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ABSTRACT OF THE DISSERTATION

Study of Simpli�ed Models of Aircraft Structures Subjected

to Generalized Explosive Loading

by Jason R. Florek

Dissertation Director: Dr. Haym Benaroya

This dissertation develops a simple methodology for estimating the maximum elastic-plastic

deformation of thin, rectangular plates due to an exponentially decaying pressure pulse.

Initially, only small plates, representative of aircraft skin panels, and uniformly distributed

pressures are examined. The de�ections predicted by this procedure are compared with

those attained from �nite element analysis for various plate dimensions and blast intensities.

Material properties and boundary conditions are also varied. It is found that the current,

clamped single-degree-of-freedom model is generally a much better predictor of de�ection

than its simply supported counterpart, although both show average errors of less than

15% compared to �nite element results. The deviations between all of the models tend to

decrease as surface area decreases, or as plate thickness and aspect ratio increase. A means

of approximating permanent plate de�ection is also suggested, which favorably compares

with previously published experimental results for square, aluminum plates.

The aforementioned procedure is then extended for use with larger geometries, namely

a wider fuselage section and a panel of an onboard luggage container, and nonuniform

pressures. A generalized distribution function is developed to account for nonuniformities

consistent with detonations at a small stando¤ distance. Moreover, two normalized criteria

are proposed to determine when these nonuniformities can be ignored. In addition, large

ii



discrepancies are found in calculated de�ections when incorporating the current structural

model and the blast parameter data from two commonly used sources for both uniform and

nonuniform loading cases. As a result, uncertainties in these data are thoroughly examined,

which leads to con�dence bounds being placed on all calculated de�ections through a Monte

Carlo scheme. This, in turn, allows for the generation of probability of failure curves.

Suggestions for improving the current loading and structural models are also discussed.

Finally, the method of analysis for plates is preliminarily extended for the blast loading

of thin, cylindrical shells. The various topics covered and simpli�ed models proposed are

useful to both the experimentalist and designer of blast resistant structures.

iii



Acknowledgements

First and foremost, I acknowledge my research advisor Dr. Haym Benaroya. Professor,

thank you for all that you�ve done for me. I have learned so much and truly enjoyed my time

here at Rutgers, both in no small part due to you. Having shared my graduate experience

with numerous students across many departments, I realize just how fortunate I�ve been to

have you as an advisor. Sure, the o¢ ce itself is nice, but the learning atmosphere inside is

even better (more on my fellow csXers to follow). Thank you for your great patience and

the liberties you�ve a¤orded me over the years to take my research in the current direction.

I do not believe I could have thrived so readily in another situation. And I will certainly

heed your parting advice, and not mess with Texas.

I sincerely thank the Transportation Security Administration and Department of Home-

land Security for their funding of this research and my graduate study for the last �ve years.

In particular, I thank Howard Fleisher and Nelson Carey of the Transportation Security

Laboratory for their support and interest. I am especially appreciative of their allowing me

the opportunity last year to witness aircraft blast testing �rsthand. Nelson and his former

TSL colleague Joe Gatto were extremely helpful in answering questions during that trip

to Aberdeen. I further thank Joe for his insights into blast scaling, which have greatly

in�uenced the current work. Additionally, I thank my future employer Quentin Baker for

his explanations of blast wave phenomena.

Furthermore, I acknowledge the Department of Mechanical and Aerospace Engineering

at Rutgers University. Speci�cally, I thank Dr. Haim Baruh, whom I�ve known for nearly

nine years now. Like Professor Benaroya, you have always shown great con�dence in me, for

which I am truly grateful. It really dates back to my days in your undergraduate Dynamics

class, and has continued throughout your stays as graduate director, soccer teammate and

dissertation committee member. As a result, I may come back to Rutgers once again to

iv



pursue that elusive M.P.S. degree.

In addition, I thank Dr. Abelfattah Zebib for all of his assistance during my fellowship. I

also acknowledge Drs. Ellis Dill and Alberto Cuitiño, both whom I�ve had multiple graduate

courses under and approved my master�s work. Dr. Dill has discussed with me at great

length the merits of �nite element modeling and given me insight into the issues discussed

in Section 6.1. Moreover, Professor Cuitiño served on my dissertation defense committee,

along with Dr. Nenad Gucunski from Civil Engineering. I appreciate the useful comments

and suggestions each has given in this capacity.

I acknowledge all members past and present of the Center for Structures in eXtreme

in Environments (csXe). With regard to my research, I especially thank Dr. Yuriy Gulak

and soon-to-be (STB) Master Elan Borenstein. Yuriy, your help over the last three years

has been invaluable. I am always amazed by the fact that you have technical expertise in

just about every subject imaginable, whether it�s �uid dynamics, stock market modeling

or table-top hockey. Palooza! Elan, even though I�m the one with the fancy degree, more

often than not, you�re the one answering my questions. Go �gure. Good luck with your

blast related research and, more importantly, with the department soccer team (more on

my fellow MAE United members to follow). I also thank Drs. Rene David Gabbai and

Pravin Subramanian, STB Dr. Subramanian Ramakrishnan, STB Master Paola Jaramillo

and Nir Pony for their comradery during my stay in D150. Moreover, Trisha Mazzuco has

been very helpful in keeping the center going on a day-to-day basis.

Furthermore, I acknowledge all of those individuals involved with my extracurricular

activities at Rutgers. This includes members past and present of the MAE United Soccer

Club. Before two and half years ago, I had never played soccer. Thanks to all of you,

I�ve improved from a novice to a below average goalkeeper. This transition could not be

possible without the tutelage of Coach Borenstein and my various defensemen, most notably

Dr. Lucian Iorga and STB Dr. Pedro Romero, who have been good friends since my �rst

semester of graduate studies. I also thank the Marita�s Cantina crew� Elan, Paola, Dr.

Carlos Correa, STB Dr. Maria Velez and, more recently, Tushar Saraf for their friendship

and shared interest in quarter chicken wings and mango chango. You all justi�ed (at least

once a week) my regularly being at the o¢ ce past 10pm. Special thanks to fellow night

v



owls Brigham, Stuart and Iago for their help in typesetting this dissertation.

Finally, I thank my family for their encouragement and support throughout the years.

In particular, I thank my Aunt Christy, who, for as long as I can remember, wanted me

to become a brain surgeon. I hope just being a doctor is enough. I also acknowledge my

Uncle Rick for calling me "Dr. Jay" for the last few years, even though it wasn�t o¢ cial.

Moreover, I am indebted to my brothers John C. and Steven for, amongst other things,

letting me play baseball with them since I was in diapers. I am even more grateful to my

parents John H. and Christine for their unending faith in me. I appreciate all that you�ve

sacri�ced over the years. Mom and Steve, in my master�s thesis acknowledgements, I wrote

that "you two are my life." That hasn�t changed, but I suppose there�s room for one more.

With that, I sincerely thank my sweet Paola for her love and support. You�ve de�nitely

made my life a lot more interesting.

vi



Dedication

To my mother, Christine Ann Florek, a true angel amongst men. Matka, co wola twój

dziecko czyníc rezygnowác ty?

vii



Table of Contents

Abstract : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ii

Acknowledgements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iv

Dedication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii

List of Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xii

List of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xiii

1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1. Dissertation Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Dissertation Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Typical Explosive Loading Model : : : : : : : : : : : : : : : : : : : : : : : : 7

2.1. Side-On Blast Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Blast Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Simpli�ed Parameter Relationships . . . . . . . . . . . . . . . . . . . . . . . 13

2.4. Re�ected Blast Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5. Uniform Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Validation of Structural Model for Uniform Pressure Load : : : : : : : : 23

3.1. Elastic Phase Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1. General Governing Equations . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2. Simply Supported Plate . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3. Clamped Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4. Yield Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



3.2. Plastic Phase Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1. Plate Displacements and Angular Velocities . . . . . . . . . . . . . . 31

3.2.2. Energy Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3. Failure Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4. Permanent Deformation . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3. Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1. Timestepping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2. Geometry and Material Properties . . . . . . . . . . . . . . . . . . . 37

3.3.3. Pressure Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4. Validation with Finite Element Analysis . . . . . . . . . . . . . . . . . . . . 39

3.4.1. Simply Supported Plate . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2. Clamped Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3. Permanent Deformation . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5. Validation with Experimental Results . . . . . . . . . . . . . . . . . . . . . 48

4. Improvements to Explosive Loading Model : : : : : : : : : : : : : : : : : : 52

4.1. Nonuniform Re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1. Pressure Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2. Impulse Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3. Normalized Criteria for Assessing Applicability of Uniform Pressure

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2. Specialized E¤ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1. Negative Pressure Phase . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2. Pressure Relief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3. TNT Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3. Problems with Blast Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1. Variety of Scaled Distances . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2. Side-On Blast Parameters . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3. Re�ected Blast Parameters . . . . . . . . . . . . . . . . . . . . . . . 70

ix



4.4. Determination of Generalized Pressure Distribution . . . . . . . . . . . . . . 73

5. Structural Response to Nonuniform Pressure Load : : : : : : : : : : : : : 78

5.1. Method of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1. Structural Model and Timestepping Scheme . . . . . . . . . . . . . . 78

5.1.2. Geometry and Material Properties . . . . . . . . . . . . . . . . . . . 79

5.1.3. Pressure Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2. Comparison of Response to Uniform and Nonuniform Deterministic Load . 83

5.2.1. Results of Deterministic Trials . . . . . . . . . . . . . . . . . . . . . 83

5.2.2. Evaluation of Normalized Criteria . . . . . . . . . . . . . . . . . . . 88

5.3. Response to Nonuniform Random Load . . . . . . . . . . . . . . . . . . . . 91

5.3.1. Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2. Results of Random Trials . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3. Probability of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6. Improvements to Structural Model : : : : : : : : : : : : : : : : : : : : : : : 97

6.1. Elastic Phase Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1. Adding Terms to Fourier Series Expansion . . . . . . . . . . . . . . . 97

6.1.2. Changing Exponent of Assumed Clamped De�ection Shape . . . . . 100

6.2. Plastic Phase Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1. Plate Displacements and Angular Velocities for Box Shaped Pattern 103

6.2.2. Energy Relationships for Box Shaped Pattern . . . . . . . . . . . . . 105

6.2.3. Additional Equations of Motion for Boxed Shaped Pattern . . . 107

6.2.4. Smoothing Transition at Yielding . . . . . . . . . . . . . . . . . . . . 110

6.2.5. Permanent Deformation via Damping . . . . . . . . . . . . . . . . . 113

6.3. Extension of Current Model to Shells . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1. Elastic Phase Shell Model . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.2. Yield Condition of Hinged Shell . . . . . . . . . . . . . . . . . . . . . 116

6.3.3. Plastic Phase Shell Model . . . . . . . . . . . . . . . . . . . . . . . . 118

x



7. Conclusions and Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : 119

7.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix A. Sample Matlab Program : : : : : : : : : : : : : : : : : : : : : : : 122

Appendix B. Sample ANSYS Program : : : : : : : : : : : : : : : : : : : : : : 130

Appendix C. Details of Box Shaped Deformation Pattern : : : : : : : : : : 138

C.1. De�nition of Modifying Factors . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.2. Calculation of Initial Values for � and � . . . . . . . . . . . . . . . . . . . . 139

References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

Vita : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

xi



List of Tables

3.1. Dimensional case de�nitions with de�ections at rupture. . . . . . . . . . . . 35

3.2. Blast parameters as a function of scaled distance Z. . . . . . . . . . . . . . . 39

3.3. Permanent de�ection parameters for a clamped 150� 100 mm plate. . . . . 48

3.4. Comparison of dynamic maximum and permanent de�ections for a 500 �

500� 1 mm plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1. TNT equivalency factors for common explosives from various sources. . . . 65

4.2. Impulse comparison for various assumed pressure pro�les, charge sizes and

stando¤s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1. Correction factors to better match Matlab and ANSYS results. . . . . . . . 81

5.2. Comparison of maximum de�ection and normalized criterion values for SC/LP

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3. Comparison of maximum de�ection and normalized criterion values for LC/LP

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xii



List of Figures

2.1. Typical blast wave pressure-time history with parameter de�nitions. . . . . 9

2.2. Comparison of approximate pressure-time histories for Z = 1 m/kg1=3. . . . 10

2.3. Side-on blast parameters for a spherical charge as a function of scaled distance. 11

2.4. Geometric representation of Hopkinson-Cranz blast wave scaling. . . . . . . 12

2.5. Comparison of pressure-scaled distance relationships presented by various

sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6. Re�ection coe¢ cient as a function of scaled distance from various sources. . 20

2.7. Re�ected blast parameters for a spherical charge as a function of scaled distance. 20

2.8. Uniform transverse blast loading on a plate. . . . . . . . . . . . . . . . . . . 22

3.1. Plate geometry and coordinate system. . . . . . . . . . . . . . . . . . . . . . 26

3.2. Roof shaped deformation pattern. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Stress-strain curve for a linearly elastic, perfectly plastic material. . . . . . 38

3.4. De�ection-time history of a high strength aluminum 100�100�2:5 mm plate

for simple and clamped supports per three di¤erent models. . . . . . . . . . 40

3.5. Cumulative distribution function of absolute percent error between �nite el-

ement and current model for simple and clamped supports. . . . . . . . . . 41

3.6. Average absolute percent error between �nite element and current clamped

model as a function of scaled distance for various plate areas. . . . . . . . . 43

3.7. Average absolute percent error between �nite element and current clamped

model as a function of scaled distance for various plate aspect ratios. . . . . 44

3.8. Ranges of validity for current clamped model with respect to plate size and

aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1. Geometry of an ideal blast wave impacting a �at surface. . . . . . . . . . . 53

4.2. Re�ection coe¢ cient as a function of incident angle and pressure. . . . . . . 54

xiii



4.3. Circular bands of equal re�ected pressure across a plate subjected to a cen-

tered 6 kg TNT charge with a 0.5 m stando¤. . . . . . . . . . . . . . . . . . 56

4.4. Re�ected pressure distribution across a plate subjected to a centered 6 kg

TNT charge with a 0.5 m stando¤. . . . . . . . . . . . . . . . . . . . . . . . 60

4.5. Side-on overpressure ratio Ps=Po as a function of scaled distance �R from

various experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6. Deviation between side-on impulses reported in Table XI of Ref. [3] and via

Eq. 2.6 for a chemical explosion. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7. Side-on spherical blast wave parameters as a function of scaled distance from

various sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8. Side-on and normally re�ected decay parameters as a function of scaled dis-

tance from various sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9. Comparison of pressure-time history generated for air burst per Eq. 4.1 and

surface burst per Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10. Re�ected pressure distribution across a plate subjected to a centered 6 kg

TNT charge with a 0.3 m stando¤. . . . . . . . . . . . . . . . . . . . . . . . 77

5.1. Small fuselage section with small plate (SP) geometry shaded. . . . . . . . . 79

5.2. LD-3 luggage container with large plate (LP) geometry in front. . . . . . . 80

5.3. Comparison of maximum de�ection results per Refs. [2,4] for an LD-3 panel

subjected to uniform and nonuniform blasts from a 0.75 kg TNT charge. . . 84

5.4. Comparison of maximum de�ection results per Refs. [2-4] for an LD-3 panel

subjected to uniform and nonuniform blasts from a 0.75 kg TNT charge. . . 86

5.5. Comparison of maximum de�ection results per Refs. [2-4] for an LD-3 panel

subjected to uniform and nonuniform blasts from a 6 kg TNT charge. . . . 87

5.6. Comparison of maximum de�ection results per Refs. [2-4] for a fuselage panel

subjected to uniform and nonuniform blasts from a 0.75 kg TNT charge. . . 87

5.7. Normalized arrival time and impulse as a function of stando¤distance, charge

size and panel size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8. Blast parameter bounds for use in Monte Carlo simulation. . . . . . . . . . 92

xiv



5.9. Mean maximum de�ection for an LD-3 panel (LP) subjected to an SC blast

with standard deviation bounds. . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10. Mean maximum de�ection for an LD-3 panel (LP) subjected to an LC blast

with standard deviation bounds. . . . . . . . . . . . . . . . . . . . . . . . . 94

5.11. Mean maximum de�ection for a fuselage panel (SP) subjected to an SC blast

with standard deviation bounds. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.12. Probability of failure curves for SC/SP and LC/LP cases per assumed elastic

and plastic deformation shapes. . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1. Finite element results for instantaneous exponent of Eq. 6.8 for a 100�100�

2:5 mm Al 2024-T3 plate subjected to a uniform blast with Z = 1. . . . . . 102

6.2. LD-3 luggage container deformed due to internal explosive loading. . . . . . 104

6.3. Box shaped deformation pattern. . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4. Upper right-hand quadrant of box shaped deformation pattern. . . . . . . . 106

6.5. Moment-causing loads acting on region I of box shaped deformation pattern. 109

6.6. Transient deformation pro�les of a clamped, high strength aluminum 150 �

100 mm plate due to a uniform load for Z = 1. . . . . . . . . . . . . . . . . 111

6.7. Transient deformation pro�les of a clamped aluminum 150 � 100 � 2:5 mm

plate due to a uniform load for varying yield strengths and scaled distances. 112

6.8. Shell geometry and coordinate system. . . . . . . . . . . . . . . . . . . . . . 115

C.1. Roof shaped and box shaped, rigid plastic deformation patterns with notation

of Ref. [64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xv



1

Chapter 1

Introduction

As a result of escalating terrorist threats in recent years, the potential damage caused by

an explosion onboard an aircraft has become a necessary design consideration. There are

multiple ways to study the response of a structure subjected to an explosive loading. The

best way is through experiment, which provides the most realistic response data. However,

experiments are costly as specimens and explosives, and often measuring devices (e.g.,

pressure transducers), cannot be reused. Numerical simulations (i.e., hydrocodes) have the

bene�t of increased repeatability, but, depending on the complexity of the �nite element

model, can take days to process a single loading case. Additionally, without su¢ cient

experience, �nite element programs are essentially black boxes that convert input to output

data. Each code has its own unique way of solving the relevant governing equations that

must be validated over numerous trials.

Simpli�ed analytical models serve as an e¢ cient alternative to �nite element models.

Results from simpli�ed models are repeatable, relatively quick to process, and based on en-

gineering theory, so that they give physical insight into the problem. As a result, parameter

studies can be easily performed in the initial stages of structural design. Once a preliminary

design is chosen, a more detailed �nite element model can be used to �nalize all aspects of

the design. Using simpli�ed models saves on both the cost and time of unnecessary �nite

element and experimental trials. Moreover, they can be used to verify more detailed �nite

element results when experimental data are unavailable.

1.1 Dissertation Motivation

The primary application here is the structural response of thin plates to an applied

explosive blast. In order to predict this response, both said loading and resulting structural
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behavior must be accurately modeled. As such, this dissertation examines simple, yet

accurate analytical models of explosive pressure loading and thin, rectangular plates. The

study of thin, rectangular plates is useful in aviation design as such plates can model the

skin panels that cover a given airframe or the panels of a luggage container stored beneath

the cabin (see Figs. 5.1 and 5.2). Moreover, the large de�ection, dynamic response of these

plates to a transverse pressure pulse can aid in making an aircraft structure that is resilient

to an internal explosion.

Key parameters for input into the pressure model, such as incident and re�ected pres-

sures, impulse (i.e., the area under the pressure-time curve), and blast duration, can be de-

termined from various sources. Common sources used in the literature include the charted

data of Baker and his colleagues [1,2], the tabulated data of Kinney and Graham [3] based

on empirical equations, and specialized computer programs such as ConWep [4]. However,

a problem arises in that these references yield data that are often inconsistent with one an-

other and experimental results, particularly for close stando¤s. Therefore, there is a general

need for a more consistent set of blast parameter data, or at least some way to measure the

uncertainty of design calculations based on the data from these common sources.

Moreover, typically in the literature, explosive blasts are assumed to act uniformly across

a target area. Many times there is no justi�cation given for this assumption. Other times

the rationale is simply that the explosion occurs �far enough away�to form a nearly planar

wave upon impact. As the procedure for calculating a nonuniform pressure can quickly

become burdensome, it is useful to the designer to have a quantitative criterion to determine

when a uniform loading is or is not appropriate. Further, when deemed inappropriate, it is

also bene�cial to have a simpli�ed procedure for estimating the nonuniform pressure pro�le

acting across a target area. Ideally, from a mathematical standpoint, this pressure pro�le

should be a closed form expression of position and time.

In addition, there is a general need for more accurate structural modeling. For a single-

degree-of-freedom (SDOF) model of a structure subjected to an external load, appropriate

factors are usually taken from the classical text of Biggs [5]. These factors, based on an

assumed deformation shape, aid in establishing equations of motion for elastic, elastic-plastic

and plastic response. However, as shown in the master�s thesis of the current author [6],
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this procedure tends to grossly overpredict de�ections for thin metallic plates. The linear

resistance functions tabulated in Ref. [5] seem to be more applicable for reinforced concrete

slabs. Conversely, cubic functions are required for metallic plates in order to better capture

these plates�internal resistance to deformation via membrane stretching. In Ref. [6], this

conclusion is reached primarily on representative example calculations.

1.2 Dissertation Contribution

The simpli�ed large de�ection, elastic-plastic plate model of the current author�s earlier

work [6] is outlined in this dissertation. Moreover, this structural model is validated

through comparison with both �nite element and previously published experimental results.

Suggestions for improvement to this model are made, which include retaining higher-order

modal terms in the elastic regime and incorporating a box shaped deformation pattern in

the plastic regime. As opposed to using only a common moment balance approach, the

current author develops equations of motion (Eqs. 6.19 and 6.20) for the box shaped pro�le

via an energy rate balance. Furthermore, this simpli�ed plate model is extended for use

with cylindrical shells subjected to an internal blast pressure.

Whereas Ref. [6] considers only uniform blast loading, this dissertation also examines

nonuniform pressure distributions. It is shown that for close-in explosions, a nonuniform

distribution is necessary to capture the correct maximum structural displacement. Only

once the charge is moved a substantial distance away from the target area does the loading

become approximately uniform. As very few papers discuss this transition region or give a

numerical value for the required �substantial distance,�a means of gauging when a uniform

explosive pressure loading can be assumed is proposed here. The resulting normalized cri-

teria are de�ned by Eqs. 4.6 and 4.8. These criteria are later evaluated through comparison

with the �nite element results of two charge sizes at various stando¤s.

Other current practices for modeling an explosive pressure load are also thoroughly

examined. It is found that while blast parameters such as incident and re�ected pressures

are widely available in the literature, others like re�ected decay constant are not. Figure

4.8 displays the value of this previously unavailable parameter, showing the large di¤erence
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between it and its unre�ected analog.

It is also found that there are many inconsistencies in these commonly used methods

that have yet to be acknowledged in the literature. For example, this dissertation shows

that the approximate relationship between side-on and re�ected values of pressure and

impulse given in Refs. [1, 2] (Eq. 2.15) rarely holds. Furthermore, Fig. 4.6 shows that the

tabulated impulse data of Kinney and Graham [3] signi�cantly di¤er from those attained

via a supplied equation within the same text. Meanwhile, Fig. 4.7 reveals there are even

greater deviations between the loading duration values in the aforementioned text [3] and

those produced by ConWep [4].

Furthermore, this dissertation uses a methodology similar to that of Bogosian et al. [7]

to establish appropriate error bounds for the �deterministic�blast data given in Refs. [2�4].

With ranges of applicability de�ned for each blast parameter, a Monte Carlo scheme is

incorporated to generate trial sets of these parameters for input into the simpli�ed plate

model of Ref. [6]. As a result, con�dence bounds are also placed on the output, maximum

plate de�ections. This procedure allows for the generation of probability of failure curves

(see Fig. 5.12), which are useful in structural design, for various loading conditions.

Moreover, the importance of some secondary factors are examined. One factor is the

inclusion of re�ected pressures past an incident angle of 40�, where Mach e¤ects may be

introduced. Another is consideration of the negative pressure phase. Many studies ignore

both factors, but each may become signi�cant when dealing with close-in explosions of

lightweight structures. The end result of this analysis is the preliminary development of a

closed form nonuniform pressure history, variant in both space and time.

The procedures described above are by no means limited to only aircraft structures. In-

deed, only a handful of comparable works study that particular problem (e.g., Refs. [8, 9]).

Instead, most experimental research (e.g., Refs. [10�12]) has focused on the general blast

loading of metallic (aluminum and primarily steel) plates. In particular, these experimental

studies examine the various plate failure modes (e.g, large inelastic de�ection and shear fail-

ure). Some form of simpli�ed structural response prediction (e.g., Ref. [13]) almost always

accompanies the experimental results provided in these studies. As such, the methods used

in this dissertation have a wide range of applicability.
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1.3 Dissertation Outline

Chapter 2 covers the basic concepts related to explosive loading. The modi�ed Fried-

lander equation (see Eq. 2.1) is presented as a simple, yet accurate representation of an

explosion�s pressure-time history. Blast scaling is introduced as a means of organizing the

parameters in this equation, which are determined experimentally from tests on charges

having various sizes and stando¤s. Both side-on and re�ected blast parameters are cov-

ered, but the discussion in Chapter 2 is limited to pressures acting at a single point in air

or acting uniformly across a target area.

The uniform pressure pro�le developed in Chapter 2 is used as input into the various

plate equations of motion of Chapter 3. These equations comprise the elastic-plastic struc-

tural model with yield condition proposed in the master�s thesis of the current author [6]

for both simply supported and clamped boundary conditions. This model is summarized in

Chapter 3, and then validated with both �nite element and experimental data for maximum

and permanent deformation due to uniform blast loading.

Chapter 4 suggests improvements to the loading model of Chapter 2. A procedure for

calculating a nonuniform pressure load is outlined, which motivates the development of a

more generalized pressure function. In addition, two normalized criteria are proposed to

aid the designer in determining when a uniform load can be used in lieu of the more compli-

cated nonuniform distribution. Furthermore, various specialized e¤ects and inconsistencies

associated with blast scaling are detailed.

Chapter 5 compares the plate de�ection results obtained from the uniform pressure

model of Chapter 2 with those from the nonuniform model of Chapter 4. A �nite element

model is also used to compare these results. Moreover, the normalized criteria proposed in

Chapter 4 are evaluated, leading to recommendations for their use. Additionally, the blast

parameter uncertainties addressed previously are incorporated into a Monte Carlo scheme

to determine mean de�ections and con�dence bounds. Likelihood of failure curves are

developed from these statistics.

Furthermore, Chapter 6 suggests some improvements to the elastic-plastic structural

model introduced in Chapter 3. These suggestions include modifying the assumed elastic
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deformation shape by using a higher-order Fourier series expansion or changing the asso-

ciated exponent of Eq. 3.12. Moreover, the plastic equations of motion are changed to

correspond to a box shaped deformation pattern. Attempts are made to smooth the tran-

sition between the elastic and plastic phases, as well as to include material damping. In

addition, the supplied plate equations are extended for use with cylindrical shells.

Finally, Chapter 7 o¤ers conclusions pertaining to the covered material. Some possible

areas of future work are also suggested. Meanwhile, sample computer programs used in

this dissertation are provided in Appendices A and B. Further details regarding the box

shaped deformation pattern are shown in Appendix C.
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Chapter 2

Typical Explosive Loading Model

The methods described in this chapter summarize those presented in numerous sources

in the open literature. Baker and his associates [1, 2] provide an excellent background

of the fundamentals of explosive loading. The former text provides extensive theory and

experimental data as related to external loading, while the latter adds material on internal

blasts and simpli�ed structural response. Kinney and Graham [3] give a less detailed

treatment of these topics, while discussing explosions in air in a compressible �uids context.

Many key parameters are related to an appropriate Mach number, as opposed to only an

incident pressure or scaled distance as in Refs. [1, 2]. Numerous empirical relationships

for both chemical and nuclear explosions are also provided in Ref. [3]. It should be noted

that the structural response coverage in Refs. [2, 3] originate from the de�nitive structural

dynamics text of Biggs [5].

Some more classical work on explosions assuming a point source can be found in Refs.

[14�16]. These works are a sampling of the vast research performed by Taylor [14, 15]

and von Neumann [16], which are collected in multiple volume sets covering such topics as

the formation, propagation and decay of detonation waves, Mach e¤ects and oblique shock

re�ection. Furthermore, Brode [17] numerically simulated the motion of an explosive gas

assuming a spherical wave from a point source. He provides empirical relationships for

positive and negative phase blast parameters as a function of scaled distance. In addition,

Brode [18] examined the similar propagation coming from a spherical TNT charge.

As one may �nd it di¢ cult to obtain the older texts and articles mentioned above,

some modern, general sources are also provided. These sources are supplemented with

recent research on blast loading throughout this chapter. Smith and Hetherington [19]

thoroughly capture the important loading and response aspects of the Baker texts [1, 2],
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while Beshara [20, 21] reviews only the loading model in these references, but for both

internal and external blasts. Additionally, Bulson [22] gives a lengthy history of explosives

research, covering not only explosions in air, but also underwater, underground and in

tunnels. Meanwhile, Tedesco et al. [23] present a complete overview of blast loads on

structures, inclusive of oblique re�ections, in Chapter 19 of their structural dynamics text.

Florek and Benaroya [24] review the e¤ects that the shape of a pressure pulse has on the

response of both aviation and more general engineering structures. Finally, in a more

current review article, Zhu and Lu [25] summarize the various failure modes and modal

approximations of plastic structures due to blast and impact loading. A focus is placed on

experimental and numerical modeling of metal and sandwich beams and plates.

2.1 Side-On Blast Parameters

The pressure-time history in Fig. 2.1 captures the major trends of an explosion as

would be recorded by a pressure transducer some �nite distance away from the charge.

Initially, there is zero overpressure (i.e., only ambient pressure Po acts at the transducer).

Once the blast wave reaches the gauge, there is a near instantaneous rise to a peak side-on

overpressure (Ps), where �side-on� refers to an impact without re�ection, usually acting

tangential to a surface. This peak is followed by a sharp decay back to zero overpressure.

This positive pressure phase has a duration of Ts, typically lasting only a few milliseconds,

and an impulse (i.e., the area under the pressure-time curve) denoted by is.1

The positive phase is followed by a negative pressure phase, which generally has a much

smaller impulse. Due to this fact and that an underpressure would reduce the amount

of transverse de�ection, the negative phase is usually ignored during a structural analysis.

Indeed, only the positive phase is considered by the popular, numerical blast wave generator

ConWep [4]. However, as noted by Baker et al. [2] and detailed in Section 4.2.1, in certain

situations, the negative phase can become signi�cant.

The positive pressure phase in Fig. 2.1 can be mathematically described by the modi�ed

1Throughout this dissertation, impulse is given in units of pressure multiplied by time (e.g., Pa�s or
bar�ms), as opposed to the more traditional units of force multiplied by time (e.g., N�s).
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Figure 2.1: Typical blast wave pressure-time history with parameter de�nitions.

Friedlander equation (e.g., Ref. [26]), namely

p(t) = Po + Ps(1�
t� tA
Ts

)e��(t�tA)=Ts , (2.1)

where tA is the time it takes for the blast wave to initially strike the target, and � is the

exponential time constant. Equation 2.1 is a commonly accepted compromise between a

simple triangular load (where � = 0) and more complicated expressions that incorporate

additional curve-�t parameters [1]. Triangular loads, as frequently used in blast design

charts (e.g., Ref. [5]), preserve the peak pressure and impulse of a blast wave. This results

in a �ctitious duration time equal to 2is=Ps, which is less than the measured Ts, as shown

in Fig. 2.2. Moreover, when maximum structural response occurs early relative to Ts, the

decay rate of the pressure model should match that of the actual blast wave [20]. Per Fig.

2.2, this would result in both a �ctitious duration and impulse, both much smaller than

actually measured, for a simple triangular pro�le. As it incorporates more parameters to

better match the actual blast wave pressure-time history, the Friedlander waveform does

not pose this latter issue. Furthermore, Eq. 2.1 has an advantage over a simple exponential

decay, where the (1 � t�tA
Ts
) term is removed, in that p(t) reduces to ambient pressure at

some �nite time.

Since parameters Ps, Ts and is are recorded experimentally, � is typically determined by

setting is =
R tA+Ts
tA

p(t)dt. Evaluating this integral with p(t) as de�ned in Eq. 2.1 results

in the transcendental equation

is = PsTs

�
1

�
� 1

�2
+
e��

�2

�
. (2.2)
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Figure 2.2: Comparison of approximate pressure-time histories for Z = 1 m/kg1=3: � � ,
Friedlander waveform; ���, triangular load preserving impulse; � � � � �, triangular load
preserving initial decay rate.

However, as noted in Refs. [1,3], � can also be obtained by matching the initial decay rate

of an actual blast load, namely dp=dt at t = tA. This method becomes necessary for the

case of early maximum response as mentioned above.

2.2 Blast Scaling

The parameters listed above can be attained graphically from Fig. 2.3 or from various

sources (e.g., Refs. [2, 19,23]) as a function of the scaled distance Z, de�ned by

Z = R=W 1=3. (2.3)

Here, R is the stando¤ distance from the blast origin to the target, and W is the mass

equivalent of trinitrotoluene (TNT), a measure of potential blast energy. This �cube-root

scaling�allows a wide range of experiments to be compared, assuming all rate-dependent

and gravity e¤ects are negligible, and that self-similar blast waves are formed by charges

of the same explosive and geometry detonated at the same scaled distance under the same

atmospheric conditions [1]. When comparing tests of di¤erent explosives, it is assumed
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Figure 2.3: Side-on blast parameters for a spherical charge as a function of scaled distance,
where the following units are used: Ps (bar), i=W 1=3 (bar-ms/kg1=3), Ts=W 1=3 and ta=W 1=3

(ms/kg1=3). Data from Refs. [2, 4].

that similarity exists for explosives having the same mass equivalence. This notion of TNT

equivalence is explored further in Section 4.2.3.

The concept of self-similar blast waves per the cube-root scaling law is shown graphically

in Fig. 2.4.2 A measuring device a distance R away from a detonating charge of diameter d

records a peak pressure P , impulse is, positive duration T and arrival time ta. Theoretically,

a measuring device a distance KR away from a detonating charge of diameter Kd should

record the same pressure as before, with all other parameters being scaled by the factor K.

As detailed in Refs. [1, 29], the scaled parameters in Fig. 2.3 arise from a nondimensional

analysis with a constant ambient pressure and speed of sound factored out, and energy

assumed to be directly proportional to charge mass.

2The scaling represented by Eq. 2.3 is commonly referred to as �Hopkinson scaling�or �Hopkinson-Cranz
scaling� in honor of the independent work of Hopkinson [27] and Cranz [28].
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Figure 2.4: Geometric representation of Hopkinson-Cranz blast wave scaling [1].

For example, a 1 kg spherical TNT charge 1 m away from a given point on a target

would have a Z value of 1 m/kg1=3.3 From Fig. 2.3, such a charge produces a blast with

a peak side-on pressure of roughly 9.35 bar,4 a duration of 1.8 ms and an impulse of 1.75

bar�ms. Inserting these values into Eq. 2.2, � = 8:5. These parameter values can be

substituted into Eq. 2.1 (with relative arrival time set to zero) to establish a pressure-time

history at the given point. An 8 kg TNT charge with a stando¤ of 2 m would also have a Z

value of 1 m/kg1=3. However, while Ps and � retain their values from the previous example,

Ts=W
1=3 = 1:8 ms/kg1=3 now implies that Ts = 3:6 ms. Similarly, is = 3:5 bar�ms.

The curves in Fig. 2.3 are the best-�t traces of Kingery and Bulmash [30,31] to the com-

piled data of many experiments on TNT and pentolite charges (e.g., Refs. [32,33]). These

traces, which are reproduced by the computer program ConWep [4], are nearly identical to

those presented by Baker et al. [2] for Z < 10. The proximity of the experimental data

over a wide range of both stando¤ distance and charge mass serves to prove the cube-root

scaling law. Yet, the shapes of the provided parameter curves are troubling. While one

expects the pressure curve to decrease as scaled distance increases, as is predicted by the

classical point source analysis of Taylor [15], the duration time curve should monotonically

increase with Z value. Clearly, this is not the case for duration time in Fig. 2.3, where

there is a relative maximum near Z = 1:1. Additionally, the scaled impulse curve also

3These units for Z are implied, if not stated, throughout the remainder of this dissertation.

4Standard atmospheric pressure is 1.01325 bar, where 1 bar equals 100 kPa or 14.504 psi.
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shows a relative maximum, but at Z = 0:8.

Only a few sources [34,35] mention the kinks in these curves, but none were found that

actually explain why the kinks are present. Through personal correspondences, Baker [36]

and Gatto [37] give their reasonings. Baker [36] claims that upon reaching the charge radius,

the blast wave formed by the exploding products within the charge re�ects a rarefaction

wave back towards the center of the charge.5 It is apparently this rarefaction wave and

the one that rere�ects at the charge center that, in part, cause the oscillatory behavior

in scaled duration at small Z values. The interaction between the expanding detonation

products and air also contributes to this behavior. At the interface between these two

media, properties such as density and speed of sound become altered from their ideal values

(see Eqs. 2.11 and 2.12). This, in turn, results in a distortion of the ideal blast curve for

air, particularly at distances close to the charge.

Furthermore, according to Gatto [37], the kink in the impulse curve arises from the fact

that pressure decreases and blast duration generally increases as Z increases. At small

scaled distances, the blast wave acts at a very high pressure over a very small time. For

larger distances, the blast wave acts at a small pressure, but over a longer period. As

a result, there reaches a point near Z = 0:8 where impulse achieves a relative maximum.

These thoughts are echoed by Brode [18], who notes a dip in impulse when the internal

energy of a spherical TNT blast reaches a minimum concurrently with the kinetic energy

achieving a maximum. Brode [18] claims the dip to be arti�cial in that the phenomenon

discussed by Baker [36] causes a premature end to the positive pressure phase. A reduced

duration time, in turn, leads to a reduced impulse.

2.3 Simpli�ed Parameter Relationships

As an alternative to charts such as Fig. 2.3, blast parameters can be determined as

relatively simple functions of Z from curve-�t equations. As stated above, the parameter

traces in Fig. 2.3 are indeed themselves curve �ts to experimental data. However, the

polynomial equations associated with each parameter are unwieldy, involving logarithmic

5More details on wave re�ection can be found in Section 2.4, while more details on spherical charges and
rarefaction waves can be found in Chapter 4.
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and exponential functions of as high as ninth-order terms. In addition, some parameters

need two or three sets of such equations to describe their behavior over the entire range of

scaled distances, like Eqs. 2.8aa-c below. These complicated polynomial expressions can

be found in Refs. [30,38].

A popular set of simpler equations is provided by Kinney and Graham [3], who developed

asymptotic, Bode-type relations commonly used in control theory (e.g., Ref. [39]). For

chemical (i.e., non-nuclear) explosions, these equations are as follows:

Ps =
808Po

h
1 +

�
Z
4:5

�2irh
1 +

�
Z

0:048

�2i h
1 +

�
Z
0:32

�2i h
1 +

�
Z
1:35

�2i , (2.4)

where the units of Ps match that of Po, and

Ts

W 1=3
=

980
h
1 +

�
Z
0:54

�10ih
1 +

�
Z
0:02

�3i h
1 +

�
Z
0:74

�6iq
1 +

�
Z
6:9

�2 , (2.5)

where Ts is in units of milliseconds andW is in kg TNT. It should be noted that Beshara [20]

incorrectly states that Z is scaled for the energy release of 1 kt (kiloton) of TNT, which

would be appropriate for a nuclear explosion.

Additionally, Kinney and Graham [3] provide the impulse relation

is =
0:067

q
1 +

�
Z
0:23

�4
Z2

3

q
1 +

�
Z
1:55

�3 , (2.6)

which is based on independent data for chemical explosions with is in units of bar�ms. This

formula assumes a charge mass of 1 kg TNT. However, the validity of Eq. 2.6 is brought

into question in Section 4.3.2.

Many works use Eqs. 2.4-2.6 over a wide range of Z values. For example, Akerman

et al. [40] applied Eq. 2.4 to calculate the peak pressure acting on eight fuselage shielding

panels in experimental tests of explosions onboard an aircraft. In their study, charges with

scaled distances of 1.39 and 1.75 m/kg1=3 were exploded either bare or in �lled suitcases

near shields of two di¤erent densities. Further, Jacinto et al. [41] made use of Eqs. 2.4 and

2.5 to approximate the pressure-time history of shock waves caused by four explosions with

13:9 � Z � 55. The resulting triangular load was modi�ed to account for a clearing time
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(see Section 4.2.2) before being input into the �nite element code ABAQUS for comparison

with experimental data. Additionally, Koper et al. [42] used Eqs. 2.4-2.6 in an attempt to

estimate the yields of four car bomb explosions. Only the pressure equation was found to

give accurate results, but scaled distances were limited to Z > 64.

Furthermore, using the parameter data in Table XI of Ref. [3], Wei and Dharani [43]

developed their own curve �t equations for peak side-on pressure, duration time and decay

constant, namely

Ps
Po

=
0:696

Z
+
2:1

Z2
+
4:13

Z3
; (2.7a)

Ts

W 1=3
= 24:44Z1=5 � 0:0316

Z
� 40:99; (2.7b)

� = �0:0697Z � 9:63
Z

+
15:9

Z2
� 5:65
Z3

+ 2:735. (2.7c)

Equations 2.7aa-c made it easier for Wei and Dharani [43] to implement the modi�ed Fried-

lander waveform into their equations of motion of a laminated glass panel subjected to

blast loading. Their model was used to simulate four experimental cases with Z = 8:45 or

Z = 13:9. It should be noted that Eqs. 2.7aa-c have been modi�ed by the current author

to work with metric units. This modi�cation produces more manageable coe¢ cients (the

maximum is 15.9 in Eq. 2.7ac) than those originally given by Wei and Dharani [43], where

some constants exceeded 100,000.

Some additional equations for side-on pressure in terms of scaled distance are provided

in Refs. [19, 20, 22]. For example, the inverse polynomial expressions of Henrych [44] are

given as

Ps =
14:072

Z
+
5:54

Z2
� 0:357

Z3
+
0:00625

Z4
(for 0:053 � Z � 0:3); (2.8a)

Ps =
6:194

Z
� 0:326

Z2
+
2:132

Z3
(for 0:3 � Z � 1); (2.8b)

Ps =
0:662

Z
+
4:05

Z2
+
3:288

Z3
(for 1 � Z � 10), (2.8c)

where Ps is measured in bar. Brode [17] uses equations of a similar form with as high

as third-order terms, like Eqs. 2.7aa and 2.8ab-c.6 However, as shown in Ref. [19], Eqs.

2.8aa-c are a better match of experiment results than Brode�s equations [17] for short-range

6The theoretical pressure-distance solution of a spherical charge (e.g., Ref. [15]) is a one-term inverse
cubic of Z.
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explosions (i.e., Z < 0:3). It should be noted that Ref. [20] incorrectly provides Eq. 2.8cc

with a minus sign on the inverse cubic term.

Moreover, Philip [45] suggests the form

Ps =
a1
Z
exp

�
b1=Z

1=2
�
, (2.9)

where a1 and b1 are empirically obtained constants. Meanwhile, Philip [45] proposes a form

of Ts=W 1=3 similar to that of Eq. 2.9, but with the 1=Z term removed and the constant b1

negative. As for impulse, Philip [45] �nds that is=W 1=3 is proportional to 1=Z. Held [46]

revisits this impulse relationship, citing that the proportionality constant B ranges between

1-10 bar�ms�m/kg2=3, with a mean value of 3 bar�ms�m/kg2=3. In contrast to Ref. [45],

Held [46] presents a pressure that is proportional to 1=Z2, with linear constant A ranging

between 6-60 bar�m2/kg2=3, having a mean of 20 bar�m2/kg2=3. Here, the given lower

bounds for A and B are for side-on blasts, while the upper bounds are more appropriate for

head-on re�ected blasts (see Section 2.4). Held [46] warns though that the given values for

A and B result in only order of magnitude estimates of peak pressure and impulse. These

estimates are applicable exclusively as �rst approximations for the respective parameters.

Furthermore, Collins [47] assumes Ps to be an exponential function of A=(Z +B)� C,

where again A, B and C are obtained empirically. A primary goal of these researchers

[3,17,43�47] is to mathematically represent the curves in Fig. 2.3 as simply and as accurately

as possible to ease the complexity of analytical and numerical calculations. Figure 2.5

compares the pressure-scaled distance relations given by these authors. It is clear that

there is a wide discrepancy between the various sources for Z � 0:5, with the exponential

�t of Collins [47] yielding the lowest pressures for close-in explosions (Ps = 243 bar at

Z = 0:053).7 The most popular sources (i.e., Refs. [3, 4]), meanwhile, are within 10% of

one another for all Z � 6. In contrast, the remaining curve [44] in the lower pressure

set [3,4,44,47] only comes within 10% of the ConWep [4] data for a small window between

Z = 0:2 and Z = 0:35, and later for Z � 2.

The other curves [17, 43, 45, 46] in Fig. 2.5 appear to grossly overestimate pressure

7The minimum possible Z value is 0.053, which corresponds to the outer radius of a spherical TNT charge
with density 1600 kg/m3 [19].
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Figure 2.5: Comparison of pressure-scaled distance relationships presented by various
sources. The two curves attributed to Ref. [46] are lower and upper bounds.

for Z < 0:5 before more or less collapsing onto one another for higher scaled distances.

However, caution should be taken especially when using the curves of Refs. [17,43,45,46] as

the logarithmic scaling of Fig. 2.5 can make the pressure values seem closer than they really

are. For example, at Z = 0:5, the various pressure models still have a fairly large spread

between 28 and 55 bar. Of particular note amongst the higher pressure set curves are that

of Wei and Dharani [43] and Held [46]. As mentioned earlier, the former is supposed to be a

best �t of the data within Ref. [3]. However, in Fig. 2.5, Wei and Dharani�s approximating

function is only within 10% of Kinney and Graham�s data [3] for 0:5 � Z � 0:6 and Z � 5:5.

Furthermore, the upper bound of Held [46] seems to be overly conservative for all scaled

distances. It is much more appropriate for the re�ected pressures of the next section. In

contrast, his lower bound is fairly representative for Z � 0:2, even though it does not give

the lowest pressures amongst Refs. [3, 4, 17, 43�45, 47] for much of the Z range. Some of

the curves in Fig. 2.5 are used by the current author in Chapters 4 and 5 to develop levels

of uncertainty in published blast pressure data.
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2.4 Re�ected Blast Parameters

When a blast wave �rst comes in contact with a surface, the incident wave re�ects, caus-

ing an increase in pressure [1]. This pressure increase is due to two separate phenomena�

acoustic doubling of the incident pressure and the dynamic pressure qs bringing the com-

pressed air to rest at the re�ecting surface. Quantitatively, for shocks acting normal to a

rigid re�ecting surface,

Pr = 2Ps + (
 + 1) qs, (2.10)

where Pr is the re�ected overpressure, and 
 is the speci�c heat ratio of the compressed air.

Using the Rankine-Hugoniot equations [48] to relate shock front density �s and particle

velocity us to their respective ambient counterparts �o and uo,

�s = �o
(
 + 1)Ps + 2
Po
(
 � 1)Ps + 2
Po

(2.11)

and

us = Ps

s
2

�o [(
 + 1)Ps + 2
Po]
. (2.12)

Although Eqs. 2.11 and 2.12 look complicated, they arise essentially from a mass and energy

balance across the shock (see Ref. [1]). As qs = �su
2
s=2, substituting Eqs. 2.11 and 2.12

into Eq. 2.10 yields

Cr �
Pr
Ps
= 2

�
(3
 � 1)Ps=2 + 2
Po
(
 � 1)Ps + 2
Po

�
, (2.13)

where Cr is termed the re�ection coe¢ cient. This expression is a reworked version of Eq.

3-3 given in Ref. [2] and of the analogous Eq. 5-12 in Ref. [3], where Cr is in terms of

absolute peak pressure Ps + Po instead of overpressure.

Typically, air is considered to behave as an ideal gas so that 
 = 1:4 for all pressures.

Inserting this value for the speci�c heat ratio into Eq. 2.13,

Cr = 2
4Ps + 7Po
Ps + 7Po

. (2.14)

For weak shocks (i.e., Ps � Po), the acoustic term in Eq. 2.10 dominates the dynamic term

so that Cr � 2. For strong explosions (i.e., Ps � Po), the dynamic term is dominant, and

the ambient pressures in Eq. 2.14 drop out, resulting in Cr � 8.
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However, there is contention between Refs. [1�3] as to whether the speci�c heat ratio

is constant for high pressures. Baker and his colleagues [1, 2] claim that air ionizes and

dissociates as shock strength increases, resulting in a variable 
 and a Pr that can be an

order of magnitude larger than the corresponding normal incident overpressure Ps. This

assertion is repeated by Smith and Hetherington [19] and Beshara [20] in their reviews of

blast loading on structures. Moreover, in their parametric study of re�ected shocks, Kingery

and Pannill [49] provide speci�c heat ratios varying between 1.119 and 1.402. Inserting


 = 1:2 into Eq. 2.13 yields an upper limit of Cr = 13, in-line with the charted data of

Refs. [1,2,4]. When 
 = 1:1, Cr can reach a value of 23, near the maximum possible value

cited in the references above.

In contrast, Kinney and Graham [3] state that the upper limit for re�ection coe¢ cient

in air is Cr = 8. As shown in Fig. 2.6, using Eq. 2.14 with the stated upper bound gives

better approximations as scaled distance increases. There is at least a 5% error between

the curves for Z < 0:65, at least a 10% error for Z < 0:5, and at least a 20% error for

Z < 0:27. The maximum deviation of 37.7% occurs at Z = 0:053. It should be noted

that the limit assertion of Ref. [3] is erroneously copied in the textbooks of Bulson [22]

and Tedesco et al. [23], as well as in the work of Kambouchev et al. [48], who studied

�uid-structure interaction problems as related to blast loading.

It appears that the re�ected pressure distribution, ignoring re-re�ections, can be de-

scribed by substituting Pr for Ps in Eq. 2.1. This claim, which is brought into question

in Section 4.3.3, gains credence in that only pressure and impulse typically have re�ected

analogs in published charts. Figure 2.7 compares the side-on and re�ected values of these

parameters. In contrast, arrival and duration times, as well as decay constant, are usually

only given one value. For the analysis of Chapter 3, it is assumed that tA, Ts and � retain

their values for a re�ected blast wave. The arrival time equivalency is obvious since the

presence of a re�ecting surface has no bearing on the time it takes for the blast wave to reach

said surface. Meanwhile, Baker [1] provides some data for a re�ected positive duration Tr

di¤erent than Ts. But since the amount of collected data is sparse and measuring duration

time is at times arbitrary [34], duration time equivalency is more out of convention.
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If the above assumptions are correct, the approximation [2]

Pr
Ps
� ir
is

(2.15)

between re�ected and side-on values of pressure and impulse should hold. A value for

Pr can be determined from Fig. 2.7 or similar re�ected blast parameter charts in the

literature. Alternatively, since Pr = CrPs, Pr can be calculated by extracting appropriate

values from Figs. 2.3 and 2.6. Luccioni et al. [50] used Eq. 2.15 in conjunction with Eq.

2.14 and the tabulated impulses of Ref. [3] (see Fig. 4.6) to determine re�ected impulses for

comparison with the hydrocode AUTODYN. They also incorporated Eqs. 2.8aa-c with Eq.

2.14 to calculate comparable re�ected pressures in their study of blast wave propagation on

buildings.

2.5 Uniform Loading

Thus far, only methods for determining the pressure-time history at a point some dis-

tance away from an explosion have been discussed. In order to compute an entire structure�s

response to a blast, the pressure-time history must be known at all points on the pressure-

acting surface. If a spherical charge is far enough away from the structure or if the target

area is su¢ ciently small, the blast wave from the exploding charge acts essentially like a

planar wave upon impact.8 Therefore, the pressure distribution can be assumed to act

uniformly across the target area, as shown in Fig. 2.8. When assuming a uniform pressure

distribution, only one scaled distance Z needs to be calculated. In Eq. 2.3, R would be the

normal measured from the center of the spherical charge to the �at target surface. Mean-

while, the equivalent massW for a non-TNT charge would be calculated by multiplying the

actual charge mass by an appropriate equivalence factor (see Section 4.2.3). This Z value

would then be used to �nd parameters Ps, Ts and � as described above. As the blast wave

reaches all points on the surface nearly simultaneously, the incident pressure distribution of

Eq. 2.1 becomes fully described by setting the reference arrival time tA = 0.

Most journal papers assume a uniform pressure distribution for simplicity, regardless

of application. Gupta et al. [51] considered the pressure due to a charge with Pr = 68:9

8The expression �far enough away�is clari�ed in Chapter 5.
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p(t)

Figure 2.8: Uniform transverse blast loading on a plate.

bar, ir = 79 bar�ms and Ts = 4 ms to be uniform across a 1:016 � 0:381 � 0:00127 m

hinged, steel plate. Meanwhile, Guven et al. [52] assumed that a 1� 0:45 m section of an

aluminum sandwich plate was subjected to a uniform triangular blast with a peak pressure

of 1 GPa and duration of 1 �s. Both of these studies [51,52] numerically model armor panels

for military applications. In contrast, Veldman et al. [8] experimentally and numerically

subjected a small section of an aircraft fuselage to an onboard explosion. Representative,

pre-pressurized 0:152� 0:152� 0:0016 m aluminum plates were exposed to the blasts from

two C-4 charges. The stando¤ distance of 1.52 m for both charges was deemed su¢ ciently

large so as to produce planar blast waves. Furthermore, in their numerical model, Louca

and Wadee [53] assumed a uniform blast was formed due to a hydrocarbon explosion acting

on a 2�1 m steel plate of variable thickness from an o¤shore structure. The aforementioned

work of Wei and Dharani [43] also incorporates entirely uniform loading. This approach is

further used throughout the analysis of Chapter 3.
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Chapter 3

Validation of Structural Model for Uniform Pressure Load

As noted by Teng et al. [54] and Nurick and Martin [55], relatively few papers in the

literature have considered the large de�ection, dynamic response of rectangular plates to an

applied load.1 In contrast, most address only static behavior or circular plates. Moreover,

the papers that do treat dynamic response typically consider either purely elastic or purely

plastic deformations, but not both. Timoshenko andWoinowsky-Krieger [57] derived elastic

governing equations using both w-u-v (assumed transverse and in-plane de�ection shapes)

and w-F (assumed transverse de�ection shape and Airy stress function) formulations. The

w-u-v formulation, although mathematically valid, may yield some unexpected values due

to the �rst order approximation of displacements u and v. Whether this method truly

conserves the plate�s total energy, even when keeping higher order terms, is questionable.

This point was remarked on by Lee [58, 59], who suggests using the alternative w-F for-

mulation instead. Indeed, Teng et al. [54] and Bauer [60] use this theory in their elastic

plate analyses, which deal with stress free boundaries and both stress free and immovably

constrained edges, respectively. Both of these papers incorporate the Galerkin method in

order to obtain nonlinear equations of motion related to their assumed transverse de�ection

shape. This same procedure was used more recently by Wei and Dharani [43] and by Lai et

al. [61], who examined the possible chaotic behavior of simply supported plates subjected

to an arbitrary loading.

As for purely plastic analyses, Jones [62,63] and Yu and Chen [64] also assume the plate�s

de�ection shape. Their deformations are not sinusoidal, however, but rather they consist of

either four or �ve rigid sections separated by plastic hinges, where all energy dissipation is

1This chapter is a modi�ed version of work by Florek and Benaroya [56]. Further details of the structural
model herein can be found in Ref. [6].
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concentrated. These methods, along with those reviewed by Nurick and Martin [55], prove

to be suitable when pressures are in excess of the static collapse load, so elastic e¤ects can

be ignored entirely.

Conversely, when the pressure does not remain above the collapse load, as is the case with

an exponentially decaying load, elastic deformations may be signi�cant. In this situation,

an elastic-plastic model is needed. Typically, such models are entirely numerical, relying on

�nite element runs for a solution. However, as stated in Chapter 1, single-degree-of-freedom

(SDOF) systems can serve as valuable design tools. Biggs [5] suggests breaking an SDOF

plate model into elastic, elastic-plastic and plastic parts, each governed by a linear equation

of motion with a di¤erent transformed sti¤ness. However, as also noted in Chapter 1, for

large de�ections, these linear sti¤ness terms do not adequately represent the plate�s internal

membrane resistance. A nonlinear sti¤ness is needed so as not to severely overestimate the

amount of de�ection caused by an applied pressure.

In this vein, Singh and Singh [65] propose using Bauer�s [60] nonlinear elastic formulation

for thin plates subjected to a decaying pressure pulse up until a gross yield condition is met.

At this point, Singh and Singh [65] suggest using the rigid plastic method of Johnson and

Mellor [66] to estimate the plastic deformation attained during the remaining application

of the load. This simple procedure was originally modi�ed in the master�s thesis of the

current author [6], where the hinge line method of Jones [62,63] replaces the plastic model

of Ref. [66]. The important aspects of the resulting elastic-plastic structural model are

outlined in Sections 3.1 and 3.2. The remainder of this chapter serves to validate this

model through comparison with both �nite element and experimental results. Loadings

here are assumed to be completely uniform. Nonuniform loads, meanwhile, are considered

in the structural analysis of Chapter 5.
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3.1 Elastic Phase Structural Model

3.1.1 General Governing Equations

As given by Bauer [60], the two governing equations for dynamic response of an elastic

plate using the w-F formulation are

r4F = E
(�

@2w

@x@y

�2
� @

2w

@x2
@2w

@y2

)
(3.1)

and

Eh3

12(1� �2)r
4w + �h �w = p(x; y; t) + h

�
@2F

@y2
@2w

@x2
+
@2F

@x2
@2w

@y2
� 2 @

2F

@x@y

@2w

@x@y

�
, (3.2)

where E is the elastic modulus, h the plate thickness, � Poisson�s ratio, � the mass density

of the plate, p the pressure acting on the plate, and the operator r4 � @4

@x4
+2 @4

@x2@y2
+ @4

@y4
.

By de�nition, the Airy stress function F is related to the in-plane membrane stresses by

�x =
@2F

@y2
, �y =

@2F

@x2
and �xy = �

@2F

@x@y
. (3.3a-c)

Equations 3.1 and 3.2 comprise what is commonly referred to as von Kármán large

de�ection theory. However, in reality, de�ections per this theory are limited to the order

of the plate thickness since the aforementioned equations, which respectively follow from

continuity and a force balance, are derived assuming small strains and moderately large

rotations. As such, the expression �moderately large de�ection theory�may be a more

accurate description.

The de�ections in Eqs. 3.1 and 3.2 are assumed so as to satisfy the plate�s boundary

conditions. In this chapter, two such conditions are examined� entirely simply supported

edges and entirely clamped edges. The equations of motion for these two boundary cases

during the elastic phase are derived in Sections 3.1.2 and 3.1.3, respectively.

3.1.2 Simply Supported Plate

Assuming a sinusoidal, elastic de�ection shape as per Refs. [43,54,60,65], the transverse

de�ection of the plate in Fig. 3.1 is taken as

w(x; y; t) = hf(t) cos
�x

a
cos

�y

b
, (3.4)
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Figure 3.1: Plate geometry and coordinate system.

where f is an arbitrary time function, and a � b. Clearly, hf(t) gives the maximum plate

de�ection for all t. Equation 3.4 satis�es the simply supported boundary conditions that

there be no transverse de�ection along the plate edges (i.e., w = 0) and that the �exural

moments per unit length, namely

Mx =
�Eh3

12(1� �2)

�
@2w

@x2
+ �

@2w

@y2

�
(3.5a)

and

My =
�Eh3

12(1� �2)

�
@2w

@y2
+ �

@2w

@x2

�
, (3.5b)

equal zero along the boundaries x = �a=2 and y = �b=2, respectively. The latter constraint

is satis�ed in that each second partial derivative in Eqs. 3.5a-b is independently zero at the

speci�ed edges.

Meanwhile, per Bauer [60], the Airy stress function is assumed to be of the form

F (x; y; t) = F �(x; y)f2(t), (3.6)

where F � is an entirely spatial component, and f is the same function used in Eq. 3.4. As

the Airy stress function is related to the normal and shear stresses in the plate, it is also a

function of the mid-plane strains and, therefore, the mid-plane displacements u and v. So

instead of assuming a shape function for these displacements, as one would do in a w-u-v

formulation, u and v are now de�ned by

u =

Z x

0

(
1

E

�
@2F

@y2
� � @

2F

@x2

�
� 1
2

�
@w

@x

�2)
dx (3.7a)

and

v =

Z y

0

(
1

E

�
@2F

@x2
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2F

@y2

�
� 1
2

�
@w

@y

�2)
dy. (3.7b)



27

The �rst term in brackets in Eqs. 3.7a-b gives the total mid-plane strain in the appropriate

direction per theory of elasticity via Eqs. 3.3a-b. The second term removes the nonlin-

ear strain caused by transverse displacement w [57]. This leaves either @u=@x or @v=@y

remaining for integration.

Using Eqs. 3.1, 3.4, 3.6 and 3.7a-b, assuming the edges are immovably constrained (zero

displacement and shear stress) in the plane of the plate, the following expression for the

Airy stress function is found:

F (x; y; t) =
Eh2

32
f2(t)

�
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��
. (3.8)

Now substituting Eqs. 3.4 and 3.8 into Eq. 3.2 yields(
�h2 �f(t) +

Eh4�4
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��
f3(t) cos
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cos

�y

b
� p(x; y; t) = 0. (3.9)

As pointed out by Bauer [60], one cannot expect Eq. 3.9 to exactly satisfy the governing

Eq. 3.2. Changing the right side of Eq. 3.9 to read the residue R, the Galerkin method,

which assumes Z b=2

0

Z a=2

0
R cos

�x

a
cos

�y

b
dxdy = 0, (3.10)

is used to �nd the true nonlinear equation of motion for a simply supported plate,

�h �W +
Eh3�4

12a4(1� �2)

�
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b2
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�
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2

�
1 +
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b4

��
W 3 =

16

�2
p(t). (3.11)

Here, W is substituted for hf(t) for consistency with the plastic phase equations, which

are introduced in Section 3.2. Furthermore, as pressure is assumed to act uniformly across

the plate, p(x; y; t) reduces to p(t). It should be noted that the cosine terms in Eq. 3.10

correspond to the mode shape of Eq. 3.4. Changing the mode shape would also change

the Galerkin integral.
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3.1.3 Clamped Plate

For the case of a clamped plate, a similar procedure as detailed above was used by

Bauer [60]. However, in order to satisfy the new boundary conditions, namely that both

the transverse de�ection and slope be zero at the edges, the transverse de�ection shape of

Eq. 3.4 is modi�ed to

w = hf(t) cos2
�x

a
cos2

�y

b
. (3.12)

This form of the clamped de�ection shape is also used by Elgamel [67] in his study of the

large de�ection response of thin silicon diaphragms. Again assuming an Airy stress function

of the form given by Eq. 3.6, substitution of Eq. 3.12 into Eq. 3.1 yields
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, (3.13)

which was originally derived in Ref. [6]. Although Eq. 3.12 indeed satis�es the clamped

boundary conditions, the choice of an exponent n = 2 is arbitrary. Any exponent n > 1

will also give a function that yields no de�ection or slope at the plate edges. It appears

that n = 2 is chosen to facilitate the integrations involved with obtaining the Airy stress

function and subsequent equation of motion, namely Eq. 3.14. The implications of using

Eq. 3.12 as the assumed de�ection shape are further addressed in Section 6.1.

As was done before for the simply supported case, the expressions for de�ection and

stress function, now Eqs. 3.12 and 3.13, respectively, are substituted into Eq. 3.2, yielding

a rather lengthy expression. Also as earlier, all non-zero terms in this expression are brought

to one side, resulting in the residue R. Using the Galerkin method with the assumed mode

shape of Eq. 3.12, the equation of motion for a clamped plate is found to be of the nonlinear

form

�h �W +
4Eh�4

27a4(1� �2)
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��
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p(t), (3.14)

where Cf is roughly constant. For 0:25 � � � 0:35 and 1 � a=b � 2, Cf � 0:51. It should
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be noted that the linear and cubic terms were presented independently of one another in

the equation of motion provided by Bauer [60]. Converting his equation into the form of

Eq. 3.14, Cf � 0:52 for the same � and a=b ranges. In all cases, Cf tends to decrease

slightly as � decreases and a=b increases. Equation 3.14 is generalized for a nonuniform

pressure in Section 5.1.3.

3.1.4 Yield Condition

However, Eqs. 3.11 and 3.14 are only valid in the elastic range. Once yielding occurs,

another method must be employed to calculate the plate�s plastic deformation. But before

incorporating this new procedure, a yield condition must �rst be established to signify the

transition between elastic and plastic regimes. Singh and Singh [65] suggest using a von

Mises yield criterion. Per Massonnet [68], the von Mises yield condition is given by

Yc �
M2
x +M

2
y �MxMy + 3M

2
xy

M2
0

+
N2
x +N

2
y +NxNy + 3N

2
xy

N2
0

� 1 = 0, (3.15)

where Mk and Nk represent the elastic bending moments per unit length and membrane

forces per unit length, respectively, in either the x, y or xy direction. Meanwhile, M0 is

the plastic bending moment per unit length, and N0 the plastic membrane force per unit

length. These quantities are de�ned as in Eqs. 3.5a-b and as
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and N0 = �0h, (3.16c-f)

where �0 is the dynamic yield stress for the plate material. For convenience, Eq. 3.15 is

rewritten as

Yc � Ym + Yn � 1 = 0.

For a simply supported plate, by substituting Eq. 3.4 into Eqs. 3.5a-b and 3.16a-b, the

�rst term of Eq. 3.15 becomes, after evaluating at the plate center (x = y = 0),

Ym(x; y; t) =
E2h4�4f2(t)

9a4b4�20(1� �2)2
��
a4 + b4

�
(�2 � � + 1)� a2b2(�2 � 4� + 1)

�
. (3.17)
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Similarly, substituting Eq. 3.8 into Eqs. 3.16c-f, the second term of Eq. 3.15 becomes

Yn(x; y; t) =
E2h4�4f4(t)

64a4b4�20(1� �2)2
��
a4 + b4

�
(�4 � �3 � 3�2 + 2� + 4)

+a2b2(�4 � 4�3 � 3�2 + 8� + 4)
�
. (3.18)

Therefore, by Eqs. 3.15, 3.17 and 3.18, the yield condition at the center of a simply

supported plate is of the form

Yc =
E2�4

a4b4�20(1� �2)2

�
Ln
64
W 4 +

Lmh
2

9
W 2

�
� 1 = 0, (3.19)

where Lm and Ln are functions of a, b and �, given respectively by the bracketed terms in

Eqs. 3.17 and 3.18. The yield condition given by Eq. 3.19 is said to be satis�ed when Yc

�rst takes on a non-negative value. As noted in Refs. [6, 56], Eq. 3.19 di¤ers substantially

from the analogous expression for yielding presented by Singh and Singh [65].

A similar procedure is used to determine the yield condition of a clamped plate. First,

Eq. 3.12 is inserted into Eqs. 3.5a-b and 3.16a-b. Then, Eq. 3.13 is inserted into Eqs.

3.16c-f. After combining the resulting expressions through Eq. 3.15, one �nds that the

yield condition at the center of a clamped plate is of the form

Yc =
E2�4

a4�20

�
L�n
1024

W 4 +
4Lmh

2

9b4(1� �2)2W
2

�
� 1 = 0, (3.20)

where Lm and L�n are functions of a, b and �. Lm is again given by the bracketed term in

Eq. 3.17, while L�n = A
2 +AB +B2, where

A =
3

(1� �2)

�
1 + �

a2

b2

�
+ 5 +

4a4

b4

�
2

(1 + a2=b2)2
+

4

(1 + 4a2=b2)2
+

1

(4 + a2=b2)2

�
and

B =
3

(1� �2)

�
� +

a2

b2

�
+
5a2

b2
+
4a2

b2

�
2

(1 + a2=b2)2
+

1

(1 + 4a2=b2)2
+

4

(4 + a2=b2)2

�
.

3.2 Plastic Phase Structural Model

When a plate is subjected to a loading, it deforms elastically up until yielding �rst

occurs at any point in the plate. At that time, with the addition of more load, both elastic

and plastic deformations take place throughout the plate until the entire plate yields. At
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that time, only plastic deformations continue to occur until the load is removed or at least

substantially diminished below the static collapse load (pc � 24M0=b
2 for a simply supported

square plate).

But assuming, like Massonnet [68], that elastic-plastic interactions are negligible in a

membrane, the SDOF deformations here are either purely elastic or purely plastic. The

total deformation found by simply adding these two de�ections is a reasonable approxima-

tion when both elastic and plastic deformations are signi�cant. This assertion is further

addressed in Sections 3.2.4 and 3.4.3.

The methods of the preceding sections allow the central elastic de�ection of a rectangular

plate to be found up until a yield condition is met. In order to estimate the plastic

deformation, Singh and Singh [65] suggest using a method similar to that of Johnson and

Mellor [66] for all loading after initial yield. However, it is unclear how exactly Singh and

Singh incorporated Johnson and Mellor�s methodology. As such, Jones�[62,63] comparable

hinge line method is used here instead for post-yield response. For the transition from the

elastic to the plastic phase to be as smooth as possible, it is assumed that the velocity at

yielding is also the initial velocity of the plastic phase.

3.2.1 Plate Displacements and Angular Velocities

The assumed plastic de�ection shape is the roof shaped pattern shown in Fig. 3.2, with

one central plastic hinge and four non-central hinges extending from each corner to the

central hinge. Although Jones [62,63] based his work on a similarly shaped, kinematically

admissible velocity pro�le, all derivations here are made using the assumed de�ection shape,

which has been observed experimentally in blast tests [69] and used by Yankelevsky [70] in

his elastic-plastic treatment of plates.

Clearly, from Fig. 3.2, the displacement pattern has a quarter symmetry. Taking the

upper right quarter as a reference, the regional plate de�ections are given by

wI =W

�
1� 2x0

b tan�

�
and wII =W

�
1� 2y

b

�
, (3.21a-b)

where W is the maximum plate de�ection, � the angle of a non-central hinge projected

onto the x-y mid-plane, and x0 a reference coordinate from the end of the central plastic
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I x’

Figure 3.2: Roof shaped deformation pattern: (a) plan view, (b) isometric view.

hinge. Assuming _� small in comparison to _W , the velocities and accelerations of the two

regions can be approximated by simply substituting either _W or �W for W in Eqs. 3.21a-

b. Furthermore, from geometry [6, 63], assuming that W < b=6, the angular velocities of

regions I and II and the non-central hinges are given respectively by

_�1 =
2 _W

b tan�
, _�2 =

2 _W

b
and _�3 =

2 _W

b sin�
. (3.22a-c)

Much like the von Kármán elastic phase equations, the current plastic phase model

has a limited range of applicability per the assumptions made throughout its derivation.

Consequently, the theory holds for only �moderately large�plastic de�ections. However,

now de�ections can be of the order of the plate width. Indeed, plastic de�ections can easily

exceed twenty times the plate thickness.

3.2.2 Energy Relationships

In addition to assuming zero in-plane velocities, taking both the in-plane displacements

and accelerations as negligible compared to their out-of-plane counterparts yields the fol-

lowing statement of conservation of energy [62]:Z
(p� � �w) _wdA =

rX
m=1

Z
(M +Nw) _�mdlm, (3.23)

where p is the external transverse pressure acting on the plate area A, � the plate mass

per unit area, and w the transverse de�ection along one of r plastic hinge lines of length

lm. Moreover, M and N are the acting bending moment and membrane force per unit

length, respectively, and _�m is the relative angular velocity across the m-th hinge. The
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left-hand side of Eq. 3.23 is a balance between the external and inertial work rates, while

the right-hand side represents the internal energy dissipation across all hinge lines.

Evaluating the terms on the left-hand side of Eq. 3.23,Z
(p� � �w) _wdA = pb _W

�
L� 1

6
b tan�

�
� 2
3
�b �W _W

�
L� 1

4
b tan�

�
. (3.24)

Meanwhile, in order to �nd the dissipation terms on the right-hand side of Eq. 3.23, a few

auxiliary relations must �rst be given. From their de�nitions in Eqs. 3.16b and 3.16f, it is

easily seen that the fully plastic membrane force and bending moment per unit length are

related by

N0 = �0h =
4

h

�0h
2

4
=
4M0

h
, (3.25)

where �0 is again the dynamic yield stress. Furthermore, membrane forces dominate the

action of those parts of the plate where de�ection has exceeded a critical value (W = h=2 for

a simply supported plate, W = h for a clamped plate). Hence, in these �nitely deformed

parts, M = 0 and N takes on its fully plastic value, making

_Ediss =

rX
m=1

Z
(M +Nw) _�mdlm =

rX
m=1

Z
4M0

w

h
_�mdlm. (3.26)

For those regions where de�ection is subcritical, it is assumed that membrane force is linearly

related to de�ection and that the �ow rule

M

M0
+

�
N

N0

�2
= 1 (3.27)

applies.

Using Eqs. 3.22a-c and 3.25-3.27, the energy dissipation rate can be calculated along the

�ve interior hinges of a simply supported plate or along the �ve interior and four support

hinges of a clamped plate. Balancing these dissipation rates with the work rates from

Eq. 3.24 and assuming � � 45� throughout plastic deformation per Nurick et al. [71], the

following governing equations are found:

�b2

�0h

�
2

�
� 1
�
�W +

24

�

W

h
+ 2

h

W
=

pb2

�0h2

�
3

�
� 1
�

(3.28)

for a simply supported plate, and

�b2

�0h

�
2

�
� 1
�
�W +

24

�

W

h
+ 8

h

W
=

pb2

�0h2

�
3

�
� 1
�

(3.29)
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for a clamped plate, where � = b=a. Clearly, Eqs. 3.28 and 3.292 are identical save for the

coe¢ cient of the nonlinear h=W term.

3.2.3 Failure Criterion

With the assumptions made in their derivations, Eqs. 3.28 and 3.29 should prove accu-

rate so long as W < b=6. Theoretically, beyond this limit, these equations are still usable,

but accuracy is diminished. However, physically, there comes a point when the plastic

deformation becomes so large that any additional strain leads to material failure (e.g., plate

rupture).

For any structure, maximum strains occur at points where both the total de�ection

is high and the original length is relatively low. For a plate with the elastic or plastic

deformation shapes above, this describes the symmetry line running across the plate width.

The maximum de�ection before plate rupture is approximated here then, by assuming that

this line can only extend by 18% (the rupture strain for aluminum) of its original length, b.

Therefore, the plate fails when strain " = 0:18, where

" =
1

b

Z b

0

s
1 +

�
dw

dy

�2
dy � 1, (3.30)

and w is de�ned by any of Eqs. 3.4, 3.12 or 3.21b. This procedure was used by Olson

et al. [72] to estimate the critical membrane strain in a steel plate subjected to a uniform

blast pressure.

Table 3.1 lists the de�ection at rupture for eight di¤erent plate sizes for the assumed

elastic pro�les of Eqs. 3.4 and 3.12 (Wre), as well as the plastic pro�le of Eqs. 3.21a-b

(Wrp). Despite having dissimilar shapes, the rupture de�ections for the elastic and plastic

regimes are close, within about 9% of each other. In the current model, central de�ections

over Wrp predict a failure. Meanwhile, de�ections between Wre and Wrp are considered

borderline failure cases.

2These equations are only applicable when W > h=2 and W > h, respectively. This restriction is
expanded upon more in Section 3.3.
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DC a (mm) b (mm) a=b Area (m2) Wre (mm) Wrp (mm)
A 100 100 1 0.01 28.73 31.32
B 150 100 1.5 0.015 28.73 31.32
C 200 100 2 0.02 28.73 31.32
D 225 150 1.5 0.03375 43.1 46.98
E 200 200 1 0.04 57.47 62.64
F 300 150 2 0.045 43.1 46.98
G 300 200 1.5 0.06 57.47 62.64
H 300 300 1 0.09 86.2 93.96

Table 3.1: Dimensional case de�nitions with de�ections at rupture.

3.2.4 Permanent Deformation

Barring cases where material failure occurs, after the maximum central de�ection is

reached, the plate begins to de�ect in the direction opposite that of the applied pressure.

The plate then proceeds to oscillate about its �nal position. This vibration continues well

after loading terminates. Eventually though, all of the energy introduced to the plate by

the external loading is dissipated, and the plate motion ceases. For low intensity pressures,

the response is purely elastic, and the plate returns to its original, preload shape. However,

for more intensive loadings, the plate deforms plastically, resulting in a permanent set.

As neither the elastic (Eqs. 3.11 and 3.14) nor plastic (Eqs. 3.28 and 3.29) equations

of motion contain dissipative terms (i.e., _W ), these equations cannot produce a stationary,

�nal de�ection. Therefore, the current model cannot directly predict a �nal, permanent

central plate de�ection, Wp (see Section 6.2.5). Still, an approximation can be made

assuming the relationship

Wp ' CmWmax � (1� Ce)We, (3.31)

where Wmax is the maximum central de�ection attained by the current method, and We

is the maximum elastic de�ection or the de�ection that �rst satis�es the appropriate yield

condition (Eq. 3.19 or 3.20). Meanwhile, Cm and Ce (0 � Ce � 1) are potential correction

factors that are discussed in Section 3.4.3. Equation 3.31, in particular the Ce term,

comes about due to the fact that an SDOF system cannot entirely account for the complex

elastic-plastic interactions during large plate deformation. That is, one cannot expect

the permanent de�ection to simply equal the di¤erence between the maximum overall and

maximum elastic de�ection for all cases. This di¤erence though seems to give a lower bound
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for permanent de�ection. For non-intensive loadings, Ce = 0, so there is no permanent

o¤set. In contrast, for highly intensive loadings, Ce tends towards 1, making the maximum

and permanent de�ections nearly equal. With no comparative data, correction factors Cm

and Ce are assumed to take on values of 1 and 0, respectively.

3.3 Numerical Procedure

When analyzing the dynamic response of a simply supported plate, Eq. 3.11 is used up

until the point Eq. 3.19 becomes positive. After this condition is met, Eq. 3.28 governs

the plate motion. Similarly, Eq. 3.14 drives the dynamic behavior of a clamped plate until

the yield condition of Eq. 3.20 is satis�ed. Post-yield, Eq. 3.29 governs the clamped plate

response. In this analysis, it is assumed that the critical plastic de�ection values (W = h=2

for simple supports and W = h for clamped supports) are reached during the elastic phase.

If this is not the case, intermediate subcritical plastic equations of motion would need to be

de�ned as in Jones [62,63]. These equations are also nonlinear, but with quadratic, instead

of inverse, de�ection terms (see Ref. [6]).

In contrast, for a rigid plastic analysis like Ref. [10], elastic response is assumed to be

negligible. Therefore, the elastic equations of motion and yield criteria above would not

be used. Instead, only Eqs. 3.28 and 3.29, along with the now necessary subcritical plastic

equations of Jones [62,63], would be incorporated into an appropriate timestepping scheme.

3.3.1 Timestepping Scheme

Whereas Bauer [60] suggests solving Eqs. 3.11 and 3.14 for the elastic phase by using

a perturbation method, this dissertation uses a fourth-order Runge-Kutta method. As

detailed by Jaluria [73], the Runge-Kutta method retains higher-order terms of the Taylor

series expansion of a given function. This allows an ordinary di¤erential equation containing

that function to be broken up into multiple lower-order equations, which in turn, can be

solved incrementally, with no limit on range of applicability. Timestepping Eqs. 3.11 and

3.14 can begin assuming W (0) = _W (0) = 0. Central plate de�ection W is calculated at

each time step (�t � 1�s) until the respective yield conditions of Eqs. 3.19 and 3.20 are



37

satis�ed at t = tyield.

For the plastic phase, the Runge-Kutta method is also used to timestep Eqs. 3.28

and 3.29. However, initial conditions are now Wel(tyield) = Wpl(tyield) and _Wel(tyield) =

_Wpl(tyield), so that the displacement and velocity between the elastic and plastic phases

are continuous. This procedure, which is reexamined in Section 6.2.5, continues until

a maximum de�ection or a rupture de�ection, as given in Table 3.1, is reached. These

computations, carried out in Matlab
R

[74] on a Dell Precision 470 with a dual-core 2.8

GHz Intel Xeon processor, typically last only a few seconds for each dimensional case set.

3.3.2 Geometry and Material Properties

As an example, Singh and Singh [65] used their proposed method to determine the

maximum de�ection of both simply supported and clamped, high strength aluminum alloy

100 � 100 � 2:5 mm plates. These plates, representative of aircraft skin panels, were

subjected to a uniform pressure due to detonation of a 1 kg TNT charge. Material properties

were given as E = 75 GPa, � = 0:33, � = 2800 kg/m3 and �0 = 970 MPa. In Section

3.4, the unspeci�ed high strength alloy of Ref. [65] is considered along with a more typical

Al 2024-T3 alloy, whose properties are taken as E = 73:1 GPa, � = 0:33 and � = 2780

kg/m3 as per Ref. [75] for both simply supported and clamped boundary conditions. Most

notably, the dynamic yield strength of Al 2024-T3 is assumed to be the same as its static

yield strength, so �0 = 345 MPa. This assumption is reasonable for aluminum, which is

essentially insensitive to strain rate e¤ects. However, as is discussed in Section 3.5, this is

not the case for steel plates.

Furthermore, various plate dimensions are examined here. Length and width are varied

between 100 mm, as in Singh and Singh�s paper [65], and 300 mm, which is comparable

to the plate dimensions experimentally studied by Jones et al. [69]. This results in eight

di¤erent dimensional combinations with an aspect ratio a=b of either 1, 1.5 or 2 (see Table

3.1). Meanwhile, thickness is taken as either 1 mm or 2.5 mm. Varying material properties,

length, width and thickness, there are 32 di¤erent cases considered per pressure loading for

each boundary condition.

The maximum de�ections attained from the above procedure are compared with those
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E

1

Figure 3.3: Stress-strain curve for a linearly elastic, perfectly plastic material.

found from the �nite element software ANSYS
R

[76]. In ANSYS [76], the plate material

is taken as bilinear�elastic, perfectly plastic, as depicted in Fig. 3.3. Square SHELL93

elements are used with a maximum side length of 12.5 mm to ensure proper coverage of all

eight meshed areas. Each �nite element run on the Dell Precision 470, with 0:1 � �t � 1�s,

lasts between 15 and 90 minutes, depending on the plate dimensions and whether or not

the plate fails.

As explained in Ref. [77], SHELL93 elements are useful in many applications as they

support both large de�ections and large strains. These elements each contain eight nodes,

namely four corner and four mid-side. Furthermore, each node has six degrees of freedom,

three translational and three rotational.

3.3.3 Pressure Loading

Like in Ref. [65], the uniform, transient pressures in Eqs. 3.11, 3.14, 3.28 and 3.29 are

given by the modi�ed Friedlander equation, namely Eq. 2.1. As suggested in Section 2.4,

re�ected pressure Pr is substituted for Ps in Eq. 2.1, while tA is set to zero per Section

2.5 since the load is uniform. Blast parameter values, as obtained from charts in Baker

et al. [2], are provided in Table 3.2 for the range of interest 0:4 � Z � 2 m/kg1=3. This

scaled distance range allows for deformations that are entirely elastic when Z = 2, and

approximately rigid plastic when Z = 0:4. Between these extreme values, both elastic and

plastic e¤ects are generally signi�cant. As the blast parameters are taken at ten di¤erent
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Z (m/kg1=3) 0.4 0.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Pr (MPa) 52 34 22.5 10.5 4.5 2.2 1.6 1.25 0.98 0.75
Ts (ms) 0.215 0.3 0.5 1.2 1.8 1.65 1.6 1.7 1.8 1.9
� 8.6 8.3 8.6 10 9 5.5 3.9 2.9 2.3 1.9

Table 3.2: Blast parameters as a function of scaled distance Z.

Z values, there are 320 total trials per boundary condition.

3.4 Validation with Finite Element Analysis

In Singh and Singh�s [65] example problem, it was found that a simply supported, high

strength aluminum 100 � 100 � 2:5 mm plate starts to yield at Z � 1:21. At this scaled

distance, the maximum central de�ections were 4.568 mm and 2.77 mm for simple and

clamped supports, respectively. Fig. 3.4 plots Singh and Singh�s de�ection-time histories

for Z = 1:23 against that produced by the �nite element model and current method, both

using the parameters in Table 3.2 for Z = 1:2.3 There is good agreement between all three

models, particularly between the latter two models for simple supports (Wmax = 3:983 mm

for the ANSYS [76] model, Wmax = 4:114 mm for the current model, a 3.3% error). For

clamped supports, a phase lag develops between these two models, but maximum de�ections

are nonetheless close (Wmax = 2:693 mm for the ANSYS [76] model, Wmax = 2:857 mm for

the current model, a 6.1% error). Discrepancies with Singh and Singh�s model can most

likely be attributed to their using di¤erent de�nitions for the parameters in Eq. 2.1 (see

Ref. [3]).

3.4.1 Simply Supported Plate

However, changing the plate dimensions greatly increases the deviations between the

current simply supported model and its �nite element analog. Keeping thickness constant,

besides the square plate mentioned above (case A in Table 3.1), just four of the other seven

dimensional cases produce maximum de�ections within 10% of that output by ANSYS [76].

These are predominately the smaller area plates listed in Table 3.1 (B, C, D, G). The

3As there is some uncertainty reading the charted parameter values in Ref. [2], it is assumed that Pr,
Ts and � for Z = 1:2 and Z = 1:23 are approximately equal. Indeed, interpolating parameter values for
Z = 1:23 from those in Table 3.2 shows hardly any di¤erence for Ts, and only a 4% decrease in Pr and �.
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Figure 3.4: De�ection-time history of a high strength aluminum 100� 100� 2:5 mm plate
for (a) simple supports, and (b) clamped supports, where: � � , ANSYS, Z=1.2; ���,
current model, Z=1.2; � � � �, Ref. [14], Z=1.23.

largest deviation is for the largest area plate (H, 18.9% error). Changing �0 to 345 MPa,

only one of the total eight dimensional cases is within a 10% error for the same h and Z;

four cases have errors greater than 20%.

Figure 3.5a shows all of the simply supported run data from the current method as a

cumulative distribution function. As detailed in Ref. [78], this type of function depicts

the probability of an event being less than or equal to a selected value. In Figs. 3.5a-b,

the selected value is the absolute percent error (APE) relative to the maximum de�ection

attained via �nite element analysis. The speci�ed parameter is the only one held constant

between trials. Therefore, FC(10%) = 0:388 for h = 2:5 mm translates to 38.8% of the

160 simply supported, thicker plate trials per the current method being within 10% of their

respective �nite element solutions when a, b, Z and �0 are all variable. Meanwhile, per

Fig. 3.5a, 61.3% of the thicker plate trials are within 15%, and 79.4% are within 20%. The

maximum error for h = 2:5 mm is 27.7%. The most consistent approximations are made

for the small area (A, B, C), high strength alloy plates when Z � 1:2. These plates undergo

entirely elastic deformation so that Eq. (3.11) is the only equation of motion. Larger plate

cases D and G, both with an aspect ratio a=b = 1:5, also produce highly accurate results for

Z � 1:2, while undergoing small plastic deformation. The 200�100 mm plate (C) actually

gives very good results for both aluminum alloys over the entire Z range (an average 7.2%

error over twenty cases).

Now, maintaining h = 1 mm while varying �0 and Z, 26 of the 160 simply supported
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Figure 3.5: Cumulative distribution function of absolute percent error between �nite element
and current model for (a) simple supports, and (b) clamped supports, where: � � , h = 2:5
mm; ���, h = 1 mm; � � � �, �0 = 970 MPa; � � � � �, �0 = 345 MPa. The speci�ed
parameter is the only one held constant for a given trial set. Note: the given data represent
289 non-failed, simply supported (160 trials each for h = 2:5 mm and �0 = 970 MPa) and
286 clamped trials (160 trials for h = 2:5 mm and 157 for �0 = 970 MPa).

trials fail to converge to a solution for ANSYS [76], even for a re�ned grid size. The

maximum strain criterion of Section 4.3 predicts failure for all of these trials, as well as in

�ve additional trials (all 31 predicted failures also have �0 = 345 MPa). It is seen from

Fig. 3.5a that of the remaining 129 thinner plate trials per the current method, 37.2% are

within 10% of their respective �nite element results. Furthermore, slightly under half are

within 15%, slightly under two-thirds are within 20%. The maximum error for h = 1 mm

is 32.3%. It appears that the current simply supported model is only a rough indicator of

the physical maximum de�ection behavior, particularly for the thinner plates.

Furthermore, Fig. 3.5a also shows the e¤ect of varying thickness and scaled distance,

while keeping the dynamic yield stress constant. The plates with a higher yield stress

generally have a more accurate solution than their low strength analogs for h = 2:5 mm

and Z � 0:6. Still, for APE > 18%, FC(APE) is greater when �0 = 345 MPa. This

reversal can be explained by the fact that the 31 failure trials, occurring exclusively when

�0 = 345 MPa, h = 1 mm and Z � 0:8, are not considered for the development of the

low strength curve. Therefore, the sti¤er plates have more large error (h = 1 mm) trials

factored into FC than do the Al 2024-T3 plates. On average, there is a 13.5% error for the

current simply supported model over all 289 non-failed trials.

Comparing the results from the current method to those from a rigid plastic model,
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the latter is generally more appropriate only when the loading is extremely intensive (i.e.,

Z � 0:5), and h = 1 mm, �0 = 345 MPa or the square plate area is large (E, H). This

conclusion is expected since elastic e¤ects become more negligible with increasing uniform

load and decreasing material resistance.

3.4.2 Clamped Plate

In contrast, the current clamped model is generally an exceptional predictor of maximum

de�ection. As already stated, there is a 6.1% error for the current clamped model for the

baseline case of a 100 � 100 � 2:5 mm plate with �0 = 970 MPa and Z = 1:2. Varying

the length and width per Table 3.1, the same four dimensional cases (B, C, D, G) as the

current simply supported model produce maximum de�ections within 10% of that given by

ANSYS [76]. Like the simply supported model, the largest deviation for clamped edges is

for the largest area plate (H, 19.9% error). Looking at the eight dimensional cases where

h = 2:5 mm, Z = 1:2 and �0 = 345 MPa, again only one clamped case (F, 2.1% error) is

within a 10% error of its respective �nite element solution. But unlike the current simply

supported model, all clamped maximum de�ections are within a 20% error.

Figure 3.5b shows the clamped run data from the current method as a cumulative

distribution function. From this �gure, it is seen that 55% of cases where h = 2:5 mm are

within a 10% error of the ANSYS [76] solutions, nearly three-quarters are within 15%, and

96.3% are within 20%. These numbers are a great improvement over the simply supported

results. In fact, no errors for h = 2:5 mm exceed 22.6%. The best approximations per

the current method for h = 2:5 mm are made when the area is small (A, B, C) and when

either �0 = 970 MPa and Z � 1, or �0 = 345 MPa and Z � 0:8. For the �rst grouping,

sti¤er plates are being subjected to less intensive loads. This results in primarily elastic

deformation governed by Eq. 3.14. For the second grouping, lower strength plates are

being subjected to intensive pressures. These plates undergo mostly plastic deformation

with Eq. 3.29 dominating response.

The fact that these two groupings of thin, small area plates give the best approximations

can be better seen by interpreting Fig. 3.6a, which plots average absolute percent error

against the scaled distance Z for dimensional cases A, B and C. Just like in Fig. 3.4, the
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Figure 3.6: Average absolute percent error between �nite element and current clamped
model as a function of scaled distance for (a) small area cases, and (b) large area cases,
where: � � , h = 2:5 mm; ���, h = 1 mm; � � � �, �0 = 970 MPa; �� �� �, �0 = 345 MPa.
The speci�ed parameter is the only one held constant for a given trial set.

parameter attributed to a given line in Fig. 3.6 is the only one held constant for a particular

trial set. For example, the �0 = 970 MPa line gives the average error attained at every

Z for trials where thickness and surface area (SA � 0:02 m2) are variable, but yield stress

is �xed. Therefore, from Fig. 3.6a, the average percent error for all clamped, small area,

high strength aluminum trials falls below 10% for Z � 1. As trials with h = 2:5 mm

have a relatively small percent error for all Z (the peak average error of 11.4% occurs at

Z = 1:2), the intersection of these ranges also produces a small percent error. Similarly,

for the second grouping, the average percent error does not exceed 6.1% for trials where

�0 = 345 MPa and Z � 0:8. The reversal of yield stress curves in Fig. 3.6a near Z = 1

shows the transition from plastic-dominant to elastic-dominant response.

Still, highly accurate results are also found in the intermediate elastic-plastic region.

Similar to the simply supported runs, a clamped, high strength 200 � 100 � 2:5 mm plate

has good agreement with �nite element results over the entire Z range (an average 3.1%

error over ten cases). Furthermore, the current clamped model also works well with a
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Figure 3.7: Average absolute percent error between �nite element and current clamped
model as a function of scaled distance for (a) a=b = 1, and (b) a=b = 2, where: � � ,
h = 2:5 mm; ���, h = 1 mm; � � � �, �0 = 970 MPa; �� �� �, �0 = 345 MPa. The speci�ed
parameter is the only one held constant for a given trial set.

300� 150� 2:5 mm Al 2024-T3 plate for all Z (an average 4.3% error over ten cases). It

should be noted that both of these plates have an aspect ratio a=b = 2. Indeed, from Fig.

3.7b, one can see that the average percent error for the more oblong plates (C, F) peaks at

about 10%, regardless of which material strength is chosen. For Z � 1, the average percent

error is less than 5% when h = 2:5 mm. Outside of this Z range, the maximum average

percent error for thicker, clamped plates is only 11.6%.

Considering the clamped trials where thickness is held at a constant h = 1 mm, 34 trials

are deemed as failures. All but one of these trials reach their respective rupture limit from

Table 3.1. The additional trial (case H, �0 = 970 MPa and Z = 0:4) falls shorts of this

limit (Wmax = 77:47 mm per the current model), but is non-convergent in ANSYS [76].

From Fig. 3.5b, of the remaining 126 thinner plate trials, 36.5%, 65.1% and 83.3% of them

respectively attain at most a 10%, 15% and 20% error. Moreover, 92.1% of trials are within

22%, while the maximum error for h = 1 mm is 24.7%.

Brie�y looking at the remaining charted data, in addition to showing the cumulative
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distribution functions for constant thickness, Fig. 3.5b presents the e¤ect of changing

thickness and scaled distance, while maintaining the dynamic yield stress constant. Unlike

in the simply supported trials, clamped plates with a high yield stress tend not to have a

signi�cantly more accurate solution than their lower strength counterparts as Z increases.

This can be seen in Figs. 3.6b and 3.7a-b, and results in FC(10%) = 0:497 and 0.442,

respectively, for �0 = 970 MPa and �0 = 345 MPa according to Fig. 3.5b. The FC for

clamped, high strength aluminum becomes lower than that for Al 2024-T3 for APE > 14%.

Comparing Figs. 3.5a-b, the top �gure shows the cases where �0 = 970 MPa to be the most

precise (a high FC for a low APE), followed closely by those with h = 2:5 mm. This

relationship holds for about 63% of the trials. In contrast, the bottom �gure depicts the

�0 = 970 MPa and h = 2:5 mm curves about even until FC � 0:3, after which, the two

curves deviate with the latter producing more accurate results. Therefore, it appears that

for the current clamped model, thicker plates generally tend to produce better results than

sti¤er plates. In particular, this claim does not hold for some small area and oblong plates

with highly elastic deformation (1:2 � Z � 1:8) per Figs. 3.6a and 3.7b.

Meanwhile, Fig. 3.6b shows that for large area plates (G, H), the average percent error

remains fairly constant, between 12-15%, for all Z, regardless of thickness or yield stress.

This consistency is also found for medium-sized plates (D, E, F), but the range drops to

roughly an 8-12% error. For h = 1 mm and Z � 0:8, the error exceeds these percent ranges

for the larger plates, with a peak 22.3% average error at Z = 0:5. It should be noted that

the zero error at Z = 0:4 is due to all plates failing for such an intensive blast loading.

Moreover, Fig. 3.7a shows a large deviation for the square plate cases (A, E, H). Only

the thicker and sti¤er square plates for Z � 1:8 produce an average error below 10%.

As the uniform load acting on the entire large area square plate (H) causes large plastic

deformation, it probably causes a large error between the current elastic-plastic, clamped

model and the �nite element output. As such, the deviations for the large plate overshadow

some of the previously stated accuracy of the smaller square plate (A). However, the

medium-sized 300 � 150 mm cases (F) do not seem to adversely a¤ect the average errors

portrayed in Fig. 3.7b. Clearly, aspect ratio, independent of surface area, has an e¤ect

on the current model. Furthermore, it is interesting that for Z � 1:2, the thinner plate
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Figure 3.8: Ranges of validity for current clamped model with respect to plate size and
aspect ratio (AR), where: � � , h = 2:5 mm and �0 = 970 MPa; ���, h = 2:5 mm
and �0 = 345 MPa; � � � �, h = 1 mm and �0 = 970 MPa; � � � � �, h = 1 mm and
�0 = 345 MPa. These validity ranges depict where the current model is within 15% of the
corresponding �nite element solution for maximum de�ection for all trials with the given
parameter combinations.

trials produce a much smaller error than their thicker plate counterparts. For these higher

Z values, errors for h = 1 mm stay below 5%, while those for h = 2:5 mm peak at

the aforementioned 11.6%. This crossover between thickness curves in Fig. 3.7b can be

attributed to there being a relatively high error for both the lower strength 200� 100� 2:5

mm plate and the higher strength 300 � 150 � 2:5 mm plate for Z � 1:2. These cases

signi�cantly underestimate and overestimate maximum de�ection, respectively. These

thicker plates with b=h < 100 (see Ref. [57]) apparently do not act exactly like membranes

for elastic-dominant response as is assumed.

Most of these trends are captured in Fig. 3.8. The validity ranges in this �gure depict

where the current clamped model is within 15% of the corresponding �nite element solution

for maximum de�ection for all trials with the given parameter combinations. It is seen that

the clamped model tends to have a larger range of applicability when plate area decreases

and aspect ratio increases. The average absolute error between the maximum de�ections

from the current method and ANSYS [76] is 10.7%.

Finally, comparing the results attained from the current clamped model with that from
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a rigid plastic model, just like for simple supports, the latter is generally more appropriate

when the loading is extremely intensive (i.e., Z � 0:5). This results in about 16% of all

clamped, rigid plastic runs showing a marginally better or similar result (within 2%) with

regard to the current model. However, 64% of the rigid plastic trials show at least a 10%

worse result than the current model, while roughly half are over 20% worse. As such, the

current method�s accounting for elastic e¤ects is necessary for the vast majority of trials.

3.4.3 Permanent Deformation

For the baseline, clamped 100� 100� 2:5 mm plate, an entirely elastic response is seen

for Z � 1:2 when �0 = 970 MPa. As Z increases, other dimensional cases also cease to

plastically deform. However, due to the lack of a dissipation term in the relevant governing

equations, permanent deformation cannot be attained by, for example, extending Figs. 3.4a-

b until a �nal de�ection is reached. As such, permanent central plate de�ections for all

dimensional cases are found using ANSYS [76] when Z = 1 (small plastic deformation)

and Z = 0:6 (large plastic deformation without failure). These permanent de�ections are

then subtracted from the maximum de�ections generated earlier by ANSYS [76] in order

to determine appropriate Ce values per Eq. 3.31. This procedure attempts to verify the

assertions made in Section 3.2.4 regarding elastic de�ections.

Some representative parameter values for dimensional case B are given in Table 3.3.

The lowest tabulated Ce value is 0.03 for Z = 1, �0 = 970 MPa and h = 2:5 mm. This

is expected per the discussion in Section 3.2.4 as a thick, high strength aluminum plate

subjected to a low intensity blast would have very little plastic deformation. Likewise,

there is little surprise that Ce increases with decreasing Z, �0 or h per Table 3.3. The

largest values occur when these conditions are coupled, namely low strength with a either

a thin plate (Ce = 0:83) or a lower scaled distance (Ce = 0:63). Furthermore, there is a

weaker tendency for Ce to increase with increasing surface area. Again, this makes sense

as a larger area equates to a larger net force, which, in turn, increases the amount of plastic

deformation. Indeed, all values for Ce fall within the predicted range of 0 � Ce � 1. This

supports the claim that We is an upper bound of the elastic deformation.

Using these trends for obtaining Ce, permanent deformation can then be estimated from
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Z (kg/m1=3) 1 1 1 1 0.6 0.6
�0 (MPa) 970 345 970 345 970 345
h (mm) 2.5 2.5 1 1 2.5 2.5
Wp (FE, mm) 0.967 5.14 5.71 18.72 6.499 16.52
Wmax (FE, mm) 5.408 7.052 10.06 19.23 10.52 17.35
Wmax (CM, mm) 5.083 6.332 8.901 16.44 9.208 16.07
Cm 1.064 1.114 1.13 1.17 1.142 1.08
We (CM, mm) 4.582 2.217 5.178 3.004 4.584 2.219
Ce 0.03 0.14 0.16 0.83 0.12 0.63

Table 3.3: Permanent de�ection parameters for a clamped 150�100 mm plate. FE denotes
a result from �nite elements, CM from the current method.

Eq. 3.31. While We in this equation is attained directly from the current method, Wmax

can be multiplied by correction factor Cm to better match the maximum de�ection per �nite

element analysis or, if available, that found through experiment. Considering all non-failed

clamped runs, there is an average 10.7% absolute error between the maximum de�ections

from the current method and ANSYS [76]. Therefore, it is suggested that the Wmax found

by the current method be multiplied by a correction factor of 1.107 in Eq. 3.31. This factor

is close to the 1.116 calculated by averaging all Cm values in Table 3.3.

It should be stressed that the advantage of the current method is its computational

e¢ ciency. Accurate results for initial design are attained on the order of a thousand times

faster than by �nite element analysis. As such, the e¤ects of various combinations of plate

dimensions and material properties can be rapidly assessed, limiting the number of more

detailed and time-consuming �nite element runs that need to be processed in the next design

stage. The correction factors in Eq. 3.31 serve to make the simple SDOF model output

more realistic when actual data are available. However, their use is not required for this

physically-based model. Adequate results are attained when Cm = 1 and Ce = 0 or 1.

3.5 Validation with Experimental Results

The current clamped method is now compared with some previously published experi-

mental data for small, rectangular plates subjected to a uniform blast pressure. Langdon

and Schleyer [10] examined 500� 500� 1 mm thick, clamped aluminum plates with a yield

stress of either 95 MPa or 136 MPa. The uniform pressure load was roughly triangular
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�0 (MPa) 95 95 95 136 136 136 136
Pmax (kPa) 85 100 125 50 100 200 225
Wmax (EX, mm) � � � � 14 25.1 38.8
Wmax (CM, mm) 21.4 23.8 29.8 10.9 18.2 32.7 37.7
Wmax (AN, mm) � � � � 17.8 F F
Wp (EX, mm) 12 18 22 0 10.5 23 F
Wp (CM, mm) 14.1 16.5 22.5 2.2 9.42 24 28.9
Wp (RP, mm) 20.9 24.5 30.7 8.5 17.1 � �

Table 3.4: Comparison of dynamic maximum and permanent de�ections for a 500�500�1
mm plate. EX denotes a result obtained experimentally [10], CM from the current method,
AN analytically [10], RP from a rigid plastic model [10]. F denotes plate failure, �no data
recorded.

and symmetric. However, the maximum pressure was varied between 50 kPa and 225 kPa,

loading duration between 40 ms and 1 s. Of the three dynamic trials in Table 3.4 where

maximum displacement was recorded, the high pressure results match very well with the

current method (Wmax = 38:8 mm experimentally, Wmax = 37:7 mm for the current model,

a 2.9% error). In contrast, there is a 30% overshoot for Wmax when Pmax = 100 and 200

kPa. Still, the current method�s predictions are in line with that of Langdon and Schleyer�s

more complicated analytical model, where sti¤, translational springs simulate the clamped

boundary condition, for Pmax = 100 kPa.

As for permanent de�ections, predictions by the current method are made by using the

default values Cm = 1 and Ce = 0 in Eq. 3.31. For the low strength, experimental cases

whereWp was recorded, there is good agreement with the current method. From Table 3.4,

the two higher pressure cases show less than a 10% deviation, while the 85 kPa case has a

2.1 mm di¤erence. Similar deviations are seen for �0 = 136 MPa. Clearly, from Table 3.4,

the current method�s results are much closer to the actual Wp values than the simple rigid

plastic model provided in Ref. [10], where the ratio of maximum to static collapse pressure

(pc � 43M0=b
2 for a clamped square plate) approximates the de�ection ratio Wp=h.

With few published experimental results for maximum and permanent de�ections of

rectangular aluminum plates available, the current method is also compared with the steel

data of Refs. [71, 72]. Olson et al. [72] subjected 89� 89� 1:6 mm steel plates to uniform

impulsive loads, assumed to have a rectangular time history with a 15 �s duration. Applied

impulses varied between 9.9 and 30.2 N�s.
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As steel is highly strain rate-sensitive, the yield stress that enters Eq. 3.29 must be

varied at each time step. This is accomplished by di¤erentiating Eq. 3.30 with respect to

time and inserting the result into the Cowper-Symonds relation, namely

�0 = �y

"
1 +

�
_"

D

�1=q#
, (3.32)

where �y is the static uniaxial yield stress, and D and q are constants, all dependent on the

plate material. Per Refs. [63, 72], D = 40:4 s�1 and q = 5 for mild steel.

Once again using the default correction factors in Eq. 3.31, it is found that the current

method matches only four of the �fteen permanent de�ections presented in Ref. [72] within

10%. However, as two di¤erent failure modes are observed by Olson et al., namely large

inelastic deformation (captured in the current model) and tearing at the supports, some

plates exhibit a smaller permanent set with a larger applied impulse. Removing four

such trials, the maximum error between the current model and the experimental pro�les is

19.4%, while the average error is 11.5%. Setting Cm = 1:107 per Section 3.4.3, these errors

decrease to 10.3% and 4.3%, respectively. Assuming a rigid plastic model with Cm = 1

and Ce = 1, the percent errors are bounded by the two previous results.

In an earlier study, Nurick et al. [71] performed blast tests on not just the same square

plates as in Ref. [72], but also on 113� 70� 1:6 mm rectangular steel plates. Impulses for

the square plates ranged between 8.7 and 16.6 N�s, resulting in only the large deformation

failure mode. For the default, current square plate model, the maximum deviation is 15.6%,

with an average error of 10.8% over 37 trials. Using Cm = 1:107, these errors drop to 9.6%

and 3.1%, respectively. As expected, these values are slightly better than those for the

more intensive blasts of Ref. [72], where elastic e¤ects play a lesser role with W > b=6 in

nearly all trials.

Meanwhile, impulses for the rectangular plates of Ref. [71] varied between 5.2 and 17.4

N�s over 44 trials. These result in respective maximum and average errors of 28.4% and

18.4% when Cm = 1. Increasing Cm as above, these errors decrease to 20% and 10.5%,

respectively. It is clear that these di¤erences are much greater than for the square plate.

There are two reasons for this trend. First, the strain rate obtained by di¤erentiating Eq.

3.30 overestimates the global strain rate. This causes the transient yield strength to be
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overestimated, which, in turn, underestimates the central plate de�ection. It is found that

the strain rate must be lowered to roughly 5% of its value per Eq. 3.30 in order to predict

permanent de�ection within an average 5% error for Cm = 1. For Cm = 1:107, the strain

rate would need to be reduced to a more reasonable 40% to achieve the same accuracy.

Second, and more importantly, the oblong plates are subjected to pressures that are non-

decaying and well above the plate�s collapse load. In this instance, elastic e¤ects (the �rst

part of the current model) are low and the box shaped, plastic deformation pattern of Fig.

6.3 becomes more appropriate than the roof shape of Fig. 3.2 (the second part of the current

model). For these reasons, the current model�s applicability becomes questionable when

dealing with strain rate-sensitive materials, particularly for non-square plates subjected to

high pressure, impulsive loading. These concerns are further addressed in Section 6.2.
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Chapter 4

Improvements to Explosive Loading Model

As stated in Section 2.5, most papers in the literature assume a uniform pressure dis-

tribution. However, such a distribution is only applicable for explosions having a su¢ -

cient stando¤ distance. Some papers do deal with more localized loading. For exam-

ple, Wierzbicki and Nurick [79] detonated cylindrical PE4 charges of variable diameter 12

mm away from a 100 mm-diameter steel plate. The resulting impulse was shown to be

nonuniform, both across the plate and within the footprint of the charge. Further, Lee

and Wierzbicki [80] examined the e¤ects of changing the impulsive loading pro�le on thin,

square and circular plates, both analytically and numerically. The permanent deformed

shape of the plates was shown to di¤er greatly between uniform and nonuniform rectangular

and triangular loadings. In addition, Neuberger et al. [81] performed scaled experiments

with spherical TNT charges in proximity to steel plates. A numerical model incorporating

the pressure distribution of Eq. 4.1 matched the actual permanent plate de�ections for

various charge sizes and stando¤s.

Simpli�ed design methods for structures subjected to nonuniform blast loading are cov-

ered in technical manuals published by various U. S. government agencies [31,38,82]. The

support manual for the program SBEDS [83] also collects these methods. The procedures

listed within these manuals for dealing with nonuniform blasts are outlined below. When-

ever possible, said procedures are supplemented with relevant research in the open literature

and suggestions for improvement, which are incorporated throughout the remainder of this

dissertation. In addition, some specialized topics, such as negative blast phase, pressure

relief and TNT equivalence, are detailed in this chapter, along with potential discrepancies

between published parameter data sets.
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Figure 4.1: Geometry of an ideal blast wave impacting a �at surface.

4.1 Nonuniform Re�ection

4.1.1 Pressure Distribution

From Fig. 4.1, assuming a spherical wave propagation, the blast wave reaches reference

point A on the normal before it strikes point B some distance r away. For this case, point

A is subjected to the same pressure-time history as described in Chapter 2 for a uniform

load. In contrast, point B has a scaled distance Z = R�=W
1=3, where R� is termed the

slant distance. Once Z is known, the procedure for determining p(t) at this arbitrary point

on the target surface is essentially the same as detailed above for a uniform distribution

across the surface with two exceptions, which pertain to incident angle and arrival time per

Ref. [82].

First, one must account for the non-zero angle of incidence as re�ected pressure tends

to decrease as �I increases. In this dissertation, the pressure at each point on the target

surface is determined either by multiplying the calculated side-on pressure by a re�ection

factor per Fig. 4.2 or is found directly from

p(Z; �I) = [Pr(Z) + Po] cos
2 �I +K [Ps(Z) + Po] (1� cos �I)2 . (4.1)

Here, K is a parameter introduced in this dissertation, set equal to 1 for the present discus-

sion. From Ref. [23], it seems that using Fig. 4.2 is appropriate for a �free air burst,�where

the blast wave only travels through air before reaching the target area. However, based on

where this �gure appears in Ref. [38], it may only be applicable for a surface burst, where
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Figure 4.2: Re�ection coe¢ cient as a function of incident angle and pressure [23]. Note: 1
bar equals 14.504 psi.

a hemispherical blast of increased intensity re�ects immediately o¤ a surface, typically the

ground. This latter limitation seems reasonable since the increase in re�ection coe¢ cient

in Fig. 4.2 near 40� � �I � 50� is due to formation of a Mach stem, a coalescence of the

re�ected blast wave with a secondary incident wave [1]. Meanwhile, Eq. 4.1, which ap-

parently ignores Mach e¤ects, is explicitly given in Refs. [31,81] and based on charts found

in Refs. [31, 38, 82]. For completeness, both approaches mentioned are considered in this

dissertation (see Section 4.4).1

An air burst is appropriate for the initial pressure loading due to a bare charge directly

acting on the fuselage or within an empty luggage container (see Figs. 5.1 and 5.2). Mean-

while, a surface burst better models the case where re�ections occur prior to impact with

the target surface. For example, should the blast wave strike a piece of luggage or another

panel of the luggage container before reaching the target surface, an ampli�cation of pres-

sure occurs as described in Section 2.4. As such, modeling an explosive blast as an air or

surface burst tends to bound the actual pressure distribution.

1Per Ref. [82], there is also the intermediate case of an �air burst�(or �air burst above ground�), where
the blast wave is re�ected o¤ the ground before reaching the target area, but not immediately. For clarity,
throughout Chapter 4, the term �air burst�implies a free air burst, while �surface burst�implies a re�ection
before target impact, either immediate or delayed.
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It should be noted that the curves in Fig. 4.2 can be made to �t Eq. 4.1 by changing

the value of K. Indeed, setting K = 30 makes for an extremely good �t for all Ps > 4 bar

(58 psi) and �I � 40�. This pressure range corresponds to Z < 1:5. Such a high value

for K is justi�ed in that the �rst term in Eq. 4.1 dominates the latter for low angles of

incidence. Yet, as �I increases, the high weighting factor allows for the quick-rising humps

in Fig. 4.2. However, as these humps are also quickly-decaying, K must decrease as �I

continues to increase. Otherwise, Eq. 4.1 would greatly overestimate the actual pressure

distribution. K achieves its maximum value of between 33 and 39 when 40� < �I < 47�.

Meanwhile, K drops to about 20 at �I = 50� for Ps > 20 bar. Over the range Ps > 4 bar,

5 � K � 12 at �I = 55� and 1 � K � 6 at �I = 60�. For higher incident angles, K � 1,

which reduces Eq. 4.1 to the form given in Refs. [31,81].

Additionally, unlike a planar wave, the arrival time of a nonuniform blast wave is di¤erent

for each Z value across the re�ecting surface. Arrival time can be determined per Fig. 2.3

or from the following equation provided by Kinney and Graham [3]:

ta =
1

ax

Z R�

Rc

drp
1 + 6Ps=7Po

, (4.2)

where ax indicates the ambient speed of sound (ax = 340 m/s), Rc the charge radius, and

R� the slant distance of the point of interest. The radical expression in Eq. 4.2 gives the

Mach number Mx of a blast with a constant speci�c ratio 
 = 1:4. Therefore, Eq. 4.2

is a simple reworking of the de�nition of shock front velocity (i.e., ux �dr=dt = Mxax).

Moreover, it appears that a variable 
, as discussed in Section 2.4, does not result in any

signi�cant deviations from the ta values calculated per Eq. 4.2.

Hence, as r increases, peak pressure decreases and blast arrival time increases. It should

be clear that this procedure creates circular bands of equal pressure acting at equal times on

the target surface. These bands can be seen in Fig. 4.3 for a 6 kg TNT charge detonated

0.5 m away from a plate. Beyond 0.92 m, zero pressure acts as the blast wave has yet

to reach the outer parts of the plate after 0.25 ms. These circular bands are also seen in

Ref. [84], which deals with the loading of laminated plates due to a mine blast. However,

Coggin [84] limits the pressure pro�le to the range �I � 45�. For higher incident angles,

he assumes the pressure reduces to zero, thereby ignoring most con�icts with the hump in



56

Plate Position (m)

P
la

te
P

os
iti

on
(m

)

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
­1

­0.5

0

0.5

1

17

30

20

40

56
50

Figure 4.3: Circular bands of equal re�ected pressure across a plate subjected to a centered
6 kg TNT charge with a 0.5 m stando¤. Numbers indicate pressure in bar after 0.25 ms.

Fig. 4.2. In contrast, non-zero re�ected pressures are calculated for 0� � �I � 90� in this

dissertation. Indeed, using Coggin�s procedure [84], all pressures greater than 30 bar would

be removed from Fig. 4.3, thereby greatly diminishing the net impulse acting on the plate.

Another way of capturing a nonuniform pressure distribution was used by Turkmen and

Mecitoglu [85], who compared analytical and �nite element solutions for a plate struck with

a pressure from a detonation tube. For a tube set 100 cm away from the 9�9 cm laminated

plate, the loading was essentially uniform. However, moving the shock tube within 35 cm

resulted in a roughly sinusoidal pressure distribution. This distribution is approximated

by modifying Eq. 2.1 as

p(t) = Po +
h
(Pm � Pc) sin2

��x
a

�
sin2

��y
b

�
+ Pc

i
(1� t� tA

Ts
)e��(t�tA)=Ts , (4.3)

where Pm is the maximum peak pressure acting at the plate center (a=2, b=2), and Pc is the

peak pressure acting along the plate edges. This waveform yields a pressure-time history

having a similar trend as that in Fig. 4.4, with a discernible peak near the plate center.

Equation 4.3 is referred to both in Sections 4.4 and 6.3 in the context of generalized loading

shapes acting, respectively, on plates and shells.
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4.1.2 Impulse Distribution

Just as a scaled distance-incident angle dependent pressure can be determined from Eq.

4.1, impulse for an oblique re�ection can be calculated from

i(Z; �I) = ir(Z) cos
2 �I + is(Z)

�
1 + cos �I � 2 cos2 �I

�
, (4.4)

as presented in Refs. [30,31]. Equation 4.4 is apparently applicable for both air and surface

bursts since it correctly models both sets of curves given in Refs. [31, 38,82].

Meanwhile, Henrych [22,44] suggests one assume a symmetrical triangular or trapezoidal

impulse distribution for a prismatic charge detonated on a rigid surface. As a result, the

blast wave pressure more realistically strikes the center of the target area before it reaches

the edges. For a nearby explosion from a spherical charge (see Fig. 4.1), the impulse at a

point can be estimated as

i =
W (ux + Vs)

4�R2o
cos4 �I , (4.5)

where W is the charge mass, ux is outburst speed, and Vs is the displacement speed of

the outburst surface. For TNT, these speeds are provided as 6450 m/s and 7100 m/s,

respectively.

This dissertation primarily uses Eq. 4.4 for impulse distribution. However, comparing

the terms of Eqs. 4.1 and 4.4, it should be clear that the approximate relationship between

side-on and re�ected pressure and impulse given by Eq. 2.15 cannot be extended for all

angles of incidence.2 At small incident angles (i.e., �I � 20�), the side-on terms in the

given equations are small compared to their re�ected counterparts. Should blast pressure

be well in excess of Po, Eqs. 4.1 and 4.4 reduce to p(Z; �I) = Pr cos
2 �I and i(Z; �I) =

ir cos
2 �I , respectively, which are in keeping with Eq. 2.15. On the other hand, should �I

be continually increased beyond 20�, the side-on terms in Eqs. 4.1 and 4.4 start to become

signi�cant, much more so in the case of Eq. 4.4. In this case, the resulting relationships

for distributed pressure and impulse no longer share a common multiplying factor.

2 In other words, there does not exist a function Cr(�I) such that p(Z; �I) = Cr(�I)Ps(Z) and i(Z; �I) =
Cr(�I)is(Z) for all angles of incidence. Keep in mind that Ps and is in these expressions are calculated at
an appropriate slant range and are, therefore, not necessarily at normal incidence.
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The general procedure for calculating a nonuniform pressure distribution due to an air

burst [82] can be summarized as follows:

1. For each point on the target surface, determine Z = R�=W 1=3 and angle of incidence

�I .

2. Use Figs. 2.3 and 2.7 to �nd values of Ps, Pr, Ts and tA for the Z calculated in step

#1.

3. Knowing Ps, Pr and �I , and assuming K = 1, use Eq. 4.1 to determine the net

re�ected pressure p(Z; �I).

4. Obtaining values of is and ir from Fig. 2.7, evaluate the net re�ected impulse i(Z; �I)

from Eq. 4.4.

5. Using Ts from step #2 and substituting the results of steps #3 and #4, respectively,

for Ps and is in Eq. 2.2, numerically solve for exponential decay constant �.

6. Again substitute p(Z; �I) from step #3 for Ps. Insert this value along with Ts and

tA from step #2 and � from step #5 into Eq. 2.1.

The resulting Friedlander waveform gives the pressure at a particular point on the target

area for tA � t � tA + Ts. As the arrival time is di¤erent across the target, a pressure

distribution similar to that shown in Fig. 4.4 is formed. In contrast, for a surface burst,

the following procedure [82] is used:

1. For each point on the target surface, determine Z = R�=W 1=3 and angle of incidence

�I .

2. Use Fig. 2.3 to �nd the value of Ps for the Z calculated in step #1.

3. Knowing Ps and �I , use Fig. 4.2 to determine the net re�ected pressure Pr.

4. Obtaining values of is and ir from Fig. 2.7, evaluate the net re�ected impulse i(Z; �I)

from Eq. 4.4.
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5. From Fig. 2.7, determine the Z value that corresponds to the Pr calculated in step

#3. Call this scaled distance Zp.

6. From Fig. 2.7, determine the Z value that corresponds to an ir that matches the

i(Z; �I) calculated in step #4. Call this scaled distance Zi.

7. From Fig. 2.3, determine the value of tA that corresponds to the Z calculated in step

#1.

8. From Fig. 2.3, determine the value of Ts that corresponds to Z = Zi.

9. Using Ts from step #8 and substituting the results of steps #3 and #4, respectively,

for Ps and is in Eq. 2.2, numerically solve for exponential decay constant �.

10. Again substitute Pr from step #3 for Ps. Insert this value along with tA from step

#7, Ts from step #8 and � from step #9 into Eq. 2.1.

The procedure for calculating the pressure distribution due to a surface burst appears

to be much lengthier than that for an air burst. The di¤ering Z values in steps #5-8 arise

from the rationale that arrival time is directly related to pressure, and duration time is

directly related to impulse [38, 82]. However, for the charge sizes and stando¤ distances

considered in this dissertation Zp � Zi for all cases. Still, there appears to be a need

for relationships that give Z as a function of Pr, as well as Z as a function of ir. These

relationships would theoretically be the inverse functions of Eqs. 2.4 and 2.6, respectively.

It should be noted that steps #5-7 presented here are modi�ed from the procedure

stated in Refs. [38, 82]. In these technical manuals, the Pr and i(Z; �I) calculated in steps

#3-4 are matched with their side-on, as opposed to their re�ected, counterparts in Fig. 2.7

in order to determine Zp and Zi. Following this recommendation seems to doubly account

for re�ection. Moreover, for close-in explosions, the aforementioned Pr and i(Z; �I) often

exceed, respectively, the maximum values for Ps and is given in Fig. 2.7.

Furthermore, intuitively, the arrival time should depend only on the distance the ex-

plosion is away from the structure. For oblique incident angles, this distance increases

by virtue of the slant range. Therefore, step #7 modi�es the procedure recommended in
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Figure 4.4: Re�ected pressure distribution across a plate subjected to a centered 6 kg TNT
charge with a 0.5 m stando¤.

Refs. [38,82], which calls for transforming tA to correspond with the Zp determined in step

#5.

4.1.3 Normalized Criteria for Assessing Applicability of Uniform Pres-

sure Distribution

The procedures outlined above for computing a nonuniform pressure distribution can

become quite time-intensive, particularly when dealing with small grid sizes. Yet, this

procedure is at times necessary, as is the case for the distribution shown in Fig. 4.4. Here,

a 6 kg TNT charge is detonated 0.5 m away from a plate. Clearly, a uniform pressure

would severely overestimate the plate response, especially for the �rst 100 �s.

Therefore, it is useful to determine when the stando¤ is large enough so as to assume

a uniform pressure distribution. Surprisingly, no standard criterion was found in the open

literature that addresses this issue. As noted in Section 2.5, the only stipulation for using

a uniform distribution is that the explosion be far enough away from the target so as to

produce a planar blast wave. Veldman et al. [8] veri�ed such a wave in their experiments

by measuring the arrival times across each test plate. Their measured deviations within 5%
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indicated a nearly uniform distribution. Meanwhile, according to TM 5-1300 [82], a uniform

loading can be assumed when the target is completely within the Mach stem of the blast

wave. However, this criterion is more useful for buildings subjected to a far-o¤ blast than

for the close-in explosions of the current application. Furthermore, Ref. [83] suggests that

a uniform load is adequate when Z > 1:2-2, but how this range was determined is unclear.

From limited small-scale experiments using C-4 charges, Rickman and Murrell [86] estimate

that a planar wave occurs near Z = 1:8.

Intuitively, the veri�cation method of Veldman et al. [8] seems reasonable. A uniform

loading can be used when the di¤erence in arrival times across the target area is su¢ ciently

small. As an example, for the case represented in Fig. 4.4, this di¤erence should be well

less than 100 �s. This dissertation proposes a more mathematically formal, normalized

arrival time criterion to determine when a uniform distribution can and cannot be used

from a plate de�ection standpoint. This criterion is de�ned as

t�A =
max(tAi)�min(tAi)

Ttar
. (4.6)

Here, min(tAi) and max(tAi) respectively indicate the minimum and maximum arrival time,

while Ttar denotes the loading duration across the target area. For a charge centered about

a plate, the minimum tA is associated with the plate center. Meanwhile, the maximum

tA occurs at the farthest point from the charge, which would be any of the corners for a

rectangular plate, or along the boundary for a circular plate.

As for Ttar in Eq. 4.6, it cannot always be determined so easily as it is found from the

equation

Ttar = max(tAi + Tsi)�min(tAi). (4.7)

Here, the minimum tA is again associated with the plate center. In contrast to the max(tAi)

of Eq. 4.6, the expression max(tAi+Tsi) does not necessarily occur at a corner or edge due

to the kinks in the duration curve in Fig. 2.3, which were discussed in Section 2.2. Hence,

for Z < 2, the quantity (tAi + Tsi) should be evaluated at all grid points on the target

surface using Fig. 2.3 and the appropriate slant distance, with the maximum sum being

inserted into Eq. 4.7. As stando¤ distance increases, the di¤erence in arrival time across

the target decreases. This means t�A = 0 for a perfectly uniform load.
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In Chapter 5, the arrival time criterion of Eq. 4.6 is compared with one minimizing the

di¤erence between uniform and nonuniform impulse, namely

i� = iNU=iUF . (4.8)

Here, iNU refers to the total impulse acting on the target area using one of the procedures

outlined in Section 4.1.2. This total impulse is the summation of the impulse at each point

on the target area multiplied by the area over which that value acts. Therefore, iNU has

the more typical impulse unit of force multiplied by time (e.g., N�s). In contrast, iUF is

the total impulse associated with a uniform pressure. This value is calculated by simply

multiplying ir, as obtained from Fig. 2.7 for the scaled distance of the plate�s center point,

by the total plate area. Thus, the normalized impulse of Eq. 4.8 has an upper limit of

i� = 1, which is approached as the load becomes more uniformly distributed.

4.2 Specialized E¤ects

4.2.1 Negative Pressure Phase

As stated in Section 2.1, the negative phase of a blast pressure pro�le is usually ignored in

a structural analysis. Its e¤ects are generally minimal when dealing with rigid structures,

such as those made from reinforced concrete. However, the negative phase can become

important when dealing with �exible structures, where structural motion is a¤ected by

the phasing of blast loads acting across the target surface [38, 82]. According to Gantes

and Pnevmatikos [87], who analyzed SDOF systems subjected to blast loads, the negative

phase can possibly become important if it occurs during structural rebound, resulting in

a maximum displacement which is opposite the direction of initial loading. Moreover,

Dharani and Wei [88] have shown this phase to be signi�cant for laminated glass panels.

As the structures of interest in the present application are lightweight aircraft structures,

the negative blast phase is now brie�y examined, albeit in a mathematical context. For

close-in explosions, this pressure phase has hardly any e¤ect on the structure, as evidenced

by the small negative re�ected impulse, i�r , relative to its positive phase analog at small

scaled distances. For example, at Z = 0:1, i�r =W
1=3 � 4:9 bar�ms/kg1=3, while ir=W 1=3 �
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218 bar�ms/kg1=3 ( i�r =ir = 0:022).3 Indeed, the negative phase impulse does not even

reach 20% of the positive phase value until Z > 0:36. This percentage increases to 50% for

Z > 0:93. For the representative cases studied in Chapter 5, 0:15 � Z � 1:1. This means

that the negative phase is insigni�cant for most of the trials. For some of the smaller

charge/larger stando¤ cases, this suction phase helps to slightly decrease the permanent

plate de�ection. However, it has no e¤ect on maximum de�ection as this critical value is

reached well before the negative phase begins.

4.2.2 Pressure Relief

Pressure relief occurs when the pressure acting on a structure is reduced from that

calculated through the aforementioned procedures. This can happen in a number of ways.

For example, the blast wave shown in Fig. 4.1 will continue to grow radially as it strikes the

target surface. Once this wave propagation reaches the edges of the target, a rarefaction

wave forms as the initial wave starts to go around structure. This rarefaction wave acts

against any oncoming blast waves, thereby diminishing the total pressure acting on the

structure (e.g., see Ref. [1]). This wave interaction makes it necessary to consider the time

it takes for a blast wave to completely clear a structure. In a recent paper, Rickman and

Murrell [86] discuss how conventional clearing time methodologies can be improved.

Furthermore, many times, an actual target is not completely rigid. This is particularly

true of the aircraft structures considered herein. As the structure deforms, the incident

angle of the blast increases. From Fig. 4.2 or Eq. 4.1, it is clear that pressure decreases

as incident angle increases. Therefore, the blast wave-structure interaction prevents full

re�ection from occurring, thereby causing some relief of pressure. In this dissertation, this

interaction e¤ect is essentially ignored. As such, the calculated blast pressures herein are

predominately higher than would be measured experimentally. Thus, the current approach

is conservative, but much less so than one where all blast pressures are assumed to be

uniform.

3The negative phase parameter data used here are obtained from �gures in Refs. [38,82]. Some empirical
equations for these parameters, which were developed by Brode, can be found in Refs. [17, 19].
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4.2.3 TNT Equivalence

The notion of TNT equivalence arises from the desire to collapse data from various

explosive materials onto a single curve. Some sources (e.g., Ref. [20]) state that the ratio

of release energies between a non-TNT and a TNT charge of equal mass de�nes the TNT

equivalency. Therefore, pentolite, with a release energy (Qx) of 5110 kJ/kg, would have a

TNT equivalency of 1.13, since Qx = 4520 kJ/kg for TNT [2,19]. Ideally, if one is dealing

with 1 kg pentolite charges, the associated blast parameters can be attained from Fig. 2.3,

taking Z as the stando¤ distance in meters divided by 1.131=3, or 1.042 kg1=3. In contrast,

Bulson [22] states that a �standard� gram of TNT has a blast energy of 4610 J. Once

again taking Qx = 5110 kJ/kg for pentolite, the resulting �standard�TNT equivalency is

closer to 1.11. Moreover, as shown in Table 4.1, TM 5-1300 [38] gives a value of 1.09 for

pentolite�s TNT equivalency.

Indeed, it is common to �nd di¤erent equivalence values for the same explosive. Discrep-

ancies in respective energy values are, however, not the only cause of this nonuniformity. As

outlined in TM 5-1300 [82], TNT equivalency depends not only on energy output, but also

on material shape and pressure range considered (i.e., close-in or far-�eld). Esparza [34]

experimentally showed that small charges at small stando¤s produce di¤erent equivalencies

than the accepted values in Ref. [82], which were developed mostly from large charges at

large stando¤s. Furthermore, Huntington-Thresher and Cullis [89] explain that the oxygen

de�ciency of most explosives results in some available energy being released during com-

bustion, instead of completely during detonation. This after-burning phenomenon, also

discussed in Ref. [35], accounts for di¤erent TNT equivalencies being given when consid-

ering pressure, which is related to initial detonation, and impulse, which depends on both

detonation and combustion.

Still, since the cube root of these equivalency factors are eventually taken, the overall

error of using one versus another is relatively low. Held [90] estimates the maximum error is

between 3-10% for any explosive. Yet, compounded with other errors mentioned throughout

this chapter, a 10% error could be signi�cant. Table 4.1 provides TNT equivalency factors

for some common explosives as measured by various criteria and given by numerous sources.
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Criterion [Ref.] Composition B C-4 Pentolite
Energy [19] 1.148 � 1.129
Energy [38] 1.09 � 1.09
Pressure [4] 1.11 1.37 1.42
Pressure [19] 1.11 � 1.40
Pressure [23] 1.11 1.37 1.42
Pressure [34] 1.2 � 1.5
Pressure [82] 1.10 � 1.17
Impulse [4] 0.98 1.11 1
Impulse [19] 0.98 � 1.07
Impulse [23] 0.98 1.19 1
Impulse [34] 1.3 � 1
Various [3] 1.3-1.49 1.15-1.6 1.08-1.56

Table 4.1: TNT equivalency factors for common explosives from various sources.

While most experiments use either C-4 or pentolite, Composition B is included in Table

4.1 because its TNT equivalencies are easily found. Meanwhile, the explosive PE4, which

was used in the small scale experiments of Refs. [79, 91], has TNT equivalencies similar to

those of C-4.

With regard to Table 4.1, the values attributed to Esparza [34] were experimentally

determined for small charges. Meanwhile, the values from Ref. [3] are based on various

experimental tests, including ballistic mortar, plate dent and Trauzl block tests (see Ref.

[92]). Koper et al. [42] used an average C-4 value of 1.3 based on this data [3] in their

study, which examined both pressures and impulses of car bomb explosions. Moreover,

Rickman and Murrell [86] claim that C-4 has a TNT equivalency of 1.27, but do not state

on which criterion this is based. It is common, although incorrect, that single equivalency

factors be used throughout such comparative studies.

In this dissertation, plate deformation is given as a function of Z value or the stando¤

distance of a given quantity of TNT. However, this discussion serves to illustrate possible

sources of error in a commonly used approach. Additional problem areas pertaining to

blast scaling are discussed in the next section.
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4.3 Problems with Blast Scaling

In the last few sections, various assumptions incorporated within this dissertation have

been stated. Additionally, some general problems related to modeling an explosive blast

have been noted. These include neither having a standard criterion for applicability of a

uniform pressure distribution, nor a standard measure of TNT equivalency. Meanwhile,

issues like Refs. [3,22,23,48] giving an improper upper bound for re�ection coe¢ cient were

addressed in Section 2.4. Unfortunately, other modeling issues exist within the literature.

As stated in Ref. [38], �The actual values for the airblast parameters di¤er, of course,

from one set of experimental or computational results to another. Consequently, one can

obtain considerably di¤erent predictions of blast overpressures, impulses, and durations

from di¤erent sources.� Indeed, as mentioned earlier, Refs. [1�4] yield data that are often

inconsistent with one another and experimental results, particularly for close stando¤s.

Moreover, all of these references provide single curves for the aforementioned parameters.

As a result, the scatter of the original test data from which they are based has been removed

[38]. This section focuses on noting additional sources of error in published blast parameter

data and assessing the level of uncertainty associated with these errors. This information

is applied to the random blast loading of representative aircraft structures in Chapter 5.

4.3.1 Variety of Scaled Distances

Thus far in this dissertation, the only scaled distance that has been used is Z, the ratio

between stando¤ distance and the equivalent charge mass of TNT. This measure is given

here exclusively in units of m/kg1=3. However, there are a variety of scaled distances used

in the literature.

In his compiled data plots, Baker [1] uses Sachs scaling [93], which, unlike Hopkinson-

Cranz scaling [27,28], takes into account the local atmospheric pressure and speed of sound.

This scaling incorporates nondimensional units such as �R = RP 1=3o =E1=3 for scaled distance,

where E is the release energy of the charge. At low altitudes, Sachs scaling reduces to the

more traditional Hopkinson-Cranz scaling when an equivalent mass of TNT is substituted

for energy. However, Sachs scaling may be more appropriate at high altitudes [1]. An
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airplane in �ight typically reaches an altitude of 35,000 ft (10,700 m). However, according

to Boeing [94], the cabin is pressurized so as to maintain the equivalent of ambient pressure

at 8000 ft (2440 m). From an equation provided in Ref. [38], this translates to Po = 10:9

psi (0.75 bar), as opposed to the more standard 14.7 psi (1.01 bar). Therefore, a slight

adjustment may be needed when considering an explosion during �ight. Reference [38]

estimates the maximum possible correction as 12%.

In addition, Goodman [32] uses charge radius X in place of scaled distance in his compi-

lation of pentolite blast parameter data. This measure simply divides the stando¤ distance

by the radius of the charge. Finding scaled distance in the U.S. customary unit ft/lb1=3 is

also common. Conversely, some studies simply plot blast parameters as a function of stand-

o¤ distance. The trouble with all of these scaled (and sometimes unscaled) distances arises

when trying to compile blast parameter data from various sources. Conversion factors,

such as

1 m/kg1=3 = 2:5208 ft/lb1=3 = 0:282 �R = 0:053X,

must always be kept in mind. Note that assuming standard atmospheric conditions allows

these parameters, some dimensional and some nondimensional, to be equated.

4.3.2 Side-On Blast Parameters

Baker et al. [2] state that the experimental and numerical pressure data of various

researchers signi�cantly di¤er from each other. This is shown in Fig. 4.5, where, on

average, the minimum and maximum pressures amongst the ten sources vary by a factor

of two. This �gure, which shows a data spread similar to that of the empirical Ps-Z

relationships in Fig. 2.5, uses the nondimensional scaled distance �R introduced in Section

4.3.1. Notice how, just as in Fig. 2.5, the logarithmic scaling of Fig. 4.5 tends to collapse

dissimilar curves onto one another.

Chock and Kapania [95] give an example where the re�ected impulses of Baker [1] and

Kingery and Bulmash [30], from which the values in ConWep [4] are attained, deviate by

over 40% for the same scaled distance. Meanwhile, the experimental results of Refs. [89,91]

for small scale explosions also signi�cantly deviate from the impulse and blast duration

calculated by ConWep [4]. Moreover, Bogosian et al. [7] showed that there are at times
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Figure 4.5: Side-on overpressure ratio Ps=Po as a function of scaled distance �R from various
experiments [2].
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large discrepancies between ConWep [4], other computer programs, and experimental results

with regard to both incident and re�ected pressure and impulse. They suggest adding

con�dence bounds around the ConWep-generated curves to account for uncertainties in the

compiled data set. Indeed, this is the approach adopted in Chapter 5 of this dissertation.

Huntington-Thresher and Cullis [89] performed experimental tests on 0.75 kg and 6 kg

hemispherical TNT charges, along with PE4 and cylindrical TNT charges. They compared

their resulting blast parameter data with that of ConWep [4] and the cAst-Euler hydrocode.

They found that all sources produce similar values for peak pressure and arrival time.

However, ConWep [4] displayed longer durations and higher impulses than the experimental

and hydrocode measurements. As a result, Huntington-Thresher and Cullis [89] claim that

blast scaling may only be applicable for 0:7 � Z � 6:6. Furthermore, like Esparza [34],

they provide TNT equivalencies less than the standard published values for 0.75 kg TNT

charges, namely 0.8 and 0.7, respectively, for peak pressure and impulse.

As alluded to in Section 2.3, Eq. 2.6, taken from Ref. [3], does not correspond exactly

with the impulses provided in Table XI of the same reference. This deviation is shown in

Fig. 4.6. There is roughly a 19% di¤erence in the curves for all Z < 1, and a 19-32%

di¤erence for Z > 3. The minimum error is about 4% at Z = 1:4. However, a deviation of

at most 10% is only seen within the range Z = 1:1-2:1. It is preferable to use the tabulated

values of impulse since the other blast parameters presented by Kinney and Graham [3] are

consistent with these values (i.e., they satisfy Eq. 2.2).

Furthermore, Fig. 4.7 shows how these blast parameters [3] compare with those reported

by Refs. [2, 4]. As already shown in Fig. 2.5, the side-on pressure values from these

sources match extremely well for Z < 10. However, the impulse values are slightly greater

for the Baker and ConWep data [2, 4], with the largest discrepancy occurring between

0:5 < Z < 1:5. Meanwhile, the duration time data are completely divergent. The Baker

and ConWep curve [2,4] is generally increasing with scaled distance, save for the oscillatory

behavior explained in Section 2.2. In contrast, the Kinney and Graham curve [3] begins

with a value of Ts=W 1=3 = 7:777 ms at Z = 0:1 before decaying to a minimum near Z = 0:5.

Their curve then monotonically increases until it eventually matches the duration curve of

Refs. [2, 4] at some Z > 10. It seems that Eq. 2.5, from which the Kinney and Graham
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Figure 4.6: Deviation between side-on impulses reported in Table XI of Ref. [3] and via Eq.
2.6 for a chemical explosion.

duration curve is generated, is invalid for Z < 10. But as noted in Section 2.3, many

studies make use of Eq. 2.5 within this Z range.

As stated above, the blast parameters of Kinney and Graham [3] are internally consis-

tent. But if their duration time is greatly in error for the given Z range, so too must be

at least one other parameter in Eqs. 2.1 and 2.2. Since pressure and impulse seem to be

fairly reasonable in comparison to Refs. [2,4] per Fig. 4.7, that leaves only the exponential

decay constant � as a source of error. Indeed, Ismail and Murray [91] found that the time

constant of Kinney and Graham [3] does not match their experimentally derived values for

small PE4 charges.

4.3.3 Re�ected Blast Parameters

In Section 2.4, it was assumed that the ratio of re�ected and side-on values for pressure

and impulse are approximately equal. However, upon �rst glance of Fig. 2.7, this does not

appear to be the case, particular for the de�ated impulse region when Z < 0:8. Indeed, for

Z < 0:35, ir=is > 2Pr=Ps. But the impulse ratio decreases much faster than the pressure

ratio, allowing Pr=Ps = ir=is = 7:2 near Z = 0:6. For higher Z values, the pressure ratio
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is much more dominant. As a result, the two ratios only come within 10% of each other

again for 4:25 < Z < 7:5. Since Eq. 2.15 is invalid, the re�ected pressure distribution must

be described by respectively substituting Pr for Ps and a re�ected time constant for � in

Eq. 2.1, resulting in

p(t) = Po + Pr(1�
t� tA
Ts

)e��r(t�tA)=Ts . (4.9)

Equation 4.9 assumes that the re�ected arrival and duration times are equal to their side-on

analogs per the discussion in Section 2.4.

It should be noted that re�ected blast parameters such as Pr and ir can be readily

found in the literature. However, only Chock and Kapania [95] have provided values for

the re�ected time constant �r. Yet, as shown in Fig. 4.8, neither their side-on nor re�ected

parameter values match those calculated by the current author per data from Ref. [4]. In

fact, the side-on curve of Ref. [95] corresponds better to the re�ected curve of the present

study, with these curves being coincident for 1 � Z � 2. Moreover, the re�ected time

constant curve of Ref. [95] has the same oscillatory behavior as the solid � curve in Fig.

4.8. Comparing the solid curves in Fig. 4.8 to each other, there is a large di¤erence between

� and �r for Z < 3. A similar deviation is seen over the same Z range when comparing

the two curves of Ref. [95] with each other. It should be made clear that ConWep [4] only

explicitly provides a side-on decay constant. The re�ected time constant is determined here

by matching re�ected impulse with the other blast parameters in an analogous procedure

to that described in Section 2.1.

Furthermore, Fig. 4.8 displays side-on decay constant values as presented in Refs. [2,3].

As expected, the values from Baker et al. [2] compare fairly well with the ConWep data [4].

The Baker curve [2] also matches the limited time constant data tabulated by Smith and

Hetherington [19] (not shown in Fig. 4.8). Moreover, the side-on curve of Chock and

Kapania [95] is essentially the same as that plotted in Baker�s earlier text [1], which was

apparently corrected in Ref. [2]. Finally, the Kinney and Graham [3] curve, whose accuracy

was called into question in Section 4.3.2, yields the lowest values of all those presented in

Fig. 4.8. Their � values only begin to approach those of the other studies when Z > 2.

This result seems to verify Ismail and Murray�s assertion [91] that Kinney and Graham [3]

underpredict the decay rate for charges at small stando¤s.
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Figure 4.8: Side-on and normally re�ected decay parameters as a function of scaled distance
from various sources. Solid curves are derived by the current author from ConWep [4] data.

Whereas the results in Chapter 3 incorporated the side-on value of the decay constant,

the trials from this point on make use of its re�ected analog. Comparing the data in Fig.

4.8 with those in Table 3.2, there is probably only a signi�cant change for three of the ten

tabulated scaled distances, namely Z = 0:4, 0:5 and 1. The �rst two cases would tend

to overpredict the decay rate using the Chapter 3 methodology, thereby underpredicting

the load. Conversely, the latter case would tend to be conservative, overpredicting the

pressure. However, the �underpredicting�trials when Z = 0:4 or 0:5 are not really so since

an overpredicting uniform load is also assumed in Chapter 3. Indeed, most of the plates

in these low Z value trials fail despite the erroneous decay constant. In Chapter 5, less

conservative and more realistic nonuniform loads are examined.

4.4 Determination of Generalized Pressure Distribution

Figure 4.9 compares the two methods of determining nonuniform pressure-time history

outlined in Section 4.1.2. The case shown is for a centered 0.75 kg TNT charge at a stando¤

of 0.5 m. There is no discernible di¤erence between the curves for the �rst 25 �s. As time

is further increased, however, the surface burst curve exhibits an increased pressure relative
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Figure 4.9: Re�ected pressure distribution across a plate subjected to a centered 0.75 kg
TNT charge with a 0.5 m stando¤: � � , air burst per Eq. 4.1; ���, surface burst per Fig.
4.2.

to that for an air burst near the blast wave front. This pressure increase away from the

plate center is due to the pressure hump in Fig. 4.2. Still, from Table 4.2, the two methods

(AB and SB) produce the same overall impulse for all given cases. This is due to the fact

that both types of explosion are being modeled with Eq. 4.4 for net re�ected impulse. So

even though the pressure for the surface burst model rises above that for an air burst, the

total area under the pressure time curve stays the same for the two models. This can be

seen for the 250 �s curves in Fig. 4.9, where the air burst has higher pressures closer to the

plate center (r < 0:55 m) before giving way to surface burst pressure for the smaller region

0:55 � r � 0:67 m.

Turning again to Table 4.2, using a modi�ed air burst procedure also produces the same

impulse as for the standard air burst. The two methods di¤er in their accounting for

duration time. One calculates Ts per a Z value corresponding to the slant range for a

standard air burst, while per a Z value corresponding to the net re�ected pressure after Eq.

4.1 (i.e., similar to the surface burst procedure in Section 4.1.2) for the modi�ed method.

However, unlike for the curves in Fig. 4.9, the two airburst methods produce identical
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WTNT (kg) R (m) Irel (AB) Irel (MA) Irel (SB) Irel (MC)
0.5 0.3 1 1 1 0.648
1 0.3 1 1 1 0.682
2 0.3 1 1 1 0.718
6 0.3 1 1 1 0.757
0.5 0.5 1 1 1 0.702
1 0.5 1 1 1 0.716
2 0.5 1 1 1 0.742
6 0.5 1 1 1 0.782

Table 4.2: Impulse comparison for various assumed pressure pro�les, charge sizes and stand-
o¤s. All values are scaled to those of air burst. AB denotes air burst, MA denotes modi�ed
air burst, SB surface burst, MC Mach cone.

pressure and impulse histories. As the three methods mentioned all produce similar, if

not identical, pressure distributions for the given charge and stando¤ ranges, the simplest

method to evaluate, namely that outlined in Section 4.1.2 for an air burst, is implemented

throughout the remainder of this dissertation.

Meanwhile, the last column in Table 4.2 gives the relative impulse perceived within a

Mach cone. This is the method that Coggin [84] implemented, which restricts pressure

and impulse measurement to the region of the target area where �I � 45�. Intuitively, this

method should become more accurate as stando¤ increases up until a limiting distance is

reached. For a plate with a radius of 1 m, which is used in calculating the values in Table

4.2, this limiting distance would be R = 1, which corresponds to �I = 45�. Moreover,

this table shows another trend in that the approximate method of Ref. [84] works better for

larger charge sizes at a given stando¤. This is a consequence of the larger charges producing

an increasingly higher initial pressure and impulse at the plate center than for surrounding

points as they are moved closer to the target. Therefore, the relative impulse of a larger

charge is higher within a small incident angle, or more generally within �I � 45�. Still, for

the given ranges, the Mach cone method should not be used as it greatly underestimates

the total impulse as compared to the other tabulated methods. This approximation can

potentially be used for a 6 kg charge at a slightly higher stando¤ distance than given in

Table 4.2 (e.g., R = 0:8 m), when Irel � 0:9.

Figures 4.4 and 4.9 both present re�ected pressure data for a stando¤ of 0.5 m, but

the former depicts the distribution from a charge eight times larger in mass. Whereas
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the pressure curves in Fig. 4.4 are slightly decreasing with increased distance, in Fig. 4.9,

pressure is distinctly increasing as the blast wave travels farther away from the plate center.

Moving the 6 kg charge back to a stando¤ of 1 m, and therefore, to the same scaled distance

as for the curves in Fig. 4.9, an upward swinging pressure distribution is also captured.

It appears then that there a few di¤erent classes of pressure distribution. For far-o¤

blasts (i.e., large Z values), there is the upward swinging nature of Fig. 4.9. Here, as the

blast wave �rst reaches a point some distance away from the plate center, the pressure at

the center has signi�cantly decayed from its peak value. Geometrically, such a distribution

can to be generated by sweeping arcs from some large distance away.

In contrast, Fig. 4.10 shows the pressure distribution from a close-in blast, with the 6

kg charge moved to within 0.3 m of the target. These curves appear to be almost Gaussian

in shape. Indeed, using the Gaussian equation

p(x) =
pmax

�
p
2�
exp

�
� x2

2�2

�
(4.10)

supplied by Hoo Fatt and Wierzbicki [96], it is found that a near constant standard deviation

� of 0.2 holds for the 10 �s, 25 �s and 50 �s curves. Therefore, the 6 kg charge exhibits

a Gaussian pressure distribution for roughly the �rst 50 �s. For intermediate blasts (e.g.,

a 6 kg charge at a stando¤ of 0.7 m), the pressure curves are nearly rectangular at early

times, before transitioning to the upward swinging variety at longer times (t > 100 �s).

Comparing Figs. 4.4 and 4.10, although the pro�le shapes are signi�cantly di¤erent, the

wave front appears to reach equal distances in equal time. In other words, the horizontal

propagation speed of the blast seems to be nearly constant for a given charge size, regardless

of stando¤ distance.

Relatively few papers in the literature give geometrically de�ned pressure functions such

as those described above. Collins [47] attempted to generate elliptical pressure waves from

an explosion. While Collins [47] gives complicated mathematical functions for various

parameters detailing the distribution, Turkmen and Mecitoglu [85] provide for a simpler

sinusoidal distribution through Eq. 4.3. Moreover, the exponentially raised cosine expres-

sion of Eq. 4.5, which is attributed to Henrych [22,44], can potentially be used to describe

the early-time pressure distribution of a close-in blast.
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Figure 4.10: Re�ected pressure distribution across a plate subjected to a centered 6 kg TNT
charge with a 0.3 m stando¤.

Additionally, Wierzbicki and Hoo Fatt [97] give a more general relationship, namely

p(x; �; t) = pmax exp

�
� t
�

�
f(x)g(�), (4.11)

where the distribution is broken up into individual spatial and temporal components. Equa-

tion 4.11 can be used in conjunction with the modi�ed Friedlander equation, like in Eq.

4.3, or also with the Gaussian form in Eq. 4.10 in order to develop a generalized, closed

form pressure distribution. Such a distribution minimizes the use of redundant procedures

like those outlined in Section 4.1.2. Furthermore, a closed form distribution is very useful

when performing analytical calculations, or when developing a simpli�ed loading/structural

model as in the current application.
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Chapter 5

Structural Response to Nonuniform Pressure Load

This chapter incorporates the structural model of Chapter 3, along with the procedures

outlined in Chapter 4, in order to develop de�ection curves of two representative aircraft

structures.1 These structures are numerically subjected to the explosive pressure from

two small charges at a variable stando¤. The panel de�ections attained by calculating

the appropriate nonuniform distribution are compared with those per an assumed uniform

loading. Moreover, two di¤erent blast parameter data sets are examined.

The resulting parameter study serves to answer two questions. First, when can the

pressure distribution acting on a structure be taken as uniform? Secondly, how can the

uncertainty in published blast parameter data be assessed? The normalized response

criteria of Section 4.1.3 and a Monte Carlo scheme are evaluated in order to respectively

address these issues. Furthermore, the Monte Carlo method is also used to establish

probability of failure curves for each representative structure.

5.1 Method of Analysis

5.1.1 Structural Model and Timestepping Scheme

The single-degree-of-freedom (SDOF) plate equations described in Sections 3.1 and 3.2

are again used throughout Chapter 5. For simplicity, all edges are considered clamped.

This limits the required equations to Eq. 3.14 for elastic phase response, Eq. 3.20 for yield

condition, and Eq. 3.29 for plastic phase response. As in Chapter 3, failure is based on a

simple maximum strain criterion, namely Eq. 3.30.

1Chapter 5 represents an expanded version of work by Florek and Benaroya [98].
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Figure 5.1: Small fuselage section with small plate (SP) geometry shaded [9].

Meanwhile, a Runge-Kutta scheme is again used to solve the above equations for de�ec-

tion at every timestep. This procedure, as outlined in Section 3.3.1, can, in turn, be used

to calculate the maximum de�ection at the plate center.

5.1.2 Geometry and Material Properties

Two geometries are examined in this chapter. The �rst is a 20�8 � 0:063 in (508�203�

1:6 mm) Al 2024-T3 plate. This small plate (referred to as SP below) is representative

of a small fuselage section between consecutive frames and stringers (see Fig. 5.1). As

cited in Section 3.3.2, Al 2024-T3 has the following material properties: E = 73:1 GPa,

� = 0:33, � = 2780 kg/m3 and �0 = 345 MPa. The second geometry is a 59� 57:5� 0:16

in (1500 � 1460 � 4 mm) Al 7021-T6 plate. This large plate (LP below) models a panel

of an LD-3 luggage container, which is shown in Fig. 5.2. Per Ref. [75], Al 7021-T6 has

the same Poisson�s ratio and density as Al 2024-T3, with a slightly lower elastic modulus

(E = 72 GPa) and slightly higher yield stress (�0 = 380 MPa). As in Chapter 3, aluminum

is assumed here to be e¤ectively strain rate-insensitive so that its static and dynamic yield

stress are equal.

The maximum de�ections are attained from the procedures in Chapters 3 and 4 for

either a uniform or nonuniform pressure using the Matlab [74] programming language.

These results are compared with output from the �nite element package ANSYS [76]. In
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Figure 5.2: LD-3 luggage container with large plate (LP) geometry in front [99].

ANSYS [76], the plate material is taken as bilinear�elastic, perfectly plastic (see Fig. 3.3),

while the mesh again consists of square SHELL93 elements. Each �nite element run on

the Dell Precision 470, with 0:1 � �t � 1 �s, lasts roughly between 20 minutes and 2

hours, depending on the plate dimensions and whether or not the plate fails. Processing

time is slightly increased from the 15-90 minutes cited in Chapter 3 due to the increased

panel sizes and additional programming complexities associated with de�ning a nonuniform

loading. Note that, unlike in Chapter 3, many of the current �nite element runs are stopped

short of achieving a steady state de�ection. Meanwhile, with a required time step between

1 � �t � 5 �s, the corresponding de�ection results from Matlab [74] still take only seconds

to process.

The di¤erence in results between the two computational methods is found to be generally

less than 20%, with the highest errors occurring for the smaller panel (SP) cases. The �gures

throughout this chapter show Matlab [74] results after being multiplied by an appropriate

correction factor (Cf ) to better match the �nite element solutions. These correction factors,

similar to those calculated in Section 3.4, are given in Table 5.1 for the various cases of this

chapter. Values for Cf are based on a limited number of runs for each trial, consisting

of a unique combination of charge size, reference source, distribution type and panel size.
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WTNT (kg) Ref. UF/NU Cf (LP) Cf (SP)
0.75 [2,4] UF 1.2 1
6 [2,4] UF 1 1
0.75 [3] UF 1 1
6 [3] UF 1 1
0.75 [2,4] NU 0.8 1.2
6 [2,4] NU 1 1.2
0.75 [3] NU 1 1.2
6 [3] NU 1 1.2

Table 5.1: Correction factors to better match Matlab and ANSYS results. UF denotes
uniform pressure, NU nonuniform pressure.

Stando¤s range between 0:3 � R � 5 m. Note from Table 5.1 how most of the uniform

runs per the current method do not require alteration based on the �nite element data.

It should be noted that, in reality, the geometries presented in Figs. 5.1 and 5.2 have

boundaries that are non-clamped. For example, the SP panel is constrained at its edges

by the motion of the two frames and two stringers surrounding it. Typically, the frames

will de�ect a very small amount in comparison to the skin panel, so that two edges are, for

practical purposes, clamped. In contrast, the stringers can de�ect signi�cantly under the

action of a blast load. Each stringer, or the entire sti¤ened plate as per Refs. [100, 101],

can be modeled as a beam. However, such modeling is beyond the scope of this disser-

tation. Moreover, assuming clamped edges allows for a better comparison with published

experimental results related to the blast loading of plates (e.g., Refs. [11, 12,72]).

5.1.3 Pressure Loading

Two sizes of spherical TNT charges are considered in this chapter� 0.75 kg and 6 kg.

These are the same charge sizes investigated by Huntington-Thresher and Cullis [89] in

their small scale experiments. Henceforth, these spherical charges are respectively denoted

as small charge (SC) and large charge (LC). Meanwhile, stando¤ distances range between

0.3 m and 1 m. The lower bound assumes that an explosive placed within a piece of

luggage, either in an overhead bin (SP) or underneath the plane (LP), will be at least 0.3

m (roughly 1 ft) away from the target panel. Meanwhile, the upper bound is roughly the

stando¤ for an explosive placed in the center of an LD-3 container, as per the experiments
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of Gatto and Krznaric [102]. With the charge sizes and stando¤s given, the calculated

scaled distances vary between 0:165 � Z � 1:1. These values are slightly lower than the

range 1:39 � Z � 1:75 used by Akerman et al. [40] in their study of explosives in luggage

containers.

As per the discussion of Section 4.1, a nonuniform pressure distribution is more ap-

propriate than a uniform for a close-in explosion. However, both a uniform and centered

nonuniform loading are examined in Section 5.2. This is done for two reasons. First,

it is desired to compare the de�ection results attained by using the blast parameters of

Baker et al. [2] and ConWep [4], shown earlier to be nearly identical for Z < 10, with those

calculated using values supplied by Kinney and Graham [3]. Secondly, comparing uniform

and nonuniform results provides a means of evaluating the normalized criteria de�ned in

Section 4.1.3.

Just like for the trials in Chapter 3, uniform pressures here are assumed to take on their

fully re�ected values. Whereas Refs. [2,4] provide both re�ected pressure and impulse data

to enable a re�ected, uniform pressure distribution to be calculated per Eq. 4.9, Kinney

and Graham [3] give only a means for calculating re�ected pressures. With no details on

the re�ected impulse, Eq. 2.15 is used to generate the pressure distribution of Ref. [3].

Although shown to be in error in Section 4.3.3, Eq. 2.15 must be used due to lack of

su¢ cient information. Therefore, this study also serves to quantify the error in predicted

response when using Eq. 2.15 over a more exact relationship.

Moreover, as detailed in Section 2.4, the re�ected pressures given by Kinney and Graham

[3] are calculated through an unconservative re�ection coe¢ cient (see Fig. 2.6). From Fig.

4.7 though, their side-on pressure curve is essentially the same as that of Baker et al. [2] and

ConWep [4] over the given Z range. As such, the re�ected overpressures Pr for all models

below are simply taken from Refs. [2, 4]. These re�ected pressure values are then inserted

into Eq. 4.9. This procedure provides a much more reasonable impulse than would be

otherwise assuming Pr=Ps � 8. In order to di¤erentiate the models, the side-on values of

Ts (from Eq. 2.5) and � [3] (from Fig. 4.8) are used for the Kinney and Graham [3] curves

below. In contrast, the curves for Refs. [2, 4] below use Ts and �r from Figs. 2.3 and 4.8,

respectively.
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Meanwhile, nonuniform distributions for both models are generated per Eq. 4.1. As

such, one should keep in mind the footnote in Section 4.1.2 regarding how nonuniform

pressure and impulse distributions are determined. It should further be noted that the

predicted pressures of Refs. [2, 4] begin to diverge signi�cantly outside of the presented

scaled distance range (i.e., Z > 10). However, for the charge sizes and stando¤s used here,

Z does not exceed this value, so the parameters of Baker et al. [2] and ConWep [4] are

essentially the same.

Once the uniform or nonuniform pressure distribution is fully described, it can be used as

input into the governing equations of the target geometry given in Section 5.1.1. However,

in deriving Eqs. 3.14 and 3.29 for respective elastic and plastic phase motion, the pressure

load p(x; y; t) was assumed to be uniform. This assumption e¤ectively made p(x; y; t) a

constant with respect to position, allowing it to be removed from any integral expression,

thereby simplifying all derived expressions. In contrast, for a nonuniform pressure, p(x; y; t)

must be integrated over an appropriate area. As a result, Eq. 3.14, for example, can be

rewritten as

�h �W +
4Eh�4

27a4(1� �2)

�
3 + 2

a2

b2
+ 3

a4

b4

��
h2W + CfW

3
�
=
16

9
peff (t), (5.1)

where peff (t) is the e¤ective uniform pressure load acting across the clamped plate, and all

other parameters are as de�ned in Section 3.1. In Eq. 5.1,

peff (t) =
16

ab

Z b=2

0

Z a=2

0
p(x; y; t) cos2

�x

a
cos2

�y

b
dxdy. (5.2)

For a simply supported plate, peff (t) is similar to that in Eq. 5.2, with �2 in place of 16

and the exponents on the cosine terms removed.

5.2 Comparison of Response to Uniform and Nonuniform Deterministic

Load

5.2.1 Results of Deterministic Trials

In Fig. 5.3, the maximum de�ection results for the LD-3 panel (LP) subjected to the

blast from a 0.75 kg TNT charge (SC) are compared. Here, only the blast parameters

of Baker et al. [2] and ConWep [4] are incorporated, but pressure distribution is assumed
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Figure 5.3: Comparison of maximum de�ection results per Refs. [2,4] for an LD-3 panel
(LP) subjected to uniform and nonuniform blasts from a 0.75 kg TNT charge (SC).

to be both uniform and nonuniform. The uniform distribution clearly produces a much

greater de�ection than its nonuniform analog for smaller stando¤s. This is to be expected

since the blast pressure is assumed to act over the entire plate simultaneously for a uniform

distribution, while only over isolated sections for a nonuniform. As stando¤ distance

increases, the two curves tend to collapse onto one another, with the uniform curve serving

as an upper bound. It appears then that for this SC/LP case, a uniform distribution can

be assumed for a stando¤ R > 1 m, which translates to Z > 1:1.

There are a few other interesting features of Fig. 5.3. One is that the maximum de�ec-

tion does not change appreciably over the given stando¤ distance range for a nonuniform

distribution (60:8 � W � 113 mm), especially when compared to the uniform de�ections,

whereWmax = 327 mm. This seems to be a consequence of there being only a small change

in total impulse (or e¤ective uniform pressure) acting on the large area plate as stando¤

increases. For R = 0:3 m, most of the nonuniform blast pressure is concentrated at the

plate center. Analyzing Eq. 4.1, increasing the stando¤ (or Z value) has two major e¤ects.

First, the peak pressure striking the plate decreases. But simultaneously, points farther

away from the center begin to feel signi�cant pressures (see Fig. 4.3), thereby keeping the
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net impulse relatively steady. As a uniform distribution acts over the entire plate, de�ec-

tions are initially much higher. Since a uniform load is only governed by the �rst e¤ect

above, there is a sharp decay in net impulse, and therefore de�ection, between 0:3 � R � 0:6

m. Despite these di¤erences and the uniform maximum de�ection being nearly triple that

of the nonuniform distribution, neither model predicts a failure for 0:3 � R � 1 m (i.e., all

de�ections fall below the critical de�ection of 335 mm calculated per Eq. 3.30). Clearly

though, the LD-3 panel will fail for any smaller stando¤ per a uniform distribution.

In Fig. 5.4, the maximum de�ection results from Fig. 5.3 are compared with those

attained by using the blast parameter data of Kinney and Graham [3]. Meanwhile, Fig.

5.5 shows analogous curves for the case of a 6 kg charge (LC) acting on the LD-3 panel

(LP). Whereas the uniform distribution curves of Refs. [2, 4] bound their corresponding

nonuniform curves in these �gures, Kinney and Graham�s [3] uniform curves exhibit an odd

behavior in that they fall below their associated nonuniform curves at certain stando¤s.

This dip occurs for 0:4 � R � 0:6 m in Fig. 5.4, for R � 0:85 m in Fig. 5.5. These stando¤

ranges correspond to 0:44 � Z � 0:66, which is approximately where the scaled duration

curve of Ref. [3] reaches a minimum in Fig. 4.7. Therefore, a counterintuitive mathematical

behavior is possible when the duration time is signi�cantly changed. It appears that this

is true even when pressure and impulse are essentially preserved.

In contrast to the plate behavior under a uniform load, the nonuniform load cases for

Ref. [3] in Figs. 5.4 and 5.5 have no irregularities. Recall that for a uniform load, only

single values of pressure, impulse and duration time are designated over the entire target

surface, with an arbitrary arrival time usually set to zero. It is believed that the nonuniform

distributions, which produce di¤erent arrival and duration times across the plate, smooth

out the e¤ect of �uctuations in the loading time. Indeed, these curves appear to have a

near constant de�ection value in the aforementioned �gures, in large part, due to �gure

scaling. In actuality, the nonuniform de�ections of Ref. [3] range between 64.7-70.5 mm

and 167-201 mm in Figs. 5.4 and 5.5, respectively. Hence, de�ections change very little

over the range 0:3 � R � 1 m, and more importantly, do not exhibit an arti�cial dip like in

the uniform cases. A similar, but less prominent, tendency for a dip in uniform pressure

response occurs when the fuselage panel (SP) de�ects per the data of Ref. [3]. This is seen
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Figure 5.4: Comparison of maximum de�ection results per Refs. [2-4] for an LD-3 panel
(LP) subjected to uniform and nonuniform blasts from a 0.75 kg TNT charge (SC).

in Fig. 5.6 for the case of a small charge explosion.

Finally, it is clear from Figs. 5.4 and 5.5 that the Kinney and Graham data [3] predict

maximum de�ections that are well below the values per Refs. [2, 4]. This is an extremely

important result since, as established in Chapter 2, the data from Refs. [2�4] are all com-

monly used in the literature. Such signi�cant deviations in predicted de�ection can severely

alter a structural design, either conservatively or unconservatively. Indeed, in Fig. 5.5, the

nonuniform curve of Refs. [2, 4] indicates failure for R < 0:75 m; their uniform curve, for

R < 0:95 m. Therefore, assuming a nonuniform distribution, an additional design tolerance

of 0.2 m (8 in) is gained. Similarly, for the SC/SP case shown in Fig. 5.6, an additional

stando¤ tolerance of 0.15 m (6 in) can be gained. In contrast, Kinney and Graham�s [3]

de�ections are entirely below their critical value for a nonuniform distribution in Fig. 5.5.

For a uniform load, their de�ections exceed the critical value only when R < 0:45 m. These

contrasting results make it unclear as to which data source should be used. This issue is

examined further in Section 5.3.
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5.2.2 Evaluation of Normalized Criteria

Figure 5.7 displays the normalized arrival time and impulse criteria introduced in Section

4.1.3. Per the con�icting results of Section 5.2.1, this �gure incorporates only the data of

Refs. [2, 4], which are used in the various technical manuals referenced in Chapter 4. As

mentioned above, the uniform and nonuniform curves of Refs. [2, 4] for the SC/LP case

appear to collapse onto one another near R = 1 m (see Fig. 5.3). This means that a

uniform distribution can safely be assumed for R > 1 m. However, for the LC/LP shown

in Fig. 5.5, these curves only begin to collapse onto one another at this maximum stando¤.

As such, Fig. 5.7 is extended to cover 0 � R � 3 m.

Plotting normalized impulse i� against distance, a monotonically increasing function

approaching unity over the given range is produced. In contrast, intermediate maxima are

found in both LP t�A curves before they decay towards zero. This makes a unifying arrival

time criterion less desirable for two reasons. First, a one-to-one correspondence between

t�A and de�ection does not exist. Secondly, some generality is lost in that the LP cases

have completely di¤erent curves depending on charge size. But why do the t�A curves

exhibit these behaviors? While not nearly as pronounced as the scaled duration time dip
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R (m) WNU (mm) WUF (mm) % Error t�A i�

1 39.07 44.19 13.1 0.351 0.644
1.25 34.04 36.67 7.73 0.365 0.736
1.5 30.43 31.91 4.86 0.358 0.801
1.75 27.48 28.46 3.57 0.324 0.844
2 24.98 25.63 2.6 0.272 0.877
3 18.79 18.96 0.9 0.165 0.941
5 13.33 13.38 0.38 0.093 0.978

Table 5.2: Comparison of maximum de�ection and normalized criterion values for SC/LP
case.

for Ref. [3], there are still �uctuations in the corresponding curve of Refs. [2,4] in Fig. 4.7.

These oscillations a¤ect the Tsi values inserted into Eqs. 4.6 and 4.7, which, in turn, a¤ect

t�A. Moreover, the large values of t�A (i.e., t
�
A > 1) for the SC/LP case at small stando¤s

indicate that the time it takes for the small charge blast to reach the edges of the LD-3 panel

is signi�cantly greater than the duration time acting on the plate. Increasing the charge

size decreases the corresponding arrival time and, therefore, decreases t�A. The resulting

lack of a monotonically decreasing and general t�A curve for each geometry makes it di¢ cult

to establish a time based criterion for when a uniform distribution can and cannot be used.

Meanwhile, the normalized impulse curves in Fig. 5.7 are not a¤ected by either of these

issues. Clearly, both the single SP and single LP curves monotonically increase to the

maximum value of i� = 1.

Table 5.2 displays the maximum de�ection values attained by ANSYS [76] for both

uniform and nonuniform loading of the LD-3 panel (LP) due to a 0.75 kg charge (SC). The

percent errors of these de�ections with respect to one another are also shown, and compared

with both the normalized arrival time and impulse criteria. Meanwhile, Table 5.3 shows

the same data for LD-3 panel subjected to pressures from a 6 kg charge (LC). Notice that

the stando¤s in Tables 5.2 and 5.3 are taken outside of the previous range 0:3 � R � 1 m.

This is due to the fact that uniform and nonuniform de�ections of the larger panel only

begin to approach one another near R = 1 m per the ConWep [4] parameter data.

For the SC/LP case, the uniform and nonuniform distributions produce de�ections

within 10% of each other when R > 1:1 m. Meanwhile, the required stando¤s for de-

viations of 5% and 2% are 1.5 m and 2.3 m, respectively. Interpolating the data in Table
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R (m) WNU (mm) WUF (mm) % Error t�A i�

1 164.3 201.5 22.6 0.427 0.63
1.25 123.9 138.8 12 0.214 0.726
1.5 97.15 105 8.08 0.113 0.793
1.75 79.57 84.44 6.12 0.093 0.839
2 66.92 70.2 4.9 0.089 0.873
3 42.36 43.38 2.41 0.092 0.94
5 26.59 26.76 0.64 0.051 0.977

Table 5.3: Comparison of maximum de�ection and normalized criterion values for LC/LP
case.

5.2, these three values of percent error respectively correspond to t�A = 0:359, 0.358 and

0.234. Further, the analogous values for normalized impulse are 0.67, 0.78 and 0.9. Scan-

ning down the t�A column in Table 5.2, the aforementioned �uctuations in the normalized

arrival time curve become apparent. The value for t�A increases between R = 1 m and

R = 1:25 m, then consistently decreases as stando¤ increases.

From Table 5.3, a 10% error for the LC/LP case occurs when R = 1:38 m, where

t�A = 0:162 and i� = 0:76. Meanwhile, di¤erences between the uniform and nonuniform

maximum de�ections decrease to within 5% near R = 2 m, where t�A = 0:09 and i
� = 0:87.

A further decrease to a 2% error occurs when R = 3:4 m, t�A = 0:082 or i� = 0:949. A

similar �uctuation in t�A as for the SC/LP case is seen between R = 1:75 m and R = 3 m.

Furthermore, comparing these t�A values with their analogous values for the SC/LP case,

the numbers are quite di¤erent. For example, t�A = 0:358 at a 5% error level for the SC/LP

case, while t�A = 0:09 at the same error level for the LC/LP case. Due to the con�rmed

�uctuations in the t�A curve and this lack of correspondence in t
�
A values for the tabulated

cases, the normalized arrival time criterion in its current form is dismissed. Moreover, due

to a similar lack of correspondence between the SC and LC cases, a Z value criterion, as

proposed by Refs. [83, 86], also seems to be inadequate.

In contrast, it appears that normalized impulse values correspond fairly well between

the two loading cases. A maximum 10% error is seen when 0:7 � i� � 0:76, a 5% error

when 0:78 � i� � 0:87 and a 2% when 0:9 � i� � 0:95, regardless of charge size. As

a result, it is suggested that a uniform distribution can be substituted for a nonuniform

pressure load when i� > 0:9. This threshold also seems to give adequate results for the
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smaller panel cases.

5.3 Response to Nonuniform Random Load

As explained in Chapter 4, uncertainties arise when using the loading model generated

by the modi�ed Friedlander equation (Eq. 2.1 or 4.9) and cube-root scaling law of Eq.

2.3. A primary cause for these uncertainties is that physically, two seemingly identical

charges can produce signi�cantly di¤erent pressure-time histories. As a result of this acute

sensitivity to the numerous physical parameters involved, blast data from di¤erent sources

tend not to match. As shown in Section 5.2.1, this lack of consistent blast data can cause

a wide range of predicted de�ections for a plate subjected to an explosive load. To account

for this data randomness, uncertainties are introduced into the deterministic pressure model

of Eqs. 2.1 and 4.9. The resulting probabilistic model allows for all de�ection possibilities

within the framework of the modi�ed Friedlander equation to be considered.

5.3.1 Monte Carlo Method

In Fig. 4.7, the scaled duration time and impulse curves of Refs. [2, 4] di¤er from those

of Ref. [3] over the entire plotted Z range. In contrast, the side-on pressure curves are

essentially the same over the given range. As a result, Ps is considered here to be essentially

deterministic for every Z value, while Ts and is are both taken as random variables. These

random parameters are allowed to range anywhere between their respective lowest and

highest values in Fig. 4.7 for a particular Z value. These parameter ranges are more

clearly seen in Fig. 5.8. With no information on the type of scatter, simple uniform

distributions are assumed to apply throughout.2

Deterministic re�ected pressure Pr is simply found from Fig. 2.7. Moreover, each

random ir is determined by multiplying the random is from Fig. 5.8 for a given trial by

the ratio of re�ected to side-on impulse from Refs. [2,4] at that particular Z value. This is

in holding with the discussion in Section 5.1.3. Furthermore, time constant �r is derived

2Here, a uniform distribution is in the probability sense of the expression, totally unrelated to a load
being uniformly distributed as in Fig. 2.8. Consider a variable x whose lowest possible value is a, and
whose highest is b. The variable is said to have a uniform distribution if for a given trial, there is an equal
probability that x takes on any value within the range (b� a). See Ref. [78] for more details.
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Figure 5.8: Blast parameter bounds for use in Monte Carlo simulation.

from these parameters (i.e., Pr, ir and Ts) for each trial as outlined in Section 2.1 (see Eq.

2.2). As only nonuniform pressure distributions are considered in this section, the air burst

procedure given in Section 4.1 still applies for each trial.

As di¤erent maximum plate de�ections are produced for each stando¤ (or scaled) dis-

tance depending on the values of the random loading parameters, the Monte Carlo method

is implemented to attain a mean maximum deformation. This method works by running

multiple trials at a given stando¤ (or scaled) distance until the average of the output de-

�ections converges to some speci�ed tolerance. Each resultant mean de�ection has an

associated standard deviation (�) at that particular Z value. For a normally distributed

random variable, it is known that 68% of all data falls within one standard deviation of the

mean, and 95% within two standard deviations. Although these percentages do not hold

for uniform distributions, standard deviation bounds still serve as a measure of uncertainty.

Indeed, Refs. [7, 72] use standard deviation bounds for non-normally distributed data.

Moreover, by de�ning a critical de�ection, the Monte Carlo method can also estimate

the probability of failure for a given stando¤ (or scaled) distance. This probability is simply

calculated by dividing the number of trials that exceed the critical de�ection by the total

number of trials for a particular stando¤ (or scaled) distance. For more details on the
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Monte Carlo method and other topics related to probability and statistics, see, for example,

the text of Benaroya and Han [78].

5.3.2 Results of Random Trials

The results for the LC/LP case of Fig. 5.5 are of particular consequence as the data

set of Refs. [2, 4] predicts failure due to a nonuniform load for R < 0:75 m, while that of

Kinney and Graham [3] predicts no failure. This large variation in maximum de�ection at

the same stando¤ distance makes it necessary to assess the uncertainty in these calculated

results. Using the Monte Carlo method, Figs. 5.9-5.11 are produced, where de�ections

correspond to an average of the nonuniform distributions of Refs. [2�4]. Comparing the

results in Figs. 5.9 and 5.10 with the respective deterministic output in Figs. 5.4 and 5.5,

it is clear that the mean de�ection is weighted heavily towards the higher de�ections of

Refs. [2, 4]. Indeed, the upper two standard deviation (2�) bounds in Figs. 5.9 and 5.10

seem to match well with the maximum deterministic values of Refs. [2, 4].

A similar trend is seen when comparing the smaller panel (SP) case of Fig. 5.11 to its

deterministic analog in Fig. 5.6. Meanwhile, a �gure for the LC/SP case is not shown since
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Figure 5.10: Maximum de�ection for an LD-3 panel (LP) subjected to an LC blast: � � ,
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failure is predicted for the entire stando¤ range. From Fig. 5.8, pressure is deterministic,

while impulse is only slightly random. This means that only duration and the decay

constant are signi�cantly di¤erent between the models. The aforementioned results for the

LP and SC/SP cases lead one to believe that the slightly higher impulse of Refs. [2, 4] in

Fig. 4.7 has a much greater e¤ect on maximum de�ection than the longer duration time of

Ref. [3] at close stando¤s (i.e., Z � 0:3). This trend continues when the duration time of

Ref. [3] becomes much smaller than that of Refs. [2, 4] for Z � 0:4.

5.3.3 Probability of Failure

Probability of failure results are only interesting for the cases shown in Figs. 5.10 and

5.11 as here, the critical de�ection is crossed within the given stando¤ range. In the

previous section, the curves for the LC/SP case were dismissed since failure is predicted

for all stando¤s 0:3 � R � 1 m. Likewise, the SC/LP case is ignored here as no failures

are predicted within the same R range. It should be noted that the critical de�ection

lines in Figs. 5.3-5.6, 5.10 and 5.11 at 335 mm for LP cases and 58.4 mm for SP cases

are all based on the assumed sinusoidal elastic shape. As mentioned in Section 3.2.3,
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Figure 5.11: Maximum de�ection for a fuselage panel (SP) subjected to an SC blast: � � ,
mean; �� � ��, 1 � bound; ���, 2 � bound.

failure can also be related to the assumed plastic deformation pattern. As per Table 3.1,

this failure criterion gives critical de�ections roughly 9% higher than by the elastic shape.

Both conservative (Wre) and unconservative (Wrp) rupture de�ections are considered here

in estimating probability of failure to a given load.

From its de�nition in Section 5.3.1, probability of failure is determined for the afore-

mentioned cases and plotted in Fig. 5.12. For the LC/LP case, there are no failures for

R � 0:9 m per the elastic rupture model, all failures for R � 0:7 m, and about a 61% chance

of failure at a stando¤ of 0.8 m. For the unconservative model, these failure curves are

roughly translated 0.15 m to the left. These probabilities, based on the applied parame-

ter uncertainties, give a much more realistic measure of material behavior than the simple

deterministic models used in Section 5.2.

Meanwhile, for the SC/SP case, there appears to be a 0% chance of elastic rupture for

R > 0:45 m, a 100% chance for R � 0:38 m, and about an 80% chance at R = 0:4 m.

In contrast, a prevailing curve shift of 0.05 m for the fuselage panels means that there is

nearly 0% probability of failure at R = 0:38 m per the plastic rupture prediction. As

neither rupture predictor gives a wide range between the limiting probabilities of 0 and 1,
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the design should be such that a 0.75 charge cannot be placed within 0.45 m of the fuselage.

Curves similar to those in Fig.5.12 can be generated by the designer for the particular charge

size and stando¤ distance of interest.
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Chapter 6

Improvements to Structural Model

As stated in Section 3.4, the average discrepancy between the current, clamped struc-

tural model and �nite element results per ANSYS [76] is 10.7% for entirely uniform loads.

However, when this model was extended for nonuniform loads in Chapter 5, average errors

for both plate sizes reached upwards of 20% depending on the charge size.

This chapter o¤ers some suggestions for improving the results furnished by the current

structural model. First, the elastic phase model is examined. The exponent attached to

the assumed clamped, elastic de�ection shape is reevaluated, while the e¤ects of adding

terms to the equation governing this shape are explained. In addition, the roof shaped,

plastic phase model is replaced by a more realistic box shaped pattern. Ways in which a

nonuniform load can alter these elastic and plastic de�ection shapes, as well as the phase

transition between them, are also discussed. Other topics touched upon include structural

damping and extending the current method of analysis to thin shells.

6.1 Elastic Phase Structural Model

6.1.1 Adding Terms to Fourier Series Expansion

The assumed elastic de�ection shape de�ned in Eq. 3.4 for a simply supported plate

is only a �rst-term approximation of the actual deformation pro�le. More generally, the

transverse de�ection can be represented by a Fourier series, namely

w =

1X
m=1

1X
n=1

wmn cos
m�x

a
cos

n�y

b
, (6.1)
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which captures higher order de�ection modes. Clearly, each term of this in�nite series

satis�es the simply supported boundary conditions given in Section 3.1.2.1

Equation 3.12 for a clamped plate can similarly be written as an in�nite series. The

purpose of such expansions is to obtain a more realistic deformation shape, which better

matches experimental and/or �nite element results. However, with increased accuracy, the

simplicity of the proposed �rst-order method is lost. The ideal solution will be a balance

between accuracy and simplicity.

Recall from Section 3.1 that the assumed de�ection shapes are inserted into Eq. 3.1,

which yields expressions forr4F . As derived in Ref. [6], the Airy stress functions themselves

are obtained by matching similar cosine terms from this r4F expression and satisfying

the immovably constrained boundary conditions of zero displacement and shear stress in

the plane of the plate (see Eqs. 3.7a-b). Once each F is determined, the respective

equations of motion are generated by evaluating Eq. 3.2 and applying the Galerkin method.

This procedure works fairly well with the one term de�ection shapes of Eqs. 3.4 and

3.12. However, if multiple terms are retained from Eq. 6.1 or its clamped analog, a more

systematic method is needed to generate the correct stress function.

Upon inspection, both expressions for the Airy stress function provided in Section 3.1,

namely Eqs. 3.8 and 3.13, have the general form

F = Ax2 +By2 +
NX
m=0

NX
n=0

gmn cos
m�x

a
cos

n�y

b
, (6.2)

where N = 2 and g00 = gm1 = g1n = g22 = 0 for a simply supported plate, while N = 4 and

g00 = gm1 = g1n = gm3 = g3n = g44 = 0 for a clamped plate. Per Levy [103], as more terms

are retained for the simply supported de�ection in Eq. 6.1, N in Eq. 6.2 increases towards

in�nity. Also from Ref. [103], constants A and B have a physical interpretation. They

represent half the in-plane membrane pressures along the plate edges, commonly denoted

as �py and �px, respectively.

Furthermore, Levy [103] provides expressions for coe¢ cients gmn. Unfortunately, these

expressions are rather unwieldy. Here, these coe¢ cients are obtained by applying the

1Equation 6.1 is usually given in Navier form (i.e., as a series of sine terms), which is applicable if the
coordinate system of Fig. 3.1 is shifted so that the origin rests in the plate�s lower left-hand corner.
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method of Wang and El-Sheikh [104], who attempted to match cosx and cos y terms on

both sides of Eq. 3.1 after inserting Eqs. 6.1 and 6.2, letting N !1. Proceeding, Eq. 3.1

becomes

�4
1X
m=0

1X
n=0

�
m2

a2
+
n2

b2

�2
gmn cos

m�x

a
cos

n�y

b

= E

24 �2
ab

1X
r=1

1X
s=1

rswrs cos
r�x

a
cos

s�y

b

!2
�
 
�2

a2

1X
r=1

1X
s=1

r2wrs sin
r�x

a
sin

s�y

b

!

�

0@�2
b2

1X
p=1

1X
q=1

q2wpq sin
p�x

a
sin

q�y

b

1A35 . (6.3)

Expanding the right side of Eq. 6.3 and eliminating all summation signs, which are implied

by the indices, �
m2

a2
+
n2

b2

�2
gmn cos

m�x

a
cos

n�y

b

=
E

a2b2

�
rspqwrswpq cos

r�x

a
cos

s�y

b
cos

p�x

a
cos

q�y

b

�r2q2wrswpq sin
r�x

a
sin

s�y

b
sin

p�x

a
sin

q�y

b

�
. (6.4)

This equation di¤ers from the analogous Equation 10 of Wang and El-Sheikh [104], who

expanded Eq. 6.3 with numerous extraneous terms. Using trigonometric identities, Eq.

6.4 is rewritten as�
m2

a2
+
n2

b2

�2
gmn cos

m�x

a
cos

n�y

b

=
Ewrswpq
4a2b2

�
rspq

�
cos

(r � p)�x
a

+ cos
(r + p)�x

a

�
�
�
cos

(s� q)�y
b

+ cos
(s+ q)�y

b

�
� r2q2

�
cos

(r � p)�x
a

� cos (r + p)�x
a

�
�
�
cos

(s� q)�y
b

� cos (s+ q)�y
b

��
. (6.5)

Rearranging Eq. 6.5,�
m2

a2
+
n2

b2

�2
gmn cos

m�x

a
cos

n�y

b

=
Ewrswpq
4a2b2

��
rspq � r2q2

� �
cos

(r � p)�x
a

cos
(s� q)�y

b
+ cos

(r + p)�x

a
cos

(s+ q)�y

b

�
+
�
rspq + r2q2

� �
cos

(r � p)�x
a

cos
(s+ q)�y

b
+ cos

(r + p)�x

a
cos

(s� q)�y
b

��
. (6.6)
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Therefore, coe¢ cients gmn are of the form

gmn =
E

4 (m2b=a+ n2a=b)2

X
brspqwrswpq, (6.7)

where brspq are coe¢ cients that equate the cosx cos y terms on both sides of Eq. 6.6. As

such, brspq = rspq�r2q2 when r�p = �m and s�q = �n or when r+p = m and s+q = n.

Furthermore, brspq = rspq + r2q2 when r � p = �m and s + q = n or when r + p = m

and s � q = �n. Otherwise, brspq = 0. It should be noted that these restrictions vary

slightly from those presented by both Timoshenko and Woinowsky-Krieger [57] and Wang

and El-Sheikh [104].

In general, as more terms are retained in Eq. 6.1 for the assumed de�ection solution,

there are more wrswpq combinations with a non-zero coe¢ cient brspq. As such, there are

more gmn values that would need to be calculated to satisfy Eq. 6.2 for the Airy stress

function. For example, retaining only one term, namely w11, r = s = p = q = 1. Clearly,

as rspq � r2q2 = 0 and rspq + r2q2 = 2, only the second brspq cases need to be considered.

The conditions r�p = �m and s+q = n are both true only when (m;n) = (0; 2). Similarly,

r + p = m and s� q = �n imply that (m;n) = (2; 0). Therefore, the only non-zero terms

in Eq. 6.2 are g02 cos(2�y=b) and g20 cos(2�x=a), where, from Eq. 6.7, g02 = Ew211b
2=32a2

and g02 = Ew211a
2=32b2. These values match those previously calculated in Eq. 3.8. In

contrast, assuming w = w11 cos(�x=a) cos(�y=b)+w33 cos(3�x=a) cos(3�y=b) yields non-zero

values for g02, g20, g06, g60, g24 and g42.

6.1.2 Changing Exponent of Assumed Clamped De�ection Shape

In the previous section, a systematic method is presented for obtaining the Airy stress

function corresponding to a multi-termed de�ection shape of a simply supported plate. A

similar method can be used for a multi-termed clamped solution. However, due to the

squared cosine terms in Eq. 3.12, Eqs. 6.3-6.7 will all become more complicated. Even

still, the addition of each term in the assumed de�ection shape adds another equation of

motion which needs to be solved (i.e., one equation for each mode amplitude wmn). The fact

that these equations are coupled signi�cantly adds to the level of di¢ culty of numerically

solving them. Furthermore, this coupling reduces, to a certain extent, the engineer�s ability
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to gauge the physical response mechanism. Recall that this ability is a key advantage of

using simpli�ed analytical models in the �rst place.

As such, another approach is suggested here. Equation 3.12 is rewritten in the form

w =W (t) cosn
�x

a
cosn

�y

b
, (6.8)

where central de�ectionW (t) replaces hf(t), and the constant n replaces the exponent of 2.

As mentioned in Section 3.1.3, choosing n = 2 is rather arbitrary as any n > 1 satis�es the

clamped boundary conditions. In fact, it appears from Fig. 6.1, which is based entirely on

results from the �nite element software ANSYS [76], that choosing n = 2 is highly in error.

This �gure plots the instantaneous exponent of Eq. 6.8 as measured at four points along

the centerline of a 100 mm square, Al 2024-T3 plate subjected to a uniform pressure. In

calculating this exponent ninst, it must satisfy

w(x; t) =W (t) cosninst
�x

a
. (6.9)

For early plate response in Fig. 6.1, jninstj < 1 for distances less than 20 mm away

from the plate center. This clearly di¤ers from the mathematical prediction of a clamped

boundary. Meanwhile, for distances greater than 20 mm from the plate center, the exponent

varies between �2 < ninst < 2. From Eq. 6.9, a negative exponent indicates that at a

speci�c time instant, the de�ection is not greatest at the plate center. It appears then that

the assumed cosine squared de�ection shape is inaccurate for t < 0:02 ms, particularly near

the plate edges.

As time increases to about t = 0:05 ms, the de�ections near the edges better match the

assumed shape. However, intermediate points within 20 mm of the plate center exhibit a

substantial deviation from Eq. 6.8, with ninst = �2 at x = 10 mm. After roughly 0.07 ms,

all exponent values tend to stabilize, oscillating between 0:5 < ninst < 2. It appears then

that the assumed cosine squared de�ection shape is also inaccurate across the plate for the

steady state solution. A value of ninst = 1:5 better captures the global response behavior

for t > 0:07 ms.

As such, it is desired to generate an additional set of elastic, clamped plate equations,

namely an equation of motion and yield condition, based on an exponent of 1.5 in Eq. 6.8.
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Figure 6.1: Finite element results for instantaneous exponent of Eq. 6.8 for a 100�100�2:5
mm Al 2024-T3 plate subjected to a uniform blast with Z = 1. Numbers indicate distance
away from the plate center along the centerline.

Using the procedure of Section 3.1, which was outlined again in the previous section, the

new assumed de�ection shape is inserted into Eq. 3.1, which produces an expression for

r4F . Using trigonometric identities such as cos2 x = (1 + cos 2x)=2 and cos 2x cosx =

(cos 3x+ cosx)=2, this expression reduces to

r4F = �9
8
EW (t)2

�4

a2b2

�
cos

�x

a
cos

�y

b
+
3

2
cos

3�x

a
cos

�y

b
+
3

2
cos

�x

a
cos

3�y

b

�
, (6.10)

which implies that the Airy stress function is of the general form

F = C1x
2 + C2y

2 + C3 cos
�x

a
cos

�y

b
+ C4 cos

3�x

a
cos

�y

b
+ C5 cos

�x

a
cos

3�y

b
. (6.11)

Constants C3-C5 in Eq. 6.11 (or identically constants gmn in Eq. 6.2) are obtained by

matching similar cosine terms from Eq. 6.10. Note that Eq. 6.7 cannot be used since only

a single mode shape is taken. With the various gmn attained, the constants A and B in

Eq. 6.2 (or C1 and C2 in Eq. 6.11) are calculated by satisfying the immovably constrained

boundary conditions (i.e., by making Eqs. 3.7a-b equal to zero). However, it is found

that there does not exist a set of constants A, B and gmn that satis�es all of the above

requirements. As a result, an appropriate Airy stress function, and, therefore, an elastic
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equation of motion and yield condition, cannot be determined. Hence, in order to improve

the current, clamped plate response model, changes must be made to the pertinent plastic

phase equations.

6.2 Plastic Phase Structural Model

In Chapters 3 and 5, Jones� roof shaped, rigid plastic plate model [63] was used to

estimate the large de�ection, plastic response of various representative aircraft structures

subjected to an explosive loading. However, from Fig. 6.2, it appears that this model does

not accurately represent the actual structural response of large panels. While a de�nite

sinusoidal bowing is seen in this �gure, which is captured in the elastic part of the current

model, the four interior plastic hinges do not join at a �fth central hinge as in Jones�

model [63]. Instead of a roof shape, the deformed panels take on more of a box shape. In

this section, theoretical plate models based on this de�ection shape are discussed.

6.2.1 Plate Displacements and Angular Velocities for Box Shaped Pat-

tern

Figure 6.3 shows the geometry of a box shaped deformation pattern. This pattern

di¤ers from that in Fig. 3.2 by the presence of the �at, rectangular region III, formed by

four additional, symmetric interior hinges. Note the change in dimensional nomenclature

from Chapter 3 as 2L replaces length a and 2B replaces width b. The time-varying

parameter B� measures the vertical distance from either of the new x-spanning hinges to the

closest lengthwise boundary. Meanwhile, from geometry, B� tan� gives the corresponding

distance from either of the new vertical hinges to the nearest widthwise border. Clearly,

when B� = B = b=2, the four new interior hinges collapse into a single, central horizontal

hinge, hence reducing the box shape to the previously discussed roof shaped pattern.

Similar assumptions to those stated in Section 3.2 are made here in extending the energy

dissipation equations of Jones [63] for use with the box shape.2 Using the upper right

quarter of Fig. 6.3a as a reference, the plate de�ections in the three regions are respectively

2Further details of the derivation of this model can be found in Ref. [6].
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Figure 6.2: LD-3 luggage container deformed due to internal explosive loading [99].

I2B

B*

2B

2L 2L

x’

Figure 6.3: Box shaped deformation pattern: (a) plan view, (b) isometric view.
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given by

wI =W

�
1� x0

B� tan�

�
, wII =W

�
1� y

B�

�
and wIII =W . (6.10a-c)

Di¤erentiating Eqs. 6.10a-c gives the respective regional velocities. Per geometry and the

discussion of Section 3.2, these velocities allow the angular velocities, namely

_�1 �
_W

B� tan�
, _�2 �

_W

B�
and _�3 �

_W

B� sin�
, (6.11a-c)

to be calculated.

6.2.2 Energy Relationships for Box Shaped Pattern

For convenience, the conservation of energy expression from Jones [62], previously given

as Eq. 3.23, is restated asZ
(p� � �w) _wdA =

rX
m=1

Z
(M +Nw) _�mdlm. (6.14)

Here, it is once again assumed that in-plane displacements, velocities and accelerations are

negligible. Also, only moderately large de�ections (i.e., W < B=3) apply to ensure that

Nw _�m approximates the energy dissipation due to in-plane stretching.

The two terms on the left-hand side of Eq. 6.14 are now evaluated separately. Making

use of Fig. 6.4 and assuming a uniform load, the external work rate is given by

_Eext =

Z
p _wdA = 4p

(Z B� tan�

0
_wI

�
x0

tan�
+ (B �B�)

�
dx0

+

Z B�

0
_wII [y tan�+ (L�B� tan�)] dy

+ _wIII (B �B�) (L�B� tan�)g . (6.15)

The x0 integral yields the work done on region I, the y integral that on region II, and the

�nal term that on region III. As none of the terms are integrated over time, B� acts as a

constant. Therefore, the combined dissipation of the three regions is given by

_Eext = 2p _W

�
L (2B �B�)�B� tan�

�
B � 2

3
B�
��
, (6.16)

after simplifying per Eqs. 6.10a-c. In developing Eqs. 6.15 and 6.16, a uniform distribution

is assumed. For nonuniform loads, an equivalent uniform distribution can be de�ned for
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x’

Figure 6.4: Upper right-hand quadrant of box shaped deformation pattern.

the plastic mode shape of Eqs. 6.10a-c as was done in Section 5.1.3 for the elastic de�ection

shape of a clamped plate.

Similarly, the inertial work rate is found from

_Einert =

Z
� �w _wdA = 4�

"Z B� tan�

0

 Z x0 cot�

0
�wI _wIdy +

Z B�B�

0
�wI _wIdy

!
dx0

+

Z B�

0

 Z y tan�

0
�wII _wIIdx

0 +

Z (L�B� tan�)

0
�wII _wIIdx

!
dy

+ �wIII _wIII (B �B�) (L�B� tan�)] , (6.17)

where the �rst line contains the respective work contributions of regions Ia and Ib, the

second line those of regions IIa and IIb, and the third line that of region III. Assuming

only moderately large de�ections, the accelerations in Eq. 6.17 can be approximated by

merely twice di¤erentiating the W terms in the de�ection expressions of Eqs. 6.10a-c.

Using these approximate accelerations, Eq. 6.17 reduces to

_Einert =
4

3
� �W _W

�
L (3B � 2B�)�B� tan�

�
2B � 3

2
B�
��
. (6.18)

Subtracting Eqs. 6.16 and 6.18 gives the left-hand side of Eq. 6.14. This expression is the

box shaped analog of Eq. 3.24 for the roof shaped pattern.

Meanwhile, the right-hand side of Eq. 6.14, and thereby each boundary case�s equation

of motion, is determined as outlined in Section 3.2.2. However, the dissipation rates along

the now eight interior hinges are calculated for a simply supported plate, plus along the

four exterior hinges for a clamped plate. Balancing these dissipation rates with the work
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rates of Eqs. 6.16 and 6.18, the following governing equations are found:
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for a simply supported plate, and
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. (6.20)

for a clamped plate, where �� = B�=L, 
� = B�=B and � � 45�. Just like Eqs. 3.28 and

3.29 for the roof shaped deformation pattern, Eqs. 6.19 and 6.20 are applicable only for

de�ections exceeding boundary condition dependent critical values (W = h=2 for a simply

supported plate, W = h for a clamped plate). In the present application, this point is

moot in that these critical values are always reached during the elastic phase.

It is clear by comparing Eqs. 3.28 and 3.29 with Eqs. 6.19 and 6.20 that the presence of

a central de�ection region further complicates the respective equations of motion. Indeed,

whereas the former set of equations contains only one unknown (W ), the latter set has two

unknowns (W , B�). Therefore, at least one additional equation involving W or B� must

be de�ned in order to solve for all unknowns at a given time. In Ref. [6], it is suggested

that the moment balance equations of Yu and Chen [64] be used for this purpose.

6.2.3 Additional Equations of Motion for Boxed Shaped Pattern

Yu and Chen [64] provide their own equations of motion for the box shaped pro�le.

Instead of using an energy balance to derive these equations, they base theirs on a simple

force and moment balance. Doing so allows them to calculate an initial value for the B�

equivalent �a, and track the parameter, amongst others, using a Runge-Kutta timestepping

procedure.3

3Yu and Chen [64] use b and a to respectively represent length and width in their plate analysis. This
is opposite to the designations used in Fig. 3.1. So as to not create too much confusion, the nomenclature
from Fig. 6.3 (i.e., 2L for length and 2B for width) is used throughout the remainder of Section 6.2. Yu
and Chen�s designations [64], however, are utilized in Appendix C.
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For large de�ections of a plate uniformly loaded by a pressure P (t),4 Yu and Chen [64]

provide four non-dimensional equations of motion related to the box shaped pattern, the

�rst two of which are obtained by a moment balance. As thoroughly derived in Ref. [6],

dimensional equivalents of these two equations are given by

�B3 tan3 � (4� 3
�) ��1 = 2P (t)B2 tan2 � (3� 2
�)� 12M0�f1 (6.21)

and

�B�3 (4� 3
) ��2 = 2P (t)B�2 (3� 2
)� 12M0�f2, (6.22)

where � is the mass per unit plate area, ��1;2 are the respective angular accelerations of

regions I and II, 
 = B=L and M0 = �yh
2=4. Meanwhile, boundary parameter � is

de�ned as equaling 1 for simple supports and 2 for clamped supports. In addition, Yu

and Chen [64] refer to f1;2 as modifying factors, which are themselves modi�ed in Ref. [6].

These modifying factors are de�ned in Appendix C.

The various terms in Eqs. 6.21 and 6.22 arise from a moment balance, de�ned by

P
My = Iy��, (6.23)

where the left-hand side accounts for all moments acting about the y-axis (as located in

Fig. 6.5), and Iy is the mass moment of inertia of a given rigid body about the same

axis. As such, the left-hand sides of Eqs. 6.21 and 6.22 represent Iy�� for either region I

or II.5 Furthermore, the �rst terms on the right-hand sides of these equations represent

the moment caused by the external pressure (see Fig. 6.5a). The remaining term in each

equation is the moment caused by the membrane forces and bending moments depicted,

respectively, in Figs. 6.5b-c. Currently, the shear forces Q13 and Q23 shown in Fig. 6.5b

are ignored due to the plate having a very small thickness.

Moreover, Yu and Chen�s [64] third equation of motion arises from a force balance. By

Newton�s second law of motion, region III accelerates as a function of all forces acting on

it. Moreover, by geometry, this region�s motion must be transverse to the x-y plane in Fig.

4As in Section 6.2.2, P (t) can also represent an equivalent uniform load.

5As shown in Ref. [6], the left-hand sides of these equations actually give the true mass moment multiplied
by cos3 �1;2.
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Figure 6.5: Moment-causing loads acting on region I of box shaped deformation pattern:
(a) transverse pressure loading, (b) shear and membrane forces, (c) moments.

6.3. Therefore,
P
Fz = m �wIII . Per Fig. 6.5b, the only forces that act in the z-direction

on region III are the uniform pressure force and the restraining shear forces Q13 and Q23

along the region�s edges. If the shear forces are again ignored, the force balance becomes

� �wIII = P (t). (6.24)

The acceleration in Eq. 6.24 can be found from continuity, as the displacements, velocities

and accelerations of regions I and II must match those of region III where they adjoin. By

de�ning velocity _wIII in terms of angular velocity, Eq. 6.24 can be rewritten as

�B
d

dt
( _�1 tan�) = P (t). (6.25)

Equation 6.25, meanwhile, can be reexpressed in terms of loading impulse by simply in-

tegrating both sides of this equation with respect to time. The resulting alternate third

equation of motion of Ref. [64] is then

�B tan� _�1 =

Z t

0
P (t)dt � I(t). (6.26)

Finally, the fourth of Yu and Chen�s [64] equations of motion is found via continuity.

This continuity equation can be expressed as

B tan� _�1 = B
� _�2. (6.27)

If projection angle � = 45�, as was previously assumed, B� = B. In this case, per Eq.

6.27, _�1 = _�2, which can, in turn, be used to simplify Eqs. 6.21 and 6.22. As shown in

Appendix C, all of these equations can be combined to obtain an initial value of B�.
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As stated in Ref. [6], there are some problems with the equations of motion developed

by Yu and Chen [64]. First, Eq. 6.24 ignores shearing forces around the edges of region

III. As such, there are no forces in the current model acting to restrain plate motion due to

the external loading. By Eq. 6.24, region III has a positive acceleration until the loading

ends, at which time its velocity remains constant. Equation 6.26 shows that this velocity

remains positive with a positive impulse. This condition is not accurate as Biggs [5],

amongst others, has shown that this maximum de�ection for a decreasing pressure loading

occurs before the loading is �nished. Indeed, this is seen in all of the computational results

of this dissertation. In these cases, a further increase in total impulse has no e¤ect on

maximum de�ection, contrary to Yu and Chen�s model [64]. Physically, there needs to be

some sort of restraining force else de�ections will increase inde�nitely. This force can be

taken as the net reaction due to the membrane stretching forces in regions I and II. These

membrane forces do not appear in the moment balance equations as they act parallel to the

given regions, so that their lines of action run through the axis of rotation.

6.2.4 Smoothing Transition at Yielding

The structural model introduced in Chapter 3 consists of a sinusoidal and roof shaped

deformation pattern, respectively, for the elastic and plastic phases. The transition between

these two shapes is made compatible at yielding by setting the �nal, central de�ection and

velocity of the elastic phase equal to the corresponding initial values of the plastic phase.

Mathematically, this method seems logical. Physically, however, a plate cannot instanta-

neously change from one such de�ection mode to another which is completely dissimilar.

This fact is made clear in Figs. 6.6 and 6.7, which show the transient deformation pro�les

due to a uniform load for various cases per a �nite element analysis. In all of these cases,

there is a gradual change in overall shape from zero to peak central de�ection. Although

the model presented in Chapter 3 accurately predicts maximum de�ection, the assumed

elastic mode shape of Eq. 3.12 exaggerates the di¤erence in this peak over the rest of the

plate at early times. Meanwhile, the assumed plastic pro�le with a central hinge line does

appear in at least one time instant for all cases in Figs. 6.6 and 6.7, but not instantaneously.

Moreover, the current assumed shape predicts that this horizontal line stretches only 25 mm
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Figure 6.6: Transient deformation pro�les of a clamped, high strength aluminum 150� 100
mm plate due to a uniform load for Z = 1 when (a) h = 2:5 mm, and (b) h = 1 mm.

from the plate center throughout plastic deformation, which is contrary, for example, to the

0.15 ms case in Fig. 6.7b. Furthermore, notice that the central de�ection is not necessarily

the highest de�ection at a given time instant. This is shown in the 0.2 ms case in Fig.6.6b

and the 0.05 ms case in Fig.6.7b These particular trials exhibit the greatest deformations

with a lower thickness and more intensive pressure loading being used, respectively. The

study of global transient deformation shapes has been limited in the literature, with one

example being the work of Zhu [105].

Therefore, major problems with the current method�s elastic-plastic treatment are the

failure to capture a transient de�ection shape and the abrupt change from a curved de�ection

shape to one with rigid sections and a potential central hinge line. In order to relieve this

sharp transition, it is proposed that, for a nonuniform load, the elastic shape be used only

over a central region. This approach is consistent with the phenomenon of dishing, where

for close-in explosions outer parts of the plate do not de�ect immediately (e.g., see Ref. [79]).

This localized e¤ect becomes more important as plate area increases and stando¤ distance

decreases. As a result, the initial boundary of interest changes from the plate edges to the

hinge lines de�ning the central de�ection region (see Fig. 6.3). The location of these hinge
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Figure 6.7: Transient deformation pro�les of a clamped aluminum 150�100�2:5 mm plate
due to a uniform load for (a) �0 = 345 MPa, Z = 1, and (b) �0 = 970 MPa, Z = 0:6.

lines can be determined as per Eqs. C.7 and C.8 for a rigid plastic box shape. Thus, the

proposed method is truly elastic-plastic in the sense that the elastic phase contains elements

of the plastic phase.

There will then be zero de�ection at the edges of the central de�ection region. As these

edges are not clamped, the assumed simply supported de�ection shape of Eq. 3.4 can be

used. This e¤ectively treats the central region as a smaller, simply supported plate. This

treatment is analogous to that of Zhenqiu [106], who studied the various deformation shapes

of sti¤ened plates subjected to a uniform blast.

Once yielding occurs for this smaller interior plate, the box shaped pattern is fully

incorporated. The de�ection and velocity at the hinge lines are again made compatible.

But since these lines have been present since the start of deformation, there is no longer any

abrupt phase transition like in Chapter 3. This method then succeeds in smoothing the

transition between the elastic and plastic phases. Moreover, it also captures the general

nature of the experimentally obtained shape in Fig. 6.2.
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6.2.5 Permanent Deformation via Damping

The current structural model predicts permanent deformation via Eq. 3.31, an approx-

imation that subtracts a percentage of the elastic de�ection from the maximum total plate

de�ection. Although this method produces permanent de�ections comparable to those of

experiment (see Section 3.5), mathematically, it is rather crude. This is seen in Section

3.4.3, where a calibration is sometimes required to better match the current model�s predic-

tions with �nite element results. Ideally, the equations of motion themselves should give

an approximate de�ection-time history, with a steady state permanent de�ection achieved

after some �nite time. However, all necessary damping terms drop out of the elastic and

plastic phase equations of Sections 3.1 and 3.2.

The damping mechanism for a particular problem can be determined in various ways.

Limited experiments can be performed, but this more or less relies on a calibration. More-

over, requiring expensive experiments for initial design defeats the primary purpose of using

a simpli�ed structural model. Morison [107] suggests another way, namely attaining proper

damping terms by equating virtual work during deformation. This method, however, re-

quires the reestablishment of all the governing equations provided in this dissertation. Re-

gardless of method, adding the ability to retain damping terms, and therefore, to predict

permanent plate deformation in a less empirical manner, is an area of future improvement

to the current model.

6.3 Extension of Current Model to Shells

This dissertation has, up until this point, dealt entirely with the blast loading of thin,

�at plates. As previously stated, thin plates can represent various aircraft structures, such

as a small section of the fuselage. In modeling a larger section, however, the prevailing

curvature of the fuselage makes the use of thin, curved plates or shells more appropriate.

As such, this section establishes a methodology for analyzing the response of thin, cylin-

drical shells,6 where both elastic and plastic deformations are signi�cant. This section

mirrors Sections 3.1 and 3.2, regarding the similar response of thin plates. Indeed, the

6For general background and further details on the theory of thin, elastic shells, see Refs. [57, 108, 109].
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elastic treatment of Singh and Singh [65] for a hinged shell is presented here and appro-

priately modi�ed. The corresponding yield condition, which is not explicitly given in

Ref. [65], is also derived. Finally, methods that can account for plastic de�ections are

brie�y discussed.

6.3.1 Elastic Phase Shell Model

As given by Amabili and Padoussis [110] in their review of shell dynamics, the two

governing equations for dynamic response of an elastic shell using the w-F formulation are

r4F = Eh
(
� 1
R

@2w

@x2
+

�
@2w

@x@y

�2
� @

2w

@x2
@2w
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)
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As in Eqs. 3.1 and 3.2, E is the elastic modulus, � Poisson�s ratio, � the mass density, p

the acting pressure, and the operator r4 � @4

@x4
+2 @4

@x2@y2
+ @4

@y4
. Meanwhile, from Fig. 6.8,

h and R are the respective shell thickness and radius. The relationships between the Airy

stress function F and in-plane membrane stresses given in Eqs. 3.3a-c still apply.

Assuming a sinusoidal, elastic de�ection shape, the transverse de�ection of the shell in

Fig. 6.8 may be expressed as

w = A(t) sin
m�x

L
sin

ny

R
+B(t) sin2

�m�x
L

�
. (6.30)

Clearly, each term in Eq. 6.30 satis�es the simply supported boundary conditions at x = 0

and x = L. The former term in this equation is analogous to Eq. 3.4 for a simply supported

plate. Meanwhile, the latter term is added to better match experimental de�ection results

[111]. Summations in both m and n are implied.

Using a procedure similar to those stated in Sections 3.1 and 6.1, Singh and Singh [65]

found the following expression for the Airy stress function:

F (x; y; t) = Eh�
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Figure 6.8: Shell geometry and coordinate system [110].

where �m = m�=L and �n = n=R. However, Singh and Singh [65] fail to note an important

step in their derivation, which is the only change in the aforementioned procedure. Instead

of setting u = v = 0 at the boundaries, a periodic condition must hold in that

v(x; y) = v(x; y + 2�R) (6.32)

as y acts tangentially to the cross-section. Alternatively, Eq. 6.32 may be written asZ 2�R

0

@v

@y
dy = 0, (6.33)

where this integral is de�ned as in Eq. 3.7b, with an additional w=R term, which accounts

for the non-zero curvature, subtracted within the braces. It turns out that Eq. 6.33 holds

only if

B(t) = A(t)2n2=4R,

where B(t) is the central de�ection associated with the second mode shape in Eq. 6.30. As

a result, there are no B(t) terms in Eq. 6.31, as they have been replaced by higher order

A(t) terms. It can further be noted that Eq. 6.32 is misprinted in Ref. [111] with v(x)

substituted for v(x; y).

Now substituting Eqs. 6.30 and 6.31 into Eq. 6.29 and carrying out a Galerkin inte-

gration of the resulting residue, the large de�ection equation of motion for a hinged, elastic
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shell is determined as
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A5(t) = q0(t), (6.34)

where it is assumed that pressure is of the form p(x; y; t) = q0(t) sin�mx sin�ny. Without

this assumption, which is reminiscent of Eq. 4.3, one can substitute the expression 2�=RL�R 2�R
0

R L
0 p(x; y; t) sin�mx sin�nydxdy in place of q0(t) in Eq. 6.34.

Whereas the elastic equation of motion for a plate is a cubic function of displacement,

a more complicated, �fth-order expression applies for a shell. Clearly, a linear sti¤ness

does not e¤ectively model either geometry. It should be noted that Singh and Singh [65]

incorrectly provide Eq. 6.34 with the expression (�2m + �
2
n) in place of (�

4
m + �

4
n) in the

coe¢ cient for A(t). Furthermore, the cosine terms in Eq. 3.10 for the Galerkin integral are

replaced here by the proper shell mode sin�mx sin�ny, while the bounds of integration are

changed accordingly to x = f0; Lg and y = f0; 2�Rg. A similar equation of motion can be

derived for a clamped shell given an appropriate choice of the transverse de�ection shape.

6.3.2 Yield Condition of Hinged Shell

As is the case with plates, Eq. 6.34 is only valid up until a yield condition is satis�ed.

For shells, it is assumed that the von Mises yield condition of Eq. 3.15 again applies. Recall

that this criterion is de�ned as

Yc �
M2
x +M

2
y �MxMy + 3M

2
xy

M2
0

+
N2
x +N

2
y +NxNy + 3N

2
xy

N2
0

� 1 = 0, (6.35)

where Mk and Nk represent the elastic bending moments per unit length and membrane

forces per unit length, respectively, in either the x, y or xy direction. Meanwhile, M0 is

the plastic bending moment per unit length, and N0 the plastic membrane force per unit

length. These quantities are mathematically de�ned as in Eqs. 3.5a-b, 3.16a-b and 3.16f.

Due to how the de�ection and Airy stress function are de�ned in this section, the membrane

forces per unit length Nx, Ny and Nxy, meanwhile, are given respectively by Eqs. 3.16c-e

with the thickness h removed. It can easily be seen that this change preserves proper units
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in the subsequent derivations. For convenience, the Von Mises yield condition, which is

satis�ed when Yc �rst takes on a non-negative value, is rewritten as

Yc � Ym + Yn � 1 = 0.

After appropriate substitution of the assumed �rst-order (i.e., m = n = 1) de�ection

and Airy stress functions of Eqs. 6.30 and 6.31, the �rst term of Eq. 6.35 becomes

Ym(x; y; t) =
16E2h2
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Equation 6.36 comes about by evaluating the derived expressions at the maximum shell

de�ection. From Eq. 6.30, this de�ection occurs when x = L=2 and y = �R=2. Similarly,

substituting Eq. 6.31 into Eqs. 3.16c-f (including h only in the expression for N0), the

second term of Eq. 6.35 becomes

Yn(x; y; t) =
E2�4

�20

�
C2A

2(t) + C3A
3(t) + C4A

4(t) + C5A
5(t) + C6A
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�
, (6.37)

where the various Cn represent functions of �, � and R. For example,

C2 =
�4 � �2�2 + �4

R2(�2 + �2)4
and C3 =

2�2 � �2

8R(�2 + �2)2
.

Therefore, by Eqs. 6.35, 6.36 and 6.37, the yield condition of a hinged shell has the

general form

Yc =
E2�4

�20

�
D2A

2(t) +D3A
3(t) +D4A

4(t) + C5A
5(t) + C6A

6(t)
�
� 1 = 0, (6.38)

where the various Cn have the same values as in Eq. 6.37. Meanwhile, the various Dn

combine the corresponding coe¢ cients of the bending and membrane terms in Eqs. 6.36

and 6.37. As such, the Dn are functions of not only �, � and R, but also of � and h.

Comparing Eq. 6.38 with its simply supported plate analog Eq. 3.19, it is clear that the

yield condition of the shell is much more complicated as Eq. 3.19 contains only second and

fourth-order polynomials of maximum de�ection.
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As Singh and Singh [65] do not provide the yield condition for a hinged shell, Eq. 6.38

and its various coe¢ cients are newly derived in this dissertation. A similar procedure can

be used in deriving the yield condition of a clamped shell once the assumed de�ection shape

and Airy stress function are determined.

6.3.3 Plastic Phase Shell Model

Analogous to the plate model of Chapter 3, the elastic equation of motion for a hinged

shell (i.e., Eq. 6.34) is used up until the yield condition of Eq. 6.38 is �rst satis�ed.

Afterwards, a plastic shell model must be incorporated to continue tracking the maximum

shell deformation. Jones [63] o¤ers a few potential options. One method is similar

to his roof shaped model for a rigid plastic plate. Here, the velocity �eld acts linearly

throughout the length of the shell, peaking midway between consecutive reinforcement

rings. In the current application, these rings can model the frames which run along a

fuselage�s circumference. Furthermore, Jones [63] presents another method that applies to

short cylindrical shells and consists of a transient velocity �eld. The shape of this velocity

�eld is similar to that of the box shaped de�ection pattern described in Section 6.2.

Another plastic shell model is that of Hoo Fatt andWierzbicki [96,97], which converts the

typical two-dimensional, shell boundary value problem into an equivalent SDOF problem.

Their method, which extends the elastic treatment of Calladine [112], essentially models

the shell response like a plastic string on a nonlinear plastic foundation. Equivalent values

of pressure, ring resistance and tensile force are determined based on various assumptions.

These equivalent parameters allow the simpli�ed equation of motion for a plastic shell

to be solved. Many example applications are presented in Refs. [96, 97], including mass

impact and the impulsive loading of both sti¤ened and unsti¤ened shells. Meanwhile,

assumed pressure functions include an exponential decay and a Gaussian distribution. Such

applications are clearly in-line with the current study on explosive pressure loadings.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The dissertation validates the elastic-plastic model of the current author [6], which is a

simple and e¢ cient estimator of maximum plate de�ection when both elastic and plastic

e¤ects are signi�cant and loading is uniformly distributed. The results from the current

model match reasonably well with those from the �nite element package ANSYS [76] for

clamped edges, where the average error is 10.7% over all trials. For simple supports,

this error increases to 13.5%. However, with these design-level accurate results comes an

exponential reduction in processing time.

In particular, for smaller area plates, reasonable estimates are obtained when deforma-

tion is dominated by either elastic or plastic e¤ects. Furthermore, plates with a high aspect

ratio tend to result in even closer approximations when neither elastic nor plastic e¤ects

dominate response. Unlike for the simply supported trials, where a high yield strength is

crucial, clamped trials show a much improved accuracy when plate thickness is increased.

These trends are displayed in Fig. 3.8.

In addition, Eq. 3.31 allows one to predict the permanent de�ection of a plate subjected

to a uniform blast pressure. Such predictions compare favorably with experimental results

of both aluminum and steel square plates. However, the current method appears to be

inappropriate for oblong steel plates subject to a highly intensive load as the plastic part of

the current model becomes inaccurate. Still, there is potentially a wide range of applicable

problems for this preliminary design method.

Moreover, Chapters 4 and 5 of this dissertation examine two speci�c needs in the design
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of blast resistant structures. First, a simpli�ed analytical model is used to predict the max-

imum de�ection of both small and large representative panels subjected to a nonuniform

pressure. Furthermore, a normalized impulse criterion is suggested (see Eq. 4.8) to assess

when the model can be further simpli�ed by assuming a uniform loading. It is proposed,

based on the comparison of �nite element de�ection results, that a uniform loading is jus-

ti�ed when i� > 0:9. Secondly, uncertainty in compiled blast parameter data is addressed.

The Monte Carlo method, as applied to the present problem, gives the designer a means

to estimate both the level of uncertainty and the probability of structural failure under the

given assumptions. More parameter uncertainty can be added as required to account for

unknowns relating to, for example, plate boundary condition, peak pressure measurement

(taken as deterministic here) and the overall nonuniform blast model.

Furthermore, Chapter 6 suggests some improvements to the current structural model.

These suggestions include modifying the assumed elastic deformation shape by using a

higher-order Fourier series expansion or changing the associated exponent of Eq. 3.12.

Moreover, the plastic equations of motion are changed to correspond to a box shaped

deformation pattern. The derivation of the resulting governing equations via energy rate

balance is unique to the current author. Procedures to smooth the transition between the

elastic and plastic phases, as well as to include material damping are outlined. In addition,

the supplied plate equations are extended for use with cylindrical shells. This results in

newly derived expressions for the shell�s yield condition, which has the general form of Eq.

6.38.

7.2 Future Work

A large area of future work is to implement the changes outlined in Chapter 6 for var-

ious components of the current loading and structural models. These changes include

modifying the elastic model to better match the transient shapes of �nite element and ex-

perimental results, and validating the newly derived equations pertaining both to the box

shaped deformation pattern and thin, cylindrical shells subject to blast loading. Intro-

ducing damping into the relevant governing equations can also help to more clearly predict
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permanent structural deformations. Furthermore, a future structural model could incorpo-

rate more complexities, such as material strain rate sensitivity and the presence of sti¤eners

or other nonideal boundaries.

Moreover, the loading model should also be adjusted to include a larger variety of

uncertainties. In this dissertation, duration time is used as the primary random variable.

As shown throughout this work, however, pressures and impulses also greatly �uctuate

within published results. Finally, the specialized topics briefed in Chapter 4 can also be

examined more thoroughly. A future model should evaluate the loaded structure�s response

sensitivity to such issues as negative phasing and pressure relief. Ideally, all of these issues

can be incorporated without a heavy trade-o¤ in processing time.



122

Appendix A

Sample Matlab Program

This Matlab
R

program calculates the maximum de�ection for a clamped plate per the

combined elastic-plastic model of Chapter 3, making use of an e¤ective uniform pressure.

Options include selection of geometry and blast parameter data set. An option to implement

a Monte Carlo scheme to calculate mean de�ection, standard deviation and probability of

failure per the data of both Kinney and Graham [3] and ConWep [4] also exists.

%Import ConWep and Kinney and Graham data from text �les.

data=dlmread(�Zdata.txt�); data2=dlmread(�Zdata2.txt�);

dataKG=dlmread(�ZdataKG.txt�); dlength=length(data);

for i=1:dlength;

Z(i,1)=data(i,1); Ps(i,1)=data(i,2); Pr(i,1)=data(i,3); ta(i,1)=data(i,4);

Ts(i,1)=data(i,5); is(i,1)=data(i,6); ir(i,1)=data(i,7);

bsi(i,1)=data2(i,2); br(i,1)=data2(i,3);

PsKG(i,1)=dataKG(i,2); taKG(i,1)=dataKG(i,3); TsKG(i,1)=dataKG(i,4);

isKG(i,1)=dataKG(i,7); alphaKG(i,1)=dataKG(i,8);

end

%Material Properties for Aluminum Test Plates

mat=input(�Enter material number (1 for small plate, 2 for large plate):�);

source=input(�Enter source number (1 for ConWep, 2 for Kinney & Graham,...

3 for random):�);

RP=input(�Rigid plastic analysis? (1 for yes, 0 for no):�);

Box=input(�Box shape considered? (1 for yes, 0 for no):�);

Wc=6; R0=0.3:0.025:1;
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Wclength=length(Wc); R0length=length(R0);

ncase=Wclength*R0length; Wcase=zeros(1,ncase); Rcase=zeros(1,ncase);

tol=0.1; %Default for nonrandom analysis.

stdev=zeros(ncase,1); numit=zeros(ncase,1);

tol=input(�Enter tolerance for Monte Carlo simulation in mm:�);

tol=tol/1000; %tol converted from millimeters to meters.

vari=zeros(ncase,1); nfail=zeros(ncase,1); nfail2=zeros(ncase,1);

if mat==1;

rho=2780; mu=0.33; Em=73.1e9; Sy=345e6;

a_list=0.508; b_list=0.2032; h_list=0.0016;

dim1=a_list/2; %Quarter plate dimensions in m.

dim2=b_list/2; area4=dim1*dim2; ndivx=20; ndivy=8; fcrit=0.05838;

elseif mat==2;

rho=2780; mu=0.33; Em=72e9; Sy=380e6;

a_list=1.48; b_list=1.48; h_list=0.004;

dim1=a_list/2; dim2=b_list/2;

area4=dim1*dim2; ndivx=20; ndivy=20; fcrit=0.3347;

end

%De�ne Plate Grid

phi=45*pi/180; %Hinge angle for symmetric loading.

nel=ndivx*ndivy; ncase=0;

for i=1:Wclength;

for j=1:R0length;

ncase=ncase+1;

Wcase(1,ncase)=Wc(1,i); Rcase(1,ncase)=R0(1,j);

end

end

Zcase=Rcase./Wcase.^(1/3);

delx=dim1/ndivx; dely=dim2/ndivy;
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[x,y]=meshgrid(0:delx:dim1,0:dely:dim2); %Establish nodal locations.

k=0;

for i=1:ndivy+1;

for j=1:ndivx+1;

k=k+1;

xy(k,1)=x(i,j); xy(k,2)=y(i,j);

r1(1,k)=sqrt(x(i,j)^2+y(i,j)^2);

end

end

npoints=k;

%Timestepping, Matrix Declarations & Loading Function

tstep=input(�Enter timestep in microsec:�);

tstep=tstep/1e6; %tstep converted from microsecs to seconds.

tend=input(�Enter end time in millisec:�); tend=tend/1e3;

tel=zeros(ncase,1); wel=zeros(ncase,1); Vel=zeros(ncase,1);

tm=zeros(ncase,1); wm=zeros(ncase,1); EP=zeros(ncase,1);

t=0:tstep:tend+tstep; %Time in seconds with range per input.

tcount=length(t);

W1=zeros(ncase,tcount);

%Main Program

global p1 t1 I1; %Make variables global for function af.m.

for i=1:ncase; % i indicates dimensional case.

a=a_list; b=b_list; rab=a/b; h=h_list; hcrit=h;

pc=12*Sy*h^2/b^2;

polycount=0; %polycount=0 indicates hinge lines have not yet formed.

%Initialize Coe¢ cients for Runge-Kutta & Yield Condition Equations

D=0; D2=0; D3=0; D4=0;

C1=0; C2=0; C3=0; C4=0; C5=0; C6=0;

Ln=0; Ln1=0; Ln2=0; Lns=0; Lm=0;
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Zxy=zeros(1,npoints); theta=zeros(1,npoints); Prr=zeros(1,npoints);

tar=zeros(1,npoints); Tsr=zeros(1,npoints); irr=zeros(1,npoints);

Psr=zeros(1,npoints); brr=zeros(1,npoints); bsr=zeros(1,npoints);

Zxy=sqrt(Rcase(1,i)^2+r1.^2)/Wcase(1,i)^(1/3); theta=atan(r1/Rcase(1,i));

%Determine applicable loading parameters.

Prr=interp1(Z,Pr,Zxy)*1e5; Psr=interp1(Z,Ps,Zxy)*1e5;

tarC=interp1(Z,ta,Zxy)*Wcase(1,i)^(1/3)/1e3;

TsrC=interp1(Z,Ts,Zxy)*Wcase(1,i)^(1/3)/1e3;

irr=interp1(Z,ir,Zxy)*Wcase(1,i)^(1/3)*1e2;

isr=interp1(Z,is,Zxy)*Wcase(1,i)^(1/3)*1e2;

tarK=interp1(Z,taKG,Zxy)*Wcase(1,i)^(1/3)/1e3;

TsrK=interp1(Z,TsKG,Zxy)*Wcase(1,i)^(1/3)/1e3;

isrK=interp1(Z,isKG,Zxy)*Wcase(1,i)^(1/3)*1e2;

%Begin while loop for Monte Carlo method.

error=1; iter=0; tmit=0; wmit=0; wmlast=0;

while error>tol;

wcurr=0; wlast=0; wmax=0; ycurr=0; ylast=0; tmax=0;

K1=0; K1p=0; K2=0; K2p=0; K3=0; K3p=0; K4=0; K4p=0; Yc=0; elcase=0;

iter=iter+1;

tarand=rand; Tsrand=rand; irand=rand; tamc=tarC*tarand+tarK*(1-tarand);

Tsrmc=TsrC*Tsrand+TsrK*(1-Tsrand); tar=tamc; Tsr=Tsrmc;

irmc=irr.*(irand+isrK./isr*(1-irand));

%Determine pressure-time histories across the plate.

%Scale starting and ending times.

tarmin=min(tar); tstart=tar-tarmin; tend=tstart+Tsr; tendmax=max(tend);

tstartmax=max(tstart); Psxt=zeros(tcount,npoints); Prxt=zeros(tcount,npoints);

Ptau=zeros(tcount,npoints); p=zeros(tcount,1); brr=zeros(1,npoints);

for j=1:npoints;

p1=Prr(1,j); t1=Tsr(1,j); I1=irmc(1,j); brr(1,j)=fzero(@af,1);
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end

for k=1:tcount;

for j=1:npoints;

if t(1,k)>=tstart(1,j) & t(1,k)<=tend(1,j);

tsh=t(1,k)-tstart(1,j); ang=theta(1,j);

Ptau(k,j)=Prr(1,j)*(1-tsh/Tsr(1,j))*exp(-brr(1,j)*tsh/Tsr(1,j))*cos(ang)^2;

end

end

nodem=1;

%Generate equivalent uniform pressure per assumed elastic deformation shape.

for m=1:nel;

if rem(nodem,ndivx+1)==0; nodem=nodem+1; end

x1=xy(nodem,1); x2=xy(nodem+1,1);

y1=xy(nodem,2); y2=xy(nodem+ndivx+1,2);

pelavg=(Ptau(k,nodem)+Ptau(k,nodem+1)+Ptau(k,nodem+ndivx+1)...

+Ptau(k,nodem+ndivx+2))/4;

pix=pi*x2/a+1/2*sin(2*pi*x2/a)-pi*x1/a-1/2*sin(2*pi*x1/a);

piy=pi*y2/a+1/2*sin(2*pi*y2/a)-pi*y1/a-1/2*sin(2*pi*y1/a);;

p(k,1)=p(k,1)+4/pi^2*pelavg*pix*piy;

nodem=nodem+1;

end

end

punif(:,i)=Prxt(:,1)/1e5; puneq(:,i)=p(:,1)/1e5;

impUF=cumsum(punif)*tstep*1e3; impEU=cumsum(puneq)*tstep*1e3;

%Elastic Coe¢ cients and Yield Condition

D=(Em/Sy/(1-mu^2))^2*(h*pi/a/b)^4;

D2=4*Em*h^2*pi^4/27/rho/a^4/(1-mu^2)*(3+2*rab^2+3*rab^4);

D3=Em*pi^4/rho/a^4*((1+2*mu*rab^2+rab^4)/8/(1-mu^2)+17/144...

+rab^4/9*(17/16+2/(1+rab^2)^2+0.5/(1+4*rab^2)^2+0.5/(4+rab^2)^2));
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D4=16/9/rho/h;

Ln1=3/(1-mu^2)*(1/a^2+mu/b^2)+5/a^2+a^2*(8/(a^2+b^2)^2...

+16/(4*a^2+b^2)^2+4/(a^2+4*b^2)^2);

Ln2=3/(1-mu^2)*(mu/a^2+1/b^2)+5/b^2+b^2*(8/(a^2+b^2)^2...

+4/(4*a^2+b^2)^2+16/(a^2+4*b^2)^2);

Lns=Ln1^2+Ln2^2+Ln1*Ln2;

Lm=(a^4+b^4)*(mu^2-mu+1)-(a*b)^2*(mu^2-4*mu+1);

for k=1:tcount-1;

Yc=D*(Lns*wcurr^4/h^4*(a*b)^4*(1-mu^2)^2/1024+4*Lm*wcurr^2/h^2/9)-1;

if Yc<=0 & RP==0; %Elastic Shape Applicable

K1=tstep*ycurr;

K1p=tstep*(D4*p(k,1)-D2*wcurr-D3*wcurr^3);

K2=tstep*(ycurr+K1p/2);

K2p=tstep*(D4*p(k,1)-D2*(wcurr+K1/2)-D3*(wcurr+K1/2)^3);

K3=tstep*(ycurr+K2p/2);

K3p=tstep*(D4*p(k,1)-D2*(wcurr+K2/2)-D3*(wcurr+K2/2)^3);

K4=tstep*(ycurr+K3p);

K4p=tstep*(D4*p(k,1)-D2*(wcurr+K3)-D3*(wcurr+K3)^3);

else %Plastic Analysis Required

if elcase==0;

tel(i,1)=t(1,k); wel(i,1)=wcurr; Vel(i,1)=ycurr; elcase=1;

end

C1=rho*b^2/6/Sy/h*(2*rab-tan(phi));

C2=4/3/h^2*(3*rab-2*tan(phi)+1/tan(phi));

C3=b^2/6/Sy/h^2*(3*rab-tan(phi));

C4=rab+1/tan(phi);

C5=4/h*(2*rab-tan(phi)+1/tan(phi));

C6=h/3*(tan(phi)+1/tan(phi));

if abs(wcurr)<hcrit;
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K1=tstep*ycurr;

K1p=tstep/C1*(C3*p(k,1)-C2/2*wcurr^2-2*C4);

K2=tstep*(ycurr+K1p/2);

K2p=tstep/C1*(C3*p(k,1)-C2/2*(wcurr+K1/2)^2-2*C4);

K3=tstep*(ycurr+K2p/2);

K3p=tstep/C1*(C3*p(k,1)-C2/2*(wcurr+K2/2)^2-2*C4);

K4=tstep*(ycurr+K3p);

K4p=tstep/C1*(C3*p(k,1)-C2/2*(wcurr+K3)^2-2*C4);

else

K1=tstep*ycurr;

K1p=tstep/C1*(C3*p(k,1)-C5/2*wcurr-2*C6/wcurr);

K2=tstep*(ycurr+K1p/2);

K2p=tstep/C1*(C3*p(k,1)-C5/2*(wcurr+K1/2)-2*C6/(wcurr+K1/2));

K3=tstep*(ycurr+K2p/2);

K3p=tstep/C1*(C3*p(k,1)-C5/2*(wcurr+K2/2)-2*C6/(wcurr+K2/2));

K4=tstep*(ycurr+K3p);

K4p=tstep/C1*(C3*p(k,1)-C5/2*(wcurr+K3)-2*C6/(wcurr+K3));

end

end

wlast=wcurr; ylast=ycurr; wcurr=wlast+(K1+2*(K2+K3)+K4)/6;

if wcurr>wmax;

wmax=wcurr; tmax=t(1,k);

end

ycurr=ylast+(K1p+2*(K2p+K3p)+K4p)/6;

W1(i,k)=wcurr; V1(1,k)=ycurr; %Corrected 4/3/06.

end

tmit(iter,1)=tmax; wmit(iter,1)=wmax;

tm(i,1)=sum(tmit)/iter; wm(i,1)=sum(wmit)/iter;

error=abs(wm(i,1)-wmlast); wmlast=wm(i,1);
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%Ensure that at least ten iterations are run per Monte Carlo trial.

if iter<=10; error=tol+1; end

end %of while loop for tolerance.

numit(i,1)=iter

for n=1:iter;

vari(i,1)=vari(i,1)+(wmit(n,1)-wm(i,1))^2;

if wmit(n,1)>fcrit;

nfail(i,1)=nfail(i,1)+1;

elseif wmit(n,1)>fcrit/1.2;

nfail2(i,1)=nfail2(i,1)+1;

end

end

stdev(i,1)=sqrt(vari(i,1)/(iter-1));

end %of i loop for cases.

t=t�*1000; W1=W1*1000; tel=tel*1000; wel=wel*1000; tm=tm*1000;

wm=wm*1000; %Convert seconds to msecs, meters to mm.

stdev=stdev*1000; nfail2=nfail+nfail2;

%Output Table

OPTable=zeros(ncase,11);

OPTable(:,1)=Wcase(1,:)�; OPTable(:,2)=Rcase(1,:)�; OPTable(:,3)=Zcase(1,:)�;

OPTable(:,4)=wel(:,1); OPTable(:,5)=tel(:,1); OPTable(:,6)=wm(:,1);

OPTable(:,7)=stdev(:,1); OPTable(:,8)=tm(:,1); OPTable(:,9)=numit(:,1);

OPTable(:,10)=nfail(:,1); OPTable(:,11)=nfail2(:,1); OPTable

pf=nfail./numit; pf2=nfail2./numit;
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Appendix B

Sample ANSYS Program

This ANSYS
R

program calculates the maximum de�ection for a clamped, aluminum

plate per �nite element analysis. A nonuniform loading function is assumed. Trials are

run for various combinations of charge size and stando¤ distance.

/BATCH,LIST

*DEL,ALL ! Clear all parameters.

! De�ne Parameter Arrays in Metric Units

*DIM,length,ARRAY,2

length(1)=0.508,1.48

*DIM,width,ARRAY,2

width(1)=0.2032,1.48

*DIM,height,ARRAY,2

height(1)=0.0016,0.004

*DIM,ystress,ARRAY,2

ystress(1)=345e6,380e6

*DIM,youngsm,ARRAY,2

youngsm(1)=73.1e9,72e9

*DIM,szar,ARRAY,2

szar(1)=0.0127,0.037 ! Size of mesh spacing.

poisson=0.33 ! Assume aluminum plate.

rho=2780

! De�ne Blast Parameters

*DIM,ZPr,TABLE,113,1,1,Z,Pr
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*TREAD,ZPr,ZPr,txt

*DIM,Zta,TABLE,113,1,1,Z,ta

*TREAD,Zta,Zta,txt

*DIM,ZTs,TABLE,113,1,1,Z,Ts

*TREAD,ZTs,ZTs,txt

*DIM,Zir,TABLE,113,1,1,Z,ir

*TREAD,Zir,Zir,txt

*DIM,Zbr,TABLE,113,1,1,Z,alpha

*TREAD,Zbr,Zbr,txt

! Looping Parameters

*DIM,Wc,ARRAY,2

Wc(1)=0.75,6

*DIM,R0,ARRAY,12,2

R0(1,1)=1,0.5,0.3,3,5,0.4,0.75,2,1.25,1.5,1.75,0.3

R0(1,2)=1,0.5,0.3,3,5,0.4,0.75,2,1.25,1.5,1.75,0.3

ilength=2

*DIM,xnode,ARRAY,5,2

xnode(1,1)=1,10,18,26,34

xnode(1,2)=1,10,18,26,34

numnd=1262

! Main Program Begins

*DO,iWc,1,2

*DO,iR0,1,8

! Steps 1-3: Element Type, Thickness & Material Properties

/FILNAME,AvSS7c,0

/TITLE,Aviation Security Symposium

/CONFIG,NRES,5000

/PREP7 ! Enter the preprocessor.

ET,1,SHELL93
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R,1,height(ilength)

MP,DENS,1,rho

MP,EX,1,youngsm(ilength)

MP,PRXY,1,poisson

TB,BISO,1,1,2,

TBTEMP,0

TBDATA�ystress(ilength),tanmod,

! Steps 4-5: Create and Mesh Areas

RECTNG,0,length(ilength)/2,0,width(ilength)/2, ! Axisymmetric quarter plate.

AESIZE,ALL,szar(ilength) ! Speci�es mesh spacing for plate.

AMESH,ALL

NWRITE,coord1,txt�0 ! Write nodal coordinates to a �le.

FINISH ! Finish preprocessor.

! Calculate Z Values at Every Node

*DIM,NXY,ARRAY,numnd,3

*VREAD,NXY(1,1),coord1,txt�JIK,3,numnd

(F8.0,G20.13,G20.13)

*DIM,Rnode,ARRAY,numnd

*DIM,Znode,ARRAY,numnd

*DIM,Prnode,ARRAY,numnd

*DIM,tanode,ARRAY,numnd

*DIM,Tsnode,ARRAY,numnd

*DIM,tend,ARRAY,numnd

*DIM,brnode,ARRAY,numnd

tamin=Zta(R0(iR0)/Wc(iWC)**(1/3))/1000

*DO,inode,1,numnd

Rnode(inode)=(R0(iR0)**2+NXY(inode,2)**2+NXY(inode,3)**2)**0.5

Znode(inode)=Rnode(inode)/Wc(iWC)**(1/3)

Prnode(inode)=ZPr(Znode(inode))*1e5*(R0(iR0)/Rnode(inode))**2
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tanode(inode)=(Zta(Znode(inode))/1000-tamin)*Wc(iWC)**(1/3)

Tsnode(inode)=ZTs(Znode(inode))/1000*Wc(iWC)**(1/3)

tend(inode)=tanode(inode)+Tsnode(inode)

brnode(inode)=Zbr(Znode(inode))

*ENDDO

! Steps 6-7: Transient Analysis & Output Controls

/SOLU ! Enter solution phase.

ANTYPE,4 ! Transient analysis.

TRNOPT,FULL ! Full solution method.

LUMPM,0 ! No lumped mass approximation.

NLGEOM,1 ! Include large de�ection e¤ects.

OUTRES,ALL,ALL, ! Ouput data for every timestep.

! Steps 8-9: Apply Boundary Conditions & Initial Loading

DL,2�ALL,0 ! Constrain outer clamped edges.

DL,3�ALL,0

DL,1�SYMM ! Apply symmetry conditions.

DL,4�SYMM

! Steps 10-11: Timesteps and Load Step Files

NCNV,2 ! If run fails to converge, program continues.

*DIM,nodepres,ARRAY,numnd

LSnum=1

*DO,tcurr,0.1e-6,1e-6,0.1e-6

*DO,inode,1,numnd

*IF,tcurr,GE,tanode(inode),AND,tcurr,LE,tend(inode),THEN

tsh=tcurr-tanode(inode)

tdur=Tsnode(inode)

nodepres(inode)=Prnode(inode)*(1-tsh/tdur)*exp(-brnode(inode)*tsh/tdur)

*ELSE

nodepres(inode)=0
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*ENDIF

*ENDDO

TIME,tcurr

KBC,0 ! Loading ramped.

SFFUN,PRES,nodepres(1)

SFE,all,1,PRES,1,0

LSWRITE,LSnum,

LSnum=LSnum+1

*ENDDO

*DO,tcurr,1.2e-6,0.1e-3,0.2e-6

*DO,inode,1,numnd

*IF,tcurr,GE,tanode(inode),AND,tcurr,LE,tend(inode),THEN

tsh=tcurr-tanode(inode)

tdur=Tsnode(inode)

nodepres(inode)=Prnode(inode)*(1-tsh/tdur)*exp(-brnode(inode)*tsh/tdur)

*ELSE

nodepres(inode)=0

*ENDIF

*ENDDO

TIME,tcurr

SFFUN,PRES,nodepres(1)

SFE,all,1,PRES,1,0

LSWRITE,LSnum,

LSnum=LSnum+1

*ENDDO

tolDW=1

delt4=0.2e-6

*DOWHILE,tolDW

delt4=delt4*1.02
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tcurr=tcurr+delt4

*DO,inode,1,numnd

*IF,tcurr,GE,tanode(inode),AND,tcurr,LE,tend(inode),THEN

tsh=tcurr-tanode(inode)

tdur=Tsnode(inode)

nodepres(inode)=Prnode(inode)*(1-tsh/tdur)*exp(-brnode(inode)*tsh/tdur)

*ELSE

nodepres(inode)=0

*ENDIF

*ENDDO

TIME,tcurr

SFFUN,PRES,nodepres(1)

SFE,all,1,PRES,1,0

LSWRITE,LSnum,

LSnum=LSnum+1

tolDW=5e-3-tcurr

*ENDDO

LSnum=LSnum-1

LSSOLVE,1,LSnum,1, ! Solve using loadstep �les.

FINISH ! Finish solution phase.

! Enter Postprocessor

/POST26

FILE,AvSS7c,�rst�,�.�

NSOL,2,1,U,Z

STORE,MERGE ! Store UZ at plate center.

*GET,SIZE,VARI�NSETS ! Get size of displacement array.

*DEL,UZ1

*DIM,UZ1,ARRAY,SIZE ! Dimension array UZ1.

NSOL,3,xnode(2,ilength),U,Z
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STORE,MERGE

*DEL,UZ2

*DIM,UZ2,ARRAY,SIZE

NSOL,4,xnode(3,ilength),U,Z

STORE,MERGE

*DEL,UZ3

*DIM,UZ3,ARRAY,SIZE

NSOL,5,xnode(4,ilength),U,Z

STORE,MERGE

*DEL,UZ4

*DIM,UZ4,ARRAY,SIZE

NSOL,6,xnode(5,ilength),U,Z

STORE,MERGE

*DEL,UZ5

*DIM,UZ5,ARRAY,SIZE

*DEL,TS

*DIM,TS,ARRAY,SIZE ! Dimension time array TS.

VGET,TS(1),1 ! Store data in arrays.

VGET,UZ1(1),2

VGET,UZ2(1),3

VGET,UZ3(1),4

VGET,UZ4(1),5

VGET,UZ5(1),6

dispx=�AV2�

sp=�_�

lt=length(ilength)*100 !

*CFOPEN,%dispx%%sp%%iWc%%iR0%%sp%%lt%X,dat ! Open data �le.

*VWRITE,TS(1),UZ1(1),UZ2(1),UZ3(1),UZ4(1),UZ5(1)

(1x,E13.6,3X,E13.6,1X,E13.6,1X,E13.6,1X,E13.6,1X,E13.6)
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*CFCLOSE

FINISH ! Finish postprocessor phase.

PARSAV,ALL

/CLEAR,NOSTART

PARRES,NEW,AvSS7c,parm

*ENDDO

*ENDDO
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Appendix C

Details of Box Shaped Deformation Pattern

C.1 De�nition of Modifying Factors

In Section 6.2.3, it was noted that Yu and Chen [64] use a nomenclature that could

potentially be confusing when compared with that previously de�ned in Chapter 3. Figure

C.1 shows how other parameters used throughout this dissertation di¤er in Yu and Chen�s

analysis [64]. For consistency with their approach, Appendix C exclusively uses the para-

meter de�nitions in Fig. C.1. Note that the origin of the coordinate system shifts from

the center to the lower left corner of the plate and that now, b � a. Comparing with the

geometry from Fig. 6.3, �a = B� and �b = B tan�.

Equations 6.21 and 6.22 utilize modifying factors f1 and f2. Using the generalized form

of Yu and Chen�s moment equations [64], these modifying factors are de�ned here as

f1 = 1� 2� + 2� b
a
+ 4�2
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3
�
b
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�
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for a simply supported plate, and

f1 = 1� � + � b
a
+
�2
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f2 = 1� � + � a
b
+
�2

2

�
3� 6� + 2� a

b

�
, for � < 1,

f2 =
1

2
+ 2�

�
1� 2� + � a

b

�
, for � � 1, (C.4)
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II

Figure C.1: Plastic deformation patterns with notation of Yu and Chen [64]: (a) roof shape,
(b) box shape.

for a clamped plate, where � � W=h, the ratio of maximum central de�ection to plate

thickness. The reason why f1 and f2 are related the way they are is because f2 accounts

for the bending and membrane forces in region II. The geometry of region II is simply a

rotated version of that of region I, with all � and �, and a and b terms inverted. A detailed

derivation of these parameters, which are slightly modi�ed from those provided by Yu and

Chen [64], can be found in Ref. [6].

C.2 Calculation of Initial Values for � and �

The techniques of Yu and Chen [64] can be used to accurately determine initial values

of the box shape geometric parameters, � and � (and therefore, B�). Combining Eqs. 6.21,

6.22, 6.26 and 6.27 with the parameter de�nitions of Fig. C.1,

� _�I(t)(2� 3�) + (1� �)�2P (t) = 6M0�f1=b
2 (C.5)

and

� _�I(t)(2� 3�) + (1� �)�2P (t) = 6M0�f2=a
2, (C.6)

where � is analogous to the � used in the �rst two of these equations. At t = 0, the

impulse is zero, thereby eliminating the �rst term in both Eqs. C.5 and C.6. Meanwhile,

the pressure P (t) takes on its initial value, which is a known quantity. Plastic moment per

unit length M0 is also known. That leaves two equations with four unknowns, namely �, �,

f1 and f2. If the initial values of the two modifying factors are known, then one can solve

for initial values �0 and �0.
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Assuming � � 45� so that �a � �b, all of the modifying factors, regardless of boundary

condition, equal unity when � = 0. Hence, f1 and f2 drop out of the aforementioned

equations. Separating the variables in the resulting expressions, �0 is given by one of the

physically valid roots of

�50+

�
1:5��yh

2

P (0)a2
� 1
�
�40�

3��yh
2

P (0)b2
�30+

3��yh
2

P (0)b2
�20+

2:25�2�2yh
4

P 2(0)b4
�0�

2:25�2�2yh
4

P 2(0)b4
= 0, (C.7)

where �y is the dynamic yield stress of the plate material, and � = 1 for simple supports,

� = 2 for clamped supports. Meanwhile, �0 is found by inserting the roots of Eq. C.7 into

�0 = 1�
1:5��yh

2

P (0)�20b
2
. (C.8)

Mathematically, there are �ve ordered pairs (�0; �0) that satisfy Eqs. C.7 and C.8. Geo-

metrically though, it is clear from Fig. C.1b that 0 � �0; �0 � 1=2. Usually, only one of

the ordered pairs meets this additional constraint. Using the energy rate balance method

of Sections 6.2.1 and 6.2.2, �0a gives the starting value of B�, while �0b the initial value of

B tan�. Equations C.7 and C.8, which must be solved at the beginning of any analysis

assuming a box shaped deformation, are not provided in Ref. [64], but rather are derived

by the current author.
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