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Financial market has been extensively recognized as a complex system, where large 

number of heterogeneous agents contribute to price formation of asset. Interactions and 

adaptations of these agents form the core foundation of market operations and its 

resultant characteristic properties. These market agents are highly diverse in their 

perception of the world around them and in the way they respond to it. Various studies of 

statistical properties of financial markets and price fluctuations have revealed a rich set of 

typical characteristics knows as stylized facts. Agent-based models that can reproduce 

these stylized facts and explain the roots of complex dynamics of financial market have 

been subject of intense research in recent time. The Minority Game Model proposed by 

Challet and Zhang is one such model that presents a simplified paradigm of financial 

market. Another model proposed by Lux and Marchesi offers a different perspective to 

agent-based modeling, where parallels are drawn between the physical system with a 

large number of interacting units and financial markets. The Minority Game model 

succeeds to a certain extent in reproducing stylized facts and explaining behavioral 

foundation of it. However, in attempt to present a simplified picture of market scenario 
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both these models make certain assumptions that dilute the heterogeneity aspect of the 

real market. In real world markets, agents are truly diverse in their thinking, strategy, 

action and analyzing ability. Due to these unrealistic assumptions, the model can be 

validated only with a very limited spectrum of parameters. Also, it’s difficult to point out 

precisely which aspects of the game contribute to some of the stylized facts producible 

with the model. To improve on these issues, we have developed a model and a simulator 

based on modified minority game, which we are referring to as “adapted minority game”. 

The main focus of our research is on improving the heterogeneity aspect of agents, their 

interactions, and bringing fundamental value of asset into the Minority Game model. Our 

model introduces fundamentalist agents into the minority game model and also allows 

agents to have different historical memory and time horizons. Furthermore, agents are 

free to switch from one trading strategy group to another to improve their chances of 

performing better. Reproducing the stylized facts still remains the benchmark for 

validating our model. Our adapted minority game succeeds to an extent in expanding the 

spectrum of parameters that can be used for modeling the market. Agents’ interactions 

and adaptations have been tracked down to the basis of stylized facts. An interesting 

property of periodic volatility is successfully demonstrated with our model. 
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Chapter 1: Introduction 
 

1.1 Background 
 
 Financial market has been extensively recognized as a complex system with large 

number of agents involved in the price formation. Heterogeneous interacting agents are 

considered to be the foundation of any financial market. These agents are highly diverse 

in their perception of the world around them and in the way they respond to them. The 

study of statistical properties of financial market and price fluctuations divulges a rich set 

of properties. Such characteristic properties in market behavior that can be generalized 

over different markets are known as stylized facts. Examples of stylized facts include 

distribution of price changes, autocorrelation of returns, volatility clustering etc. Agent-

based models that capture these stylized facts and complex dynamics of financial market 

have generated considerable interest across many disciplines. Studies have revealed that 

the traditional approach of statistical analysis of financial market and price series are 

inadequate to explain the origin of stylized facts in market behavior. Furthermore, the 

advances made in field of mathematical modeling, computational power and simulation 

technologies over the past decade have propelled the development of such market 

models, which can be used as analytical tools for facilitating the understanding of market 

operations.  

 

An important aspect of financial markets is the interplay between the agents and 

information. Agents in the market make their trading decision based on the piece of 

information they receive. Agent-based financial market models have been subject of 

intense research in recent time [8, 10, 11, 15, 20]. The Minority Game Model proposed 
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by Challet and Zhang is one such model that succeeds to a large extent in reproducing the 

stylized facts with highly simplified paradigm of financial market [5]. Due to its richness 

and simplicity MG has attracted a lot of further studies [1, 8, 10]. Minority Game Model 

is basically a mathematical formulation of El Farol Bar problem that was originally 

proposed by Brian Arthur in 1994 [2]. El Farol Bar problem is the study of how many 

individuals may reach a collective solution to a problem under adaptation of one’s 

expectation about the future. MG is an extended model of El Farol Bar problem for 

collective behavior of agents in an idealized situation where they have to compete 

through adaptation for finite resources. It is a dynamical system of many interacting 

degrees of freedom. The MG simply involves an odd number of agents opting repeatedly 

between the options of buying (1) or selling (0) a quantity of asset. The resource level of 

asset is finite, which gives it the minority nature. The agents use inductive reasoning with 

strategies that map the series of recent price fluctuations into their action for next time 

step.  

 

 Stochastic multi-agent market model proposed by Lux and Marchesi offers a 

different perspective to the agent-based modeling [15]. Their work shows the 

resemblance between the physical system in which large number of units interact and the 

financial market with interacting agents. The interactions of large number of market 

participants is believed to be the core reason of scaling property observed in financial 

price series.  However, it is in direct contradiction the prevalent ‘Efficient Market 

Hypothesis’. The efficient market hypothesis states that the current price already contains 

all information about the market and past price can not help in predicting future prices. 
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Therefore the market is efficient in aggregating available information. On the other hand, 

the ‘Interacting Agents Hypothesis’ says that the price changes arise endogenously from 

the trading process and mutual interactions of market participants. The model manages to 

replicate some of the stylized facts at the same time showing conflict between efficient 

market hypotheses and interacting agents hypothesis.  

 

 

1.2 Motivation 

 
 As pointed out in the previous section, both MG model and Lux model thrive to 

certain extent in reproducing the stylized facts and explaining the behavioral foundation 

of it. However, in attempt to present a simplified picture of market scenario both these 

models make certain assumptions. These assumptions though seemingly reasonable dilute 

the heterogeneity aspect of the real world market. In real world market, agents are truly 

heterogeneous in their thinking, strategy, action and analyzing ability. Because of these 

assumptions the model can be validated only with very limited spectrum of parameters.  

 

For instance, in MG all the agents are assumed to have same historical memory. 

That means all agents have same amount of access to the historical information and they 

all make their decision based upon the same length of recent outcomes. This is definitely 

not the case in real world market where agents display high degree of heterogeneity. 

Furthermore, in MG it is assumed that all agents evaluate their strategies in the same time 

horizon. This is again not true in actual market. Thus agents’ diversity in the model is 

very limited. One more key aspect that seems to be absent in the MG model is the 

fundamental value of asset. The MG model doesn’t take into consideration the impact of 
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fundamental value on the evolution of actual market price. That means there is no 

fundamentalist in the market. Fundamentalists are the agents who rely heavily on the 

fundamental value of asset to determine their trading action at any given time. 

Fundamental value of asset emerges from fundamental sources of information such as 

intrinsic value of a company, its business, dividends, interest rates etc. Due to these 

certain unrealistic postulations, the set of parameters that can imitate the real world 

market has been tapered to a large extent. 

 

To improvise on these issues, we have developed a model and simulator based on 

modified minority game. The model consists of three groups of agents. One group is of 

fundamentalists, who follow the ‘Efficient Market Hypothesis’ and form their decisions 

based on fundamental value of asset. Agents in other two groups play the minority game 

but with two groups having different historical memory and using different time horizons 

to evaluate their own performance. This allows us to study the impact of different 

memory and different time horizon on agent’s success rate, price volatility and evolution 

of market price. Furthermore, the agents are allowed to switch the group with a certain 

endogenous and time-varying probability based on the difference between the momentary 

profits earned by individuals in each group. Reproducing the stylized facts still remains 

the benchmark for validating this model. The effort is made to expand the spectrum of 

parameters validated by original MG model. Thus the central objective of our work is to 

present a more realistic market model with subtle changes and bringing in a few 

improvisations to original MG model. 
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1.3 Outline 

 In this chapter we have provided the overview of popular financial market 

models, their approach and how we expect to improve on the minority game model. The 

rest of the thesis is organized in 4 chapters. The second chapter provides more detailed 

description of financial market operations and stylized facts. It also discusses the 

essentials of El Farol Bar Problem and evolution of minority game from it. We briefly 

touch upon the limitations of original minority game as a market model. The chapter 

concludes with overview of Lux and Marchesi model. The third chapter focuses on 

analytical approach for our adaptive minority game model and precise details of this 

model. The fourth chapter presents our module design and flowchart for the simulator 

based on adaptive minority game. In fifth chapter the implementation detail and results of 

adaptive minority game models are presented. The comparisons are made between results 

achievable with original MG and our model. The final chapter presents the conclusion 

and suggested directions for future work in this field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

6

 

 

Chapter 2: Market Models and Stylized Facts 
 

2.1 Financial Time Series & Stylized Facts 
  

 Present day financial markets generate a great amount of data and hold plenty of 

vital information throughout the day that is recorded on different time scales. Price 

changes in financial time series can be articulated in several ways. The change in asset’s 

price over a period of time is known as return. The obvious way to represent return is 

simple price difference for specific time step. 

R(t) = P(t + ∆t) – P(t)     (2.1) 

The net return can be defined as 

R(t) = [P(t + ∆t) – P(t)] / P(t)    (2.2) 

The most useful form of return is logarithmic return (normalized return), which is defined 

as 

R(t) = ln P(t + ∆t) – ln P(t)    (2.3) 

 

 The advantage of using logarithmic return instead of absolute return or net return 

is the scale invariance of log changes with respect to the price scales. It facilitates more 

meaningful comparison of price changes. 

 
During recent time, research in field of financial market has shifted to study of 

high frequency data, which reveals remarkably stable non-trivial empirical laws [18]. 

Such properties, common across a wide variety of assets, markets and time periods are 

called stylized facts. Ability to reproduce these properties is considered a prerequisite for 

any good market model. It is important here to note that the stylized facts are not laws but 
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they are common denominators among the properties widely observed in studies of real 

world scenarios. They are qualitative representation of typical characteristics of empirical 

data. Stylized facts have emerged from various independent studies in last 20 years [6, 

14, 18, 24, 27]. 

 

 Financial markets have been found to exhibit various properties such as fat tail 

distribution, absence of autocorrelation in return, aggregational gaussianity, Gain/loss 

asymmetry, intermittency, conditional heavy tails, leverage effect, Asymmetry in time 

scales, long term correlation in volatility and volatility clustering [6]. Out of these, we 

will concentrate mainly on three stylized facts - fat tail distribution, volatility clustering 

and absence of autocorrelation in return - as they are widely accepted as the standard 

gauge for market models. We briefly discuss these important properties in following 

section.  

 

2.1.1 Fat Tail distribution of return  

 The statistical analysis of probability distributions of price changes reveals very 

high probability of large changes. Several studies have confirmed that distribution of 

returns is strongly non-Gaussian. For small time scales (daily or higher frequency) it 

tends to display a power-law or Pareto-like tail. For very large time scales (a few months) 

it exhibits Quasi-Gausssian distribution. Figure 2.1 shows the comparison of Gaussian 

distribution with other symmetric Levy distributions [3].  The PDF for price changes of 

financial assets have sharper peak around zero change when compared to the Gaussian 

distribution. Also, the curve remains well above the horizontal axis for large changes 
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whereas Gaussian distribution has almost attained zero [12]. This is widely known as fat 

tailed distribution. The fat tail distribution can be characterized by a power law of 

exponent 1 + α [15]. This is in contrast to the normal distribution, which decay very 

quickly after first two standard deviations. 

 
 

 

Figure 2.1 Comparison of Gaussian distribution (µµµµ mean = 2) with  

other symmetric Levy probability distribution functions 

 

2.1.2 Absence of auto-correlation in return 

 It has been observed in wide variety of financial markets that price changes do not 

exhibit any significant autocorrelation. Returns usually display very weak autocorrelation 

for initial few lags and then drops down to zero for subsequent lags. This indicates that 

returns have very ‘short memory’. Absence of long-time autocorrelation in return is in 

good agreement to the ‘Efficient Market Hypothesis’. Efficient market hypothesis states 
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that it is not possible to consistently outperform the market by using any information that 

the market already knows, except through luck.  It assumes that the movements of 

financial prices are an immediate and unbiased reflection of incoming news about future 

earning prospects [15]. Thus if returns exhibit considerable correlation, it can be used to 

form a trading strategy to exploit the information and make significant profit. This will 

effectively tend to bring down the correlation in longer run. The autocorrelation function 

for return can be defined as: 

C(τ) = E[(Rt - µ) (Rt+τ - µ)] / σ2   (2.4) 

Here, τ = lag 

Rt = Return at time t 

µ = Mean of return 

σ2 = Variance of return 

 

2.1.3 Volatility Clustering 

 Standard deviation of price changes over a period of time is known as volatility. 

In other words, volatility represents swings in supply and demand of asset, which 

according to efficient market hypothesis is unbiased reflection of incoming news about 

future earning prospects. Since volatility is a direct measure of amount of information 

coming in the market, it is a good indicator of amount of risk involved with any particular 

trading strategy. Time series of financial asset frequently shows property of volatility 

clustering. That means large changes are followed by large changes, of either sign, and 

small changes are followed by small changes [17]. Thus changes of similar nature tend to 

cluster together, resulting in persistence of the amplitude of price changes. The market 
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switches between periods of high and low activity, with long duration of periods. The 

main cause of volatility clustering is the interaction between various heterogeneous 

agents in the market and their transition from one pool to another as it forces the 

switching between high and low activity regimes. This concept is further explained in the 

next chapter.  

Volatility is calculated as: 

  Volatility (t) = σp’ * σp’   (2.5) 

Where, p’ = p(t) – p(t-1) 

σp’ =  
1

t

ff
Σ
t

i = 1
p. @ p.

fffffffff
b cswwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww  

t = time window of volatility 

 

 Figure 2.2 – 2.5 show historical data recorded on daily basis and stylized facts 

observed in Dow Jones Industrial Average from 1928 to 2007. The graphs have been 

generated by us using data available from Yahoo finance [28]. Figure 2.2 and 2.3 shows 

price trajectories for DJIA. The price series tend to exhibit different patterns across 

different markets and different stocks but eventually the properties extracted from these 

price series demonstrate striking resemblance. Thus price series itself is not one of a 

stylized property to model on, but is an important aspect that contributes to other 

characteristics. Figure 2.4 displays that in return price series, large variations are 

followed by large variations and small variations are followed by small variations. We 

can also see some big spikes and herding of higher returns.  This feature substantiates 

clustering of volatility that we discussed earlier. In figure 2.5 we have plotted probability 

distribution function of normalized return (equation (2.3)), which demonstrates sharper 
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peak and heavier tail compared to normal distribution. Figure 2.6 confirms that returns 

are weekly correlated over time and results in mere noise after first few lags. Very little 

correlation that is observed in initial lags is due to the amount of time the market takes to 

absorb and react to the newly arrived information. Thus DJIA time series exhibits 

properties that are in good agreement to the stylized facts that we discussed.  

 

 

 

 

Figure 2.2 DJIA Price Series (1928 – 2007) 
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Figure 2.3 DJIA Logarithmic Price Series (1928 – 2007) 

 

 

Figure 2.4 DJIA Return (1928 – 2007) 
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Figure 2.5 DJIA Probability Distribution Function Of Normalized Return 

(dashed curve: normal distribution, *: DJIA return) 

 

Figure 2.6 DJIA Autocorrelation in Absolute Return 
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2.2 El Farol Bar Problem 

 El Farol Bar problem was first proposed by Brian Arthur in 1994 [2]. It is an 

example of inductive reasoning in scenario of bounded rationality. Due to limited 

knowledge and analyzing capability of agents, inductive reasoning generates a feedback 

loop in where the agent commits an action based on his expectations of other agents’ 

actions. These expectations are built based on what other agents have done in the past. 

Inductive reasoning assumes that with the help of feedback, agents could ultimately reach 

perfect knowledge about the game and arrive on steady state [21]. 

 

 The problem is posed in the following way: N people have to decide 

independently each week whether to go to a bar that offers entertainment on a certain 

night. Space in bar is limited and the evening is enjoyable if it’s not too crowded – 

specifically, if fewer than 60% of the possible 100 are present. There is no prior 

communication between the agents and the only information available is the number of 

people who came in past weeks. Thus there is no deductively rational solution to this 

problem, since given only the number attending in the recent past; a large number of 

expectation models might be reasonable. So, without the knowledge of which model 

other agents might choose, a reference agent can not choose his in a well defined way. If 

all believe most will go, nobody will go, invalidating that belief. Similarly, if all believe 

very few people will attend; all will end up in the bar. In order to advance the attendance 

next week each agent is given a fixed number of predictors which map the past week 

attendance figure into next week.  Also, agents need not necessarily know how many 

total agents are participating in the game, but they do know how many agents attended 
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the bar in past weeks. For example, the total number of agents in system is 100 and 

attendances in recent weeks are (right most is the most recent): 

63  42  72  53  49  36  70  39  51  40  44  84  35  19  47  54  41 

 

Following are some of the possible predictors: 

- same as 3 weeks ago: 47 

- mirror image around 50 of last week’s attendance: 59 

- minimum of last 5 weeks: 19 

- rounded average of last 3 weeks: 48  

 

Each agent monitors his predictors by keeping an internal score of them which is 

updated every week by giving points or not to all of them depending on whether they 

correctly predicted the outcome or not. At each week agent chooses his predictor with the 

highest score to decide his action. Computer simulation demonstrated that attendance 

fluctuated around 60%. Figure 2.7 shows the bar attendance for first 100 weeks [2] .The 

reason for this somewhat surprising feature is that agents adapt to the hypothesis and 

belief models in the aggregate environment that they jointly create. Even though this 

problem deals with non-market context it offers a very good framework to build a simple 

market model. 
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Figure 2.7 Bar Attendance 

 

2.3 Minority Game As A Market Model 

 El Farol Bar problem can simply be extended to market scenario. At each time 

step agent can buy or sell an asset. After each time step, price of the asset is determined 

by a simple supply-demand rule. If there are more buyers than sellers, the market price is 

high and if there are more sellers than buyers, the market price is low. If the price is high, 

sellers do well, while if the price is low, buyers win the round. Thus minority group 

always wins. 

 

 Challet and Zhang gave a precise mathematical definition for the El Farol bar 

problem, which is known as Minority Game (MG) [5]. The underlying principle of MG is 

again inductive thinking of agents. That means agents rely on trial and error inductive 

approach rather than trying to find deductively rational solution. In its most basic form 

MG is a simple evolutionary game that has a population of N (odd) agents. At each time 

step of the game (trading round), each of the N agents take an action deciding either to 
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buy (ai(t)=1) or to sell (ai(t)= –1) one unit of stock. For simplicity purpose, only one type 

of stock or asset is taken into consideration here. The resource level is kept finite. The 

payoff of the game is to declare that the agents who take minority action win, whereas 

majority losses. Thus payoff function of agent i is given by: 

gi (t) = -ai(t).A(t)    (2.6) 

where, A(t) = ∑N ai(t)   

The function gi (t) represents outcome of the current round of the game for agent i 

and ensures that agents with minority action are rewarded. That means if gi (t) > 0, agent i 

won the round and if gi (t) < 0, agent i lost the round. The absolute value of gi represents 

the margin by which agent won or lost the round. Furthermore, it is assumed that agents 

are quite limited in their analyzing power and they can only retain last m bits of the 

system’s signal (market outcome) and make their next decision based only on these m 

bits. Here, m is called historical memory length of the agent and is assigned at the start 

of the game.  

 

 

Table 2.1 A possible strategy for some agent with m=3 
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 Each agent has some finite number of strategies S. A strategy is defined to be the 

next action (whether to buy or to sell) given a specific sequence of last m outcomes. 

Table 2.1 shows the example of one such strategy [5]. Since there are 2m possible inputs 

for each strategy, the total number of possible strategies for a given m is 2 2^m. At the 

beginning of the game each agent is assigned randomly drawn S strategies from the pool 

of 2 2^m strategies. The assignment is different for each agent and thus, agents may or 

may not share the same set of strategies. From the simulation tests performed by Challet 

and Zhang, it has been observed that agents tend to perform poorly if the number of 

assigned strategies S is too big. It has been observed from their results that average 

performance of agents tend to degrade significantly if number of assigned strategies is 

more than 8. However, the overall operation of the market model is not greatly affected 

by the choice of S. The reason for this behavior is that agents are more likely to get 

confused if they are provided with bigger strategy bag since they would switch the 

strategy immediately if another strategy has one virtual point more than the one currently 

in use. Setting a higher threshold for switch could improve this result.  

 

Initially at the start of the game, each agent draws randomly one out of his S 

strategies and uses it to predict next step. In an attempt to learn from the past mistakes, 

after each time step, each agent assigns one virtual point to all his strategies that might 

have correctly predicted the actual outcome, i.e., strategies that would have placed the 

agent into the minority group. Thus agent reviews not only the strategy he has just used 

but all the strategies in his bag that could have actually come up with the right prediction. 
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For example, virtual points of agent i’s strategy j is ζ ij and assuming strategy j was used 

for the current round then, 

 ζ ij (t) = ζ ij (t – 1)  if gi (t) < 0     (2.7) 

          = ζ ij (t – 1) + 1  if gi (t) > 0 

 

The points are collected over a specific interval of time for each agent. The 

interval of time over which agents accumulate virtual points of their strategies and 

evaluate their own performance in the game is known as time horizon T. For next time 

step agent picks the strategy with the highest virtual points and makes his decision based 

on it. Since agent keeps track of how his strategies are performing, updates their points, 

and picks the strategy that is performing best, he is constantly adapting. This original MG 

model functions as infinite time horizon market where agents keep collecting the points 

through out the length of the game. However, various studies of financial markets and 

economy has pointed out that most market agents operate and evaluate their performance 

in limited time span. Subsequent work by Hart, Jefferies and Johnson in [9] have 

presented time horizon version of minority game. In MG, the memory of the agents is 

very essential as it is related to agents’ ability to identify patterns in the available 

information and use it to their advantage. This is because of the fact that agents’ 

strategies are mapping of recent past outcome patterns to the current time step prediction. 

That means agents with longer historical memory can recognize the recent trend more 

efficiently. However, the question that how bigger memory is advantageous for agent 

demands further research. We will address this issue later in chapter 5 of this thesis. 

Furthermore, the memory determines the dimension of strategy space. The minority 
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nature of the game makes it impossible to achieve a complete steady state in the 

community. This is a basic form of minority game as a market model [21]. With this 

simple artificial market scenario the resultant dynamics shows great richness. 

 

2.4 Lux-Marchesi Model 

 The Lux-Marchesi model [15] draws attention to the scaling property observed in 

financial price series. Even though the scaling property is not considered as a stylized 

fact, it is an interesting feature of price series as it demonstrates resemblance between 

financial market and physical systems which consist of large number of interacting 

particles obeying universal scaling laws. Lux and Marchesi came up with a multi agent 

model of financial market, which supports the idea that scaling in financial prices arise 

from mutual interactions of market agents. The model consists of two types of agents, 

fundamentalists and noise traders. Noise traders are further classified as optimistic or 

pessimistic depending on the amount of risk an individual is willing to take in pursuit to 

succeed. Optimists buy additional units of asset expecting price to go further high in 

future, whereas pessimists sell part of their actual holdings of asset in order to avoid loss. 

Fundamental value of the asset dominates the trading strategy of fundamentalists, 

whereas noise traders look at price trends, patterns and consider behavior of other agents 

as source of information. The important feature of this model is movement of individuals 

from one group to another. That means switching of trading strategy. The agents switch 

trading strategy with some time varying probability so that their chances of making profit 

increase. Thus profits earned by individuals in each group acts as a driving force for such 

switches.  
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Switches between the optimists and pessimists are governed by the majority of 

opinion among noise traders and the actual price trend. Movements between 

fundamentalists and noise traders depend on the profit difference W between two groups. 

While calculating profit of fundamentalist, a discount factor (which is < 1) has to be 

taken into account because fundamentalist’s gain is realized only in future when price 

reverts back to fundamental value. Since fundamentalists believe that digression of the 

market price from the fundamental value is just momentary and asset price will 

eventually approach the fundamental value, their gain is prolonged for that time interval. 

Given that, they can not immediately invest this earned profit, it needs to be discounted 

by a factor that is controlled by the time it takes for the market price to revert to it’s 

fundamental value. Thus gain of fundamentalist is given by: 

Gain = [ (pf  - p) / p ] * d   (2.8) 

Here, d is a discount factor. This model uses discount factor of 0.75. In actual 

market this factor can vary depending on how frequently the company that issued stocks 

publishes the information about it’s sales and profit which would affect the fundamental 

value. Profit of optimistic noise traders consists of short term capital gains due to increase 

of market price or losses in case of fall of market price. This gain is realized immediately. 

Since pessimistic noise traders rush out of the market in order to avoid losses, their gain 

is given by the difference between the average profit rate from alternative investments 

and the price change of the asset they sell. Thus gain of pessimistic noise traders can be 

defined as R – p’, where R is average return from other investments and is assumed to be 

constant. For the simplicity purpose, there is only one type of stock listed in this model 

market. Also, all agents trade only one unit of stock in every trading cycle.  
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For calculating the transition probability from one group to another, Lux and 

Marchesi have used mass statistical formalization approach inspired by statistical physics 

[26]. As a simple formalization of movements into and out of these groups, exponential 

functions are used. Also, the frequency of revaluation of opinion or strategy by agents is 

considered an important parameter for calculating this probability. This is the frequency 

at which agents evaluate their performance and tend to switch to more successful group. 

This frequency is symbolized with V1 and V2 in equations below. For example, if V1 = 5 

trading cycles, agents will reevaluate their strategy after every 5 trading cycles and decide 

whether to switch to other group with probability π + - and π - +. Thus, actual transition 

probability is combined effect of these two factors.  

 

Transition probability from optimistic to pessimistic is: 

π + - = V1 exp (U1)    (2.9) 

Transition probability from pessimist to optimistic is: 

π - + = V1 exp (–U1)    (2.10) 

Here, U1 = α1x + (α2 / V1) p’(t)/p(t) 

x: majority opinion = (n + – n –) / (n + + n –) 

n +: number of optimists 

n -: number of pessimists 

p(t): market price of one unit of stock at time t 

p’(t): price trend = p(t+1) – p(t) 

V1: frequency of strategy revaluation (in number of trading cycles) 

α1: factor of importance that individuals place on the majority opinion 
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α2: parameter for actual price trend in forming expectations about future price 

changes 

 

In here, U1 is an influential term covering those factors that are decisive for the 

pertinent changes of behavior. Parameters V1, α1 and α2 are same for all the agents in the 

market. Furthermore, they all are constant and setup right at the beginning of simulation. 

Both  α1 and α2 are typically in range of 0 to 1. 

 

Transition probability from noise trader to fundamentalist is: 

π n f = V2 exp (U2)    (2.11) 

Transition probability from fundamentalist to noise trader is: 

π f n = V2 exp (–U2)    (2.12) 

Here, U2 = α3 * profit differential 

α3: factor of pressure exerted by profit difference  

V2: frequency of strategy revaluation (in number of trading cycles) 

 

 In here, V2 and α3 are constant and same for all the agents. α3 is typically in the 

range of 0 to 1. Profit differential (W) is simply the difference of average gains of agents 

in different groups. That means agent compares his own profit with average gain of all 

other agents in groups other than his own. 

 

Apart from agents switching group, other two important building blocks of this 

model are price changes and changes in fundamental value. The price changes are driven 
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by supply and demand in the market, which originate from decisions of agents. Excess 

demand or supply generated by noise traders can simply be calculated by number of total 

optimists and pessimists, assuming their trading volume to be constant.  

Thus, excess demand by noise traders is: 

(ED)n = tv (n + + n –)    (2.13) 

Here, tv: trading volume (total number of stocks traded in one trading cycle, either 

sold or bought) 

n +: number of optimists in the current trading cycle t 

n -: number of pessimists in the current trading cycle t 

 

Fundamentalists’ sensitivity (γ) to relative deviation of price from the 

fundamental value contributes to the excess demand or supply.  

Excess demand by fundamentalists is: 

(ED)f = γ (pf – p) nf    (2.14) 

 Here, γ: sensitivity to deviation of price from fundamental value 

 nf: number of fundamentalists in the current trading cycle t 

 pf,t: fundamental value of one unit of stock in the current trading cycle t 

 

In here, γ is a constant and is same for all the fundamentalists in the market. Its 

range is 0 to 1. The overall excess demand or supply is sum of both these components 

(ED)n and (ED)f. Furthermore, the model assumes that changes of the log of fundamental 

value follows a normal distribution with mean zero and time invariant variance σ2. Thus, 
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ln(pf,t) = ln(pf,t-1) +  ∈t∆t   (2.15) 

Where, ∈t ~ N(0, σ) 

 

 Following is the conceptual construct of model’s market operations: 

 

1. The new information about company’s sales and prospects arrives in the market, 

which has a normal distribution with mean zero. All incoming values of sales 

above 0 are transformed into 1 (sales expected to increase and stock price 

expected to go up) and all values below 0 are transformed into –1 (sales expected 

to decrease and stock price expected to go down) 

2. The noise traders set themselves up as optimistic or pessimistic. This is done 

uniformly randomly by flipping a coin.  

3. Noise traders decide their action of whether to buy or to sell depending on the 

actions of all other noise traders in previous cycles multiplied by their sensitivity 

to get influenced by others (α1), the nature of the news (+1 or –1 from step 1) 

multiplied by the news sensitivity (α2), and current trend of the fundamentalists 

multiplied by the propensity to imitation (κi - confidence factor of noise trader i, 

in range of 0 to 1). 

4. Fundamentalists decide their action of buying or selling by comparing the market 

price to the fundamental value. That means, if p > pf, sell a unit of asset and if p < 

pf, buy a unit of asset. 
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5. After all trading is completed; price and returns are computed based on supply 

demand rule. Excess demand leads to increase of the prevailing price and excess 

supply leads to decrease of the prevailing price. 

p (t+1) = p (t) + [number of buyers – number of sellers]   (2.16) 

 Returns are calculated using equation (2.3). 

6.  If the return of the asset moves in the direction suggested by incoming 

information, irrational agents (agents with high sensitivity to get influenced by 

other traders) among the noise traders become more confident on other noise 

traders and herding behavior of them increases. If the return doesn’t follow the 

arrived information, the confidence decreases. The confidence factor κi of noise 

traders is initially set to 0.5 and it increases or decreases by the amount of return 

after each trading cycle.  

7. After each cycle, agents can switch the group with certain time varying 

probability defined earlier in equations (2.9) - (2.12).  

 

 The simulation tests performed by Lux-Marchesi confirm that even though the 

fundamental price follows the market price evolution very closely, the time paths of 

returns extracted from price series do not reflect distributional characteristics of 

fundamental value. This result is in agreement to the return series observed in wide 

variety of real world markets and it suggests that distribution of returns is non-gaussian 

and statistical properties of increments differ fundamentally. For instance, DJIA return 

distribution in figure 2.5 confirms this behavior. Other stylized facts such as fat tail 

distribution, clustering of volatility, absence of autocorrelation in return and high 
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frequency of extreme events are also producible with Lux-Marchesi model. It also 

demonstrates that even though the scaling properties are not present in the external 

driving factors of their simulated market, they are generated by the interaction of agents 

with heterogeneous strategies. 

 

2.5 Financial Market Models and Simulators 

In recent year, various analytical approaches and simulation methods have been 

employed to explore complex economic dynamics of financial markets. Traditional 

analytical methods in finance have been found to be highly macroscopic with number of 

unrealistic assumptions [24]. Also, interactions between market players are overlooked to 

a large extent with these sort of analytical methods. Such macroscopic simulation 

techniques typically use top down approach where agents’ heterogeneity and market 

situations are oversimplified. This approach fails to explain the grounds for the stylized 

facts observed in financial market. Also, because of the complexity and number of 

assumptions, it is hard to find out which aspects of the models are responsible for 

producing stylized facts [7]. In this thesis we have tried to come up with a model that has 

simple framework and minimal postulations. Also, modeling each individual agent and 

keeping track of their interactions have been paid ample attention in our model. We will 

describe this model in next chapter. 

 

2.6 Limitations Of Original MG As Market Model 

 Ever since it’s arrival, MG has been focus of intense study. Basic MG as realistic 

market model has quite a few limitations such as [10]. 
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L1 Agents’ heterogeneity and wealth are limited.  

L2 There are no interactions between agents. 

L3 The payoff function of the game is too simple [equation (2.6)]. 

L4 All agents trade at each time step. 

L5 All agents deal equal quantity of asset every time. 

L6 Unable to produce periodic volatility property observed in various markets. 

L7 Impact of asset’s fundamental value on the market is overlooked. 

L8 Limited parameter sets that can produce stylized facts. 

L9 Only one type of stock is offered in the market model. 

 

A few researchers have come up with certain modifications to original Minority 

Game model [5] to overcome some of these limitations. For example, The Grand-

Canonical MG addresses the issue of agent’s selection whether or not to trade at a given 

time step depending on his confidence level [10]. Thus not all the agents trade in each 

trading cycle. It also allows agents to trade multiple units of asset in one time step. One 

more variation of MG known as Colored MG has agents playing with different 

frequencies [19]. That means trading frequency of different agents can vary from several 

times during a day to once in several months. The $-game proposed by Anderon and 

Sornette offers a different payoff function where the gain at time t depends on the trading 

action of agents at time t-1 [1]. Main focus of our research is to improve on the 

heterogeneity aspect of agents, their interactions and introduce fundamental value of asset 

into MG market model.  
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Chapter 3: Adapted Minority Game 

 In this chapter we will describe our model, which we are calling as “adapted 

minority game”. In our model we are taking a bottom-up approach as it allows us to 

concentrate on interactions of agents with wide range of spectrum for parameters. This 

approach has shown its advantages and has become quite popular in recent time with 

various microscopic simulation models based on this approach evolving in the fields of 

finance, physical science, biology, social science etc. [3,12,24]. The bottom-up 

approach means, we first create the market environment and generate various elements 

in the system. These elements interact with each other and the market environment by 

well-defined analytical methods. Here each element is modeled individually and it’s 

possible to track the dynamics of each element over the time. For instance, market price, 

asset, fundamental price, returns, volatility etc. are modeled as market environment 

parameters. On the other hand, agents, agents’ trading strategies, agents’ adaptation, 

agents’ pool transitions etc. are modeled as independent elements, which evolve through 

a set of predefined rules. In contrast to this, traditional models of financial market 

analysis use the top-down approach, where statistical methods are applied to a chunk of 

market data and in conjunction with certain hypothesis, the relationship between various 

market parameters and agents are estimated. It often assumes that agents are completely 

rational and homogeneous in nature. With this approach it’s very difficult to point out 

which factors contribute to typical market properties or stylized facts. Following sections 

describe our adaptive minority game model. 
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3.1 Types of Agents 

 In adaptive minority game model we have divided market agents in 3 pools. The 

first pool of agents is of fundamentalists. Agents in this pool follow the efficient market 

hypothesis. That means they assume that upcoming price fluctuations will follow the 

movements suggested by incoming news about the future earning prospects. 

Fundamentalists believe that the price of the asset (p) may temporarily deviate from the 

fundamental value (pf) of asset but eventually will revert to it. Thus market would be 

efficient in longer run. Fundamental value of asset is the discounted sum of expected 

future earnings. It is related to the current and prospective states of the company that has 

issued the asset. Fundamentalist’s trading strategy is very straightforward. 

Fundamentalist buys asset when actual market price is believed to be below fundamental 

value and sells asset when market price goes above fundamental value [15]. This 

fundamental value is a perception of agent based on his knowledge about the asset, 

company’s prospects and the market, and in general can be different for different agents. 

In our model we assume that the fundamental value of stock is the same for all agents in a 

trading cycle and its relative changes follow normal distribution from cycle to cycle as 

per equation (2.16). 

 

Agents in other 2 pools play the minority game. However agents in these pools 

have different historical memory length m. That means different agents decide their 

trading action looking at different lengths of recent past outcomes of market. Here, the 

full strategy space for both pools is different. Similar to original MG model described in 

section 2.3, agents are assigned fixed number of strategies S randomly drawn from the 
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full strategy space. Furthermore, agents in different pools use different time horizons T to 

evaluate their individual performances. Thus, agents collect and maintain the virtual 

points of their strategies over different period of time lengths. After the specified window 

of time horizon, agent discards virtual points of all his strategies and starts afresh. This 

feature is in contrast to original MG model, where strategy points for all agents are kept 

right from the beginning till the end of the game. Thus agents operate on infinite time 

horizon basis. In real world market this is not true, where agents tend to exhibit limited 

time horizon in evaluating their strategies [1,9,10,18]. Also, it’s a well researched 

observation that market price of the assets depends only on last few values of price and 

after a certain threshold, the older price series doesn’t help much in predicting future 

trend. Absence of autocorrelation in longer run observed in variety of markets and assets 

supports our assumption that in real world market agents operate in finite time horizon. 

 

3.2 Agents’ Decision Making 

At each time step of the game, agents have to decide whether to buy or sell a unit 

of asset. A fundamentalist will buy the asset if market price is less than fundamental 

value and will sell the asset if market price is more than fundamental value. Since we 

want to make sure that the typical characteristics of financial price series are not 

fashioned on the basis of exogenous factors that are unrealistic, we are assuming that 

relative log changes of the fundamental value follow normal distribution with mean zero 

and time invariant variance σ2 as in equation (2.15). Original MG model doesn’t have 

fundamentalists in the market, so we are using this from Lux-Marchesis model described 

in section 2.4. Here, change in fundamental value is an exogenous factor that affects 



 

 

32

 

market through operation of fundamentalists. That means it is an external force which is 

not generated from within the system. These changes in fundamental value serve as new 

information coming into the market. By modeling fundamental value changes as normal 

distribution, we have ensured that the news arrival process in our model does not clutch 

fat tails [14].   

 

Agents in other two pools who play minority game are assigned a set of S 

strategies. Agents in first pool have historical memory of length m1 and time horizon of 

T1, whereas agents in second pool have historical memory of length m2 and time horizon 

of T2. The full strategy space for these two pools will be 22^m1 and 22^m2 respectively.  At 

the start of the game agent picks a strategy randomly to decide his action. After each time 

step, the agent assigns a virtual point to all the strategies in his bag that would have 

correctly predicted the right outcome. For the subsequent time steps agent chooses the 

strategy with the highest virtual points. If there are more than one strategies with the 

same highest virtual points, one strategy is chosen randomly. At the end of each time 

step, the total action of agents is computed and the market price is determined by supply-

demand rule as per equation (2.16). Agents who end up on the minority side win the 

round. In here, agents have only two choices: “buy” or “sell”. There is no option to 

“hold”. This is a simplified model and future work can include extending this model with 

“hold” option.   
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3.3 Adaptation and Interaction of Agents 

Agents evaluate their performance at the end of each time step. Agents are 

allowed to switch from one pool to another with certain endogenous time varying 

probability. That means agents from fundamentalists pool can switch to minority game 

pool and agents from minority game pool can switch to fundamentalist’s pool. The main 

incentive for agents to switch pool is the profit earned by the respective groups’ agents. 

Thus agents tend to switch to more successful pool and trading strategy. Since there is a 

possibility that one pool of minority game agents may perform consistently better than 

other minority game pool, it may result in all minority game agents tending to switch to 

that pool. Thus, the switch from one minority game pool to another minority game pool is 

not allowed in order to avoid market to be flooded with agents having same memory 

length and time horizon.  

 

In order to calculate the transition probability from one pool to another, profit 

earned by agents in each pool needs to be speculated. For fundamentalists, the deviation 

between market price and fundamental value is considered as a source of arbitrage 

opportunities. However gain earned by fundamentalists is realized in future only depends 

on uncertain time interval for reversal of market price to fundamental value. This factor 

has to be taken into account when calculating profit earned by fundamentalists. Thus the 

gain for a fundamentalist is given by equation (2.8) 

 

 The gain of agents playing minority game consists of two components. First is the 

change in market price of stock. Second is the dividend paid by the company that issued 
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the stock. When the company makes a loss, the dividend is waived. Otherwise we are 

assuming dividend to be constant. This assumption is reasonable in this scenario as we 

are keeping the resource level (number of available stocks) in the market constant. Thus 

gain of minority game agents is given by: 

Gain = ( p’ + D ) / p    (3.1) 

Here, p’ = dp/dt, price change and D is the dividend of asset.  

 

It’s important here to compare the gain given by equation (3.1) with the payoff 

function of MG agents given by equation (2.6). The payoff function stands for the margin 

by which agent won or lost the current round, which effectively represents excess 

demand or supply in the market context. This excess demand or supply affects the market 

price as per equation (2.15). Thus gain is simply the profit made by agents from their 

respective investments. Here profit is combination of price change and dividend of the 

asset. 

 

For calculating the transition probability, we are using the same approach as Lux-

Marchesi model and modifying equations (2.11) and (2.12) as described below. The 

driving force for pool transition still remains the profit difference (W), which in turn 

depends on number of factors such as price change, fundamental value, discount factor, 

dividend and frequency of strategy revaluation. The transition probability from 

fundamentalist to minority game pool is defined as: 

Prob (F � MG) = v (Nf / N) * exp (U)     (3.2) 

Here, v = Frequency of revaluation of strategy 
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          Nf = Number of fundamentalist agents 

          N = Total number of agents 

          U = αf (( D + (p’ / v)) / p – ((pf  - p) / p) * d ) 

          αf = Factor of profit difference influence for fundamentalists 

In here, αf is a constant and typically in range of 0 to 1.  

 

 Similarly, transition probability from minority game pool to fundamentalist pool 

is defined as: 

 Prob ( MG � F ) = v (Nmg / N) * exp (-U)     (3.3) 

Here, v = Frequency of revaluation of strategy 

         Nmg = Number of agents playing minority game 

         N = Total number of agents 

         U = αmg (( D + (p’ / v)) / p – ((pf  - p) / p) * d ) 

                    αmg = Factor of profit difference influence for minority game agents 

 In here, αmg is a constant and typically in the range of 0 to 1. As we can see, the 

main difference between equations (2.11), (2.12) and (3.2), (3.3) is the way in which term 

U is defined. Since we don’t have optimists and pessimists in our model and Lux-

Marchesi model doesn’t have minority game agents, the profit differential function is 

modified here appropriately. 

 

 Here, it’s vital to note that the transition probability is bounded by 0 ≤ P ≤ 1. The 

condition that ensures this bound is that agents tend to switch their pool only when profit 

earned by agents in other pool is more than their own profit. Here the exponential 
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function is driven by U, which has the profit difference as its main component. The 

exponential function itself ensures postivity of all probabilities and symmetry of pool 

transitions. As for the upper bound of the probability, frequency of strategy revaluation is 

the decisive factor. The most frequent revaluation should be every 2 trading cycles, 

which ensures that upper bound on the probability is met for all the feasible values that U 

can take up. We will further discuss choice of parameters in chapter 5. 

 

Also, it’s important to note that agents’ interaction is in the sense that they 

compare their own performance with average performance of agents in every pool other 

than his own. The agent does not compare his own performance with other agents in the 

same pool since if average performance of other pools isn’t better than his own 

performance, he is already in the best possible pool (strategically). If his own 

performance is worse than average performance of some other pool, he would tend to 

switch to that pool. 

 

3.4 Generic Algorithm 

 Following is the generic algorithm that we have developed for simulation of our 

adapted minority game model. This algorithm is used to obtain the main stylized facts 

and analysis of price series. We made subtle modifications to this algorithm to perform 

other simulation tests discussed in chapter 5 such as impact of agent’s memory on 

success rate, impact of time horizon on volatility etc., though the main framework 

remains the same. These modifications will be discussed in the following chapter. 
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Initial market set up 

1. Initialize the time counter to 0 

2. Setup fundamental price series that follows price change of normal distribution. 

3. Initialize arrays to hold time series of market price, volatility and return 

4. Set the resource level of asset (number of available stocks in the market) to 0.5 * 

N, where N is total number of agents 

 

Initial agents set up 

1. Setup desired number of agents in all 3 pools 

2. Generate full strategy space for agents playing minority game. For first pool of 

MG agents, it is 22^m1 and for second pool of MG agents it is 22^m2 

3. Initialize minority game agents with memory size and time horizon length 

4. Initialize minority game agents with randomly drawn strategies from full strategy 

space 

5. Generate a random history string for the chosen memory length to begin the 

game. This acts as an initial input for minority game agents 

6. Set up virtual points counters for each strategy for each minority game agent. 

Initialize all of them to 0 (ζ ij=0) 

7. Setup counters to keep track of each agent's success rate. Success rate is simply 

the ratio of number of times agent has ended up in the winning group to the 

number of times agent has traded. It is only used for the post-simulation analysis 

and is not used by agents during the game 

8. Define frequency of strategy revaluation (v) for all the agents 
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9. Define agents’ sensitivity to profit difference for pool transition. This is αf for 

fundamentalist in equation (3.2) and αmg for minority game agents in equation 

(3.3) 

 

Agents’ trading action & market operation 

1. Based on their strategies, agents have to decide whether to buy (1) or sell (0) one 

unit of asset.  

- Agents playing minority game pick a strategy randomly for the first 

iteration. For the subsequent iterations strategy with the highest virtual 

points ζ ij is picked. Based on the chosen strategy agent decides the action 

appropriate to the most recent history pattern for his memory length.  

- Fundamentalist compares the market price with fundamental value and 

decides the action based on it. If the market price is below the fundamental 

value (p < pf), he will buy a unit asset. If the market price is above the 

fundamental value (p > pf), he will sell a unit of asset. 

2. Once all the trading decisions are made, total number of buyers and sellers are 

computed. If there are more buyers than sellers, sellers are declared as winner and 

if there are more sellers than buyers, buyers win the round. 

3. The supply demand rule determines the market price as per equation (2.16). If 

there are more buyers then price goes up by the amount of difference between 

buyers and sellers. If there are more sellers then price goes down by the amount of 

difference between sellers and buyers. 
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4. Strategy points (ζ ij) of all minority game agents are updated as per equation (2.7). 

All the strategies that would have predicted the right outcome are assigned one 

virtual point. 

5. Success rates of all agents are updated, including fundamentalists and all minority 

game agents. 

6. Time horizon counter is incremented by one for all the minority game agents. If 

the counter is equal to the pre-defined time horizon of agent, it is reset to 0 and all 

the strategy points of that agent are wiped out and re-initialized to 0 as discussed 

in section 3.1.  

7. Pool transition probabilities (from minority game pool to fundamentalist pool or 

vice versa) are calculated for all the agents based on equation (3.2) and (3.3). 

Agents switch pools based on this probability. Thus, actual number of agents 

switching pools is calculated by multiplying number of agents in that group with 

respective transition probabilities. 

8. Various statistics such as volatility, price return, absolute return, pdf, and 

autocorrelation are computed for later analysis as will be seen in chapter 5. 

9. Increment the time counter and if it is has not reached the total number of 

iterations (total number of trading cycles, which can be set to anything), go to step 

1. 
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Chapter 4: Simulator Design 

 In this chapter we will provide the overall design of the simulator that we have 

developed for adapted minority game model.  

 

 

Figure 4.1 Overall Module Structure 

 

 Figure 4.1 shows the basic building blocks of our simulator. It consists of 4 core 

modules that interact with each other. Module 1 and 2 deal with market and agents’ 

initialization. Actual trading and market operations take place in module 3, whereas 

module 4 encapsulates agents’ adaptations and interactions. Here, module 3 and 4 form a 

closed loop.  
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Figure 4.2 Module 1: Market Setup 

 

 

Figure 4.3 Module 2: Agents Setup 

 

 Market setup module initializes the fundamental price series, which serves as 

incoming information in the market. As we already discussed, it is simulated with 

logarithmic changes in fundamental value following normal distribution. The module 
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also initializes arrays to hold various market parameters such as price series, volatility, 

return etc. Further, the resource level in the market is setup. Module 2 operations 

comprise of agents setup and initialization. It also generates a random history string that 

is being used by MG agents at the start of the game. Furthermore the full strategy space is 

generated and agents are assigned memory length, time horizon and strategies. Counters 

for agents’ performance monitoring and strategy evaluation are setup in this module. 

 

 

Figure 4.4 Module 3: Agents’ Trading & Market Operation 

 

 Module 3 and 4 forms the core of our market model. All the information from 

module 1 and 2 is passed onto module 3, where agents make their trading decisions. After 

all agents have completed their action, the market price is updated and the payoff for the 

current trading cycle is computed. Module 3 interacts with module 4. Agents’ adaptation 
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and performance evaluation take place in module 4. The information flow between 

module 3 and 4 is bi-directional. In module 4, agents compute their gain and calculate the 

pool transition probability. Based on this probability agents tend to switch their pool. 

Also, MG agents’ strategy scores are updated in this module. Once the pool transition 

phase is over, the control is passed back to module 3. The loop formed by module 3 and 4 

is iterated for the defined number of trading cycles. 

 

 

Figure 4.5 Module 4: Agents’ Adaptation & Interaction 

 Next we have presented the flowchart of the simulator based on the explained 

module design. 
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22^m1 & 22^m2  

Assign S strategies to all MG 
agents randomly drawn from 

FSS  

Initialize ζij = 0 for all  
agents i’s strategy j 

A 
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A 

Initialize success rate 

counter κi for all agents 

Define v, αf and αmg 

Generate random  
history string 

Setup pf 

ln(pf,t) = ln(pf,t-1) +  ∈t∆t 

MG agents pick 
strategy (Sij) with 

highest ζij 

Fundamentalists 
compare p(t) with 

pf (t) 

 
IS Sij = 0? 

Sell one 
unit of 
asset 

(ai(t) = -1) 

YES 

Buy one 
unit of 
asset 

(ai(t) = 1) 

NO 

IS 
p(t) > pf (t)? 

Sell one 
unit of 
asset 

(ai(t) = -1) 

Buy one 
unit of 
asset 

(ai(t) = 1) 

NO YES 

B 

D 
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B 

A(t) = ΣN ai(t) 

Compute payoff for  
all the agents 

gi(t) = −ai(t)*A(t) 

For MG agents 

IS gi(t) > 0 

ζij (t) = ζij (t-1) ζij (t) = ζij (t-1) + 1 

YES NO 

p(t+1) = p(t) + [No. of 
buyers – No. of sellers] 

For all agents 

IS gi(t) > 0 

YES NO 

κi (t) = [κi (t-1) + 1] * 
(t-1) / t 

κi (t) = κi (t-1) 
* (t-1) / t  

Compute gain of 
fundamentalists: 

(pf – p) * d 

Compute gain of 
MG agents: 

(D + (p’  /v) / p) 

IS 
t % v = 0? 

Compute transition probability: 
Prob (F�MG) 
Prob (MG�F) 

Agents’ pool transition 
Nf * Prob (F�MG) 

Nmg * Prob (MG�F) 

YES 

Update time horizon 
counter: 

thc = thc + 1 

C 

NO 
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C 

IS  
thc % TH1 = 

0? 

ζij = 0 for all 
agents in MG 

pool1 

IS  
thc % TH2 = 

0? 

ζij = 0 for all 
agents in MG 

pool2 

YES 

YES 

NO 

NO 

Compute volatility 

Volatility (t) = σp’ * σp’ 
 

Compute return 

R(t) = ln P(t + ∆t) – ln P(t) 
 

Increment time counter 
t = t + 1 

 

IS  
t = simduration? 

END 

D 

YES 

NO 
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Chapter 5: Implementation and Results 
 

5.1 Implementation Overview 

 We have simulated the adapted minority game model in 2 phases. In the first 

phase we developed the simulator with the simplified approach where all the agents 

belonging to the same pool have same memory and time horizons. That means all the 

agents in pool 1 playing minority game have memory m1 and time horizon T1, and all the 

agents in pool 2 playing minority game have memory m2 and time horizon T2.  This is 

the baseline version of our adaptive minority game model that we have described in the 

previous chapter. We will be referring this version as “Divided MG Pool Adaptive 

Model”.  

 

 In the second phase we have tried to explore the full spectrum of heterogeneity of 

agents. In this scenario, the agents are now divided in 2 pools, only based on their playing 

strategy: an agent is either a fundamentalist or a minority game player. We have got rid 

of two separate pools for minority game agents and now all the minority game agents 

belong to the one pool only. The agents playing minority game have the full spectrum of 

memory and time horizon. That means minority game players may or may not share same 

memory and time horizon. The range of this spectrum is discussed in section 5.3. All 

agents are randomly assigned certain memory length and time horizon at the start of the 

game. Except for this random assignment of memory and time horizon to agents, all the 

rules of the game remain same as described in chapter 3. This simulation scenario allows 

us to take a step further in the direction to make market agents highly diverse and study 



 

 

49

 

their impact on financial price series. This version of our model will be referred to as 

“Randomized MG Pool Adaptive Model”. 

 

5.2 Platform and Tools 

 The entire simulator has been developed using Perl. The foremost decisive factors 

while opting Perl over other languages were its modularization, arbitrary data structure, 

minimal overhead with random number generation and highly efficient array handling. 

Also, Perl is highly efficient in memory management, file-handling operations and 

demonstrates significantly less overhead associated with various data types as compared 

to most other programming languages. Furthermore, we have found it to be very robust 

and simple for this particular application, as we have focused to model individual agents 

of the market and follow their interactions. For the visualization and graphing purpose we 

have used TecPlot 360 [25]. All the simulation tests have been performed on a system 

running Linux CentOS 4.2.  

 

5.3 Model Parameters and Validation Benchmarks 

 Table 5.1 and 5.2 show the parameters that we have opted for the simulation of 

“divided MG pool adaptive model”. From simulation tests performed over wide variety 

of parameters, we have observed that the memory length of 2 to 16 is a good range for 

modeling financial market and produces acceptable results, keeping stylized facts as a 

benchmark. If the memory of agents is very large, the number of agents using the same 

strategy will be very few. Thus there will be very few agents in the market who will be 

using the best strategy (the one with which the probability of winning is highest) at any 
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given time. Same thing can be said for the worst strategy as well. It is highly unlikely that 

any agents will be having same strategy in the game. The impact of this on the market is 

that they tend to cancel each other out and causes market volatility to drop significantly.  

 

Number of agents in 

pool-1 – MG players 

 

138 

Number of agents in 

pool-2 – MG players 

138 

Number of agents in 

pool-3 – 

Fundamentalists 

225 

Number of assigned 

strategies for each agent 

playing MG 

6 

Memory of agents in 

pool-1 – m1 

4 

Memory of agents in 

pool-2 – m2 

6 

Time Horizon for 

agents in pool-1 – T1 

42 

Time Horizon for 

agents in pool-2 – T2 

30 
 

Resource level 250 

Simulation duration 1000 days 

 
Table 5.1 Simulation Parameters for  

Divided MG Pool Adaptive Model 

 

Thus with memory length of higher than 16, the model is unable to produce important 

property of volatility clustering discussed in section 2.1.3 and returns show significant 

drop compared to what we can see in figure 2.4 for DJIA. We are considering the results 
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returned by our simulation tests with choice of various parameters as acceptable if they 

meet three basic conditions:  

1. The probability distribution function of return should demonstrate fat tail 

distribution with exponent in range of 3.8 to 4.2. Various studies of various real 

world markets have shown that this exponent is typically 4 on average [23].  

2. The autocorrelation of return should not be greater than 0.01 for lag of more than 

30 trading cycles and should continuously be decaying.  

3. The volatility should never be less than average volatility for consecutive 15 

trading cycles. Here, 15 trading cycle is the assumed time period for the newly 

arrived information to be absorbed by the agents and this assumption is in sync 

with results shown by study of actual markets [7]. Also, this ensures that market 

does not die for the lack of activity. 

 

 Resource level in table 5.1 is the total number of stocks or units of asset available 

in the market model. The resource level is constant through out the game and should 

always be less than 05*N, where N is total number of agents in the game including 

minority game agents and fundamentalists. This gives the minority nature to the game 

ensuring that minority action always wins.  

 

Furthermore, the total number of agents in pool 1 and pool 2 must be greater than 

the number of fundamentalists. It doesn’t matter how greater this number is as long as it 

is greater. If the number of fundamentalists is greater than total number of agents playing 

minority game, the market becomes inactive after first 50-75 trading cycles. The graph of 
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price series goes flat and return drops down to zero. The main cause of this characteristic 

is herding tendency of fundamentalists as they dominate the market with same trading 

strategy. In this scenario, there is a large fraction of agents in the market who are opting 

for the same action and cling onto it for sufficiently long duration, which tends to bring 

down the market volatility to zero. Once the fundamental price drifts significantly from 

the market price, it is perceived as an arbitrage opportunity by all the fundamentalists and 

would switch the trading strategy all around the same time. This forces a turbulent period 

in the market for a short while and subsequently turns into tranquil phase once again. 

Thus with large number of fundamentalists in the model, it fails to imitate real world 

market. Apart from these rules, there aren’t any constrains on choice of other parameters 

in table 5.1 such as total number of agents in the game or number of assigned strategies 

for each agent. That means, any other choice of parameters would produce similar results 

and would not affect model’s ability to generate stylized facts in qualitative manner.  

 

Table 5.2 shows the parameters used for calculating transition probabilities of 

agents defined in equations (3.2) and (3.3). These parameters are mostly adopted from 

Lux-Marchesi model. Except for frequency of strategy revaluation (v), all other 

parameters are sensitive to change and modifying them can lead to poor performance, 

which would fail to produce stylized facts. Future work could explore more to make the 

model more robust to these parameters. However since all these parameters except for 

dividend of asset are not exactly the driving factors in the market context and are used 

exclusively for calculating the transition probability while modeling, there are no striking 

benefits, worth investing significant research efforts for this. 
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discount factor d 0.75 
 

Frequency of strategy 

revaluation v 

 

1/3 
 
 

factor of profit 

difference influence 

ααααf & ααααmg 
 

0.5 
 
 
 

variance σσσσ2
 

 

0.5 

Fundamentalist’s 

sensitivity γγγγ  

0.01 

dividend of asset D 0.0004 

 

Table 5.2 Transition Probability Parameters for 

Divided MG Pool Adaptive Model  

    

5.4 Results of Divided MG Pool Adaptive Model 

5.4.1 Reproducing Stylized Facts with Divided MG Pool Adaptive Model  

 Results of our divided MG pool adaptive model simulation are shown in figures 

5.1 – 5.8. Figure 5.1 shows the evolution of asset price and figure 5.2 represents 

logarithmic price series for the same. The price trajectories demonstrate good 

resemblance to real world market data, for instance Dow Jones Industrial Average price 

series that we discussed in chapter 2, figure 2.2. As we discussed in chapter 2, price series 

tends to exhibit different patterns across different markets and assets. However these 

price series are typical in the sense that over the long period the asset value is always 

rising. Also, markets would demonstrate occasional non-periodic crashes and recovery 

from it. Thus price series itself isn’t a stylized fact but form the basis for other 
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characteristics that are derived from it. Thus, here the comparison is not in terms of 

absolute values of asset but rather overall characteristic of the series in its entirety.  

 

 

Figure 5.1 Evolution of Price Series for Divided MG Pool Adaptive Model 

 

 

 
 

Figure 5.2 Logarithmic Price Series for Divided MG Pool Adaptive Model 
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Figure 5.3 shows the return price time series. Since we start the game with market 

price of asset set to zero, the return shows larger fluctuations in the beginning but with 

evolution of market price the net return subsides considerably and exhibits the range and 

characteristic that is very similar to actual market returns like the one shown in figure 2.4 

for DJIA. The visible difference in the return price curves of figure 2.4 and 5.3 is because 

of the vertical axis scale. Figure 5.4 shows volatility clustering phenomenon (calculated 

using equation (2.5)) where extreme events are followed by extreme events. This 

reinforces the common understanding in financial market community that volatilities are 

not independent. Various studies of financial markets around the world have shown that 

volatility displays significant autocorrelation [6, 10, 18, 22]. In our model, since agents 

are constantly adapting and seeking to use the best strategy, there is a very high 

probability that at any given time there are large number of agents who are using similar 

strategies, which contributes to large fluctuations in supply-demand. This results in 

extreme events and consequently in high volatility. Thus adaptation of agents and their 

migrations from one group to another can be attributed as the foremost factors for 

clustering of volatility.  



 

 

56

 

 

Figure 5.3 Return Price for Divided MG Pool Adaptive Model 

 

 

Figure 5.4 Volatility for Divided MG Pool Adaptive Model 
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Figure 5.5 illustrates the distribution of absolute return. For the purpose of 

comparison, the normal distribution has been plotted on the same graph. It is very 

obvious from this plot that return distribution has much fatter tail compared to gaussian 

distribution. This implies greater frequency of extreme events than what is expected with 

normal distribution. The return curve remains well above zero even for larger changes. 

Additionally, the decay evidently follows power-law distribution given by, 

P (x) = x -α 

 This is in contrast to normal distribution, which decays quite quickly after couple 

of initial standard deviations. Thus returns obtained by our model exhibit heavier tails 

and resemble the return properties observed in real markets. For instance, see the 

probability distribution of return in DJIA shown in figure 2.5.   

  

Autocorrelation of returns in shown in figure 5.6. The autocorrelation fluctuates 

from –0.5 to 0.65 for first few lags but for later lags it become very week. Comparing it 

with DJIA return properties (figure 2.6) confirm great similarities. The similarities are in 

the sense that the autocorrelation of return is continuously decaying and asymptotically 

approaching zero. As we pointed out earlier in section 2.1.2, absence of autocorrelation 

supports efficient market hypothesis. The diverse nature of agents contributes largely to 

this property and fortifies the existence of fundamentalists in the model. The presence of 

fundamentalists ensures that any agents playing minority game cannot take advantage of 

any statistical arbitrage opportunity associated with any particular strategy for sufficiently 

longer duration. This implies that price changes do not exhibit significant correlation 

except for very short duration. To be more precise, this duration is the amount of time it 
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takes for fundamentalists to absorb the new information coming in to the market and act 

according to it. Thus action of fundamentalists tends to nullify the correlation between 

successive price changes. In section 5.4.4, figure 5.12; we have shown the plot of 

autocorrelation for original MG where there are no fundamentalists in the market and it 

fails to produce similar result. 

 

While we succeed in reproducing the stylized facts such as fat tail distribution, 

volatility clustering and weak autocorrelation of return, which are also producible with 

original MG model and Lux-Marchesi model, we also add new results of impact of 

memory length on agents’ performance and periodic volatility. These results are 

discussed in next subsection. 

 

 

Figure 5.5 Distribution of Absolute Return for Divided MG Pool Adaptive Model 

(dashed curve: gaussian distribution, *: absolute return) 
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Figure 5.6 Autocorrelation in Return for Divided MG Pool Adaptive Model 

 

 

Figure 5.7 Impact of memory length on agent’s success rate 
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5.4.2 Impact of Memory Length 

Figure 5.7 demonstrates the impact of memory length on agent’s success rate. 

For this part of simulation we have kept the memory length of agents in pool 2 (m2) 

constant at 6. The simulation tests have been run for 100 times for each variation of 

memory length of agents in pool 1 and it has been averaged out in graph to represent 

mean and standard deviation. We can observe that initially when we increase the memory 

length of pool 1 agents, their success rates seem to be improving. There is also a slight 

drop in pool 2 agents’ success rates with increasing m1. This is because the sequence of 

the winning groups contains information about the strategies of the agents and agents 

with more memory can exploit this information more efficiently. However, the gain in 

success rate due to increasing memory length lessens beyond a certain threshold and is 

completely wiped out with considerable larger memory length. As we can see from the 

plot, agents seem to be performing best when they have the memory length of 7. After 

that, the gain from the increasing memory appears to be constant and it shows a fall 

beyond memory length of 10. We have performed these simulation tests with wide range 

of combinations of parameters in table 5.1 and have found this result to be consistent. 

Thus, varying number of agents or their time horizons do not impact this outcome. 

Furthermore, it’s important to note here that choice of m2 as 6 has no impact on the 

results that we have achieved. That means opting for some other value of m2 would not 

affect this behavior and best memory length is not merely m2 + 1. We have carried out 

simulation runs with different values of m2 ranging from 2 to 16, and have confirmed this 

behavior with agents in pool1 performing best when memory length is 7. This result 



 

 

61

 

implies that changes in prices are related in shorter duration of time period but do not 

hold strong relation in longer run.  

 

The result also supports the concept of short-term autocorrelation observed in 

returns (figure 5.6). Also, agents playing with shorter memory can outperform agents 

playing with longer memory. One reason for that could be that agents playing with longer 

memory have to switch more frequently between their strategies as their strategy space is 

significantly bigger and the number of possible combinations within each strategy is also 

lot more. Thus there is very high likelihood that multiple strategies are having identical 

virtual points, forcing agents to switch back and forth between those strategies. There is 

no obvious best or worst strategy for these agents. This tends to bring down their 

performance in long run. 

 

5.4.3 Impact of Time Horizon 

To study the impact of time horizon on average volatility in the market, we have 

performed another simulation test. This means that after every time horizon number of 

iterations the virtual points (ζ ij) of the strategies of MG agents in a given pool are all 

reset to zero. In this case we have set the memory length of both pool 1 and pool 2 agents 

to 3. Simulation tests have been performed by varying time horizon T1 and T2 and 

keeping all other parameters fixed. Also, T1 and T2 are set equal and the entire 

simulation test has been run for 1000 cycles with different values for T1 and T2. For each 

value of T1 and T2 simulation has been run for 5 times and results are averaged out to 

show the median and two maximum and two minimum findings of average volatility. We 
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have allowed T1 and T2 to take on value in range of 1 to 60. Thus we have performed 

300 independent simulation runs for this entire test. Figure 5.8 shows the simulation 

results. As we can see, the average volatility (calculated using equation (2.5)) increases 

with increasing time horizon.  

 

Furthermore, it shows remarkable periodicity in time horizon of 2m+1. Here, 

m=m1=m2=3. This is a very vital result obtained from our simulation test. Studies have 

shown that financial markets tend to exhibit seasonal periodicity in volatility [22]. For 

instance, prominent U.S. stock indices: Dow Jones Industrial Average, S&P 500, S&P 

MidCap 400, S&P SmallCap 600 all display periodicity in volatility. Expected stock 

returns exhibit strong seasonal pattern in the form of day of the week, month of the year 

and holiday effects [13]. Similarly, Italian stock market has been found to exhibit very 

strong periodic behavior in volatility with a one trading day period in the MIB30 index 

[22]. Though there has been significant research efforts invested to recognize and justify 

the factors involved in periodicity behavior, till now there hasn’t been any concrete 

finding that has evolved and enjoyed universal reception [13].  

 

In our model, it can be argued that periodic volatility is just a result of periodic 

resetting of agents’ virtual points. However, that’s not the only aspect causing this 

behavior since the periodicity is actually more closely related to the agents’ memory 

length rather than their time horizon. We have carried out simulation tests with different 

memory lengths for agents and have observed similar periodic behavior of volatility with 

periodicity of 2m+1. For example in figure 5.8, with memory length of m = 3, we can see 
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repetition of volatility pattern at periodicity of 16, which is 2m+1. This result is 

independent of choice of value of m and is consistent across all full spectrums of T1 and 

T2. 

 

 

Figure 5.8 Impact of Time-Horizon on Average Volatility 

 

Another argument that can be drawn here is that what’s the need for resetting 

agents’ virtual points and why don’t agents just stop learning when they are performing 

optimally. The obvious reason is that there is no optimum strategy for sufficiently long 

duration of time since market is constantly evolving and all the agents continuously try 

adapting to it. The minority nature of the game plays an important part in ensuring that 

agents can’t perform consistently well without adaptation and learning. However, with 

time horizon feature, agents tend to perform poorly for a short while when their virtual 
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points are reset and they start gathering knowledge about the market fresh again. One 

probable alteration to this could be to have agents give more weight to new data (virtual 

points assigned for the new time horizon) and lower weight to old data (virtual points 

from older time horizons). It’s important to note that in original minority game model [5], 

there is no periodic resetting of agents’ virtual points. Agents keep collecting points for 

their strategies through out the entire duration of the game. That means it acts as an 

infinite time horizon market model. In our model we speculate that time horizon and 

agents’ memory act as a proxy to this factor and contribute to the periodicity in volatility. 

The original minority game model though can replicate stylized facts, fails to produce 

this interesting trait.  

 

5.4.4 Results of Original MG with higher regime of memory & time-horizon 

Figures 5.9 – 5.12 show the results for original MG [5], described in section 2.3 

with higher memory and time horizon for agents.  

 

Total number of agents 501 
 

Memory of each agent 9 
 

Time Horizon of each 

agent 

72 
 

Number of assigned 

strategies for each agent 

6 
 

Resource level 250 

Simulation duration 

 

1000 days 

 

Table 5.3 Simulation Parameters for Original MG 
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Table 5.3 shows the parameters used for this simulation test. All other parameters 

except for memory and time horizon are same as in the original paper. The results, 

presented below, clearly show that the price series does not comply with real world 

market scenario and fails to generate stylized properties. For instance, price series in 

figure 5.9 shows some highly unrealistic values and fluctuations. The same holds true for 

return series as well, shown in figure 5.10. Figure 5.11 shows the volatility results. We 

can see some patches of volatility clustering in it but it’s not consistent throughout the 

length of the simulation and has a few unreasonably long periods of low activity. Also, 

from figure 5.12 we can see that autocorrelation of return isn’t following the stylized 

pattern. Decaying of autocorrelation isn’t obvious and we can see some sudden spikes in 

it at certain places. Comparing these results with those of DJIA presented in figures (2.2) 

– (2.6) demonstrates great contradiction in terms of their inherent characteristics. These 

results support the claim that MG has limitation as financial market model in higher 

regime of memory and time horizon. The agents are, though, heterogeneous in terms of 

their strategies, effectively they all play with same parameters and tendency. That means 

all agents despite using different strategies have same memory, time horizon, number of 

strategies and common inclination to be in minority group. There are no agents in the 

market who are conceptually playing with different tendency. Thus their nature of 

heterogeneity is typically restricted, contributing to this limitation. In the next section, we 

will show that with our adaptive minority game, the model behaves much more 

efficiently even in higher regime of memory.  
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Figure 5.9 Price Series for Original MG with m = 9, T = 72 

 

 

 

 
 

Figure 5.10 Return Price for Original MG with m = 9, T = 72 
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Figure 5.11 Volatility for Original MG with m = 9, T = 72 

 

 

Figure 5.12 Autocorrelation in Absolute Return for  

Original MG with m = 9, T = 72 
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5.4.5 Discussion Of Results 

As we pointed out earlier, original MG can imitate financial market with very 

limited spectrum of parameters. Outside of this spectrum it fails to capture the vital 

characteristics of market considering the benchmarks that we discussed in section 5.3 for 

validating the result. There has been a small number of parameter sets for MG that can be 

validated to model financial markets [8]. We have attempted to expand this spectrum. For 

example, a number of studies have pointed out that with original MG model [5], the price 

series and returns are not in harmony with stylized facts for higher regime of memory 

length and time horizon [8, 10, 20]. From our tests of original MG with broad range of 

values for memory and time horizon, we have found that agent’s memory typically 

should not be more than 7 and time horizon has to be lesser than 48. With higher range of 

memory and time horizon it fails to capture fat tail distribution and autocorrelation in 

return (see figure 5.12). Also, price series demonstrates highly unstable market as shown 

in figure 5.9.  

 

In contrast to this, our adaptive minority game model can replicate the market’s 

typical characteristics with relatively broad spectrum of parameters. Agent’s memory can 

be as high as 16 whereas time horizon can vary from 8 to 172. We will show the results 

with these parameters in next section. Thus, our model does succeed to expand the 

spectrum, though still imposes a bound on it. We speculate the main reason for this 

limitation to be the payoff function of minority game (equation (2.6)). With significantly 

higher memory and time horizon, the payoff function in its original form inflicts barrier 

on agents’ learning or adaptation rate. This can be considered as one of the intrinsic 
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limitation of MG. As we earlier discussed, agents with very high memory switch more 

often between their strategies, leading to a lot more random behavior from overall market 

perspective. Furthermore, the agents with very high time horizon are at high risk of being 

outperformed by other agents due to their slow learning rate.  

 

5.5 Results of Randomized MG Pool Adaptive Model 

Figures 5.13 – 5.18 show the results of our Randomized MG Pool Adaptive Model 

simulation, where agents are not restricted to groups in terms of their memory and time 

horizon. Agent can either be fundamentalist or minority game player. Agents are assigned 

memory and time horizon from the full spectrum possible for our model, which is 1 to 16 

for memory and 8 to 172 for time horizon. All other parameters remain same as in table 

5.1 and 5.2, except that the MG agents are not split in two pools. As the simulation 

results show, the model satisfactorily produces all the stylized facts with full spectrum as 

well. This is in sharp contrast to the results achievable with original MG model in higher 

regime of memory and time horizon shown in section 5.4.4. 
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Figure 5.13 Price Series with Full Spectrum of Heterogeneity 

 

 

Figure 5.14 Logarithmic Price Series with Full Spectrum of Heterogeneity 
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Figure 5.15 Return Price with Full Spectrum of Heterogeneity 

 

 

Figure 5.16 Volatility with Full Spectrum of Heterogeneity 
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Figure 5.17 Distribution of Absolute Return 

(dashed curve: gaussian distribution, *: absolute return) 

 

 

Figure 5.18 Autocorrelation in Return 
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5.6 Discussion of Results 

 Since now we have the simulation results of original MG model (section 5.4.4), 

Divided MG Pool Adaptive Model (section 5.4.1) and Randomized MG Pool Adaptive 

Model (section 5.5), we are better placed to have qualitative comparison of these models. 

From this comparison, we can draw that our model contributes to address the limitations 

L1, L2, L6, L7, L8 listed in section 2.6. If we compare figures 5.1 – 5.6 to figures 5.13 – 

5.18, we can see that they are statistically very similar. This means that the new choice of 

parameters doesn’t significantly affect the performance of our model and it exhibits much 

more robustness compared to original MG model over a wider range of memory and time 

horizon. This is an important improvement since there is often a need to model financial 

markets with variety of types of agents whose strategy, behavior, knowledge and 

information resources available at their disposal to analyze the market are highly diverse. 

The adaptive model presented here addresses these issues.  

 

Introduction of fundamentalists in the market has added another dimension to the 

strategy aspect. Also, with agents having different memory lengths and time horizon 

expands the spectrum of their knowledge and analyzing ability. The agents’ tendency to 

switch to more successful pools, and effectively strategy, makes the market scenario 

much more realistic with agents’ interactions and adaptation.  Periodic volatility feature 

discussed in section 5.4.3 is also a unique result producible with our model. Furthermore, 

our model provides us a better idea of how well agents perform with varying memory 

length, which is not very clear from the original MG model due to it’s limitation in higher 

memory regime.  



 

 

74

 

To summarize, with adaptive minority game we can model the financial markets 

and reproduce the stylized facts with the following rules:  

1. Total number of agents playing minority game should always be more than 

number of fundamentalists in the market. It doesn’t matter how much more, as 

long as it’s more, for the reason explained in section 5.3. 

2. Memory length of minority game agents should typically be in the range of 2 to 

16. 

3. Time horizon should typically be in the range of 8 to 172. This range ensures a 

reasonable learning rate of agents. It’s perfectly fine to choose time horizon 

outside this range as well, however very high value of it results in extremely slow 

learning rate for agents. These agents are easily outperformed by agents with time 

horizon in above-mentioned range. 

 

Choice of other parameters in table 5.1 within bound of above mentioned rules 

will not significantly impact the model performance. However, parameters in table 5.2 

are sensitive to change and would not necessarily produce similar results with 

modifications. 
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Chapter 6: Conclusion and Future Work 

 

The core objective of this thesis was to develop a financial market model that can 

resemble to real world market and at the same time keep check on the assumptions that 

are made throughout the development of the model. Also we intended to ensure that the 

authenticity of these assumptions do not digress a great deal from actual market scenario. 

We had set up the stylized facts and certain other important characteristics observed in 

wide variety of markets as benchmark for validating results achieved by our model. We 

selected Minority Game toy model as a groundwork for our research and built upon that 

with certain alterations, which were subtle in nature but demonstrated rich characteristics. 

The main contribution of this research work is improved heterogeneity aspect of agents in 

MG market model while we have tried to curtail some of the unreasonable assumptions. 

The original MG model assumes that: (1) memory length of all the agents in market is 

same, (2) all agents operate in infinite time horizon and (3) fundamental value of asset 

has no impact on market operations. We have got rid of these assumptions in our model 

and agents were populated with different memory lengths and time horizons. Also we 

added some fundamentalists to the market and allowed agents to switch their trading 

strategies, which contributed in improving heterogeneity of agents. 

 

The simulation tests that we performed with wide range of parameters 

successfully reproduced vital stylized facts such as fat tail distribution, volatility 

clustering and absence of autocorrelation in return. The model succeeds to explain the 

basic foundation of these stylized facts and parameters that contribute to each of them. 
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Furthermore we demonstrated enhancement to the spectrum of parameters, which can be 

used to model financial market. That means we can choose from much wider spectrum of 

memory length and time horizon than what’s possible with original MG model. The 

simulation also captured a very important property of periodic volatility with varying time 

horizon. Finally we studied the impact of various memory lengths on agent’s success rate 

and found that agents with relatively larger memory tend to perform better, but there is a 

certain threshold beyond which increase in memory length doesn’t improve agents’ 

success rate. On the contrary, the success rates of agents degrade with memory larger 

than this threshold and they perform poorly in longer run.     

 

Future work on this line could include: 

� Agents trading at different frequencies and different volumes. Both in original 

MG model and our model, all agents trade one unit of stock in each time step. 

The model can be extended with “hold” option for the agents apart from buy and 

sell. For this, some conditions or threshold needs to be decided that would have 

agents hold from participating in bid if that condition is not met. Thus agents’ 

heterogeneity could further be improved and more randomness can be brought 

into the market. 

� As we pointed out in section 5.4.5, more efficient payoff function for the game 

needs to be researched in order to further expand the spectrum of parameters with 

which the model can be validated.  
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� A different function can be tried for periodic resetting of agents’ virtual points at 

the end of each time horizon. One probable solution is to assign more weight to 

the new data and lesser weight to the old data. 

� The concept of various market clearing mechanisms could be brought into 

modeling and how it would impact agent’s strategy and adaptation. Market 

clearing mechanism means that the fundamental value of the asset is changed 

until the supply and demand for the asset exactly match and the market can be 

cleared of any excess supply or demand. The Grand-Canonical MG [10] has 

already tried incorporating this concept in market model. 
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