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ABSTRACT OF THE DISSERTATION

RISK ASSESSMENT IN MICE AND MEN

by FUAT BALCI

Dissertation Director:

Dr. Charles R. Gallistel

Uncertainty is a ubiquitous property of both physical and mental realms. Goal-directed

actions that take place under these conditions thus probabilistically predict their

consequences. Traditional decision-making research has shown that particularly humans

are non-normative decision-makers under uncertainty. On the other hand, considering the

cognitive system as an output of evolutionary history, it is not unlikely that it models the

uncertainties that partly determine the consequences of its actions. It is also natural to

assume that the same system uses these models of uncertainty originating from multiple

stochastic processes along with its metric representation of the consequences in planning

its actions. Indeed, more recent research has shown closer to optimal performance in

decision-making tasks in which the uncertainty was experienced and/or originated from

the sensori-motor system. In this research, we investigated this very process in the

context of temporal decision-making in both human and mice subjects. We further used

this experimental context to answer the essential questions regarding the functional

architecture of mind. This questioning specifically targeted the degree of representational
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and computational power needed to account for decision-making under uncertainty. In

order to answer this question, we conducted computer simulations providing different

degrees of representational substitution/power and compared their outputs to the

empirical data. We conclude that both human and mice are optimal decision-makers

under uncertainty that originates from extrinsic and intrinsic (mental) stochastic processes

and observed performance can be better explained by information-processing rather than

associative frameworks of mind.
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SECTION 1

GENERAL INTRODUCTION

One day early in the morning, John arrives at the bus stop where he used to take

the bus to school. Although, he runs after the bus that just departed, he misses it and starts

waiting for the next one. The next bus may arrive either after 15 minutes or 30 minutes

depending on the frequently changing bus schedule. As some time elapses, John expects

the bus to arrive any time soon if it was on a 15-minute schedule. He starts to get uneasy

since there is an important meeting that he may miss if the bus is instead on a 30-minute

schedule. However, as more time elapses he becomes more and more confident that the

bus may be on a 30-minute schedule. On the other hand, he also knows that he is not a

perfect timer and he maybe off in his estimation of time. Additionally, he knows that the

bus may come a few minutes early or late depending on the traffic. However, the bus still

has not arrived and John starts thinking of getting a cab instead in order to catch the

meeting. As tends to happen in such situations, John decides to get a cab. As the cab

takes off he watches the newly arriving bus from the rear window. Being annoyed, he

tells to himself “If it weren’t for that meeting, I would be on that bus rather than this

cab!”

People experience decision-making situations similar to the one presented above

on a daily basis. Yet mostly people do not have access to the underlying processes that

determine their behavior in such cases. Despite this lack of awareness, the computations

and variables utilized in such simple cases also constitute the processes and variables

used in many other decision-making tasks such as buying a lottery ticket, playing soccer,
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taking one job over another one, etc. These processes constitute the research interest of

many cognitive psychologists, economists and ecologists.

One can obtain a general understanding of the processes underlying these

decision-making situations by predicting the change in decisions under different cases.

Here, the differences between cases are defined as a function of differences in the values

of the attributes defining the decision-making problem. In order to employ such an

approach to the scenario presented above simply put yourself in John’s shoes. Assume

that buses actually run on 30 minute schedule and try to predict how differently you

would behave (in terms of the waiting time for the next bus) under the following

conditions:

1) Buses follow the schedule precisely.

2) John wears a watch.

3) John wears a watch and the buses follow the schedule precisely.

4) John is going to a class that he hates sitting in.

5) It is summer time and buses usually run on a 30 minute schedule.

 6) John discovers the bus schedule at the bus stop, which shows that buses run on

        15-minute schedule.

One would naturally expect differences in the waiting time for the next bus under

these different conditions. For instance, John would wait longer for the next bus if the

consequence of being late were not as detrimental as that of missing an important

meeting. This would be the case if John was instead being late to a boring class. This

commonsensical prediction simply demonstrates the role of magnitude of consequences

on the decisions made. Another common aspect of decision-making situations can be
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demonstrated by differences in waiting times when John does not wear a watch versus

when he does, given the knowledge that buses follow their schedule precisely. In the

latter case, at any given time after 15 minutes, John would be less likely to wait for the

next bus. This prediction is based on the fact that John’s uncertainty about the time

elapsed since the last bus would be eliminated. The role of another source of uncertainty

can be demonstrated with the difference in the waiting times during summer versus fall

time. Since during summer time 30 minute schedules may be more frequent than 15

minute schedules, compared to fall time John would again be less likely to wait for the

next bus. These last two cases emphasize the role of uncertainty in defining most

decision-making tasks.

Briefly, such an analytic approach even to a simple and mundane decision-making

task demonstrates how the underlying mental processes can involve multiple variables

and their integration. In this research, we focus on the processing of information

regarding different kinds of uncertainty and their integration. The following distinctions

will be critical:

1) Whether the source of uncertainty is intrinsic or extrinsic. Intrinsic uncertainty

originates from stochastic processes within the animal, such as variability in the motor

system, fuzziness in the representation of quantities, etc. Extrinsic uncertainty originates

from stochastic processes that occur in the physical world, such as rolling a dice. By

wearing a watch, John would eliminate his intrinsic uncertainty about the duration

elapsed since the last bus. On the other hand, the different frequency of bus schedules in

different seasons would involve extrinsic uncertainty, as would the variability in actual

bus arrival times about their scheduled arrival time.
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2) The manner in which the information about uncertainty is gathered:

experienced versus described uncertainty. John may be told the probability of bus being

on a 15 minute schedule by a second person. This would be a described uncertainty.

Alternatively, John may have experienced the buses on arriving different schedules

himself. This would be an experienced uncertainty. This two-way distinction results in

four possible cases/types of uncertainty: Described Extrinsic Uncertainty, Experienced

Extrinsic Uncertainty, Experienced Intrinsic Uncertainty and Described Intrinsic

Uncertainty. Although the first three types are fairly common in daily life, the Described

Intrinsic Uncertainty is not common. Thus, our review of literature focuses on the first

three cases. We consider these cases in different kinds of decision-making tasks. A key

question is how normative the underlying processes are in taking into account and

integrating the relevant information.

Historically, most of the research conducted in the area of decision-making in the

face of risk has focused on the non-normative phenomena demonstrated with extrinsic

uncertainties (e.g. Kahneman & Tversky, 1979). This class of research was followed up

by others that investigated the processing of experiential versus symbolic forms of

external uncertainty (e.g. Barron & Erev, 2003). This second class of research yielded

different results for experiential and symbolic external uncertainty. On the other hand,

more recently an independent group of researchers asked similar questions for decision-

making tasks which mainly involved intrinsic uncertainty (e.g. Trommershäuser,

Maloney, & Landy, 2003a). The results from these three different classes of research

constitute a controversy regarding the normativeness of human decision-making.
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The classical view of decision-making research produced a large amount of

evidence, which showed that under risky conditions, humans’ judgments violate the

predictions of normative decision-making models (e.g. Kahneman and Tversky, 1979). In

these tasks, the subjects were given a verbal description of the choice problem in terms of

outcomes and their probabilities. Then they were asked to make a choice across the

options described. As an example of non-normative decision-making phenomena in these

tasks, humans were found to prefer [Lottery 1 = (1

€ 

× $ 5000), a certain $ 5000] over

[Lottery 2 = (.8 

€ 

× $ 10,000; .2 

€ 

× - $10,000)], even though the expected gain of Lottery 2

is higher than Lottery 1; 6000 > 5000.

The normative solution of these tasks first requires weighting of different

outcomes with their probability of occurring. Summation of all weighted outcomes for a

given option then determines the expected gain from that option. The better option is

chosen by comparing the expected gains and choosing the option with the higher

expected gain. For instance, in the example presented previously the expected gain of

Lottery 1 is 1

€ 

×5000 =5000 and the expected gain of Lottery 2 is .8

€ 

×10,000+(.2

€ 

× -

10,000) = 6000. The normative decision maker should therefore favor Lottery 2 over

Lottery 1.

Kahneman and Tversky (1979) outlined the non-normative risk attitudes by a

fourfold pattern; “risk seeking for gains” and “risk aversion for losses” of low

probability, and “risk aversion for gains” and “risk seeking for losses” of high

probability. Risk aversion refers to being more reluctant to prefer an option with an

uncertain payoff over an option with a certain payoff, although the expected payoff of the

uncertain option may be equal to or larger than the certain one. Conversely, risk seeking
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refers to being more reluctant to prefer an option with a certain payoff to an option with

an uncertain payoff, both having the equal expected value. As stated previously, risk

preference changes systematically as a function of the sign of the outcome (gain or loss)

and its probability. For instance, humans choose a lottery that yields a gain with a low

probability over a lottery that yields an equal expected value for certain, namely risk

seeking for gains of low probability.

On the contrary, humans choose a lottery that yields a certain loss over a lottery

that yields loss with low probability with equal expected value, namely risk aversion for

losses of low probability. The reverse pattern is observed when the probabilities of

outcomes are high. More specifically, humans choose a lottery with a certain gain over a

lottery that yields a gain with a high probability with equal expected value, namely risk

aversion for gains of high probability. Conversely, humans choose a lottery that yields a

loss with a high probability over a lottery that yields equal expected value for certain,

namely risk seeking for losses of high probability.

Tversky and Fox (1995), Kahneman et al. (1979) and Tversky and Kahneman

(1992) explained the non-normative decision-making phenomena assuming two key

elements, a reference dependent value function (see Figure 1.1A) and a non-linear

subjective probability function (see Figure 1.1B). The value function maps outcomes to

utilities and its form predicts that humans are risk-averse over gains and risk-seeking over

losses. The steeper utility function for losses further predicts the empirical fact that losses

have bigger effect than gains. For instance, when subjects are presented with the

following two options: a) Gain $ 50 with p = .5 and lose $ 50 with p = .5 b) Nothing with

certainty, they tend to prefer the second option. This preference is explained by the
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steeper value function for losses. However, in this review, we will focus on the second

key element since it is critical for explaining the four-fold non-normative pattern

presented above. Tversky et al. (1995), Kahneman et al. (1979), and Tversky et al. (1992)

claimed that four-fold risk attitude pattern was due to a non-linear transformation of the

probability scale (but see von Neumann & Morgenstern, 1947 for attribution of the same

pattern to expected utility function). This function was claimed to overweight small

probabilities and under-weight moderate and high probabilities (Figure 1.1B).

For instance, this probability function predicts risk seeking for gains of low

probability over an option with a certain gain with a value that is equal to the expected

value of the first option. This phenomenon emerges since the uncertain outcome is

weighted with a probability value, which is higher than the objective probability. As a

result, the subjective expected value of the uncertain option exceeds the value of the

certain gain. A similar logic explains other three forms of risk-preference.

  

Figure 1.1. Subjective value and probability. Left panel (A) illustrates how
subjective value changes as a function of objective losses and gains and right
panel (B) illustrates how subjective probability changes as a function of objective
probability.

This model was originally developed for situations in which the observer knew

the probabilities of different outcomes. Tversky et al. (1995) extended this phenomenon
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to cases of uncertainty in which the observer did not know the probabilities of the

outcomes. They found that when an increase in probability turned impossibility into

possibility or possibility into certainty, it had more impact compared to when the same

increase made a possibility higher or lower (with equal degree or more). Other forms of

violations of normative models can also be found in literature. Kahneman and Tversky

(1973) reported another non-normative phenomenon, neglecting the base-rate

information. Assume that a diagnostic test can determine if a given person has a rare

disease with 90% accuracy. When asked about the probability that a person has this

disease given that they tested positive, most of the subjects give a high probability value

that is very close to if not equal to the accuracy rate of the test. On the other hand, the

normative answer would be gathered by multiplying the accuracy rate of the test with the

occurrence rate of that disease in the population, which would give a much lower

probability value than the hit rate of the test (if the disease is observed in every 1000th

person, this probability value is .001 x .9 = .0009).

Briefly, Kahneman and Tversky’s approach can be interpreted as arguing that our

minds may not be built to work by the rules of probability (see Samuels, Stich, and

Bishop, 2002). On the other hand, there are two important issues that should be kept in

mind while evaluating this view. Firstly, as mentioned above there are different sources

of uncertainty and these researches only considered a single source, namely the extrinsic

uncertainty. The second issue relates to the form in which the information about the

uncertainty was gathered by the subject (described versus experienced uncertainty). In all

of these reported tasks the  uncertainties were described by probabilities; they were not

experienced frequencies. Focusing particularly on this second aspect, Barron & Erev
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(2003) and Hertwig, Barron, Weber, and Erev (2004) referred to these classical decision-

making tasks as decisions from descriptions (see also Weber, Shafir, and Blais, 2004).

They further noted most real life situations rely on personal experience (rather than on the

explicit sources of information). Under this rationale, several studies by these researchers

focused on decisions based on experienced uncertainty instead of described uncertainty.

In Barron et al. (2003), subjects had no prior knowledge regarding the payoff

distribution of different options they were given. Instead, they gathered information about

the outcomes and their probabilities through repeated choices and experiencing the

outcomes of their choices. More specifically, in this experiment subjects were presented

with two options (illustrated as buttons) on the computer screen and were asked to choose

across these options for 200 trials. The outcome a subject experienced on a trial was

drawn at random from the outcome distribution of the option they chose on that trial. At

the end of each trial the subjects were presented with both payoff on that trial and

cumulative payoffs. The aim of the subjects in this task was to maximize the pay-off

points, which were converted into monetary reward at the end of the experiment. This

task was different from description-based decision-making tasks since the decision did

not depend on descriptions of outcomes and their probabilities but rather on the

experience of these attributes by the subjects themselves. In this sense, in this experiment,

the subjects learned about the payoff distribution of different options through repeated

choices.

In these experiential situations, consistent with Thaler, Tversky, Kahneman, &

Schwartz (1997) loss aversion was found to be a robust phenomenon. Loss aversion led

their subjects to obtain lower gains than the maximal amount one could gain in Barron et
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al. (2003). On the other hand, other findings of this experiment contrasted with the well-

established findings of description-based decision-making tasks (ex: Kahneman et al.,

1979). For instance, relative to description-based decision-making tasks in the

experiential task, a certain outcome was less attractive than the uncertain option with

higher expected value. For example, when choice of option A on a computer screen led to

an outcome of $ 4 (.8) or $ 0 (.2) -expected value of $ 3.2- and choice of option B led to a

certain outcome of $ 3, 63 % of the subjects chose A over B. In other words, the option

with the higher expected value but also with a higher risk of gaining nothing was chosen

more than half the time over an option that yields a lower outcome. By contrast, the

percentage of subjects who were reported to choose alternative A over B in Kahneman et

al. (1979) was 20 %.  Further, there was a stronger risk aversion tendency in the loss

domain than in the gain domain. Note that, this contrasts with the pattern predicted by the

value functions; that is risk aversion over the gains and risk seeking over losses. Lastly,

in the experiential tasks, the rare outcomes were found to be underweighted. Barron et al.

concluded that their findings were consistent with underweighting of low probabilities in

decisions from experience (increasing A’s attractiveness), which contrasted with

overweighting of low probabilities in decisions from descriptions (decreasing A’s

attractiveness). This particular finding is inconsistent with the non-linear function relating

subjective and objective probabilities stated by the Prospect Theory. Consequently, in the

experiential tasks subjects were closer to maximizing their gain compared to subjects

tested in classical decision-making tasks with described rather than experienced

outcomes.

The authors explained these findings by a simple model that assumed a tendency
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to rely on recent outcomes (e.g. weighting information as a function of temporal

proximity) in decision-making. Thus, their model explained the underweighting of rare

events by their tendency to be underrepresented in the small samples of recent outcomes

that subjects tend to rely on. On the other hand, in description-based tasks, since all

information is presented in a single number containing no temporal sequence prior to

decision, one cannot talk about such a recency (or any other time-dependent) effect in

those tasks.

Hertwig et al. (2004) conducted a follow-up experiment. In their experiment, one

group of subjects were given descriptions of prospects while the other group experienced

the outcomes and likelihoods directly. Their findings were consistent with those of

Barron et al. (2003); 88 % of subjects in the experience group chose the option with

higher expected value while it was chosen by 36 % of subjects in the description group.

We emphasize that the preference for such a prospect was reported to be 20 % in

Kahneman et al. (1979). Thus, their results also supported underweighting of low

probabilities in experiential tasks. Hertwig et al. used the sampling paradigm in their

experiments. In their experiment, the subjects were given two different options with

different outcome distributions. They were allowed to draw samples from both options.

After sampling from both options, the subject was asked to choose one across two

options. After they made their choice, they moved on to a different pair of options with

new payoff distributions. This is different from making repeated choices across same

options with non-changing payoff distributions across trials and getting feedback, as in

Baron et al., (2003). Since underweighting of rare events was also reported in their

sampling paradigm, Hertwig et al. concluded that this phenomenon was due to direct
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experience of outcomes and likelihoods per se rather than repeated decisions.

Weber et al. (2004) also focused on the differences between decisions derived

from descriptions versus experience using a more extensive group of subjects and

analyses. Work of Weber et al. (2004) contained the meta-analysis of human classical

decision-making and non-human animal foraging data derived from work of Shafir

(2000). The data considered in the meta-analysis of animal data were gathered from

wasps, bees, fish and birds. In each experiment analyzed, the subjects had to choose

between an option that provided a constant reward or an option that provided a variable

reward, whose expected value was equal to the constant reward. Since expected values

were constant within each variable-constant reward pair, the choice of the constant

reward was claimed to be a function of variance in the variable reward. Consistent with

this reasoning, Barron et al. (2003) reported lower cumulative gains (farther from the

maximum possible gain) with higher payoff variability.

Barron’s reasoning regarding this fact was that the subjects had a less accurate

estimation of the actual expected values with higher payoff variability. On the other hand,

Shafir’s (2000) analysis of animal data additionally showed that coefficient of variation

(CV), which was computed by dividing the standard deviation of outcomes by their

expected value, was a better statistical predictor of proportion of risky choices/risk

sensitivity than variance (or the standard deviation which are un-standardized measures)

and expected value. Basically, his analyses of animals’ risky choice data suggested that

animals were using the CV as the measure of risk. In particular, Shafir’s analysis showed

that when the expected value exceeded the required caloric intake, larger CV was

associated with greater risk aversion, while when it was below the required caloric intake,
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it was associated with risk seeking.

Other theories such as Scalar Utility Theory (see Marsh & Kacelnik, 2002;

Kacelnik and Bateson, 1996) similarly predict that risk sensitivity should be a function of

CV rather than un-standardized measures such as outcome variance or standard deviation.

This theory suggests that each magnitude is represented by a Gaussian probability density

function and in these representations standard deviation and mean are proportional. In

other words, like Scalar Expectancy Theory (Gibbon, 1977), the Scalar Utility Model

assumes that CV remains constant in the representation of different perceived or

estimated outcomes, in accord with Weber’s Law. Based on this basic assumption (along

with further assumptions regarding the representation of risk and choice making, which I

won’t refer to here) CV is assumed to be a better predictor of choice of risky alternatives

than un-standardized measures of variability (Marsh et al., 2002).

In the meta-analysis of human data, Weber et al. (2004) analyzed those choice

situations that were similar to animal choice situations analyzed by Shafir (2000). The

nature of choice tasks was the same except that in all 226 situations the information about

outputs and likelihoods were presented to the subject with one-shot descriptions. The

analysis of human data showed that the CV was only a marginally better predictor than

other conventional measures such as variance, particularly in the gain domain. In order to

investigate the cause of this difference between human and non-human animal data,

Weber et al. conducted two experiments. In Experiment 1 human subjects learned

outcome value and probability by experience. They were given 2 decks and allowed to

sample from them until they thought they had a good idea about which deck was the

better one. Once, subjects choose the deck to “gamble” from after a number of draws,
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they moved on to a new pair of decks. In a given pair, one of the decks always contained

a certain output ($ X), while the other deck’s payoffs were variable. The expected values

of pairs were equal. The experimenters chose the pairs such that 3 of the variable payoff

decks had the same variance but different CVs and 3 of the variable payoff decks had the

same CV but different variances.

In Experiment 2, subjects were given full summary information as in classical

decision-making tasks rather than experiencing the outputs and their likelihoods. As a

result of these two experiments, Weber et al. found that risk sensitivity in humans and

non-human animals had common characteristics, such as CV being a better predictor of

relative risk of uncertain choice alternatives than (un-standardized) variance or standard

deviation. More specifically, they found that risk aversion increased with CV rather than

variance or standard deviation. However, interestingly this was found to be true more for

Experiment 1 rather than Experiment 2. Based on this difference across tasks and

consistent with the interpretation of Hertwig et al. (2004), Weber et al. concluded that it

may be the experiential processes per se that might have contributed to a stronger

relationship between CV and risk sensitivity. This resembles the similarity between

human and non-human animals in the psychophysical properties of representation of

discrete quantities, when counting is done non-verbally. Similarly, in the case of verbal

counting these psychophysical properties change and similarities disappear (see Cordes,

Gelman, Gallistel, & Whalen, 2001). More specifically, in the case of non-verbal

counting one observes scalar variability, which is common to human and non-human

animals’ representation of numerosities (see Mechner, 1958). On the other hand, in the
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case of verbal counting one observes binomial variability rather than scalar variability

(Cordes et al., 2001).

Based on these findings, we can conclude that when information about external

uncertainty is gathered through experience/feedback the violation of normative reasoning

about probabilities observed with explicit external uncertainty (uncertainty

communicated with one-shot descriptions) diminishes. Therefore, humans are closer to

maximizing expected gain, when their decisions are based on experience of different

risky alternatives rather than on their descriptions. Further analyses of Weber et al. and

Shafir showed that in experiential cases, human decision-making resembles non-human

animal decision-making more closely in terms of the quantitative properties underlying

decision-making processes.

In the cases presented up to now, presented explicitly or directly experienced, the

uncertainty was in the outer world, external to the observer. We did not discuss the

representational state or state of any other system in the Observer in any of these cases. A

different kind of uncertainty we will consider is the intrinsic uncertainty that is due to the

representational state or state of the motor system of the observer. In other words, this

second form of uncertainty is due to the stochastic processes that may underlie the

representational system in capturing physical attributes and/or the implementational

system in acting on the physical world (e.g. motor system). Regarding the

representational side of the coin, signatures of uncertainty is a well-studied aspect of

preverbal representations of quantities such as time, number, space, area, length, etc.

These studies using different psychophysical tasks have shown that scalar variability is a

prominent signature of these magnitude representations (e.g. Whalen, Gallistel, &
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Gelman, 1999). The scalar nature of uncertainty is assumed to be the intrinsic property of

these metric representations. There is no such uncertainty that is intrinsic to the

conventional symbolic forms (e.g. Arabic numerals) representing these quantities. For

instance, the binary representations of quantities (e.g. 3, 4, 10) are equally discriminable

from each other. There is nothing intrinsic in their form that makes 10 more

discriminable from 3 compared to 4. They are just different symbols, 0011 vs. 0100 vs.

1010. The analogue form of these quantities however reflects the distances between these

quantities in their very form (e.g. ------ vs. -------- vs. -------------------- under a linear

model) and for a given level of noise 10 is more discriminable from 3 compared to 4.

This uncertainty would be expected due to stochastic processes in the accumulation (e.g.

timing) or retrieval of this information. Internal uncertainty may alternatively be due to

other processes that utilize representations. Under this alternative, the representational

system can be assumed to be noise-free while some form of noise can be assumed to be

introduced at the level at which these representations are put to use (such as the motor

system using spatial representations). Lastly, intrinsic uncertainty may very well be

jointly due to representational and execution system of the organism.

For either case in this second form of noise, uncertainty is intrinsic to the

Observer and it can be derived from experience through a form of feedback. This would

basically be the information gathered regarding the discrepancy between what one

represents (or aims to implement) and its observed extension in the real world when the

representation is put in use. This form of uncertainty does not require one to explicitly

(e.g. verbally) represent the noise. On the contrary, almost in all such cases it may be

very hard to communicate it to another agent. However, one can intuitively tell that this
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form of uncertainty could be much more accessible to our cognitive system as the input

of uncertainty, since the form of representation of this noise itself may be more suitable

(or relevant) as instantiations of variables in particular operations of mind. I should again

note that the information regarding this form of uncertainty can be derived from

experience or arguably it can be emulated in one’s mind. On the other hand, it is different

from the experiential cases presented previously since in those cases the uncertainty was

in the World rather than being intrinsic to the Observer.

Our actions derived from our representations usually have consequences. Those

consequences depend on our actual rather than planned actions. Thus in order to be a

successful agent in one’s environment, the processes underlying decisions should take

into account not only the consequences of alternative actions and relevant statistical

properties of the environment s/he lives in, but also the uncertainty intrinsic to the

system. It is this intrinsic uncertainty that causes the discrepancy between what one

represents and its extension in the world or what one aims at and what it achieves.

Recently, some researchers (Maloney, Trommershäuser, & Landy, 2006;

Trommershäuser, Maloney, & Landy, 2003a; 2003b) have developed motor tasks that

focus on intrinsic uncertainty. These tasks are computationally as complex as the tasks

reported in classical decision-making tasks (see Kahneman et al., 1979) regarding the

optimal / normative solution. They involved magnitudes and uncertainty and required

their combination for the normative/optimal solution, as in Kahneman and Tversky’s

tasks. However, in these tasks the uncertainty in the task was introduced naturally by the

intrinsic noise in the subject’s motor system rather than from a source external to the

subject.
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Subjects were presented with a number of circular reward and penalty regions at

different configurations and amounts of overlap between them (see Figure 1.2 for

examples). The subjects’ task was to hit a reward region trying to avoid the overlapping

penalty region within a limited amount of time. They were rewarded for touching the

reward region within the critical duration by the amount associated with that region and

penalized for touching the penalty region by the amount associated with that region.

When they touched the overlapping region, the subjects were rewarded with the sum of

amounts associated with the two regions. If the subjects touched the configuration later

than the critical period (700 ms), they were penalized by a huge amount (time-out

penalty). The subjects tried to maximize their gain. Basically, in these tasks the decision

was made about where to aim in the configuration in order to maximize gain. Subjects

were tested over many trials in these experiments.

Figure 1.2. Illustration of stimuli used in motor planning tasks (Trommershäuser
et al. 2003a, 2003b).

The response time constraint in these tasks ensured a level of variability in motor

responses due to the speed-accuracy trade-off associated with pointing. This assumption

is based on Fitts’ Law, which is a prominent model of human psychomotor behavior

(Fitts, 1954).  It predicts the rapid aimed movements based on time and distance
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parameters. Fitts’ Law says that movement time (

€ 

T ) is a logarithmic function of distance

(

€ 

D) when target width (

€ 

W ) is constant or is a logarithmic function of target size when

distance is constant.

€ 

T = a +b log2 (D /W +1)

where 

€ 

a  and 

€ 

b  are empirical constants. Taking 

€ 

log2 (D /W +1) as index of movement

difficulty, the formula can be rewritten as 

€ 

T = a +bDI , 

€ 

DI  being the index of movement

difficulty.

Harris & Wolpert (1998) discussed Fitts’ law in terms of variability. They

predicted a speed/accuracy tradeoff (Fitts, 1954) by signal-dependent noise that increases

as a function of neural control-signals. Since control-signals would be larger in faster

movements, the signal-dependent noise that deviates the trajectories from the desired path

would increase. They claimed that accuracy could be increased by moving slowly since it

would require smaller control-signals. Indeed, in their experiment they found that humans

chose trajectories that minimized variability in the final position of arm, which predicts

the speed-accuracy trade-off for a given level of accuracy or a given speed of movement.

Under this reasoning, imposing a response time constraint to the task (constraining 

€ 

T

parameter in the formula above), Maloney et al. (2006) and Trommershäuser et al.

(2003a, 2003b) ensured a level of variance in the pointing behavior (intrinsic

uncertainty).

There are two important aspects of these motor tasks, external rewards and

penalties related to each action and uncertainty in the motor implementation of a strategy

chosen by the decision-maker. By defining decision-making under risk as decision

making when one has access to the probabilities induced by each possible strategy, these
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tasks can be considered as tasks of decision-making under risk. This assumes that the

subjects anticipate the uncertainty in their movement (Maloney et al., 2006). Thus, these

motor planning tasks resemble those cases used in classical decision-making tasks. As

classical decision-making tasks involved normative verbal solutions, the motor tasks

described above also involved normative solutions in terms of where to aim in the

configuration. The normative solution in these tasks is defined as the mean movement

end-point that would maximize the gain. The interesting point about the normative

solution to these motor problems is that the dependence of normative solution on the task

parameters such as payoff matrix, degree of overlap between regions, geometry of the

regions is mediated by the degree of variability in subject’s motor system.

In order to predict the optimum point of responding in these tasks,

Trommershäuser et al. (2003a, 2003b) developed an optimal movement planner1. This

model was based on the principles of Statistical Decision Theory (SDT). SDT is a

normative model, in the sense that using its principles one can gather strategies that

                                                  
1 In the optimal movement planner, the expected gain of the motor strategy in these tasks
was calculated in the following form:

           Γ(S) = 

€ 

i= 0

N

∑ Gi P(Ri | S) + Gtimeout P(timeout | S) + λB(S)

where P(Ri | S) is the probability of hitting Ri given the strategy (S) before timeout, λB(S)
is the biomechanical gain function and P(timeout | S) is the probability that a strategy will
exceed the time limit. The last two parameters can be considered as being constant across
different trials and therefore the formula above can be reduced to:

Γ(S) = 

€ 

i= 0

N

∑ Gi P(Ri | S)

where the probability of hitting target region (Ri) given strategy (S) is computed in the
following way:

                        P(Ri | S) = 

€ 

Ri,timeout∫ P(τ | S)dτ

where “Ri , timeout” is the trajectories that pass through Ri at some point in time in
between the start of trial and timeout. Basically, according to this model, the consequence
of S is the probability density assigned to possible trajectories, P(τ | S) .
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minimize loss and maximize gain (Maloney, 2002). SDT assumes two parties, Observer

and World. The Observer, who should choose between a number of actions, is viewed as

an imperfect gatherer of information regarding the true state of the world. S/he acts upon

the world and is rewarded or penalized as a result of the true state of the world and

his/her actions. The Observer tries not only to estimate the true state of the world (the

geometry of the circles-where they are and how they overlap—and the points to be

obtained or lost) but also to maximize gain. Briefly, SDT tells which actions to choose

from a possible set of actions given the information the observer has about the state world

in order to maximize the gain.

Uncertainty that is a determinant of the prediction of SDT can either be viewed as

uncertainty in the knowledge of the true state of the world (e.g. How long it took you to

read the paragraph up to here?) or in the process that acts on the world (e.g. Touch the

exclamation mark within 700 msecs! Where did you actually end up touching? I assume

that you have normal or corrected vision) or both. For an in-depth conceptual and formal

treatment of statistical decision making theory reader can refer to Maloney (2002) and

Mamassian, Landy, & Maloney (2001).

In the motor planning tasks used by these researchers, the payoff matrix was well

defined in terms of the location of stationary objects, their geometry and the degree of

overlap between them. The uncertainty was considered to be in the functioning of the

motor system that executed the action (pointing on the computer screen) given an aim

point that was computed by the cognitive system (which was not attributed any

uncertainty). In their optimal movement planner, Trommershäuser et al. (2003a, 2003b)

estimated the motor variability of individual subjects from their pointing data. Then using
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the estimate of this empirical variability, stimulus configurations and the payoff matrix as

parameters of their model, they estimated the optimal point of responding (optimal mean

movement end point). For the in-depth formal treatment of the model, see

Trommershäuser et al. (2003a, 2003b). Thus, the predictive power of this model largely

depended on the degree of accuracy in modeling subject’s uncertainty. In their model

(developed for the motor task), uncertainty was defined by the standard deviation of the

Gaussian that is equal in all directions (isotropic).

This model of uncertainty was based on the empirical findings that once the

subjects were practiced, the movement end points were distributed around the mean end

point as an isotropic bivariate Gaussian distribution. The isotropic nature of the

uncertainty about where a point will end reduces the problem to a single dimension. This

dimension is the line connecting the centers of the reward and penalty circles in

configurations containing two regions. In configurations containing more than one

penalty region, this dimension can be generalized to the geometrical symmetry axis (but

see Wu, Trommershäuser, Maloney and Landy, 2006 for cases in which the problem does

not reduce to the geometrical symmetry axis).

In order to illustrate the behavior of optimal movement planner under these

conditions, we simulated the performance of hypothetical optimal subjects under three

different payoff matrices (+100 vs. 0, +100 vs. –100, +100 vs. –500), four different levels

of motor variability (σ = 4, 8, 14, and 20 pixels) and a single degree of overlap between

two regions (see Figure 1.3). In Figure 1.3, the green and red circles represent the reward

and penalty regions, respectively. The payoff associated with each of these regions is

presented via numerals (white for rewards and black for penalties) within the
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corresponding region. The payoff of the intersection area between reward and penalty

regions is the sum of the reward and the penalty (signed). The blue dots represent the

4000 movement end points of the hypothetical optimal subject with different levels of

motor variability (modeled as isotropic Gaussian distribution).

As one can see, when the penalty associated with the penalty region is 0, no

matter how variable the subject’s motor variability is, the optimum point of responding is

always the center of the reward circle. As one increases the penalty of hitting the penalty

region (from top to bottom panels) and/or as one increases the motor variability when the

penalty of hitting the penalty region is larger than 0 (from left to right panels for two

bottom panels), the optimum point of responding moves to the left, namely farther away

from the penalty region.

Trommershäuser et al. (2003a, 2003b) and Maloney et al. (2006) reported that

their subjects responded consistently with the predictions of optimal movement-planning

model2. Namely, they performed optimally or near optimally in these kinds of motor

planning tasks by aiming at a point that maximized the expected gain given the

configuration. Overall, subjects’ responses were found to be within 8% of optimal

responding (also see Trommershäuser, Landy, & Maloney, 2006). The standard deviation

in the distribution of points about their mean was nearly constant across different

conditions.

The high correspondence between the model’s prediction and subjects’

performance suggests that subjects too should have used stimulus configurations,

                                                  
2 Optimal movement planner also predicts shifts as a degree of overlap between reward
and penalty regions, which was not demonstrated in our simulation. This prediction of the
model was also supported by the empirical data.
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rewards/penalties and the estimate of their own motor uncertainty while planning their

actions. Consistent with these findings, in a simpler task and using simpler measures Fitts

and Petersen (1964) also showed that humans take account of their sensori-motor

variability when they are planning their movements. Consistent with the overall findings,

as suggested above the speed/accuracy tradeoff reported by Fitts et al. (1964) and Harris

et al. (1998) also suggested that humans take into account their sensori-motor variability

while planning their movements. I should again note that the time constraint imposed on

the motor task was based on this very relation between movement time and accuracy.

Further studies that used the same task showed that the motor system could also

take appropriate account of task-relevant variability that is introduced externally (e.g.

Trommershäuser, Gepshtein, Maloney, Landy and Banks, 2005). In these experiments,

subjects estimated the new variability (introduced by the experimenters on the touch

screen monitor) in less than 120 trials and adjusted their mean movement end point

optimally in order to compensate for the increase in the task relevant variability. They

were further found to use this new estimate in novel situations (see also Trommershäuser

et al., 2003b). The one condition in which subjects deviated from the optimal point was

when the optimal mean end point predicted by the model was outside the target circle.

Evidently, subjects view aiming outside the reward circle as violating the instructions or

the definition of the task.

The optimal performance of subjects in the decision-making tasks that involved

intrinsic uncertainty was also observed when they were asked to choose between two

configurations with different expected gains and presented simultaneously

(Trommershäuser et al., 2006). In a majority of the trials subjects preferred the
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configurations with higher expected gains within a very short amount of time (less than

700 msec). The expected gains from different configurations were again determined

taking into account empirical noise gathered from each subjects’ pointing data. These

results suggested that movement under risk is based on very rapid judgments regarding

the expected gain of different configurations and that these judgments are based on the

internal ordering of the configurations derived from the estimates of expected gain for

each configuration. The rapidity of this process was further demonstrated by the findings

of Trommershäuser, Mattis, Landy, & Maloney (2006). Their results showed that humans

could optimally integrate the relevant reward information into their movement plan

within 200 to 400 msecs prior to the end of actions (also see Smyrnis, Evdokimidis,

Constantinidis and Kastrinakis, 2000).

Another interesting finding of this experiment was that while subjects were

choosing between simultaneously presented configurations, the mean end point of their

selection movement was indeed the point, which maximized the expected gain. In terms

of the task involved in Trommershäuser et al. (2006), which is choosing between two

simultaneously presented configurations, this experiment is more comparable to classical

decision-making tasks3. Under this reasoning, consistent with earlier findings this study

showed that humans could be optimal decision-makers also in selection tasks when they

involve intrinsic probabilities contrasting with their sub-optimal performance in choosing

                                                  
3 Each configuration that constitutes an alternative in subject’s selection task can be
viewed as a lottery for a given strategy (S): “ L(S) = (P(R1|S), G1; P(R2|S), G2; P(R3|S),
G3; P(R4|S), G4) ” (Trommershäuser et al. 2006, pg. 983) where P(Ri|S) is the probability
of hitting the ith region and Gi is the gain associated with that region. Here, subject’s task
is not only to plan the optimal strategy, which can also be viewed as choosing from
infinite number of lotteries given a configuration but also to choose between different
configurations (lotteries).
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between risky prospects defined by described extrinsic probabilities.

Figure 1.3. Movement end points of hypothetical optimal decision-makers with
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different task parameters and motor variability. Green and Red circles are reward
and penalty regions, respectively which are associated with payoffs indicated
within them. The expected gain from the intersection of two circles is the sum of
the reward and penalty (signed). Blue dots represent 4000 movement end points
of hypothetical optimal decision-makers with different levels of motor
uncertainty.

Briefly, contrary to the non-normative decision-making phenomena demonstrated

with classical decision-making tasks, human subjects were found to be normative in the

tasks involving intrinsic uncertainty. In order to explain these findings, Trommershäuser

and her colleagues basically assumed that in choosing a visuo-motor strategy, the system

imposes a probability density on the possible movement trajectories that could occur once

the strategy is implemented. Payoff is calculated based on the distribution of anticipated

end points and penalty/reward magnitudes. Thus, the expected cost is minimized by

taking into account the magnitude of penalties and rewards and the probability of having

them, which is defined by the intrinsic uncertainty.

Overall, these findings showed that subjects could represent their intrinsic

movement uncertainty, update these estimates when external factors increased task

relevant variability, and take this it into account when planning their movement and

selecting in between different configurations. Considering that the consequences are

determined as a function of one’s actual responses rather than the aimed ones, this set of

faculties in dealing with the stochastic nature of motor actions (intrinsic uncertainty) is a

necessity to maximize the gain, which human subjects were found to entertain. On the

other hand, we also saw that there may be some factors such as the tendency to stay in the

target region or delay in gathering task-relevant information during movement that may

impose non-normative constraints on the decision-making process.
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Recently, Hudson, Maloney, and Landy (under review) tested decision-making in

the domain of motor timing under symmetrical and asymmetrical payoff matrices.  In

their experiment, the subjects were asked to touch a spatial target within a target temporal

window. If they could touch the spatial target within the temporal window, they were

rewarded and if they touched the spatial target within the penalty temporal window or

failed to touch the spatial target, they were penalized. In addition to the spatial target,

subjects were presented with a timer bar that indicated the rewarded and penalized

temporal windows. The experimenter also added a 25 ms of noise to the temporal end

points. They found that their subjects could correctly estimate the temporal uncertainty in

their motor system and compensate for it along with the experimentally imposed

temporal uncertainty. They further anticipate how this uncertainty they estimate interacts

with the rewards and penalties associated with different temporal points. Briefly, these

results showed that similar to decision-making in the spatial domain, subjects were

optimal decision-makers in timing their responses in ms range. Note that the

experimenters tested the motor-timing in this experiment, that is temporal uncertainty

inherent in the motor system.

At this point, we have discussed two types of uncertainty; described and

experienced & extrinsic and intrinsic. The type of uncertainty in Kahneman and Tversky

tasks were described extrinsic; they were chosen and communicated to the subjects by the

experimenter. On the other hand, the type of uncertainty in the motor planning tasks was

intrinsic and experience-based. Considering the studies reported here we can say that

humans cannot reason normatively under risky situations when the risk is determined by

described information about probability distributions while they are optimal when the
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source of uncertainty is intrinsic. However, this discrepancy across conditions is derived

from the findings of independent experiments.

A further attempt focused on testing the decision-making with intrinsic and

described extrinsic uncertainty in a single task. In this experiment (Maloney,

Trommershäuser, & Landy, 2006), in addition to intrinsic motor variability, the

experimenters introduced explicit probability cases (see Figure 1.4). The results of this

experiment showed that the performance of subjects was near optimal when the

uncertainty originated solely from their own motor system (intrinsic probability) and thus

under certainty conditions. On the other hand, their performance was sub-optimal when

external uncertainty about rewards and penalties was introduced verbally (described

extrinsic uncertainty) representing classical pencil and paper decision-making tasks

(Maloney, et al., 2006).

Figure 1.4. Certain and stochastic configurations used in Maloney et al. (2006).
Dashed vs. Solid circles represent certainty vs. probabilistic (p=.5) consequences,
respectively. Shaded vs. White circles represent reward vs. penalty regions,
respectively. Figure is adapted from Maloney et al. (2006, pg. 308).

    Certainty          Reward 50%

 Penalty 50%              Both 50%
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On the other hand, as stated earlier, Barron et al. (2003), Hertwig et al. (2004) and

Weber et al. (2004) found that subjects who experienced outcomes and probabilities were

closer to maximizing their gain than when they were presented with the information

explicitly. Note that in Maloney et al., although subjects were told about the uncertainty

conditions they were also experiencing the stochastic cases by getting feedback for their

pointing responses for a number of trials (36). Given the findings reported by Barron et

al., Hertwig et al., and Weber et al. and that subjects experienced extrinsic uncertainty in

Maloney et al., one might expect that the introduction of extrinsic probabilities should not

have disrupted their near optimal performance originally observed in certainty conditions.

There are several possibilities that may have caused this discrepancy from optimal

responding individually or jointly. Firstly, even though they may be closer to maximizing

gain by experiencing the uncertainty, humans might never be optimal decision-makers

when uncertainty is extrinsic. Consequently, when external uncertainties are introduced

(regardless of their being described or experienced) to tasks where humans are known to

be optimal, extrinsic uncertainties may result in sub-optimal performance. A second

possibility is that experiencing extrinsic uncertainty may result in accurate representation

of those probabilities; however, this information may not refer to a built-in variable in

motor planning that defines the task in this experiment. The third possibility is the

subjects might exhibit optimal responding after they have an accurate estimate of

extrinsic probabilities (later in the block) however, the analyses considered the data as a

uniform set. In either case, the results of this particular study consistent with classical

decision-making tasks reveal non-optimality of humans in representing/integrating

extrinsic uncertainties.
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Maloney et al. (2006) further discussed the fact that classical pencil and paper

decision making tasks do not resemble most real life situations; Information is presented

in numeric or graphical format and the subjects are not given any justification regarding

the state of affairs. There is a limited number of alternatives and there is no time

constraint imposed on the subjects. The authors concluded that paper and pencil tasks

don’t resemble most of our daily situations and that “… the human capacity for decision

making bears the same relation to the economic tasks of classical decision making as

human language competence bears to solving the Sunday crossword puzzle.” (pg. 26)

The optimality of decision-making performance in tasks that involved

intrinsic/motor uncertainty motivated us to investigate the same question in the temporal

domain where the intrinsic uncertainty originates from the representation of temporal

intervals. Also, the discrepancy of performance in the processing of intrinsic vs. extrinsic

uncertainties in the literature motivated us to investigate performance under these two

types of uncertainties separately and jointly. Briefly, in this research, we investigated

statistical decision-making that involves intrinsic and extrinsic uncertainty and different

payoff matrices in the temporal domain. Different from most of the research done in this

area, in this research we used both human and non-human subjects in the same task.

Before presenting the details, it would be informative to talk about the implications of

this research for different conceptual frameworks in contemporary psychology. In the

following section we will talk about two main frameworks that are used in order to

explain mental phenomena.
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SECTION 2

INFORMATION-PROCESSING vs. ASSOCIATIONIST FRAMEWORKS

As reported in Section 1, risk assessment can be investigated in both humans and

animals (e.g. Shafir, 2000). In the case of humans, information processing is a natural

explanatory approach to this process under the assumptions of contemporary

psychophysics. When this very question is transformed to animal learning however, one

comes across a different approach, namely the associative learning. These approaches are

the two sides of a major theoretical controversy regarding the functional architecture of

mind. Exploiting its translational nature, in this research we used risk assessment as the

cognitive context in which we compared and contrasted these two explanatory

approaches. In specific, we tested and compared the performance of representational /

computational and associative learning models in accounting for the quantitative and

qualitative properties of the empirical data (gathered with a simple decision-making task

with well-defined task relevant parameters).

A point of considerable interest –and one that motivates our contrastive modeling-

is that the associative learning approach tries to minimize or even eliminate the

representational assumptions that are inherent in information-processing models. Thus, in

using both associative and information-processing models, we focus on the role of

representational assumptions and the question whether they can be dispensed with. This

question makes particular sense in cognitive science as it relates to the question of

representational power needed to explain the cognitive processes. In the following

subsection, we present the major differences between these two approaches to cognition.
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2.1. Major Differences between two Approaches

The associative learning approach is different from representational /

computational approach to mental phenomena in the sense that although different factors

determine association formation and its strength, the associations do not encode any of

the information that goes into the conditioning experience and the associations cannot be

put into combinatorial operations. Briefly, according to these models conditioning

process does not operate at the level of information but at the level of independent trials.

It is the events rather than information that increment the associative values (see Gallistel,

2002 for further discussion). Under this view, associations cannot be treated as symbols

since symbols contain information and can be put into combinatorial operations to form

new ones. On the other hand, from an information processing point of view, conditioning

is a mental phenomenon that is driven by information. Thus, in computational

(information-processing) models of conditioning (Gallistel & Gibbon, 2000; Gibbon,

1977) the agent encodes the information that goes into conditioning experience such as

the interval between events, puts them into combinatorial operations and use this

information in order to decide for instance when to respond.

As one can note, the assumptions of computational view is fairly different from

the associative learning framework. The computational view assumes a read-write

memory, which encodes the information about the conditioning experience. Under this

view, information encoded in the memory can be further put into combinatorial

operations to generate new representations. Thus information-processing view of mental

processes have two important components, namely representation and operation (input 

representation  processing  output). Representations can be defined as mapping of
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information and relations in the world to symbols in the mind. They are encoded,

modified and updated in the read-write memory. They are selective in terms of the

information they contain such that from a single experience, one can end up many

representations each of which refers to different attribute of the experience. These

symbolic representations can be put into combinatorial operations, which constitutes the

computational part of this framework.

The optimal movement planner developed by Trommershäuser and colleagues

represents an information-processing (or representational/ computational) model for a

cognitive process. In their model, subjects are assumed to represent the metric properties

of the surface area they are responding upon, the payoff matrix associated with different

areas of this surface, internal uncertainty that originates from the sensory-motor system

and extrinsic uncertainty that is imposed by the experimenters. Further, their model

assumes that subjects could arithmetically integrate the information they represent, which

results in empirical approximation to the optimal decision-maker (except in the case of

integrating extrinsic uncertainty). Thus their optimal movement model satisfies both the

representational and computational assumptions of the information-processing

framework.

This framework is supported by the lack of convergence to the optimal point of

responding over the course of trials, which would emerge if the subject randomly chooses

a strategy and through rewards and penalties s/he adjusts her/his response over trials to

maximize the gain. When Trommershäuser et al. (2003b) examined the end points over

successive trials, they found that end points randomly fluctuated with constant variability

around the mean – the optimal point of responding itself. This pattern of responding
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shows that subjects solved the optimization problem from the very start of the experiment

such that their course to the optimum solution was not charted from the empirical data.

Consequently, having such a nature of responding over trials falsifies the reinforcement-

learning explanation for subjects’ performance. In the following section, we will

introduce the basics of associative learning approach.

2.2. Basics of Associative Learning Approach:

Experimental psychology has been dominated by theories of learning that adopt

associative processes as the main underlying mechanism of “mental phenomena”. This

influence started with Pavlov’s experiments who found that previously neutral stimulus

elicits conditioned response when it is repeatedly paired with unconditioned (intrinsically

reinforcing or penalizing) stimuli (1927, 1928). This conditioned response represents the

unconditioned response that unconditioned stimulus would normally elicit (such as

salivation, freezing, etc.).  Earlier than Pavlov, Thorndike in United States found that a

response that resulted in pleasant outcome was more likely to occur again in future while

a response that resulted in unpleasant outcome was less likely to occur again in future

(1911). This latter phenomenon is called the “law of effect”. The former experimental

phenomenon is referred to as classical or Pavlovian conditioning and the latter one is

referred to as operant, instrumental or Thordikean conditioning.

Based on these experimental phenomena, experimental psychology in between

30s and 50s was dominated by animal learning research and theories that adopted an

associative learning framework (Hull, Skinner, Spence, Tolman, Rescorla & Wagner). In

the second half of the 20th century, the associative framework was to a substantial extent

replaced by information-processing framework in the area of human psychology, while it
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continued to be a dominant framework in the area of animal learning. Recently the

associative learning regained interest from researchers and theoreticians in the area of

neuroscience and cognitive science (i.e. connectionist models). This resurrected form of

associative learning theories tries to explain complex cognitive phenomena ranging from

grammar acquisition to visual perception via associative processes. In this zeitgeist, it is

important to consider this framework in modeling simpler cognitive phenomena.

Although classical and operant conditioning involve different events (CS  US

and RESPONSE  REINFORCER, respectively), the elementary rules that govern the

association formation in both cases are virtually same. Regarding classical conditioning,

associative-learning models assume that upon experiencing CS-US contingencies, an

association occurs between their “representations” (or “traces”). Therefore, later when the

representation of CS is activated also the representation of US is activated. The logic that

underlies stimulus-stimulus or stimulus-outcome associations (Pavlovian/classical

conditioning) also applies to response-outcome associations, which is as mentioned

above called “law of effect” (Thorndike, 1911). This simple principle was used in

explaining operant conditioning as well. Under this view, it is assumed that an

association is formed between operant response and its consequence(s) and the

discriminative stimulus signals the validity of these associations.

According to associative learning models, learning emerges through basic rules

that refer to the relation between the occurrences of events or stimuli. The primary law of

association formation was considered to be the law of contiguity. This law states that two

events are associated when they co-occur in space and time, that is there has to be a

temporal pairing between CS-US. This law suggests that there is a critical temporal
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window during which association between the “paired” stimuli can occur. This view also

directs most neurobiological investigations of learning (Gluck & Thompson, 1987;

Hawkins & Kandel, 1984; Fanselow, 1993). For instance, in neurobiology associations

are explained by the temporal pairing of pre and post-synaptic activity (Gallistel &

Gibbon, 2001).

Secondary laws of associative learning determine how strong the association will

be. These secondary laws include the frequency, duration, recency and saliency of the co-

occurrences. For instance, the associative strength between the representations of CS and

US is claimed to increase as a function of the number of times the CS-US contingency is

experienced.

Given the commonality of the rules that govern classical and operant

conditioning, we will explain the functioning of the associative learning models via an

associative learning rule that is well-accepted in explaining classical conditioning,

namely Rescorla-Wagner model (Rescorla & Wagner, 1972; Wagner & Rescorla, 1972)

for adjusting the strength of an association. This formula has been called the general

linear model (Yeschiam & Busemeyer, 2005) because of the frequency with which it has

been employed in the quantitative modeling of the associative learning process.

€ 

ΔV = cij (US −V )

€ 

Vnew =Vold +ΔV = (1−α)Vold +αUS

where 

€ 

V  is the current strength of the association between CS and US, ΔV is the change

in the associative value of the CS during a trial, α represents the learning rate (0<α<1),

and US is 1 or 0 depending on whether the CS is or is not followed by a US on any given
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trial. We used this formula in adjusting the associative weights of CS in our associative

models of the process underlying.

Note that according these models the effect of increments (when US = 1) is

relatively higher when the weight of CS is relatively low and the effect of decrements

(when US = 0) is relatively higher when the weight of CS is relatively high. This

quantitative property of the model has been used to explaining the traditional learning

curve (logarithmically increasing – see Figure 8.1 for examples), which has been

empirically and conceptually challenged by Papachristos & Gallistel (2005).

In order to compare the performance of these opposing frameworks, we ran

simulations that executed associative learning algorithms with different levels of

substitution for representational power.  In our task, the representational power refers to

encoding of different information about multiple task relevant attributes. One of the

critical task relevant attributes was the temporal interval. For instance, for a system that

does not represent temporal intervals, there is no information that would aid the system to

constrain its actions as a function of a temporal reference point. On the other hand, if the

system could represent temporal intervals, it would know where its actions fall on the

time line with respect to other events.  One should note that the metric representation of

temporal interval not only involves defining/constraining the action space but also gives a

signed parametric redirection to the actions, as a function of their consequences. For

instance, if one gets penalized for being late, with the representation of time that agent

would have the information that would aid him/her to be earlier next time (if s/he wants

to avoid the penalty). Another attribute of the task that would require representational

power for maximizing the gain is the representation of the magnitudes of reward and
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penalties. For a system that cannot represent these magnitudes, any magnitude of reward

or penalty would have the same effect on the association that involves constituents of that

particular experience (except the sign of change in the form of increment or decrement by

a multiplicative factor). We will be simulating these associative models and investigate

their behavior given different levels of substitution for representational power with

respect to empirical data.
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SECTION 3

METHOD

3.1. Human Experiment:

Subjects

The subjects were undergraduate student, graduate student, postdoctoral

volunteers at Rutgers University. There were 7 subjects, four males and three females.

The age of subjects ranged between 21 and 34.

Apparatus

The temporal parameters, presentation of the stimulus, and recording of the

responses were controlled with a Macintosh running OS X 10.3.9. The experiments were

written in MATLAB 7.04 using the Psychophysics Toolbox extensions (Brainard, 1997).

Procedure

In the human analogue of switch task, subjects were asked to catch a target that

occurred either on the left side of the screen after a short duration (i.e. 2 seconds) or on

the right side of the screen after a long duration (i.e. 3 seconds). The trial type (short or

long) was not signaled to the subjects and thus subjects relied solely on their sense of

time in deciding where the target might appear. Subjects started responding at the short-

latency location to catch the short referent; when they judged that the short time had

passed without the short-referent appearing, then they switched to the long-latency

location to catch the long referent, assuming that the target would occur on the right side

of the screen. The switch points in the long trials constituted the unit of analysis. The

following section describes the details of the procedure.

Training Phase 1. The appearance of a cross in the middle of the screen signaled
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the onset of a trial, while its disappearance signaled the offset. The duration of a trial

varied unpredictably between two values, 2 or 3 seconds. The subjects were initially

shown the two durations twice and told which one was the short and which one was the

long one. Then they were presented with the short and long durations for 10 trials in a

random order (5 Short and 5 Long trials). The subjects were asked to indicate if the signal

duration they experienced was the short or the long one by pressing “S” and “L” keys,

respectively. The subjects were given feedback immediately after each trial. Wrong

responses were also signaled by a brief tone. This phase ensured that the subjects

learned/re-experienced the reference durations before starting their test trials.

Practice Phase. The task in this phase was exactly the same as in the testing phase.

Any given trial was unpredictably either a short or a long one. If it was a short trial, a

square appeared to the left of the cross 2 seconds after the cross appeared; if it was a long

trial, a square appeared to the right of the cross 3 seconds after the cross appeared. During

each trial, the subject could control a frame by using “V” and “B” keys. When the subject

pressed “V” key the frame would appear to the left of the cross, while it would appear to

the right of the cross when the subject pressed “B” key (see Figure 3.1).

The subjects were instructed to "catch" the square by locating the frame on the

correct side of the screen, namely the side where the target square would appear. The

subjects were told to start a trial with a short response (at the left side of the screen) and

when they thought the short duration has elapsed without an appearance of the target, to

switch to long response (to the right side of the screen). The program prompted an error

message with a relevant explanation (e.g. “Do not start with a long response”, “Do not

release your finger”, “Do not press B after V”) if subject started with a long response, did
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not press any keys and/or switched to short response after long response. If the frame was

to the left of the cross when the square appeared after 2 seconds, it was a hit, while if the

frame was to the right of the cross when the square appeared after 2 seconds it was a miss

(we call this an early switch). Similarly, if the frame was to the right of the cross when

the square appeared after 3 seconds, it was a hit, while if the frame was to the left of the

cross when the square appeared after 3 seconds it was a miss (called late switch). In the

case of a miss the square appeared in red and in the case of a hit the square appeared in

green. The misses were also signaled with a brief tone. 10 trials of training block were

presented to the subjects some of them being short trials and the rest being long trials.

The order of presentation of short and long trials was randomized. The probability of

short and long trials in the training block was equal to the probabilities that were used for

that particular test session. By the nature of the task, the subject could observe his/her

performance. In each trial subjects (re)experienced the critical short and long durations

because the targets would appear either to the left side of the screen after the short

duration or to the right side of the screen after the long duration irrespective of subjects

response4. In this phase, the subjects were expected to form an estimate of their

representational noise in the unlikely event that they did not bring one with them to the

experiment.

Both Training and Practice blocks were presented at the beginning of each

session. This allowed subjects to update their knowledge about the temporal parameters

of the task. In the first session of the experiment, the subjects were presented with an

                                                  
4 In the pointing tasks summarized in the introduction, the estimate of variability was
gathered by the subjects by observing the distance between where they aimed at and
where they hit on the screen (e.g. Maloney et al., 2006; Trommershäuser et al., 2003a;
2003b).



43

animated video that demonstrated different responses in different kinds of trials (short

and long) and their consequences (catching the short and long latency target, early switch

and late switch).

Testing Phase. The design was the same as in the Practice Phase, except that the

subjects were given their trial based and total scores/performance at the end of each trial.

There were two kinds of targets and two ways to present trial-based and cumulative

performance. The target could be a square and the gains and losses could be presented

with numerals. More specifically, when the subject hit or missed the target, s/he was

presented a positive or negative score related to the type of hit and miss, respectively.

Then this score was added to the total score accumulated from the preceding trials.

The target could alternatively be a set of circles. In this case, the trial based

performance was presented with the corresponding number of circles that were color

coded with green and red for rewards and penalties, respectively. The cumulative

performance was presented via a line that got longer with additional rewards and shorter

with additional penalties. If the cumulative performance was below zero the color of the

line was red and if it was above zero the color of the line was green.

The goal of the subject was to maximize his/her score. Experiment was run via

one-hour long daily sessions. In each session, there was a total of 5 blocks, each

consisting of 100 trials. Short and long trials were presented in according to the

predetermined probabilities for that particular session. At the end of every 100th trial, the

subject was prompted to take a break. Subject was also allowed to take a break at the end

of every 10th trial.
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Figure 3.1. Illustration of the human analogue of switch task. The target (i.e.
square) appears to the left of the cross after short duration, while it appears to the
right of the cross after long duration. When the subject catches the target with the
frame, gain associated with being on-time is added to the total gain. Similarly, in
the case of switching late and early, the penalty points associated with switching
late and early are subtracted from the net gain. Gain is presented with letter “G” in
this plot. Gtotal stands for the total score that subject has accumulated since the
beginning of the test session.

There are two parameters, which were varied in the expectation that they would

have an effect on the location of switches with respect to trial time. The following are

two of these parameters that were varied in this particular study.

1) Probability of short and long trials occurring

2) Payoff Matrix: Rewards and penalties associated with hits and misses on the

    two kinds of trials.
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At the beginning of each session, subjects were informed about the payoff matrix

but not the probabilities of different kinds of trials. Thus subjects would gather an

estimate of probability of different trials during test trials. Table 3.1 illustrates the

conditions that arise from the cross-tabulation of these parameters for a short-latency

trial.

Note that in the top-left condition both the probability and reward magnitude

would be expected to favor the long-latency outcome in planning the switch latency. The

bottom-right condition on the other hand, both the probability and reward magnitude

would be expected to favor the short-latency outcome in planning the switch latency.

Specifically, these conditions would be expected to result in relatively early and late

mean switch latencies, respectively.

     Table 3.1. Tabulation of Task Parameters

Relative Magnitude of Short Reward
Low Mag. Equal Mag. High Mag.

Low Prob. Low P. &

Low M.

Low P. &

Equal M.

Low P. &

High M.

Equal Prob. Equal P. &

Low M.

Equal P. &

Equal M.

Equal P. &

High M.
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High Prob. High P. &

Low M.

High P. &

Equal M.

High P. &

High M.

In our human experiment, there was at most a 9-fold difference between the

probabilities (p = 0.1 vs. p = 0.9) and at most a 50-fold difference between the

magnitudes (e.g. -50 vs. –1, 50 vs. 5, -9 vs. –1, 1 vs. 9, 5 vs. 5, etc.). The conditions that
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we used and their expected effects on the switch points are listed in Table 3.2.

     Table 3.2. Task Parameters and Their Expected Effects

Parameters Expected Gain

p(short) = p(long) & Gain(Short) = Gain(Long): Neutral

p(short) = p(long) & Gain(Short) < Gain(Long): Earlier Switch

p(short) = p(long) & Gain(Short) > Gain(Long): Later Switch

p(short) > p(long) & Gain(Short) = Gain(Long): Later Switch

p(short) > p(long) & Gain(Short) < Gain(Long): Neutralized

p(short) > p(long) & Gain(Short) > Gain(Long): Later Switch

p(short) < p(long) & Gain(Short) = Gain(Long): Earlier Switch

p(short) < p(long) & Gain(Short) < Gain(Long): Earlier Switch

p(short) < p(long) & Gain(Short) > Gain(Long): Neutralized

Each condition was tested over 500 trials in a single session. Further, some

conditions were tested twice with both types of targets, namely square vs. set of circles.

Thus, these conditions were tested with both numerical and graphical presentation of

performance. The order of conditions and target types was varied randomly for each

subject. It was only data from the long trials that were analyzed. Therefore, the number of

analyzable trials was less than 500 for each condition. The performance of the subjects

was converted to monetary value and the subjects were notified about the conversion rate.

Table 3.3 summarizes all the experimental conditions and Table 3.4 illustrates the task

conditions tested with individual subjects along with the type of stimulus used. Task

conditions were sorted in a random order for each subject.
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    Table 3.3. Task Conditions Tested

Task
ID

P(short) Reward(short) Reward(Long) Penalty(Early) Penalty(Late)

1 0.1 0 0 1 9
2 0.1 1 9 0 0
3 0.1 1 9 1 9
4 0.1 5 5 0 0
5 0.1 9 1 0 0
6 0.1 9 1 1 9
7 0.5 0 0 1 9
8 0.5 1 9 0 0
9 0.5 1 9 5 5

10 0.5 5 5 0 0
11 0.5 5 5 5 5
12 0.5 9 1 0 0
13 0.5 9 1 9 1
14 0.9 1 9 0 0
15 0.9 5 5 0 0
16 0.9 9 1 0 0
17 0.5 5 5 50 5
18 0.1 5 50 5 5
19 0.5 5 5 1 50
20 0.1 5 1 50 5
21 0.5 9 1 50 5
22 0.5 5 50 9 1
23 0.5 5 50 50 5
24 0.5 5 5 5 50
25 0.1 50 5 5 5
26 0.5 50 5 5 5
27 0.1 9 1 50 1
28 0.1 50 5 50 5

3.2. Mouse Experiment

Subjects

Twelve naïve C57BL/6N female mice (Harlan, Indianapolis IN) were used in this

experiment.  They were eight weeks old upon arrival. The mice were housed individually

in polypropylene cages. The cabinets that held the cages were lit on a 12:12 light/dark

cycle (lights on at 8:00 p.m.).  The experiments were run during the dark cycle. The mice
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were maintained at 85% of their free feeding weight by being fed lab chow after each

session. During the sessions, they were fed 20 mg Noyes food pellets (PJAI-0020) as a

reinforcer. Water was available ad libitum in the home cages and experimental chambers.

Table 3.4. Task Conditions Tested by Subject and Stimulus Type. The numbers represent
the corresponding conditions presented in Table 3.3. For each subject we present the task
condition tested along with the stimulus type used in the session. The order of task
conditions was randomized for each subject (not reflected in Table 3.4). "N" corresponds
to numerical, "G" corresponds to graphical stimulus. NG and GN refer to those cases in
which the subject was tested with the corresponding task condition using both symbolic
and non-symbolic stimulus. The order of G-N pair shows the order in which the stimulus
type was tested relative to the other stimulus type in that particular task condition.

1 7 9 10 12 13 15 16 23 26 28 Task ID
Subject

1
G GN GN GN GN GN G G N N N

Stimulus
Type

1 3 4 5 8 9 10 14 15 16 17 18 19 20 22 Task ID
Subject

2
GN GN GN GN GN GN GN GN GN GN N N N N N

Stimulus
Type

2 3 4 5 6 7 8 12 13 14 Task ID
Subject

3
NG NG NG NG G NG N NG N NG

Stimulus
Type

1 9 10 13 15 16 Task ID
Subject

4
G NG G NG G G

Stimulus
Type

2 3 4 5 6 7 8 12 17 18 23 24 25 Task ID
Subject

5
N N NG NG N N N N N N N N N

Stimulus
Type

11 19 21 27 Task ID
Subject

6
N N N N

Stimulus
Type

1 3 4 5 8 9 10 14 15 16 Task ID
Subject

7
NG NG NG NG NG NG NG NG NG NG

Stimulus
Type
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Apparatus

Six operant chambers (Med Associates, ENV 307-W: 21.6 cm x 17.8 cm x 12.7

cm) inside ventilated, sound attenuated boxes (Med Associates, ENV-018-M: 55.9 cm x

55.9 cm x 35.6 cm) were used in this experiment.  Two opposing sidewalls were made of

metal, the other two, and the ceiling, of clear Plexiglas. Each chamber had a grid floor

with twenty-five evenly spaced metal rungs. Two pellet dispensers (ENV-203-20) were

able to deliver food to two cubic hoppers (Med Associates ENV-203-20, 24mm on each

side) spaced five inches apart on the side wall. On the opposite wall, another cubic

hopper was used to initiate trials. Each hopper was illuminable, and equipped with an

infrared beam that detected nose pokes. Along that same wall, a water bottle protruded

into the chamber.  A white noise generator was able to deliver an 80dB, flat 10-25,000

Hz white noise for programmable durations.  The experiment was controlled by a

software (Med-PC IV, Med Associates) that also logged and time-stamped the

events—the onsets and offsets of interruptions of the IR beams in the station, the onsets

and offsets of white noise and the delivery of food pellets. Event times were recorded

with a resolution of 20 ms.

Procedure

Familiarization. Three days prior to the experiment, the mice were food deprived

to 85% of their free-feeding weight.  In addition, on each of these 3 days the mice were

placed in the experimental chambers for 30 minutes, and five 20 mg Noyes food pellets

(PJAI-0020) were left in their home cages to familiarize them with the pellets used in the

experiment.

Training.  This procedure is an adaptation of the switch paradigm proposed by
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Balci, Papachristos, Gallistel, Brunner, Gibson, Shumyatsky (2007b). The task is

summarized in Figure 3.2. The illumination of the control hopper (the hopper opposite

the two feeding hoppers) signaled that a trial could be initiated. In order to initiate each

trial, the mouse had to poke in this control hopper. This ensured that the mouse was in a

fixed location at the start of every trial. Each trial started with both of the feeding hoppers

illuminated, and with the onset of the white noise.  The hopper lights turned off after a

nose poke on either hole at or after the termination of the noise. The white noise stayed

on for a preprogrammed duration (termed “short” or “long”) with a predetermined

probability.

Each of the two feeding hoppers was associated with either the short or long

duration.  A reward was only delivered if the first nose poke at or after the termination of

the noise was in the appropriate hopper.  After each trial, there was a 30 second fixed

delay plus a variable interval of 60 seconds (drawn from an exponential distribution)

before the next trial could be initiated. There were 3 different phases in which the

probability of a given trial being short were manipulated. Each phase continued until the

performance of the mice stabilized.

Phases One through Three. Our previous results suggested that mice could not

discriminate 1:2 duration ratio when they constitute their initial training set (Balci et al.,

2007b).  Thus, we started out with 1:3 duration ratio, where the short duration was 3

seconds and the long duration was 9 seconds. After training with this pair of temporal

intervals, and after several parameter manipulations (i.e. changing the probability of a

given trial’s occurrence), we decided to reduce the ratio to 1:2; 3 second short trial and a

6 second long trial. This ratio was used throughout the rest of the experiment.
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Figure 3.2. Illustration of switch task as it is used in mice adapted from Balci,
Papachristos, Gallistel, Brunner, Gibson, & Shumyatsky (2007b). Mice self-
initiated their trials by nose poking into the illuminated control hopper (top
panel). Nose poke to the control hopper immediately initiated the auditory
stimulus that signaled the critical temporal interval. A given trial was either a
short-latency (left panel) or a long-latency trial (right panel). In almost all trials,
mice started nose poking into the short-latency hopper. In long trials, somewhere
in between short and long intervals, mice departed from the short-latency hopper
for the long-latency hopper. They received pellets for the correct responses and
incorrect responses were not reinforced (bottom panel). Each trial was followed
by a variable intertrial interval.

Phase Four. In phase four, the probability of a given trial being short was .5. This
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phase was run for 22 daily sessions.

Phase Five. In phase five, the probability of a short trial was .25 for half the mice

(Group 1) and .75 for the other half (Group 2). This phase was run for 20 daily sessions.

Phase Six. In phase six, The probability of a short trial for Group 1 was .9, while

for Group 2 the probability was .1.  This session was run for 22 daily sessions.

Data Analysis

Data from each subject was pooled across sessions for each phase. This produced

a rich data set of switch latencies (the point, in seconds, the mouse left the short hole to

go to the long hole) for each subject. Switch latencies that occurred after 9 seconds and

the switches that were followed by extraordinarily large travel times (maximum travel

time that has been observed before 6 seconds plus 3 seconds) were excluded from the

data. These data points constituted a small portion of the whole data set (e.g. % 2) and

ensured that the data set did not include those switch points where the mouse clearly was

not participating in the task.

In several individual mice, the cumulative distribution of switch latencies tended

to reveal a mixed distribution. This strongly suggests that two processes were at work in

the brain of these particular mice. Earlier switch distribution can be attributed to

impulsivity (Balci & Freestone, in preparation) and the later switch distribution can be

attributed to timed responses. Figure 3.3 shows two examples of such a distribution (Left

Panel). In these cases, a mixed distribution, consisting of a Weibull and a Gaussian

distribution, were fit to the data using the maximum likelihood estimates. The

psychophysical function was modeled by the Gaussian component of the mixes

distribution (Figure 3.3, right panel).
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Figure 3.3. Cumulative distributions of the switch latencies. In the Left panels, the
cumulative distributions of the switch latencies (solid curves) were fit using a mixed
Weibull and Gaussian distribution (dashed curves). The right panel plots only the
Gaussian component of the best fitting mixture distribution. The mean and standard
deviation of this Gaussian component provided our estimates of the subject’s target
switch time ( T̂ ) and timing variability ( σ̂ ).
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SECTION 4

OPTIMAL DECISION-MAKING IN TEMPORAL DOMAIN

An optimal temporal decision-maker was developed to predict the optimum point

of switching during signaled temporal intervals (trial duration) that would maximize

one’s gain. Although, in real life it is generally difficult to define a common metric for

gains/losses for decision-makers, our experimental task allowed us to define these

quantities. The calculation of the optimum point of responding involved integration of

three sets of parameters (see Figure 4.1 for illustration): 1) Extrinsic Uncertainty

(probability of different trials), 2) Payoff Matrix (rewards/penalties associated with

switching at different points during different trial types), and 3) Intrinsic Uncertainty

(precision in representing temporal intervals in the memory or timing itself). To further

clarify the relevance of last parameter, intrinsic uncertainty results in discrepancies

between when the subject intends/aims to respond (with respect to trial time) and when

s/he actually responds (see Figure 4.2). For example, in our task, the subject might have

planed to switch at 2.5 s. [a point that lies between the short (2 s.) and long duration (3

s.)], however, the actual response might occur at points that lie outside this critical range

(e.g. 1.9 s.). Note, the shorter this range (i.e. 2 vs. 2.5 rather than 2 vs. 3 s.), the more

likely a subject with a given degree of internal uncertainty will fall out of this critical

range.

The optimal temporal decision-maker computes the mean switch latency that

would maximize the expected gain for different task-relevant conditions and their

combinations (extrinsic uncertainty, intrinsic uncertainty and the payoff matrix). The
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computation executed by optimal decision-maker might result in intuitive predictions

about the optimum point of responding. For instance, if the probability of a short trial is

much higher than the long trial (along with the assumptions of symmetrical payoff matrix

and uncertain representation of temporal intervals), the subject would maximize its gain

by aiming at a point that is farther beyond the end of the short reference duration.

Figure 4.1. Illustration of integration of extrinsic uncertainty, payoff matrix, and
intrinsic uncertainty in decision-maker’s mind. In this particular illustration, the
probability of short trials (light circles) and long trials (dark circles) is equal (top
set). The middle cross-tab illustrates the all-possible outcomes, namely payoff
matrix. In the bottom panel, short (2 s) and long (3 s) trials are located on the
corresponding locations on the time line. The very left distribution that is centered
around the short-latency (light circle) illustrates the error distribution around the
subject’s representation of the short temporal interval (see the bottom panel). The
very right distribution that is centered around the long-latency (dark circle)
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illustrates the error distribution around the subject’s representation of the long
temporal interval. The middle distribution represents the error distribution around
the subject’s representation of a temporal interval that lies in between short and
long temporal intervals. As one can note, the error distributions get flatter as they
are centered on the longer durations. This illustrates the scalar variability around
the representation of temporal intervals. The coefficient of variation (standard
deviation/mean) is constant across three distributions. Thus, when these
distributions are normalized by their means (relative time scale), they would
superpose. More importantly, this figure illustrates the integration of extrinsic
uncertainty, payoff matrix and intrinsic uncertainty by the subject in planning the
switch latency that would maximize his/her gain.

In another case, the probability of short and long trials might be equal but the

penalty of switching late (x>Long) might be much higher than the penalty of switching

early. Subject in this case would maximize its gain by aiming at a point that is closer to

the short reference duration. These shifts in the optimal aim points might be magnified or

canceled out by asymmetry in both probability and payoff matrix in the same or different

directions, respectively. For instance, the probability of short latency trial might be 0.9

whereas the reward of catching long referent might be 9 times larger than for catching

short latency. In such a case, the effect of the asymmetry in rewards would cancel out the

effect of the asymmetry in the probabilities on the optimum point of responding.

Our optimal decision-maker model gives a quantitative prediction about the

optimum point of responding by integrating all of these parameters, namely extrinsic

uncertainty, payoff matrix, and intrinsic uncertainty.  The model computes the optimum

point of responding by calculating the expected gain for different temporal aim points.

The algorithm used in this model is presented in the following equation and notations

used are explained in Table 4.1.
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Expected Gain Equation

€ 

E g( ) = g d < S( )p s( )Φ S,T,wT( )
        + g d > S( )p s( ) 1−Φ S,T,wT( )( )
        + g a < L( )p L( )Φ L,T + s,wT( )
        + g a > L( )p L( ) 1−Φ L,T + s,wT( )( )

a
b
c
d

Note. a) Expected loss from premature departures b) Expected gain from appropriately
delayed, hence aborted departures c) Expected gain from in time arrivals d) Expected loss
from late arrivals. Differentiating with respect to 

€ 

T  and solving for 

€ 

T  with derivative

€ 

E ' (g)  set to 0 gives the analytic expression for optimal point. However, we determined
the optimal point by numerical/graphical methods.

 Table 4.1. Notations used in the formulation of the optimal decision-making model.

€ 

d Departure time

€ 

a Arrival time

€ 

s = a − d Time required to switch

€ 

S Short fixed interval

€ 

L Long fixed interval

€ 

T Target switch time (decision criterion)

€ 

w Weber fraction (subject’s coefficient of variation)

€ 

p s( ) Probability of a short trial

€ 

p l( ) =1− p s( ) Probability of a long trial

€ 

g d < S( ) Loss from early departure

€ 

g d > S( ) Gain from on time departure

€ 

g a < L( ) Gain from on time arrival

€ 

g a > L( ) = Loss from late arrival

€ 

p d < S( ) =Φ S,T,wT( ) Probability of an early departure

€ 

p d > S( ) =1−Φ S,T,wT( ) Probability of an on time departure (not early)

€ 

p a < L( ) =Φ L,T + s,wT( ) Probability of an on time arrival

€ 

p a > L( ) =1−Φ L,T + s,wT( ) Probability of a late arrival

Note that the expected gain computation takes 10 quantities as its arguments: 4

gains/losses, the durations of the short and long intervals, the subject’s target time and

variability, the time required to make the switch, and the probability of a short trial.
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Figure 4.2. Cumulative departure and arrival distributions for 

€ 

w =.2 (top) and 

€ 

w = .1
(bottom), with the relevant probabilities, 

€ 

p d < S( ),  p d > S( ),  p a < L( ),  p a > L( ) .
These probabilities are obtained by evaluating the cumulative normal distribution



59

functions 

€ 

Φ t,T,wT( ) and 

€ 

Φ t,T + s,wT( ) at 

€ 

t = S  and 

€ 

t = L , respectively.

€ 

Φ S,T,wT( ) =
1

σ 2π−∞

S

∫ e
−( t−T )2

2w 2T 2 dt , the cumulative normal distribution.

The expected gain was computed for multiple 

€ 

T s that were uniformly distributed

between 0 and L+1 (L+3 for mice) seconds at small increments (e.g. 0, .005, .01, …, 3.995,

4 for humans). 

€ 

T  that resulted in the maximum expected gain was defined as the optimal

point of switching. The optimal 

€ 

T  thus depends on 9 quantities. Figure 4.3 illustrates the

output of this computation for different levels/conditions of external and internal uncertainty

(2 of these 9 critical quantities).

Figure 4.3. The effects of the relative probability of short and long trials versus
the effects of different levels of timing variability (noise, uncertainty) on the
expected gain curve. Vertical lines show the modes (locations of the optimal
target time,To ). The computations were made with 

€ 

g d < S( ) = -1, 

€ 

g d > S( ) = 1,
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€ 

g a < L( ) = 1, 

€ 

g a > L( )=-1.  The locations of the optimal targets do not change if
the negative gains are made 0. The solid curves are computed with 

€ 

w =.1, that is,
+/- 10% temporal precision; the dashed curves are computed with 

€ 

w = .2, that is,
+/- 20% temporal precision. The different colors are for different relative
probabilities of short and long trials: red = p(s) = .1, that is, long trials are 9 times
more likely than short trials; black = p(s) = .5, that is, the two kinds of trials are
equally likely; green = p(s) = .9, that is, short trials are 9 times more likely than
long trials. Note that the effect of a twofold change in timing imprecision on the
location of the optimal target (vertical lines) is greater than the effects of an order
of magnitude change in the relative likelihoods of the two kinds of trials. Thus,
accurate internal noise representation (accurate representation of the variability in
one’s timing) is critical to the determination of an optimal switch criterion.

Figure 4.4 illustrates the interactive effect of complimentary asymmetries in the

payoff matrix and external uncertainties.

Figure 4.4. The effect of a 9-fold difference in gain magnitudes exactly offsets a
9-fold difference in probability in the opposite direction, but only if both the
magnitude ratio and the probability ratio are accurately represented and combined
multiplicatively.
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SECTION 5

DATA ANALYSIS

With our data analyses, we sought answer the following questions:

1) How close is the subject’s average switch latency to the optimal point? In

making this assessment we take into account both the uncertainty regarding the

location of the optimal point (due to empirical uncertainty about the true value of

the subject’s variability) and uncertainty regarding the location of the subject’s

target switch latency (due to uncertainty about the true value of the mean).

2) How optimal the subject is when optimality is defined as the proportion of the

maximal possible expected gain (MPEG) for a subject with a given level of

timing variability?

3) How do the performance of the subject change as a function of task parameters:

such as the external probabilities, the pay-off matrix, and the manner in which

gains and losses are communicated?

4) Does the variability of the switch latencies change as a function of task

parameters?

The optimal value, To , of the target switch time, T, is a function of our estimate,

σ̂ , of the standard deviation of the subject’s distribution of switch latencies. This

estimate may come either directly from our within-subject sample of the switch latencies

under a given set of conditions. Or, it may come from our estimate of the subject’s Weber

fraction, ŵ = σ̂ T̂ , using the ŵ derived from the data across all the sessions, on the

assumption of scalar variability, that is, a constant proportion between σ  and T . The

target switch time, T , is estimated by T̂ ,which is the mean of our sample of the
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subject’s switch times under a given set of conditions. Thus, the likelihood function for

the parameter estimates in our statistical model of the subject’s switch times is a

likelihood surface above the 2D plane of parameter estimates, σ̂ ,T̂ . The mode of this

likelihood surface (the location of the summit of the likelihood hill) is the likelihood

maximizing point in the plane of possible parameter values5. The function, To = f σ̂( )  is

a curve in this same plane. Suppose we make contours (level curves) at octave intervals

around the summit of the likelihood hill, so that each successively more remote contour

represents a reduction by a further factor of 2 in relative likelihood, and we project these

contours onto the σ̂ ,T̂  plane. If the To = f σ̂( )  curve intersects the first (innermost)

contour, then we can say that T̂ is statistically indistinguishable from our estimate, T̂o , of

the optimal value. If, on the other hand, the To = f σ̂( )  curve intersects the fifth contour

but not the innermost four, then we could say that our estimate of the subject’s target

switch time is statistically distinguishable at something like the .05 level from the

optimal. If To = f σ̂( )  curve misses the 6 innermost contours, then we could say that it is

clearly statistically distinguishable from the optimal point. In the cases where σ̂  derived

                                                  
5 In calculating the likelihood function for humans, we took account of the fact that the
data were censored by the fact that subjects could not switch after the long reference
duration. This means that on trials when subject demonstrated late switches, it is not
known where the subject would have switched if the trial had not ended. To account for
this, we replaced the data points that corresponded to late switches with their estimated
counterparts. In order to implement this correction for censored data set, we fitted
Gaussians to the data using Matlab’s, Distribution Fitting Toolbox, with the late switches
flagged as censored points. We then drew samples from this best-fitting distribution and
replaced the late switch points with the points that were equal or larger than the long
reference duration in our data set.
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from our cross-session ŵ , we used

€ 

ˆ σ = ˆ w ˆ T ses , where 

€ 

ˆ T ses  is the sample mean for that

session. Since our data was fit by a normal distribution better than a lognormal

distribution, in gathering our measures we instead used a parameter space that was

composed of 

€ 

ˆ σ  and 

€ 

ˆ T  instead of 

€ 

ˆ w  and 

€ 

ˆ T .

The measure of statistical distinguishability may not be a meaningful measure

from the subject’s point of view, however, because a switch time clearly distinguishable

statistically from the optimal might nonetheless lead to only a trivial reduction in the

subject’s expected gain. Another, in some ways more instructive, analysis is to plot the

expected gain surface above the 

€ 

ˆ σ , ˆ T  parameter plane, make percent reduction

contours around its summit (99% of maximum, 98% of maximum, 97%, etc), project

them down onto the parameter plane, and see what the highest contour is that is

intersected by the 

€ 

To = f ( ˆ σ ) curve. This constituted our second measure of optimality.

In constructing this measure, we used two different measures of the proportion of

MPEG (Maximum Possible Expected Gain). In the first case, the proportions were

computed simply as a function of the maximal possible expected gain (see Figure 5.1,

bottom panel). Thus, these proportions could take both positive (e.g. 0.95) and negative

values (e.g. –0.25). They would take negative values when MPEG (at 

€ 

To ) had a positive

value (e.g. 25) and the expected gain (EG) at 

€ 

ˆ T  had a negative value (e.g. –50  -50/25

= -2). In most cases, this constituted the liberal definition of the optimality, in the sense

that the proportion of the maximum possible expected gain computed in this way was

closer to 1. In the second case, these proportions were computed by dividing the interval

between a given expected gain and the minimal expected gain by the interval between the

maximal and minimal possible expected gains:
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€ 

EG ˆ T , ˆ σ 
−min(EG ˆ σ 

2→3 )
max(EG ˆ σ 

2→3 )−min(EG ˆ σ 
2→3 )

where EG is the expected gain (see Figure 5.1 top panel).

 In this latter case, we considered only those expected gains that were expected to

occur for the range of 2-3 s, which were the short and long temporal referents of the task.

In most cases, this constituted the more conservative definition of optimality.

Figure 5.1. Illustration of calculation of liberal (bottom panel) and conservative
(top panel) proportions of MPEG. In the case illustrated in this figure, EG within
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2 and 3 seconds was always positive. In these situations, calculation illustrated in
the top panel refer to a relatively conservative estimate of proportion of MPEG
and the calculation illustrated in the bottom panel refer to a relatively liberal
estimate of proportion of MPEG. When the EG turns negative at any point within
this interval, the calculation illustrated at the top panel gives a relatively liberal
estimate of proportion of MPEG and the calculation illustrated at the bottom panel
gives a relatively conservative estimate of proportion of MPEG. Given the higher
frequency of the former cases in our data set, we adopted the terminology
illustrated in this figure.

Figure 5.2 demonstrates the superimposition of likelihood function and the EG

function on the parameter plane of σ̂ ,T̂  using actual data gathered from a single

session. The contours of the likelihood function are indicated by concentric blue circles.

The parameter estimates that maximized the likelihood of data are indicated by the cross

within the inner most circle. Each contour delimits the likelihood function at 1 natural log

unit decrements. Brown contours superimposed on the same parameter plane are level

curves of the expected relative gain function for a subject with perfect timing. Expected

relative gain is the gain expected relative to the maximum possible expected gain--for a

subject with perfect timing precision.

These contours allow us to judge how well a subject is doing relative to the

perfect subject, the subject with no timing variability. In the example shown in the top

panel of Figure 5.2, the mode of the likelihood function (the x) falls between the .90 and

.95 relative gain function. Thus, we estimate that this subject had an expected relative

gain of about 93% of what the perfect subject could expect. However, we assume that the

subject’s timing variability is not a controllable parameter of their behavior, unlike their

target switch latency. Thus, what one really wants to estimate is how close the subject’s

target switch latency, T , is to the optimal target, To , for a subject with our subject’s
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temporal variability. The heavy brown curve labeled “ridge” in the top panel is the locus

of optimal target latencies as a function of assumed subject timing variability.

It specifies what the target switch latency should be for a subject with a given

level of timing variability. As the given level of timing variability increases, the

maximum gain a subject can expect decreases relative to the gain that a perfect subject

could obtain. Thus, this curve traces a relative expected gain ridge. If our estimate, T̂ , of

a subject’s target latency is on this ridge line, then we estimate that the subject’s target

latency is at the maximum relative to what a subject with (our estimate, σ̂  of) that timing

variability could obtain. The real measure of how a subject is doing in terms of expected

gain is how far down the subject is from this ridge (rather than from the peak on which

the perfect subject sits). Thus, in the bottom panel, we plot these relative gain contours

(thin brown curves).

In our example, the modal point of the likelihood function (the point whose

coordinates are our best estimates of the subject’s variability and target latency) is

essentially on the ridge. The blue likelihood contours around this point allow one to judge

how far the subject might be from the ridge. The first such relative likelihood contour

falls almost entirely between the two .99 relative gain contours, so odds are 1 e−1 = 2.7 :1

that the subject’s target latency would produce a gain that was within 99% of the

maximum gain a subject with his/her level of variability could obtain.  In what follows,

when we report estimated relative gain values, they take into account our estimate of the

subject’s timing variability. In other words, they specify how high the subject is relative
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to the elevation of the nearest point on the relative gain ridge.

Figure 5.2. Expected gain and likelihood functions. Top. The thick brown line is
the locus of the optimal points of responding at different estimates of timing
variability ( σ̂ ). Concentric blue ovals are contours (level curves) of the likelihood
function at natural log unit intervals. Thus, the innermost contour delimits the
space of parameter values within which the relative likelihood of the data is e-1 =
.37 of the maximum likelihood; the next contour delimits the space of relative
likelihoods > e-2, and so on. The thin brown curves are contours (level curves) of
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the expected gain function when there is no noise in the estimation of time. The
bottom-most relative-gain contour delimits the space (combinations of variability
and decision criterion) within which the subject obtains more than 99% of the
maximum possible gain. The remaining contours delimit the 98%, 95%, 90% and
80% regions of the parameter plane. Bottom panel. Same as top panel, except that
now the gain contours have been normalized with respect to the maximum
possible gain at a given level of variability. Geometrically speaking, the thick
brown line plots the locus of the gain ridge, and the contours delimit percents of
this ridge. As the subject’s variability increases, the height of the gain ridge
decreases, because the subject’s variability sets a limit on how well the subject
can do relative to a subject that can estimate time perfectly. We are interested in
the proportion of the maximum gain that a subject with a given assumed level of
variability in fact obtains, given our estimate of the subject’s target switch
latency.

In order to determine how far in temporal units the subject’s mean switch latency

was from that subject’s optimal switch latency, we calculated the distance T̂ − T̂o ), where

€ 

ˆ T  is our best (maximum likelihood) estimate of the subjects target switch latency and  T̂o

is our estimate of the optimal target given σ̂ , which is our best (maximum likelihood)

estimate of the subject’s timing variability (the length of the red “Temporal Distance”

line in Figure 5.3). This is an estimate of the subject’s systematic temporal error.

The subject’s statistical distance from optimality is estimated by the relative

likelihood of the most likely point on the relative gain ridge. In Figure 5.3, the green line

runs from the best estimate of the subject’s parameters (the peak of the likelihood

function) to the most likely point on the relative gain ridge. The likelihood of that point

as a fraction of the maximum likelihood is our measure of a subject’s statistical distance

from optimality.
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Finally, we estimate the subject’s relative gain loss. This is the expected gain at

σ̂ ,T̂  relative to the expected gain at the σ̂  point on the relative gain ridge (the point

where the ridge crosses a horizontal line drawn through σ̂ ,T̂ ).

Figure 5.3. A closer look at the highly likely parameter space on the bottom panel
of Figure 5.2. On this plot, we indicate our critical measures of optimality: i) the
systematic temporal error (the length of the red line); ii) the statistical distance of
the subject from the statistically nearest optimal point, which is the point where
the green line meets the relative gain ridge. This latter measure is the relative
likelihood of the most likely point on the ridge—that is the likelihood of the point
at the other end of the green line relative to the likelihood of the data at the point
marked by the X; iii) Relative gain loss, is the expected gain at the X end of the
red line segment, relative to the gain at the other end, where it intersects the ridge
line.
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SECTION 6

RESULTS OF HUMAN EXPERIMENTS

General Results:

For each session, we estimated the mean (target) switch latency (

€ 

ˆ T ) and the

optimal switch latency ( T̂o ), given the estimate of 

€ 

ˆ σ  for that session. To allow visual

comparison of the 

€ 

ˆ T s and T̂o s, Figure 6.1 plots 

€ 

Tos as a function of 

€ 

ˆ T s.

Figure 6.1. T̂o s as  a function of 

€ 

ˆ T s. Each symbol represents T̂o s plotted as a

function corresponding 

€ 

ˆ T s for a single session. Each color and shape combination
refers to a different subject. For the purposes of comparison, we have drawn the
line (diagonal dashed line) of slope 1 through the plot of 

€ 

ˆ T . A slope of 1 means
that the average change in subjects’ target switch point is the same as the average
change in the optimal switch point.
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The mean switch latencies, which are our estimate of the subject’s target switch

latency, are generally close to the optimal switch latencies, and, as the optimal switch

latency increases, so do the observed mean switch latencies: the slope of the mutual

regressions of 

€ 

ˆ T  and 

€ 

To  calculated for each subject and averaged across them was

significantly greater than 0 (mean slope = .72, t(6) = 2.44, p = .05) and not significantly

different from 1 (p = .37). In other words, on average subjects’ adjustments of their target

switch time in response to changes in circumstances approximately matched the changes

in the optimal switch point.

The closeness of 

€ 

ˆ T s to T̂o s (temporal-distance between 

€ 

ˆ T  and the corresponding

T̂o ) can be quantified in two different ways: directional (e.g. +20 ms, -50 ms, etc.) and

absolute (e.g. |+20| ms, |-50| ms). When the temporal distances were considered

directionally and averaged across sessions and subjects, switch latencies were on average

80 ms later than the optimal switch latency (77 ± s.e. 19 ms). When the temporal

distances were considered in terms of their absolute values and averaged in the same

way, subjects’ switch latencies were on average 160 ms farther away (non-directional)

from the optimal switch latency (158 ± s.e. 14 ms). These temporal distances between

€ 

ˆ T and 

€ 

Tocorrespond to around 3% and 5% of 3 s range of possible values that

€ 

ˆ T could take

in our experiments. The histograms of both absolute and directional temporal

discrepancies are depicted at Figure 6.2. When these distances were calculated for

individual subjects and averaged across them, these values were 98 ± s.e. 38 ms for

directional and 162 ± s.e. 27 ms for absolute temporal distances.
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Figure 6.2. Temporal distances from T̂o .  Left-panel: Histogram of the signed

differences between T̂  (subject’s estimated target switch latency) and T̂o
(estimate of the optimal switch latency). Right-panel: Histogram of the absolute
temporal differences.

Figure 6.3 depicts the CVs plotted as a function of 

€ 

ˆ T s for individual subjects. In

the same plots, we also fitted the linear regression lines. In only 2 (Subject 2 & 4) out of

7 subjects did regression analysis reveal significant regression of CVs on 

€ 

ˆ T . The

significant slopes were small and in opposite directions, and the cross-subject average

slope did not differ significantly from 0.  In the light of these analyses and the well-

established scalar variability of timed behavior, which predicts constant CVs, we

assumed that temporal uncertainty as measured by the Weber fraction did not change as a

function task parameters within individual subjects. This motivated us to also use a single

estimate of temporal variability in analyzing data gathered from different sessions but

with the same subject. This overall temporal uncertainty (hereafter referred to as subject-
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specific – as opposed to session specific- temporal uncertainty) was calculated based on

the switch latencies collapsed across all sessions of a particular subject for each stimulus

type (numerical or graphical). The estimate of subject-specific temporal uncertainty could

differ from the session-specific temporal uncertainties. Consequently, for a particular

session both 

€ 

ˆ T and T̂o  could change when we considered subject vs. session-specific

temporal uncertainty.

Figure 6.3. Linear regression lines (red lines) fitted on the CVs observed in
individual sessions by individual subjects. CVs were plotted as a function of 

€ 

ˆ T s.

In Figure 6.1, we used 

€ 

ˆ σ  from each single session (session-specific temporal

uncertainty) in estimating T̂o  for that session (i.e., for the conditions prevailing in a given

session). The fact that the CV is more or less constant allows a different approach to

computing T̂o , in which we used the estimate of the subject-specific CV from all the
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sessions within a stimulus type combined. Figure 6.4 is the histogram of the 

€ 

ˆ T - T̂o

differences when T̂o  is estimated from the overall estimate of the subject’s CV. Our

analyses also revealed that the slope of mutual regressions computed for each subject and

averaged across subjects was significantly higher than the slope of 0, t(6) = 3.12, p < .05.

In this particular analyses, we also found that the slopes averaged across subjects was

significantly lower than the slope of 1, t(6) = 3.53, p < .05 . (mean slope = .47).

Figure 6.4. Estimated To  plotted against T̂ , as in Figure 6.1, but with the
estimates of To  based on the cross-session CV, rather than on the session-specific

σ̂ .

The close similarity between the plots in Figures 6.4 and 6.1 implies that it does

not much matter whether one uses a cross-session estimate of variability or a session-



75

specific estimate of a subject’s variability in estimating the optimal switch latency for

that subject in a given condition. In the case of subject-specific temporal uncertainty,

subjects were found to be on average (across sessions) within 80 msec proximity of T̂o s

(78 ± s.e. 21 ms as opposed to 77 ± s.e. 19 ms when temporal distance was considered

directionally). When temporal distance was considered in terms of its absolute value,

subjects were found to be on average (across sessions) within 170 ms proximity of T̂o s

(169 ± s.e. 15 ms as opposed to 158 ± s.e. 14 ms). When the temporal distances were

calculated for individual subjects and averaged across them, these values were 97 ± s.e.

41 ms for directional and 172 ± s.e. 33 ms for absolute temporal distances. Majority of

the results that will be presented in this section will involve measures that were estimated

under both session-specific and subject-specific temporal uncertainty.

Although temporal uncertainty did not change across sessions within a subject, it

varied considerably between subjects (F(6,98) = 57.45, p < .001 - see Figure 6.5).

Finally, in Figure 6.6 we present the 

€ 

ˆ T - T̂o  for each session as a function of T̂o .

We present these measures both calculated by assuming session (top panel) and subject-

specific (bottom panel) temporal variability.

Assuming both session-specific and subject-specific temporal uncertainties, we

calculated the regression of absolute temporal distance from the optimal switch latency

on T̂o  for each individual subject. In both cases, slopes averaged across subjects were not

found to be significantly different from the slope of 0. Thus, absolute temporal distance

from T̂o  (optimum switch latency) was constant for a wide range of T̂o  values. A closer

look at Figure 6.6 (both top and bottom panel) on the other hand also suggests that as T̂o s
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were closer to the referent durations, the temporal distances tended to increase. When we

tested quadratic regression of absolute temporal distance from optimal point on T̂o , under

both session and subject-specific temporal certainty we found significant regression in 4

out of 7 subjects. Thus, we concluded that for some subjects temporal distance increased

as T̂o  was closer to the referent durations. Overall, based on these findings, we concluded

that the absolute temporal distance from T̂o  (optimal switch latency) is constant for a

large portion of response interval range, but that our subjects, like Trommershäuser et

al’s subjects (2003b) resist setting a target at or beyond the ostensibly “legitimate” range.

Figure 6.5. CVs presented for individual subjects. Errors bars represent the
standard errors of estimations of CVs across all sessions of a given subject.
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Figure 6.6. Absolute temporal distances between 

€ 

ˆ T  and T̂o  as a function of T̂o .
Measures depicted at the top panel are derived assuming session-specific temporal
variability and measures depicted at the bottom panel are derived assuming
subject-specific temporal variability. Sessions that were run with different
subjects are illustrated by different symbols.

Finally, we have looked at the frequency of the likelihood ratios (see Figure 6.7)

of the optimal switch latency given the empirical data. Figure 6.7 suggests bimodality in

the frequency of sessions as a function of different likelihood ratios. This can be worded

as in a given session, the optimal switch latency was either very likely under the

empirical data or it was more than 1000 times less likely. The high frequency of the latter

cases is very likely to be caused because of very precise estimates in the model

parameters.

Figure 6.7. Frequency of sessions as a function of likelihood ratios between T̂o
and 

€ 

ˆ T .
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Independence of Successive Switch Latencies:

As a check on the independence of successive switch latencies, we conducted

autocorrelations on the switch vectors (observed in a given session) at different signed

lags. Prior to running the autocorrelations, we detrended the switch vectors. In other

words, we removed the possible underlying upward and downward trends in the switch

vectors gathered from individual sessions. Autocorrelation was applied on a randomly

selected five different subjects’ sessions. Figure 6.8 shows the output of our analyses for

these 5 subject/sessions. In none of these 5 cases, there was considerable autocorrelation

between successive switch latencies and thus one can conclude that the decisions made

from trial to trial were not dependent on the decision made prior to them.

Optimality: When and How Optimal?

Up to this point, we have reported the descriptive statistics that revealed general

properties of our data set. In this context, we have demonstrated simple correspondences

between 

€ 

ˆ T and T̂o . On the other hand, an important question that we have sought to

answer remains to be answered at this point, that is “How good our subjects were in

maximizing their gain?” One of the direct ways to approach this question is considering

the statistical properties of the empirical switch latencies along with the expected gain

functions (given those statistical properties) in the following manner.
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Figure 6.8. Independence of successive switch latencies. Left Panel: Detrended
trial-by-trial switch latencies. Right Panel: Output of autocorrelation run on
detrended switch vector.
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In the parameter plane composed of 

€ 

ˆ T and 

€ 

ˆ σ , we defined an expected gain

function given the task parameters. Using optimal decision-making model together with

the task parameters (probabilities of short and long trials and the pay-off matrix), we

determined expected gains for a finely spaced m by n grid of points in this parameter

plane. The expected gain at a point is the average gain that a decision maker with that

noise level (

€ 

ˆ σ ) in his/her representation of elapsed time and that decision criterion (

€ 

ˆ T )

would obtain. With both the relative likelihood function and the expected gain function

mapped onto the common parameter plane, subject’s optimality can be measured by the

relative likelihood of the closest point on the ridge of the gain function (statistical

distance—see Figure 5.3) and by the relative gain of the maximum likelihood estimate of

the subject’s target (relative gain loss—see Figure 5.1).

The second measure (relative gain loss) indicates the cost that the subject incurs

by using a non-optimal target latency. From the subject’s perspective, this is the

meaningful measure of optimality. A subject whose expected gain is 99.99% of the gain

to be expected at the optimal target latency would rationally be indifferent to the

possibility that our statistical distance measure would reveal that his target latency was

“very significantly” different from the optimal target latency.

Figure 6.9 shows level curves of the likelihood function and of the proportion-of-

maximum-gain function for six different sessions with considerably different task

parameters. The relative-gain contours are at 99%, 98%, 95%, 90%, and 80% of the

MPEG (for a subject with the degree of timing variability given by the σ̂  coordinate of a

point along the contour). The relative-likelihood contours are at the natural log unit levels

(e-1, e-2, etc)
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Depending on the task parameters, the ridge of the expected gain function exhibits

a direction. For instance, if a task parameter involves a relatively high penalty for

switching late, the ridge bends to the left as 

€ 

ˆ σ  increases, favoring shorter switch

latencies, hence less chance of incurring the severe penalty attendant on late switches.

Where the concentric relative likelihood contours fall on the expected gain contours

depicts our relative certainty about how optimal the subject’s target switch latency was.

Expected gain functions depicted in Figure 6.9 (both left and right panels) were

normalized by MPEGs of each

€ 

ˆ σ . Consequently, rather than a single optimal point of

responding defined for the whole 

€ 

ˆ T  and 

€ 

ˆ σ  parameter plane, one gathers an “optimal

path” of responding across parameter dimension of 

€ 

σ . This way the optimality of the

subjects is evaluated based on 

€ 

ˆ T  only, which as mentioned earlier is the only decision

criterion controlled by the subjects.

Cases presented in Figure 6.9 suggest that even though

€ 

ˆ T could be unquestionably

different from the optimal point of responding, their expected gain was still within the

1% loss from the MPEG. In some other cases, 

€ 

ˆ T  was found to well coincide with T̂o .

This pattern characterizes the temporal distance and likelihood ratio quantifications of

optimality as more conservative measures compared to the measures of proportion of

MPEG. In the following sections, we report the quantification of these two types of

comparisons.
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Figure 6.9.Superposed relative likelihood contours (concentric blue ovals) and
relative gain contours (light black curves). The heavy red dotted curve is the ridge
of the expected gain function (the locus of target latencies that maximize gain at a
given level of variability). Left-panels illustrate the expected gain function
defined in terms of simple proportions of MPEG. Right-panels (for the same
sessions presented on the left-panel) illustrate the expected gain function defined
in terms of the expected gains in between 2 and 3 seconds (see Figure 5.1 for
clarification of this distinction).

Proportion of Maximum Possible Expected Gain:

In this section, we report the proportion of maximum possible expected gain -

MPEG (expected gain at T̂o ) at

€ 

ˆ T .  In calculating these proportions we normalized

MPEGs for different levels of 

€ 

ˆ σ  (see Figure 6.9). The proportion of MPEG was

calculated in two different ways (see Figure 5.1):

1- For each session, expected gain at maximally likely 

€ 

ˆ T  was divided by MPEG

given 

€ 

ˆ σ  (either individual or session-based). Thus, this proportion took a negative

value (e.g. -5 / 10 = -0.5) when the expected gain at 

€ 

ˆ σ  was negative and MPEG

was positive. In most conditions, the output of this calculation constituted a liberal

model for optimality (see Figure 5.1, bottom panel).

2- For each session, the proportion of MPEG was computed as a function of the

range of gains one could gather within the 2 and 3 s, which constituted the short

and long reference durations of the switch task. In other words, the proportions

were computed in terms of the minimum and maximum expected gains one could

earn if s/he would respond between short and long referents only (see Figure 5.1,

bottom panel).
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In most cases, the output of this calculation constituted a more conservative

model of optimality (compare the left and right panels of Figure 6.9). In this section, we

report proportions of MPEG that were computed in both ways. Further, for each type of

calculation, we report the proportion of MPEG for both individual and session-specific

temporal uncertainty. Figure 6.10 depicts the histogram of conservative and liberal mean

proportion of MPEG assuming both session and subject-specific temporal uncertainty.

Figure 6.10. Frequency of sessions under which different proportions of MPEG
(e.g. x > .99) were observed. Different colors stand for different ways of
calculating the proportions of MPEG. Orange and yellow bars depict the
conservative estimates of proportion of MPEG assuming session-specific and
subject-specific temporal uncertainty, respectively. Green and lime bars depict the
liberal estimates of proportion of MPEG assuming session-based and subject-
based temporal uncertainty.
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Figure 6.10 suggests that different ways of calculating the proportions of MPEG

did not change these scores much. We tested if there was a difference in the overall

proportions of MPEGs when they were calculated in four different ways: 1- Conservative

with session-specific uncertainty, 2- Conservative with subject-specific uncertainty, 3-

Liberal with session-specific uncertainty, and 4- Liberal with subject-specific uncertainty.

One-way ANOVA did not reveal significant differences across proportions of MPEG

calculated in these four ways (see Figure 6.10). These proportions when calculated for

each individual subject and averaged across them were .95 ± .017 (session-specific

uncertainty & conservative), .96 ± .015 (subject-specific uncertainty & conservative), .94

± .019 (session-specific uncertainty & liberal), and .96 ± .018 (subject-specific

uncertainty & liberal). In making these calculations, we excluded those sessions in which

the MPEG across the whole parameter plane was 0 from this analysis, since there is no

straightforward way of calculating “liberal proportions” in those cases. For these

conditions, we have calculated the proportion of MPEG for individual subjects assuming

both session-specific and subject-specific temporal uncertainty. When they were

averaged across all subjects, these proportions were .86 ± .09 and .84 ± .09 assuming

session and subject-specific uncertainty, respectively. In other words, when a subject

faces only losses and can therefore only hope to minimize them, subjects do worse than

when they can actually gain. Subjects found the conditions where they could only lose

frustrating and unpleasant.

Improvement in the course of sessions:

We checked if subjects got closer to the optimal switch latency over the course of

session. In order to answer this question, we evaluated the F-ratio of variances of |

€ 

ˆ T -

€ 

To |
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during the first and last quarters and deciles. Figure 6.11 depicts the frequency of

different F-ratios presented on a logarithmic scale for both first and last quarters (top

panel) and deciles (bottom panel). As this figure suggests in a large proportion of the

sessions, F-ratio was around 1 suggesting no change in the absolute temporal distance to

the optimal switch latency across.

Figure 6.11. Frequency of sessions in which different F-ratios were observed. In
the top panel we present the data gathered from the comparison of first and last
quarters and in the bottom panel we present the data gathered from the
comparison of first and last deciles.

Figure 6.12 depicts the proportion of sessions in which there was a significant

difference in |

€ 

ˆ T -

€ 

To | across first and last portions of the sessions. It suggests in only a

small proportion of the sessions, we observed a significant change in the absolute
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distance to the optimal switch latency. When there was a change however, this was

mostly in the direction of improvement rather than disruption.

Figure 6.12. The proportion of sessions in which there was a significant change in
absolute temporal distance to the optimal switch latency. Light gray bars represent
the proportion of those sessions in which there was improvement, that is subjects
got closer to the optimal switch latency. Dark gray bars represent the proportion
of those sessions in which there was disruption, that is subjects got farther away
from the optimal switch latency.

Further, we have conducted a paired sample t-test across the mean absolute

temporal distance in the initial and latter portion of the sessions both in terms of quarters

and deciles. We did not find any close to significant differences in the mean temporal

distances between first and last quarters and deciles of sessions. Based on these analyses

we concluded that there was no general improvement or disruption throughout the

session.
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Numerical vs. Graphical Presentation of Reward and Penalty Magnitudes:

Some of the task parameters have been tested both with numerical and graphical

presentations of rewards and penalties within the same subject. The order of these

numerical and graphical presentations were counter-balanced across subjects. We

investigated, everything else kept constant, if numerical vs. graphical presentations of

reward and penalty magnitudes resulted in differences in proportion of MPEG (measured

in four different ways), absolute temporal distance from T̂o  (for session-specific and

subject-specific temporal uncertainty), and temporal uncertainty. We compared these

measures using paired-sample t-test.  Our analyses did not reveal any significant effect of

type of reward/penalty presentation on any of these measures. CV’s tended to be higher

for graphical sessions (assuming session-specific temporal variability) compared

numerical sessions, however, this difference did not reach statistical significance, t(35) =

-1.883, p = .07. The proportions of MPEGs were higher for numerical sessions in all four

different calculations of these proportions, however none of these differences reached

statistical significance. Finally, as can be deducted from these findings, the absolute

temporal distance tended to be larger for graphical sessions compared to numerical ones.

Effect of session order:

Finally, we compared if there was any effect of order of session presentation

using repeated measures t-test. For these analyses, we used only those task conditions

that were tested twice within the same subject, in order to control for all other aspects.

Our analyses did not reveal any effect of session order on any of the measures listed in

the previous section. This shows that as there was no general improvement within a

session, there was also no general improvement across sessions.
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SECTION 7

RESULTS OF MICE EXPERIMENTS

General Results:

In all the analyses conducted with mouse data, we only used the last 10 sessions of each

phase in order to ensure that analyses involved the steady state performance data. In order

to determine the stability of CV, for each individual mouse we conducted the regression

of CV on 

€ 

ˆ T  (see Figure 7.1). The slopes of regressions averaged across subjects was

found to be significantly lower than the slope of 0, t(11) = -4.22, p < .01 (mean slope =

–0.12). We further conducted quadratic regression of each subject’s CV on 

€ 

ˆ T  during

Phase 1, in which involved equal probabilities and was run with all subjects. Our analyses

revealed a significant quadratic regression of CV on 

€ 

ˆ T  (p < .001), which reflects inter-

subject differences in terms of temporal variability. Based on this finding, we decided to

use phase-specific temporal uncertainty rather than subject-specific temporal uncertainty

in all of the analyses reported in this section.

As in the analyses of data gathered from human subjects, in analyzing mice data

for each phase, we estimated the mean (target) switch latency (

€ 

ˆ T ) and the optimal switch

latency ( T̂o ), given the estimate of 

€ 

ˆ σ  for that phase. To allow visual comparison of the

€ 

ˆ T s and T̂o s, Figure 7.2 plots both.
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Figure 7.1. Linear regression lines fitted on the CVs observed in individual phases
by individual subjects. CVs were plotted as a function of ranked 

€ 

ˆ T s.

Figure 7.2 suggested that, 

€ 

ˆ T s are in general close to T̂o s. It is also clear that as T̂o

(estimated optimal switch latency) increases so does 

€ 

ˆ T , the estimate of the subject's

target latency.  We have conducted mutual regression of 

€ 

ˆ T  and T̂o  for each subject and

compared the average slope to 0 and 1. We found that the average slope was significantly

higher than the slope of 0, t(11) = 6.15, p < .0001 and not significantly different from the

slope of 1 (p = .18). This shows that as human subjects also mice were sensitive to the

probabilities that determine T̂o  and adjusted their target latency (

€ 

ˆ T ) appropriately.
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Figure 7.2. 

€ 

To  as a function of 

€ 

ˆ T  for mice subjects. Each symbol represents 

€ 

To  for

a given phase and plotted as a function corresponding 

€ 

ˆ T  in that particular phase.
Each color/shape corresponds to a different subject. For the purposes of
comparison, we have drawn the line (diagonal dashed line) of slope 1 through the
plot of 

€ 

ˆ T .

We further confirmed the similar effect of the probabilistic conditions on T̂o s and

€ 

ˆ T s by running a two-way ANOVA with phase and the 

€ 

To  vs. 

€ 

ˆ T as factors. We conducted

two-way ANOVA separately for different groups of mice that experienced probability

conditions that differed across groups. In both groups, two-way ANOVA revealed a

significant effect of probability condition, F(2,20) = 39.37, p < .001 and F(2,20) = 24.03,

p < .001 for both groups, respectively. In one of the groups we found a significant

difference between 

€ 

ˆ T  and T̂o , F(1,10) = 7.88, p <.05 while this difference did not
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approach significance in the second group. We did not find any significant interaction in

either group.

Figure 7.3 depicts the relation between the probability conditions and 

€ 

ˆ T  and T̂o s.

In line with the statistical outputs, this plot suggest the effect of probability conditions on

€ 

ˆ T  and T̂o  and the strong relation between these two measures. Figure 7.3 is derived from

data gathered from two different experimental groups, which received different

asymmetrical probability conditions.

Figure 7.3. Average 

€ 

ˆ T s to T̂o s as a function of different probabilistic conditions.

Error bars depicts the standard errors.



94

We quantified the closeness of 

€ 

ˆ T s to T̂o s with directional and absolute temporal

distances. When the temporal distances were considered directionally, subjects’ switch

latencies were on average 150 ms earlier than the optimal switch latency (147 ± s.e. 91

ms). When the temporal distances were considered in terms of their absolute values,

subjects’ switch latencies were on average 440 ms farther away (non-directional) from

the optimal switch latency (436 ± s.e. 60 ms). These temporal distances between 

€ 

ˆ T and

T̂o correspond to around 2.5% and 7% of 6 s range of possible values that

€ 

ˆ T could take in

our experiments. The histograms of both absolute and directional temporal discrepancies

from the optimal switch latency ( T̂o ) are depicted at Figure 7.4.

Figure 7.4. Histogram of directional (left panel) and absolute (right panel)
temporal distances from T̂o .

Unlike in the human case, the between-subject differences in temporal uncertainty
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(CV) were not found to be significant. Finally, we have looked at the absolute temporal

distance from the T̂o  (optimal switch latency) as a function of T̂o . Figure 7.5 depicts the

absolute temporal distances from the optimal switch latency for individual subjects and

phases. We have run regressions for each individual subject and found that the mean

slope (across different subjects) did not differ significantly the slope of 0. Confirming this

finding, Figure 7.5 suggests that the absolute temporal distance to the optimal switch

latency was quite constant across a wide range of T̂o  values. On the other hand, when the

optimal switch latency approached to the referent durations or fell out of the referent

duration range, the absolute temporal distances to T̂o  tended to increase. On the other

hand, quadratic regression revealed a significant relation only in 1 out of 12 subjects.

Figure 7.5. Absolute temporal distances from T̂o  as a function of T̂o  for mice
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subjects. Each color/shape correspond to a different subject. For each subject, we
had three values each of which was derived from three phases they were run in.

Finally, we have looked at the histogram of the statistical distances between the

estimated optimal switch latency and the estimated target latency for a given subject in a

given phase (see Figure 7.6). As in the human case, Figure 7.6 suggests bimodality in the

frequency of sessions as a function of different likelihood ratios. This can be worded as in

a given phase, the optimal switch latency was either very likely under the empirical data

or it was more than 1000 times less likely. The high frequency of the latter cases is very

likely to be caused because of very precise estimates in the model parameters.

Figure 7.6. Frequency of phases as a function of likelihood ratios for mice
subjects.
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lags. Prior to running the autocorrelations, we detrended the switch vectors.

Autocorrelation was applied on a randomly selected five different subjects’ phases.

Figure 7.7 shows the output of our analyses of 5 subject/phases. In none of these 5 cases,

there was considerable autocorrelation between successive switch latencies and thus one

can conclude that the decisions made from trial to trial were not dependent on the

decision made prior to them.
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Figure 7.7. Independence of successive switch latencies for mice subjects. Top
Panel: Detrended trial-by-trial switch latencies. Bottom Panel: Output of
autocorrelation run on detrended switch vector.

Proportion of Maximum Expected Gain:

Figure 7.8 depicts the expected gain functions and where the likely models of

subject’s data falls in this expected gain function. These figures can be read in the same

way as those presented in human experiment results. In 7.8 we depict 4 individual

subjects’ data across all probabilistic conditions under which they were run.

Figure 7.8 shows that 

€ 

ˆ T  changed considerably as a function of probabilistic

conditions (across phases). Figure 7.8 further shows that mouse subjects’ 

€ 

ˆ T  were often

very close to T̂o  across different phases. Moreover, in those cases where the subject

diverged considerably from T̂o  (that is, where the statistical distance from optimality was

large), there was not a large loss in the expected gain relative to what a mouse with that

variability could in principle obtain (that is, the relative loss of gain was small). For

example, in 3rd panel (.1:.9 condition) of Mouse 8, the relative gain ridge does not

intersect the outermost likelihood contour, meaning that the statistical distance from

optimality is large. However, the expected gain at the maximum likelihood point (the

filled circle) is greater than 99% of the gain that a mouse with that variability could

attain.
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Figure 7.8. Likelihood functions superimposed on the relative expected gain
function. Here we present data from 4 individual subjects. For each subject we
present 3 plots, each corresponding to a different probability condition that
particular subject was tested in. Subject numbers and probability conditions are
stated by green text within each plot.

We have compared the proportion of MPEG across different probabilistic

conditions separately for two groups of mice. For comparison, we used repeated measure

one-way ANOVA. Our analysis did not reveal a significant difference in proportion of

MPEG across different probabilistic conditions for either group. The average proportion

(averaged across subjects) was .98 ± .01. Figure 7.9 depicts the histogram of proportions

of MPEG.

Figure 7.9. Observed proportion of MPEG in each phase.
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Improvement in the course of sessions:

Finally, we checked if mice subjects got closer to the optimal switch latency over

the course of last 10 sessions of the phase. In order to answer this question, we evaluated

the F-ratio of variances of |

€ 

ˆ T -

€ 

To | during the first and last quarters and deciles of each

subject/phase. Figure 7.10 depicts the frequency of different F-ratios presented on a

logarithmic scale for both first and last quarters (top panel) and deciles (bottom panel).

As this figure suggests in a large proportion of the phases, F-ratio was around 1

suggesting no change in the absolute temporal distance to the optimal switch latency

across.

Figure 7.10. Frequency of phases in which different F-ratios were observed with
mice subjects. In the top panel we present the data gathered from the comparison
of first and last quarters and in the bottom panel we present the data gathered
from the comparison of first and last deciles.
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Figure 7.11 depicts the proportion of phases in which there was a significant

difference in |

€ 

ˆ T -

€ 

To | across first and last portions of the phases. It suggests in only a small

proportion of the phases, we observed a significant change in the absolute distance to the

optimal switch latency. When there was a change however, this was mostly in the

direction of improvement rather than disruption.

Figure 7.11. The proportion of phases in which there was a significant change in
absolute temporal distance to the optimal switch latency. Light gray bars represent
the proportion of those phases in which there was improvement, that is subjects
got closer to the optimal switch latency. Dark gray bars represent the proportion
of those phases in which there was disruption, that is subjects got farther away
from the optimal switch latency.

Further, we have conducted a paired sample t-test across the mean absolute

temporal distance in the initial and latter portion of the sessions both in terms of quarters

and deciles. We did not find any significant differences in the mean temporal distances

between first and last quarters and deciles of phases. In the case of deciles, the value of
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|

€ 

ˆ T -

€ 

To | tended to be smaller during the latter portion of the phase however, this difference

did not reach statistical significance. Based on these analyses we concluded that there

was no general improvement or disruption throughout the session.
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SECTION 8

SIMULATIONS

When considered as a model of subjects’ decision-making processes, our optimal

temporal decision-making model, similar to optimal movement planner, assumes that

subjects can represent the task relevant magnitudes and uncertainties and apply

combinatorial operations on them. Specifically, under our model subjects are assumed to

represent the payoff matrix and extrinsic and intrinsic uncertainty related to the

occurrence of the trials and the representation of temporal intervals, respectively. Given

the information about these task relevant parameters and computational power, we

propose that subjects planned the optimum switch latency from the very start. This

approach has specific quantitative and qualitative predictions about the distribution of

switch points over trials. To summarize, under an accurate representation of the task

relevant parameters and combinatorial operations applied on these representations, one

would expect the central tendency of the switch points to be around the optimum aim

point predicted by the model. Moreover the uncertainty around this aim point would be

expected to be random/not systematic as a function of the trials. Thus, according to the

approach assumed by our model, one would not expect any form of convergence to the

optimum point of responding over trials. Our data have suggested that in general

convergence is not a quantitative property of the successive switch latencies. Given these

assumptions about the decision-making process and the form of its inputs, our approach

represents an information processing view of cognition.

On the other hand, a critical question one should ask before drawing such

conclusion is how much representational structure and computational power is needed in
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order to account for the empirical findings. Before attributing the power of our model to

the information-processing (representational and computational) framework that it

adopts, one should test the possibility that the empirical data can also be explained by

non-representational accounts. Neural timing model of Grossberg & Schmajuk (1989) is

an example of a model with only modest representational assumptions. Their model is

called spectral timing model, because it assumes an array of stimulus-activated neurons

with a spectrum of activation dynamics. The onset of a temporal warning stimulus

innately activates a particular array unique to that stimulus. The dynamics of activation

within the array varies systematically: Activity in the neuron with the most rapid

dynamics rises and decays with short time constants. These time constants become

progressively slower as one moves from neuron to neuron within the array. Thus, the

locus of maximum activity within the array indicates the time elapsed since the activating

stimulus.

When an unconditioned stimulus (US) is experienced, associative connections

between “US neurons” and the neurons in the timing array are incremented. The

increments are a monotonically increasing function of the momentary level of activity of

a given neuron within the array. Thus, early in the development of these

associations—after relatively few trials—the neurons whose activity peaks around the

time of US occurrence, have stronger associations with the US neurons. Appropriate

thresholding leads to an appropriately timed response to the US. We presented this model

since it constitutes a representative alternative model of timing that is in the spirit of

associative learning. On the other hand, we did not consider this particular associative

model in itself since it has a well-known problem of simulating temporally controlled
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responses only for the initial few number of trials. After that point, each neuron in the

array irrespective of their activation has an asymptotically strong association with the US.

This results in the disappearance of timed anticipatory responding with prolonged

training, which is, of course, not what is in fact observed.

The existence of this and other associative/neural models that attempt to minimize

the amount of representational and computational power that is assumed lead us to ask,

“How much representational-computational power is required to account for the nearly

optimal risk assessment that we see in both the human and the mouse data?” A formal

way of answering this question is running simulations of models that assume different

degrees of representational structure underlying it and evaluate their performances with

the quantitative characteristics of our data.

Models that make the fewest representational assumptions are trial-and-error

models with an array of response-latency options. Because there is no representational

structure assumed in these models, the system does not know any structural/metric

relation between these response alternatives. For instance, in the temporal domain, for a

given pair of response alternatives/latencies the system does not know one is larger than

the other one, namely the ordinal relation. So, in sampling latencies from trial to trial, it

cannot move systematically in the direction of better latencies. Lacking the

representational power required to direct sampling systematically in the right temporal

direction, these models should use sampling rules that do not require any representation

of the temporal ordering of intervals.

One of the common implementation of such a rule is adjusting the weights of

latencies as a function of failure and success and next time sampling across the latencies
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by utilizing these weights. Under the assumptions of these models, this is the only

information about how good a latency is. In the following sub-section we will describe

the details of the associative weight updating and sampling rules we used in our

simulations.

8.1. Simulation Procedure:

There are two major components of our simulations:

1) Associative weight adjustment rule

2) Sampling rule utilizing associative weights

8.1.1. Associative Weight Updating Rule:

 In adjusting the associative weights we used an algorithm that closely represents the

well-accepted Rescorla-Wagner model for adjusting the associative weight of CS (will be

referred to as “latency” after this point). Rescorla-Wagner model has three parameters: α

, β, and λ. λ takes the value of 1 when the latency is reinforced in a discrete trial and it

takes the value of 0 when it is not reinforced or penalized in a discrete trial. α is the

factor used to increment the weight of a latency, when it is reinforced:

V +α(λ −V ) = V +α(1−V )

and β is the factor used to decrement the weight of a latency when it is not reinforced (or

penalized).

V + β(0 −V ) = V − βV

In these formulations V represents the current associative weight.

Let’s assume that latency’s current associative weight (V) is .2 and the values of

α and β constants are .01 and .02, respectively. Further, assume that in Trial 1 latency is



109

reinforced. At the end of this reinforced trial the associative weight of the latency will be

incremented in the following fashion:

Trial1: 0.2 + 0.01 × (1 − 0.2) = 0.208.

Let’s assume that in Trial 2 latency is reinforced again. At the end of this trial the

associative weight of the latency will again be incremented in the following fashion:

Trial2: 0.208 + 0.01 × (1 − 0.208) = 0.216

Now assume that in Trial 3 latency is not reinforced. At the end of this trial the

associative weight of the latency will be decremented in the following fashion:

Trial3: 0.216 + 0.02 × (0 – 0.216) = 0.212

When one assumes a single latency (or CS) that can have associative connection

with US, the associative weight might be reflected in the vigor of the conditioned

response (CR) at that latency (CS) elicits or the probability of the CS eliciting a response

at that latency. Thus, on the face value this process well fits in the simple classical and

operant conditioning protocols, in which the organism learns the relation between two

stimuli (classical conditioning) or a response and a stimulus (operant conditioning).

In cases that involve more than a single latency the process of updating

associative weights and mapping these associative weights to the responses takes a more

complex form. Our simulations will involve multiple possible response latencies.

Regarding the updating of associative weights, we will consider two main possibilities.

First, one can treat each latency’s associative weight independent of others. In these

cases, in a given trial only the associative weight of the latency that was implemented in

that particular trial is updated. The associative weight of other latencies that were not

implemented in that particular trial stays unchanged.
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Another way of treating the updating of associative weights in these situations is

defining a single asymptotic associative weight that is distributed across all possible

latencies. In this case, at the end of a trial the associative weights of all latencies are

updated. Specifically, the associative weight of the reinforced latency is incremented and

this incremented amount is decremented from all other latencies. This way the reinforced

latency inhibits all other latencies. In the case of an unreinforced (penalized) latency, the

associative weight of the relevant latency is decremented and that decremented amount is

added to the associative weight of all other latencies. This way the not reinforcing a

latency facilitates all other latencies.

8.1.2. Sampling Rule:

In cases that involve a single latency, the effect of the associative weight is

usually modeled as being reflected in the vigor or probability of responding occurring in

a discrete trial or not. The cases that involve more than a single latency however the

problem again takes a more complex form. Since there are multiple latencies in play, the

mapping problem takes the form of deciding which latency is going to occur in a given

trial as function of the underlying associative weights. There are multiple ways of

mapping associative weights to the responses. In other words, given there are multiple

latencies with different associative weights, there are multiple ways of determining a

response as a function of these associative weights. Some of these sampling rules can be

listed as the following.

a) Winner-Takes-All

b) Sampling randomly across latencies with maximal weights

c) Probabilistic sampling
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Before going into the details of different sampling rules, we would like to

describe how a temporal task (such as ours) could be treated in associative terms. As in

the spectral timing model, one can assign a different latency for each different temporal

interval that span over a range (e.g. L1 = 1 s, L2 = 2 s, L3 = 3 s, L4 = 4 s, …, Ln = nth s).

Keeping this structure in mind, assume that a subject is reinforced for its first response 10

seconds after the onset of a signal, namely fixed-interval (FI-10 s) schedule. In such

protocols, after a number of trials subjects exhibit anticipatory responses around 10 s.

The probability of anticipatory responding decreases as one gets farther away from 10 s

in both directions (e.g. in a peak-interval trial). We can assign a different latency for each

second up to 20 s. In associative terms one would explain the higher expectancy of

reinforcement around 10 s by the higher associative weight that L10 has gained compared

to other latencies in the set. In other words, experiencing reinforcement around 10 s

resulted in higher associative weight for L10, which is the latency associated with that

duration. Not being reinforced at durations other than 10 seconds, results in decrements

in the associative weight of other Ls that are associated with other temporal intervals.

Different sampling rules that will be presented in the next subsection will be explained in

these terms.

1. Winner-Takes-All:

With winner-takes-all function, in a given trial latency with the highest

associative weight will elicit the response at the temporal interval it stands for. For

instance in the following set of latencies: [L1 = .16, L2 = .1, L3 = .01, L4 = .17], where

each latency stands for a second-long temporal intervals L4 will be the one that will elicit

the response at the 4th second of the trial since it has the highest associative weight
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compared to other latencies in the set. The associative weight of this latency will be

updated based on its consequence in that trial. It still being the latency with the highest

associative weight by the end of this trial, it will again elicit the response at the 4th second

of the next trial. If on the other hand, its associative weight is decremented (as a result of

non-reinforcement or penalty) such that it does not carry the highest associative weight

by the end of the trial, in the next trial the response will be elicited by another latency

with the highest associative weight at the temporal interval it stands for. As one can

imagine this sampling rule would not result in much variation in terms of the delays of

responses across trials. This is because once a latency that is likely to be reinforced is

sampled, the algorithm will keep sampling the same latency over and over again.

In our simulations we induced variation in sampled response latencies by

introducing noise in the sampling process of the latencies. In order to achieve this derived

from the variability signature of the empirical data, we formed an error distribution

around each latency. Although the simulation would aim at the latency with highest

associative weight, it could end up testing other latencies, the probability of which was

defined by the empirically derived error distribution formed around the aimed latency.

For instance, even though the simulation was supposed to pick L4 because of its highest

associative weight, it could end up testing L5. In such cases, it would still update the

associative weight of CS4 as a consequence of testing L5. This manipulation induced a

level of exploration to this sampling rule.

2. Sampling randomly across latencies with the highest weights:

Sampling randomly across latencies with the highest associative weights as a
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process resembles the winner-takes-all sampling rule. In this rule, the algorithm ranks the

latencies based on their associative weights in a descending order and chooses randomly

across latencies that constitute the top portion of the rank. For instance, for the following

latencies set: [L1 = .1, L2 = .09, L3 = .01, L4 = .12, L5 = .2, L6 = .45, L7 = .12, L8 = .03, L9

= .04, L10 = .17] if the algorithm is asked to sample randomly across 5 latencies with

highest associative weight, it will randomly choose across [L6, L10, L4, L7, and L1]. In this

subset of the latencies, each latency will have equal probability of being sampled. We

will refer to this rule as “Max 5” at the following paragraphs.

Assume that L4 is randomly sampled in the current trial. If it is reinforced its

associative weight will be incremented and if it is not reinforced (or penalized) its

associative weight will be decremented, accordingly. If the former case, that is when the

latency is reinforced, the latencies subset (n=5) will stay the same for the next trial. In the

latter case, that is when the latency is not reinforced, the latencies subset for the next trial

would change if the current associative weight of L4 will not the highest compared to

latencies that were not included in the previous latencies subset. This sampling rule

aimed to establish a higher level of exploration across a wider range of latencies

compared to winner-takes-all functions. Thus, it prevents the simulation will be stuck

with a latency when it is reinforced, which was generally the case in the winner-takes-all

function.

3. Probabilistic sampling rule:

Probabilistic sampling rule has a more sophisticated utilization of the associative

weights in sampling across latencies compared to the first two sampling rules presented

above. The sampling occurs probabilistically as a function of the associative weights of
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the latencies. For instance, in the following set of latencies: [L1 = .15, L2 = .3, L3 = .75,

L4 = .06, L5 = .57, L6 = .36, L7 = .06, L8 =.6, L9 = .12, L10 = .03], the probability of L1

being sampled in the current trial is .15/3  p (L1) = .05, the probability of L2 being

sampled is .3/3  p(L2) = .1, the probability of L3 being sampled is .75/3  p(L3) = .25,

etc. The denominator (3) is the sum of all associative weights in the latencies set.

When the sample latency is reinforced in the current trial, its associative weight is

incremented, which increases the probability of that latency to be sampled in the next

trial. Let’s assume that L2 was sampled and reinforced in the current trial. For α value of

.05, the associative weight of L2 at the end of current trial will be .3 + ((1-.3)*.05) = .335

and thus the probability of L2 to be sampled in the next trial will increase to .335/3.035 

p(L2) = .11 from p(L2) = .1. In the case of non-reinforcement or penalty, the associative

weight of the sample latency will be decremented which will decrease the probability of

that latency being sampled in the next trial.

All the examples presented under different sampling rules used the first type of

associative updating that is associative updating assuming independent asymptotic

associative weights for each latency.

8.1.3. Associative Weight Updating Rules with Different Sampling Rules:

For the simulations that used winner-takes-all and sampling from latencies with

highest associative weights, we used an associative weight updating rule that assumed

independent asymptotic associative weight for each latency in the set. In other words,

when the associative weight of a latency was incremented or decremented it did not have

any effects on the associative weights of other latencies. The associative weight of each
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latency was treated independent of the associative weight of other latencies. Examples of

associative weight updating presented under these sampling rules well represent the

updating rule used.

In the case of probabilistic sampling rule, however, we implemented a different

kind of updating rule. In this case, when the associative weight of a latency was

incremented, the associative weight of all other latencies was decremented. The absolute

value of sum of the decrementation was equal to the amount of incrementation applied to

the associative weight of the reinforced latency. In other words, the associative weight of

reinforced latency would be augmented at the expense of all others. To illustrate this

process let’s take the latency set presented under the probabilistic sampling subsection:

[L1 = .15, L2 = .3, L3 = .75, L4 = .06, L5 = .57, L6 = .36, L7 = .06, L8 =.6, L9 = .12, L10 =

.03]. Again let’s assume that L2 was sampled and reinforced in the current trial. For α

value of .05, the associative weight of L2 at the end of current trial will be .3 + ((1-

.3)*.05) = .335 and the associative weights of each other latency will be decremented by

.035/9 =  .0039, denominator being n-1. Thus the probability of L2 to be sampled in the

next trial will be .335/3  p(L2) = .112. This is slightly higher than the probability that

was determined in the previous calculation presented under sub-section of "Probabilistic

Sampling" (p(L2) = .11) in which we assumed independent asymptotic associative

weights. As mentioned earlier, with such an updating rule the latency that was reinforced

actively inhibited all other latencies by taking over their associative weight. When the

associative weight a latency reached to 0, we excluded that latency from our set. This

ensured that the associative weight of each latency in the set was positive and their sum

added to the same value, namely the asymptotic associative weight.
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On the other hand, when the sampled latency would not be reinforced in the

current trial its associative weight would be decremented by V

€ 

×β. This associative

weight would be added to the associative weight of all other latencies in the set at equal

amounts. This again ensured a constant sum of associative weight across all latencies in

the set. The constant sum of associative weights across all latencies can be treated as the

additivity of all probabilities to 1.

Up to this point, we have presented the associative updating and sampling rules

that we have implemented. In our simulations, we further varied both the associative

parameters and the degree of representational power/substitution. In the following

subsection, we present the parameters that were varied.

8.1.4. Associative and Representational Manipulations:

Derived from our original motivation, we substituted for the representation power

(the power that optimal model had) in the case of simulations by varying simulation

parameters. Through these variations we intended to test the effect of different levels of

representational substitution on the performance of the simulations in explaining the

empirical data. Representational manipulations included the restriction of the temporal

response possibilities and reward/penalty magnitudes. In addition to representational

variations, we also tested the effect of associative factors α and β (learning rate

parameters) on the performance of the simulations. For this we ran simulations under

different combinations of values for α and β. Finally, we tested the effect of semi-

representational factor on the performance of simulations. This last factor was the



117

number of latencies that the simulations could sample from. The details about these

parameters and the nature of their integration is presented in the following subsections.

1. Alpha:

Alpha is the learning rate that was used to update the associative weight of a latency

after its reinforcement. Higher the value of α, faster is the learning in the course of

reinforced trials. Alpha was assigned values of .01 or .05.

Figure 8.1. Effects of different values of α and β on the rate of acquisition.

2. Beta:

Beta is the learning rate that was used to update the associative weight of a latency

after its non-reinforcement (or penalty). Higher the value of beta, faster is the learning

due to non-reinforcement. Beta was assigned values of .01 or .05. The ratio between α

and β determines the relative effects of reward and non-reinforcement/penalty on the
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updating of the associative weight. For illustrative purposes, we have simulated the

effects of different values of α and β on the rate of acquisition and extinction,

respectively. The results of these simulations are demonstrated in Figure 8.1. As this

figure suggests different values of these learning parameters have clear effects on the rate

of acquisition.

3. Test Range:

Test range constituted the main representational substitution in our simulations.  The

test range was simply the temporal interval that simulations were allowed to sample

latencies from. It can be considered as compensation for the lack of representational

power by an add-hoc restriction of temporal response possibilities. For instance, if the

test range was determined to be 1-2 s, the simulation could sample only those latencies

that fell in between 1 and 2 seconds. Three test ranges that we supplied to simulations for

human data were 1-4 s, 0.1-3 s, and 0.1-60 s (short and long referents for humans were 2

and 3 s). Three test ranges that we supplied to simulation for mice data were 1-8 s, 2-7 s,

and 0.1-60 s (short and long referents for mice were 3 and 6 s).

Note that all the test ranges we supplied as representational substitutions to the

simulations were concentrated around the critical temporal intervals. In this sense, they

forced the simulations to sample latencies from a temporal range that was likely to lead to

a point within the critical range. Representational substitution got stronger as the test

range was set tighter around the critical temporal intervals. For instance, 1-4 s test range

for humans and 1-8 s & 2-7 s test range for mice greatly diminish the opportunities to

sample the latencies outside the critical temporal intervals. In other words, with these test

ranges the simulations are doomed to sample latencies from the critical temporal range.
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Although, similar levels of representational substitutions were supplied under other test

ranges, they were not as representationally constraining as these ranges. This particular

manipulation would be considered more of a compensation/rather representational aid

since with this manipulation we did not introduce a metric or ordinal structure, but only

restricted the response possibilities. In other words, the manipulation of the test range

does not tell the simulation which direction to go given a consequence of an

implementation.

4. Magnitude Effect:

In our human experiments, the pay-off matrix varied, that is, the gains and losses

associated with the four different outcomes of a trial. And the pay-off metric

appropriately affected subjects’ target switch latency. In running simulations that vary the

power of the underlying representation, the question arises how to factor in the pay-off

matrix. In our simulations, the magnitudes were introduced as multiplicative factors that

affected the learning rate parameters of α and β. In other words, in the case of

reinforcement α was multiplied by the magnitude of reward

€ 

V + ((1−V )×α ×R+ )

where R+ is the reward magnitude earned. In the case of non-reinforcement or penalty β

was multiplied by the magnitude of penalty

€ 

V − (V ×β ×R− )

where R- is the penalty magnitude received (in the case of non-reinforcement β was

multiplied by 1). If the magnitudes were determined not to have any effect on the

updating process, no matter what the difference was between the payoff of successes in

short and long trials, they resulted in the same amount of increment/decrement in the
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associative weight. The representational aid of magnitudes were expected to help

simulations better approximate the empirical data since they have a critical role in the

solution to the optimization problem. The magnitude effect was not a parameter when we

simulated in mouse data since in all task conditions of mice experiments the gains were

symmetrical and there was no penalty.

5. Number of Latencies within the Critical Response Range

The critical temporal range was 2-3 s for human subjects and 3-6 s for mice

subjects. With this parameter we determined the number of latencies that fell in between

these critical temporal ranges. The number of latencies was set either to 5 or 25. These

latencies were set at equally distant intervals to each other on a logarithmic scale. Then,

taking into account the specified number of latencies that we determined to fall within the

critical range, the simulation also formed a number of latencies values within the

determined test range (e.g. 0.01-60 seconds) that were also set at logarithmically equal

intervals to each other.

In assuming latencies evenly spaced on a logarithmic scale, we are, of course,

introducing some representational structure. Without some minimal representation of the

duration of an elapsing interval, there does not appear to be any way of simulating timed

behavior. The number of latencies used can also be treated as a measure of temporal

precision, namely higher the number of latencies higher the resolution of temporal

intervals to sample. Table 8.1 summarizes all the associative and representational

parameters used in our simulations of human and mice data separately.
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Summary of the procedure:

At the beginning of each simulation, each latency was assigned a random weight.

As mentioned earlier, in running these simulations, a latencies is sampled from the test

range according to a specific sampling rule and the program checks if that latency is

successful or not. In our case, a latency was considered to be successful when it fell in

between the critical durations (e.g. 2 =< x <= 3 for humans) and unsuccessful when it fell

out of this range (x < short referent or x > long referent). Given the variability in the

empirical data, sampling also in these simulations was not defined to be a noiseless

process. We assumed a level of noise for these latency values, which are sampled for

testing. We have used empirical temporal variability in modeling noise around each

latency. This error distribution was formed using the CV (

€ 

ˆ σ / ˆ T ) gathered from the

session to be simulated.

        Table 8.1 Simulation Parameters

HUMAN MICE

Short Duration: 2 seconds 3 seconds

Long Duration: 3 seconds 6 seconds

Number of Latencies 5, 25 5, 25

The range of latencies /

Test Range:

[1-4 s], [0.1-3 s],

[0.1-60 s]

[1-8 s], [2-7 s],

[0.1-60 s]

Magnitude Effect [YES], [NO] [NO]

Alpha (c1) [0.01], [0.05] [0.01], [0.05]

Beta (c2) [0.01], [0.05] [0.01], [0.05]
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In other words, for a given latency value (strategy), the actual value tested would be

off by some degree. Therefore, even the latency to be tested (strategy) would be within

the critical range such as 2.1, the real value that was tested could be 1.9, which would be

out of range (for a short referent of 2 s). In this case, the original latency (2.1) would be

treated as unsuccessful. Similarly, when the selected latency (strategy) would be out of

critical range such as 1.9, the real value that was tested could be 2.01, which would be

within the critical range (for a short referent of 2 s). In this case, the original latency (1.9)

would be treated as successful. Briefly, for a strategy that was actually within the critical

range, one could end up with failure and this would be more likely to happen for the

latencies that are closer to end points of the critical range. Finally, there was no ordinal

relation assumed during sampling.

8.2. Comparison with Empirical Data:

We ran the simulations for each subject’s each session. For each of these

simulations, we estimated the mean response latency, 

€ 

ˆ T s  and computed the statistical

distance between 

€ 

ˆ T s  and 

€ 

ˆ T  at the level of 

€ 

ˆ σ . We then compared the statistical distance

between 

€ 

ˆ T s  and 

€ 

ˆ T  to the statistical distance between 

€ 

ˆ T o  and 

€ 

ˆ T . Figure 8.2 depicts a

sample comparison of these statistical distances, in which simulation does a worse job in

explaining the empirical data compared to the optimal decision-making model, when

performance is operationalized in terms of statistical distance. The output of the

simulation was considered to be successful when the statistical distance between 

€ 

ˆ T s  and

€ 

ˆ T  was equal to or smaller than the statistical distance between 

€ 

ˆ T o  and 

€ 

ˆ T  at the level of

€ 

ˆ σ .
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Figure 8.2. Illustration of comparison of statistical distance between 

€ 

ˆ T s  and 

€ 

ˆ T  to
statistical distance between 

€ 

ˆ T o  and 

€ 

ˆ T . Orange block corresponds to the statistical

distance between 

€ 

ˆ T s  and 

€ 

ˆ T and the lime block corresponds to the statistical

distance between 

€ 

ˆ T o  and 

€ 

ˆ T . These comparisons were conducted with the
likelihood function at the level of 

€ 

ˆ σ .

For each simulation parameter combination, we have run 5 separate simulations.

From these 5 simulations, we evaluated those that simulations that had the median

statistical distance to 

€ 

ˆ T . We used medians instead mean as central tendency of statistical

distance because simulation results with very large distances were not uncommon and

they dominate the means 

€ 

ˆ T s  and 

€ 

ˆ T . Indeed, this is a reason all by itself to reject these

models, since we did not observe such large statistical distances in our empirical data set.
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SECTION 9

RESULTS OF SIMULATIONS

Here, we report the output of these simulations for each different representational

and associative simulation parameter combinations. Irrespective of sampling rule, the

simulations ran in human data set did a very bad job in approximating the empirical data

compared to the performance of our model. With the test ranges of 0.1-3 and 0.1-60 s in

only around % 1 of instances the simulation did as good or better job compared to our

model. Note that this level of performance was observed even when the simulations were

aided by constraining their response to the actual response interval (e.g. 0.1-3 s). The

very small number of successes was mostly observed when the simulations were aided by

the representation of the reward/penalty magnitudes.

Figure 9.1 depicts the data for mice subjects. In the case of mice when the we

substituted for the representation of temporal intervals, by constraining the sampling

range 2 seconds below the short duration and above the long duration, the percentage of

successful instances ranged between % 5 – % 25. The percentage of successful instances

increased as a function of the complexity of the sampling rule.
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Figure 9.1 The proportion of simulations the exhibited successful predictions for
mice data set. Here we present the results from two test-ranges for three different
sampling rules. On the same graph, we differentiate between different sampling
rules by different shades of gray.

We further tested how well the simulations performed when the opportunity of

sampling latencies outside the critical range was dramatically diminished further by

constraining the test range 1 second below the short duration and 1 second above the long

duration. Figure 9.2 depicts this data for human (top panel) and mice (bottom panel)

subjects. Figure 9.2 suggests that even when the test range was tightly constrained around

the critical temporal range, for human data the proportion of successful instances was at

most .15. The effects of sampling rules became clearer when simulations were not

allowed to sample latencies that fell outside the range delimited roughly by the short and

long referent durations. Specifically, the proportion of successful instances increased

monotonically as a function of the complexity of the sampling rule.

A very similar effect of the sampling rules was also observed for mice data,
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namely the proportion of successful instances increased dramatically with the complexity

of the sampling rule. Overall, the proportion of successful instances was higher for

simulation ran for mice data compared to human data. This is very likely to have

occurred due to the relative tightness of the test range around the critical range. In

simulations ran for human data, this test range was 1-4 seconds. Considering that the

critical response interval was in between 2-3 seconds the total duration that falls out of

the critical range; ((2-1)+(4-3))/(3-2) = 2, was % 200 of the response range. In the case of

mice data, this duration was ((3-2)+(7-6))/(6-3) = .67, % 67 of the response range. In that

sense, the simulations ran for human data with 1-4 s test range is more comparable to

simulations ran for mice data with 1-8 s test range. In 1-8 s test range, the total duration

that falls out of the critical interval ((3-1)+(8-6))/(6-3) = 1.33, was % 133 of the response

range. This very relation suggests that the substitution for the representation of temporal

intervals was a good predictor of the success rate of simulations.

Finally, we tested the effects of different simulation parameters on the absolute

temporal distance between 

€ 

ˆ T s  and 

€ 

ˆ T  as a function of all simulation parameters for

different sampling rules.

1. Effects of associative parameters:

In the simulations ran for human data set, we found a significant effect of α on the

temporal distance between 

€ 

ˆ T s  and 

€ 

ˆ T only during probabilistic sampling, t(3778) = -1.96,

p = .05. In the simulations ran for mice data set, the significant effect of α was observe

only during winner-takes all function, t(1294) = -2.84, p < .01. In both cases, a higher
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value of α resulted in predictions that were farther from 

€ 

ˆ T  under this sampling rule.  For

either data set we did not find a significant effect of β and number of latencies that fell

within the critical range under any sampling rule.

Figure 9.2. Proportion of successful instances as a function of different sampling
rules for human (top panel) and mice (bottom panel) under conditions in which
the simulations were not allowed to sample from latencies outside the critical
response range.
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2. Effects of representational parameters:

In the simulations ran with winner-takes-all function for human data set, we found

a significant main effect of test range on the temporal distance, F(2,3774) = 267.74, p <

.0001, no significant main effect of magnitude or its interaction effect with test range. In

the simulations ran with winner-takes-all function for mice data set, we also found a

significant effect of test range on the temporal distance, F(2,1293) = 163.48, p < .0001. In

both cases, tighter test range resulted in closer to empirical estimations.

In the simulations ran with “Max 5” rule for human data set, we found a

significant main effect of test range, F(2,3774) = 1036.51, p < .0001, a significant main

effect of magnitude (1,3774) = 3.92, p < .05, and a significant interaction effect,

F(2,3774) = 6.51, p < .01. We also observed a significant effect of temporal range in the

case of mice data set, F(2,1293) = 1167.5, p < .0001. In both cases, a tighter test range

again resulted in estimates that were closer to empirical estimations. The effect of

magnitude was in the expected direction, that is the introduction of magnitude

representation resulted in temporal distances that were closer to empirical estimates. This

effect was pronounced during a wider test range.

In the simulations ran with probabilistic sampling rule for human data set, we

found a significant main effect of test range, F(2,3774) = 1760.49, p < .0001, a significant

main effect of magnitude representation, F(1,3774) = 14.8, p < .001, and significant

interaction effect, F(2,3774) = 10.16, p < .0001. We also found a significant effect of test

range for mouse data set, F(2,1293) =2587.82, p < .0001. For both data set as tighter test
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range again resulted in estimates that were closer to empirical estimations. For the

probabilistic sampling rule, the effect of magnitude was in opposite direction with what

we observed with “Max 5” rule. The introduction of magnitude representation resulted in

estimates that were farther from the empirical estimations. This observation was

pronounced during a wide test range.

Finally, we present the average temporal distance between 

€ 

ˆ T s  and 

€ 

ˆ T as a function

of sampling rule and test range for both human and mice data set. The mean 

€ 

ˆ T s  and 

€ 

ˆ T s

are presented in Table 9.1 separately for mice and human data set. A quick look to Table

9.1 suggests that in general the temporal distance of simulation outputs from the

empirical estimations are quite different from the temporal distance between the

prediction of the optimal model and the empirical estimations. The only condition in

which the simulation outputs approximate the model’s performance is when the test range

is forced to be tightly clustered around the critical range and the probabilistic sampling

rule is used. However, note that these are the conditions in which the simulations are not

allowed to sample latencies from outside the critical temporal interval.

Overall, the performance of the simulations compared to the prediction of the

optimal decision-maker was not uniform across different task parameters. In other words,

successful cases were specific to a number of task parameters, which makes it difficult to

attribute a general success rate to the trial-error learning algorithms.
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Table 9.1. Absolute temporal distance between simulation and empirical

estimations as a function of sampling rule for human and mice data set.

Test Range Winner-takes-all

|

€ 

ˆ T s  - 

€ 

ˆ T |

Max 5

|

€ 

ˆ T s  - 

€ 

ˆ T |

Probabilistic

|

€ 

ˆ T s  - 

€ 

ˆ T |

Empirical

|

€ 

ˆ T o  - 

€ 

ˆ T |

HUMAN DATA SET

1-4 s .78 ± .009 s .46 ± .006 s .38 ± .006 s .158 ± .014 s

.1-3 s 1.75 ± .016 s 1.65 ± .008 s 1.55 ± .006 s

.1-60 s 5.99 ± .293 s 6.36 ± .168 s 5.7 ± .116 s

MOUSE DATA SET

2-7 s 1.33 ± .026 s .72 ± .02 s .50 ± .016 s .436 ± .058

1-8 s 1.94 ± .04 s 1.08 ± .026 s .73 ± .019 s

.1-60 s 9.6 ± .62 s 10.88 ± .29 s 8.23 ± .148 s

Discussion

The only cases in which the simulations achieved non-negligible rates of success

when pitted against a model that computed the optimal switch latency were those in

which the pre-determined test range greatly diminished the opportunity of sampling

latencies outside critical range. These cases were when the simulations were provided

with a test range of 2-7 s, 1-8s (for 3-6 s critical range) and a test range of 1-4 s (for 2-3 s

critical range). The tighter the test range was (relative to the critical interval), the higher

was the chances that simulation using it would succeed in approximating the performance
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of optimal model. In all other test intervals, they performed considerably badly compared

to the performance of optimal model. The effect of the test range was also reflected on

the temporal distance between 

€ 

ˆ T s  and 

€ 

ˆ T in the same fashion. Restricting the range for

possible response latencies, of course, amounts to whispering in the model’s ear where it

must focus. It in effect compensates for the models’ (assumed) inability to represent the

structure of temporal intervals.

Unlike, the representational substitution for temporal intervals through

constraining the testing range, the representational aid of reward/penalty magnitudes was

not observed to have a consistent and strong effect in determining the rate of successes.

The representation of magnitudes was found to help simulations only in those cases

where the models were not aided by strongly restricting the possible latencies. When the

possible latencies were strongly restricted  (e.g. 1-4 s for 2-3 s critical interval), the

representation of magnitudes was found to decrease the rate of success. Given the critical

role of reward magnitudes in explaining the empirical data, this finding suggests that the

representation of reward/penalty magnitudes were not integrated in the learning rule in a

such a way that the information it provided was utilized in the same way that it was

utilized in the optimal model. This further suggests that the combinatorial properties of

the representations are also an important aspect of information-processing.

Associative parameters were not found to have any major and consistent effects

on the success rate of the simulations. Both a and b are the core parameters of the

associative learning models (l was kept constant – 1 for reinforcement and 0 for non-
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reinforcement/penalty).  Despite their critical role in the output of these models, these

parameters did not predict the performance of the simulations.

Finally, sampling rules were found to affect the success rate of simulations only

when the test range was set tightly around the critical intervals. In these cases,

probabilistic sampling rule was found to increase the success rate of simulations. A closer

look at the probabilistic sampling rule reveals that this rule implicitly uses the knowledge

about the properties of probabilities. For instance, the additivity of probability to 1 is a

major property of this sampling rule.
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SECTION 10

CONCLUSION

Decision-making under uncertainty is a cognitive process that has been

traditionally studied using descriptive paper-pencil tasks. The results of these studies

have been interpreted as reflecting the non-normativeness of human decision-makers.

The non-normativeness of the decisions made in these tasks has been attributed either to

the biased representation of information that goes into the decision-making process  (e.g.

probability) and/or non-normative decision-making processes  themselves (e.g.

heuristics). More recent research, on the other hand, revealed that these non-normative

decisions might be particular to problems in which information about the uncertainty is

described verbally (explicitly) to the decision-maker by the experimenter. These

researches basically reported closer to normative decisions when human decision-makers

experienced the uncertainty and the consequences of their decisions over time. Further

research also revealed that humans are optimal decision-makers in tasks that require

motor action when the uncertainty is an intrinsic property of the sensori-motor system.

The same decision-making tasks when involved also extrinsic uncertainty (imposed by

the experimenter) resulted in divergences from the optimality.

We investigated decision-making under uncertainty using a temporal

discrimination task. The consequences of different responses (payoff matrix) and

extrinsic probabilities constituted two critical experimental manipulations. The third

critical constituent of the temporal decision-making task was the intrinsic uncertainty,

which could not be controlled either by the experimenter or the subject. This form of
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uncertainty was an intrinsic property of the cognitive system, a limit on the precision with

which it can estimate elapsed intervals.

Given the temporal nature of our task, the dominant source of intrinsic uncertainty

was assumed to originate from the representation of temporal intervals in the decision-

maker’s mind. The representation of temporal intervals and their psychophysical

properties are known to be quite similar across different species (e.g. mice, rats, pigeons,

human). Use of a temporal discrimination paradigm (thus temporal information

processing) as the context for decision-making under uncertainty added a translational

character to our decision-making task and models developed based on the findings. This

allowed us to study decision-making under uncertainty in mice using the same.

The translational character of this complex and experiential decision-making task

further motivated us to assess the explanatory power of representational/computational

versus associative processes, the latter of which represents the dominant models of

animal learning. In the following sections, we summarize the results from human

experiments, mice experiments and simulations.

Hill-climbing or Parachute Landing?

More than half of the time both human and mice subjects responded such that

they ensured more that 95 % of the maximum possible expected gain. They were doing

so by positioning their switch latency within 5-7 % of the available response range. The

question of interest given this finding is “How did they get to the top of the hill?”. There

are two possible accounts for this finding. The first account that is represented by our

optimal decision-making model suggests that early on in the session, subjects formed an

accurate representation of the task parameters (reward/penalty magnitudes and extrinsic
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and intrinsic uncertainty) and they computed the optimal point switch latency given this

information. The alternative account that is more consistent with models developed in the

area of psychology and computer science (e.g. reinforcement learning), would suggest

that subjects found the top of the gain hill by using hill-climbing algorithm (which

actually assumes some representation of gain and metric of the response dimension). The

critical difference between these accounts is that the first account assumes the calculation

of the locus of the optimum while the latter account assumes the discovery of optimum

through trial-error.

Investigation of our empirical data set and the performance of the simulations

conducted in this data set provided a ground for assessing the validity of these accounts

and set a very plausible answer to the question of “How did subjects get to the top of the

hill?” A close look to Figure 6.9 and 7.8 reveals that in general even though the expected

gain plane was shallow around the top of the hill, the subjects’ aimed switch latencies

were closer to the optimal switch latency (top of the hill) than the contour delimiting 99

% of the MPEG. This observation was generalizable to other data sets not presented in

these two figures. Further, our investigation of performance in the course of session did

not reveal a general improvement over trials in either human or mice data sets.

These two basic observations clearly favor the first account over the second one.

In general hill-climbing algorithms take a very long time to converge on the top of the

hill. This fact gets more pronounceable particularly when the plane around the top of the

hill is shallow as in our data set. On the other hand, findings reported above suggest that

subjects located their responses at the top of the gain hill and they did so early on in the

session. They did not exhibit any form of improvement in the course of session, which
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would be expected to occur if they were using a hill-climbing like algorithm to discover

the optimum. We conclude that our subjects landed on the top of the hill aiming for it

from the very start rather than blindly climbing the hill trying to find its peak.

Human Experiments

Our results of human experiments have shown that, more than half of the time

human subjects planned temporal strategies that ensured well above % 95 of the maximal

possible expected gain given asymmetrical payoff matrices and under uncertainty that

originated from both intrinsic (due to imprecision in their representation of elapsed time)

and extrinsic stochastic processes. Through these temporal strategies, human subjects on

average were found to constrain their temporally strategies within less than % 5 of the

total temporal response range (3 seconds). This corresponded to approximately 150 ms of

temporal window around the optimal switch latency that would maximize the gain.

The close correspondence between the empirical target switch latencies and the

optimal switch latencies suggests that human subjects combined information about the

reward/penalty magnitudes (payoff matrix), extrinsic uncertainty, and intrinsic

uncertainty in a normative fashion. This further suggests an unbiased estimate of extrinsic

and intrinsic uncertainties by decision-makers, which was shown not to be the case when

extrinsic uncertainty was presented in a verbal form (described). Briefly, our results

characterized human subjects as normative decision-makers under uncertainty with

multiple sources, at least in the context of temporal information-processing.

Our trial-by-trial analyses of the responses suggested that subjects planned and

implemented the optimal temporal strategy starting early in the session and their

responses varied around this aim point due to the stochastic processes underlying timing
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and/or memory for temporal intervals. There was not a systematic improvement during a

session (that is, with a given set of relevant pay-off and probability parameters). This is in

line with the results and interpretation of Trommershäuser et al. (2003a, 2003b).

Performance of human subjects achieved in our tasks combined with recent

findings from experiential decision-making tasks suggest that non-normative solutions to

the decision-making problems in classical paper-pencil tasks might be mainly due to the

non-experiential/descriptive means of information gathering. On the other hand, when the

uncertainty is an intrinsic property of an input used in decision-making processes, the

decision-making process might very well take the uncertainty information into account in

a normative manner. Our findings revealed that human subjects are optimal decision-

makers under uncertainty that originates from their very representation of the task

attribute that is temporal intervals. This finding has a clear parallelism with the findings

of Trommershäuser et al. They too showed that human subjects were optimal decision-

makers in motor planning tasks under uncertainty that was intrinsic to their motor system.

Our results allowed us to extend the claim of normative processing of intrinsic

uncertainty to decision-making cases, in which the intrinsic uncertainty originates from

the representation of temporal intervals. This suggests that our subjects should have

represented the uncertainty in their representation of temporal intervals and used it as a

critical input in planning a temporal strategy for maximizing their gain. Despite the fact

that this might be characterized as a meta-cognitive process, the decision-making process

that uses this information seems to be an automatic one, which does not require conscious

effort on the part of the decision-maker.
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Our results also constitute a divergence from some of the findings of the same

researchers (e.g. Maloney, Trommershäuser, & Landy, 2006). Maloney et al. showed that

when extrinsic uncertainty was introduced to their motor planning tasks, subjects were

suboptimal at planning the optimal aim point. Their interpretation of this finding was that

human mind might be normative in dealing with intrinsic uncertainty but not in dealing

with extrinsic uncertainty. Our findings on the other hand revealed that subjects could

exhibit optimal decision-making under conditions in which the uncertainty originated

from both intrinsic and extrinsic stochastic processes. This is indeed consistent with the

findings of Barron et al., Hertwig et al., and Weber et al.

A simple comparison of the spatial task of Maloney et al. with our temporal task

might shed light on the reasons of this discrepancy. In their spatial task, in each trial, two

identical targets were presented simultaneously. The penalty regions were color-coded

and the subjects were verbally informed about the probability condition at the beginning

of each block. The probability condition was always defined by %50 which stayed

constant across each block (36 trials each).  The outcome at each trial not only depended

on the subjects’ movement end point (intrinsic) but also to a chance element that was

independent of subject’s response, where rewards and penalties were stochastic. Maloney

et al. expected that a normative observer would be expected to give the same responses in

cases when the penalty was $ 100 at 50 % of the time and a certain penalty of $ 50.

Maloney et al. allowed their subjects 36 trials in each block to gather information

about the extrinsic probability. This might not constitute enough number of experiences

for one to gather an accurate representation of extrinsic uncertainty. In our tasks on the

other hand, the extrinsic uncertainty was experienced over 500 trials that constituted each
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session. This constitutes almost 15 times more number of trials than the ones that were

used in each block in Maloney et al. In other words, we might have observed optimal

decision-making under extrinsic uncertainty solely because our subjects were allowed to

gather and use this information over the course of large number of trials. This

discrepancy also might have occurred simply due to the fact that extrinsic uncertainty

(although also experienced) was verbally communicated to their subjects but they were

solely experienced by our subjects. In this sense, our introduction of extrinsic uncertainty

represents more of Barron et al., Hertwig et al., and Weber et al’s.

Given this state of affairs, our experiments constitute the first case in which the human

subjects are shown to be optimal under uncertainty that originates from both intrinsic and

extrinsic processes.

The optimal performance in our task requires one to integrate the magnitudes of

rewards and penalties with the intrinsic and extrinsic uncertainty. Thus, our results

suggest that such an integration of information about critical task parameters happens in

subjects’ mind from early on in the session. Briefly, in some respects our results confirm

the optimal decision-making with intrinsic uncertainty and different payoff matrices and

in other respects they confirm optimal decision-making under extrinsic uncertainties.

A closer look at the data showed that intrinsic uncertainty in our task originated

from the representation of temporal intervals and was independent of the uncertainty that

was due to planning (at least in the case of humans). This claim is based on our findings

that variability measures of timing distributions did not change as a function of task

conditions. This finding is consistent with the findings of Trommershäuser et al. (2003b)

who reported no change in the motor variability as a function of their motor task
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parameters. Their intrinsic uncertainty was dominantly due to the noise in the motor

system and did not originate from the motor planning. Based on these findings, the

intrinsic uncertainty in our tasks might be modeled solely as uncertainty in the timing or

temporal memory. This finding was further supported by the fact that in almost all cases

this timing uncertainly did not get better or worse over the course of sessions.

Finally, we found slight differences in the processing of reward/penalty

magnitudes when they were numerical vs. graphical. For instance, the analyses of

absolute temporal distances from the optimal point (both earlier and later) revealed that

with graphical presentation of gains, subjects tended switch farther away from the

optimal switch latency. These differences might be due to the different mappings from

numerical and graphical (analogue) external representations of quantities to their

representations in mind.

Our findings from human experiments offer a new interpretation for the results of

classical decision-making tasks, which were presented as empirical evidence to non-

normative information-processing/decision-making under uncertainty in humans. Our

results signify the importance of the experiential nature of uncertainty for the expression

of normative decision-making processes. This very fact motivated us to investigate the

same processes in animal subjects.

Mice Experiments

In line with the optimal decision-making processes observed with humans,

decisions made under both intrinsic and extrinsic uncertainty by mice were also found to

be quite close to the optimal decision criterion. The aimed switch points of the mice on

average ensured above % 95 of the MPEG. These aim points corresponded to 2.5-7 % of
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all the values that the switch latencies could take. These measures suggest that mouse

decision-making processes that take place under different sources of uncertainty are

optimal.

Comparison of the human and mouse performance in these tasks further reveals a

possibly better performance of mice compared to humans. On the other hand, our mouse

tasks did not involve any asymmetry in terms of the reward magnitudes and any penalty.

Lack of the penalty variables and/or the lack of asymmetries in the reward magnitudes in

the payoff matrix might have mediated the slightly better of performance of mice

compared to humans.

Briefly, the level of performance observed with mice suggests that mice subjects

were sensitive to these decision parameters. This further suggests that they represented

temporal intervals, extrinsic and intrinsic uncertainties and combined them in a normative

fashion such that its output predicts the optimal switch latency.  Thus, one can assume

that in non-verbal decision-making tasks such as ours, the underlying decision-making

processes in human and mouse mind resemble each other.

Representational/Computational versus Associative Processes

Optimal temporal decision-making model, assumes that representations of

temporal intervals, extrinsic and intrinsic uncertainty are used as inputs in computing the

optimal switch latency. Thus optimal temporal decision-making model assumes a

representational and computational power underlying the decision-making process.

Given the long-standing controversies over representational explanations in

psychology and frequent suggestions by, for example, the connectionist modeling

community, of  non-representational associative models as alternatives to information
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processing models, we were also led to consider how good an account could be obtained

from some models of this kind. The basic assumption of these models is that responses

(or the probability of their occurrence) are determined as some function of their

associative weight. The associative weights are not predetermined. They are updated

through course of discrete experiences of consequences that are contingent on some

stimulus or response. This process is assumed to abide by certain updating rules, which

characterize the associative learning models. In our simulations, we used a widely

accepted associative learning rule, namely Rescorla-Wagner model. We considered three

different functions for mapping the probability of a response occurring on a given trial

(or, at least, having its associative strength updated)  to its associative weight.

Our simulations had five parameters. We varied rates of learning (a) and

extinction (b), the density and range of possible response latencies whose associative

weights could be incremented or decremented by success or failure on a given trial, and

the effect or lack of effect of magnitude of the experienced gain or loss.

Remaining two parameters were manipulated to provide different degrees of

representational substitution or power to the simulations. One of these parameters was the

test range. When this range is constrained by the critical temporal parameters of the task,

it provides a strong substitute for the representation of temporal intervals in the

simulation, because it constrains the range during which the responses should occur.

When this range is determined to be larger, the simulations entertain a weaker substitute

for representational power since they are allowed to sample from outside the critical

temporal range. As noted earlier, this manipulation can only be characterized as a

substitute for the representation rather than the introduction of the representation of
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temporal intervals itself, since it did not provide a metric or ordinal structure to the

simulations.

Another parameter that determined representational power involved the

representation of magnitude of consequences. In human experiments there were different

magnitudes of rewards and penalties across different sessions. For a system that cannot

represent magnitudes, the effect of any experienced reward/penalty on the updating of the

associative weight would be equal. For a system that has a representation of magnitudes,

the experience would result in an associative updating factor that are proportional to the

magnitude of the consequences. In half our simulations we allowed the reward/penalty

magnitudes to determine the increment and decrement factors while in the other half all

experienced rewards/penalties had equal effects on the updating of associative weights.

The number of samples can also be interpreted as relating to the representational

substitution. For instance, in cases when the test range is constrained by the critical

temporal intervals, higher number of samples would provide a higher “temporal

resolution” for the sample of latencies.

Our analyses of the performance of simulations revealed that compared to optimal

model overall simulations using an associative learning rule using different combinations

of five parameters did not do a good job in accounting for the empirical data. Further

analyses of the performance of simulations as a function of different simulation

parameters and sampling rules revealed a clear role of assuming representations in

accounting for the empirical data. For instance across all sampling rules used by the

simulations, almost for all of the instances in which the simulation did as good as or

better job than the optimal model in explaining the data, the test range was constrained
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around the critical temporal intervals, (e.g. 1-4 s in human case). When this constraint

was defined even in the actual response range (e.g. 0-3 s in human case), the trial

duration during which one could respond, the simulations almost never succeeded in

explaining the empirical data. This result suggests the critical role of representation of

temporal intervals in explaining the empirical data. When this representational

substitution is reduced even by a small degree associative updating rule fails to explain

the empirical data. However, it is important to note that even when these simulations

were provided with a substitution for the representation of temporal intervals, in only a

small portion of the instances they explain the empirical data as good as or better than the

optimal model. This suggests that the metric structure that underlies the representation of

temporal intervals is a main predictor of temporally controlled responses observed in our

data set.

Another parameter that related to the representational power was the

representation of reward/penalty magnitudes. The representation of magnitudes and their

proportional effect on the associative updating rule was found to increase the number of

correct instances when the simulations had the weaker substitution of temporal

representational power (wider test-range). On the other hand, when they were provided

with the substitution temporal representation, the representation of the magnitudes

decreased the number of instances of success in explaining the empirical data. This is

very likely to be a function of the associative adjusting rule, itself that used the

magnitudes in updating the associative weights.

Although increased precision of latencies seemed to increase the number of

successful instances, their effect was not pronounced in the form of statistical
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significance. Finally, the important role of representations in account for empirical data

was reflected by the differential success rates of different sampling rules used by the

simulations. Probabilistic sampling rule resulted in higher number of instances in which

the simulations were as good as or better than the optimal model in explaining the

empirical data compared to two other sampling rules. Within these two other sampling

rules, the one that used a semi-probabilistic sampling scheme (sampling randomly across

five criteria with highest associative weights) did a better job than the one that did not use

a probabilistic approach at all. When one looks closer at the sampling rules used in the

probabilistic case, the knowledge that probabilities add up to 1 was implemented in the

functioning of these simulations, which reflects another kind of representation: the

knowledge about the compositional properties of probabilities. When the implementation

of this knowledge was aided further by the substitution for the representation of temporal

intervals, the simulations were most likely to succeed in accounting for the empirical

data.

Unlike the parameters that determined the representational power/state of

simulations such as temporal test range and magnitude effect, the parameters that were

directly related to associative updating process itself such as a and b were not found to be

the simulation parameters that reliably affected the number of successful instances. The

only simulations that these traditional associative parameters were found to have an effect

on (in addition to other parameters) were the ones that used winner-takes-all sampling

rule. This was the sampling rule that resulted in the least number of successful instances.

As mentioned in the results section, small a values tended to help the simulations under

this sampling rule. Small a values would mediate this effect by inducing exploration by
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incrementing the associative weight in only small amounts in the case of success. In

probabilistic sampling rule, which was found to be far more successful compared to two

other sampling rules, a and b values were not found to have any effect on the number of

successful instances. This very finding also signifies the far more important role of

representations than the components of associative learning in explaining observed

behavior.

Briefly, our attempts to account for the empirical data through simulations using

associative learning rules with different sampling rules and levels of representational

manipulation revealed that these models best explain the data when they are compensated

for the lack representational power. However, the rate of these successes was still very

low. This suggests the necessity of assuming metric structure underlying the

representation of temporal intervals for modeling decision-making in our task (see

Montemayor & Balci, under review, for an in-depth discussion of this issue). This fact

also suggests that as much as (if not more) the representations have critical role in

explaining subject’s data in these complex decision-making tasks, also their

combinatorialness is a crucial condition to account for the empirical data. These results

can be generalized to the validity of associative vs. information-processing accounts of

decision-making processes.

Contribution to the study of interval timing:

Several widely used protocols have been developed in order to study interval

timing in animals, including the peak procedure (e.g. Catania, 1970), the bisection

method (e.g. Meck & Church, 1983), and the temporal generalization (Church & Gibbon,

1982), and the time-left protocol (Gibbon & Church, 1981). Most of these protocols have
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further also been adapted to study interval timing in human subjects (Rakitin, Gibbon,

Penney, Hinton, Malapani, & Meck, 1998 for peak procedure, Balci & Gallistel, 2005 for

bisection method, Wearden & Bray, 2001 for temporal generalization, for review see

Balci, Moore, & Brunner, 2007a). The switch paradigm used here is a new paradigm of

studying interval timing in both mice (but see Fetterman & Killeen, 1995 and Platt &

Davis, 1983 for a variant conducted with pigeons) and human subjects.

It has several advantages over the traditional protocols. For instance, the free-

operant environment and the observed response type allows the experimenter to observe

the real-time comparison and discrimination of durations (since the response could be

observed at any point during the trial), which cannot be done in most temporal

discrimination tasks. For instance, in bisection method, which is a widely used technique

of studying temporal discrimination, the subjects’ decision regarding the similarity of a

probe to the referents takes place after the offset of the probe duration. Because of this

procedural constraint along with the way the psychometric function is constructed, the

subjects are presented with a limited sample of probe durations; each probe being

presented for a number of times (e.g. 10 probe durations each presented for 10 times).

Consequently, the subjects’ responses are observed only for a limited number of probes

determined by the experimenter.

On the other hand, with our paradigm, we introduced a new way of demonstrating

and quantifying temporal discrimination (also see Fetterman et al. 1995). In this new way

of demonstrating phenomenon, the cumulative distribution of the switch points –time

when the subject leaves the short hole for the long hole- (the raw data) is the

psychometric function of the duration discrimination, itself. Therefore, one does not need
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to fit a function to a limited number of data points for gathering the psychometric

function. This way there are no free parameters, which in turn increases the certainty

about what is represented by the shape and location of the curve. In bisection method on

the other hand, as stated above the psychometric function is constructed by fitting a

function to a few number of points. This function has a number of free parameters and

the best fitting function explains only a portion of the variance (R2).

The real-time responding allowed by free-operant environment, further eliminated

the potential effect of the nature of spacing between the probes on the psychometric

function, which is an issue again in the case of bisection method. For instance, Allan

(2002), Wearden and Ferrara (1995, 1996) and Wearden, Rogers, and Thomas (1997)

reported that point of subjective equality was larger for linearly spaced probe durations

compared to logarithmically spaced probes in humans. The disadvantages of bisection

listed above largely constitute the disadvantages of the temporal generalization protocol.

Unlike in the case of these protocols, in the switch paradigm, there are no probes

determined by the experimenter.

The switch paradigm also has advantages over the peak procedure. Analyses of

peak procedure requires the researcher to use a complex data-parsing algorithm to

recognize the starts and stops of temporally controlled responses on a trial-by-trial basis.

The resultant units of analysis might not coincide with an actual response. More

importantly, different data-parsing algorithms are likely to detect different starts and

stops (see Taylor, Horvitz, & Balsam, 2007). The output of these algorithms are further

argued to be response-rate dependent (e.g. Odum, Lieving, and Schall, 2002). The switch

paradigm does not require use of data-parsing algorithms in order to gather the behavioral



149

measures. It uses a clear-cut unit of analysis that is the latency with which the subject

leaves the short-latency alternative for the long one, which does not have any response-

rate dependency. Unlike other timing protocols, it does not involve any probe trials in

order to gather timing measures. Finally, it allows the researchers to investigate the

processing of different forms of information (e.g. probabilities, reward magnitudes, etc.).

Procedural and analytical integration of these attributes is not as straight forward in the

case of other interval timing protocols.

Briefly, switch paradigm provides an alternative way of conducting translational

research on the process and memory of interval timing. Its advantages over traditional

paradigms characterizes this paradigm as a strong alterative over traditional techniques of

studying interval timing.

 Lastly, our experiments have an empirical contribution to the study of interval

timing. Our results have shown that mice can discriminate 1:2 ratio of temporal intervals.

To our knowledge this is the first study that reports successful discrimination of 1:2 ratio

temporal intervals by animals. Our earlier work has shown that when mice are trained

originally with 1:2 ratio of temporal intervals, they cannot discriminate the referents

(Balci et al., 2007b). In this work, however mice were initially trained with 1:3 ratio of

temporal intervals and then introduced 1:2 ratio. This suggests that the maximum

temporal precision reported in earlier studies is not due to representational/cognitive

constraints of the subjects but procedural constraints such as the use/order of training

protocols.
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Contribution to behavioral/cognitive phenotyping:

In addition to its efficiency and simplicity compared to other interval timing

paradigms, the protocols that we used in this experiment also proved to be work with

mice. These tasks involve higher-level cognitive processes. Thus using these protocols

one can conduct higher level cognitive phenotyping of genetically modified mice (see

Gallistel, King, Gottlieb, Balci, Papachristos, Szalecki, & Carbone, 2007 for a similar

approach).

Further, the switch task allows the pharmacology and genetics of impulsivity

which characterizes the symptoms of certain psychopathologies such as schizophrenia.

Impulsivity in our paradigm can be well quantified in terms of the proportion of the

response distribution that is best modeled by a Weibull distribution (Balci & Freestone, in

preparation).

Future Research:

In current research, we have used a wide range of probabilities (.1-.9) and

reward/penalty magnitudes (0-50) in order to predict a large range of optimal points. On

the other hand, fixed interval pairs that were to be discriminated in the human task was

found to be easy for the subjects given their temporal uncertainty. For this very reason,

the optimal switch latencies did not range as large as they would if the temporal intervals

would be more difficult to discriminate. In order to ensure a larger range of optimal

switch latencies, one can design harder temporal discrimination task. Derived from

Weber’s Law, this can be achieved by increasing the value of short and long temporal

intervals while keeping 1 second temporal distance across them (e.g. 5 vs. 6 s. instead of

2 vs. 3 s.). This particular sort of manipulation would make temporal discrimination
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harder while ensuring a wide enough temporal interval (long duration minus short

duration) during which one can observe different target latencies.

Another aspect of the task that future research might aim at establishing is testing

subjects under steeper expected gain functions. This could be achieved by increasing the

relative magnitude of penalties compared to reward magnitudes. We have tried to achieve

this by introducing a penalty of 50 points in certain sessions in which the reward

magnitudes ranged between 1-9 points. These two manipulations, namely decreasing the

discriminability and increasing the relative penalty magnitude for misses would certainly

make the gain maximization problem harder than it was for our human subjects, which in

turn would result in a more sensitive test of optimality.

Future research might focus on the adjustment of temporal decision-criterion as a

function of changing probabilities of short and long intervals. The question would be if

subjects would adjust their decision criterion as a function of the probability of the targets

calculated over all trials or would they detect the change in the probabilities of short and

long targets and shift their temporal strategy drastically.

An independent question that further research can investigate is if and how

subjects acquire and integrate the temporal uncertainty that is introduced by the

experimenter. This question can be addressed by introducing a level of noise to the

presentation of short and long durations. The noise introduced by the experimenter can be

modeled in different ways. It might be consistent with the model of temporal error (e.g.

Gaussian) or it might be inconsistent with the model of temporal error (e.g. Exponential).

Through these experiments, one can investigate if the acquisition of experimentally

introduced temporal noise is facilitated by its consistency with the nature of temporal
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representation in the mind. Faster acquisition of introduced temporal uncertainty as a

function of its similarity to uncertainty in its representation would have important

suggestions about the nature of information flow in mind: Is it belief-driven or not? Here

what is meant with belief is the knowledge/priors about one’s own representations.

Another line of research can also investigate the nature of integrating travel

durations in between two different targets by experimentally manipulating the travel

durations across different sessions, keeping other task parameters stable. There are

multiple possibilities that might explain the integration of travel duration in decision-

making process. The subject might be aiming for the actual switch duration or the actual

switch duration plus the travel duration or any where in between these two points. This

would help us clarify the nature of mapping between the switch point as a temporal

decision criterion and the actual task with its possible outcomes.

Finally, further research can investigate the effect of reward and penalty

magnitudes in mouse subjects. The reward magnitude can be manipulated by assigning

different amounts of reinforcement (either directly or through increased duration of

access to reward) for different options. The penalty magnitude can be manipulated by

assigning different time-out periods (ITI) for different kinds of errors.
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