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ABSTRACT OF THE DISSERTATION

Securing Wireless Localization against

Signal Strength Attacks

by Yingying Chen

Dissertation Director: Prof. Richard P. Martin and Prof. Wa de Trappe

Accurately positioning nodes in wireless and sensor networks is important because the loca-

tion of devices and sensors is a critical input to many higher-level applications. However, the

localization infrastructure can be subjected to non-cryptographic attacks, such as signal atten-

uation and amplification, that can not be addressed by traditional security services. This thesis

aims to provide secure and accurate location information inwireless and sensor networks by

characterizing the response of localization algorithms toattacks, detecting attacks, localizing

adversaries, and additionally, improving localization performance.

First we studied the robustness of localization algorithmsto signal strength attacks. We

found the performance of localization algorithms degradessignificantly under attacks when

signals are attenuated or amplified by an adversary. We then formulated a theoretical founda-

tion for the attack detection problem using statistical significance testing. We proposed attack

detection schemes for two broad localization approaches: signal strength and multilateration.

We found that different localization systems all contain similar attack detection capabilities.

Next, we examined the applicability of localization methods to localize adversaries participat-

ing in identity-based spoofing attacks. We proposed a spoofing detector for wireless spoofing

that utilizes K-means cluster analysis. We integrated our K-means attack detector into a real-

time indoor localization system, which is capable of localizing the positions of attackers. Our

ii



experiments using both an 802.11 (WiFi) network as well as an802.15.4 (ZigBee) network

in two office buildings provide strong evidence of the effectiveness of our approach in attack

detection and localizing the positions of the adversaries.

In addition, we investigated the impact of landmark placement on localization performance

using a combination of analytic and experimental analysis.We developed a novel algorithm

calledmaxL − minE algorithm that finds an optimized landmark deployment. Our experi-

mental results show that our landmark placement algorithm is generic because the resulting

placements improve localization performance significantly across a diverse set of algorithms,

networks, and ranging modalities. Finally, we presented our general purpose real time local-

ization infrastructure which targets to localize any radio-enabled wireless devices at anywhere

and at anytime.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless networks are changing the way we work, study, and interact with each other. As

wireless networks become increasingly prevalent, they make integrating new information types

into applications possible. Location information is one such information source that is very

important for many applications. Localization refers to determining the physical position of a

wireless device or a sensor node which can be either static ormobile. The location informa-

tion can be one-dimensional (e.g., location on a long airport corridor), two-dimensional (e.g.,

location on one floor in a hospital), or three-dimensional (e.g., location within a multi-level

shopping mall). For example, in the public arena, doctors want to use location information

to track and monitor patients in medical facilities; for wild life observation, biologists can put

tags on animals and perform habitat tracking; first responders can track victims and each other

during an emergency. In the enterprise domain, location-based access control is needed for

accessing the proprietary corporate materials in restricted areas or rooms. For example, during

meetings, certain documents may need to be sent only to laptops within the involved conference

rooms, which requires location-aware content delivery. Inaddition, asset tracking also relies

on location information. These examples show that accurately positioning nodes in wireless

and sensor networks is important as the location of sensors is a critical input to many high-level

networking tasks and applications.

With recent great advances in wireless technology, there are three wireless communica-

tion standards that have conjoined with our everyday life and have further promised to realize

location-based services: First, Wireless Local Area Networks (WLANs) usually refer to net-

works based onWiFi technology functioning according to IEEE 802.11 standards[4]. The

normal infrastructure for a WiFi network consists of one or more Access Points (APs), which
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has the ability to do wireless transmission and also serves as a gateway to a wired network. WiFi

devices can thus connect to the Internet and talk to each other through APs. The most popular

WiFi devices are laptops and Personal Digital Assistants (PDAs). Second,Bluetooth technol-

ogy uses IEEE 802.15.1 standards [5] and is designed for lower power consumption, and thus

has a relatively shorter range around 10 meters. It is mostlyused for communication between

devices closely located to each other. Currently many devices support Bluetooth including lap-

tops, cell phones, headsets, mouses, and digital cameras. Finally, ZigBee implements IEEE

802.15.4 standards [6] and targets for sensor networks withembedded applications such as

environmental monitoring, data collection, and intruder detection. Because of the nature of

embedded applications, the corresponding devices utilizing ZigBee protocol are required to be

small. The current available ones are about the size of a quarter [3,7].

In wireless and sensor networks, there are various physicalmodalities can be employed to

perform localization such as Received Signal Strength (RSS), Time of Arrival (TOA), Angle

of Arrival (AOA), Hop Counts, and etc.. Among the localization techniques, utilizing RSS

is especially attractive since it can reuse the existing deployment of wireless communication

networks, rather than require a specialized localization infrastructure such as ultrasound or

infrared methods. This provides tremendous cost savings. Also, all current standard com-

modity radio technologies, such as 802.11, 802.15.4, and Bluetooth provide it, and thus the

same algorithms can be applied across different platforms.Further, based on the information

obtained from physical modalities, different principles can be used to determine the positions

of sensors. There has been active research in developing localization algorithms using lat-

eration [23, 28, 44, 49, 54], angulation [53], probabilistic approaches [59, 69], and statistical

supervised learning techniques [12,27,52]. We detail these efforts in Chapter 7.

However, in spite of the utility of the location information, it is only useful if the location

information is accurate and trustworthy. As more location-dependent services are deployed,

they will increasingly become tempting targets for malicious attacks. Unlike traditional sys-

tems, the localization infrastructure is sensitive to a variety of attacks, ranging from conven-

tional to non-cryptographic, that can subvert the utility of location information. Conventional

attacks, where an adversary injects false messages, can be isolated and protected against using



3

traditional cryptographic methods such as authentication. However, there is a completely or-

thogonal set of attacks that are non-cryptographic, where the measurement process itself can

be corrupted by adversaries. For instance, an adversary could introduce an absorbing barrier

between the transmitter and the target, changing the underlying propagation physics. As the

signal propagates through the barrier, it is attenuated, and hence the target would observe a

significantly lower received signal strength. Consequently, the receiver would conclude that it

is further from the transmitter than it actually is. On the other hand, wormhole attacks tunnel

through a faster channel to shorten the observed distance between two nodes. Unfortunately,

these non-cryptographic attacks can not be addressed by traditional security services. Thus, it

is desirable to study the impact of these attacks on localization algorithms and explore meth-

ods to detect and further to eliminate these attacks from thenetwork. This is the focus of this

thesis. We are motivated to develop solutions that can be integrated into early generations of

localization systems, so that we will not have to apply patchwork solutions to solve security

threats that arise after localization systems are deployed.

Specifically, in this thesis work we first performed a thorough study on the robustness of

a broad array of localization algorithms to attacks that corrupt signal strength readings. The

characterization of the response of algorithms provides important insights to be taken into con-

sideration by system designers when choosing localizationsystems for deployment. From the

robustness study, we observed that attackers can cause large localization errors using simple

techniques. Hence, we must detect the presence of attacks inthe network. We then formulate

the attack detection problem as a generic statistical significance testing problem and proposed

several attack detection schemes to broad classes of multilateration and signal strength-based

methods. After a localization attack is detected in a wireless network, the next important and

challenging step is to localize the positions of adversaries and further to eliminate the attack

from the network. We proposed to use K-means cluster analysis to detect identity-based spoof-

ing attacks and applied localization methods to locate adversaries participating in a spoofing

attack.

During the course of the security analysis for localizationsystems, we found that the land-

mark (a node with known position) placement plays an important role on localization perfor-

mance. It is desirable to obtain higher location accuracy. In this investigation, we focused on
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improving localization performance by repositioning the landmarks, rather than improving the

localization algorithms or searching for new algorithms, and this should help a wide variety of

algorithms. By using a combination of analytic and experimental analysis, we found geomet-

ric descriptions for the optimal deployment of landmark placement to maximize the location

accuracy for indoor localization.

Finally, one of the primary goals of localization research is to provide a scalable, general

purpose, and real time localization infrastructure that can integrate location information into

any computing radio-enabled devices. We are designing and developing a general purpose

localization system prototype called GRAIL (Generalized Real-time Adaptable Indoor Local-

ization), which can simultaneously position multiple devices using Bayesian Networks. The

deployment of such a system in academic and research environments will allow researchers to

explore issues beyond just algorithms and simulation tools, which can facilitate a variety of

research topics such as privacy studies, security services, and policy enforcements. In addition,

the practical usage of such an approach is significant as it can be applied to a broad array of

applications such as monitoring, tracking, routing, and security services.

1.2 Thesis Organization

This thesis is focused on to provide accurate and trustworthy location information to location-

based applications, and toward a general purpose localization infrastructure. The structure of

the thesis is organized as follows.

In Chapter 2, we characterize the response of localization algorithms to attacks where an

adversary attenuates or amplifies the signal strength at oneor more landmarks. We study both

point-based and area-based methods that employ received signal strength for localization, and

propose several performance metrics that quantify the estimator’s precision and error, including

Hölder metrics, which quantify the variability in position space for a given variability in signal

strength space. We then conduct a trace-driven evaluation of several point-based and area-based

algorithms, where we measured their performance as we applied attacks on real data from two

different buildings. We observed both strong experimentaland theoretic evidence that all the

algorithms have similar average responses to signal strength attacks.



5

Next, in Chapter 3, we propose several attack detection schemes for wireless localization

systems. We first formulate a theoretical foundation for theattack detection problem using sta-

tistical significance testing. Next, we define test metrics for two broad localization approaches:

multilateration and signal strength. We then derived both mathematical models and analytic

solutions for attack detection for any system that utilizesthose approaches. We also studied

additional test statistics that are specific to a diverse setof algorithms. Our trace-driven ex-

perimental results provide strong evidence of the effectiveness of our attack detection schemes

with high detection rates and low false positive rates across both an 802.11 (WiFi) network as

well as an 802.15.4 (ZigBee) network in two real office buildings.

Further, wireless and sensor networks are especially vulnerable to identity-based spoofing

attacks, which allows for many other forms of attacks in networks. It is desirable to detect the

presence of spoofing and eliminate them from the network. Although the identity of a node can

be verified through cryptographic authentication, authentication is not always possible because

it requires key management and additional infrastructuraloverhead. In Chapter 4, we take

a different approach by using the physical properties associated with wireless transmissions

to detect spoofing. Specifically, we proposed a scheme for both detecting spoofing attacks,

as well as localizing the positions of the adversaries performing the attacks. Our approach

utilizes the Received Signal Strength (RSS) measured across a set of access points to perform

spoofing detection and localization. We describe how we integrated our attack detector into

a real-time indoor localization system, which is also capable of localizing the positions of the

attackers. We show that the positions of the attackers can belocalized using either area-based or

point-based localization algorithms with the same relative errors as in the normal case through

experimentation using both an 802.11 (WiFi) network as wellas an 802.15.4 (ZigBee) network.

In Chapter 5, We investigate the impact of landmark placement on localization performance

using a combination of analytic and experimental analysis.Our analysis of landmark placement

can find an optimal placement of landmarks in well-defined regular regions, thus making it

quite suitable for indoor localization. The analysis places an upper bound of the maximum

localization error given a set of landmark placements. We can show that this upper bound

is minimized by a combination of minimizing the distance estimation error together with the

employment of the optimal patterns for landmark placement.Using this result, we can compare
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the maximum error between any two placements. We can then constrain a search of placements

to minimize the maximum error. We have developed a simple algorithm calledmaxL −minE

algorithm that finds an optimized landmark deployment for the LLS algorithm.

In summary, to ensure the trustworthiness of the location information, first we character-

ize the response of localization algorithms to signal strength attacks in Chapter 2. Then, in

Chapter 3, we propose attack detection mechanisms in wireless localization. We next propose

a method for both detecting and localizing spoofing attacks in Chapter 4. In addition, in order

to improve the localization performance, we investigate the impact of landmark placement in

Chapter 5. Moreover, we present the system architecture of our general purpose localization

infrastructure in Chapter 6. In Chapter 7, we compare and contrast our work to the previ-

ous research work. Finally, we conclude our thesis in Chapter 8 and present future research

directions.

1.3 Contributions

Our contributions in this thesis are:

We first characterized the response of localization algorithms to signal strength attacks.

Specifically, we proposed a new set of metrics, Hölder metrics, which relate the magnitude of

the perturbation in signal space to its effect on the localization result in physical space and thus

measure the susceptibility of localization algorithms to signal attacks. We found that all the

algorithms degraded gracefully, with a linear response as afunction of the attack strength. And

as a rule of thumb, it is easy to attack by 15 dB and cause localization errors by 20-30 feet. We

observed that the localization using Bayesian Networks is more robust than other algorithms

under attacks that target individual landmarks.

We developed a theoretical foundation of attack detection using statistical significance test-

ing. We built test statistics for two broad localization approaches: multilateration and signal

strength. For multilateration that uses Linear Least Squares, we derived a closed-form represen-

tation for the attack detector. Moreover, for localizationschemes that employ signal strength,

we showed that by utilizing the signal strength as a common feature, the minimum Euclidean

distance in the signal space can be used as a test statistic for attack detection independent of
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the localization process. The key advantage of our approachfor signal strength based methods

is that the detection phase can be performed prior to localization and thus results in localiza-

tion computation cost savings under attack. Further, we derived additional test statistics for a

selection of representative localization algorithms.

We validated the effectiveness and generality of our attackdetection schemes using a trace-

driven evaluation across a diverse set of algorithms, networks, and buildings. we found that

the performance of the different attack detection schemes are more similar than different. This

result shows that different localization systems have similar attack detection capabilities, and

consequently that system designers can focus on using algorithms that provide the highest

localization accuracy rather than having to trade off position accuracy against attack detection

abilities.

Further, we developed a method for detecting spoofing attacks as well as localizing the ad-

versaries in wireless and sensor networks. We applied our generic statistical significance testing

formulation for spoofing detection problem. We then utilized the K-means cluster analysis to

derive the spoofing detector.

Moreover, we have built a real-time localization system andintegrated our K-means spoof-

ing detector into the system to locate the positions of the attackers and as a result to eliminate

the adversaries from the network. our experimental resultsprovide strong evidence of the ef-

fectiveness of our approach in detecting the spoofing attacks and localizing the positions of the

adversaries.

In addition, we took a distinctive approach to investigate the impact of landmark placement

on localization performance. By analyzing the Linear LeastSquares algorithm, we derived an

upper bound on the maximum location error given the placement of landmarks. Based on this

theoretical analysis, we found optimal patterns for landmark placement and further developed

a novel algorithm,maxL − minE , for finding optimal landmark placement that minimizes the

maximum localization error. We found that the performance of a wide variety of algorithms

showed significant improvements, about 30%, when using landmarks placed according to our

algorithm, as opposed to alternate deployments. The experimental results provide strong evi-

dence that our analysis and algorithm for landmark placement is very generic as the resulting

placement has improved localization performance across a diverse set of algorithms, networks,
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and ranging modalities.

Finally, we presented a system prototype of a general purpose, real time, and scalable lo-

calization infrastructure. It aims to incorporate different localization properties and radios. In

university research communities, this general purpose localization infrastructure enables re-

searchers to explore issues beyond theoretical algorithmsand simulation approaches. It makes

further higher-level integrated research investigation possible including privacy studies and se-

curity services.
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Chapter 2

Robustness Analysis of Localization Algorithms to Signal Strength

Attacks

2.1 Introduction

Out of the myriad of localization methods proposed over the last few years, algorithms that use

Received Signal Strength (RSS) as the basis of localizationare very attractive options as using

RSS allows the localization system to reuse the existing communication infrastructure, rather

than requiring the additional cost needed to deploy specialized localization infrastructure, such

as ceiling-based ultrasound, GPS, or infrared methods [35,56,62]. In particular, all commodity

radio technologies, such as 802.11, 802.15.4, and Bluetooth provide RSS values associated with

packet reception, and thus localization services can easily be built for such systems. Further,

RSS-based localization is attractive as the techniques aretechnology-independent: an algorithm

can be developed and applied across different platforms, whether 802.11 or Bluetooth. In

addition, it provides reasonable accuracy with median errors of 1 to 5 meters [27]. However, as

more location-dependent services are deployed, they will increasingly become tempting targets

for malicious attacks. Adversaries may alter signal strength measurements for the purpose of

accessing services that are based on location information (e.g. WLAN access may only be

granted to devices inside of a building.). In this chapter, we thus investigate the susceptibility

of a wide range of signal strength localization algorithms to attacks on the Received Signal

Strength (RSS). Specifically, we examine the response of several localization algorithms to

unanticipated power losses and gains, i.e. attenuation andamplification attacks.

Conventional attacks, where an adversary injects false messages, can be isolated and pro-

tected against using traditional cryptographic methods, such as authentication. However, there

is a completely orthogonal set of attacks that are non-cryptographic, where the measurement

process itself can be corrupted by adversaries. Unfortunately, these non-cryptographic attacks
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cannot be addressed by traditional security services. Thus, it is desirable to study the impact

of these attacks on localization algorithms and explore methods to detect and further to elim-

inate these attacks from the network. Although there has been recent research on securing

localization [17–19, 49, 51, 61], to date there has been no study on the robustness of the ex-

isting generation of RSS-based localization algorithms tophysical attacks. Our evaluation is

a valuable contribution to a wireless sensor network designer. Because it helps drive proto-

col decisions, and allows the engineer to decide whether more complicated secure localization

algorithms are truly necessary.

In the physical attacks that we study, the attacker modifies the RSS of a sensor node or land-

mark, for example, by placing an absorbing or reflecting material around the node or landmark.

Notably, we study the set of representative attack scenarios on amplification or attenuation at-

tacks on single landmark, all-landmark and combinations oflandmarks. Further we analyze

the results of simultaneous amplification and attenuation on multiple landmarks. We investi-

gate both point-based and area-based algorithms that utilize RSS to perform localization. In

order to evaluate the robustness of these algorithms, we provide a generalized characterization

of the localization problem, and then present several performance metrics suitable for quan-

tifying performance, including estimator angle bias, estimator distance error, and estimator

precision. Additionally, an essential contribution of ourwork is the introduction of a new fam-

ily of localization performance metrics, which we call Hölder metrics. These metrics quantify

the susceptibility of localization algorithms to perturbations in signal strength readings. We

use worst-case and average-case versions of the Hölder metric, which describe the maximum

and average variability as a function of changes in the RSS. We then experimentally evalu-

ate the performance of a wide variety of localization algorithms after applying attenuation and

amplification attacks to real data measured from two different office buildings.

Using experimentally observed localization performance,we found that the error for a wide

variety of algorithms scaled with surprising similarity under attack. The single exception was

the Bayesian Networks algorithm, which degraded slower than the others in response to attacks

against a single landmark. In addition to our experimental observations, we found a similar

average-case response of the algorithms using our Hölder metrics. However, we observed that

methods which returned an average of likely positions had less variability and are thus less
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susceptible than other methods.

We also observed that all algorithms degraded gracefully, experiencing linear scaling in lo-

calization error as a function of the amount of loss or gain (in dB) an attack introduced. This

observation applied to various statistical descriptions of the error, leading us to conclude that

no algorithm “collapses” in response to an attack. This is important because it means that, for

all the algorithms we examined, there is no tipping point at which an attacker can cause gross

errors. In particular, we found the mean error of most of the algorithms for both buildings

scaled between 1.3-1.8 ft/dB when all the landmarks were attacked simultaneously, and 0.5-0.8

ft/dB when attacked a single landmark. Additionally, the performance of the mean response

of algorithms with multiple landmarks under attack is between the all-landmarks attack and

the single landmark attack, which scaled at 0.4-1.4 ft/dB. Further we observed that mixed at-

tacks with simultaneous attenuation and amplification cause the mean response of algorithms to

move faster, ranging from 0.2-2.3 ft/dB. More powerful affects were witnessed when the mixed

attack was applied to landmarks that were further apart fromeach other. We also showed ex-

perimentally that RSS can be easily attenuated by 15 dB, and that, as a general rule of thumb,

very simple signal strength attacks can lead to localization errors of 20-30 ft.

Finally, we conducted a detailed evaluation of area-based algorithms as this family of al-

gorithms return a set of potential locations for the transmitter. Thus, it is possible that these

algorithms might return a set with a larger area in response to an attack and could have less

precision (or more uncertainty) under attack. However, we found all three of our area-based

algorithms shifted the returned areas rather than increased returned area. Further, one of the

algorithms, the Area Based Probability (ABP) scheme, significantly shrank the size of the re-

turned area in response to very large changes in signal strength.

The rest of this chapter is organized as follows. We begin, inSection 2.2, by giving an

overview of the algorithms used in our performance study anddiscuss how signal strength

attacks can be performed in Section 2.3. In Section 2.4, we provide a formal model of the

localization problem as well as introduce the metrics that we use in this chapter. We then

examine the performance of the algorithms through an experimental study in Section 2.5, and

discuss the Hölder metrics for these algorithms in Section2.6. Finally, we conclude in Section

2.7.



12

2.2 Localization Algorithms

Signal strength is a common physical property used by a widely diverse set of algorithms. For

example, most fingerpriting approaches utilize the RSS, e.g. [12,14], and many multilateration

approaches [52] use it as well. In spite of its several meter-level accuracy, using the RSS is

an attractive approach because it can re-use the existing wireless infrastructure — this feature

presents a tremendous cost savings over deploying localization-specific hardware. In this chap-

ter we thus focus on localization algorithms that employ signal strength measurements. In this

section, we provide an overview of a representative set of algorithms selected for conducting

performance analysis under attack. These algorithms use either deterministic or probabilistic

methods for location estimation.

There are several ways to classify localization schemes that use signal strength: range-

based schemes, which explicitly involve the calculation ofdistances to landmarks; and RF

fingerprinting schemes whereby a radio map is constructed using prior measurements, and a

device is localized by referencing this radio map. In this work, we focus on indoor signal

strength based localization algorithms utilizing these approaches. We can further break down

the algorithms into two main categories: point-based methods, and area-based methods.

2.2.1 Point-based Algorithms

Point-based methods return an estimated point as a localization result. Here we describe a few

representative point-based schemes for our study.

RADAR (R1): A primary example of a point-based method is the RADAR scheme[12].

In R1, multiple base stations are deployed to provide overlapping coverage of an area, such as

an office building. During set up, a mobile host with known position broadcasts beacons peri-

odically, and the signal strength readings are measured at aset of fixed landmarks. Collecting

together the averaged signal strength readings from each ofthe landmarks for different trans-

mitter locations provides a radio map. After training, localization is performed by measuring a

wireless device’s RSS at each landmark, and the vector of RSSvalues is compared to the radio

map. The record in the radio map whose signal strength vectoris closest in the Euclidean sense
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to the observed signal strength vector is declared to correspond to the location of the transmit-

ter. Variations of RADAR, such asAveraged RADAR(R2) which returns the average of the

closest 2 fingerprints andGridded RADAR(GR) that uses the Interpolated Map Grid (IMG) as

a set of additional fingerprints over the basic RADAR have been proposed in [27].

Highest Probability (P1): The P1 method uses a probabilistic approach by applying the

statistical Bayes’ rule to return the point with the highestprobability in the pre-constructed

radio map as the location estimation result [59]. There are variations of Highest Probability.

Averaged Highest Probability(P2) returns the mid-point of the top 2 training fingerprints. And

like GR,Gridded Probability(GP) uses fingerprints based on an IMG [27].

2.2.2 Area-based Algorithms

On the other hand, area-based algorithms return amost likelyarea in which the true location

resides. One of the major advantages of area-based methods compared to point-based methods

is that they return a region, which has an increased chance ofcapturing the transmitter’s true

location. We study 3 area-based algorithms [27, 52], two of them, Simple Point Matching

(SPM) and Area Based Probability (ABP), use an InterpolatedMap Grid (IMG) and perform

scene matching (fingerprint matching) for localization; and the other, Bayesian Networks (BN),

is a multilateration algorithm.

Simple Point Matching (SPM): In SPM, the floor is divided into small tiles. The strategy

behind SPM is to find a set of tiles that fall within a thresholdof the RSS for each landmark

independently, then return the tiles that form the intersection of each landmark’s set. We define

the threshold as

si ± q, (2.1)

wheresi is the expected value of the RSS reading from Landmarki andq is an expected noise

level. One way to chooseq is to use the maximum of the standard deviationσ with

σ = max{σij ; i ∈ {1..numberoflandmarks}, j ∈ {1..numberofpoints}}. (2.2)

SPM [27] is an approximation of the Maximum Likelihood Estimation (MLE) method.

Area Based Probability (ABP): ABP returns a set of tiles bounded by a probability that

the transmitter is within the returned tile set. The probability is called the confidenceα and
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Figure 2.1: The Bayesian Network under analysis.

it is adjustable by user. ABP assumes the distribution of RSSfor each landmark follows a

Gaussian distribution with mean as the expected value of RSSreading vectors. The Gaussian

random variable from each landmark is independent. ABP thencomputes the probability of the

transmitter being at each tileLi on the floor using Bayes’ rule:

P (Li|s) =
P (s|Li) × P (Li)

P (s)
. (2.3)

Given that the transmitter must be at exactly one tile satisfying
∑L

i=1 P (Li|S̄l) = 1, ABP

normalizes the probability and returns the most likely tiles up to its confidenceα [27].

Bayesian Networks (BN):BN is a multilateration algorithm that encodes the signal-to-

distance propagation model into the Bayesian Graphical Model for localization [52]. In BN,

the overall joint density ofx ∈ X, wherex is a random variable, only depends on the parents

of x, denotedpa(x):

p(X) =
∏

x∈X

p(x|pa(x)). (2.4)

Oncep(X) is computed, the marginal distribtution of any subset of thevariables of the network

can be obtained as it is proportional to overall joint distribution. Figure 2.1 shows the basic

Bayesian Network used for our analysis. The verticesX andY represent location; the vertexsi

is the RSS reading from theith landmark; and the vertexDi represents the Euclidean distance

between the location specified byX and Y and theith landmark. The value ofsi follows

a signal propagation modelsi = b0i + b1i log Di, whereb0i, b1i are the parameters specific

to the ith landmark. The distanceDi =
√

(X − xi)2 + (Y − yi)2 in turn depends on the
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location(X,Y ) of the measured signal and the coordinates (xi, yi) of the ith landmark. The

network models noise and outliers by modeling thesi as a Gaussian distribution around the

above propagation model, with varianceτi:

si ∼ N(b0i + b1i log Di, τi). (2.5)

The initial parameters (b0i, b1i, τi) of the model are unknown, and the training data is used

to adjust the specific parameters of the model according to the relationships encoded in the

network. Through Markov Chain Monte Carlo (MCMC) simulation, BN returns the sampling

distribution of the possible location ofX andY as the localization result.

The algorithms we have described in this section are summarized in Table 2.1. Although

there are a variety of other signal strength based localization algorithms that may be studied,

our results are general and can be applied to other point-based and area-based methods.

2.3 Conducting Signal Strength Attacks

In this section, we study the feasibility of conducting signal strength attacks. We first discuss

the possible attacks on signal strength. We then provide experimental results for signal strength

going through various materials. Finally, we derive an attack model for our performance anal-

ysis of the robustness of localization algorithms.

2.3.1 Signal Strength Attacks

The first step to tackle a security problem is to put oneself inthe role of the adversary and

attempt to understand the attacks. To attack signal-strength based localization systems, an

adversary must attenuate or amplify the RSS readings. This can be done by applying the attack

at the transmitting device, e.g. simply placing foil aroundthe 802.11 card; or by directing

the attack at the landmarks. For example, we may steer the lobes and nulls of an antenna to

target select landmarks. A broad variety of attenuation attacks can be performed by introducing

materials between the landmarks and sensors [49].

In order to support the claim that physical attacks on received signal strength are feasible

and capable of significantly affecting the results of a localization algorithm, we first exam-

ined the possibility of signal strength attacks. Next, we report results of actual experiments to
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Table 2.1: Algorithms under study

Algorithm Abbreviation Description

Area-Based

Simple Point Matching SPM Maximum likelihood matching of
the RSS to an area using thresholds.

Area Based Probability ABP-α Bayes rule matching of the RSS
to an area probabilistically bounded by
the confidence levelα%.

Bayesian Network BN Returns the most likely area
using a Bayesian network approach.

Point-Based

RADAR R1 Returns the closest record in the
Euclidean distance of signal space.

Averaged RADAR R2 Returns the average of the top
2 closest records in the signal map.

Gridded RADAR GR Applies RADAR using an interpolated
grid signal map.

Highest Probability P1 Applies maximum likelihood estimation
to the received signal.

Averaged Highest Probability P2 Returns the average of the top 2
likelihoods.

Gridded Highest Probability GP Applies likelihoods to an interpolated
grid signal map.
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Figure 2.2: Signal strength when going through a barrier.

quantify the effectiveness of various ways of attenuating/amplifying signal strength.

2.3.2 Experimental Results of Attacks

Our experiments were performed in our laboratory in the 3rd floor of the CoRE building at

Rutgers University, as shown in Figure 2.4 (a). There are 4 landmarks deployed in the 3rd floor

of CoRE. We measured the RSS of beacon signals coming from each of the landmark. The RSS

readings were collected using a laptop with an Orinoco Silver wireless card, usingiwlist to

sample the signal strength. In order to mitigate the effect of fluctuations, we collected samples

once every second for 10 minutes, and averaged the signal strength over 600 samples.

As noted earlier, an adversary may attack the signal strength by attenuating or amplifying

the RSS readings. This can be done either at the receiver or atthe transmitter. Our aim is to

find the results of power loss in dB by simple attacks. Therefore, in the experiments, we placed

various obstruction materials close to the laptop’s wireless card and measured the RSS values

from each landmark at the laptop. The following obstructions were used: a thin book, a thick

book, a layer of metal foil, three layers of foil (referred toas more foil), a mug filled with water

(referred to as water), a glass mug (referred to as glass), a metal cabinet (referred to as metal),

and a human body. These materials are easy to access and attacks utilizing these kind of mate-

rials can be simply performed with low cost. The original signal strength values, together with

the signal strength measurements in the presence of these objects, are provided in Figure 2.2.
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The points represent the measured data from experimental results for various materials, while

the lines are the linear least-squares fitting. From these results, we have the following general

observations: placing a blocking object between the transmitter and receiver can attenuate the

signal strength; and, across different blocking objects, metal, foil, and human body are more

effective than other blocking materials. Interestingly, we found that glass has the amplification

effect on the signal strength. A more comprehensive study ofpropagation loss through com-

mon materials can be found in [58], and we note that more powerful attenuation loss is possible

by using more advanced materials (such as RF-absorptive carbon fabric). Finally, we note that

these results also imply that amplification is possible by removing a barrier (e.g. a door) of the

corresponding material or through antenna-based methods.

2.3.3 Attack Model

Based upon the results in Figure 2.2, we further see that there is a linear relationship between

the unattacked signal strength and the attacked signal strength in dB for various materials. The

linear relationship implies that there is an easy way for an adversary to perform and control the

effect of an attack on the observed signal strength by appropriately selecting different materials.

Specifically, we envision that an adversary may suitably introduce and/or remove barriers of

appropriate materials so as to attenuate and amplify the signl strength readings at one or more

landmarks. Due to the observed linear relationship illustrated in Figure 2.2, we refer to this as

the ”linear attack model”.

In the remainder of the chapter, we will use the linear attackmodel to describe the effect of

an attack on the RSS readings at one or more landmarks. The resulting attacked readings are

then used to study the consequent effects on localization for the algorithms surveyed above. In

particular, in this study, we apply our attacks to individual landmarks, which might correspond

to placing a barrier directly in front of a landmark, as well as to the entire set of landmarks,

which corresponds to placing a barrier around the transmitting device. Similar arguments can

be made for amplification attacks, whereby usually barriersare removed between the source

and receivers. Moreover, we apply attenuation, amplification, or a mixture of simultaneous
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attenuation and amplification attacks to multiple landmarks and study the performance of lo-

calization algorithms. The broad collection of our attack scenarios has covered the set of pos-

sibilities that an adversary could attempt to accomplish. Although there are many different and

more complex signal strength attack methods that can be used, we believe their effects will not

vary much from the linear signal strength attack model we usein this paper, and note that such

sophisticated attacks could involve much higher cost to perform.

2.4 Measuring Attack Susceptibility

The aim of a localization attack is to perturb a set of signal strength readings in order to have an

effect on the localization output. When selecting a localization algorithm, it is desirable to have

a set of metrics by which we can quantify how susceptible a localization algorithm is to varying

levels of attack by an adversary. In this section, we shall provide a formal specification for an

attack, and present several measurement tools for quantifying the effectiveness of an attack.

2.4.1 A Generalized Localization Model

In order to begin, we need to specify a model that captures a variety of RF-fingerprinting

localization algorithms. Let us suppose that we have a domain D in two-dimensions, such as

an office building, over which we wish to localize transmitters. WithinD, a set ofn landmarks

have been deployed to assist in localization. A wireless device that transmits with a fixed power

in an isotropic manner will cause a vector ofn signal strength readings to be measured by the

n landmarks. In practice, thesen signal strength readings are averaged over a sufficiently large

time window to remove statistical variability. Therefore,corresponding to each location inD,

there is ann-dimensional vector of signal readingss = (s1, s2, · · · , sn) that resides in a range

R.

This relationship between positions inD and signal strength vectors defines a fingerprint

functionF : D → R that takes our real world position(x, y) and maps it to a signal strength

readings. F has some important properties. First, in practice,F is not completely specified,

but rather a finite set of positions(xj , yj) is used for measuring a corresponding set of signal

strength vectorssj . Additionally, the functionF is generally one-to-one, but is not onto. This
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Figure 2.3: Interpretation of distances in location estimation.

means that the inverse ofF is a functionG that is not well-defined: There are holes in the

n-dimensional space in whichR resides for which there is no well-defined inverse.

It is precisely the inverse functionG, though, that allows us to perform localization. In gen-

eral, we will have a signal strength readings for which there is no explicit inverse (e.g. perhaps

due to noise variability). Instead of usingG, which has a domain restricted toR, we consider

various pseudo-inversesGalg of F for which the domain ofGalg is the completen-dimensional

space. Here, the notationGalg indicates that there may be differentalgorithmicchoices for the

pseudo-inverse. For example, we shall denoteGR to be the RADAR localization algorithm. In

general, the functionGalg maps ann-dimensional signal strength vector to a region inD. For

point-based localization algorithms, the image ofGalg is a single point corresponding to the

localization result. On the other hand, for area-based methods, the localization algorithmGalg

produces a set of likely positions.

An attack on the localization algorithm is a perturbation tothe correctn-dimensional signal

strength vectors to produce a corruptedn-dimensional vector̃s. Corresponding to the uncor-

rupted signal strength vectors is a correct localization resultp = Galg(s), while the corrupted

signal strength vector produces an attacked localization resultp̃ = Galg(s̃). Here,p andp̃ are

set-valued and may either be a single point or a region inD.

2.4.2 Attack Susceptibility Metrics

We wish to quantify the effect that an attack has on localization by relating the effect of a

change in a signal strength readings to the resulting change in the localization resultp. We
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shall usep0 to denote the correct location of a transmitter,p to denote the estimated location

(set) when there is no attack being performed, andp̃ to denote the position (set) returned by the

estimator after an attack has affected the signal strength.Figure 2.3 illustrates the relationship

between the true location and the estimated locations. There are several performance metrics

that we will use:

• Estimator Angle Bias: The perturbation on the signal strength vector caused by an

attack will result in the variability of location estimation in the physical space. We want

to investigate the bias along the angular dimension. That is, if we plot the relative error

position in polar coordinates, for an unbiased estimator the error would have an equal

probability of falling along any angle. However, when attacking a single landmark, we

may expect an angular bias to be introduced. The estimation angle bias is studied by

calculating the estimated position for different experimental trials, and comparing these

results, in a spatial sense, to the true position. An angularly-unbiased algorithm should

uniformly cover the360 degrees around the true location. For area-based methods, we

replacep̃, which is a set, with its median (along thex andy dimensions separately) to

get a point. The angular bias is an important metric as it can serve as an indication as to

whether an attacker can skew the localization result in a specific direction - algorithms

with more angular bias are more skewable and hence worse choices for deployment since

an adversary can use this knowledge to its advantage.

• Estimator Distance Error: An attack will cause the magnitude ofp0−p̃ to increase. For

a particular localization algorithmGalg we are interested in the statistical characterization

of ‖p0 − p̃‖ over all possible locations in the building. The characterization of‖p0 − p̃‖

depends on whether a point-based method or an area-based method is used, and can be

described via its mean and distributional behavior. For a point-based method, we may

measure the cumulative distribution (cdf) of the error‖p0 − p̃‖ over the entire building.

For area-based metrics, we calculate the CDF of the distancebetween the median of the

estimated locations̃pmed and the true location, i.e.‖p0 − p̃med‖.

The CDF provides a complete statistical specification of thedistance errors. It is often

more desirable to look at the average behavior of the error. For point-based methods,
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the average distance error is simplyE[‖p0 − p̃‖], which is just the average of‖p0 − p̃‖

over all locations. Area-based methods allow for more options in defining the average

distance error. First, for a particular value ofp0, p̃ is a set of points. For eachp0, we

get a collection of error values‖p0 − q‖, asq varies over points iñp. For eachp0,

we may extract the minimum, 25th percentile, median, 75th percentile, and maximum.

These quartile values of‖p0 − q‖ are then averaged over the different positionsp0.

• Estimator Precision: An area-based localization algorithm returns a setp. For local-

ization, precision refers to the size of the returned estimated area. This metric quantifies

the average value of the area of the localized setp over different signal strength readings

s. Generally speaking, the smaller the size of the returned area, the more precise the

estimation is. When an attack is conducted, it is possible that the precision of the answer

p̃ is affected.

• Precision vs. Perturbation Distance:The perturbation distance is the quantity‖pmed−

p̃med‖. The precision vs. perturbation distance metric depicts the functional dependency

between precision and increased perturbation distance.

• Hölder Metrics: In addition to error performance, we are interested in how dramati-

cally the returned results can be perturbed by an attack. Thus, we wish to relate the

magnitude of the perturbation‖s − s̃‖ to its effect on the localization result, which is

measured by‖Galg(s) − Galg(s̃)‖. In order to quantify the effect that a change in the

signal strength space has on the position space, we borrow a measure from functional

analysis [43], called the Hölder parameter (also known as the Lipschitz parameter) for

Galg. The Hölder parameterHalg is defined via

Halg = max
s,v

‖Galg(s) − Galg(v)‖
‖s − v‖ (2.6)

wheres andv are all the possible combinations of signal strength vectors in signal space.

For continuousGalg, the Hölder parameter measures the maximum (or worst-case) ratio

of variability in position space for a given variability in signal strength space. Since

the traditional Hölder parameter describes the worst-case effect an attack might have, it

is natural to also provide an average-case measurement of anattack, and therefore we
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introduce the average-case Hölder parameter

Halg = avgs,v
‖Galg(s) − Galg(v)‖

‖s − v‖ . (2.7)

These parameters are only defined for continuous functionsGalg, and many localization

algorithms are not continuous. For example, if we look atGR for RADAR, the result

of varying a signal strength reading is that it will yield astair-stepbehavior in position

space, i.e. small changes will map to the same output and thensuddenly, as we continue

changing the signal strength vector, there will be a change to a new position estimate (we

have switched over to a new Voronoi cell in signal space). In reality, this behavior does

not concern us too much, as we are merely concerned with whether adjacent Voronoi cells

map to close positions. We will revisit this issue in Section2.6. Finally, we emphasize

that Hölder metrics measure the perturbability of the returned results, and do not directly

measure error.

2.5 Experimental Results

In this section we present our experimental results. We firstdescribe our experimental method.

Next, we examine the impact of attacks on the RSS to localization bias and localization error

under different attacking scenarios. We then quantify the algorithms’ linear responses to RSS

changes. Finally, we present a precision study that investigates the impact of attacks on the

returned areas for area-based algorithms.

2.5.1 Experimental Setup

Figure 2.4 shows our experimental set up. The floor map on the left, (a) is the 3rd floor of

the CoRE building at Rutgers, which houses the computer science department and has an area

of 200x80ft (16000ft2). The other floor shown in (b) is an industrial research laboratory

(we call the Industrial Lab), which has an area of 225x144ft (32400ft2). The stars are the

training points, the small dots are testing points, and the larger squares are the landmarks,

which are 802.11 access points. Notice that the 4 CoRE landmarks are more co-linear than the

5 landmarks in the Industrial Lab.
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Figure 2.4: Deployment of landmarks and training locationson the experimental floors

For both attenuation and amplification attacks, we ran the algorithms but modified the RSS

of the testing points. We altered the RSS by +/-5 dB to +/-25 dB, in increments of 5 dB.

We experimented with different ways to handle signals that would fall below the detectable

threshold of -92 dBm for our cards. We found that substituting the minimal signal (-92 dBm)

produced about the same localization results and did not require changing the algorithms to

special case missing data.

We experimented with different training set sizes, including 20, 35, 60, 85, 115, 145, 185,

215, 245, 253, and 286 points. Experimental data was collected at a total of 286 locations in the

CoRE building and at a total of 253 locations in the Industrial Lab. Although there are some

small differences, we found that the behavior of the algorithms matches previous results [27]

and varied little after using 115 training points. We therefore chose to use a training set size of

115 for this study.
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Figure 2.5: ABP: Localization estimation relative to the true locations for the Industrial Lab.

2.5.2 Localization Angle Bias

In this section, we study the angular bias of the localization schemes introduced by signal

strength attacks. For the Industrial Lab, Figure 2.5(a) shows the localization result of ABP

under no attack for the relative estimation positions to thetrue locations, setting as the origin,

over all the localization attempts. The normal performanceof the algorithms are unbiased with

the localization results uniformly distributed around thetrue locations.

Figure 2.5(b) is the relative position estimation results under 25dB attenuation attack on all

landmarks, while Figure 2.5(c) and Figure 2.5(d) show the attacked results on single landmarks,

landmark 1 and landmark 3, respectively. Figure 2.4(b) shows that landmark 1 and landmark 3

are placed in diagonal positions across the Industrial Lab.We have observed that signal strength

attacks have affected the localization schemes by introducing angular bias on the results with

the location estimation more likely to be in the fourth quadrant relative to the true location
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when landmark 1 is attacked, as shown in Figure 2.5(c). Because landmark 1 is placed in

the upper left corner in the building floor map shown in 2.4, signal attenuation on landmark 1

made the localization system think the sensor node is farther away from landmark 1, and thus

the resulting localization results under attack have been pushed into the fourth quadrant. This

effect has been proved by examining the localization results when landmark 3 is under attack.

As presented in Figure 2.5(d), the relative localization results are mostly in the second quadrant

since landmark 3 is placed in the lower right corner of the building floor map. Further, as

expected, for simultaneous landmark attacks, the localization results are distributed around the

true locations randomly, but with much larger estimation errors as presented in Figure 2.5(b).

We have observed similar effects for the other algorithms inthe Industrial Lab and the CoRE

building.
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(a) CoRE: No attack (b) CoRE: 10dB attenuation
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(c) CoRE: 25dB attenuation (d) CoRE: 10dB amplification
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(e) Industrial: No attack (f) Industrial: 10dB attenuation
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(g) Industrial: 25dB attenuation (h) Industrial: 10dB amplification

Figure 2.6: Error CDF across localization algorithms when attacks are performed on all the
landmarks.
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(a) CoRE: Attenuation, Landmark 1 (b) CoRE: Attenuation, Landmark 2
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(c) CoRE: Amplification, Landmark 1 (d) CoRE: Amplification,Landmark 2
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(e) Industrial: Attenuation, Landmark 4 (f) Industrial: Attenuation, Landmark 5
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(g) Industrial: Amplification, Landmark 4 (h) Industrial: Amplification, Landmark 5

Figure 2.7: Error CDF across localization algorithms when attacks are performed on an indi-
vidual landmark. The attack is 25dB of signal attenuation and signal amplification respectively.
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(a) 10dB: Landmark 1 and 2 (b) 25dB: Landmark 1 and 2
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(c) 10dB: Landmark 1 and 3 (d) 25dB: Landmark 1 and 3
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(e) 10dB: Landmark 2 and 4 (f) 25dB: Landmark 2 and 4

Figure 2.8: CoRE: Error CDF across localization algorithmswhen attenuation attacks are per-
formed on multiple landmarks.
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(a) 10dB: Landmark 1 amplification (b) 25dB: Landmark 1 amplification

and landmark 2 attenuation and landmark 2 attenuation
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(c) 10dB: Landmark 1 amplification (d) 25dB: Landmark 1 amplification

and landmark 3 attenuation and landmark 3 attenuation

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(e) 10dB: Landmark 2 amplification (f) 25dB: Landmark 2 amplification

and landmark 4 attenuation and landmark 4 attenuation

Figure 2.9: CoRE: Error CDF across localization algorithmswhen amplification and attenua-
tion attacks are simultaneously performed on multiple landmarks.
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2.5.3 Localization Error Analysis

In this section, we analyze the estimator distance error through the statistical characterization

of ‖p0 − p̃‖ by presenting the error CDFs of all the algorithms as a function of attenuation

and amplification attacks. The CDF provides a complete statistical specification of the distance

errors. Specifically, we study the localization error underfour attack scenarios: an all-landmark

attack; a single landmark attack; attacks involving multiple landmarks; and attacks involving

simultaneous amplification and attenuation on multiple landmarks.

As a baseline, Figure 2.6(a) shows the normal performance ofthe algorithms for the CoRE

building and (e) shows the results for the Industrial Lab. For the area-based algorithms, the

median tile error is presented, as well as the minimum and maximum tile errors for ABP-75.

As in previous work, the algorithms all obtain similar performance, with the exception of BN,

which slightly under-performs the other algorithms.

First, we look at the performance of localization algorithms under an all-landmark attack.

Figures 2.6(b) and 2.6(c) show the error CDFs under simultaneous landmark attenuation attacks

of 10 and 25 dB for CoRE, respectively, while Figure 2.6(f) and 2.6(g) show the similar results

in the industrial lab. First, the bulk of the curves shift to the right by roughly equal amounts:

no algorithm is qualitatively more robust than the others. Comparing the two buildings, the

results show that the industrial lab errors are slightly higher for attacks at equal dB, but again,

qualitatively the impact of the building environment is notvery significant.

Figures 2.6(d) and 2.6(h) show the error CDFs for the CoRE andIndustrial Lab under a

10 dB amplification attack. The results are qualitatively symmetric with respect to the out-

come of the 10dB attenuation attack. We found that, in general, comparing amplifications to

attenuations of equal dB, the errors were qualitatively thesame.

An interesting feature is that in CoRE the minimum error for ABP-75 also shifts to the

right by roughly the same amount as the other curves. Figures2.6(a) and 2.6(e) show that,

in the non-attacked case, the minimum tile error for ABP-75 is quite small, meaning that the

localized node is almost always within or very close to the returned area. However, under

attacks, the closest part of the returned area moves away from the true location at the same rate

as the median tile. We observed similar effects for the SPM and BN algorithms. We noticed
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that under large attacks around 25dB, the median error CDF curves in the Industrial Lab have

similar performance to those from the CoRE building, but there are two curves that seem to

be outliers, namely ABP75min and ABP75max. These two curvesrepresent the best and the

worst cases from the ABP algorithm and we see that they are notmoving at the same speed

as the median errors, when compared with the results of the CoRE building. This tells us

that the variance/spread of the performance of area-based algorithms in the Industrial Lab has

increased under an all-landmark attack, but that the average behavior is consistent across the

two buildings.

We then examine attacks against a single landmark. We found attacks against certain land-

marks had a much higher impact than against others in the CoREbuilding. Figure 2.7(a) and

2.7(b) show the difference in the error CDF by comparing attacks of landmarks 1 and 2. Fig-

ure 2.4(a) shows that landmark 1 is at the left end of the building, while landmark 2 is in the

center and is close to landmark 4. The tail of the curves in Figure 2.7(a) are much worse than for

2.7(b), showing that when landmark 1 is attacked, significantly more high errors are returned.

Figures 2.7(c) and 2.7(d) show a similar effect for amplification attacks. This is because land-

mark 1 is at one end of the building alone. The contribution ofthe signal strength reading from

landmark 1 plays an important role in localization, while the contribution of landmark 2 can be

reduced by the contribution from the nearby landmark 4 when under attack.

The Industrial Lab results in Figures 2.7(e)-(h) show much less sensitivity to landmark

placement compared to the CoRE building. Figure 2.4(b) shows that landmark 5 is centrally

located and we initially suspected this would result in increased attack sensitivity. However,

the error CDFs show that the remaining 4 landmarks provide sufficient coverage: as landmark

5 is attacked, the error CDFs are not much different from attacking landmark 4. The landmark

placement in the CoRE building is colinear (to maximize the signal coverage in the floor), while

the landmark placement in the Industrial Lab is more close tothe optimal landmark placement

for location accuracy. We believe that the better landmark placement for localization [20] in

the Industrial Lab can account for the localization performance being less sensitive to landmark

placement under attack.

Next, we study attacks on more than one landmark, but not on all landmarks. Figure 2.8

present the localization results in the CoRE building when attenuation attacks are performed on
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multiple landmarks, specifically on landmark pairs,1 and 2, 1 and 3, and2 and 4. We found

that attacks on landmark pair1 and 3shown in Figure 2.8(d) cause larger errors compared to

results in Figure 2.8(b) and (f) when attacking landmark pairs1 and 2, and2 and 4. Since land-

marks 1 and 3 are placed at two ends of the building alone, the contribution of the RSS reading

from these two landmarks is significant compared to the readings from landmark 2 and 4, which

are closely placed and can cover each other. In general, the impact of the multiple landmark

attacks on the localization performance is between the performance of a single landmark attack

and an all-landmark attack.

Fourthly, we look at the attack scenario that the adversary simultaneously performs both

amplification and attenuation attacks on multiple landmarks. The localization results are pre-

sented in Figure 2.9 for the CoRE building. For a direct comparison, we present results when

mixed attacks are applied on landmark pairs,1 and 2, 1 and 3, and2 and 4. we should expect

that such an attack would be more effective in falsifying thelocation results, and this is what

we observe. But, beyond this, we observe that the performance depends heavily upon which

landmarks are attacked. We found that if the attacked landmarks are close to each other such as

landmark 2 and 4, which are located in the center of the building, the effects of amplification

and attenuation attacks are canceled out. Thus the impact ofmixed attacks does not lead to

significant perturbation in the localization results, as shown in Figure 2.9(f), which is about

the same as under single landmark attacks displayed in Figure 2.7. However, if the attacked

landmarks are farther away from each other, such as landmark1 and 3, which are located at op-

posite ends of the building, the simultaneous amplificationand attenuation attacks can be very

harmful and cause larger localization errors for all the algorithms presented in Figure 2.9(d).

The behavior of the error CDFs in Figure 2.9(d) is qualitatively different than others with very

long tails. The effect of the amplification attack on landmark 1 and the attenuation attack on

landmark 3 pushed the localization results further in one direction, and thus introduced large

localization bias.

The four attack scenarios we studied have covered a broad collection of possible combina-

tions of signal strength attacks. We found that simultaneously attacking all landmarks has more

impact on localization performance than attacking an individual landmark. Further, simultane-

ous amplification and attenuation attacks on certain landmarks can cause qualitatively larger
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errors than other kinds of attacks. Most importantly, we observed that none of the localization

algorithms outperforms the others for the attacks we examined.

2.5.4 Linear Response

In this section, we show that the average distance error,E[‖p0 − p̃‖], of all the algorithms

scales in a linear way to attacks. That is, the mean localization error changes linearly with

respect to the size of the signal strength change introducedin dB (recall dB is a log-scaled

change in power).

Figure 2.10 plots the median error vs. RSS attenuation for anall-landmark attack in Fig-

ure 2.10(a) and 2.10(e), and for individual landmarks in theother figures. Figure 2.11 plots

the median localization error under simultaneous signal strength attenuation and amplification

attacks on multiple attacks. Points are data derived from experimental results, and the lines are

linear least-squares fits. The most important feature is that, in all cases, the median responses

of all the algorithms fits a line extremely well, with an average R2-statistic of 0.97 for both

the CoRE and Industrial Lab. The mixed attacks with amplification attack on landmark 1 and

attenuation attack on landmark 3 in CoRE shown in Figure 2.11(d) is an exceptional case with

R2 of 0.86 as the worst case.

Comparing the slopes across all the algorithms presented inTables 2.2, 2.3, and 2.4, we

found a mean change in positioning error vs. signal attenuation of 1.55 ft/dB under an all-

landmark attack with a minimum of 1.3 ft/dB and maximum of 1.8ft/dB. For the single land-

mark attack, the slope was substantially less, 0.64 ft/dB, although BN degrades consistently

less than the other algorithms at 0.44 ft/dB. Under attenuation attacks on multiple landmarks,

the localization algorithms move at the speed of 0.9 ft/dB to1.4 ft/dB, which is between the

results of a single landmark attack and an all-landmark attack. However, the median error

moves faster under simultaneous amplification and attenuation attacks on landmark 1 and 3, at

the speed of 1.8 - 2.2 ft/dB as shown in Table 2.4. We note the mean error tops out when the

attack strength is 25dB. This confirms our analysis in Figure2.9(d) that applying simultaneous

amplification and attenuation attacks on landmarks that arefarther apart causes larger impacts

on the performance of localization schemes, although in practice it is hard for an adversary to
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(a) CoRE: all Landmarks (b) CoRE: Landmark 1
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(c) CoRE: Landmark 2 (d) CoRE: Landmark 3
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(e) Industrial: all Landmarks (f) Industrial: Landmark 1
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(g) Industrial: Landmark 2 (h) Industrial: Landmark 5

Figure 2.10: Average location estimation error across localization algorithms under signal
strength attenuation attack.
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(a) Simultaneous attenuation attacks (b) Amplification attack on Landmark 1

on landmarks 1 and 2 and attenuation attack on Landmark 2
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(c) Simultaneous attenuation attacks (d) Amplification attack on Landmark 1

on landmarks 1 and 3 and attenuation attack on Landmark 3
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(e) Simultaneous attenuation attacks (f) Amplification attack on Landmark 2

on landmarks 2 and 4 and attenuation attack on Landmark 4

Figure 2.11: CoRE: Average location estimation error across localization algorithms under
simultaneous signal strength attenuation and amplification attacks on multiple landmarks.
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Table 2.2: CoRE: Slopes of Average Error from Linear Regression for attenuation attacks on
all landmarks and individual landmark

Buildings CoRE: attenuation attack
Landmarks All 1 2 3 4

Area-Based
SPM 1.1048 0.8331 0.662 0.7816 0.6244

ABP-75 1.1656 0.7783 0.5049 0.7052 0.384
BN 1.1157 0.3287 0.3065 0.2544 0.493

Point-Based
R1 1.4922 0.7006 0.5151 0.5702 0.7941
R2 1.4327 0.7534 0.4687 0.5732 0.7425
GR 1.1896 0.8440 0.5033 0.7357 0.7124
P1 1.6306 1.1597 0.5728 0.5026 0.3644
P2 1.4505 1.0123 0.464 0.4251 0.3063
GP 1.2359 0.8915 0.6028 0.8103 0.4595

Average 1.3131 0.8113 0.5111 0.5954 0.5423

Table 2.3: Industrial: Slopes of Average Error from Linear Regression for attenuation attacks
on all landmarks and individual landmark

Buildings Industrial Lab: attenuation attack
Landmarks All 1 2 3 4 5

Area-Based
SPM 1.6901 0.7753 0.6283 0.5485 0.6455 0.9103

ABP-75 1.6479 0.5615 0.4852 0.4146 0.5469 0.8072
BN 1.7249 0.4528 0.3487 0.5215 0.5615 0.3094

Point-Based
R1 1.8823 0.6827 0.4837 0.4286 0.5867 1.0356
R2 1.8816 0.6524 0.5394 0.4000 0.5861 0.8800
GR 1.7860 0.6514 0.5410 0.4668 0.6331 0.9358
P1 1.8854 0.6856 0.4710 0.4532 0.5881 1.0390
P2 1.8802 0.6448 0.5431 0.4023 0.5875 0.8861
GP 1.7666 0.6148 0.4976 0.4800 0.6213 0.8553

Average 1.7939 0.6357 0.504 0.4573 0.5952 0.8510

conduct simultaneous amplification and attenuation attacks without using sophisticated equip-

ment. In general, the linear fit results are quite important as it means that no algorithm has a

cliff where the average positioning error suffers a catastrophic failure under attack. Instead, it

remains proportional to the severity of the attack.

While the median error characterizes the overall response to attacks, it does not address

whether an attacker can cause a few, large errors. We examined the response of the maximum

error as a function of the strength of the attack on an all-landmark attack, i.e. how the 100th

percentile error scales as a function of the change in dB under an all-landmark attack. The

all-landmark attack corresponds to a common attack scenario. It is thus desirable to study the

worst-case situation under an all-landmark attack. We notethat this characterization is not



38

Table 2.4: CoRE: Slopes of Average Error from Linear Regression for mixed attacks of signal
attenuation and amplification on multiple landmarks

Buildings attenuation attacks amplification and attenuation attacks
Landmarks 1 and 2 1 and 3 2 and 4 1 and 2 1 and 3 2 and 4

Area-Based
SPM 1.0054 1.1328 0.8836 1.3358 1.9556 0.8018

ABP-75 0.9740 1.1050 0.8125 1.3670 1.8628 0.5778
BN 0.6716 0.3965 0.8401 0.8665 1.8868 0.1812

Point-Based
R1 1.0392 0.9069 1.1326 1.1895 2.2731 0.7522
R2 1.1013 0.9222 1.2148 1.1841 2.2552 0.7633
GR 1.0276 1.1559 0.9196 1.2337 1.8046 0.7642
P1 1.4142 1.4104 0.9683 1.2414 2.0808 0.6492
P2 1.4735 1.2330 0.9054 1.1921 2.0606 0.5472
GP 1.1003 1.2246 0.9271 1.5197 1.9138 0.7387

Average 1.0897 1.0541 0.9560 1.2367 2.0104 0.6417
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Figure 2.12: CoRE: Maximum error as a function of attack strength from an all-landmark
attack.

the same as, nor is directly related to, the Hölder metrics.Those metrics define the rates of

change between physical and signal space within the localization function itself, while here we

characterize the change in the estimator error to the changein signal, i.e.‖p0 − p̃‖/‖s − v‖.

Figure 2.12 plots the worst-case error for each algorithm asa function of signal dB for the

CoRE building under an all-landmark attack. The figure showsthat almost all the responses are

again linear, with least-squares fits of R2 values of 0.84 or higher, though SPM does not have a

linear response. The second important point is the algorithms’ responses vary, falling into three

groups. BN, R1 and R2 are quite poor, with the worst case errorscaling at about 4 ft/dB. P1

and P2, are in a second class, scaling at close to 3 ft/dB. The gridded algorithms, GP and GR,
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Figure 2.13: Contribution of each Landmark during samplingin the BN algorithm under atten-
uation attacks.

as well as ABP-75 fair better, scaling at 2 ft/dB or less. Finally, SPM is in a class by itself, with

a poor linear fit (R2 of 0.61) and the maximum error topping out at about 85 ft after15 dB of

attack.

Examining the error CDFs and the maximum errors, we can see that most of the localiza-

tions move fairly slowly in response to an attack, at about 1.5 ft/dB. However, for some of the

algorithms, particularly BN, R1 and R2, the top part of the error CDF moves faster, at about 4

ft/dB. What this means is that, for a select few points, an attacker can cause more substantial

errors of over 100 ft. However, at most places in the building, an attack can only cause errors

with much less magnitude.

Figure 2.10 show that BN is more robust compared to other algorithms for individual land-

mark attacks. Recall BN uses a Monte-Carlo sampling technique (Gibbs sampling) to compute

the full joint-probability distribution for not just the position coordinates, but also for every

node in the Bayesian network. Under a single landmark attackwe found the network reduces

the contribution of network nodes directly affected by the attacked landmark to the full joint-

probability distribution while increasing other landmarks’ contributions. In effect, the network

“discounts” the attacked landmark’s contribution to the overall joint-density because the at-

tacked data from that landmark is highly unlikely given the training data.

To show this effect we developed our own Gibbs sampler so thatwe could observe the

relative contributions of each node in the Bayesian networkto the final answer. Figure 2.13
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(c) ABP: no attack (d) ABP: under 25dB attack
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(e) BN: no attack (f) BN: under 25dB attack

Figure 2.14: CoRE: Comparison of localization results fromthe area-based algorithms for a
testing point.

shows the percentage contribution for each landmark to overall joint-density. For instance, in

CoRE, the contribution of each landmark starts almost uniformly. When Landmark 1 under

attack, the contribution of Landmark 1 goes from 0.25 down to0.15.

2.5.5 Precision Study

In this section, we examine the area-based algorithms’ precision in response to attacks. Fig-

ure 2.14 shows a localization example of the area-based algorithms in the CoRE building. The

actual point is shown as a big dot and the convex hulls of the returned areas are outlined. Nor-

mally, the SPM and ABP algorithms perform similarly, while the BN algorithm has a much
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(a) CoRE: SPM - Attenuation (b) CoRE: BN - Attenuation
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(c) CoRE: ABP - Attenuation (d) Industrial: ABP - Amplification

Figure 2.15: Analysis of precision CDF across area-based algorithms. The attack is performed
on all the landmarks.

different profile by returning the sampling distribution ofthe possible estimation. Under sig-

nal strength attacks, We observed that the returned areas are reduced and shifted from the true

location.

Figure 2.15 shows the CDF of the precision (i.e. size of the returned area) for different area-

based algorithms under attack for all the landmarks in CoRE and Industrial Lab. We found

that overall the algorithms did not become less precise in response to attacks, but rather, the

algorithms tended to shift and shrink the returned areas. Figure 2.15(a) shows a small average

shrinkage for SPM in the CoRE building, and likewise, 2.15(b) shows a similar effect for BN.

ABP-75 had the most dramatic effect. Figures 2.15(c) and 2.15(d) show the precision

versus the attack strength for both buildings. The shrinkages are quite substantial. We found

that, under attack, the probability densities of the tiles shrank to small values that were located

on a few tiles– reflecting the fact that an attack causes therenot to be a likely position to

localize a node. We also found that this effect held for amplification attacks, as is shown in
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(a) CoRE: all landmarks (b) CoRE: Landmark 1

Figure 2.16: Precision vs. perturbation distance under attenuation attack.

Table 2.5: Analysis of (worst-case)H and (average-case)H

Algorithms CoRE: H LAB: H CoRE: H LAB: H

Area-Based
SPM 23.7646 11.0659 1.8856 2.3548

ABP-75 20.0347 23.0652 1.8548 2.3424
BN 31.7324 14.9168 2.0595 2.5873

Point-Based
R1 36.2400 20.7846 1.9750 2.3677
R2 19.8586 8.7313 1.9138 2.3058
GR 35.9880 20.6886 1.9691 2.3628
P1 20.8832 20.7846 1.9793 2.3683
P2 19.8586 8.7313 1.9178 2.3058
GP 21.8303 20.6886 1.9649 2.2882

Figure 2.15(d). The shrinking precision behavior may be useful for attack detection, although

a full characterization of how this effect occurs remains for future work.

Examining this effect further, Figure 2.16 presents the precision vs. the perturbation dis-

tance‖pmed− p̃med‖, with a least squares line fit. Figure 2.16(a) shows the effect when attack-

ing all landmarks on the CoRE building. Figure 2.16(b) showsa downward trend, but much

weaker, when one landmark is under attack. We observed similar results for the Industrial Lab.

We see mostly linear changes in precision in response to attacks, although with great differ-

ences between the algorithms. The figures show that the decrease in precision as a function of

dB is particularly strong for ABP-75.
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2.6 Discussion about Ḧolder Metrics

In the previous section we examined the experimental results, and looked at the performance

of a set of representative localization algorithms in termsof error and precision. We now focus

on the performance of these localization algorithms in terms of the Hölder metrics. The Hölder

metrics measure the variability of thereturned answer in response to changes in the signal

strength vectors.

We first discuss the practical aspects of measuringH andH for different algorithms. In

Section 2.4, the Hölder parameters are defined by calculating the maximum and average over

the entiren-dimensional signal strength space. In practice, it is necessary to perform a sampling

technique to measureH andH. Additionally, as noted earlier, the definition ofH andH are

only suitable for (Hölder) continuous functionsGalg. In reality, several localization algorithms,

such as RADAR, are not continuous and involve the tessellation of the signal strength space

into Voronoi cellsVj , and thus only a discrete set of localization results are produced (image

of Vj underGalg). Hence, for anys ∈ Vj we haveGR(s) = (xj , yj). Unfortunately, for

neighboring Voronoi cells, we may takes ∈ Vj andv ∈ Vi such that they are arbitrarily close

(i.e. ‖s − v‖ → 0), while ‖GR(s) − GR(v)‖ 6= 0. In such a case, the formal calculation of

H andH is not possible. However, for our purposes, we are only interested in measuring the

notion of adjacency of Voronoi cells in signal space yielding closelocalization results. Thus,

our calculation ofH andH is only performed over the centroids of the various Voronoi cells

for localization algorithms that tessellate of signal strength space.

The Hölder parameters for the different localization algorithms are presented in Table 2.5.

Examining these results, there are several important observations that can be made. First, if we

examine the results forH we see that, for each building, all of the algorithms have very similar

H values. Hence, we may conclude that the average variabilityof the returned localization

result to a change in the signal strength vector is roughly the same for all algorithms. This is

an important result as it means, regardless of which RF fingerprinting localization system we

deploy, the average susceptibility of the returned resultsto an attack is essentially identical.

However, if we examine the results forH, which reflects the worst-case susceptibility, then

we see that there are some differences across the algorithms. First, comparingH andH for
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both point-based and area-based algorithms, we see that theworst-case variability can be much

larger than the average variability. Additionally, the point-based methods appear to cluster.

Notably, RADAR (R1) and Gridded Radar (GR) have similar performance across both CoRE

and the Industrial Lab, while averaged RADAR (R2) and averaged Highest Probability (P2)

have similar performance across both buildings. A very interesting phenomena is observed by

looking at the algorithms that returned an average of likelylocations (R2 and P2). Across both

buildings these algorithms exhibited less variability compared to other algorithms. This is to be

expected as averaging is a smoothing operation, which reduces variations in a function. This

observation suggests that R2 and P2 are more robust from a worst-case point-of-view than other

point-based algorithms.

2.7 Conclusion

In this chapter, we analyzed the robustness of RF-fingerprinting localization algorithms to at-

tacks that target signal strength measurements. We first examined the feasibility of conducting

amplification and attenuation attacks, and observed a linear dependency between non-attacked

signal strength and attacked signal strength readings for different barriers placed between the

transmitter and a landmark receiver. We provided a set of performance metrics for quantifying

the effectiveness of an attenuation/amplification attack.Our metrics included localization angu-

lar bias, localization error, the precision of area-based algorithms, and a new family of metrics,

called Hölder metrics, that quantify the variability of the returned location results versus change

in signal strength vectors.

We conducted a trace-driven evaluation of several point-based and area-based localization

algorithms where the linear attack model was applied to datameasured in two different office

buildings. We found that the localization error scaled similarly for all algorithms under attack.

Further, we found that, when attacked, area-based algorithms did not experience a degradation

in precision although they experienced degradation in accuracy. We then examined the vari-

ability of the localization results under attack by measuring the Hölder metrics. We found that

all algorithms had similar average variability, but those methods returned the average of a set of
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most likely positions exhibited less variability. This result suggests that the average susceptibil-

ity of the returned results to an attack is essentially identical across point-based and area-based

algorithms, though it might be desirable to employ either area-based methods or point-based

methods that perform averaging in order to lessen the worst-case effect of a potential attack.
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Chapter 3

Attack Detection in Wireless Localization

3.1 Introduction

In this chapter, we examine the problem of detecting attackson wireless localization. We

present a general formulation for attack detection using statistical significance testing and then

build tests that are applicable to broad classes of multilateration and signal strength-based meth-

ods, as well as several other test statistics that are uniqueto a variety of different localization

algorithms.

Multilateration is a popular localization approach that uses Least Squares (LS) techniques

to perform localization [23, 28, 44, 49, 54], and has the desirable property of supporting math-

ematical analysis, in part because LS-based regression haswell-known statistical descriptions

when operating near ideal conditions. By examining Linear Least Squares (LLS), we build a

mathematical model and derive an analytic solution for attack detection using the residuals of

an LLS regression. We show that attack detection using LLS iseasy to conduct and is suitable

for both single-hop and multi-hop ranging methods because it is independent of the ranging

modality used by the localization system.

On the other hand, many signal strength based algorithms [12, 27] rely on either statistical

inference or machine-learning in the context of scene matching to perform localization, and

consequently do not yield closed-form solutions. However,for algorithms based on signal

strength, we found that the minimum distance between an observation and the database of

signal strength vectors is a good test statistic to perform attack detection. One key advantage

of our approach for signal strength based methods is that thedetection phase can be performed

before localization.
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To evaluate the effectiveness of our attack detection mechanisms we first present experi-

mental results illustrating the feasibility of physical attacks on localization. We then conducted

a trace driven evaluation using both an 802.11 (WiFi) network as well as an 802.15.4 (Zig-

Bee) network in two real office buildings. In particular, we applied signal strength attenuation

and amplification, using a linear attack model obtained fromour experiments, to the Received

Signal Strength (RSS) readings collected from these two office buildings. We evaluated the

performance of our attack detection schemes using detection rates and receiver operating char-

acteristic curves. Our experimental results provide strong evidence of the effectiveness of our

attack detection schemes with high detection rates, over 95%, and low false positive rates,

often under 5%. Surprisingly, we found that most of the attack detection schemes provide qual-

itatively similar performance. This shows that the different localization systems have similar

attack detection capabilities.

The rest of the chapter is organized as follows. We study the feasibility of attacks and

present our experimental methodologies in Section 3.2. We present our generalized theoretical

formulation for the attack detection problem in Section 3.3. We next derive an analytic solution

for attack detection using Least Squares in Section 3.4. Using common features for attack

detection in signal strength based algorithms is presentedin Section 3.5. We study the test

statistics that are specific to a variety of different algorithms in Section 3.6. Then, we provide

a discussion in Section 3.7. Finally, we conclude in Section3.8.

3.2 Feasibility of Attacks

In this section we provide background on how attackers can impact the localization system.

We next discuss the feasibility of conducting these attackson signal strength, and provide the

experimental methodology that we use to evaluate our attackdetection mechanisms later in this

chapter.
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3.2.1 Localization Attacks

Localization mechanisms are built upon different ranging modalities, such as RSS, TOA, AOA,

and hop count. These all rely on the measurement of the physical properties of the wireless sys-

tem. Adversaries can apply non-cryptographic attacks against the measurement processes, by-

passing conventional security services, and as a result canaffect the localization performance.

For example, wormhole attacks tunnel through a faster channel to shorten the observed distance

between two nodes [36]. An attenuation attack would decrease the radio range, and thus po-

tentially lengthen the hop-count. Compromised nodes may delay response messages to disrupt

distance estimation [49]. RSS readings can be altered due toattenuation or amplification of the

signal strength by an adversary [22]. A broad survey of the potential non-cryptographic attacks

that are unique to localization can be found in [49].

3.2.2 Signal Strength Attacks

We choose to use RSS as the ranging modality for localizationalgorithms. An adversary can

attack the wireless node directly or compromise the landmarks involved in localization by at-

tenuating or amplifying the signal strength readings. Based on our experimental attacks using

real materials, we will use the linear attack model [22] (i.e. a material causes a constant per-

centage power loss independent of distance) as shown in Figure 3.1 to describe the effect of

an attack on the RSS readings at the wireless device or at the landmarks. As presented in the

figure, these attacks are easy to conduct with low cost materials. The linear relationship implies

that it is easy for an adversary to control the effect of an attack on the observed signal strength

by appropriately selecting different materials.

3.2.3 Experimental Methodology

In order to study the generality of our attack detection approaches, we have conducted experi-

ments in two office buildings, one is the 3rd floor of the Computer Science building at Rutgers

University (CoRE) as shown in Figure 3.2 (a) and the other is in a floor of an industrial re-

search lab (Industrial Lab) as presented in Figure 3.2 (b). In Figure 3.2 (a), the experiments are

performed for both an 802.11 (WiFi) network as well as an 802.15.4 (ZigBee) network. For
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the 802.11 (WiFi) network, there are 4 landmarks shown in redsquares deployed in a collinear

manner to maximize signal strength coverage. While for the 802.15.4 (ZigBee) network, there

are 4 landmarks shown in magenta circles placed in a square set to maximize localization ac-

curacy [20]. For experiments conducted in the industrial lab, as depicted in Figure 3.2 (b), we

only used an 802.11 (WiFi) network with 5 landmarks. The small green dots are the localiza-

tion testing points and the small blue stars are the trainingpoints. We will present the results

of our experiments for each of the proposed attack detectioncases in its associated section in

this chapter. Across all experiments, we have performed a trace-driven evaluation by either

attenuating or amplifying RSS readings collected from these two buildings.

3.3 Generalized Attack Detection Model

In this section we first propose a general formulation for thelocalization attack detection prob-

lem. We then introduce metrics for evaluating the effectiveness of our approaches.

3.3.1 Localization Attack Detection

In general, the error of a localization algorithm is defined as the distance between the true

locationx = [x, y]T and the estimated location̂x, Derr = ‖x − x̂‖. We found in prior work

that under physical attacks, the localization errorDerr increases significantly [22]. However,

Derr is not directly available during run-time, and the challenge in attack detection is to devise

strategies for detecting localization attacks that do not use localization errors.
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Figure 3.2: Layout of the experimental floor

We propose to formulate location attack detection as a statistical significance testing prob-

lem, where the null hypothesis is

H0 : normal (no attack).

In significance testing, a test statisticT is used to evaluate whether observed data belongs to

the null-hypothesis or not. For a particular significance level, α (defined as the probability of

rejecting the hypothesis if it is true), there is a corresponding acceptance regionΩ such that we

declare the null hypothesis valid if an observed value of thetest statisticTobs ∈ Ω, and reject

the null hypothesis ifTobs 6∈ Ω (i.e. declare an attack is present ifTobs ∈ Ωc, whereΩc is the

critical region of the test). In our attack detection problem, the regionΩ and decision rule is

specified according to the form of the detection statisticT (for example, when using distance

in signal strength space forT, the decision rule becomes comparison against a threshold), and



51

rejection of the null hypothesis corresponds to declaring the presence of an attack.

3.3.2 Effectiveness

In order to evaluate the effectiveness of our attack detection methods, we will utilize the fol-

lowing performance metrics:

Cumulative Distribution Function (CDF): The CDF of the test statisticT provides the

sensitivity ofT under attack. Based on the CDF, we can study the feasibility of usingT for

attack detection.

Detection Rate (DR): An attack may cause the significance test to rejectH0. We are

thus interested in the statistical characterization of theattack detection attempts over all the

localization attempts. The Detection Rate is defined as the percentage of localization attempts

that are determined to be under attack, i.e.:

DR =
Nattack

Ntotal

(3.1)

whereNtotal is the total number of localization attempts andNattack is the number concluded

under attack by detection. Note that when the signal is attacked, the detection rate corresponds

to the probability of detectionPd, while under normal (non-attack) conditions it corresponds

to the probability of declaring a false positivePfa. We will examine DR as a function of the

attack strength.

Receiving Operating Characteristic (ROC) curve:To evaluate an attack detection scheme

we want to study the false positive ratePfa and probability of detectionPd together. The ROC

curve is usually used to measure the tradeoff between false-positives and correct detections.

The ROC curve is a plot of attack detection accuracy against the false positive rate. It can be

obtained by varying the detection thresholds.

3.4 Using Least Squares

In this section we provide mathematical analysis for attackdetection in multilateration algo-

rithms. We first provide background in using LS to perform localization. Next, based on the

properties of the LLS estimator, we define an attack detection scheme that utilizes regression
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residuals, and give an analytic formulation to specify the acceptance regionΩ. Finally, the

experimental results are presented to evaluate the effectiveness of the detection scheme.

3.4.1 Localization

To perform localization with LS requires 2 steps: ranging and lateration.

Ranging Step:Recent research has seen a host of variants on the ranging step such as RSS,

TOA, TDOA, and hop count. Our attack detection approach works with any ranging modality.

Lateration Step: From the estimated distancesdi and known positions (xi, yi) of the

landmarks, the position (x, y) of the localizing node can be found by finding(x̂, ŷ) satisfying:

(x̂, ŷ) = arg min
x,y

n
∑

i=1

[
√

(xi − x)2 + (yi − y)2 − di]
2 (3.2)

wheren is the total number of landmarks. We call solving the above problemNonlinear Least

Squares, or NLS. Solving the NLS problem requires significant complexity and is difficult to

analyze. We may approximate the NLS solution and linearize the problem [20] into the system

Ax = b, where:
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Note thatA is described by the coordinates of landmarks only, whileb is represented by

the distances to the landmarks together with the coordinates of landmarks. We call the above

formulation of the problemLinear Least Squares, or LLS. The estimate ofx = [x, y]T is done

via

x = (ATA)−1ATb (3.5)

In addition to its computational advantages, the LLS formulation allows for tractable statistical

analysis, as we shall now see.
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3.4.2 The Residuals

In practice, there are estimation errors from the ranging step. The LLS formulation can be re-

fined as a linear regression,b = Ax+e, wheree corresponds to model errors. The localization

result is then̂x = (AT A)−1ATb, and the fitted valueŝb corresponding to the observed values

b are given by

b̂ = Ax̂ = A[(AT A)−1ATb] = A(AT A)−1AT b. (3.6)

Further, we define the vector of residualsê as

ê = b− b̂ = [1 −A(AT A)−1AT ]b. (3.7)

When the regression model is performing well we may assume that the model errors are Gaus-

sian [41,65]. Under this assumption, the residuals also follow a Gaussian distribution,N(µ,Σ),

since the residuals are a linear combination of the elementsof b ande. Here,µ is the mean

vector andΣ is the covariance matrix. We choose the residualsê as the test statisticT, and will

build our attack detection scheme by using the statistical properties of̂e when LLS is operating

in a desirable performance regime.

3.4.3 The Detection Scheme

The LLS attack detection is performed after localization. The residuals are correlated Gaussian

random variables and the multivariate Gaussian distribution of ê can be expressed as:

f(ê) =
1

(
√

2π)
n|Σ|

1

2

e−
1

2
(ê−µ)TΣ−1(ê−µ). (3.8)

In order to determine whether the location result is compromised by adversaries, we perform

attack detection through significance testing. We can definean acceptance region in̂e space by

Ω = {ê : Pr({T : (T − µ)TΣ−1(T − µ) >

(ê − µ)T Σ−1(ê − µ)}) > α}.

In practice, after performing localization using LLS, we have an observed value of residuals

êobs. Testing the null hypothesis, we can decide that the localization is under attack if the

probabilityP = 1 − M < α, where

M =
1

(
√

2π)
n|Σ| 12

∫

...

∫

E

e−
1

2
(ê−µ)TΣ−1(ê−µ)dê1...dên (3.9)



54

andE is the integration region defined by(ê − µ)TΣ−1(ê − µ) ≤ X2 with

X2 = (êobs − µ)TΣ−1(êobs − µ).

We can express the term

(ê − µ)TΣ−1(ê − µ) = (ê − µ)TDTD(ê − µ)

= (D(ê − µ))T(D(ê − µ))

= yTy. (3.10)

Substitutingy = D(ê − µ) into Equation (3.9), we get

M =
1

(
√

2π)
n

∫

...

∫

E′

e−
1

2
yTydy1...dyn

=
1

(
√

2π)
n

∫

...

∫

E′

e−
1

2

Pn
i=1

y2

i dy1...dyn (3.11)

with E′ defined byyTy ≤ X2. Changing to polar coordinates, we get

M =
1

(
√

2π)n
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∫ 2π
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∫ π

0
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∫ π
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dφ1
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∏

i=2

∫ π
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sini−1φidφi

=
2

(
√

π)n−2
× Ar,n ×
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∏

i=2

Bi (3.12)

with

Ar,n =
1

(
√

2)n

∫ X

0
e−

r2

2 rn−1dr

and

Bi =

∫ π

0
sini−1φidφi.

Usingv = r2/2, we have

Ar,n =
1

2

∫ X2

2

0
e−vv

n−2

2 dv =
1

2
× Γ(

n

2
,
X2

2
) (3.13)

whereΓ is the incomplete gamma function. Since

Bi = β(
i

2
,
1

2
) =

Γ( i
2)

Γ( i+1
2 )

×
√

π. (3.14)
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Through further simplification, we can get

n−1
∏

i=2

Bi = (
√

π)n−2 × 1

Γ(n
2 )

. (3.15)

Hence, substituting Equations (3.13) and (3.15) into (3.12), we obtain the probability mass

M =
Γ(n/2,X2/2)

Γ(n/2)
.

We then further obtain the probability byP = 1−M . Based on the definition in Section 3.3,

if the probability is sufficiently low, i.e.P < α, thenêobs belongs to the critical regionΩc and

we can conclude that the location result is under attack.

3.4.4 Experimental Evaluation

In this section we present the evaluation of the effectiveness of the attack detection scheme.

We chose RSS as the ranging modality and performed signal strength attacks according to the

experimental methodologies described in Section 3.2.

The average ranging error as a function of the severity of signal strength attacks is shown

in Figure 3.3(a). We know that the relationship between the RSS error and the ranging error is

multiplicative with distance [20]. Even small random perturbation in RSS readings can cause

large ranging errors due to this multiplicative factor. We observed this effect in Figure 3.3(a);

the ranging error increases superlinearly to attack severity. Figure 3.4 presents DR vs. the

ranging errors when tested against significance levelα = 0.01 and α = 0.05. We found

that under a normal situation, where the ranging errors are less than 15 feet, the false alarm

probability, Pfa, is less than 1.5% and 2.5% forα = 0.01 andα = 0.05 respectively. Large

signal strength attacks, greater than 15dB, can cause ranging errors larger than 90 feet, and then

the detection rates are more than 90%. These results strongly indicate that using residuals in

LS as a test statistic for attack detection is effective.

Further, the ROC curves in Figure 3.3(b) show that for false positive rates less than 10%,

the detection rates are above 90% and close to 99% when the attack strength increases to 20dB

and 25dB. This shows that if the adversary wants to cause a large localization error, it is almost

certain that our attack detection mechanism will detect it.For small attacks of less than 5dB,

the detection rates are about 40%. In this case, it is difficult to distinguish whether the anomaly
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Figure 3.3: CoRE 802.11: (a) Ranging errors under the signalstrength attacks (b) LLS residu-
als: Receiver Operating Characteristic (ROC) curves
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Figure 3.5: CoRE 802.11: (a) Cumulative Distribution Function (CDF) of minimum distance
Ds in signal space. (b) Minimum distanceDs: Receiver Operating Characteristic (ROC)
curves.

in the test statistic is caused by attacks or by measurement errors since the RSS readings can

fluctuate around 5dB due to environmental effects. However,for such small attacks, because the

resulting impact on the final localization result was shown to be small [22], the consequences

of failing to detect such attacks would likely be small as well.

3.5 Distance In Signal Space

RSS is a common physical property used by a widely diverse setof algorithms. For exam-

ple, most scene matching approaches utilize the RSS, e.g. [12, 14], and many multilateration

approaches [52] use it as well. In spite of its several meter-level accuracy, using the RSS is
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an attractive approach because it can re-use the existing wireless infrastructure — this fea-

ture presents a tremendous cost savings over deploying localization-specific hardware. In this

section, we thus derive an attack detection scheme applicable to any signal strength based lo-

calization system.

3.5.1 Overview

All of the above algorithms take a vectors of n RSS readings to (or from)n landmarks for the

node to be localized. Note thats corresponds to a point in an-dimensional signal space [22].

Under normal conditions, the RSS vectors obtained from the physical positions in a floor form a

surfaceS in then-dimensional signal space; we can think of this surface as comprising ‘valid’

points in signal space. Due to measurement noise, multipatheffects, and unknown biases,s

will fluctuate around this idealized RSS surface.

A localization attacker would perturb the corrects to produce a corrupted n-dimensional

RSS vectors′. In signal space,s′ will be moved away from the ideal surface constructed

by the correct RSS vectors. The stronger the attack, the morelikely the vectors′ will be

distant from the RSS surface. We thus choose the minimum distance to the surfaceS, i.e.

Ds = min{‖s′ − sj‖ : wheresj ∈ S}, as the test statistic for signal strength based attack

detection. The key advantage of this approach is that the attack detection is independent of the

localization algorithms and can be performed before the localization process.

Although it is possible to devise a statistical model forDs based on models for normal

measurement errors, in this section we shall take a different approach and apply empirical

methodologies from training data to determine thresholds for defining the critical region.

3.5.2 Finding Thresholds

Choosing an appropriate thresholdτ will allow the detection scheme to be robust to false de-

tections. In order to obtain the thresholds, we don’t need toknow the exact RSS surface in the

signal space (in practice, it is hard to determine and exhibits discontinuities due to wall bound-

aries). Instead, we can obtain the thresholds through empirical training. During the offline

phase, we can collect the RSS vectors for a set of known positions over the floor and construct
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a radio map. During the localization phase, we get an observed vectorsobs, and we can then

determine whether thesobs is being attacked by calculating theDs using the pre-constructed

radio map.

We define that if

Ds > τ, (3.16)

the signal strength readings are under attack. We use the distribution of the training data to help

decide on the thresholds. Figure 3.5 (a) shows the CDF of theDs in signal space. We found that

the curve ofDs shifted to the right under signal strength attacks, especially for larger attacks,

thereby suggesting that we can useDs as a test statistic for detecting attacks, and also that we

can use the non-attacked CDF to obtainτ for a givenα value.

3.5.3 Experimental Evaluation

We next present the evaluation of the effectiveness of usingminimum distanceDs for attack

detection. Figure 3.6 presents the Detection Rate under different threshold (TH) levels as a

function of signal strength attacks for both the 802.11 and the 802.15.4 networks in CoRE and

the 802.11 network in the Industrial Lab. Figure 3.5 (b) is the corresponding ROC curves un-

der signal attenuation attacks for the 802.11 network in CoRE. We found that, in general, the

effectiveness of the attack detection scheme is similar across the different networks and build-

ings. Interestingly, we found that the performance of the attack detection scheme under signal

amplification attacks is uniformly better than those for signal attenuation attacks, although the

shapes of the DR curves are similar. Because of the higher detection rates under amplification

attacks, we do not present additional amplification resultsin the remainder of the chapter. All

these results are highly encouraging because they show our methods are quite general and do

not depend on a specific network or environment.

Further, we observed that the DR under the 802.15.4 network in CoRE outperformed the

DR under the 802.11 networks in both CoRE and Industrial Lab for the signal attenuation

attacks as well as the signal amplification attacks. For attack strengths of 15dB or larger, the

DR in the 802.15.4 network is over 95% and equals 100% when attack severity reaches 20dB

and larger. We believe that the better landmark placement for localization [20] of the 802.15.4
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network can account for its higher detection rates, although further investigation of this effect

is required.
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Figure 3.6: Minimum distance in signal spaceDs: attack detection across different networks
and buildings.
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3.6 Other Test Statistics

In this section, we examine algorithm-specific test statistics, which use properties specific to

a particular localization algorithm. We have chosen a representative set of diverse algorithms.

For the multilateration category, we investigate the NLS algorithm, while for signal strength

based algorithms, we study both Area Based Probability (ABP) and Bayesian Networks (BN)

algorithms. Detailed descriptions of these can be found in [20,27,52].

3.6.1 Nonlinear Least Squares (NLS)

As presented in Section 3.4, NLS is a multilateration algorithm that tries to satisfy the condition

shown in Equation (3.2). The estimated(x̂, ŷ) is the solution that minimizes the Sum of Squared

ErrorsE2:

E2 =

n
∑

i=1

[
√

(xi − x̂)2 + (yi − ŷ)2 − di]
2. (3.17)

We define a test statisticE =
√
E2 becauseE will likely increase under the attack. The CDF

of E presented in Figure 3.7 (a) confirms that theE grows rapidly with the attack severity.

Figure 3.7 (b) and Figure 3.8 show that the performance of attack detection when usingE for

the 802.11 network in CoRE is comparable to that using residuals in Section 3.4. The thresholds

are also obtained from training.

3.6.2 Area Based Probability (ABP)

Turning to signal strength based algorithms, ABP is an area-based algorithm that uses Bayes’

Rule to return an area which has the highest likelihood of capturing the true location [27]. ABP

divides the floor into a set of tiles. The total likelihood that the wireless node resides at each

tile is calculated using:

P =

n
∏

i=1

Pi (3.18)

where n is the total number of landmarks andPi is the likelihood of observing the measured

RSS reading at landmarki which is usually modeled as a Gaussian random variable. The total

likelihood is calculated at each tile, and the returned location estimation is either a region whose

likelihood is above a certain level, or is the tile with the maximum likelihood.
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Figure 3.7: CoRE 802.11, NLS: (a) Cumulative Distribution Function (CDF) ofE . (b) E :
Receiver Operating Characteristic (ROC) curves.

When under attack, the corrupted RSS readings reduce the setof likely positions on the

floor to localize a node. We found that the highest tile-likelihood denoted aslikelihoodmax

decreases significantly under attack, as well as the sum of the likelihoods over all the tiles,

likelihoodsum. We explored bothlikelihoodsum and likelihoodmax as test statistics. The

thresholds are learned from the training data by taking the negative log of the values of the

highest likelihood and the sum of the likelihoods.

The effectiveness of usinglikelihoodsum andlikelihoodmax for attack detection in ABP are

presented in Figure 3.9 and Figure 3.10. We found that usinglikelihoodsum under threshold

equal to 2 had better performance than others in detecting larger attacks, but on the other hand

resulted in slightly higher false positive rates around 7%.
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3.6.3 Bayesian Networks (BN)

Another representative signal strength based algorithm, BN, utilizes Bayesian networks [52].

With Bayesian statistical inference, BN predicts the probability distribution of the unknown

positions. BN uses a Monte-Carlo sampling technique (Gibbssampling) to compute the full

joint-probability distribution for not just the position coordinates, but also for every random

variable in the Bayesian network. Without an attack, the contribution from each landmark

to the full joint-probability distribution is almost uniform. Under an attack, we found that

the contribution from each landmark can become significantly reduced as the attack severity

increases. Thus, we can use the fraction of contribution to the joint probability as a test statistic

in BN.

Another method we explored is to use the probability likelihood because the conditional

probability distribution of the coordinates in BN relies onthe prior and the likelihood. We

observed that under an attack, the value of the likelihood became significantly smaller. During

the sampling process, the calculation of the likelihood uses the same approach as in Equation

(3.18). Because the absolute value of the likelihood is verysmall, we take the negative log of

the likelihood and use it as a test statistic for attack detection in BN.

Figure 3.11 shows the effectiveness of using the fraction ofcontribution and the likelihood

for attack detection in BN. The detection rates are over 90% for attack strength of 20dB or

larger. The false positive rates are about 10%. Comparing the absolute performance of these

two methods with the other schemes we proposed in this chapter, the performance of these two

methods is qualitatively worse.

3.7 Discussion

Comparing all of our detection schemes, Figure 3.12 shows the DR as a function of the signal

attenuation attacks for the 802.11 network in the CoRE building. Surprisingly, we found that the

performance of all the schemes provided qualitatively similar detection rates, although utilizing

the residuals in LLS and the sum of likelihoods in ABP slightly outperformed the others, while

using the fraction of contribution and the likelihood in BN underperformed the others.

Based on these similar performance characteristics, it is advantageous to use the minimum
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Figure 3.11: CoRE 802.11, BN: (a) Using fraction of contribution of each landmark for attack
detection with threshold = 0.15. (b) Using likelihood in Bayesian inference for attack detection
with threshold = 0.25.
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distance in the signal spaceDs for signal strength based algorithms. Since the attack detection

can be performed prior to the localization process and thus results in localization computation

cost savings under attack. Additionally, the attack detection performance under the 802.15.4

network when usingDs outperforms the 802.11 network with 100% detection rate forlarge

attacks as shown in Figure 3.6.

Moving to examine the relationship between attack detection and localization error, Fig-

ure 3.13 shows the DR when using residuals in LLS for attack detection, and the localization

errors under the corresponding signal attacks with different localization algorithms. The figure

shows that detection rates are more than 90% for attack strength equal to or greater than 15dB,
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Figure 3.13: CoRE 802.11: Relationships among Detection Rate (DR), ranging error, and
localization error.

and at this attack strength the average localization error is about 35ft.

The above result is quite encouraging, as it shows that an attacker cannot cause gross local-

ization errors without there being a very high probability of detection (¿95%). In the case of

RSS, with mean errors of 10-15 ft [27], an attacker can not cause errors of about 2-3 times over

the average error without a very high probability of detection. Even for detection rates as low

as 50%, the attacker’s position error is limited to about 20 ft.

3.8 Conclusion

In this chapter, we analyzed the problem of detecting non-cryptographic attacks on wireless lo-

calization. We proposed a theoretical foundation by formulating attack detection as a statistical

significance testing problem. We then concentrated on test statistics for two broad localiza-

tion approaches: multilateration and signal strength. Formultilateration that uses Linear Least

Squares, we derived a closed-form representation for the attack detector. Further, for local-

ization schemes that employ signal strength, we showed thatby utilizing the signal strength

as a common feature, the minimum Euclidean distance in the signal space can be used as a

test statistic for attack detection independent of the localization process. Further, we derived

additional test statistics for a selection of representative localization algorithms.

We studied the effectiveness and generality of our attack detection schemes using a trace-

driven evaluation involving both an 802.11 (WiFi) network and an 802.15.4 (ZigBee) network

in two real office buildings. We evaluated the performance ofour attack detection schemes in
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terms of detection rates and receiver operating characteristic curves. Our experimental results

provide strong evidence of the effectiveness of our attack detection schemes with high detection

rates, over 95% and low false positive rates, often below 5%.Also, our approach is generic

across a diverse set of algorithms, networks, and buildings. Interestingly, we found that the

performance of the different attack detection schemes are more similar than different. This

result shows that different localization systems have similar attack detection capabilities, and

consequently that system designers can focus on using algorithms that provide the highest

localization accuracy rather than having to tradeoff position accuracy against attack detection

abilities.

After a localization attack is detected in a wireless network, the next important and chal-

lenging step is to localize the positions of the adversariesand further to eliminate the attack

from the network. In the next chaper, we illustrate this ideafurther by examining the appli-

cability of localization methods to locate an adversary participating in a spoofing attack. A

spoofing attack is an attack where the attacker forges its identity and masquerades as another

device, or even creates multiple illegitimate identities.Although the identity of a node can be

verified through cryptographic authentication, authentication is not always desirable or possible

because it requires key management and additional infrastructure overhead. We will take a dif-

ferent approach by using the physical properties of the radio signal and propose a scheme using

K-means cluster analysis for both detecting spoofing attacks as well as localizing the positions

of the adversaries without adding any overhead to the wireless devices and sensor nodes.
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Chapter 4

Detecting and Localizing Identity-based Spoofing Attacks

4.1 Introduction

Due to the openness of wireless and sensor networks, they areespecially vulnerable to spoofing

attacks where an attacker forges its identity to masqueradeas another device, or even creates

multiple illegitimate identities. Spoofing attacks are a serious threat as they represent a form

of identity compromise and can facilitate a variety of traffic injection attacks, such as evil twin

access point attacks. It is thus desirable to detect the presence of spoofing and eliminate them

from the network.

The traditional approach to address spoofing attacks is to apply cryptographic authentica-

tion. However, authentication requires additional infrastructural overhead and computational

power associated with distributing, and maintaining cryptographic keys. Due to the limited

power and resources available to the wireless devices and sensor nodes, it is not always pos-

sible to deploy authentication. In addition, key management often incurs significant human

management costs on the network. In this chapter, we take a different approach by using the

physical properties associated with wireless transmissions to detect spoofing. Specifically, we

propose a scheme for both detecting spoofing attacks, as wellas localizing the positions of the

adversaries performing the attacks. Our approach utilizesthe Received Signal Strength (RSS)

measured across a set of access points to perform spoofing detection and localization. Our

scheme does not add any overhead to the wireless devices and sensor nodes.

By analyzing the RSS from each MAC address using K-means cluster algorithm, we have

found that the distance between the centroids in signal space is a good test statistic for effective

attack detection. We then describe how we integrated our K-means spoofing detector into a

real-time indoor localization system. Our K-means approach is general in that it can be applied

to almost all RSS-based localization algorithms. For two sample algorithms, we show that
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using the centroids of the clusters in signal space as the input to the localization system, the

positions of the attackers can be localized with the same relative estimation errors as under

normal conditions.

To evaluate the effectiveness of our spoofing detector and attack localizer, we conducted

experiments using both an 802.11 network as well as an 802.15.4 network in a real office build-

ing environment. In particular, we have built an indoor localization system that can localize any

transmitting devices on the floor in real-time. We evaluatedthe performance of the K-means

spoofing detector using detection rates and receiver operating characteristic curve. We have

found that our spoofing detector is highly effective with over 95% detection rates and under 5%

false positive rates.

Further, we observed that, when using the centroids in signal space, a broad family of lo-

calization algorithms achieve the same performance as whenthey use the averaged RSS in

traditional localization attempts. Our experimental results show that the distance between the

localized results of the spoofing node and the original node is directly proportional to the true

distance between the two nodes, thereby providing strong evidence of the effectiveness of both

our spoofing detection scheme as well as our approach of localizing the positions of the adver-

saries.

The rest of the chapter is organized as follows. In Section 4.2, we study the feasibility of

spoofing attacks and their impacts, and discuss our experimental methodologies. We formulate

the spoofing attack detection problem and propose K-means spoofing detector in Section 4.3.

We introduce the real-time localization system and presenthow to find the positions of the

attackers in Section 4.4. Further, we provide a discussion in Section 4.5. Finally, we conclude

our work in Section 4.6.

4.2 Feasibility of Attacks

In this section we provide a brief overview of spoofing attacks and their impact. We then discuss

the experimental methodology that we use to evaluate our approach of spoofing detection.
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4.2.1 Spoofing Attacks

Due to the open-nature of the wireless medium, it is easy for adversaries to monitor communi-

cations to find the layer-2 Media Access Control (MAC) addresses of the other entities. Recall

that the MAC address is typically used as a unique identifier for all the nodes on the network.

Further, for most commodity wireless devices, attackers can easily forge their MAC address in

order to masquerade as another transmitter. As a result, these attackers appear to the network as

if they are a different device. Such spoofing attacks can havea serious impact on the network

performance as well as facilitate many forms of security weaknesses, such as attacks on access

control mechanisms in access points [10], and denial-of-service through a deauthentication

attack [15]. A broad survey of possible spoofing attacks can be found in [29,47].

To address potential spoofing attacks, the conventional approach uses authentication. How-

ever, the application of authentication requires reliablekey distribution, management, and

maintenance mechanisms. It is not always desirable to applyauthentication because of its

infrastructural, computational, and management overhead. Further, cryptographic methods are

susceptible to node compromise– a serious concern as most wireless nodes are easily accessi-

ble, allowing their memory to be easily scanned.

It is desirable to use properties that cannot be undermined even when nodes are compro-

mised. We propose to use received signal strength (RSS), a property associated with the trans-

mission and reception of communication (and hence not reliant on cryptography), as the basis

for detecting spoofing. Employing RSS as a means to detect spoofing will not require any

additional cost to the wireless devices themselves– they will merely use their existing commu-

nication methods, while the wireless network will use a collection of base stations to monitor

received signal strength for the potential of spoofing.

4.2.2 Experimental Methodology

In order to evaluate the effectiveness of our spoofing detection mechanisms, which we describe

in the next section, we have conducted experiments using both an 802.11 (WiFi) network as

well as an 802.15.4 (ZigBee) network on the 3rd floor of the Computer Science Department at

Rutgers University. The floor size is 200x80ft (16000ft2). Figure 4.1 (a) shows the 802.11
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Figure 4.1: Landmark setups and testing locations in two networks.

(WiFi) network with 4 landmarks deployed to maximize signalstrength coverage, as shown in

red squares. The 802.15.4 (ZigBee) network is presented in Figure 3.2 (b) with 4 landmarks

distributed in a squared setup in order to achieve optimal landmark placement [20] as shown

in red triangles. The small blue dots in the floor map are the locations used for spoofing and

localization tests.

For the 802.15.4 network, we used 300 packet-level RSS samples for each of the 100 lo-

cations. We utilized the actual RSS values attached to each packet. We have 286 locations in

the 802.11 deployment. Unlike the 802.15.4 data, the RSS values are partially synthetic. We

had access to only the mean RSS at each location, but to perform our experiments we needed

an RSS value per packet. To generate such data for 200 simulated packets at each location, we

used random draws from a normal distribution. We used the measured RSS mean for the mean
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of the distribution. For the standard deviation, we computed the difference in the RSS from

a fitted signal to distance function, and then calculated thestandard deviation of the distribu-

tion from these differences over all locations. To keep our results conservative, we took the

maximum deviation over all landmarks, which we found to be 5 dB.

Much work has gone into characterizing the distributions ofRSS readings indoors. It has

been shown that characterizing the per-location RSS distributions as normal, although not often

the most accurate characterization, still results in the best balance between algorithmic usability

and the resulting localization error [27,33].

In addition, we built a real-time localization system to estimate the positions of both the

original nodes and the spoofing nodes. We randomly selected points out of the above locations

as the training data for use by the localization algorithms.For the 802.11 network, the size of

the training data is 115 locations, while for the 802.15.4 network, the size of the training data

is 70 locations. The detailed description of our localization system is presented in Section 4.4.

To test our approach’s ability to detect spoofing, we randomly chose a point pair on the

floor and treated one point as the position of the original node, and the other as the position

of the spoofing node. We ran the spoofing test through all the possible combinations of point

pairs on the floor using all the testing locations in both networks. There are total 14535 pairs

for the 802.11 network and 4371 pairs for the 802.15.4 network. The experimental results will

be presented in the following sections for the spoofing detector and the attack localizer.

4.3 Attack Detector

In this section we propose our spoofing attack detector. We first formulate the spoofing attack

detection problem as one using classical statistical testing. Next, we describe the test statis-

tic for spoofing detection. We then introduce the metrics to evaluate the effectiveness of our

approach. Finally, we present our experimental results.

4.3.1 Formulation of Spoofing Attack Detection

RSS is widely available in deployed wireless communicationnetworks and its values are closely

correlated with location in physical space. In addition, RSS is a common physical property
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used by a widely diverse set of localization algorithms [12,27, 60, 69]. In spite of its several

meter-level localization accuracy, using RSS is an attractive approach because it can re-use the

existing wireless infrastructure. We thus derive a spoofingattack detector utilizing properties

of the RSS.

The goal of the spoofing detector is to identify the presence of a spoofing attack. We for-

mulate the spoofing attack detection as a statistical significance test, where the null hypothesis

is:

H0 : normal (no attack).

In significance testing, a test statisticT is used to evaluate whether observed data belongs to

the null-hypothesis or not. If the observed test statisticTobs differs significantly from the

hypothesized values, the null hypothesis is rejected and weclaim the presence of a spoofing

attack.

4.3.2 Test Statistic for Spoofing Detection

Although affected by random noise, environmental bias, andmultipath effects, the RSS value

vector,s = {s1, s2, ...sn} (n is the number of landmarks/access points(APs)), is closelyrelated

with the transmitter’s physical location and is determinedby the distance to the landmarks [27].

The RSS readings at different locations in physical space are distinctive. Each vectors corre-

sponds to a point in an-dimensional signal space [22]. When there is no spoofing, for each

MAC address, the sequence of RSS sample vectors will be closeto each other, and will fluc-

tuate around a mean vector. However, under a spoofing attack,there is more than one node

at different physical locations claiming the same MAC address. As a result, the RSS sample

readings from the attacked MAC address will be mixed with RSSreadings from at least one dif-

ferent location. Based on the properties of the signal strength, the RSS readings from the same

physical location will belong to the same cluster points in then-dimensional signal space, while

the RSS readings from different locations in the physical space should form different clusters

in signal space.

This observation suggests that we may conduct K-means cluster analysis [34] on the RSS

readings from each MAC address in order to identify spoofing.If there areM RSS sample
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readings for a MAC address, the K-means clustering algorithm partitionsM sample points

into K disjoint subsetsSj containingMj sample points so as to minimize the sum-of-squares

criterion:

Jmin =
K

∑

j=1

∑

sm∈Sj

‖sm − µj‖2 (4.1)

wheresm is a RSS vector representing themth sample point andµj is the geometric centroid

of the sample points forSj in signal space. Under normal conditions, the distance between

the centroids should be close to each other since there is basically only one cluster. Under

a spoofing attack, however, the distance between the centroids is larger as the centroids are

derived from the different RSS clusters associated with different locations in physical space.

We thus choose the distance between two centroids as the teststatisticT for spoofing detection,

Dc = ||µi − µj|| (4.2)

with i, j ∈ {1, 2..K}. Next, we will use empirical methodologies from the collected data set to

determine thresholds for defining the critical region for the significance testing. To illustrate,

we use the following definitions,an original nodePorg is referred to as the wireless device with

the legitimate MAC address, whilea spoofing nodePspoof is referred to as the wireless device

that is forging its identity and masquerading as another device. There can be multiple spoofing

nodes of the same MAC address.

Note that our K-means spoofing detector can handle packets from different transmission

power levels. If an attacker sends packets at a different transmission power level from the

original node with the same MAC address, there will be two distinct RSS clusters in signal

space. Thus, the spoofing attack will be detected based on thedistance of the two centroids

obtained from the RSS clusters.

4.3.3 Determining Thresholds

The appropriate thresholdτ will allow the spoofing detector to be robust to false detections.

We can determine the thresholds through empirical training. During the off line phase, we

can collect the RSS readings for a set of known locations overthe floor and obtain the distance

between two centroids in signal space for each point pair. Weuse the distribution of the training

information to determine the thresholdτ . At run time, based on the RSS sample readings for
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Figure 4.2: Cumulative Distribution Function (CDF) ofDc in signal space

a MAC address, we can calculate the observed valueDobs
c . Our condition for declaring that a

MAC address is under a spoofing attack is:

Dobs
c > τ. (4.3)

Figure 4.2 (a) and (b) show the CDF of theDc in signal space for both the 802.11 network and

the 802.15.4 network. We found that the curve ofDc shifted greatly to the right under spoofing

attacks, thereby suggesting that usingDc as a test statistic is an effective way for detecting

spoofing attacks.

4.3.4 Performance Metrics

In order to evaluate the performance of our spoofing attack detector using K-means cluster

analysis, we use the following metrics:
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Network, Threshold Detection Rate False Positive Rate
802.11,τ = 5.5dB 0.9937 0.0819
802.11,τ = 5.7dB 0.9920 0.0351
802.11,τ = 6dB 0.9884 0
802.15.4,τ = 8.2dB 0.9806 0.0957
802.15.4,τ = 10dB 0.9664 0.0426
802.15.4,τ = 11dB 0.9577 0

Table 4.1: Detection rate and false positive rate of the spoofing attack detector.

Detection Rate and False Positive Rate:A spoofing attack will cause the significance test

to rejectH0. We are thus interested in the statistical characterization of the attack detection

attempts over all the possible spoofing attacks on the floor. The detection rate is defined as the

percentage of spoofing attack attempts that are determined to be under attack. Note that, when

the spoofing attack is present, the detection rate corresponds to the probability of detectionPd,

while under normal (non-attack) conditions it correspondsto the probability of declaring a false

positivePfa. The detection rate and false positive rate vary under different thresholds.

Receiver Operating Characteristic (ROC) curve:To evaluate an attack detection scheme

we want to study the false positive ratePfa and probability of detectionPd together. The ROC

curve is a plot of attack detection accuracy against the false positive rate. It can be obtained by

varying the detection thresholds. The ROC curve provides a direct means to measure the trade

off between false-positives and correct detections.

4.3.5 Experimental Evaluation

In this section we present the evaluation results of the effectiveness of the spoofing attack

detector. Table 4.1 presents the detection rate and false positive rate for both the 802.11 network

and the 802.15.4 network under different threshold settings. The corresponding ROC curves

are displayed in Figure 4.3. The results are encouraging showing that for false positive rates

less than 10%, the detection rates are above 95%. Even when the false positive rate goes to

zero, the detection rate is still more than 95% for both 802.11 and 802.15.4 networks.

We further study how likely a spoofing node can be detected by our spoofing attack detector

when it is at varying distances from the original node in physical space. Figure 4.4 presents the

detection rate as a function of the distance between the spoofing node and the original node. We

found that the further awayPspoof is from Porg, the higher the detection rate becomes. For the
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Figure 4.3: Receiver Operating Characteristic (ROC) curves

802.11 network, the detection rate goes to over 90% whenPspoof is about 13 feet away from

Porg underτ equals to 5.5dB. While for the 802.15.4 network, the detection rate is above 90%

when the distance betweenPspoof andPorg is about 20 feet by setting thresholdτ to 9dB. This

is in line with the average localization estimation errors using RSS [27] which are about 10-15

feet. When the nodes are less than 10-15 feet apart, they havea high likelihood of generating

similar RSS readings, and thus the spoofing detection rate falls below 90%, but still greater than

60%. However, whenPspoof moves closer toPorg, the attacker also increases the probability

to expose itself. The detection rate goes to 100% when the spoofing node is about 45-50 feet

away from the original node.
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Figure 4.4: Detection rate as a function of the distance between the spoofing node and the
original node.

4.4 Localizing Adversaries

If the spoofing attack is determined to be present by the spoofing attack detector, we want

to localize the adversaries and further to eliminate the attackers from the network. In this

section we present a real-time localization system that canbe used to locate the positions of

the attackers. We then describe the localization algorithms used to estimate the adversaries’

position. The experimental results are presented to evaluate the effectiveness of our approach.

4.4.1 Localization System

We have developed a general-purpose localization system toperform real-time indoor position-

ing. The detailed system architecture is presented in Chapter 6. Here we provide a brief system
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overview. This system is designed with fully distributed functionality and easy to plug-in lo-

calization algorithms. It is built around 4 logical components: Transmitter, Landmark, Server,

and Solver. The system architecture is shown in Figure 6.1 inChapter 6.

Transmitter: Any device that transmits packets can be localized. Often the application

code does not need to be altered on a sensor node in order to localize it.

Landmark: The Landmark component listens to the packet traffic and extracts the RSS

reading for each transmitter. It then forwards the RSS information to the Server component.

The Landmark component is stateless and is usually deployedon each landmark or access point

with known locations.

Server: A centralized server collects RSS information from all the Landmark components.

The spoofing detection is performed at the Server component.The Server summarizes the

RSS information such as averaging or clustering, then forwards the information to the Solver

component for localization estimation.

Solver: A Solver takes the input from the Server, performs the localization task by utilizing

the localization algorithms plugged in, and returns the localization results back to the Server.

There are multiple Solver instances available and each Solver can localize multiple transmitters

simultaneously.

During the localization process, the following steps will take place:

1. A Transmitter sends a packet. Some number of Landmarks observe the packet and record

the RSS.

2. Each Landmark forwards the observed RSS from the transmitter to the Server.

3. The Server collects the complete RSS vector for the transmitter and sends the information

to a Solver instance for location estimation.

4. The Solver instance performs localization and returns the coordinates of the transmitter

back to the Server.

If there is a need to localize hundreds of transmitters at thesame time, the server can per-

form load balancing among the different solver instances. This centralized localization solution

also makes enforcing contracts and privacy policies more tractable.
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Figure 4.5: Relationships among the original node, the spoofing node, and their location esti-
mation through localization system.

4.4.2 Attack Localizer

When our spoofing detector has identified an attack for a MAC address, the centroids returned

by the K-means clustering analysis in signal space can be used by the server and sent to the

solver for location estimation. The returned positions should be the location estimate for the

original node and the spoofing nodes in physical space. Usinga location on the testing floor

as an example, Figure 4.5 shows the relationship among the original nodePorg, the location

estimation of the original nodeLorg, the spoofing nodePspoof , and the localized spoofing node

positionLspoof .

In order to show the generality of our localization system for locating the spoofing nodes,

we have chosen two representative localization algorithmsusing signal strength from point-

based algorithms and area-based algorithms.

RADAR: Point-based methods return an estimated point as a localization result. A primary

example of a point-based method is the RADAR scheme [12]. In RADAR, during the off line

phase, a mobile transmitter with known position broadcastsbeacons periodically, and the RSS

readings are measured at a set of landmarks. Collecting together the averaged RSS readings

from each of the landmarks for a set of known locations provides a radio map. At runtime,

localization is performed by measuring a transmitter’s RSSat each landmark, and the vector of

RSS values is compared to the radio map. The record in the radio map whose signal strength

vector is closest in the Euclidean sense to the observed RSS vector is declared to correspond to
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the location of the transmitter. In this work, instead of using the averaged RSS in the traditional

approach, we use the RSS centroids obtained from the K-meansclustering algorithm as the

observed RSS vector for localizing a MAC address.

Area Based Probability (ABP): Area-based algorithms return a most likely area in which

the true location resides. One major advantage of area-based methods compared to point-based

methods is that they return a region, which has an increased chance of capturing the transmit-

ter’s true location. ABP returns an area, a set of tiles on thefloor, bounded by a probability that

the transmitter is within the returned area [27]. ABP assumes the distribution of RSS for each

landmark follows a Gaussian distribution. The Gaussian random variable from each landmark

is independent. ABP then computes the probability of the transmitter being at each tileLi on

the floor using Bayes’ rule:

P (Li|s) =
P (s|Li) × P (Li)

P (s)
. (4.4)

Given that the transmitter must reside at exactly one tile satisfying
∑L

i=1 P (Li|s) = 1,

ABP normalizes the probability and returns the most likely tiles up to its confidenceα.

Both RADAR and ABP are employed in our experiments to localize the positions of the

attackers.

4.4.3 Experimental Evaluation

In order to evaluate the effectiveness of our localization system in finding the locations of the

attackers, we are interested in the following performance metrics:

Localization Error CDF: We obtain the cumulative distribution function (CDF) of the

location estimation error from all the localization attempts, including both the original nodes

and the spoofing nodes. We then compare the error CDF of all theoriginal nodes to that of all

the possible spoofing nodes on the floor. For area-based algorithms, we also report CDFs of the

minimum and maximum error. For a given localization attempt, these are points in the returned

area that are closest to and furthest from the true location.

Relationship between the true and estimated distances:The relationship between the

true distance of the spoofing node to the original node||Porg − Pspoof || and the distance of the

location estimate of the spoofing node to that of the originalnode||Lorg − Lspoof || evaluates
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how accurate our attack localizer can report the positions of both the original node and the

attackers.

We first present the statistical characterization of the location estimation errors. Figure 4.6

presents the localization error CDF of the original nodes and the spoofing nodes for both

RADAR and ABP in the 802.11 network as well as the 802.15.4 network. For the area-based

algorithm, the median tile errorABP − med is presented, as well as the minimum and maxi-

mum tile errors,ABP − min andABP − max. We found that the location estimation errors

from using the RSS centroids in signal space are about the same as using averaged RSS as the

input for localization algorithms [27]. Comparing to the 802.11 network, the localization per-

formance in the 802.15.4 network is qualitatively better for both RADAR and ABP algorithms.

This is because the landmark placement in the 802.15.4 network is closer to that predicted by

the optimal and error minimizing placement algorithm as described in [20].

More importantly, we observed that the localization performance of the original nodes is

qualitatively the same as that of the spoofing nodes. This is very encouraging as the similar

performance is strong evidence that using the centroids obtained from the K-means cluster

analysis is effective in both identifying the spoofing attacks as well as localizing the attackers.

The challenge in localizing the positions of the attackers arises because the system does not

know the positions of either the original MAC address or the node with the masquerading MAC.

Thus, we would like to examine how accurate the localizationsystem can estimate the distance

betweenPorg andPspoof . Figure 4.7 displays the relationship between||Lorg − Lspoof || and

||Porg −Pspoof || across different localization algorithms and networks. The blue dots represent

the cases of the detected spoofing attacks. While the red crosses indicate the spoofing attack has

not been detected by the K-means spoofing detector. Comparing with Figure 4.4, i.e. the de-

tection rate as a function of the distance betweenPorg andPspoof , the results of the undetected

spoofing attack cases represented by the red crosses are in line with the results in Figure 4.4,

the spoofing attacks are 100% detected when||Porg −Pspoof || equals to or is greater than about

50 feet.

Further, the relationship between||Lorg − Lspoof || and ||Porg − Pspoof || is along the 45

degree straight line. This means that||Lorg−Lspoof || is directly proportional to||Porg−Pspoof ||

and indicates that our localization system is highly effective for localizing the attackers. At a
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Figure 4.6: Localization error CDF across localization algorithms and networks.
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(a) 802.11: RADAR,τ = 6dB (b) 802.11: ABP,τ = 6dB
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(c) 802.15.4: RADAR,τ = 9dB (d) 802.15.4: ABP,τ = 9dB

Figure 4.7: Relationship between the true distance and the estimated distance for the original
node and the spoofing node across localization algorithms and networks.

fixed distance value of||Porg − Pspoof ||, the values of||Lorg − Lspoof || fluctuate around the

true distance value. The fluctuation reflects the localization errors of bothPorg andPspoof .

The larger the||Porg − Pspoof || is, the smaller the fluctuation of||Lorg − Lspoof || becomes, at

about 10 feet maximum. This means that if the attacker is farther away from the original node,

it is extremely likely that the K-means spoofing detector candetect it. In addition, our attack

localizer can find the attacker’s position and estimate the distance from the original node to the

attacker at about 10 to 20 feet maximum error.
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Figure 4.8: Packet-level localization: relationship between the true distance and the estimated
distance for the original node and the spoofing node when using RADAR in the 802.11 network.

4.5 Discussion

So far we have conducted K-means cluster analysis in signal space. Our real-time localization

system also inspired us to explore packet-level localization at the server, which means local-

ization is performed for each packet received at the landmarks. The server utilizes each RSS

reading vector for localization. Over a certain time period(for example, 60 seconds), for a

MAC address there will be a cluster of location estimates in physical space. Intuitively, we

think that, during a spoofing attack there will be distinctive location clusters around the origi-

nal node and the spoofing nodes in physical space. Our intuition was that the clustering results

from the per-packet localization would allow the detectionand localization of attackers in one

step.

However, we found that the performance of clustering packet-level localization results for

spoofing detection is not as effective as deriving the centroids in signal space. The relationship

between||Porg − Pspoof || and ||Lorg − Lspoof || is shown in Figure 4.8. Although it also has

a trend along the 45 degree line, it shows more uncertaintiesalong the line. Therefore, we

believe that given a set of RSS reading samples for a MAC address, working with the signal

strength directly preserves the basic properties of the radio signal, and this in turn is more

closely correlated with the physical location, and thus working with the RSS values directly

better reveals the presence of the spoofing attacks.
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4.6 Conclusion

In this chapter, we proposed a method for detecting spoofing attacks as well as localizing the

adversaries in wireless and sensor networks. In contrast totraditional identity-oriented authen-

tication methods, our RSS based approach does not add additional overhead to the wireless

devices and sensor nodes. We formulated the spoofing detection problem as a classical sta-

tistical significance testing problem. We then utilized theK-means cluster analysis to derive

the test statistic. Further, we have built a real-time localization system and integrated our K-

means spoofing detector into the system to locate the positions of the attackers and as a result

to eliminate the adversaries from the network.

We studied the effectiveness and generality of our spoofing detector and attacker localizer

in both an 802.11 (WiFi) network and an 802.15.4 (ZigBee) network in a real office building

environment. The performance of the K-means spoofing detector is evaluated in terms of de-

tection rates and receiver operating characteristic curves. Our spoofing detector has achieved

high detection rates, over 95% and low false positive rates,below 5%. When locating the po-

sitions of the attackers, we have utilized both the point-based and area-based algorithms in our

real-time localization system. We found that the performance of the system when localizing the

adversaries using the results of K-means cluster analysis are about the same as localizing under

normal conditions. Usually the distance between the spoofing node and the original node can

be estimated with median error of 10 feet. Our method is generic across different localization

algorithms and networks. Therefore, our experimental results provide strong evidence of the

effectiveness of our approach in detecting the spoofing attacks and localizing the positions of

the adversaries.

During the course of the security analysis for localizationsystems, we found that the land-

mark placement plays an important role on localization performance. While most research has

focused on improving the localization algorithm, we took the viewpoint that it is perhaps just

as important to improve the deployment of the localization system. In the next chapter, we will

investigate the impact of landmark placement on localization performance using a combination

of analytic and experimental analysis.
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Chapter 5

Performance Improvement Using Optimal Landmark Placement

5.1 Introduction

Although recent efforts have resulted in a plethora of methods to localize sensor nodes, lit-

tle work to date has systematically investigated how the placement of the nodes with known

locations, orlandmarks, impacts localization performance. In this chapter we investigate the

impact of landmark placement on localization performance using a combination of analytic and

experimental analysis.

Our analytic approach focuses on the Least Squares (LS) algorithm, and in particular, a

variant we call Linear Least Squares (LLS). Our analysis centers on the algorithm for two

reasons. First, LS is a widely used multilateration algorithm, as is evidenced by its application

as a step in many recent localization research works [23, 28,44, 49, 54]. Second, mathematical

analysis of LLS is tractable, resulting in equations with closed-form solutions. For a myriad

of other algorithms, closed form solutions that describe the localization error as a function of

landmark placement are not tractable and as a result heuristic search strategies must be used to

find an optimal placement, as was done in [13].

Our analysis of landmark placement can find an optimal placement of landmarks in well-

defined regular regions, thus making it quite suitable for indoor localization. The analysis

begins with LLS and places an upper bound of the maximum localization error given a set of

landmark placements. We can show that this upper bound is minimized by a combination of

minimizing the distance estimation error together with theemployment of the optimal patterns

for landmark placement.

Using this result, we can compare the maximum error between any two placements. We can

then constrain a search of placements to minimize the maximum error. We have developed a
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simple algorithm calledmaxL−minE algorithm that finds an optimized landmark deployment

for the LLS algorithm.

We show that our placement minimizing the upper bounds of LLSalso reduces the Hölder

parameter for a variety of algorithms. The Hölder parameter [22] describes the maximum

change in physical space that can arise from a change in signal space. This is strong evidence

that ourmaxL −minE algorithm finds a landmark placement that minimizes the errors due to

noise, bias, and measurement error.

Another interesting result of our analysis is that for a small number of landmarks, simple

shapes such as equilateral triangles and squares result in placements with better localization

performance. Interestingly, for higher number of landmarks, we can show that extensions of

shapes with equal sides, e.g. a hexagon, are non-optimal. Rather, the simple shapes enclose

one another, for example, two enclosing equilateral triangles. We detail these geometries and

describe rule-of-thumb for landmark placement in Section 5.2.

To show the generality of our results, we conducted localization experiments with both an

802.11 (WiFi) network as well as an 802.15.4 (ZigBee) network in a real building environment.

For the 802.11 network, we used two ranging modalities, Received Signal Strength (RSS) to

distance, and Time of Arrival (TOA). In the 802.15.4 network, we used only RSS-to-distance.

We compared the accuracy of a suite of localization algorithms using landmarks placed

according to our analysis as well as landmarks placed in positions that provide good signal

coverage but ignore localization concerns. While we found that all algorithms improved their

performance, over a non-optimal placement for localization, we also observed that LS became

competitive with the other algorithms, and that coarse-grained TOA ranging was less accurate

than RSS-based approaches.

The remainder of the chapter is as follows. We provide the theoretical analysis in Sec-

tion 5.2. Then Section 5.3 describes the metrics that we use to characterize the localization

performance. The investigation of the number of landmarks and their positions is provided

in Section 5.4. Section 5.5 presents the experimental results across localization algorithms,

networks, and ranging strategies. Finally we conclude in Section 2.7.
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5.2 Theoretical Analysis

In this section we first provide background on using LS algorithms for localization, and then

describe the LLS variant. We next present our theoretical analysis of an upper bound on the

error, and then discuss ourmaxL − minE placement algorithm.

5.2.1 Background: Localization with LS

To perform localization with LS requires 2 steps: ranging and lateration.

Ranging Step:Recent research has seen a host of variants on the ranging step. For exam-

ple, in the APS algorithm [54], hop counts are used to estimate ranges. Other approaches are

also possible, [56] used the time-difference of arrival between an ultrasound pulse and a radio

packet. In this work, we focus on RSS and TOA as ranging strategies.

Lateration Step: From the estimated distancesdi and known positions (xi, yi) of the

landmarks, the position (x, y) of the localizing node can be found by finding(x̂, ŷ) satisfying:

(x̂, ŷ) = arg min
x,y

N
∑

i=1

[
√

(xi − x)2 + (yi − y)2 − di]
2 (5.1)

whereN is the total number of landmarks. We call solving the above problem Nonlinear

Least Squares, or NLS. It can be viewed as an optimization problem where theobjective is to

minimize the sum of the error squared.

Solving the NLS problem requires significant complexity andis difficult to analyze. We

may approximate the NLS solution and linearize the problem by introducing a constraint in the

formulation. We start with theN ≥ 2 equations:

(x1 − x)2 + (y1 − y)2 = d2
1

(x2 − x)2 + (y2 − y)2 = d2
2 (5.2)

...

(xN − x)2 + (yN − y)2 = d2
N

Now, subtracting the constraint

1

N

N
∑

i=1

[(xi − x)2 + (yi − y)2] =
1

N

N
∑

i=1

d2
i (5.3)
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from both sides, we obtain the following set of linear equations

(x1 − 1

N

N
X

i=1

xi)x + (y1 − 1

N

N
X

i=1

yi)y =

1

2
[(x2

1 − 1

N

N
X

i=1

x2

i ) + (y2

1 − 1

N

N
X

i=1

y2

i ) − (d2

1 − 1

N

N
X

i=1

d2

i )]

... (5.4)

(xN − 1

N

N
X

i=1

xi)x + (yN − 1

N

N
X

i=1

yi)y =

1

2
[(x2

N − 1

N

N
X

i=1

x2

i ) + (y2

N − 1

N

N
X

i=1

y2

i ) − (d2

N − 1

N

N
X

i=1

d2

i )].

The above can be easily solved linearly using the formAx = b with:

A =

0

B

B

B

B

@

x1 − 1

N

PN
i=1

xi y1 − 1

N

PN
i=1

yi

...
...

xN − 1

N

PN
i=1

xi yN − 1

N

PN
i=1

yi

1

C

C

C

C

A

(5.5)

and

b =
1

2

0

B

B

B

B

B

B

B

B

B

B

@

(x2

1
− 1

N

PN
i=1

x2

i ) + (y2

1
− 1

N

PN
i=1

y2

i )

−(d2

1
− 1

N

PN
i=1

d2

i )

...

(x2

N − 1

N

PN
i=1

x2

i ) + (y2

N − 1

N

PN
i=1

y2

i )

−(d2

N − 1

N

PN
i=1

d2

i )

1

C

C

C

C

C

C

C

C

C

C

A

. (5.6)

Note thatA is described by the coordinates of landmarks only, whileb is represented by

the distances to the landmarks together with the coordinates of landmarks. We call the above

formulation of the problemLinear Least Squares, or LLS. NLS trades higher computational

complexity for better accuracy. The introduction of the constraint collapsed the nonlinear prob-

lem into a linear problem, which greatly simplifies the computation needed to arrive at a lo-

cation estimate. In addition to its computational advantages, the LLS formulation allows for

tractable error analysis, as we shall soon provide.

5.2.2 Error Analysis

Our objective is to minimize the location estimation error introduced by LLS. we have matrixA

and vectorb presented in Equations (5.5) and (5.6). In an ideal situation solving forx = [x, y]T
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is done via

x = (ATA)−1ATb (5.7)

However, the estimated distances are impacted by noise, bias, and measurement error. We

express the resulting distance estimation errore in terms ofb̃ with estimated distances andb

with true distances as̃b = b + e, and hence the localization result is

x̃ = (AT A)−1AT b̃. (5.8)

The location estimation error is thus bounded by

‖x − x̃‖ ≤ ‖A+‖‖e‖, (5.9)

where the matrixA+ is the Moore-Penrose pseudo-inverse ofA. It can be shown that, under

the 2-norm,‖A+‖ = 1
γ2

, whereγ1 ≥ γ2 are the singular values ofA. This means that for

a certain size on errore the LS estimation error is stretched by1
γ2

. It can be proved that the

eigenvalues ofAT A are the squares of the singular values ofA. Therefore, we can limit our

concern to the eigenvalues ofATA, whereATA is a matrix of the form:

ATA =





a b

b c





with:

a =
N

∑

i=1

(xi −
1

N

N
∑

i=1

xi)
2 (5.10)

b =

N
∑

i=1

[(xi −
1

N

N
∑

i=1

xi)(yi −
1

N

N
∑

i=1

yi)] (5.11)

c =

N
∑

i=1

(yi −
1

N

N
∑

i=1

yi)
2. (5.12)

Note that a, b and c are only related to the coordinates of landmarks (xi, yi). The eigenval-

ues ofATA can be found as the roots of:

λ2 − (a + c)λ + (ac − b2) = 0.

Thus, we have:
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λ =
(a + c) ±

√

(a − c)2 + 4b2

2
, (5.13)

where the discriminant,(a − c)2 + 4b2, is non-negative.

5.2.3 Deployment Patterns

Our goal in this section is to minimize the total error. Recall there are two terms on the right

side of Equation (5.9). Our approach is to choosexi andyi so as to makeλ2 (the smaller

eigenvalue) as close toλ1 as possible, because this will minimize the first term,‖A+‖. Given

the first term is minimized, we then minimize the second term.Having minimized the second

term given the first term is minimized is clearly a local minima. We call such a local minimaan

optimal deployment, because no movement of a single landmark can improve the error bound.

However, our piecewise minimization approach still leavesopen a proof that this local minima

is the true minima over all possible landmark positions. We leave such a proof as future work.

Returning to minimizing the first term‖A+‖, to minimize 1√
λ2

, a general strategy would

be to make(a − c) small or to makeb small or both. Interestingly, this is determined only by

the coordinates of the landmarks.

Then our next task is to find the landmark positions that satisfy λ1
∼= λ2. We found that the

optimal landmark deployment setup follows some simple and symmetric patterns. This makes

it not only possible to achieve but also easy to deploy practically. Figure 5.1 shows the patterns

for an optimal landmark deployment setup when utilizing 3, 4, 5, 6, 7, 8 landmarks in the

indoor environment. These patterns consist of squares, equilateral triangles, or the enclosing

of them. We observe that for higher number of landmarks, the extensions of shapes with equal

sides, e.g. a hexagon, do not satisfyλ1
∼= λ2, and thus are not optimal. Instead, simple shapes

that enclose one another present optimal solutions.

5.2.4 Finding an Optimized landmark Deployment

The above discussion dealt with deploying the landmarks without considering the physical

constraints of the building and, as such, only provide a general guideline as to the ”shape” of the

deployment. Placing the landmarks within a particular building requires stretching/shrinking
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Figure 5.1: Patterns for optimal landmark deployments

the deployment shape so that it fits within the confines of the building. The stretching/shrinking

should be done so as to minimize localization errors.

Recall in Equation (5.9), the location estimation error is also contributed by‖e‖, and that

b̃ = b + e. The term‖e‖ is a result of distance estimation errors introduced by ranging.

We have developed an iterative algorithm, calledmaxL − minE (i.e. maximum lambda and

minimum error), which helps to find the real landmark coordinates given the floor size, number

of landmarks, and the optimal landmark deployment pattern.Figure 5.2 shows the pseudo-code

that implementsmaxL−minE . The algorithm first minimizes‖A+‖ using geometry, then uses

an iterative search. The search begins with a maximal sized optimal pattern (e.g. a square) and

simply keeps reducing the size of the pattern until such movements stop reducing the distance

estimation errore. We observe the algorithm usually converges very quickly within a number

of iterations.

5.3 Evaluation Metrics

In this section we describe the three metrics we use throughout the rest of the paper.
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—————————————————————————–
input floorSize, numOfLandmark
output optimized landmark coordinates

[initialize] get optimal pattern based on geometry
fit optimal pattern into maximum floorsize
generate initial landmark coordinates
calculateλ1 andλ2

minError = maxNum
thisError = maxNum
loop until thisError > minError
generate random localizing nodes
for each localizing nodebegin
apply random noise or bias
B = ‖b − b̃‖

end for
thisError = avg(B)√

λ2

if thisError < minError, minError = thisError
[landmark adjustment] move towards the center of mass one step

end loop
return optimized landmark coordinates

—————————————————————————–

Figure 5.2: The maxL-minE algorithm

Average error: All of our observations are the results of many localizationtrials. This

metric takes the average of the distances between the localized result and the true location over

all trials. In area-based algorithms, as opposed to point-based ones, the result is a returned area.

To compare these two kinds of algorithms, we use the median X and Y of the returned area to

the true location to generate a point and then average these distance errors.

Accuracy CDF: We also return the entire cumulative density function (CDF)of all our

localization attempts. We simply report all attempts in sorted order, and then normalize the Y

axis by the total number of attempts to obtain a domain of[0, 1]. For area-based algorithms, we

also report CDFs of the minimum and maximum error. For a givenattempt, these are points in

the returned area that are closest to and furthest from the true location.

Hölder Metrics: In addition to error performance, we are also interested in how dramat-

ically the localization results can be perturbed by changesin signal strength. Hölder metrics

for RSS based localization were introduced in a previous work [22]. Intuitively, these metrics
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relate the magnitude of a perturbation to its effect on the localization result. The idea here is

that certain landmark placements can reduce the impacts of perturbations due to noise or bias,

and we should be able to observe these as lower Hölder parameters.

The Hölder parameterHp
alg for a given placement and algorithm is defined asHp

alg =

maxs,v
‖Lp

alg
(s)−L

p

alg
(v)‖

‖s−v‖ , whereLp
alg is the result of a localization algorithmalg given place-

mentp, with s as a signal strength vector andv as a perturbed vector.

Since the traditional Hölder parameter describes the maximum effect a signal perturbation

might have, it is natural to also provide an average-case measurement. We therefore examine

the average-case Hölder parameter,H
p

alg, as well. In both cases, we measure the metrics by sta-

tistical sampling in the case of simulation, or direct computation over all localization attempts

for experimentally measured data.

5.4 Landmark Position and Quantity

In this section we investigate the impact of landmark position and quantity on localization per-

formance. Because the data collection process using many real deployments is prohibitively

time-consuming, we use a trace-driven simulation methodology for this section. We first de-

scribe our methodology, then present our results investigating both the impact of landmark

deployment and quantity using our previously defined metrics.

5.4.1 Simulation Methodology

Our simulation methodology requires we generate a simulated RSS reading for any point on the

floor of a building from any landmark. We first begin with the path loss equation that models

the received power as a function of the distance to the landmark:

P (d)[dBm] = P (d0)[dBm] − 10nlog(
d

d0
) (5.14)

We choose the parametersd0 = 1m, P (d0) = 58.48 andn = 1.523 from [12]. We then apply

a random noise factor to perturb the RSS readings. This corresponds to the random model

described in [48], which represents an upper bound on the signal variability.

In many cases, we found that the localization error is large enough such that the estimated
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deployment optimal horizontal vertical diagonal
Topology 200x200ft
Linear LS

error 59.81 101.26 101.07 141.79
H 58.05 172.23 159.01 206.24
H 8.03 9.51 9.74 9.84

Nonlinear LS
error 39.48 66.82 66.08 70.27

H 75.44 132.61 180.27 230.52
H 6.98 7.31 7.58 7.97

Topology 230ftx150ft
Linear LS

error 57.89 86.97 116.57 146.65
H 66.39 170.98 198.44 352.96
H 7.22 8.20 9.84 8.86

Nonlinear LS
error 39.00 56.24 74.06 61.19

H 80.69 232.88 267.32 265.68
H 6.66 7.12 7.21 7.32

Table 5.1: Localization error (ft) and Hölder metrics whenstandard deviation of noise on rss is
3dB

position is well outside the floor. This was particularly true for LLS. Because such results

are unrealistic in our scenario, we apply a simple truncation rule in these cases: if the X or

Y coordinate is outside the floor, we truncate to the maximum or minimum value along that

dimension.

5.4.2 Evaluation of Estimation Error

Table 5.1 presents the average location estimation error after the application of truncation and

the Hölder metrics for both LS algorithms under 5 landmarksfor our two simulated floors. The

optimized landmark deployment setup is obtained from themaxL − minE algorithm. It is

encouraging that both NLS and LLS provide smallest estimation errors using our placement

algorithm. By comparing the values of the Hölder parameters, the LS algorithm is the least

susceptible to random noise with the optimized landmark deployment, which has 4 landmarks

positioned as the vertex of a square plus the fifth landmark placed at the center of the mass.

When under the diagonal landmark deployment, the localization results suffer the largest

estimation errors and the algorithm is the most susceptible. The following results presented in

this section are bounded by the floor boundary.
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Figure 5.3: In 200x200ft area: (a) Location estimation error vs. random noise in RSS (b)
Location estimation error vs. ranging error

5.4.3 Impact of Landmark Deployment

In this section we describe the impact of 3 different deployments on localization performance.

We use a representative situation of 5 landmarks deployed in3 ways to demonstrate the impact

of our algorithm in a typical case.

The first deployment we callsquare, and in the 5 landmark case it is an optimal deployment

when the shape is a square plus one landmark at the center of the mass. Next, thehorizontal

deployment is the one where all the landmarks placed in a linealong the longest dimension;

this will give better signal coverage than the square for rectangular buildings. Finally, we also

examine the impact of a poor deployment, in this casediagonal , which equally spaces the

landmarks along a diagonal line.

Figure 5.3(a) shows the average accuracy of 10000 random trials across the floor for the 3
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deployments as a function of increasing the standard deviation σrss of the noise term applied

to each point. The six curves correspond to the NLS and LLS foreach deployment.

First, NLS always significantly outperforms LLS. When theσrss is less than 4dB, which is

typical based on our experimental experience, both algorithms under the optimized landmark

deployment outperform the two other deployments. When theσrss is larger than 4dB, under

the optimized landmark deployment, the NLS still performs better, while the performance of

the LLS is compatible with the performance of the NLS for horizontal and diagonal landmark

deployments.

Constant sized deviations in the RSS readings result in widedifferences in the distance

estimation depending on the distance to the landmark. Note that the relationship between the

RSS error and ranging error is multiplicative with distance, i.e., d̃ = d10
ss−s̃s
10n . For example,

in our simulation a 3dB error corresponds to a multiplicative factor of 1.5, at 10ft distance,

d̃ = 15ft with an error of 5ft, while at 100ft distance,̃d = 150ft with an error of 50ft, a factor

of ten larger. We are motivated to study the magnitude of distance estimation error caused by

the deviation of the RSS readings.

Figure 5.3(b) shows the location estimation error vs. the standard deviationσd of distance

estimation error. We observe that a noiseσrss of 2dB corresponds to a distance errorσd of 32ft.

Further, the estimation results when theσrss is 4dB and 5dB translate to theσd of 65ft and

82ft respectively. Thus, even small random perturbation inRSS readings cause large ranging

estimation errors due to this multiplicative factor.

5.4.4 Impact of Landmark Quantity

In this section we observe the impact of adding more landmarks. We compare the performance

of the LS algorithms with 4, 6 and 20 landmarks under square and diagonal deployments. We

use our optimized placement in the case of 4 and 6 landmarks, and a uniform randomized

deployment for 20 landmarks.

Figure 5.4 shows a promising result that when deploying 4 landmarks and 6 landmarks

under their optimized deployments, the localization results using LS are compatible with the

results using a much higher number landmarks, 20, in this case. If a small number of landmarks



100

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Standard deviation of noise (dB)

E
st

im
at

io
n 

er
ro

r 
(f

t)

4 landmarks LLS
4 landmarks NLS
6 landmarks LLS
6 landmarks NLS
20 landmarks LLS
20 landmarks NLS

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Standard deviation of noise (dB)

E
st

im
at

io
n 

er
ro

r 
(f

t)

4 landmarks LLS
4 landmarks NLS
6 landmarks LLS
6 landmarks NLS
20 landmarks LLS
20 landmarks NLS

(a)Optimized case (b)Worst case

Figure 5.4: Performance of LS algorithms across different number of landmarks in 200x200ft
area

provide sufficient coverage, this is an encouraging observation because good localization per-

formance can be achieved without a large number of landmarks.

5.5 Experimental Study

In this section we present our experimental study by using 802.11 PCMCIA cards and Telos

Sky motes. The objective is to compare the impact of our landmark deployment analysis on

a variety of algorithms and different ranging modalities. Although the mathematics of our

analysis is based on LLS, we show that deployments based onmaxL−minE algorithm improve

localization accuracy in widely diverse scenarios.

We first give a brief description of a set of representative RSS-based localization algo-

rithms. We then describe our experimental method. Next, we quantify the performance across

the algorithms provided different landmark deployments. We also compare the localization ac-

curacy and Hölder metrics for these algorithms. Finally, we provide a comparison between the

RSS-based and TOA-based LS algorithms using our deploymentstrategy.

5.5.1 Algorithms

In this study, our main focus is the localization algorithmsthat employ signal strength measure-

ments. To demonstrate the general applicability of our landmark deployment algorithm, we test
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our placement strategy on three widely different localization algorithms, RADAR, ABP, and

BN. Although there are many other RSS-based localization algorithms, this set spans various

strategies, and given all algorithms have qualitatively similar performance [27] we feel this set

is sufficiently representative.

RADAR is a point-based, scene-matching algorithm. The userfirst builds a training set

of RSS values from landmarks matched to known locations. To localize, the object creates a

vector of RSS values from the landmarks and the algorithm returns the training point closest

to the vector using Euclidean distance as the discriminating function [12]. ABP uses Bayes

rule combined with scene-matching to return an area the object is likely to reside in and prob-

abilistically bounds the likelihood with a confidence level[27]. Taking the Bayesian network

approach, the BN algorithm uses a Bayesian graphical model based on lateration to find the

estimated location [52].

5.5.2 Experimental Setup and Methodology

A series of experiments are conducted in our Computer Science Department which resides the

whole 3rd floor of the CoRE building. The floor size is 200x80ft(16000ft2). The experiments

are performed using 4 landmarks setup in the floor.

Figure 5.5(a) shows the original collinear landmark deployment setup in triangles and our

optimized landmark deployment as squares for the 802.11 network. The networking staff of

the department deployed the APs in the collinear deploymentspecifically to maximize signal

strength coverage. The first set of RSS data was collected under this collinear deployment by

using a Dell laptop running Linux equipped with an Orinoco silver card (802.11 card). The

data was collected at 286 locations on the 3rd floor.

Then we used a trace-driven approach to generate the RSS dataset under the optimized

landmark deployment. We first performed a least squares fit ofthe measured data and obtained

the parameters of the path loss model in Equation (5.14). Then we directly used measured

variance to generate the RSS readings. Finally, we applied environmental bias using the Ray-

Sector model described in [48] to obtain the new RSS data set for the optimized deployment

case.

To validate that our trace-driven strategy generated realistic radio signal readings, we placed
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Figure 5.5: Deployment of landmarks and training locationson the experimental floors

4 simulated landmarks at the same positions as the real collinear deployment and then gener-

ated synthetic RSS values. We compared the localization performance of using this synthetic

data set against the real data. We found the estimation CDFs nearly identical for all of our

algorithms under study. Thus we have confidence that our combination of path-loss model

fitting, variance application, and bias generation result in RSS readings that generate realistic

localization results.

Our second experimental setup was an 802.15.4 network whichutilized 4 Telos Sky mote

landmarks and deployed two sets of landmark placement positions. Figure 5.5 (b) shows the

mote landmarks under an optimized square deployment as squares and a horizontal landmark

deployment (again, to maximize signal strength coverage) as triangles. Unlike the 802.11 case,

no RSS data was generated; for both deployments the measureddata is used in the algorithms.



103

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

linear LS bounded
nonlinear LS bounded
linear LS
nonlinear LS
BN
ABPmin
ABPmed
ABPmax
RADAR

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

linear LS bounded
nonlinear LS bounded
linear LS
nonlinear LS
BN
ABPmin
ABPmed
ABPmax
RADAR

(a)Collinear case (b)Square case

Figure 5.6: Localization accuracy CDFs across algorithms for 802.11 network

We have experimented with different training set sizes for constructing the radio map for

RADAR and ABP. For 802.11 data sets, we show the results with 115 training points. While

for 802.15.4 data sets, we use 70 training points. The small stars in Figure 5.5 are the randomly

selected training points. The localization at each testingpoint is performed by using the leave-

one-out method.

5.5.3 Localization Accuracy

Figure 5.6 (a) and (b) present the 802.11 accuracy CDF under collinear and square landmark

deployments, respectively. A bounded result means we applied truncation. ABP is calculated

with confidence level 75%. ABP-med is the error of the median distance of the area, together

with ABP-min and ABP-max are the closest and furthest pointsof the returned area.

Figure 5.6(a) shows that under the horizontal-like deployment, LLS always fairs very poorly,

while NLS, RADAR, ABP and BN are qualitatively similar. All the algorithms have long tails.

Figure 5.7(a) shows a similar result when using the motes, although in here the perfect collinear

deployment, the horizontal case, reduces the performance of the lateration approaches (BN,

NLS , and LLS) compared to 802.11.

Figures 5.6(b) and 5.7(b) show the key impact of our work. Allof the CDFs have shifted

up and to the left compared to those in Figures 5.6(a) and 5.7(a). Thus, a significant fraction

of the results are more accurate using the optimized deployments generated bymaxL −minE
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Figure 5.7: Localization accuracy CDFs across algorithms for 802.15.4 network

algorithm. In addition, for ABP, the gap between the min and max CDFs is much narrower,

implying the returned areas are on average smaller than those in the horizontal deployments.

5.5.4 Evaluation of Performance and Sensitivity

Table 5.2 summarizes the average error for each algorithm tofurther investigate the improve-

ments gained by using an optimal deployment. The table showsthe average error improves

for all the algorithms. For 802.11 data sets, the LLS algorithm improves over 35% and NLS

gains 25% in performance. Both ABP and RADAR have improved over 20% in localization

accuracy, while BN has gained 10%. Looking at the 802.15.4 network, the performance im-

provement results are compatible to the results from the 802.11 network.

The Hölder metrics presented in Table 5.2 for each algorithm under the optimized landmark

deployment is smaller than the horizontal deployment. Recall that the Hölder parameter is a

measurement of the sensitivity of the algorithm to perturbations of inputs such as RSS, which

can model random noise, environmental bias, and measurement errors. The lower Hölder val-

ues are strong evidence that an optimized landmark deployment not only can improve the lo-

calization performance, but also can make an algorithm lesssusceptible to the above classes of

perturbations.
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Average location estimation error (ft)
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 38.56 94.53 20.23 21.85 22.25 13.11 12.49
square 24.73 31.29 15.37 16.92 20.16 10.09 9.31

802.15.4 w trun w/o trun w trun w/o trun
horizontal 47.89 608.43 33.15 34.44 28.43 17.86 14.28

square 28.27 92.05 23.65 32.17 24.25 14.27 11.33

Hölder (worst-case)H
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 22.36 48.47 21.55 21.55 31.73 20.03 36.24
square 12.19 15.33 9.62 9.75 15.89 10.64 9.86

802.15.4 w trun w/o trun w trun w/o trun
horizontal 28.88 286.13 91.00 91.00 28.27 64.06 32.58

square 13.86 17.14 10.82 16.32 18.41 11.27 13.42

Hölder (average-case)H
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 2.72 5.37 2.06 2.18 2.06 1.85 1.98
square 2.87 3.57 2.45 2.70 1.63 1.79 2.06

802.15.4 w trun w/o trun w trun w/o trun
horizontal 2.66 33.87 2.45 2.50 1.44 2.05 2.21

square 2.95 5.23 2.35 2.69 2.41 1.95 2.27

Table 5.2: Location estimation error (ft) and Hölder parameters across algorithms

5.5.5 Using Time of Arrival

In this section we experimentally investigate how well our deployment algorithm works for an

alternate ranging modality. In this second modality, we compute the distance to a landmark

by measuring many round trip times between a node and a landmark, and then calculate the

time-of-flight (ToF) of a packet. Given the ToF and the speed of light, we can estimate the

range. This is a Time-of-Arrival (TOA) based approach because the actual time-of-flight is

estimated. Space limitations prevent us from describing this approach in more details, but a

full description of the technique and an analysis of it can befound in [32].

We used a similar trace-driven based methodology in our TOA investigation as for the

802.11 RSS one. We estimated the TOA based on the round trip times for packets and derived

the distance between the localizing node to each landmark. We then built an error distribution

of the true distance vs. the estimated distance, and used that to drive a simulation where we

could place the landmarks in the same positions as the RSS study. The same hardware is used

as for the RSS study.

The linear regression model applied to the distance estimation error of TOA data with 63



106

0 20 40 60 80 100 120 140
−40

−30

−20

−10

0

10

20

30

40

50

60

Distance (ft)

D
iff

er
en

ce
 b

et
w

ee
n 

tr
ue

 a
nd

 e
st

im
at

ed
 d

is
ta

nc
es

 (
ft)

0 20 40 60 80 100 120 140
−100

−80

−60

−40

−20

0

20

40

60

80

100

Distance (ft)

D
is

ta
nc

e 
es

tim
at

io
n 

er
ro

r 
(f

t)

(a)TOA (b)RSS

Figure 5.8: Linear regression on TOA data

experimental distances is shown in Figure 5.8(a). We observe that shorter the distance to a

landmark results in estimated distance longer than the truedistance, while longer the distance

to a landmark results in estimation distance shorter than the true distance. The corresponding

distance estimation error of RSS data is presented in Figure5.8(b). Comparing the TOA results

to RSS distance estimation errors, while the magnitude of the distance estimation error grows

with lengthening distance, unlike in TOA the resulted estimation in RSS is either longer or

shorter with near equal probability.

With the mean and variance estimated from linear regression, we have modeled distance

estimation error of TOA as a Gaussian distribution defined inEquation (5.15):

error ∼ N(µ, σ2) (5.15)

with µ̂ = b0 + b1di

and σ̂2 =

∑n
i=1(d̃i − µ̂)2

n − 1
,

wheredi is the true distance and̃di is the estimated distance.n is the total number of distances

under experimentation.b0 andb1 are the coefficients of the linear regression.

We further conducted a trace-driven approach to localize 286 positions on the floor using 4

landmarks setup with collinear and square deployment respectively according to Figure 5.5(a)

for the 802.11 network.
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Figure 5.9: Localization accuracy CDFs using TOA

Figure 5.9 plots the localization accuracy CDF of the LS algorithms using TOA. The fig-

ure shows that as with RSS, the performance of LS increases under an optimized deployment

as compared to a horizontal deployment designed for coverage. Quantitatively, the perfor-

mance improvement is over 30%. Comparing the absolute performance of this technique with

RSS, our TOA approach is qualitatively worse. This is likelydue to the very coarse grained

microseconds-level clocks currently available in standard 802.11. Additional clocks with much

higher frequencies would help to reduce much of the measurement uncertainty.

5.6 Conclusion

In this chapter, by analyzing the Linear Least Squares algorithm, we derived an upper bound

on the maximum location error given the placement of landmarks. Based on this theoretical

analysis, we found optimal patterns for landmark placementand further developed a novel al-

gorithm,maxL−minE , for finding optimal landmark placement that minimizes the maximum

localization error.

To show the generality of our results, we conducted experiments using both an 802.11

(WiFi) network and an 802.15.4 (ZigBee) network. Based on the experimental data, we inves-

tigated the impact of landmark position and quantity on localization performance using both

the measurements of RSS in an actual building as well as trace-driven simulations that used

the RSS measurements. In addition, we apply the trace-driven approach to an alternate ranging
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modality, in this case, TOA.

We found that the performance of a wide variety of algorithmsshowed significant im-

provements when using landmarks placed according to our algorithm, as opposed to alternate

deployments. We evaluated these improvements under several different metrics. The experi-

mental results provide strong evidence that our analysis and algorithm for landmark placement

is very generic as the resulting placement has improved localization performance across a di-

verse set of algorithms, networks, and ranging modalities.

Our results also point out that there is a tension between theideal landmark deployment for

localization vs. deployments that optimize for signal coverage. We found that in our building,

the better coverage deployment was very collinear, and thishad pronounced negative impact

on localization performance. Future work would converselyinvestigate the impact of a deploy-

ment optimized for localization on signal coverage, as wellas try to find a method of trading

one kind of deployment for another depending on the users’ needs.

In the previous chapters we have explored methods and solutions to provide accurate and

trustworthy localization results. Further, we would like to provide a scalable, general purpose,

and real time localization infrastructure that can localized any radio-enabled devices at any

where and any time. In the next chapter, we present a general purpose localization system

prototype called GRAIL (Generalized Real-time Adaptable Indoor Localization) which can

simultaneously position multiple devices.
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Chapter 6

General Purpose Localization System

6.1 Introduction

Utilizing the same infrastructure for both communication and positioning would provide a

tremendous cost and deployment savings over a specific localization infrastructure. Thus one

of the primary goals of localization research is to provide ascalable, general purpose, and

real time localization infrastructure that can integrate location information into any computing

radio-enabled devices. We are designing and developing a general purpose localization system

prototype called GRAIL (Generalized Real-time Adaptable Indoor Localization) which can si-

multaneously position multiple devices using Bayesian Networks. The deployment of such a

system in academic and research environments will allow researchers to explore issues beyond

just algorithms and simulation tools. It would make it possible to conduct higher-level interaged

research investigation including privacy studies, security services, and policy enforcement. For

instance, we utilized the GRAIL system to conduct research on spoofing attacks in Chapter 4.

In addition, the practical usage of such an approach is significant because it can be applied to a

broad array of applications such as monitoring, tracking, routing, and security services.

Localization is a diverse area covering everything from lower-layer physical problems to

application-level services. GRAIL assumes the localization area to be about the size of a build-

ing, where devices have access to gateway nodes, and these inturn can access wired networks.

Additional properties of the GRAIL system include:

General Purpose. A primary goal of the GRAIL system is that it should work over a

variety of physical modalities and networks. Much as a networking system should support

multiple media access layers, a general purpose localization system should support multiple

physical modalities and methods of localization.
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Figure 6.1: GRAIL system architecture

GRAIL is designed to localize using any wireless network that supports physical layer

measurements of packet data. It supports to use Received Signal Strength (RSS) as the physical

modality and can be easily extended to support Angle-of-Arrival (AoA), and time-of-arrival

(TOA).

Real-time. Latency is a key property of localization systems because itdefines the max-

imum mobility that can be supported. Our system can return results in less than one second,

allowing us to support both stationary devices as well as those moving at walking speeds (about

1m/s).

Adaptable. A common problem with many systems is that they are too brittle; they require

specific environments, hardware, or much training data related to a specific set-up. GRAIL uses

real-time feedback to dynamically calibrate its parameters due to changing radio conditions.

Indoor. Indoor environments are especially challenging due to reflections, refractions, and

scattering, which result in substantial multi-path effects. GRAIL manages the uncertainly of

these effects. GRAIL can expand and contract the possible set of locations as we introduce

or reduce the uncertainty in the environment. Specifically,we can show how modifying the

antennas can either increase or decrease spatial uncertainty.
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Figure 6.2: Solver scalability and flexibility.

6.2 Architecture Design

The GRAIL system is designed with fully distributed functionality and easy to plug-in local-

ization algorithms. As shown in Figure 6.1, The main software components are Transmitters,

Landmarks, the Server, and Solvers. The Landmarks collect the RSS reading for each transmit-

ting device and send it to the Server together with the coordinates of the landmarks. Landmarks

are stateless, which greatly simplifies the design, and are deployed in known loations. Often,

in other research works, landmarks are called Anchor Pointsor Access Points. However, we

use the termlandmarkbecause an access point also provides access to the wired network, and

in GRAIL, landmarks do no provide this function. Upon receiving the RSS readings from each

Landmark module, the Server collects the complete set of RSSreadings for each node, decides

on which localization algorithm to use, then forwards the RSS information to the corresponding

Solver module. The Solver is flexible and easy to scale. Many different kinds of localization

algorithms can be plugged in as illustrated in Figure 6.2. The Server and Solver components

are fully decoupled.

For localization using Bayesian networks, in addition to the WinBugs Solverwhich utilizes

the statistical WinBugs tool [9], we have implemented theFast Solver[40]. TheFast Solver

is developed by using a novel real-time sampling technique which reduces computational cost

significantly and solves Bayesian networks 9 to 17 times faster than theWinBugs Solver. The
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GRAIL system can localize 1 to 10 sensor nodes in less than half a second, and scales to localize

51 objects simultaneously with no location information in the training data within 6 seconds.

Although our current GRAIL system uses Bayesian networks, its distributed and scalable

architecture was designed for maximum flexibility. GRAIL can thus easily accommodate al-

ternative localization modalities and algorithms by usingreplaceable components. Thus other

localization algorithms [12,27] such as RADAR (R), Simple Point Matching (SPM), and Area

Based Probability (ABP) can be added on easily with this flexible architecture design. During

localization, there are multiple Solver instances available and each can represent one type of

algorithm. Once the localization results are returned by the Solver, the Server displays the posi-

tions of the unknown transmitting devices. If there is a needto localize hundreds of transmitting

devices simultaneously, the Server can perform load balancing among the different Solver in-

stances as shown in Figure 6.2. Plus, this centralized server also makes enforcing contracts and

privacy policies more tractable.

6.3 Bayesian Networks

In this section, we give a brief overview of Bayesian Networks that are used in the GRAIL sys-

tem. The Bayesian network is a graphical model that encodes dependencies and relationships

among a set of random variables. The vertices of the graph correspond to the random vari-

ables and the edges represent dependencies. Bayesian inference in conjunction with Bayesian

networks offers an efficient and principal approach for avoiding the over-fitting of data.

In the GRAIL system, we have developed several Bayesian graphical models to encode the

relationship between the RSS and the location based on signal-to-distance propagation model.

We have built both non-hierarchical (M1) and hierarchical (M2) Bayesian graphical models as

presented in Figure 6.3 (a) and (b).

The location measurement process is slow and labor-intensive. By contrast, gathering RSS

readings without the corresponding locations does not require human intervention. For exam-

ple, sniffing devices can perform RSS measurements repeatedly at essentially no cost. So, we

pursue the idea that different access points behave similarly and the prior knowledge may pro-

vide sufficient constraints to obviate the need to know the actual locations of the training data
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(a) Non-hierarchical Bayesian graphical model

(b) Hierarchical Bayesian graphical model

Figure 6.3: Bayesian Networks

observations. As a result, we have extended the M2 model and built a new model called M3

whose training data comprise solely of signal strengths of unknown locations [52]. This leads

to a truly adaptive, zero-profiling technique for location estimation. The GRAIL system fully

supports M1, M2 and M3 models for performing localization using eitherWinBugs Solveror

Fast Solver.
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Chapter 7

Related Work

7.1 Introduction

In this chapter, we present the related research work, and compare and contrast our research

work with the others. Specifically, we first provide an overview of wireless localization ap-

proaches in Section 7.2. Then we show severe impacts of non-cryptographic attacks to lo-

calization results in the network and discuss methods to verify localization estimates in Sec-

tion 7.3. Next, we point out identity-based spoofing attacksare a serious threat in the network

and review conventional methods and a few new approaches to address spoofing attacks in Sec-

tion 7.4. Further, in Section 7.5 we studied the previous work that try to improve localization

performance from the point of view of landmark placement. Finally, we give a short review of

developing localization systems in both academic and industrial environments in Section 7.6.

7.2 Wireless Localization

There has been much activity toward developing localization systems for wireless and sensor

networks. We cannot cover the entire body of works in this section. Rather, we give a short

overview of the different localization strategies in this section.

Localization approaches can be categorized using various taxonomies. Range-based algo-

rithms involve distance calculation to landmarks with known positions using the measurement

of various physical properties [55] like RSS [12, 27], Time Of Arrival (TOA) [28] and Time

Difference Of Arrival (TDOA) [56]. Range-free algorithms use coarser metrics such as con-

nectivity [63] or hop counts [54] to place bounds on node positions.

Another classification method relates how a node is mapped toa location. Lateration ap-

proaches [23, 28, 44, 49, 54], try to solve a set of equations involving distances to landmarks;
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angulation uses the angles from landmarks [53]; while probabilistic approaches [59, 69] use

statistical inferences, and statistical supervised learning techniques [12, 27, 52] utilize train-

ing data to help inference the location estimation. Among them, scene matching strategies

[12,14,27,59,69] are originated from machine learning techniques. Usually a radio map of the

environment is constructed, either by measuring actual samples, using signal propagation mod-

els, or some combination of the two. A node then measures a setof radio properties (often just

the RSS of a set of landmarks), thefingerprint, and attempts to match these to known location(s)

on the radio map. These approaches are almost always used in indoor environments because

signal propagation is extensively affected by reflection, diffraction and scattering, and thus

ranging or simple distance bounds cannot be effectively employed. Matching fingerprints to

locations can be cast in statistical terms [59,69], as a machine-learning classifier problem [14],

or as a clustering problem [12].

Finally, a third dimension of classification extends to aggregate or singular algorithms. Ag-

gregate approaches [25, 63] use collections of many nodes inthe network in order to localize

(often by flooding), while localization of a node in singularmethods only requires it to com-

municate to a few landmarks with known locations.

In addition, some research have experimented with using ultrasound, infrared, or a combi-

nation of infrared and RSS for localization [35, 56, 62, 64, 66]. The goal is to reach centimeter

accuracy. These work use specialty hardware or have limitedrange as in the infrared technol-

ogy. As such, they can only be deployed in highly engineered and controlled areas, and hence

have not become very popular.

Also, this is different from our goals: we conjecture that sacrificing little accuracy for scal-

ability would create more practical positioning systems that are easier to bootstrap. We focus

our work on two broad localization mechanisms: multilateration and signal strength. Multi-

lateration clearly applies to both single and multi-hop range-based approaches, while signal

strength can be applied to a wider variety of both range-based and scene matching algorithms.
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7.3 Secure Localization

There has been considerably less work on the problem of ensuring the trustworthiness of wire-

less localization. In this section, we review research methods that developed for secure local-

ization.

Cryptographic threats on localization can be addressed through traditional security ser-

vices [16,31,39,67,68,70,71], e.g. authentication.

However, there is a completely orthogonal set of attacks that are non-cryptographic, where

the measurement process itself can be corrupted by adversaries. For example, wormhole at-

tacks tunnel through a faster channel to shorten the observed distance between two nodes [36].

Compromised nodes may delay response messages to disrupt distance estimation [49] and com-

promised landmarks may even broadcast completely invalid information [51]. Physical barriers

can directly distort the physical property used by localization. [49] provided a thorough survey

of potential attacks to various localization algorithms based on their underlying physical prop-

erties.

Unfortunately, these non-cryptographic attacks can not beaddressed by traditional security

services. In order to address the non-cryptographic attacks, different strategies are required.

This has been the focus of our research. [17, 61] proposed distance bounding protocols for

verification of node positions. [18] proposed the VerifiableMultilateration mechanism which

is based on the distance bounding protocols for secure position computation and verification.

[19] uses hidden and mobile base stations to localize and verify location estimates. [45] uses

both directional antennas and distance bounding to achievesecurity. Compared to all these

methods, which employ location verification and discard location estimate that indicates under

attack, [24, 49, 51] try to eliminate attack effects and still provide accurate localization. [49]

makes use of the data redundancy and robust statistical methods to achieve reliable localization

in the presence of attacks. [51] proposes to detect attacks based on data inconsistency from

received beacons and to use a greedy search or voting algorithm to eliminate the malicious

beacon information.

The closest works to our attack detection work are [26, 51]. Ageneral location anomaly
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detection scheme is described in [26] that relied on the neighbor information to detect inconsis-

tencies. However, it assumes a highly dense network where the positions of the nodes follow a

Gaussian distribution, which is contrary to the structure of many deployed systems where much

lower densities are typical. Our proposed LLS approach is more general than the ARMMSE

approach in [51]. Further, our approach provides a broader choices of detectors than that work.

Our work is unique in that we have formulated location attackdetection as a general sta-

tistical significance testing problem. We showed how the test statistics come naturally out of

the localization algorithms themselves without additional assumptions. In addition, our work

differs from most previous research in that we experimentally validated our approaches using

real networks deployed in two different buildings.

7.4 Coping with Identity Fraud

In wireless networks, attackers can gather useful identityinformation during passive monitoring

and utilize the identity information to launch identity-based spoofing attacks. For instance,

it is easy for a wireless device to acquire a valid MAC addressand masquerade as another

device. The 802.11 protocol suite provides insufficient identity verification during message

exchange, including most control and management frames. Therefore, the adversary can utilize

this weakness and request various services as if it were another user. Identity-based spoofing

attacks are a serious threat in the network since they represent a form of identity compromise

and can facilitate a series of traffic injection attacks. There has been active research addressing

spoofing attacks as well as those facilitated by adversariesmasquerading as another wireless

device. In this section, we give a short overview of the attacks that is based on identity-spoofing,

and the traditional methods and several new approaches to address spoofing attacks. We then

describe the works most closely related to our work.

An adversary can launch a deauthetication attack. After a client chooses an access point

for future communication, it must authenticate itself to the access point before the commu-

nication session starts. Both the client and the access point are allowed to explicitly request

for deauthentication to void the existing authentication relationship with each other. Unfortu-

nately, this deauthentication message is not authenticated. Therefore, an attacker can spoof this
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deauthentication message, either on the clients behalf, oron the access points behalf [15]. The

adversary can persistently repeat this attack and completely prevent the client from transmitting

or receiving. Further, An attacker can utilize identity spoofing and launch the Rogue Access

Point (AP) attack against the wireless network. In the RogueAP attack, the adversary first

sets up a rogue access point with the same MAC address and SSIDas the legitimate access

point, but with a stronger signal. When a station enters the coverage of the rogue AP, the de-

fault network configuration will make the station automatically associate with the rogue access

point, which has a stronger signal. Then the adversary can take actions to influence the com-

munication. For example, it can direct fake traffic to the associated station or drop the requests

made by the station. Besides the basic packet flooding attacks, the adversary can make use

of identity-spoofing to perform more sophisticated floodingattacks on access points, such as

probe request, authentication request, and association request flooding attacks [30].

The traditional security approach to cope with identity fraud is to use cryptographic authen-

tication. An authentication framework for hierarchical, ad hoc sensor networks is proposed

in [16] and a hop-by-hop authentication protocol is presented in [71]. Additional infrastruc-

tural overhead and computational power are needed to distribute, maintain, and refresh the key

management functions needed for authentication. [68] has introduced a secure and efficient key

management framework (SEKM). SEKM builds a Public Key Infrastructure (PKI) by applying

a secret sharing scheme and an underlying multicast server group. [67] implemented a key man-

agement mechanism with periodic key refresh and host revocation to prevent the compromise

of authentication keys. In addition, binding approaches are employed by Cryptographically

Generated Addresses (CGA) to defend against the network identity spoofing [11,38].

Due to the limited resources in wireless and sensor nodes, and the infrastructural overhead

needed to maintain the authentication mechanisms, it is notalways desirable to use authentica-

tion. Recently new approaches have been proposed to detect the spoofing attacks in wireless

networks. [47, 57] have introduced a security layer that is separate from conventional network

authentication methods. They developed forge-resistant relationships based on packet traffic by

using packet sequence numbers, traffic interarrival, one-way chain of temporary identifiers, and

signal strength consistency checks to detect spoofing attacks. [50] proposed a lower-layer ap-

proach that utilizes properties of the wireless channel at the physical layer to support high-level
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security objectives such as authentication and confidentiality. The most closely related work to

ours is [29], which proposed the use of matching rules of signal prints for spoofing detection.

Although these methods have varying detection and false alarm rates, none of these ap-

proaches provide the ability to localize the positions of the spoofing attackers after detection.

Further, our work is novel in that we have integrated our spoofing detector into a real-time lo-

calization system which can both detect the spoofing attacks, as well as localize the adversaries

in wireless and sensor networks. In addition, we deployed our localization system in a real

office building environment which houses our Computer Science Department.

7.5 Localization Performance

In addition to ensure the trustworthiness of the location information, it is also important to pur-

sue higher location accuracy through improving the performance of localization systems. There

has been some work to investigate or place bounds on the performance of localization systems

using signal strength [14, 27, 37]. They either showed a range of localization algorithms all

have similar performance or tried to build theoretical models for the localization environment

in order to study the localization performance. They did notpropose solutions to improve the

localization performance.

In our work, we took a novel approach, instead of improving the localization algorithms

themselves, we focus on improving the deployment of landmarks, and this should help a wide

variety of algorithms. There are a few works that studied theimpact of landmark placement to

the localization performance that are related to our work. [21] used simple linear and multiple

regression methods to estimate the signal strength model. With simulation, it analyzed the

relationship between standard deviation of location errorand signal strength error for a few

Access Point (AP) configurations. However, they did not analyze for the optimized geometry

of AP deployment and provide experimental comparison as we have in our work. Another

work presented a theoretical model for RSS-based location estimation accuracy and examined

placement, but did not find optimal solutions [41]. [13] developed a set of heuristic search

algorithms to find optimal AP deployment for a balance of signal coverage and location errors.

Compared to our simple approach, the heuristic search algorithms are more complex and time
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consuming. The results were only shown for the probability matching algorithms, thus may not

be general for other type of algorithms.

Furthermore, a large body of works have examined AP placement to maximize coverage

and throughput properties of wireless LANs and sensor networks. We do not cover these works

here, except to say that future work would be to examine the trade offs in landmark and AP

deployment assuming they use the same hardware, although this does not need to be the case.

Recall that landmarks provide a node with signals from knownlocations, while APs provide

media access control as well as gateways into the wired network.

7.6 Localization Infrastructure

In the academic research environment, the deployment of a general purpose localization system

that can localize any radio-enabled devices at any time and at any where will allow researchers

to explore various issues beyond just algorithms and simulation, such as privacy study and

security services. The localization system that developedin a research setting that mostly

related to ours is Place Lab [42, 46]. The Place Lab approach is to allow commodity hardware

clients like notebooks, PDAs and cell phones to locate themselves by listening for radio beacons

such as 802.11 APs, GSM cell phone towers, and fixed Bluetoothdevices that already exist in

the environment. Our general purpose localization infrastructure is different from Place Lab in

that it is easy for us to extend and support other physical modalities such as TOA and AOA in

addition to RSS. Further, our flexible Solver infrastructure makes it easy to plug in and test on

different localization algorithms including Bayesian Networks (BN), Area Based Probability

(ABP), RADAR, and any new algorithms.

There are several emerging commercial products for indoor localization or intrusion pre-

vention [1, 2, 8]. The problems for these industrial products are: they are not very general,

require specific chip sets and operating systems, only focuson Wi-Fi radio, and do not support

other physical modalities for localization. Moreover, theperformance of these systems are not

well-known, lack of independent performance benchmarking. Further, the source code of all

these products is not available, which makes them hard to be used in an research environment

that frequently needs to incorporate new properties and make extensions for research purposes.



121

Chapter 8

Conclusions and Future Work

8.1 Dissertation Conclusions

As more wireless networks are deployed, location-based services are becoming increasingly

prevalent. It is critical to provide accurate and trustworthy location information. This thesis ex-

plored and proposed methods to provide secure and accurate location information for wireless

and sensor networks using statistical approaches.

We first characterized the robustness of localization algorithms to attacks that target signal

strength measurements. We provided a set of performance metrics for quantifying the effective-

ness of signal strength attacks, including a new family of metrics, called Hölder metrics, that

quantify the variability of localization changes in physical space related to changes in signal

strength vectors. The key observation we found is that all the algorithms have similar average

responses to attacks. The median error of all the algorithmsdegraded gracefully with a linear

response as a function of the attack strength.

Since we have found the performance of localization algorithms degrades significantly un-

der signal attacks, it is important to detect the presence ofthese attacks. The next contribution

of our work is several attack detection methods that providea theoretical foundation of the

attack detection problem using statistical significance testing. We then built test statistics for

two broad localization classes: multilateration and signal strength. For multilateration that uses

Linear Least Squares, we derived a closed-form representation for the attack detector. Further,

for localization schemes that employ signal strength, we showed that by utilizing the signal

strength as a common feature, the minimum Euclidean distance in the signal space can be used

as a test statistic for attack detection independent of the localization process. The key advan-

tage of this approach is that for algorithms employing signal strength, the detection phase is

prior to the localization, and thus saves computational cost of localization under attack. The
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significant finding is that our experimental results involving both an 802.11 (WiFi) network

and an 802.15.4 (ZigBee) network in two real office buildingsshow that different localization

system have similar attack detection capabilities, and consequently these provide important

insights to system designers that they can focus on using algorithms that provide the highest

localization accuracy rather than having to trade off position accuracy against attack detection

abilities. Further, we conclude that any significant attacks can be successfully captured by our

attack detection schemes.

The next challenging step after detecting attacks is to localize adversaries and eliminate

malicious attacks. We thus proposed a method for detecting spoofing attacks utilizing K-means

cluster analysis, as well as localizing the adversaries by integrating our K-means spoofing de-

tector into a general purpose, real-time localization system. We found that the performance

of the localization system when localizing the adversariesusing the centroids of RSS readings

from K-means cluster analysis are about the same as localizing using averaged RSS readings

under normal conditions. The distance between the spoofing node and the original node can be

estimated with median error of 10 feet. Since spoofing attacks are a serious threat as they rep-

resent a form of identity compromise and a malicious attacker may create multiple illegitimate

identities, we will discuss our future work for detecting multiple illegal spoofing identities in

the next section.

Another significant finding of our work in the area of improving the localization perfor-

mance is that we found the landmark placement plays an important role in location accuracy.

By analyzing the Linear Least Squares algorithm, we derivedan upper bound on the max-

imum location error given the placement of landmarks. Basedon this theoretical analysis,

we found optimal patterns for landmark placement and further developed a novel algorithm,

maxL − minE , for finding optimal landmark placement that minimizes the maximum local-

ization error. The experimental results provide strong evidence that our analysis and algorithm

for landmark placement is very generic as the resulting placement has improved localization

performance across a diverse set of algorithms, networks, and ranging modalities. Our results

also point out that there is a tension between the ideal landmark deployment for localization

vs. deployments that optimize for signal coverage. We foundthat in our building, the better
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coverage deployment was very collinear, and this had pronounced negative impact on local-

ization performance. Future work would conversely investigate the impact of a deployment

optimized for localization on signal coverage, as well as try to find a method of trading one

kind of deployment for another depending on the users’ needs.

8.2 Future Research Directions

We envision the utility of the location information in wireless and sensor network systems will

continue to have an increasing impact on our life, ultimately to the point where location-based

applications will be an inseparable part of our social fabric. In order to make this vision a

reality, there are many open issues that remain to be addressed. Based on current results in this

thesis, we think it is important to address future research directions in the following area:

First, from the perspective of basic physical modalities used for localization, utilizing RSS

is an attractive approach for localization because it can re-use the existing wireless infrastruc-

ture, rather than requiring additional specialized localization infrastructure. However, based

on our observations RSS readings can vary largely across different periods of operation. Most

of the current localization algorithms do not consider the inherent variation of RSS readings

across time (calibration drift) as well as across differentdevices. This has reduced the practical

usage of these algorithms. Our previous results show that the Bayesian approaches can grace-

fully handle a variety of challenging operational scenarios, and we propose to use Bayesian

networks to help retrain and recalibrate RSS readings in order to provide robust, reliable, and

trustworthy localization using RSS.

As we discussed, spoofing attacks are a serious threat in the network and can facilitate a

variety of attacks. We developed K-means clustering detector to detect the spoofing attacks

and further to localize the adversary in the network using our GRAIL system. However, some

malicious attackers may create multiple illegitimate identities to facilitate spoofing attacks. In

order to address this problem, we would like to further detect multiple illegal spoofing identities

by using other statistical analysis methods including Akaikes Information Criteria (AIC) and

Minimum Description Length (MDL) methods for order estimation, and Mean Shift clustering

techniques.
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Next, looking foreword in the application level, as wireless networks become increas-

ingly prevalent, they will provide the means to support new classes of location-based services.

One type of location-oriented service that can be deployed are those that make use of spatio-

temporal location-information to control access to objects or services, instead of restricting ac-

cess to services based solely on conventional identity-based authenticators. We propose to study

using location information to support spatio-temporal access control. The spatio-temporal ac-

cess control represents a promising paradigm for the development of new location-oriented

applications.

Finally, exploring in the system level, through the characterization of the robustness of

localization algorithms to attacks, we found that most of the existing localization algorithms

are susceptible to attacks. None of the algorithms outperforms the others under attack. Thus

one of the important research goals in localization is to build robust attack-resistant localization

algorithms that can detect the presence of attacks, reduce or eliminate their negative impacts,

provide high-quality localization estimation, and further to build attack-resistant localization

systems which are critical for a general purpose localization infrastructure.
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