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ABSTRACT OF THE DISSERTATION

Bifurcations of equilibria in DNA elasticity

by Yoav Y. Biton

Dissertation Director: Bernard D. Coleman

DNA molecules in the familiar double helical B form are treated here as though they

have rod-like structures obtained by stacking the nearly planar base pairs comprising

them one on top of another with each rotated by approximately one-tenth of a full turn

with respect to its immediate predecessor in the stack. As each base in a base pair is at-

tached to the sugar-phosphate backbone chain of one of the two DNA strands that have

come together to form the Watson-Crick structure, and each phosphate group in a back-

bone chain bears one electronic charge, two such charges are associated with each base

pair. Thus, each base pair is subject to not only the elastic forces and moments exerted

on it by its neighboring base pairs but also to remote electrostatic forces that, because

they are only partially screened out by positively charged counter ions, can render the

molecule’s equilibrium configurations sensitive to changes in the concentration c of

salt in the medium.

The observation that the step from one base pair to the next can be one of sev-

eral distinct types, each having its own mechanical properties that depend on the nu-

cleotide composition of the step, and the assumption that a base pair is rigid, led to

the development of a theory of sequence dependent DNA elasticity [1]. The theory of
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DNA molecules in aqueous solution developed here is based on but goes beyond that

theory. It takes into account the intramolecular electrostatic interactions of the nega-

tively charged phosphate groups in the molecule and the impenetrability of the DNA

molecule for cases in which the electrostatic repulsive forces do not suffice to avoid

self penetration. The theory permits one to calculate equilibrium configurations, to de-

termine their stability , and to study the dependence of them on salt concentration and

on all kinds of end conditions.

When the intramolecular electrostatic forces are taken into account, the equations

of mechanical equilibrium for a DNA molecule with N+1 base pairs are a system of

µN non-linear equations, where µ, the number of kinematical variables describing the

relative displacement and orientation of adjacent base pairs is in general 6; it reduces to

3 when base-pair steps are assumed to be inextensible and non-shearable. An efficient

numerically stable computational scheme is here presented for solving those equations

and determining the mechanical stability of the calculated equilibrium configurations.

That scheme is employed to compute and analyze bifurcation diagrams in which c is

the bifurcation parameter and to show that, for an intrinsically curved molecule, small

changes in c can have a strong effect on stable equilibrium configurations. Cases are

presented in which self-contact must be taken into account even though the intramolec-

ular electrostatic forces of repulsion are strong.
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Chapter 1

Introduction

There are in nature many examples of structures that have the characteristics of elastic

rods: cross-sectional diameter significantly smaller than length, and elastic resistance

to bending, twisting, shearing, and stretching. Perhaps the most important example

of such rod-like structure is a duplex DNA molecule, but other macroscopic examples

are botanical filaments and human hairs. 1 Although the work presented here pro-

vides methods of computing, and analyzing the stability of, equilibrium configurations

of DNA molecules in solution with intramolecular electrostatic interactions taken into

account, the general mathematical theory developed is expected to be applicable to a

broad class of naturally discrete rod-like structures and to provide effective discretiza-

tion procedures for continuous rods.

A duplex DNA molecule is comprised of two polymeric strands whose units, called

nucleotides, contain a negatively charged phosphate group and a sugar that is cova-

lently attached to a nearly planar nucleotide base. Each nucleotide is covalently bound

to its adjacent neighbor in the same strand in such a way that the strand has direction-

ality. There are four different types of nucleotide bases: Adenine (A), Thymine (T),

Cytosine (C), and Guanine (G), with (A) complementary to (T) and (C) complementary

to (G). The two strands, oriented with opposite directionality, form the Watson-Crick

double helical structure [4] in which each base in one strand is joined to its compli-

ment in the other strand to form an approximately planar base pair, with two hydrogen

1Goriely and Tabor [2] treated climbing plants as continuous elastic rods with intrinsic curvature.
Zandi et. al. [3] suggested that their model of electrostatically charged elastic rod (originally proposed
to model nano-tubes) is appropriate to the analysis of the stiffening of human hairs as a result of elec-
trostatic repulsion.
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bonds in a base pair A-T and three in G-C. Although displacements and rotations of

one base relative to its complimentary base in the base pair are possible, such defor-

mations are expected to be relatively small, and it is here assumed that the base pairs

in a DNA molecule are planar and rigid objects that are stacked one on top of another

with each rotated by approximately one-tenth of a full turn with respect to its immedi-

ate predecessor in the stack. 2 This assumption enables the definition of kinematical

variables for the description of a DNA configuration. 3 Following such definitions one

can relate the six numbers that determine the translation and orientation of a base pair

relative to its predecessor to a set of cartesian coordinates for the positions in space

of the atoms in the two adjacent base pairs that comprise a base-pair step. Thus, one

obtains a description of the molecule as a structure with 6 degrees of freedom at each

step. The six kinematical variables employed here for each base-pair step were intro-

duced by El Hassan and Calldine [8]. The precise definitions are given in the Appendix

and in [9]. The six numbers, θn
1 , θn

2 , θn
3 , ρn

1 , ρ
n
2 , ρ

n
3 that characterize the orientation and

displacement of the (n + 1)-th base pair relative to the n-th are called tilt, roll, twist,

shift, slide, and rise. Such variables were proposed in early paper of Zhurkin, Lysov,

and Ivanov [6]. The currently used requirements and nomenclature for these vari-

ables, (”the Cambridge accord”) are summarized in [10]. As shown in Figure 1.1,

tilt, roll, and slide describe rotations, shift and slide describe displacements associated

with shearing motion, and rise describes displacements associated with extension (i.e.,

stretching).

As a phosphate group bears one (negative) electronic charge, two such charges

are associated with one base pair. Two base pairs exert on each other an electrostatic

force of repulsion, the strength of which depends on both the distance between charged

sites and the concentration c of salt in the aqueous solution of DNA. The dependence

on c results from the fact that salt ions of positive charge form a dense cloud around a

2For a detailed description see for example the book by Calladine, Drew, Luisi, and Travers [5].
3See e.g., [6], [7], [8]
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Figure 1.1: Schematic representations of the kinematical variables that describe the relative orienta-
tion and displacement of consecutive base pairs: θ1 and θ2 are angles of rotation about two perpendicular
lines that lie in the midplane between the base pairs; θ3 is an angle of rotation about a line l perpendic-
ular to the midplane; ρ1 and ρ2 are mutually perpendicular displacements in directions parallel to the
midplane; and ρ3 is a displacement along l. Each drawing illustrates one of the kinematical variables for
the (artificial) case in which that variable has a positive value and the others (with the exception of ρ3)
are set equal to zero.

negatively charged site on the DNA and in so doing partially screen out the electrostatic

interaction of the site with other sites. As a consequence, an increase in c decreases the

repulsion of nonadjacent base pairs and weakens the tendency of electrostatic forces to

straighten DNA molecules.
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Chapter 2

The equations of mechanical equilibrium

In the work presented here a configuration of a DNA molecule is specified, up to a

rigid body motion, by 6N numbers. As shown below, when a DNA molecule is in a

mechanical equilibrium, these numbers can be determined for a given set of end con-

ditions, and external forces and moments exerted on the DNA molecule (including the

repulsive electrostatic forces generated by the charges along the molecule). A DNA

molecule is said to be in its intrinsic configuration when it is relaxed, i.e., being in

a stress-free state when no external forces and moments are exerted on it. Cases are

presented here in which for each base-pair step, only µ of the 6 kinematical numbers

are unknown, and referred to as kinematical variables, while the remaining (6−µ) are

constants and have their intrinsic values, i.e., values that comprise the intrinsic config-

uration. Here the value of µ will be 6 in the most general case and 3 in the case in

which ρn
1 , ρ

n
2 , and ρn

3 are preassigned. The theory presented here is applicable to the

cases in which µ= 4 or µ= 5 (i.e., in which one or two of the parameters ρi are fixed),

but will not be discussed at present.

2.1 Kinematical relations

Let xn be the spatial position of the barycenter of the n-th base-pair in a DNA molecule

with N+1 base pairs, and let the right handed orthonormal triad (dn
1 ,dn

2 ,dn
3 ) be em-

bedded in the n-th base pair and such that dn
1 and dn

2 span the plan associated with

it. The vector rn=xn+1−xn joins the barycenters of the n-th and the (n + 1)-th base

pairs, and its components rn
k =rn · dn

k with respect to (dn
1 ,dn

2 ,dn
3 ) are related to the
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Figure 2.1: A schematic drawing of the n-th base-pair step showing the vectors rn , dn
i , and dn+1

i .
Each nucleotide base in the n-th base pair lies mainly on one side of the plane spanned by dn

1 and dn
3

and is covalently bonded at its darkened corner to one of the two sugar phosphate chains. The direction
of that oriented chain is indicated by a light-face arrow; the chain itself is not shown. The gray-shaded
long edges are in the minor groove of the DNA.

local shift, slide, and rise by the orthogonal transformation 1

rn
k = Rn

jkρ
n
j . (2.1)

The shift, slide, and rise are the components ρn
j =rn ·dn+ 1

2
j of rn with respect to the

middle frame triad 2 (d
n+ 1

2
1 ,d

n+ 1
2

2 ,d
n+ 1

2
3 ). In equation (2.1) the components

Rn
ij=d

n+ 1
2

i · dn
j =R̃ij (θ

n
1 , θn

2 , θn
3 ) are functions of the local tilt, roll and twist that are

given explicitly in the Appendix. A schematic drawing of a base-pair step and the

vectors associated with it is shown in Figure 2.1.

A configuration of a DNA molecule is determined by the set of points

{x1,x2, ...,xN+1} characterizing the piecewise linear axial curve, C, of the molecule’s

configuration, and the set of triads associated with each of the base pairs,

{(d1
1,d

1
2,d

1
3), (d

2
1,d

2
2,d

2
3), ...(d

N+1
1 ,dN+1

2 ,dN+1
3 )}. The choice of the direction in which

n is increasing along the molecule is arbitrary; for that choice, the unit vectors dn
3 ,

for n= 1, 2, ...,N+1, must be such that the scalar products rn ·dn
3 are positive. 3 A

1The Einstein summation convention is used for double subscripts that indicate components or basis
vectors in IR3. For such subscripts only the letters i , j , k , l , and t were used. The summation symbol is
used explicitly when a summation is performed over a higher dimension.

2For a precise definition of the middle frame triad, see [8] and the Appendix.
3For an open molecule the choice of the direction of increasing n is a consequence of the choice of



6

change in the choice of the direction of increasing n leaves the roll, twist, slide, and

rise (θn
2 , θn

3 , ρn
2 , and ρn

3 ) invariant but changes the sign of the tilt (θn
1 ), and the shift (ρn

1 )

[8]. 4

For a given vector x1 and a given basis (d1
1,d

1
2,d

1
3) the vectors xn and the triads

(dn
1 ,dn

2 ,dn
3 ), for n = 2, 3, ...,N+1, are related to the 6N numbers {(θm

1 , θm
2 , θm

3 ρm
1 , ρm

2 , ρm
3 )},

with m = 1, 2, ...N , by the relations,

xn=x1 +
n−1∑
p=1

dp
j R

p
ijρ

p
i , n= 2, 3, ...,N+1, (2.2)

dn
i =Qn

jid
1
j , (2.3)

where the components, Qn
ji , of the orthogonal transformation Qn that relates the com-

ponents of a vector with respect to (dn
1 ,dn

2 ,dn
3 ) to its components with respect to

(d1
1,d

1
2,d

1
3), can be written in the form

Qn
ij=Q̃n

ij (θ
1
1, θ

1
2, θ

1
3, θ

2
1, ..., θ

n−1
1 , θn−1

2 , θn−1
3 )=D1

ik1
D2

k1k2
...Dn−1

kn−2j
=d1

i · dn
j . (2.4)

The numbers

Dn
ij =dn

i · dn+1
j =D̃ij (θ

n
1 , θn

2 , θn
3 ) (2.5)

are the components of the orthogonal transformation that takes (dn+1
1 ,dn+1

2 ,dn+1
3 ) into

(dn
1 ,dn

2 ,dn
3 ), and are explicitly given (see the Appendix) as functions of the local tilt,

roll, and twist.

Equations (2.2), (2.3), (2.4), and (2.5), permit one to identify a configuration, up to

a rigid body motion, with the vector 6α ∈ IR6N whose components are the set of 6N

numbers, {(θn
1 , θn

2 , θn
3 , ρn

1 , ρn
2 , ρn

3 )}, n = 1, 2, ...,N , ordered such that

6αn = θn
a , for a= 1, 2, 3 , (2.6a)

6αn = ρn
a−3, for a= 4, 5, 6 . (2.6b)

the end base pair for which n = 1, however, in the case of a closed DNA molecule both the direction
and the base pair with n = 1 can be chosen arbitrarily.

4A discussion on implications of this statement is given in [1], and later in this work.
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The number n is defined to be n=a+(n − 1)6. However, as throughout this work

attention is given also to the case for which the three numbers ρn
1 , ρn

2 , and ρn
3 charac-

terizing each of the base-pair steps are held fixed, a subset 3α of 6α is defined so that

its components are given by

3αn = θn
k , for k= 1, 2, 3 , (2.7)

where the number n is now given by the relation n=k+(n−1)3. This definition of the

vector 3α is vital to put emphasis on the subset of 6α that contains only (and all of) the

kinematical variables which are not constant in the discussed problem.

The assumption under which a base pair is rigid, restricts any variation of the vec-

tors (dn
1 ,dn

2 ,dn
3 ) to a variation that preserves their orthonormality and right-handedness.

A variation of that kind is characterized by the relation

δdn
i = γn × dn

i . (2.8)

The equations (2.5) and (2.8) imply that

Dn
kj

∂D̃ij

∂θn
l

δθn
l = εkijd

n
j · (γn+1 − γn), (2.9)

where εkij is the permutation symbol of Levi-Civita. As was discussed in [1], making

use of the fact that the matrices Dn
kj

∂D̃ij

∂θn
l

are skew, i.e.,

Dn
kj

∂D̃ij

∂θn
l

= −Dn
ij

∂D̃kj

∂θn
l

, l = 1, 2, 3, (2.10)

permits one to write equation (2.9) in the form

Ξ n
il δθ

n
l = dn

i · (γn+1 − γn), (2.11)

where the components of the matrix Ξn are given by

Ξ n
1l = Dn

2j

∂D̃3j

∂θn
l

, Ξ n
2l = Dn

3j

∂D̃1j

∂θn
l

, Ξ n
3l = Dn

1j

∂D̃2j

∂θn
l

. (2.12)

As was stated in reference [1] the matrix Ξn=Ξ̃(θ1, θ2, θ3) is invertible for the domain

of (θn
1 , θn

2 , θn
3 ) that is proper for the models and the problems discussed here, and hence

the solution of (2.11) is

δθn
l = Γ n

il d
n
i · (γn+1 − γn), (2.13)
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where the numbers Γ n
ik = Γ̃ik(θ

n
1 , θn

2 , θn
3 ) are the components of the transpose of

(Ξn)−1 i.e., [1]

(Γn)
T

= (Ξn)−1. (2.14)

Using the functions D̃ij defined by equation (2.5) one can construct a triplet (ζ1, ζ2, ζ3)

of angles that characterize the orientation of the (N+1)-th base pair relative to the 1-st

in the same way that (θn
1 , θn

2 , θn
3 ) relates the orientation of the (n+1)-th base pair to

the n-th. That triplet is by definition the solution of the equation

D̃ij (ζ1, ζ2, ζ3)=QN+1
ij =d1

i · dN+1
j . (2.15)

The variations of the angles (ζ1, ζ2, ζ3) have a form analogous to that seen in equation

(2.13),

δζl=Γ̃il(ζ1, ζ2, ζ3)d
1
i · (γN+1 − γ1). (2.16)

The functions Γ̃ik in equation (2.16) are the same as those seen in equation (2.14).

In terms of the components xn
k = xn · d1

k of xn with respect to d1
k , equation (2.2)

has the form

xn
k =x 1

k +
n−1∑
p=1

Qp
kjR

p
ijρ

p
i , n= 2, 3, ...,N+1. (2.17)

Equation (2.8) allows one to write for a variation of Qp
kj = d1

k · dp
j the relation

δQp
kj = (d1

k × dp
j ) · (γ1 − γp). (2.18)

On the other hand, as the middle frame triad (d
n+ 1

2
1 ,d

n+ 1
2

2 ,d
n+ 1

2
3 ), is determined by the

relative orientation between the (n+1)-th and the n-th triads, for the variation of Rp
ij

one can use equation (2.13) to write

δRp
ij =

∂R̃p
ij

∂θp
l

Γ p
kld

p
k · (γp+1 − γp). (2.19)

Thus, as follows from equations (2.1), (2.17), (2.18), and (2.19), a variation δxn
k takes
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the form

δxn
k =δx 1

k +
n−1∑
p=1

(
(d1

k × rp) · (γ1 − γp)+

Qp
kjρ

p
i

∂R̃p
ij

∂θp
l

Γ p
tl d

p
t · (γp+1 − γp) + Qp

kjR
p
ij δρ

p
i , (2.20)

for n = 2, 3, ..., N + 1. As will be shown later, the relation (2.20) is of a great im-

portance for the derivation of the equations of mechanical equilibrium as it relates a

variation of the spatial position to variations of the triads and the local displacements.

2.2 The energy of a DNA molecule

In analogous to the continuous elastic rod model, the main hypothesis taken here is that

the elastic energy,Ψ , of a DNA molecule in a specified configuration is given by the

sum over m of the local energies of interaction, ψm , associated with the m-th base-pair

step,

Ψ=
N∑

m=1

ψm . (2.21)

The local energy ψm , depends upon the nucleotide bases in the m-th and the (m+1)-th

base pairs and the relative displacement and orientation between the (m+1)-th and the

m-th base pairs, and has to be in accord with the principle of frame indifference, e.g.,

invariance under any rigid body motion. Consequently, one can write,

ψn=ψ̌n(θn
1 , θn

2 , θn
3 , ρn

1 , ρn
2 , ρn

3 ). (2.22)

Any scheme that defines the kinematical numbers and any form of the functions ψ̌n

have to be such that the energy ψ̌n(θn
1 , θn

2 , θn
3 , ρn

1 , ρn
2 , ρn

3 ) is independent of the direction

of increasing n along the molecule.

As an approximation, it is further assumed here that the two negative charges asso-

ciated with each base pair are located at the barycenter of that base pair [11]. Accord-

ing to this assumption, the associated electrostatic forces yield no resultant moments.
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Thus, the electrostatic energy, Φ=Φ̌(x1,x2, ...,xN+1), of a configuration has the form

Φ=
1

2

N+1∑
n=1

φn , (2.23)

where φn=φ̌n(x1,x2, ...,xN+1), is the electrostatic energy associated with the n-th

base pair, and can be written in the form

φn =
N+1∑
m=1

ϕnm , ϕnn ≡ 0, (2.24)

in which ϕnm=ϕmn , the potential energy of electrostatic interaction between the charges

on the n-th and the m-th base pairs, is a function of the distance,

xnm=|xn − xm |, (2.25)

between the two base pairs, i.e., ϕnm=ϕ̌(xnm). For the model considered throughout

the present work, it is supposed that the elastic energy of interaction between two

adjacent base pairs includes in its form the electrostatic energy associated with that

base-pair step, and consequently

ϕn(n+1)=0, for n= 1, 2, ...,N . (2.26)

The total energy U of a DNA molecule is taken to be the sum of its elastic energy Ψ

and its electrostatic energy Φ

U = Ψ + Φ. (2.27)

2.3 Variational statement I: the first variation of the energy

A configuration of a DNA molecule is said to be in a mechanical equilibrium if its

total energy possesses a local extremum, under a given set of end conditions. A con-

figuration at that state is referred to as an equilibrium configuration. Although the end

conditions can in general take the form of (i) kinematical constraints for which the rel-

ative orientation and displacement of the base pairs at the two ends are preassigned,
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(ii) mechanical constraints for which given set of external moments and forces exerted

on the molecule’s ends are preassigned or (iii) any combination of the two types, for

a derivation of the equations of mechanical equilibrium it is sufficient to discuss the

first case. In that case, the relative orientation of the two end base pairs (base pair

1 and base pair (N+1)) is set to be characterized by the three preassigned rotational

parameters, (oζ1,oζ2,oζ3), and the relative displacement between the two ends of the

molecule is given by the three translational parameters, o`1,o`2,o`3, such that the six

scalar equations expressing the constraints are

ζi −oζi = 0, i= 1, 2, 3 , (2.28a)

`k −ò k = 0, k= 1, 2, 3 , (2.28b)

where `k are the components of the end-to-end vector `=(xN+1 − x1) with respect to

the basis vectors d1
k , i.e.,

`k=(xN+1 − x1) · d1
k . (2.29)

The form of the constrained variational problem can be transformed to that of a

constraint-free problem by the introduction of the modified energy

U ∗ = Ũ ∗(µα, τ1, τ2, τ3,P1,P2,P3)=U + τiζi + Pk`k (2.30)

in which the numbers τ1, τ2, τ3, and P1, P2, P3 , are Lagrange multipliers, the physical

meaning of which will be discussed later. The definition of a contact free 5 equilibrium

configuration can now be restated: A DNA molecule’s configuration under the imposed

constraints of equations (2.28) is an equilibrium configuration if for it the first variation

of the modified energy U ∗ vanishes,

δU ∗ = δU + τiδζi + Pkδ`k = 0, (2.31)

for any variation in the position and orientation of the molecule’s base pairs.

5The special case of equilibrium configurations with self contact is discussed in a subsequent section.
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2.4 The equations of mechanical equilibrium

In this section a detailed derivation of the equations of mechanical equilibrium orig-

inated from equation (2.31) is given. The equations are derived for the general case,

µ=6, in which none of the kinematical numbers is frozen. The first term in the right

hand side of equation (2.31), δU , is given by

δU =
N∑

n=1

∂ψ̌n

∂θn
l

δθn
l +

N∑
n=1

∂ψ̌n

∂ρn
l

δρn
l −

N+1∑
n=1

gn
k δxn

k , (2.32)

where gn
k are the components with respect to d1

k of the electrostatic force, gm , acting

on the n-th base pair, and are given by

gn
k =− ∂Φ̌

∂xn
k

=−
N+1∑
m=1

∂ϕ̌nm

∂xn
k

. (2.33)

The electrostatic force gn is the sum of the repulsive electrostatic forces that non-

adjacent (to base pair n) base pairs exert on the n-th base pair,

gn =
N+1∑
m=1

Gnm , Gnn ≡ 0, (2.34)

with

Gnm=−Gmn=− (∂ϕ̌(xnm)/∂xn
k )d1

k , (2.35)

the repulsive force that the m-th base pair exerts on the n-th, and which is acting

along the straight line connecting their barycenters. Because of this mutuality of the

electrostatic force the two relations given below are obeyed independently of the con-

figuration,
N+1∑
m=1

gm = 0, (2.36)

N+1∑
n=2

gn ×
n−1∑
p=1

rp=−
N∑

p=1

rp ×
N+1∑

n=p+1

gn = 0. (2.37)

By making use of equations (2.13),(2.16), (2.20), and rewriting equation (2.32) in

terms of configurational variations that are characterized by γn and δρn
i , one can write
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δU ∗ in the form

δU ∗=
N∑

n=1

∂ψ̌n

∂θn
l

Γ n
il d

n
i · (γn+1 − γn) + τk Γ̃ik(ζ1, ζ2, ζ3)d

1
i · (γN+1 − γ1)

+
N∑

p=1

rp ×
(

N+1∑
n=p+1

gn −P

)
· (γ1 − γp)

−
N∑

p=1

(
Qp

kjρ
p
i

∂R̃p
ij

∂θp
l

Γ p
tl d

p
t

(
N+1∑

n=p+1

gn
k − Pk

))
· (γp+1 − γp)

)

−
N∑

p=1

Qp
kjR

p
ij

(
N+1∑

n=p+1

gn
k − Pk

)
δρp

i

+
N∑

n=1

∂ψ̌n

∂ρn
i

δρn
i −

N+1∑
n=1

gn
k δx 1

k ,

(2.38)

where P=Pkd
1
k . Furthermore, by defining the following vectors

hn =
N+1∑

m=n+1

gm −P = −
n∑

m=1

gm −P, hn = hn
j dn

j = h̄n
j d1

j , (2.39a)

mn = Γ n
tl

(
∂ψ̌n

∂θn
l

− ρn
i

∂R̃n
ij

∂θn
l

hn
j

)
dn

t , mn = mn
j dn

j = m̄n
j d1

j , (2.39b)

T = τk Γ̃ik(ζ1, ζ2, ζ3)d
1
i , (2.39c)

fn =
∂ψ̌n

∂ρn
i

d
n+ 1

2
i , fn = f n

j dn
j = f̄ n

j d1
j , (2.39d)

δrn=δρn
i d

n+ 1
2

i , (2.39e)

and properly recollecting terms in equation (2.38), one can finally write, with the use

of equations (2.36) and (2.37), the first variation of the modified energy U∗ in a form

from which the equations of equilibrium can be deduced:

δU ∗=− (
m1 + r1 × h1 + T + `×P

) · γ1

−
N∑

n=2

(
mn −mn−1 + rn × hn

) · γn

+
(
mN + T

) · γN+1

−
N∑

n=1

(hn − fn) · δrn −
N+1∑
n=1

gn
k δx 1

k .

(2.40)
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When none of the 3N kinematical variables, ρn
i , is frozen, i.e., when µ= 6, a config-

uration 6α is an equilibrium configuration if the first variation of the modified energy

δU ∗ vanishes for any choice of: (a) δx 1
k , with k= 1, 2, 3, (b) δrn , with n= 1, 2, ...,N ,

and (c) γm , with m= 1, 2, ...,N+1. Part (a) of the above condition is automatically

satisfied as equation (2.36) is valid independently of the configuration, namely the sum

of all the electrostatic forces acting on a molecule is identically zero. A satisfaction of

part (b) is obtained if and only if the following equations are obeyed

Fn=hn − fn = 0, n= 1, 2, ...,N . (2.41)

If one substitutes the n-th equation of the set of N vectorial equations (2.41) with the

equation obtained by subtracting the (n−1)-th equation from the n-th equation, i.e.,

with the equation Fn −Fn−1=0, for n = 2, 3, ...N , one gets the following set of N +1

vectorial equations, i.e., 3N + 3 equations (3N of which are independent),

f1 + g1 + P = 0 , (2.42a)

fn − fn−1 + gn = 0 , n= 2, 3, ...,N , (2.42b)

−fN + gN+1 −P = 0 . (2.42c)

A necessary and sufficient condition under which part (c) of the statement for the van-

ishing of the first variation is satisfied, is that the N+1 vectorial equations,

M1=m1 + r1 × h1 + T + `×P = 0, (2.43a)

Mn=mn −mn−1 + rn × hn = 0, n= 2, 3, ...,N , (2.43b)

MN+1=−mN −T = 0, (2.43c)

N (or 3N scalar equations) of which are independent, are obeyed. The derivation of

the equations (2.42) from the equations (2.41) makes it clear that the equations (2.42a)

and (2.42b) imply (2.42c). Furthermore, using the relations (2.35), (2.36), and (2.37),

one can show that the equations (2.43a) and (2.43b) imply (2.43c).

The equations (2.41) or equivalently (2.42) together with the equations (2.43) are



15

here referred to as the equations of mechanical equilibrium, and form the discrete ana-

log of the differential equations expressing the balance of forces and moments in Kirch-

hoff’s theory of elastic rods [12], [13], [14], [15], [16]. The vectors fn and mn are

interpreted as the force and moment exerted on the n-th base pair by the (n+1)-th base

pair. The vector −hn is the sum of all the external forces 6 exerted on the subsegment

that includes the base pairs 1, 2, ..., n, and hence, the vector −Fn is the sum of all the

forces exerted on that subsegment. The vector Mn denotes the sum of moments exerted

on the n-th base pair. The vectors P and T represent the force and moment exerted on

base pair 1 by the external world (or equivalently by the base pair N+1), and are the

result of confining the two ends of the molecule to the kinematical constraints given in

equations (2.28).

For the clarity of the discussions next to be presented, it is convenient to define the

vectors, µΩ ∈ IRµN , where µ equals 6 or 3, to be the vectors with the µN components,

for n = 1, 2, ...,N ,

6Ωn = −Mn · d1
a , for a= 1, 2, 3 , 6Ωn = −Fn · d1

a−3, for a= 4, 5, 6 , (2.44a)

3Ωn = −Mn · d1
a , for a= 1, 2, 3 , (2.44b)

where the number n=a+(n−1)µ. In the case in which the end conditions are given by

kinematical constraints, an equilibrium configuration is calculated by solving a system

of µN+6 nonlinear equations for the set of µN kinematical variables that defines a

configuration µα, together with the six Lagrange multipliers τ1, τ2, τ3, and P1, P2, P3. 7

This system of equations includes the µN equations of mechanical equilibrium, which,

following the definitions (2.44), can shortly be written in the form

µΩn = µΩ̃n(µα) = 0, for n= 1, ...,µN , (2.45)

6It is assumed here that the only forces are those that originated by the intramolecular electrostatic
interaction and the end conditions, a more general case in which contact forces are present will be
discussed in the subsequent section.

7In the case in which the molecule is not free of self contact an additional unknown is associated
with each contact point. The case of self contact is discussed in details in the following section.
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and the 6 constraints given by equations (2.28). It is important to note, that when µ = 6,

the computation of an equilibrium configuration does not necessitate the calculation

of the vectors hn directly from the relation (2.39a), but instead one can use equations

(2.41) to replace hn by fn , and use the constitutive relations (2.39d) for the components

of fn . In the case of end conditions that are given by mechanical constraints of the form,

T=T0, P=P0, (2.46)

i.e., by which the vectors P and T are preassigned, the number of unknowns reduces

to µN , and clearly no use should be made with the 6 equations (2.28).

2.5 The equations of equilibrium when self contact is taken into

account

Although in cases for which the distance of closest approach, 8 Dca, is in the order of

magnitude of the effective diameter, Do = 20Å, of the DNA molecule the electrostatic

energy serves as a natural ”penalty function”, in the sense that the total energy in-

creases significantly as Dca approaches Do (from above), there are examples for which

the end conditions are such that the repulsive electrostatic forces as were taken in the

present theory 9 are not sufficient to avoid self penetration of the DNA molecule . Such

is the case for equilibria of a closed supercoiled DNA molecule, a molecule that was

pretwisted and closed to form a circular molecule. (See e.g., the experiments reported

8The distance of closest approach is here taken as the minimal distance over the set of pairs of points
on the axial curve, C, that are separated by more than 20 base-pair steps, i.e., the DNA subsegment
between the two points consist of more than 20 base pairs. It is assumed here that a DNA subsegment
of less than 20 base pairs cannot have self contact as such cases require values of curvature that are
significantly higher than the maximal admissible values.

9There are theoretical evidences [17], supported by computer simulations [18], [19], by which when
the distance of closest approach is small relative to the Debye length (see the discussion on the electro-
static energy) there may be attractive forces between the two subsegments that are in proximity. This
possibility is not considered here.



17

Figure 2.2: A schematic drawing of the assumed impenetrable surface of the DNA. The dashed line
represent the piecewise linear axial curve of the DNA. Each rectangle represents a rigid cylinder with
a diameter of 20Å. A cylinder is associated with each base-pair step such that its axis coincides with
the line connecting the barycenters of the corresponding adjacent base pairs. The small circles represent
the barycenters of the base pairs. The grey patches represent spherical sections, the centers of which
coincide with the barycenters of the corresponding base pairs, that fill the gaps (as a result of the local
curvature) between each two adjacent cylinders.

in [20]). To calculate equilibrium configurations that satisfy the impenetrability condi-

tion,

Dca >= Do, (2.47)

one must account for self-contact, in a way analogous to the theory of elastic rods with

self contact [21], [22], [23].

For that purpose, the impenetrable surface of a DNA molecule is assumed to be the

boundary of the union of the N cylinders T n of diameterDo, with n = 1, 2, ...,N , such

that a point x is on T n if and only if

|x− xn − (x− xn) · rn

rn · rn
rn | = Do

2
and 0 ≤ (x− xn) · rn

|rn | ≤ |rn |, (2.48)

and the N+1 spheres Bm of diameter Do, that are centered at xm , with m = 2, ...,N .

A two dimensional schematic description of the assumed impenetrable surface is given

in Figure 2.2.
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Accordingly, two base-pair steps, mı and nı, with nı ≥ mı+20, are said to be in

contact if and only if

Dmını = min D̂mını(smı , snı) = D̂mını(∗smı
, ∗snı

) = Do,

0 ≤ smı < 1, 0 ≤ snı < 1,
(2.49)

where Dmını is the minimum value of the function D̂mını , that gives the distance,

D̂mını(smı , snı) = |pnı(snı)− pmı(smı)|, (2.50)

between two points,

pmı(smı) = xmı + smır
mı and pnı(snı) = xnı + snır

nı , (2.51)

on the line intervals associated with the two base-pair steps. In other words, the func-

tion D̂mını gives the distance between a point on the linear interval connecting xmı

and xmı+1 and a point on the interval connecting xnı and xnı+1. The minimal value of

D̂mını (in the domain of the two linear segments) is generally a function of the position

of the four barycenters of the mı-th, (mı+1)-th, nı-th, and the (nı+1)-th base pairs,

i.e., Dmını = D̃(xmı ,xmı+1,xnı ,xnı+1). There are four possible cases of self contact

(for which Dmını = Do) between a couple of base-pair steps mı and nı: (I) a contact

between the spheres, Bmı and Bnı , i.e., the case in which equation (2.49) is satisfied

with ∗smı = 0 and ∗snı = 0, (II) a contact between the sphere Bmı and the cylinder T nı ,

i.e., the case in which equation (2.49) is satisfied with ∗smı = 0 and 0 < ∗snı < 1, (III)

a contact between the cylinder T mı and the sphere Bnı , i.e., the case in which equa-

tion (2.49) is satisfied with 0 < ∗smı < 1 and ∗snı = 0, and (IV) a contact between

the two cylinders T mı and T nı , i.e., the case in which equation (2.49) is satisfied with

0 < ∗smı < 1 and 0 < ∗snı < 1. Hence, the minimum distance Dmını can be written

for each possible case10 as follows:

10The case for which rmı and rnı are exactly parallel when the two associated base-pair steps are
in contact is extremely rare in problems of supercoiled DNA or any other rod-like structure with self
contact. In such a case one of the two functions given for cases II and III can be used for case IV.
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Figure 2.3: A schematic drawing of the different types of contact. The figure on the left hand side
illustrates a contact between two spheres (case I). The center figure shows the case of contact between a
sphere and a cylinder (cases II and III). The right hand side figure illustrates a case of contact between
two cylinders (case IV). The subsegments of the piecewise-linear axial curve which determines the
position and orientation of the cylinders are depicted as lines connecting the barycenters of the base
pairs (black circles).

Dmını =





|xnı − xmı|, for case (I),

|xmı − xnı − (xmı − xnı) · rnı

rnı · rnı
rnı|, for case (II),

|xnı − xmı − (xnı − xmı) · rmı

rmı · rmı
rmı|, for case (III),

|(x
nı − xmı) · (rnı × rmı)

|rnı × rmı| |, for case (IV).

(2.52)

The different cases of contact are illustrated in Figure 2.3.

Therefore, by pursuing an á priori conjecture in which only the pairs of base-pair

steps {mı, nı} with nı > mı+20, ı = 1, 2, ..., Nc, can possibly be in contact, one can

convert the inequality constraints for the impenetrability of a molecule,

Dmını >= Do, ı = 1, 2, ...,Nc, (2.53)

into constraints that are given by the equations,

Dmını −Do − v 2
ı = 0, (2.54)
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in which the numbers v1, v2, ..., vNc are ”slack” variables that assure the satisfaction of

the inequality constraints (2.53). 11

The arguments just described permits the introduction of a modified energy,

U ∗∗ = Ũ ∗∗(µα, τ1, τ2, τ3,P1,P2,P3, χ1, χ2, ..., χNc , v1, v2, ..., vNc) =

U ∗ −
Nc∑
ı=1

χı

(Dmını −Do + v 2
ı

)
,

(2.55)

where the numbers, χ1, χ2, ..., χNc are the Lagrange multipliers associated with the

constraints (2.54). Each number χı indicates the change in the total energy due to

a change in the distance between the base-pair steps associated with it. As a result,

when the constraint associated with χı is active, i.e., χı 6= 0, it can be interpreted

as the contact force which, for a contact of case (I), acts along a line connecting the

barycenters of the two base pairs in contact; for cases (II) or (III), acts along a line

that goes through the barycenter of the base pair in contact and is perpendicular to the

base-pair step (in the other side of the molecule); and for case (IV), acts along a line

perpendicular to both base-pair steps in contact. A positive value of χı indicates a force

of repulsion as must be the case for contact forces. As a negative value of χı indicates

an attractive force, this case is not physical for the problems discussed here.

The definition of an equilibrium configuration, as was discussed in the end of Sec-

tion (2.3), is valid only for the special case in which the molecule is free of self contact.

In the more general case, discussed in the present section, a configuration is said to be

in equilibrium if:

i. it satisfies the end conditions (2.28) or (2.46), the constraints (2.54), and for any

pair of base pairs for which vı= 0 equation (2.49) is strictly obeyed, i.e., the

contact point is such that 0 ≤ ∗smı < 1, 0 ≤ ∗snı < 1;

11The purpose of introducing these variables is mainly for the derivation of the conditions for equi-
librium. See e.g., the book on nonlinear programming by D. M. Simmoms [24]. A Practical use of the
slack variables is very rare, and has not been made in this work.
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ii. for it the first variation of U ∗∗, vanishes for any variation of the orientation and

position of the base pairs and for any variation of the slack variables, vı i.e.,

δU∗∗ = 0 =δU ∗ −
Nc∑
ı=1

χı δDmını , (2.56)

where δDmını , the variation of Dmını , is given by

δDmını =
∂D̃
∂xmı

k

δxmı
k +

∂D̃
∂xmı+1

k

δxmı+1
k +

∂D̃
∂xnı

k

δxnı
k +

∂D̃
∂xnı+1

k

δxnı+1
k , (2.57)

and ∂U ∗∗/∂vı = 0 which when combined with (2.54) yields

χı(Dmını −D) = 0, ı= 1, 2, ...,Nc; (2.58)

iii. the lagrange multipliers, χı, associated with it (by satisfying equation (2.56)) are

non-negative,

χı ≥ 0, ı= 1, 2, ...,Nc; (2.59)

iv. for any pair of base-pair steps, {m,n}, that is not in the list {mı, nı},

ı = 1, 2, ...,Nc, and for which n ≥ m+20 the inequality constraint Dmn>Do is

obeyed.

Equations (2.56), (2.58), and (2.59) comprise the ”Kuhn-Tucker necessary condi-

tions” 12 as are applied to the present problem. Hence, in accord with their theory [26],

at a configuration µα which gives an extremum value to the total energy, U , under

the given constraints, there must exist lagrange multipliers, τ1, τ2, τ3, P1, P2, P3, and

χ1, χ2, ..., χNc , such that the equations (2.56), (2.58), and (2.59) are satisfied.

In the reminder of this section, the equations of mechanical equilibrium for DNA

molecules with self contact are derived from equation (2.56). As the equations of

mechanical equilibrium for DNA molecules that are free of self contact were derived

(from the first variation of U ∗) in Section (2.4), it is sufficient to address the second

part of equation (2.56) by expressing the variations of the distances Dmını in terms of

12See e.g., [24], [25].



22

variations of the µN kinematical variables. This is done by expressing the quantities

δxmı
k , δxmı+1

k , δxnı
k , δxnı+1

k in terms of the explicit formula given by equation (2.20),

and recollecting the terms in a similar way to that shown in details in the previous

section. If one follows these steps one finds that the following revision should be made

to the constitutive equation (2.39a) 13 when the pairs of base-pair steps {mı, nı} are in

contact:

hn = −
N∑

m=1

gm −P +
Nc∑
ı=1

(un
mı

Vmı + un
mı+1V

mı+1 + un
nı
Vnı + un

nı+1V
nı+1), (2.60)

where the discrete step function, un
m , is defined here by,

un
m =





1 if n < m

0 if n ≥ m,

(2.61)

and the resultant contact forces Vmı ,Vmı+1,Vnı , and Vnı+1 exerted on base pairs

mı,mı+1, nı, and nı+1 respectively are given by

Vmı = χı
∂D̃
∂xmı

k

d1
k , Vmı+1 = χı

∂D̃
∂xmı+1

k

d1
k ,

Vnı = χı
∂D̃
∂xnı

k

d1
k , Vnı+1 = χı

∂D̃
∂xnı+1

k

d1
k .

(2.62)

Equations (2.60) and (2.61) imply the important relation,

hn − hn−1 = −gn −
Nc∑
ı=1

(δn
mı

Vmı + δn
mı+1V

mı+1 + δn
nı
Vnı + δn

nı+1V
nı+1), (2.63)

in which δn
m is a generalized kronecker delta defined by

δn
m =





1 if n = m,

0 if n 6= m.

(2.64)

Thus as follows from equations (2.41), equation (2.63) permits one to rewrite the equa-

tions of balance of forces (2.42) for the more general case in which contact forces are

13Notice that the revised constitutive relation affects equation (2.39b).
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taken into account,

f1 + g1 + P + δ1
mı

Vmı = 0 (2.65a)

fn − fn−1 + gn +
Nc∑
ı=1

(δn
mı

Vmı + δn
mı+1

Vmı+1+

δn
nı
Vnı + δn

nı+1
Vnı+1) = 0, n= 2, 3, ...,N , (2.65b)

−fN + gN+1 −P + δN+1
nı+1V

nı+1 = 0. (2.65c)

For the derivation of the constitutive relation (2.60), two relations, which are valid

as identities for any configuration, were used,

Vmı + Vmı+1 + Vnı + Vnı+1 = 0, (2.66)

and

xmı ×Vmı + xmı+1 ×Vmı+1 + xnı ×Vnı + xnı+1 ×Vnı+1 = 0. (2.67)

As analogous to the electrostatic energy function, Φ̌, which yields the identities (2.36)

and (2.37), the above identities are consequence of the properties of the function D̂ and

are valid for each of the cases given in equation (2.52) .
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Chapter 3

The computation of equilibrium configurations

In this chapter a detailed description of the computational procedure that was used to

calculate equilibrium configurations is outlined. The procedure cannot be presented

precisely without stating explicitly the energy functions that has been used throughout

this work. In Section 3.1, an explicit formulation of the elastic and electrostatic energy

is given. However, the theory that is discussed throughout this work is applicable

for any other choice of the form of the total energy, as long as it is in accord with

Section 2.2. In Section 3.2 the numerical scheme for the computation of equilibrium

configurations is described.

3.1 The assumed energy functions

The elastic energy is assumed to be a quadratic form in the excess tilt ∆θn
1 , the excess

roll ∆θn
2 , the excess twist ∆θn

3 , and, for the most general case in which µ = 6, also in

the excess shift ∆ρn
1 , the excess slide ∆ρn

2 , and the excess rise ∆ρn
3 . These quantities

are defined so that

θn
i = oθ

n
i + ∆θn

i , ρn
i = oρ

n
i + ∆ρn

i , (3.1)

where oθ
n
i and oρ

n
i are intrinsic values, i.e., values appropriate to a stress free state of

the n-th base-pair step. Therefore, when none of the 6 kinematical numbers is fixed

(µ = 6),

ψn =
1

2
F n

ij ∆θn
i ∆θn

j + Gn
ij ∆θn

i ∆ρn
j +

1

2
H n

ij ∆ρn
i ∆ρn

j , (3.2)
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and when the three displacement parameters ρn
1 , ρn

2 , ρn
3 are fixed (µ = 3),

ψn =
1

2
F n

ij ∆θn
i ∆θn

j . (3.3)

The elastic moduli, F n
ij = F n

ji, Gn
ij , and Hn

ij = Hn
ji, and the intrinsic parameters are

constants that depend on the nucleotide composition of the n-th and (n+1)-th base

pairs.1 In the theory of elasticity the moduli F n
11 and F n

22 are commonly referred to as

the local coefficients of rigidity for bending and the modulus F n
33 as the corresponding

coefficient for twisting. In the same manner, the modulus Hn
33 is associated with the

(Young’s) tensile modulus, where the moduli Hn
11 and Hn

22 are associated with the

elastic shear modulus. All other 15 moduli are associated with the coupling of the 6

modes of deformation which here are consequences of variations of the tilt, roll, twist,

shift, slide, and rise.

Under the assumption that the elastic energy associated with a base-pair step de-

pends solely on the relative orientation and displacement of the two base pairs com-

prising it, a Taylor expansion of the local energy in the vicinity of the stress-free state

of a base-pair step, at which the first variation of the (local) elastic energy vanishes,

yields a quadratic energy function of the form (3.2) that is valid for small values of

∆θn
i , and ∆ρn

i .

The observation (made in Section 2.1) to the essence of a change in the choice of

the direction of increasing n, which leaves θn
2 , θn

3 , ρn
2 , and ρn

3 invariant but changes the

sign of θn
1 and ρn

1 here places restrictions only on the moduli associated with coupling

tilt or shift with roll, twist, slide and rise, namely, F n
12, F n

13, Gn
12, Gn

13, Gn
21, Gn

31, Hn
12,

and Hn
13. A thorough discussion on that effect is given in [1]. Implications of cases of

coupling are presented in [27].

For the electrostatic energy calculation, a form of Manning’s theory of charge con-

densation [28], which is in accord with equations (2.23) and (2.24), is employed. The

1In the present work it is assumed that the elastic moduli and intrinsic parameters are completely
determined by the nucleotide composition of the n-th base pair, and hence are independent of the com-
position of other base pairs. However, the general theory and computational procedure discussed here
do not require such an assumption.
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energy resulting from the electrostatic interaction between the charge associated with

the n-th base pair and the charge associated with the m-th base pair is taken to be, 2

ϕnm =
q2

4πε0εw

e−κxnm

/xnm , (3.4)

where xnm is as in (2.25), ε0 the permittivity of free space, and εw the dielectric constant

of water. In accord with Manning’s theory [28] [29], q is set equal to 24% of the charge

of the two phosphate groups associated with each base pair, i.e., q= 2×0.24e− , where

e− is the charge of an electron. It is further assumed that (2.26) holds, i.e., nearest

neighbors are omitted when employing (2.23) for the calculation of φn. An insertion

of the equation (3.4) to (2.35) and (2.34) yields the following expression for gn , the

total electrostatic force acting on the n-th base pair,

gn =
∑

m 6=n
m 6=n±1

ϕnm

(
1

xnm
+ κ

)
xn − xm

xnm
. (3.5)

As for the cases discussed in the present work the DNA is assumed to be in a solu-

tion of water and monovalent salt (e.g., Nacl) of concentration c, the Debye screening

parameter κ is given by the formula

κ = 0.329
√

c, (3.6)

in which c is measured in units of moles per liter and κ in units of Å−1.

As was remarked in [9], the electrostatic energy as taken in the present work rest

upon the assumption that the two negative charges associated with each base pair are

located at the barycenter of that base pair. In fact, each negative charge belongs to a

phosphate group that is, in general, at the surface of the DNA double helix and not

at its center. Nevertheless, according to Manning’s charge condensation theory, it is

reasonable to expect that the net charge is not localized at definite site but, as a result

of rapid fluctuations of counter ions in a cylindrical region around the molecule, it is

2See also the discussion of Westcott et al. [11]
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distributed along the molecule such that this assumption does not introduce a serious

error.

Throughout the rest of this work an emphasis is given to the influence of the salt

concentration c on equilibrium configurations. As indicated by equations (3.6), (3.4),

and (3.5) high values of c (greater than 1M) give rise to an almost vanishing intramolec-

ular repulsive forces, while relatively low values of c result significant intramolecular

forces, which, in general, bring the molecule’s equilibrium configuration to a more

extended shape, with a higher value of the distance of closest approach, Dca.

3.2 The numerical scheme

The sensitivity of equilibrium configurations to c will be investigated thoroughly by

calculating equilibrium configurations for a large range of values of c. An equilibrium

configuration, µα , is a solution of the system (2.45), in which the force vectors hn are

in accord with equation (2.39a) when the molecule is free of contact or with equation

(2.60) when the molecule is subject to self contact forces, and which obeys 6 end

conditions together with the impenetrability condition (2.47). Thus, for a given c,

for given kinematical end conditions of the form (2.28), and for a general case of Nc

(possible) contact points, the system S can be written as:

Ω = Ω̃(µα) =




µΩ

Υ

Λ


 = 0, (3.7)

where the (column) vector µα includes all the unknown variables, i.e.,

µα = [µα, τ1, τ2, τ3,P1,P2,P3, χ1, χ2, ..., χNc ]
T

, (3.8)



28

and the components of Υ and Λ describe quantities which, when vanishing, yield

satisfaction of (2.28) and (2.58), i.e.,

Υa =





ζa −oζa, a= 1, 2, 3,

`k −ò k , k= a− 3, a= 4, 5, 6,

(3.9)

and

Λı = χı(Dmını −D), ı= 1, 2, ...,Nc. (3.10)

The system, S , of the µN + 6 + Nc (scalar) nonlinear equations given in (3.7), would

clearly be reduced in its size when the molecule is assumed to be free of self contact,

in which case Nc = 0, and the vector Λ must be omitted from (3.7). The vector µα

must also be reduced in its size accordingly, as no Lagrange multiplier associated with

contact points needs to be determined. Furthermore, in the case of mechanical end

conditions given in the form of equations (2.46), the vector Υ must be omitted from

(3.7), and as the external force P and the external moment T are pre-specified, the

list of (now known) variables (τ1, τ2, τ3,P1,P2,P3) should be excluded from the list

comprising µα. In the following discussions, it should be clear that the vector Ω , the

vector µα, and the equations (3.7) have a form appropriate to the specific end conditions

and to the (á priori) assumption with regard to the (possible) existence of self contact.

To keep the discussion as general as possible, the number of equations (and unknowns)

is taken to be µN + Ne + Nc with Ne = 6 when the kinematical end conditions are

applied and Ne=0 when the external moment and force are prespecified.

Suppose one seeks a solution in the vicinity of an initial guess, ∗µα, as, for example,

is the case when a solution ∗µα of (3.7) was calculated for a specified value of ∗c, and a

solution of (3.7) at a salt concentration c close to ∗c is sought. A Taylor expansion of

the system S (of the nonlinear equations (3.7)) about ∗µα yields 3

0 = Ω̃(µα) = Ω̃(∗µα + ∆̂µα) = Ω̃(∗µα) +∇Ω̃(∗µα) [ ∆̂µα ] + O(‖∆̂µα‖2), (3.11)

3The configuration ∗µα is no longer a solution of the system (3.7) as the system of equations should
be solved for the value c of the salt concentration and not for ∗c.
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where ∇Ω̃(∗µα) is the gradient of the function Ω̃(·) evaluated at ∗µα for a salt concen-

tration c. The vector 4 ∆̂µα is the difference between the solution of the linearized

problem and ∗µα, i.e., ∆̂µα = µα − ∗µα , and its norm is here taken to be the ∞-norm

i.e.,

‖∆̂µα‖ = max
n=1,...,µN
j ,k=1,2,3
ı=1,...,Nc

(|µαn − ∗µαn |, |τj − ∗τj |, |Pk − ∗Pk |, |χı − ∗χı|). (3.12)

The gradient of the system S is characterized by the (µN+Ne+Nc)×(µN+Ne+Nc)

Jacobian matrix J, with Ne = 6 in the case of kinematical end conditions and Ne = 0 in

the case of mechanical end conditions. The matrix J is in general full as a consequence

of the intramoleculr electrostatic interactions, and its entries are defined as follows:

Jn m =
∂ µΩn

∂ µαm

, for n,m= 1, ..., µN , (3.13a)

Jn (µN+k) =
∂ µΩn

∂τk

, for n= 1, ..., µN , k = 1, 2, 3, (3.13b)

Jn (µN+3+k) =
∂ µΩn

∂Pk

, for n= 1, ..., µN , k = 1, 2, 3, (3.13c)

Jn (µN+6+ı) =
∂ µΩn

∂χı

, for n= 1, ..., µN , ı = 1, ...,Nc, (3.13d)

J(µN+a)m =
∂Υa

∂ µαm

, for m= 1, ..., µN , a = 1, ...,Ne, (3.13e)

J(µN+a+ı)m =
∂Λı

∂ µαm

, for m= 1, ..., µN , ı = 1, ...,Nc, (3.13f)

J(µN+Ne+ı)(µN+Ne+ı) =
∂Λı

∂χı

, for ı = 1, ...,Nc . (3.13g)

Jp q = 0, for all other entries. (3.13h)

As the functions R̃ij , D̃ij , and Γ̃ik are available (see the Appendix), an explicit analyt-

ical expression of all the components of Ω and J can be evaluated with the aid of the

equations (2.1), (2.4), (2.17), (2.21), (2.23), (2.24), (2.39), (2.44), (2.52), (2.60), (3.1),

(3.2), (3.4), (3.5), and (3.6). As such expressions are extremely long and complex,

a computer code that collects the large number of algebraic terms in each functional

4The symbol ∆̂ in place of ∆ is used to distinguish the components of ∆̂µα from the quantities ∆θn
i

in equation (3.1) that measure the departure of the kinematical variables form their intrinsic values.
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component of Ω and J is used to efficiently compute an exact value of each of these

components as a function of (the known) ∗µα.

Thus, a numerical approximation for the computation of J is avoided, and a numer-

ically stable Newton-Raphson scheme in which the following linear system, derived

from equation (3.11) by an omission of the term O(‖∆̂µα‖2), is solved for ∆̂µα in

each iteration:

∆̂µα = −J−1Ω̃(∗µα) . (3.14)

In that efficient scheme the vector ∗µα is updated in each iteration in accord with,

∗µαnew = ∗µαold + ∆̂µα . (3.15)

The iterative scheme is terminated when for the calculated ∗µα each of the components

of Ω̃(∗µα) has an absolute value less than ε. 5

A procedure for generating an initial guess, ∗µα is commonly referred to as a predic-

tor, and the procedure that uses the that initial guess as a starting point in an iterative

scheme that yields a solution to the system S is called the corrector, see e.g., [30].

In accord with this terminology the Newton-Raphson scheme described in equations

(3.14) and (3.15) is referred to as the corrector procedure, and it is used for all the

examples that are given in this work.

5For all the calculations reported here, it was found that ε is within machine accuracy.
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Chapter 4

Stability of equilibria

An equilibrium configuration, µα, obeying the system S is here defined as stable if ,

for it, the second variation of the total energy is strictly positive for any admissible1

non-zero variation (which is not associated with a rigid body motion) in the triads

{(d1
1,d

1
2,d

1
3), (d

2
1,d

2
2,d

2
3), ...(d

N+1
1 ,dN+1

2 ,dN+1
3 )}, and, in the relative displacements

of the base pairs, ρn
i . As will be discussed later in this chapter, in applications of the

present theory, there are cases in which equilibrium configurations of DNA molecules

have symmetries implying the existence of variations with neutral directions. When

such variations are present they are excluded when the stability criterion is employed.

4.1 Variational statement II: the second variation of the energy

A variation, µβ ∈ IRµN+3 , in the triads (dm
1 ,dm

2 ,dm
3 ) and, for µ = 6, in the relative

displacements (ρn
1 , ρn

2 , ρn
3 ), is defined here such that its components are given by,

6βn = γn · d1
a , for a= 1, 2, 3 , 6βn = δρ̄n

a−3, for a= 4, 5, 6 , (4.1a)

3βn = γn · d1
a , for a= 1, 2, 3 , (4.1b)

µβµN+k = γN+1 · d1
k , for k= 1, 2, 3 , (4.1c)

where n = a+(n−1)µ , n = 1, ...,N , and δρ̄n
k are the components of δrn (see equation

2.39e) with respect to (d1
1,d

1
2,d

1
3), i.e.,

δρ̄n
k = Qn

kjR
n
ij δρ

n
i . (4.2)

1In the sense that the variation must not violate the end conditions and the impenetrability constraints,
and be such that when µ < 6, the 6 − µ constant kinematical numbers associated with each base-pair
step along the molecule would not be changed when employed.
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Equations (2.40) in which the force vectors hn are chosen in accord with the (á pri-

ori) assumption with regard to the (possible) existence of self contact, and the relation

(4.1), permit one to write the first variation of the (modified) energy in the following

form, 2

δU
#

=

µN+3∑
n=1

µΩn
µβn , (4.3)

where, for k = 1, 2, 3 ,

µΩµN+k = −MN+1 · d1
k . (4.4)

If one defines a (µN + 3)× (µN ) matrix J
# to be such that (i) its upper (µN )× (µN )

sub-matrix has its entries as in equation (3.13a), i.e.,

J
#

n m = Jn m , for n ,m= 1, ..., µN , (4.5)

and (ii) its 3× µN lower sub-matrix has entries given by,

J
#

(µN+k)m =
∂ µΩµN+k

∂ µαm

, for m= 1, ..., µN , k = 1, 2, 3 , (4.6)

one can write for the second variation of the modified energy in equilibrium (obeying

equations (3.7)),

δ2U
#

=

µN+3∑
n=1

µN∑
m=1

J
#

n mδµαm
µβn = µβ

T

J
#

δµα , (4.7)

where the components of δµα are variations in the kinematical variables, i.e., for µ = 6,

(δµα1 = δθ1
1 , δµα2 = δθ1

2 , δµα3 = δθ1
3 , δµα4 = δρ1

1 , ... , δµα6N = δρN
3 ) , and, for

µ = 3, (δµα1 = δθ1
1 , δµα2 = δθ1

2 , δµα3 = δθ1
3 , δµα4 = δθ2

1 , ... , δµα3N = δθN
3 ).

The relation (2.13) between a variation in the triads (dn+1
1 ,dn+1

2 ,dn+1
3 ) and (dn

1 ,dn
2 ,dn

3 )

and a variation in the kinematical variables (θn
1 , θn

2 , θn
3 ) and the relation (4.2) can be

used to construct a linear transformation, µV : IRµN+3 → IRµN that takes the vector

µβ into the vector δµα, i.e.,

δµα = µV µβ. (4.8)

2The symbol ”#” should be replaced by ”**” if self contact occurs or by ”*” if the molecule is free
of self contact.
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This transformation is essential for the expression of δU
# as a quadratic form charac-

terized by a symmetric matrix. For the case in which µ = 6 the (6N ) × (6N + 3)

matrix 6V has the following structure:




−Γ1TQ1T O Γ1TQ1T O O · · · O O O

O Ī1 O O O · · · O O O

O O −Γ2TQ2T O Γ2TQ2T · · · O O O

O O O Ī2 O · · · O O O

... . . . ...

O O · · · O −ΓNT
QNT

O ΓNT
QNT

O O · · · O ĪN O




.

(4.9)

For the case in which µ = 3 the 3N × (3N + 3) matrix 3V is constructed as follows:



−Γ1TQ1T Γ1TQ1T O O · · · O

O −Γ2T Q2T Γ2TQ2T O · · · O

... . . . . . . ...

O O · · · O −ΓNT
QNT

ΓNT
QNT




.

(4.10)

Each entry in the above matrices is a 3× 3 matrix. The components of the (orthogonal

transformation) matrix Īn are given by

Ī n
ki = Rn

kpQ
n
ip , (4.11)

O is a matrix which all of its components are zero, and the matrices Γn and Qn are as

in (2.14) and (2.4). The second variation δ2U
# can now be written as a quadratic form

in µβ, i.e.,

δ2U
#

= µβ
T

S µβ , (4.12)

which is characterized by the (µN + 3)× (µN + 3) symmetric matrix,

S = J
# µV. (4.13)
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The calculation of the matrices J
# and µV is not a computationally expensive mat-

ter, as their entries are calculated when applying the computational scheme described

in Section (3), see e.g., equation (4.5). Thus, the numerical scheme that is employed

here for the calculation of an equilibrium configuration, provides all the necessary data

for the stability analysis of the calculated equilibrium configuration.

Equation (4.12) describes the change in energy as a result of any free variation µβ

from an equilibrium configuration. However, an equilibrium configuration is stable

if, for it, δ2U
# is positive for any admissible variation. Hence, when (4.12) is em-

ployed, only variations for which the end conditions and the impenetrability condition

are obeyed should be considered. The matrix S is appropriate for stability analysis

when the mechanical end conditions (2.46) are imposed, and the molecule is free of

self contact, because such end conditions do not impose restrictions on variations from

equilibrium.

4.2 Filtering non-admissible variations

In this section a modification of the symmetric matrix S, characterizing the second vari-

ation δ2U
# is discussed. The objective is to derive a linear transformation IRµN+3 →

IRµN+3 which takes any variation to its projection on the hyperplane spanned by all

admissible variations, and which can be calculated with small computational cost.

The theory is specified for the general case in which the equilibrium configura-

tion has contact points and obeys the Ne= 6 kinematical end conditions (2.28). As

mentioned above, if the equilibrium configuration is free of self contact, and the end

conditions are in accord with (2.46), no modification of the symmetric matrix S is nec-

essary. To keep the discussion general, suppose that the equilibrium configuration that

was calculated has Nd points of contact, between the pairs of base-pair step {m, n},

 = 1, 2, ..., Nd, such that

Dmn = Do,  = 1, ...,Nd . (4.14)
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In the present work an admissible variation is defined to be such that, for it, equation

(4.14) must hold, and the end conditions are obeyed. This definition is adequate as,

because χ > 0 for  = 1, ...,Nd, variations which result an increase in the value of the

distance between pairs of base-pair steps, that are in contact when the configuration is

in equilibrium, yield an increase in U∗ and therefore can be excluded when stability is

examined. Accordingly, an admissible configuration must obey the relations,

δΥa =

µN∑
m=1

∂Υa

∂ µαm

δµαm = Wa δµα = 0 , for a = 1, ...,Ne , (4.15a)

δDmn =

µN∑
m=1

∂Dmn

∂ µαm

δµαm = W+Ne δµα = 0 , for  = 1, ...,Nd . (4.15b)

By setting the (Ne+Nd)× µN matrix 3 W to be of the form,

W =




W1

W2

...

WNe+Nd




,

(4.16)

and using the relations (4.8), equations (4.15) can be written in the form,

W µV µβ = 0. (4.17)

Equation (4.17) implies that the rows of the (Nd+Ne) × µN+3 matrix W µV span

a space which is orthogonal to every admissible variation. Suppose now that the

(Nd+Ne) × (µN+3) matrix Ŵ has rows that constitute an orthonormal basis to that

space. 4 With such a matrix in hand, a general variation µβ̄ can be transformed into an

admissible variation, µβ, by subtracting from it its projection onto the space spanned

by the row vectors of Ŵ, i.e.,

µβ = (Ī− Ŵ
T

Ŵ)µβ̄, (4.18)

3As was mentioned previously Ne= 6 for the kinematical end conditions (2.28) and Ne= 0 for the
mechanical end conditions (2.46).

4Such orthogonalization can be performed numerically by using the familiar Modified Gram-
Schmidt algorithm. See e.g., [31].
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where Ī is the (µN+3) × (µN+3) identity matrix. A substitution of equation (4.18)

into equation (4.12) yields,

δ2U
#

= µβ̄
T

S̄ µβ̄ , (4.19)

where the (µN+3)× (µN+3) modified symmetric matrix S̄ is given by,

S̄ = (Ī− Ŵ
T

Ŵ)S (̄I− Ŵ
T

Ŵ). (4.20)

4.3 Stability criterion

The matrix S̄ characterizes the second variation of the energy, δ2U
# , with no restriction

on the choice of variation. Its rank is smaller than the rank of S by the dimension of

Ŵ, which is equal to the number of active constraints. For the case in which the

equilibrium configuration has Nd points of contact,

rank(S̄) = rank(S)−Ne−Nd. (4.21)

A non-zero variation of the configuration, when expressed in terms of the components

of µβ ∈ IRµN+3, can result a pure rigid body rotation.5 As the total energy of the

molecule is invariant under rigid body motion, the symmetric matrix S must have 3

proper numbers that are always zero. Moreover, equation (4.21) implies that S̄ has

additional Ne+Nd zero proper numbers. Thus, when the proper numbers of S̄ which

are not identically zero are placed in a sequence (λ1, λ2, ..., λµN−Ne−Nd
) with

λ1 ≤ λ2 ≤ ... ≤ λµN−Ne−Nd
, the equilibrium configuration under consideration is

stable if and only if λ1 is strictly positive .

Although the number of non-identically zero proper numbers is, in general,

µN−Ne−Nd, it can be reduced when the configuration has symmetries that yield neu-

tral variations. For example, when the DNA molecule is assumed to be intrinsically

straight and transversely isotropic, and it is closed to form a ring, an eversion mode of

5When a variation is expressed in terms of µα ∈ IRµN , a pure rigid body rotation can be described
only by a zero variation.
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motion, in which every base pair is rotated about the vector dn
3 , that is normal to it,

such that θn
3 and

√
(θn

1 )2 + (θn
2 )2, for n = 1, ...,N , remain constant, is associated with

a neutral variation as it preserves the total energy.

4.4 Continuation methods

The numerical scheme that was introduced in Section 3.2 permits one to calculate equi-

librium configurations as the parameter c is varying along an equilibrium path. In that

scheme the predictor procedure is simply the use of a known solution of S at a salt

concentration ∗c as the initial guess for the calculation of a solution of S at c close to ∗c.

A method in which a predictor procedure is followed by a corrector procedure to gen-

erate solutions on a branch of equilibrium configurations is often called a continuation

method.

While using a continuation method to follow a branch of equilibria one may reach

a configuration µ
sα at which the matrix S̄ has at least one (non-identically zero) proper

number that is vanishing. The vanishing of one (or more) of the proper numbers of S̄

is a consequence of a local singularity of the Jacobian matrix J (see equations (3.13)

and (3.14)) at a singular point. Such a singular point is either a turning point of a

fold or a bifurcation point. The local singularity violets the uniqueness of solution of

(3.14) and, as will be shown in the next chapters, yields (symmetry-breaking) pitchfork

bifurcations or folds.

Along an equilibrium path, with c the independent variable, an admissible (non-

zero) variation δµα= µV µβ from (µα, c) to (µα+δµα, c+δc) for which Ω̃(µα) = Ω̃(µα+

δµα) = 0 obeys, to a first order approximation, the relation 6

S µβ + µV
T

W
T

δν + µωδc = 0, (4.22)

6The first term on the left side of equation (4.22) is implied by equations (4.8) and (4.13). The second
term on the left is implied by equations (4.15) and (4.16).
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where the components of the vector µω in IRµN+3 are given by,

µωn =
∂µΩ̃n

∂c
, n= 1, ..., µN+3, (4.23)

and the components of δν are the variations of the Lagrange multipliers associated

with the (active) constraints, i.e., (δν1=δτ1, δν2=δτ2, δν3=δτ3, δν4=δP1, δν5=δP2,

δν6=δP3, δν7=δχ1, ..., δνNe+Nd
=δχNe).

As was discussed in the previous section, the columns of the matrix µV
T
W

T span

the space of non-admissible variations. With this in mind, the following relation that is

based on (4.22) is implied by equations (4.8), (4.18), and (4.20):

S̄ µβ + (Ī− Ŵ
T

Ŵ) µωδc = 0. (4.24)

Suppose (µ
sα, sc) is a singular point and the proper numbers of S̄ at (µ

sα, sc) are

(λR
1 , λR

2 , λR
3 , λc

1, ..., λ
c
Ne+Nd

, λ1, λ2, ..., λµN−Ne−Nd
), where λR

i ≡0 for i=1, 2, 3 , are the

proper numbers associated with rigid body rotation, and λc
z ≡ 0, for z=1, ...,Ne+Nd,

are the proper numbers associated with the active constraints. As at a singular point at

least one of the non-identically zero proper numbers is vanishing, it is further assumed

that λq is the only non-identically zero proper number that is vanishing at (µ
sα, sc).7 The

orthonormal characteristic vectors associated with each of the µN+3 proper numbers

of S̄ are given in the following list, (yR
1 ,yR

2 ,yR
3 ,yc

1, ...,y
c
Ne+Nd

,y1,y2, ...,yµN−3−Ne−Nd
).

The vectors µβ and µω can be expressed as linear combinations of the characteristic

vectors, i.e.,

µβ =

µN−Ne−Nd∑
p=1

bpyp , (4.25)

and

µω =
3∑

i=1

aR
i yR

i +

Ne+Nd∑
z=1

ac
zy

c
z +

µN−Ne−Nd∑
p=1

apyp , (4.26)

7For simplicity, in the present discussion, it is assumed that the characteristic space of S̄ correspond-
ing to a vanishing proper number λq is unidimensional, however the same arguments hold for the case
in which the vanishing proper numbers are degenerate.
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The determination of the type of a singular point (µ
sα, sc) relies on the subspace con-

taining the vector µω. If in equation (4.26) the components ap are such that,

ap = 0, for p 6= q , (4.27)

i.e., µω ∈ Null(S̄), then any possible solution of equation (4.24) is of the form,

µβ = bqyq , δc= 0, (4.28)

that represents the turning point of a fold.8 If, on the other hand, the components ap of

µ with respect to the characteristic vectors are such that

aq = 0, (with λq= 0), (4.29)

then the components ap of a solutions of (4.24) are given by,

bp = apδc/λp , for p 6= q , (4.30)

and with bq undetermined. In this case the choice of bq= 0 is associated with a variation

along the original branch, while a nonzero value of bq is associated with a branch that

either originates at the bifurcation point or crosses the original branch. In a similar

way, the variations of the Lagrange multipliers, i.e., the components of δν, can be

determined from the components ac
z of µω with respect to the characteristic vectors yc

z

(that are associated with non-admissible variations) using equation (4.22).

Thus, an initial guess that may yield a solution point (µα, c) on the issuing branch

is taken to be,

µ
pα = µ

#
α + µV[b

#
yq ], (4.31)

where the solution point in the original branch (µ

#
α, c) is in a close neighborhood to

the bifurcation point (µ
sα, sc). A reasonable value of b

#
can be generated by successive

adjustments, such that a solution point on the issuing branch would be the result of the

corrector procedure described in chapter 3 with µ
pα as the initial guess.

8A discussion on the determination and calculation of turning points is given in [32]
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Clearly in the vicinity of a turning point of a fold one cannot set a step in c and

calculate for it the equilibrium configuration as described in chapter 3. A more elabo-

rated predictor procedure must be used so that both the initial guess, and the value of c

will be estimated in a way that would allow to follow the folding branch. A numerical

procedure that was developed specifically for the work presented here makes use of

three previously calculated equilibrium configurations, µα0, µα1, µα2, at salt concen-

tration values, c0, c1, c2, for the calculation of the next initial guess µ
pα and the next

salt concentration c3. 9 At first an arc-length parameter, σ, is calculated for each of the

three equilibrium configurations such that,

σo = 0, σ1 = ‖µα1 − µα0‖1/2, σ2 = ‖µα2 − µα1‖1/2, (4.32)

where the norm is taken to be the (Euclidian) L2-norm in IRµN . The parameter σ is

then treated as the independent variable, and the salt concentration, c3=c2+∆c, for

the next configuration in the branch is calculated at σ3=σ2+∆σ, as a second order

extrapolation,

c3=ã1(c0, c1, c2)

(
σ3

σ2

)2

+ ã2(c0, c1, c2)
σ3

σ2

+ ã3(c0), (4.33)

where the functions ã1, ã2, and ã3 for the coefficients of the quadratic polynomial are

given by the relations,10

ã1(b0, b1, b2) =
b0(1− ϑ)− b1 + b2ϑ

(1− ϑ)ϑ
, (4.34a)

ã2(b0, b1, b2) =
−b0(1− ϑ2) + b1 + b2ϑ

2

(1− ϑ)ϑ
, (4.34b)

ã3(b0) = b0, (4.34c)

with ϑ = σ1/σ2. In the same way each of the kinematical variables, µ
pαn, in the (initial

guess) configuration µ
pα (and each of the unknown Lagrange multipliers) is extrapolated

9The method relies on the theory behind pseudo-arclength continuation methods, see e.g., [30].
10The variables b0, b1, and b2, are used here only to show the form of the functions ã1, ã2, and ã3.

They should be distinguished from similar variables that were used along the present work.
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by substituting the corresponding component of µα0, µα1, µα2, in place of c0, c1, and c2

in equation (4.33). The step-length ∆σ is readjusted in accord with the local behavior

of the branch.
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Chapter 5

The dependence of equilibrium configurations of open
DNA molecules on the salt concentration

In this chapter computational results illustrating the strong dependence on c of open

equilibrium configurations of three open molecules are thoroughly reported. An open

molecule is defined here as a molecule with an axial curve that is not a closed curve and

with its two ends free of external moments and forces. Accordingly, the end conditions

for an open molecule are,

T=0, P=0. (5.1)

All three molecules are assumed to be transversely isotropic in the sense that: (a) their

intrinsic shift and slide are zero, and their rise is 3.4Å,

oρ
n
1 = 0, oρ

n
2 = 0, oρ

n
3 = 3.4Å, (5.2)

for n= 1, ...,N ; and (b) the moduli F n
11 and F n

22, for tilt and roll (as in equation (3.2)

or (3.3)) are equal, and there is no coupling between any pair of different modes of

deformation, i.e.,

F n
11 = F n

22, F n
12 = F n

13 = F n
23 = H n

12 = H n
13 = F n

23 = 0, and Gn
ij = 0, (5.3)

for n = 1, ..., N .

A DNA molecule with intrinsic twist close to that of a DNA, which approximately

forms a circle in its stress free configuration, cannot be constructed with the intrinsic

kinematical parameters the same at each base-pair step, as in such case the (constant)

twist and bend will yield a helical shape and not a circle. However, a molecule with
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a constant twist oθ
n
3 = 2πLk/No, with Lk its linking number, 1 and intrinsic curvature

such that No base pairs form a perfect and complete circle 2 can be constructed by

introducing the angles ξn and ωn such that, 3

ξn =
√

(θn
1 )2 + (θn

2 )2, θn
1 = ξn cos(ωn), θn

2 = ξn sin(ωn), (5.4)

and setting the molecule’s intrinsic values oξ
n and oω

n to be,

oξ
n =

2π

No

, oω
n =

2π

No

Lk(n − 1/2), for n= 1, ...,N . (5.5)

In other words, the intrinsic kinematical parameters for such a molecule are given by,

oθ
n
1 =

2π

No

sin(
2πLk

No

(n − 1/2)), oθ
n
2 =

2π

No

cos(
2πLk

No

(n − 1/2)), (5.6)

with n = 1, ..., N , and (5.2).

A molecule for which the relations (5.6), and (5.2) are obeyed would be perfectly

planar in its intrinsic configuration, but would also have a strong dependence of oθ
n
1

and oθ
n
2 on n with both parameters attaining positive and negative values, which is

not in accord with the presently estimated values.4 A theoretic construction of a more

realistic intrinsically curved molecule was suggested in reference [1]. The molecule

treated there was composed of repetitions of 10 base pair segments in which 5 base-

pairs form a homogeneous, intrinsically straight subsegment and the remaining 5 form

a homogeneous, intrinsically curved subsegment. By an appropriate adjustment of oθ
n
2

(or oθ
n
1 ) and oθ

n
3 of the curved subsegments one can control the intrinsic curvature and

the number of base pairs that would give a closed, circular, stress-free configuration.

1The linking number is a topologically invariant quantity which is an integer. In applications of
closed DNA its value equals to the number of times the two strands of the molecule are linked together.
For a precise mathematical definition see [33] and [34].

2For a complete circle the 1-st and (N+1)-th base pairs coincide. A configuration is said to be a
perfect circle or a ring if for it the barycenters of the base pairs lie on a circle, i.e., its piecewise linear
axial curve, C, is a planar polygon of N equal sides.

3The geometric meaning of the angles ξn and ωn is described in details in the Appendix. See also
the reference [8] in which these angles were introduced.

4Statistical analysis of X-ray structure data [35] indicates that, in general, oθ
n
1 is approximately zero

and oθ
n
2 is not negative.
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5.1 Intrinsically curved molecules with 300 base pairs

As a first example a study was performed on the dependence of equilibrium configu-

rations of two DNA molecules with 300 base pairs (i.e., N= 299) on the salt concen-

tration c. The intrinsic curvature was taken to be such that 150 base pairs subsegment

would form a complete circle when stress-free (i.e., in its intrinsic configuration). In

a stress-free state the DNA molecules under consideration would have an axial curve

made of a doubly wound (planar) circle, however, because the molecule cannot pene-

trate itself, that stress-free configuration is not physically attainable. A homogeneous

molecule labeled H300 and a periodic molecule labeled P300 were considered. For

both molecules the transverse isotropy conditions (a) and (b) are met. A transversely

isotropic molecule obeying the relations (5.6) has equilibrium configurations with axial

curve and mechanical behavior identical to those of a homogenous molecule with

oθ
n
1 = 0, oθ

n
2 =

2π

No

, oθ
n
3 = 0, n = 1, ...,N , (5.7)

and hence the simple case of a homogenous molecule H300 that has parameters as in

(5.7) with oθ
n
2 = 2.4o (No = 150) and N = 299 was investigated.

The molecule P300, treated here, is made of 30 repetitions of 10 base-pair subseg-

ments. As in reference [1] for the first 5 base-pair steps in each subsegment,

oθ
n
1 = 0, oθ

n
2 = 0, oθ

n
3 = 36o, (5.8a)

and for the remaining 5

oθ
n
1 = 0, oθ

n
2 = 7.413o, oθ

n
3 = 35.568o. (5.8b)

For the molecule H300 the translational parameters are assumed to be fixed (µ = 3),

while for P300 they are variable and do not necessarily remain at their intrinsic values

(µ = 6). The intrinsic translational parameters for both molecules are taken to be as in

(5.2). The elastic moduli for both molecules are as in (5.3), and with

F n
11 = F n

22 = 0.0427 kBT/deg2, F n
33 = 1.05F n

11, (5.9)
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for n = 1, ..., N . In equation (5.9) kB is the Boltzmann constant, and T is the tem-

perature which for all cases studied in the present work was taken to be 300 K. It

was further assumed that the elastic moduli associated with the displacement variables

for the molecule P300, (with (µ = 6)) are sufficiently large to suppress significant

departures from the intrinsic values of the parameters (oρ
n
1 , oρ

n
2 , oρ

n
3 ). Thus,

H n
11 = H n

22 = H n
33 = 50 kBT/Å

2
. (5.10)

It is worthwhile to mention that, for a given value of c, the total energy, U , as-

sociated with a configuration, 3αtw, of a molecule with a constant non-zero intrinsic

twist constructed as in (5.6) with all its other properties identical to those of H300, is

equal to the energy of H300 in a configuration 3α, whenever 3αtw is related to 3α by

the transformation,

θn
1 7→ (oξ

n + ∆ξn) sin(oω
n + ∆ωn),

θn
2 7→ (oξ

n + ∆ξn) cos(oω
n + ∆ωn),

θn
3 7→ θn

3 + ∆θn ,

(5.11)

where ∆ξn , ∆ωn , and ∆θn are the excess values of the configuration 3α ofH300 (with

its intrinsic configuration in accord with (5.7)), and where the values of oξ
n and oω

n

are as in (5.5). This assertion permits one to first calculate equilibrium configuration

of homogeneous molecule that is in accord with (5.7), (5.2), and (5.3), and then, with a

use of the transformation (5.11), calculate the equilibrium configuration for a molecule

obeying (5.6).

There are two qualitative differences between the molecules H300 and P300: (I)

A 150 base pair subsegment of H300 has, when it is stress-free and closed, a perfectly

circular configuration, while a 150 subsegment of P300 has a circular configuration

which is nearly, but not perfectly, planar when it is closed and, as a consequence of the

way the curved subsegments are constructed, has a chiral structure.5 (II) As oppose to

5The chirality of a closed curve is frequently measured in term of the writhe,W . A precise definition
of W is given in [36]. For the axial curve of a closed 150 base pair subsegment of P300, W = 0.078.
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the homogenous molecule H300 the molecule P300 has a directionality: the 5 base-

pair subsegment at one of its ends is intrinsically curved while that at the other end is

straight.

As follows from equations (2.2) and (2.6), the axial curve C is a function of 6α. A

configuration with an axial curve, C ′, which is a mirror image of C can be constructed

by employing the following transformation for n = 1, ..., N ,

(θn
1 , θn

2 , θn
3 , ρn

1 , ρn
2 , ρn

3 ) 7→ (−θn
1 , θn

2 ,−θn
3 , ρn

1 , −ρn
2 , ρn

3 ). (5.12)

As was mentioned earlier6 the choice of the end of an open molecule for which n = 1

is arbitrary. The two choices yield two configurations that are related by the transfor-

mation,

(θn
1 , θn

2 , θn
3 , ρn

1 , ρn
2 , ρn

3 ) 7→ (−θN−n+1
1 , θN−n+1

2 , θN−n+1
3 ,

−ρN−n+1
1 , ρN−n+1

2 , ρN−n+1
3 ).

(5.13)

Two configurations that are related by one of the transformations (5.12) and (5.13), or

by any composition of the two, yield axial curves that can be mapped to each other by

a length preserving unitary transformation, i.e., rotation and reflection transforation.

As a result, (at a given c) the electrostatic energy, Φ, associated with a configuration

remains unaltered when the configuration is transformed by (5.12) or (5.13). However,

in general, as in the case of a periodic molecule, this assertion in not true for the elastic

energy, Ψ , as when applying such transformations on a configuration of a molecule the

excess values of the kinematical variables may be altered. Nevertheless, the value of

the elastic energy of any configuration of a homogenous molecule that was constructed

in accord with (5.3), (5.7), and (5.2) is indifference to such transformations. As a result,

an equilibrium configuration, 3α, of the molecule H300 at a given c may represent a

group of 1,2, or 4 equilibrium configurations that are congruent in the sense that they

can be mapped to each other by (5.12) or (5.13).7 For a molecule with these symmetries

6see the paragraph below Figure 2.1
7A configuration that is mapped into itself by these transformations is counted once as it is repre-

sented by a single point in IRµN .
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the system S of the equations (3.7) is said to be perfect 8 and as shown in Figure (5.1)

yield pitchfork bifurcations from which new equilibrium paths are issuing as a result

of symmetry breaking.

5.1.1 Bifurcations of equilibria of the molecule H300

A bifurcation diagram in which each point represents an equilibrium configuration of

H300 is shown in Figure 5.1. The smallest proper number, λ1, of the matrix S, is

plotted as a function of c. At least one configuration on each branch is depicted next

to its branch as a cylindrical tube of diameter Do= 20 Å. For the range of c in Figure

5.1 equilibrium configurations of H300 at 8 different values of c are shown in Figures

5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. The configurations are labeled by their branch labels

with numbers indicating the values of c in which these equilibria were calculated and

are denoted by circles on the bifurcation diagram. As shown in the top of the figure the

number 1 stands for c= 1 M, the number 2 for c= 5×10−1 M and so fourth. Each bi-

furcation point is denoted by the symbol ”×××××××××”. The values of λ1 in each of the branches

in the diagram correspond to equilibrium configurations that were calculated under the

assumption that the impenetrability constraint (2.47) is satisfied with no points of self

contact. However, for each of the branches there exists a critical value cc such that for

c>cc self-contact forces must be taken into account for a satisfaction of (2.47). As a

result of the discrete nature of the DNA under the present model, for the range of c>cc,

the graph of λ1 versus c suffers severe discontinuities when self-contact is taken into

account, and although equilibrium configurations with self contact were calculated at

values of c>cc for each of the branches, only the revised values of λ1 corresponding

to the configurations with self contact that are shown in Figures 5.3, 5.4, 5.5, 5.6, and

5.7 are depicted in the diagram with dotted arrows pointing from the values that corre-

spond to the contact-free configurations (with self-penetration) to the values (indicated

8In the sense in which the term is used in reference [37]
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by ’*’) that correspond to equilibrium configurations with self contact.

As a result of the perfectness of the system S (for the molecule H300) all the

branches that are shown in Figure 5.1 are connected. The computation of a connected

bifurcation diagram requires a starting equilibrium configuration at a given c. All other

equilibria can then be calculated using the continuation methods described in Section

4.4 . For the present example the existence of equilibrium configuration with an ap-

proximately helical axial curve was assumed. The first equilibrium configuration was

computed by constructing an intrinsically helical molecule with oθ
n
3 > 0 and all other

properties identical to those of H300 such that, as oppose to the molecule H300, the

intrinsically helical molecule would be able to attain its intrinsic configuration without

penetrating itself when stress free. Having such a hypothetical molecule in hand, one

can set the initial guess at high value of c to be the molecule’s intrinsic configuration

and calculate equilibrium configurations along a branch of solutions (at constant c)

with oθ
n
3 the varying parameter that is gradually decreased toward zero. Using an ini-

tial guess that was derived in that way helical equilibrium configurations in the branch

labeled H were calculated and found to be the global minimizers of the total energy

U . For values of c less than 1.25 M the configurations on H have a nearly helical axial

curve with a pitch greater than 20 Å, and hence in the range of c shown in Figure 5.1

these configurations do not have self contact. Seven helical configurations in a range

of interest to experimenters 9 are shown in Figure 5.2. A significant increase in both

the pitch and the radius of the helical configurations as the value of c is decreasing

demonstrates the remarkable influence of salt concentration on the (globally) stable

equilibrium configurations of H300.

Each branch in the bifurcation diagrams shown in the present work is a two dimen-

sional representation of a curve in IR3N×IR. Each point on that curve corresponds to

a single solution (3α, c). However, a point in the (two dimensional) bifurcation dia-

gram shown in Figure 5.1 may represent 1, 2, or 4 solutions that correspond to different

9DNA is known to denature when c is less than 10−3 M.
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Figure 5.1: A bifurcation diagram for equilibrium configurations of the 300 base pair homogeneous
DNA molecule labeled H300. The diagram is presented as a graph of λ1, the smallest proper number
of the matrix S of equation (4.13), versus the salt concentration c. The configurations with λ1 > 0,
i.e., configurations along the primary branch H and configurations along the part of the branch P that is
above the horizontal dotted line (λ1 = 0) are (globally) stable. The symbol ”×××××××××” indicates a bifurcation
point. The stem branch P is drawn in boldface, and all the other branches are drawn in lightface. Small
circles denote configurations shown in Figures 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. These configurations
are labeled by the lower case letters indicating their branch and by a number 1, 2, 3, 4, 5, 6, 7, or 8
pointing (with a vertical arrow) to the value of c at which the configuration was calculated, e.g., the
helical equilibrium configurations on branch H at c = 1M and c = 5×10−1M are denoted by the small
circles at the topmost right corner and are labeled ”h1” and ”h2”. At least one configuration is depicted
to illustrate the shape of configurations along the branch in its proximity. Arrows with dotted lines point
to the values of λ1 when contact forces are taken into account.
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Figure 5.2: Seven helical equilibrium configurations of the 300 base pair homogeneous molecule
H300 that are in the branch H. Every configuration on H is a global minimizer of the total energy U .
The line of view for the upper drawing is perpendicular to an axis of a cylinder that is optimally fitted,
using a uniquely derived nonlinear least square scheme, to the 300 data points along the axial curve of
the molecule. The line of view for the lower drawing is along that axis. The scale of length is the same
for each case. The salt concentration, c, is expressed in moles per liter. The smallest proper number of
S, λ1, and the total energy, U , are given in units of kBT with T = 300K.

points in IR3N × IR. Each point in the branch H of (nearly) helical equilibrium con-

figurations represents two helical configurations with opposite chirality that are related

by the transformation given in (5.12). On the other hand, when applied on a config-

uration in the branch H, the transformation (5.13) would map the configuration into

itself. The point on the continuous curve of solutions (3α, c) that connects the branch

of right handed to the branch of left handed helical configurations is a bifurcation point

that is represented by the point (c=8.69×10−4, λ1 = 0) in the bifurcation diagram. As

follows from (5.12), this bifurcation point corresponds to a planar configuration with
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θn
1 = θn

3 = 0 for n= 1, ..., 299.10 The branch H originates from this point at a pitch-

fork bifurcation of a branch labeled P. Each point in P corresponds to a single planar

equilibrium configuration, with zero excess tilt and zero excess twist. 11

As for any value of c ≥ 0 there exist a single equilibrium configuration in P, this

branch is referred to as the stem branch. Each branch, such as the branch H, that

originates from P is called a primary branch. A secondary branch is a branch that

issues from a primary branch. Eight equilibrium configurations in the stem branch P are

shown in Figure 5.3. For values of c<8.69×10−4 the configurations in P are the global

minimizers of U , and were found to be the only stable configurations in this range of

c. As shown in the bifurcation diagram, the smallest proper number λ1 associated with

configurations in P is negative for c>8.69×10−4, i.e., the configurations in this range

of c are unstable, and the helical configurations in H are the only stable configurations.

The primary branch Es originates from a second bifurcation point,

(c=2.55×10−3, λ1=−7.69×10−2), in the branch P at which λ2= 0. For values of c

greater than 2.55×10−3 M the proper number λ2 for configurations in P is negative,

while for configurations in Es λ2 is positive. Six everted equilibrium configurations

in the branch Es are shown in Figure 5.4. As c is increasing the equilibria in Es are

such that the two (helical) subregions of the molecule approaches each other with a

decreasing distance of closest approach. For values of c greater than cc=5.1×10−1 M

the equilibrium configurations in Es posses self-contact. As illustrated in Figure 5.4

the two darkened base-pair steps in the configuration es1 are in contact.12 Like the

10In general, it also follows that ρn
2 = 0 but since for the molecule H300 µ equals 3, the shift, slide

and rise are fixed in their intrinsic values, and obey (5.2), that assertion holds for any configuration.
11Each planar equilibrium configuration of H300 in P have symmetries implying that it is mapped

into itself under both transformations (5.12) and (5.13).
12As oppose to a continuous rod with self contact in which a single point of contact occurs when

two subsegments of the rod are approaching each other, it often happens that contact between two (very
short) DNA subsegments involves multiple points of contact in a close proximity. In the discussion given
in the present section such contact between two short subsegments is referred to as a contact point.
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Figure 5.3: Eight equilibrium configurations of H300 in the stem branch P. The configuration p8 is a
global minimizer of U . The configurations p3, p4, p5, p6, and p7 are unstable. The configurations p1
and p2 have points of self contact, and the cylindrical surface that is associated with each of the base-pair
steps that are in contact is darkened.

configurations in P, the configurations in Es are symmetric in the sense that the two

halves of their axial curve are mirror images. These configurations are characterized

by two approximately helical subregions of opposite handedness that are separated by a

transition region. Configurations with similar geometry are often called ”perversions”.

13 In the present work configurations of that type are termed everted helices or ev-

erted configurations. As in any of the primary branches associated with the molecule

H300, each point in Es corresponds to two congruent equilibrium configurations. The

symmetry of the configurations in Es implies that any of the transformations (5.12),

13In their study Domokos and Healy [38] have found such ”perverted” equilibrium configurations of a
(finite) homogenous intrinsically-curved elastic rod with zero intrinsic torsion that is subject to a tensile
force acting along the line, `, connecting the midpoints of its two ends. The two ends of the treated rod
are clamped so that their cross sections are perpendicular to ` and are not permitted to rotate about `.
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Figure 5.4: Six equilibrium configurations of H300 in the primary branch Es. All the configurations
on this branch are unstable. The configuration es1 has a point of self contact.

and (5.13) would map an everted equilibrium configuration to its associated congru-

ent configuration.14 The bifurcation diagram in Figure 5.1 shows that, although all the

points in Es lie in the region where λ1 is negative, and hence the equilibrium configu-

rations in Es are unstable, λ1 as a function of c attains a maximum value that is very

close to zero at c= 1.23×10−2 M. This behavior suggests that a minor change in the

properties of the molecule may result a range of c in which stable everted equilibrium

configurations exist. As discussed in the next section and in the study reported in [9],

a DNA molecule with the same intrinsic and mechanical properties as H300 but with

450 base pairs was found to have stable everted configurations.

As the value of c is increasing the branch P encounters a third bifurcation point, at

(c=3.59×10−3, λ1=−1.41×10−1), that is a result of the vanishing of λ3. The primary

branch Sp (with λ3>0) of spiral equilibrium configurations that are planar originates

at this pitchfork bifurcation. Again, each point in the branch Sp corresponds to two

congruent configurations. Each of the spiral configurations in Sp is mapped by the

transformation (5.12) into itself , and by (5.13) to its congruent configuration. Six pla-

nar spiral configurations are shown in Figure 5.5 . For c greater than cc= 4.5×10−1 M

the spiral configurations have two points of contact: each of the molecule’s ends is in

14A composite transformation of (5.12) and (5.13) would map an everted configuration into itself.
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Figure 5.5: Six equilibrium configurations of H300 in the primary branch Sp. All the configurations
on this branch are unstable. The configurations sp1 and sp2 have points of contact.

Figure 5.6: Four equilibrium configurations of H300 in the secondary branch Dα. All the configura-
tions on this branch are unstable. The configuration dα1 has points of contact.

contact with a base-pair steps in the intermediate region (see for example the config-

urations sp1 and sp2 shown in Figure 5.5). For values of c greater than 0.71 M the

configurations on Sp have a third contact point.

As one moves along the branch Sp in the direction of increasing c one comes across

a bifurcation point at (c=3.05×10−2, λ1=−7.30×10−1), with λ3= 0, that gives rise to

the inception of a secondary branch, Dα, of distorted spiral configurations that are

highly non-planar. An additional secondary branch, Dβ, of distorted spirals originates

from a second bifurcation point, (c=3.97×10−1, λ1=−1.81) in Sp, in which λ4= 0.

The configurations in Dβ are similar to those in Dα but have a lower degree of non-

planarity. As Dα and Dβ are secondary branches each point in them corresponds to

four congruent equilibrium configurations that can be mapped into each other by the

two transformations (5.12) and (5.13).



55

Four configurations in Dα and two configurations in Dβ are shown in Figures 5.6

and 5.7. The equilibrium configurations in Dα have a single point of contact in the

range of c between cc= 7.0×10−1 M and 7.5×10−1. For values of c greater than

7.5×10−1 M the configurations in Dα have two points of contact. Such case is il-

lustrated by the configuration dα1 in Figure 5.6. The configurations in Dβ have two

points of contact for c greater than 7.1×10−1 M. It was found that when contact is

taken into account, the branch Dβ merges into the branch Sp for c > 9.5×10−1 M, and

hence the configuration dβ1 is identical to the configuration sp1.

A fourth (subcritical pitchfork) bifurcation point in the stem branch P was found at

(c=2.51×10−2, λ1=−9.72×10−1). At this bifurcation λ3 that is negative in the range

3.59×10−3<c< 2.51×10−2 vanishes towards a positive value in the range c> 2.51×10−2.

The primary branch Ns of non-symmetric planar configurations originates at this bifur-

cation point, and as c is increasing the branch Ns encounters a pitchfork bifurcation

point at (c=5.94×10−2, λ1=−1.47) from which the secondary branch Np of non-

planar and non-symmetric configurations originates. Examples of configurations in

the primary branch Ns and the secondary branch Np are shown in Figures 5.8 and 5.9.

Figure 5.7: Two equilibrium configurations of H300 in the secondary branch Dβ. All the config-
urations on this branch are unstable. The configurations dβ1 and dβ2 have points of contact. The
configuration dβ2 is identical to the configuration sp1 because, when self contact is taken into account,
the two branches merge for c > 9.50×10−1 M.
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Figure 5.8: Two equilibrium configurations of H300 in the primary branch Ns. All the configurations
on this branch are unstable.

Figure 5.9: An equilibrium configuration ofH300 in the secondary branch Np. All the configurations
on this branch are unstable.

5.1.2 Equilibrium paths of the molecule P300

As discussed in the beginning of the present section the qualitative differences (I)

and (II) between the molecules P300 and H300 result an imperfect system S for the

molecule P300. The imperfect system has solutions that form smooth and continuous

equilibrium paths in IR6N×IR that are not connected to each other, and have subre-

gions that correspond to equilibrium configurations of distinct character. A bifurcation

diagram of the periodic molecule P300 is shown in Figure 5.10. For the sake of com-

parison the bifurcation diagram for the homogenous molecule H300 is also plotted in

gray. Each equilibrium path is labeled by a script arabic numeral.

As the intrinsic configuration of the periodic molecule P300 is not mapped into

itself by the transformations (5.12) and (5.13), these transformations do not preserve



57

Figure 5.10: A bifurcation diagram for equilibrium configurations of the 300 base pair periodic DNA
molecule labeled P300. The diagram is presented as a graph of λ1, the smallest proper number of the
matrix S of equation (4.13), versus the salt concentration c. The bifurcation diagram of the homogenous
DNA H300 is drawn in gray to illustrate the differences and similarities between the perfect system
induced by H300 and the imperfect system induced by P300. The script arabic numerals label the 11
equilibrium paths each of which is separated from the others. Two or four numerals separated by vertical
lines indicate the existence of two or four equilibrium paths in a close proximity to primary or secondary
branch of the perfect system.

the elastic energy of a configuration and hence do not yield several congruent solutions.

The two (or four) configurations associated with each primary (or secondary) branch in

the perfect system are replaced by a family of two (or four) configurations in different

equilibrium paths such that, for a given c, their corresponding values of λ1 and U are

very close to each other (and to the value of the corresponding configuration of H300)

but not identical. Nevertheless, each configuration in such family has axial curve that

is almost indistinguishable from one of the corresponding congruent configurations of

H300.
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Figure 5.11: Enlargements of the areas including 6 of the bifurcation points shown in Figure (5.1) to-
gether with the equilibrium paths of the imperfect system that are shown in (5.10)). A An enlargement
of the region including the bifurcation point (c = 8.69 × 10−4, λ1 = 0) at which the primary branch
H originates from the stem branch P. B An enlargement of the region including the bifurcation point
(c = 2.55×10−3, λ1 = −7.69× 10−2) at which λ2 = 0 and the primary branch Es originates from the
stem branch P. C An enlargement of the region including the bifurcation point (c = 3.59×10−3, λ1 =
−1.41× 10−1) at which λ3 = 0 and the primary branch Sp originates from the stem branch P. D An
enlargement of the region including the bifurcation point (c = 2.51× 10−2, λ1 = −9.72× 10−1) at
which λ3 = 0 and the primary branch Ns originates from the stem branch P. E An enlargement of
the region including the bifurcation point (c = 5.94 × 10−2, λ1 = −1.47) at which λ4 = 0 and the
secondary branch Np originates from the primary branch Ns. F An enlargement of the region includ-
ing the bifurcation point (c = 3.05 × 10−2, λ1 = −7.30× 10−1) at which λ3 = 0 and the secondary
branch Dα originates from the primary branch Sp.
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Each pitchfork bifurcation point of the perfect system for H300 is replaced by a

fold and a subregion of equilibrium path that is free of singular points nearby. The

turning point of such a fold connects subregion, with equilibrium configurations that

are similar15 to configurations in a primary (or secondary) branch of the perfect sys-

tem, to subregions with configurations similar to those that were found in the stem (or

primary) branch of the perfect system. This behavior can be observed in Figure 5.11

which shows a magnification of the equilibrium paths in the vicinity of 6 of the seven

bifurcation points.

For the computation of bifurcation diagram of the imperfect system, a left and a

right handed helical equilibrium configurations of the periodic molecule P300 were

calculated by employing the same technique that was used to find a starting configura-

tion for the homogeneous molecule. 16 Each of the two helical configurations was used

to explore the equilibrium path in which it resides by using the continuation methods

described in Section 4.4. The results can be perceived by observing the magnification

of the area in the vicinity of the bifurcation point (c = 8.69 × 10−4, λ1 = 0) shown

in Figure 5.11A. The branches of the perfect system are drawn in lightface with the

branches labels nearby. The subregions of the two equilibrium paths of the imper-

fect system are plotted in boldface. As one moves along the equilibrium path 1 from

right to left (i.e., in the direction of decreasing c) one sees that the corresponding equi-

librium configurations are varying from configurations with approximately left handed

helical axial curves to configurations with approximately planar axial curves. The min-

imum value of λ1 lies in an intermediate transition subregion. On the other hand, the

subregion above the turning point (in which λ1= 0) of the equilibrium path labeled 2

corresponds to configurations with right handed helical axial curves while the subre-

gion below the turning point corresponds to approximately planar configurations. If

one keeps following the equilibrium path 2 downward one arrives to the area shown in

15In the sense that their axial curves are almost indistinguishable.
16See the discussion given in the second paragraph of subsection 5.1.1.
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Figure 5.11B. The configurations in the equilibrium path 2 are varying from planar to

everted configurations as c is increasing in the range depicted in Figure 5.11B.

To find a starting configuration on the equilibrium path 3 the extrapolation method

described in Section 4.4 was employed by using three configurations in the subregion

of the equilibrium path 2 of approximately planar configurations together with a rela-

tively large value of ∆σ,17 such that the predictor procedure would provide an initial

configuration that is approximately planar and close enough to an equilibrium config-

uration at the extrapolated value of c that is in the subregion of planar configurations

in the equilibrium path 3 . With a configuration in the equilibrium path 3 in hand the

full equilibrium path was explored. The equilibrium path 3 has a subregion with ev-

erted configurations above the turning point of the fold (shown in Figure 5.11B) across

which λ2 changes sign, a subregion with planar configurations below that turning point,

and a subregion characterized by (planar) spiral configurations (with axial curves sim-

ilar to one of the two congruent configurations in the branch Sp of the homogeneous

molecule) that is smoothly connected to a subregion with distorted spiral configuration

similar to one of the four congruent configurations associated with each point in Dα.

The three transitions between the four subregions comprising the equilibrium path 3

can be seen in Figures 5.11B, 5.11C, and 5.11F.

A total number of 11 separated equilibrium paths was explored. A starting config-

uration in each of the equilibrium paths was found using the extrapolation scheme to

”jump” from one equilibrium path to another. Enlargements of the area in the vicin-

ity of six of the seven bifurcation points of the perfect system are shown in Figures

5.11A−F. As shown, the two congruent configurations of each primary branch of

the perfect system, are replaced by subregions of two equilibrium paths, and the four

congruent configurations of each secondary branch are replaced by subregions of four

equilibrium paths. Three examples of the families of equilibrium configurations of

P300 at the physiological value c= 1×10−1 M in subregions that correspond to the

17See the discussion in the last paragraph of Section 4.4.
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Figure 5.12: Two helical equilibrium configuration of P300 at c= 1×10−1 M with opposite handed-
ness. The five base-pair steps at the intrinsically straight end are darkened.

Figure 5.13: Two distinct everted equilibrium configurations of P300 at c= 1×10−1 M. The five
base-pair steps at the intrinsically straight end are darkened.

primary branches H and Es and to the secondary branch Dα are shown in Figures 5.12,

5.13, and 5.14. The figures show that the configurations hr3, esr3 (or esl3), and dαc3

(or dαd3) have axial curves that are very close to those of the configurations h3, es3,

and dα3 shown in Figures 5.2, 5.4, and 5.6, respectively. This suggests, that a homoge-

nous molecule of the type H300 may be a good approximation to a real molecule that

can be approximated by the periodic molecule P300, in the sense that its equilibrium

configurations have values of total energy that are remarkably close to the periodic

molecule and with almost indistinguishable axial curves. In the concluding subsection

of this section a bifurcation diagram of a homogenous molecule labeled H450 of 450

base pairs with the same properties as the molecule H300 is analyzed.
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Figure 5.14: Four distinct distorted spiral equilibrium configurations of P300 at c= 1×10−1 M. The
five base-pair steps at the intrinsically straight end are darkened.

5.2 Bifurcations of equilibria of the molecule H450

To conclude this chapter a computation of equilibria of an open homogeneous molecule,

H450, with 450 base pairs and properties identical to the properties of the molecule

H300, i.e., for which (5.2), (5.3), (5.7), and (5.9) hold for N= 449, and the end con-

ditions are given by (5.1), was performed and analyzed. As in the case of the shorter

homogenous molecule, the translational parameters were assumed to be fixed, i.e.,

µ= 3. A detailed discussion on the bifurcation diagram of this molecule is given in [9].

In the present subsection an emphasis is given to branches with equilibrium configura-

tions that either do not exist in the bifurcation diagram ofH300 or exhibit a range with

stable configurations.

As in the case of the homogeneous molecule, H300, each calculated equilibrium

configuration of H450 is a representative of a group of 1,2, or 4 congruent equilibrium

configurations that are related by the transformations (5.13), (5.12) or any composition

of them. Because the overall effect of the repulsive electrostatic forces on equilibrium

configurations of the 450 base-pair DNA molecule, H450, is significantly higher than

the effect on the 300 base-pair molecules, all the equilibrium configurations correspond

to the domain reported in the bifurcation diagram shown in Figure 5.15 are free of self

contact and self penetration.

As in the previously discussed examples the calculations showed the existence of
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Figure 5.15: A bifurcation diagram for equilibrium configurations of H450 presented as a graph of
λ1 versus the salt concentration c. Configurations with λ1> 0 are (locally) stable. Small circles denote
configurations shown in Figures 5.16, 5.19, 5.18, 5.20, and 5.21. The labels of these configurations are
shown next to the indicated circles. The symbol ”¦¦¦¦¦¦¦¦¦” indicates a bifurcation point. The stem branch P and
the primary branches H and Es are drawn in boldface; the secondary branches Eα and Eβ in lightface.
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Figure 5.16: Four distinct helical configurations of H450. The configurations on H are the global
minimizers of the total energy U . For the molecule H450 the values of λ1 given here and in all other
figures are in unit of 10−2kBT . The total energy is given in units of kBT . The perpendicular views of
each configuration are derived in the same way explained in the caption of Figure 5.2. The scale of length
in all the figures showing configurations of H450 is the same as the scale in figures of configurations of
H300 and P300. The numbers in the labels of the configurations do not correspond to the same values
of c as in the 300 base pair molecules.

stable configurations with an approximately helical axial curve that are the global mini-

mizers of the total energy U and, for values of c less than 1.4 M, are free of self penetra-

tion. The helical configurations lie in the branch labeled H. To illustrate the sensitivity

of the globally stable configurations to changes in c, four configurations in the branch

H are shown in Figure 5.16. The primary branch H originates at the bifurcation point

(c=3.26×10−4, λ1=0) of the stem branch P. The primary branch Es of symmetric ev-

erted configurations originates at the bifurcation point (c=6.30×10−4, λ1=−1.52) at

which λ2 vanishes. In contrast to the case of the short molecule, for values of c in

the range 1.95×10−3<c<4.84×10−3 the configurations on Es are stable. Secondary

branches labeled Eα and Eβ originate at the bifurcation points, with λ1= 0, that bound

this range.18 The configurations in the secondary branches Eα and Eβ have axial curves

18There are no branches similar to Eα and Eβ for the shorter DNA moleculeH300 treated previously.
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Figure 5.17: An enlargement of the rectangular region that is bounded by dashed lines in the bifurca-
tion diagram shown in Figure 5.15.

that are closely related to the axial curves of the symmetric everted configurations,

but they are not symmetric. The mid point of the intermediate transition region be-

tween the two approximately helical subregions of opposite handedness is positioned

away of the middle base-pair step of the molecule, and, hence, yield helical subre-

gions of different lengths. The stability of the configurations in these branches was

found to be remarkably sensitive to the position of the transition region in the con-

figurations. As shown in Figure 5.17 all the configurations in Eα were found to be

unstable. The two configurations, eα#5, and eα#7 depicted in Figures 5.19 and 5.18,

illustrate that the configurations in Eα are characterized by a transition region that is

significantly off the middle base-pair step. On the other hand, the configurations in the
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Figure 5.18: Three distinct equilibrium configurations ofH450 at c= 3× 10−3 M. The configuration
eα#7 is unstable; es7 is locally stable; h7 is globally stable.

branch Eβ have at least one stable configuration at each value of c in the range be-

tween the bifurcation point (c=4.84×10−3, λ1=0) at which the branch Eβ originates

and the turning point (c=1.01×10−1, λ1=0). If one starts at the bifurcation point

(c=4.84×10−3, λ1=0) and follows the branch Eβ in the direction indicated by arrows

on the enlarged region shown in Figure 5.17 one encounters three folds with turning

points across which λ1 changes sign followed by a fourth fold with a turning point at

which λ2= 0. The branch Eβ merges back to the primary branch Es at the bifurcation

point (c=1.46×10−2, λ1=−0.24) at which λ2= 0.

Thus, the bifurcation diagram for the molecule H450 has regions in which sev-

eral distinct equilibrium configurations with more than one of them stable occur at a

single value of c. This is the case for c in the range of values appropriate to Fig-

ure 5.17. Shown in Figures 5.18, 5.19, and 5.20 are 3 equilibrium configurations

that occur at c=3×10−3 M, 4 at c=1.12×10−2 M, and 3 at c=4.52×10−2 M; in each

of these cases two of the distinct configurations are stable. In the small subrange

1.41×10−2<c<1.48×10−2 of the range shown in Figure 5.17, i.e., for values of c
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Figure 5.19: Four distinct equilibrium configurations of H450 at c=1.12×10−2 M. The configura-
tions es#5 and eα#5 are unstable; eβ5 is locally stable; h5 is globally stable.

between the first and second depicted folds in the branch Eβ, there are 3 distinct stable

configurations, with 2 in the branch Eβ and 1 in the branch H. For values of c greater

than 1.01×10−1 M the configurations on H are the only stable configurations. There-

fore a small increase in c from a value below to a value above 1.01×10−1 M will give

rise to a transition from a locally stable configuration in the branch E to a globally

stable configuration in the branch H. Shown in Figure 5.21 are 2 configurations in the

branch Eβ and a configuration in the branch H for c= 1×10−1 M.
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Figure 5.20: Three distinct equilibrium configurations of H450 at c=4.52×10−2 M. The configura-
tion eβ#3 is unstable; eβ3 is locally stable; h3 is globally stable.

Figure 5.21: Three distinct equilibrium configurations of H450 at c= 1×10−1 M, a value of c less
than but very close to the critical value c= 1.01×10−1 M. The configuration eβ#2 is unstable; eβ2 is
locally stable; h2 is globally stable.



69

Chapter 6

Analysis of equilibrium configurations of closed DNA
molecules

In this chapter computational results of examples of closed DNA molecules are re-

ported. The first section gives an introduction to the end conditions and the topology

of closed DNA molecules. Several examples including homogeneous and strictly non-

homogeneous DNA molecules are described in the following sections. The reported

calculations are more likely to be accessible to experimental verification than the cases

of open molecules discussed in the previous chapter. Even when a closed molecule

is assumed to be free of self contact a solution, µα, of the system S of the equilib-

rium equations (3.7) includes not only the equilibrium configuration µα but also the six

number (τ1, τ2, τ3,P1,P2,P3) characterizing the force and moment that the (N+1)-th

base pair exerts on the 1-st. As stated in (3.8), when self contact is present a solution

includes also the list of Lagrange multipliers characterizing the contact forces.

6.1 End conditions and topology of closed DNA molecules

A transition from an open (linear) DNA molecule to a closed (circular) molecule may

occur when each of the two strands of the DNA is covalently attached to a single

nucleotide, such that each end of the molecule contains a single base, and the two bases

(in the two ends) are complementary to each other. When in such a molecule the two

ends are in a close proximity and are appropriately oriented, the two complementary

bases would adhere to each other through the formation of hydrogen bonds to constitute

a single base pair in a closed molecule. In the present work a closed DNA molecule
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with N base pairs is treated as a molecule with N+1 base pairs, such that, its 1-st

and (N+1)-th base pairs coincide, and with no electrical charge associated with the

(N+1)-th base pair. Accordingly, a closed molecule obeys the following kinematical

end conditions:

ζi = 0, i= 1, 2, 3 , (6.1a)

`k = 0, k= 1, 2, 3 , (6.1b)

where the angles ζi determining the relative orientation between the base pairs in the

two ends of the molecule are defined by the relation (2.15), and the components of the

end-to-end vector, `, are as in equation (2.29). 1

The end conditions (6.1) are satisfied for any integral value of the molecule’s link-

ing number, Lk. The linking number can be changed by nicking one strand (or cleaving

both strands) of the molecule and twisting2 the base pair in one side of the cleavage

through an integral numbers of turns while holding the base pair in the other side fixed.

In living cells such changes in the topology of a DNA molecule are preformed with the

aid of enzymes called topoisomerases.

In the present model the intermediate process of raising or lowering Lk was per-

formed by gradually changing the (end-to-end) twist, ζ3, between the two ends of the

molecule. When the value of ζ3 is controlled, and all other end conditions are as in

(6.1), the two base pairs in the ends of the molecule lie in the same plane (with d1
3

normal to that plane and in coincident with dN+1
3 ) and their barycenters coincide. The

angle ζ3 under these conditions is the angle that dN+1
1 makes with d1

1.

The (integral valued) linking number Lk is related to the writhe, Wr, and the total

1A DNA molecule obeying (6.1) is often referred to as a circular DNA, see e.g., the book by A.V.
Vologodskii [39]. A relatively short DNA molecule with N in the order of several hundreds is called
miniplasmid or minicircle.

2In the case of nicked DNA, i.e., a molecule in which one of the sugar-phosphate chains is nicked
while the other is closed, the twist is performed with the sugar-phosphate chain of the closed strand as a
pivot.



71

twist, Tw, of a closed configuration by the equation,

Lk = Wr + Tw. (6.2)

The total twist Tw=T̃w(C, Csp) is the number of times one of the DNA sugar-phosphate

chains is wound around the axial curve C of the molecule; when a DNA configura-

tion is planar and circular (with no self-crossing) Tw=Lk. In the present model the

closed curve, Csp, that represents the spatial course of one of the two sugar-phosphate

chains is taken to be the piecewise-linear curve that connects the points {xn + 1
2
Do dn

2 },

n= 1, ...,N+1. It was found that, when (as here) the local twist θn
3 is in accord with

the definition of El Hassan and Calladine [8], the value of Tw is well approximated by

Tw ≈ 1

2π

N∑
n=1

θn
3 . (6.3)

An equilibrium configuration 6α for which ζ3 is preassigned, and for which the end

conditions

ζ1 = 0, ζ2 = 0, `=0 , (6.4)

are obeyed, has a curve Csp(6α) that is closed if and only if ζ3/2π is an integer. Given

such a configuration, one can construct a closed piecewise linear curve, C∗sp(6α, ζ3),

that connects the points

{xn + 1
2
Do dn

∗ }, n= 1, ...,N+1, where

dn
∗ = dn

2 cos

(
ζ3

n−1

N

)
+ dn

1 sin

(
ζ3

n−1

N

)
. (6.5)

With C∗sp constructed that way, the linking number of the closed curves C∗sp and C is

independent of ζ3. With this in mind, one can define the excess link of the configuration

6α to be

∆Lk = Wr + T̃w(C, C∗sp)− oT
∗
w, (6.6)

where

oT
∗
w = oTw − ζ3

2π
. (6.7)
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The quantity oTw is the total twist of a reference configuration that is planar but not

necessarily closed and not necessarily stress-free. When such a reference configuration

is constrained to remain planar with end-to-end twist equals to −ζ3 its total twist is

equal to oT
∗
w. The excess link is commonly varying as a result of a change in the

total twist of the reference configuration and not as a result of a change in the end-to-

end twist. However, equation (6.6) suggests that a change in the end-to-end twist ζ3

together with the end conditions (6.4) can be expressed in terms of an opposite change

in the total twist of the reference configuration. If for a homogeneous, transversely

isotropic, intrinsically planar DNA molecule the intrinsic configuration is taken to be

the reference configuration then a change −ζ3/2π in the total twist of the reference

configuration is equivalent to a change in the end-to-end twist ζ3, in the sense that

the associated equilibrium configurations have equal values of the total energy and

identical axial curves.

6.2 Examples of intrinsically curved 549 base pair molecules

In the study reported in this section the dependence on c of equilibrium configurations

of a circularized DNA molecule, labeled H550 was investigated. The 549 base pair

molecule (N+1 = 550) has an intrinsic curvature such that each 220 base pair sub-

segment has the shape of a (perfectly) circular ring when in its stress free state. 3 The

molecule can be closed to forms a perfectly circular ring that is taken to be the reference

configuration. The linking number is set equal to that of the reference configuration

with ζ3= 0, i.e., Lk= oTw, and ∆Lk= 0.

As was discussed in the previous chapter a molecule, as H550, that obeys (5.2),

(5.3), and (5.6) has solutions with mechanical response and axial curve that are indif-

ferent to the choice of Lk, and the simplest choice, Lk= 0 was made. Thus, the intrinsic

parameters of H550 are given by (5.7) with No= 220, and the elastic moduli of H550

3The highly curved sequences found in the kinetoplast DNA of Trypanosmamatidae are believed to
have intrinsic curvature of that order [40], [41], [42], [43].
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are as in (5.3) and (5.9). For all the examples in this section µ= 3 i.e., the shift, slide,

and rise in each of the base-pair steps are fixed at their intrinsic values.

To investigate the influence of the intrinsic curvature, and the ratio F n
33/F

n
11 on

equilibrium configurations, three different molecules labeled H550270, H5501.4, and

H5500.7, were also studied. Each one of the molecules differs from H550 by only

one property. The molecule H550270 has intrinsic curvature such that each 270 base

pair subsegment of it forms a circular ring when stress free, i.e., No= 270. For the

molecules H5501.4 and H5500.7 the ratio F n
33/F

n
11 was taken to be 1.4 and 0.7 respec-

tively. In the last subsection of this section results from a calculation of equilibria of

the molecule H550 that is closed such that ∆Lk= −1 are reported.

6.2.1 Bifurcations of equilibria of H550 with ∆Lk= 0

A planar, intrinsically curved, transversely isotropic, and homogenous molecule (such

asH550) that is closed to form a ring with zero excess link has a trivial perfectly planar

equilibrium configuration. In the case for which µ= 3, this trivial ring configuration is

independent of the salt concentration as a result of the inextensibility of the molecule.

If such a closed molecule obeys (5.2), (5.7), and (5.3), has N base pairs (or base-pair

steps), its trivial (ring) equilibrium configuration is given by,

θn
1 = 0, θn

2 =
2π

N
, θn

3 = 0, n = 1, ...,N , (6.8)

and of course (5.2). 4 It can be shown that a ring configuration (of a molecule with

the above mentioned characteristics) that obeys (6.8) is a solution of the equations of

equilibrium (2.43) if the external force vector P=P̃(c) obeys the relation 5

P =
go

2
(d1

1 − cot(π/N )d1
3), (6.9)

4A highly unstable ”everted ring” configuration that is an equilibrium configuration for all values
of c can be obtained by changing the sign of θn

2 . A thorough investigation revealed that, for the DNA
molecule H550, none of the branches that are connected to this additional stem branch contain stable
configurations.

5The external force and moment P and T are as in equations (2.42) and (2.43); their components are
determined by the 6 Lagrange multipliers associated with the kinematical end conditions.
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Figure 6.1: The Ring configuration of H550. The ring is an equilibrium configuration for all values
of c. The radius of gyration here and in all the following figures is given in Å (angstroms).

where go is the magnitude (that is independent of n) of the electrostatic force gn acting

on each of the base pairs in the ring configuration, and the external moment T in the

ring configuration is given by

T = F n
22(2π/No − 2π/N )d1

2. (6.10)

In the above solution the symmetry of the ring configuration implies that the moment

mn is independent of n, and thus, by (2.43c) T= − mn . The ring configuration is

shown in Figure 6.1 in the same scale of length as in all the figures showing configura-

tions.

The energy of a homogenous closed molecule such as H550 was found to be prac-

tically indifferent to slithering motions for any value of c when the distance of closest

approach Dca is equal or greater than Do. 6 This observation implies that for each

non perfectly circular configuration there is an identically zero proper number that cor-

responds to a neutral variation in addition to the zero proper numbers of S̄ that are

associated with the rigid body rotation and the active constraints. The ring configura-

tion is an exceptional case of equilibrium configuration that is not associated with such

6In a closed continuous rod a slithering motion is a motion in which each cross section of the rod is
transported along the axial curve of the rod in such a way that the axial curve is unchanged and each of
the cross sections traveled the same distance along the axial curve. Similarly, in the naturally discrete
model used in the present work, a slithering motion is a motion in which each of the base pairs travels
along an imaginary smooth curve (closely related to, but different from, the axial curve) such that, if the
motion is long enough, each of the base pairs would reach the original position and orientation of its
adjacent neighbor simultaneously. A slithering mode is an infinitesimally short motion of that kind.
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additional neutral variation. This exception is a result of the fact that the smooth curve

(see the last footnote) associated with slithering in a ring configuration is the circle

circumscribed around its polygonal axial curve, and hence a slithering motion of a ring

keeps the kinematical variables unchanged.

A bifurcation diagram of λ1 versus c is shown in Figure 6.2. The stem branch, la-

Figure 6.2: Bifurcation diagram of λ1 versus c for equilibrium configurations of the closed 549 base
pair DNA molecule H550. Bifurcation points are indicated by the symbol ”+++++++++”.

beled ”Ring” contains only the trivial equilibrium configuration, 3αring, that is given

by (6.8) with N= 549. The ring configuration is stable for values of c less than

cb= 2.32× 10−3 M. At the bifurcation point (cb, λ1= 0) two proper numbers of S̄

vanish. A primary branch labeled Stb originates from that point. The configurations

in Stb have a form of a symmetrically buckled ring. The axial curve of the buckled

rings has a shape similar to that of the curve dividing the surface of a tennis ball to

two identical pieces with two perpendicular mirror symmetry planes. Six equilibrium
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Figure 6.3: Six symmetrically buckled ring (”tennis ball”) configurations of H550 in the branch Stb.
The equilibrium configuration at c= 1M have two points of self contact. Here and in all the figures
showing configurations in the present section the values of the excess twist, ∆θn

3 , are represented by
assigning a color to each subsection of the tube associated with a base-pair steps. The numeric value of
each color is indicated in the color-bar shown in the bottom.

configurations in the branch Stb are shown in Figure 6.3.

Each of the buckled ring configurations in Stb has 4 evenly spaced sites7 in which

the excess twist ∆θn
3 vanishes (or changes its sign). The position of the sites along the

axial curve can be changed with no energy cost by a slithering motion. In the vicinity

of the bifurcation point, a slithering variation of the buckled ring can be described

by adding to the ring configuration, 3αring, vectors that are linear combinations of the

two vectors, 3Vy1 and 3Vy2, where y1 and y2 are the normalized proper vectors

associated with the vanishing proper numbers of S̄. More precisely, the one parameter

family of vectors in IR3N ,

3αring + ε
(

3V uy1 + 3V
√

1− u2y2

)
, 0 ≤ u ≤ 1, (6.11)

with ε << 1, characterizes a slithering motion that is expressed by continuously vary-

ing the parameter u. In the inception and through all the range of the branch Stb one of

the two proper numbers that vanished at the bifurcation point remains in its zero value;

7In the sense that the distances between adjacent sites along the axial curve are equal.
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the proper number associated with it corresponds to a neutral slithering variation.

The additional identically zero proper number of S̄ is pertained to a rank deficit

of the jacobian matrix J. Such singularity of J was numerically overcome by the

introduction of a (slack) constraint in which one of the kinematical variables in the 1-st

base-pair step is constraint to have a preassigned value. In such a way, a single choice

of the infinitely many equilibrium configurations of equal energy is made, and, as a

result, the Lagrange multiplier associated with such constraint must be zero.

The existence of the trivial solution 3αring of the system S of equations (3.7) for

all values of c makes it possible to analyze the dependence on c of the following two

quantities. The first quantity is the normalized radius of gyration, Rg/Rring, that is

the ratio between the radius of gyration of a configuration to the radius of the ring

configuration, Rring. The radius of gyration of a closed DNA molecule is here defined

as,

Rg =

(
1

N

N∑
n=1

(xn − x̄) · (xn − x̄)

)1/2

, x̄ =
1

N

N∑
n=1

xn . (6.12)

The second quantity is the difference between the total energy, U , of a configuration

and the total energy, Uring, of the ring configuration, where both energies are calculated

at the same salt concentration c. Two bifurcation diagrams showing the dependence of

Rg/Rring and U−Uring on c are shown in Figures 6.4 and 6.5. In Figure 6.4 several

representative equilibrium configurations are drawn near the corresponding branches.

Figure 6.5 shows that for values of c less than 2.32×10−3 M the ring configura-

tions are the global minimizers of the total energy and for values of c in the range

2.32× 10−3<c<3.48× 10−2 M the buckled ring configurations in Stb are the global

minimizers of U .

In the range 2.32×10−3<c<1.34×10−1 M the configurations in the branch Stb

are stable, while in the range c>1.34×10−1 M they are unstable. At the bifurcation

point (c=1.34×10−1, λ1= 0) two proper numbers of S̄ vanish and give rise to two

secondary branches that issue from it. The proper vectors associated with the two van-

ishing proper numbers characterize two different variations that break the symmetry
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Figure 6.4: Bifurcation diagram showing Rg/Rring versus c of the closed 549 base pair DNA molecule
H550. Bifurcation points are indicated by the symbol ”+++++++++”.

of the buckled ring configuration. In the first case the variation is such that, when the

configuration is viewed in a direction that is perpendicular to one of the mirror sym-

metry planes (as in the top views of the configurations shown in Figure 6.3), the two

points of closest approach (i.e., the two lowest points seen in such view,) are moving

vertically in opposite directions, and, as a result, the equilibrium configurations lose

one of the two planes (of reflection) symmetry. In the second case, when the config-

uration is viewed in the same way, the two points of closest approach are moving in

parallel to the line of view, but in opposite directions. The two secondary branches

that originate at the bifurcation point are labeled Dtb and CII. The configurations in

the branch Dtb have a single mirror symmetry plane, and they are unstable through

almost all the range of c in which they are exist. In the small range between the turning

point (c=4.63× 10−2, λ1= 0) and the bifurcation point (c=4.66× 10−2, λ1= 0) the
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Figure 6.5: Bifurcation diagram showing ∆U=U−Uring versus c of the closed 549 base pair DNA
molecule H550. Bifurcation points are indicated by the symbol ”+++++++++”.

configurations in Dtb are stable. Five configurations in this branch are shown in Figure

6.6.

The configurations in the branch CII have a ”hidden” symmetry. 8 The axial curves

of these configurations have a two-fold (proper) rotation symmetry. If one follows

the secondary branch CII from the bifurcation point (c=1.34× 10−1, λ1= 0) in the

direction indicated by the arrows in Figure 6.2 one encounters first the bifurcation

point (c=3.80× 10−2, λ1=−3.74× 10−2) at which λ2= 0 and then the turning point

(c=2.78× 10−2, λ1= 0) across which the configurations in CII are stable. As can

be observed from Figure 6.4 and the six equilibrium configurations in Figure 6.7, the

stable configurations are collapsing to a shape of triply wound configurations with radii

8In the sense in which the term is used in reference [44].
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Figure 6.6: Five configurations of H550 in the branch Dtb. The values of λ1 are indicated in cases in
which two distinct equilibrium configurations occur at the same value of c.

of gyration that are approaching to almost one third of Rring as c is increasing.

The branch labeled DC connects the bifurcation point (c=4.66× 10−2, λ1= 0) in

the secondary branch Dtb to the bifurcation point (c=3.80× 10−2, λ1=−3.74× 10−2)

in the secondary branch CII. A configuration in an intermediate value of c in the range

of that branch is shown in Figure 6.8.

Through experimenting with a closed elastic ring it is easy to see that by applying a

(twist) torque on one side of the ring while anchoring the opposite side one can get an

equilibrium configuration that has a shape of a chair. Charitat and Fourcade [45] treated

symmetric9 chair configurations of an o-ring and analyzed their stability as function

of the ratio between the twist modulus and the bending modulus. Symmetric chair

configurations of a homogeneous, transversely isotropic, 150 base pair DNA o-ring

were calculated, without taking the electrostatic energy into account, in reference [1].

In their study Coleman, Olson, and Swigon [1] has found that the (symmetric) chair

configurations are stable when the ratio F n
33/F

n
11 is less than 1. These observations led

9In the sense that the configurations have not only an axis of two-fold proper rotation symmetry and
an axis of two-fold improper rotation symmetry but also have a mirror symmetry plane.
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Figure 6.7: Six configurations of H550 in the branch CII. The values of λ1 are indicated in cases
in which two distinct equilibrium configurations occur at the same value of c. The two lines of view
are perpendicular. The configurations in the upper row are viewed along the axis of (two-fold)rotation
symmetry. The equilibrium configuration at c= 1 M has points of self contact; each of the 4 darkened
subsegments in that configuration contains two adjacent base pairs that have points of contact.

to a search for an equilibrium chair configuration of the molecule H550.

The calculation of an initial chair configuration from which one can explore a set

of connected branches was performed by starting with a ring configuration at a low

enough salt concentration, say c= 1× 10−2 M, and varying the end-to-end twist ζ3 as

the bifurcation parameter while c is fixed. This calculation was performed up to the

point in which ζ3/2π attained the value of -1. The corresponding equilibrium con-

figuration has a form of a doubly wound ring and for it ∆Lk= −1. At this step the

following transformation was applied on that configuration,

θn
i 7→ θn+m

i for n= 1, ...,N−m;

θn
i 7→ θ

n−(N−m)
i for n=(N−m+1), ...,N+1,

(6.13)

with i= 1, 2, 3 and m= 275. The transformation (6.13) introduces a change in the

choice of the 1-st and (N+1)-th base pairs and, since H550 is homogenous and µ= 3,

the transformed configuration is an equilibrium configuration. Finally, the end-to-end
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Figure 6.8: A selected configuration of H550 in the branch DC.

twist ζ3 was gradually varied from −2π back to 0 to yield a symmetric chair equi-

librium configuration with zero excess link. In a case of a continuous elastic rod the

process just described is similar to the process resulted by the following steps: (1) Cut

the closed rod, hold one end fixed and (positively) twist the other end by a full turn. (2)

Reseal the ends and cut the rod in the cross section that originally was in the opposite

side of the ring configuration. (3) While holding one end apply a negative twist of a

full turn to the other end such that the excess link of the resulted configuration is zero.

Starting with a symmetric chair configuration in the branch, labeled Schair, con-

taining symmetric chair configurations was explored for all range of values of c. The

branch Schair is not connected to the stem branch Ring (or to any of the branches that

are connected to the stem branch) in a bifurcation diagram in which c is the bifurcation

parameter. But as the two branches Schair and Ring are connected in a bifurcation dia-

gram in which ζ3 is the bifurcation parameter the branch Schair can be considered as a

primary branch. For the molecule H550 the symmetric chair configurations are stable

only for values of c less than 4.54× 10−3 M. Six symmetric chair configurations are

shown in Figure 6.9.

The secondary branch CI originates at the bifurcation point (c=4.54× 10−3, λ1= 0).

The configurations in CI have a two-fold improper reflection symmetry (with no mirror



83

Figure 6.9: Six symmetric ”chair” configurations of H550 in the branch Schair. The numeric value
of the excess twist in each base-pair step, that is indicated by assigning a color to each value of ∆θn

3 can
be deduced from the color-bar.

symmetry plane), and they are always stable. As c is increasing the equilibrium con-

figuration in CI have axial curves of the form of a triply wound collapsed ring made of

two approximately helical regions of opposite handedness. As can be seen in Figure

6.5 the configurations in CI are the global minimizers of U only for values of c greater

than cJ=3.48× 10−2 M. This implies (see Figure 6.4) that a small change in c from

a value slightly below to a value above cJ may result an abrupt reduction of 21.4% in

Rg due to a transition from a buckled ring configuration in Stb to a collapsed triply

wound configuration in CI. Four globally stable configurations and one locally stable

configuration in the branch CI are shown in Figure 6.10.

A secondary branch labeled Nchair connects the two additional bifurcation points

(c=4.92× 10−4, λ1= 0) and (c=8.67× 10−3, λ1=−2.37× 10−1) in the primary branch
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Figure 6.10: Five stable configurations ofH550 in the branch CI. With the exception of the configu-
ration on the left hand side, for which c= 1×10−2 M, all other four configurations are global minimizers
of U .

Schair. All the configurations in Nchair are unstable. Four configurations in Nchair are

shown in Figure 6.11. The bifurcation point (c=1.01× 10−2, λ1=−9.30× 10−3) in

the branch Nchair gives rise to the inception of the tertiary branch labeled Cu of un-

stable, triply-wound, collapsed-ring configurations. Three configurations in the branch

Cu are shown in Figure 6.12.
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Figure 6.11: Four configurations of H550 in the branch Nchair. The values of λ1 are indicated for the
two configurations on the right hand side that correspond to points on the bifurcation diagram in Figure
6.2 above and below the turning point of the fold.

Figure 6.12: Three unstable collapsed configurations of H550 in the branch Cu.
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6.2.2 The influence of changes in the intrinsic curvature and the

ratio F n
33/F

n
11 on equilibrium configurations

In this subsection results from calculations of bifurcation diagrams of the molecules la-

beledH550270,H5500.7 and partial results of equilibrium configurations of the molecule

H5501.4 are reported. As in the previous subsection all the calculations assume the 549

base pair molecules are confined to a zero excess link.

A bifurcation diagram of the molecule H5500.7 in which λ1 is the dependent pa-

rameter and c is the bifurcation parameter is drawn (solid lines) next to the bifurcation

diagram of H550 (dashed lines) in Figure 6.13. As can be seen, a change in F n
33/F

n
11

Figure 6.13: A bifurcation diagrams of λ1 versus c of the molecules H550 (dash lines) and H5500.7

(solid lines) showing the influence of the ratio Fn
33/F

n
11 on the results. The different branches are drawn

with the same colors as in Figure 6.2. Bifurcation points are indicated by the symbol ”+++++++++” for the
molecule H5500.7 and by the symbol ”o” for H550.

yields no difference in the topology of the diagram. However, because the cost of twist-

ing energy is reduced when F n
33/F

n
11 is decreased one can expect, as was found here,
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a shift towards lower value of c of the bifurcation point, from which the branch Stb of

buckled ring configurations originates. Furthermore, as the buckled ring configurations

have regions with higher magnitude of excess twist than the collapsed configurations

in the branch CII, the bifurcation point in Stb from which the branch CII originates

is shifted towards higher values of c as F n
33/F

n
11 is decreasing. Similarly, as F n

33/F
n
11

is decreased a shift of the bifurcation point towards higher value of c, from which

the branch CI of triply wound collapsed configurations (that are characterized by a

lower magnitude of twisting energy than the symmetric chair configurations in Schair)

was found. For the molecules H5501.4, H550 and H5500.7 the bifurcation points from

which the branch CI originates are (c=3.89× 10−3, λ1= 0), (c=4.54× 10−3, λ1= 0),

and (c=5.99× 10−3, λ1= 0) respectively.

Two bifurcation diagrams exhibiting the dependence of Rg/Rring and ∆U on c of

the molecule H5500.7 are shown in Figures 6.14 and 6.15. The two diagrams, when

compared to the diagrams shown in Figures 6.4 and 6.5, reveal that a change in F n
33/F

n
11

yields no qualitative difference in the results. The minimum energy configurations vary

with c from the ring configurations for low values of c to the buckled ring configura-

tions (in the branch Stb) for values in an intermediate range of c and to the triply wound

collapsed configurations in the branch CI.

To demonstrate the effects of a change in the intrinsic curvature the molecule

H550270 was thoroughly studied. Each 270 base pair subsegment of H550270 forms

a perfectly circular ring when stress free. Two bifurcation diagrams of that molecule

depicting Rg/Rring and ∆U versus c are shown in Figures 6.16 and 6.17. The pitchfork

bifurcation of equilibria of the molecule H550 from the branch of ring configurations

to the branch Stb turns into a subcritical pitchfork when equilibria of the molecule

H550270 are considered. This change suggests that a slight increase from a value

less than c= 1.09×10−1 M to a value above it may result a significant reduction of

circa 48% in the radius of gyration. However, as can be seen in Figure 6.17 the en-

ergy difference between the ring configuration and the buckled ring configuration at
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Figure 6.14: A bifurcation diagram showing Rg/Rring versus c of the molecule labeled H5500.7.

c= 1.09× 10−1 M is less than 0.2 kBT . Thus, in a thermal equilibrium an ensemble

of molecules obeying the Boltzmann distribution would have an almost equal distri-

bution of the configurations that are closely related to the ring configuration and the

configurations with a shape similar to the collapsed rings.

To conclude this subsection five equilibrium configurations, including the (presum-

ably) minimum energy configurations of the moleculesH5500.7,H5501.4 andH550270

at c= 1×10−1 M, are shown in Figure 6.18. The resemblance between the minimum

energy configuration of the molecules H5500.7 and H5501.4 may explain why an ex-

perimental determination of the average value of F n
33/F

n
11 is still a complicated task

that often yield values ranging from 0.7 to 1.6. 10

10See the remark made in footnote 48 of reference [1].
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Figure 6.15: Bifurcation diagram showing ∆U=U−Uring versus c of the molecule labeledH5500.7.
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Figure 6.16: A bifurcation diagram showing Rg/Rring versus c of the molecule labeled H550270.
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Figure 6.17: A bifurcation diagram showing ∆U=U−Uring versus c of the molecule labeled
H550270.

Figure 6.18: Five stable configurations of the molecules H5500.7, H5501.4, and H550270 at
c= 1×10−1 M. The labels of the molecule and the branch type are indicated above the two perpen-
dicular views showing each of the configurations.
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6.2.3 Bifurcations of equilibria of H550 with ∆Lk= −1

To investigate the dependence of equilibrium configurations of the closed molecule

H550, that is confined to ∆Lk= −1, several pre-calculated closed equilibrium config-

urations of zero excess link were chosen to be the initial configurations in explorations

of branches of equilibria in which the end-to-end twist angle, ζ3, is the bifurcation

parameter and c is fixed. In such branches the configurations with ζ3/2π= −1, i.e.,

∆Lk= −1, were used as initial configurations for the calculation of branches of equi-

libria in which c is the bifurcation parameter. When one varies ζ3 one can set the

choice of the base pairs for which n= 1 and n=N+1 by applying the transformation

6.13 with m in the range 1, ...,N−1.

The branch of minimum energy configurations ofH550 with ∆Lk= −1 was found

by starting with the ring configuration for which ∆Lk= 0, fixing c and calculating, us-

ing the continuation methods described in section 4.4, a branch of equilibria in which

ζ3 is the bifurcation parameter. As was discussed in subsection 6.2.1 an initial config-

uration in this branch can also be calculated by starting with a symmetric chair config-

uration, setting the base pair for which n= 1 to be one of the two adjacent base pairs

that form the base-pair step with maximum value of excess twist, and appropriately

varying ζ3. As indicated in the bifurcation diagram of λ1 versus c shown in Figure

6.19 the stem branch of minimum energy configurations (drawn in solid blue) is above

the zero for all values of c which implies that no other branches are connected to it.

The configurations in the stem branch are characterized by an internal loop with an

approximate form of a left handed helix and an external loop of opposite handedness.

As c is increasing the configurations in this branch acquire compact forms of doubly

wound rings with radius of gyration that approaches 0.5Rring. This effect is depicted in

Figure 6.20 in which a bifurcation diagram of Rg/Rring versus c is shown with four sta-

ble configurations, two of which are doubly wound rings, that correspond to the points

indicated by arrows.

An initial configuration in a separate system of connected branches was found in
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Figure 6.19: A bifurcation diagram of λ1 versus c for equilibrium configurations of H550 with
∆Lk= −1. The symbol ”+++++++++” indicates a bifurcation point. All other symbols indicate configurations
that are shown in figures 6.21 and 6.22. Regions of branches with λ1> 0, (which correspond to stable
configurations) are drawn with solid lines, while regions with λ1< 0 are drawn with dashed lines.

the same way by starting with a collapsed ring configuration of H550 with ∆Lk= 0

and appropriately varying ζ3. A branch, drawn in green in Figures 6.19 and 6.20, with

configurations like the middle configuration shown in the upper half of Figure 6.20

(the one next to the origin of an arrow pointing to a point at which c= 1× 10−2 M),

was found to have a range of c with stable configurations between the two bifurca-

tion points (c=3.67× 10−3, λ1= 0) and (c=1.95× 10−2, λ1= 0). The configurations

in this branch have a two-fold (proper) rotation symmetry. The bifurcation point,

(c=3.67× 10−3, λ1= 0), gives rise to the inception of a branch, drawn in purple

in Figures 6.19 and 6.20, that contains only unstable configurations. An additional

branch, originating at the second bifurcation point (c=1.95× 10−2, λ1= 0), is drawn
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Figure 6.20: A bifurcation diagram showing Rg/Rring versus c ofH550 with ∆Lk= −1. The symbol
”+++++++++” indicates a bifurcation point. Regions of branches with points that correspond to stable configura-
tions are drawn as solid lines. Dashed lines indicate regions with unstable configurations. The colors of
the branches are in accord with figure 6.19. The drawn equilibrium configurations are stable and their
corresponding points are indicated by the arrows.

in red in Figures 6.19 and 6.20. It contains stable configurations in the range of c be-

tween the turning points (c=1.80× 10−2, λ1= 0) and (c=4.24× 10−1, λ1= 0). As

can be observed in Figure 6.20 the three connected branches contain subregions with

highly compact configurations. As c is increasing (above 2×10−2 M) the configura-

tions in these subregions acquire shapes of quadruply wound configurations that, for

high values of c, their radii of gyration approach 0.25Rring. All the distinct equilib-

rium configurations at c= 1×10−1 M and c= 1×10−2 M are shown in Figures 6.21

and 6.22.
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Figure 6.21: Nine configurations of H550 with ∆Lk= −1 at c= 1×10−1 M. Each configuration is
drawn in two perpendicular views. The color of the cylindrical tube indicates the local excess twist in
accord with the color-bar shown in figure 6.9. The color symbols (markers) indicate the location of the
corresponding points in the bifurcation diagram 6.19. The doubly wound configuration on the upper left
corner (blue triangle pointing upward) is the global minimizer of the total energy.
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Figure 6.22: Four configurations of H550 with ∆Lk= −1 at c= 1×10−2 M. The color symbols
(markers) indicate the location of the corresponding points in the bifurcation diagram 6.19. The doubly
wound configuration on the upper left corner (blue triangle pointing upward) is the global minimizer of
the total energy.

6.3 Equilibria of a nonhomogeneous 339 base pair minicircle DNA

In their recent research Fogg, Kolmakova, Rees, Magonov, Hansma, Perona, and Zechiedrich

[20] were able to generate and isolate large quantities of several distinct topoisomers,11

of a closed 339 base pair DNA molecule. The treated molecule, here labeled Z339,

has the following sequence:

TTTATACTAACTTGAGCGAAACGGGAAGGGTTTTCACCGATATCACCGAA

ACGCGCGAGGCAGCTGTATGGCGAAATGAAAGAGTTCTTCCCGGAAAACG

CGGTGGAATATTTCGTTTCCTACTACGACTACTATCAGCCGGAAGCCTAT

GTACCGAGTTCCGACACTTTCATTGAGAAAGATGCCTCAGCTCTGTTACA

GGTCACTAATACCATCTAAGTAGTTGATTCATAGTGACTGCATATGTTGT

GTTTTACAGTATTATGTAGTCTGTTTTTTATGCAAAATCTAATTTAATAT

ATTGATATTTATATCATTTTACGTTTCTCGTTCAGCTTT

11DNA topoisomers are molecules with identical sequence that differ only in their linking number.
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in which the first and the last base pairs form a base-pair step. The topoisomers ob-

tained in their experiments were examined using gel electrophoresis and atomic force

microscopy (AFM). The results suggested the existence of topoisomers with linking

numbers varying from Lk= 32 down to highly supercoiled minicircles with Lk= 26.

Thus, to conclude the present chapter, a calculation of equilibrium configurations

of the molecule treated in [20], for several values of Lk and with µ= 6 was performed.

All the results in this example were calculated at c= 1×10−1 M. The values of the

intrinsic parameters and elastic moduli associated with each of 10 unique base-pair

steps are in accord with the database in the web-site 12

http://dnaserver.rutgers.edu/%7Eghzheng/db/search.php

The values of the parameters were derived by statistical analysis of X-ray structure data

[35] [46].

Starting with (kinematical) end conditions that are close enough to those of the

intrinsic configuration, a series of equilibrium configurations of open molecules was

calculated by successively varying the end conditions such that the final calculated

configuration in the series is closed, i.e., obeys equations (6.1). With a closed equilib-

rium configuration in hand, the end-to-end twist angle ζ3 was varied (as a bifurcation

parameter) using the continuation methods described in section 4.4 to explore a sin-

gle equilibrium path. In such equilibrium path, the value of ζ3/2π may attain integral

values that correspond to different values of Lk. The dependence of the total energy,

U , on ζ3/2π along the equilibrium path, that, based on a thorough study, is believed

to contain the minimum energy configurations for each value of ζ3/2π, is shown in

Figure 6.23.13 The graph shows that, as was suggested in [20], Lk= 32 for the ”most

relaxed” closed configuration of Z339.

The (presumably) minimum energy configurations of Z339 with seven linking

numbers varying from 29 to 35 are shown in Figure 6.24. The configurations with

12The web-site was constructed by Guohui Zheng from W.K. Olson’s group at Rutgers University.
13The shown equilibrium path contains at least one stable configuration for each value of ζ3/2π.
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Lk= 29 and Lk= 35 have points of self contact associated with base-pair steps that are

represented by darkened cylindrical regions. As oppose to the previous examples in

which the treated molecules were assumed homogenous and therefore the values of

the total energy of their equilibrium configurations are practically indifferent to slither-

ing modes, for the present example, the equilibrium configurations are highly sensitive

to such modes. As a result, the proximity and relative orientation of sequentially re-

mote sites (that might be in contact) is highly sequence-dependent. For the topoisomer

with Lk= 29 there are two points of contact. The contact shown on the right hand

side is of case IV. 14 It is located between the central base-pair steps in the subse-

quences TTTCACCG and TAGTGACT that are 139 base pairs apart. The second point

of contact is of case III and located between the central base-pair step in the subse-

quence GAGGCAGC and the base pair in the center of the subsequence AATACCA that

is 151 base pairs apart. For the topoisomer with Lk= 35 there is a single point of con-

tact of case IV. It is located between the central base-pair steps in the subsequences

TCACCGAT and TGCCTCAG that are 149 base pairs apart.

14See Figure 2.3.
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Figure 6.23: The total energy U of the minicircle Z339 at c= 1×10−1 M as a function of ζ3/2π.
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Figure 6.24: Equilibrium configurations at c= 1×10−1 M of seven topoisomers ofZ339 with linking
numbers Lk= 29, 30, ..., 35. Two perpendicular views of the intrinsic configuration are shown in the
upper right corner of the figure. Each equilibrium configuration is drawn in two perpendicular views.
Sequences of more than three adjacent A’s (Adenine) and T’s (Thymine) are drawn in blue and red. The
arrows indicate the position and direction of an arbitrarily chosen subsequence of the DNA molecule.
A lengthy search of other equilibrium configurations suggests that the shown configurations are the
minimum energy configurations of Z339 confined to the indicated linking numbers.
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Chapter 7

Conclusions and future study

The calculations reported in chapters 5 and 6 predict that the dependence of equilib-

rium DNA configurations on salt concentration is much stronger than might have been

conjectured previously. The knowledge gained from the long calculations and the wide

range of possible future calculations, based on the mathematical theory and numerical

schemes that were presented, should encourage experimenters to investigate cases of

DNA molecules that exhibit a significant change in their radius of gyration as a result

of a small change in the ionic strength of the aqueous media.

For example, it is conceivable that an experimenter may attempt an electron cryo-

microscopy study of a molecule similar to the 549 base pair DNA molecule H550

treated here using a recently developed apparatus that is expected to be able to freeze

samples rapidly to obtain images at well defined values of c. For each value of c

the images obtained in such an experiment should correspond to configurations from

a canonical (Boltzmann) distribution with configurations of maximum likelihood that

are close to the minimum energy configuration. Such studies, when combined with the

present theory and numerical schemes, may lead to a direct measurement of intrinsic

parameters and elastic modulii. However, a prediction of the canonical distribution is

necessary for more accurate and reliable results.

In a current study a Metroplis Monte Carlo method [47] in which each randomly

generated configuration is closed with a preassigned value of ∆Lk is being developed.

The method takes into account the sequence-dependence of the elastic energy, the in-

tramolecular electrostatic interaction, and the impenetrability of the DNA molecule.
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With such a method one will be able to sample a canonical ensemble and to calculate

the free energy differences between DNA minicircles in different conditions or topolo-

gies, e.g., between two topoisomers with distinct values of ∆Lk or DNA molecules in

aqueous solution with different salt concentrations.
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Appendix A

In this appendix the El Hassan and Calladine’s procedure [8] for constructing their

relation between the six kinematical variables θn
1 , θn

2 , θn
3 , ρn

1 , ρn
2 , ρn

3 and the numbers

Dn
ij =dn

i · dn+1
j =D̃ij (θ

n
1 , θn

2 , θn
3 ) and rn

i =rn · dn
i is discussed. With the derived forms

of the functions D̃ij in hand the functions Γ̃ij are expressed by following the relations

(??) and (2.14).

Let (dn
1 , dn

2 , dn
3 ) and θn

1 , θn
2 , θn

3 be given, and let the angles ξn and ωn and a unit

vector dn
ω (called the ”hinge vector”), in the plane of dn

1 and dn
2 , be defined by the

relations 1

ξn =
√

(θn
1 )2 + (θn

2 )2, θn
1 = ξn sin(ωn), θn

2 = ξn cos(ωn), (A.1)

dn
ω = −dn

1 sin

(
θn
3

2
− ωn

)
+ dn

2 cos

(
θn
3

2
− ωn

)
. (A.2)

By applying to (dn
1 , dn

2 , dn
3 ) a positive rotation about dn

ω of magnitude ξn/2 one ob-

tains an orthonormal triad (dn′
1 , dn′

2 , dn′
3 ) which one then rotates about dn ′

3 through the

angle θn
3 /2 to obtain another orthonormal triad, (d

n+ 1
2

1 , d
n+ 1

2
2 , d

n+ 1
2

3 ), which in refer-

ence [8] is called the ”mid-step triad”. Here, as in [8], the displacement variables are,

by definition, the components of rn with respect to the elements of the mid step triad:

ρn
i = rn · dn+ 1

2
i . (A.3)

This last equation can be written in the form (2.1) with the numbers Rn
ji the components

of the vectors (d
n+ 1

2
1 , d

n+ 1
2

2 , d
n+ 1

2
3 ), with respect to the basis (dn

1 , dn
2 , dn

3 ):

Rn
ji=dn

i · d
n+ 1

2
j =R̃ji(θ

n
1 , θn

2 , θn
3 ). (A.4)

1Equations (A.1) are the same as equations (5.4).
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The procedure just described yields explicit expressions [8] for the functions R̃ji(θ
n
1 , θn

2 , θn
3 )

in (2.1), namely,

Rn
ji = R̃ji(θ

n
1 , θn

2 , θn
3 ) = Zik

(
θn
3

2
− ωn

)
Ykl

(
ξn

2

)
Zlj (ωn) , (A.5)

where Yij (ς) and Zij (ς) are, for each ς , elements of the following rotation matrices:

[Yij (ς)] =




cos(ς) 0 sin(ς)

0 1 0

− sin(ς) 0 cos(ς)


, [Zij (ς)] =




cos(ς) − sin(ς) 0

sin(ς) cos(ς) 0

0 0 1


 . (A.6)

The (fixed in space) hinge vector dn
ω in equation (A.2) can be expressed in terms of

its components with respect to the mid-step triad as

dn
ω = d

n+ 1
2

1 sin(ωn) + d
n+ 1

2
2 cos(ωn). (A.7)

The triad (dn+1
1 , dn+1

2 , dn+1
3 ), can be obtained by applying to (d

n+ 1
2

1 , d
n+ 1

2
2 , d

n+ 1
2

3 ),

first a rotation through an angle θn
3 /2 about d

n+ 1
2

3 and then a rotation of magnitude

ξn/2 about the hinge vector dn
ω. As the second rotation brings the original triad into

coincidence with (dn+1
1 , dn+1

2 , dn+1
3 ), the components of dn+1

j with respect to d
n+ 1

2
i

are given by

d
n+ 1

2
i · dn+1

j = Zik (−ωn)Ykl

(
ξn

2

)
Zlj

(
θn
3

2
+ ωn

)
, (A.8)

and as

Dn
ij = dn

i · dn+1
j =

(
dn

i · d
n+ 1

2
k

)(
d

n+ 1
2

k · dn+1
j

)
, (A.9)

in view of (A.4) and (A.8) the functions D̃ij can be expressed in the form [8],

Dn
ij = D̃ij (θ

n
1 , θn

2 , θn
3 ) = Zik

(
θn
3

2
− ωn

)
Ykl (ξ

n)Zlj

(
θn
3

2
+ ωn

)
. (A.10)

It follows from equations (2.12), (A.6), and (A.10) that the components Γ n
ij in equation

(2.13) are related to θn
1 , θn

2 , θn
3 by [1],

[Γij
n ] =




−θn
1

ξn sn+
θn
2 tn

2 tan(ξn/2)
−θn

2
ξn sn− θn

1 tn

2 tan(ξn/2)
tan(ξn/2)tn

θn
1

ξn tn+
θn
2 sn

2 tan(ξn/2)
θn
2

ξn tn− θn
1 sn

2 tan(ξn/2)
tan(ξn/2)sn

−θn
2 /2 θn

1 /2 1




, (A.11)
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where

tn = cos

(
θn
3

2
− ωn

)
, sn = sin

(
θn
3

2
− ωn

)
. (A.12)
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