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ABSTRACT OF THE DISSERTATION

Securing Wireless Localization against
Signal Strength Attacks

by Yingying Chen
Dissertation Director: Prof. Richard P. Martin and Prof. Wa de Trappe

Accurately positioning nodes in wireless and sensor nédsvi important because the loca-
tion of devices and sensors is a critical input to many higéezl applications. However, the
localization infrastructure can be subjected to non-agmphic attacks, such as signal atten-
uation and amplification, that can not be addressed by imaditsecurity services. This thesis
aims to provide secure and accurate location informatiowiieless and sensor networks by
characterizing the response of localization algorithmattacks, detecting attacks, localizing
adversaries, and additionally, improving localizatiomfpamance.

First we studied the robustness of localization algoritimsignal strength attacks. We
found the performance of localization algorithms degrasigsificantly under attacks when
signals are attenuated or amplified by an adversary. We tranufated a theoretical founda-
tion for the attack detection problem using statisticahgigance testing. We proposed attack
detection schemes for two broad localization approachgaalsstrength and multilateration.
We found that different localization systems all contaimikr attack detection capabilities.
Next, we examined the applicability of localization methdd localize adversaries participat-
ing in identity-based spoofing attacks. We proposed a sppofitector for wireless spoofing
that utilizes K-means cluster analysis. We integrated owmdans attack detector into a real-

time indoor localization system, which is capable of laralj the positions of attackers. Our



experiments using both an 802.11 (WiFi) network as well a8@n15.4 (ZigBee) network
in two office buildings provide strong evidence of the effieess of our approach in attack
detection and localizing the positions of the adversaries.

In addition, we investigated the impact of landmark placehos localization performance
using a combination of analytic and experimental analygé& developed a novel algorithm
called mazL — minFE algorithm that finds an optimized landmark deployment. Ouoeei-
mental results show that our landmark placement algorithigeneric because the resulting
placements improve localization performance signifigaatross a diverse set of algorithms,
networks, and ranging modalities. Finally, we presentedgemeral purpose real time local-
ization infrastructure which targets to localize any raei@mbled wireless devices at anywhere

and at anytime.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless networks are changing the way we work, study, atetdnt with each other. As
wireless networks become increasingly prevalent, theyenratkegrating new information types
into applications possible. Location information is onelsinformation source that is very
important for many applications. Localization refers téedmining the physical position of a
wireless device or a sensor node which can be either statiwobile. The location informa-
tion can be one-dimensional (e.g., location on a long alrparidor), two-dimensional (e.g.,
location on one floor in a hospital), or three-dimensionad).(docation within a multi-level
shopping mall). For example, in the public arena, doctoratwa use location information
to track and monitor patients in medical facilities; for aviife observation, biologists can put
tags on animals and perform habitat tracking; first respndan track victims and each other
during an emergency. In the enterprise domain, locatieedbaaccess control is needed for
accessing the proprietary corporate materials in resttiateas or rooms. For example, during
meetings, certain documents may need to be sent only tqaptibhin the involved conference
rooms, which requires location-aware content deliveryaddition, asset tracking also relies
on location information. These examples show that acdyratssitioning nodes in wireless
and sensor networks is important as the location of sensarstitical input to many high-level
networking tasks and applications.

With recent great advances in wireless technology, thezgtaee wireless communica-
tion standards that have conjoined with our everyday life laawve further promised to realize
location-based services: First, Wireless Local Area Nete/dWLANS) usually refer to net-
works based on¥iFi technology functioning according to IEEE 802.11 standd4dls The

normal infrastructure for a WiFi network consists of one @mrmAccess Points (APs), which



has the ability to do wireless transmission and also ses/agjateway to a wired network. WiFi
devices can thus connect to the Internet and talk to each thiteeigh APs. The most popular
WiFi devices are laptops and Personal Digital AssistanBAg). Second Bluetooth technol-
ogy uses IEEE 802.15.1 standards [5] and is designed for Ipasger consumption, and thus
has a relatively shorter range around 10 meters. It is masty for communication between
devices closely located to each other. Currently many @evscipport Bluetooth including lap-
tops, cell phones, headsets, mouses, and digital cameirellyFZigBee implements IEEE
802.15.4 standards [6] and targets for sensor networks emthedded applications such as
environmental monitoring, data collection, and intrudetedtion. Because of the nature of
embedded applications, the corresponding devices utjliZigBee protocol are required to be
small. The current available ones are about the size of daaqj&r7].

In wireless and sensor networks, there are various physiodhlities can be employed to
perform localization such as Received Signal Strength JRE8e of Arrival (TOA), Angle
of Arrival (AOA), Hop Counts, and etc.. Among the localizati techniques, utilizing RSS
is especially attractive since it can reuse the existindayepent of wireless communication
networks, rather than require a specialized localizatidrastructure such as ultrasound or
infrared methods. This provides tremendous cost savingso, Aall current standard com-
modity radio technologies, such as 802.11, 802.15.4, andt8bth provide it, and thus the
same algorithms can be applied across different platfofrasther, based on the information
obtained from physical modalities, different principlemde used to determine the positions
of sensors. There has been active research in developiatizktion algorithms using lat-
eration [23, 28, 44, 49, 54], angulation [53], probabitistipproaches [59, 69], and statistical
supervised learning techniques [12,27,52]. We detaitedéf®rts in Chapter 7.

However, in spite of the utility of the location informatioit is only useful if the location
information is accurate and trustworthy. As more locatil@pendent services are deployed,
they will increasingly become tempting targets for malidaattacks. Unlike traditional sys-
tems, the localization infrastructure is sensitive to detgrof attacks, ranging from conven-
tional to non-cryptographic, that can subvert the utilifjazation information. Conventional

attacks, where an adversary injects false messages, caoléed and protected against using



traditional cryptographic methods such as authenticatidowever, there is a completely or-
thogonal set of attacks that are non-cryptographic, whegarteasurement process itself can
be corrupted by adversaries. For instance, an adversalg ciroduce an absorbing barrier
between the transmitter and the target, changing the wmdgrpropagation physics. As the
signal propagates through the barrier, it is attenuated,h@mce the target would observe a
significantly lower received signal strength. Consequettile receiver would conclude that it
is further from the transmitter than it actually is. On thbasthand, wormhole attacks tunnel
through a faster channel to shorten the observed distartaedre two nodes. Unfortunately,
these non-cryptographic attacks can not be addresseddityanal security services. Thus, it
is desirable to study the impact of these attacks on lodalizalgorithms and explore meth-
ods to detect and further to eliminate these attacks frorméttork. This is the focus of this
thesis. We are motivated to develop solutions that can legrated into early generations of
localization systems, so that we will not have to apply patmtk solutions to solve security
threats that arise after localization systems are deployed

Specifically, in this thesis work we first performed a thorowggudy on the robustness of
a broad array of localization algorithms to attacks thatugatrsignal strength readings. The
characterization of the response of algorithms providgsmant insights to be taken into con-
sideration by system designers when choosing localizatystems for deployment. From the
robustness study, we observed that attackers can causeldaalization errors using simple
techniques. Hence, we must detect the presence of attaths imetwork. We then formulate
the attack detection problem as a generic statistical fiignice testing problem and proposed
several attack detection schemes to broad classes of ateidgition and signal strength-based
methods. After a localization attack is detected in a wagleetwork, the next important and
challenging step is to localize the positions of adversagied further to eliminate the attack
from the network. We proposed to use K-means cluster asaiysletect identity-based spoof-
ing attacks and applied localization methods to locate @dwvies participating in a spoofing
attack.

During the course of the security analysis for localizatgatems, we found that the land-
mark (a node with known position) placement plays an impdntale on localization perfor-

mance. It is desirable to obtain higher location accuraeythis investigation, we focused on



improving localization performance by repositioning taadmarks, rather than improving the
localization algorithms or searching for new algorithmsj ¢his should help a wide variety of
algorithms. By using a combination of analytic and experitakanalysis, we found geomet-
ric descriptions for the optimal deployment of landmarkcglment to maximize the location
accuracy for indoor localization.

Finally, one of the primary goals of localization researsha provide a scalable, general
purpose, and real time localization infrastructure that iceiegrate location information into
any computing radio-enabled devices. We are designing ewmdlaping a general purpose
localization system prototype called GRAIL (GeneralizeshRtime Adaptable Indoor Local-
ization), which can simultaneously position multiple dms using Bayesian Networks. The
deployment of such a system in academic and research emeérds will allow researchers to
explore issues beyond just algorithms and simulation toeléch can facilitate a variety of
research topics such as privacy studies, security sendaoespolicy enforcements. In addition,
the practical usage of such an approach is significant asmibeaapplied to a broad array of

applications such as monitoring, tracking, routing, arcliggy services.

1.2 Thesis Organization

This thesis is focused on to provide accurate and trustyadoitation information to location-
based applications, and toward a general purpose lodaliz@ifrastructure. The structure of
the thesis is organized as follows.

In Chapter 2, we characterize the response of localizaligorithms to attacks where an
adversary attenuates or amplifies the signal strength abiom®re landmarks. We study both
point-based and area-based methods that employ recegmal sirength for localization, and
propose several performance metrics that quantify thenasti’s precision and error, including
Holder metrics, which quantify the variability in positispace for a given variability in signal
strength space. We then conduct a trace-driven evaluatgaveral point-based and area-based
algorithms, where we measured their performance as weeabgtiacks on real data from two
different buildings. We observed both strong experimeatal theoretic evidence that all the

algorithms have similar average responses to signal strextiacks.



Next, in Chapter 3, we propose several attack detectionnsetidor wireless localization
systems. We first formulate a theoretical foundation forattiack detection problem using sta-
tistical significance testing. Next, we define test metrazsdvo broad localization approaches:
multilateration and signal strength. We then derived bo#thmmatical models and analytic
solutions for attack detection for any system that utilitesse approaches. We also studied
additional test statistics that are specific to a diverseobatgorithms. Our trace-driven ex-
perimental results provide strong evidence of the effectdss of our attack detection schemes
with high detection rates and low false positive rates achmgh an 802.11 (WiFi) network as
well as an 802.15.4 (ZigBee) network in two real office burfgh.

Further, wireless and sensor networks are especially rathiesto identity-based spoofing
attacks, which allows for many other forms of attacks in reks. It is desirable to detect the
presence of spoofing and eliminate them from the networkodigh the identity of a node can
be verified through cryptographic authentication, autication is not always possible because
it requires key management and additional infrastructov@rhead. In Chapter 4, we take
a different approach by using the physical properties datsat with wireless transmissions
to detect spoofing. Specifically, we proposed a scheme fdr dbetecting spoofing attacks,
as well as localizing the positions of the adversaries pavifog the attacks. Our approach
utilizes the Received Signal Strength (RSS) measured serest of access points to perform
spoofing detection and localization. We describe how wegmated our attack detector into
a real-time indoor localization system, which is also cégalb localizing the positions of the
attackers. We show that the positions of the attackers clothized using either area-based or
point-based localization algorithms with the same redaéiwors as in the normal case through
experimentation using both an 802.11 (WiFi) network as a&khn 802.15.4 (ZigBee) network.

In Chapter 5, We investigate the impact of landmark placémetocalization performance
using a combination of analytic and experimental analy@is. analysis of landmark placement
can find an optimal placement of landmarks in well-definedulagregions, thus making it
quite suitable for indoor localization. The analysis pae& upper bound of the maximum
localization error given a set of landmark placements. We steow that this upper bound
is minimized by a combination of minimizing the distanceirastion error together with the

employment of the optimal patterns for landmark placemésing this result, we can compare



the maximum error between any two placements. We can thestreoma search of placements
to minimize the maximum error. We have developed a simplerétan calledmaxl — minFE
algorithm that finds an optimized landmark deployment ferlthS algorithm.

In summary, to ensure the trustworthiness of the locatidorimation, first we character-
ize the response of localization algorithms to signal gfiterattacks in Chapter 2. Then, in
Chapter 3, we propose attack detection mechanisms in s&rébealization. We next propose
a method for both detecting and localizing spoofing attackShapter 4. In addition, in order
to improve the localization performance, we investigatithpact of landmark placement in
Chapter 5. Moreover, we present the system architectureirofeneral purpose localization
infrastructure in Chapter 6. In Chapter 7, we compare andrasinour work to the previ-
ous research work. Finally, we conclude our thesis in Chaptend present future research

directions.

1.3 Contributions

Our contributions in this thesis are:

We first characterized the response of localization algndt to signal strength attacks.
Specifically, we proposed a new set of metrics, Holder m&tiivhich relate the magnitude of
the perturbation in signal space to its effect on the loatilin result in physical space and thus
measure the susceptibility of localization algorithmsimal attacks. We found that all the
algorithms degraded gracefully, with a linear responsefasaion of the attack strength. And
as a rule of thumb, it is easy to attack by 15 dB and cause kataln errors by 20-30 feet. We
observed that the localization using Bayesian Networksadsennobust than other algorithms
under attacks that target individual landmarks.

We developed a theoretical foundation of attack detectgingustatistical significance test-
ing. We built test statistics for two broad localization eggches: multilateration and signal
strength. For multilateration that uses Linear Least Segjave derived a closed-form represen-
tation for the attack detector. Moreover, for localizat&mhemes that employ signal strength,
we showed that by utilizing the signal strength as a commatufe, the minimum Euclidean

distance in the signal space can be used as a test statistittdok detection independent of



the localization process. The key advantage of our apprimdignal strength based methods
is that the detection phase can be performed prior to Iat#diz and thus results in localiza-
tion computation cost savings under attack. Further, welbadditional test statistics for a
selection of representative localization algorithms.

We validated the effectiveness and generality of our attiet&ction schemes using a trace-
driven evaluation across a diverse set of algorithms, nitsyand buildings. we found that
the performance of the different attack detection schememare similar than different. This
result shows that different localization systems havelaingittack detection capabilities, and
consequently that system designers can focus on usingithlgsrthat provide the highest
localization accuracy rather than having to trade off paisiaccuracy against attack detection
abilities.

Further, we developed a method for detecting spoofing attaskvell as localizing the ad-
versaries in wireless and sensor networks. We applied marigestatistical significance testing
formulation for spoofing detection problem. We then utifizee K-means cluster analysis to
derive the spoofing detector.

Moreover, we have built a real-time localization system imtegrated our K-means spoof-
ing detector into the system to locate the positions of theckéers and as a result to eliminate
the adversaries from the network. our experimental regutigide strong evidence of the ef-
fectiveness of our approach in detecting the spoofing attanll localizing the positions of the
adversaries.

In addition, we took a distinctive approach to investigaieimpact of landmark placement
on localization performance. By analyzing the Linear Leaptiares algorithm, we derived an
upper bound on the maximum location error given the placémilandmarks. Based on this
theoretical analysis, we found optimal patterns for landnpdacement and further developed
a novel algorithmmaxzL — minF, for finding optimal landmark placement that minimizes the
maximum localization error. We found that the performanta wide variety of algorithms
showed significant improvements, about 30%, when usingtankis placed according to our
algorithm, as opposed to alternate deployments. The expatal results provide strong evi-
dence that our analysis and algorithm for landmark placemserery generic as the resulting

placement has improved localization performance acrosseese set of algorithms, networks,



and ranging modalities.

Finally, we presented a system prototype of a general parpesal time, and scalable lo-
calization infrastructure. It aims to incorporate diffieréocalization properties and radios. In
university research communities, this general purposalilation infrastructure enables re-
searchers to explore issues beyond theoretical algoritmdsimulation approaches. It makes
further higher-level integrated research investigatiosgible including privacy studies and se-

curity services.



Chapter 2

Robustness Analysis of Localization Algorithms to Signal 8ength
Attacks

2.1 Introduction

Out of the myriad of localization methods proposed over #s¢ few years, algorithms that use
Received Signal Strength (RSS) as the basis of localizatiewery attractive options as using
RSS allows the localization system to reuse the existingneconication infrastructure, rather
than requiring the additional cost needed to deploy speelocalization infrastructure, such
as ceiling-based ultrasound, GPS, or infrared method$E362]. In particular, all commodity
radio technologies, such as 802.11, 802.15.4, and Blueprotide RSS values associated with
packet reception, and thus localization services canyelsibuilt for such systems. Further,
RSS-based localization is attractive as the techniqueageiaology-independent: an algorithm
can be developed and applied across different platformsthein 802.11 or Bluetooth. In
addition, it provides reasonable accuracy with mediarreiwbl to 5 meters [27]. However, as
more location-dependent services are deployed, theyneileasingly become tempting targets
for malicious attacks. Adversaries may alter signal stitemgeasurements for the purpose of
accessing services that are based on location informagign (WLAN access may only be
granted to devices inside of a building.). In this chapter,thws investigate the susceptibility
of a wide range of signal strength localization algorithrmsattacks on the Received Signal
Strength (RSS). Specifically, we examine the response araklocalization algorithms to
unanticipated power losses and gains, i.e. attenuatiomepdification attacks.

Conventional attacks, where an adversary injects falssages, can be isolated and pro-
tected against using traditional cryptographic methodsh sis authentication. However, there
is a completely orthogonal set of attacks that are non-ogrpphic, where the measurement

process itself can be corrupted by adversaries. Unforlnahese non-cryptographic attacks
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cannot be addressed by traditional security services. ,Tibissdesirable to study the impact
of these attacks on localization algorithms and explorehoui to detect and further to elim-
inate these attacks from the network. Although there has beeent research on securing
localization [17-19, 49, 51, 61], to date there has been mdysbn the robustness of the ex-
isting generation of RSS-based localization algorithmphgsical attacks. Our evaluation is
a valuable contribution to a wireless sensor network desigBecause it helps drive proto-
col decisions, and allows the engineer to decide whethee mamplicated secure localization
algorithms are truly necessary.

In the physical attacks that we study, the attacker modifie®RiSS of a sensor node or land-
mark, for example, by placing an absorbing or reflecting nietaround the node or landmark.
Notably, we study the set of representative attack scemaricamplification or attenuation at-
tacks on single landmark, all-landmark and combinationkedmarks. Further we analyze
the results of simultaneous amplification and attenuatiomaltiple landmarks. We investi-
gate both point-based and area-based algorithms thateuRIES to perform localization. In
order to evaluate the robustness of these algorithms, wedera generalized characterization
of the localization problem, and then present several pmdoce metrics suitable for quan-
tifying performance, including estimator angle bias, ragtior distance error, and estimator
precision. Additionally, an essential contribution of ewwrk is the introduction of a new fam-
ily of localization performance metrics, which we call ldéF metrics. These metrics quantify
the susceptibility of localization algorithms to pertuiibas in signal strength readings. We
use worst-case and average-case versions of the Holdac,mgtich describe the maximum
and average variability as a function of changes in the RSSth&h experimentally evalu-
ate the performance of a wide variety of localization altjonis after applying attenuation and
amplification attacks to real data measured from two diffeoffice buildings.

Using experimentally observed localization performameefound that the error for a wide
variety of algorithms scaled with surprising similarityder attack. The single exception was
the Bayesian Networks algorithm, which degraded slower tha others in response to attacks
against a single landmark. In addition to our experimenkseovations, we found a similar
average-case response of the algorithms using our Holdaian However, we observed that

methods which returned an average of likely positions had i@riability and are thus less
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susceptible than other methods.

We also observed that all algorithms degraded gracefulyegencing linear scaling in lo-
calization error as a function of the amount of loss or gaind@) an attack introduced. This
observation applied to various statistical descriptiohthe error, leading us to conclude that
no algorithm “collapses” in response to an attack. This isdrtant because it means that, for
all the algorithms we examined, there is no tipping point hicl an attacker can cause gross
errors. In particular, we found the mean error of most of thygwrithms for both buildings
scaled between 1.3-1.8 ft/dB when all the landmarks weaelattd simultaneously, and 0.5-0.8
ft/dB when attacked a single landmark. Additionally, thefpemance of the mean response
of algorithms with multiple landmarks under attack is betawehe all-landmarks attack and
the single landmark attack, which scaled at 0.4-1.4 ft/dBtler we observed that mixed at-
tacks with simultaneous attenuation and amplification e#os mean response of algorithms to
move faster, ranging from 0.2-2.3 ft/dB. More powerful affeewere witnessed when the mixed
attack was applied to landmarks that were further apart feach other. We also showed ex-
perimentally that RSS can be easily attenuated by 15 dB,laidds a general rule of thumb,
very simple signal strength attacks can lead to localimatizors of 20-30 ft.

Finally, we conducted a detailed evaluation of area-batgatithms as this family of al-
gorithms return a set of potential locations for the trartami Thus, it is possible that these
algorithms might return a set with a larger area in respoasmtattack and could have less
precision (or more uncertainty) under attack. However, awnél all three of our area-based
algorithms shifted the returned areas rather than incdesstarned area. Further, one of the
algorithms, the Area Based Probability (ABP) scheme, ficanitly shrank the size of the re-
turned area in response to very large changes in signab#itren

The rest of this chapter is organized as follows. We begir§éntion 2.2, by giving an
overview of the algorithms used in our performance study disduss how signal strength
attacks can be performed in Section 2.3. In Section 2.4, weige a formal model of the
localization problem as well as introduce the metrics thatuse in this chapter. We then
examine the performance of the algorithms through an exaral study in Section 2.5, and
discuss the Holder metrics for these algorithms in Se@ién Finally, we conclude in Section

2.7.
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2.2 Localization Algorithms

Signal strength is a common physical property used by a widigerse set of algorithms. For
example, most fingerpriting approaches utilize the RSS[£2g14], and many multilateration
approaches [52] use it as well. In spite of its several mletext accuracy, using the RSS is
an attractive approach because it can re-use the existiedess infrastructure — this feature
presents a tremendous cost savings over deploying lotahzspecific hardware. In this chap-
ter we thus focus on localization algorithms that employalgtrength measurements. In this
section, we provide an overview of a representative setgafriihms selected for conducting
performance analysis under attack. These algorithms tiser @leterministic or probabilistic
methods for location estimation.

There are several ways to classify localization schemdsusde signal strength: range-
based schemes, which explicitly involve the calculatiordistances to landmarks; and RF
fingerprinting schemes whereby a radio map is constructed) ysior measurements, and a
device is localized by referencing this radio map. In thigkyave focus on indoor signal
strength based localization algorithms utilizing thesprapches. We can further break down

the algorithms into two main categories: point-based nothand area-based methods.

2.2.1 Point-based Algorithms

Point-based methods return an estimated point as a loatizesult. Here we describe a few
representative point-based schemes for our study.
RADAR (R1): A primary example of a point-based method is the RADAR schifig

In R1, multiple base stations are deployed to provide opeitey coverage of an area, such as
an office building. During set up, a mobile host with knownipos broadcasts beacons peri-
odically, and the signal strength readings are measuredetta fixed landmarks. Collecting
together the averaged signal strength readings from eaitte dhndmarks for different trans-
mitter locations provides a radio map. After training, liacation is performed by measuring a
wireless device’s RSS at each landmark, and the vector ofiaEB8s is compared to the radio

map. The record in the radio map whose signal strength vecttosest in the Euclidean sense
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to the observed signal strength vector is declared to quurekto the location of the transmit-
ter. Variations of RADAR, such a8veraged RADARR?2) which returns the average of the
closest 2 fingerprints andridded RADARGR) that uses the Interpolated Map Grid (IMG) as
a set of additional fingerprints over the basic RADAR haven@eposed in [27].

Highest Probability (P1): The P1 method uses a probabilistic approach by applying the
statistical Bayes’ rule to return the point with the highpsibability in the pre-constructed
radio map as the location estimation result [59]. There ar&ations of Highest Probability.
Averaged Highest Probabilit{P2) returns the mid-point of the top 2 training fingerprirksd
like GR, Gridded Probability(GP) uses fingerprints based on an IMG [27].

2.2.2 Area-based Algorithms

On the other hand, area-based algorithms retumpat likelyarea in which the true location
resides. One of the major advantages of area-based methogsued to point-based methods
is that they return a region, which has an increased chancaptfiring the transmitter’s true
location. We study 3 area-based algorithms [27, 52], twoheht, Simple Point Matching
(SPM) and Area Based Probability (ABP), use an Interpolateg Grid (IMG) and perform
scene matching (fingerprint matching) for localizationg #me other, Bayesian Networks (BN),
is a multilateration algorithm.

Simple Point Matching (SPM): In SPM, the floor is divided into small tiles. The strategy
behind SPM is to find a set of tiles that fall within a threshofd¢he RSS for each landmark
independently, then return the tiles that form the inteisaf each landmark’s set. We define
the threshold as

Si + q, (21)
wheres; is the expected value of the RSS reading from Landmarkdq is an expected noise
level. One way to choosgis to use the maximum of the standard deviatowith

o = maz{o;;t € {1..numberoflandmarks}, j € {1..numberofpoints}}. (2.2)

SPM [27] is an approximation of the Maximum Likelihood Estition (MLE) method.
Area Based Probability (ABP): ABP returns a set of tiles bounded by a probability that

the transmitter is within the returned tile set. The proligbis called the confidencer and
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Figure 2.1: The Bayesian Network under analysis.

it is adjustable by user. ABP assumes the distribution of RE&ach landmark follows a
Gaussian distribution with mean as the expected value ofie&8ng vectos. The Gaussian
random variable from each landmark is independent. ABP ¢tbemputes the probability of the
transmitter being at each tilg; on the floor using Bayes'’ rule:

P(Lls) = =5

(2.3)

Given that the transmitter must be at exactly one tile gdtigfzle P(L;|S)) = 1, ABP
normalizes the probability and returns the most likelystilg to its confidence [27].

Bayesian Networks (BN):BN is a multilateration algorithm that encodes the signal-t
distance propagation model into the Bayesian Graphicaldiifmt localization [52]. In BN,
the overall joint density o € X, wherez is a random variable, only depends on the parents
of z, denotedba(z):

p(X) = [] pzlpa(z)). (2.4)

zeX
Oncep(X) is computed, the marginal distribtution of any subset oftmables of the network

can be obtained as it is proportional to overall joint disttion. Figure 2.1 shows the basic
Bayesian Network used for our analysis. The verti&eandY represent location; the vertaex
is the RSS reading from thigh landmark; and the verte®, represents the Euclidean distance
between the location specified By andY and theith landmark. The value of; follows

a signal propagation mode} = by; + by; log D;, whereby;, by; are the parameters specific

to theith landmark. The distanc®; = /(X — ;)2 + (Y — ;)2 in turn depends on the
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location (X, Y") of the measured signal and the coordinates ;) of the ith landmark. The
network models noise and outliers by modeling thexs a Gaussian distribution around the

above propagation model, with variange
s; ~ N(bo; + b1;log D;, 7). (2.5)

The initial parametersbg;, b1;,7;) of the model are unknown, and the training data is used
to adjust the specific parameters of the model accordingdadtationships encoded in the
network. Through Markov Chain Monte Carlo (MCMC) simulatj@BN returns the sampling
distribution of the possible location 6f andY as the localization result.

The algorithms we have described in this section are surasthin Table 2.1. Although
there are a variety of other signal strength based locaizatlgorithms that may be studied,

our results are general and can be applied to other poiedbasd area-based methods.

2.3 Conducting Signal Strength Attacks

In this section, we study the feasibility of conducting sigstrength attacks. We first discuss
the possible attacks on signal strength. We then providerarpntal results for signal strength
going through various materials. Finally, we derive anckttamodel for our performance anal-

ysis of the robustness of localization algorithms.

2.3.1 Signal Strength Attacks

The first step to tackle a security problem is to put oneseth@nrole of the adversary and
attempt to understand the attacks. To attack signal-dtrebbgsed localization systems, an
adversary must attenuate or amplify the RSS readings. @hive done by applying the attack
at the transmitting device, e.g. simply placing foil arouhd 802.11 card; or by directing
the attack at the landmarks. For example, we may steer thes labd nulls of an antenna to
target select landmarks. A broad variety of attenuaticactt can be performed by introducing
materials between the landmarks and sensors [49].

In order to support the claim that physical attacks on rexksignal strength are feasible
and capable of significantly affecting the results of a lzedion algorithm, we first exam-

ined the possibility of signal strength attacks. Next, weoréresults of actual experiments to
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Table 2.1: Algorithms under study

Algorithm Abbreviation | Description
Area-Based
Simple Point Matching SPM Maximum likelihood matching of

the RSS to an area using thresholds.

Area Based Probability ABP-« Bayes rule matching of the RSS
to an area probabilistically bounded by
the confidence level%.
Bayesian Network BN Returns the most likely area
using a Bayesian network approach.
Point-Based
RADAR R1 Returns the closest record in the
Euclidean distance of signal space.
Averaged RADAR R2 Returns the average of the top
2 closest records in the signal map.
Gridded RADAR GR Applies RADAR using an interpolated
grid signal map.
Highest Probability P1 Applies maximum likelihood estimatio
to the received signal.
Averaged Highest Probabilit P2 Returns the average of the top 2
likelihoods.
Gridded Highest Probability GP Applies likelihoods to an interpolated

grid signal map.
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Signal Attenuation through Various Materials
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Figure 2.2: Signal strength when going through a barrier.

quantify the effectiveness of various ways of attenuaéinglifying signal strength.

2.3.2 Experimental Results of Attacks

Our experiments were performed in our laboratory in the 3vdrfbf the CoRE building at
Rutgers University, as shown in Figure 2.4 (a). There aredrtaarks deployed in the 3rd floor
of CoRE. We measured the RSS of beacon signals coming fromoé#tte landmark. The RSS
readings were collected using a laptop with an Orinoco Silkiesless card, usingw i st to
sample the signal strength. In order to mitigate the efféfitiotuations, we collected samples
once every second for 10 minutes, and averaged the sigaab#trover 600 samples.

As noted earlier, an adversary may attack the signal stndmgattenuating or amplifying
the RSS readings. This can be done either at the receivertioe atansmitter. Our aim is to
find the results of power loss in dB by simple attacks. Thesgfim the experiments, we placed
various obstruction materials close to the laptop’s wseleard and measured the RSS values
from each landmark at the laptop. The following obstructiarere used: a thin book, a thick
book, a layer of metal foil, three layers of foil (referreda®more foil), a mug filled with water
(referred to as water), a glass mug (referred to as glassgtal wabinet (referred to as metal),
and a human body. These materials are easy to access ahkd atifizing these kind of mate-
rials can be simply performed with low cost. The originalrgibstrength values, together with

the signal strength measurements in the presence of thgsglare provided in Figure 2.2.
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The points represent the measured data from experimestdtgdor various materials, while
the lines are the linear least-squares fitting. From thesdtss we have the following general
observations: placing a blocking object between the trétenand receiver can attenuate the
signal strength; and, across different blocking objectstatn foil, and human body are more
effective than other blocking materials. Interestinglg found that glass has the amplification
effect on the signal strength. A more comprehensive study@bagation loss through com-
mon materials can be found in [58], and we note that more gdohatitenuation loss is possible
by using more advanced materials (such as RF-absorptibercdabric). Finally, we note that
these results also imply that amplification is possible lnyaeing a barrier (e.g. a door) of the

corresponding material or through antenna-based methods.

2.3.3 Attack Model

Based upon the results in Figure 2.2, we further see that fkex linear relationship between
the unattacked signal strength and the attacked signalgstrén dB for various materials. The
linear relationship implies that there is an easy way forcreesary to perform and control the
effect of an attack on the observed signal strength by apiatefy selecting different materials.
Specifically, we envision that an adversary may suitablgoohice and/or remove barriers of
appropriate materials so as to attenuate and amplify thé stigength readings at one or more
landmarks. Due to the observed linear relationship ilatett in Figure 2.2, we refer to this as
the "linear attack model”.

In the remainder of the chapter, we will use the linear attaoklel to describe the effect of
an attack on the RSS readings at one or more landmarks. Thérrgsattacked readings are
then used to study the consequent effects on localizatiotihéoalgorithms surveyed above. In
particular, in this study, we apply our attacks to individiamdmarks, which might correspond
to placing a barrier directly in front of a landmark, as wedlta the entire set of landmarks,
which corresponds to placing a barrier around the transmittevice. Similar arguments can
be made for amplification attacks, whereby usually barr@eesremoved between the source

and receivers. Moreover, we apply attenuation, amplificatdr a mixture of simultaneous



19

attenuation and amplification attacks to multiple landreaakd study the performance of lo-
calization algorithms. The broad collection of our attackrgarios has covered the set of pos-
sibilities that an adversary could attempt to accomplislth@dugh there are many different and
more complex signal strength attack methods that can be wedokelieve their effects will not
vary much from the linear signal strength attack model weiugieis paper, and note that such

sophisticated attacks could involve much higher cost téoper.

2.4 Measuring Attack Susceptibility

The aim of a localization attack is to perturb a set of sigtrargyth readings in order to have an
effect on the localization output. When selecting a loedian algorithm, it is desirable to have
a set of metrics by which we can quantify how susceptible alip&tion algorithm is to varying
levels of attack by an adversary. In this section, we shaNige a formal specification for an

attack, and present several measurement tools for quiantifiye effectiveness of an attack.

2.4.1 A Generalized Localization Model

In order to begin, we need to specify a model that capturesriatyaof RF-fingerprinting
localization algorithms. Let us suppose that we have a domain two-dimensions, such as
an office building, over which we wish to localize transnmigteWithin D, a set ofn landmarks
have been deployed to assist in localization. A wirelesgcddhat transmits with a fixed power
in an isotropic manner will cause a vectorrobignal strength readings to be measured by the
n landmarks. In practice, thesesignal strength readings are averaged over a sufficiemte la
time window to remove statistical variability. Therefoomrresponding to each location In,
there is am-dimensional vector of signal readings= (s, s2, - , s,,) that resides in a range
R.

This relationship between positions in and signal strength vectors defines a fingerprint
function F : D — R that takes our real world positiaix, y) and maps it to a signal strength
readings. F' has some important properties. First, in practi€das not completely specified,
but rather a finite set of positior(s;;, y;) is used for measuring a corresponding set of signal

strength vectors;. Additionally, the functionF" is generally one-to-one, but is not onto. This
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Figure 2.3: Interpretation of distances in location estioma

means that the inverse @f is a functionG that is not well-defined: There are holes in the
n-dimensional space in whicR resides for which there is no well-defined inverse.

It is precisely the inverse functiafd, though, that allows us to perform localization. In gen-
eral, we will have a signal strength readinfpr which there is no explicit inverse (e.g. perhaps
due to noise variability). Instead of usidg which has a domain restricted I we consider
various pseudo-inversés,;, of I’ for which the domain ot+,;, is the complete:-dimensional
space. Here, the notatid@#,, indicates that there may be differaigorithmic choices for the
pseudo-inverse. For example, we shall dertoteto be the RADAR localization algorithm. In
general, the functiod,;, maps am-dimensional signal strength vector to a regior’in For
point-based localization algorithms, the image(®f, is a single point corresponding to the
localization result. On the other hand, for area-based oaistithe localization algorithr&',;,
produces a set of likely positions.

An attack on the localization algorithm is a perturbatioth® correct:-dimensional signal
strength vectos to produce a corrupted-dimensional vectog. Corresponding to the uncor-
rupted signal strength vectsiis a correct localization result = G4(s), while the corrupted
signal strength vector produces an attacked localizagenltp = G,(s). Here,p andp are

set-valued and may either be a single point or a regian.in

2.4.2 Attack Susceptibility Metrics

We wish to quantify the effect that an attack has on locatimaby relating the effect of a

change in a signal strength readisigo the resulting change in the localization regultWe
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shall usep, to denote the correct location of a transmitierto denote the estimated location
(set) when there is no attack being performed, g denote the position (set) returned by the
estimator after an attack has affected the signal stremgtjure 2.3 illustrates the relationship
between the true location and the estimated locations. eTéuer several performance metrics

that we will use;:

e Estimator Angle Bias: The perturbation on the signal strength vector caused by an
attack will result in the variability of location estimatian the physical space. We want
to investigate the bias along the angular dimension. Thiftuge plot the relative error
position in polar coordinates, for an unbiased estimateretttor would have an equal
probability of falling along any angle. However, when akiag a single landmark, we
may expect an angular bias to be introduced. The estimatigte dias is studied by
calculating the estimated position for different expernita trials, and comparing these
results, in a spatial sense, to the true position. An anlyulenbiased algorithm should
uniformly cover the360 degrees around the true location. For area-based metheds, w
replacep, which is a set, with its median (along theandy dimensions separately) to
get a point. The angular bias is an important metric as it eavesas an indication as to
whether an attacker can skew the localization result in aipelirection - algorithms
with more angular bias are more skewable and hence worsesshioir deployment since

an adversary can use this knowledge to its advantage.

e Estimator Distance Error: An attack will cause the magnitudep§—p to increase. For
aparticular localization algorithi@,,;, we are interested in the statistical characterization
of ||po — p|| over all possible locations in the building. The charaztgion of||py — p||
depends on whether a point-based method or an area-baskddnietised, and can be
described via its mean and distributional behavior. Foriatgmased method, we may
measure the cumulative distribution (cdf) of the eltpp — p|| over the entire building.
For area-based metrics, we calculate the CDF of the distaetwgeen the median of the

estimated locationg,,,.; and the true location, i.€lpy — Pred||-

The CDF provides a complete statistical specification ofdiséance errors. It is often

more desirable to look at the average behavior of the error.pbint-based methods,
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the average distance error is sim@y||po — p||], which is just the average ¢y — p||
over all locations. Area-based methods allow for more ostim defining the average
distance error. First, for a particular valuemf, p is a set of points. For eagh,, we
get a collection of error valuelfpy — q|, asq varies over points irp. For eachpy,
we may extract the minimum, 25th percentile, median, 75tegrdgile, and maximum.

These quartile values dipy — q|| are then averaged over the different positipgs

Estimator Precision: An area-based localization algorithm returns agsefor local-

ization, precision refers to the size of the returned egitharea. This metric quantifies
the average value of the area of the localizedoseter different signal strength readings
s. Generally speaking, the smaller the size of the returned, @he more precise the
estimation is. When an attack is conducted, it is possitdettie precision of the answer

p is affected.

Precision vs. Perturbation Distance:The perturbation distance is the quantify,,.q —
Pmedl||- The precision vs. perturbation distance metric depi@duhctional dependency

between precision and increased perturbation distance.

Holder Metrics: In addition to error performance, we are interested in hosnti-
cally the returned results can be perturbed by an attack.s,Tive wish to relate the
magnitude of the perturbatiojfs — §|| to its effect on the localization result, which is
measured bY{G 4 (s) — Gag(8)|. In order to quantify the effect that a change in the
signal strength space has on the position space, we borroeaaure from functional
analysis [43], called the Holder parameter (also knowrhaslLipschitz parameter) for

G14- The Holder parameteid ,;, is defined via

Halg — max HGalg(S) - Galg(v)H (26)

5,V l[s = vl
wheres andv are all the possible combinations of signal strength vedtosignal space.
For continuousZ,;,, the Holder parameter measures the maximum (or wors)-case
of variability in position space for a given variability ingsal strength space. Since
the traditional Holder parameter describes the worst-edfect an attack might have, it

is natural to also provide an average-case measurementaifaaok, and therefore we
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introduce the average-case Holder parameter

_ [Gutal®) ~ Gura(¥)]
Huto = 8 0N

2.7)

These parameters are only defined for continuous functins and many localization
algorithms are not continuous. For example, if we loolGat for RADAR, the result
of varying a signal strength reading is that it will yieldstir-stepbehavior in position
space, i.e. small changes will map to the same output andstidarenly, as we continue
changing the signal strength vector, there will be a changenew position estimate (we
have switched over to a new Voronoi cell in signal space).eblity, this behavior does
not concern us too much, as we are merely concerned with ethadiacent Voronoi cells
map to close positions. We will revisit this issue in Sectbf. Finally, we emphasize
that Holder metrics measure the perturbability of themedd results, and do not directly

measure error.

2.5 Experimental Results

In this section we present our experimental results. Wed@stribe our experimental method.
Next, we examine the impact of attacks on the RSS to loc#dizdtias and localization error

under different attacking scenarios. We then quantify theradhms’ linear responses to RSS
changes. Finally, we present a precision study that irg&®ts the impact of attacks on the

returned areas for area-based algorithms.

2.5.1 Experimental Setup

Figure 2.4 shows our experimental set up. The floor map onettie(h) is the 3rd floor of
the CoRE building at Rutgers, which houses the computenseidepartment and has an area
of 200x80ft (16000ft?). The other floor shown in (b) is an industrial research latwy
(we call the Industrial Lab), which has an area of 225x1488400 ft2). The stars are the
training points, the small dots are testing points, and &nger squares are the landmarks,
which are 802.11 access points. Notice that the 4 CoRE larkdnaae more co-linear than the

5 landmarks in the Industrial Lab.
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Figure 2.4: Deployment of landmarks and training locationghe experimental floors

For both attenuation and amplification attacks, we ran therdhms but modified the RSS
of the testing points. We altered the RSS by +/-5 dB to +/-25 idBncrements of 5 dB.
We experimented with different ways to handle signals thatilal fall below the detectable
threshold of -92 dBm for our cards. We found that substigutime minimal signal (-92 dBm)
produced about the same localization results and did neotireeghanging the algorithms to
special case missing data.

We experimented with different training set sizes, inahgd?0, 35, 60, 85, 115, 145, 185,
215, 245, 253, and 286 points. Experimental data was cellestta total of 286 locations in the
CoRE building and at a total of 253 locations in the Indubttib. Although there are some
small differences, we found that the behavior of the algari matches previous results [27]
and varied little after using 115 training points. We therefchose to use a training set size of

115 for this study.
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Figure 2.5: ABP: Localization estimation relative to thegtilocations for the Industrial Lab.

2.5.2 Localization Angle Bias

In this section, we study the angular bias of the localiraochemes introduced by signal

strength attacks. For the Industrial Lab, Figure 2.5(awshthe localization result of ABP

under no attack for the relative estimation positions totthe locations, setting as the origin,

over all the localization attempts. The normal performanfdine algorithms are unbiased with

the localization results uniformly distributed around thee locations.

Figure 2.5(b) is the relative position estimation resuttder 25dB attenuation attack on all

landmarks, while Figure 2.5(c) and Figure 2.5(d) show ttecked results on single landmarks,

landmark 1 and landmark 3, respectively. Figure 2.4(b) shibat landmark 1 and landmark 3

are placed in diagonal positions across the Industrial Wabhave observed that signal strength

attacks have affected the localization schemes by intinduangular bias on the results with

the location estimation more likely to be in the fourth quadrrelative to the true location
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when landmark 1 is attacked, as shown in Figure 2.5(c). Bmréandmark 1 is placed in
the upper left corner in the building floor map shown in 2.4nal attenuation on landmark 1
made the localization system think the sensor node is fagihvay from landmark 1, and thus
the resulting localization results under attack have bemsmed into the fourth quadrant. This
effect has been proved by examining the localization resufiten landmark 3 is under attack.
As presented in Figure 2.5(d), the relative localizatigutes are mostly in the second quadrant
since landmark 3 is placed in the lower right corner of thdding floor map. Further, as
expected, for simultaneous landmark attacks, the lodaizaesults are distributed around the
true locations randomly, but with much larger estimatioroer as presented in Figure 2.5(b).

We have observed similar effects for the other algorithmhélndustrial Lab and the CoRE

building.
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Figure 2.8: CoRE: Error CDF across localization algorithmieen attenuation attacks are per-
formed on multiple landmarks.
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Figure 2.9: CoRE: Error CDF across localization algorithaigen amplification and attenua-
tion attacks are simultaneously performed on multiple faarks.
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2.5.3 Localization Error Analysis

In this section, we analyze the estimator distance errautyit the statistical characterization
of ||po — p|| by presenting the error CDFs of all the algorithms as a fonctf attenuation
and amplification attacks. The CDF provides a completessizdl specification of the distance
errors. Specifically, we study the localization error urfder attack scenarios: an all-landmark
attack; a single landmark attack; attacks involving midtiandmarks; and attacks involving
simultaneous amplification and attenuation on multipleltaarks.

As a baseline, Figure 2.6(a) shows the normal performanteedilgorithms for the CoRE
building and (e) shows the results for the Industrial Labr fhe area-based algorithms, the
median tile error is presented, as well as the minimum andrmanr tile errors for ABP-75.
As in previous work, the algorithms all obtain similar perfmnce, with the exception of BN,
which slightly under-performs the other algorithms.

First, we look at the performance of localization algorithander an all-landmark attack.
Figures 2.6(b) and 2.6(c) show the error CDFs under simedfas landmark attenuation attacks
of 10 and 25 dB for CoRE, respectively, while Figure 2.6(f)l &6(g) show the similar results
in the industrial lab. First, the bulk of the curves shift e tright by roughly equal amounts:
no algorithm is qualitatively more robust than the other@mparing the two buildings, the
results show that the industrial lab errors are slightiyhkigfor attacks at equal dB, but again,
qualitatively the impact of the building environment is ety significant.

Figures 2.6(d) and 2.6(h) show the error CDFs for the CoREladdstrial Lab under a
10 dB amplification attack. The results are qualitativelynsyetric with respect to the out-
come of the 10dB attenuation attack. We found that, in génesanparing amplifications to
attenuations of equal dB, the errors were qualitativelystome.

An interesting feature is that in CoRE the minimum error {75 also shifts to the
right by roughly the same amount as the other curves. Figiig{s) and 2.6(e) show that,
in the non-attacked case, the minimum tile error for ABP<§uite small, meaning that the
localized node is almost always within or very close to thieimeed area. However, under
attacks, the closest part of the returned area moves awantifre true location at the same rate

as the median tile. We observed similar effects for the SPWMEIN algorithms. We noticed
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that under large attacks around 25dB, the median error CDFesun the Industrial Lab have
similar performance to those from the CoRE building, butréh&re two curves that seem to
be outliers, namely ABP75min and ABP75max. These two curgpeesent the best and the
worst cases from the ABP algorithm and we see that they arenpwing at the same speed
as the median errors, when compared with the results of tiRECmiilding. This tells us
that the variance/spread of the performance of area-bagedtlams in the Industrial Lab has
increased under an all-landmark attack, but that the agdpabavior is consistent across the
two buildings.

We then examine attacks against a single landmark. We faiacka against certain land-
marks had a much higher impact than against others in the GoiRding. Figure 2.7(a) and
2.7(b) show the difference in the error CDF by comparingc&tteof landmarks 1 and 2. Fig-
ure 2.4(a) shows that landmark 1 is at the left end of the mg|dwhile landmark 2 is in the
center and is close to landmark 4. The tail of the curves inf€i@.7(a) are much worse than for
2.7(b), showing that when landmark 1 is attacked, signiflganore high errors are returned.
Figures 2.7(c) and 2.7(d) show a similar effect for amplifaraattacks. This is because land-
mark 1 is at one end of the building alone. The contributiothefsignal strength reading from
landmark 1 plays an important role in localization, while ttontribution of landmark 2 can be
reduced by the contribution from the nearby landmark 4 wheteuattack.

The Industrial Lab results in Figures 2.7(e)-(h) show mues$slsensitivity to landmark
placement compared to the CoRE building. Figure 2.4(b) shisat landmark 5 is centrally
located and we initially suspected this would result in é@ased attack sensitivity. However,
the error CDFs show that the remaining 4 landmarks proviffecemnt coverage: as landmark
5 is attacked, the error CDFs are not much different fronthitg landmark 4. The landmark
placement in the CoRE building is colinear (to maximize tigeal coverage in the floor), while
the landmark placement in the Industrial Lab is more clogbdmptimal landmark placement
for location accuracy. We believe that the better landmdaakegment for localization [20] in
the Industrial Lab can account for the localization perfante being less sensitive to landmark
placement under attack.

Next, we study attacks on more than one landmark, but notldaraimarks. Figure 2.8

present the localization results in the CoRE building whéenaiation attacks are performed on
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multiple landmarks, specifically on landmark paitsand 2 1 and 3 and2 and 4 We found
that attacks on landmark pdirand 3shown in Figure 2.8(d) cause larger errors compared to
results in Figure 2.8(b) and (f) when attacking landmarkgiaiand 2 and2 and 4 Since land-
marks 1 and 3 are placed at two ends of the building alone ahiilbution of the RSS reading
from these two landmarks is significant compared to the rggdirom landmark 2 and 4, which
are closely placed and can cover each other. In generalpact of the multiple landmark
attacks on the localization performance is between th@paence of a single landmark attack
and an all-landmark attack.

Fourthly, we look at the attack scenario that the adversianylganeously performs both
amplification and attenuation attacks on multiple landrearkhe localization results are pre-
sented in Figure 2.9 for the CoRE building. For a direct conspa, we present results when
mixed attacks are applied on landmark palreind 2 1 and 3 and2 and 4 we should expect
that such an attack would be more effective in falsifying lttwation results, and this is what
we observe. But, beyond this, we observe that the perforendapends heavily upon which
landmarks are attacked. We found that if the attacked larkBaae close to each other such as
landmark 2 and 4, which are located in the center of the mgldihe effects of amplification
and attenuation attacks are canceled out. Thus the impanitxefd attacks does not lead to
significant perturbation in the localization results, aeveh in Figure 2.9(f), which is about
the same as under single landmark attacks displayed ind-@yiir However, if the attacked
landmarks are farther away from each other, such as landbemkl 3, which are located at op-
posite ends of the building, the simultaneous amplificatind attenuation attacks can be very
harmful and cause larger localization errors for all theoathms presented in Figure 2.9(d).
The behavior of the error CDFs in Figure 2.9(d) is qualig{hdifferent than others with very
long tails. The effect of the amplification attack on landin&rand the attenuation attack on
landmark 3 pushed the localization results further in omeation, and thus introduced large
localization bias.

The four attack scenarios we studied have covered a broltioh of possible combina-
tions of signal strength attacks. We found that simultasgoattacking all landmarks has more
impact on localization performance than attacking an iiddial landmark. Further, simultane-

ous amplification and attenuation attacks on certain lamkisnean cause qualitatively larger
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errors than other kinds of attacks. Most importantly, weepbsd that none of the localization

algorithms outperforms the others for the attacks we exadin

2.5.4 Linear Response

In this section, we show that the average distance effijpy — p||], of all the algorithms
scales in a linear way to attacks. That is, the mean locadizadrror changes linearly with
respect to the size of the signal strength change introduceid (recall dB is a log-scaled
change in power).

Figure 2.10 plots the median error vs. RSS attenuation falldandmark attack in Fig-
ure 2.10(a) and 2.10(e), and for individual landmarks indtieer figures. Figure 2.11 plots
the median localization error under simultaneous sigmahgth attenuation and amplification
attacks on multiple attacks. Points are data derived fropemental results, and the lines are
linear least-squares fits. The most important feature is ithall cases, the median responses
of all the algorithms fits a line extremely well, with an awgeaR-statistic of 0.97 for both
the CoRE and Industrial Lab. The mixed attacks with amplificaattack on landmark 1 and
attenuation attack on landmark 3 in CoRE shown in Figure(#)1i$ an exceptional case with
R? of 0.86 as the worst case.

Comparing the slopes across all the algorithms presentddbtes 2.2, 2.3, and 2.4, we
found a mean change in positioning error vs. signal attéoaif 1.55 ft/dB under an all-
landmark attack with a minimum of 1.3 ft/dB and maximum of #/8B. For the single land-
mark attack, the slope was substantially less, 0.64 ft/dtBpagh BN degrades consistently
less than the other algorithms at 0.44 ft/dB. Under atteonatttacks on multiple landmarks,
the localization algorithms move at the speed of 0.9 ft/dB.#ft/dB, which is between the
results of a single landmark attack and an all-landmarlclattaHowever, the median error
moves faster under simultaneous amplification and attesmuattacks on landmark 1 and 3, at
the speed of 1.8 - 2.2 ft/dB as shown in Table 2.4. We note trenreeror tops out when the
attack strength is 25dB. This confirms our analysis in Figueg¢d) that applying simultaneous
amplification and attenuation attacks on landmarks thataatieer apart causes larger impacts

on the performance of localization schemes, although iatjpeait is hard for an adversary to
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Figure 2.10: Average location estimation error acrosslipai#on algorithms under
strength attenuation attack.
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Table 2.2: CoRE: Slopes of Average Error from Linear Regoeskor attenuation attacks on
all landmarks and individual landmark

Buildings CoRE: attenuation attack
Landmarks Al T 1 [ 2 | 3 [ 4
Area-Based

SPM 1.1048 | 0.8331| 0.662 | 0.7816 | 0.6244
ABP-75 1.1656 | 0.7783 | 0.5049 | 0.7052 | 0.384
BN 1.1157 | 0.3287 | 0.3065 | 0.2544 | 0.493
Point-Based
R1 1.4922 | 0.7006 | 0.5151 | 0.5702 | 0.7941
R2 1.4327 | 0.7534 | 0.4687 | 0.5732| 0.7425
GR 1.1896 | 0.8440 | 0.5033 | 0.7357 | 0.7124
P1 1.6306 | 1.1597 | 0.5728 | 0.5026 | 0.3644
P2 1.4505 | 1.0123| 0.464 | 0.4251 | 0.3063
GP 1.2359 | 0.8915| 0.6028 | 0.8103 | 0.4595
Average 1.3131 | 0.8113 | 0.5111 | 0.5954 | 0.5423

Table 2.3: Industrial: Slopes of Average Error from LineagRession for attenuation attacks
on all landmarks and individual landmark

Buildings Industrial Lab: attenuation attack
Landmarks Al T 1 | 2 | 3 | 4 ] 5
Area-Based
SPM 1.6901 | 0.7753 | 0.6283 | 0.5485 | 0.6455 | 0.9103
ABP-75 1.6479 | 0.5615| 0.4852 | 0.4146 | 0.5469 | 0.8072
BN 1.7249 | 0.4528 | 0.3487 | 0.5215 | 0.5615 | 0.3094
Point-Based
R1 1.8823 | 0.6827 | 0.4837 | 0.4286 | 0.5867 | 1.0356
R2 1.8816 | 0.6524 | 0.5394 | 0.4000 | 0.5861 | 0.8800
GR 1.7860 | 0.6514 | 0.5410 | 0.4668 | 0.6331 | 0.9358
P1 1.8854 | 0.6856 | 0.4710 | 0.4532 | 0.5881 | 1.0390
P2 1.8802 | 0.6448 | 0.5431 | 0.4023 | 0.5875| 0.8861
GP 1.7666 | 0.6148 | 0.4976 | 0.4800 | 0.6213 | 0.8553
Average 1.7939 | 0.6357 | 0.504 | 0.4573 | 0.5952 | 0.8510

conduct simultaneous amplification and attenuation agtagkhout using sophisticated equip-
ment. In general, the linear fit results are quite importanit aneans that no algorithm has a
cliff where the average positioning error suffers a catgutic failure under attack. Instead, it
remains proportional to the severity of the attack.

While the median error characterizes the overall respomsdtacks, it does not address
whether an attacker can cause a few, large errors. We exditiaeesponse of the maximum
error as a function of the strength of the attack on an alhtaark attack, i.e. how the 160
percentile error scales as a function of the change in dBruadell-landmark attack. The
all-landmark attack corresponds to a common attack saenkris thus desirable to study the

worst-case situation under an all-landmark attack. We twde this characterization is not
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Table 2.4: CoRE: Slopes of Average Error from Linear Regoest®r mixed attacks of signal
attenuation and amplification on multiple landmarks

Buildings attenuation attacks amplification and attenuation attacks
Landmarks [ 1and2] 1and3] 2and4 | 1and2] 1and3 | 2and 4
Area-Based

SPM 1.0054 | 1.1328 | 0.8836 | 1.3358 | 1.9556 0.8018
ABP-75 0.9740 | 1.1050 | 0.8125 | 1.3670 | 1.8628 0.5778
BN 0.6716 | 0.3965 | 0.8401 | 0.8665 | 1.8868 0.1812
Point-Based

R1 1.0392 | 0.9069 | 1.1326 | 1.1895 | 2.2731 0.7522
R2 1.1013 | 0.9222 | 1.2148 | 1.1841 | 2.2552 0.7633
GR 1.0276 | 1.1559 | 0.9196 | 1.2337 | 1.8046 0.7642
P1 1.4142 | 1.4104 | 0.9683 | 1.2414 | 2.0808 0.6492
P2 1.4735 | 1.2330 | 0.9054 | 1.1921 | 2.0606 0.5472
GP 1.1003 | 1.2246 | 0.9271 | 1.5197 | 1.9138 0.7387
Average 1.0897 | 1.0541 | 0.9560 | 1.2367 | 2.0104 0.6417

Worst—case Error
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Figure 2.12: CoRE: Maximum error as a function of attackregtle from an all-landmark
attack.

the same as, nor is directly related to, the Holder metridsose metrics define the rates of
change between physical and signal space within the lataiz function itself, while here we
characterize the change in the estimator error to the chargignal, i.e.||po — p||/||s — v||-
Figure 2.12 plots the worst-case error for each algorithra famction of signal dB for the
CoRE building under an all-landmark attack. The figure shibasalmost all the responses are
again linear, with least-squares fits of ®alues of 0.84 or higher, though SPM does not have a
linear response. The second important point is the algostmesponses vary, falling into three
groups. BN, R1 and R2 are quite poor, with the worst case sgaling at about 4 ft/dB. P1

and P2, are in a second class, scaling at close to 3 ft/dB. fithdegl algorithms, GP and GR,
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Figure 2.13: Contribution of each Landmark during sampiimthe BN algorithm under atten-
uation attacks.

as well as ABP-75 fair better, scaling at 2 ft/dB or less. Fn&PM is in a class by itself, with
a poor linear fit (R of 0.61) and the maximum error topping out at about 85 ft afedB of
attack.

Examining the error CDFs and the maximum errors, we can sdartbst of the localiza-
tions move fairly slowly in response to an attack, at abobitfttdB. However, for some of the
algorithms, particularly BN, R1 and R2, the top part of theeCDF moves faster, at about 4
ft/dB. What this means is that, for a select few points, aackttr can cause more substantial
errors of over 100 ft. However, at most places in the buildarg attack can only cause errors
with much less magnitude.

Figure 2.10 show that BN is more robust compared to otherristhgos for individual land-
mark attacks. Recall BN uses a Monte-Carlo sampling tecikenjGibbs sampling) to compute
the full joint-probability distribution for not just the gition coordinates, but also for every
node in the Bayesian network. Under a single landmark atteckound the network reduces
the contribution of network nodes directly affected by thiaeked landmark to the full joint-
probability distribution while increasing other landmsirkontributions. In effect, the network
“discounts” the attacked landmark’s contribution to thee@l joint-density because the at-
tacked data from that landmark is highly unlikely given trerting data.

To show this effect we developed our own Gibbs sampler sowatould observe the

relative contributions of each node in the Bayesian networthe final answer. Figure 2.13
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Figure 2.14: CoRE: Comparison of localization results fritv@ area-based algorithms for a
testing point.

shows the percentage contribution for each landmark toathjeint-density. For instance, in
CoRE, the contribution of each landmark starts almost umfia  When Landmark 1 under

attack, the contribution of Landmark 1 goes from 0.25 dowd. icb.

2.5.5 Precision Study

In this section, we examine the area-based algorithms'igioecin response to attacks. Fig-
ure 2.14 shows a localization example of the area-basedithigs in the CoRE building. The
actual point is shown as a big dot and the convex hulls of thered areas are outlined. Nor-

mally, the SPM and ABP algorithms perform similarly, whileetBN algorithm has a much
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Figure 2.15: Analysis of precision CDF across area-baggpatithms. The attack is performed
on all the landmarks.

different profile by returning the sampling distributiontbfe possible estimation. Under sig-
nal strength attacks, We observed that the returned areasduced and shifted from the true
location.

Figure 2.15 shows the CDF of the precision (i.e. size of thened area) for different area-
based algorithms under attack for all the landmarks in CoRdEladustrial Lab. We found
that overall the algorithms did not become less precisespamse to attacks, but rather, the
algorithms tended to shift and shrink the returned areagur€i2.15(a) shows a small average
shrinkage for SPM in the CoRE building, and likewise, 2.)5{iows a similar effect for BN.

ABP-75 had the most dramatic effect. Figures 2.15(c) and5(8)1show the precision
versus the attack strength for both buildings. The shriekaaye quite substantial. We found

that, under attack, the probability densities of the tilessk to small values that were located
on a few tiles— reflecting the fact that an attack causes thetdo be a likely position to

localize a node. We also found that this effect held for afiggliion attacks, as is shown in
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Figure 2.16: Precision vs. perturbation distance undenattion attack.

Table 2.5: Analysis of (worst-casé) and (average-caséj

[ Algorithms | CoRE: H | LAB: H | CoRE: H | LAB: H |

Area-Based
SPM 23.7646 11.0659 1.8856 2.3548
ABP-75 20.0347 23.0652 1.8548 2.3424
BN 31.7324 | 14.9168 2.0595 2.5873
Point-Based
R1 36.2400 20.7846 1.9750 2.3677
R2 19.8586 8.7313 1.9138 2.3058
GR 35.9880 20.6886 1.9691 2.3628
P1 20.8832 20.7846 1.9793 2.3683
P2 19.8586 8.7313 1.9178 2.3058
GP 21.8303 20.6886 1.9649 2.2882

Figure 2.15(d). The shrinking precision behavior may bdulder attack detection, although

a full characterization of how this effect occurs remainsféwure work.

Examining this effect further, Figure 2.16 presents theigien vs. the perturbation dis-

tance||pimed — Pmed||, With @ least squares line fit. Figure 2.16(a) shows the effen attack-
ing all landmarks on the CoRE building. Figure 2.16(b) shewdownward trend, but much
weaker, when one landmark is under attack. We observedssiresults for the Industrial Lab.
We see mostly linear changes in precision in response tokaftalthough with great differ-
ences between the algorithms. The figures show that theateche precision as a function of

dB is particularly strong for ABP-75.
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2.6 Discussion about Hlder Metrics

In the previous section we examined the experimental esaittd looked at the performance
of a set of representative localization algorithms in teahsrror and precision. We now focus
on the performance of these localization algorithms in seofithe Holder metrics. The Holder
metrics measure the variability of theturned answer in response to changes in the signal
strength vectors.

We first discuss the practical aspects of measufingnd H for different algorithms. In
Section 2.4, the Holder parameters are defined by calogléie maximum and average over
the entiren-dimensional signal strength space. In practice, itis s&mgy to perform a sampling
technique to measurd and H. Additionally, as noted earlier, the definition &f and H are
only suitable for (Holder) continuous functio,,. In reality, several localization algorithms,
such as RADAR, are not continuous and involve the tessatflaif the signal strength space
into Voronoi cellsV;, and thus only a discrete set of localization results arelywed (image
of V; underG,y,). Hence, for any € V; we haveGg(s) = (z;,y;). Unfortunately, for
neighboring Voronoi cells, we may takec V; andv € V; such that they are arbitrarily close
(i.e. |ls — v|| — 0), while |Gr(s) — Gr(v)|| # 0. In such a case, the formal calculation of
H and H is not possible. However, for our purposes, we are only éstex in measuring the
notion of adjacency of Voronoi cells in signal space yiefdaloselocalization results. Thus,
our calculation off and H is only performed over the centroids of the various Vororedisc
for localization algorithms that tessellate of signal sty space.

The Holder parameters for the different localization aitpons are presented in Table 2.5.
Examining these results, there are several important wdsens that can be made. First, if we
examine the results fdd we see that, for each building, all of the algorithms have @mnilar
H values. Hence, we may conclude that the average variabilitie returned localization
result to a change in the signal strength vector is rougtdystime for all algorithms. This is
an important result as it means, regardless of which RF fongieging localization system we
deploy, the average susceptibility of the returned resalts attack is essentially identical.

However, if we examine the results féF, which reflects the worst-case susceptibility, then

we see that there are some differences across the algorithimss, comparing/ and H for
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both point-based and area-based algorithms, we see thabtsecase variability can be much
larger than the average variability. Additionally, the mebased methods appear to cluster.
Notably, RADAR (R1) and Gridded Radar (GR) have similar perfance across both CoRE
and the Industrial Lab, while averaged RADAR (R2) and avedalighest Probability (P2)
have similar performance across both buildings. A veryregiing phenomena is observed by
looking at the algorithms that returned an average of liketations (R2 and P2). Across both
buildings these algorithms exhibited less variability qamred to other algorithms. This is to be
expected as averaging is a smoothing operation, which esdvariations in a function. This
observation suggests that R2 and P2 are more robust froms&eame point-of-view than other

point-based algorithms.

2.7 Conclusion

In this chapter, we analyzed the robustness of RF-fingdnpgiocalization algorithms to at-
tacks that target signal strength measurements. We firgtiegd the feasibility of conducting
amplification and attenuation attacks, and observed arliteg@endency between non-attacked
signal strength and attacked signal strength readingsiffereht barriers placed between the
transmitter and a landmark receiver. We provided a set dbpraance metrics for quantifying
the effectiveness of an attenuation/amplification att@uk: metrics included localization angu-
lar bias, localization error, the precision of area-badgdriahms, and a new family of metrics,
called Holder metrics, that quantify the variability oétheturned location results versus change
in signal strength vectors.

We conducted a trace-driven evaluation of several poisethand area-based localization
algorithms where the linear attack model was applied to detasured in two different office
buildings. We found that the localization error scaled &ty for all algorithms under attack.
Further, we found that, when attacked, area-based algwsithid not experience a degradation
in precision although they experienced degradation inracgu We then examined the vari-
ability of the localization results under attack by measgithe Holder metrics. We found that

all algorithms had similar average variability, but thosetihods returned the average of a set of
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most likely positions exhibited less variability. This éissuggests that the average susceptibil-
ity of the returned results to an attack is essentially idahticross point-based and area-based
algorithms, though it might be desirable to employ eitheaapased methods or point-based

methods that perform averaging in order to lessen the waist-effect of a potential attack.
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Chapter 3

Attack Detection in Wireless Localization

3.1 Introduction

In this chapter, we examine the problem of detecting attacksvireless localization. We
present a general formulation for attack detection usiatissical significance testing and then
build tests that are applicable to broad classes of mdtédibn and signal strength-based meth-
ods, as well as several other test statistics that are unigaevariety of different localization
algorithms.

Multilateration is a popular localization approach thagsiteast Squares (LS) techniques
to perform localization [23, 28, 44, 49, 54], and has therdéde property of supporting math-
ematical analysis, in part because LS-based regressionwdibknown statistical descriptions
when operating near ideal conditions. By examining Lineaadt Squares (LLS), we build a
mathematical model and derive an analytic solution forcttietection using the residuals of
an LLS regression. We show that attack detection using Ll€asy to conduct and is suitable
for both single-hop and multi-hop ranging methods becauseindependent of the ranging
modality used by the localization system.

On the other hand, many signal strength based algorithm&T12ely on either statistical
inference or machine-learning in the context of scene nivagcto perform localization, and
consequently do not yield closed-form solutions. Howetr,algorithms based on signal
strength, we found that the minimum distance between anredtsen and the database of
signal strength vectors is a good test statistic to perfdtacik detection. One key advantage
of our approach for signal strength based methods is thatdteetion phase can be performed

before localization.
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To evaluate the effectiveness of our attack detection nresims we first present experi-
mental results illustrating the feasibility of physicateatks on localization. We then conducted
a trace driven evaluation using both an 802.11 (WiFi) neltwas well as an 802.15.4 (Zig-
Bee) network in two real office buildings. In particular, wapéied signal strength attenuation
and amplification, using a linear attack model obtained foamexperiments, to the Received
Signal Strength (RSS) readings collected from these tweoeoffuildings. We evaluated the
performance of our attack detection schemes using detecttes and receiver operating char-
acteristic curves. Our experimental results provide strewvidence of the effectiveness of our
attack detection schemes with high detection rates, ovés, ¥d low false positive rates,
often under 5%. Surprisingly, we found that most of the &ttéstection schemes provide qual-
itatively similar performance. This shows that the diffgtréocalization systems have similar
attack detection capabilities.

The rest of the chapter is organized as follows. We study dlasilbility of attacks and
present our experimental methodologies in Section 3.2. Memt our generalized theoretical
formulation for the attack detection problem in Section 3\@ next derive an analytic solution
for attack detection using Least Squares in Section 3.4ndJsbmmon features for attack
detection in signal strength based algorithms is present&kction 3.5. We study the test
statistics that are specific to a variety of different altoris in Section 3.6. Then, we provide

a discussion in Section 3.7. Finally, we conclude in Sec3ién

3.2 Feasibility of Attacks

In this section we provide background on how attackers cgraainthe localization system.
We next discuss the feasibility of conducting these attacksignal strength, and provide the
experimental methodology that we use to evaluate our attetdction mechanisms later in this

chapter.
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3.2.1 Localization Attacks

Localization mechanisms are built upon different rangiragaiities, such as RSS, TOA, AOA,
and hop count. These all rely on the measurement of the @iysioperties of the wireless sys-
tem. Adversaries can apply non-cryptographic attacksnag#ie measurement processes, by-
passing conventional security services, and as a resukliféeat the localization performance.
For example, wormhole attacks tunnel through a faster addarshorten the observed distance
between two nodes [36]. An attenuation attack would deeréaes radio range, and thus po-
tentially lengthen the hop-count. Compromised nodes miaydesponse messages to disrupt
distance estimation [49]. RSS readings can be altered dattetouation or amplification of the
signal strength by an adversary [22]. A broad survey of themt@l non-cryptographic attacks

that are unique to localization can be found in [49].

3.2.2 Signal Strength Attacks

We choose to use RSS as the ranging modality for localizatigorithms. An adversary can
attack the wireless node directly or compromise the landmevolved in localization by at-
tenuating or amplifying the signal strength readings. Bas®our experimental attacks using
real materials, we will use the linear attack model [22]. (eematerial causes a constant per-
centage power loss independent of distance) as shown ime=g&jli to describe the effect of
an attack on the RSS readings at the wireless device or aatldeniarks. As presented in the
figure, these attacks are easy to conduct with low cost nadgeiihe linear relationship implies
that it is easy for an adversary to control the effect of aackton the observed signal strength

by appropriately selecting different materials.

3.2.3 Experimental Methodology

In order to study the generality of our attack detection apphes, we have conducted experi-
ments in two office buildings, one is the 3rd floor of the Congpi8cience building at Rutgers
University (CoRE) as shown in Figure 3.2 (a) and the othenia floor of an industrial re-
search lab (Industrial Lab) as presented in Figure 3.2 (ofridure 3.2 (a), the experiments are

performed for both an 802.11 (WiFi) network as well as an 882l (ZigBee) network. For
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the 802.11 (WiFi) network, there are 4 landmarks shown irsgpdares deployed in a collinear
manner to maximize signal strength coverage. While for 02 5.4 (ZigBee) network, there
are 4 landmarks shown in magenta circles placed in a squiate s&ximize localization ac-
curacy [20]. For experiments conducted in the industria) &s depicted in Figure 3.2 (b), we
only used an 802.11 (WiFi) network with 5 landmarks. The $mpaen dots are the localiza-
tion testing points and the small blue stars are the traipwigts. We will present the results
of our experiments for each of the proposed attack detectigas in its associated section in
this chapter. Across all experiments, we have performedaeidriven evaluation by either

attenuating or amplifying RSS readings collected fromeh®g buildings.

3.3 Generalized Attack Detection Model

In this section we first propose a general formulation forltiwalization attack detection prob-

lem. We then introduce metrics for evaluating the effectdss of our approaches.

3.3.1 Localization Attack Detection

In general, the error of a localization algorithm is definedtlze distance between the true
locationx = [z, y]T and the estimated locatiot D, = ||x — %||. We found in prior work

that under physical attacks, the localization etk increases significantly [22]. However,
D, is not directly available during run-time, and the challemy attack detection is to devise

strategies for detecting localization attacks that do setlacalization errors.

Signal Attenuation through Various Materials
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Figure 3.1: Linear attack model on received signal strefatiarious media.
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Figure 3.2: Layout of the experimental floor

We propose to formulate location attack detection as astitatl significance testing prob-

lem, where the null hypothesis is
Hop : normal (no attack)

In significance testing, a test statisfitis used to evaluate whether observed data belongs to
the null-hypothesis or not. For a particular significancelex (defined as the probability of
rejecting the hypothesis if it is true), there is a corresjpogacceptance regiofR such that we
declare the null hypothesis valid if an observed value otéise statisticT°Ps € Q, and reject

the null hypothesis iff°Ps ¢ Q (i.e. declare an attack is presenti?bs € Q°, whereQ¢ is the
critical region of the test). In our attack detection problem, the rediband decision rule is
specified according to the form of the detection statigtifor example, when using distance

in signal strength space far, the decision rule becomes comparison against a threstasid)
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rejection of the null hypothesis corresponds to declarggpresence of an attack.

3.3.2 Effectiveness

In order to evaluate the effectiveness of our attack detectiethods, we will utilize the fol-
lowing performance metrics:

Cumulative Distribution Function (CDF): The CDF of the test statisti® provides the
sensitivity of T under attack. Based on the CDF, we can study the feasibilisimg T for
attack detection.

Detection Rate (DR): An attack may cause the significance test to refdgt We are
thus interested in the statistical characterization ofatiack detection attempts over all the
localization attempts. The Detection Rate is defined as ¢éhesptage of localization attempts

that are determined to be under attack, i.e.:

Nattack
DR = 3.1
Ntotal ( )

where N, is the total number of localization attempts aNg;..; is the number concluded
under attack by detection. Note that when the signal iskathahe detection rate corresponds
to the probability of detectio;, while under normal (non-attack) conditions it corresmond
to the probability of declaring a false positivg,. We will examine DR as a function of the
attack strength.

Receiving Operating Characteristic (ROC) curve: To evaluate an attack detection scheme
we want to study the false positive rafg, and probability of detectior; together. The ROC
curve is usually used to measure the tradeoff between faisitives and correct detections.
The ROC curve is a plot of attack detection accuracy agdimestalse positive rate. It can be

obtained by varying the detection thresholds.

3.4 Using Least Squares

In this section we provide mathematical analysis for at@detection in multilateration algo-
rithms. We first provide background in using LS to performalaation. Next, based on the

properties of the LLS estimator, we define an attack detecd@neme that utilizes regression
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residuals, and give an analytic formulation to specify theeptance regiof. Finally, the

experimental results are presented to evaluate the effeetss of the detection scheme.

3.4.1 Localization

To perform localization with LS requires 2 steps: ranging kteration.
Ranging Step:Recent research has seen a host of variants on the rangirgusteas RSS,
TOA, TDOA, and hop count. Our attack detection approach wearkh any ranging modality.
Lateration Step: From the estimated distancds and known positionsaf, y;) of the

landmarks, the positione( y) of the localizing node can be found by findifg, ) satisfying:

(#,9) = argmin y [/(zi —2)? + (y: — y)? — dif? (32)
=1
wheren is the total number of landmarks. We call solving the abowbl@mNonlinear Least

Squaresor NLS. Solving the NLS problem requires significant comjiieand is difficult to
analyze. We may approximate the NLS solution and lineahizgotoblem [20] into the system

Ax = b, where:

xr1 — %Z?:l X4 Y1 — % ?:1 Yi
A= : : 3.3)

15

1 n
Tn = 3 2ui=1%i  Yn — D1 Yi

and
(23— + i 2 + (F — + i vd)

—(2 -1y a?)

n =1 "

b=_ . (3.4)

(x% - %E?:1 1’?) + (y% - % ?:1 y?)

(@~ LT, )

1=1""

Note thatA is described by the coordinates of landmarks only, while represented by
the distances to the landmarks together with the coordinaftéandmarks. We call the above
formulation of the problenkinear Least Square®r LLS. The estimate ot = [z, ]” is done
via

x=(ATA)'ATD (3.5)
In addition to its computational advantages, the LLS fomtiah allows for tractable statistical

analysis, as we shall now see.
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3.4.2 The Residuals

In practice, there are estimation errors from the rangieg.sThe LLS formulation can be re-
fined as a linear regressidn,= Ax+ e, wheree corresponds to model errors. The localization
result is therk = (AT A)~1ATb, and the fitted valueb corresponding to the observed values
b are given by

b=Ax=A[ATA)'ATb] = A(ATA)"1ATD. (3.6)
Further, we define the vector of residuélas
é=b-b=[1-AATA)'AT]b. (3.7)

When the regression model is performing well we may assuatdiie model errors are Gaus-
sian [41,65]. Under this assumption, the residuals al$ovich Gaussian distributioN (x, 32),
since the residuals are a linear combination of the elenwntsande. Here,u is the mean
vector and is the covariance matrix. We choose the residaals the test statisti€', and will
build our attack detection scheme by using the statisticgigrties ofe when LLS is operating

in a desirable performance regime.

3.4.3 The Detection Scheme

The LLS attack detection is performed after localizatiohe Tesiduals are correlated Gaussian

random variables and the multivariate Gaussian distobubif & can be expressed as:

Y- L le-wTs i) (3.8)

G

In order to determine whether the location result is compgethby adversaries, we perform

attack detection through significance testing. We can defirecceptance region énspace by
Q={&: Pr({T: (T -p)"="HT-p)>
e-w'="le-pw}) >alt
In practice, after performing localization using LLS, weve@n observed value of residuals

&°bs. Testing the null hypothesis, we can decide that the loatidin is under attack if the

probability P =1 - M < «, where

Me— 1 / / e 2@ WTET -1 ge,  de, (3.9)
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andFE is the integration region defined 6§ — )T 71(& — 1) < X? with
X2 — (éobs _ )Tz (Aobs _ 'u)

We can express the term

@-w'=1'e-p = (@-p'™DTDE-p)
= (D(&—p)" (D@ - p)
= yTy. (3.10)

Substitutingy = D(é — 1) into Equation (3.9), we get

1 1,T
M = 7,1// e 2V Ydy...dy,
(V2m) /

= ﬁ/.../le_ézy—ly?dyl...dyn (3.11)

with E’ defined byy Ty < X?2. Changing to polar coordinates, we get

o [

sm@d@...sm" 2¢n_1d¢n_1]
1 X 7“2 2T
= 7/ e zr" e x doy
)™ Jo 0

(v2m)n
n—1 ,r
X H/ S’ini_1¢id¢i
i=2 0
9 n—1
- 2 s ALx]]B (3.12)
o 11
with
2
Ay = / e~ Ty
(\f "
and

/ sin'™ ¢,

Usingv = 72 /2, we have

X2
1 (=2 n X2
A, == —x (=, — 3.13
G (2.5 (3.13)
wherel is the incomplete gamma function. Since
F(%
Bi=0(z,2) = — X /T (3.14)



55

Through further simplification, we can get

n—1
I B =72 x P(lﬂ) (3.15)
=2 2

Hence, substituting Equations (3.13) and (3.15) into (3.42 obtain the probability mass

I'(n/2,X?%/2)

M= T

We then further obtain the probability By = 1— M. Based on the definition in Section 3.3,
if the probability is sufficiently low, i.eP < «, then&°Ps belongs to the critical regioft® and

we can conclude that the location result is under attack.

3.4.4 Experimental Evaluation

In this section we present the evaluation of the effectigenaf the attack detection scheme.
We chose RSS as the ranging modality and performed sigmalgitr attacks according to the
experimental methodologies described in Section 3.2.

The average ranging error as a function of the severity afadigtrength attacks is shown
in Figure 3.3(a). We know that the relationship between tB&Rrror and the ranging error is
multiplicative with distance [20]. Even small random peoation in RSS readings can cause
large ranging errors due to this multiplicative factor. Weserved this effect in Figure 3.3(a);
the ranging error increases superlinearly to attack ggveFRigure 3.4 presents DR vs. the
ranging errors when tested against significance levet 0.01 anda = 0.05. We found
that under a normal situation, where the ranging errorses® than 15 feet, the false alarm
probability, Py, is less than 1.5% and 2.5% far= 0.01 anda = 0.05 respectively. Large
signal strength attacks, greater than 15dB, can causengpagiors larger than 90 feet, and then
the detection rates are more than 90%. These results striottitate that using residuals in
LS as a test statistic for attack detection is effective.

Further, the ROC curves in Figure 3.3(b) show that for falsgitive rates less than 10%,
the detection rates are above 90% and close to 99% when #io& attength increases to 20dB
and 25dB. This shows that if the adversary wants to causge lacalization error, it is almost
certain that our attack detection mechanism will detecEdr small attacks of less than 5dB,

the detection rates are about 40%. In this case, it is diffioudistinguish whether the anomaly
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in the test statistic is caused by attacks or by measuremenmtesince the RSS readings can
fluctuate around 5dB due to environmental effects. Howéoesuch small attacks, because the
resulting impact on the final localization result was showibé small [22], the consequences

of failing to detect such attacks would likely be small aslwel

3.5 Distance In Signal Space

RSS is a common physical property used by a widely diversefsafgorithms. For exam-
ple, most scene matching approaches utilize the RSS, €gl4], and many multilateration

approaches [52] use it as well. In spite of its several mletext accuracy, using the RSS is
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an attractive approach because it can re-use the existiredess infrastructure — this fea-
ture presents a tremendous cost savings over deployintiziatian-specific hardware. In this
section, we thus derive an attack detection scheme apfditalany signal strength based lo-

calization system.

3.5.1 Overview

All of the above algorithms take a vectoof n RSS readings to (or from) landmarks for the
node to be localized. Note thatcorresponds to a point iniadimensional signal space [22].
Under normal conditions, the RSS vectors obtained from tiysipal positions in a floor form a
surface$ in then-dimensional signal space; we can think of this surface agcging ‘valid’
points in signal space. Due to measurement noise, multigffhts, and unknown biases,
will fluctuate around this idealized RSS surface.

A localization attacker would perturb the correcto produce a corrupted n-dimensional
RSS vectors’. In signal spaces’ will be moved away from the ideal surface constructed
by the correct RSS vectors. The stronger the attack, the filalg the vectors’ will be
distant from the RSS surface. We thus choose the minimurardistto the surfacg, i.e.

D, = min{||s’ — &/|| : wheres’ € S}, as the test statistic for signal strength based attack
detection. The key advantage of this approach is that thelattetection is independent of the
localization algorithms and can be performed before thelipation process.

Although it is possible to devise a statistical model for based on models for normal
measurement errors, in this section we shall take a diffempproach and apply empirical

methodologies from training data to determine threshaddsléfining the critical region.

3.5.2 Finding Thresholds

Choosing an appropriate threshaldvill allow the detection scheme to be robust to false de-
tections. In order to obtain the thresholds, we don’t neddhtiw the exact RSS surface in the
signal space (in practice, it is hard to determine and etchibscontinuities due to wall bound-
aries). Instead, we can obtain the thresholds through @maptraining. During the offline

phase, we can collect the RSS vectors for a set of known positiver the floor and construct
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a radio map. During the localization phase, we get an obdergetors°s, and we can then
determine whether the®?s is being attacked by calculating th2, using the pre-constructed
radio map.

We define that if

the signal strength readings are under attack. We use thibdi®n of the training data to help
decide on the thresholds. Figure 3.5 (a) shows the CDF dbtha signal space. We found that
the curve ofD; shifted to the right under signal strength attacks, espeda@ larger attacks,
thereby suggesting that we can u3gas a test statistic for detecting attacks, and also that we

can use the non-attacked CDF to obtaifor a givena value.

3.5.3 Experimental Evaluation

We next present the evaluation of the effectiveness of usimgmum distanceD, for attack
detection. Figure 3.6 presents the Detection Rate undfareift threshold (TH) levels as a
function of signal strength attacks for both the 802.11 ded802.15.4 networks in CoRE and
the 802.11 network in the Industrial Lab. Figure 3.5 (b) is dorresponding ROC curves un-
der signal attenuation attacks for the 802.11 network in EJdRe found that, in general, the
effectiveness of the attack detection scheme is similarsadhe different networks and build-
ings. Interestingly, we found that the performance of thacktdetection scheme under signal
amplification attacks is uniformly better than those fomsilgattenuation attacks, although the
shapes of the DR curves are similar. Because of the highectitat rates under amplification
attacks, we do not present additional amplification resunlthe remainder of the chapter. All
these results are highly encouraging because they show etliods are quite general and do
not depend on a specific network or environment.

Further, we observed that the DR under the 802.15.4 netwo@oRE outperformed the
DR under the 802.11 networks in both CoRE and Industrial Labtlie signal attenuation
attacks as well as the signal amplification attacks. Focltstrengths of 15dB or larger, the
DR in the 802.15.4 network is over 95% and equals 100% whewxlatteverity reaches 20dB

and larger. We believe that the better landmark placemenodalization [20] of the 802.15.4
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network can account for its higher detection rates, althdugher investigation of this effect

is required.
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3.6 Other Test Statistics

In this section, we examine algorithm-specific test siatistwhich use properties specific to
a particular localization algorithm. We have chosen a sgmtative set of diverse algorithms.
For the multilateration category, we investigate the NLge&thm, while for signal strength
based algorithms, we study both Area Based Probability (Ad@fél Bayesian Networks (BN)

algorithms. Detailed descriptions of these can be foun@in37,52].

3.6.1 Nonlinear Least Squares (NLS)

As presented in Section 3.4, NLS is a multilateration atpamithat tries to satisfy the condition
shown in Equation (3.2). The estimateid ¢) is the solution that minimizes the Sum of Squared

Errors&2:

= [V (@i —2)2+ (v — 9)> — di]*. (3.17)

=1
We define a test statisti€ = v/£2 because will likely increase under the attack. The CDF
of £ presented in Figure 3.7 (a) confirms that therows rapidly with the attack severity.
Figure 3.7 (b) and Figure 3.8 show that the performance athttietection when using for
the 802.11 network in CoRE is comparable to that using redsda Section 3.4. The thresholds

are also obtained from training.

3.6.2 Area Based Probability (ABP)

Turning to signal strength based algorithms, ABP is an besed algorithm that uses Bayes’
Rule to return an area which has the highest likelihood ofwsap the true location [27]. ABP
divides the floor into a set of tiles. The total likelihood thiae wireless node resides at each

tile is calculated using:
=]~ (3.18)
i=1

where n is the total number of landmarks aRdis the likelihood of observing the measured
RSS reading at landmaikwhich is usually modeled as a Gaussian random variable. dthak t
likelihood is calculated at each tile, and the returnedtiocaestimation is either a region whose

likelihood is above a certain level, or is the tile with thexamaum likelihood.
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When under attack, the corrupted RSS readings reduce trod Bletly positions on the
floor to localize a node. We found that the highest tile-itkebd denoted a&kelihood,q:
decreases significantly under attack, as well as the sumeodlikblihoods over all the tiles,
likelihoodgy.m,. We explored botHikelihoods,,, andlikelihood,,., as test statistics. The
thresholds are learned from the training data by taking #gative log of the values of the
highest likelihood and the sum of the likelihoods.

The effectiveness of usingkelihoods,,, andlikelihood,,,, for attack detection in ABP are
presented in Figure 3.9 and Figure 3.10. We found that ukeghoods,,, under threshold
equal to 2 had better performance than others in detectiggtlattacks, but on the other hand

resulted in slightly higher false positive rates around 7%.
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3.6.3 Bayesian Networks (BN)

Another representative signal strength based algorithi, UBilizes Bayesian networks [52].
With Bayesian statistical inference, BN predicts the philitgt distribution of the unknown
positions. BN uses a Monte-Carlo sampling technique (Gsabspling) to compute the full
joint-probability distribution for not just the positioroordinates, but also for every random
variable in the Bayesian network. Without an attack, thetrdmmion from each landmark
to the full joint-probability distribution is almost unif;m. Under an attack, we found that
the contribution from each landmark can become signifigareitiuced as the attack severity
increases. Thus, we can use the fraction of contributiohdqgdint probability as a test statistic
in BN.

Another method we explored is to use the probability likedii because the conditional
probability distribution of the coordinates in BN relies tive prior and the likelihood. We
observed that under an attack, the value of the likelihoadime significantly smaller. During
the sampling process, the calculation of the likelihoodsitbe same approach as in Equation
(3.18). Because the absolute value of the likelihood is gemgll, we take the negative log of
the likelihood and use it as a test statistic for attack dietedn BN.

Figure 3.11 shows the effectiveness of using the fractioroafribution and the likelihood
for attack detection in BN. The detection rates are over 90f@mftack strength of 20dB or
larger. The false positive rates are about 10%. Compariaglisolute performance of these
two methods with the other schemes we proposed in this ahdpéegperformance of these two

methods is qualitatively worse.

3.7 Discussion

Comparing all of our detection schemes, Figure 3.12 shoa®®R as a function of the signal
attenuation attacks for the 802.11 network in the CoRE mgldSurprisingly, we found that the
performance of all the schemes provided qualitatively Isindetection rates, although utilizing
the residuals in LLS and the sum of likelihoods in ABP slightutperformed the others, while
using the fraction of contribution and the likelihood in BNderperformed the others.

Based on these similar performance characteristics, @hiargageous to use the minimum
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distance in the signal spaé, for signal strength based algorithms. Since the attaclctiete
can be performed prior to the localization process and tesiglis in localization computation
cost savings under attack. Additionally, the attack daagberformance under the 802.15.4
network when using); outperforms the 802.11 network with 100% detection rateldaye
attacks as shown in Figure 3.6.

Moving to examine the relationship between attack detectiod localization error, Fig-
ure 3.13 shows the DR when using residuals in LLS for attat&atien, and the localization
errors under the corresponding signal attacks with diffelecalization algorithms. The figure

shows that detection rates are more than 90% for attackgstregual to or greater than 15dB,
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and at this attack strength the average localization esrabout 35ft.

The above result is quite encouraging, as it shows that aokatt cannot cause gross local-
ization errors without there being a very high probabilifydetection (¢95%). In the case of
RSS, with mean errors of 10-15 ft [27], an attacker can nosea@urors of about 2-3 times over
the average error without a very high probability of detaetiEven for detection rates as low

as 50%, the attacker’s position error is limited to aboutt20 f

3.8 Conclusion

In this chapter, we analyzed the problem of detecting ngptographic attacks on wireless lo-
calization. We proposed a theoretical foundation by foating attack detection as a statistical
significance testing problem. We then concentrated on tasstics for two broad localiza-
tion approaches: multilateration and signal strength.nraltilateration that uses Linear Least
Squares, we derived a closed-form representation for taekatletector. Further, for local-
ization schemes that employ signal strength, we showedbthatilizing the signal strength
as a common feature, the minimum Euclidean distance in tirakspace can be used as a
test statistic for attack detection independent of thelipa@on process. Further, we derived
additional test statistics for a selection of represergdticalization algorithms.

We studied the effectiveness and generality of our attatéctien schemes using a trace-
driven evaluation involving both an 802.11 (WiFi) networkdaan 802.15.4 (ZigBee) network

in two real office buildings. We evaluated the performancewfattack detection schemes in
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terms of detection rates and receiver operating charatitedurves. Our experimental results
provide strong evidence of the effectiveness of our attat&alion schemes with high detection
rates, over 95% and low false positive rates, often below Bds0, our approach is generic
across a diverse set of algorithms, networks, and buildingerestingly, we found that the
performance of the different attack detection schemes ame similar than different. This
result shows that different localization systems havelainzittack detection capabilities, and
consequently that system designers can focus on usingithlgsrthat provide the highest
localization accuracy rather than having to tradeoff pasinccuracy against attack detection
abilities.

After a localization attack is detected in a wireless nekwtie next important and chal-
lenging step is to localize the positions of the adversaaiesd further to eliminate the attack
from the network. In the next chaper, we illustrate this ifigdher by examining the appli-
cability of localization methods to locate an adversantipigating in a spoofing attack. A
spoofing attack is an attack where the attacker forges it#ifgleand masquerades as another
device, or even creates multiple illegitimate identitidgdthough the identity of a node can be
verified through cryptographic authentication, authextikim is not always desirable or possible
because it requires key management and additional infidste overhead. We will take a dif-
ferent approach by using the physical properties of thersidinal and propose a scheme using
K-means cluster analysis for both detecting spoofing astaskwell as localizing the positions

of the adversaries without adding any overhead to the veisalevices and sensor nodes.
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Chapter 4

Detecting and Localizing Identity-based Spoofing Attacks

4.1 Introduction

Due to the openness of wireless and sensor networks, thegpeeially vulnerable to spoofing
attacks where an attacker forges its identity to masquesadmother device, or even creates
multiple illegitimate identities. Spoofing attacks are @@es threat as they represent a form
of identity compromise and can facilitate a variety of ti@ffijection attacks, such as evil twin
access point attacks. It is thus desirable to detect thepcesof spoofing and eliminate them
from the network.

The traditional approach to address spoofing attacks ispty apyptographic authentica-
tion. However, authentication requires additional infirastural overhead and computational
power associated with distributing, and maintaining argpaphic keys. Due to the limited
power and resources available to the wireless devices arsbisaodes, it is not always pos-
sible to deploy authentication. In addition, key managenuéien incurs significant human
management costs on the network. In this chapter, we takieaetit approach by using the
physical properties associated with wireless transmmssio detect spoofing. Specifically, we
propose a scheme for both detecting spoofing attacks, assvieltalizing the positions of the
adversaries performing the attacks. Our approach utitrefReceived Signal Strength (RSS)
measured across a set of access points to perform spoofiegtidetand localization. Our
scheme does not add any overhead to the wireless devicesrsut siodes.

By analyzing the RSS from each MAC address using K-meanseclatgorithm, we have
found that the distance between the centroids in signalksigacgood test statistic for effective
attack detection. We then describe how we integrated oureldns spoofing detector into a
real-time indoor localization system. Our K-means appndageneral in that it can be applied

to almost all RSS-based localization algorithms. For twmga algorithms, we show that
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using the centroids of the clusters in signal space as thé topthe localization system, the
positions of the attackers can be localized with the sanagivel estimation errors as under
normal conditions.

To evaluate the effectiveness of our spoofing detector aadkatocalizer, we conducted
experiments using both an 802.11 network as well as an 8@2nEbdwork in a real office build-
ing environment. In particular, we have built an indoor la@ion system that can localize any
transmitting devices on the floor in real-time. We evaluatexiperformance of the K-means
spoofing detector using detection rates and receiver dpgraharacteristic curve. We have
found that our spoofing detector is highly effective with 098% detection rates and under 5%
false positive rates.

Further, we observed that, when using the centroids in bgpace, a broad family of lo-
calization algorithms achieve the same performance as wW®nuse the averaged RSS in
traditional localization attempts. Our experimental fessshow that the distance between the
localized results of the spoofing node and the original ned#rectly proportional to the true
distance between the two nodes, thereby providing stroiaigeee of the effectiveness of both
our spoofing detection scheme as well as our approach ofdowathe positions of the adver-
saries.

The rest of the chapter is organized as follows. In Secti@nwe study the feasibility of
spoofing attacks and their impacts, and discuss our expetdainmethodologies. We formulate
the spoofing attack detection problem and propose K-mearafisg detector in Section 4.3.
We introduce the real-time localization system and prekemt to find the positions of the
attackers in Section 4.4. Further, we provide a discussid@®ection 4.5. Finally, we conclude

our work in Section 4.6.

4.2 Feasibility of Attacks

In this section we provide a brief overview of spoofing attaakd their impact. We then discuss

the experimental methodology that we use to evaluate ounapp of spoofing detection.
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4.2.1 Spoofing Attacks

Due to the open-nature of the wireless medium, it is easydeeigaries to monitor communi-
cations to find the layer-2 Media Access Control (MAC) addessof the other entities. Recall
that the MAC address is typically used as a unique identiieafl the nodes on the network.
Further, for most commodity wireless devices, attackenseasily forge their MAC address in
order to masquerade as another transmitter. As a resudt #gitackers appear to the network as
if they are a different device. Such spoofing attacks can haerious impact on the network
performance as well as facilitate many forms of securitykmeases, such as attacks on access
control mechanisms in access points [10], and denial-oficse through a deauthentication
attack [15]. A broad survey of possible spoofing attacks eafobnd in [29,47].

To address potential spoofing attacks, the conventionabapp uses authentication. How-
ever, the application of authentication requires religkdg distribution, management, and
maintenance mechanisms. It is not always desirable to agulyentication because of its
infrastructural, computational, and management overhéacther, cryptographic methods are
susceptible to node compromise— a serious concern as me$tss nodes are easily accessi-
ble, allowing their memory to be easily scanned.

It is desirable to use properties that cannot be undermived when nodes are compro-
mised. We propose to use received signal strength (RSSypeny associated with the trans-
mission and reception of communication (and hence nottetia cryptography), as the basis
for detecting spoofing. Employing RSS as a means to detectfisgowill not require any
additional cost to the wireless devices themselves— théynerely use their existing commu-
nication methods, while the wireless network will use aedibn of base stations to monitor

received signal strength for the potential of spoofing.

4.2.2 Experimental Methodology

In order to evaluate the effectiveness of our spoofing deteatechanisms, which we describe
in the next section, we have conducted experiments usirtg &00802.11 (WiFi) network as
well as an 802.15.4 (ZigBee) network on the 3rd floor of the @oter Science Department at

Rutgers University. The floor size is 200x80ft (160p¢¥). Figure 4.1 (a) shows the 802.11
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Figure 4.1: Landmark setups and testing locations in twooeds.

(WiFi) network with 4 landmarks deployed to maximize sigs@iength coverage, as shown in
red squares. The 802.15.4 (ZigBee) network is presentedyird-3.2 (b) with 4 landmarks
distributed in a squared setup in order to achieve optimalrteark placement [20] as shown
in red triangles. The small blue dots in the floor map are tleatlons used for spoofing and
localization tests.

For the 802.15.4 network, we used 300 packet-level RSS sanfipt each of the 100 lo-
cations. We utilized the actual RSS values attached to eackep We have 286 locations in
the 802.11 deployment. Unlike the 802.15.4 data, the RS&sware partially synthetic. We
had access to only the mean RSS at each location, but to pediar experiments we needed
an RSS value per packet. To generate such data for 200 sadydatkets at each location, we

used random draws from a normal distribution. We used thesured RSS mean for the mean
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of the distribution. For the standard deviation, we comgutes difference in the RSS from
a fitted signal to distance function, and then calculatedsthedard deviation of the distribu-
tion from these differences over all locations. To keep @sults conservative, we took the
maximum deviation over all landmarks, which we found to bd35 d

Much work has gone into characterizing the distribution&R8fS readings indoors. It has
been shown that characterizing the per-location RSShligions as normal, although not often
the most accurate characterization, still results in ttst balance between algorithmic usability
and the resulting localization error [27, 33].

In addition, we built a real-time localization system toimstte the positions of both the
original nodes and the spoofing nodes. We randomly seleciatsput of the above locations
as the training data for use by the localization algorithfar the 802.11 network, the size of
the training data is 115 locations, while for the 802.15.8waek, the size of the training data
is 70 locations. The detailed description of our localmatsystem is presented in Section 4.4.

To test our approach’s ability to detect spoofing, we rangochlose a point pair on the
floor and treated one point as the position of the originalen@hd the other as the position
of the spoofing node. We ran the spoofing test through all tissiple combinations of point
pairs on the floor using all the testing locations in both meks. There are total 14535 pairs
for the 802.11 network and 4371 pairs for the 802.15.4 ndkwbhe experimental results will

be presented in the following sections for the spoofing detend the attack localizer.

4.3 Attack Detector

In this section we propose our spoofing attack detector. \§eféirmulate the spoofing attack
detection problem as one using classical statisticalnigstNext, we describe the test statis-
tic for spoofing detection. We then introduce the metricsvaueate the effectiveness of our

approach. Finally, we present our experimental results.

4.3.1 Formulation of Spoofing Attack Detection

RSS is widely available in deployed wireless communicatietworks and its values are closely

correlated with location in physical space. In addition,S’S a common physical property
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used by a widely diverse set of localization algorithms PIZ2,60, 69]. In spite of its several
meter-level localization accuracy, using RSS is an aftraetpproach because it can re-use the
existing wireless infrastructure. We thus derive a spoofititgck detector utilizing properties
of the RSS.

The goal of the spoofing detector is to identify the presericespoofing attack. We for-
mulate the spoofing attack detection as a statistical sigme test, where the null hypothesis
is:

Ho : normal (no attack)
In significance testing, a test statisfitis used to evaluate whether observed data belongs to
the null-hypothesis or not. If the observed test statidtft®s differs significantly from the
hypothesized values, the null hypothesis is rejected andlaimm the presence of a spoofing

attack.

4.3.2 Test Statistic for Spoofing Detection

Although affected by random noise, environmental bias, raaottipath effects, the RSS value
vector,s = {s1, s2, ..., } (n is the number of landmarks/access points(APSs)), is clastdyed
with the transmitter’s physical location and is determibgdhe distance to the landmarks [27].
The RSS readings at different locations in physical spaealistinctive. Each vectas corre-
sponds to a point in a-dimensional signal space [22]. When there is no spoofingedch
MAC address, the sequence of RSS sample vectors will be tdosach other, and will fluc-
tuate around a mean vector. However, under a spoofing attagte is more than one node
at different physical locations claiming the same MAC addreAs a result, the RSS sample
readings from the attacked MAC address will be mixed with R&@lings from at least one dif-
ferent location. Based on the properties of the signal gtterthe RSS readings from the same
physical location will belong to the same cluster pointdiert-dimensional signal space, while
the RSS readings from different locations in the physicakspshould form different clusters
in signal space.

This observation suggests that we may conduct K-meanseclastlysis [34] on the RSS

readings from each MAC address in order to identify spoofitighere areM RSS sample
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readings for a MAC address, the K-means clustering algaripfartitions M sample points
into K disjoint subsetsS; containingM; sample points so as to minimize the sum-of-squares

criterion:

K
Jmin - Z Z Hsm - ,uj”2 (41)

7=1 SmESj
wheresy, is a RSS vector representing thgh sample point ang; is the geometric centroid

of the sample points fof; in signal space. Under normal conditions, the distance dxtw
the centroids should be close to each other since there isabponly one cluster. Under
a spoofing attack, however, the distance between the cdatimilarger as the centroids are
derived from the different RSS clusters associated witfedifit locations in physical space.

We thus choose the distance between two centroids as tretatsticT for spoofing detection,

D.= H:uz - N]H (42)

with 4, j € {1,2..K}. Next, we will use empirical methodologies from the coleettata set to
determine thresholds for defining the critical region fag #ignificance testing. To illustrate,
we use the following definitiongn original noder,,, is referred to as the wireless device with
the legitimate MAC address, whikespoofing nodé>,,, s is referred to as the wireless device
that is forging its identity and masquerading as anotheicdew here can be multiple spoofing
nodes of the same MAC address.

Note that our K-means spoofing detector can handle paclats different transmission
power levels. If an attacker sends packets at a differenstnission power level from the
original node with the same MAC address, there will be twdinlis RSS clusters in signal
space. Thus, the spoofing attack will be detected based odigtamce of the two centroids

obtained from the RSS clusters.

4.3.3 Determining Thresholds

The appropriate threshold will allow the spoofing detector to be robust to false detati

We can determine the thresholds through empirical trainibgiring the off line phase, we
can collect the RSS readings for a set of known locations thwefloor and obtain the distance
between two centroids in signal space for each point pairud&ghe distribution of the training

information to determine the threshotd At run time, based on the RSS sample readings for
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Figure 4.2: Cumulative Distribution Function (CDF) bf. in signal space

a MAC address, we can calculate the observed vﬁlgﬁé. Our condition for declaring that a

MAC address is under a spoofing attack is:
D% > 1. (4.3)

Figure 4.2 (a) and (b) show the CDF of the in signal space for both the 802.11 network and
the 802.15.4 network. We found that the curvdrfshifted greatly to the right under spoofing
attacks, thereby suggesting that usifig as a test statistic is an effective way for detecting

spoofing attacks.

4.3.4 Performance Metrics

In order to evaluate the performance of our spoofing attatkctir using K-means cluster

analysis, we use the following metrics:
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Network, Threshold| Detection Rate| False Positive Rate
802.11,r = 5.5dB 0.9937 0.0819
802.11,r =5.7dB 0.9920 0.0351
802.11,7 = 6dB 0.9884 0
802.15.4;- =8.2dB 0.9806 0.0957
802.15.4;- = 10dB 0.9664 0.0426
802.15.4;7-=11dB 0.9577 0

Table 4.1: Detection rate and false positive rate of the fipgp@ttack detector.

Detection Rate and False Positive RateA spoofing attack will cause the significance test
to rejectHy. We are thus interested in the statistical characterizatiothe attack detection
attempts over all the possible spoofing attacks on the fldue. detection rate is defined as the
percentage of spoofing attack attempts that are determinieel inder attack. Note that, when
the spoofing attack is present, the detection rate corresporthe probability of detectioR,;,
while under normal (non-attack) conditions it correspotadbie probability of declaring a false
positive P,. The detection rate and false positive rate vary underréiffiethresholds.

Receiver Operating Characteristic (ROC) curve: To evaluate an attack detection scheme
we want to study the false positive rafe, and probability of detectio; together. The ROC
curve is a plot of attack detection accuracy against the fadsitive rate. It can be obtained by
varying the detection thresholds. The ROC curve providdasegtdneans to measure the trade

off between false-positives and correct detections.

4.3.5 Experimental Evaluation

In this section we present the evaluation results of theceffieness of the spoofing attack
detector. Table 4.1 presents the detection rate and fasétveaate for both the 802.11 network
and the 802.15.4 network under different threshold sedtirithe corresponding ROC curves
are displayed in Figure 4.3. The results are encouragingisahat for false positive rates
less than 10%, the detection rates are above 95%. Even whdalgle positive rate goes to
zero, the detection rate is still more than 95% for both 8021id 802.15.4 networks.

We further study how likely a spoofing node can be detectedibgmoofing attack detector
when it is at varying distances from the original node in ptaisspace. Figure 4.4 presents the
detection rate as a function of the distance between thdiggomwde and the original node. We

found that the further awa,,. s is from F,,,, the higher the detection rate becomes. For the
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Figure 4.3: Receiver Operating Characteristic (ROC) curve

802.11 network, the detection rate goes to over 90% whgp,  is about 13 feet away from
P,.4 underr equals to 5.5dB. While for the 802.15.4 network, the dedectate is above 90%
when the distance betweéh,,,; andF,,, is about 20 feet by setting threshatdo 9dB. This

is in line with the average localization estimation errosgg RSS [27] which are about 10-15
feet. When the nodes are less than 10-15 feet apart, theyahaigh likelihood of generating
similar RSS readings, and thus the spoofing detection rigdoilow 90%, but still greater than
60%. However, wherP,,,,; moves closer td’,,,, the attacker also increases the probability
to expose itself. The detection rate goes to 100% when thafisgonode is about 45-50 feet

away from the original node.
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Figure 4.4: Detection rate as a function of the distance éetwthe spoofing node and the
original node.

4.4 Localizing Adversaries

If the spoofing attack is determined to be present by the sppafitack detector, we want
to localize the adversaries and further to eliminate thackérs from the network. In this
section we present a real-time localization system thatbeansed to locate the positions of
the attackers. We then describe the localization algosthised to estimate the adversaries’

position. The experimental results are presented to eteatha effectiveness of our approach.

4.4.1 Localization System

We have developed a general-purpose localization systgertorm real-time indoor position-

ing. The detailed system architecture is presented in @h&pHere we provide a brief system
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overview. This system is designed with fully distributechdtionality and easy to plug-in lo-
calization algorithms. It is built around 4 logical compai® Transmitter, Landmark, Server,
and Solver. The system architecture is shown in Figure 6Chispter 6.

Transmitter: Any device that transmits packets can be localized. Oftenatbplication
code does not need to be altered on a sensor node in ordeatizé¢oit.

Landmark: The Landmark component listens to the packet traffic andaetdrthe RSS
reading for each transmitter. It then forwards the RSS im#iion to the Server component.
The Landmark component is stateless and is usually deplmyedch landmark or access point
with known locations.

Server: A centralized server collects RSS information from all themtimark components.
The spoofing detection is performed at the Server compon€&he Server summarizes the
RSS information such as averaging or clustering, then fatsvéhe information to the Solver
component for localization estimation.

Solver: A Solver takes the input from the Server, performs the laatilbn task by utilizing
the localization algorithms plugged in, and returns thalization results back to the Server.
There are multiple Solver instances available and eacheBoan localize multiple transmitters
simultaneously.

During the localization process, the following steps wikké place:

1. A Transmitter sends a packet. Some number of Landmarles\abthe packet and record

the RSS.
2. Each Landmark forwards the observed RSS from the tratesriotthe Server.

3. The Server collects the complete RSS vector for the tritesrand sends the information

to a Solver instance for location estimation.

4. The Solver instance performs localization and returesctiordinates of the transmitter

back to the Server.

If there is a need to localize hundreds of transmitters asémee time, the server can per-
form load balancing among the different solver instancéxs @entralized localization solution

also makes enforcing contracts and privacy policies matdble.
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Figure 4.5: Relationships among the original node, the fapgmode, and their location esti-
mation through localization system.

4.4.2 Attack Localizer

When our spoofing detector has identified an attack for a MA@ exs$, the centroids returned
by the K-means clustering analysis in signal space can ke lmgs¢he server and sent to the
solver for location estimation. The returned positionsutidoe the location estimate for the
original node and the spoofing nodes in physical space. Usingation on the testing floor
as an example, Figure 4.5 shows the relationship among ij@arnodeF,,,, the location
estimation of the original nodg,,,, the spoofing nodé,,, ¢, and the localized spoofing node
POSItioN Ly, -

In order to show the generality of our localization systemlézating the spoofing nodes,
we have chosen two representative localization algoritheisg signal strength from point-
based algorithms and area-based algorithms.

RADAR: Point-based methods return an estimated point as a lotafizasult. A primary
example of a point-based method is the RADAR scheme [12].ADRR, during the off line
phase, a mobile transmitter with known position broaddastgons periodically, and the RSS
readings are measured at a set of landmarks. Collectinghigthe averaged RSS readings
from each of the landmarks for a set of known locations prewid radio map. At runtime,
localization is performed by measuring a transmitter's R6&ach landmark, and the vector of
RSS values is compared to the radio map. The record in the mdp whose signal strength

vector is closest in the Euclidean sense to the observed B&&rvs declared to correspond to
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the location of the transmitter. In this work, instead ohgsihe averaged RSS in the traditional
approach, we use the RSS centroids obtained from the K-nwhastgring algorithm as the
observed RSS vector for localizing a MAC address.

Area Based Probability (ABP): Area-based algorithms return a most likely area in which
the true location resides. One major advantage of areatlasthods compared to point-based
methods is that they return a region, which has an incredsaadce of capturing the transmit-
ter's true location. ABP returns an area, a set of tiles oriltde, bounded by a probability that
the transmitter is within the returned area [27]. ABP assuthe distribution of RSS for each
landmark follows a Gaussian distribution. The Gaussiadaanvariable from each landmark
is independent. ABP then computes the probability of thesimatter being at each tilg; on

the floor using Bayes' rule:

P(s) '

P(Lls) = 2 4.9)

Given that the transmitter must reside at exactly one titesfyang Zle P(L;ls) = 1,
ABP normalizes the probability and returns the most likéstup to its confidence.
Both RADAR and ABP are employed in our experiments to loeatize positions of the

attackers.

4.4.3 Experimental Evaluation

In order to evaluate the effectiveness of our localizatipstem in finding the locations of the
attackers, we are interested in the following performanegios:

Localization Error CDF: We obtain the cumulative distribution function (CDF) of the
location estimation error from all the localization attesypncluding both the original nodes
and the spoofing nodes. We then compare the error CDF of alirihimal nodes to that of all
the possible spoofing nodes on the floor. For area-basedthiger we also report CDFs of the
minimum and maximum error. For a given localization atterttptse are points in the returned
area that are closest to and furthest from the true location.

Relationship between the true and estimated distancesThe relationship between the
true distance of the spoofing node to the original np#g., — Ps,00¢|| and the distance of the

location estimate of the spoofing node to that of the origiale || L, — Lspoos|| €Valuates
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how accurate our attack localizer can report the positidnsoth the original node and the
attackers.

We first present the statistical characterization of thatioo estimation errors. Figure 4.6
presents the localization error CDF of the original noded #re spoofing nodes for both
RADAR and ABP in the 802.11 network as well as the 802.15.4vot. For the area-based
algorithm, the median tile errat BP — med is presented, as well as the minimum and maxi-
mum tile errors ABP — min and ABP — max. We found that the location estimation errors
from using the RSS centroids in signal space are about the aamasing averaged RSS as the
input for localization algorithms [27]. Comparing to the28D1 network, the localization per-
formance in the 802.15.4 network is qualitatively betterfoth RADAR and ABP algorithms.
This is because the landmark placement in the 802.15.4 nlefa/aloser to that predicted by
the optimal and error minimizing placement algorithm ascdbed in [20].

More importantly, we observed that the localization perfance of the original nodes is
gualitatively the same as that of the spoofing nodes. Thiglig gncouraging as the similar
performance is strong evidence that using the centroidasired from the K-means cluster
analysis is effective in both identifying the spoofing ateas well as localizing the attackers.

The challenge in localizing the positions of the attackeisea because the system does not
know the positions of either the original MAC address or thdewith the masquerading MAC.
Thus, we would like to examine how accurate the localizasigstem can estimate the distance
betweenp,,, and Py, Figure 4.7 displays the relationship betwegh,,.; — Lspo0f|| and
| Porg — Pspoo|| @cross different localization algorithms and networkse Blue dots represent
the cases of the detected spoofing attacks. While the resagasdicate the spoofing attack has
not been detected by the K-means spoofing detector. Congpaith Figure 4.4, i.e. the de-
tection rate as a function of the distance betw&gr and P, the results of the undetected
spoofing attack cases represented by the red crosses ame imith the results in Figure 4.4,
the spoofing attacks are 100% detected Wher, — Ps,00¢|| €quals to or is greater than about
50 feet.

Further, the relationship betweeL,.; — Lspoos|| and||Porg — Pspoos|| is along the 45
degree straight line. This means that,., — Lspoo || is directly proportional to| P,y — Pspoor||

and indicates that our localization system is highly effecfor localizing the attackers. At a
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Figure 4.7: Relationship between the true distance andstimated distance for the original
node and the spoofing node across localization algorithmsatworks.

fixed distance value of P,y — Pspoor||, the values of| Ly, — Lspoof|| fluctuate around the
true distance value. The fluctuation reflects the locabragrrors of bothP,,., and P, .
The larger the| P, — Pspoof| IS, the smaller the fluctuation OfL,,, — Lepoof|| beCOMes, at
about 10 feet maximum. This means that if the attacker iedarway from the original node,
it is extremely likely that the K-means spoofing detector datect it. In addition, our attack
localizer can find the attacker’s position and estimate tsadce from the original node to the

attacker at about 10 to 20 feet maximum error.
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Figure 4.8: Packet-level localization: relationship bedw the true distance and the estimated
distance for the original node and the spoofing node wheg&XDAR in the 802.11 network.

4.5 Discussion

So far we have conducted K-means cluster analysis in sigaales Our real-time localization
system also inspired us to explore packet-level locabmatit the server, which means local-
ization is performed for each packet received at the lanksnarhe server utilizes each RSS
reading vector for localization. Over a certain time per{@ example, 60 seconds), for a
MAC address there will be a cluster of location estimateshigsjral space. Intuitively, we
think that, during a spoofing attack there will be distinetlecation clusters around the origi-
nal node and the spoofing nodes in physical space. Our oruitas that the clustering results
from the per-packet localization would allow the detectin localization of attackers in one
step.

However, we found that the performance of clustering palekatl localization results for
spoofing detection is not as effective as deriving the calgnn signal space. The relationship
between||Py.g — Pspoor|| @nd||Lorg — Lspoos|| is Shown in Figure 4.8. Although it also has
a trend along the 45 degree line, it shows more uncertaiatwsy the line. Therefore, we
believe that given a set of RSS reading samples for a MAC addreorking with the signal
strength directly preserves the basic properties of thersignal, and this in turn is more
closely correlated with the physical location, and thuskiar with the RSS values directly

better reveals the presence of the spoofing attacks.
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4.6 Conclusion

In this chapter, we proposed a method for detecting spoofiagks as well as localizing the
adversaries in wireless and sensor networks. In contrastiddional identity-oriented authen-
tication methods, our RSS based approach does not addoaddlibverhead to the wireless
devices and sensor nodes. We formulated the spoofing aetqmtbblem as a classical sta-
tistical significance testing problem. We then utilized Kxeneans cluster analysis to derive
the test statistic. Further, we have built a real-time laedion system and integrated our K-
means spoofing detector into the system to locate the pasitibthe attackers and as a result
to eliminate the adversaries from the network.

We studied the effectiveness and generality of our spoofatgator and attacker localizer
in both an 802.11 (WiFi) network and an 802.15.4 (ZigBeeywoek in a real office building
environment. The performance of the K-means spoofing detécevaluated in terms of de-
tection rates and receiver operating characteristic sur@ur spoofing detector has achieved
high detection rates, over 95% and low false positive rdtekaw 5%. When locating the po-
sitions of the attackers, we have utilized both the poirgedaand area-based algorithms in our
real-time localization system. We found that the perforosamf the system when localizing the
adversaries using the results of K-means cluster analgesabmut the same as localizing under
normal conditions. Usually the distance between the spgaofoue and the original node can
be estimated with median error of 10 feet. Our method is dgemreross different localization
algorithms and networks. Therefore, our experimentalltgeguwovide strong evidence of the
effectiveness of our approach in detecting the spoofingkatand localizing the positions of
the adversaries.

During the course of the security analysis for localizatgstems, we found that the land-
mark placement plays an important role on localizationgrertince. While most research has
focused on improving the localization algorithm, we took thewpoint that it is perhaps just
as important to improve the deployment of the localizatipstem. In the next chapter, we will
investigate the impact of landmark placement on localiratierformance using a combination

of analytic and experimental analysis.



88

Chapter 5

Performance Improvement Using Optimal Landmark Placement

5.1 Introduction

Although recent efforts have resulted in a plethora of méshim localize sensor nodes, lit-
tle work to date has systematically investigated how thegstgent of the nodes with known
locations, odandmarks impacts localization performance. In this chapter we stigate the
impact of landmark placement on localization performargiagia combination of analytic and
experimental analysis.

Our analytic approach focuses on the Least Squares (LShithlgo and in particular, a
variant we call Linear Least Squares (LLS). Our analysisersnon the algorithm for two
reasons. First, LS is a widely used multilateration al¢ponit as is evidenced by its application
as a step in many recent localization research works [234289, 54]. Second, mathematical
analysis of LLS is tractable, resulting in equations witbseld-form solutions. For a myriad
of other algorithms, closed form solutions that descriteeltitalization error as a function of
landmark placement are not tractable and as a result Helgéstrch strategies must be used to
find an optimal placement, as was done in [13].

Our analysis of landmark placement can find an optimal placgraf landmarks in well-
defined regular regions, thus making it quite suitable faloor localization. The analysis
begins with LLS and places an upper bound of the maximumilkat&n error given a set of
landmark placements. We can show that this upper bound ismzied by a combination of
minimizing the distance estimation error together withe¢haployment of the optimal patterns
for landmark placement.

Using this result, we can compare the maximum error betwegtwo placements. We can

then constrain a search of placements to minimize the mawriemwor. We have developed a
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simple algorithm callednazL — minE algorithm that finds an optimized landmark deployment
for the LLS algorithm.

We show that our placement minimizing the upper bounds of als8 reduces the Holder
parameter for a variety of algorithms. The Holder paramf&g] describes the maximum
change in physical space that can arise from a change inl sigaee. This is strong evidence
that ourmazL — minE algorithm finds a landmark placement that minimizes thergmae to
noise, bias, and measurement error.

Another interesting result of our analysis is that for a $mamber of landmarks, simple
shapes such as equilateral triangles and squares resui#tcenpents with better localization
performance. Interestingly, for higher number of landrnsaske can show that extensions of
shapes with equal sides, e.g. a hexagon, are non-optim#heiR#he simple shapes enclose
one another, for example, two enclosing equilateral tfesmgWe detail these geometries and
describe rule-of-thumb for landmark placement in Secti@ 5

To show the generality of our results, we conducted loctdineexperiments with both an
802.11 (WiFi) network as well as an 802.15.4 (ZigBee) nekwom real building environment.
For the 802.11 network, we used two ranging modalities, RedeSignal Strength (RSS) to
distance, and Time of Arrival (TOA). In the 802.15.4 netwonle used only RSS-to-distance.

We compared the accuracy of a suite of localization algerithusing landmarks placed
according to our analysis as well as landmarks placed irtippsithat provide good signal
coverage but ignore localization concerns. While we fourad &ll algorithms improved their
performance, over a non-optimal placement for localirative also observed that LS became
competitive with the other algorithms, and that coarsérgich TOA ranging was less accurate
than RSS-based approaches.

The remainder of the chapter is as follows. We provide theritecal analysis in Sec-
tion 5.2. Then Section 5.3 describes the metrics that weaisbdracterize the localization
performance. The investigation of the number of landmarid their positions is provided
in Section 5.4. Section 5.5 presents the experimentaltseaatoss localization algorithms,

networks, and ranging strategies. Finally we conclude ttiGe 2.7.
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5.2 Theoretical Analysis

In this section we first provide background on using LS atbans for localization, and then
describe the LLS variant. We next present our theoreticalyais of an upper bound on the

error, and then discuss outazL — minE placement algorithm.

5.2.1 Background: Localization with LS

To perform localization with LS requires 2 steps: ranging kteration.

Ranging Step: Recent research has seen a host of variants on the ranging-steexam-
ple, in the APS algorithm [54], hop counts are used to esématges. Other approaches are
also possible, [56] used the time-difference of arrivalestn an ultrasound pulse and a radio
packet. In this work, we focus on RSS and TOA as ranging sfiege

Lateration Step: From the estimated distancds and known positionsaf, y;) of the
landmarks, the positionz( y) of the localizing node can be found by findi(g, ) satisfying:

N
(#,9) = argmin ¥ _[\/(w: = 2)? + (i — ) — di]’ (5.1)
=1
where N is the total number of landmarks. We call solving the abowveblam Nonlinear

Least Squaresor NLS. It can be viewed as an optimization problem whereothjective is to
minimize the sum of the error squared.

Solving the NLS problem requires significant complexity asdiifficult to analyze. We
may approximate the NLS solution and linearize the problgnmtsoducing a constraint in the

formulation. We start with théV > 2 equations:

(x1 -2+ (1 —y)? = d
(xg — )2+ (2 —)? = d> (5.2)
(zv —2)’+ (yv —y)? = d}

Now, subtracting the constraint

LS M-+ - == 3 (5.3)
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from both sides, we obtain the following set of linear equiadi

1 Y 1 &
(1 — N;Wi)x"‘(yl - N;yi)y:

1, 1 1

N
SCES WAV ES DWAEICES DD

1=1 =1

(5.4)
1Y 1Y
(zn — N;ri)w-i- (yn — N;yi)y =

L - Ltk - L - @ - LS

2 N N = i YN N Pt Y; N N — /1

The above can be easily solved linearly using the féaxsn= b with:

R AR TR T S AR Y

A= : : (5.5)

EN - E Y YN — = v
and
@ -+ - % 2 vd)
—(d} - § XL, d))
b=- : ) (5.6)
@3-+ 2+ k-2 v?)

—(dy -y Tl d)

Note thatA is described by the coordinates of landmarks only, while represented by
the distances to the landmarks together with the coordinaftéandmarks. We call the above
formulation of the probleniLinear Least Squareor LLS. NLS trades higher computational
complexity for better accuracy. The introduction of the stoaint collapsed the nonlinear prob-
lem into a linear problem, which greatly simplifies the coitgbion needed to arrive at a lo-

cation estimate. In addition to its computational advaesaghe LLS formulation allows for

tractable error analysis, as we shall soon provide.

5.2.2 Error Analysis

Our objective is to minimize the location estimation errdgroduced by LLS. we have matrix

and vectob presented in Equations (5.5) and (5.6). In an ideal sitoaiiving forx = [z, y]”
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is done via

x = (ATA)'ATD (5.7)

However, the estimated distances are impacted by noisg, dnd measurement error. We
express the resulting distance estimation eerar terms ofb with estimated distances aid

with true distances ds = b + e, and hence the localization result is
%= (ATA)'ATD. (5.8)
The location estimation error is thus bounded by
I — x| < [|AT][lell, (5.9)

where the matrixA ™ is the Moore-Penrose pseudo-inverseAoflt can be shown that, under

the 2-norm,

At| = ,%2 wherevy; > v, are the singular values df. This means that for
a certain size on erra# the LS estimation error is stretched l;é;' It can be proved that the
eigenvalues oAT A are the squares of the singular valuesAof Therefore, we can limit our

concern to the eigenvalues Af' A, whereA” A is a matrix of the form:

ATA — a b
b ¢
with:
N L& ,
a = ;(xl v ;xl) (5.10)
N | |
b = ;[(xi TN zi)(Yi — ;yi)] (5.11)
N |
c = Z(yZ N vi)2. (5.12)

Note that a, b and c are only related to the coordinates ofitanks (;, i;). The eigenval-

ues ofAT A can be found as the roots of:

N — (a+c)A+ (ac—b?) = 0.

Thus, we have:
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(a+c)+/(a—c)? + 4b?

A= : :

(5.13)

where the discriminanta — c)? + 4b2, is non-negative.

5.2.3 Deployment Patterns

Our goal in this section is to minimize the total error. Reétiadre are two terms on the right
side of Equation (5.9). Our approach is to choaseandy; so as to make\, (the smaller
eigenvalue) as close to as possible, because this will minimize the first tefd, " ||. Given
the first term is minimized, we then minimize the second teraving minimized the second
term given the first term is minimized is clearly a local miainWe call such a local miniman
optimal deploymentecause no movement of a single landmark can improve thetsund.
However, our piecewise minimization approach still leawpsn a proof that this local minima
is the true minima over all possible landmark positions. ¥&é such a proof as future work.

Returning to minimizing the first terfA "], to minimize\/%, a general strategy would
be to makega — ¢) small or to makeé small or both. Interestingly, this is determined only by
the coordinates of the landmarks.

Then our next task is to find the landmark positions thatfyatis = \,. We found that the
optimal landmark deployment setup follows some simple gmansetric patterns. This makes
it not only possible to achieve but also easy to deploy praliyi Figure 5.1 shows the patterns
for an optimal landmark deployment setup when utilizing 3546, 7, 8 landmarks in the
indoor environment. These patterns consist of squareslataral triangles, or the enclosing
of them. We observe that for higher number of landmarks, xtensions of shapes with equal
sides, e.g. a hexagon, do not satidfy= \,, and thus are not optimal. Instead, simple shapes

that enclose one another present optimal solutions.

5.2.4 Finding an Optimized landmark Deployment

The above discussion dealt with deploying the landmark$&iowmit considering the physical
constraints of the building and, as such, only provide agégeiideline as to the "shape” of the

deployment. Placing the landmarks within a particulardiog requires stretching/shrinking
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Figure 5.1: Patterns for optimal landmark deployments

the deployment shape so that it fits within the confines of thigling. The stretching/shrinking
should be done so as to minimize localization errors.
Recall in Equation (5.9), the location estimation errorlgaontributed byj|e||, and that

b = b + e. The term|le|| is a result of distance estimation errors introduced by irang
We have developed an iterative algorithm, calledxl,. — minF (i.e. maximum lambda and
minimum error), which helps to find the real landmark cooatis given the floor size, number
of landmarks, and the optimal landmark deployment patteigure 5.2 shows the pseudo-code
that implementsnazL—minE. The algorithm first minimize§A * || using geometry, then uses
an iterative search. The search begins with a maximal sigichal pattern (e.g. a square) and
simply keeps reducing the size of the pattern until such m@rgs stop reducing the distance

estimation erroe. We observe the algorithm usually converges very quickihiwia number

of iterations.

5.3 Evaluation Metrics

In this section we describe the three metrics we use thraiighe rest of the paper.
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input floorSize, numO f Landmark
output optimized landmark coordinates

[initialize] get optimal pattern based on geometry
fit optimal pattern into maximum floorsize
generate initial landmark coordinates

calculateA; and )\,

minError = maxNum
thisError = maxNum
loop until thisError > minError
generate random localizing nodes
for each localizing nodbegin
apply random noise or bias
B = b1
end for
.thisError = %\/i—f)
if thisError < minError, minError = thisError
[landmark adjustment] move towards the center of mass one step
end loop
return optimized landmark coordinates

Figure 5.2: The maxL-minE algorithm

Average error: All of our observations are the results of many localizatidals. This
metric takes the average of the distances between thededalésult and the true location over
all trials. In area-based algorithms, as opposed to p@seth ones, the result is a returned area.
To compare these two kinds of algorithms, we use the mediandXyaof the returned area to
the true location to generate a point and then average tligs@ck errors.

Accuracy CDF: We also return the entire cumulative density function (CBFall our
localization attempts. We simply report all attempts inesdrorder, and then normalize the Y
axis by the total number of attempts to obtain a domaifdof]. For area-based algorithms, we
also report CDFs of the minimum and maximum error. For a gattempt, these are points in
the returned area that are closest to and furthest fromuleddcation.

Holder Metrics: In addition to error performance, we are also interestecbim tramat-
ically the localization results can be perturbed by charngesignal strength. Holder metrics

for RSS based localization were introduced in a previouky2]. Intuitively, these metrics
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relate the magnitude of a perturbation to its effect on tlvalleation result. The idea here is
that certain landmark placements can reduce the impactsrafrpations due to noise or bias,
and we should be able to observe these as lower Holder paaame

The Holder parameteHslg for a given placement and algorithm is definedﬁﬁ%g =

122, ()~ L2, (V)]

maXs,v =l

, whereLZlg is the result of a localization algorithig given place-
mentp, with s as a signal strength vector ancs a perturbed vector.

Since the traditional Holder parameter describes the maxi effect a signal perturbation
might have, it is natural to also provide an average-casesunement. We therefore examine
the average-case Holder paramet_éff,g, as well. In both cases, we measure the metrics by sta-
tistical sampling in the case of simulation, or direct cotagion over all localization attempts

for experimentally measured data.

5.4 Landmark Position and Quantity

In this section we investigate the impact of landmark posiand quantity on localization per-
formance. Because the data collection process using mahgleployments is prohibitively
time-consuming, we use a trace-driven simulation methamjofor this section. We first de-
scribe our methodology, then present our results investigdoth the impact of landmark

deployment and quantity using our previously defined m&tric

5.4.1 Simulation Methodology

Our simulation methodology requires we generate a simiiR&S reading for any point on the
floor of a building from any landmark. We first begin with thetlp#éoss equation that models

the received power as a function of the distance to the larkima

P(d)[dBm] = P(dp)[dBm] — 10nlog(d%) (5.14)

We choose the parameteis = 1m, P(dy) = 58.48 andn = 1.523 from [12]. We then apply
a random noise factor to perturb the RSS readings. This sorels to the random model
described in [48], which represents an upper bound on tmakigriability.

In many cases, we found that the localization error is larggigh such that the estimated
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deployment | optimal | horizontal | vertical | diagonal
Topology 200x200ft
Linear LS
error 59.81 101.26 101.07 141.79
H 58.05 172.23 159.01 206.24
H 8.03 9.51 9.74 9.84
Nonlinear LS
error 39.48 66.82 66.08 70.27
H 75.44 132.61 180.27 230.52
H 6.98 7.31 7.58 7.97
Topology 230ftx150ft
Linear LS
error 57.89 86.97 116.57 146.65
H 66.39 170.98 198.44 352.96
H 7.22 8.20 9.84 8.86
Nonlinear LS
error 39.00 56.24 74.06 61.19
H 80.69 232.88 267.32 265.68
H 6.66 7.12 7.21 7.32

Table 5.1: Localization error (ft) and Holder metrics wistandard deviation of noise on rss is
3dB

position is well outside the floor. This was particularlydrfor LLS. Because such results
are unrealistic in our scenario, we apply a simple truncatide in these cases: if the X or
Y coordinate is outside the floor, we truncate to the maximurmimimum value along that

dimension.

5.4.2 Evaluation of Estimation Error

Table 5.1 presents the average location estimation en@r tie application of truncation and
the Holder metrics for both LS algorithms under 5 landmdiok®ur two simulated floors. The
optimized landmark deployment setup is obtained fromstherl — minFE algorithm. It is
encouraging that both NLS and LLS provide smallest estmnadirrors using our placement
algorithm. By comparing the values of the Holder paransgtdre LS algorithm is the least
susceptible to random noise with the optimized landmarkayepent, which has 4 landmarks
positioned as the vertex of a square plus the fifth landmarkaol at the center of the mass.
When under the diagonal landmark deployment, the locadizatsults suffer the largest
estimation errors and the algorithm is the most susceptilie following results presented in

this section are bounded by the floor boundary.
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Figure 5.3: In 200x200ft area: (a) Location estimation ex®. random noise in RSS (b)
Location estimation error vs. ranging error

5.4.3 Impact of Landmark Deployment

In this section we describe the impact of 3 different deplegita on localization performance.
We use a representative situation of 5 landmarks deploy8dvays to demonstrate the impact
of our algorithm in a typical case.

The first deployment we cadjuare, and in the 5 landmark case it is an optimal deployment
when the shape is a square plus one landmark at the centey ofabs. Next, théorizontal
deployment is the one where all the landmarks placed in adlioeg the longest dimension;
this will give better signal coverage than the square forarggular buildings. Finally, we also
examine the impact of a poor deployment, in this cdagonal, which equally spaces the
landmarks along a diagonal line.

Figure 5.3(a) shows the average accuracy of 10000 randals &gross the floor for the 3
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deployments as a function of increasing the standard dewiat.s of the noise term applied
to each point. The six curves correspond to the NLS and LL®&d&ch deployment.

First, NLS always significantly outperforms LLS. When the; is less than 4dB, which is
typical based on our experimental experience, both alyostunder the optimized landmark
deployment outperform the two other deployments. Whervthgis larger than 4dB, under
the optimized landmark deployment, the NLS still perfornettdr, while the performance of
the LLS is compatible with the performance of the NLS for horital and diagonal landmark
deployments.

Constant sized deviations in the RSS readings result in diffierences in the distance
estimation depending on the distance to the landmark. Nhatethe relationship between the
RSS error and ranging error is multiplicative with distanice., d = d10*Ton" . For example,
in our simulation a 3dB error corresponds to a multipliocatfactor of 1.5, at 10ft distance,
d = 15ft with an error of 5ft, while at 100ft distancé,= 150 ft with an error of 50ft, a factor
of ten larger. We are motivated to study the magnitude oads estimation error caused by
the deviation of the RSS readings.

Figure 5.3(b) shows the location estimation error vs. thadard deviatiomw,; of distance
estimation error. We observe that a naisg; of 2dB corresponds to a distance ersgrof 321t.
Further, the estimation results when the, is 4dB and 5dB translate to the; of 65ft and
82ft respectively. Thus, even small random perturbatioR88 readings cause large ranging

estimation errors due to this multiplicative factor.

5.4.4 Impact of Landmark Quantity

In this section we observe the impact of adding more landmafle compare the performance
of the LS algorithms with 4, 6 and 20 landmarks under squatedzagonal deployments. We
use our optimized placement in the case of 4 and 6 landmarkkaauniform randomized
deployment for 20 landmarks.

Figure 5.4 shows a promising result that when deploying 4difzarks and 6 landmarks
under their optimized deployments, the localization rssusing LS are compatible with the

results using a much higher number landmarks, 20, in this.daa small number of landmarks



100

n

o

=1
T

200
=== 4 landmarks LLS
1801 4 4 landmarks NLS 180
6 landmarks LLS
160 6 landmarks NLS 160
=4 20 landmarks LLS i)
1407 . p 20 landmarks NLS 14
1201 120
100

®
o
T

Estimation error (ft)
=
o
o
Estimation error (ft)

@
o
T

=== 4 landmarks LLS
> ¢ 4landmarks NLS
6 landmarks LLS
6 landmarks NLS

=& 20 landmarks LLS

P 20 landmarks NLS
l31 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
Standard deviation of noise (dB) Standard deviation of noise (dB)
(a)Optimized case (b)Worst case
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provide sufficient coverage, this is an encouraging observéecause good localization per-

formance can be achieved without a large number of landmarks

5.5 Experimental Study

In this section we present our experimental study by usirylB8OPCMCIA cards and Telos
Sky motes. The objective is to compare the impact of our laar@rdeployment analysis on
a variety of algorithms and different ranging modalitieslthdugh the mathematics of our
analysis is based on LLS, we show that deployments basethoh— minFE algorithm improve
localization accuracy in widely diverse scenarios.

We first give a brief description of a set of representativeSR&sed localization algo-
rithms. We then describe our experimental method. Next, wantify the performance across
the algorithms provided different landmark deploymente afo compare the localization ac-
curacy and Holder metrics for these algorithms. Finallg,povide a comparison between the

RSS-based and TOA-based LS algorithms using our deploystietiegy.

5.5.1 Algorithms

In this study, our main focus is the localization algorithimat employ signal strength measure-

ments. To demonstrate the general applicability of ourd@autk deployment algorithm, we test
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our placement strategy on three widely different localmaialgorithms, RADAR, ABP, and
BN. Although there are many other RSS-based localizatigorithms, this set spans various
strategies, and given all algorithms have qualitativefyilsir performance [27] we feel this set
is sufficiently representative.

RADAR is a point-based, scene-matching algorithm. The fisgrbuilds a training set
of RSS values from landmarks matched to known locations.o@aliize, the object creates a
vector of RSS values from the landmarks and the algorithormstthe training point closest
to the vector using Euclidean distance as the discrimigdtimction [12]. ABP uses Bayes
rule combined with scene-matching to return an area thecolsjdikely to reside in and prob-
abilistically bounds the likelihood with a confidence lej&f]. Taking the Bayesian network
approach, the BN algorithm uses a Bayesian graphical madsdoon lateration to find the

estimated location [52].

5.5.2 Experimental Setup and Methodology

A series of experiments are conducted in our Computer SeiBepartment which resides the
whole 3rd floor of the CoRE building. The floor size is 200x§aB000ft%). The experiments
are performed using 4 landmarks setup in the floor.

Figure 5.5(a) shows the original collinear landmark depiewt setup in triangles and our
optimized landmark deployment as squares for the 802.Mankt The networking staff of
the department deployed the APs in the collinear deployragetifically to maximize signal
strength coverage. The first set of RSS data was collecteer tinid collinear deployment by
using a Dell laptop running Linux equipped with an Orinoclvesi card (802.11 card). The
data was collected at 286 locations on the 3rd floor.

Then we used a trace-driven approach to generate the RSSalatader the optimized
landmark deployment. We first performed a least squares thieofneasured data and obtained
the parameters of the path loss model in Equation (5.14).n Tée directly used measured
variance to generate the RSS readings. Finally, we appfiedommental bias using the Ray-
Sector model described in [48] to obtain the new RSS dateoséhé optimized deployment
case.

To validate that our trace-driven strategy generatedstgatiadio signal readings, we placed
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Figure 5.5: Deployment of landmarks and training locationgshe experimental floors

4 simulated landmarks at the same positions as the reaheallideployment and then gener-
ated synthetic RSS values. We compared the localizatidionpegince of using this synthetic
data set against the real data. We found the estimation CB&sdyndentical for all of our
algorithms under study. Thus we have confidence that our @tibn of path-loss model
fitting, variance application, and bias generation resuR8S readings that generate realistic
localization results.

Our second experimental setup was an 802.15.4 network wiilcted 4 Telos Sky mote
landmarks and deployed two sets of landmark placementigosit Figure 5.5 (b) shows the
mote landmarks under an optimized square deployment asesgqaad a horizontal landmark
deployment (again, to maximize signal strength coverag#jangles. Unlike the 802.11 case,

no RSS data was generated; for both deployments the meatateets used in the algorithms.
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Figure 5.6: Localization accuracy CDFs across algorithon802.11 network

We have experimented with different training set sizes forstructing the radio map for
RADAR and ABP. For 802.11 data sets, we show the results wlightdaining points. While
for 802.15.4 data sets, we use 70 training points. The staal ;1 Figure 5.5 are the randomly
selected training points. The localization at each tegtimigt is performed by using the leave-

one-out method.

5.5.3 Localization Accuracy

Figure 5.6 (a) and (b) present the 802.11 accuracy CDF urudénear and square landmark
deployments, respectively. A bounded result means weexppgliincation. ABP is calculated
with confidence level 75%. ABP-med is the error of the mediatadce of the area, together
with ABP-min and ABP-max are the closest and furthest padhtbe returned area.

Figure 5.6(a) shows that under the horizontal-like deplegtnLLS always fairs very poorly,
while NLS, RADAR, ABP and BN are qualitatively similar. Alhé algorithms have long tails.
Figure 5.7(a) shows a similar result when using the motédsagdh in here the perfect collinear
deployment, the horizontal case, reduces the performahtieedateration approaches (BN,
NLS, and LLS) compared to 802.11.

Figures 5.6(b) and 5.7(b) show the key impact of our work. okithe CDFs have shifted
up and to the left compared to those in Figures 5.6(a) an@)p.dhus, a significant fraction

of the results are more accurate using the optimized demoisrgenerated byiazl — minE
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Figure 5.7: Localization accuracy CDFs across algorithon862.15.4 network

algorithm. In addition, for ABP, the gap between the min arakr@DFs is much narrower,

implying the returned areas are on average smaller thae thake horizontal deployments.

5.5.4 Evaluation of Performance and Sensitivity

Table 5.2 summarizes the average error for each algorithiurtiver investigate the improve-
ments gained by using an optimal deployment. The table shioevaverage error improves
for all the algorithms. For 802.11 data sets, the LLS algariimproves over 35% and NLS
gains 25% in performance. Both ABP and RADAR have improveer @0% in localization
accuracy, while BN has gained 10%. Looking at the 802.15twark, the performance im-
provement results are compatible to the results from thel@0@etwork.

The Holder metrics presented in Table 5.2 for each algorithder the optimized landmark
deployment is smaller than the horizontal deployment. Réuat the Holder parameter is a
measurement of the sensitivity of the algorithm to perttidos of inputs such as RSS, which
can model random noise, environmental bias, and measuteamers. The lower Holder val-
ues are strong evidence that an optimized landmark deplaynw only can improve the lo-
calization performance, but also can make an algorithmdesseptible to the above classes of

perturbations.
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Average location estimation error (ft)

Algorithms Linear LS Nonlinear LS BN ABP | RADAR
802.11 wtrun | w/otrun | wtrun | w/o trun
collinear 38.56 94.53 20.23 21.85 22.25| 1311 12.49
square 24.73 31.29 15.37 16.92 20.16 | 10.09 9.31
802.15.4 | wtrun | w/otrun | wtrun | w/otrun
horizontal 47.89 608.43 33.15 34.44 28.43 | 17.86 14.28
square 28.27 92.05 23.65 32.17 24.25| 14.27 11.33

Holder (worst-case)H
Algorithms Linear LS Nonlinear LS BN ABP | RADAR
802.11 wtrun | w/otrun | wtrun | w/otrun
collinear 22.36 48.47 21.55 21.55 31.73 | 20.03 36.24
square 12.19 15.33 9.62 9.75 15.89 | 10.64 9.86
802.15.4 | wtrun | w/otrun | wtrun | w/otrun
horizontal 28.88 286.13 91.00 91.00 28.27 | 64.06 32.58
square 13.86 17.14 10.82 16.32 18.41 | 11.27 13.42

Holder (average-cased
Algorithms Linear LS Nonlinear LS BN ABP | RADAR
802.11 wtrun | w/otrun | wtrun | w/otrun
collinear 2.72 5.37 2.06 2.18 2.06 1.85 1.98
square 2.87 3.57 2.45 2.70 1.63 1.79 2.06
802.15.4 wtrun | w/otrun | wtrun | w/otrun
horizontal 2.66 33.87 2.45 2.50 1.44 2.05 2.21
square 2.95 5.23 2.35 2.69 2.41 1.95 2.27

Table 5.2: Location estimation error (ft) and Holder pagsens across algorithms

5.5.5 Using Time of Arrival

In this section we experimentally investigate how well oapldyment algorithm works for an
alternate ranging modality. In this second modality, we pota the distance to a landmark
by measuring many round trip times between a node and a lakdarad then calculate the
time-of-flight (ToF) of a packet. Given the ToF and the spekttight, we can estimate the
range. This is a Time-of-Arrival (TOA) based approach beeathe actual time-of-flight is
estimated. Space limitations prevent us from describilig)approach in more details, but a
full description of the technique and an analysis of it carfiduad in [32].

We used a similar trace-driven based methodology in our T@#stigation as for the
802.11 RSS one. We estimated the TOA based on the roundnrgs fior packets and derived
the distance between the localizing node to each landmaekthéh built an error distribution
of the true distance vs. the estimated distance, and usetbtdave a simulation where we
could place the landmarks in the same positions as the R8$% dihe same hardware is used
as for the RSS study.

The linear regression model applied to the distance estmatror of TOA data with 63
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Distance estimation error (ft)
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Figure 5.8: Linear regression on TOA data

experimental distances is shown in Figure 5.8(a). We obstrat shorter the distance to a
landmark results in estimated distance longer than thedigiance, while longer the distance
to a landmark results in estimation distance shorter tharrtte distance. The corresponding
distance estimation error of RSS data is presented in Fig8(b). Comparing the TOA results
to RSS distance estimation errors, while the magnitude efitbtance estimation error grows
with lengthening distance, unlike in TOA the resulted estion in RSS is either longer or
shorter with near equal probability.

With the mean and variance estimated from linear regressierhave modeled distance

estimation error of TOA as a Gaussian distribution defineegnation (5.15):

error ~ N(p,o%) (5.15)

with i = by + bud;

n—1

and o2 = ,

whered; is the true distance and is the estimated distance.is the total number of distances
under experimentatiorby andb, are the coefficients of the linear regression.

We further conducted a trace-driven approach to localife@&itions on the floor using 4
landmarks setup with collinear and square deployment oéigpsy according to Figure 5.5(a)

for the 802.11 network.
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Figure 5.9: Localization accuracy CDFs using TOA

Figure 5.9 plots the localization accuracy CDF of the LS atgms using TOA. The fig-
ure shows that as with RSS, the performance of LS increasdr @m optimized deployment
as compared to a horizontal deployment designed for cogerd&guantitatively, the perfor-
mance improvement is over 30%. Comparing the absolute npeaiace of this technique with
RSS, our TOA approach is qualitatively worse. This is likdlye to the very coarse grained
microseconds-level clocks currently available in stadd@®2.11. Additional clocks with much

higher frequencies would help to reduce much of the measmeoncertainty.

5.6 Conclusion

In this chapter, by analyzing the Linear Least Squares #@ltgoy we derived an upper bound
on the maximum location error given the placement of landtmaBased on this theoretical
analysis, we found optimal patterns for landmark placenaentfurther developed a novel al-
gorithm, mazL — mink, for finding optimal landmark placement that minimizes theexaimum
localization error.

To show the generality of our results, we conducted experisnasing both an 802.11
(WiFi) network and an 802.15.4 (ZigBee) network. Based @ndkperimental data, we inves-
tigated the impact of landmark position and quantity on lizesion performance using both
the measurements of RSS in an actual building as well as-thagen simulations that used

the RSS measurements. In addition, we apply the tracerdapproach to an alternate ranging
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modality, in this case, TOA.

We found that the performance of a wide variety of algorithshewed significant im-
provements when using landmarks placed according to ooriddgn, as opposed to alternate
deployments. We evaluated these improvements under seNiéeaent metrics. The experi-
mental results provide strong evidence that our analysisasgorithm for landmark placement
is very generic as the resulting placement has improveditatian performance across a di-
verse set of algorithms, networks, and ranging modalities.

Our results also point out that there is a tension betweeit#a landmark deployment for
localization vs. deployments that optimize for signal cage. We found that in our building,
the better coverage deployment was very collinear, andhdspronounced negative impact
on localization performance. Future work would converselgstigate the impact of a deploy-
ment optimized for localization on signal coverage, as wasltry to find a method of trading
one kind of deployment for another depending on the useexifie

In the previous chapters we have explored methods and @wutd provide accurate and
trustworthy localization results. Further, we would likegrovide a scalable, general purpose,
and real time localization infrastructure that can lo@dizny radio-enabled devices at any
where and any time. In the next chapter, we present a generabge localization system
prototype called GRAIL (Generalized Real-time Adaptabiddor Localization) which can

simultaneously position multiple devices.
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Chapter 6

General Purpose Localization System

6.1 Introduction

Utilizing the same infrastructure for both communicatiamd gositioning would provide a
tremendous cost and deployment savings over a specifiddatiah infrastructure. Thus one
of the primary goals of localization research is to providecalable, general purpose, and
real time localization infrastructure that can integrateation information into any computing
radio-enabled devices. We are designing and developingerglepurpose localization system
prototype called GRAIL (Generalized Real-time Adaptalpliédor Localization) which can si-
multaneously position multiple devices using Bayesianadeks. The deployment of such a
system in academic and research environments will alloeareters to explore issues beyond
just algorithms and simulation tools. It would make it pbssto conduct higher-level interaged
research investigation including privacy studies, ségservices, and policy enforcement. For
instance, we utilized the GRAIL system to conduct researchpmofing attacks in Chapter 4.
In addition, the practical usage of such an approach isfignt because it can be applied to a
broad array of applications such as monitoring, trackingting, and security services.

Localization is a diverse area covering everything fromdo¥ayer physical problems to
application-level services. GRAIL assumes the localiratirea to be about the size of a build-
ing, where devices have access to gateway nodes, and these gan access wired networks.
Additional properties of the GRAIL system include:

General Purpose. A primary goal of the GRAIL system is that it should work over a
variety of physical modalities and networks. Much as a nétimg system should support
multiple media access layers, a general purpose localizatlystem should support multiple

physical modalities and methods of localization.
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Figure 6.1: GRAIL system architecture

GRAIL is designed to localize using any wireless networkt thapports physical layer
measurements of packet data. It supports to use Received| Sigength (RSS) as the physical
modality and can be easily extended to support Angle-oivAr(AoA), and time-of-arrival
(TOA).

Real-time. Latency is a key property of localization systems becaudefihes the max-
imum mobility that can be supported. Our system can retusalt® in less than one second,
allowing us to support both stationary devices as well asdimoving at walking speeds (about
1m/s).

Adaptable. A common problem with many systems is that they are too érittley require
specific environments, hardware, or much training dataaele a specific set-up. GRAIL uses
real-time feedback to dynamically calibrate its parangetiere to changing radio conditions.

Indoor. Indoor environments are especially challenging due toatdles, refractions, and
scattering, which result in substantial multi-path eecGRAIL manages the uncertainly of
these effects. GRAIL can expand and contract the possibblefdecations as we introduce
or reduce the uncertainty in the environment. Specifically,can show how modifying the

antennas can either increase or decrease spatial ungertain
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Figure 6.2: Solver scalability and flexibility.

6.2 Architecture Design

The GRAIL system is designed with fully distributed functadity and easy to plug-in local-
ization algorithms. As shown in Figure 6.1, The main sofevaomponents are Transmitters,
Landmarks, the Server, and Solvers. The Landmarks colled®8S reading for each transmit-
ting device and send it to the Server together with the coatds of the landmarks. Landmarks
are stateless, which greatly simplifies the design, and gpoged in known loations. Often,
in other research works, landmarks are called Anchor Poinfsccess Points. However, we
use the terntandmarkbecause an access point also provides access to the wivearkeand
in GRAIL, landmarks do no provide this function. Upon redeiythe RSS readings from each
Landmark module, the Server collects the complete set ofie&S8ngs for each node, decides
on which localization algorithm to use, then forwards theSR8ormation to the corresponding
Solver module. The Solver is flexible and easy to scale. Madifigrent kinds of localization
algorithms can be plugged in as illustrated in Figure 6.2e $krver and Solver components
are fully decoupled.

For localization using Bayesian networks, in addition ®\WinBugs Solvewhich utilizes
the statistical WinBugs tool [9], we have implemented Hast Solver{40]. TheFast Solver
is developed by using a novel real-time sampling technigbelweduces computational cost

significantly and solves Bayesian networks 9 to 17 time®fasian theNinBugs SolverThe
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GRAIL system can localize 1 to 10 sensor nodes in less thdalsakond, and scales to localize
51 objects simultaneously with no location informationhie training data within 6 seconds.
Although our current GRAIL system uses Bayesian netwotksdistributed and scalable
architecture was designed for maximum flexibility. GRAIlLncthus easily accommodate al-
ternative localization modalities and algorithms by usiaplaceable components. Thus other
localization algorithms [12, 27] such as RADAR (R), SimplarR Matching (SPM), and Area
Based Probability (ABP) can be added on easily with this flexarchitecture design. During
localization, there are multiple Solver instances avédlamd each can represent one type of
algorithm. Once the localization results are returned by3blver, the Server displays the posi-
tions of the unknown transmitting devices. If there is a rnieddcalize hundreds of transmitting
devices simultaneously, the Server can perform load bialgraamong the different Solver in-
stances as shown in Figure 6.2. Plus, this centralized rsels@makes enforcing contracts and

privacy policies more tractable.

6.3 Bayesian Networks

In this section, we give a brief overview of Bayesian Netveditkat are used in the GRAIL sys-
tem. The Bayesian network is a graphical model that encodpsrilencies and relationships
among a set of random variables. The vertices of the graplesgmwnd to the random vari-
ables and the edges represent dependencies. Bayesiang&én conjunction with Bayesian
networks offers an efficient and principal approach for diva the over-fitting of data.

In the GRAIL system, we have developed several Bayesiarhgralpmodels to encode the
relationship between the RSS and the location based onl4@udétance propagation model.
We have built both non-hierarchical (M1) and hierarchi®d2) Bayesian graphical models as
presented in Figure 6.3 (a) and (b).

The location measurement process is slow and labor-im&nBly contrast, gathering RSS
readings without the corresponding locations does notireduuman intervention. For exam-
ple, sniffing devices can perform RSS measurements repeateelssentially no cost. So, we
pursue the idea that different access points behave siynélad the prior knowledge may pro-

vide sufficient constraints to obviate the need to know theaddocations of the training data
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(b) Hierarchical Bayesian graphical model

Figure 6.3: Bayesian Networks

observations. As a result, we have extended the M2 model aiftcakmnew model called M3
whose training data comprise solely of signal strengthsn&hawn locations [52]. This leads
to a truly adaptive, zero-profiling technique for locatistimation. The GRAIL system fully
supports M1, M2 and M3 models for performing localizationgseitherWinBugs Solveor

Fast Solver



114

Chapter 7
Related Work

7.1 Introduction

In this chapter, we present the related research work, amgbae and contrast our research
work with the others. Specifically, we first provide an ovewiof wireless localization ap-
proaches in Section 7.2. Then we show severe impacts of nyptegraphic attacks to lo-
calization results in the network and discuss methods tifywveicalization estimates in Sec-
tion 7.3. Next, we point out identity-based spoofing attamlksa serious threat in the network
and review conventional methods and a few new approacheltess spoofing attacks in Sec-
tion 7.4. Further, in Section 7.5 we studied the previouskwbat try to improve localization
performance from the point of view of landmark placemenhaly, we give a short review of

developing localization systems in both academic and inéilgnvironments in Section 7.6.

7.2 Wireless Localization

There has been much activity toward developing localipasigstems for wireless and sensor
networks. We cannot cover the entire body of works in thigisec Rather, we give a short
overview of the different localization strategies in thexgon.

Localization approaches can be categorized using vareusbmies. Range-based algo-
rithms involve distance calculation to landmarks with kmgpositions using the measurement
of various physical properties [55] like RSS [12, 27], Timé Arival (TOA) [28] and Time
Difference Of Arrival (TDOA) [56]. Range-free algorithmse coarser metrics such as con-
nectivity [63] or hop counts [54] to place bounds on node twss.

Another classification method relates how a node is mappeddoation. Lateration ap-

proaches [23, 28, 44, 49, 54], try to solve a set of equatiov@iving distances to landmarks;
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angulation uses the angles from landmarks [53]; while dodiséic approaches [59, 69] use
statistical inferences, and statistical supervised lagrtechniques [12, 27, 52] utilize train-
ing data to help inference the location estimation. Amorgnthscene matching strategies
[12,14,27,59,69] are originated from machine learningmégues. Usually a radio map of the
environment is constructed, either by measuring actuapkssnusing signal propagation mod-
els, or some combination of the two. A node then measuresd sadio properties (often just
the RSS of a set of landmarks), tliegerprint and attempts to match these to known location(s)
on the radio map. These approaches are almost always usedoiorienvironments because
signal propagation is extensively affected by reflectioiffrattion and scattering, and thus
ranging or simple distance bounds cannot be effectivelyleyad. Matching fingerprints to
locations can be cast in statistical terms [59, 69], as a madkarning classifier problem [14],
or as a clustering problem [12].

Finally, a third dimension of classification extends to &ggte or singular algorithms. Ag-
gregate approaches [25, 63] use collections of many nodi inetwork in order to localize
(often by flooding), while localization of a node in singutaethods only requires it to com-
municate to a few landmarks with known locations.

In addition, some research have experimented with usimgsaltind, infrared, or a combi-
nation of infrared and RSS for localization [35, 56, 62, @}, 6The goal is to reach centimeter
accuracy. These work use specialty hardware or have limitege as in the infrared technol-
ogy. As such, they can only be deployed in highly engineereticantrolled areas, and hence
have not become very popular.

Also, this is different from our goals: we conjecture thatrficing little accuracy for scal-
ability would create more practical positioning systenet thre easier to bootstrap. We focus
our work on two broad localization mechanisms: multilatieraand signal strength. Multi-
lateration clearly applies to both single and multi-hopgedbased approaches, while signal

strength can be applied to a wider variety of both range¢bagsé scene matching algorithms.
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7.3 Secure Localization

There has been considerably less work on the problem ofiegstine trustworthiness of wire-
less localization. In this section, we review research oaghthat developed for secure local-
ization.

Cryptographic threats on localization can be addressemlidtr traditional security ser-
vices [16, 31,39,67,68, 70, 71], e.g. authentication.

However, there is a completely orthogonal set of attackisatteanon-cryptographic, where
the measurement process itself can be corrupted by adesis&or example, wormhole at-
tacks tunnel through a faster channel to shorten the ob$eligstance between two nodes [36].
Compromised nodes may delay response messages to distapiodi estimation [49] and com-
promised landmarks may even broadcast completely invaliistrnation [51]. Physical barriers
can directly distort the physical property used by locaitra [49] provided a thorough survey
of potential attacks to various localization algorithmsdshon their underlying physical prop-
erties.

Unfortunately, these non-cryptographic attacks can netdaessed by traditional security
services. In order to address the non-cryptographic afatierent strategies are required.
This has been the focus of our research. [17, 61] propose¢dndis bounding protocols for
verification of node positions. [18] proposed the Verifiablaltilateration mechanism which
is based on the distance bounding protocols for secureigosibmputation and verification.
[19] uses hidden and mobile base stations to localize arify/\ecation estimates. [45] uses
both directional antennas and distance bounding to aclsiegarity. Compared to all these
methods, which employ location verification and discarditmmn estimate that indicates under
attack, [24, 49, 51] try to eliminate attack effects and stibvide accurate localization. [49]
makes use of the data redundancy and robust statisticabdeth achieve reliable localization
in the presence of attacks. [51] proposes to detect atteagsdbon data inconsistency from
received beacons and to use a greedy search or voting hlgotdt eliminate the malicious

beacon information.

The closest works to our attack detection work are [26, 51heAeral location anomaly
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detection scheme is described in [26] that relied on thehfmiginformation to detect inconsis-
tencies. However, it assumes a highly dense network wherpdsitions of the nodes follow a
Gaussian distribution, which is contrary to the structdmmany deployed systems where much
lower densities are typical. Our proposed LLS approach ieengeneral than the ARMMSE
approach in [51]. Further, our approach provides a brodugices of detectors than that work.
Our work is unique in that we have formulated location attdekection as a general sta-
tistical significance testing problem. We showed how the s&istics come naturally out of
the localization algorithms themselves without additlicmesumptions. In addition, our work
differs from most previous research in that we experimgntallidated our approaches using

real networks deployed in two different buildings.

7.4 Coping with Identity Fraud

In wireless networks, attackers can gather useful ideintibymation during passive monitoring
and utilize the identity information to launch identitydeal spoofing attacks. For instance,
it is easy for a wireless device to acquire a valid MAC addi@sd masquerade as another
device. The 802.11 protocol suite provides insufficienntig verification during message
exchange, including most control and management framesreldre, the adversary can utilize
this weakness and request various services as if it werd@noser. ldentity-based spoofing
attacks are a serious threat in the network since they reprasform of identity compromise
and can facilitate a series of traffic injection attacks. rféHeas been active research addressing
spoofing attacks as well as those facilitated by adversargesjuerading as another wireless
device. In this section, we give a short overview of the &dbat is based on identity-spoofing,
and the traditional methods and several new approachesltessispoofing attacks. We then
describe the works most closely related to our work.

An adversary can launch a deauthetication attack. Aftefemtcthooses an access point
for future communication, it must authenticate itself te #ccess point before the commu-
nication session starts. Both the client and the access amrallowed to explicitly request
for deauthentication to void the existing authenticatietationship with each other. Unfortu-

nately, this deauthentication message is not autherdic@tesrefore, an attacker can spoof this
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deauthentication message, either on the clients behaif) tie access points behalf [15]. The
adversary can persistently repeat this attack and conipfatevent the client from transmitting
or receiving. Further, An attacker can utilize identity sfiog and launch the Rogue Access
Point (AP) attack against the wireless network. In the Ro8Reattack, the adversary first
sets up a rogue access point with the same MAC address ande83H2 legitimate access
point, but with a stronger signal. When a station enters tvemage of the rogue AP, the de-
fault network configuration will make the station automaliic associate with the rogue access
point, which has a stronger signal. Then the adversary d¢anaetions to influence the com-
munication. For example, it can direct fake traffic to theoagsed station or drop the requests
made by the station. Besides the basic packet flooding attdlek adversary can make use
of identity-spoofing to perform more sophisticated floodaitacks on access points, such as
probe request, authentication request, and associatipieseflooding attacks [30].

The traditional security approach to cope with identityuftas to use cryptographic authen-
tication. An authentication framework for hierarchicali koc sensor networks is proposed
in [16] and a hop-by-hop authentication protocol is presérnn [71]. Additional infrastruc-
tural overhead and computational power are needed toligtrimaintain, and refresh the key
management functions needed for authentication. [68]rtesduced a secure and efficient key
management framework (SEKM). SEKM builds a Public Key Iafracture (PKI) by applying
a secret sharing scheme and an underlying multicast sexwgp.g67] implemented a key man-
agement mechanism with periodic key refresh and host réeoct prevent the compromise
of authentication keys. In addition, binding approaches employed by Cryptographically
Generated Addresses (CGA) to defend against the netwankitiggepoofing [11, 38].

Due to the limited resources in wireless and sensor noddshannfrastructural overhead
needed to maintain the authentication mechanisms, it ialn@tys desirable to use authentica-
tion. Recently new approaches have been proposed to detespbofing attacks in wireless
networks. [47,57] have introduced a security layer thatgasate from conventional network
authentication methods. They developed forge-resisddationships based on packet traffic by
using packet sequence numbers, traffic interarrival, oagehain of temporary identifiers, and
signal strength consistency checks to detect spoofingkattfe0] proposed a lower-layer ap-

proach that utilizes properties of the wireless channdlaphysical layer to support high-level
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security objectives such as authentication and confidantiihe most closely related work to
ours is [29], which proposed the use of matching rules ofaigrints for spoofing detection.
Although these methods have varying detection and falgenalates, none of these ap-
proaches provide the ability to localize the positions @& $poofing attackers after detection.
Further, our work is novel in that we have integrated our fipgadetector into a real-time lo-
calization system which can both detect the spoofing atfaskaell as localize the adversaries
in wireless and sensor networks. In addition, we deployadiaralization system in a real

office building environment which houses our Computer Szeebepartment.

7.5 Localization Performance

In addition to ensure the trustworthiness of the locatidarmation, it is also important to pur-
sue higher location accuracy through improving the peréoroe of localization systems. There
has been some work to investigate or place bounds on therpenfice of localization systems
using signal strength [14, 27, 37]. They either showed aegasfdocalization algorithms all
have similar performance or tried to build theoretical meder the localization environment
in order to study the localization performance. They didproipose solutions to improve the
localization performance.

In our work, we took a novel approach, instead of improving litcalization algorithms
themselves, we focus on improving the deployment of lanésjamd this should help a wide
variety of algorithms. There are a few works that studieditingact of landmark placement to
the localization performance that are related to our watk] ised simple linear and multiple
regression methods to estimate the signal strength modéh divhulation, it analyzed the
relationship between standard deviation of location earmt signal strength error for a few
Access Point (AP) configurations. However, they did not wrefor the optimized geometry
of AP deployment and provide experimental comparison as awe fn our work. Another
work presented a theoretical model for RSS-based locatbmation accuracy and examined
placement, but did not find optimal solutions [41]. [13] deyed a set of heuristic search
algorithms to find optimal AP deployment for a balance of aigroverage and location errors.

Compared to our simple approach, the heuristic searchitilgmr are more complex and time
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consuming. The results were only shown for the probabilitahing algorithms, thus may not
be general for other type of algorithms.

Furthermore, a large body of works have examined AP placetoemaximize coverage
and throughput properties of wireless LANs and sensor mésvaVe do not cover these works
here, except to say that future work would be to examine #detioffs in landmark and AP
deployment assuming they use the same hardware, althoisgthoss not need to be the case.
Recall that landmarks provide a node with signals from knéveations, while APs provide

media access control as well as gateways into the wired mietwo

7.6 Localization Infrastructure

In the academic research environment, the deployment aierglepurpose localization system
that can localize any radio-enabled devices at any time tadyawvhere will allow researchers
to explore various issues beyond just algorithms and siionlasuch as privacy study and
security services. The localization system that develdpea research setting that mostly
related to ours is Place Lab [42, 46]. The Place Lab appraathallow commodity hardware
clients like notebooks, PDAs and cell phones to locate tledras by listening for radio beacons
such as 802.11 APs, GSM cell phone towers, and fixed Bluetimiites that already exist in
the environment. Our general purpose localization infuastire is different from Place Lab in
that it is easy for us to extend and support other physicalatitaes such as TOA and AOA in
addition to RSS. Further, our flexible Solver infrastruetanakes it easy to plug in and test on
different localization algorithms including Bayesian Wetks (BN), Area Based Probability
(ABP), RADAR, and any new algorithms.

There are several emerging commercial products for indogalization or intrusion pre-
vention [1, 2, 8]. The problems for these industrial produate: they are not very general,
require specific chip sets and operating systems, only foo\Wi-Fi radio, and do not support
other physical modalities for localization. Moreover, fferformance of these systems are not
well-known, lack of independent performance benchmarkifgrther, the source code of all
these products is not available, which makes them hard tsée im an research environment

that frequently needs to incorporate new properties anceragtensions for research purposes.
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Chapter 8

Conclusions and Future Work

8.1 Dissertation Conclusions

As more wireless networks are deployed, location-basedcesrare becoming increasingly
prevalent. Itis critical to provide accurate and trustiwgitiocation information. This thesis ex-
plored and proposed methods to provide secure and accocait#oh information for wireless
and sensor networks using statistical approaches.

We first characterized the robustness of localization #lyos to attacks that target signal
strength measurements. We provided a set of performancestfer quantifying the effective-
ness of signal strength attacks, including a new family ofricg called Holder metrics, that
quantify the variability of localization changes in phyaispace related to changes in signal
strength vectors. The key observation we found is that alktlgorithms have similar average
responses to attacks. The median error of all the algorithegsaded gracefully with a linear
response as a function of the attack strength.

Since we have found the performance of localization allgorét degrades significantly un-
der signal attacks, it is important to detect the presendbese attacks. The next contribution
of our work is several attack detection methods that pro@dbeoretical foundation of the
attack detection problem using statistical significanstirtg. We then built test statistics for
two broad localization classes: multilateration and digtrangth. For multilateration that uses
Linear Least Squares, we derived a closed-form represamfalr the attack detector. Further,
for localization schemes that employ signal strength, waweld that by utilizing the signal
strength as a common feature, the minimum Euclidean distarttie signal space can be used
as a test statistic for attack detection independent ofdbalization process. The key advan-
tage of this approach is that for algorithms employing digtigength, the detection phase is

prior to the localization, and thus saves computational cbfcalization under attack. The
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significant finding is that our experimental results invotyiboth an 802.11 (WiFi) network
and an 802.15.4 (ZigBee) network in two real office buildisgsw that different localization
system have similar attack detection capabilities, andeguently these provide important
insights to system designers that they can focus on usirggildgns that provide the highest
localization accuracy rather than having to trade off paisiaccuracy against attack detection
abilities. Further, we conclude that any significant atsac&n be successfully captured by our
attack detection schemes.

The next challenging step after detecting attacks is tolike@adversaries and eliminate
malicious attacks. We thus proposed a method for deteghiogfig attacks utilizing K-means
cluster analysis, as well as localizing the adversariesitggrating our K-means spoofing de-
tector into a general purpose, real-time localization eayst We found that the performance
of the localization system when localizing the adversaugiag the centroids of RSS readings
from K-means cluster analysis are about the same as lamgliging averaged RSS readings
under normal conditions. The distance between the spoofidg and the original node can be
estimated with median error of 10 feet. Since spoofing astack a serious threat as they rep-
resent a form of identity compromise and a malicious attankay create multiple illegitimate
identities, we will discuss our future work for detecting Itiple illegal spoofing identities in
the next section.

Another significant finding of our work in the area of improgithe localization perfor-
mance is that we found the landmark placement plays an impordle in location accuracy.
By analyzing the Linear Least Squares algorithm, we dersedipper bound on the max-
imum location error given the placement of landmarks. Bawmedhis theoretical analysis,
we found optimal patterns for landmark placement and furtteveloped a novel algorithm,
mazl — minFE, for finding optimal landmark placement that minimizes thaximum local-
ization error. The experimental results provide stronglence that our analysis and algorithm
for landmark placement is very generic as the resultinggment has improved localization
performance across a diverse set of algorithms, networkbranging modalities. Our results
also point out that there is a tension between the ideal lankliseployment for localization

vs. deployments that optimize for signal coverage. We failmad in our building, the better
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coverage deployment was very collinear, and this had pmrenl negative impact on local-
ization performance. Future work would conversely ingsgt the impact of a deployment
optimized for localization on signal coverage, as well gstdrfind a method of trading one

kind of deployment for another depending on the users’ needs

8.2 Future Research Directions

We envision the utility of the location information in wieds and sensor network systems will
continue to have an increasing impact on our life, ultimatelthe point where location-based
applications will be an inseparable part of our social fabrin order to make this vision a
reality, there are many open issues that remain to be a@dreBased on current results in this
thesis, we think it is important to address future reseanattions in the following area:

First, from the perspective of basic physical modalitiesdufor localization, utilizing RSS
is an attractive approach for localization because it camseethe existing wireless infrastruc-
ture, rather than requiring additional specialized laalon infrastructure. However, based
on our observations RSS readings can vary largely acrdesetit periods of operation. Most
of the current localization algorithms do not consider thigerent variation of RSS readings
across time (calibration drift) as well as across diffedmtices. This has reduced the practical
usage of these algorithms. Our previous results show teaB#yesian approaches can grace-
fully handle a variety of challenging operational scergriand we propose to use Bayesian
networks to help retrain and recalibrate RSS readings iardadprovide robust, reliable, and
trustworthy localization using RSS.

As we discussed, spoofing attacks are a serious threat inethdrk and can facilitate a
variety of attacks. We developed K-means clustering deteot detect the spoofing attacks
and further to localize the adversary in the network using@RAIL system. However, some
malicious attackers may create multiple illegitimate iitéas to facilitate spoofing attacks. In
order to address this problem, we would like to further datadtiple illegal spoofing identities
by using other statistical analysis methods including R&sailnformation Criteria (AIC) and
Minimum Description Length (MDL) methods for order estitioat and Mean Shift clustering

techniques.
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Next, looking foreword in the application level, as wirdesetworks become increas-
ingly prevalent, they will provide the means to support néasses of location-based services.
One type of location-oriented service that can be deployedhmse that make use of spatio-
temporal location-information to control access to olgemtservices, instead of restricting ac-
cess to services based solely on conventional identitgebagthenticators. We propose to study
using location information to support spatio-temporalessccontrol. The spatio-temporal ac-
cess control represents a promising paradigm for the deweldat of new location-oriented
applications.

Finally, exploring in the system level, through the chagsehtion of the robustness of
localization algorithms to attacks, we found that most @& éxisting localization algorithms
are susceptible to attacks. None of the algorithms outpadgdhe others under attack. Thus
one of the important research goals in localization is tétdmaibust attack-resistant localization
algorithms that can detect the presence of attacks, redusinonate their negative impacts,
provide high-quality localization estimation, and funthie build attack-resistant localization

systems which are critical for a general purpose locabpaitnfrastructure.
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