Staff View
Optical properties of zinc oxide nanotips and their device applications

Descriptive

TitleInfo (displayLabel = Citation Title); (type = uniform)
Title
Optical properties of zinc oxide nanotips and their device applications
Name (ID = NAME001); (type = personal)
NamePart (type = family)
Zhong
NamePart (type = given)
Jian
NamePart (type = date)
1969-
DisplayForm
Jian Zhong
Role
RoleTerm (authority = RUETD)
author
Name (ID = NAME002); (type = personal)
NamePart (type = family)
Lu
NamePart (type = given)
Yicheng
Affiliation
Advisory Committee
DisplayForm
Yicheng Lu
Role
RoleTerm (authority = RULIB)
chair
Name (ID = NAME003); (type = personal)
NamePart (type = family)
McAfee
NamePart (type = given)
Sigrid
Affiliation
Advisory Committee
DisplayForm
Sigrid R. McAfee
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME004); (type = personal)
NamePart (type = family)
Jiang
NamePart (type = given)
Wei
Affiliation
Advisory Committee
DisplayForm
Wei Jiang
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME005); (type = personal)
NamePart (type = family)
Sheng
NamePart (type = given)
Kuang
Affiliation
Advisory Committee
DisplayForm
Kuang Sheng
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME006); (type = personal)
NamePart (type = family)
Shen
NamePart (type = given)
Paul
Affiliation
Advisory Committee
DisplayForm
Paul H. Shen
Role
RoleTerm (authority = RULIB)
outside member
Name (ID = NAME007); (type = personal)
NamePart (type = family)
Ng
NamePart (type = given)
Hock
Affiliation
Advisory Committee
DisplayForm
Hock M. Ng
Role
RoleTerm (authority = RULIB)
outside member
Name (ID = NAME008); (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (ID = NAME009); (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2007
DateOther (qualifier = exact); (type = degree)
2007
Language
LanguageTerm
English
PhysicalDescription
Form (authority = marcform)
electronic
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xvi, 135 pages
Abstract
Zinc oxide (ZnO) nanostructures are emerging as the key building blocks for nanoscale optoelectronic and electronic devices. ZnO has a large exciton binding energy (~ 60 meV), which makes its nanotips ideal for studying excitonic emissions in one-dimensional systems even at room temperature. ZnO nanowires show a strong exciton-polariton interaction, promising for fabricating UV nanolasers. The large and fast photoconductivity in high quality ZnO is suitable for making UV photodetectors. ZnO nanotips can be grown on various substrates, including glass, Si, and GaN, at low growth temperature (~ 400° C) by metal-organic chemical vapor deposition (MOCVD) that provides the potential of the integration of ZnO nanotips with Si based microelectronics and GaN based optoelectronics devices. To date, most of the research has been focused either on ZnO films, or on "pick-and-place" manipulation of randomly dispersed ZnO nanowires to study their physical properties.
In this dissertation work in-situ n-type doping of ZnO nanotips during MOCVD is studied, including the doping effects on optical properties and electrical conductivity. Nanoscale tunneling current-voltage characteristics of the ZnO nanotips show the conductivity enhancement due to Ga doping at the proper range of doping concentration. At low or moderate doping levels, the increase in photoluminescence (PL) intensity from Ga doping is attributed to the increase of Ga donor related impurity emission.
The excitonic emissions of ZnO nanotips are investigated using temperature-dependent PL spectroscopy. The sharp free exciton and donor-bound exciton peaks are observed at 4.4K, confirming high optical quality of the ZnO nanotips. Free exciton emission dominates at temperatures above 50K. The thermal dissociation of these bound excitons forms free excitons and neutral donors. Temperature-dependent free A exciton peak emission is fitted to the Varshni's equation to study the variation of energy bandgap versus temperature.
A prototype of ZnO nanotips/GaN light emitting devices has been demonstrated using an n-ZnO nanotips/p-GaN heterostructure. The electroluminescence with a peak wavelength of 406nm is primarily due to radiative recombination from electron injection from n-type ZnO nanotips into p-type GaN. A novel integrated ZnO nanotips/GaN LED has been fabricated for enhanced light emission efficiency. A Ga-doped ZnO transparent conductive oxide (GZO) film and ZnO nanotips are sequentially grown on top of a GaN LED, serving as the transparent electrode and the light extraction layer, respectively. Compared with the conventional Ni/Au p-metal LED, light output power from the ZnO nanotips/GZO/GaN LED is improved by 1.7 times. The enhanced light extraction is attributed to the increased light scattering and transmission in the ZnO/GaN multilayer.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references (p. 124-132).
Subject (ID = SUBJ1); (authority = RUETD)
Topic
Electrical and Computer Engineering
Subject (ID = SUBJ2); (authority = ETD-LCSH)
Topic
Semiconductors--Optical properties
Subject (ID = SUBJ3); (authority = ETD-LCSH)
Topic
Electroluminescence
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.15770
Identifier
ETD_530
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3KS6S03
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (AUTHORITY = GS); (ID = rulibRdec0006)
The author owns the copyright to this work.
Copyright
Status
Copyright protected
Availability
Status
Open
AssociatedEntity (AUTHORITY = rulib); (ID = 1)
Name
Jian Zhong
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
RightsEvent (AUTHORITY = rulib); (ID = 1)
Type
Permission or license
Detail
Non-exclusive ETD license
AssociatedObject (AUTHORITY = rulib); (ID = 1)
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Back to the top

Technical

Format (TYPE = mime); (VERSION = )
application/x-tar
FileSize (UNIT = bytes)
2594304
Checksum (METHOD = SHA1)
1272bce9ede79b94adf7a8f46d93ec69c8ed9de6
ContentModel
ETD
CompressionScheme
other
OperatingSystem (VERSION = 5.1)
windows xp
Format (TYPE = mime); (VERSION = NULL)
application/x-tar
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024