
  

  

- 

 

 

 

 

 

 

[2007] 

 

MICHAIL D. GKOLIAS 

 

 

ALL RIGHTS RESERVED 



  

  

 

 

THE DISCRETE AND CONTINUOUS BERTH ALLOCATION PROBLEM: MODELS AND 

ALGORITHMS 

  

by 

MICHAIL D. GKOLIAS 

A Dissertation submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

Graduate Program in Civil and Environmental Engineering 

written under the direction of 

Dr. Maria Boile 

and approved by 

________________________ 

________________________ 

________________________ 

________________________ 

New Brunswick, New Jersey 

[October, 2007] 



    

  ii

ABSTRACT OF THE DISSERTATION 

 

THE DISCRETE AND CONTINUOUS BERTH ALLOCATION PROBLEM: MODELS AND 

ALGORITHMS 

 

By MICHAIL D. GKOLIAS 

 

Dissertation Director:  

Dr. Maria Boile 

 

 

 

Fierce terminal competition and the need to maximize recourses utilization have led marine 

terminal operators to the development and application of a rich variety of Berth Scheduling 

Policies (BSPs). Container terminal operators seek for efficient BSPs that will reduce vessels 

turnaround time, increase port throughput, lead to higher revenues and increased competitiveness 

of the port, while at the same time keep customer satisfaction at desired levels. Several issues 

arise when defining the best BSPs for each port operator and the final decision depends on several 

factors that include the type and function of the port (dedicated or multi-user terminal, 

transshipment hub etc), the size and location of the port, nearby competition, type of contractual 

agreement with the vessel carriers etc. Some of these BSPs and issues have to a certain extend 

been captured by academic research, but still several attributes need to be investigated and 

included for these models to represent the state of the practice of container terminal operations. 
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In this dissertation we present new models and solution algorithms that portray different BSPs 

and attempt to capture the operational environment of a container terminal, while at the same time 

including attributes of the system that current models lack. The formulations and solutions of 

mathematical models presented herein, seek to optimally schedule vessels and/or quay cranes to 

berths in multi-user type of container terminals, without losing its applicability to the private type 

container terminals. The objective is to present models and algorithms that capture as much as 

possible of current container terminal operator practices, while minimizing the assumptions made 

about real world conditions that container terminals operate in. 
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1. INTRODUCTION 

 

There are more than 2,000 ports around the world, ranging from single-berth locations handling a 

few hundred tons of cargo per year, to multipurpose facilities handling up to 300 million tons of 

cargo per year. In 2004 the world port traffic was made up of 36% liquid bulk products (mainly 

oil, petroleum products, and chemicals), 24% dry bulk goods (coal, iron ore, grain, bauxite, and 

phosphate), and 40% general cargo (UNCTAD, 2004). The later type of cargo is mainly being 

transferred using containers. Containers are large metal boxes made in standard dimensions and 

measured in multiples of 20 feet called “twenty-foot equivalent units” or in short TEU. Port 

terminals that handle containers are called container terminals and have different and more 

complex operations than passenger and dry or liquid bulk ports.  

 

The container terminal industry has received increasing attention in the last 20 years with 

containerized transportation coming to the forefront of the international shipping scene. The last 

decade has seen an increase in container traffic that has surpassed any expectation (fig. 1.1). The 

world container terminal throughput for 2004 reached 348 million TEUs, an increase of 38 

million TEUs from the 2003 level of 310 million TEUs
1
. To respond to the projected volumes 

and exploit economies of scale liner-shipping companies are investing in larger container vessels. 

On the other hand double-digit volume growth numbers is the norm for most of the busiest ports 

around the world, while some other ports, particularly the ones located in East Asia, report 

increase up to 140%, in the numbers of TEUs handled (Yantai: 141%; Suzhou: 57%; Nantong: 

40%). According to CI-Online Asian ports are expected to burst through the 100% utilization 

                                                 
1 In 2005 a decrease of 12.5 million TEUs was observed (Source: CI-Online) 
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level of their designed capacity, while US and European ports will be operating at over 80% 

utilization. 

 

 

Figure 1-1 World Containerized Trade in million TEUs, 2001-2011-Forecast (Source: UNCTAD 

Transport Letter, No 32, Second Quarter 2006) 

 

In maritime container transportation the hub-and-spoke arrangement is widely adopted. Deep-sea 

vessels, also called mother vessels, operate between a limited number of transshipment terminals 

(hubs). Smaller vessels (feeders) link the hubs with the other ports (spokes). This network 

topology results in the consolidation of capacity along the routes linking the transshipment ports 

and in the growth of their importance. In recent years, mother vessels have strongly increased in 

size, attaining up to 10,000 TEUs, while larger sizes are planned
2
. Transshipment ports are large 

intermodal platforms. A limited number of them handle an important share of the world traffic. 

                                                 
2 The words largest container vessel currently on route (September, 2006) has a capacity of 11,000 TEU (MAERSK). 

In total 46 vessels exceed 8,000 TEU capacity, while the first 10,000 TEU vessels are expected for delivery in March 

2008 (Source: CI-Online, February 8, 2006). The biggest to date vessel in use is the EMMA a container ship owned by 

the A.P. Moller-Maersk Group with an estimated capacity of over 13,000 TEUs. 
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According to CI-Online, in 2000 the top 20 container terminals in TEUs handled 44% of the total 

TEU traffic, while in 2005 this number increased to 55%
3
 (fig. 1-2). 

 

Based on their customer base, container terminals can be distinguished into: a) Privately leased 

and operated terminals by shipping lines (referred as dedicated terminals-DT), and b) Owned by 

an operator who provides berthing space to each shipping company based on the terms of a 

contract (PT), or on other service agreements (e.g. First Come First Served policy). In major 

ports (in countries like Japan and the US) shipping lines lease the container terminals in order to 

be directly involved in the processing and handling of the containers as they aim to achieve 

higher productivity and economies of scale. 

 

The increasing number of container shipments combined with the growing size of container 

vessels causes higher demands on container terminals, container logistics, and management, as 

well as on technical equipment resulting in increased competition between ports, especially 

between geographically close ones. The ports mainly compete for ocean carrier patronage and 

related container volumes, as well as for the land-based truck and railroad services
4
. The 

competitiveness of a container seaport is marked by different factors, including the time in port 

for vessels (turnaround time) combined with low rates for loading and discharging (Hulten 1997; 

Muller 1995). 

 

The strong competition among PT ports leads to the necessity of using the highly expensive 

terminal resources such as berths, storage yards, quay cranes, straddle carriers, automated guided 

                                                 
3 The first 40 ports in TEUs-handled, handle over 70% of the total world TEUs traffic 
4 It is the state of the practice for the large vessel operators to arrange for feeder vessels services on their own, thus port 

operators need to compete only for the large vessels 
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vehicles, stacking cranes etc. as efficiently as possible. A key factor of success is the optimization 

of these logistic processes (Daganzo, 1990; De Castilho and Daganzo, 1993; Taleb-Ibrahimi et 

al., 1993). It is clear that rapid turnover of containers, which corresponds to a reduction of the 

container vessel turnaround time, and of the costs of the process, is a crucial competitive 

advantage for a port. With respect to the terminal operations this can translate to the minimization 

of the time a vessel is at the berth as an overall objective (Steenken et al., 2004). Customer 

satisfaction focuses on waiting times rather than charges since inequitable waiting time for 

vessels may not make the port attractive for carriers even if the port charges are low
5
 (Imai et al. 

2003).  

 

 

 

Port Categories: 1: First 10 Ports, 2: First 20 Ports, 3: First 30 Ports, 4: First 40 

Ports, 5: First 50 Ports, 6: First 60 Ports, 7: First 80 Ports, 8: Total 

Figure 1-2 Cumulative TEUs Handled by Port Groups: Port Category/Number of Ports per 

Category (Data Source: CI-Online) 

                                                 
5 Although according to Fung et al. (2006) high terminal handling charges (THCs) lowered Hong Kongs container 

terminal throughput 
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Research Scope 

 

Global container terminal operating companies have faced strong criticism from their ocean 

carrier customers for most of this year as a combination of marine and landside congestion has 

led to deteriorating levels of service (CI-Online, September 2007). Fierce terminal competition 

and the need to maximize recourses utilization have led marine terminal operators to the 

development and application of a rich variety of Berth Scheduling Policies (BSPs) to deal with 

the marine side of the congestion. Container terminal operators seek for the efficient BSPs that 

may reduce vessels turnaround time, increase port throughput, leading to higher revenues and 

increased competitiveness of the port, while at the same time keeping the customers’ satisfaction 

at a desired level (usually set by contractual agreements).  

 

Several issues arise when defining the best berth-scheduling policies (BSP) for each port operator 

and depend on several factors including the type and function of the port (DT or PT, 

transshipment hub etc), the size of the port, the location, nearby competition, type of contractual 

agreement with the vessel carriers and other. Some of these BSPs and issues have to a certain 

extend been captured by academic research, but still several attributes need to be investigated and 

included for these models to represent the state of the practice of container terminal operations. 

For example the majority of the models do not explicitly deal with the relationship of customer 

satisfaction and the port operator costs/benefits. Furthermore most of these models ignore the 

multi-objective and stochastic environment that port managers have to operate in and make future 

decisions. 
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In this dissertation we present new models portraying BSPs that attempt to capture the operational 

environment of a container terminal and include some of the attributes of the system that current 

models lack. The formulation and solution of mathematical models presented herein, will seek to 

optimally schedule vessels to berths in PT type of container terminals, without losing its 

applicability to the DT container terminals. The objective is to present models that reflect BSPs 

that capture as much as possible of the current container terminal operator practices, while 

minimizing assumptions made about real world conditions. Insight will be provided of how these 

BSP may be used by the port operator to negotiate future contracts with shipping companies.  

 

This dissertation may be broken down into four major sections. The first section, composed by 

Chapters 5, 6, 7, and 8, deals with the discrete berth allocation problem presenting a generic 

formulation and four solution approaches for the problem. The next section (Chapter 9) focuses 

on the continuous berth allocation with simultaneous quay crane scheduling and presents a 

generic formulation and a solution approach. The third section, (Chapters 10 and 11) deals with 

the multi-objective berth allocation problem and investigates the applicability of a multi-objective 

optimization environment for the BAP. In these two chapters we present a general formulation of 

the multi-objective discrete BAP, a solution approach, and a heuristic to obtain the optimal Pareto 

set. The last section (Chapter 12) deals with the stochastic aspect of the berth allocation problem 

and investigates the applicability of stochastic modeling to the BAP, presenting a general 

formulation and four heuristic solution approaches. 
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2. SYSTEM DESCRIPTION 

 

Container Terminals 

 

Container terminals are open systems of material flow with two external interfaces: the quayside 

where containers arrive/leave via vessel and the landside where containers arrive/leave the 

terminal via trucks or trains. Within the terminal we can distinguish three areas: the berth area 

where vessels are berthed for service, the storage yard area where containers are stored waiting to 

be exported or imported, and the terminal gate that connects the container terminal to the 

hinterland. Accordingly operations in a container terminal can be broken down to three 

categories: seaside operations, landside operations, and yard operations, all of which interact with 

each other. Seaside operations consist of the vessels’ berthing operations at the quay, and the 

loading and unloading of containers onto the vessel. The seaside operations interact with the yard 

operations via the internal transport equipment used to transport containers from/to the vessel and 

to/from the storage yard. The yard operations manage the containers during the transfer between 

the landside and the seaside. It includes operations such as the internal transport of the containers 

from/to the vessel and from/to the trucks/rail, and the storage operations in the storage yard. The 

landside operations deal with activities of receiving and delivering inbound and outbound 

containers to and from the storage yard. While each system can be viewed as an independent 

entity, and its’ operations are usually studied as such, interactions between the systems are 

unavoidable and play a crucial role in the efficient management and operation of a container 

terminal. A schematic description of a container terminal operations and interactions between the 

different systems is portrayed in figure 2-1. 
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Although all container terminals serve the same purpose, they are mainly differentiated on the 

handling/internal transport/stacking equipment that they use. The most common systems are: a) 

the tractor-trailer (all chassis) system, b) the straddle carrier direct system, c) the straddle carrier 

relay system, d) the yard gantry crane system, and e) the front end loader (reach stacker) system 

(direct or relay). Combinations of these systems can also be found at several container ports. 

Determining the type of equipment that should be used is usually viewed in terms of a cost VS 

productivity relationship, but is also influenced by historical, social and cultural aspects (i.e. US 

ports use mainly conventional systems even though the cost benefit ratios are probably in favor of 

automated systems, and chassis only systems, which is found nowhere else in the world). 

 

Terminal System and Equipment Overview 

 

Seaside Operations 

 

Vessel Berthing 

 

Vessel operation consumes a large portion of the turnaround time of containerships in ports. 

Different types of vessels are serviced in a container terminal ranging from deep-sea vessels with 

a loading capacity up to 13,000 container units (TEU) to feeder vessels with a capacity up to 

4,000 TEU. When the vessel arrives at a port it has to moor at the quay. For this reason a number 

of berths are available by the port operator to service the vessels. A typical berth can 

accommodate a number of vessels depending on the length of the quay. Before the vessels’ 

arrival, information on the type of the vessel, the number of containers to be (un)loaded, and a 
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proposed arrival and departure time is sent to the terminal operators. When planning for berth 

allocation and usage, the berthing time and the exact position of each vessel at the quay, as well 

as various quayside resources are determined. Several variables are considered, including the 

length-overall and (expected) arrival time of each vessel, the number of containers for 

discharging and loading on each vessel, and the storage location of inbound/outbound containers 

to be loaded onto/discharged from the corresponding vessel. 

 

Quay Cranes 

 

After a vessel is berthed a number of quay cranes (QC), a subset of the assigned cranes to the 

specific berth, are used in order to load and unload the vessel based on the vessels’ stowage plan 

(fig 2-2). Depending on the vessel’s size commonly two to five cranes operate on deep-sea 

vessels, and one to three cranes on feeder vessels. Two commonly used types of quay cranes at 

medium and large container terminals are the single-trolley cranes and dual-trolley cranes. The 

trolleys travel along the arm of a crane and are equipped with spreaders, which are specific 

devices to pick up containers. Modern spreaders allow the move of two 20 ft containers 

simultaneously (twin-lift mode). Conventionally single-trolley cranes are engaged at container 

terminals. Dual-trolley cranes represent a new development only applied at very few terminals. 

The maximum performance of quay cranes depends on the crane type. The technical performance 

of cranes is in the range of 50–60 boxes/hour, while in operation the performance is in the range 

of 20–30 boxes/hour. The time required for loading/unloading operations depends on the cycle 

time of the quay cranes and transfer cranes, and on the relative position of the berth place to the 

designated container stocking blocks for the vessel. Also, the cycle time of a quay crane depends 

on the loading sequence of slots and is affected by the loading sequence of containers in the yard. 
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At small container terminals mobile cranes may also be used. These cranes may also be used in 

medium to large size container terminals as backup quay cranes for special occasions (i.e. 

increase productivity on a specific vessel without interrupting service of other vessels). 
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Figure 2-1 Schematic Representation of Container Terminal Activities and Operations
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Stowage Plan 

 

Loading of export containers onto a vessel is based on a stowage plan. Stowage planning involves 

finding the optimal plans of positioning containers into a container vessel, with respect to a set of 

structural and operational restrictions, and is performed by the terminal operators based on a plan 

provided by the shipping company. In contrast with the unloading process, there is hardly 

flexibility in the loading process. Containers are placed on the vessel in a last-in-first-out manner 

and therefore temporary unloading and reloading in subsequent ports along the route (shifting) is 

common and results in high costs (a shift move is regarded by many terminal operators as a 

regular container move regardless that the container is unloaded and loaded on the same vessel). 

 

Storage Yard 

 

Containers that arrive at the terminal (inbound or outbound) usually have to be stored for a certain 

period of time, usually less than a week. For this reason a designated area in the container yard is 

reserved. For the time period that containers remain in the terminal they are stored at designated 

areas, within the terminal, known as the container or storage yards. Container yards are divided 

into two categories based on the storage system that they use: a) storage on chassis, and b) storage 

on the ground. Though the former way of storing containers provides flexibility and high 

performance (with a chassis system each container is individually accessible) it requires 

amplitude of land, something that today’s terminals do not have. In most container terminals 

space is limited and so stacking containers on the ground is the most common approach. 

Although stacking containers saves space it creates a significant increase of operational time. 

 



 12 

 

The container storage area is usually separated into different stacks (or blocks), which are 

differentiated into rows, bays and tiers. A typical block has seven rows (or lanes) of spaces, six of 

which are used for storing containers in stacks or columns, and the seventh reserved for truck 

passing to pickup or deliver a container when yard cranes are used for the stacking of the 

container. Each row typically consists of over twenty TEU container stacks stored lengthwise end 

to end. For storing a 40 ft. container stack, two TEU stack spaces are used. Some stack areas are 

reserved for special containers like reefers, which need electrical connection, dangerous goods, or 

overheight/overwidth containers, which do not allow for normal stacking. A usual policy is to 

separate stacks into areas for export, import, special, and empty containers. For the later category 

of containers, due to space limitations, storage areas also exist outside the marine terminal, and 

usually the majority of these containers are stored there. 

 

Containers are distinguished into inbound (import), outbound (export), and transshipment. The 

former are containers that arrive via vessel, unloaded and then usually placed in a designated area 

in the container terminal, until they are picked up by truck or rail to be moved to their inland 

destination. Outbound containers arrive on trucks or rail at the terminal, usually few days before 

the arrival of the vessel to be loaded on (ranging from one to nine depending on the ports policy 

with few extremes over 10 days), and are also placed in the storage yard. Transshipment 

containers on the other hand arrive on a vessel, are unloaded in the port and then loaded onto 

another vessel having as a final destination another port.  

 

Inbound and outbound containers have different arrival patterns. Inbound containers arrive at the 

port predictably and at large batches and depart one by one in a more unpredictable manner 

(Sideris et al., 2002). This demands flexible handling and explains why straddle carries or rubber-
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tyred cranes are generally chosen for import operations. On the other hand, outbound containers 

arrive at the port in a random way and are stored on land, and depart the port in batches. Figure 2-

2 presents an illustrative dwell time distribution of import and export containers with the 

assumption that the ports’ policy is: a) not to receive export containers earlier than 10 days from 

the vessels’ arrival, and b) the dwell time of import containers is limited to 7 days. 

 

 

Figure 2-2 Theoretical Distribution of Dwell Time for Import and Export Containers 

 

Storage Yard Equipment 

 

One of the main decisions to be made when designing the storage system (planning level) of a 

container terminal is the type of stacking equipment to be used. These include: forklift trucks, 

reachstackers, yard cranes and straddle carriers. Forklifts and reachstackers are usually used to 

move and stack light containers (like empty ones). The main equipment used for stacking 

containers on stacks though are yard cranes and straddle carries. The latter can also (and are in 
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many cases) used for inter-terminal transport of containers (e.g. from/to the vessel to/from the 

storage yard). There are three types of yard cranes: rail mounted gantry cranes (RMG), rubber 

tired gantries (RTG), and overhead bridge cranes (OBC). Rubber tired gantries are more flexible 

in operation while rail mounted gantries are more stable (more productive when working in one 

block) and overhead bridge cranes are mounted on concrete or steel pillars. Commonly gantry 

cranes span up 6–12 rows and allow for stacking containers 4–10 high. To avoid operational 

interruption in case of technical failures and to increase productivity and reliability, two RMGs 

are often employed at one stack area. A new development in yard cranes is, the so-called, double-

RMG systems. They consist of two RMGs of different height and width able to pass each other 

thus avoiding a handshake area. This results in a slightly higher productivity of the system. The 

technical performance of gantry cranes is approximately 25 moves/hour. Similarly, these types of 

cranes can be used for the loading and unloading of trains. 

 

Internal Transport 

 

As mentioned previously containers need to be transported from/to the quay and from/to the gate 

to the storage yard. A variety of vehicles are employed for the horizontal transport of containers 

within a terminal, both for the vessel-to-shore transportation and the landside operation. The 

transport vehicles can be classified into two different types: vehicles that are not able to lift 

containers by themselves and vehicles that have the capability of lifting containers. For the first 

class loading and unloading of containers is done by cranes (quay cranes at the seaside and gantry 

cranes at the landside). Trucks with trailers, multi-trailers and automatic guided vehicles belong 

to this class of transport vehicles. It should be noted that for the internal transport between storage 

yard and delivery area multi-trailers and AGVs are not used. 
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Transport vehicles of the second class are straddle carriers, forklifts, and reachstackers. The 

former ones are the most important since they can also be used for the stacking operation in the 

stack yard. Therefore, they can be regarded, as ‘cranes’ not locally bound, with free access to 

containers independent of their position in the yard. The straddle carriers’ (SC) spreader allows 

the transport of either 20 or 40 ft. containers (recently twin mode SC able to transport/stack two 

20’ containers simultaneously is becoming available, but as of today are only used in a handful of 

terminals around the world). Straddle carrier systems are very flexible and dynamic. Straddle 

carriers exist in numerous variants. Usually straddle carriers are man-driven and able to stack 1 

over 2 or 1over 3. During the last years progress was made to develop automatic straddle carriers 

(Stenken, 2004). An automatic straddle carrier system has gone into production at Patrick 

Terminal/Brisbane, Australia. 

 

Terminal Gates/ Delivery Area 

 

The receipt/delivery operations at the terminal gates is the fourth and final (after unloading, 

transfer to the yard and storage) sequence of activities in the terminal operation for inbound 

containers, and the first for outbound. Containers arrive at a terminal from the landside either via 

truck or rail. Trucks arrive at the terminals’ in-gate where the data of the containers have to be 

checked and then drive to transition points where the containers are loaded or unloaded by the 

internal equipment. (Maher container terminals at New Jersey, US are estimated to handle over 

13,000 trucks per day in the next years). Landside operations for the rail part are similar, but not 

identical, to the quayside operations. A loading plan exists that specifies which container has to 

be placed on each wagon, depending on its destination, type, weight, the wagons maximum load 
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etc. We should note that large container terminals serve some thousand trucks a day and efficient 

gating systems are crucial not only to the levels of congestion within the terminal but also to the 

surrounding street network of the port. Although delays to container handling caused by the 

receipt/delivery are no more serious than those arising elsewhere in the container terminal, they 

are the most obvious and visible to inland transport operators, and are particularly damaging to 

the terminals’ reputation (Portworker Development Program, 1999). 

 

 

Container Freight Station (CFS) Facilities 

 

Door-to-door container transport may not be possible (container arrives at destination without 

being stripped) because the shipper or receiver: a) has insufficient cargo to make up a full 

container load, b) lacks suitable equipment or facilities for handling, c) has the premises that 

cannot accommodate container vehicles, d) has no road connections suitable for container 

vehicles, and/or e) has no rail or inland waterway connections to the premises. In these cases, and 

when an inland clearance depot (ICD) is not available
6
, the usual alternative strategy for the cargo 

owner is the use of a container freight station (CFS) located at the container terminal.  

 

The CFS is a cargo consolidation area, container packing/unpacking and cargo distribution center 

equivalent to an ICD. Shippers can have their cargoes transported in break-bulk form, by road, 

rail or inland waterway, to the CFS for consolidation and packing into containers ready for 

loading aboard a vessel. Similarly, receivers of goods can arrange for them to be unpacked from 

                                                 
6 And for several other reasons like a shortage of suitable road vehicles, rail wagons or barges to transport the 

containers; container owners and lessors may place too high a price on the movement of containers inland from the 

ports; customs authorities may insist on examining the contents of all containers before allowing them out of the port, 

so reducing the benefits of door-to-door containerization etc. 
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containers at the CFS, separated into break-bulk consignments, and collected on their behalf by 

the most convenient form of inland transport. At the CFS the following broad functions are 

performed: receive, sort and consolidate export break-bulk cargoes from road vehicles, rail 

wagons and inland waterway craft; pack export cargoes into containers ready for loading aboard a 

vessel; unpack import containers, and sort and separate the unpacked cargoes into break-bulk 

consignments ready for distribution to consignees; deliver import cargoes to inland transport— 

road vehicles, rail wagons and inland waterway craft; store import and export cargoes 

temporarily, between the times of unloading and loading, while various documentary and 

administrative formalities are completed. The facilities and resources of the CFS are all designed 

to carry out these basic functions effectively and efficiently. 
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3. LITERATURE REVIEW 

 

Introduction 

 

Container terminals are open systems of material flow with two external interfaces: the quayside 

where containers are unloaded/loaded onboard the vessel and the landside where containers are 

delivered to/from the terminal via trucks or trains. Within the terminal we can distinguish three 

areas: the berth area where vessels are berthed for service, the storage yard area where containers 

are stored temporarily waiting to be exported or imported, and the terminal gate that connects the 

container terminal to the hinterland. Accordingly, operations in a container terminal can be 

broken down to three categories: seaside operations, landside operations, and yard operations, all 

of which interact with each other. Seaside operations consist of the vessels’ berthing operations at 

the quay, and the loading and unloading of containers onto the vessel. The seaside operations 

interact with the yard operations via the internal transport equipment used to transport containers 

from/to the vessel and to/from the storage yard. The yard operations manage the containers 

during the transfer between the landside and the seaside. It includes operations such as the 

internal transport of the containers from/to the vessel and from/to the trucks/rail, and the storage 

operations in the storage yard. The landside operations deal with activities of receiving and 

delivering inbound and outbound containers to and from the storage yard. While each subsystem 

can be viewed as an independent entity, and its’ operations are usually studied as such, 

interactions between the systems are unavoidable and play a crucial role in the efficient 

management and operation of a container terminal. A schematic description of a container 

terminal operations and interactions between the different systems is portrayed in figure 1. 
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Although seaside operations are interrelated with container transfer and storage yard operations, 

they present a special interest on their own regarding the relationship between the shipping lines 

and terminal operators. The tremendous increase of containerized trade during the last years, the 

resulting congestion in container terminals worldwide, the remarkable increase in containership 

capacity, the increased operating cost of container vessels and the adoption by shipping lines of 

yield management techniques, originally adopted by the airline industry, strain the relationships 

between shipping lines and container terminal operators. Shipping lines want their vessels to be 

served immediately upon arrival or according to a favorable priority pattern and complete their 

loading/unloading operations within a prearranged time window, irrespective of the problems and 

shortage of resources terminal operators are facing. Therefore, in many cases allocating the scarce 

berthing resources is considered to be a problem deserving both practical and theoretical 

attention. 

 

This chapter presents a comparative and analytical, up-to-date, review of the existing research 

efforts relating to berth planning. Existing models have been critically reviewed based on their a) 

efficiency in addressing key operational and tactical questions relating to vessel service, and b) 

relevance and applicability to different berth planning marine terminal operator strategies and 

contractual service arrangements between terminal operators and shipping lines. Strengths and 

deficiencies of the existing models to address real world problems in a systematic and coherent 

manner are being discussed. The chapter concludes with a critical overview of issues to be 

addressed to make these models more relevant to real world applications.  
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The Berth Allocation Problem (BAP) 

 

As mentioned earlier, one of the most critical operations inside a container terminal is the berth 

planning process, which has an immediate effect on the vessel’s turnaround time. In the past, 

terminal operators applied First Come First Served (FCFS) service policies in allocating berth 

space. The increasing trade volumes, vessel size and the restructuring of the shipping lines service 

networks were eventually followed by customer service agreements and differentiation service 

policies that deviate from the FCFS rule. This in turn calls for a more sophisticated and informed 

resource utilization of the berthing capacity. Due to the high cost of building new berth capacity, 

container terminal operators and managers prefer solutions that focus on the operational aspects 

of berth planning and less on the strategic/tactical. In this chapter the various aspects of the Berth 

Allocation Problem (BAP) are reviewed.  

 

The BAP can be simply described as the problem of allocating berth space for vessels in a 

container terminal. Vessels usually arrive over time and the port operator needs to assign them to 

berths to be serviced (unload and load containers) as soon as possible. Shipping lines and 

therefore vessels compete over the available berths and different factors, discussed in detail later, 

affect the berth and time assignment. The BAP has two planning/control levels: the 

strategic/tactical, and the operational. At the strategic/tactical level the number and length of 

berths/quays that should be available at the port are determined. This is done either at the initial 

development of the port or when an expansion is considered. At the operational level, the 

allocation of berthing space to a set of vessels scheduled to call at the port within a few days time 

horizon has to be decided upon. Since liner shipping vessels follow a regular schedule, in most 

cases the assignment of a berth to the vessel has to be decided upon on a regular and usually 
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periodical basis. At the operational level the BAP is typically formulated as combinatorial 

optimization problem (i.e. machine scheduling problem, 2D packaging problem).  
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Figure 3-1 Schematic Representation of Container Terminal Activities and Operations 

After the BAP has been solved, the resulting Berth Scheduling Plan (BSP) is usually presented 

using a space-time diagram. Figure 2 presents a simple example of space-time diagrams applied 

to berth planning. The x-axis represents the time and the y-axis the berth(s). Each rectangle 

represents a vessel. The rectangles and their size correspond to the berth space required and the 

service time.  
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Figure 3-2 Space-Time Diagrams of Berth Planning  

 

The BAP can be considered and formulated according to the following variations a) Discrete 

versus Continuous Berthing Space, b) Static VS Dynamic Vessel Arrivals, and c) Static VS 

Dynamic Service Time. The BAP can be modeled as a discrete problem if the quay is viewed as a 

finite set of berths, where each berth is described by fixed-length segments or as points. Usually 

though vessels are of different lengths and dividing the quay into a set of segments is difficult 

mainly due to the dynamic change of the length requirements for each vessel. One solution to this 

problem is to use longer segments, a solution resulting poor space utilization), or short segments 

(infeasible solutions). To overcome these drawbacks continuous models have appeared in the 

literature where vessels can berth anywhere along the quay. In the discrete case, the BAP can be 

modeled as an unrelated parallel machine-scheduling problem (Pinedo, 2002), where a vessel is 

treated as a job and a berth as a machine, whereas in the continuous case as a packaging or the 

two dimensional cutting stock problem. The BAP can also be modeled as a static problem 

(SBAP) if all the vessels to be serviced are already in the port at the time scheduling begins or as 
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a dynamic problem (DBAP) if all vessels to be scheduled for berthing have not yet arrived but 

arrival times are know in advance. Service time at each berth depends on several factors, with the 

two most important being the number of cranes operating on each vessel and the distance from 

the preferred berth position (PBP). If the model does not take under consideration the number of 

cranes to be operating at each vessel then the problem can be considered as static in terms of the 

handling time. On the other hand if the number of cranes that will work on each vessel is decided 

upon from the model then the formulation can be considered as dynamic in terms of the vessels 

service times. Finally technical restrictions such as berthing draft, inter-vessel and end-berth 

clearance distance, that bring the problem formulation closer to real world conditions, are further 

assumptions that have been adopted by researchers. 

 

Table 3-1 summarizes the several categories of BAP variations and the respective assumptions 

that have appeared in the literature. The models that have appeared in the literature usually 

combine two or more of these assumptions. In most cases the formulation of the problem leads to 

NP-hard or NP-complete problems that require heuristic and meta-heuristic to be employed for a 

computationally acceptable solutions time.  

 

Table 3-1Berth Plan Model Variations 

Assumption Description 

Static VS Dynamic Berthing 

Static: All vessels are in the port when the berth plan is determined  

Dynamic: All vessels are not in the port when the berth plan is 

determined 

Discrete VS Continuous 

Berth Space 

Discrete: Allocation scheme based on the berth 

Continuous: Allocation scheme not based on the berth 

Static VS Dynamic Handling 

Time 

Static: Constant Handling Time 

Dynamic: Handling Time Depends on several parameters (i.e. 

Vessel size, Berthing location, Quay Crane assignment etc) 

Technical/Operational 

Restrictions 
Inter vessel clearance, End Berth clearance etc 
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Literature Review 

 

In this section a complete and up-to-date, in our opinion, literature review on BAP is provided. 

The advantages and limitations of each approach are presented along with a brief description of 

the model formulation. 

 

Table 3-2 summarizes the most important papers that have appeared in the literature that dealt 

with the BAP. The first column states the main author and the date of publication. The second 

column states the BSP (dynamic/static, discrete/continuous) while the third and fourth the 

objective and the problem formulation. Since most of the formulations lead to NP-Hard or NP-

Complete problems the last column states the adopted solution approach, which as can be seen is 

usually some sort of (meta)heuristic. 

 

The first paper to appear on the BAP problem was by Nikolaou (1969), followed by a paper by 

Sabria and Daganzo (1989). This research focused on queuing theory using a serial representation 

of the problem. Issues related to the applicability of this modeling approach to the BAP were 

discussed by Edmond and Maggs (1978). After 1990, research in the BAP has solely focused on 

mathematical programming and simulation, since queuing models failed to capture several of the 

attributes of the problem. The only exception was a study by Legato and Mazza (2001) and a 

study by Dragovic et al (2006). The later used queuing theory and simulation to evaluate the 

efficiency of models used at the Pusan East Container Terminal, while the former presented a 

closed queuing network model and performed simulation for estimating congestion effects at the 

berth. 
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One of the early works that appeared in the literature and did not follow a serial approach was by 

Lai and Shih (1992). The authors assumed that a wharf, represented as a continuous line that 

could be partitioned into several sections, to each of which only one vessel could be allocated at a 

specific time. The berth-allocation rules considered the following factors: the available sections 

of a wharf, the expected completion time of a vessel at each available section, and size and arrival 

time of each vessel. A heuristic algorithm was developed considering a first-come-first-served 

(FCFS) rule. Through a simulation experiment three berth-allocation rules for container vessels 

are compared. 

 

Brown et al. (1994, 1997) treated the BAP in naval ports. They identified the optimal set of 

vessel-to-berth assignments that maximizes the sum of benefits for vessels while in port. Berth 

planning in naval ports has important differences from berth planning in commercial ports 

though. In the former, a berth shift occurs when for proper services, a newly arriving vessel must 

be assigned to a berth where another vessel is already moored.  

Imai et al. (1997) was the first to introduce the idea that for high port throughput, optimal vessel-

to-berth assignments should be found without considering the FCFS basis. However, this may 

result in some vessels' dissatisfaction regarding order of service. In order to deal with the two 

criteria to evaluate, i.e., berth performance and dissatisfaction on order of service, they developed 

a heuristic algorithm to find a set of non-inferior solutions while maximizing the former and 

minimizing the later. They introduce of a multi-objective approach, new to machine scheduling 

problems. A two objective non-linear integer program is formulated to identify the set of non-

inferior berth allocations to minimize the dual objectives of overall staying time and 

dissatisfaction on order of berthing. Dissatisfaction was expressed as the sum of the number of 

cases in which a vessel arrives later than a particular vessel and is moored earlier. After defining 
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the two-objective non-linear IP they reduced the problem into a single objective problem 

consisting of the summation of the waiting times and dissatisfaction. From numerical 

experiments, it was concluded that the trade-off increases if the size of the port increases. Their 

berthing principle, however, could not treat the dynamic allocation. This paper was the only paper 

that looked specifically in the customer satisfaction problem, even though it was done in an 

aggregate way. 

 

Li et al. (1998) formulated the BAP as a scheduling problem with a single processor through 

which multiple jobs can be processed simultaneously. The problem assumed that all vessels had 

already arrived, and the minimization of the make-span was attempted based on that assumption. 

They present two cases of the problem: a) the fixed position case, and b) the non-fixed position 

case. The authors stated that both cases could be applicable to the berth-scheduling problem 

under different assumptions (infinite and negligible vessel setup time and cost for job 

interruption/position change after the job has started). They also consider the case where the 

processor is partially available. They suggested a first-fit-decreasing heuristic rule for which 

numerical experiments were conducted for all three cases. The results showed that the average 

relative errors of the heuristics are less than 20% among all the parameters tested, and the results 

suggest that the heuristics are effective in producing a near-optimal solution.  

 

Similar to Li et al. (1998), Guan et al. (2002) considered the berth allocation problem as a 

multiprocessor task scheduling. A vessel (job) is assigned to a number of cranes (m parallel 

processors/decision variables). They developed a heuristic to minimize the total weighted 

completion time of vessel service and performed worst-case analysis. Weights were assigned to 

each job, dependent on the vessels size. They considered two cases of weights both as different 
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functions of the vessels size. No priority service rules were employed, though the weighting of 

the jobs could be considered as a form implicit rule implementation, and no numerical examples 

were presented or discussed. 

 

Lim (1998), along with Li et al. (1998), addressed the continuous BAP, with the objective of 

minimizing the maximum amount of quay space used at any time with the assumption that once a 

vessel is berthed, it will not be moved to any place else along the quay before it departs. He also 

assumed that every vessel is berthed as soon as it arrives at the port. This approach is very 

restricting since it does not solve the problem in which the berthing time is a decision variable 

and the handling time varies along the quay. The problem was represented as a graph with 

directed and undirected edges and transformed into a restricted version of the two-dimensional 

packing problem. A heuristic was presented that performed well under historical data. 

 

Unlike Lim (1998), Imai et al (2001), Brown et al. (1994) and Lai and Shi (1992) Park and Kim 

(2002) consider the continuous DBAP and used the sub-gradient optimization technique. Their 

objective was to estimate the berthing time and location by minimizing the total waiting and 

service time and the deviation from the preferred berthing location. They are the first ones to 

include penalization of the deviation from the optimal berth. 

 

Tong et al. (1999) were the only ones to follow the implementation of the Ant Colony 

Optimization (ACO) technique and showed how it can be applied effectively to solve the BAP. 

The objective was to minimize the necessary wharf length subject to several space and time 

constraints. Experimental results, with problems that dropped the constraints of clearance 

distance between vessels and fixed and forbidden positions (that do not affect the main focus of 
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the BAP), were presented but no comparison was made to any of the other available methods and 

there is no indication that the algorithm may perform well in real life problems. 

 

Imai et al. (2001) was the first one to address the DBAP. Their objective was to minimize the sum 

of a vessels waiting and handling time. Handling time was assumed to be dependent on the berth 

but was not modeled, as with most of the papers, and was considered deterministic. 

Computational experiments showed that the proposed heuristic works well from a practical point 

of view. In the same context Nishimura et al. (2001) addressed the same problem but for a public 

berth system. In this paper the authors extended the work done by Imai et al. (2001) to include 

physical restrictions (water-depth and quay length). They also dropped the assumption that each 

berth can handle one vessel at a time. Service priority relied on the FCFS rule, and was not 

dependent on the vessels cargo volume, though the authors note that this is a usual constraint. The 

goal was to optimize service time (including waiting time). A heuristic based on genetic 

algorithms (GA) is employed to obtain a good solution within a reasonable computational time. 

Experimental results are presented for both simultaneous and single occupancy of a berth. For 

small size problems the optimality gap was 10% while for larger size problems 20%. 

 

Hansen and Oguz (2003) criticized the model formulation by Imai et al. (2001) and supported that 

the formulation was incorrect, presenting a new formulation. Imai et al. (2005) published a 

Corrigendum to clarify this issue. Several computational experiments were performed for the 

purposes of this paper, using both the formulations of Imai et al. (2001) and Hansen and Oguz 

(2003). In all the test instances the same optimal objective function value was obtained. We 

should note that due to the multi-solution space (fig. 3) different assignments might provide the 

same optimal objective value. 
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Figure 3-3 Multi-solution space example 

 

Imai et al. (2003) modified and extended the DBAP formulation of Imai et al. (2001) and 

Nishimura et al. (2001) in order to include service priority constraints. The objective was to 

minimize the total service time while differentiating priorities to vessels by variation of their 

service time in the solution. They assumed that only one vessel can be moored per berth at a time, 

the service time was berth dependent, while no physical/technical restrictions were considered. 

Several numerical examples are presented using different weight priority formulas and a small 

discussion on the choice for the value of the weights is provided.  

 

Kim and Moon (2003) also studied the continuous DBAP and formulated a MIP model, similar to 

Imai et al. (2001), but used simulated annealing instead of the Lagrangian Relaxation to find near 

optimal solutions. The objective was to minimize delays and handling cost by non-optimal 
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locations of the vessels berthing, attempting to simultaneously determine the berth time and 

location. Unlike Imai et al. (2001) they apply a cost penalty to berthing in non-preferred berths. 

Priority service rule inclusion was not stated explicitly, though a penalty was included in the 

minimization function for the late departure of each vessel. In their paper a comparison of the 

simulated annealing method to classical optimization technique is presented using a numerical 

example (a more comprehensive comparison and more details on the model can be found in 

Moon, 2000). In their comparison the authors use only small instances of the problem because the 

continuous case of the BAP is intractable by exact methods and results show that the simulated 

annealing method provided near-optimal solutions within a reasonable time frame.  

 

Park and Kim (2003) extended their previous work to combine the BAP with consideration of 

quay crane capacities. Their study determined the optimal start times of vessel services and 

associated mooring locations while at the same time determines the optimal assignment of quay 

cranes to vessels. They assumed that handling times vary linearly with the number of quay cranes 

assigned to a vessel, in order to solve the integrated problem. The handling time was considered 

independent from the mooring location of the vessel. The formulation of the objective function is 

similar to the ones by Park and Kim (2002) but more elaborate since it includes four different cost 

penalties (handling cost, early arrival, late arrival, and late delay). 

 

Similar to Park and Kim (2003), Meisel and Bierwirth (2006) presented a model for the Berth and 

Quay Crane Assignment problem. A heuristic was also provided, based on priority rule methods, 

for the integrated solution of these problems and computational results based on real world data 

was presented. The objective was the minimization of unused Quay crane capacity. The authors 

stated that further research is being conducted. 



 31 

 

Table 3-2 Different Berth Planning Assignment Problem Assumptions  

Author BSF Objective Formulation Solution Approach 

Li et al., 

1998 
SBAPCQ Makespan 

Single Processor 

Scheduling 
Heuristic 

Lim et al., 

1998 
SBAPC Amount of Quay 2D Packaging Heuristic 

Guan et al., 

2002 
SBAPCQ Total Weighted Completion Time 

Multiprocessor 

Scheduling 
Heuristic 

Guan & 

Chen, 2004 
SBAPC Total Weighted Completion Time MIP Heuristic 

Park & 

Kim, 2002 
SBAPC 

Cost From Delayed Departures 

and Cost of Non-Preferred Berth 
MIP 

Lagrangian relaxation 

and sub-gradient 

optimization 

Kim and 

Moon, 2003 
SBAPC 

Cost From Delayed Departures 

and Cost of Non-Preferred Berth 

, Cost from early or late start of 

vessel handling against ETA 

(Estimated Time of Arrival) 

MIP Simulated Annealing 

Park and 

Kim, 2003 
CBAPD 

Handling Cost, Penalties from 

Berthing prior or after ETA, 

Penalties from Late Departures 

MIP 

Lagrangian Relaxation 

and Subgradient 

optimization, Dynamic 

Programming 

Nishimura 

et al., 2001 
DBAPD Total Completion Time MIP GA 

Imai et al., 

2001 
DBAPD Total Completion Time MIP 

Lagrangian relaxation 

and sub-gradient 

optimization 

Imai et al., 

2003 
DBAPD Weighted Total Completion Time QAP GA 

Imai et al., 

2005 
DBAPC Total Completion Time MIP Heuristic 

Imai et al , 

2007 
DBAPC Total Completion Tim MIP GA 

Imai et al., 

2006 
DBAPC External Berth Service Time MIP GA 

Cordeau et 

al., 2005 
DBAPC 

Total Completion Time/ 

Weighted Total Completion Time 
MIP Tabu Search Heuristic 

Briano et 

al., 2005 
SBAPC 

Cost From Delayed Departures & 

Cost of Non-Preferred Berth 
MIP Heuristic 

Lee et al., 

2006 
SBAPCQ Makespan & Quay Crane Time MIP GA 

Wang & 

Lim, 2006 
SBAPC 

Position, Delay, & Unallocation 

Cost 
MIP 

Stochastic Beam 

Search 

Hansen et DBAPD Delayed Departures, Waiting and MIP Variable Neighborhood 
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al., 2007 Handling Cost Search 

Moorthy & 

Teo, 2006 
CBAPD 

Operational Cost and Maximize 

Service Levels 

Rectangle 

Packing 
Simulated Annealing 

Golias et al. 

(2007) 
DBAPD 

Delays from Late and Maximize 

Premiums from Early/Timely 

Departures 

MIP GA 

Boile et al. 

(2007) 
DBAPD 

Multi-objective: Total Service 

Time and Preferred Customers 

Satisfaction  

MIP GA 

DBAPD: Dynamic BAP Discrete, DBAPC: Dynamic BAP Continuous, SBAPD: Static BAP 

Discrete, SBAPC: Static BAP Continuous 

 

Lee et al. (2006) following the work of Park and Kim (2003) presented a method for 

scheduling berth and quay cranes, which are critical resources in container terminals. 

Excluding simulation models, this paper along with Park and Kim (2003), Li et al (1998), 

Guan et al. (2002) and Meisel and Bierwirth (2006) are the only two papers that combine 

berth scheduling and quay crane assignment. A bi-level programming model, in which 

the berth allocation problem with the objective of minimizing the sum of waiting time 

and handing time of each vessel is dealt with as upper level problem whilst the quay 

crane scheduling problem with the objective of minimizing the sum of makespan of all 

the vessels and the completion time for all the quay cranes is dealt with as lower level 

problem, is formulated by considering various practical constraints such as interference 

between the quay cranes. To solve this model, a genetic algorithm is used to determine 

the near optimal solution. A computational experiment is conducted to examine the 

performance of the proposed bi-level programming model and algorithm. Unfortunately 

results are presented for small instances of the problem. According to the author further 

research is in progress to address the issue of larger instances. 
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In an unpublished paper Dai et al. (2004) study the static and dynamic berth allocation problem as 

a rectangle-packing problem with arrival constraints. Given a scheduling window and information 

on the vessels that will be arriving within the window, they structure the associated berth 

planning problem as one of packing rectangles in a semi-infinite strip with general spatial cost 

structure. The goal was to minimize the delays faced by vessels, with higher priority vessels 

receiving promised level of services, while at the same time address the desirability to berth the 

vessels on designated locations along the terminal minimizing the movement and exchange of 

containers within the yards and between vessels. Constraints on draft, equipment availability, etc. 

are not taken into consideration. They show that a pair of permutations of all the vessels can 

encode any BP problem and formulate a time and space cost minimization model. They provide a 

lower bound for the SBAP in order to evaluate the performance of their procedure. They use 

simulated annealing, with 5 different neighborhood schemes, in order to search the feasible 

solution space. 

 

Guan and Cheung (2004) presented a berth allocation model that allows multiple vessels moor at 

a berth, considers vessel arrival time and optimizes the total weighted flow time. Two 

formulations were presented: a) the Relative Position Formulation (similar to the model of Kim 

and Moon, 2003; with a slightly different objective function), and b) the Position Assignment 

Formulation. Following the idea by Imai et al. (2003) they apply a weight coefficient to each 

vessel limited to vessels departing later then the requested time. They develop a tree procedure 

and a heuristics that combines the tree procedure with the heuristic in Guan et al. (2002). 

Computational experiments show that the composite heuristic is quite effective. 
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Imai et al. (2005) extend their previous work by solving the DBAP in a continuous berth space. 

They assume that handling time depends on the quay location where the vessel is handled (all the 

existing BAPC studies up to date assume unchanged handling times regardless of where the 

vessels are handled), and is a function of the berth location relative to the container storage yard 

and the assigned yard trailers to transport containers to/from the vessel. In their formulations 

thought handling time is again considered deterministic. No consideration is given to service 

priorities and the objective is restrained, as most of the papers, to the minimization the total 

service and wait time. 

 

Cordeau et al. (2005), similar to Imai et al. (2005), considered the discrete DBAP, that works 

with a finite set of berthing points, and provided two formulations: a formulation similar to Imai 

et al. (2001) and a formulation similar to the Multi Depot Vehicle Routing Problem with Time 

Windows (Legato et al. 2001). They also developed a heuristic for the continuous case. In 

contrast to previous models their work is capable of handling a weighted sum of service times as 

well as windows on berthing times. In the discrete case, medium-size instances were solved 

exactly under some assumptions, which enabled an assessment of the quality of the heuristic. 

Because the continuous problem could not be solved exactly, the assessment of the heuristic 

developed was only be inferred from the discrete scenario. To avoid simplifications contrary to 

Park and Kim (2003) the authors do not solve the BAP and the Quay Crane Assignment Problem 

(QCAP) simultaneously. The objective is the minimization of the total (weighted) service time for 

all vessels, defined as the time elapsed between the arrival in the harbor and the completion of 

handling. 
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Briano et al. (2005) outlined the integration between a flexible simulator, which represents the 

marine-side operations of a container terminal, with a Linear Programming model for improving 

berth assignment and yard stacking management policies. The proposed methodology starts with 

a Mathematical Model for supporting Berth Planning. The optimal position of the berth for each 

vessel was considered the nearest docking place where the containers have to be taken or 

dropped. The goal of this part of the model is to minimize the penalty cost resulting from delayed 

departures of vessels and the additional handling cost resulting from deviation of the berthing 

position from the best location on the berth. The authors note that the problem is NP-hard and can 

only be solved in reasonable time for a maximum of seven vessels and a 72 hour plan horizon. 

This model is combined with a simulation model used for identifying optimal positions for 

containers. The paper is very brief and does not go into detail of how the integration was 

accomplished or problems that were or may be encountered during implementation. 

 

Lokuge and Alahakoon (2006) present a unique approach, differentiating itself from all the 

previous work presented herein. They use Artificial Intelligence (AI), and more specifically the 

Beliefs, Desires and Intention (BDI) agent architecture. They describe the use of a hybrid BDI 

agent architecture for a vessel berthing application system. An extended hybrid BDI agent system 

with intelligent tools (neural networks and adaptive neuro-fuzzy inference system (ANFIS)) was 

proposed for improved performance in the terminal. The assignment of vessel to berth is based on 

several factors that include: minimization of the waiting time of the vessel, berth productivity, 

minimum distance for vessel berthing and sailing etc. Results show a reduced average waiting 

time of vessels while several other measures of port productivity are also presented. 
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Imai et al., (2007) addressed the berth allocation problem at a multi-user container terminal with 

indented berths for fast handling. A new integer linear programming formulation was presented, 

which was then extended to model the berth allocation problem at a terminal with indented 

berths, where both mega-containerships and feeder vessels are to be served for higher berth 

productivity. A genetic algorithm heuristic was used to solve the problem to optimality. From 

derived computational results it was concluded that while the indented terminal served the mega-

vessel faster than the conventional terminal, the total service time for all vessels was longer than 

the one in the conventional terminal. Imai et al. (2006) addressed a variation of the berth 

allocation problem at multi-user terminals, where vessels normally served at the terminal with 

expected wait time exceeding a certain time limit, were assigned to an external terminal. The 

objective of the problem was to minimize the total service time of vessels at the external terminal. 

 

Wang and Lim (2006) solved the DBAP by minimizing un-allocation, position and delay costs, 

using a Stochastic Beam Search Heuristic that outperformed both the current state-of-the-art 

metaheuristics and the traditional beam search. The authors concluded that the formulation and 

solution approach is fast, easy to modify and implement, and can be directly applied to solving 

multi-stage decision making problems. 

 

Hansen et al. (2007) studied the DBAPD considering the minimization of total costs for waiting 

and handling as well as earliness or tardiness of completion, for all vessels. They presented a 

general formulation that can be reduced to the BSP by Imai et al (2001) and (2003). A Variable 

Neighborhood Search (VNS) heuristic was proposed, and compared with Multi-Start (MS), a 

Genetic Search algorithm (GA) and a Memetic Search algorithm (MA). VNS provided optimal 

solutions for small instances solved to optimality for the DBAPD with the objective to minimize 
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the total service time. The authors claim that VNS outperforms MS, MA and GA on large 

instances though this statement is not based on elaborate computational experiments (i.e. very 

small computational time). Furthermore, instances used for the computational examples cannot be 

considered descriptive of a medium to heavily congested port, since the ratio of vessel to berth 

per day is very low (the maximum ratio was less then 1 vessel per berth per day). 

 

Moorthy and Teo (2006), expanded on the work of Dai et al. (2004), and presented a new 

approach (perhaps the most interesting so far) for the DBAPC. The problem was modeled as a 

bicriteria optimization problem. The first objective dealt with the trade-off between the 

operational cost of moving containers from one vessel to the other and the delays (difference of 

actual arrival and start of mooring) of customers. The second objective dealt with the 

stochasticity in the arrival of ships and the robustness of the final schedule. The authors try to 

minimize the expected delays of transshipment vessels. The focus of the experimental results lies 

in the stochastic nature of the problem. As also stated by the authors the approach adopted is 

limited by the fact that the berth solution is relevant only when a substantial number of vessels 

arrive periodically and within the same period. They use a continuous representation but note that 

in the final solution overlapping of vessels is not avoided, especially when demand increases. 

Nevertheless this is the first paper that studied the BAP incorporating the stochastic nature of the 

vessel arrivals with very promising results. The authors stated that further research is underway.  

 

Monaco and Sammara (2007) presented a compact formulation for the discrete and dynamic BAP 

and developed a Lagrangean heuristic to solve the problem. Imai et al. 2007 proposed a 

formulation for the simultaneous berth–crane allocation that minimizes the total service time and 

developed a genetic algorithm-based heuristic to solve to the resulting problem. 
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Discussion of current Berth Allocation Research 

 

Port Operator Service Agreements and Berth Allocation Models  

 

The SBAP and DBAP along with the discrete and continuous BAP have been widely studied in 

different combinations. Most of the studies tried to minimize the total service and waiting time 

(total completion time-TCT) and/or the deviation from the preferred berth, since it is expected 

that minimization of the deviation from the preferred berthing position will reduce service time 

and operator’s cost, while very few studies incorporated the minimization of the cost endured by 

a vessels late departure after an agreed point in time. These objectives satisfy most of the port 

operators’ objectives but fail to portray most of the service priority agreements (fig. 3-4). These 

contractual arrangements can vary from berthing (and start of cargo handling operations) upon 

arrival, to guaranteed service time window and/or guaranteed service productivity (UNCTAD, 

1986). Earliness or lateness of a vessels start or completion time of handling operations 

(loading/unloading of containers) implies benefits or costs to both the port operator and the ocean 

carrier. If these operations are completed after a specified and agreed time, the port operator may 

pay a penalty to the ocean carrier, while if these operations are completed before that date the 

carrier may pay a premium fee to the port operator, subject to the contractual arrangements, 

although in practice premium may be compensated with past or future penalties assigned to the 

port operator due to failure to meet the terms of the contract. Although early departures are 

seldom reported to happen, they can help ocean carriers in managing the time factor of their 

service schedules, by providing time buffer to cope with time lost in other ports (Notteboom, 

2006). Early premiums can be offset by reducing voyage operating cost through reducing the 
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voyage speed and therefore the fuel consumption. In fact, recently, ocean carriers seek to reduce 

operating cost through voyage speed reduction, while maintaining service punctuality (Savvides, 

2006 and Lloyds List, 2006). It was not until the early 2007 (Hansen et al., 2007) that researchers 

began recognizing the significance of premiums from the vessels’ early departures. Nevertheless, 

service deadlines (start or finish or service) in the form of time windows, penalties and premiums 

from the early start of service and premiums from the start of finish of service within the deadline 

time window have not yet been investigated, though they represent one of the most basic BSPs. 

 

 

Figure 3-4 Port Operator Objectives and Service Priority Arrangements VS Parameters 

Influencing BAP and Objectives and Service Priority Arrangement Considered in Current 

Research 
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Service Priority Schemes based on Weights 

 

Allocating vessels to berths by simply minimizing the total completion time can lead to problems 

where vessels with smaller handling volumes receiving higher priorities than vessels with larger 

handling volumes (Pinedo, 2002). The later, end up serviced at the end of the queues at each 

berth. That is to say given the situation that two vessels with different handling volumes arrive at 

the same time, the large vessel will wait for the smaller vessel to get serviced (if they are both 

serviced at the same berth). Assignment policies based on this objective have the consequence of 

larger waiting times for larger vessels. Some large vessels though, for a number of reasons (call at 

another port, time sensitive cargo etc), might need to be assigned for service and/or finish their 

service as soon as possible, after their arrival at the port. In practice, the problem of assigning 

priority status to vessels is more complex since for some vessels contractual agreements signed 

between ports and customers do not allow for arbitrarily assignment (Dai et al., 2004). 

 

To illustrate this disadvantage assume the following case of a single berth with vessel arrival and 

handling times as given in table 3a. In this case solving the problem with the objective of 

minimizing the total completion time, vessel 1 will have to wait and be served last (table 3b). The 

question arises though how beneficial is that for the port operator to have a large customer 

waiting for such a long period of time. This also implies that the berth might be unutilized for 

certain periods of time waiting for the small vessels to arrive (while other vessels are already in 

port waiting for service), resulting in extra cost to port operators. 
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As described previously a number of studies tried to address this issue by assigning weights to the 

vessels, representing in this way the vessels priority. Service priority schemes based on the 

assignment of arbitrary weights to vessels were introduced by Imai et al. (2003) and were adopted 

by a number of studies that followed. The main issue with this approach lies in the determination 

of weights, since there is no intelligent way, excluding iterative processes, to assign these weights 

in order to meet specific contractual agreements. To avoid these issues Kim and Moon (2003), 

Park and Kim (2003), and lately Wang and Lim (2006), and Hansen et al. (2007), used monetary 

penalization-premiums of delayed-early/timely departures. 

Table 3-3 Example arrival, handling and finish times per vessel, for a simple BAP problem 

3a: Arrival and Handling Time 

Vessel Arrival Handling 

Time 

1 0 50 

2 0 4 

3 0 4 

4 0 4 

5 16 4 

6 25 4 

7 30 4 

8 40 4 

9 50 4 

3b: Assignment Minimizing Total Service Time 

Service 

Order 

Vessel Finish 

Time 

Idle Berth 

Time 

Wait 

Time 

1 2 4 0 0 

2 3 8 0 4 

3 4 12 0 12 

4 5 20 4 0 

5 6 29 4 0 

6 7 34 1 0 

7 8 44 6 0 

8 9 54 6 0 

9 1 104 0 54 
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Multi-objective berth allocation 

 

As with all engineering problems determining berthing times and positions of containerships at a 

port container terminal has several objectives; i.e. minimizing service and waiting time, meeting 

contractual agreements, minimizing port operators’ operational costs, etc. All the models that 

have been presented in the related literature focus on the formulation of a single objective BSP 

model. Even though most of the authors recognize the multi-objective character of the problem, 

and at several cases consider it as such, they end up combining the multiple objectives into a 

single scalar value by using weighted aggregating functions according to the preferences set by 

the decision-makers and then, find a solution that satisfies these preferences. However, in many 

real scenarios involving multi-objective scheduling problems (such as the BAP), it is preferable to 

present various compromising solutions to the decision-makers, so that the most adequate 

schedule can be chosen. Although this can be achieved by performing the search several times 

using different preferences each time, another approach is to generate the set of compromise 

solutions in a single execution of the algorithm. The consideration of many objectives has the 

advantage of a wider range of alternatives for the participants in the planning and decision-

making processes, (i.e. “analyst” or “modeler”– who generates alternative solutions, and 

“decision maker” who uses the solutions generated by the analyst to make informed decisions) 

while modeling the problem in a more realistic way. 

 

Most of the BAP have a number of constraints (some hard and other soft). As correctly pointed 

out by Fonseca and Fleming (1995) in a research report, in many cases satisfying constraints is a 

difficult problem itself. When different constraints cannot be satisfied simultaneously, the 

problem is often deemed to admit no solution. The answer came from Coello Coello (2000), who 
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showed that it is possible to treat constraints as objectives and consistently outperform the single 

objective approach without a significant sacrifice in terms of performance. This observation could 

be proven very valuable when formulating BSP model that deal with hard constraints that lead to 

infeasibility (such as the service upon arrival service arrangement) since a number of the 

constraints can be viewed as objectives. 

 

The main drawback of a multi-objective formulation lies in the solution approach and optimality 

of the results. To solve multi-objective problems evolutionary algorithms have been used 

exclusively (Toboada, 2007). On the other hand though heuristic approaches have also been used 

exclusively to solve medium to large (and in some cases small) instances of all the single 

objective BSP presented to date. 

 

Stochastic Arrivals and Handling Time 

 

Another issue not yet fully addressed, but mentioned regularly in the berth allocation literature, is 

how robust are the BAP assignments when the uncertainty of the vessels arrival and handling 

times is not considered. Excluding the study by Moorthy and Teo (2006), the rest of the studies 

assumed that the arrival and handling time of each vessel was known with certainty. Usually 

though vessels provide the port operator with a time window in which they may arrive at the port 

and request service. These time windows are not known with certainty until few hour of a vessels 

arrival. Furthermore, and due to several factors quay crane availability and performance varies 

and this influences the handling time of the vessels, which should be considered stochastic. 

Although berth allocation models including arrival and handling time uncertainty may be more 

beneficial to a port operator, as of today have not yet been investigated.. 
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Berth and Quay Crane Scheduling 

 

One of the most crucial issues in the BAP is the consideration of the handling times as constants 

and only dependent on the berth assignment of the vessel. As mentioned earlier, a small number 

of researchers presented studies that deviated from this approach. Nevertheless only part of the 

service priority agreements has been modeled. Further research is required that takes under 

consideration the rest of the service priority agreements with the focus on the guaranteed 

(un)loading performance, which is one of the most important factors during negotiations of future 

contractual agreement between the port and vessel operators. 

 

Conclusions 

 

From the review of the system and the related literature, it becomes obvious that several 

objectives need to be met and optimized at the berth part of the terminal and in general at the 

seaside (table 3-4). A trade-off exists between the total staying time in the port, the dissatisfaction 

of vessel owners caused by the order in which vessels are berthed and finish service (expressed in 

the total waiting and service time) and the port operators operating and capital costs. The issue of 

meeting contractual agreements based on berth productivity and vessel berth assignment is very 

important for a ports’ competitiveness. 

 

Some researchers tried to address the issue of port competitiveness by assigning service priority 

rules either as the vessels’ weight factor or as a time cost penalty for late departure. Unfortunately 

the former formulations did not present a sensitivity analysis of the weights, while the later based 

the BSP of vessels serviced before the scheduled time on the minimization of the PBP. On the 
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other hand premium benefits, cost of keeping a berth idle, guidance of how to use/modify weights 

or cost penalties to achieve the terminal operators’ service contractual agreements have never 

been stated explicitly. This, is somewhat expected, since these studies looked at the problem from 

a single objective using weighted methods, that most of the times have an inherent problem in 

selecting the weights (or utility functions) that characterize the decision-maker’s preferences. In 

practice, and in most scientific fields, it can be very difficult to precisely and accurately select 

these weights, even for someone familiar with the problems domain. BAP formulations that could 

accommodate flexibility in that aspect would be more realistic. Furthermore the stochastic nature 

of the BAP has not been present in any model so far. 

 

In our opinion several issues remain to be addresses in the BAP (table 3-4, 3-5, 3-6 and 3-7) 

including: a) dynamic formulation of the service time in respect to the assigned quay cranes, 

internal transport vehicles, and the preferred berthing position, b) formal methodology of weight 

application to service priority modeling and improvement of weight definitions, c) operators cost-

service priority modeling, d) stochastic nature of BAP, and e) multi-objective formulation of the 

BAP. 

Table 3-4 Existing BSP 

Existing approaches Container Terminal Operator Practices 

Minimize Total Completion Time Maximize Overall Berth Performance 

Minimize Late Departures, Maximize Early 

Departures and Distance from Preferred Berth 

Maximize Overall Berth Performance, 

Customer Dissatisfaction, Penalty Cost 

Minimize Total Weighted Completion Time 
Maximize Overall Berth Performance, 

Customer Dissatisfaction 

Minimize Position Cost, Delay Cost, and 

Unallocation Cost 

Minimize Customer Dissatisfaction, Indirectly 

Minimize Service Time 

Minimize Cost From Delayed Departures, Cost 

of Non-Preferred Berth, and Cost from Early or 

Late start of vessel handling against estimated 

times of vessel arrival 

Minimize Customer Dissatisfaction, Indirectly 

Minimize Service Time 

Minimize the maximum amount of Quay 

occupied 
None 
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Table 3-5 Future BSP 

Future Research Container Terminal Operator Practices 

Minimize Late Berthing/Departures, Maximize 

Early/Timely Departures/Berthing 

(Departure/Berthing Time or Time Window), 

Minimize Handling and Wait Time Cost 

Maximize Profit, Minimize Customer 

Dissatisfaction 

Minimize cost from failing to meet Guaranteed 

(Un)Loading Performance/Service Time and 

Berthing and Departure Time Window 

Maximize Profit, Minimize Customer 

Dissatisfaction 

Multi-Objective BAP 

Balance between Profit Maximization, 

Customer Dissatisfaction, Total Service 

Time Minimization, Customer Specific 

Service Time Minimization etc 

Stochastic Arrival/Service Time BAP 
Minimize Risk of Interruptions and Delays. 

Robust Scheduling 

 

Table 3-6 Current Formulations and Port Operator Objectives and Service Priority Arrangements 

  Port Operator Objectives Port Operator Service Priority Arrangements 

Author BSF 

Overall 

Berth 

Performance 

Minimize 

Operational 

Cost 

Balance 

Level of 

Service 

Between 

Customers 

Maximize 

Profits 

Service 

Upon 

Arrival 

Service 

Time 

Windows 

Guaranteed 

(Un)Loading 

Performance 

Berthing/Departure 

Point in 

Time/Time 

Windows 

Li et al., 

1998 
Makespan X(P)  X(P)      

Lim et 

al., 1998 

Amount of 

Quay 
X(P) X(P)       

Guan et 

al., 

2002, 

Guan & 

Chen, 

2004, 

Imai et 

al., 

2003, 

Cordeau 

et al., 

2005 

Total 

Weighted 

Completion 

Time 

X(P)  X X(P)     

Park & 

Kim, 

2002, 

Briano et 

al., 2005 

Cost From 

Delayed 

Departures 

and Cost of 

Non-

Preferred 

X(P) X  X(P)    X(P) 
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Berth 

Kim and 

Moon, 

2003 

Cost From 

Delayed 

Departures 

Cost of 

Non-

Preferred 

Berth 

Cost from 

early or late 

start of 

vessel 

handling 

against ETA 

(Estimated 

Time of 

Arrival) 

X(P) X   X(I)   X(P) 

Li et al., 

1998 
Makespan X(P)  X(P)      

Lim et 

al., 1998 

Amount of 

Quay 
X(P) X(P)       

Guan et 

al., 

2002, 

Guan & 

Chen, 

2004, 

Imai et 

al., 

2003, 

Cordeau 

et al., 

2005 

Total 

Weighted 

Completion 

Time 

X(P)  X X(P)     

I: Indirectly, P: Partially 

 

Table 3-6 Current Formulations and Port Operator Objectives and Service Priority Arrangements 

(Continued) 

  Port Operator Objectives Port Operator Service Priority Arrangements 

Author BSF 

Overall 

Berth 

Performance

Minimize 

Operational 

Cost 

Balance 

Level of 

Service 

Between 

Customers 

Maximize 

Profits 

Service 

Upon 

Arrival 

Service 

Time 

Windows 

Guaranteed 

(Un)Loading 

Performance 

Berthing/Departure 

Point in 

Time/Time 

Windows 

Park & 

Kim, 

Cost From 

Delayed 
X(P) X  X(P)    X(P) 
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2002, 

Briano et 

al., 2005 

Departures 

and Cost of 

Non-

Preferred 

Berth 

Kim and 

Moon, 

2003 

Cost From 

Delayed 

Departures 

Cost of Non-

Preferred 

Berth 

Cost from 

early or late 

start of vessel 

handling 

against ETA 

(Estimated 

Time of 

Arrival) 

X(P) X   X(I)   X(P) 

Park and 

Kim, 

2003 

Handling 

Cost 

Penalties 

from Berthing 

Prior or After 

ETA 

Penalties 

from Late 

Departures 

Total Number 

of Crane 

Setup 

X(P) X   X(I)   X(P) 

Imai et 

al., 2001; 

Nishimura 

et al., 

2001;  

Cordeau 

et al., 

2005; 

Imai et 

al., 2005;  

Imai et 

al., 2007; 

Total 

Completion 

Time 

X        

Imai et 

al., 2006 

External 

Berth Service 

Time 

X(P)        

Cordeau 

et al., 

2005 

Housekeeping  X  X(P)     

Lee et al., 

2006 

Makespan & 

Quay Crane 

Time 

X X(P)       
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Wang & 

Lim, 2006 

Position, 

Delay, & 

Unallocation 

Cost 

 X  X(P)    X(P) 

Hansen et 

al., 2007 

Delayed 

Departures 

Waiting and 

Handling 

Cost 

 X  X(P)    X(P) 

Moorthy 

& Teo, 

2006 

Operational 

Cost 

Service 

Levels 

 X  X(I)     

I: Indirectly, P: Partially 

Table 3-7 Proposed Formulations and Port Operator Objectives and Service Priority 

Arrangements 

 Port Operator Objectives Port Operator Service Priority Arrangements 

Proposed BSF 

Overall 

Berth 

Performance 

Minimize 

Operational 

Cost 

Balance 

Level of 

Service 

Between 

Customers 

Maximize 

Profits 

Service 

Upon 

Arrival 

Service 

Time 

Windows

Guaranteed 

(Un)Loading 

Performance 

Berthing/Departure

Point in Time/Time 

Windows 

Minimize Late 

Departures, 

Maximize Early and 

Timely Departures 

(Time Window) 

X(P)  X(P) X  X(P)  X(P) 

Minimize Late 

Berthing, Maximize 

Early Berthing 

(Time Window) 

X(P)   X X(P) X(P)  X(P) 

Minimize Late 

Berthing, Maximize 

Early and Timely 

Berthing (Time 

Window) 

X(P)   X X(P) X(P)  X(P) 

Guaranteed 

(Un)Loading 

Performance/Service 

Time 

        

Minimize Late 

Departures/Berthing, 

Maximize Early and 

Timely 

Departures/Berthing 

(Time Window) 

X(P) X(P) X(P) X X(P) X(I) X(I) X 
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Minimize Late 

Departures/Berthing, 

Maximize Early and 

Timely 

Departures/Berthing 

(Time Window), 

Minimize Handling 

Cost, Minimize 

Waiting Time Cost 

X(P) X X X X(I) X(I) X(I) X 

Multi-Objective X(D) X(D) X(D) X(D) X(D) X(D) X(D) X(D) 

Stochastic Service 

Time 
X(D) X(D) X(D) X(D) X(D) X(D) X(D) X(D) 

Guarantee 

Performance 
X(P) X(P)  X   X  

I: Indirectly, P: Partially, D: Depending on Objectives 
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4.  BASIC CONCEPTS OF MULTI-OBJECTIVE AND STOCHASTIC OPTIMIZATION 

 

The BAP belongs to the class of scheduling problems, which include a wide variety of problems 

such as machine scheduling, events scheduling, personnel scheduling and others. Many real-

world scheduling problems are multi-objective and stochastic by nature (Ehrgott & Gandibleux, 

2000; Pinedo 2002). This chapter will provide the basic concepts of Multi-Objective and 

Stochastic Optimization without going into a depth analysis. The information provided though, 

will be enough for the reader to follow up on the application of these methods to the BAP 

formulation and solution approaches presented herein. 

 

Multi-Objective Optimization 

 

Basic Concepts 

 

The general N-objective optimization problem (or in general the multi-objective optimization 

problem - MOO) can be defined in the following way (as stated by Coello Coello, 1999): Find the 

vector of decision variables (also called solution) X=[x1, x2, ….., xn] that optimizes (minimizes or 

maximizes) a vector objective function: F(X)=[f1(X), f2(X),……., fn(X)] , subject to m inequality 

constraints Gi(X), i=(1,2,3….,m) and k equality constraints Hj(X), j=(1,2,3,….,k). If the variables 

x are discrete, then the problem is called Multi-Objective Combinatorial Optimization (MOCO) 

problem. 

 

Due to the conflicting nature of the objectives it is usually the case that there is no unique optimal 

solution. It is possible to improve separately at least one (but not all) objective function of a given 

solution but this will usually causes the declining of its remaining objective functions (or at least 
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one of them). Thus, several different solutions could be thought of as “optimal”, because no one 

dominates the other.  

 

The main difficulty with the multi-objective approach lies in the comparison of the solutions. By 

definition one solution outperforms another if the values of all objective functions of the first 

solution are better than the second. In other words if X1 and X2 are two solutions then F(X1) 

dominates F(X2) if and only if iXfiXf i ∀≥ ),()( 21
, and ),()( 21 XfiXf i f for at least one i. Such 

solutions are called “Pareto-optimal”. If no solution can dominate the given solution then it can 

be considered to be optimal.  

 

All Pareto-optimal solutions compose a certain boundary between the space, which contains 

dominated solutions and the space where no solutions exist. This boundary is called the trade-off 

surface or Pareto-front. It can be depicted as a surface in the N-dimensional space, where N is the 

number of objectives. An example of the Pareto front of a bi-objective space is presented as a 

curve in figure 4-1. For a more analytical description of these concepts the reader is referred to: 

Jaszkiewicz (2001), and Van Veldhuizen and Lamont (2000). 
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Figure 4-1 Pareto Optimal Solutions and Pareto Optimal Front (Curve) 

(Source: Mehnen, 2005) 

 

Modeling Techniques 

 

There are two general approaches to multiple-objective optimization, in terms of the solution 

approach. One is to combine the individual objective functions into a single composite function 

or move all but one objective to the constraint set. In the former case, determination of a single 

objective is possible with methods such as utility theory, weighted sum method, etc., but the 

problem complexity and accuracy lies in the proper selection of the weights or utility functions 

that are used to depict the decision-maker’s preferences. In practice, it can be very difficult to 

precisely and accurately select these weights, even for someone familiar with the problem domain 

(Coello Coello, 2000). In the latter case, the problem is moving objectives to the constraint set, a 

constraining value must be established for each of these former objectives and can be rather 

arbitrary. In both cases, an optimization method would return a single solution rather than a set of 
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solutions that can be examined for trade-offs. For this reason, decision-makers often prefer a set 

of good solutions considering the multiple objectives, which leads to the second approach.  

 

The second general approach is to determine an entire Pareto optimal solution set or a 

representative subset. While moving from one Pareto solution to another, there is always a certain 

amount of sacrifice in one objective(s) to achieve a certain amount of gain in the other(s). Pareto 

optimal solution sets are often preferred to single solutions because they can be practical when 

considering real-life problems since the final solution of the decision maker is always a trade-off. 

Pareto optimal sets can be of varied sizes, but the size of the Pareto set usually increases with the 

increase in the number of objectives. 

 

MOO Algorithms 

 

The use of exact methods to solve MOO problems is time consuming and the most common 

approach for solving MOO problems is the use of Multi-Objective Metaheuristics (MOM) (as 

stated by many researchers; see for example: Konak et al. 2006; Silva et al. 2004). 

 

Furthermore according to Coello Coello (2003
7
) heuristics (and metaheuristics) seem particularly 

suitable to solve multi-objective optimization problems, because they are less subject to the shape 

or continuity of the Pareto front (e.g., they can easily deal with discontinuous or concave Pareto 

fronts), whereas this is a real concern for mathematical programming techniques. Additionally, 

many current heuristics (e.g., evolutionary algorithms, particle swarm optimization, etc.) are 

population-based, which means that we can aim to generate several elements of the Pareto 

optimal set in a single run.  

 

                                                 
7 Online document <http://www.cs.cinvestav.mx/~EVOCINV/download/tutorial-sis-2003.pdf> 
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The most popular MOM are: evolutionary algorithms (EA), and alternative multi-objective 

metaheuristics as shown in table 4-1, such as: tabu search, simulated annealing, and memetic 

algorithms that explicitly use local search or neighborhood exploration (instead of genetic 

operators) to drive the search or as an important component of the process (hybrid approaches). 

Jones et al. (2002) reported that 90% of the approaches to multi-objective optimization aimed to 

approximate the true Pareto front for the underlying problem and 70% of all meta-heuristics 

approaches were based on evolutionary approaches. 

 

Evolutionary Algorithms 

 

There is no universally accepted definition of evolutionary algorithm, but in the strict sense an 

evolutionary algorithm handles a population of solutions, evolves this population by means of 

cooperation (recombination) and self-adaptation (mutation) and uses a coded representation of 

solutions (Hertz and Klober, 2000). EAs such as Evolution Strategies and Genetic Algorithms 

(GA) have become the method of choice for optimization problems that are too complex to be 

solved using deterministic techniques such as linear programming or gradient methods. EAs 

require little knowledge about the problem being solved, and they are easy to implement, robust, 

and inherently parallel. To solve a certain optimization problem, it is enough to require that one is 

able to evaluate the objective (cost) function(s) for a given set of input parameters. Because of 

their universality, ease of implementation, and fitness for parallel computing, EAs often take less 

time to find the optimal solution than gradient methods. However, most real-world problems 

involve simultaneous optimization of several often mutually concurrent objectives. Multi-

objective EAs are able to find optimal trade-offs in order to get the Pareto optimal set (Taboada, 

2007). 
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Table 4-1 Alternative Multi-Objective Metaheuristics 

Method Author 

Simulated Annealing for Multi-objective Optimization  Serafini, 1992 

Multi-objective Tabu Search (MOTS) Hansen, 1997 

Pareto Simulated Annealing (PSA)  Czyzak & Jaszkiewicz, 1998 

Multi-objective Simulated Annealing (MOSA)  Ulungu, et al., 1999 

Memetic Pareto Archived Evolutionary Strategy (M-PAES)  Knowles & Cornel, 2000 

Genetic Local Search (GLS)  Jaszkiewicz, 2002 

Simulated Annealing for Multi-objective Optimization  Suppapitnarm et al., 2000 

Other Multi-objective Metaheuristics Using Local Search  

 

GAs have been the most popular heuristic approach to multi-objective design and optimization 

problems. Following the success of metaheuristics in single objective optimization many 

researchers proposed the use of GA based metaheuristics in MOO. Since the proposition of the 

Vector Evaluated Genetic Algorithm (Schaffer, 1985) a significant number of different multiple 

objective metaheuristics have been proposed.  

 

According to Konak et al. (2005) several GA based multi-objective evolutionary algorithms have 

been developed. In their paper they present the well-known and credible algorithms that have 

been used in many applications along with their advantages and disadvantages. These algorithms 

are: Multi-objective Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993), Niched Pareto 

Genetic Algorithm (NPGA) (Horn et al. 1994), Random Weighted Genetic Algorithm (RWGA) 

(Murata et al., 1996), Nondominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 

1995), Strength Pareto Evolutionary Algorithm (SPEA) (Zitler and Thiele, 1999), Improved 

SPEA (SPEA2) (Zitler et al. 2001), Pareto- Archived Evolution Strategy (PAES) (Knowles and 

Corne, 2000), Pareto Envelope-based Selection Algorithm (PESA) (Corne et al. 2000), Region-

based Selection in Evolutionary Multi-objective Optimization (PESA-II) (Corne et al. 2001), Fast 

Nondominated Sorting Genetic Algorithm (NSGA-II) (Deb et al. 2002), Multi-objective 

Evolutionary Algorithm (MEA) (Sarker et al. 2002), Micro-GA (Coello and Pulido, 2001), Rank-



 57 

 

Density Based Genetic Algorithm (RDGA) (Lu and Yen, 2003), and Dynamic Multi-objective 

Evolutionary Algorithm (DMOEA) (Yen and Lu, 2003). 

 

Performance Measures 

 

Of the various multi-objective EAs available, we are interested in the ones that provide the best 

approximation for a given problem. For this reason, comparative studies have been conducted 

(Zitler and Thiele, 1998; Van Veldhuizen and Lamont, 2000; Tan et al, 2001) aiming at revealing 

strengths and weaknesses of certain approaches and at identifying the most promising algorithms. 

This in turn, led to the question of how to compare the performance (quality of outcome and 

computational resources) of multi-objective optimizers. 

 

It is difficult to define appropriate quality measures for approximations of the Pareto-optimal 

front, and as a consequence graphical plots have been used to compare the outcomes of multi-

objective EAs until recently, as Van Veldhuizen, (1999) points out, but several studies can be 

found in the literature that address the problem of comparing approximations of the trade-off in a 

quantitative manner. Most popular are the unary quality measures, i.e., the measure assigns each 

approximation set a number that reflects a certain quality aspect, and usually a combination of 

them is used, e.g., (Van Veldhuizen and Lamont, 2000; Kalyanmoy et al. 2000). Other methods 

are based on binary quality measures, which assign numbers to pairs of approximation sets, e.g., 

(Zitler and Thiele, 1998; Hansen and Jaszkiewicz, 1998).  

 

A third, and conceptually different approach, is the attainment function approach (Grunert da 

Fonseca
 
 et al. 2001), which consists of estimating the probability of attaining arbitrary goals in 

objective space from multiple approximation sets. Despite of this variety, it has remained unclear 
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up to now how the different measures are related to each other and what their advantages and 

disadvantages are. Recently, a few studies have been carried out to clarify this situation.  

 

Hansen and Jaszkiewicz (1998) studied and proposed some quality measures that induce a linear 

ordering on the space of possible approximations—on the basis of assumptions about the decision 

maker’s preferences. They first introduced three different out-performance” relations for multi-

objective optimizers and then investigated whether the measures under consideration are 

compliant with these relations. The basic question they considered was: whenever an 

approximation is better than another according to an “outperformance” relation, does the 

comparison method also evaluate the former as being better (or at least not worse) than the latter?  

 

Knowles et al. (2000) compared the information provided by different assessment techniques on 

two database management applications. Later, Knowles (2002) and Knowles and Corne (2002) 

discussed and contrasted several commonly used quality measures in the light of Hansen and 

Jaszkiewicz’s approach as well as according to other criteria such as, e.g., sensitivity to scaling. 

They showed that about one third of the investigated quality measures are not compliant with any 

of the “outperformance” relations introduced by Hansen and Jaszkiewicz (1998).  

 

Zitler et al. (2002) showed that: a) there exists no unary quality measure that is able to indicate 

whether an approximation A is better than an approximation B, b) the above statement even holds 

if we consider a finite combination of unary measures, c) most existing quality measures that 

have been proposed to indicate that A is better than B at best allow to infer that A is not worse 

than B, d) unary measures being able to detect that A is better than B exist, but their use is in 

general restricted, and e) binary quality measures overcome the limitations of unary measures 

and, if properly designed, are capable of indicating whether A is better than B. 
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Multi-Objective Scheduling Literature 

 

Literature on multi-objective scheduling is vast. Excellent reviews of the principles of 

evolutionary multi-objective optimization and recent developments are provided by Coello et al. 

(2002), Van Valdhuizen and Lamont (2000), and Taboada (2007). We will focus the literature 

review on multi-objective machine scheduling related problems, since the discrete BAP belongs 

to this general category of problems. The interested reader is referred to Silva et al. (2004), and 

the excellent online directory of multi-objective optimization by Coello
8
 for a more analytical 

literature review and an introduction to multi-objective metaheuristics for scheduling. Murata et 

al. (1996) proposed a multi-objective genetic algorithm (MOGA) and applied it to flow-shop 

scheduling. Hyun et al. (1998) developed a new selection scheme in GA, and showed its 

superiority for multi-objective scheduling problems in assembly lines. Also using GAs, Chen et 

al. (1996) studied the radiological worker allocation problem in which multiple constraints are 

considered. Constraints are classified as hard and soft. Each solution must satisfy the hard 

constraints and performance of the solution is measured by the violation of soft constraints. The 

GA approach was compared with conventional optimization techniques such as goal 

programming and simplex method, and the GA showed superior results. Other heuristics such as 

simulated annealing and tabu search have also been studied.  

 

Marett and Wright (1996) compared these two heuristics for flow shop scheduling problems with 

multiple objectives. The performance of the methods was compared as the number of objectives 

increased. Simulated annealing was found to perform better than tabu search as the number of 

objectives increased. They also mentioned that the complexity of combinatorial problems is 

strongly influenced by the type of objectives as well as their number. Yim and Lee (1996) used 

Petri nets and heuristic search to solve multi-objective scheduling for flexible manufacturing 

                                                 
8
  http://www.lania.mx/~ccoello/EMOO/  
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systems. Pareto optimal solutions were obtained by minimizing the weighted summation of the 

multiple objectives. Jaszkiewicz (1997) combined the genetic algorithm with simulated annealing 

to solve a nurse-scheduling problem. The maximization of multiple objectives is represented by a 

single scalar function, which is the summation of a scalar multiplying the difference between 

current and previous solutions for each objective. The scalar is greater than one if the objective is 

improved or less than one if no improvement is found. Cohran et al. (2003) proposed a two-stage 

multi-population genetic algorithm (MPGA) to solve parallel machine scheduling problems with 

multiple objectives. Their approach is applied in parallel machine scheduling problems with two 

objectives: makespan and total weighted tardiness (TWT). The MPGA was compared with a 

benchmark method, the multi-objective genetic algorithm (MOGA), and showed better results for 

all of the objectives over a wide range of problems. The MPGA was extended to scheduling 

problems with three objectives: makespan, TWT, and total weighted completion times (TWC), 

for which also performed better than MOGA. Chang et al. (2005) introduced a two-phase sub 

population genetic algorithm to solve the parallel machine-scheduling problem. The two-phase 

sub-population genetic algorithm was applied to solve the parallel machine-scheduling problems 

in testing of the efficiency and efficacy. Experimental results were reported and the superiority of 

this approach was discussed. Taboada & Coit (2006a) and Taboada et al. (2007) formulated the 

redundancy allocation problem (RAP) as a multi-objective problem with the system reliability to 

be maximized, and cost and weight of the system to be minimized. The Pareto-optimal set was 

initially obtained using the fast elitist nondominated sorting genetic algorithm (NSGA-II) 

originally proposed by Deb et al. (2002). Then, the decision-making stage was performed by 

applying two proposed pruning methods to reduce the size of the Pareto-optimal set and obtain a 

smaller representation of the multi-objective design space. For those studies, NSGA-II was 

effective. However, NSGA-II is a general multi objective evolutionary algorithm (MOEA) for 

any type of problem. This implies that the problem formulation needs to be properly adapted. 

Moreover, in these studies, the final Pareto front found by NSGA-II contained many repeated 
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solutions, so in order to obtain a large number of solutions; several runs had to be performed. 

Thus, if a decision-maker must solve many similar RAP problems, then a custom MOEA, 

especially designed to solve multi-objective design allocation problems, offers great advantage. 

MOEA-DAP, (Taboada & Coit, 2006b) was developed to address these difficulties. MOEA-DAP 

is a multiple objective evolutionary algorithm specifically designed to solve system design 

allocation problems. Thus, this new approach has the strength of a problem-oriented technique. 

MOEA-DAP, mainly differs from other MOEAs in the type of crossover operation performed. In 

this step, several offspring are created through multi-parent recombination. Thus, the mating pool 

contains a great amount of diversity of solutions. This disruptive nature of the proposed type of 

crossover, subsystem rotation crossover (SURC), appears to encourage the exploration of the 

search space. 

 

Genetic Algorithms 

 

A GA is a programming technique that mimics biological evolution as a problem-solving 

strategy. The input to the GA is a set of potential solutions, encoded in some fashion (usually 

binary form), and a metric called a fitness function that allows each candidate to be quantitatively 

evaluated. These candidates may be solutions already known to work, with the aim of the GA 

being to improve them, but more often they are generated at random. GAs are called ``blind'' 

because they have no knowledge of the problem. 

 

The members of this initial population are each evaluated for their fitness or goodness in solving 

the problem. If the problem is to maximize a function f(x) over some range [a,b] of real numbers 

and if f(x) is nonnegative over the range, then f(x) can be used as the fitness of the bit string 

encoding the value x.  
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From the initial population of chromosomes, a new population is generated using three genetic 

operators: reproduction, crossover, and mutation. These are modeled on their biological 

counterparts. With probabilities proportional to their fitness, members of the population are 

selected for the new population. This means that in a pool of randomly generated candidates, 

some of which will not work at all, are not deleted and in a random manner are kept and allowed 

to reproduce.  

 

Pairs of chromosomes in the new population are chosen at random to exchange genetic material, 

their bits, in a mating operation called crossover. This produces two new chromosomes that 

replace the parents. Randomly chosen bits in the offspring are flipped, a progress called mutation. 

The new population generated with these operators replaces the old population. The algorithm has 

performed one generation and then repeats for some specified number of additional generations. 

The population evolves, containing more and more highly fit chromosomes. When the 

convergence criterion is reached, such as no significant further increase in the average fitness of 

the population, the best chromosome produced is decoded into the search space point it 

represents.  

 

The expectation is that the average fitness of the population will increase each round, and so by 

repeating this process for hundreds or thousands of rounds, very good solutions to the problem 

can be discovered. 

 

GAs differ substantially from more traditional search and optimization methods. The most 

significant differences of GAs to traditional search and optimization methods (Pohleheim, 2004) 

are:  

a) They search a population of points in parallel, not just a single point 
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b) They do not require derivative information or other auxiliary knowledge; only the objective 

function and corresponding fitness levels influence the directions of search 

c) They use probabilistic transition rules, not deterministic ones 

d) They are generally more straightforward to apply, because no restrictions for the definition 

of the objective function exist 

e) They can provide a number of potential solutions to a given prob-lem. The final choice is 

left to the user. (Thus, in cases where the particular problem does not have one individual 

solution, for example a family of pareto-optimal solutions, as in the case of multi-objective 

optimization and scheduling problems, then the evolutionary algorithm is potentially useful 

for identifying these alternative solutions simultaneously). 

 

Genetic algorithms are used in search and optimization, such as finding the maximum of a 

function over some domain space. In contrast to deterministic methods like hill climbing or brute 

force complete enumeration, genetic algorithms use randomization. Points in the domain space of 

the search, usually real numbers over some range, are encoded as bit strings, called chromosomes. 

Each bit position in the string is called a gene. Chromosomes may also be composed over some 

other alphabet than {0,1}, such as integers or real numbers, particularly if the search domain is 

multidimensional.  

 

Implementation Issues 

 

Although genetic algorithms have proven to be an efficient and powerful tool certain limitations 

exist in their application. The most important ones according to Marczyk, (2004)
9
 are:  

 

                                                 
9 http://www.talkorigins.org/faqs/genalg/genalg.html 
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a) Representation. According to there are two main ways of achieving this. The most 

common approach is to define individuals as lists of numbers (binary-valued, integer-

valued, or real-valued) where each number represents some aspect of a candidate solution 

 

b) Fitness function. Defining the fitness function so that higher fitness is attainable and 

actually does equate to a better solution for the given problem. If the fitness function is 

chosen poorly or defined imprecisely, the genetic algorithm may be unable to find a 

solution to the problem, or may end up solving the wrong problem (e.g. Graham-Rowe, 

2002) 

 

c) Other Parameters. Defining the other parameters of a GA (the size of the population, the 

rate of mutation and crossover, the type and strength of selection) must be also chosen 

with care. If the population size is too small, the genetic algorithm may not explore 

enough of the solution space to consistently find good solutions. If the rate of genetic 

change is too high or the selection scheme is chosen poorly, beneficial schema may be 

disrupted and the population may enter error catastrophe, changing too fast for selection 

to ever bring about convergence 

 

d) Premature convergence. If an individual that is more fit than most of its competitors 

emerges early on in the course of the run, it may reproduce so abundantly that it drives 

down the population's diversity too soon, leading the algorithm to converge on the local 

optimum that that individual represents rather than searching the fitness landscape 

thoroughly enough to find the global optimum (Forrest, 1993; Mitchell, 1996). This is an 

especially common problem in small populations, where even chance variations in 

reproduction rate may cause one genotype to become dominant over others. The most 
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common methods implemented by GA researchers to deal with this problem is ranking, 

scaling and tournament selection 

 

Finally, several researchers (Holland, 1992; Forrest, 1993; Haupt and Haupt 1998) advise against 

using genetic algorithms on analytically solvable problems. It is not that genetic algorithms 

cannot find good solutions to such problems; it is merely that traditional analytic methods take 

much less time and computational effort than GAs and, unlike GAs, are usually mathematically 

guaranteed to deliver the one exact solution. 

 

Stochastic Scheduling  

 

In many real world problems (and in scheduling) the problem data cannot be known accurately 

due to insufficient information about the future or to the uncertainty in the technical parameters. 

Stochastic programming is an approach to model these problems by taking these uncertainties 

into account (Birge & Louveaux, 1997). In stochastic scheduling some of the parameters of the 

system are random variables (arrival time, processing time, machine up-time, etc). Models can be 

classified into three broad categories: a) models for scheduling a batch of stochastic jobs, b) 

multi-armed bandit models, and c) models for scheduling queuing systems. The BAP studied in 

this dissertation belongs to the category (a) and (c) with the random variable being the arrival 

time (also known as the release date of a job). 

 

Regarding methods and techniques, it seems fair to say that no unified and practical approach has 

been developed to design and analyze (nearly) optimal policies across the range of stochastic 

scheduling models. Although many such models can be cast in the framework of dynamic 

programming, straightforward application of this technique has not proven very effective, due to 

the large (or infinite) size of the resulting formulations (curse of dimensionality). Most results 
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have been instead obtained through problem-specific arguments, which often do not extend to 

seemingly related models. 

 

Decision-making under uncertainty has traditionally focused on a priori methods such as two-

stage stochastic optimization and Markov Decision Processes. The methods have been successful 

for a variety of applications. However, for large, multi-stage, and highly dynamic applications, 

these methods face the so-called curse of dimensionality as they search for optimal solutions in 

large search spaces.  In conclusion there are three approaches for dealing with uncertainty of the 

release dates: a) Stochastic optimization, b) Online scheduling, and c) Online stochastic 

scheduling. All three approaches are described in the next subsections. 

 

Stochastic Optimization 

 

Stochastic optimization models have been formulated as multi-stage optimization models, with 

the majority focusing on two-stage problems. While successful solutions to these problems give 

us some insight to the random structure of the domains, they do not translate easily into efficient 

solutions to the related online problems and most of the times suffer from computational 

overload. 

 

The two-stage stochastic programming approach is the simplest one, where the decision variables 

are partitioned into two sets. The first-stage variables are decided before the realization of the 

uncertain parameters, while the second stage or recourse variables are determined once the 

stochastic parameters are revealed. In order to decide, the policy utilizes the complete information 

contained in the partial schedule up to time t, as well as information about unscheduled jobs that 

arrive before the end of time t. For the large, multi-stage, and highly dynamic applications these 
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methods face the so-called curse of dimensionality as they search for optimal policies in gigantic 

search spaces (Van Hentenryck et al., 2005; Shapiro, 2005) 

 

Integer/Mixed-integer stochastic programs, like most formulations of the BAP (table 3-2), are 

particularly challenging. Even though the problem can be reduced to a specially structured IP if 

the probability distribution of the uncertain parameters is finite, traditional integer-programming 

techniques are not suited to exploit the special problem structure and deal with the problem of 

dimensionality.  

 

An alternative approach, in particular for problems with large sample spaces, is to use Monte-

Carlo sampling to generate i.i.d realizations and approximate the problem a with a sample 

average. Shapiro (2005) has shown that the Sampling Average Approximation method (Kleywegt 

et al. 2001) cannot be extended efficiently to multistage stochastic optimization problems since 

the number of required samples method must grown exponentially with the number of iterations, 

which is typically large or infinite in online applications. Combinatorial solutions suffer from 

similar exponential explosion. BAP formulations so far presented in the literature are already very 

computationally expensive. Thus applying this approach to the BAP problem with stochastic 

release dates would not be the right direction. 

 

For a survey of stochastic scheduling problems consult Megow et al (2005) and Dean (2005). 

There is also an online database by Dr. Weber R.R for 343 papers related to stochastic scheduling 

at: http://www.statslab.cam.ac.uk/~rrw1/stoc_sched/index.html. 

 

Online scheduling 
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Online algorithms have been used to deal with operational issues. In an online scheduling 

problem data is a sequence of requests, which are revealed over time and the algorithm must 

decide which request to process next. Online algorithms are inherently dynamic in nature but they 

typically ignore historical data or data about some of the future requests. Thus they are not 

suitable for the BAP with stochastic release dates. Online algorithms deal with operational 

decisions. For related literature consult Van Hentenryck and Bent (2006). 

 

Online Stochastic Scheduling (OSS) 

 

It is only until recently that OSS was recognized by researchers (Eliiyi and Kocer, 2005). Online 

stochastic optimization in general combines the later two approaches, discussed earlier, to 

decision making under uncertainty and exploits their respective strengths, by focusing on the data 

and uncertainty of the problem instance online and using stochastic information to make more 

informed decisions, while gradually reducing the uncertainty over time. The uncertainty in online 

stochastic combinatorial optimization concerns the requests: which requests come and when. In 

the next subsection we present the offline, online, and stochastic online general formulations. The 

former two are presented to make the concept straightforward. 

 

Bent and Van Hentenryck (2004) consider online stochastic optimization problems where time 

constraints severely limit the number of offline optimizations, which can be performed at decision 

time and/or in between decisions. They propose a novel approach, which combines the salient 

features of the earlier approaches: the evaluation of every decision on all samples (expectation) 

and the ability to avoid distributing the samples among decisions (consensus). The key idea 

underlying the algorithm is to approximate the regret of a decision d. The regret algorithm is 

evaluated on two fundamentally different applications: online packet scheduling in networks and 

online multiple vehicle-routing with time windows. On both applications, it produces significant 
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benefits over prior approaches. They assumed though that a black-box simulator could model the 

arrival process of the tasks. They had no knowledge of the distribution inside the simulator but 

could obtain samples. This has the disadvantage of not being able to weight each sampled 

scenario. 

 

Chou et al. (2005) consider a model that combines the features of stochastic and online 

scheduling. They prove asymptotic optimality of the online weighted shortest expected 

processing time rule for the single machine problem assuming that the weights and the processing 

times can be bounded from above and below by constants.  

 

Megow et al. (2005) consider a non-preemptive, stochastic parallel machine-scheduling model 

with the goal to minimize the weighted completion times of jobs. They propose a simple online 

scheduling policy for the first model, and prove a performance guarantee that matches the 

currently best-known performance guarantee for stochastic parallel machine scheduling. For the 

more general model with job release dates they derive an analogous result, and for distributed 

processing times they improve upon the previously best known performance guarantee for 

stochastic parallel machine scheduling. 

 

Eliiyi and Kocer (2005) focus on a model that generalizes stochastic scheduling and online 

scheduling. They assume that the jobs arrive online. Once a job arrives, its expected processing 

time is revealed, but the actual processing time remains unknown until the job is completed. They 

model the problem and identify application areas. They also review some solution procedures that 

can be utilized for the optimal solution of this problem. 

 

Shultz (2005) consider the stochastic identical parallel machine scheduling problem and its online 

extension, when the objective is to minimize the expected total weighted completion time of a set 
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of jobs that are released over time. They give randomized as well as deterministic online and 

offline algorithms that have the best known performance guarantees in either setting, online or 

offline and deterministic or randomized. Their analysis is based on a novel linear programming 

relaxation for stochastic scheduling problems that can be solved online. 

 

Van Hentenryck et al. (2005) in a tutorial, consider online stochastic combinatorial optimization 

problems where uncertainties, i.e., which requests come and when, are characterized by 

distributions that can be sampled and where time constraints severely limit the number of offline 

optimizations which can be performed at decision time and/or in between decisions. They 

propose online stochastic algorithms that combine the frameworks of online and stochastic 

optimization. 

 

Wu et al (2005) examine whether Bent and Van Hentenryck (2004) combination methods can be 

adapted to scheduling with uncertain release dates, and to determine how effective and significant 

the methods are. In particular, they develop four ways of applying Bent and Van Hentenryck 

(2004) consensus approach to the problem. In addition, they propose a probabilistic sampling 

method to handle lead-time uncertainty. That is they use this knowledge to select samples, and 

associate with them weights corresponding to their probability. This method allows them to 

generate fewer samples and have a more accurate model of future scenarios. 

 

In October 2006 Van Hentenryck and Bent published a book on Online Stochastic Combinatorial 

Optimization. The book presents a novel framework for online stochastic optimization, and 

address decision-making under uncertainty and time constraints. 

 

Online Stochastic Optimization Modeling Issues 
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One of the critical issues faced by online stochastic algorithms is how to use time wisely in time 

constraint problems, since only a few samples can be optimized within the time constraints. In 

other words, the algorithm must find an effective approach to optimize the samples and extract 

information from their solutions in order to make more informed decisions. When time is not a 

factor, a traditional approach (Chang, Givan, & Chong, 2000) consists of using an expectation 

algorithm, which works as follow: at time t, generate a number of samples Si, solve each sample 

once per available request r by serving r at t, and select the schedule with the best request overall.  

 

Unfortunately, the expectation approach does not perform well under time constraints, since it 

must distribute its available optimizations across all requests. This issue was recognized and 

addressed in (Bent & Van Hentenryck 2004a) where a consensus approach was proposed. Its key 

idea was to solve as many samples as possible and to select the request, which is chosen most 

often in the sample solutions at time t. The consensus approach was shown to outperform the 

expectation method on online packet scheduling under time constraints. However, as decision 

time increases the quality of the consensus approach levels off and is eventually outperformed by 

the expectation method. It is also possible to hybridize the expectation and consensus approaches 

but the resulting method loses some of the benefits of consensus under strict time constraints 

(Bent & Van Hentenryck 2004b) 

 

Algorithms 

 

There are three major approached to solving OSS problems and they all focus on how to choose 

the best scenario at time t. These approaches are (Bent and Van Hentenryck, 2004b; Wu et al., 

2005): 
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Expectation: Obtain samples of possible future arrival scenarios, compute schedules for al 

samples and choose schedule with the best reward. (Best results, too much time) 

 

Consensus: Obtain samples of possible future arrival scenarios, compute schedules for all the 

samples and chooses the decision appearing the most in the optimal schedules of the samples. It is 

faster than expectation since it requires a fewer number of optimizations. 

 

Regret: It is similar to consensus, but as well as computing the optimal schedules also computes 

the loss of reward for each other possible decision, and then chooses the decision that has the 

lowest total loss. This method approaches the former one (expectation) when there is sufficient 

computation time and the later one (consensus) when time is limited. 

 

We will present the general formulation of these approaches as presented by various Researches 

(Chang, Givan, & Chong 2000; Bent and Van Hentenryck, 2004; Wu et al. 2005). 

 

Expectation (E): This is the primary method proposed by (Chang, Givan, & Chong 2000) for 

online packet scheduling. Informally speaking, the method generates future requests by sampling 

and evaluates each available request against that sample. A simple implementation can be 

specified as follows: 
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(Source: Bent and Van Hentenryck, 2004b) 

Where: ω(r): weight (usually representing gain if request r served), R: number of requests, O: 

number of offline optimizations at each step, f(r): reward function 

 

Lines 2-3 initialize the evaluation function f(j) for each request r. The algorithm then generates a 

number of samples for future requests (line 4). For each such sample, the algorithm computes the 

set R of all available and sampled requests at time t (line 5). The algorithm then considers each 

available request r successively (line 6), it implicitly schedules r at time t, and applies an optimal 

offline algorithm (line 7) using S \{r} and the time horizon. The evaluation of request r is updated 

in line 8 by incrementing it with its weight and the score of the corresponding optimal offline 

solution. All scenarios are evaluated for all available requests and the algorithm then returns the 

request r with the highest evaluation. 

 

Consensus (C): This algorithm uses stochastic information in a fundamental different way. 

Algorithm C was introduced in (Bent & Van Hentenryck 2004a) as an abstraction of the sampling 

method used in online vehicle routing (Bent & Van Hentenryck 2001). Instead of evaluating each 

possible request at time t with respect to each sample, algorithm C executes the offline algorithm 

on the available and sampled requests and to count the number of times a request is scheduled at 

time t in each resulting solution. Then the request with the highest count is selected. Algorithm C 

can be specified as follows: 
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(Source: Bent and Van Hentenryck, 2004b) 

 

At line 5 the offline algorithm is called with all available and sampled requests and a time horizon 

starting at t and line 6 which increments the number of times request (t) is scheduled first. Line 7 

simply returns the request with the largest count. Algorithm C has several appealing features. 

First, it does not partition the available samples between the requests, which is a significant 

advantage when the number of samples is small and/or when the number of requests is large. 

Second, it avoids the conceptual complexity of identifying symmetric or dominated requests. 

 

Regret (R): The key insight in Algorithm R is the recognition that, in many applications, it is 

possible to estimate the local loss of a request r at time t quickly. In other words, once the optimal 

solution of a scenario is computed, it is easy to compute the local loss of all the requests, thus 

approximating E with one optimization. This intuition can be formalized using the concept of 

regret.  

 

 

(Source: Van Hentenryck et al., 2005) 
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Intuitively, the complexity requirement states that the computation of the |R| regrets does not take 

more time than the optimization. Regrets typically exist in practical applications. Algorithm R 

works as follows:  

 

 

(Source: Van Hentenryck et al., 2005) 

 

Its basic organization follows algorithm C. However, instead of assigning some credit only to the 

request selected at time t for a given scenario s, algorithm R (lines 8-9) uses the regrets to 

compute, for each available request r, an approximation of the best solution of s serving r at time 

t, i.e., ),,,1()( γγω rAStREGRET −− . Hence every available request is given an evaluation for 

every scenario for the cost of a single offline optimization. Observe that algorithm R performs T 

offline optimizations at time t. 
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5. DISCRETE DYNAMIC BERTH ALLOCATION 

 

Introduction 

 

As discussed in the previous sections container terminal operators seek for the efficient BSPs that 

may reduce vessels turnaround time, increase port throughput, leading to higher revenues and 

increased competitiveness of the port, while at the same time keeping the customers’ satisfaction 

at a desired level (usually set by contractual agreements). In practice vessels arrive at the port 

over a period of time and normally request start or finish of service within a time window. These 

time windows are usually determined through contractual agreements between the port operator 

and the carrier, in terms of time of start or finish of service after the vessel’s arrival at the port. 

Based on these contractual agreements, serving a vessel prior or within these time windows 

provides certain premiums to the port operator while service past these time window results in 

penalties. Port operators usually assign vessels to berths with the objective to minimize/maximize 

these costs/ premiums. Furthermore, port operators are interested in retaining satisfactory levels 

of service, (usually in terms of the total service or wait time), for all the customers, since this is 

usually a measure for negotiating future contractual agreements with new customers. Finally one 

of the main port operator concerns is the minimization of the cost associated with the vessels’ 

handling operations (Vis and de Koster, 2003; Steenken et al., 2004).  

 

In light of the above discussion this chapter presents a generic formulation for the discrete BAP 

that addresses these issues. Our research deviates from BSPs presented so far in the literature by 

incorporating several parameters of the BAP including minimization of the total (un)weighted 

service time, costs from vessel waiting, cost from vessels delayed departures, premiums from 



 77 

 

early and timely departures, minimization of the handling time. Furthermore, and to our 

knowledge, this is the first time that the BAP is addressed in a time window setup. 

 

This chapter is organized as follows. The next section discusses the problem formulation, while 

the third section presents how the general model can be reduced to BSPs found in the literature. 

The fourth section introduces a Genetic Algorithm (GA) based heuristic solution algorithm. The 

fifth section provides a number of computational examples to evaluate the performance of the 

heuristic and the last section concludes the chapter. 

 

Problem Formulation 

 

To formulate the generic discrete and dynamic BAP (GDDBAP) we define the following: 

i = (1,……,I) ∈  B set of berths,  

j = (1,….,T) ∈  V set of vessels,  

k = (1,….,T) ∈  O set of service orders,  

Si = Time when berth i becomes available for the first time in the current planning 

horizon,  

Aj = Arrival time of vessel j,  

Cij =  Handling time of vessel j at berth i,  

yijk =  Idle time of berth i before vessel j is serviced as the k
th
 vessel, 

Xijk1        =  1 if vessel j serviced at berth i as the k
th
 vessel and departs or berths before the 

requested  time window and zero otherwise, 

Xijk2       = 1 if vessel j serviced at berth i as the k
th
 vessel and departs or berths after the 

requested time window and zero otherwise, 

Xijk3       = 1 if if vessel j serviced at berth i as the k
th
 vessel and departs or berths within the 

requested time window and zero otherwise,  
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aj1 = Hourly earliness departure premium for vessel j, 

aj2 = Hourly earliness berthing premium for vessel j, 

aj3 = Hourly cost of wait time of vessel j, 

bj1 = Hourly lateness departure penalty for vessel j, 

bj2 = Hourly lateness berthing penalty for vessel j, 

1jγ  = Hourly timely departure premium for vessel j, 

2jγ   = Hourly timely berthing premium for vessel j, 

tj1 = Requested early departure/berthing time of vessel j, 

tj2 = Requested late departure/berthing time of vessel j, 

WSTj = 1 if vessel j sets a request for early, timely and late departure 0 otherwise, 

HCj = 1 if handling cost is considered and 0 otherwise, 

CCij = Handling cost of vessel j serviced at berth i, 

DTijk      = Difference of early/late actual and requested finish/start time of vessel j serviced 

at berth i as the k
th
 vessel, 

+

ijkDT  = ),,0max( ijkDT  

−

ijkDT  = ),,0min( ijkDT  

DTTijk   =  Difference of early timely requested and actual timely finish/start time of vessel j 

serviced at  berth i as the k
th
 vessel. 

Rij           = 0 if vessel j cannot be serviced at berth i due to physical or technical restrictions 

and 1 otherwise 

 

 

The formulation of the GDDBAP is as follows: 
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[GDDBAP]: 
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large positive number 

 

In the objective function (5-1a and 5-1b) the first three terms correspond to the total cost from 

delayed departures/berthing, the total premiums from early departures/berthing, and the total 

premium from timely departures/berthing (depending on if WSTj=1 or 0). The fourth term 

corresponds to the total handling cost, while the last term to the total wait time cost. We should 

note that waiting costs are only applicable to customers with early and late departure requests. 
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Further explanations for the objective function are provided later in this section. Constraints (5-2) 

ensure that vessels must be serviced once; constraints (5-3) ensure that each berth services one 

vessel at a time; and constraints (5-4) and (5-5) ensure that each vessel is serviced after its arrival. 

Constraints (5-6) and (5-15) enforce the declaration of the decision and auxiliary variables. In the 

model waiting time costs are only applied to customers requesting a departure window deadline, 

since waiting time costs for customers requesting a start service time window are already 

considered. This formulation provides the port operator to differentiate between the customers 

that request berthing from departure. Thus smaller wait hourly costs will be assigned to the 

customers requesting time window service for departures, since wait time is of no interest. 

Further explanations are needed for the constraints (5-6) through (5-15) that estimate the start or 

completion time of each vessel. Equations (5-16) enforce different physical and technical 

constrains that do not allow the berthing of certain vessels at certain berths (i.e. berth depth). 

 

If Xijk1= Xijk2= Xijk3=0 then from (5-6), (5-10), (5-11) and (5-12) we obtain 0=+

ijkDT , from (5-7) 

we obtain 0=−

ijkDT , and from (5-15) we obtain that DTTijk=0; while constraints (5-7), (5-9), (5-

13), and (5-14) are satisfied. Furthermore the wait time term in the objective function is reduced 

to zero. 

 

On the other hand if: Xijk1= Xijk3=0, then due to (2) Xijk2=1 and: 
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If: Xijk2= Xijk3=0, then Xijk1=1. This means that: 
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This means that: 

 

0=ijkalpha ,         (Eq. 5-30) 

0=−

ijkDT ,         (Eq. 5-31) 
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Finally if: Xijk1= Xijk2=0, then Xijk3=1 and as shown previously: 0=+

ijkDT , 0=−

ijkDT . Furthermore: 
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Model Adaptation to Different Berth Allocation Policies 

 

Depending on the port operators’ goals and customer agreements, the GDDBAP formulation can 

produce a number of different BSPs. In this section we will show how the GDDBAP can be 

reformulated to portray BSPs found in the literature. The BSPs discussed herein are: a) The 

minimum total weighted service time (Imai et al., 2003), b) The minimum total service time (Imai 

et al., 2001), c) The minimum total service time at an external berth (Imai et al., 2006b), d) The 

minimum cost berth allocation (Hansen et al., 2007), and e) The minimum cost with time 

windows and service deadlines. 

 

 

Minimum total weighted service time (MTWST) BSP 

 

Proposition 5-I: [GDDBAP] can be reduced to a linear formulation of the BSP of Imai et al. 

(2003). 

 



 84 

 

Proof: Assume that the time window is reduced to a point in time: jAtt jjj ∀== ,21
. Also 

assume that: ,0221321 ====== jjjjjj baaa γγ ,01 >= jj bb  ,1=jWST  and jCH j ∀= ,0 . 

The formulation is then reduced to a model that will minimize the total weighted service time. 

 

Minimum total service time (MTST) BSP 

 

Proposition 5-II: [GDDBAP] is the general case of the BSP of Imai et al. (2001). 

 

Proof: Since the formulation of Imai et al. (2001) is a special case of the formulation of Imai et 

al. (2003), it follows that the formulation Imai et al. (2001) is a special case of GDDBAP.  

 

Minimum Cost Berth Allocation (MCBA) BSP 

 

Proposition 5-III: [GDDBAP] can be reduced to the BSP of Hansen et al. (2007). 

 

Proof: Assume all vessels have not arrived at the port before we start the berth allocation. 

Assume that the requested departure time is reduced to a point in time tj1=tj2=tj, and that all 

vessels only set early and late departure requests (WSTj=1, aj2=bj2=0, 021 == jj γγ ). The 

GDDBAP can be reduced to:  
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}1,0{, 21 ∈ijkijk XX , 0≥ijky , 0,0 ≥≤ +−

ijkijk DTDT , 0≥ijkalpha , M is a large positive number 

 

The first term of the objective function minimizes the total cost from delayed departures and 

maximizes the total premiums from early departures; the second term minimizes the total 

handling cost, and the third term the total waiting cost. This formulation will produce the same 

results as with the BSP formulation of Hansen et al. (2007). 

 

 Minimum external berth total service time (MEBTST) BSP 

 

Proposition 5-IV: [GDDBAP] is a general case of the BSP of Imai et al. (2006b). 
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Proof: Assume all vessels have not arrived at the port before we start the berth allocation. 

Assume that the time window is reduced to a point in time, where tj1=0, tj2=Lj+Aj, where Lj is the 

limit of waiting time of vessel j. Also assume that aj1= aj2=aj3=0, bj1= bj2=0, WSTj=0, HCj=0, 

01 =jγ and 
Qjj C−=2γ where Q is the external berth similar to Imai et al (2006b). The fourth 

index in the decision variable Xijkl (l=1, 2, 3) can be ignored and the GDDBAP is then reduced to:  
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This formulation will produce the same results as with the BSP formulation of Imai et al. (2006b). 

The proof for the static case is similar and thus omitted. 

 

Minimum Cost with Time Window Service Deadlines (MCTWSD) BSP 

 

Proposition 5-V: [GDDBAP] is a general case of the Minimum Cost with Time Window Service 

Deadlines BSP. 
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Proof: Assume all vessels have not arrived at the port before we start the berth allocation. 

Assume that  aj2=aj3=0, bj2=0, WSTj=1, and CHj=0. The GDDBAP is then reduced to the BSP 

with minimum cost with time window service deadlines. 

 

Solution Procedure 

 

A heuristic was developed for the GDDBAP, since it is not likely that an efficient exact solution 

procedure exists, leading to an optimal solution in polynomially bounded computation time. The 

procedure we employ for the heuristic is the Genetic Algorithms (GAs). GAs based heuristics are 

widely applied for plenty of practical problems of mathematical programming, which are difficult 

to solve in terms of polynomially bounded computation time. They work on the principle of 

evolving a population of trial solutions over a number of iterations, to adapt them to the fitness 

landscape expressed in the objective function (Taboada, 2007). 

 

 Representation 

 

Although binary-coded GAs are commonly used, there is an increasing interest in alternative 

encoding strategies, such as integer and real-valued representations. For some problem domains, 

like scheduling problems, it can be argued that the binary representation is, in fact, deceptive 

since it obscures the nature of the search (Taboada, 2007). Thus, in this chapter we use an integer 

chromosomal representation in order to exploit in full the characteristics of the problem. For 

instance, consider the following example of 5 vessels and 2 berths (fig.5-1). For this problem 

each chromosome will have ten cells {chromosome length= (Number of Berths) x (Number of 

Customers)}. 
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Figure 5-1 Chromosome Representation 

 

The first 5 cells represent the 5 possible service orders in Berth1 and the last 5 cells the 5 possible 

service orders in Berth 2. In this assignment Vessel 2, 4, and 5 are serviced at Berth 1 as the first, 

second and third vessel respectively, and Vessel 1 and 3 are serviced in Berth 2 as the first an 

second vessel respectively. No vessel will be serviced after vessel 5 and three (zero value of cell). 

 

Genetic Operations: Crossover & Mutation 

 

Crossover can combine information from two parents while mutation can introduce new 

information. Crossover is explorative
10

; it makes a big jump to an area somewhere “in between” 

two parent areas (Eiben, and Smith, 2003). On the other hand mutation is exploitative
11

; it creates 

random diversions staying near or not in the area of the parent, depending on the mutation (insert, 

swap, inversion, and scramble). There is a debate on the use of crossover and mutation and which 

approach is the best to use. The main conclusion is that the performance of either mutation or 

crossover is highly affected by the problems’ domain. In our problem, at each generation the 

crossover operation will generate a large number of infeasible children in terms of constraint set 

(2) (i.e., a child chromosome may not service all the vessels while other vessels are served twice). 

In the BAP literature simple heuristics were applied to eliminate this problem (Nishimura 2001; 

Imai 2003; Imai 2006a; 2006b). After running several computational examples with and without 

crossover results showed that problems solved with crossover returned worse solutions than 

                                                 
10 Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem 
11 Exploitation: Optimizing within a promising area, i.e. using information 



 89 

 

problems using only mutation and were computationally more expensive. We do acknowledge 

that complex crossover techniques (partially mapped crossover, cycle crossover, and edge 

recombination) could eliminate the former insufficiency of the crossover operation. This could 

result though to a significant increase of the computational time and was not implemented within 

this chapter.  

 

Instead of crossover we experimented with four different types of mutation: insert, swap, 

inversion, and scramble mutations (fig.5-2) that were applied to all the chromosomes at each 

generation. Each of the four types of mutations has its own characteristics in terms of preserving 

the order and adjacency information. Insert mutation picks two cells at random and moves the 

second one to follow the first, thus preserving most of the order and adjacency information. 

Inversion mutation picks two cells at random and then inverts the substring between them 

preserving most adjacency information (only breaks two links) but disrupting the order 

information. Swap mutation picks two cells from a chromosome and swaps their positions 

preserving most of the adjacency information but disrupting the order. Finally, scramble 

scrambles the position of a subset of cells of the chromosome. 

 

Computational experiments showed that when all four mutations were applied the GA algorithm 

converged at a faster rate and there was significant improvement in the value of the objective 

function. Thus in our algorithm we employed all four mutation types but as the GA progressed 

the weight was shifted from the Inverse and Scramble mutation to the Insert and Swap mutation. 

In this way in the beginning of the search the heuristic performs large jumps and as the objective 

function improves the heuristic searches in an increasing smaller region. 
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Insert Mutation  

 

Inverse Mutation 

 

Swap Mutation  

 

Scramble Mutation 

Figure 5-2 Example of the Mutation Operation 

 

Technical/Physical Restrictions 

 

In a mutated chromosome, all vessels cannot be serviced at the assigned berth, because of the 

physical or technical conditions. After the mutated individuals have been created and before the 

fitness function evaluation if a vessel does not satisfy constraint (Eq. 5-16), then the chromosome 

is assigned a very large function value. 

 

Fitness/Selection 

 

The GDDBAP is a minimization problem; thus the smaller the objective function value is, the 

higher the fitness value must be. The best solutions likely have an extremely good fitness value 

among solutions obtained where there is no significant difference between them in the objective 

function value. In order to avoid trapping the algorithm at local optimal locations of the solution 

space and instead of using a fitness function different then the objective function (as in Nishimura 
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et al., 2001; and Imai et al., 2003), we use the objective function as the fitness function and select 

a number of medium and low fitness solutions probabilistically among the children of the next 

generation. As discussed previously all the chromosomes from the previous generation are 

candidates for the next generation. Several selection algorithms exist in the literature (Taboada, 

2007). One of the most common one is the so-called roulette wheel selection (Goldberg, 1989), 

which is implemented in this chapter as follows: 

 

Roulette Wheel Selection Algorithm 

Step 0: Create an empty set S to hold the individuals that will proceed 

as the next generation 

Step 1: Normalize the fitness values of the individual chromosomes
12

. 

Normalization means multiplying the fitness value of each 

individual by a fixed number, so that the sum of all fitness 

values equals 1. 

Step 2: The population is sorted by descending fitness values. 

Step 3: Accumulated normalized fitness values are computed (the 

accumulated fitness value of an individual is the sum of its 

own fitness value plus the fitness values of all the previous 

individuals).  

Step 4: Choose a random value R between 0 and 1 

Step 5: Select the first individual whose accumulated normalized 

value is greater than R and add it to S. 

Step 6: If |S| is equal to the initial population Stop else removed that 

individual and go to Step 1. 

                                                 
12

 In our heuristic the number of chromosomes that enter the wheel selection is 4 times larger then the ones 

that will move on as the next generation 
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The procedure of the GA heuristic algorithm is outlined in figure 5-3. 

 

 

Figure 5-3 GA Heuristic 

 

Applicability of GA Heuristic to different BSP 

 

The proposed heuristic is applicable to any of the reduced GDDBAP BSPs, with the exception of 

the MEBTST BSP. This is due to the infeasibility due to constraints (Eq. 5-49). Due to the nature 

of the problem there is no intelligent way of using mutation or crossover operations without 

obtaining a large number of infeasible solutions due to constraint set (Eq. 5-49). In order to avoid 
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this issue and when solving the MEBTST problem we propose the following small neighborhood 

variable search heuristic:  

 

 

Heuristic 5-1: Small neighborhood variable search heuristic 

Step 0: Randomly move all the vessels assigned to the external berth to 

the other internal berths  

Step 1: Select the first internal berth 

Step 2: Reassign the vessels on the selected internal and the external 

berth using a branch and bound algorithm 

Step 3: If the previous berth was the last internal berth end else one 

select the next berth and move to step 1 

 

This heuristic is applied to each chromosome after the mutation operations are finished. 

 

Computational Examples 

 

Dataset Description 

 

Problems used in the experiments were generated randomly but systematically. When creating the 

experimental data the focus was in creating datasets that would be computationally challenging.  

We developed forty problem sets where vessels are served with various handling volumes at a 

multi-user container terminal (MUT) with five and ten berths, with two planning horizons of one 

and two weeks (Tables 5-1 and 5-2). The random generation process was based on data from two 

real world container terminals with similar terminal operating systems (one in Europe and one in 

the US). The range of variables and parameters considered were chosen according to the data 
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obtained from these two container terminals. Vessel handling volumes ranged from 500 to 4,000 

(TEU) based on a uniform distribution pattern. The handling time of a vessel was dependent on 

the berth assigned, and was a function of the number of the cranes that may be assigned. We 

assume that 2 to 3 cranes operate on small sized vessels (<2000 TEU), 3 to 4 cranes on medium 

sized vessels (<3000 TEU), and 4-6 on large mother vessels (<4000 TEU). The average crane 

productivity was assumed to be 25 TEU/hour. The average vessels per berth per week 

equivalence (VBWE) were 5 while the minimum, maximum and average handling time was 10, 

51, and 32 hours. Testing instances with lower VBWE averages would not be provide 

representative evaluation of the heuristics performance. 

 

The minimum handling time was calculated by dividing the handling volume by the average 

productivity of a crane multiplied by the number of cranes operates on the vessel. The average 

handling time per berth was 24 hours. Random numbers were used to generate the handling time 

of vessels at the other berths, always in relation to the berth with the minimum handling time. The 

association of the minimum time with the berth was also made randomly. Availability of berths 

was calculated using a uniform probability with a minimum of zero and a maximum of 10 hours. 

One of the most crucial issues in these experiments was the selection of the interarrival vessel 

distribution. We assumed that vessels arrived randomly with a minimum of 20 and a maximum of 

25 vessels per week. Arrival times of vessels within the week period were randomly generated. 

Figure 5-4 shows the vessel arrival distribution in the form of a bar chart. Weights for the vessels 

were also randomly generated.  

 

Experimental Results 

 

The solution procedure was coded in Scilab 4.1 on a Dell Precision 670 Workstation, 2GB RAM. 

The number of individuals was set to 50 and the number of generations was set to 50. The 
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solution procedure was evaluated using two basic BSPs: a) Minimum Total Service Time 

(MTST), and b) Minimum Total Weighted Service Time (MTWST). The focus of the 

experiments was on the optimality, robustness and computational efficiency of the proposed 

algorithm. The initial schedule for each experiment was obtained in a random fashion without 

using any rules since this would bias results. 

  

 

Figure 5-4 Vessel Arrivals 

 

Table 5-3 shows the minimum and maximum values of the objective function for the MTST BSP 

weekly schedule for both berth capacities obtained from five trials using the GA algorithm and 



 96 

 

the optimal values obtained using CPLEX 9.0. For the rest of the problems optimal solutions 

were not obtained even after several hours of computations.  

 

Table 5-1 Dataset Information One Week Time Horizon 

 FIVE BERTHS Ten Berths 

Instance Vessels Volume 

(TEU) 

Vessels Volume 

(TEU) 

1 22 41,734 68 159,362 

2 21 55,212 58 118,981 

3 21 50,938 53 115,885 

4 20 37,405 63 140,794 

5 23 55,120 64 145,334 

6 23 50,877 60 135,584 

7 20 46,970 55 136,616 

8 21 45,252 64 141,741 

9 22 50,957 61 147,214 

10 20 44,752 61 143,987 

Average 21 47,922 61 138,550 

Annual 554 1,245,964 1,578 3,602,295 

 

 

For each one of the eighty problems, the ratio of the range of the objective function values for 5 

trials (different starting populations) to the lowest objective value, which can be expressed by the 

highest objective value during the five trials divided by the lowest objective value during the five 

trials, was calculated. Results are reported in figure 5-4. The first ten sets of bars of each sub-

graph show the range of objective values for each planning horizon (one and two weeks) and 

berth capacity (five and ten berths) for each one of the ten test instances. The last (eleventh bar 

set) shows the average range of objective values over all the test instances. The average ratio was 

less than 10%, and thus we can conclude that results obtained from the GA algorithm are 

consistent for different trials.  
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The computational time was also measured during the evaluation of the heuristic. Figure 5-5 

shows the average computational time for the five trials for each of the 20 instances of the 

problem. 

 

Table 5-2 Dataset Information Two Weeks Time Horizon 

 Five Berths Ten Berths 

Instance Vessels Volume 

(TEU) 

Vessels Volume 

(TEU) 

1 47 107,490 115 263,108 

2 42 96,000 106 237,840 

3 44 104,113 124 274,267 

4 44 100,231 118 259,327 

5 44 105,915 124 300,197 

6 40 84,162 137 307,169 

7 47 103,250 116 281,467 

8 49 95,117 131 306,686 

9 44 83,792 105 241,788 

10 41 93,250 138 318,769 

Average 44 97,332 121 279,062 

Annual 1,149 2,530,632 3,156 7,255,607 

 

Table 5-3 Objective function values (in hours) for the MTST BSP 

 Planning Horizon of One Week 

 Five Berths Ten Berths 

Problem 

Instance 

% Difference CLEX-GA 

(Min and Max) 

% Difference CLEX-GA 

(Min and Max) 

1 0% 0% 0% 6% 

2 0% 0% 0% 0% 

3 0% 2% 0% 3% 

4 0% 1% 0% 3% 

5 0% 0% 0% 3% 

6 0% 1% 0% 2% 

7 0% 1% 0% 7% 

8 0% 2% 0% 2% 

9 0% 1% 0% 2% 

10 0% 1% 0% 2% 
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Figure 5-5 Range of the objective function values 

 

We also evaluated the iterations that are required for the algorithm to stabilize. Figure 5-6 shows 

the typical pattern of the progress of the objective function value at each step for the smallest and 

largest instance of all the instances used. We observe the algorithm stabilizes after 200 iterations.  

The maximum time per iteration was less then 1 sec.  As we increase the population convergence 

of the algorithm is established in fewer generations and the progression is smoother. 
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Figure 5-6 Computational Time 

 

Conclusions 

 

In this chapter we presented a generic linear MIP formulation for the discrete and dynamic BAP. 

Several proofs of how the model can be reformulated to portray a number of different BSPs were 

presented. A GA based heuristic solution approach that can be applied to each of the 

reformulations was also presented. The proposed heuristic was tested for robustness and 

computational efficiency using two existing BSPs with promising results. In the next three 

chapters we will present three additional heuristics for the BAP. 
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Figure 5-7 MTST BSP Progression of Objective Function Value (Smallest and Largest 

Problem Instance) 
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6 AN OPTIMIZATION BASED GENETIC ALGORITHM HEURISTIC FOR THE 

BERTH ALLOCATION PROBLEM 

 

Introduction 

 

Genetic algorithm based heuristics are very popular as a BAP solution approach. In this chapter 

we develop an optimization based genetic algorithm (GA) heuristic to solve medium to large 

instances of the BAP. The heuristic can be applied to the discrete and dynamic BAP, and is 

independent of the objective function. We also present a heuristic for the single BAP that we use 

in the GA heuristic. For the purposes of this chapter we study the discrete and dynamic berth 

allocation problem with the objective to minimize the total weighted service time (WBAP) and 

deal with calling vessels with various service priorities. We use the linear MIP model formulation 

presented in the previous chapter and conduct numerical experiments to evaluate the efficiency 

and effectiveness of the proposed method. 

 

The remainder of this chapter is organized as follows: Section 2 presents the mathematical 

formulation. Section 3 describes a solution procedure. Section 4 reports the numerical results. 

Section 5 concludes the chapter. 

 

Problem Formulation 

 

The berth scheduling policy modeled in this chapter was originally proposed by Imai et al. 

(2003). In the same manner the BAP presented in this chapter assumes only one long wharf at a 

multi-user terminal. The wharf is divided into several berths and we obtain a set of assignments 

of vessels to those berths. We also assume that each berth can service one vessel at a time and 
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that there are no physical and/or technical restrictions such as the relationship between vessel 

draft and effective quay water depth. Furthermore, as with most papers presented in the literature, 

the vessel handling time is assumed dependent on the berth where it is assigned, since it is related 

to the time of the landside transfer operations. 

 

In formulating the WBAP we define the following variables: i=(1,……,I) ∈  B set of berths, 

j=(1,….,T) ∈  V set of vessels, k=(1,….,T) ∈  O set of service orders, Si=time when i berth 

becomes idle, Aj=arrival time, Cij= handling time of vessel j at berth i, Xijk=1 if vessel j is serviced 

at berth i with (k-1) successors, yijk= idle time of berth i before vessel j is serviced as the k
th
 

vessel. The problem was initially formulated by Imai et al. (2003) is shown in equations 6-1 

through 6-4. 
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}1,0{∈ijkX , Integer, 0≥ijky  Positive (decision variables), where aj is a weight for vessel j. 

 

The objective function seeks to minimize the weighted service time. Constraints (6-2) ensure that 

vessels must be serviced once; constraints (6-3) that each berth services one vessel at a time; and 

constraints (6-4) that each vessel is serviced after its arrival. For further explanations of the 

objective function and the constraints the reader is referred to Imai et al. (2003). The resulting 

formulation is non-linear (MINLP). MINLP problems are precisely so difficult to solve, because 
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they combine all the difficulties of both of their subclasses: the combinatorial nature of mixed 

integer programs (MIP) and the difficulty in solving nonconvex (and even convex) nonlinear 

programs (NLP). Because subclasses MIP and NLP are among the class of theoretically difficult 

problems (NP-complete), so it is not surprising that solving MINLP can be very challenging. Imai 

et al. (2003) used a Lagrangian relaxation of the problem in order to look into the availability of 

the subgradient optimization. Although the subgradient method was adaptable to this problem, 

enormous computational effort was expected because the relaxed problem was a quadratic 

assignment problem which was NP-hard. Therefore, they eventually employed a GA based 

heuristic algorithm, an approach widely utilized for complicated combinatorial problems. 

In this chapter the problem is reformulated as a linear problem. The new formulation is shown in 

equations 6-5 through 6-9. 
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}1,0{∈ijkX , Integer, 0≥ijky , 0≤ijkDT , where 
ijkDT is an auxiliary variable. 

 

A proof that this model is the linear version of Imai et al. (2003) was provided in Chapter 

5. 
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Solution Procedure 

 

A heuristic was developed for the LWBAP, since it is not likely that an efficient exact solution 

procedure exists, leading an optimal solution in polynomially bounded computation time. The 

procedure we employ for the heuristic is the Genetic Algorithms (GAs). Unlike the previous GA 

heuristic presented in chapter this heuristic incorporates an optimization component in the 

heuristics procedure that aims to improve the performance of the heuristic in terms of the final 

value of the objective function. Further detail are provided in the following subsections of this 

chapter. 

 

Representation 

 

The same representation as with the heuristic in Chapter 5 is applicable and was implemented. 

 

Genetic Operations: Crossover & Mutation 

 

The genetic operations described in Chapter 5 are applicable and were implemented. 

 

Optimization Component 

 

After the completion of the genetic operations (crossover and mutation) a typical genetic 

algorithm procedure would continue with the selection of the next generation. Instead of moving 

directly to that step we embed an optimization element applied at each iteration of the genetic 

algorithm and immediately after the genetic operations are completed but before the next 

generation selection. The optimization procedure is applied as follows: 
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Heuristic 6-1: GA Optimization Procedure 

STEP 1: Select randomly a number of individuals F from the total 

individuals A ( AF ≤ ). 

STEP 2: Create an empty set B to hold the new individuals. 

STEP 3: Select the next individual from F and remove it from F. 

STEP 4: At each berth of this individual reassign the vessels using a 

branch and bound algorithm with the objective of minimizing 

the total weighted service time. 

STEP 5: If F is empty end else go to Step 3. 

 

Single Berth Optimization 

 

The implementation of the optimization component becomes time consuming if the number of 

customers (at each berth) exceeds 5. In order to improve the computational time performance we 

propose the following heuristic for the single berth assignment. In the appendix we prove that this 

heuristic will give the optimal value if all weight are equal to 1. 

 

Heuristic 6-2: Rolling Time Window Heurist for the Single Berth BAP 

STEP 0: Sort vessels in ascending order of arrival time S={S1, S2, 

……, Sn, Sn+1, Sj}, where An<An+1 

STEP 1: Select the first n vessels N={S1, S2, ……, Sn}, with arrival 

times smaller than the service time of the largest vessel if it 

was assigned first. If the number of vessels selected are less 

than 6 then continue to add vessels in order of arrival until 

|N|=6. 
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STEP 2: Solve LWBAP using N vessels 

STEP 3: Check how many vessels from N have finished service 

before the arrival of vessel Sn+1. Name this set ND.  

STEP 4: If ND=empty then include in N all vessels that arrive before 

the finish of the earliest “job” from N and go to step 2 else 

remove from N vessels in ND and add Sn+1 to N 

STEP 5: Go to step 2 until N=ND= empty set 

 

Fitness/Selection 

 

The fitness/selection criterion applied in this chapter was presented in Chapter 5. 

 

Computational Experiments 

 

Dataset Description 

 

The same dataset as with Chapter 5 was used for the computational experiments of this chapter. 

 

Experimental Results 

 

The solution procedure was coded in SciLab 4.1
13

 on a Toshiba Dual Core Intel T2250 with 2GB 

of RAM. For the OBGA the population size was set to 20, the number of generations to 40 and 

the size of the individuals to be optimized within each generation equal to 5. In order to evaluate 

the effectiveness of the optimization component of the heuristic we performed the same 

                                                 
13
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experiments excluding the optimization step (from now on we will refer to this heuristic as 

GAH). The population size was set to 20 and the generations to 2000.  

 

For each dataset, the ratio of the range of objective values for 5 trials (different starting 

populations) to the lowest objective value, which can be expressed by the highest objective value 

during the five trials divided by the lowest objective value during the five trials, was calculated. 

Results are reported in figure 6-1 for the twenty different datasets. It is obvious that the GAH 

algorithm is producing results with a higher variation (less consistent) then the OBGA heuristic. 

For both heuristics the average ratio was less than 15%, and thus we can conclude that the 

objective function values obtained are consistent for different trials.  

 

Figure 6-2 shows the actual values (minimum and maximum value obtained from the 5 trials) of 

the objective function for each dataset from both heuristics (OBGA and GAH) while figure 6-3 

the computational time. We can conclude that the former heuristic (OBGA) constantly 

outperforms the later (GAH) in terms of the minimum and maximum values, especially as the 

size of the problem increases, while the computational time increase is negligible. 

 

Finally we performed a sensitivity analysis for the parameters of the OBGA and GA heuristic 

(population, generations, chromosomes to be optimized at each generation). We performed 

different experiments using the datasets described but varying the population size and generations 

and population size to be optimized at each generation for the OBGA. Both heuristics were 

proven to be robust exhibiting small changes in the variance and the minimum value of the 

objective function. 
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Figure 6-1 Average ratio of the range of objective values to the lowest objective value for 

different problem sizes (OBGA) 
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Figure 6-2 Minimum and Maximum Values of the Objective Function (GA and OBGA) 
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Figure 6-3 Computational Time (GA and OBGA) 

 

 

 



 111 

 

Conclusions 

 

In this chapter we presented an optimization based Genetic Algorithm heuristic for the Berth 

Allocation Problem (BAP). The proposed approach was evaluated by considering the problem of 

allocation space at a berth for vessels with the objective of minimizing the total weighted service 

time of all the vessels. The problem was formulated as a linear mixed integer program.  

 

The proposed heuristic was evaluated against a GA based heuristic that lacked the optimization 

component. In order to decrease the computational time of the former heuristic, two additional 

heuristics were proposed for the single BAP. Computational experiments showed that the 

proposed algorithm outperformed the GA heuristic lacking the optimization component in terms 

of the variance and minimum values of the objective function, especially as the problem size 

increased. On the other hand, the increase in computational complexity due to the optimization 

component was negligible, and ranged between 8 to 100 sec for the one week planning horizon 

and 124 to 180 sec for the two week planning horizon. 
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7 A TWO OPT BASED HEURISTIC FOR THE DISCRETE AND DYNAMIC BERTH 

SCHEDULING WITH TIME WINDOWS 

 

Introduction 

 

In this chapter we deal with the discrete and dynamic berth allocation with time windows. Berth 

allocation aims to optimally schedule and assign vessels to berthing areas along a quay at a 

container terminal. The vessels arrive at the port over a period of time and normally request 

service and departure within a specified time window. These time windows are determined 

through contractual agreements between the port operator and the carrier. Based on these 

contractual agreements different vessels receive different service priorities varying from berthing 

upon arrival, to guaranteed service time window and/or guaranteed service productivity. In this 

chapter the discrete and dynamic BAP (DDBAP) is formulated as a linear MIP problem with the 

objective to simultaneously minimize the port operators’ costs from vessel late departures 

(departure past the time window) and maximize the port operators’ premiums from vessel early 

and timely departures (departure before and within the requested time window). 

 

Although the discrete and dynamic berth allocation problem has been studied extensively (Imai et 

al. 2001, 2003, 2007a, 2007b; Imai et al. 2003, Nishimura et al., 2001; Cordeau et al., 2005; 

Hansen et al., 2007) all the formulations presented so far in the literature reduced the time 

window to a point in time while leading to NP-hard or NP-complete problems that required some 

sort of (meta)heuristic algorithm to be applied for a computationally acceptable solution time. All 

of these (meta)heuristic did not guarantee convergence of the algorithm to a local or global 

optimal.   
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In this chapter we present a 2-opt heuristic for the discrete and dynamic berth allocation that 

guarantees local optimality for the final solution. Our work extends and integrates the work of 

several previous authors and the work presented in the previous chapters, but results in a new 

heuristic that guarantees local optimality for the discrete and dynamic berth allocation problem.  

We illustrate the behavior and efficiency of the proposed heuristic using the minimum cost with 

time windows BSP using real world size instances. The next section provides a formal description 

of the problem. The third section presents the heuristic and in the fourth section the heuristic is 

evaluated. The last section concludes the chapter. 

 

Problem Description 

 

Assume that a set of vessels are set to arrive at a port over a period of time and serviced at a 

number of berths. We assume that each berth can handle one vessel at a time regardless of the 

vessel’s size and that there are no physical/technical restrictions. The vessel’s handling time is 

assumed to be dependent only on the berth where it will be assigned and on the number of 

containers to be loaded/unloaded. To formulate the DDBAP we define the following: i = 

(1,……,I) ∈  B set of berths, j = (1,….,T) ∈  V set of vessels, k = (1,….,T) ∈  O set of service 

orders, Si = Time when berth i becomes available for the first time in the current planning 

horizon, Aj =Arrival time of vessel j, Cij = Handling time of vessel j at berth i, yijk = idle time of 

berth i before vessel j is serviced as the k
th
 vessel, Xijk1 = 1 if vessel j serviced at berth i as the k

th
 

vessel and departs or berths before the requested time window and zero otherwise, Xijk2= 1 if 

vessel j serviced at berth i as the k
th
 vessel and departs or berths after the requested time window 

and zero otherwise, Xijk3= 1 if if vessel j serviced at berth i as the k
th
 vessel and departs or berths 

within the requested time window and zero otherwise, aj1= Hourly earliness departure premium 

for vessel j, aj2= Hourly earliness berthing premium for vessel j, bj1 = Hourly lateness departure 
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penalty for vessel j, bj2 = Hourly lateness berthing penalty for vessel j, 
1jγ = Hourly timely 

departure premium for vessel j, 
2jγ = Hourly timely berthing premium for vessel j, tj1 = 

Requested early departure/berthing time of vessel j, tj2 = Requested late departure/berthing time 

of vessel j, WST= 1 if vessel j sets a request for early, timely and late departure 0 otherwise, DTijk 

= Difference of early/late actual and requested finish/start time of vessel j serviced at berth i as 

the k
th
 vessel, +

ijkDT = ),,0max( ijkDT −

ijkDT = ),,0min( ijkDT  DTTijk=Difference of early timely 

requested and actual timely finish/start time of vessel j serviced at  berth i as the k
th
 vessel, Rij=0 

if vessel j cannot be serviced at berth i due to physical or technical restrictions and 1 otherwise 

 

The DDBAP can be formulated as follows: 
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positive number 

 

In the objective function (7-1) the first three terms correspond to the total cost from delayed 

departures/berthing, the second to the total premiums from early departures/berthing, and the 

third to the total premium from timely departures/berthing (depending on if WSTj=1 or 0). 
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Constraints (7-2) ensure that vessels must be serviced once; constraints (7-3) ensure that each 

berth services one vessel at a time; and constraints (7-4) and (7-5) ensure that each vessel is 

serviced after its arrival. Constraints (7-6) and (7-15) enforce the declaration of the decision and 

auxiliary variables. Equation (7-16) enforces different physical and technical constrains that do 

not allow the berthing of certain vessels at certain berths (i.e. berth depth). 

 

Solution Approach 

 

In this section we describe how we solve the DDBAP to local optimality. In order to solve the 

problem we devised two heuristics based on the lamda-optimal heuristic by Lin and Kernighan 

(1973). Both proposed heuristics are able to find a local minima of the problem and reduce 

dramatically the number of computations required. Given the nature of the problem it is always 

almost impossible to obtain an optimal solution using classical optimization approaches. The 

complexity of the problem quickly increases as the number of vessels and berths increase. On the 

other hand the same problem with 2 berths and a reasonable number of customers for any given 

time period may be solved to optimality by using a branch and bound algorithm or even by 

enumeration of all the feasible solutions.  

 

2-opt based heuristics 

 

A solution is said to be lamda-optimal if it is impossible to obtain a better solution by replacing 

any lamda relation instances by any other set of lamda relation instances. The lamda-optimal 

heuristic is based on the concept that in each trial, lamda instances of the chosen relation 

(mapping between problem components, e.g. vessels to berthing timeslots) in the working 

solution are exchanged. The trial process continues until a move that satisfies a specified 

acceptance criteria is found. The accepted move is then used to update the working solution. 
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Computational time rapidly increases for increasing values of lamda. As a result, the values 

lamda = 2 and lamda = 3 are the most commonly used. In many applications lamda= 2 is 

powerful enough to yield near optimal solutions in a fraction of the time needed for an exhaustive 

search.  

 

In this subsection we first present a heuristic (Heuristic A) that starts with the parameter lamda=2. 

This heuristic guarantees a local optimal solution but is myopic. In order to account for this 

problem we extend Heuristic A and present a second heuristic (Heuristic B) where Heuristic A is 

used internally n times (where n are all the possible combination of the berths if at each 

combination we exchange the positions of two berths at a time, i.e. [Berth 1, Berth 2, Berth 3] and 

[Berth 2, Berth 1, Berth 3] are two different combinations while [Berth 1, Berth 2, Berth 3] and 

[Berth 3, Berth 1, Berth 2] are the same combination). 

 

Heuristic 7-1: Small Neighborhood Search 

STEP 0: Obtain an initial feasible solution using a Genetic Algorithm 

(GA) heuristic (Chapter 6). Assume the objective function 

value from the GA heuristic is OFV
0
. Set counter n=0 

STEP 1: Set counter n=n+1 and counter c=0 

STEP 2: Set counter c=c+1 

STEP 3: If c<|B| reassign vessels to berths c and c+1 using CPLEX or 

enumeration and go to Step 2, Else if c=|B| reassign vessels to 

berths c and 1 using CPLEX or enumeration, and go to Step 4 

STEP 4: If OFV
n
-OFV

n-1
 NE 0 go to Step 1else end  
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Heuristic 7-2: Large Neighborhood Search 

STEP 0: Obtain an initial feasible solution using the Genetic 

Algorithm (GA) heuristic (Chapter 6). Set counter n=0 

STEP 1: While n<|B|-1 

STEP 2: Set counter n=n+1 and counter k=n 

STEP 3: Set counter k=k+1 

STEP 4: Set Bk=Bk+1, Bk+1=Bk , Ckj=C(k+1),j, C(k+1),j=Ck,j, Sk=Sk+1, 

Sk+1=Sk, and go to step 5 

STEP 5: Apply Heuristic A excluding Step 0 

STEP 6: If k<|B|-1 go to step 3 else go to 7 

STEP 7: If n<|B|-1 go to Step 2 else end 

 

Computational Experiments 

 

The solution procedure was coded in SciLab 4.1
14

 on a Toshiba Dual Core Intel T2250 with 2GB 

of RAM. Problems used in the experiments were generated randomly but systematically. The 

focus was in creating datasets that would be computationally challenging and reflect real life 

conditions. We developed forty base problem datasets where vessels are served with various 

handling volumes at a multi-user container terminal (MUT) with five and ten berths, with a 

planning horizon of one and two weeks. Vessel handling volumes ranged from 250 to 4,000 

(TEU) based on a uniform distribution pattern (Table 7-1). The handling time of a vessel was 

dependent on the berth assigned, and was a function of the number of the cranes that may be 

assigned. We assume that 1 to 3 cranes operate on small sized vessels (250-2000 TEU), 2 to 4 

cranes on medium sized vessels (2000-3000 TEU), and 3-6 on large mother vessels (3000-4000 

TEU). The average crane productivity was assumed to be 25 TEU/hour. The average vessels per 

                                                 
14
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berth per week equivalence (VBWE) was set to five. Testing instances with lower VBWE 

averages would not provide a representative evaluation of the heuristics’ performance . 

 

The minimum handling time was calculated by dividing the handling volume by the average 

productivity of a crane multiplied by the number of cranes operates on the vessel. Random 

numbers were used to generate the handling time of vessels at the other berths, always in relation 

to the berth with the minimum handling time. The association of the minimum time with the berth 

was also made randomly. Physical restrictions for vessel berthing was created randomly and was 

restricted to a maximum of one berth for instances with berth capacity of five and two for 

instances with berth capacity of ten. Availability of berths was calculated using a uniform 

probability with a minimum of zero and a maximum of 10 hours. One of the most crucial issues 

was the selection of the interarrival vessel distribution. We assumed that vessels arrived randomly 

over a weekly period with a minimum of 40 and a maximum of 80 vessels for instances with 

berth capacity of five and a minimum of 80 and a maximum of 120 vessels for instances with 

berth capacity of ten. Figure 7-1 shows the arrival patterns for each one of the forty base problem 

datasets. The x-axis shows the arrival time intervals (24 hours) and the y-axis the number of 

vessels arriving at that interval. 

 

Computational time 

 

The computational time of the proposed 2-opt heuristic is mainly dependent on the computational 

time at Step 3 of Heuristic A. Excluding simple BSPs (minimize total service time) Heuristic A 

becomes computationally expensive even for small problems (five berths and 50 vessels). A 

compromising solution would be to use the GA heuristic proposed in chapter 5 as the 

optimization algorithm of step 3 of heuristic A. The main idea behind the use of the GA is that for 

small problems similar to the one solved at every iteration at Step 3 of Heuristic A, the GA will 
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most probably provide the optimal solution. We evaluated this assumption for problems with 

planning horizon of one week and berth capacity of five with the objective to minimize the total 

service time. The algorithm converged to the same objective value for all the ten datasets and on 

average took one fifth of the computational time of the CPLEX based heuristic. These results do 

not guarantee the same behavior for the heuristic for different BSPs but are promising. For the 

computational examples in this chapter we used the GA heuristic from chapter 5 as the 

optimization procedure at Step 3 of Heuristic A. We used a population of 25 and 500 generations. 

 

Table 7-1 Dataset Information  

 Planning Horizon of One Week Planning Horizon of Two Weeks 

 Five Berths Ten Berths Five Berths Ten Berths 

Dataset Vessels Volume 

(TEU) 

Vessels Volume  

(TEU) 

Vessels Volume  

(TEU) 

Vessels Volume  

(TEU) 

1 68 159 330 104 236 186 94 218 387 201 436 671 

2 47 94 205 113 258 998 112 250 931 203 438 800 

3 75 165 608 105 223 845 109 243 266 220 457 128 

4 57 131 432 116 254 256 144 299 030 203 442 327 

5 53 109 679 111 242 466 109 223 359 169 337 946 

6 58 104 474 104 215 513 145 335 261 213 449 117 

7 74 157 930 103 214 724 127 270 058 198 412 600 

8 43 91 093 115 232 804 123 260 009 201 438 246 

9 49 101 118 103 209 773 108 234 985 235 513 681 

10 60 131 961 119 244 713 103 215 550 177 392 751 

Average  

(Planning 

Horizon) 

58 124 683 109 233 328 117 255 084 202 431 927 

Average 

(Annual) 

3 037 6 483 516 5 684 12 133 046 6 105 13 264 347 10 504 22 460 188 
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Figure 7-1 Vessel Arrival Patterns 
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Convergence 

Figures 7-2 through 7-5 shows the convergence of the objective value for each berth capacity and 

planning horizon combination for all the datasets. The algorithm showed a promising rate if 

convergence in all the 40 cases
15

.  

 

Conclusions 

 

In this chapter we presented a 2-opt heuristic for the discrete and dynamic berth allocation that 

guarantees local optimality. The proposed heuristic managed to improve the solution from the GA 

based heuristic, proposed in Chapter 5. The only disadvantage of the proposed approach is the 

increased computational time as the problem size increases as compared to the GA based 

heuristics from Chapter 5 and 6. A compromising but effective solution was given for this 

problem by using the GA based heuristic from Chapter 5 as a replacement to the CPLEX or 

enumeration options pf the solution algorithm within the heuristic proposed in this chapter.  
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 Negative cost means premium for the port operator 
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Figure 7-2: Convergence of objective function (Five Berths, One Week Planning Horizon) 
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Figure 7-3: Convergence of objective function (Five Berths, Two Weeks Planning Horizon) 
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Figure 7-4: Convergence of objective function (Ten Berths, One Week Planning Horizon) 
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Figure 7-5: Convergence of objective function (Ten Berths, Two Weeks Planning Horizon) 
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8. A ROLLING TIME HORIZON HEURISTIC FOR THE BERTH 

ALLOCATION PROBLEM WITH WAIT TIME CONSTRAINTS 

 

Introduction 

 

In this chapter we study the berth allocation problem with waiting time constraints. In this 

problem vessels set a maximum waiting time limit beyond which heavy penalties occur to the 

port operator. Unlike Imai et al. (2007) our approach does not consider the alternative of vessels 

being serviced at a different port if the wait time exceeds a certain time limit, since it is not a 

good practice to redirect vessels to other ports. The problem formulation seeks to optimality 

assign vessels to berths so that the total service time for all the customers is minimized and the 

wait time constraints are not violated. To tackle infeasibility issues arising from this type of 

constraints in scheduling problems, we developed two time window based heuristics. The next 

section describes and formulates the problem, while the third section presents the solution 

approach. We leave the evaluation of the proposed heuristics as future research. 

 

Problem Formulation 

 

In order to formulate the discrete and dynamic berth allocation problem with wait time constraints 

(BSPWT) we need to define the following:  

 

i=(1,……,I) ∈  B set of berths,  

j=(1,….,T) ∈  T set of vessels,   

k=(1,….,T) ∈  O set of service orders,  

Si= Time when berth becomes idle for the first time for the current planning horizon,  
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Aj= Arrival time,  

HTij= Handling time of vessel j at berth i,  

ijk
y = Idle time of berth i between start of service of vessel j and its immediate 

predecessor,  

ijk
X  = 1 if vessel j is serviced at berth i as the kth vessel and departs/berths before the 

requested date and zero,  

Rij =0 if vessel j cannot be serviced at berth i due to physical or technical restrictions, and 

1 otherwise 

WTj= wait time limit of vessel j. 

 

BSPWT can then be formulated as follows:  
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The objective function (8-1) minimizes the total service time of all the vessels. Constraints (8-2) 

ensure that vessels must be serviced once; constraints (8-3) ensure that each berth services one 

vessel at a time; and constraints (8-4) ensure that each vessel is serviced after its arrival and 

constraints (8-5) ensure that each vessels’ waiting time does not exceed the desired time. 

 

BSPWT has a set of hard constraints (8-5) that may deem the problem infeasible. In order to 

avoid this problem we define the following auxiliary variable: RLijk, and relax constraints (8-5). 

RL will be greater than zero if the vessel j exceeds its wait time serviced as the k
th
 vessel at berth 

i, and zero otherwise. The relaxed problem is formulated as follows: 
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In the relaxed problem the objective function (8-1) minimizes the total service time of all the 

vessels and the total excess of wait time.  
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Solution Approach 

 

It is not likely that an efficient exact solution procedure exists for BSPWTR, leading to an 

optimal solution in polynomially bounded computation time. For this reason we developed the 

following two heuristics for solving the BSPWTR. 

 

Heuristic 8-1: Constant Depth Myopic Heuristic 

STEP 0: Sort vessels in ascending order of arrival time S={S1, S2, ……, Sn, 

Sn+1, Sj}, where An<An+1 

STEP 1: Select the first n vessels and create a set named N={S1, S2, ……, 

Sn} 

STEP 2: Solve BSPWTR with N using CPLEX 

STEP 3: Create a set named ND and include all the vessels from N that 

have finished service before the arrival of vessel Sn+1, have 

exceeded their requested wait time, or finish service before 

the vessels that exceed their wait time 

STEP 4: If ND={} then include in N all vessels that arrived before the 

finish time of the vessel finishing first from N and go to 

step 2  

STEP 5: If {}≠ND  reassign vessels in ND using CPLEX and remove 

these vessels from N 

STEP 6: Add vessel Sn+1 to N 

STEP 7:  Go to step 2 until N={}; 
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Heuristic 8-2: Variable Depth Time Window Search Heuristic 

Step 0: Obtain an initial schedule (S
0
) by randomly assigning all 

vessels in J. Name the initial objective function value (OFV
o
). 

Set t= (Planning Horizon/7 ) days. Without loss of generality 

assume a minimization problem 

Step 1: Set n=0, VA=J 

Step 2: Set n=n+1 

Step 3: Select vessels that finish service within [n*(t-1), n*(t+1)] under 

S
n
 and name this set V

n
 

Step 4: Schedule vessels of set V
n
 and name this sub-schedule SS

n
 

Step 5: Select vessels that finish service within [n*(t-1), n*t] under SS
n
 

and name this set VS
n
 

Step 6: Schedule vessels of set VS
n
 

Step 7: Remove VS
n
 from VA and update machine availability 

Step 8: If VA=empty go to step 9 else go to step 2 

Step 9: If OFV
n
<OFV

n-1
 replace S

n-1
 with S

n
, set t= (Planning 

Horizon/7) and go to step 11 else go to step 10 

Step 10: By a probability of 1/n increase time step by t/2 and keep the 

S
n-1

 or 
 
replace S

n-1
 with S

n
 and set t= Planning Horizon/7. Go 

to step 9 

Step 11: If no improvement is observed end else go to step 

 

The proposed heuristics might be inefficient in cases where set |N| becomes too large to be solved 

in an acceptable time by CPLEX. In this case we may use the heuristic from Chapter 5 or Chapter 

6. This compromise is acceptable since for small to medium problems the heuristic from Chapter 
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5 or Chapter 6 has provided solutions with small deviation from the optimal values in small 

computational time. 

 

Conclusions 

 

This chapter presented a formulation and a solution approach for the berth allocation problem 

with wait time constraints. Future research is focusing in implementing the proposed algorithm 

and testing it on real life instances. 



 133 

 

9. BERTH ALLOCATION AND QUAY CRANE SCHEDULING 

 

Introduction 

 

One of the major issues that have not been studied in depth in port operations is the simultaneous 

assignment of vessels to berths and quay cranes to vessels; two problems that are interrelated 

(Steenken et al., 2004). Most of the research papers dealing with the berth allocation problem 

(BAP), as discussed in Chapter 3, considered handling operations of the vessel independent to the 

number of the quay cranes assigned to that vessel. To our knowledge only two research papers 

have appeared in the literature that consider the issue of the dynamic BAP and the quay crane 

scheduling (QCS) together (Park and Kim, 2003; Lee et al, 2006). In light of the above discussion 

this chapter presents a formulation for the simultaneous berth allocation and quay crane 

scheduling.  

 

In this chapter we present a general formulation for the dynamic and continuous BAP with 

simultaneous quay crane assignment and propose a two-dimensional Genetic Algorithm based 

heuristic for solving the resulting problem. We consider the minimization of costs due to not 

meeting agreed (un)loading performance, cost for waiting and handling, and tardiness of 

completion for all vessels. Our research deviates from BSP presented so far in the following 

aspect: a) unlike Lee et al. (2006) we solve the BAP and QCS simultaneously by determining the 

actual position of the vessel along the wharf, the start and finish time of the vessels’ handling, and 

the number of quay cranes to be assigned at each vessel, and b) Unlike Park and Kim (2003) we 

consider the minimization of costs due to not meeting agreed (un)loading performance, cost for 

handling as well as earliness and tardiness of completion for all vessels. 
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This chapter is organized as follows. The next section provides the problem formulation while the 

third section introduces the Genetic Algorithm (GA) based heuristic solution algorithm. The 

fourth section concludes the chapter. 

 

Problem Formulation 

 

To formulate the Berth Allocation and Quay Crane Scheduling problem (referred to from now on 

as the BAQCS) we make the following assumptions, some of which are similar to Park and Kim 

(2003):  

1. The maximum number of cranes that can be simultaneously assigned to a vessel, is only 

limited by the length of the vessel 

2. The duration of berthing of a vessel, is inversely proportional to the number of cranes 

assigned to the vessel and proportional to the distance from the vessels’ non favorable 

position 

3. For each vessel a cost is incurred if the committed minimum number of TEU moves per 

hour is not met. This can be the result of an insufficient number of crane assignment 

and/or the berthing of the vessel in a non favorable position  

4. For each vessel, a penalty cost/premium is incurred by berthing later/earlier or later than 

the committed time. 

5. For each vessel, a penalty cost/premium is incurred by departing later/earlier or later than 

the committed time. 

6. For the port operator, a cost is incurred for servicing a vessel as the handling time of each 

vessels is decreased due to the increase of cranes 

 

To formulate the BAQCS problem (fig. 9-1) we define the following: 
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s : (1,2,3,……….S) Number of vessels,  

Ls :  Length of vessel s,  

Q : Total number of available cranes,  

W :  Length of wharf,  

As : Arrival of vessel s,  

Cijs :  Handling time of vessel s assigned to cranes i through j,  

Xijkls      : 1 if vessel s covers rectangle jikl, where i, j (i<j) and (k<l) are the first and last 

crane assigned to the vessel, and k, l is the start and finish time 

TBs : Requested berthing time of vessel s 

TDs : Requested departure time of vessel s 

BTBs : Hourly premium for early berthing of vessel s 

CTBS : Hourly cost for late berthing of vessel s 

BTDs : Hourly premium for early departure of vessel s 

CTDs : Hourly cost for late departure of vessel s 

HCs      : Hourly handling time cost of vessel s (depended on the number of cranes 

assigned to the vessel) 

QCs     : Number of quay cranes committed to operator of vessel s 

QCCs : Unit cost from not meeting quay crane quota for vessel s 

Vs : Volume (in TEUs) to be (un)loaded from vessel s 

STs : Start time of service of vessel s 

FTs : Finish time of service of vessel s 
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Note: C: Quay Crane 

Figure 9-1 Schematic representation of the problem formulation 

 

The problem can then be formulated as follows:  
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sXkST
i j l

jklsis ∀=∑∑∑ ,* ,        (Eq. 9-6) 
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jklsis ∀=∑∑∑ ,* ,       (Eq. 9-7) 

sss DTFTt −≤1 ,         (Eq. 9-8) 

sss FTDTt −≤2         (Eq. 9-9) 

sss BTSTt −≤3 ,        (Eq. 9-10) 

sss STBTt −≤4 ,        (Eq. 9-11) 

t1s, t2s ,t3s, t4s <0, Xijkls= Binary,        (Eq. 9-12) 

 

The first term of the objective function corresponds to the total costs/premiums form early or late 

departures/berthing while the second term to the total handling costs. The last term corresponds to 

the cost from not meeting the committed productivity of (un)loading operations to a vessel, 

expressed in the number of cranes assigned. 

 

According to constraints (9-2) each vessel is serviced once. According to constraints (9-3) at each 

point in time the vessels served at the wharf have a total length less then the length of the wharf. 

A grid square must be covered only by one square according to constraints (9-4). Constraints (9-

5) ensure that each vessel is served after its arrival, while constraints (9-6) through (9-12) 

estimate the start and finish time of service and the delay/earliness of berthing/departure for each 

vessel. 

 

Solution Approach 

 

A heuristic is proposed for the problem formulation presented herein, since there is not likely that 

an efficient exact solution procedure exists, which finds an optimal solution in polynomially 
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bounded computation time. The procedure we employ for the heuristic is the Genetic Algorithms 

(GAs).  

 

Representation 

 

In this chapter we use an integer chromosomal representation in order to exploit in full the 

characteristics of the problem. We use a two-dimensional chromosome to capture the nature of 

the problem (Kahng and Moon, 1995; Pargas and Jain; 1993; Al-Attar, 1994; Lin et al., 1993). 

For further details refer to Krzanowski and Raper (2001). An example chromosome 

representation is provided in Figure 9-2, using a small instance of a problem (5 vessels, 10 quay 

cranes, and a planning horizon of maximum of 100 hours). Each chromosome will have 1000 

cells {chromosome length= (Number of Quay Cranes) x (Planning Horizon Length)}. In the 

chromosome in figure 9-2 vessel 1 is serviced by quay cranes 1 through 3, starts service at the 

beginning of the planning horizon, finishing service 3 hours later. Cells with zero value represent 

that no vessel is serviced at that time. 

 

  

Figure 9-2. Chromosome Representation 
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Fitness/Selection 

 

The fitness/selection criterion applied in this chapter was presented in Chapter 5. 

 

Crossover/Mutation 

 

Crossover and mutation will be performed in our heuristic with the objective to zero out 

chromosomes with infeasible solutions. A crossover may generate infeasible children i.e., a child 

chromosome may have no vessels served or vessels served twice. Crossover will not be allowed 

since this will lead to a large number of infeasible solutions that will either will be discarded or 

mutated to produce feasible solutions. Mutation is performed using a one dimensional 

chromosome that defines the order by which a vessel will be selected and included to the 2D 

chromosome (following a shortest start and service time rule). Figure 9-3 shows an example of 

the 1D chromosome used for the genetic operations. In figure 9-3 the first vessel that will be 

assigned in the 2D chromosome is vessel 2 and will be assigned so that it begins service as soon 

as possible (after its arrival date) and is assigned the maximum number of available cranes. 

 

 

Figure 9-3 One Dimensional Chromosome Representation  

 

Since it is unlikely that a vessel arriving at the end of the planning horizon will be serviced before 

a vessel arriving at the beginning of the planning horizon, we apply a tabu ruled based mutation 

that restricts certain mutation operations. A small example of the tabu mutation is shown in figure 

9-4. Assume that vessel 8 arrives at day 1 of the planning horizon while vessel 5 at day 5. The 
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tabu rule forbids any mutation type that will move vessel 5 to be serviced before vessel 8.  To 

achieve the tabu mutation the 1D chromosome population is partitioned into N sub-populations of 

equal size, where N is equal to the number of days of the planning horizon. For each sub-

population vessels are assigned a selection order (to be assigned to the 2D chromosome) within a 

specific time window after their arrival date, ranging from one day to the full planning horizon. 

The resulting 2D mutation is shown in figure 9-5. 

 

 

 

Figure 9-4 Tabu Mutation Rule 

 

         Before Mutation     After Mutation 

 

 

Figure 9-5 Chromosome mutation scheme in two dimensions 
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Four different types of mutation are applied: insert, swap, inversion, and scramble. Each of the 

four types of mutations is applied to all the 1D chromosomes and has its own characteristics in 

terms of preserving the order and adjacency information. Insert mutation picks two cells at 

random and moves the second one to follow the first, thus preserving most of the order and 

adjacency information. Inversion mutation picks two cells at random and then inverts the 

substring between them preserving most adjacency information (only breaks two links) but 

disrupting the order information. Swap mutation picks two cells from a chromosome and swaps 

their positions preserving most of the adjacency information but disrupting the order. Finally, 

scramble mutation scrambles the position of a subset of cells of the chromosome. Computational 

experiments showed that when all four mutations were applied, the GA heuristic converged at a 

faster rate and there was significant improvement in the value of the objective function. Thus in 

our algorithm we employed all four mutation types but as the GA progressed the weight was 

shifted from the Inverse and Scramble mutation to the Insert and Swap mutation. This way, in the 

beginning of the search the heuristic performs large jumps and as the objective function improves 

the heuristic searches in an increasing smaller region. The procedure of the full GA heuristic is 

outlined in figure 9-6. 

 

Numerical Experiments 

 

Dataset Description 

 

Problems used in the experiments were generated randomly but systematically. We developed six 

test problem instances where vessels are served with various handling volumes (ranging from 500 

to 4000 TEU) at a multi-user container terminal (MUT) with 12 quay cranes, with a planning 

horizon of one week. The number of vessels for each problem instance was 15, 20, 25, 30, 40, 

and 50 respectively. The random generation process was based on data from two real world 
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container terminals with similar terminal operating systems (one in Europe and one in the US). 

The range of variables and parameters considered were chosen according to the data obtained 

from these two container terminals. To our knowledge there is limited literature on 2D GA and 

none that provides indicative values for the genetic algorithm parameters. In this chapter a 

generation of 100 and a population of 10 were used.  

 

 

Figure 9-6 Genetic Algorithm Heuristic 

 

A sub-case of the generic model was used for the experiments, with the objective to minimize the 

total costs from not meeting the committed productivity of (un)loading operations to a vessel. To 

formulate this problem we assumed that t1s= t2s=t3s=t4s=HCs=0, s∀ . The sub-case formulation is 

shown in equations 9-13 through 9-18 
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Results 

 

Figure 9-7 shows the average computational time for 100 generations for each problem instance 

for the first and second problem respectively. Excluding the last problem instance the average 

computational time is within acceptable limits. 
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Figure 9-7 Computational Time (Case A) 

 

Figure 9-8 shows the values of the objective function for the instances per generation. The upper 

part of the graph shows all the values of the objective function obtained from all the 

chromosomes at each generation while the lower part the best. We observe that for all the 

problem instances the algorithm converged immediately. This can be partially attributed to the 

large number of population used but mainly to the objective of the problem. Since the objective 

of the problem is to find the minimum berth productivity cost the solution is insensitive to the 

service order of the vessels and parameters such as the total service time or the finish time of each 

vessel. To answer this issue we take advantage of the multi-population structure of the GA 

heuristic and at every generation we store the finish time of the last vessel for each chromosome. 

Figure 9-9 shows the finish time of the last vessel for each chromosome for each generation. The 

solution approach is flexible to incorporate any other type of criteria (i.e. total service time, total 

waiting time etc). 
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15 Vessels     20Vessels 

 

25 Vessels     30Vessels 

 

40 Vessels     50Vessels 

 

 

Figure 9-8 Objective Value Progression 
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15 Vessels     20Vessels 

 

25 Vessels     30 Vessels 

 

40 Vessels     50Vessels 

 

Figure 9-9 Service Time 

 

Conclusions 

 

In berth allocation, the calling time of vessels, favorable vessel berthing locations, and the 

number of available quay cranes must be considered simultaneously. The vessels arrive at the 
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port over a period of time and normally request service and departure within a specified time 

window. Based on contractual agreement, carriers usually request for a minimum berth service 

productivity, translated to the average number of containers loaded/unloaded onto the ship per 

hour. Failure to meet these contractual agreements implies costs to both the port operator and the 

ocean carrier. Based on these contractual agreements different ships receive different service 

productivity levels, translated to the berth location and the number of quay cranes assigned. In 

this chapter the berth-allocation and quay crane scheduling problem was studied. The problem 

was formulated as an integer programming model with the objective to minimize costs inadequate 

berth productivity service levels. The model presented herein simultaneously assigned quay 

cranes and dynamically allocated ships along a wharf, assuming that the handling time of each 

ship is a function of the number of cranes assigned and the location of the vessel along the wharf, 

including wharf length constraints.  

 

A two-dimensional GA based heuristic and a tabu rule mutation based heuristic procedures were 

developed to solve the resulting problem. The proposed approach adopted in this chapter could be 

beneficial for ports operated by a company different than the ocean carrier since it provides 

information on costs endured from meeting (or failure to meet) service contractual agreements. 

The proposed approach could also be valuable to terminals operated by the carrier as different 

ships may have different priorities for the carrier and consequently different departure deadlines 

by which they must complete cargo handling operations and leave for the next destination port. 

Finally, the formulation and solution approach allows for the model to be easily reduced and 

produce a number of different BSPs. Future research will focus on evaluating the proposed 

heuristic to real world data and improvement on the heuristics performance. 
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10. BERTH ALLOCATION BY CUSTOMER SERVICE DIFFERENTIATION: A 

MULTI-OBJECTIVE APPROACH 

 

Introduction 

 

Container terminal operators set several objectives when defining berth schedules (reduce vessel 

turnaround time, increase port throughput, increase revenues, increase competitiveness of the 

port, increase customers’ satisfaction etc), which ideally need to be optimized simultaneously. 

These multiple objectives are often non-commensurable. Gaining an improvement on one 

objective often causes degrading performance on the other objectives.   

 

Research on berth allocation has recognized the multi-objective nature of the problem (Steenken 

et al. 2004, Vis and DeCoster, 2003, Hansen et al. 2007), but has been restricted in either 

combining the multiple objectives into a single scalar value (Imai et al. 2003; Hansen et al., 2007) 

or restricting optimization to one of the objectives (the majority of the literature focuses on the 

minimization of the vessels total handling and waiting time). The former approach consists of 

using a weighted aggregate function according to preferences set by decision-makers. The 

weighted approach complexity and accuracy lies in the proper selection of the weights or utility 

functions that are used to depict the decision-maker’s preferences. In practice, it can be very 

difficult to precisely and accurately select these weights, even for someone familiar with the 

problem domain (Coello Coello, 2000; Konak et al., 2006). Furthermore, in the berth allocation 

problem (BAP) selecting the appropriate weights for each vessels/customer in order to satisfy 

contractual agreements, between the port operator and the liner shipping company, may be a very 

cumbersome or even an impossible task. 
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From the computational complexity theory, berth allocation (as with most scheduling problems) 

is known to be NP-hard or NP-complete depending on the formulation, objective function and 

constraint type (Papadimitriou and Steiglitz, 1982; Pinedo, 2002, Imai et al. 2003, Imai et al., 

2005). In addition, modeling different BSPs results in a number of different BAP formulations 

with different constraints, some hard and other soft. Hard constraints must not be violated (for 

example each vessel must be serviced once and each berth can service one vessel at a time, two 

constraints found in all the BAP formulations in the literature) while soft constraints, usually used 

to estimate auxiliary variables, can be relaxed (for example see Moorthy and Teo, 2006). 

Satisfying both types of constraints is a difficult problem itself. When different constraints cannot 

be satisfied simultaneously, the problem is often deemed to admit no solution. On the other hand 

if constraints are relaxed then the problem solution is inferior. A multi-objective formulation 

offers the advantage of treating these constraints as objectives, and can consistently outperform 

the single objective approach without a significant sacrifice in terms of performance (Coello 

Coello, 2000). This observation could be proven very valuable in complex berth allocation 

problems where a number of the constraints, that limit the feasible region of the problem, can be 

viewed as objectives. 

 

In this chapter we formulate the BAP as a multi-objective mixed integer optimization problem 

(MOMIP). Special attention is given to customer service differentiation by the use of different 

objective functions. As pointed out by Imai et al. (2003), vessels with a large container handling 

volume typically request to be given higher priority over small vessels, leading to a decrease in 

berth productivity (high total service time for all the vessels at the current planning horizon). On 

the other hand if vessels with small container handling volume are given priority then large 

vessels are forced to wait, leading to customer dissatisfaction. The goal of this chapter is to use a 

multi-objective formulation that will provide the port operator with a variety of different berth 

schedules ranging from a schedule with the best overall berth performance (in terms of the total 
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service time for all the vessels) to a schedule with minimum customer dissatisfaction (in terms of 

the total service time for the customers’ vessels). To our knowledge this is the first time that the 

proposed BSP has been formulated and solved as a multi-objective optimization problem. Due to 

the nature of the problem a Genetic Algorithms (GA) based heuristic solution is proposed 

(Taboada, 2007). A number of numerical experiments are performed to evaluate the performance 

of the heuristic and critically discuss the benefits of the proposed approach. Results show that the 

proposed approach outperforms the weighted approach and the state of the art multi-objective 

heuristic NSGA-II (Deb et al., 2002). The rest of this chapter is organized as follows. The next 

section presents a brief description of the general problem and the model formulation, while the 

third section describes the solution approach. The fourth section presents a number of 

experimental results and the last section concludes the chapter.  

 

Problem description and formulation 

 

In our model we make several assumptions: a) The wharf is divided into a number of berths and 

each berth can service one vessel at a time regardless of the vessel’s size, b) The handling time of 

the vessel is agreeable to its handling volume and depended on the berth assigned, c) Once a 

vessel has moored, it will remain in its location until all the required container processing is done, 

and d) There are no physical or technical restrictions (i.e. water depth). In our model we assume 

that each vessel arriving at the port requesting service, belongs to a customer (preferential or not). 

Each customer may define different subgroups of vessels with different priorities in terms of their 

total service time, since different vessels have different priorities depending on the schedule of 

the vessel, calling time at the next port, delays of arriving at the current port, updated information 

of service at the next port of call etc. These subgroups of vessels that belong to the same customer 

are considered as separate subgroups that may or may not be treated preferentially.  
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To illustrate this concept we present the example in Figure 10-1, where two customers with 

different priorities for their vessels request service. In this example vessels 1, and 2 of customer 

A, have different priorities than vessels 3 and 4, and the same stands for vessels 5, 6, 7, and 8 

belonging to customer B. Thus, we can assume that customer A is represented by two customers, 

A1 and A2, each having two vessels and that customer B is represented by two customers, B1 and 

B2, with three and one vessels respectively. In this example only a portion of the vessels of 

customer B are preferential (i.e. A1 and A2 are both preferential, while only B1 is preferential 

from the B1, B2 group) and thus the problem would have four objective functions, one for 

minimizing the total service time and three for minimizing the service time of the vessels 

belonging to the three different preferential customers (A1, A2, and B1). 

 

 

Figure 10-1.   Example of Customer and Preferential Customer Sets 
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In order to formulate the multi-objective discrete and dynamic BAP with service priorities 

(MBAP) we need to define the following:  

 

i=(1,……,I) ∈  B set of berths, 

 j=(1,….,T) ∈  T set of vessels,   

k=(1,….,T) ∈  O set of service orders,  

c=(1,…….,C) ∈C set of customers,  

p=(1,…….,P) ∈  CP ⊆ set of preferential customers,  

Si= Time when berth becomes idle for the first time in the planning horizon,  

Aj= Arrival time, HTij= Handling time of vessel j at berth i,  

ijk
y = Idle time of berth i between departure of vessel j service as the k

th
 vessel (from the 

end), and its immediate predecessor,  

ijk
X  = 1 if vessel j is serviced at berth i as the k

th
 vessel(from the end) , and zero 

otherwise,  

WTij=wait time of vessel j serviced at berth i.  

 

The MBAP can be formulated as follows: 

[MBAP]: ∑∑∑∑∑∑
∈ ∈ ∈∈ ∈ ∈

+−+
Bi Vj Ok

ijk

Bi Vj Ok

ijkjiij kyXASkHT )(min   (Eq. 10-1) 

PjpXWTHT
Bi Jj Ok

ijkijij ∈=+∑∑∑
∈ ∈ ∈

,1,)(min     (Eq. 10-2) 

PjpXWTHT
Bi Jj Ok

ijkijij ∈=+∑∑∑
∈ ∈ ∈

,2,)(min     (Eq. 10-3) 

…………………………………………………………………… 

PjPpXWTHT
Bi Jj Ok

ijkijij ∈=+∑∑∑
∈ ∈ ∈

,,)(min     (Eq. 10-4) 
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Subject to: ∑∑
∈ ∈
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}1,0{,∈ijkX , 0≥ijky , 0≥ijWT      (Eq. 10-9) 

 

The first objective function (10-1) minimizes the total of waiting and handling time (also known 

as vessel service time) for all the vessel and the idle time of the berths, while the second set of 

objective functions (10-2.p, p={1, 2, …..P}) minimize the total of waiting and handling time of 

all the vessels belonging to the preferential customer p. Constraint set (10-3) ensure that vessels 

must be serviced once; constraint set (10-4) that each berth services one vessel at a time. Finally, 

constraint set (10-5) ensures that each vessel is serviced after its arrival, while constraint set (10-

6) estimates the waiting time of each vessel (fig. 10-2). 

 

 

Figure 10-2.  Prictorial explanation of estimation of wait time for vessel j serviced at berth i 
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Solution Approach 

 

The general N-objective optimization problem (or in general the multi-objective optimization 

problem - MOO) can be defined in the following way (as stated by Coello Coello, 1999): Find the 

vector of decision variables (also called solution) X=[x1, x2, ….., xn] that optimizes (minimizes or 

maximizes) a vector objective function: F(X)=[f1(X), f2(X),……., fn(X)] , subject to m inequality 

constraints Gi(X), i=(1,2,3….,m) and k equality constraints Hj(X), j=(1,2,3,….,k). When the 

variables x are discrete the problem is called Multi-Objective Combinatorial Optimization 

(MOCO) problem. Due to the conflicting nature of the objectives it is usually the case that there 

is no unique optimal solution. It is possible to improve separately at least one (but not all) 

objective function of a given solution but this will usually cause the declining of its remaining 

objective functions (or at least one of them). Thus, several different solutions could be thought of 

as “optimal”, because no one dominates the other. The main difficulty with the multi-objective 

approach lies in the comparison of the solutions.  

 

By definition one solution outperforms another if the values of all objective functions of the first 

solution are better than the second. In other words if X1 and X2 are two solutions then F(X1) 

dominates  F(X2) if and only if, iXfXf ii ∀≥ ),()( 21
, and ),()( 21 XfXf ii f for at least one i. Such 

solutions are called “Pareto-optimal”. If no solution can dominate the given solution then it can 

be considered to be optimal. All Pareto-optimal solutions compose a certain boundary between 

the space, which contains dominated solutions and the space where no solutions exist. This 

boundary is called the trade-off surface or Pareto-front or Pareto-set. It can be depicted as a 

surface in the N-dimensional space, where N is the number of objectives. 
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The use of exact methods to solve multi-objective optimization problems is time consuming and 

is often infeasible (Zitzler et al., 2002). The most common approach for solving these types of 

problems is the use of multi-objective metaheuristics (i.e. Evolutionary Algorithms) and usually 

one needs to develop custom made heuristics that take advantage of the problems domain. In this 

chapter we develop a multi-objective metaheuristic using Genetic Algorithms (GA). Initially, the 

fast elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) was considered but the 

algorithm could not produce any feasible solutions even for large combinations of the population 

and generation parameters (the maximum number of population and generations used with 

NSGA-II was 500 and 75000 respectively). 

  

Representation 

 

Although binary-coded GA are commonly used, there is an increasing interest in alternative 

encoding strategies, such as integer and real-valued representations. For some problem domains, 

like scheduling problems, it can be argued that the binary representation is, in fact, deceptive 

since it obscures the nature of the search (Taboada, 2007). Thus, in this chapter we use an integer 

chromosomal representation in order to exploit in full the characteristics of the problem. For 

instance, consider the following example of 5 vessels and 2 berths (fig. 10-3). For this problem 

each chromosome will have ten cells {chromosome length= (Number of Berths) x (Number of 

Customers)}. 

 

 

Figure 10-3.  Chromosome Representation 
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The first 5 cells represent the 5 possible service orders in Berth1 and the last 5 cells the 5 possible 

service orders in Berth 2. In this assignment Vessels 2, 4, and 5 are serviced at Berth 1 as the first, 

second and third vessel respectively, and Vessels 1 and 3 are serviced in Berth 2 as the first and 

second vessel respectively. No vessel will be serviced after vessels 5 and 3 (zero value of cell). 

 

Genetic Operations: Crossover & Mutation 

 

In GA operations crossover can combine information from two parents while mutation can 

introduce new information. Crossover is explorative
16

; it makes a big jump to an area somewhere 

“in between” two parent areas (Eiben, and Smith, 2003). On the other hand mutation is 

exploitative
17

; it creates random diversions staying near or not in the area of the parent, depending 

on the mutation (insert, swap, inversion, and scramble). There is a debate on the use of crossover 

and mutation and which approach is the best to use. The main conclusion is that the performance 

of either mutation or crossover is highly affected by the problems’ domain. In our problem, at 

each generation the crossover operation will generate a large number of infeasible children in 

terms of constraint set (2) (i.e., a child chromosome may not service all the vessels while other 

vessels are served twice). In the BAP literature simple heuristics were applied to eliminate this 

problem (Nishimura 2001; Imai 2003; Imai 2006 & 2007). Running several computational 

examples with and without crossover results showed that problems solved with crossover 

returned worse solutions than problems using only mutation and were computationally more 

expensive. We do acknowledge that complex crossover techniques (partially mapped crossover, 

cycle crossover, and edge recombination) could eliminate the former insufficiency of the 

crossover operation. This could result though to a significant increase of the computational time 

and was not implemented within this chapter.  

                                                 
16 Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem 
17 Exploitation: Optimizing within a promising area, i.e. using information 
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Instead of crossover we experimented with four different types of mutation: insert, swap, 

inversion, and scramble mutations that were applied to all the chromosomes at each generation. 

Each of the four types of mutations has its own characteristics in terms of preserving the order 

and adjacency information. Insert mutation picks two cells at random and moves the second one 

to follow the first, thus preserving most of the order and adjacency information. Inversion 

mutation picks two cells at random and then inverts the substring between them preserving most 

adjacency information (only breaks two links) but disrupting the order information. Swap 

mutation picks two cells from a chromosome and swaps their positions preserving most of the 

adjacency information but disrupting the order. Finally, scramble mutation scrambles the position 

of a subset of cells of the chromosome. Computational experiments showed that when all four 

mutations were applied, the GA heuristic converged at a faster rate and there was significant 

improvement in the value of the objective function. Thus in our algorithm we employed all four 

mutation types but as the GA progressed the weight was shifted from the Inverse and Scramble 

mutation to the Insert and Swap mutation. This way, in the beginning of the search the heuristic 

performs large jumps and as the objective function improves the heuristic searches in an 

increasing smaller region. 

 

Fitness/Selection 

 

The MBAP is a multi-objective minimization problem; thus the smaller the values of each 

objective function are, the higher the fitness value will be. In order to find the best solution for 

each objective and at the same time retain a variety of different solutions in the Pareto-set we use 

a multi-population approach. At every generation, after the genetic operations are completed, the 

mutated generation is split into two sets of equal size used to select the parents of the next 

generation using two different fitness techniques. Under the first technique, and using the first 

copy, parents of the next generation are selected based on the Pareto set. If the selected parents 



 158 

 

are less than the population in the first copy their number is increased by randomly copying from 

the current parents. If the selected parents are more than the population in the first copy their 

number is decreased using the selection algorithm known as Roulette Wheel Selection (Goldberg, 

1989).  

 

Under the second technique, and using the second copy is used in an elitist way and the best 

chromosome based on each objective function is selected and copied until their cumulative 

number is equal to half of the initial population. For example for the case of two preferential 

customers each best chromosome would be copied until its number is equal to one sixth of the 

initial population (or one third of the size of the second set). 

 

The purpose of using two separate selection techniques is that the first will increase the variety of 

solutions in the final Pareto set (figure 10-4) while the second will provide better minimum 

values for each objective function. 

 

 

 

Figure 10-4. Pareto set diversity 

The procedure of the GA heuristic is outlined in figure 10-5. 

 



 159 

 

 

Figure 10-5. Multi-Objective GA Heuristic 

 

Optimality for each objective function in isolation 

 

For small size problems the optimal values for each objective function in isolation (i.e. excluding 

the rest of the objectives and unnecessary constraints depending on the objective) were obtained 

using CPLEX while for medium and large problems by the 2-opt heuristic presented in Chapter 7. 

Any other (meta) heuristic maybe used to obtain the optimal values for each objective function 

separately, before applying the multi-objective heuristic. 
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Computational Examples 

 

Dataset Description 

 

Problems used in the experiments were generated randomly but systematically. When creating the 

experimental data the focus was in obtaining computationally challenging datasets that portray 

real life conditions. We developed forty base problem instances where vessels are served with 

various handling volumes at a multi-user container terminal (MUT) with five and ten berths, with 

a planning horizon of one and two weeks. These are shown in table 10-1, which presents ten 

datasets for each planning horizon and number of berths considered. The random generation 

process was based on data from two real world container terminals with similar terminal 

operating systems (one in Europe and one in the US). The range of variables and parameters 

considered were chosen according to the data obtained from these two container terminals.  

 

In the dataset used in the experiments, vessel handling volumes (loading and unloading) range 

from 250 to 4,000 (TEU/vessel), based on a uniform distribution pattern. The handling time of a 

vessel is dependent on the berth assigned, and is a function of the number of the cranes that may 

be assigned. We consider that 1 to 3 cranes operate on small sized vessels (<2000 TEU of 

handling volume), 2 to 4 cranes on medium sized vessels (<3000 TEU of handling volume), and 

3-6 on large mother vessels (<4000 TEU of handling volume). The average crane productivity is 

taken to be 25 TEU/hour. The average vessels per berth per week equivalence (VBWE) is 5 while 

the minimum, average and maximum handling time is 10, 18, and 30 hours. Testing instances 

with lower VBWE averages would not provide a representative evaluation of the heuristics 

performance. 
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The minimum handling time is calculated by dividing the handling volume by the average 

productivity of a crane multiplied by the number of cranes operating on the vessel. The handling 

time of vessels at the other berths is generated in relation to the berth with the minimum handling 

time. Availability of berths is calculated using a uniform probability with a minimum of zero and 

a maximum of 10 hours.  

 

One of the most crucial issues in these experiments is the selection of the interarrival vessel 

distribution. Vessel interarrival patterns were based on the scheduled vessel arrivals at the two 

container terminals over a period of a year. To test the effectiveness of the approach under highly 

congested conditions, the peak periods for the two terminals were selected for the purpose of this 

application. Based on these data we generated vessel arrivals with a minimum of 40 and a 

maximum of 80 vessels per week for the problems with a berth capacity of five and a minimum 

of 80 and a maximum of 120 vessels per week for the problems with a berth capacity of ten. 

Arrival times of vessels within the week period are randomly generated.  

 

Without loss of generality and to graphically present experimental results, we restricted the 

preferential customer sets to one and two (p={1}, and p={1, 2}). From each dataset we generated 

four different subsets of vessels belonging to preferential customers using four beta distributions 

with parameters (2,5), (2,4), (2,3), and (2,2) respectively. In the case of the two preferential 

customers a beta distribution (2,2) is used to select the number of vessels that belong to each 

preferential customer. In total 320 problem datasets were generated.  

 

The solution procedure was coded in SciLab 4.1
18

 on a Toshiba Satellite Dual Core Intel T2250 

with 2GB of RAM. The number of chromosomes was set to 25 and the number of generations 

                                                 
18

 Copyright © 1989-2005. INRIA ENPC <www.scilab.org> 
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was set to 1000. The average computational time per generation was less than two seconds for the 

larger datasets (ten berths and two weeks planning horizon). 

 

Pareto set 

 

Figures 10-6 to 10-9 show the feasible and Pareto solution space for all the datasets. The upper 

part of each graph shows the feasible solution space while the lower the Pareto set. As the total 

service time increased the preferential customers total service time decreased and vice versa, as 

expected.  Minimum values for each objective function were estimated by solving the single 

objective problem using a 2-opt heuristic algorithm (Chapter 7). Figures 10-10 to 10-13 show 

similar results for the case of two preferential customers. The Pareto set can be further reduced by 

exclusion from the Pareto set solutions that do not satisfy preferences of the port operator in terms 

of the total service time i.e. certain values of the objective functions might be considered 

unacceptable due to their high values. 

  

Solution Space VS Number of Preferential Customers 

 

Figures 10-14 to 10-21 show the feasible and Pareto solution space. Both the single preferential 

and the dual preferential customer instances, with the percentage of the total vessels belonging to 

the preferential customers varying from 20% to 50%, with an increase step of 10%, were 

considered.  We observe that the solutions are robust in terms of the curve shape. As we increase 

the percentage of preferential customers and the problem size, the Pareto set switches from a 

stepwise like function to a smoother curve.  Furthermore, as we decrease the number of the 

vessels of the preferential customer the Pareto set does not decrease but retains the number of 

solutions to an acceptable number (over twenty and under one hundred).  
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We observe that as we increase the number of preferential customers, the maximum values for the 

first objective function (total service time for all the customers) in the Pareto set does not always 

increase. This can be explained as follows: The maximum value of the total service time (TST) 

for all the vessels in the Pareto set depends on the size of the vessels of the preferential 

customers. By definition as we increase the number of preferential customers, and thus the 

number of preferential vessels, the total service time of a schedule focusing on accommodating 

the needs of the preferential customers will provide a low total berth productivity (high total 

service time) only if the preferential customers have large handling volumes. This of course is 

translated to large vessels being serviced before small vessels and large idle berth times, and as a 

consequence larger service times for all the vessels. 

 

 In this chapter preferential customer vessels are not defined by their volumes but rather by the 

owner shipping line and were chosen in random and not based on vessel handling volumes. 

Preferential customers are based on total service agreements and do not necessarily involve large 

container vessels. In practice service of a preferential customer may involve main liner as well as 

feeder vessels. Although the most preferred solutions for the terminal operator (i.e. the ones that 

balance the objectives) are usually found around the knee of the curve, all the solutions should be 

kept, since extreme solutions may, under certain circumstances fit the terminal operator’s 

objectives. 

 

The proposed heuristic’s performance was also evaluated in terms of its consistency. For each 

one of the 320 problems, the ratio of the range of the objective function values for 5 trials 

(different starting populations) to the lowest objective value, which can be expressed by the 

highest objective function value during the five trials divided by the lowest objective function 

value during the five trials, was calculated, for each objective function. The average ratio was less 
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than 7%
19

, and thus we can conclude that results obtained from the GA heuristic are consistent for 

different trials.  

 

Optimality 

 

The multi-objective heuristic, as well as any other multi-objective (meta)heuristic that has 

appeared in the literature to date cannot guarantee optimality for the solutions in the Pareto set. 

The same can be stated for the heuristics that have been presented in literature for the BAP. In 

order to test the quality of the Pareto set the weighted approach was used to solve small instances 

of the problem using a number of different weights
20

, where optimality can be obtained using 

CPLEX 9.0. All the solutions obtained from the weighted approach were already present in the 

Pareto set, obtained from the proposed multi-objective heuristic. 

 

Conclusions 

 

In this chapter the discrete and dynamic BAP was formulated and solved for the first time as a 

multi-objective combinatorial problem. There are two general approaches for the solution of a 

multi-objective problem, requiring either the aggregation of the objectives into an overall 

objective function or the determination of a Pareto set. In this chapter the second approach was 

adopted and a genetic algorithms based heuristic was proposed as a solution approach for the 

resulting problem. Computational examples showed that the heuristic performed well even for 

large instances of the problem. The proposed heuristics has two main advantages over the 

classical weighted approach, traditionally used to solve these types of problems in container 

terminal operations research (Imai et al., 2004). In terms of the computational complexity while 

                                                 
19

 The average ratio increased with the problem size 
20

 The weights were sampled from a uniform distribution U(0,1) 
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the proposed heuristic required a single run to evaluate all possible berth schedules, doing the 

same with the weighted approach would require an enormous amount of time consuming 

computations. In terms of usability, the proposed heuristic allows the derivation of a large list of 

different schedules without the need for precise knowledge of the objective functions priorities 

and relative importance, which can be very difficult to determine even with a very detailed 

knowledge of the system (Taboada, 2007). One disadvantage of the heuristic is its inability to 

guarantee optimality for the Pareto set, a problem faced by all the heuristics proposed for the 

BAP up-to-date.  

 

Future research is focusing on applying the multi-objective approach to different BSPs and 

exploring the computational efficiency of the algorithm presented in the next chapter and one by 

Taboada (2007), two heuristics that guarantee optimality for the Pareto set and can be applied as a 

second step to the heuristic presented herein. 
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Figure 10-6  Feasible and Pareto Front for Five Berths and One Week Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, One Preferential Customer (Dataset 1 through 

10)
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Figure 10-7 Feasible and Pareto Front for Five Berths and Two Weeks Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, One Preferential Customer (Dataset 1 through 

10) 



 168 

 

 

 

Figure 10-8 Feasible and Pareto Front for Ten Berths and One Week Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, One Preferential Customer (Dataset 1 through 

10) 
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Figure 10-9 Feasible and Pareto Front for Ten Berths and Two Weeks Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, One Preferential Customer (Dataset 1 through 

10) 
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Figure 10-10 Feasible and Pareto Front for Five Berths and One Week Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, Two Preferential Customers (Dataset 1 through 

10) 

Note: PC=Preferential Customer 
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Figure 10-11 Feasible and Pareto Front for Five Berths and Two Weeks Planning Horizon, 50% 

of Total Vessels Belong to Preferential Customers, Two Preferential Customers (Dataset 1 

through 10) 

Note: PC=Preferential Customer 
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Figure 10-12 Feasible and Pareto Front for Ten Berths and One Week Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, Two Preferential Customers (Dataset 1 through 

10) 

Note: PC=Preferential Customer 
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Figure 10-13 Feasible and Pareto Front for Ten Berths and Two Weeks Planning Horizon, 50% of 

Total Vessels Belong to Preferential Customers, Two Preferential Customers (Dataset 1 through 

10) 

Note: PC=Preferential Customer 
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Preferential Customer Vessels=20%    Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 1 

  
Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 2 

 

Figure 10-14 Feasible and Pareto Front for Five Berths and One Week Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, One Preferential Customer 

(Dataset 1 and 2) 
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Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 1 

 
Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 2 

 

Figure 10-15 Feasible and Pareto Front for Five Berths and Two Weeks Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, One Preferential Customer 

(Dataset 1 and 2) 
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Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%  

Dataset 1 

 

 
Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 2 

 

Figure 10-16 Feasible and Pareto Front for Ten Berths and One Week Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, One Preferential Customer 

(Dataset 1 and 2) 



 177 
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Preferential Customer Vessels=40%   Preferential Customer Vessels=50%  

 Dataset 1 

 

 
Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 2 

 

Figure 10-17 Feasible and Pareto Front for Ten Berths and Two Weeks Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, One Preferential Customer 

(Dataset 1 and 2) 
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Preferential Customer Vessels=20%    Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 1 

 

 
Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%  

Dataset 2 

 

Figure 10-18 Feasible and Pareto Front for Five Berths and One Week Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, Two Preferential Customers 

(Dataset 1 and 2) 

Note: PC=Preferential Customer 



 179 

 

 
Preferential Customer Vessels=20% Preferential Customer Vessels=30% 

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%  

 Dataset 1 

 

 
Preferential Customer Vessels=20%   Preferential Customer Vessels=30%   

 
Preferential Customer Vessels=40%   Preferential Customer Vessels=50%  

Dataset 2 

 

Figure 10-19 Feasible and Pareto Front for Five Berths and Two Weeks Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, Two Preferential Customers 

(Dataset 1 and 2) 

Note: PC=Preferential Customer 
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Preferential Customer Vessels=40%   Preferential Customer Vessels=50%   

Dataset 1 
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Dataset 2 

 

Figure 10-20 Feasible and Pareto Front for Ten Berths and One Week Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, Two Preferential Customers 

(Dataset 1 and 2) 

Note: PC=Preferential Customer 
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Dataset 2 

 

Figure 10-21 Feasible and Pareto Front for Ten Berths and Two Weeks Planning Horizon, 20% 

through 50% of Total Vessels Belong to Preferential Customers, Two Preferential Customers 

(Dataset 1 and 2) 

Note: PC=Preferential Customer 
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11 A 2-OPT BASED HEURISTIC FOR THE MULTI-OBJECTIVE BERTH 

SCHEDULING 

 

Introduction 

 

Evolutionary algorithms have been applied extensively as a solution approach to multi-objective 

problems. These algorithms do not guarantee optimality of the Pareto set. In this chapter we 

present a 2-opt based genetic algorithm heuristic that guarantees that the final solutions will 

belong to the true Pareto set.  

 

Heuristic Description 

 

Heuristic 11-1 

STEP 0: Obtain the best local optimal for each objective function using the 2-

opt heuristic presented in Chapter 7. Name this set of values for the 

objective functions LOP 

STEP 1: Obtain an approximation of the true Pareto Set using the multi-

objective GA presented in Chapter 10. Name this matrix APS. Create 

an empty matrix named TPS 

STEP 2: Create a weight matrix W of equal size to APS. Use any type of 

weight formulation desired 

STEP 3: Set n=1 

STEP 4: Apply the 2-opt heuristic from Chapter 7, with an aggregate weighted 

function. As weights use the values from the n
th
 row of matrix W 

STEP 5: Add the solution to TPS 
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STEP 6: If n<|APS|+1 set n=n+1 and go to Step 4 else go to Step 7 

STEP 7: End 

STEP 8: Combine LOP, APS, and TPS solutions to find the final Pareto Set 

 

A graphical representation of the heuristic is shown in figure 11-1. 

 

 

Figure 11-1. Graphical representation of heuristic 

 

Proposition 11-I: Heuristic 11-1 will always produce solutions that belong to the true Pareto Set 

 

Proof:  Any solution obtained using a single objective formulation with an aggregate weighted 

objective function belongs to the true Pareto Set by definition. Thus, solutions obtained from 

Heuristic 11-1 will satisfy the following inequality: 

 

nn ffffff +++≤+++ .................. 21

''

2

'

1 ,   (Eq. 11-1) 
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where n is the number of objective functions, fn is the value of objective function n obtained using 

the procedure from Chapter 10 and 
'

nf  is the value of objective function n obtained using 

Heuristic 11-1 
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12 STOCHASTIC BERTH SCHEDULING 

 

Introduction 

 

In this chapter we study the discrete and dynamic BAP (DDBAP) where vessel arrival and 

handling times are considered as stochastic variables (SDDBAP). We present and conceptually 

compare three different heuristic solution approaches: a) a Markov Chain Monte Carlo simulation 

based heuristic b) an Online Stochastic Optimization based heuristic, and c) a deterministic 

solution based heuristic. We also present a generic Genetic Algorithms based heuristic that will 

be used within the former two (a and b) heuristics. Several conclusions are drawn on the 

complexity of the problem and the solutions approaches and the possible benefits and drawbacks 

of the consideration of a stochastic environment for the DDBAP. 

 

A conceptual formulation for the Stochastic DDBAP (SDDBAP) 

 

In this chapter we present a conceptual formulation of the SDDBAP. The objective is to provide 

the port operator with a model that considers uncertainty in the vessels arrivals and handling 

times. Usually vessels provide the port operator with a time window in which they may arrive at 

the port and request service (berthing, loading/unloading, and departure). These time windows are 

not known with certainty until few hour of a vessels arrival. On the other hand as soon as a vessel 

is moored a number of quay cranes are assigned to operate on the vessel. The total handling time 

of a vessel is directly connected to the productivity of the quay cranes (usually measures in TEU 

moves per hour), which is not know with certainty and depends on a number of deterministic 

(relative berth position of the vessel to the storage yard, number of internal transport vehicles 

assigned to the vessel, etc) and stochastic (quay crane breakdowns, internal transport vehicle 
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productivity etc) parameters and variables. For an excellent discussion on the parameters and how 

they affect the productivity of quay cranes (i.e. vessel loading/unloading, downtime etc) we refer 

to Steenken et al. (2004).  

 

Assume that i=(1,……,I) ∈  B set of berths, j=(1,….,T) ∈  V set of vessels, Aj=Arrival time of 

vessel j, Cj= Handling time of vessel j at berth i. In the SDDBAP the vessels arrivals and handling 

times are no longer considered as deterministic problem parameters, but rather follow as random 

variables. For the DDBAP it is sufficient to assume a discrete distribution for both the vessel 

arrival and handling times. Thus we can assume that Aj and Cij follows a discrete probability 

distribution Aj~(Aj1, Aj2, ….., Ajn), Cij~(Cij1, Cij2, ….., Cijn) where Aj1 and Ajn, and Cij1  and Cijn, are 

the upper and lower value of the expected arrival times and handling times of vessel j, and 

Paj=(Paj1, Paj2, ……, Pajn), Pcj=(Pcj1, Pcj2, ……, Pcjn) are the probabilities of the arrival and 

handling times of vessel j ( TjPP
n

cjn

n
jna ∈∀== ∑∑ ,1,1 ). The only constraint is on the form of 

the distributions. It must be one that we can sample from (Fishman, 2006). Without loss of 

generality we can assume that Aj, and Cij are discrete distributions for all the vessels. 

 

In the next subsection we will present the conceptual formulation for the stochastic berth 

allocation problem and proceed with the presentation of four solution approaches. 

 

SDBAP Conceptual Formulation 

 

The conceptual formulation for the SDDBAP is as follows: 

[SDDBAP]:  

)},,({min ijjijk CAXFE      (Eq. 12-1) 
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Subject to: 

 mXG ijk ≤)(1
,        (Eq. 12-2) 

nXG ijk =)(2
,        (Eq. 12-3) 

aCAXHP ijjijk ≤)},,({        (Eq. 12-4) 

 

The first equation (12-1) minimizes the expected value of the objective function. The terms that 

the objective function will consist of depend on the port operators’ objectives and can take 

different forms. Constraint sets (12-2) and (12-3) describe the physical properties of the problem 

(i.e. each vessel serviced once, each berth services one vessel at a time etc). The last sets of 

equations represent probability constraints that again depend on the port operators’ objectives. 

The problem formulation leads to an integer or mixed integer stochastic program, which 

traditional integer-programming techniques are not suited to exploit the special problem structure 

and deal with the problem of dimensionality. For this purpose we propose several heuristics that 

can be used to solve the problem by applying different modifications of MCMC simulations on 

the deterministic problem. It is highly unlikely that a solution that utilizes probability densities 

within the optimization framework will be efficient even for toy problems. 

 

Proposed Solution Heuristics 

 

Markov Chain Monte Carlo Simulation Based Solution Approach 

 

MCMC Module 

STEP 0: Generate N numbers of unique arrival and handling times patterns by 

sampling from the arrival and handling time distributions 



 188 

 

STEP 1: Solve the deterministic DDBAP using each one of the sampled arrival 

patterns 

 

Heuristic 12-1 

STEP 0: Obtain a set of feasible/optimal solutions using the MCMC Module 

STEP 1: Set h=1 

STEP 2: Update A1 and A2, where A1 are the realized arrival times of vessels 

already in the port and A2 are the updated future arrivals of vessels not 

yet in the port, at time step th 

STEP 3: Find the best schedule that minimizes deviations from A1 and A2 

STEP 4: If all vessels are in the port end else set h=h+1 and go to Step 2 

 

The time step (th) increases every time new information on vessel arrivals becomes available 

(including the actual arrival of a vessel). Heuristic 12-1 is easily adopted and applied to any type 

of BSPs. The main drawback is that the full DDBAP has to be solved N times, during the MCMC 

module. Thus, an efficient solution approach needs to be adopted for solving the DDBAP, as Step 

1 of the MCMC module. Unfortunately, there is no unified heuristic solution for the DDBAP, 

although a number of heuristic approaches have been presented in the literature , and the problem 

needs to be addressed per case. 

 

Stochastic Online Scheduling Based Solution Approach 

 

Heuristic 12-2 

For h=1:H (H: time steps) 
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STEP 0: Select end
21

 of new time period th (time step maybe variable) 

STEP 1: Estimate Sih (berth i becoming idle for time period h) 

STEP 2: For vessels that have not finished service up to beginning of th sample 

arrivals and handling times and obtain a sample size of N arrival and 

handling patterns for each vessel  

STEP 3: Select all vessels arriving before the end of th 

STEP 4: Solve the DDBAP for each sample 

STEP 5: Select the schedule that minimizes the deviation from all the feasible 

schedules at the current time step 

STEP 6: If all vessels have been scheduled end otherwise go to Step 0 

 

Heuristic 12-2 is based on the idea of the stochastic online scheduling by Van Hentenryck and 

Bent (2006) and the rolling time window heuristic for the DDBAP (Chapter 8). The main 

advantage of Heuristic 12-2 is that the DDBAP solution as Step 4 will consist of a much smaller 

instance then the original problem since not all vessels will be present at each time step. Heuristic 

12-2 though provides a volatile solution, sensitive to vessel arrival and handling time changes. 

 

Deterministic Based Solution Approach 

 

Heuristic 12-3 

STEP 0: Solve the DDBAP deterministically using the expected values of the 

arrival and handling times for all the vessels 

                                                 
21 The beginning of the time step time period th is the end of th-1 
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STEP 1: When a new arrival and/or new handling times are realized re-optimize 

the current schedule if the new realization of arrivals and handling times 

are different the expected values, used to obtain initial schedule 

 

Heuristic 3 is more efficient in terms of the computational complexity as compared to Heuristic 1 

and 2 and has zero volatility. The main question is on the additional penalty that occurs when the 

assignment of the vessels is rescheduled, every time new vessels arrivals and/or handling times 

become available. This penalty occurs from the new berth availability time for the new schedule, 

from the vessels already in service at the time the new information becomes available. 

 

Genetic Algorithm Solution Approach for the Stochastic BAP 

 

Heuristic 12-4 

STEP 0: Generate N numbers of unique arrival and handling times patterns by 

sampling from the arrival and handling time distributions 

STEP 1: Initialize GA population to a size equal to N, and set counter=0 

STEP 2: Set counter = counter+1 

STEP 3: Apply genetic operations 

STEP 4: Evaluate the genetically altered population using the N different instanced and 

select the new population  

STEP 5: If counter< Generation Limit go to Step 2 else end. 
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From the four presented heuristics the GA heuristic seems as the most promising solution 

approach; mainly due to the multi-population attribute inherit in genetic algorithm heuristic and 

the autonomy from an additional heuristic to solve the DDBAP. The advantage of the multiple 

chromosome and simultaneous solution evaluation of a number of different input instances 

(different arrival and handling time patterns) in a single run reduces the computational 

complexity of the problem, but does not guarantee that results will be stable to the realization of 

the input data.  

 

Conclusions 

 

In this chapter we presented a conceptual formulation for the stochastic dynamic and discrete 

berth allocation problem. Traditional integer-programming techniques are not suited to exploit the 

resulting problem’s structure and four heuristics were presented as possible solution approaches. 

The complexity of the heuristics depends on the complexity of the deterministic formulation and 

on the approach adopted for the stochastic sampling. Depending on the size of the problem and 

the complexity of the deterministic formulation one of the four heuristics may be chosen based on 

the time restriction needs and the distribution of the stochastic variables. Future research should 

focus on the comparison of the proposed heuristics on different BSPs. 
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13 CONCLUSIONS AND FUTURE RESEARCH 

 

In this dissertation we presented a number of new models portraying different BSPs, in an attempt 

to capture the operational environment of a container terminal and include some of the attributes 

of the system that current models lacked. The models presented herein captured a significant 

portion of current container terminal operator practices while minimizing assumptions made 

about real world conditions. Accompanying the formulations were solutions algorithms providing 

feasible or optimal schedules for vessel berthing in any type of a container terminal (PT or DT). 

A number of computational examples were presented for a number of the proposed solutions 

approaches using different BSPs, while for the rest of the problems this task is left as future 

research. One of the main contributions of this dissertation, that should be pointed out, is that the 

presented models and solution algorithms are not limited to the berth allocation problem and can, 

with minor or no modifications, be applied to the parallel and unrelated machine-scheduling, the 

vehicle routing, and the facility location problem. Furthermore, the problem formulations and 

heuristics can be used as building blocks (lower heuristics) for constructing hyper-heuristics, an 

emerging technology in search and optimization with a scope to create general systems that can 

handle a wide range of problems. 

 

Future research is directed in the following areas:  

a. Evaluate the benefits of a berth scheduling formulation with stochastic vessel arrivals and 

extend to include stochastic handling times 

b. Complete the coding of the two dimensional genetic algorithm heuristic proposed in 

Chapter 9  

c. Evaluate the heuristic proposed in Chapters 8, 11 and 12 

d. Evaluate and compare all the proposed algorithms on different berth scheduling policies 
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e. Apply and evaluate the proposed algorithms to a number of different parallel and 

unrelated machine-scheduling problems 

f. Evaluate the applicability and performance of the algorithms in construction management 

problems 

g. Create a software application that Implements the proposed algorithms 

 

We believe that this dissertation has only touched upon some of the problems that port operators 

face when dealing with the allocation of vessels to berths. This area of research is vast and we 

would like to conclude by indicating a number of future research possibilities. These include but 

are not limited to: a) Improved algorithms for the berth scheduling problem that can guarantee 

local/global optimality, b) Effects of port security initiatives to berth and quay crane performance, 

and c) Simultaneous scheduling of internal transport vehicles, quay cranes, and berth allocation. 
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