trary (effective) operations over arbitrary (effectively presented) data types. And on the

other hand, he argues contra Moschovakis that recursion-based models are not an appropri-

ate formalism for analyzing the informal conception of algorithm because such models may

fail to completely specify the sequence of steps which must be transacted to execute their
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instances on fixed inputs. For this reason, he argues that the concept of algorithm ought

to be analyzed in terms of a transition- or register-based model whose instances completely

determine the ordering of states in their executions.

This debate between Moschovakis and Gurevich brings to light several fundamental is-

sues on which I will argue that the fate of algorithmic realism ultimately depends. Among

these are not only Gurevich’s worries that recursive models may not serve to adequately

analyze the background notion of implementation, but also more refined questions about

whether recursive implementations can be uniformly transformed into transition-based ones

in a manner which preserves not only the computational properties of the algorithms which

they are claimed to implement, but also their identity conditions. Although the debate be-

tween Moschovakis and Gurevich over these issues is largely confined to a few parentethical

remarks, this discussion still represents one of the most informed exchanges about technical

issues surrounding algorithmic realism of which I am aware. And it is for this reason that

it is worth considering the proposals of Moschovakis and Gurevich in detail.

My plan for the rest of this chapter will thus be as follows. In Sections 2, I will

present Moschovakis’s programme together with recursor model. In Section 3, I will present

Gurevich’s programme together with the ASM and his critiques of Moschovakis. Along the

way, I will attempt to highlight why these proposal fail as defenses of algorithmic realism

while also highlighting issues about the relationship between recursion- and iteration-based

implementations of the sort just mentioned.

5.2 Moschovakis and recursors

5.2.1 The recursor model

Using the terminology of Chapters 2 and 3, Moschovakis’ proposal can be described

as a form of abstractionism which seeks to identify algorithms with equivalence classes of

implementations known as recursors R relative to the relation of recursor isomorphism ↔R.

As I have already indicated, I claim that this proposal fails for the now familiar reason that

the relation ↔R turns out to be too fined grained. This means in particular that it may be

shown that it fails to hold between particular pairs of implementations M1 and M2 which
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we have good reason to regard as implementing the same algorithm A. In the terminology

of Chapter 3, this means that ↔R is not an extensionally adequate bisimulation relation.

And as a consequence of this, it can be shown there are ↔R invariant properties which

do not correspond to intrinsic properties of individual algorithms. As we will see, this

stands in conflict both with the intensional adequacy condition on abstractionism and also

with Moschovakis’ stated aims in presenting a mathematical foundation for a theory of

algorithms.

As a defense of algorithmic realism, I thus believe that the case against Moschovakis’

programme is over-determined. But at the same time, his proposal also corresponds to the

best worked-out and most mathematically sophisticated attempt to vindicate algorithmic

realism which has yet been proposed in the literature of computer science. This is true

in three respects. First, Moschovakis is the only theorist to date who explicitly acknowl-

edges that algorithms must be defined by abstraction with respect to another category

of mathematical objects (in his case recursors) and thus the only theorist who has even

begun to take account of the particular technical burdens that come with this as discussed

in Chapter 4. Second, he proposes a means by which certain forms of recursors can be

taken as canonical representatives of ↔R equivalence classes and thereby serve as con-

crete representations of certain algorithms. And in so doing, he also proposes a substantial

analysis of the relationship which must be borne between an implementation M and an

algorithm A so that the former may be counted as an implementation of the latter. And

third, using such abstract representatives of individual algorithms he proposes a uniform

definition of computational complexity which serves to provide a mathematical foundation

for the ascription of complexity properties to individual algorithms.

Moschovakis’ proposal about algorithms is worked out over the course of a series of

papers beginning with [99]. This paper outlines a broad programme for how various top-

ics in classical recursion theory can be linked to more finitary concerns about individual

procedures by using Moschovakis’ [98] earlier theory of induction on abstract structures.

This survey was followed by a series of more technical papers [99], [91] and [93], [94]. In

[92], Moschovakis describes a formal term-based calculus of recursive definition known as

the formal language of recursion [FLR] and provides an extensional form of operation (or
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“intensional”) semantics. Moschovakis has subsequently proposed that FLR may be used

to provide a formal medium for reasoning about algorithms which would be informally

specified using simultaneous recursion. As such, this language has technical affinities to

both the theory of general recursive equations of Gödel [44] and Kleene [65], simple type

theory in the sense of Church [20] and also the theory of recursion schemes discussed the

previous chapter.4

Moschovakis has consistently motivated the recursor model as an attempt to provide a

precise mathematical semantics for informal recursive definitions such as those considered

Chapter 4. It is thus central to his proposal to view these definitions as being interpreted

statements. In other words, unlike the recursion scheme model E discussed in Chapter 4.5

which seeks to abstract away from the mathematical interpretation of the terms appearing

in such definitions, Moschovakis’ proposal attempts to make precise the sense in which

such definitions serve as implicit definitions of mathematical functions (in extension) like

plusN (x, y), fibN (x) or sortA(x). The manner in which he seeks to accomplish this is best

illustrated by examining an example.

To this end, consider again the primitive recursive definition (5.1). As I mentioned

in passing in Chapter 4.5, the fact that there is a unique function of type N × N → N

which may interpret the symbol plus(x, y) in this definition follows from a theorem of

elementary set theory which asserts that all relations defined by recursive definitions of

the sort exemplified by (5.1) correspond to well defined (total) functions. In order to

understand how such a definition determines a function, it is useful to think of (5.1) as

4In the sequel, I will for the most part adopt the style of Moschovakis’ more recent papers and suppress
detailed exposition of this system. It should be kept in mind, however, that not only can recursive definitions
of the sort considered in Section 4.3 be formalized in FLR, but also many correctness and termination
properties can be formally proven therein. Since Moschovakis’ recursors correspond to the denotations of
certain FLR expressions, this language thus provides a formal medium for simultaneously talking about
executions, implementation and algorithms (via Moschovakis’ definition in terms of recursors). It follows
that if we accept this definition as an adequate analysis of the notion of algorithm, a theory formulated over
FLR could form the basis of the kind of unified formal theory of procedures and computational reasoning Tp

which was described in Chapter 3. I have previously argued that if such a theory be constructed, it ought to
be the preferred vehicle for carrying out the uniform reinterpretation of procedural discourse which would
ultimately be required to vindicate the algorithmic realist’s claim that the validity of computational discourse
can be accounted for in pure mathematical terms. Although Moschovakis does not himself recommend
proceeding in this manner, one way of understanding the relationship between his programme and that of
the algorithmic realist is to take FLR as a an explicitly worked out proposal for the form this theory should
take.
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implicitly defining a functional Plus which operates on partial approximations p to plusN .

This functional has type Plus : N × N ⇀ N → N × N ⇀ N5and may be seen to take the

following form

(5.1) Plus(p) = {〈n,m, q〉 : (n = 0 ∧ n = q) ∨ ∃u∃v[p(n, u) = v ∧ m = Su ∧ q = Sv]}

for p ∈ N×N ⇀ N. This functional may be seen to have a (unique) least fixed point – i.e.

a function p ∈ N ⇀ N → such that Plus(p) = p and such that for all q ∈ N × N ⇀ N, if

Plus(q) = q, then p ⊆ q. This is a special case of a general result known as the Knaster-

Tarski fixed point theorem which states that every monotonic function on a complete partial

order has a least fixed point.6An easy induction yields that not only is this p total, but

that p(n,m) = plusN (n,m) for all n,m ∈ N.

A recursor is essentially a functional (like Plus) defined on an arbitrary partially ordered

set (like 〈N × N ⇀ N,v〉) together with a means of regarding certain co-ordinates of its

domain and range as inputs and outputs. In full detail, Moschovakis’s definition is as

follows:

Definition 5.2.1. A recursor α : X  W on a posetX to a posetW is a triple 〈D, τ, value〉

such that:

i) D is an inductive poset;

ii) τ is a monotonic functional on type D → D (the transition mapping of α);7

iii) value : X ×D →W is a monotonic partial functional (the output mapping of α).

By the Knaster-Tarksi theorem, there will always exist a least q ∈ X×D such that τ(q) = q

– call this element µq.τ . We may then define a notion of application for the recursor model

by defining for each x ∈ X, Apprec(α, x) = value(x, µq.τ). Taking the definition of recursor

together with this definition of application, we have a model of computation R in the sense

5I will use the notation X ⇀ Y to denote the set of all partial functions from domain X into domain
Y . The functional P lus is thus a map from the set of partial functions on pairs of natural numbers into
natural numbers.

6In this case the relevant partial order order is the structure N0 = 〈N × N ⇀ N,v〉 where p1 v p2 if
and only if p1 ⊆ p2. A partial order (or poset) is inductive just in case every linearly ordered sequence
of elements has a least upper bound. This is satisfied in the case of N0 since if p0 v p1 v . . ., then
suppi =

S

i
pi ∈ N× N ⇀ N. Finally, a functional f : D → D is monotonic just in case if for all p, q ∈ D, if

p v q, then f(p) v f(q).
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of Chapter 5. As a concrete example, consider the recursor π : N×N N associated with

the informal definition (5.1). π is given by 〈N×N ⇀ N, P lus, λp.λx.λy.p(x, y)〉 from which

it follows that Apprec(π, 〈n,m〉) = µp.P lus(p)(n,m) = plusN(n,m).

5.2.2 The Recursor Thesis

Recall that I originally characterized Moschovakis’ view about the nature of algorithms

as the claim that individual algorithms may be identified with equivalence classes of recur-

sors. However, this is an oversimplification of Moschovakis’ stated position in two respects.

The first of these owes to a complication we have already encountered with respect to re-

garding a recursive model of computation such as R. For note that the application function

Apprec of this model is very much like that given for the model PR in Chapter 5.3. As is

the case for PR, the result of applying a recursor to a value is obtained by applying an

(extensional) function which itself is obtained outside the model itself. For instance, in

the case of π, the function p = µp.P lus(p) is defined in the Knaster-Tarksi theorem only

as the infinite intersection p =
⋂

{q : N × N ⇀ N : Plus(q) ⊆ q}. Such a definition is

not only impredicative in that it quantifies over all partial functions on pairs of natural

numbers, but it also non-constructive in the sense that provides no information on how to

compute the values p(n,m) for particular n,m ∈ N. On this basis, one might thus look on

R as a model of computation only in the degenerate sense discussed in Chapter 5.5 in that

the definition of Apprec does not specify how the application of a recursor to an argument

corresponds to a calculation leading to its value. And thus as we saw was also the case

with the model PR, it may initially appear that we cannot hope to define the complexity

theoretic properties of algorithms in terms of recursors.

But it is also possible to specify a sort of operational (or, to use Moschovakis’ term

intensional) semantics for recursors which makes explicit the computational features which

are latent in certain fixed point definitions. For note that under certain conditions, a func-

tion determined as the fixed point of a functional can be approximated constructively “from

7This is a slight simplification of Moschovakis’ definition of transition mapping. The original definition
requires that τ be a map of type X × D → D which allows parameterization relative to an input. Since
this added degree of flexibility plays little role in the mathematical development of the theory of recursors,
I have suppressed it here.
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below” – i.e. as the limit of a constructively generated sequence of partial approximations

. For instance, if we let p0 = ∅, and pi+1 = Plus(pi), then the function p = plusN will be

approximated by the sequence of partial functions of type N× N ⇀ N

(5.2) p0 := ∅ = plusN � [0]

p1 := Plus(p0) = {〈n, 0, n〉 : n ∈ N} = plusN � [1]

p2 := Plus(p1)N = plus1 ∪ {〈n, 1, n + 1〉 : n ∈ N} = plusN � [2]

p3 := Plus(p2)
N = p2 ∪ {〈n, 1, n + 2〉 : n ∈ N} = plusN � [3]

...

where plusN � [i] = plusN ∩ {〈n,m, q〉 : m < i}. It follows that every pair of natural

numbers 〈n,m〉 will be in the domain of pm+1. And from this it follows that we may

calculate the value of p(n,m) as follows: 1) construct pm+1 by iterating Plus on ∅ m+ 1

times; and 2) search for and return the unique q such that 〈n,m, q〉 ∈ pm+1.

Inasmuch as we are also justified in looking at a functional like (5.1) as specifying a

method for constructing the pi+1 from pi, a definition like (5.1) may be viewed as giving rise

to a quasi-constructive method for computing the values of its fixed point.8 On the basis of

this observation, Moschovakis introduces the following definitions pertaining to recursors:

Definition 5.2.2. Let α = 〈D, τ, value〉 : X  W be a recursor and d = µp.τ(p). We

associate with each ordinal ξ the partial function dξ
α = τ(sup{dη

α : η < ξ}) which is known

as the ξth stage of d.9 We additionally define the closure ordinal of α (denoted |α|) to be

the least ξ such that ∀x ∈ X[dξ
α(x) = sup{dη

α : η < ξ}]. And finally with each x ∈ X, we

associate a stage assignment stageα(x) defined as the least η such that value(dη
α(x)) ∈W .

Moschovakis argues that genuine computational significance attaches to each of these

notions. Note first that the stages dξ
α correspond to approximations to d in the sense

8The “quasi-” qualification is necessary for two reasons. First note that while the described procedure
allows us to effectively determine the values of pi(n,m) pointwise, the mapping pi 7→ pi+1 is itself infinitary
in the sense that for i > 0, the pi consists of an infinite set. Also note that while in the case under
consideration, the “approximations” p0 v p1 v . . . do converge to p in the sense that

S

i∈ω
pi = p, it is not

alway the case that an arbitrary monotonic functional F is such that µp.F (p) =
S

i∈ω
F i(∅). In order for

this to be true, we must additionally required that be F continuous – i.e. F (p)(~x) = y then there exists
p′ v p such that dom(p′) is finite and F (p′)(~x) = y.

9In this definition, suprema are to be taken with respect to the ordering v defined on D, subject to the
convention that sup(∅) = ⊥, the everywhere undefined partial function.
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considered above. On this basis Moschovakis suggests that they can be likened to steps

in the computation of d. The closure ordinal of a recursor corresponds to the number of

times τ must be iterated on ⊥ in order to obtain a fixed point. As recursors which are

such that |α| ≤ ω will correspond to finitary algorithms in the sense that for every input

x ∈ X, either dξ
α(x) will be defined for some finite ξ or d(x) will be undefined.10 And finally

Moschovakis also suggests that for each x ∈ X, the ordinal corresponding to stageα(x) can

be taken as a measure of how many steps the procedure described above must be iterated

until the approximation dξ
α becomes defined on x. And as we will see below, this will be the

basis for his proposed analysis of complexity theoretic properties of algorithms in general.

Despite the fact that the official definition Apprec of application on R is defined exten-

sionally, the definitions just considered show how a computational interpretation may be

given of what it means to “execute” a recursor. The availability of the foregoing definition

thus lends credece to the proposal that the general notion of algorithm in which we are

interested may be analyzed in terms of recursors. But as I noted above, Moschovakis’s

views on how this should be accomplished are somewhat complex. For on the one hand

he does not directly claim that algorithms are identical to recursors, but rather that the

former are, as he puts it, “faithfully modeled” by the latter. And on the other, rather than

claiming that every algorithm is modeled by a unique recursor, his most careful statements

of his position contain only the claim that there is some recursor with this property.

His motivation for adopting the latter position is partially explained by the fact that

there is a natural notion of computational equivalence for recursors which is given as follows:

Definition 5.2.3. Let α1 = 〈D1, τ1, value1〉 and α2 = 〈D2, τ2, value2〉 be recursors of type

X  W . α1 and α2 are isomorphic is there exists an order-preserving bijection ρ : D1 → D2

such that for all d ∈ D and x ∈ X the following hold:

i) ρ(τ1(d)) = τ2(ρ(d));

10There are well known examples of mathematical procedures which lack this property. For instance, as
Moschovakis points out, it is possible to formalize many cut elimination procedures in proof theory as recur-
sors. On this basis one may, for instance, show that the recursor corresponding to the traditional Gentzen
cut elimination procedure for first-order logic has closure ordinal ωω. However, the recursor corresponding
to the Gentzen cut eliminiation for first-order arithmetic has closure ordinal ε0. Part of the motivation
for Moschovakis’ programme is to provide a setting which allow us to view both of these constructions as
genuine procedures despite the infinitary nature of the latter.
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ii) value1(x, d) = value2(x, ρ(d))

I will write α1↔ ρα2 to denote the fact that α1 and α2 are isomorphic via ρ and α1↔Rα2

to denote the fact that such a mapping exists.

Very roughly, the recursors α1 and α2 are isomorphic just in case every application of

τ1 to D1 makes a structurally analogous contribution to the computation of µq.τ1(q) (in

the sense of the ordering on X) as does the application of τ2 to D to the computation of

µq.τ2(q).

With this definition in place, I can finally present Moschovakis’ most careful statement

of his view about the relationship between algorithms and recursors:

Proposal: Algorithms are recursors. The mathematical structure of every
algorithm on a poset X to a set W is modeled faithfully by some recursor α : X  
W ; and two recursors model the same algorithm if they are isomorphic. ([94], p.
18)

This and other similar passages in [97] suggest that Moschovakis’s position is that algo-

rithms correspond to equivalence classes of recursors under recursor isomorphism. I will

subsequently refer to this claim as the Recursor Thesis [RT].

In the framework of chapter 3, it may seem appropriate to characterize RT as equiv-

alent to a form of abstractionism about algorithms wherein the class of implementations

M is given by the class of recursors R and the notion of computational equivalence ↔ is

given by ↔R. But there are two obstacles standing in the way of Moschovakis’s view quite

straightforwardly, both of which are already evident from the manner in which he appears

to equivocate in stating his RT. The first concerns the distinction which Moschovakis ap-

pears to draw between the “mathematical structure” of an algorithm and the algorithm

itself. The only use he makes of this terminology, however, is to highlight the familiar point

that he is concerned with describing structural features which are, in a sense I will consider

in a moment, intrinsic to algorithms and not to their implementations. And for this reason

it is reasonable to understand Moschovakis as equating what he refers to as “the mathe-

matical structure of an algorithm” with the notion of an abstract, machine and language

independent procedure which I have taken to characterize the notion of algorithm.

The other respect in which Moschovakis may appear to be be hedging his bets in RT

concerns the nature of the relationship which he is claiming to exist between algorithms
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and recursors. For rather than claiming that algorithms are identical to recursors, he

rather claims that the former are “faithfully modeled” by the latter. But the force of this

apparent equivocation is again diminished by what Moschovakis has to say about what it

means for one sort of mathematical structure to faithfully model another. His paradigm

example of this relationship is that borne by an arbitrary Peano system M = 〈M, 0M , sM 〉

– i.e. a structure satisfying the second-order Peano axioms PA2 – to the actual natural

number structure N = 〈N, 0N, sN〉. Moschovakis describes this situation as one in which

structures of the former sort “faithfully models ‘the natural numbers’ . . . up to first-order

isomorphism.”

Note, however, that M shares this property with a proper class of formally distinct

structures. And for this reason, the view about the ontological relationship between F and

N which Moschovakis ultimately adopts is similar to the so-called structuralist philosophy

of mathematics anticipated by Benacerraf [7] and favored by (among others) Parsons [105]

and Shapiro [127]. According to this view, the elements of N are not held to be identical

to the members of any particular set theoretic structure but are rather to be equated with

“positions” within any structure M satisfying PA2. Note for instance that the structures

M1 = 〈ω1, 01, s1〉 (where ω1 is the finite von Neumann ordinals, 01 its least element and

s1 its ordinal successor operation) and M2 = 〈ω2, 02, s2〉 (where ω2 is the finite Zermelo

ordinals, 02 its least element and s2 its ordinal successor operation) both satisfy the Peano

axioms. On this basis we may define so-called reduction maps r1 : N → ω1 by r1(0) = 01,

r1(s(n)) = s1(r1(n)) and r2 : N → ω2 by r1(0) = 02, r2(s(n)) = s2(r2(n)). But the

structuralists maintain that if we were to take the view that say r1 gave rise to genuine

identities between numbers and sets, then we would be hard put to explain by this should

not also be the case for r2. And famously it cannot be the case both that 2 = r1(2) =

{∅, {∅}} and 2 = r2(2) = {{∅}}.

From this Moschovakis concludes that the goal of providing a set theoretic definition of

a mathematical concept C (his two examples are that of natural number and order type)

is not “to tell us in . . . metaphysical terms term what the [objects falling under C] are,

but to identify and delineate their fundamental mathematical properties” ([94], p. 6, his
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italics). He then states that this may be accomplished by providing

[A] class of sets MC together with a equivalence relations ∼C on MC , with the
intention that each α ∈ MC faithfully represents (codes) some C-object αC , and
that two members α, β ∈ MC code the same C-object exactly when α ∼C β. A
modeling of this type is successful if the ∼C-invariant properties of the members of
MC capture exactly the fundamental properties of the C-objects – which implies
that every fundamental property of a C-object can be “read off” any of its codes.
[94], p. 6

Moschovakis does not go into detail about how this analysis might be carried out with

respect to any concept natural number. But on the basis of his prior comments, it is easy to

envision how this might be handled. In particular, we may take Mnatnum to be the disjoint

union of the domains M1,M2, . . . of an indexed family of Peano systems M1,M2, . . .. And

we may additionally define ∼natnum to be the relation O(x, y) which holds between x ∈Mi

and y ∈Mj such in case there exists an isomorphism g : Mi →Mj and g(x) = y.11

Since Moschovakis explicitly states that he intends to use the foregoing analysis as

a foundational framework for analyzing the notion of algorithm, it is in this way that

we ought to understand the use of the expression “faithfully models” in RT. This means

that in order to view this proposal as successful, the class of ↔R invariant properties of

recursors must exactly correspond to the fundamental properties of algorithms. For as

we will see in a moment, Moschovakis is primarily interested in using RT to justify the

application of complexity theoretic properties to individual algorithms (as opposed to their

implementations). But at the same time, Moschovakis does not start out by presenting an

axiomatic description of what he takes the fundamental properties of algorithms to be of

the sort which would be provided by theory Tp discussed in Chapter 2. And thus since

there is no clear candidate for such a theory, there also appears to be no way in which we

11This analysis extends Moschovakis’ comment that Peano systems faithfully model the natural numbers
“up to first-order isomorphism.” Note that since the ordering relation x < y on natural numbers is definable
in the language of PA2 (i.e. as (x < y)⇐⇒ ∃S[S(x) ∧ S(y) ∧ ¬∃z[S(z) ∧ s(z) = x] ∧ ∀z[S(z)→ S(s(z))]]),
it may readily be seen that this analysis corresponds to treating natural numbers as finite order types (since
we will O(x, y) if and only if the relations (<� x)Mi and (<� y)Mi are order isomorphic). This analysis is
again equivalent with the typical structuralist credo that natural numbers are “positions” in ω-sequences.
However Moschovakis also comments that the set {∅, {∅}} “faithfully models 2 up to equinumerosity”. On
this basis, one could also use Moschovakis’ framework to develop an analysis of natural number similar
to that of the neo-Fregeans by taking Mnatnum to a structure like R(ω) (the hereditarily finite sets) and
∼natnum to be the relation ≡ of equinumerosity. Since Moschovakis is already committed to an ontology of
sets (which neo-Fregeans like Wright [154] presumably are not), he could simply take the natural number n
to correspond to the equivalence class [n] = {y ∈ R(ω) : y ∼ αn} ∈ R(ω + 1) where αn is some canonical
n-member set such as the nth von Neumann ordinal.
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can currently hope to prove that RT is correct in the same way that, say, the theory PA2

allows us to prove a theorem stating that the properties of equivalence classes of finite sets

under equinumerosity are exactly those expressible in second-order arithmetic.

But although our current grasp on the properties of individual algorithms may not allow

us to demonstrate RT definitively, it is proportionally easier to show how it might fail. For

note that according to the passage cited above, the claim that the pair 〈R, ↔R〉 succeeds

in providing a faithful modeling of the concept algorithm is equivalent to the claim that

the set Γ of fundamental properties of algorithms is coextensive with the set ∆ of ↔R

invariant properties of R.12Of course, given we lack an axiomatic theory of algorithms, it

may be that Γ is not determinately defined. But at the same time, it might also be that our

current practices are sufficiently well developed that we can determinately say of particular

computational properties Φ,Ψ that they either belong to Γ or fail to belong to Γ. And if

this is the case, to disprove RT it suffices to demonstrate either of the following claims:

(5.3) i) there is a “fundamental” property Φ ∈ Γ which is not invariant under ↔R (i.e.

Φ 6∈ ∆);

ii) there is a property Ψ ∈ ∆ which is invariant under ↔R but is not

“fundamental” (i.e. Ψ 6∈ Γ).

11In fact, Moschovakis explicitly forswears the possibility of developing such a theory essentially for the
same sort of reasons I discussed in connection with the development of Tp in chapter 3: “The trouble
[is that such a theory would be] too complex: There are too many notions competing for primitive status
(algorithms, implementations and computations, at the least) and the relations between them do not appear
to easily expressible in first-order terms. I doubt that this project can be carried through, and, in any case,
there are no proposal on the table suggesting how we might get started.” [94], p. 9

12One might think that the requirement that Γ = ∆ is stronger than needed to demonstrate the sort
of ontological conclusion which is apparently announced in Moschovakis’s Proposal. In fact the weaker
requirement that ∆ ⊆ Γ would seem to be a sensible way of disambiguating the relevant notion of “faithful
representation” in play (in this regard, cf. work in formal measurement theory such as [140]) were it not for
the explicit discussion of this notion cited above. The fact that coextensiveness really is what is required
from the standpoint of algorithmic realism follows from the fact that the opposite inclusion Γ ⊆ ∆ is needed
to show that the analysis accounts for the status of artifactual properties which may be possessed by certain
implementations M of an algorithm A but which we would not generally say are possessed by A itself. Note
that the analogous neo-Fregean treatment of natural numbers arguably achieves this result. For instance,
the set 21 = {∅, {∅}} which represents the natural number 2 under the reduction mapping r1 discussed
above possesses the property of being a transitive set. But note that we would typically say that the natural
number 2 itself lacked this property (in fact on the informal understanding of natural number, it makes no
sense to even say that 2 has members). However, transitivity is clearly not preserved under the equivalence
relation ≡ of equinumerosity – for instance 21 ≡ {∅, {{∅}}}, but the latter set is clearly not transitive. From
this it follows that transitivity cannot be “read off” as a fundamental property of natural numbers. And it
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I believe Moschovakis’s proposal fails on both counts. The fact that i) and ii) hold

(and thus that both the inclusions Γ ⊆ ∆ and ∆ ⊆ Γ fail) may ultimately be seen to

follow from a familiar problem pertaining to RT – i.e. that the equivalence ↔R turns

out to be too fine to adequately track our intuitions about algorithmic identity. This has

two consequences. First, it means that it is possible that there exist properties Ψ which

are invariant under ↔R but which are not possessed by all recursors which we would

intuitively accept as representing the same algorithm. And second, it means that there

may exist pairs of recursors α1 and α2 which we would intuitively accept as representing

the same algorithm but which are not linked by ↔R.

In order to demonstrate that the first of these claims (which corresponds to a proof of

(5.3ii)), we will need to further investigate Moschovakis’ analysis of complexity theoretic

properties. I will do this over the course of the remainder of this section. In order to

demonstrate the second claim (which corresponds to a proof of (5.3i)), we will need to

further investigate Moschovakis’ analysis of the relation which holds between register-based

and recursion-based implementations of the same algorithm. This topic is most naturally

understood in light of an example I will consider with respect to (5.3ii). And for this reason,

I will postpone a discussion of (5.3i) until Section 2.4.

5.2.3 Recursors and computational complexity

As mentioned, one of Moschovakis’ primary motivations in framing the RT is to provide a

principled means of making informal proofs about correctness and running time complexity

mathematically rigorous. In order to so, he proposes that talk of informal computational

notions like “execution”, “computational step” and “numbers of comparisons” be replaced

with talk about formal properties of recursors. Under such a systematic reinterpretation

of computational discourse, informal arguments given in algorithmic analysis of the sort

discussed in Chapter 2 could be replaced with standard mathematical proofs about recursors

and their properties. And thus under the assumption that recursors do in fact “faithfully

model” informal algorithms, this would enable us to conclude not only that these results

is for this reason that although 21 may not be identified with 2, the class ω1 of which this set is a member
may be used to faithfully model the natural numbers with respect to ≡ in Moschovakis’ sense.
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are valid, but also that they report on the properties of genuine mathematical objects.

The fact that Moschovakis takes this to be worth doing is indicative of the fact that he

must accept that at least certain complexity theoretic properties are contained in the set Γ

of “fundamental” computational properties which can be attributed directly to algorithms.

As we have seen, such properties are standardly taken to be those expressed by predicates

of the form “algorithm A has running time complexity timeA(n)” defined relative to an

appropriate size metric | · | : X → N on the domain X of A. And for this reason, it seems

that Moschovakis must accept that at least these properties are contained in Γ.

In order to see how this observation bears on the status of (5.3i), we must next inquire

into how Moschovakis intends to formalize properties of this sort so that it makes sense

to apply them to recursors. For note that while relative to the practice of the analysis of

algorithms it makes perfect sense to say something like “Mergesort has running time

O(n log2(n))”, it is not immediately clear what it means to predicate such a property of a

recursor. In order to do so, a mathematical analysis of running time complexity properties

must be presented so that the informal complexity theoretic property Φ ∈ Γ is correlated

with a structural property Φ∗ of recursors in the manner discussed in Chapter 4.1.

And as I mentioned in the introduction to this chapter, Moschovakis is unique among

(the admittedly small) class of theorists who explicitly endorse algorithmic realism in that

not only does he acknowledge that it is incumbent upon a realist to provide such an analysis,

but actually seeks to present one himself. This analysis is notable in that it attempts

to identify the complexity features with structural properties of recursors which do not

correspond in any obvious or direct sense with temporally interpretable features of other

models of computation we have thus far examined. However, this analysis rests on a variety

of non-trivial assumptions about how algorithms may be specified as recursors. Among

these are the following:

(5.4) i) An algorithm A may only specified directly as a recursor αA. It may, of course,

also be possible to refer to A by using some other sort of implementation M

such as a flowchart machine or Turing machine. However, the fact that M

implements A is to be explained in terms of the fact that αA may be reduced to

M in the technical sense of recursor reduction which will be discussed in Section
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2.4. Thus although, per RT recursors must themselves be counted as

implementations, Moschovakis holds that they are more abstract than other

forms of transition- or register-based implementations.

ii) In order to analyze the complexity of an algorithm A, we must assume not only

that it has been presented as a recursor αA : X  W where

α = (DA, τA, valueA) but also that αA is itself specified as the denotation of an

expression of the form ρA(~x) = T0(x1, . . . , xn) where {T1(x1, . . . , xn) =

F1(x1, . . . , xn), . . . , Tn(x1, . . . , xn) = Fn(x1, . . . , xn)}. In [94], [96] and [97] such

expressions are taken to correspond to terms over the Formal Language of

Recursion. In this setting, τA will correspond to the so-called intension

associated with ρA(~x) relative to the provided operational semantics provided in

[92]. For present purposes, however, ρA(x) may be understood as systems of

mutually recursive equations which differ only notationally from the recursion

schemes introduced in section 5.5. (In particular, each such term ρ will

correspond to a scheme Êρ with head F0 and body F1, . . . , Fn.)

iii) The running time complexity of an algorithm A on an input x ∈ X is defined

only relative to prior decisions about how to measure the size of x and also

about which of the mathematical operations which figure in its specification

ought to be counted as contributing to its complexity. The former parameter

may be formalized in the usual manner by giving a size metric | · | : X → N. The

latter parameter can be formalized by one of the terms Fi (1 ≤ i ≤ n) which

appears in the term ρA and which I will refer to as a complexity index for ρA. A

definition of recursor-based running time complexity for αA relative to | · | and

Fi will then be given by a function trfi(|x|)αA
: X → N which maps |x| to the

number of times fi (the denotation of Fi) must be applied in order to determine

the value αA(x).

Although Moschovakis offers only cursory arguments in favor of these assumptions, they

form the basis of his definition of what it means for a recursor αA(x) to have complexity

trfi
αA

(|x|). Stating this definition in full generality would, however, require a substantial

digression into the semantics of the FLR. But it turns out that it is assumptions i), ii) and
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iii) themselves rather than the exact definition of trfi
αA

(|x|) which bear more directly on the

status of RT. Rather than provide a complete statement of the definition of this function,

I will instead illustrate its application together with the role of these assumptions via an

example.

To this end, consider again the algorithm Mergesort. We have seen that this algorithm

is paradigmatically specified by an informal recursive definition. In particular, suppose we

are interested in sorting lists of items over a set L linearly ordered by � which, for reasons

which will become apparent in a moment, we will take to be represented by its characteristic

function c = χ� which will be treated as a explicit argument to the algorithm. Then if

u ∈ L∗, Mergesort may be expressed by the following pair of mutually recursive equations

(5.5)i) sort(c)(u) =















u if |u| ≤ 1

merge(sort(c)(firsthalf(u)), sort(c)(secondhalf(u))) else

ii) merge(c)(v,w) =














































w if v = ε

v else if y = ε

head(v) ·merge(c)(tail(v), w)) else if c(head(v), head(w)) = >

head(w) ·merge(c)(v, tail(w)) else if c(head(v), head(w)) = ⊥

Here firsthalf, secondhalf, head, tail, and · have their standard meaning as defined in

Chapter 4.5.

If we now let h1, h2, h, t and a be formal functional symbols corresponding to these

functions, then an FLR term ρMergesort(u) representing this algorithm may be given as

follows:

ρMergesort(u) = s0(u, s,m, c) where { (5.6)

s(u) = if |u| ≤ 1 then u else m(s(h1(u)), s(h2(u))),

m(v,w) = if v = ε then w

if w = ε then v

if c(h(v), h(w)) then a(h(v),m(t(v), w))

else a(h(w),m(v, t(w)))}13
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Relative to the so-called intensional semantics for FLR given in [92], (5.7) determines as

its extension a recursor αMergesort : L∗ → L∗ of type (D, τ, value) where

(5.7) i) D = (L∗ ⇀ L∗)× (L∗ × L∗ ⇀ L∗)× (L∗ × L∗ ⇀ {>,⊥})

ii) τ : X ×D → D

iii) value(u, s,m, c) = s(u)

In this case τ takes as input a list u ∈ L∗ and partial functions s′,m′, c′ which respectively

correspond to initial segments of the functions s (the denotation of the sort(u) in (5.5)), m

(the denotation of merge(v,w) in (5.5)) and c (the denotation of the characteristic function

of � in (5.5)) which are determined as the mutual fixedpoints in (5.7).

Suppose we now make the assumptions that the size of a list u ∈ L∗ is to be measured by

its length |n| and that the appropriate complexity index for Mergesort is the comparison

function c. Note that these formalize the conventional choices for sorting algorithms to

measure the size of their input in terms of the length of the list to be sorted and the amount

of computational “labor” to return an output in terms of the number of element-to-element

comparisons required. On the basis of these assumptions, the complexity of Mergesort

would be analyzed by Moschovakis in terms of αMergesort as a function between |u| and the

size of a domain of the smallest partial function c′ ⊆ c which is required so that the fixed

points m′ ⊆ m and s′ ⊆ s determined as the solution to the equation τ(u, s′,m′, c′) =

〈s′,m′, c′〉 are such that s′(u) is defined and correct. In particular, the following result

may be obtained by reasoning directly about the recursor αMergesort:

Theorem 2. Let αMergesort, s,m and c be as above, u ∈ L∗, |u| = n and v ∈ L∗ be

such that value(u) = s(u) = v (i.e. v is the sorted version of u). Then there exists c′ ⊆ c,

s′ ⊆ s and m′ ⊆ m such that τ(u, s′,m′, c′) = 〈s′,m′, c′〉, |dom(c′)| ≤ ndlog2(n)e and

s′(u) = v.14

13It should be noted that there is generally not a one-one relationship between informal recursive defi-
nitions like (5.5) and FLR terms which might be taken to represent them. In [92], however, a reduction
calculus on such terms is defined and a normal form theorem is proven whereby a term like ρMergesort (which
is not in normal form in virtue of the fact that it contains functions expressions with more than one level
of nesting) may be reduced to a canonical form terms in a denotation-preserving manner. It is such a
normal form ρ′Mergesort which Moschovakis would presumably take to be the “official” FLR representation
of Mergesort.
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This statement describes the relationship between the length |u| of an input u to

αMergesort and the size tr(|u|) of the smallest approximation to the comparison relation �

(as represented by its characteristic function c) which needs to be passed as an argument to

the system of fixed point equations determined by (5.7) so that an approximation s′ to the

sorting function thereby determined is guaranteed to be correctly defined on u. In particu-

lar, it is immediate from the theorem that we should define the recursor-based complexity

αMergesort relative to c as trc(|u|) = |u|dlog2(|u|)e.

As noted above, Moschovakis’s primary motivation for developing the analysis on which

this theorem is based is to provide a means of reframing complexity theoretic analyses de-

rived using the informal methods from the algorithmic analysis as purely mathematical

results about recursors. Relative to the assumptions that recursors may be used to reason

about algorithms in the manner suggested by RT, such results may be taken as demon-

strating the use of informal procedural reasoning (in particular, reasoning that employs the

informal notion of a “computational stage” or what it means for one stage to occur before

or after another in the execution of an algorithm) may be eliminated in favor of purely

structural reasoning about recursors. It is thus reasonable to think of Theorem 1 as having

the same significance as the corresponding informal complexity analysis of Mergesort

given in Chapter 2.

These considerations suggest that Moschovakis has indeed succeeded in giving a math-

ematical analysis of complexity theoretic properties which comports well with our informal

understanding of what it means to assign a running time to an individual algorithm. But

although we have seen that this is one of the responsibilities incumbent on an algorithmic

realist, having provided such an analysis, we can now ask which complexity theoretic prop-

erties are invariant under ↔R and thus, per RT, correspond to fundamental properties of

individual algorithms. And in this regard, it may be noted that the following observation

follows directly from the definitions of recursor isomorphism and recursor-based complexity:

(5.8) Corollary Let ρ1(x) and ρ2(x) be FLR terms both containing the term Fi and

specifying isomorphic recursors α1 : X  W and α2 : X  W . Then if | · | : X → N

is a size metric and fi a complexity index corresponding to the interpretation of Fi,

then trfi
α1(|x|) = trfi

α2(|x|).
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According to this observation, recursor-based complexity is a ↔R invariant property of

recursors. Given that an isomorphism π relating α1 and α2 relates their transition functions

in a “step-by-step” manner (i.e. such that π(τ1(x, d)) = τ2(x, π(d)) for all x ∈ X, d ∈ D),

this result is not surprising. But what is less clear is whether it should be regarded as a

positive or a negative result with respect to the status of RT.

Two important themes which I have repeatedly argued are central to algorithmic real-

ism in previous chapters are as follows: i) complexity theoretic properties are fundamental

properties of individual algorithms; and ii) these properties must be individuated finely

enough to distinguish between pairs of algorithms between whose efficiency we distinguish

in practice (cf. the discussion of NaiveGCD versus Euclid in chapter 1 and Inser-

tionsort and Mergesort in chapter 2). There are, however, a variety of problems

which complicate how complexity properties can legitimately be attributed to individual

algorithms in a mathematically robust manner. Not the least of these is the dependence of

complexity classifications on the choice of which mathematical operations are to be counted

as contributing to a procedure’s complexity. However we have seen that Moschovakis’s ac-

count has a means of accounting for this relativity in that the definition of recursor-based

complexity is defined relative to a choice of complexity index.

There is, however, another subtlety involved with attributing complexity theoretic prop-

erties to individual algorithms. Suppose, for instance, that we are considering a fixed al-

gorithm A and a set of operations f1, . . . , fn in terms of which the complexity of A will

be measured. But suppose that have also constructed two different implementations M1

and M2 for which we are equally willing to accept imp(M1) = A and imp(M2) = A. If

we wish to calculate the complexity of A in a mathematically rigorous manner in the way

both algorithmic realism and Moschovakis demand, then it seems that we have no choice

but to reason about M1 or M2 directly. But this raises the possibility that the complexities

which we calculate as timeM1(|x|) and timeM2(|x|) will not differ even if these functions

are defined so as to only count the number of applications of f1, . . . , fn. And we thus must

face the question of how a running complexity can be assigned to A given that there need

not be agreement among the complexities associated with its implementations.

It does not take much exploration to convince oneself that this situation is in fact that
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the rule rather than the exception. Some evidence for this is provided by considering again

the example of Chapter 3, for instance, where I argued that we have imp(S1) = Pal1

and imp(S5) = Pal1 and timeS1(|w|) = (n2 + 5n + 6)/2 − 2 and timeS5(|w|) = (3n2 +

6n)/2 + 1. Of course, per Chapter 4, the data that S1 and S5 are indeed implementations

of Pal1 can be challenged at least in part on the basis of their quadratic complexity.

However, it is easy to construct other examples with demonstrate the same point – e.g.

two implementations M1,M2 of Insertionsort as RAM machines which respectively have

running times timeM1(|u|) = 3n2 + 3 and timeM2(|u|) = n2 + 4n + 4.

The existence of such disparities in the running time of different implementations of the

same algorithm is a well known phenomena in the analysis of algorithms. And as I have

intimated several times previously, it is in fact the basis for a widely accepted informal

thesis about how running times should be attributed to algorithms which I will refer to as

the Asymptotic Running Time Thesis [ARTT]. This thesis is motivated by the view that

it makes no sense to attribute an exact running time timeA(|x|) to an individual algorithm

A because however we choose to do so, it will almost certainly be possible to construct an

intuitively acceptable implementation M of A such that timeM (|x) 6= timeA(|x|). However,

continues the proponent of ARTT, we certainly do think of individual algorithms as having

running time complexity as confirmed, for instance, by the fact that we routinely compare

the running times of algorithms A1 and A2 which compute the same function in order to

decide which will be more efficient to employ in a given situation.

In order to ground this practice, the proponent of ARTT proposes that what may be

properly attributed to individual algorithms is not exact running time measure, but rather

asymptotic running time as defined in Chapter 4.2. This is to say that if we calculate

that the running time complexity of A is f(n) either by reasoning informally about A

or by reasoning formally about one of its representations, then the property which we

may justifiably attribute to A is not having running time complexity f(n), but rather

that it is has running time complexity in O(f(n)). This proposal is supposed to avoid

the problem posed by the possibility that an algorithm may have implementations with

distinct running times by agreeing to predicate of algorithms only asympoptic running

times, thereby “factoring out” or “abstracting away from” the implementation specific



342

details on which such differences are (implicitly) claimed to depend.

The ARTT has several consequences which are relevant in the current context. First,

it entails that all acceptable implementations of the same algorithm have the same asymp-

totic running time (although they may of course differ in exact running time). This is a

well confirmed hypothesis in practice and is supported by the sort of anecdotal evidence

provided in standard sources like [24], [125] and [57]. And although in initially proposing

the use of asymptotic measures Knuth [67], [66] does attempt to adduce some foundational

considerations in its favor, it is hard to see how ARTT could be formally demonstrated in

the absence of a mathematical theory of algorithms of the sort I argued in Chapter 2 that

an algorithmic realist must endeavor to construct. What is more significant to our current

concerns, however, is that it follows from ARTT that since exact (as oppose to asymptotic)

running time complexity should not be attributed to individual algorithms, a statement

like “A has running time f(|x|)” cannot be taken as expressing a fundamental property

of A. According to the proponent of ARTT this is, of course, because A is likely to have

implementations whose running time differs from f(n).

Of course it is also a consequence of ARTT that statements of the form “A has running

time O(f |x|)” ought to express as fundamental properties of algorithms. This conclusion

is consistent with RT since it follows from Corollary 1 that O(f |x|) running time will be

invariant under ↔R. But it is the converse direction of RT – i.e. the claim that all ↔R

invariant properties are fundamental to individual algorithms – which is more problematic.

For note that it follows immediately from this result that exact running time with respect

to the complexity index fi is also a ↔R invariant property. But the sort of examples

mentioned above illustrated that this is not the case – i.e. there are concrete instances

in which we are willing to regard implementations like the RAM machines M1 and M1 as

implementations of the same algorithm, despite the fact that they differ in exact running

time.

If the implementations M1 and M2 were themselves recursors, this observation would be

would be sufficient to demonstrate (5.3ii), which in turn would invalidate RT itself. But as

things stand, it may appear that since register-based implementations of this sort are quite

distinct from recursors, that their divergence in exact running time has little bearing on
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the status of RT. However, we have also seen that register-based models can, in general, be

assimilated to recursion-based ones such as the recursion schemes of Chapter 5.5. And for

this reason, there is a prima facie reason to fear that there will exist recursors αM1 and αM2

deriving from these M1 and M2 which will still be such that tri
αM1

(|x|) 6= tri
αM2

(|x|). But

in this case, RT would predict that αM1 and αM2 represent different algorithms in virtue

of the fact that they fail to satisfy the same ↔R invariant properties. I will return to this

situation in the next section, where will we see that Moschovakis’s definition of recursor

reduction does in fact commit him not only to the existence of αM1 and αM2 also to the

view that they should indeed be viewed as implementations of A.

5.2.4 Recursors and identity

Recall that the onus falls on the defender of RT to show that the definition of recursor

isomorphism ↔R is extensionally adequate. In much the same manner as in Chapter 3,

this claim can be taken to have to have two components:

(5.9) i) For all recursors α1, α2, if α1↔Rα2, then we intuitively accept that

imp(α1) = imp(α2).

ii) If we intuitively accept that recursors α1 and α2 represent the same algorithm

(i.e. imp(α1) = imp(α2)), then α1↔Rα2.

As I will now attempt to demonstrate, however, the definition of ↔R given in Definition

5.2.3 can be seen to fail with respect to both requirements (5.9i) and ii).

To see this, note that recursors, as their name suggests, most directly mirror the struc-

ture of recursive algorithms which are standardly presented in recursive form such as Eu-

clid’s algorithm or Mergesort. However, the Thesis is intended to have general scope –

i.e. it asserts that all algorithms are faithfully modeled by recursors, not just those which

are conveniently expressed in recursive form. On the face of things, one might think that

Moschovakis’s theory of algorithms was poorly equipped to deal with the general case. But

in addition to the recursor model, he also proposes a theory about how algorithms which

would most naturally be expressed in other ways can be represented as recursors.



344

In order to get an impression of how this auxiliary theory works, we may begin by noting

that Moschovakis [94] introduces another basic model of computation which he refers to as

an iterator. Iterators correspond very closely to our prior definition of transition systems

and for present purposes I will assume that they are given in the same form – i.e. as a tuple

φ = 〈X,W,S, δ, T, in, out〉 consisting of an input set X, and output set W , a set of state

S, a set of terminal states T ⊂ S, an input function in : X → S and an output function

out : S → Y . Moschovakis presents iterators as a natural analysis of the informal notion

of what he takes to be the informal notion of implementation, which, in our terms, can be

taken to correspond to an instance of a transition- or register-based model of computation.

He goes on acknowledge that iterators may be used to directly represent algorithms which

we would express with iterative constructs such as while and for-do loops. This includes not

only the “naive” (i.e. O(n2)) sorting algorithms (e.g. Selectionsort, Insertionsort,

etc.) which are but also a great many “sophisticated” procedures like the Ford-Fulkerson

maximum flow algorithm, many efficient Fast Fourier Transform algorithms and the AKS

primailty test.15

It may readily be shown, however, that an arbitrary iterator φ may be represented as

a recursor. This is achieved by “decompiling” iteration into tail recursion as expressed by

the FLR term

(5.10) αφ = p(in(x)) where {p(s(x)) = if s(x) ∈ T then out(s(x)) else p(δ(s(x))}.

Thus by RT, we should hold that two iterators φ1,φ2 express the same algorithm just in

case the corresponding recursors αφ1
and αφ2

are isomorphic. However, as we are now

about to see, recursor isomorphism is both too fine and too coarse an equivalence relation

to individuate algorithms represented by iterators in this manner.

We may first note that it is also possible to define a notion of isomorphism for iterators

directly:

Definition 5.2.4. Iterators φ1 and φ2 from X to W are isomorphic (symbolically φ1↔ Iφ2)

15It is conjectured that algorithms solving P -complete problems like the Ford-Fulerson algorithm are
intrinsically iterative in the sense that they cannot be parallelized. If this is correct, then there are a great
many algorithms which admit only “degenerate” representations as recursors of the sort described in the
next paragraph.
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just in case there exists a map ρ : S1 → S2 such that i) ρ(in1(x)) = in2(x) for all x ∈ S; ii)

ρ(δ1(s(x))) = δ2(ρ(s(x))) for all s ∈ S; and iii) ρ(out1(s)) = out2(s) for all s ∈ T such that

there is an x ∈ X and n such that sn(in1(x)) = s.

It is shown in [96] that two iterators are isomorophic just in case their corresponding

recursors are isomorphic – i.e. φ1↔ Iφ2 if and only if αφ1
↔Rαφ2

. Note, however, any

two iterators φ1 and φ2 of type X → W which are such that lenφ1
(x) = lenφ2

(x) for all

x ∈ X are trivially isomorphic. In order to see this, note that we may define ρ : S1 → S2

inductively by ρ(in1(x)) := in2(x) and ρ(δ1(s)) := δ2(ρ(s)).
16

Now consider any two informally specified iterative algorithms A1 and A2 which have

the same exact running time time(x). It will generally be straightforward to represent A1

and A2 as iterators φA1
and φA2

such that lenφA1
(x) = time(x) = lenφA2

(x). From this it

follows that φA1
↔ IφA2

. But since φA1
and φA2

will uniquely determine recursors αA1 αA2 ,

it also follows by (5.9ii) that αA1↔RαA2 . And from this we may conclude via (5.9i) that

the algorithm represented by αA1 (i.e. A1) is identical to the algorithm represented by αA2

(i.e. A2). In the case where A1 and A2 are chosen to be intuitively distinct,17 this means

that RT yields the wrong conclusion about their identity conditions.

It is in this sense that recursor isomorphism turns out to be too coarse grained a relation

over recursors and as such violates the adequacy condition (5.9i). A particularly salient

example of these problems arises for recursors expresesed by FLR terms of the form

(5.11) µ(x) = m(x) where {m(x) = f(x) if P (x) else g(m(h1(x),m(h2(x))}

As we have seen in Chapter 4, a recursor of this form would naturally be used to represent

an algorithm A such as Mergesort whose execution on x requires the construction of a

full binary tree of depth |x|. However, it can shown that µ may be uniformly transformed

into two distinct iterators ψ1 and ψ1 which (intuitively) differ in that ψ1 traverses this tree

16Note that by this route, we also see that exact running time complexity is a ↔ I-invariant property of
iterators.

17It is easy to construct examples of intuitively distinct algorithms A1 and A2 with the same exact running
time. For instance, we might start out with two O(n2) sorting algorithms – e.g. Selectionsort and
Insertionsort – and simply “pad” one or the other with linearly many dummy steps to ensure equality
of running time for all inputs. However, this is only the tip of the iceberg. For instance, note that we
may have ∀x[timeA1

(x) = timeA2
(x)] even in case where A1 and A2 solve different problems on different

mathematical structures.
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by always going left until it must go right while ψ2 goes right until it must go left. We

would informally speak of these iterators as both being different implementations of A.

However, the recursors µ1 and µ2 which are reconstrutable from ψ1 and ψ2 in the sense of

(2) will be such that µ1 = µ, µ2 = Rµ . And thus via (5.9i), we ought to conclude that µ1

and µ2 both represent algorithms which are not identical to µ. But this violates (5.9ii) in

that µ1 and µ2 are both derived from machines which, like µ, we would naturally describe

as implementations of A.

The foregoing observations may be formalized within the framework of the theory of

program schemes and recursion schemes introduced developed in Greibach [47]. Relative

to the substitution-based semantics for recursion schemes presented therein, µ does not

correspond to a completely determinate procedure for computing a value. In addition

to the operational (or “intensional”) semantics for recursors presented in [92], a so-called

reduction strategy for recursors is required which specifies the order in which substitutions

are to be performed.18 Two distinct strategies of this sort are embodied by ψ1 and ψ2. Using

the techniques of Paterson and Hewitt [106], it may be shown formally that these iterators

must both employ a stack-like data structure to keep track of the recursive calls made by

µ. The explicit specifications of ψ1 and ψ2 will, however, be much more complicated than

µ. And it is thus doubtful that the definition of ↔ I cited above can be modified so as to

accomodate the requirement that ψ1↔ Iψ2 in any manner which does not, ipso facto also

relate other iterators representing intuitively distinct algorithms.

18As stressed by Gurevich and Blass [9], the fact that the natural fixed-point semantics for recursors
do not provide such a strategy may potentially be seen as a negative feature of this model. For if the
meaning assigned to (5.11) by such a semantics does not tell us explicitly how to compute the values of the
corresponding recursors in a step-by-step manner, then it may be argued that recursors do not represent
represent determinate algorithms after all. Moschovakis has argued that this a virtue of the recursor model
in that computational features of this sort are not relevant to the standard correctness and complexity
arguments employed in the analysis of algorithms. But at the same time, the items which we call algorithms
in practice appear to bear possess such properties intrinsically. This demonstrates that there may be some
tension between Moschovakis desire to identify algorithms in terms of recursors and his claim that they
bear only those computational properties which figure in such proofs.
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5.3 Gurevich and Abstract State Machines

5.3.1 The ASM Thesis

If we continue to employ the terminology of Chapters 2 and 3, Gurevich’s proposal about

the mathematical status of algorithms can be described as a form of reductionism whereby

it is claimed that individual algorithms can be represented by particular members of a class

of model known as Abstract State Machines. As I will explain more fully below, ASMs

bear a close historical and technical relationship with many register- and transition-based

models of computation we have encountered previously. Since I have argued in Chapter 4.4

that all models of these sorts can be specified as transition systems in the sense defined in

Chapter 2.4, Gurevich’s overall proposal can be understood as approximately corresponding

to the claim that every informally specified algorithm can be correlated with at least one

such system.

Gurevich refers to this proposal as the ASM Thesis. This claim was first announced

under this name in [54], although closely related statements can also be found in [156]

(wherein a predecessor of ASMs are referred to as dynamical structures) and in [50] (wherein

another closely related predecessor is referred to as evolving algebras). He and others have

subsequently revisited and expanded upon the Thesis in a number of articles including [52],

[51], [9], [10] as well as the recent book by Böger and Stark [14]. Due to the variety of

presentations which both the ASM model and the ASM Thesis have received, we face a

minor textual challenge because both the model and Thesis have been stated differently in

different sources. This will not matter much with respect to the definition of the model

itself since the variants differ in ways which are not relevant to current interests. But the

precise form of Gurevich’s various statements of the Thesis is significant because it reveals

his position about the ontological relationship between algorithms and ASMs.

Before even defining ASMs precisely, it will thus be useful to examine different forms of
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the “official” statement of the ASM Thesis:

The abstract state machine thesis asserts that abstract state machines express al-
gorithms on their level of abstraction in a direct and coding-free manner. [52], p.
1
The thesis is that every sequential algorithm, on any level of abstraction, can be
viewed as a sequential abstract state machine. [54], p. 2
Every sequential algorithm can be step-for-step simulated by an appropriate sequen-
tial ASM. [51], p. 78
The ASM Thesis [is] the claim that every algorithm can be expressed, on its natural
level of abstraction, by an ASM. [9], p. 96

The point which should be noted concerns the contribution of the modifier “sequential” with

respect to both algorithms and ASMs. In both instances, the relevant contrasting term is

“parallel” as it is used to describe a class of algorithm (and a corresponding class of AMSs)

whose execution consists of several different subprocesses which are carried out at the same

time and whose results (and possibly intermediate states) can be put back together to

obtain a single result as output. Most of the algorithms in traditional algorithmic analysis

and which have been considered in this work have been sequential. And thus although

Gurevich [10] has stated a corresponding version of the ASM for parallel algorithms, the

qualification appearing in the given statements of the ASM Thesis do not restrict its scope

relative to our current goals.

The other two observation which I wish to initially record about the ASM Thesis pertain

the relationship which Gurevich suggests ASMs stand in with respect to algorithms. First,

note that the ASM Thesis does not state that algorithms are ASMs, but rather that each

algorithm alternately “can be viewed as”, “can be step-for-step simulated by” or “can

be expressed by” an ASM. On the basis of his selection of these terms, it reasonable to

assume that the relationship which Gurevich takes to exist between algorithms and ASMs

is something short of strict identity. And second, note that in addition to this, none of the

given versions of the ASM Thesis states that for every algorithm A there is a unique ASM

M which bears any of these relations to it, but merely that there exists some such model.

It is thus reasonable to view the ASM Thesis as akin to a form of what I have called

Extended Church Thesis in previous chapters. This is to say that rather than making a

strict ontological claim that algorithms are literally identical to the members of a given

model of computation, the ASM Thesis merely states that they may be represented or
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modeled by instances of such a formalism with a given degree of fidelity. As we have seen

previously, however, the strength and plausibility of such a view are largely determined by

the sort of representational relationship which is claimed to exist between the two classes

of entities. And sadly, despite the expositions of the ASM Thesis which are available,

Gurevich is much less clear on these points than Moschovakis.

In particular, we may also note that although the ASM Thesis may superficially appear

to resemble the Recursor Thesis, this impression is diminished if we take into account

other aspects of Moschovakis’s overall proposal. For first note that although RT stops

short of explicitly identifying algorithms with recursors, it does says that the latter serves

“faithful models” of the former up to recursor isomorphism. One important difference

between the ASM Thesis and RT is that Moschovakis says substantially more about how

he understands the notion of faithful representation than Gurevich ever says about the

notions of “expression” or “step-for-step simulation” which appear the above statement of

the former Thesis. In particular, as we saw in the prior section, Moschovakis says explicitly

that for one class of mathematical objects, MC faithfully models another class of objects C

with respect to an equivalence relation ∼C just in case the ∼C invariant properties of MCs

correspond to the fundamental mathematical properties of the Cs. It thus follows from

RT that if a recursor α faithfully models an algorithm A, then A and α share all of their

fundamental properties. And similarly (by the argument suggested in the previous section)

if two recursors faithfully model the same algorithm, than they must be isomorphic. It

is for this latter reason that I suggested above that RT should be understood as a form

of abstractionism and also why it can be taken to address the algorithmic realist’s central

claim that algorithms are genuinely identical to mathematical objects.

Since Gurevich neither presents an account of the properties which must be preserved

across the ASMs M1,M2, . . . which are taken to represent a single algorithm A, nor does he

present an equivalence relation which is alleged to hold between them, his proposal ought to

be viewed as substantially weaker than that of Moschovakis. As such, it is simultaneously

more likely to be a demonstrably true statement about algorithms and also of less direct

interest to our current interests with respect to algorithmic realism. With this said, however,

that are several reasons why it will be valuable for us to examine both the ASM model and
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Thesis in more detail. Among these are the following. First, by examining the definition

of ASMs in more detail, it is possible to note a number of systematic affinities between

these structures and the more traditional models of computation studied in Chapter 4. In

particular, it will become evident that AMSs just are transitions whose states are described

using some of the vocabulary of first-order logic. Second, on this basis we can see that ASMs

bear essentially the same relationship to recursors as do program schemes to recursion

schemes. And for this reason, it is possible to argue that the ASM thesis is false modulo

the proper classification of recursive procedures like Mergesort as sequential algorithms.

And finally, despite this apparent weakness of the ASM model, Gurevich and Blass [9]

use some related considerations to argue that the recursor model is itself defective as an

allowable analysis of our background notion of implementation. And thus although I believe

that the ASM Thesis must ultimately be taken to orthogonal to that of algorithmic realism,

it does offer some valuable insight into the status of this other programme.

5.3.2 On ASMs

As I have already mentioned, the official definition of an ASM has undergone several

minor modifications since its introduction in [156]. For present purposes, however, I will

mostly standardize on [51] as giving the canonical presentation while relying on the modern

presentation in [14] as providing further specification which fills in several minor gaps in

this presentation. Proceeding in the manner of [51] it useful to preface the definition of

ASM by starting out by considering a somewhat wider class of structures which I will refer

to as sequential systems19:

Definition 5.3.1. A sequential system A is a triple 〈S(A), I(A), τA〉 such that

i) S(A) is a class of mathematical structures called the states of A;

ii) I(A) ⊆ S(A) are called the initial states of A;

iii) τA : S(A)→ S(A) is called the one step transformation of A.

The run of a sequential system is a sequence of states σ0, σ1, . . . where σ0 ∈ I(A) and

σi+1 = τA(σi).
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It should be immediately apparent that this definition is similar to that of a transition

system as given in Chapter 2.4. What is missing, of course, are explicit specifications of

input and output sets X and Y , corresponding to input and output mappings between such

sets and S(A), and a designation of certain states within S(A) as being terminal. However,

it is evident from Gurevich’s discussion of sequential systems that these features will gener-

ally be recoverable from explicit presentations of sequential systems in an obvious manner.

It is also clear that in addition to the definition of a run of a sequential system (which

corresponds to what I called the execution of a transition system) we may give a corre-

sponding definition of the function induced by a executing a given sequential structure.20

As such, I will assume that there is essentially no technical difference between sequential

systems and transitions systems as defined in Chapters 2 and 3.

The precise definition of an ASM is obtained from that of a sequential structure by

limiting the classes of allowable states and one-step transformation functions. Gurevich’s

fundamental idea in both respects is to use the resources of first-order logic to precisely

specify both the structure of states and also what it means to perform a bounded or “small

step” transformation on a state. The characterization of states is achieved by what is

referred to as the abstract state postulate:

Definition 5.3.2 (Abstract State Postulate). Let A = 〈S(A), I(A), τA〉 be a sequential

system and LA be a first-order language. Then A satisfies the abstract state postulate just

in case:

i) the states of S(A) correspond to a class of pairs 〈A, v〉 where A is a LA structure and

19In [51] Gurevich refers to such structures as sequential algorithms, a notion which he has previously
explained as that corresponding to what is given by “a finite text [such as a program] that explains the al-
gorithm without presupposing any special knowledge.” This ultimately allows him to prove a theorem([51],
Theorem 6.13) whose statement reads as follows: “For every sequential algorithm A, there exists an equiv-
alent sequential abstract state machine B.” As we see below, however, ASMs are defined to be a particular
class of sequential systems. If we stick to Gurevich’s own use of terminology, the result just stated has only
a narrow technical signficance (whose interpretation is complicated by the fact that the relevant notion of
“equivalence” is not defined). But in both [51] as well as several later papers such as [10], Gurevich purports
to be giving an analysis of the general notion of algorithm (at least in the weak sense discussed above).
And since some considerations can be adduced in favor of this hypothesis, retaining Gurevich’s convention
of referring to sequential systems as sequential algorithms makes his account appear circular in a way which
is not only presumably unintended, but also slightly unfair.

20Gurevich concedes this as well – cf. [51], p. 8, 9 – but states that he leaves these elements out of the
definition of sequential system to eliminate inessential detail.
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v is a variable assignment for LA (i.e. a mapping from the set of variables V ar =

{x1, x2, . . .} to the domain |A| of A;

ii) each structure 〈A, v〉 ∈ S(A) is such that A has the same domain;

iii) the class of LA corresponding to the first component of S(A) and I(A) are closed under

isomorphism and any isomorphism between these components of a states A,A′ ∈ S(A)

is also an isomorphism between the first components of τA(〈A, v〉) and τA(〈A′, v〉).21

The motivation for this characterization of states is grounded in several observations

which Gurevich suggests are grounded in computational practice. First, any specification

of an algorithm A (as either a program, a pseudocode specification, or an implementation),

can be taken as being given in some fixed first-order vocabulary of functions f1, . . . , fn2,

predicates P1, . . . , Pn2 , constants c1, . . . , cn3 and variables x1, x2, . . . = V ars which can

be taken to correspond to the language LA. And second, it will generally be possible to

present the intermediate states of A as corresponding to an LA-structures A together with

a variable assignment function v. For present purposes, we may assume that the one-step

transformation of A modifies only the variable assignment component of a state 〈A, v〉.

This means that all transformations will be of the form τA(〈A, v〉) = 〈A, v′〉.22

The second requirement which Gurevich wishes to impose on a sequential structure A

pertains to the manner in which its one step transformation τA is defined. In particular,

he wishes to impose the restriction that if τA(〈A, v〉) = 〈A, v′〉 then value is determined

from σ by performing only a bounded amount of “exploration” – i.e. by testing only

the values only finitely many terms over A. In order to formalize this requirement, let

∆A(〈A, v〉) = {x ∈ V ar : v(x) 6= v′(x) where τA(〈A, v〉) = 〈B, v′〉}. Gurevich now

proposed the following criterion:

22The present formulation of sequential systems deviates from that given in [51] wherein states are taken
to consist of first-order structures A alone. In this presentation, the interpretation of arbitrary function
symbols f(x1, . . . , xn) is allowed to change between states and it by modifying the interpretation of terms of
the form f(a1, . . . , an) that states are “updated” via τA. However this assumption has several inconvenient
consequences and was latter modified in [10] so as to allow for only a specified class of dynamic functions to
be updated. The approach I have adopted wherein it is variable assignment for LA over A which is updated
is based on that employed by Böger and Stark [14]. In this context ii) and iii) can be dropped in favor of
stipulation that all states of A are based on the same first-order structure. This modification both requires
only minor modifications to the general theory of ASMs and has the advantage of highlighting the similarity
of ASMs to earlier models such as the program schemes of Chapter 4 and register machine model employed
in Dynamic First Order Logic in the sense of [56].
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Definition 5.3.3 (Bounded Exploration Postulate). A sequential system A is said to satisfy

the Bounded Exploration Postulate just in case there exists a finite set of variables V ⊆ V ar

such that for all states 〈A, v〉, 〈B, v′〉 ∈ S(A) if ∀x ∈ V [v(x) = v′(x)], then ∆A(〈A, v〉) =

∆A(〈B, v′〉).23

The apparent intention of this proposal is that the set of variables V is intended to serve

as the set of locations in the state 〈A, v〉 which are “explored” by A during the course of

computation on a given initial state. In particular, this condition appears to be at least as

strong as the analogously motivated family of boundedness condition which I considered in

Chapter 4.3.24

The third and final restriction which Gurevich wishes to place on AMSs is grounded

in observations about the ways in which the states of an algorithm may allowably evolve

from step to step. The first of these is grounded in the observation that in paradigmatic

informal specification of algorithms, the fundamental computational operation is that of

assignment of a value to a variable. As we have seen previously, this operation is expressed

in imperative programming languages by statements of the form Let x = f(t1, . . . , tn) and

in the context of program schemes by a statement of the form x← f(t1, . . . , tn). Gurevich

adopts a version of this syntax in the form of what he refers to as a LA-local update rule

which has the form f(t1, . . . , tn) := x where f is any n-ary functional expression of LA and

t1, . . . , tn are all terms over this language. The intended effect of executing a statement of

this form is to update the value associated with the variable x so that it corresponds to

the value denoted by the term f(t1, . . . , tn) evaluated in the current state. We may thus

take the interpretation of such an assignment statement to be a function on the state of A

given by δx
f(t1,...,tn) : S(A)→ S(A) defined by δx

f(t1,...,tn)(〈A, v〉) = 〈A, v′〉 where v′(y) = v(y)

for all y 6= x and v′(x) = f 〈A,v〉(t
〈A,v〉
1 , . . . , t

〈A,v〉
n ). I will refer to such a function as a local

24One important feature of this definition is that the class of variables V is fixed independently of the
states 〈A, v〉 and 〈B, v′〉. In informal terms, this means that the size of the class of variables values on which
the value of τA can depend cannot grow over the course of a computation. It can be shown on this basis that
most of the instances of the transition- and register-based models of computation discussed in Chapter 4
(e.g. multi-tape, multi-head Turing machines, RAM machines, program schemes) are real-time simulatable
with ASMs in the sense of [121]. However this presumably does not hold for the Storage Modification
Machine model of Schönhage, as certain machines in this class will not satisfy the Bounded Exploration
Postulate (essentially for the same reasons discussed in Chapter 4.4). While Gurevich (e.g. [53], [10]) is
certainly aware of this result, it is unclear what significance he takes it to hold.
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update of A.

Gurevich claims that over the course of a single step in the execution of an algorithm, its

state many change with respect to the values stored in at most finitely many locations (i.e.

associated with finitely many variables). Paradigmatically, such a bounded update may be

achieved by executing at most finitely many local updates rules in parallel. If R1, . . . , Rk are

all local update rules, such a parallel update is expressed in the formal language described

in [51] as what I will refer to as a LA-bounded update rule of the par {R1, . . . , Rk} endpar.

Such a rule is said to be consistent if for no pair i, j ≤ k of distinct indices do we have

f(t1, . . . , tn) = x and g(s1, . . . , sm) = x for distinct functional expressions f, g or terms

t1, . . . , tn, s1, . . . , sm. We can now define a bounded update as one which is the product of

executing a consistent bounded update rule. Formally, if R ≡ par {R1, . . . , Rk} endpar

and δi is the local update associated with Ri, then the bounded update δR : S(A)→ S(A)

is given by the composition δ1(δ2(. . . (δk(σ)))).

Note that if A were such that τA = δR for some bounded consistent rule R, then we

would have that ∆(〈A, v〉) was finite and hence that A satisfied the Bounded Exploration

Postulate. However, such a condition would be overly restrictive since it would not allow A

to mediate which update was applied according to the structure of the current state. For

this reason, Gurevich proposes to extend the class of LA-bounded update rules to what he

calls an ASM program over LA which are defined and interpreted as follows:

Definition 5.3.4. Let LA be a first-order language, A an LA structure and v a variable

assignment relative for A. Then the class of ASM programs over LA is smallest class of

expressions ProgA such that

i) R ∈ ProgA for all bounded update rules R over LA;

ii) if Π1,Π2 ∈ ProgA, then so is Π ≡ if ϕ then Π1 else Π2.

The interpretation δΠ : S(A)→ S(A) of a program Π ∈ ProgA relative to 〈A, v〉 is given as

follows:

i) if Π ≡ R for some bounded update rules R, then δΠ = δR;
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ii) if Π ≡ if ϕ then Π1 else Π2 then δΠ is defined as follows:

δS(〈A, v〉) =















δR1(〈A, v〉) if A |=v ϕ

δR2(〈A, v〉) else

On the basis of the foregoing definition, the full definition of an ASM can now be stated

as follows:

Definition 5.3.5. Let LB be a first-order language. Then an abstract state machine is a

structure B = 〈S(B), I(B),ΠB〉 such that

i) ΠB is an ASM program over LB ;

ii) S(A) is a class of pairs of the form 〈A, v〉 for A an A structure and v a variable

assignment over A which is closed under isomorphism and under the map δΠ;

iii) I(B) is a subset of S(B) and is closed under isomorphism.

It will be immediately noted that a sequential ASM B over LB is simply a sequential

structure whose transition mapping τB is given by some ASM program Π ∈ ProgB. Note

that such a sequential system of this kind will satisfy the Abstract State and Bounded

Exploration Postulates by construction. And it is on the basis of this observation which

Gurevich [51], [9], [10] has motivated this model as a maximally natural and general model

of computation.

Quite a bit of inductive evidence can in fact be cited for this claim. For note that

since ASM programs are defined inductively, it is clear that they can be used to emulate

arbitrary case definitions by expressions of the form

if ϕ1 then R1 else {if ϕ2 then R2 else {. . . if ϕk then Rk} . . .}

This immediately enables us to demonstrate the following:

Proposition 5.3.1. Let B = 〈S(B), I(B),ΠB〉 be an ASM over the language LB and

M = 〈X,Y, St,∆,H, in, out〉 a transition system in the sense of Definition 4.1 of Chapter

3. Then:
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i) There exists a transition system MB = 〈XB , YB , StB ,∆B ,HB , inB , outB〉 such that

there exists a bijection s : S(B) → StB such that for all states 〈B, v〉 ∈ S(B),

s(δΠ(〈B, v〉)) = ∆B(s(〈B, v〉)).

ii) If M is such that St can be described and a class of finite vectors 〈u1, . . . , un〉 over some

class U , then there is an first-order language LM and an ASMBM = 〈S(BM ), I(BM ),ΠBM
〉

over LM such that there exists a bijection t : StM → S(BM ) such that for all σ ∈ StM ,

t(∆M (σ)) = δΠ(t(σ)) .

The first component of this result shows that for any ASM B, there is a transition system

MB which bisimulates it in the strong sense that there is a bijective mapping between the

states of B and MB whose behavior is preserved by the one-state transformation of M .25

The second component states that there is a partial converse in the case that the states of

M are describable as finite vectors of objects (which can be taken to be the values assigned

by a variable assignment function over an appropriate first-order structure with domain

U).26

Since the definition of an ASM and a transition system are so similar, this result is hardly

surprising and its proof is entirely routine. However, since all of the individual transitions

systems which we have considered in Chapters 1, 3, and 4 man be shown to satisfy the

hypothesis of Proposition 3.1.ii), it follows that they may be naturally represented as ASMs.

25Note, however, that if we wish to view B and MB as equivalent descriptions of the same computational
system, the following caveat needs to be taken into account. Since the definition of ASM does not include a
specification of input or output sets or functions, the transition system MB is not uniquely determined by
the structure of B. This means that the sets XB , YB and functions inB : XB → StB and outB : StB → YB

map be chosen arbitrarily. And as such, the function determined as App(MB, x) may diverge from that
which B was intended to compute.

26The restriction on St is required only to ensure that SM can be constructed in a manner so that its one-
step transformation is given by an ASM program which operates to updates variables. Note, however, that
is a very minor restriction since the elements of 〈u1, . . . , un〉 can be arbitrary mathematical structures. This
requirement is obviously satisfied by the transition system representations of algorithms we have considered
in previous chapters. For recall that in many of these examples, states have already been presented as finite
vectors of values. In addition to this, however, it is also clear that transition systems whose statements we
informally describe as being composed of one or more infinitary structures can be treated in this manner.
For note that all we may simply take such structures as the objects constituting the domain AA of a first-
order structures which can serve as S(BM ). This observation suggests that the requirement that states of
an ASM be described as first-order structures is in fact very week. This constraint should be contrast with
the requirement that the states of an ASM must be described as first-order definable structures, say as a
subclass of the class of structures Mod(T )κ which are definable (up to isomorphism) as the models of a
first-order theory T of cardinality κ. It is clear, however, that without imposing this and other restrictions
on the definition of AMS there will be such systems which compute non-recursive functions. For an attempt
to modify the definition of AMS to rule out such presumably pathological cases, see [11].
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This observation can readily be generalized to show that virtually all of the transition- and

register-based models of computation consider considered in Chapter 4 are such that their

instances can readily be assimilated to ASMs (per Proposition 3.1.ii)). And there is thus

reason to believe that with respect to representing individual implementations, the ASM

model is every bit as general as the class of transitions systems.

This observation also goes a fair distance towards allowing us to understand what Gure-

vich is intending to claim via the ASM Thesis. In particular, as I have attempted to

demonstrate throughout this work, transitions systems appear to provide a “natural” or

“direct” medium in which to precisely represent the intended interpretation of most infor-

mal specifications of algorithms. In particular, if A is an algorithm informally specified

using pseudocode, it is generally possible to construct a transition system MA which rep-

resents A in the sense that the formally defined transitions among its states match our

intuitive demarcation of the operation of A into stages. By Proposition 3.1, we know that

there will be a transition BA which bisimulates MA (and hence) A. And since it seems

reasonable to interpret Gurevich as having essentially this sort of step-by-step relation in

mind in his various statements of the ASM Thesis, it also seems reasonable to regard this

proposal as well confirmed.

The validity of the ASM Thesis does, however, come along with two fairly significant

caveats. The first of these is by now quite familiar: although the relationship between ASMs

with transition systems codified by Proposition 3.1 means that a great many informally

specified algorithms will have intuitively acceptable implementations as ASMs, we have not

seen any reason to think that the task of choosing a “canonical” ASM BA to represent a

given algorithm A is any more constrained than it is in the case of transitions. In fact the

close relationship between ASMs and transition systems suggests that just as there will

generally be an open class of formally distinct transitions M1,M2, . . . which can be taken

to implement a given algorithm A with equal plausibility, there is every reason to think

there will be a corresponding open class of ASMs B1, B2, . . .. In other words, the move

from transition systems to ASMs does not solve the problem of multiple implementability.

If we are to view the ASM Thesis simply as a form of Extended Church’s Thesis as I

suggested above, then this observation does not detract from its plausibility. However, we
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may also ask if there is any way in which the view can be naturally strengthened or modified

so that it can be taken to have a full blown form of algorithm realism as its conclusion.

For reasons which are also now familiar, one response would be to attempt to formulate a

definition of ↔ over the class of all ASMs and then argue that it was both extensionally

and intensionally adequate. Although the transition-based structure of AMSs suggests that

this can be accomplished using the familiar methodology of Chapter 3, Gurevich does not

take up the issue of how the details of such a definition could be worked out.27 However, the

close relationship between algorithms and transition systems again suggests that there is

no reason to expect that an adequate definition can be formulated. For in particular, since

we saw in Chapter 3 that an arbitrary Turing machine T ∈ T can be uniquely associated

with a transition system MT with the same transitional behavior, it is clearly also possible

to similarly associate an ASM BT . And in this way, it will be possible to reiterate the

argument of Chapter 3 that no extensionally adequate definition of ↔ over the class of

ASMs can be given.

Of course the ASM Thesis was never explicitly marketed as part of an argument for

algorithmic realism. And so the foregoing considerations do not threaten its status as an

argument for a clear proposal such as Extended Church’s Thesis. However, it should also be

evident that another familiar consideration can be adduced which at least appears to limit

the scope of the algorithm with can be directly assimilated to the ASM Thesis in the manner

which the foregoing overview suggests. This is, of course, the existence of algorithms whose

informal specifications are given recursively – e.g. by informal recursive definitions of the

sort considered in Chapter 4.5. The considerations adduced there suggested that while

such algorithms can be readily represented as recursions schemes, Theorem 16 of Chapter

4 showed that there were instances of such schemes which could not be represented by

program schemes (at least in the sense of strong equivalence which was explained there). I

27In [51] he does, however define a formal notion of equivalence for sequential structures: A1 =
〈S(A1), I(A1), τA1

〉 is equivalent to A2 = 〈S(A2), I(A2), τA2
〉 just in S(A1) = S(A2), I(A2) = I(A1) and

τA1
= τA2

. This is (obviously) the finest equivalent possible. Although Gurevich observes that coarser
equivalence are possible, he does not appear to have considered adopting one. One could, however, natu-
rally take advantage of the first-order setting in which sequential structures and AMSs are defined so as to
define a coarser equivalence using standard notions from first-order model theory which are weaker than
isomorphism (e.g. elementary equivalence, n-quantifier depth equivalence, etc.). However, there appear to
have no attempts to refine the AMS model in this way.
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have argued previously that Mergesort is paradigmatic of such algorithms and we have

now also seen in Section 2 that this algorithm can be represented as a recursor in a manner

that arguably reflects its most salient computational properties.

The question thus arises whether this algorithm can also be naturally expressed as an

ASM. Gurevich’s view on this question appears to have shifted somewhat over time. For in

his earlier work on AMS (e.g. [156] [50]) no explicit mention is made of recursion. In [52],

however, he explicitly acknowledges that recursive algorithms such as Mergesort cannot

be subsumed under the version of the ASM Thesis we have been considering. In this paper

he proposes instead that the ASM model be modified with a construct which allows a

single ASM B0 to recursively construct one or more distinct sub-ASMs B01, . . . , B0k. The

sub-ASMs are employed to carry out sub-computations which they are assigned by B0,

during the course of which they too can create additional slave machines. If at some point

during its computation, one of the slave machine converges (i.e. computes an answer to

the subproblem which it has been assigned), then it reports this answer back to machine

which has created it, which in turn can combine it with answers reported by the other

sub-machines which it has created.

This is a familiar form of informal description of how a recursive computation can be

carried out. However the means by which Gurevich proposes to analyze even a relatively

simple recursive procedure like Mergesort employ a number of metaphors from parallel

and distributed computing. The invocation of these devices in turn brings in a variety

of complex issues concerning the technical notions of fairness and synchronicity. These

issues are not resolved in this paper. Ad their proper treatment would involve a substantial

digression into parallel models of computation I will thus not discuss the status of Gurevich’s

proposal to analyze recursive algorithm such as a form of distributive algorithm further here.

It seems likely, however, that the general theory of parallel and distributive algorithms (as

developed in, e.g., [79]) is already so complex as to render it doubtful that such analysis

could ever be considered more fundamental than the sort of semantic treatment of such

procedures via recursion schemes or recursors we have already considered.
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[45] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and
related systems I. In Solomon Feferman et al., editors, Kurt Gödel. Collected Works,
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