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ABSTRACT OF THE DISSERTATION

THE DISCRETE AND CONTINUOUS BERTH ALLOCATION PROBL¥: MODELS AND

ALGORITHMS

By MICHAIL D. GKOLIAS

Dissertation Director:

Dr. Maria Boile

Fierce terminal competition and the need to madéntigcourses utilization have led marine
terminal operators to the development and apptinatf a rich variety of Berth Scheduling
Policies (BSPs). Container terminal operators deelefficient BSPs that will reduce vessels
turnaround time, increase port throughput, leakigber revenues and increased competitiveness
of the port, while at the same time keep custoraéisfaction at desired levels. Several issues
arise when defining the best BSPs for each pontatpeand the final decision depends on several
factors that include the type and function of thertp(dedicated or multi-user terminal,
transshipment hub etc), the size and location efpibrt, nearby competition, type of contractual
agreement with the vessel carriers etc. Some @ktlBSPs and issues have to a certain extend
been captured by academic research, but still abwgtributes need to be investigated and

included for these models to represent the statieeopractice of container terminal operations.



In this dissertation we present new models andtisolwalgorithms that portray different BSPs
and attempt to capture the operational environmokatcontainer terminal, while at the same time
including attributes of the system that current eiedack. The formulations and solutions of
mathematical models presented herein, seek to ajiischedule vessels and/or quay cranes to
berths in multi-user type of container terminalghaut losing its applicability to the private type
container terminals. The objective is to presentde® and algorithms that capture as much as
possible of current container terminal operatocficas, while minimizing the assumptions made

about real world conditions that container ternsrgberate in.
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1. INTRODUCTION

There are more than 2,000 ports around the waaldying from single-berth locations handling a
few hundred tons of cargo per year, to multipurpasdities handling up to 300 million tons of
cargo per year. In 2004 the world port traffic waade up of 36% liquid bulk products (mainly
oil, petroleum products, and chemicals), 24% drik lj@ods (coal, iron ore, grain, bauxite, and
phosphate), and 40% general cargo (UNCTAD, 2004 [ater type of cargo is mainly being
transferred using containers. Containers are larg&l boxes made in standard dimensions and
measured in multiples of 20 feet called “twentyff@guivalent units” or in short TEU. Port
terminals that handle containers are called coetatarminals and have different and more

complex operations than passenger and dry or liquikl ports.

The container terminal industry has received ingirea attention in the last 20 years with
containerized transportation coming to the forefrainthe international shipping scene. The last
decade has seen an increase in container traffidis surpassed any expectation (fig. 1.1). The
world container terminal throughput for 2004 reatl848 million TEUs, an increase of 38
million TEUs from the 2003 level of 310 million TEYU To respond to the projected volumes
and exploit economies of scale liner-shipping conmaare investing in larger container vessels.
On the other hand double-digit volume growth nurabgithe norm for most of the busiest ports
around the world, while some other ports, partiduldéhe ones located in East Asia, report
increase up to 140%, in the numbers of TEUs han@amtai: 141%; Suzhou: 57%; Nantong:

40%). According to CI-Online Asian ports are expecto burst through the 100% utilization

11n 2005 a decrease of 12.5 million TEUs was oke@ource CI-Online)



level of their designed capacity, while US and Beaan ports will be operating at over 80%

utilization.

Figure 1-1 World Containerized Trade in million T&W2001-2011-Forecast (Source: UNCTAD

Transport Letter, No 32, Second Quarter 2006)

In maritime container transportation the hub-anoksparrangement is widely adopted. Deep-sea
vessels, also called mother vessels, operate betavémited number of transshipment terminals
(hubs). Smaller vessels (feeders) link the hub whie other ports (spokes). This network
topology results in the consolidation of capacigng the routes linking the transshipment ports
and in the growth of their importance. In recerdrnge mother vessels have strongly increased in
size, attaining up to 10,000 TEUs, while largeesiare plannédTransshipment ports are large

intermodal platforms. A limited number of them hkndn important share of the world traffic.

2 The words largest container vessel currently aner¢September, 2006) has a capacity of 11,000 [MAERSK).

In total 46 vessels exceed 8,000 TEU capacity,emtié first 10,000 TEU vessels are expected favelgli in March
2008 Source:Cl-Online, February 8, 2006). The biggest to da&ssel in use is the EMMA a container ship owned by
the A.P. Moller-Maersk Group with an estimated @iyaof over 13,000 TEUSs.



According to CI-Online, in 2000 the top 20 contaitexminals in TEUs handled 44% of the total

TEU traffic, while in 2005 this number increase®t96 (fig. 1-2).

Based on their customer base, container termiraaisbe distinguished into: a) Privately leased
and operated terminals by shipping lines (refeagdiedicated terminals-DT), and b) Owned by
an operator who provides berthing space to eaghpisily company based on the terms of a
contract (PT), or on other service agreements {grgt Come First Served policy). In major

ports (in countries like Japan and the US) shipfimgs lease the container terminals in order to
be directly involved in the processing and handlaighe containers as they aim to achieve

higher productivity and economies of scale.

The increasing number of container shipments coetbiwith the growing size of container
vessels causes higher demands on container tesnowitainer logistics, and management, as
well as on technical equipment resulting in inceghgompetition between ports, especially
between geographically close ones. The ports maotgpete for ocean carrier patronage and
related container volumes, as well as for the laased truck and railroad serviteJhe
competitiveness of a container seaport is markediffigrent factors, including the time in port
for vessels (turnaround time) combined with lowesafior loading and discharging (Hulten 1997;

Muller 1995).

The strong competition among PT ports leads toribeessity of using the highly expensive

terminal resources such as berths, storage yandy, ajanes, straddle carriers, automated guided

3 The first 40 ports in TEUs-handled, handle ove¥7F the total world TEUS traffic
* It is the state of the practice for the large eksperators to arrange for feeder vessels seruitékeir own, thus port
operators need to compete only for the large vessel



vehicles, stacking cranes etc. as efficiently asitide. A key factor of success is the optimization
of these logistic processes (Daganzo, 1990; Deild@asind Daganzo, 1993; Taleb-lbrahimi et

al., 1993). It is clear that rapid turnover of ainers, which corresponds to a reduction of the
container vessel turnaround time, and of the co$tshe process, is a crucial competitive

advantage for a port. With respect to the termaparations this can translate to the minimization
of the time a vessel is at the berth as an ovelgkctive (Steenken et al., 2004). Customer
satisfaction focuses on waiting times rather thharges since inequitable waiting time for

vessels may not make the port attractive for cargeen if the port charges are fofimai et al.

2003).
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Figure 1-2 Cumulative TEUs Handled by Port Grolgmt Category/Number of Ports per

Category (Data Source: CI-Online)

5 Although according to Fung et al. (2006) high tierah handling charges (THCs) lowered Hong Kongstaimer
terminal throughput



Research Scope

Global container terminal operating companies hiaged strong criticism from their ocean
carrier customers for most of this year as a coatlin of marine and landside congestion has
led to deteriorating levels of service (CI-Onlirfgeptember 2007). Fierce terminal competition
and the need to maximize recourses utilization hieee marine terminal operators to the
development and application of a rich variety oftBeScheduling Policies (BSPs) to deal with
the marine side of the congestion. Container tesitriperators seek for the efficient BSPs that
may reduce vessels turnaround time, increase postighput, leading to higher revenues and
increased competitiveness of the port, while atsiiae time keeping the customers’ satisfaction

at a desired level (usually set by contractual ements).

Several issues arise when defining the best behtbealing policies (BSP) for each port operator
and depend on several factors including the typd famction of the port (DT or PT,
transshipment hub etc), the size of the port, dleation, nearby competition, type of contractual
agreement with the vessel carriers and other. Sufntieese BSPs and issues have to a certain
extend been captured by academic research, digestéral attributes need to be investigated and
included for these models to represent the statheopractice of container terminal operations.
For example the majority of the models do not exi¥i deal with the relationship of customer
satisfaction and the port operator costs/bendfitsthermore most of these models ignore the
multi-objective and stochastic environment that paeinagers have to operate in and make future

decisions.



In this dissertation we present new models pomigaiiSPs that attempt to capture the operational
environment of a container terminal and include sahthe attributes of the system that current
models lack. The formulation and solution of mathtoal models presented herein, will seek to
optimally schedule vessels to berths in PT typecofitainer terminals, without losing its
applicability to the DT container terminals. Thgeatiive is to present models that reflect BSPs
that capture as much as possible of the currentacwr terminal operator practices, while
minimizing assumptions made about real world cood#. Insight will be provided of how these

BSP may be used by the port operator to negotiditeeef contracts with shipping companies.

This dissertation may be broken down into four majections. The first section, composed by
Chapters 5, 6, 7, and 8, deals with the discretéhtadlocation problem presenting a generic

formulation and four solution approaches for thebpgm. The next section (Chapter 9) focuses
on the continuous berth allocation with simultare@uay crane scheduling and presents a
generic formulation and a solution approach. Thelthection, (Chapters 10 and 11) deals with
the multi-objective berth allocation problem andestigates the applicability of a multi-objective

optimization environment for the BAP. In these tol@mpters we present a general formulation of
the multi-objective discrete BAP, a solution apmigeand a heuristic to obtain the optimal Pareto
set. The last section (Chapter 12) deals with thehastic aspect of the berth allocation problem
and investigates the applicability of stochasticdelmg to the BAP, presenting a general

formulation and four heuristic solution approaches.



2. SYSTEM DESCRIPTION

Container Terminals

Container terminals are open systems of mateoal With two external interfaces: the quayside
where containers arrive/leave via vessel and tinelside where containers arrive/leave the
terminal via trucks or trains. Within the terminaé can distinguish three areas: the berth area
where vessels are berthed for service, the stoagkarea where containers are stored waiting to
be exported or imported, and the terminal gate timatnects the container terminal to the
hinterland. Accordingly operations in a containerntinal can be broken down to three
categories: seaside operations, landside operatiodsyard operations, all of which interact with
each other. Seaside operations consist of the lgessething operations at the quay, and the
loading and unloading of containers onto the ve§3e seaside operations interact with the yard
operations via the internal transport equipmentiusdransport containers from/to the vessel and
to/from the storage yard. The yard operations maitlag containers during the transfer between
the landside and the seaside. It includes opesatianh as the internal transport of the containers
from/to the vessel and from/to the trucks/rail, &imel sStorage operations in the storage yard. The
landside operations deal with activities of reasgviand delivering inbound and outbound
containers to and from the storage yard. While eaattem can be viewed as an independent
entity, and its’ operations are usually studiedsash, interactions between the systems are
unavoidable and play a crucial role in the effitiemanagement and operation of a container
terminal. A schematic description of a containemieal operations and interactions between the

different systems is portrayed in figure 2-1.



Although all container terminals serve the sameppse, they are mainly differentiated on the
handling/internal transport/stacking equipment tihaly use. The most common systems are: a)
the tractor-trailer (all chassis) system, b) thhaddle carrier direct system, c) the straddle earri
relay system, d) the yard gantry crane systemglride front end loader (reach stacker) system
(direct or relay). Combinations of these systems @so be found at several container ports.
Determining the type of equipment that should bedus usually viewed in terms of a cost VS
productivity relationship, but is also influenceg Historical, social and cultural aspects (i.e. US
ports use mainly conventional systems even tholigltost benefit ratios are probably in favor of

automated systems, and chassis only systems, vghicbnd nowhere else in the world).

Terminal System and Equipment Overview

Seaside Operations

Vessel Berthing

Vessel operation consumes a large portion of theatound time of containerships in ports.
Different types of vessels are serviced in a coetaierminal ranging from deep-sea vessels with
a loading capacity up to 13,000 container unitsY o feeder vessels with a capacity up to
4,000 TEU. When the vessel arrives at a port itthasoor at the quay. For this reason a number
of berths are available by the port operator toviserthe vessels. A typical berth can
accommodate a number of vessels depending on tigghlef the quay. Before the vessels’

arrival, information on the type of the vessel, thanber of containers to be (un)loaded, and a



proposed arrival and departure time is sent toteh@inal operators. When planning for berth
allocation and usage, the berthing time and thetep@sition of each vessel at the quay, as well
as various quayside resources are determined. &examiables are considered, including the
length-overall and (expected) arrival time of eaebssel, the number of containers for
discharging and loading on each vessel, and tlmaggdocation of inbound/outbound containers

to be loaded onto/discharged from the correspondasgel.

Quay Cranes

After a vessel is berthed a number of quay cra@€3),(a subset of the assigned cranes to the
specific berth, are used in order to load and uhtba vessel based on the vessels’ stowage plan
(fig 2-2). Depending on the vessel's size commadmlyp to five cranes operate on deep-sea
vessels, and one to three cranes on feeder ve$salscommonly used types of quay cranes at
medium and large container terminals are the sitigleey cranes and dual-trolley cranes. The
trolleys travel along the arm of a crane and armgipgmpd with spreaders, which are specific
devices to pick up containers. Modern spreademmwalthe move of two 20 ft containers
simultaneously (twin-lift mode). Conventionally gie-trolley cranes are engaged at container
terminals. Dual-trolley cranes represent a new ldgveent only applied at very few terminals.
The maximum performance of quay cranes dependseoorane type. The technical performance
of cranes is in the range of 50-60 boxes/hour,enniloperation the performance is in the range
of 20-30 boxes/hour. The time required for loadinipading operations depends on the cycle
time of the quay cranes and transfer cranes, artlerelative position of the berth place to the
designated container stocking blocks for the vegdeb, the cycle time of a quay crane depends

on the loading sequence of slots and is affectettiddyoading sequence of containers in the yard.
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At small container terminals mobile cranes may &lsaised. These cranes may also be used in
medium to large size container terminals backup quay cranes for special occasions (i.e.

increase productivity on a specific vessel withiateerrupting service of other vessels).
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Figure 2-1 Schematic Representation of Containemiral Activities and Operations
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Stowage Plan

Loading of export containers onto a vessel is basea stowage plan. Stowage planning involves
finding the optimal plans of positioning contain@r® a container vessel, with respect to a set of
structural and operational restrictions, and iggrered by the terminal operators based on a plan
provided by the shipping company. In contrast witle unloading process, there is hardly

flexibility in the loading process. Containers afaced on the vessel in a last-in-first-out manner
and therefore temporary unloading and reloadinguimsequent ports along the route (shifting) is

common and results in high costs (a shift moveegarded by many terminal operators as a

regular container move regardless that the conté&nenloaded and loaded on the same vessel).

Storage Yard

Containers that arrive at the terminal (inboundutbound) usually have to be stored for a certain
period of time, usually less than a week. For te&son a designated area in the container yard is
reserved. For the time period that containers renmathe terminal they are stored at designated
areas, within the terminal, known as the contaorestorage yards. Container yards are divided
into two categories based on the storage systenthause: a) storage on chassis, and b) storage
on the ground. Though the former way of storingtaorers provides flexibility and high
performance (with a chassis system each contameindividually accessible) it requires
amplitude of land, something that today’s termindds not have. In most container terminals
space is limited and so stacking containers ongitmind is the most common approach.

Although stacking containers saves space it creaségnificant increase of operational time.
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The container storage area is usually separated different stacks (or blocks), which are
differentiated into rows, bays and tiers. A typiblick has seven rows (or lanes) of spaces, six of
which are used for storing containers in stacksa@umns, and the seventh reserved for truck
passing to pickup or deliver a container when yerahes are used for the stacking of the
container. Each row typically consists of over tiyehEU container stacks stored lengthwise end
to end. For storing a 40 ft. container stack, tviElJTstack spaces are used. Some stack areas are
reserved for special containers like reefers, whiebd electrical connection, dangerous goods, or
overheight/overwidth containers, which do not allisw normal stacking. A usual policy is to
separate stacks into areas for export, import,iapend empty containers. For the later category
of containers, due to space limitations, storagasrlso exist outside the marine terminal, and

usually the majority of these containers are stthnede.

Containers are distinguished into inbound (impast)tbound (export), and transshipment. The
former are containers that arrive via vessel, wddaand then usually placed in a designated area
in the container terminal, until they are pickedhyptruck or rail to be moved to their inland
destination. Outbound containers arrive on trugksad at the terminal, usually few days before
the arrival of the vessel to be loaded on (ran@iom one to nine depending on the ports policy
with few extremes over 10 days), and are also placethe storage yard. Transshipment
containers on the other hand arrive on a vesselpaloaded in the port and then loaded onto

another vessel having as a final destination amqitie.

Inbound and outbound containers have differenvalrpatterns. Inbound containers arrive at the
port predictably and at large batches and depagtlynone in a more unpredictable manner

(Sideris et al., 2002). This demands flexible hargdand explains why straddle carries or rubber-
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tyred cranes are generally chosen for import ofmrat On the other hand, outbound containers
arrive at the port in a random way and are storeldiod, and depart the port in batches. Figure 2-
2 presents an illustrative dwell time distributiofi import and export containers with the

assumption that the ports’ policy is: a) not toeige export containers earlier than 10 days from

the vessels’ arrival, and b) the dwell time of imtpmontainers is limited to 7 days.

—e— Import Containers #Containers

—m— Export Containers

N
NN

/ Ship Arrival \

Figure 2-2 Theoretical Distribution of Dwell Timerflmport and Export Containers

Storage Yard Equipment

One of the main decisions to be made when desighi@gtorage system (planning level) of a
container terminal is the type of stacking equiptrtenbe used. These include: forklift trucks,
reachstackers, yard cranes and straddle carrierklifis and reachstackers are usually used to
move and stack light containers (like empty ondd)e main equipment used for stacking

containers on stacks though are yard cranes aaddétr carries. The latter can also (and are in
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many cases) used for inter-terminal transport afta@ioers (e.g. from/to the vessel to/from the
storage yard). There are three types of yard craadsmounted gantry cranes (RMG), rubber
tired gantries (RTG), and overhead bridge crandJ)ORubber tired gantries are more flexible
in operation while rail mounted gantries are maedble (more productive when working in one
block) and overhead bridge cranes are mounted oorete or steel pillars. Commonly gantry
cranes span up 6-12 rows and allow for stackingaoers 4-10 high. To avoid operational
interruption in case of technical failures andriorease productivity and reliability, twvo RMGs
are often employed at one stack area. A new dernedapin yard cranes is, the so-called, double-
RMG systems. They consist of two RMGs of differaatght and width able to pass each other
thus avoiding a handshake area. This results liglatly higher productivity of the system. The
technical performance of gantry cranes is approteim®5 moves/hour. Similarly, these types of

cranes can be used for the loading and unloaditigiofs.

Internal Transport

As mentioned previously containers need to be pranted from/to the quay and from/to the gate
to the storage yard. A variety of vehicles are eypdl for the horizontal transport of containers
within a terminal, both for the vessel-to-shorenggortation and the landside operation. The
transport vehicles can be classified into two défé types: vehicles that are not able to lift
containers by themselves and vehicles that havedapability of lifting containers. For the first
class loading and unloading of containers is donerénes (quay cranes at the seaside and gantry
cranes at the landside). Trucks with trailers, imrdilers and automatic guided vehicles belong
to this class of transport vehicles. It should bted that for the internal transport between strag

yard and delivery area multi-trailers and AGVs ao¢ used.
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Transport vehicles of the second class are stracaiigers, forklifts, and reachstackers. The
former ones are the most important since they tsmtze used for the stacking operation in the
stack yard. Therefore, they can be regarded, ames' not locally bound, with free access to
containers independent of their position in thedydie straddle carriers’ (SC) spreader allows
the transport of either 20 or 40 ft. containersérely twin mode SC able to transport/stack two
20’ containers simultaneously is becoming availabig as of today are only used in a handful of
terminals around the world). Straddle carrier systeare very flexible and dynamic. Straddle
carriers exist in numerous variants. Usually stladérriers are man-driven and able to stack 1
over 2 or lover 3. During the last years progress made to develop automatic straddle carriers
(Stenken, 2004). An automatic straddle carrier esyshas gone into production at Patrick

Terminal/Brisbane, Australia.

Terminal Gates/ Delivery Area

The receipt/delivery operations at the terminalegais the fourth and final (after unloading,
transfer to the yard and storage) sequence ofitesivin the terminal operation for inbound
containers, and the first for outbound. Contaire@raze at a terminal from the landside either via
truck or rail. Trucks arrive at the terminals’ iatg where the data of the containers have to be
checked and then drive to transition points whaeedontainers are loaded or unloaded by the
internal equipment. (Maher container terminals atvNJersey, US are estimated to handle over
13,000 trucks per day in the next years). Landskrations for the rail part are similar, but not
identical, to the quayside operations. A loadingnpéxists that specifies which container has to

be placed on each wagon, depending on its destimatipe, weight, the wagons maximum load
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etc. We should note that large container termigatge some thousand trucks a day and efficient
gating systems are crucial not only to the levélsomgestion within the terminal but also to the
surrounding street network of the port. AlthougHagle to container handling caused by the
receipt/delivery are no more serious than thossrayielsewhere in the container terminal, they
are the most obvious and visible to inland transpperators, and are particularly damaging to

the terminals’ reputation (Portworker DevelopmertadgPam, 1999).

Container Freight Station (CFS) Facilities

Door-to-door container transport may not be poss{obntainer arrives at destination without
being stripped) because the shipper or receivehas) insufficient cargo to make up a full
container load, b) lacks suitable equipment orlitaes for handling, ¢) has the premises that
cannot accommodate container vehicles, d) has ad mwnnections suitable for container
vehicles, and/or e) has no rail or inland watera@aynections to the premises. In these cases, and
when an inland clearance depot (ICD) is not avéfathe usual alternative strategy for the cargo

owner is the use of a container freight station§ClBcated at the container terminal.

The CFS is a cargo consolidation area, containekipg/unpacking and cargo distribution center
equivalent to an ICD. Shippers can have their aasgoansported in break-bulk form, by road,
rail or inland waterway, to the CFS for consolidatiand packing into containers ready for

loading aboard a vessel. Similarly, receivers ajdgocan arrange for them to be unpacked from

5 And for several other reasons like a shortagelivélsle road vehicles, rail wagons or barges tospart the
containers; container owners and lessors may péechigh a price on the movement of containersnishitiom the
ports; customs authorities may insist on examitiirggcontents of all containers before allowing trmrhof the port,
so reducing the benefits of door-to-door contazegtidn etc.
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containers at the CFS, separated into break-buikignments, and collected on their behalf by
the most convenient form of inland transport. A& t8FS the following broad functions are
performed: receive, sort and consolidate exporaleimilk cargoes from road vehicles, rail
wagons and inland waterway craft; pack export casgnto containers ready for loading aboard a
vessel; unpack import containers, and sort andragpahe unpacked cargoes into break-bulk
consignments ready for distribution to consignekdiver import cargoes to inland transport—
road vehicles, rail wagons and inland waterway trrafore import and export cargoes
temporarily, between the times of unloading anddiog, while various documentary and
administrative formalities are completed. The fie$ and resources of the CFS are all designed

to carry out these basic functions effectively affitiently.
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3.LITERATURE REVIEW

Introduction

Container terminals are open systems of mateoal With two external interfaces: the quayside
where containers are unloaded/loaded onboard tbeeland the landside where containers are
delivered to/from the terminal via trucks or traiiwgithin the terminal we can distinguish three
areas: the berth area where vessels are berthedrfdce, the storage yard area where containers
are stored temporarily waiting to be exported goonted, and the terminal gate that connects the
container terminal to the hinterland. Accordingbperations in a container terminal can be
broken down to three categories: seaside operafimmdside operations, and yard operations, all
of which interact with each other. Seaside openatonsist of the vessels’ berthing operations at
the quay, and the loading and unloading of contaimato the vessel. The seaside operations
interact with the yard operations via the intetmahsport equipment used to transport containers
from/to the vessel and to/from the storage yarde Yard operations manage the containers
during the transfer between the landside and tlaside. It includes operations such as the
internal transport of the containers from/to theset and from/to the trucks/rail, and the storage
operations in the storage yard. The landside ojpasatdeal with activities of receiving and
delivering inbound and outbound containers to anthfthe storage yard. While each subsystem
can be viewed as an independent entity, and it€rains are usually studied as such,
interactions between the systems are unavoidabie pday a crucial role in the efficient
management and operation of a container terminakcBematic description of a container

terminal operations and interactions between tfferént systems is portrayed in figure 1.
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Although seaside operations are interrelated wottitainer transfer and storage yard operations,
they present a special interest on their own réggrihe relationship between the shipping lines
and terminal operators. The tremendous increasertfinerized trade during the last years, the
resulting congestion in container terminals worldigvithe remarkable increase in containership
capacity, the increased operating cost of contaiaesels and the adoption by shipping lines of
yield management techniques, originally adoptedheyairline industry, strain the relationships
between shipping lines and container terminal dpesaShipping lines want their vessels to be
served immediately upon arrival or according t@weofable priority pattern and complete their
loading/unloading operations within a prearranges twindow, irrespective of the problems and
shortage of resources terminal operators are fagimgrefore, in many cases allocating the scarce
berthing resources is considered to be a probleserdimg both practical and theoretical

attention.

This chapter presents a comparative and analytigatp-date, review of the existing research
efforts relating to berth planning. Existing modeés/e been critically reviewed based on their a)
efficiency in addressing key operational and tattgquestions relating to vessel service, and b)
relevance and applicability to different berth pleng marine terminal operator strategies and
contractual service arrangements between termipatators and shipping lines. Strengths and
deficiencies of the existing models to address weald problems in a systematic and coherent
manner are being discussed. The chapter concluitbsawcritical overview of issues to be

addressed to make these models more relevantltovodd applications.
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The Berth Allocation Problem (BAP)

As mentioned earlier, one of the most critical @piens inside a container terminal is the berth
planning process, which has an immediate effecthenvessel’s turnaround time. In the past,
terminal operators applied First Come First Ser{fegdFS) service policies in allocating berth

space. The increasing trade volumes, vessel sizéharrestructuring of the shipping lines service
networks were eventually followed by customer ssrvagreements and differentiation service
policies that deviate from the FCFS rule. Thisumtcalls for a more sophisticated and informed
resource utilization of the berthing capacity. Daehe high cost of building new berth capacity,

container terminal operators and managers prefatisos that focus on the operational aspects
of berth planning and less on the strategic/takctinahis chapter the various aspects of the Berth

Allocation Problem (BAP) are reviewed.

The BAP can be simply described as the problemllotating berth space for vessels in a
container terminal. Vessels usually arrive overetamd the port operator needs to assign them to
berths to be serviced (unload and load containesskyoon as possible. Shipping lines and
therefore vessels compete over the available bartidifferent factors, discussed in detail later,
affect the berth and time assignment. The BAP hae planning/control levels: the
strategic/tactical, and the operational. At thetswic/tactical level the number and length of
berths/quays that should be available at the pertdatermined. This is done either at the initial
development of the port or when an expansion issid@ned. At the operational level, the
allocation of berthing space to a set of vesséisduled to call at the port within a few days time
horizon has to be decided upon. Since liner shipp@ssels follow a regular schedule, in most

cases the assignment of a berth to the vesselohlas tlecided upon on a regular and usually
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periodical basis. At the operational level the BAPtypically formulated as combinatorial

optimization problem (i.e. machine scheduling peof) 2D packaging problem).
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Figure 3-1 Schematic Representation of Containemiral Activities and Operations

After the BAP has been solved, the resulting B&theduling Plan (BSP) is usually presented
using a space-time diagram. Figure 2 presents plesiexample of space-time diagrams applied
to berth planning. The x-axis represents the time the y-axis the berth(s). Each rectangle

represents a vessel. The rectangles and theicsizespond to the berth space required and the

service time.
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Figure 3-2 Space-Time Diagrams of Berth Planning

The BAP can be considered and formulated accorttintipe following variations a) Discrete
versus Continuous Berthing Space, b) Static VS Dyoavessel Arrivals, and c) Static VS
Dynamic Service Time. The BAP can be modeled d@saeate problem if the quay is viewed as a
finite set of berths, where each berth is descripeéixed-length segments or as points. Usually
though vessels are of different lengths and digdime quay into a set of segments is difficult
mainly due to the dynamic change of the lengthirequents for each vessel. One solution to this
problem is to use longer segments, a solution tieguboor space utilization), or short segments
(infeasible solutions). To overcome these drawbamk®inuous models have appeared in the
literature where vessels can berth anywhere aloagjtiay. In the discrete case, the BAP can be
modeled as an unrelated parallel machine-schedplioglem (Pinedo, 2002), where a vessel is
treated as a job and a berth as a machine, whir¢las continuous case as a packaging or the
two dimensional cutting stock problem. The BAP @dso be modeled as a static problem

(SBAP) if all the vessels to be serviced are alygadhe port at the time scheduling begins or as
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a dynamic problem (DBAP) if all vessels to be sclted for berthing have not yet arrived but

arrival times are know in advance. Service timeaah berth depends on several factors, with the
two most important being the number of cranes djpgyan each vessel and the distance from
the preferred berth position (PBP). If the modetglaot take under consideration the number of
cranes to be operating at each vessel then théepnatan be considered as static in terms of the
handling time. On the other hand if the numberrahes that will work on each vessel is decided
upon from the model then the formulation can besm®ered as dynamic in terms of the vessels
service times. Finally technical restrictions swh berthing draft, inter-vessel and end-berth
clearance distance, that bring the problem formanatioser to real world conditions, are further

assumptions that have been adopted by researchers.

Table 3-1 summarizes the several categories of Ba##ations and the respective assumptions
that have appeared in the literature. The modds llave appeared in the literature usually
combine two or more of these assumptions. In mases the formulation of the problem leads to
NP-hard or NP-complete problems that require hearéd meta-heuristic to be employed for a

computationally acceptable solutions time.

Table 3-1Berth Plan Model Variations

Assumption Description

Static: All vessels are in the port when the beféim is determined
Static VS Dynamic Berthing Dynamic: All vessels are not in the port when tkett plan is

determined
Discrete VS Continuous Discrete: Allocation scheme based on the berth
Berth Space Continuous: Allocation scheme not based on thenbert

Static: Constant Handling Time
Dynamic: Handling Time Depends on several parammédtas.
Vessel size, Berthing location, Quay Crane assigneie)

Static VS Dynamic Handling
Time

Technical/Operational

e Inter vessel clearance, End Berth clearance etc
Restrictions
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Literature Review

In this section a complete and up-to-date, in qainion, literature review on BAP is provided.
The advantages and limitations of each approaciprasented along with a brief description of

the model formulation.

Table 3-2 summarizes the most important papershiaat appeared in the literature that dealt
with the BAP. The first column states the main authnd the date of publication. The second
column states the BSP (dynamic/static, discretéifwoous) while the third and fourth the
objective and the problem formulation. Since mdsthe formulations lead to NP-Hard or NP-
Complete problems the last column states the admatkition approach, which as can be seen is

usually some sort of (meta)heuristic.

The first paper to appear on the BAP problem wasliplaou (1969), followed by a paper by

Sabria and Daganzo (1989). This research focusedi®nng theory using a serial representation
of the problem. Issues related to the applicabibtythis modeling approach to the BAP were
discussed by Edmond and Maggs (1978). After 198karch in the BAP has solely focused on
mathematical programming and simulation, since ougemodels failed to capture several of the
attributes of the problem. The only exception westualy by Legato and Mazza (2001) and a
study by Dragovic et al (2006). The later used quguheory and simulation to evaluate the
efficiency of models used at the Pusan East Comtaiierminal, while the former presented a
closed queuing network model and performed simaatdr estimating congestion effects at the

berth.
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One of the early works that appeared in the litesatind did not follow a serial approach was by
Lai and Shih (1992). The authors assumed that afywiepresented as a continuous line that
could be partitioned into several sections, to edclhich only one vessel could be allocated at a
specific time. The berth-allocation rules considetiee following factors: the available sections

of a wharf, the expected completion time of a vieaseach available section, and size and arrival
time of each vessel. A heuristic algorithm was dgyed considering a first-come-first-served

(FCFES) rule. Through a simulation experiment thsegh-allocation rules for container vessels

are compared.

Brown et al. (1994, 1997) treated the BAP in ngwaits. They identified the optimal set of
vessel-to-berth assignments that maximizes the afubenefits for vessels while in port. Berth
planning in naval ports has important differenceanf berth planning in commercial ports
though. In the former, a berth shift occurs whengimper services, a newly arriving vessel must
be assigned to a berth where another vessel sdgimoored.

Imai et al. (1997) was the first to introduce ttea that for high port throughput, optimal vessel-
to-berth assignments should be found without cansid the FCFS basis. However, this may
result in some vessels' dissatisfaction regardigroof service. In order to deal with the two
criteria to evaluate, i.e., berth performance asdatisfaction on order of service, they developed
a heuristic algorithm to find a set of non-inferisolutions while maximizing the former and
minimizing the later. They introduce of a multi-ebfive approach, new to machine scheduling
problems. A two objective non-linear integer progres formulated to identify the set of non-
inferior berth allocations to minimize the dual effjves of overall staying time and
dissatisfaction on order of berthing. Dissatisfattivas expressed as the sum of the number of

cases in which a vessel arrives later than a pdatizessel and is moored earlier. After defining
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the two-objective non-linear IP they reduced thebpgm into a single objective problem
consisting of the summation of the waiting timesd adissatisfaction. From numerical
experiments, it was concluded that the trade-afféases if the size of the port increases. Their
berthing principle, however, could not treat th@ayic allocation. This paper was the only paper
that looked specifically in the customer satisfactproblem, even though it was done in an

aggregate way.

Li et al. (1998) formulated the BAP as a schedulimgblem with a single processor through
which multiple jobs can be processed simultaneoudtg problem assumed that all vessels had
already arrived, and the minimization of the magarswas attempted based on that assumption.
They present two cases of the problem: a) the fp@sition case, and b) the non-fixed position
case. The authors stated that both cases coulgpgiEable to the berth-scheduling problem
under different assumptions (infinite and negligibvessel setup time and cost for job
interruption/position change after the job haststir They also consider the case where the
processor is partially available. They suggestetstfit-decreasing heuristic rule for which
numerical experiments were conducted for all troages. The results showed that the average
relative errors of the heuristics are less than 2086ng all the parameters tested, and the results

suggest that the heuristics are effective in produa near-optimal solution.

Similar to Li et al. (1998), Guan et al. (2002) smiered the berth allocation problem as a
multiprocessor task scheduling. A vessel (job) dsigned to a number of cranes (m parallel
processors/decision variables). They developed widie to minimize the total weighted

completion time of vessel service and performedstvoase analysis. Weights were assigned to

each job, dependent on the vessels size. Theydmyesi two cases of weights both as different



27

functions of the vessels size. No priority serviagkes were employed, though the weighting of
the jobs could be considered as a form implicie inhplementation, and no numerical examples

were presented or discussed.

Lim (1998), along with Li et al. (1998), addresdéé continuous BAP, with the objective of
minimizing the maximum amount of quay space useahgttime with the assumption that once a
vessel is berthed, it will not be moved to any platse along the quay before it departs. He also
assumed that every vessel is berthed as soonasvies at the port. This approach is very
restricting since it does not solve the problemvirich the berthing time is a decision variable
and the handling time varies along the quay. Theblpm was represented as a graph with
directed and undirected edges and transformedainmtstricted version of the two-dimensional

packing problem. A heuristic was presented thaopered well under historical data.

Unlike Lim (1998), Imai et al (2001), Brown et §1.994) and Lai and Shi (1992) Park and Kim
(2002) consider the continuous DBAP and used tlegsadient optimization technique. Their
objective was to estimate the berthing time andtioa by minimizing the total waiting and

service time and the deviation from the preferreding location. They are the first ones to

include penalization of the deviation from the ogl berth.

Tong et al. (1999) were the only ones to follow tingplementation of the Ant Colony
Optimization (ACO) technique and showed how it banapplied effectively to solve the BAP.
The objective was to minimize the necessary whamnfyih subject to several space and time
constraints. Experimental results, with problemat tdropped the constraints of clearance

distance between vessels and fixed and forbiddsitigs (that do not affect the main focus of
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the BAP), were presented but no comparison was twadey of the other available methods and

there is no indication that the algorithm may perfavell in real life problems.

Imai et al. (2001) was the first one to addresXBAP. Their objective was to minimize the sum
of a vessels waiting and handling time. Handlimgetivas assumed to be dependent on the berth
but was not modeled, as with most of the papers] aas considered deterministic.
Computational experiments showed that the propbsedstic works well from a practical point
of view. In the same context Nishimura et al. (20@ddressed the same problem but for a public
berth system. In this paper the authors extendedviirk done by Imai et al. (2001) to include
physical restrictions (water-depth and quay lengdilney also dropped the assumption that each
berth can handle one vessel at a time. Serviceityrieelied on the FCFS rule, and was not
dependent on the vessels cargo volume, thougtuthers note that this is a usual constraint. The
goal was to optimize service time (including waititime). A heuristic based on genetic
algorithms (GA) is employed to obtain a good sdlotwithin a reasonable computational time.
Experimental results are presented for both simattas and single occupancy of a berth. For

small size problems the optimality gap was 10% evfor larger size problems 20%.

Hansen and Oguz (2003) criticized the model formuteby Imai et al. (2001) and supported that
the formulation was incorrect, presenting a newmidation. Imai et al. (2005) published a
Corrigendum to clarify this issue. Several compatetl experiments were performed for the
purposes of this paper, using both the formulatiohbnai et al. (2001) and Hansen and Oguz
(2003). In all the test instances the same optioigéctive function value was obtained. We
should note that due to the multi-solution spaag @) different assignments might provide the

same optimal objective value.
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Assignment 1

Berth 1 Vessel 1 ‘essel 3

Berth 2 Vessel 2 Vessel 4

—.

Assignment 2

Berth 1 Vessel 2 ‘essel 4
Berth 2 Vessel 1 Vessel 3
>
Assignment 3
Berth 1 Vessel 1 ‘essel 4 I
Berth 2 Vessel 2 Vessel 3
>
Time

Figure 3-3 Multi-solution space example

Imai et al. (2003) modified and extended the DBAfPnfulation of Imai et al. (2001) and
Nishimura et al. (2001) in order to include servjmority constraints. The objective was to
minimize the total service time while differentiagi priorities to vessels by variation of their
service time in the solution. They assumed that onk vessel can be moored per berth at a time,
the service time was berth dependent, while noipalfgechnical restrictions were considered.
Several numerical examples are presented usingreliff weight priority formulas and a small

discussion on the choice for the value of the wisighprovided.

Kim and Moon (2003) also studied the continuous [PBaad formulated a MIP model, similar to
Imai et al. (2001), but used simulated annealisgead of the Lagrangian Relaxation to find near

optimal solutions. The objective was to minimizelage and handling cost by non-optimal
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locations of the vessels berthing, attempting tausianeously determine the berth time and
location. Unlike Imai et al. (2001) they apply astpenalty to berthing in non-preferred berths.
Priority service rule inclusion was not stated @i}y, though a penalty was included in the

minimization function for the late departure of ba®ssel. In their paper a comparison of the
simulated annealing method to classical optimizatechnique is presented using a numerical
example (a more comprehensive comparison and metadlsion the model can be found in

Moon, 2000). In their comparison the authors udg small instances of the problem because the
continuous case of the BAP is intractable by exaethods and results show that the simulated

annealing method provided near-optimal solutiorthiwia reasonable time frame.

Park and Kim (2003) extended their previous worlcoambine the BAP with consideration of

quay crane capacities. Their study determined thtenal start times of vessel services and
associated mooring locations while at the same tetermines the optimal assignment of quay
cranes to vessels. They assumed that handling tiamgdinearly with the number of quay cranes
assigned to a vessel, in order to solve the intedraroblem. The handling time was considered
independent from the mooring location of the vesBeé formulation of the objective function is

similar to the ones by Park and Kim (2002) but mededorate since it includes four different cost

penalties (handling cost, early arrival, late atjwand late delay).

Similar to Park and Kim (2003), Meisel and Bieni(2006) presented a model for the Berth and
Quay Crane Assignment problem. A heuristic was piswided, based on priority rule methods,

for the integrated solution of these problems ammpmutational results based on real world data
was presented. The objective was the minimizatfomnosed Quay crane capacity. The authors

stated that further research is being conducted.



Table 3-2 Different Berth Planning Assignment PeoblAssumptions

31

Author BSF Objective Formulation  Solution Approach
Lietal., Single Processt —
1998 SBAPC(CMakespan Scheduling Heuristic
Limet al., . -
1998 SBAPC Amount of Quay 2D Packaging Heuristic
Guan et al. . : ._Multiprocessor _
2002 SBAPCC(Total Weighted Completion TmScheduIing Heuristic
Guan & SBAPC Total Weighted Completion TirvdP Heuristic
Chen, 2004 g P
Park & SBAPC Cost From Delayed DeparturesMIP ;ﬁgr;rjlgja:lazje;garﬁatlor
Kim, 2002 and Cost of Non-Preferred Ber I SuUb-g
optimization
Cost From Delayed Departures
Kim and and Cost of Non-Preferred Berth
3SBAPC , Cost from early or late start ofMIP Simulated Annealing
Moon, 200 : .
vessel handling against ETA
(Estimated Time of Arrival)
: : Lagrangian Relaxation
Handling Cost, Penalties from .
Pgrk £ CBAPD Berthing prior or after ETA,  MIP and_ Subgradlent |
Kim, 2003 . optimization, Dynami¢
Penalties from Late Departure: ;
Programming
Nishimura . .
etal.. 2001DBAPD Total Completion Time MIP GA
Imai et al Lagrangian relaxatior
2001 " DBAPD Total Completion Time MIP and sub-gradient
optimization
Izrgglrset al, DBAPD Weighted Total Completion TinG@AP GA
Iznaglset 2y DBAPC Total Completion Time MIP Heuristic
'ngg'?et al, pBAPC Total Completion Tim MIP GA
Izrgglfset 2 DBAPC External Berth Service Time MIP GA
Cordeau et Total Completion Time/ .
al., 2005 DBAPC Weighted Total Completion Tim'\(/lalp Tabu Search Heuristic
Briano et Cost From Delayed Departures "
al., 2005 SBAPC Cost of Non-Preferred Berth il Fleuiisie
;ggGet al, SBAPCQMVakespan & Quay Crane Time MIP GA
Wang & Position, Delay, & Unallocatior Stochastic Beam
Lim, 2006 SIS Cost MIP Search

Hansen e DBAPD

Delayed Departures, Waiting aMIP

Variable Neighborhoc
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al., 2007 Handling Cost Search
Moorthy & Operational Cost and MaximiziRectangle : :
Teo, 2006 CBAPD Service Levels Packing Simulated Annealing
. Delays from Late and Maximiz
colEs et alDBAPD Premiums from Early/Timely MIP GA
(2007) D
epartures
Boile et al Multi-objective: Total Service
" DBAPD Time and Preferred CustomersMIP GA
(2007) : :
Satisfaction

DBAPD: Dynamic BAP DiscretePBAPC: Dynamic BAP ContinuousSBAPD: Static BAP

Discrete, SBAPC: Static BAP Continuous

Lee et al. (2006) following the work of Park andnKi{2003) presented a method for
scheduling berth and quay cranes, which are dritiesources in container terminals.
Excluding simulation models, this paper along vidtirk and Kim (2003), Li et al (1998),
Guan et al. (2002) and Meisel and Bierwirth (208& the only two papers that combine
berth scheduling and quay crane assignment. Aviel-lprogramming model, in which
the berth allocation problem with the objectivenoihimizing the sum of waiting time
and handing time of each vessel is dealt with gseupevel problem whilst the quay
crane scheduling problem with the objective of mizing the sum of makespan of all
the vessels and the completion time for all theyquranes is dealt with as lower level
problem, is formulated by considering various pattconstraints such as interference
between the quay cranes. To solve this model, atgealgorithm is used to determine
the near optimal solution. A computational expenine conducted to examine the
performance of the proposed bi-level programmingleh@nd algorithm. Unfortunately
results are presented for small instances of thbl@m. According to the author further

research is in progress to address the issuegdrlarstances.
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In an unpublished paper Dai et al. (2004) studystagéc and dynamic berth allocation problem as
a rectangle-packing problem with arrival constrai@iven a scheduling window and information
on the vessels that will be arriving within the diw, they structure the associated berth
planning problem as one of packing rectangles serai-in nite strip with general spatial cost
structure. The goal was to minimize the delays dalbg vessels, with higher priority vessels
receiving promised level of services, while at Haene time address the desirability to berth the
vessels on designated locations along the termmimaiimizing the movement and exchange of
containers within the yards and between vesselssi@ants on draft, equipment availability, etc.
are not taken into consideration. They show thaaia of permutations of all the vessels can
encode any BP problem and formulate a time andespagt minimization model. They provide a
lower bound for the SBAP in order to evaluate tleefgrmance of their procedure. They use
simulated annealing, with 5 different neighborhamhemes, in order to search the feasible

solution space.

Guan and Cheung (2004) presented a berth allocataatel that allows multiple vessels moor at
a berth, considers vessel arrival time and optimitlee total weighted flow time. Two
formulations were presented: a) the Relative RwsiEiormulation (similar to the model of Kim
and Moon, 2003; with a slightly different objectiftienction), and b) the Position Assignment
Formulation. Following the idea by Imai et al. (3)Qhey apply a weight coefficient to each
vessel limited to vessels departing later thenrdugiested time. They develop a tree procedure
and a heuristics that combines the tree procedutte the heuristic in Guan et al. (2002).

Computational experiments show that the compositgibtic is quite effective.
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Imai et al. (2005) extend their previous work bywsw the DBAP in a continuous berth space.
They assume that handling time depends on the Igaagion where the vessel is handled (all the
existing BAPC studies up to date assume unchangedling times regardless of where the
vessels are handled), and is a function of théhldedation relative to the container storage yard
and the assigned yard trailers to transport coetaito/from the vessel. In their formulations
thought handling time is again considered detestimi No consideration is given to service
priorities and the objective is restrained, as nadsthe papers, to the minimization the total

service and wait time.

Cordeau et al. (2005), similar to Imai et al. (200fonsidered the discrete DBAP, that works
with a finite set of berthing points, and providea formulations: a formulation similar to Imai
et al. (2001) and a formulation similar to the Mdepot Vehicle Routing Problem with Time
Windows (Legato et al. 2001). They also developeblearistic for the continuous case. In
contrast to previous models their work is capalbleamdling a weighted sum of service times as
well as windows on berthing times. In the discretése, medium-size instances were solved
exactly under some assumptions, which enabled sesasent of the quality of the heuristic.
Because the continuous problem could not be sobredttly, the assessment of the heuristic
developed was only be inferred from the discrenado. To avoid simplifications contrary to
Park and Kim (2003) the authors do not solve théB#d the Quay Crane Assignment Problem
(QCAP) simultaneously. The objective is the miniatian of the total (weighted) service time for
all vessels, defined as the time elapsed betwesrttival in the harbor and the completion of

handling.
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Briano et al. (2005) outlined the integration begwea flexible simulator, which represents the
marine-side operations of a container terminalhwitLinear Programming model for improving
berth assignment and yard stacking managementigmlithe proposed methodology starts with
a Mathematical Model for supporting Berth Plannifige optimal position of the berth for each
vessel was considered the nearest docking placeewthe containers have to be taken or
dropped. The goal of this part of the model is tnimize the penalty cost resulting from delayed
departures of vessels and the additional handlo®g esulting from deviation of the berthing
position from the best location on the berth. Ththars note that the problem is NP-hard and can
only be solved in reasonable time for a maximunsefen vessels and a 72 hour plan horizon.
This model is combined with a simulation model used identifying optimal positions for
containers. The paper is very brief and does noingwm detail of how the integration was

accomplished or problems that were or may be ertecenh during implementation.

Lokuge and Alahakoon (2006) present a unique approdifferentiating itself from all the
previous work presented herein. They use Artifitiélligence (Al), and more specifically the
Beliefs, Desires and Intention (BDI) agent arcHitee. They describe the use of a hybrid BDI
agent architecture for a vessel berthing applicatigstem. An extended hybrid BDI agent system
with intelligent tools (neural networks and adaptineuro-fuzzy inference system (ANFIS)) was
proposed for improved performance in the termiiiake assignment of vessel to berth is based on
several factors that include: minimization of thaitmg time of the vessel, berth productivity,
minimum distance for vessel berthing and sailing &esults show a reduced average waiting

time of vessels while several other measures dfgroductivity are also presented.
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Imai et al., (2007) addressed the berth allocgpimblem at a multi-user container terminal with

indented berths for fast handling. A new integeedir programming formulation was presented,
which was then extended to model the berth allonagroblem at a terminal with indented

berths, where both mega-containerships and feeeesels are to be served for higher berth
productivity. A genetic algorithm heuristic was ds® solve the problem to optimality. From

derived computational results it was concluded tizite the indented terminal served the mega-
vessel faster than the conventional terminal, ¢ih@ service time for all vessels was longer than
the one in the conventional terminal. Imai et &006) addressed a variation of the berth
allocation problem at multi-user terminals, wheessels normally served at the terminal with
expected wait time exceeding a certain time linwére assigned to an external terminal. The

objective of the problem was to minimize the ta@lvice time of vessels at the external terminal.

Wang and Lim (2006) solved the DBAP by minimizingailocation, position and delay costs,
using a Stochastic Beam Search Heuristic that oatmeed both the current state-of-the-art
metaheuristics and the traditional beam search.alitleors concluded that the formulation and
solution approach is fast, easy to modify and immget, and can be directly applied to solving

multi-stage decision making problems.

Hansen et al. (2007) studied the DBAPD considetirgminimization of total costs for waiting
and handling as well as earliness or tardinessoofptetion, for all vessels. They presented a
general formulation that can be reduced to the BgRnai et al (2001) and (2003). A Variable
Neighborhood Search (VNS) heuristic was proposed, @mpared with Multi-Start (MS), a
Genetic Search algorithm (GA) and a Memetic Sealtgbrithm (MA). VNS provided optimal

solutions for small instances solved to optimalitythe DBAPD with the objective to minimize
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the total service time. The authors claim that Vbi8performs MS, MA and GA on large

instances though this statement is not based dioree computational experiments (i.e. very
small computational time). Furthermore, instancgdufor the computational examples cannot be
considered descriptive of a medium to heavily ceteg port, since the ratio of vessel to berth

per day is very low (the maximum ratio was lessithevessel per berth per day).

Moorthy and Teo (2006), expanded on the work of Baial. (2004), and presented a new
approach (perhaps the most interesting so farjhierDBAPC. The problem was modeled as a
bicriteria optimization problem. The first objeaivdealt with the trade-off between the
operational cost of moving containers from one eess the other and the delays (difference of
actual arrival and start of mooring) of customefhie second objective dealt with the
stochasticity in the arrival of ships and the rdbass of the final schedule. The authors try to
minimize the expected delays of transshipment Ves$he focus of the experimental results lies
in the stochastic nature of the problem. As alstest by the authors the approach adopted is
limited by the fact that the berth solution is k&bt only when a substantial number of vessels
arrive periodically and within the same period. flise a continuous representation but note that
in the final solution overlapping of vessels is @mobided, especially when demand increases.
Nevertheless this is the first paper that studi@dBAP incorporating the stochastic nature of the

vessel arrivals with very promising results. Théhaus stated that further research is underway.

Monaco and Sammara (2007) presented a compact lftiarufor the discrete and dynamic BAP
and developed a Lagrangean heuristic to solve tioblgm. Imai et al. 2007 proposed a
formulation for the simultaneous berth—crane aliocathat minimizes the total service time and

developed a genetic algorithm-based heuristic livedo the resulting problem.
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Discussion of current Berth Allocation Research

Port Operator Service Agreements and Berth AllocatiModels

The SBAP and DBAP along with the discrete and cwmatiis BAP have been widely studied in
different combinations. Most of the studies triedntinimize the total service and waiting time
(total completion time-TCT) and/or the deviatiowrfr the preferred berth, since it is expected
that minimization of the deviation from the prefsrberthing position will reduce service time
and operator’s cost, while very few studies incoaped the minimization of the cost endured by
a vessels late departure after an agreed poiritnie fThese objectives satisfy most of the port
operators’ objectives but fail to portray most lo¢ tservice priority agreements (fig. 3-4). These
contractual arrangements can vary from berthingl @art of cargo handling operations) upon
arrival, to guaranteed service time window andfeargnteed service productivity (UNCTAD,
1986). Earliness or lateness of a vessels startoompletion time of handling operations
(loading/unloading of containers) implies benefitcosts to both the port operator and the ocean
carrier. If these operations are completed aftgwexified and agreed time, the port operator may
pay a penalty to the ocean carrier, while if theperations are completed before that date the
carrier may pay a premium fee to the port operatahject to the contractual arrangements,
although in practice premium may be compensatel past or future penalties assigned to the
port operator due to failure to meet the termshaf tontract. Although early departures are
seldom reported to happen, they can help oceamersin managing the time factor of their
service schedules, by providing time buffer to cegth time lost in other ports (Notteboom,

2006). Early premiums can be offset by reducingageyoperating cost through reducing the
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voyage speed and therefore the fuel consumptiofadt) recently, ocean carriers seek to reduce
operating cost through voyage speed reduction,.ewhdintaining service punctuality (Savvides,
2006 and Lloyds List, 2006). It was not until trelg 2007 (Hansen et al., 2007) that researchers
began recognizing the significance of premiums ftbmvessels’ early departures. Nevertheless,
service deadlines (start or finish or service)hia torm of time windows, penalties and premiums
from the early start of service and premiums frmdtart of finish of service within the deadline

time window have not yet been investigated, thaihgly represent one of the most basic BSPs.

Port Operator Ohjectives
Balance Levels of

o s S
1l

Port Operator Service Priority Arrangements

Guaranteed Berthing/Departure

1L

Parameters Influencing Berth Productivity

(Cungélﬁum Storage Yard
Performance)

v v @ v

Objectives Considered in Research

omer ——— S
Dissatisfaction and Service Time Delayed Departures Customer Satisfaction Cost

Storage Block in Storage

Vessel Arrival Rate and
Assignment and Performance Punctuality Yard

Vehicles Assigned Per Vessel

Port Operator Service Priority Arrangments and Objectives Portrayed by Current Research

Departures Point in Fully

Figure 3-4 Port Operator Objectives and ServicerRyi Arrangements VS Parameters
Influencing BAP and Objectives and Service PrioAtyangement Considered in Current

Research
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Service Priority Schemes based on Weights

Allocating vessels to berths by simply minimizimgettotal completion time can lead to problems
where vessels with smaller handling volumes rengiviigher priorities than vessels with larger
handling volumes (Pinedo, 2002). The later, encsenviced at the end of the queues at each
berth. That is to say given the situation that weesels with different handling volumes arrive at
the same time, the large vessel will wait for theakler vessel to get serviced (if they are both
serviced at the same berth). Assignment policised@n this objective have the consequence of
larger waiting times for larger vessels. Some laggsels though, for a number of reasons (call at
another port, time sensitive cargo etc), might nieede assigned for service and/or finish their
service as soon as possible, after their arrivdhatport. In practice, the problem of assigning
priority status to vessels is more complex singesfime vessels contractual agreements signed

between ports and customers do not allow for abiyrassignment (Dai et al., 2004).

To illustrate this disadvantage assume the follgwiase of a single berth with vessel arrival and
handling times as given in table 3a. In this caskirsg the problem with the objective of
minimizing the total completion time, vessel 1 willve to wait and be served last (table 3b). The
guestion arises though how beneficial is that fog port operator to have a large customer
waiting for such a long period of time. This alsopiies that the berth might be unutilized for
certain periods of time waiting for the small vdsge arrive (while other vessels are already in

port waiting for service), resulting in extra ctstport operators.
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As described previously a number of studies triedddress this issue by assigning weights to the
vessels, representing in this way the vessels ipyridBervice priority schemes based on the
assignment of arbitrary weights to vessels wem@dhtced by Imai et al. (2003) and were adopted
by a number of studies that followed. The mainéssith this approach lies in the determination
of weights, since there is no intelligent way, exithg iterative processes, to assign these weights
in order to meet specific contractual agreementsavoid these issues Kim and Moon (2003),
Park and Kim (2003), and lately Wang and Lim (20@®)d Hansen et al. (2007), used monetary

penalization-premiums of delayed-early/timely deéypas.
Table 3-3 Example arrival, handling and finish tenper vessel, for a simple BAP problem

3a: Arrival and Handling Time

Vessel | Arrival Handling
Time
1 0 50
2 0 4
3 0 4
4 0 4
5 16 4
6 25 4
7 30 4
8 40 4
9 50 4

3b: Assignment Minimizing Total Service Time

Service | Vessel| Finish Idle Berth Wait

Order Time Time Time
1 2 4 0 0
2 3 8 0 4
3 4 12 0 12
4 5 20 4 0
5 6 29 4 0
6 7 34 1 0
7 8 44 6 0
8 9 54 6 0
9 1 104 0 54
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Multi-objective berth allocation

As with all engineering problems determining barthtimes and positions of containerships at a
port container terminal has several objectives;mmimizing service and waiting time, meeting
contractual agreements, minimizing port operatoggrational costs, etc. All the models that
have been presented in the related literature foauthe formulation of a single objective BSP
model. Even though most of the authors recognieenthlti-objective character of the problem,
and at several cases consider it as such, theyermbmbining the multiple objectives into a
single scalar value by using weighted aggregatimgtions according to the preferences set by
the decision-makers and then, find a solution Hadisfies these preferences. However, in many
real scenarios involving multi-objective schedulprgblems (such as the BAP), it is preferable to
present various compromising solutions to the decimakers, so that the most adequate
schedule can be chosen. Although this can be amthiby performing the search several times
using different preferences each time, another aggbr is to generate the set of compromise
solutions in a single execution of the algorithnheTconsideration of many objectives has the
advantage of a wider range of alternatives for gheticipants in the planning and decision-
making processes, (i.e. “analyst” or “modeler'— whenerates alternative solutions, and
“decision maker” who uses the solutions generatethb analyst to make informed decisions)

while modeling the problem in a more realistic way.

Most of the BAP have a humber of constraints (sbtiarel and other soft). As correctly pointed
out by Fonseca and Fleming (1995) in a researabrtidp many cases satisfying constraints is a
difficult problem itself. When different constraintcannot be satisfied simultaneously, the

problem is often deemed to admit no solution. Timeager came from Coello Coello (2000), who
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showed that it is possible to treat constraintskgsctives and consistently outperform the single
objective approach without a significant sacrificéerms of performance. This observation could
be proven very valuable when formulating BSP maldat deal with hard constraints that lead to
infeasibility (such as the service upon arrivalvgsy arrangement) since a number of the

constraints can be viewed as objectives.

The main drawback of a multi-objective formulatiges in the solution approach and optimality
of the results. To solve multi-objective problemgolationary algorithms have been used
exclusively (Toboada, 2007). On the other hand ghcheuristic approaches have also been used
exclusively to solve medium to large (and in sonases small) instances of all the single

objective BSP presented to date.

Stochastic Arrivals and Handling Time

Another issue not yet fully addressed, but mentioegularly in the berth allocation literature, is
how robust are the BAP assignments when the urnegrtaf the vessels arrival and handling
times is not considered. Excluding the study by Mwopand Teo (2006), the rest of the studies
assumed that the arrival and handling time of esdsel was known with certainty. Usually
though vessels provide the port operator with @ tmmdow in which they may arrive at the port
and request service. These time windows are natimath certainty until few hour of a vessels
arrival. Furthermore, and due to several factomygurane availability and performance varies
and this influences the handling time of the vesselhich should be considered stochastic.
Although berth allocation models including arriaald handling time uncertainty may be more

beneficial to a port operator, as of today haveyebbeen investigated..
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Berth and Quay Crane Scheduling

One of the most crucial issues in the BAP is thes@eration of the handling times as constants
and only dependent on the berth assignment ofdbsel. As mentioned earlier, a small number
of researchers presented studies that deviated thimmapproach. Nevertheless only part of the
service priority agreements has been modeled. &unsearch is required that takes under
consideration the rest of the service priority agnents with the focus on the guaranteed
(un)loading performance, which is one of the mogiartant factors during negotiations of future

contractual agreement between the port and vepsehtors.

Conclusions

From the review of the system and the related aitee, it becomes obvious that several
objectives need to be met and optimized at thehnbgaitt of the terminal and in general at the
seaside (table 3-4). A trade-off exists betweertdltad staying time in the port, the dissatisfagtio
of vessel owners caused by the order in which \&sse berthed and finish service (expressed in
the total waiting and service time) and the poserapors operating and capital costs. The issue of
meeting contractual agreements based on berth gtivity and vessel berth assignment is very

important for a ports’ competitiveness.

Some researchers tried to address the issue otpanpetitiveness by assigning service priority
rules either as the vessels’ weight factor or t@ cost penalty for late departure. Unfortunately
the former formulations did not present a sensitignalysis of the weights, while the later based

the BSP of vessels serviced before the schedutesl dn the minimization of the PBP. On the
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other hand premium benefits, cost of keeping ehlidie, guidance of how to use/modify weights
or cost penalties to achieve the terminal operas®@srice contractual agreements have never
been stated explicitly. This, is somewhat expectate these studies looked at the problem from
a single objective using weighted methods, thattrobshe times have an inherent problem in
selecting the weights (or utility functions) thadtacacterize the decision-maker’s preferences. In
practice, and in most scientific fields, it can\my difficult to precisely and accurately select
these weights, even for someone familiar with tfabjems domain. BAP formulations that could
accommodate flexibility in that aspect would be engalistic. Furthermore the stochastic nature

of the BAP has not been present in any model so far

In our opinion several issues remain to be addsess¢he BAP (table 3-4, 3-5, 3-6 and 3-7)
including: a) dynamic formulation of the servicené in respect to the assigned quay cranes,
internal transport vehicles, and the preferredhiegtposition, b) formal methodology of weight
application to service priority modeling and impeovent of weight definitions, c) operators cost-
service priority modeling, d) stochastic natureBé{P, and e) multi-objective formulation of the

BAP.

Table 3-4Existing BSP

Existing approaches Container Terminal Operator Pratices

Minimize Total Completion Time Maximize Overall BerPerformance

Minimize Late Departures, Maximize Early | Maximize Overall Berth Performance,
Departures and Distance from Preferred BertiCustomer Dissatisfaction, Penalty Cost

Maximize Overall Berth Performance,

Minimize Total Weighted Completion Time Customer Dissatisfaction

Minimize Position Cost, Delay Cost, and Minimize Customer Dissatisfaction, Indirectly
Unallocation Cost Minimize Service Time

Minimize Cost From Delayed Departures, Cost

of Non-Preferred Berth, and Cost from Early|dvlinimize Customer Dissatisfaction, Indirectly
Late start of vessel handling against estimateinimize Service Time

times of vessel arrival

Minimize the maximum amount of Quay

. None
occupied
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Table 3-5 Future BSP

Future Research Container Terminal Operator Practices
Minimize Late Berthing/Departures, Maximize
Early/Timely Departures/Berthing Maximize Profit, Minimize Customer

(Departure/Berthing Time or Time Window), | Dissatisfaction
Minimize Handling and Wait Time Cost
Minimize cost from failing to meet Guaranteed
(Un)Loading Performance/Service Time and
Berthing and Departure Time Window

Maximize Profit, Minimize Customer
Dissatisfaction

Balance between Profit Maximization,
Customer Dissatisfaction, Total Service
Time Minimization, Customer Specific
Service Time Minimization etc

Minimize Risk of Interruptions and Delays
Robust Scheduling

Multi-Objective BAP

Stochastic Arrival/Service Time BAP

Table 3-6Current Formulations and Port Operator Objectives Service Priority Arrangements

Port Operator Objectives Port Operator Service Priority Arrangements
Balance ;
Overall Minimize Level of . .__Service Service Guarantee(Berthlng_/Dgpartune
. . Maximize . . Point in
Author BSF Berth  Operatione Service . Upon Time (Un)Loadinc N "
Profits : ; Time/Time
Performanc  Cost Between Arrival Windows Performanci .
Windows
Customer
Lietal.,
1998 Makespan X(P) X(P)
Limet Amount of
al., 199 Quay A7) A7)
Guan et
al.,
2002,
Guan &
Chen, Total
2004, Weighted
Imai et Completion X(P) X X(P)
al., Time
2003,
Cordeau
et al.,
2005
Cost From
Eﬁ;k& Delayed
bop2, Deparures -y p X X(P) X(P)
; and Cost of
Briano eNon-
al., 200t
Preferrec
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\‘

Cost From
Delayed
Departures
Cost of
Non-
Preferred

Kim and Berth

Cost from
Moon, early o late X(P) X X(1) X(P)

start of
vessel
handling
against ET#
(Estimated
Time of
Arrival)

Limet Amount of
al., 1998 Quay

X(P) X(P)

I: Indirectly, P: Partially

Table 3-6Current Formulations and Port Operator Objectives $ervice Priority Arrangements

(Continued)

Park & Cost From

Kim, Delayed X(P) X X(P) X(P)
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2002,

Departures

Briano et and Cost of
al., 2005 Non-
Preferred
Berth

Kim,
2003

Handling
Cost
Penalties
from Berthing
Prior or After
ETA
Penalties
from Late
Departures
Total Numbel
of Crane
Setup

Park and

Berth Service
Time

Makespan &
“Quay Crane
Time

X(P)

X(P)

X

X X(I) X(P)

X(P)
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Delayed
Departures

Waiting and

Cost

I: Indirectly, P: Partially

Table 3-7Proposed Formulations and Port Operator ObjectinelsService Priority

Arrangements

Minimize Late

Departures,

Maximize Early and  X(P)
Timely Departures

(Time Window)

Minimize Late
Berthing, Maximize
Early and Timely X(P) X X(P) X(P)

Minimize Late
Departures/Berthin
Maximize Early and
Timely
Departures/Berthing
(Time Window)

X(P) X(P) X(P) X X(P) X X(1)
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Multi-Objective X(D) X(D)  X(D) X(D) XD) XD)  X(D)

Guarantee
Performance X(P) X(P) X X

I: Indirectly, P: Partially, D: Depending on Objeets




51

4. BASIC CONCEPTS OF MULTI-OBJECTIVE AND STOCHASTI C OPTIMIZATION

The BAP belongs to the class of scheduling problemsch include a wide variety of problems
such as machine scheduling, events schedulingpmees scheduling and others. Many real-
world scheduling problems are multi-objective ammtbastic by nature (Ehrgott & Gandibleux,
2000; Pinedo 2002). This chapter will provide thasib concepts of Multi-Objective and
Stochastic Optimization without going into a depthalysis. The information provided though,
will be enough for the reader to follow up on thgplication of these methods to the BAP

formulation and solution approaches presented merei

Multi-Objective Optimization

Basic Concepts

The general N-objective optimization problem (orgeneral the multi-objective optimization
problem - MOO) can be defined in the following wag stated by Coello Coello, 1999): Find the
vector of decision variables (also called solutigaj x;, X, ..... , %] that optimizes (minimizes or
maximizes) a vector objective functioR(X)=[f 1(X), f(X),....... , §(X)] , subject to m inequality
constraintsGi(X), i=(1,2,3....,m)and k equality constraintdj(X), j=(1,2,3,....,k)If the variables

x are discrete, then the problem is called Multi€alive Combinatorial Optimization (MOCO)

problem.

Due to the conflicting nature of the objectivesitisually the case that there is no unique optimal
solution. It is possible to improve separatelyeatst one (but not all) objective function of a give

solution but this will usually causes the declinofgts remaining objective functions (or at least
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one of them). Thus, several different solutionsld¢dae thought of as “optimal”, because no one

dominates the other.

The main difficulty with the multi-objective appraalies in the comparison of the solutions. By
definition one solution outperforms another if tvelues of all objective functions of the first
solution are better than the second. In other wifrd§ and X, are two solutions theR(X,)

dominated=(X,) if and only if f,(X,)3 fi(X,)," i, and f (X,) fi(X,),for at least oné. Such

solutions are called “Pareto-optimal”. If no sotutican dominate the given solution then it can

be considered to be optimal.

All Pareto-optimal solutions compose a certain loaug between the space, which contains
dominated solutions and the space where no sokigaist. This boundary is called the trade-off
surface or Pareto-front. It can be depicted agfasel in the N-dimensional space, where N is the
number of objectives. An example of the Paretotfrmna bi-objective space is presented as a
curve in figure 4-1. For a more analytical desdoiptof these concepts the reader is referred to:

Jaszkiewicz (2001), and Van Veldhuizen and Lam2600).
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Figure 4-1 Pareto Optimal Solutions and Paretor@gdtiFront (Curve)

(Source: Mehnen, 2005)

Modeling Techniques

There are two general approaches to multiple-objeatptimization, in terms of the solution
approach. One is to combine the individual objecfunctions into a single composite function
or move all but one objective to the constraint fethe former case, determination of a single
objective is possible with methods such as utilitgory, weighted sum method, etc., but the
problem complexity and accuracy lies in the progpalection of the weights or utility functions
that are used to depict the decision-maker’'s peefegs. In practice, it can be very difficult to
precisely and accurately select these weights, Bresomeone familiar with the problem domain
(Coello Coello, 2000). In the latter case, the peobis moving objectives to the constraint set, a
constraining value must be established for eacthe$e former objectives and can be rather

arbitrary. In both cases, an optimization methodil@eturn a single solution rather than a set of
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solutions that can be examined for trade-offs. thi reason, decision-makers often prefer a set

of good solutions considering the multiple objeesiywhich leads to the second approach.

The second general approach is to determine ameeRreto optimal solution set or a
representative subset. While moving from one Pagelation to another, there is always a certain
amount of sacrifice in one objective(s) to achiaveertain amount of gain in the other(s). Pareto
optimal solution sets are often preferred to sirggleitions because they can be practical when
considering real-life problems since the final ol of the decision maker is always a trade-off.
Pareto optimal sets can be of varied sizes, busitesof the Pareto set usually increases with the

increase in the number of objectives.

MOO Algorithms

The use of exact methods to solve MOO problemsnis tonsuming and the most common
approach for solving MOO problems is the use of tMDbjective Metaheuristics (MOM) (as

stated by many researchers; see for example: Kenak 2006; Silva et al. 2004).

Furthermore according to Coello Coello (2008euristics (and metaheuristics) seem particularly
suitable to solve multi-objective optimization pleims, because they are less subject to the shape
or continuity of the Pareto front (e.g., they casily deal with discontinuous or concave Pareto
fronts), whereas this is a real concern for mathigalaprogramming techniques. Additionally,
many current heuristics (e.g., evolutionary aldons, particle swarm optimization, etc.) are
population-based, which means that we can aim terg¢e several elements of the Pareto

optimal set in a single run.

" Online document <http://www.cs.cinvestav.mx/~EVO®Idownload/tutorial-sis-2003.pdf>
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The most popular MOM are: evolutionary algorithnSAf, and alternative multi-objective
metaheuristics as shown in table 4-1, such as: salawnch, simulated annealing, and memetic
algorithms that explicitly use local search or idigrhood exploration (instead of genetic
operators) to drive the search or as an importamponent of the process (hybrid approaches).
Jones et al. (2002) reported that 90% of the aghemto multi-objective optimization aimed to
approximate the true Pareto front for the undedyproblem and 70% of all meta-heuristics

approaches were based on evolutionary approaches.

Evolutionary Algorithms

There is no universally accepted definition of eximnary algorithm, but in the strict sense an
evolutionary algorithm handles a population of sols, evolves this population by means of
cooperation (recombination) and self-adaptationtétion) and uses a coded representation of
solutions (Hertz and Klober, 2000). EAs such aslii@n Strategies and Genetic Algorithms
(GA) have become the method of choice for optinMraproblems that are too complex to be
solved using deterministic techniques such as fipgagramming or gradient methods. EAs
require little knowledge about the problem beintysd, and they are easy to implement, robust,
and inherently parallel. To solve a certain optitian problem, it is enough to require that one is
able to evaluate the objective (cost) function)d given set of input parameters. Because of
their universality, ease of implementation, andd#s for parallel computing, EAs often take less
time to find the optimal solution than gradient hwts. However, most real-world problems
involve simultaneous optimization of several oftenutually concurrent objectives. Multi-
objective EAs are able to find optimal trade-ofisorder to get the Pareto optimal set (Taboada,

2007).
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Table 4-1 Alternative Multi-Objective Metaheurisic

Method Author

Simulated Annealing for Multi-objective Optimizatio Serafini, 1992
Multi-objective Tabu Search (MOTS) Hansen, 1997

Pareto Simulated Annealing (PSA) Czyzak & Jaszkieyd 998
Multi-objective Simulated Annealing (MOSA) Ulunget, al., 1999
Memetic Pareto Archived Evolutionary Strategy (M3 Knowles & Cornel, 2000
Genetic Local Search (GLS) Jaszkiewicz, 2002
Simulated Annealing for Multi-objective Optimizatio Suppapitnarm et al., 2000
Other Multi-objective Metaheuristics Using Locala®eh

GAs have been the most popular heuristic approachuiti-objective design and optimization
problems. Following the success of metaheuristitssingle objective optimization many
researchers proposed the use of GA based metatie=uis MOO. Since the proposition of the
Vector Evaluated Genetic Algorithm (Schaffer, 19858ignificant number of different multiple

objective metaheuristics have been proposed.

According to Konak et al. (2005) several GA basedtirobjective evolutionary algorithms have
been developed. In their paper they present thékmeivn and credible algorithms that have
been used in many applications along with theiraativges and disadvantages. These algorithms
are: Multi-objective Genetic Algorithm (MOGA) (Foesa and Fleming, 1993), Niched Pareto
Genetic Algorithm (NPGA) (Horn et al. 1994), Randdeighted Genetic Algorithm (RWGA)
(Murata et al., 1996), Nondominated Sorting Gendiigorithm (NSGA) (Srinivas and Deb,
1995), Strength Pareto Evolutionary Algorithm (SBEZitler and Thiele, 1999), Improved
SPEA (SPEAZ2) (Zitler et al. 2001), Pareto- Archiedblution Strategy (PAES) (Knowles and
Corne, 2000), Pareto Envelope-based Selection Allgor(PESA) (Corne et al. 2000), Region-
based Selection in Evolutionary Multi-objective @mtation (PESA-II) (Corne et al. 2001), Fast
Nondominated Sorting Genetic Algorithm (NSGA-Il) €D et al. 2002), Multi-objective

Evolutionary Algorithm (MEA) (Sarker et al. 200)ljicro-GA (Coello and Pulido, 2001), Rank-
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Density Based Genetic Algorithm (RDGA) (Lu and Y&®03), and Dynamic Multi-objective

Evolutionary Algorithm (DMOEA) (Yen and Lu, 2003).

Performance Measures

Of the various multi-objective EAs available, we amterested in the ones that provide the best
approximation for a given problem. For this reasoomparative studies have been conducted
(Zitler and Thiele, 1998; Van Veldhuizen and Lam@@00; Tan et al, 2001) aiming at revealing
strengths and weaknesses of certain approaches a&tehtifying the most promising algorithms.
This in turn, led to the question of how to compdre performance (quality of outcome and

computational resources) of multi-objective optieni

It is difficult to define appropriate quality measa for approximations of the Pareto-optimal
front, and as a consequence graphical plots hage bsed to compare the outcomes of multi-
objective EAs until recently, as Van Veldhuizen99®) points out, but several studies can be
found in the literature that address the probleroahparing approximations of the trade-off in a
guantitative manner. Most popular are the unanjigumeasures, i.e., the measure assigns each
approximation set a number that reflects a cemaiality aspect, and usually a combination of
them is used, e.g., (Van Veldhuizen and Lamont028&lyanmoy et al. 2000). Other methods
are based on binary quality measures, which asgignbers to pairs of approximation sets, e.g.,

(Zitler and Thiele, 1998; Hansen and Jaszkiewi688].

A third, and conceptually different approach, ig #@ttainment function approach (Grunert da
Fonsecaet al. 2001), which consists of estimating thebgatuility of attaining arbitrary goals in

objective space from multiple approximation setesfite of this variety, it has remained unclear
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up to now how the different measures are relatedaith other and what their advantages and

disadvantages are. Recently, a few studies havedageed out to clarify this situation.

Hansen and Jaszkiewicz (1998) studied and propam®é quality measures that induce a linear
ordering on the space of possible approximationstherbasis of assumptions about the decision
maker’'s preferences. They first introduced thrdéedint out-performance” relations for multi-
objective optimizers and then investigated whetlie® measures under consideration are
compliant with these relations. The basic questibey considered was: whenever an
approximation is better than another according mo “autperformance” relation, does the

comparison method also evaluate the former as limgttgr (or at least not worse) than the latter?

Knowles et al. (2000) compared the information jted by different assessment techniques on
two database management applications. Later, Kreo(@@02) and Knowles and Corne (2002)
discussed and contrasted several commonly usedtygquaasures in the light of Hansen and
Jaszkiewicz’'s approach as well as according torathteria such as, e.g., sensitivity to scaling.
They showed that about one third of the investigjateality measures are not compliant with any

of the “outperformance” relations introduced by Ham and Jaszkiewicz (1998).

Zitler et al. (2002) showed that: a) there exigisunary quality measure that is able to indicate
whether an approximation A is better than an appmakon B, b) the above statement even holds
if we consider a finite combination of unary mea&syrc) most existing quality measures that
have been proposed to indicate that A is better Bhat best allow to infer that A is not worse
than B, d) unary measures being able to detectAhatbetter than B exist, but their use is in
general restricted, and e) binary quality measorescome the limitations of unary measures

and, if properly designed, are capable of indicptitether A is better than B.
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Multi-Objective Scheduling Literature

Literature on multi-objective scheduling is vastxcEllent reviews of the principles of
evolutionary multi-objective optimization and retelevelopments are provided by Coello et al.
(2002), Van Valdhuizen and Lamont (2000), and Tabog007). We will focus the literature
review on multi-objective machine scheduling refapgoblems, since the discrete BAP belongs
to this general category of problems. The intecesgader is referred to Silva et al. (2004), and
the excellent online directory of multi-objectiv@timization by Coelld for a more analytical
literature review and an introduction to multi-otifjge metaheuristics for scheduling. Murata et
al. (1996) proposed a multi-objective genetic dtpon (MOGA) and applied it to flow-shop
scheduling. Hyun et al. (1998) developed a newctiele scheme in GA, and showed its
superiority for multi-objective scheduling probleimmsassembly lines. Also using GAs, Chen et
al. (1996) studied the radiological worker allooatiproblem in which multiple constraints are
considered. Constraints are classified as hard smfd Each solution must satisfy the hard
constraints and performance of the solution is messEby the violation of soft constraints. The
GA approach was compared with conventional optitiopa techniqgues such as goal
programming and simplex method, and the GA showgesor results. Other heuristics such as

simulated annealing and tabu search have alsodtedied.

Marett and Wright (1996) compared these two hdasdor flow shop scheduling problems with
multiple objectives. The performance of the methads compared as the number of objectives
increased. Simulated annealing was found to perfoetter than tabu search as the number of
objectives increased. They also mentioned thatctimaplexity of combinatorial problems is
strongly influenced by the type of objectives adlwe their number. Yim and Lee (1996) used

Petri nets and heuristic search to solve multi-ctbje scheduling for flexible manufacturing

8 http://www.lania.mx/~ccoello/EMOO/
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systems. Pareto optimal solutions were obtainethimymizing the weighted summation of the
multiple objectives. Jaszkiewicz (1997) combined glenetic algorithm with simulated annealing
to solve a nurse-scheduling problem. The maxinmopatif multiple objectives is represented by a
single scalar function, which is the summation ddcalar multiplying the difference between
current and previous solutions for each objecfiee scalar is greater than one if the objective is
improved or less than one if no improvement is thuBohran et al. (2003) proposed a two-stage
multi-population genetic algorithm (MPGA) to solparallel machine scheduling problems with
multiple objectives. Their approach is applied argilel machine scheduling problems with two
objectives: makespan and total weighted tarding®§T). The MPGA was compared with a
benchmark method, the multi-objective genetic atgor (MOGA), and showed better results for
all of the objectives over a wide range of probleffise MPGA was extended to scheduling
problems with three objectives: makespan, TWT, &tdl weighted completion times (TWC),
for which also performed better than MOGA. Changlet(2005) introduced a two-phase sub
population genetic algorithm to solve the paraftelchine-scheduling problem. The two-phase
sub-population genetic algorithm was applied towadhe parallel machine-scheduling problems
in testing of the efficiency and efficacy. Experima results were reported and the superiority of
this approach was discussed. Taboada & Coit (20@6d)Taboada et al. (2007) formulated the
redundancy allocation problem (RAP) as a multi-otj@ problem with the system reliability to
be maximized, and cost and weight of the systemetoninimized. The Pareto-optimal set was
initially obtained using the fast elitist nondomi@d sorting genetic algorithm (NSGA-II)
originally proposed by Deb et al. (2002). Then, texision-making stage was performed by
applying two proposed pruning methods to reducesite of the Pareto-optimal set and obtain a
smaller representation of the multi-objective dasigpace. For those studies, NSGA-Il was
effective. However, NSGA-Il is a general multi otiige evolutionary algorithm (MOEA) for
any type of problem. This implies that the problearmulation needs to be properly adapted.

Moreover, in these studies, the final Pareto fimoind by NSGA-II contained many repeated
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solutions, so in order to obtain a large numbesadaifitions; several runs had to be performed.
Thus, if a decision-maker must solve many similakPRproblems, then a custom MOEA,

especially designed to solve multi-objective desadjncation problems, offers great advantage.
MOEA-DAP, (Taboada & Coit, 2006b) was developecdaress these difficulties. MOEA-DAP

is a multiple objective evolutionary algorithm speally designed to solve system design
allocation problems. Thus, this new approach hassthength of a problem-oriented technique.
MOEA-DAP, mainly differs from other MOEAs in thefg of crossover operation performed. In
this step, several offspring are created throughisparent recombination. Thus, the mating pool
contains a great amount of diversity of solutiohlis disruptive nature of the proposed type of
crossover, subsystem rotation crossover (SURC)eagpto encourage the exploration of the

search space.

Genetic Algorithms

A GA is a programming technique that mimics biot@di evolution as a problem-solving
strategy. The input to the GA is a set of potendialutions, encoded in some fashion (usually
binary form), and a metric called a fitness funetibat allows each candidate to be quantitatively
evaluated. These candidates may be solutions glieamlvn to work, with the aim of the GA
being to improve them, but more often they are gEee at random. GAs are called blind"

because they have no knowledge of the problem.

The members of this initial population are eacHat&d for their fithess or goodness in solving
the problem. If the problem is to maximize a fuantf(x) over some range [a,b] of real numbers
and if f(x) is nonnegative over the range, then f{&n be used as the fitness of the bit string

encoding the value x.
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From the initial population of chromosomes, a nespuation is generated using three genetic
operators: reproduction, crossover, and mutatiohes& are modeled on their biological

counterparts. With probabilities proportional teeithfitness, members of the population are
selected for the new population. This means tha pool of randomly generated candidates,
some of which will not work at all, are not deletmad in a random manner are kept and allowed

to reproduce.

Pairs of chromosomes in the new population arearhas random to exchange genetic material,
their bits, in a mating operation called crossoviis produces two new chromosomes that
replace the parents. Randomly chosen bits in ttepiafig are flipped, a progress called mutation.
The new population generated with these operagmiaices the old population. The algorithm has
performed one generation and then repeats for spmeified number of additional generations.
The population evolves, containing more and morghllgi fit chromosomes. When the

convergence criterion is reached, such as no gignif further increase in the average fitness of
the population, the best chromosome produced iodiet into the search space point it

represents.

The expectation is that the average fithess ofptipulation will increase each round, and so by
repeating this process for hundreds or thousandswfds, very good solutions to the problem

can be discovered.

GAs differ substantially from more traditional sefarand optimization methods. The most
significant differences of GAs to traditional sdamsnd optimization methods (Pohleheim, 2004)
are:

a) They search a population of points in parafiet,just a single point
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b) They do not require derivative information onet auxiliary knowledge; only the objective
function and corresponding fitness levels influetieedirections of search

c) They use probabilistic transition rules, notedetinistic ones

d) They are generally more straightforward to appBcause no restrictions for the definition
of the objective function exist

e) They can provide a number of potential solutitma given prob-lem. The final choice is
left to the user. (Thus, in cases where the pdsatiquroblem does not have one individual
solution, for example a family of pareto-optimalugimns, as in the case of multi-objective
optimization and scheduling problems, then the @i@hary algorithm is potentially useful

for identifying these alternative solutions simakausly).

Genetic algorithms are used in search and optilnizasuch as finding the maximum of a
function over some domain space. In contrast terdgnistic methods like hill climbing or brute
force complete enumeration, genetic algorithmsrasdomization. Points in the domain space of
the search, usually real numbers over some rangeneoded as bit strings, called chromosomes.
Each bit position in the string is called a genbrdhosomes may also be composed over some
other alphabet than {0,1}, such as integers or neshbers, particularly if the search domain is

multidimensional.

Implementation Issues

Although genetic algorithms have proven to be ditieht and powerful tool certain limitations

exist in their application. The most important omesording to Marczyk, (200%44re:

® http://www.talkorigins.org/fags/genalg/genalg.html



64

a) Representation According to there are two main ways of achievihgs. The most
common approach is to define individuals as listswambers (binary-valued, integer-

valued, or real-valued) where each number represeme aspect of a candidate solution

b) Fitness function Defining the fitness function so that higher éiss is attainable and
actually does equate to a better solution for tlkergproblem. If the fitness function is
chosen poorly or defined imprecisely, the genelgodthm may be unable to find a
solution to the problem, or may end up solving wheng problem (e.g. Graham-Rowe,

2002)

c) Other ParametersDefining the other parameters of a GA (the sizthefpopulation, the
rate of mutation and crossover, the type and stheafyselection) must be also chosen
with care. If the population size is too small, thenetic algorithm may not explore
enough of the solution space to consistently finddysolutions. If the rate of genetic
change is too high or the selection scheme is chpserly, beneficial schema may be
disrupted and the population may enter error catpke, changing too fast for selection

to ever bring about convergence

d) Premature convergencdf an individual that is more fit than most of itcompetitors
emerges early on in the course of the run, it negyaduce so abundantly that it drives
down the population's diversity too soon, leadimg &lgorithm to converge on the local
optimum that that individual represents rather tls@arching the fitness landscape
thoroughly enough to find the global optimum (Fetred993; Mitchell, 1996). This is an
especially common problem in small populations, reheven chance variations in

reproduction rate may cause one genotype to becmmenant over others. The most
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common methods implemented by GA researchers tovddathis problem is ranking,

scaling and tournament selection

Finally, several researchers (Holland, 1992; ForE393; Haupt and Haupt 1998) advise against
using genetic algorithms on analytically solvabl®ljjems. It is not that genetic algorithms
cannot find good solutions to such problems; itisrely that traditional analytic methods take
much less time and computational effort than GAd, amlike GAs, are usually mathematically

guaranteed to deliver the one exact solution.

Stochastic Scheduling

In many real world problems (and in scheduling) pineblem data cannot be known accurately
due to insufficient information about the futuretorthe uncertainty in the technical parameters.
Stochastic programming is an approach to modeletipesblems by taking these uncertainties
into account (Birge & Louveaux, 1997). In stochasicheduling some of the parameters of the
system are random variables (arrival time, proogssime, machine up-time, etc). Models can be
classified into three broad categories: a) modeitsstheduling a batch of stochastic jobs, b)
multi-armed bandit models, and ¢) models for scliegujueuing systems. The BAP studied in

this dissertation belongs to the category (a) adnjth the random variable being the arrival

time (also known as the release date of a job).

Regarding methods and techniques, it seems famytdhat no unified and practical approach has
been developed to design and analyze (nearly) aptpolicies across the range of stochastic
scheduling models. Although many such models carcdst in the framework of dynamic

programming, straightforward application of thishieique has not proven very effective, due to

the large (or infinite) size of the resulting forlations (curse of dimensionality). Most results
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have been instead obtained through problem-speaifjioments, which often do not extend to

seemingly related models.

Decision-making under uncertainty has traditiondtigused on a priori methods such as two-
stage stochastic optimization and Markov DecisioocBsses. The methods have been successful
for a variety of applications. However, for largeulti-stage, and highly dynamic applications,
these methods face the so-called curse of dimealiipas they search for optimal solutions in
large search spaces. In conclusion there are #ppeaches for dealing with uncertainty of the
release dates: a) Stochastic optimization, b) @nlatheduling, and c) Online stochastic

scheduling. All three approaches are describelddmext subsections.

Stochastic Optimization

Stochastic optimization models have been formula®adnulti-stage optimization models, with
the majority focusing on two-stage problems. Wisiliecessful solutions to these problems give
us some insight to the random structure of the diasnahey do not translate easily into efficient
solutions to the related online problems and mdsthe times suffer from computational

overload.

The two-stage stochastic programming approacheisitnplest one, where the decision variables
are partitioned into two sets. The first-stage afales are decided before the realization of the
uncertain parameters, while the second stage aurse variables are determined once the
stochastic parameters are revealed. In order todeethe policy utilizes the complete information

contained in the partial schedule up to tigas well as information about unscheduled jobs tha

arrive before the end of tinte For the large, multi-stage, and highly dynamiplaations these
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methods face the so-called curse of dimensionaitthey search for optimal policies in gigantic

search spaces (Van Hentenryck et al., 2005; Shai@b)

Integer/Mixed-integer stochastic programs, like tmiesmulations of the BAP (table 3-2), are
particularly challenging. Even though the probleam de reduced to a specially structured IP if
the probability distribution of the uncertain paegters is finite, traditional integer-programming
techniques are not suited to exploit the speciablgm structure and deal with the problem of

dimensionality.

An alternative approach, in particular for problemish large sample spaces, is to use Monte-
Carlo sampling to generate i.i.d realizations apgraximate the problem a with a sample
average. Shapiro (2005) has shown that the Sampiiegage Approximation method (Kleywegt
et al. 2001) cannot be extended efficiently to mstdge stochastic optimization problems since
the number of required samples method must groyaementially with the number of iterations,
which is typically large or infinite in online appations. Combinatorial solutions suffer from
similar exponential explosion. BAP formulationsfappresented in the literature are already very
computationally expensive. Thus applying this apptoto the BAP problem with stochastic

release dates would not be the right direction.

For a survey of stochastic scheduling problems wordegow et al (2005) and Dean (2005).

There is also an online database by Dr. Weber B.RB43papers related to stochastic scheduling

at: http://www.statslab.cam.ac.uk/~rrwl/stoc_scimeidx.html.

Online scheduling
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Online algorithms have been used to deal with dfmeral issues. In an online scheduling
problem data is a sequence of requests, whichemealed over time and the algorithm must
decide which request to process next. Online algms are inherently dynamic in nature but they
typically ignore historical data or data about soaiethe future requests. Thus they are not
suitable for the BAP with stochastic release daf@sline algorithms deal with operational

decisions. For related literature consult Van Hentek and Bent (2006).

Online Stochastic Scheduling (OSS)

It is only until recently that OSS was recognizedrésearchers (Elilyi and Kocer, 2005). Online
stochastic optimization in general combines therlatvo approaches, discussed earlier, to
decision making under uncertainty and exploitsrthespective strengths, by focusing on the data
and uncertainty of the problem instance online asithg stochastic information to make more
informed decisions, while gradually reducing theemainty over time. The uncertainty in online
stochastic combinatorial optimization concerns ribguests: which requests come and when. In
the next subsection we present the offline, onkamel stochastic online general formulations. The

former two are presented to make the concept sifaigvard.

Bent and Van Hentenryck (2004) consider online Isistic optimization problems where time

constraints severely limit the number of offlindiopzations, which can be performed at decision
time and/or in between decisions. They propose\elnapproach, which combines the salient
features of the earlier approaches: the evaluaiogvery decision on all samples (expectation)
and the ability to avoid distributing the samplesoag decisions (consensus). The key idea
underlying the algorithm is to approximate the etgsf a decision d. The regret algorithm is

evaluated on two fundamentally different applicasioonline packet scheduling in networks and

online multiple vehicle-routing with time window®n both applications, it produces significant
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benefits over prior approaches. They assumed ththajha black-box simulator could model the
arrival process of the tasks. They had no knowleafgine distribution inside the simulator but
could obtain samples. This has the disadvantagaobfbeing able to weight each sampled

scenario.

Chou et al. (2005) consider a model that combires features of stochastic and online
scheduling. They prove asymptotic optimality of tlemline weighted shortest expected
processing time rule for the single machine probéessuming that the weights and the processing

times can be bounded from above and below by cotssta

Megow et al. (2005) consider a non-preemptive, letic parallel machine-scheduling model
with the goal to minimize the weighted completiamés of jobs. They propose a simple online
scheduling policy for the first model, and proveperformance guarantee that matches the
currently best-known performance guarantee fortgistic parallel machine scheduling. For the
more general model with job release dates theyweean analogous result, and for distributed
processing times they improve upon the previousdgt tknown performance guarantee for

stochastic parallel machine scheduling.

Elilyi and Kocer (2005) focus on a model that gafiees stochastic scheduling and online
scheduling. They assume that the jobs arrive onldrece a job arrives, its expected processing
time is revealed, but the actual processing timegaies unknown until the job is completed. They
model the problem and identify application aredseyralso review some solution procedures that

can be utilized for the optimal solution of thisptem.

Shultz (2005) consider the stochastic identicahjpelrmachine scheduling problem and its online

extension, when the objective is to minimize thpeeted total weighted completion time of a set
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of jobs that are released over time. They give oanided as well as deterministic online and
offline algorithms that have the best known perfance guarantees in either setting, online or
offline and deterministic or randomized. Their atséd is based on a novel linear programming

relaxation for stochastic scheduling problems taatt be solved online.

Van Hentenryck et al. (2005) in a tutorial, consideline stochastic combinatorial optimization
problems where uncertainties, i.e., which requesime and when, are characterized by
distributions that can be sampled and where tinmstcaints severely limit the number of offline
optimizations which can be performed at decisianetiand/or in between decisions. They
propose online stochastic algorithms that combime frameworks of online and stochastic

optimization.

Wu et al (2005) examine whether Bent and Van Hextdn(2004) combination methods can be
adapted to scheduling with uncertain release datesto determine how effective and significant
the methods are. In particular, they develop foaysvof applying Bent and Van Hentenryck
(2004) consensus approach to the problem. In aagithey propose a probabilistic sampling
method to handle lead-time uncertainty. That i/ thge this knowledge to select samples, and
associate with them weights corresponding to tpeabability. This method allows them to

generate fewer samples and have a more accurat pfddture scenarios.

In October 2006 Van Hentenryck and Bent publishéda@k on Online Stochastic Combinatorial

Optimization. The book presents a novel framewark dnline stochastic optimization, and

address decision-making under uncertainty and tiomstraints.

Online Stochastic Optimization Modeling Issues
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One of the critical issues faced by online stodhadgorithms is how to use time wisely in time
constraint problems, since only a few samples @awdtimized within the time constraints. In
other words, the algorithm must find an effectiypm@ach to optimize the samples and extract
information from their solutions in order to makem informed decisions. When time is not a
factor, a traditional approach (Chang, Givan, & @4,02000) consists of using an expectation
algorithm, which works as follow: at tinte generate a number of sampfssolve each sample

once per available requesby serving att, and select the schedule with the best requesalbve

Unfortunately, the expectation approach does ndibpa well under time constraints, since it
must distribute its available optimizations acraedisrequests. This issue was recognized and
addressed in (Bent & Van Hentenryck 2004a) whetersensus approach was proposed. Its key
idea was to solve as many samples as possibleoaseldct the request, which is chosen most
often in the sample solutions at timeThe consensus approach was shown to outperfaegm th
expectation method on online packet scheduling utidee constraints. However, as decision
time increases the quality of the consensus apprieaels off and is eventually outperformed by
the expectation method. It is also possible to tojbe the expectation and consensus approaches
but the resulting method loses some of the benefitsonsensus under strict time constraints

(Bent & Van Hentenryck 2004b)

Algorithms

There are three major approached to solving OSBlgres and they all focus on how to choose

the best scenario at time t. These approachesBarg and Van Hentenryck, 2004b; Wu et al.,

2005):
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Expectation: Obtain samples of possible future arrival scevsricompute schedules for al

samples and choose schedule with the best revBedt (esults, too much time)

Consensus:Obtain samples of possible future arrival scesarammpute schedules for all the
samples and chooses the decision appearing themibst optimal schedules of the samples. It is

faster than expectation since it requires a fewenlyver of optimizations.

Regret It is similar to consensus, but as well as conmguthe optimal schedules also computes
the loss of reward for each other possible decjsém then chooses the decision that has the
lowest total loss. This method approaches the fowne (expectation) when there is sufficient

computation time and the later one (consensus) whenis limited.

We will present the general formulation of thesprapches as presented by various Researches

(Chang, Givan, & Chong 2000; Bent and Van Henterg004; Wu et al. 2005).

Expectation (E): This is the primary method proposed by (Changa@Giv& Chong 2000) for
online packet scheduling. Informally speaking, thethod generates future requests by sampling
and evaluates each available request against #mapls. A simple implementation can be

specified as follows:
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(Source: Bent and Van Hentenryck, 2004b)
Where: (r): weight (usually representing gain if requeserved) R: number of request§):

number of offline optimizations at each stép): reward function

Lines 2-3 initialize the evaluation functidfj) for each request The algorithm then generates a
number of samples for future requests (line 4).dawrh such sample, the algorithm computes the
setR of all available and sampled requests at tinfllme 5). The algorithm then considers each
available requestsuccessively (line 6), it implicitly schedulest timet, and applies an optimal
offline algorithm (line 7) using@\{r} and the time horizon. The evaluation of requestupdated

in line 8 by incrementing it with its weight andetiscore of the corresponding optimal offline
solution. All scenarios are evaluated for all aailié requests and the algorithm then returns the

request with the highest evaluation.

Consensus (C):This algorithm uses stochastic information in adamental different way.
Algorithm C was introduced in (Bent & Van Hentenky®004a) as an abstraction of the sampling
method used in online vehicle routing (Bent & Vaeritenryck 2001). Instead of evaluating each
possible request at timewith respect to each sample, algorithm C exedie®ffline algorithm

on the available and sampled requests and to ¢bemtumber of times a request is scheduled at
time t in each resulting solution. Then the requétt the highest count is selected. Algorithm C

can be specified as follows:
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(Source: Bent and Van Hentenryck, 2004b)

At line 5 the offline algorithm is called with alailable and sampled requests and a time horizon
starting at and line 6 which increments the number of timegiest {) is scheduled first. Line 7
simply returns the request with the largest codgorithm C has several appealing features.
First, it does not partition the available sampbetween the requests, which is a significant
advantage when the number of samples is small andien the number of requests is large.

Second, it avoids the conceptual complexity of tdgimg symmetric or dominated requests.

Regret (R): The key insight in Algorithm R is the recognitiomat, in many applications, it is
possible to estimate the local loss of a requestimet quickly. In other words, once the optimal
solution of a scenario is computed, it is easydmpute the local loss of all the requests, thus
approximating E with one optimization. This intoii can be formalized using the concept of

regret.

(Source: Van Hentenryck et al., 2005)
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Intuitively, the complexity requirement states ttteg computation of the |R| regrets does not take
more time than the optimization. Regrets typicaljst in practical applications. Algorithm R

works as follows:

(Source: Van Hentenryck et al., 2005)

Its basic organization follows algorithm C. Howemvaistead of assigning some credit only to the
request selected at tintefor a given scenarig, algorithm R (lines 8-9) uses the regrets to
compute, for each available request r, an appraxamaf the best solution afservingr at time
t, i.e., w(g)- REGRETSt- L, Ar,g). Hence every available request is given an evialudor
every scenario for the cost of a single offlineimitation. Observe that algorithm R performs T

offline optimizations at time
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5. DISCRETE DYNAMIC BERTH ALLOCATION

Introduction

As discussed in the previous sections containeritet operators seek for the efficient BSPs that
may reduce vessels turnaround time, increase potighput, leading to higher revenues and
increased competitiveness of the port, while atstimae time keeping the customers’ satisfaction
at a desired level (usually set by contractual egents). In practice vessels arrive at the port
over a period of time and normally request staffirdsh of service within a time window. These

time windows are usually determined through cottr@cagreements between the port operator
and the carrier, in terms of time of start or finisf service after the vessel's arrival at the port

Based on these contractual agreements, servingsgelvprior or within these time windows

provides certain premiums to the port operator &/B#rvice past these time window results in
penalties. Port operators usually assign vessddsrths with the objective to minimize/maximize

these costs/ premiums. Furthermore, port operai@snterested in retaining satisfactory levels
of service, (usually in terms of the total servizewait time), for all the customers, since this is
usually a measure for negotiating future contrdcigeeements with new customers. Finally one
of the main port operator concerns is the mininmabf the cost associated with the vessels’

handling operations (Vis and de Koster, 2003; Stegret al., 2004).

In light of the above discussion this chapter pnes@ generic formulation for the discrete BAP
that addresses these issues. Our research devateBSPs presented so far in the literature by
incorporating several parameters of the BAP inclgdininimization of the total (un)weighted

service time, costs from vessel waiting, cost freessels delayed departures, premiums from



77

early and timely departures, minimization of thendiing time. Furthermore, and to our

knowledge, this is the first time that the BAP dgleessed in a time window setup.

This chapter is organized as follows. The nextisedaliscusses the problem formulation, while
the third section presents how the general modebeareduced to BSPs found in the literature.
The fourth section introduces a Genetic Algoritht@Aj based heuristic solution algorithm. The
fifth section provides a number of computationadmples to evaluate the performance of the

heuristic and the last section concludes the chapte

Problem Formulation

To formulate the generic discrete and dynamic BGBDBAP) we define the following:

[ = a,...... 1) I B set of berths,

] = (1,....7) | Vsetof vessels,

k = (1,....NH I O set of service orders,

S = Time when berth becomes available for the first time in the currplanning

horizon,

A = Arrival time of vessej,

G = Handling time of vess¢lat berth,

Yik = Idle time of berth before vessdlis serviced as thié” vessel,

Xkt = 1 if vessej serviced at berthas thek™" vessel and departs or berths before the
requested time window and zero otherwise,

Xika = 1 if vesse] serviced at berth as thek™ vessel and departs or berths after the
requested time window and zero otherwise,

Xika = 1 if if vesse| serviced at berthas thek™ vessel and departs or berths within the

requested time window and zero otherwise,
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an = Hourly earliness departure premium for vegsel

ap = Hourly earliness berthing premium for vessel

a3 = Hourly cost of wait time of vessgl

b = Hourly lateness departure penalty for vegsel

b2 = Hourly lateness berthing penalty for vegsel

9 = Hourly timely departure premium for vesgel

9 = Hourly timely berthing premium for vesgel

tj1 = Requested early departure/berthing time of vgssel

ti = Requested late departure/berthing time of vgssel

WST = 1 if vessejf sets a request for early, timely and late depam@uotherwisg
HC = 1 if handling cost is considered and O otherwise,

CG = Handling cost of vessgbkerviced at berth

DTy = Difference of early/late actual and requestedsfifstart time of vessglserviced

at berthi as thek" vessel,

DTy = max(0, DTy, ),
DTy = min(0, DT, ),
DTTyx = Difference of early timely requested and altimaely finish/start time of vességl

serviced at berthas thek" vessel.
R = 0 if vessel cannot be serviced at beitdue to physical or technical restrictions

and 1 otherwise

The formulation of the GDDBAP is as follows:
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[GDDBAP]:

{a,WST +a,;,(1- WST)} DTijI; +{b,WST +b,,(1- WST)} DT,

I I

3
. -{g;WST +g,,L- WST)}DTT, - HC,CC, ( Xj) (Eq. 5-1a)
min- ro1 ,
i ok + )
: - aj3WS-|j—{(tj1_ Aj - Cij)xijkl- DTijk +(tj2 - Aj - Cij)xijkz - DTijk
+(tj1' Aj - Cij)xijka' DTTijk}

or
{(a;, +a;5)WST +a,,(d- WST)} DTij; +
{( bjl + ajs)WS-IE +bjz(1' WS-II)} DTij;< +
3
. , ( Eq. 5-1b
min- {(g,, - a;5)WST +g,,1- WST)}DTT;, - HC,CC; ( Xy, ) - (Eq )
ik r=t1
aj3WS-I}{(tj1 - Aj - Cij)xijkl +(t12 - Aj - Cij)xijkz
+(t, - A - Cy)Xyal
- 3 -
Subject to Xije =1" ] (Eq. 5-2)
i ok or=l
3 ~ ~
Xijkr £1"il B,kl O (Eq. 5-3)
iivel
3 3 R R R
Cimn Ximnr ¥ Yimn) t ¥y - (A - S) Xy 20"l B, jI T,kl O (Eq. 5-4)
mtjiTh<d O r=1 r=1
3
yijk £ M Xijkl’ ," |T B,JT T,kT O (Eq 5-5)
r=1
X 3
DTy £(tj - WSTC; - S) X - Vi - - Cin Xigne ¥ Yinn) +alphg, , (Eq. 5-6)
jimi T h<il O r=1
“il B,j1 T,k O
3
i X 2 Cin X FYimn) + Vi *WSTCy +S) X0 - M Q- Xyp)
j17Vijka i T hed O o jki h jk ] ijk1 ijk1 , (Eq 5_7)

"il B,jTI T,k O
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3

DT, £ (tjz -WST *C; - S|)Xijk2 = VYik - Cimn Xinr T Yimn) T M (- Xijkz) (Eq. 5-8)
jtml T h<k O r=1 ! '
“il B,jl T,kl O
3
t, X, £ Cin Xipne F Yimn) + Vi T WSTC; + S) Xy,
e jrmi T h<ik O o " " ik e, (Eq. 5-9)
il B,jlI T,kT O
alpha, £M (1- X;,)," i1 B,jT T,ki O (Eg. 5-10)
3
alpharjk £ (Cim ximhr + yimh)+ yijk’" IT Bv JT Tva O, (Eq 5-11)
i*m Th<k O r=1
DTy £MX,,,"il B,jI T,ki O, (Eq. 5-12)
3
t Xis £ Cin Xige  Yimn) + Vi FWSTCy +S) X5 +M (1~ Xj5),
e jtm T h<d O r=1 " " " P " " ’ (Eq 5-13)
“il B,jl T,kl O
3
ti, Xis ® S Cin Xigne T Yin) T Yie TWSTCy +S) X5 - ML~ Xy5), (Eq. 5-14)
itm Th<l O r=1 ! '
"il B jl T,kl O
3
DT-IT £t Xi- - (Cim xim r + yim )
ik j17Vik3 [T el O - h h , (Eq 5_15)
= VYik - (WSTCij +S.)Xijk3+M(l' Xijks)’" if B’jT Tkl O
Xijw EMR T B,jT T (Eg. 5-16)

ko
Xijear Xizr Xiea1 {02}, Yy 3 0, DTy £0,DTy * 0,DTT, £0, alphg, * 0,Misa

large positive number

In the objective function (5-1a and 5-1b) the fittstee terms correspond to the total cost from
delayed departures/berthing, the total premiumsnfearly departures/berthing, and the total
premium from timely departures/berthing (dependow if WST=1 or 0). The fourth term

corresponds to the total handling cost, while t#st term to the total wait time cost. We should

note that waiting costs are only applicable to aungrs with early and late departure requests.
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Further explanations for the objective function arevided later in this section. Constraints (5-2)
ensure that vessels must be serviced once; camsti®-3) ensure that each berth services one
vessel at a time; and constraints (5-4) and (535)ee that each vessel is serviced after its drriva
Constraints (5-6) and (5-15) enforce the declanatibthe decision and auxiliary variables. In the
model waiting time costs are only applied to custsrequesting a departure window deadline,
since waiting time costs for customers requestingtaat service time window are already
considered. This formulation provides the port apar to differentiate between the customers
that request berthing from departure. Thus smalleit hourly costs will be assigned to the
customers requesting time window service for depas since wait time is of no interest.
Further explanations are needed for the constrédn@ through (5-15) that estimate the start or
completion time of each vessel. Equations (5-16fpree different physical and technical

constrains that do not allow the berthing of certaissels at certain berths (i.e. berth depth).

If Xix1= Xik= Xis=0 then from (5-6), (5-10), (5-11) and (5-1&p obtairDTij; =0, from (5-7)
we obtainDT;, =0, and from (5-15) we obtain th&TTj=0; while constraints (5-7), (5-9), (5-

13), and (5-14) are satisfied. Furthermore the tirai¢ term in the objective function is reduced

to zero.

On the other hand i, = Xjxs=0, then due to (2Xj.=1 and:

3
DTij:; £- Cin Xine * Yinn) = Vi) +alphg (Eq. 5-17)

i*m T h<k O r=1
3

alphg, £ Cn Xie T Yimn) + Vi (Eq. 5-18)

jtm T h<k O r=1

DT, £0,"il B,jl T,k O (Eq. 5-19)
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DT, £ (tjz - Cin Xiwtr ¥ Vi) - Yik - (WS-Ij—* G *+S )

j*tm Th<k O r=1

DTT, £M

This means that:

3

alphg, = Cin Xiowe T Yieun) T Vi »

jtm T h<d O r=1

3
DTiji( = (tj2 - G Xignr + Yin) - Vi - (\NTS * Cij +§))£0,

j*m T h<k O r=1

If: Xio= Xixs=0, thenXj,=1. This means that:

DT, £M,"il B,jI T,ki O,

alphg, £0,

3

DTij; £(t,- G Xione ¥ Yinn) = Vi - WST*C; +3)) +alphg,

jtmi T h<k O r=1

DTT, £M

This means that:

alphg, =0,

DT, =0,

(Eq. 5-20)

(Eq. 5-21)

(Eq. 5-22)

(Eq. 5-23)

(Eq. 5-24)

(Eq. 5-25)

(Eq. 5-26)

(Eq. 5-27)

(Eq. 5-28)

(Eq. 5-29)

(Eq. 5-30)

(Eq. 5-31)
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3
DTij:; = (tjl - Cin Xie ¥ Yinn) - Yi - (\NS-II *C; +S )30 (Eq. 5-32)

jtm Th<d O r=1

DTT, =0, (Eq. 5-33)

Finally if: Xj1= Xjx2=0, thenXjs=1 and as shown previous&:‘l’ij; =0, DT =0. Furthermore:

3
DTTy =t;; X3 - Cin Xinne T Yinn) = Yix - WSTC; +S) X5 5 (Eq. 5-34)

j*m Th<k O r=1

Model Adaptation to Different Berth Allocation Policies

Depending on the port operators’ goals and cust@gerements, the GDDBAP formulation can

produce a number of different BSPs. In this secti@nwill show how the GDDBAP can be

reformulated to portray BSPs found in the literatufhe BSPs discussed herein are: a) The

minimum total weighted service time (Imai et abDP3), b) The minimum total service time (Imai
et al., 2001), ¢) The minimum total service timeaatexternal berth (Imai et al., 2006b), d) The
minimum cost berth allocation (Hansen et al., 20@&fd e) The minimum cost with time

windows and service deadlines.

Minimum total weighted service time (MTWST) BSP

Proposition 5-t [GDDBAP] can be reduced to a linear formulationtieé BSP of Imai et al.

(2003).
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Proof: Assume that the time window is reduced to a pamtiine:t;, =t,, = A;," j. Also

assume thata, =a,, =a,; =9,, =9,, =b,, =0,b,, =b, >0, WST =1, and CH, =0,"j.

The formulation is then reduced to a model thak mvihimize the total weighted service time.
Minimum total service time (MTST) BSP
Proposition 5-11: [GDDBAP] is the general case of the BSP of Imaale{2001).

Proof: Since the formulation of Imai et al. (2001) ispesial case of the formulation of Imai et

al. (2003), it follows that the formulation Imaia&t (2001) is a special case of GDDBAP.
Minimum Cost Berth Allocation (MCBA) BSP
Proposition 5-111: [GDDBAP] can be reduced to the BSP of Hansen €2807).

Proof: Assume all vessels have not arrived at the porbreewe start the berth allocation.
Assume that the requested departure time is redtaedpoint in timetj;=t;,=t;, and that all

vessels only set early and late departure requ@¥BT=1, a,=b;,=0, g, =9,,=0). The

GDDBAP can be reduced to:

2
(ajl +aj3)DTij:; +(b11 +aj3)DTij;< - HCjCCij( Xijkr)
min- r=1 , (Eq 5‘35)
Pk - ajs{(t,‘ - Aj - Cij)

r=1,

Xijkr}
2

Subject to ’ Xie =1" (Eqg. 5-36)

i ok or=1
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2

X EL" il Bkl O (Eq. 5-37)
vel
3 3 ) R R

Cin Xigwr T Yin) F Vi - (A - S) Xy, 2 0"il BjI T,kl O (Eq. 5-38)
mt jiTh<d O r=1 r=1

3
Ve EM X" il B, jT T kT O (Eq. 5-39)

r=1

. 2
DTy £(tj; - WSTCy - S) X - Vi - o Cin i Ximhe + Yinn) + 2P, (Eq. 5-40)
jtm T h<k O r=1
il B,jT T,kl O -
2
1 Xia 3 Cin X * Yin) + Yix TWSTC; +S) Xy, - M- Xjp)
e jrmi Thed O r=l " " . h et k17, (Eq. 5-41)
il B,jl T,k O
2

t, Xy, £ Cin Xigne Vi) + Vi (G +S)Xj2," il B,j1 T,k 0 (Eq.5-42)

j*m Th<k O r=1 ,
alpha, £M @- Xj,,)," il B,jl T,kl O (Eq. 5-43)

2 ~ ~ ~
alphqik £ (Cim ximhr + yimh) + yijk 1" | I B, J | T,kl O ) (Eq 5'44)
it Th<k O r=1

Xir Xipe2 1 {02}, Yy 2 0, DT, £0,DT, 2 0, alphg, 2 0, Mis a large positive number

The first term of the objective function minimizése total cost from delayed departures and
maximizes the total premiums from early departuth® second term minimizes the total
handling cost, and the third term the total waitawgt. This formulation will produce the same

results as with the BSP formulation of Hansen et24107).

Minimum external berth total service time (MEBTSBSP

Proposition 5-IV:[GDDBAP] is a general case of the BSP of Imai e{2006b).
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Proof: Assume all vessels have not arrived at the pororbefve start the berth allocation.
Assume that the time window is reduced to a pairttme, where;;=0, t,=L;+A; whereL, is the
limit of waiting time of vessej. Also assume thad;= a;,=a;3=0, b;= b=0, WST=0, HC;=0,

9, =0and g;, =- C, whereQ is the external berth similar to Imai et al (20p6bhe fourth

index in the decision variablegK(I=1, 2, 3) can be ignored and the GDDBAP is themiced to:

i J k
Subiject to: Xy =1" (Eq. 5-46)
ik
Xy £1" i1 B,kT U, (Eq. 5-47)
v
(Cin Ximn + Yinn) Yik - (Aj - S|)Xijk 30"l ijT T,k O, (Eq. 5-48)
mt jiTh<d O
L Xk 2 (CinXimn + Yimn) * Vi (S - A) X - M- X))
0 i o) ® Y+ (57 )X *, (Eq. 5-49)

"it QT B,jlI T,kl O

This formulation will produce the same results déhwhe BSP formulation of Imai et al. (2006b).

The proof for the static case is similar and thonitted.

Minimum Cost with Time Window Service Deadlines (M@/SD) BSP

Proposition 5-V:[GDDBAP] is a general case of the Minimum Cost wiilme Window Service

Deadlines BSP.
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Proof: Assume all vessels have not arrived at the pororbefve start the berth allocation.
Assume thatg,=a;3=0, b,=0, WST=1, and CH=0. The GDDBAP is then reduced to the BSP

with minimum cost with time window service deadbne

Solution Procedure

A heuristic was developed for the GDDBAP, sinces ihot likely that an efficient exact solution
procedure exists, leading to an optimal solutiopatynomially bounded computation time. The
procedure we employ for the heuristic is the Genglgorithms (GAs). GAs based heuristics are
widely applied for plenty of practical problemsrofthematical programming, which are difficult
to solve in terms of polynomially bounded compuatitime. They work on the principle of
evolving a population of trial solutions over a riaem of iterations, to adapt them to the fitness

landscape expressed in the objective function (dap2007).

Representation

Although binary-coded GAs are commonly used, theran increasing interest in alternative
encoding strategies, such as integer and real-dakpmresentations. For some problem domains,
like scheduling problems, it can be argued thatlimary representation is, in fact, deceptive
since it obscures the nature of the search (Tab@®@4). Thus, in this chapter we use an integer
chromosomal representation in order to exploitult the characteristics of the problem. For
instance, consider the following example of 5 visss@md 2 berths (fig.5-1). For this problem
each chromosome will have ten cells {chromosomgtten (Number of Berths) x (Number of

Customers)}.
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Figure 5-1 Chromosome Representation

The first 5 cells represent the 5 possible sereiders in Berthl and the last 5 cells the 5 possibl
service orders in Berth 2. In this assignment Vie3sé, and 5 are serviced at Berth 1 as the first,
second and third vessel respectively, and VesseldlL3 are serviced in Berth 2 as the first an

second vessel respectively. No vessel will be sedvafter vessel 5 and three (zero value of cell).

Genetic Operations: Crossover & Mutation

Crossover can combine information from two paremtsile mutation can introduce new
information. Crossover is exploratieit makes a big jump to an area somewhere “in betWw
two parent areas (Eiben, and Smith, 2003). On therdand mutation is exploitatiVeit creates
random diversions staying near or not in the afdheoparent, depending on the mutation (insert,
swap, inversion, and scramble). There is a debatheuse of crossover and mutation and which
approach is the best to use. The main conclusidhaisthe performance of either mutation or
crossover is highly affected by the problems’ domain our problem, at each generation the
crossover operation will generate a large numbenfefisible children in terms of constraint set
(2) (i.e., a child chromosome may not serviceladl vessels while other vessels are served twice).
In the BAP literature simple heuristics were applie eliminate this problem (Nishimura 2001;
Imai 2003; Imai 2006a; 2006b). After running seVveamputational examples with and without

crossover results showed that problems solved witissover returned worse solutions than

10 Exploration: Discovering promising areas in the search spazegaining information on the problem
11 Exploitation: Optimizing within a promising area, i.e. usingormation



89

problems using only mutation and were computatignalore expensive. We do acknowledge
that complex crossover techniques (partially mappesssover, cycle crossover, and edge
recombination) could eliminate the former insufficcy of the crossover operation. This could
result though to a significant increase of the comafional time and was not implemented within

this chapter.

Instead of crossover we experimented with fouredéht types of mutation: insert, swap,
inversion, and scramble mutations (fig.5-2) thatrevapplied to all the chromosomes at each
generation. Each of the four types of mutationsitsaswn characteristics in terms of preserving
the order and adjacency information. Insert mutapacks two cells at random and moves the
second one to follow the first, thus preserving mafsthe order and adjacency information.
Inversion mutation picks two cells at random andnthnverts the substring between them
preserving most adjacency information (only break® links) but disrupting the order

information. Swap mutation picks two cells from hAramosome and swaps their positions
preserving most of the adjacency information busruting the order. Finally, scramble

scrambles the position of a subset of cells ofctiremosome.

Computational experiments showed that when all foutations were applied the GA algorithm
converged at a faster rate and there was signfficaprovement in the value of the objective
function. Thus in our algorithm we employed all faautation types but as the GA progressed
the weight was shifted from the Inverse and Scraminlitation to the Insert and Swap mutation.
In this way in the beginning of the search the Istigrperforms larggumpsand as the objective

function improves the heuristic searches in angasing smaller region.
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Insert Mutation

Inverse Mutation

Swap Mutation

Scramble Mutation

Figure 5-2 Example of the Mutation Operation

Technical/Physical Restrictions

In a mutated chromosome, all vessels cannot bacsenat the assigned berth, because of the
physical or technical conditions. After the mutatedividuals have been created and before the
fitness function evaluation if a vessel does nasBaconstraint (Eq. 5-16), then the chromosome

is assigned a very large function value.

Fitness/Selection

The GDDBAP is a minimization problem; thus the derathe objective function value is, the
higher the fitness value must be. The best solstlikely have an extremely good fithess value
among solutions obtained where there is no siguitidifference between them in the objective
function value. In order to avoid trapping the aition at local optimal locations of the solution

space and instead of using a fitness function miffethen the objective function (as in Nishimura
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et al., 2001; and Imai et al., 2003), we use ttjeatlve function as the fitness function and select
a number of medium and low fitness solutions prdistically among the children of the next

generation. As discussed previously all the chramms from the previous generation are
candidates for the next generation. Several seleaigorithms exist in the literature (Taboada,
2007). One of the most common one is the so-catlateétte wheel selection (Goldberg, 1989),

which is implemented in this chapter as follows:

Roulette Wheel Selection Algorithm

Step 0:Create an empty s&tto hold the individuals that will proceed
as the next generation

Step 1:Normalize the fitness values of the individualarhbsome¥.
Normalization means multiplying the fitness valudeeach
individual by a fixed number, so that the sum offihess
values equals 1.

Step 2: The population is sorted by descending fitnessesl

Step 3: Accumulated normalized fitness values are compijted
accumulated fitness value of an individual is thef its
own fitness value plus the fitness values of adl pinevious
individuals).

Step 4:Choose a random valibetween 0 and 1

Step 5: Select the first individual whose accumulated reliped
value is greater thaR and add it t&.

Step 6:1f |§ is equal to the initial population Stop else rgatbthat

individual and go to Step 1.

2|n our heuristic the number of chromosomes thegrehe wheel selection is 4 times larger theroites
that will move on as the next generation
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The procedure of the GA heuristic algorithm is matl in figure 5-3.

Figure 5-3 GA Heuristic

Applicability of GA Heuristic to different BSP

The proposed heuristic is applicable to any ofrddiced GDDBAP BSPs, with the exception of
the MEBTST BSP. This is due to the infeasibilityedo constraints (Eq. 5-49). Due to the nature
of the problem there is no intelligent way of usimgitation or crossover operations without

obtaining a large number of infeasible solutione tluconstraint set (Eq. 5-49). In order to avoid
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this issue and when solving the MEBTST problem wappse the following small neighborhood

variable search heuristic:

Heuristic 5-1: Small neighborhood variable searcletristic
Step 0 Randomly move all the vessels assigned to thereat berth to
the other internal berths
Step 1:Select the first internal berth
Step 2 Reassign the vessels on the selected internathendxternal
berth using a branch and bound algorithm
Step 3 If the previous berth was the last internal bertid else one

select the next berth and move to step 1

This heuristic is applied to each chromosome dfftermutation operations are finished.

Computational Examples

Dataset Description

Problems used in the experiments were generateldmay but systematically. When creating the
experimental data the focus was in creating dagabet would be computationally challenging.
We developed forty problem sets where vessels emeed with various handling volumes at a
multi-user container terminal (MUT) with five anelnt berths, with two planning horizons of one
and two weeks (Tables 5-1 and 5-2). The randomrgénae process was based on data from two
real world container terminals with similar ternlimgerating systems (one in Europe and one in

the US). The range of variables and parametersidenesl were chosen according to the data
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obtained from these two container terminals. Vebaedling volumes ranged from 500 to 4,000
(TEU) based on a uniform distribution pattern. Traadling time of a vessel was dependent on
the berth assigned, and was a function of the nurabéhe cranes that may be assigned. We
assume that 2 to 3 cranes operate on small sizexkige(<2000 TEU), 3 to 4 cranes on medium
sized vessels (<3000 TEU), and 4-6 on large motkssels (<4000 TEU). The average crane
productivity was assumed to be 25 TEU/hour. Therapy® vessels per berth per week
equivalence (VBWE) were 5 while the minimum, maximand average handling time was 10,
51, and 32 hours. Testing instances with lower VBW¥#erages would not be provide

representative evaluation of the heuristics peréoroe.

The minimum handling time was calculated by diviithe handling volume by the average
productivity of a crane multiplied by the numberarhnes operates on the vessel. The average
handling time per berth was 24 hours. Random nusnivere used to generate the handling time
of vessels at the other berths, always in relatahe berth with the minimum handling time. The
association of the minimum time with the berth va#és0 made randomly. Availability of berths
was calculated using a uniform probability with animum of zero and a maximum of 10 hours.
One of the most crucial issues in these experimeatsthe selection of the interarrival vessel
distribution. We assumed that vessels arrived ramgavith a minimum of 20 and a maximum of
25 vessels per week. Arrival times of vessels witihie week period were randomly generated.
Figure 5-4 shows the vessel arrival distributiothia form of a bar chart. Weights for the vessels

were also randomly generated.

Experimental Results

The solution procedure was coded in Scilab 4.1 DelaPrecision 670 Workstation, 2GB RAM.

The number of individuals was set to 50 and the bemof generations was set to 50. The
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solution procedure was evaluated using two basi®B3) Minimum Total Service Time
(MTST), and b) Minimum Total Weighted Service Tin{ITWST). The focus of the

experiments was on the optimality, robustness amdpatational efficiency of the proposed
algorithm. The initial schedule for each experimesis obtained in a random fashion without

using any rules since this would bias results.

Figure 5-4 Vessel Arrivals

Table 5-3 shows the minimum and maximum valuesefabjective function for the MTST BSP

weekly schedule for both berth capacities obtaiinenh five trials using the GA algorithm and



96

the optimal values obtained using CPLEX 9.0. Far ttbst of the problems optimal solutions

were not obtained even after several hours of céations.

Table 5-1 Dataset Information One Week Time Horizon

FIVE BERTHS Ten Berths
Instance| Vessels Volume Vessels| Volume
(TEU) (TEU)
1 22 41,734 68 159,362
2 21 55,212 58 118,981
3 21 50,938 53 115,885
4 20 37,405 63 140,794
5 23 55,120 64 145,334
6 23 50,877 60 135,584
7 20 46,970 55 136,616
8 21 45,252 64 141,741
9 22 50,957 61 147,214
10 20 44,752 61 143,987
Average| 21 47,922 61 138,550
Annual 554 1,245,964 1,578 3,602,295

For each one of the eighty problems, the ratichefrange of the objective function values for 5

trials (different starting populations) to the Iast/®bjective value, which can be expressed by the

highest objective value during the five trials ded by the lowest objective value during the five

trials, was calculated. Results are reported inrégs-4. The first ten sets of bars of each sub-

graph show the range of objective values for edahrpng horizon (one and two weeks) and

berth capacity (five and ten berths) for each dnthe ten test instances. The last (eleventh bar

set) shows the average range of objective valuesal/the test instances. The average ratio was

less than 10%, and thus we can conclude that sesbitained from the GA algorithm are

consistent for different trials.
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The computational time was also measured duringetfsuation of the heuristic. Figure 5-5
shows the average computational time for the fivalst for each of the 20 instances of the

problem.

Table 5-2 Dataset Information Two Weeks Time Hamizo

Five Berths Ten Berths
Instance| VesselsVolume Vessels| Volume
(TEV) (TEU)

1 47 107,490 115 263,108
2 42 96,000 106 237,840
3 44 104,113 124 274,267
4 44 100,231 118 259,327
5 44 105,915 124 300,197
6 40 84,162 137 307,169
7 47 103,250 116 281,467
8 49 95,117 131 306,686
9 44 83,792 105 241,788
10 41 93,250 138 318,769
Average| 44 97,332 121 279,062
Annual | 1,149 2,530,632 3,156 7,255,607

Table 5-3 Objective function values (in hours) tiee MTST BSP

Planning Horizon of One Week
Five Berths Ten Berths
Problem| % Difference CLEX-GA| % Difference CLEX-GA
Instance (Min and Max) (Min and Max)
1 0% 0% 0% 6%
2 0% 0% 0% 0%
3 0% 2% 0% 3%
4 0% 1% 0% 3%
5 0% 0% 0% 3%
6 0% 1% 0% 2%
7 0% 1% 0% 7%
8 0% 2% 0% 2%
9 0% 1% 0% 2%
10 0% 1% 0% 2%
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Figure 5-5 Range of the objective function values

We also evaluated the iterations that are requoethe algorithm to stabilize. Figure 5-6 shows
the typical pattern of the progress of the objexfiynction value at each step for the smallest and
largest instance of all the instances used. Werebdhe algorithm stabilizes after 200 iterations.
The maximum time per iteration was less then 1 gecwe increase the population convergence

of the algorithm is established in fewer generatiand the progression is smoother.
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Figure 5-6 Computational Time

Conclusions

In this chapter we presented a generic linear Mitilation for the discrete and dynamic BAP.
Several proofs of how the model can be reformul&gabrtray a number of different BSPs were
presented. A GA based heuristic solution approdwt tan be applied to each of the
reformulations was also presented. The proposedistieuwas tested for robustness and
computational efficiency using two existing BSPshwpromising results. In the next three

chapters we will present three additional heursstiz the BAP.
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Figure 5-7 MTST BSP Progression of Objective Funtialue (Smallest and Largest

Problem Instance)
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6 AN OPTIMIZATION BASED GENETIC ALGORITHM HEURISTIC  FOR THE

BERTH ALLOCATION PROBLEM

Introduction

Genetic algorithm based heuristics are very popagaa BAP solution approach. In this chapter
we develop an optimization based genetic algori{@A) heuristic to solve medium to large
instances of the BAP. The heuristic can be appitethe discrete and dynamic BAP, and is
independent of the objective function. We also @nés heuristic for the single BAP that we use
in the GA heuristic. For the purposes of this cbhapte study the discrete and dynamic berth
allocation problem with the objective to minimizeettotal weighted service time (WBAP) and
deal with calling vessels with various service fties. We use the linear MIP model formulation
presented in the previous chapter and conduct noahexxperiments to evaluate the efficiency

and effectiveness of the proposed method.

The remainder of this chapter is organized as WadloSection 2 presents the mathematical
formulation. Section 3 describes a solution proced$ection 4 reports the numerical results.

Section 5 concludes the chapter.

Problem Formulation

The berth scheduling policy modeled in this chapteis originally proposed by Imai et al.
(2003). In the same manner the BAP presented sndmapter assumes only one long wharf at a
multi-user terminal. The wharf is divided into sealeberths and we obtain a set of assignments

of vessels to those berths. We also assume thhtheath can service one vessel at a time and



102

that there are no physical and/or technical rdgtris such as the relationship between vessel
draft and effective quay water depth. Furthermasewith most papers presented in the literature,
the vessel handling time is assumed dependenteonetih where it is assigned, since it is related

to the time of the landside transfer operations.

In formulating the WBAP we define the following vables:i=(1,...... 1) | B set of berths,
ji=(1,....T) I V set of vesselsk=(1,.....,T) | O set of service orderg=time wheni berth
becomes idle=arrival time,C;= handling time of vessglat berthi, Xj=1 if vessej is serviced
at berthi with (k-1) successorsy;= idle time of berthi before vessej is serviced as the"

vessel. The problem was initially formulated by ine& al. (2003) is shown in equations 6-1

through 6-4.
(WBAP): {Cij +S - A+ CimXimh}anijk + (v, wx yimh)aj , (6-1)
ik mtj b k ik mtj b k
Subiject to: Xy =1" iTVv, (6-2)
iiBkU
X £1," il Bkl O, (6-3)
v
(Cins X + Yimn) + Yij - (A - S)X 2 0" il B,j,I T,kl O, (6-4)
mt iTh<d O

X 1 {01}, Integer, Yy 3 0 Positive (decision variables), wheges a weight for vessel j.

The objective function seeks to minimize the wedghservice time. Constraints (6-2) ensure that
vessels must be serviced once; constraints (6aB)etdich berth services one vessel at a time; and
constraints (6-4) that each vessel is serviced dftearrival. For further explanations of the
objective function and the constraints the readaeferred to Imai et al. (2003). The resulting

formulation is non-linear (MINLP). MINLP problemseaprecisely so difficult to solve, because
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they combine all the difficulties of both of theiubclasses: the combinatorial nature of mixed
integer programs (MIP) and the difficulty in solgimonconvex (and even convex) nonlinear
programs (NLP). Because subclasses MIP and NLRraong the class of theoretically difficult
problems (NP-complete), so it is not surprising s$@ving MINLP can be very challenging. Imai
et al. (2003) used a Lagrangian relaxation of ttudblem in order to look into the availability of
the subgradient optimization. Although the subgeatlimethod was adaptable to this problem,
enormous computational effort was expected becdliserelaxed problem was a quadratic
assignment problem which was NP-hard. Thereforey thventually employed a GA based
heuristic algorithm, an approach widely utilized é@mplicated combinatorial problems.

In this chapter the problem is reformulated asiedr problem. The new formulation is shown in

equations 6-5 through 6-9.

(LWBAP): min - a,DT, , (6-5)
ik
Subject ta Xy =1", (6-6)
ik
X £1"i1 Bkl O, (6-7)
v
(Cin Xign + yimh)+yijk - (Aj - Sl)xijk 30"il B, J’T Tkl O , (6-8)
mt I Th<k O
DTy EM@- Xy )- (G +S - A) Xy - Vi - (Cin Xiun) - Yimho
jtm Th<ki O jtnh T h<k O ) (6'9)
“il B,j1 T,kl O

XijkT {01}, Integer,y;, * 0,DT,, £0,whereDT,, is an auxiliary variable.

A proof that this model is the linear version ofainet al. (2003) was provided in Chapter

5.



104

Solution Procedure

A heuristic was developed for the LWBAP, sincesitit likely that an efficient exact solution
procedure exists, leading an optimal solution ihypomially bounded computation time. The
procedure we employ for the heuristic is the Genatgorithms (GAs). Unlike the previous GA
heuristic presented in chapter this heuristic ipooates an optimization component in the
heuristics procedure that aims to improve the perémce of the heuristic in terms of the final
value of the objective function. Further detail arevided in the following subsections of this

chapter.

Representation

The same representation as with the heuristic ep@r 5 is applicable and was implemented.

Genetic Operations: Crossover & Mutation

The genetic operations described in Chapter 5@pkcable and were implemented.

Optimization Component

After the completion of the genetic operations ¢saver and mutation) a typical genetic

algorithm procedure would continue with the setactf the next generation. Instead of moving

directly to that step we embed an optimization @etapplied at each iteration of the genetic

algorithm and immediately after the genetic operati are completed but before the next

generation selection. The optimization procedumpiglied as follows:
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Heuristic 6-1: GA Optimization Procedure

STEP 1: Select randomly a number of individudfs from the total
individualsA (|F| £|A).

STEP 2:Create an empty sBtto hold the new individuals.

STEP 3: Select the next individual frof and remove it fronf.

STEP 4: At each berth of this individual reassign the e¢ssising a
branch and bound algorithm with the objective ofiimizing
the total weighted service time.

STEP 5:1f F is empty end else go to Step 3.

Single Berth Optimization

The implementation of the optimization componentdrees time consuming if the number of
customers (at each berth) exceeds 5. In order pooive the computational time performance we
propose the following heuristic for the single bemssignment. In the appendix we prove that this

heuristic will give the optimal value if all weighte equal to 1.

Heuristic 6-2: Rolling Time Window Heurist for th&ingle Berth BAP
STEP Q Sort vessels in ascending order of arrival ti&dS,, S,
...... » & S S whereA<Ani
STEP 1 Select the first n vesselé={S;, S, ...... , &, with arrival
times smaller than the service time of the largessel if it
was assigned first. If the number of vessels setbate less
than 6 then continue to add vessels in order avaruntil

IN|=6.
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STEP 2 Solve LWBAP usindN vessels

STEP 3 Check how many vessels froh have finished service
before the arrival of vessgl,;. Name this sdiD.

STEP 4 If ND=empty then include il all vessels that arrive before
the finish of the earliest “job” fronN and go to step 2 else
remove fromN vessels ilND and adds,,; toN

STEP 5 Go to step 2 untiN=ND= empty set

Fitness/Selection

The fithess/selection criterion applied in this ptest was presented in Chapter 5.

Computational Experiments

Dataset Description

The same dataset as with Chapter 5 was used fapthputational experiments of this chapter.

Experimental Results

The solution procedure was coded in SciLali*oh a Toshiba Dual Core Intel T2250 with 2GB
of RAM. For the OBGA the population size was sef@ the number of generations to 40 and
the size of the individuals to be optimized witleiach generation equal to 5. In order to evaluate

the effectiveness of the optimization componenttloé heuristic we performed the same

13 Copyright © 1989-2005. INRIA ENPC <www.scilab.org>
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experiments excluding the optimization step (froownon we will refer to this heuristic as

GAH). The population size was set to 20 and theeggions to 2000.

For each dataset, the ratio of the range of objectialues for 5 trials (different starting
populations) to the lowest objective value, whielm be expressed by the highest objective value
during the five trials divided by the lowest objgetvalue during the five trials, was calculated.
Results are reported in figure 6-1 for the twenf§edent datasets. It is obvious that the GAH
algorithm is producing results with a higher vadat(less consistent) then the OBGA heuristic.
For both heuristics the average ratio was less &%, and thus we can conclude that the

objective function values obtained are consistendifferent trials.

Figure 6-2 shows the actual values (minimum andimam value obtained from the 5 trials) of
the objective function for each dataset from bathristics (OBGA and GAH) while figure 6-3
the computational time. We can conclude that themén heuristic (OBGA) constantly
outperforms the later (GAH) in terms of the minimamd maximum values, especially as the

size of the problem increases, while the computatitime increase is negligible.

Finally we performed a sensitivity analysis for th@ameters of the OBGA and GA heuristic
(population, generations, chromosomes to be optithiat each generation). We performed
different experiments using the datasets deschibédarying the population size and generations
and population size to be optimized at each geiogrdor the OBGA. Both heuristics were

proven to be robust exhibiting small changes in vhdance and the minimum value of the

objective function.
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One Week Period Max and Min Objective Function \éaliRatios
Max and Min Objective Function Value Ratio
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g
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2%

Figure 6-1 Average ratio of the range of objectiaties to the lowest objective value for
different problem sizes (OBGA)
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Figure 6-2 Minimum and Maximum Values of the Objeet-unction (GA and OBGA)
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Conclusions

In this chapter we presented an optimization baSedetic Algorithm heuristic for the Berth
Allocation Problem (BAP). The proposed approach ewsluated by considering the problem of
allocation space at a berth for vessels with theattve of minimizing the total weighted service

time of all the vessels. The problem was formulaea linear mixed integer program.

The proposed heuristic was evaluated against a &#&dheuristic that lacked the optimization
component. In order to decrease the computatiome of the former heuristic, two additional
heuristics were proposed for the single BAP. Comipomal experiments showed that the
proposed algorithm outperformed the GA heuristakilag the optimization component in terms
of the variance and minimum values of the objecfivection, especially as the problem size
increased. On the other hand, the increase in catipoal complexity due to the optimization
component was negligible, and ranged between &@os&c for the one week planning horizon

and 124 to 180 sec for the two week planning horizo
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7 ATWO OPT BASED HEURISTIC FOR THE DISCRETE AND DY NAMIC BERTH

SCHEDULING WITH TIME WINDOWS

Introduction

In this chapter we deal with the discrete and dyindrarth allocation with time windows. Berth
allocation aims to optimally schedule and assigssets to berthing areas along a quay at a
container terminalThe vessels arrive at the port over a period oetand normally request
service and departure within a specified time wimddhese time windows are determined
through contractual agreements between the portatpeand the carrier. Based on these
contractual agreements different vessels receiferent service priorities varying from berthing
upon arrival, to guaranteed service time window/anduaranteed service productivity. In this
chapter the discrete and dynamic BAP (DDBAP) isnfidiated as a linear MIP problem with the
objective to simultaneously minimize the port opersi costs from vessel late departures
(departure past the time window) and maximize the pperators’ premiums from vessel early

and timely departures (departure before and witinénrequested time window).

Although the discrete and dynamic berth allocaposblem has been studied extensively (Imai et
al. 2001, 2003, 2007a, 2007b; Imai et al. 2003hiNisira et al., 2001; Cordeau et al., 2005;
Hansen et al.,, 2007) all the formulations presersgedar in the literature reduced the time
window to a point in time while leading to NP-handNP-complete problems that required some
sort of (meta)heuristic algorithm to be applieddaromputationally acceptable solution time. All
of these (meta)heuristic did not guarantee convexgeof the algorithm to a local or global

optimal.
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In this chapter we present a 2-opt heuristic fa tiscrete and dynamic berth allocation that
guarantees local optimality for the final soluti@dur work extends and integrates the work of
several previous authors and the work presentdtidrprevious chapters, but results in a new
heuristic that guarantees local optimality for thecrete and dynamic berth allocation problem.
We illustrate the behavior and efficiency of thegwsed heuristic using the minimum cost with
time windows BSP using real world size instancéde fiext section provides a formal description
of the problem. The third section presents theikgarand in the fourth section the heuristic is

evaluated. The last section concludes the chapter.

Problem Description

Assume that a set of vessels are set to arrivepatrtaover a period of time and serviced at a
number of berths. We assume that each berth catiehane vessel at a time regardless of the
vessel's size and that there are no physical/teahmestrictions. The vessel's handling time is
assumed to be dependent only on the berth whendlibe assigned and on the number of
containers to be loaded/unloaded. To formulate MXBAP we define the followingi =
a,...... 1) 1 B set of berthsj = (1,.....T) | V set of vesselk = (1,....T) | O set of service
orders,§ = Time when berth becomes available for the first time in the currplanning
horizon, A; =Arrival time of vesse|, C;j = Handling time of vessglat berthi, y = idle time of
berthi before vessglis serviced as thig" vessel X, = 1 if vessej serviced at berthas thek™
vessel and departs or berths before the requestedwindow and zero otherwis.= 1 if
vessejj serviced at berthas thek" vessel and departs or berths after the requestedaindow
and zero otherwises= 1 if if vesselj serviced at berthas thek" vessel and departs or berths
within the requested time window and zero otherpage Hourly earliness departure premium

for vesselj, a,= Hourly earliness berthing premium for vesgdd; = Hourly lateness departure
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penalty for vessej, b, = Hourly lateness berthing penalty for vesgel;,= Hourly timely

departure premium for vessgl g,,= Hourly timely berthing premium for vessgl tj; =

Requested early departure/berthing time of vessgl= Requested late departure/berthing time
of vessef, WS 1 if vesse| sets a request for early, timely and late depar@uotherwiseD Ty

= Difference of early/late actual and requestedsfifstart time of vesseglserviced at berthas
the k" vesselDT, =max(0, DT, ), DT, =min(0, DT, ), DTTy=Difference of early timely

requested and actual timely finish/start time afsedj serviced at berthas thek™ vesselR;=0

if vesselj cannot be serviced at bertdue to physical or technical restrictions andHeowise

The DDBAP can be formulated as follows:

{a,WST +a,,(1- WST)}DT,

min- +{b WST +b,,(1- WST)}DT;, ), (Eq. 7-1)
+{911WS-|J'- + gjz (1' WS-D} DTTijk

3

Subject to: X =1" 1], (Eq. 7-2)
i Kk r=1
3 ~ ~
Xy £L"i1 B,kT O (Eq. 7-3)
ivel
3 3 ~ - -
Cin Xionr ¥ Yimn) t ¥y - (A - S) Xy 20711 B, jI T,kl O (Eq. 7-4)
mtjiTh<d O r=1 r=1
3
yx EM Xy ,"il B,jT T ki O (Eq. 7-5)
r=1
. 3
DT £ (tj, - WSTC; - S) Xjpa = Vi - o Cin Xigne * Yinn) +alphgy , (Eq. 7-6)
jtm T h<k O r=1

il B,j1 T,kl O
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3
T Xijer 8 Cin  Xir T Yin) T Vige TWSTC;) +S) Xy - ML~ Xiyey)
j17VNijk1 [1ni T hel O - jk h ik i) jk1 jk1 , (Eq 7_7)
“il B,j1 T,kl O
3
DTij;< £ (tj2 - WS‘F*C”- - S)Xijkz = Yik - (Cim Kimhr + yimh)+ M- xijkz)’ (Eq. 7-8)
jtmi T h<d O r=1
"i1 B,j1 T,kl O
3
U Xy £ Cim Ximne + Yimn) + Vi + WSTCy +5) X,
j27%ijk2 [ T hei O o h h jk i ijk 2 (Eq 7_9)
il B,jT T,k O
alpha, £M (1- X;,)," il B,jT T,kl O (Eqg. 7-10)
3
alphg, £ Cin Xigne T Yinn) + Vi il B,jT T,ki O, (Eq. 7-11)
jtm Th<k O r=1
DTy £MX,,,"il B, jT T,ki O, (Eq. 7-12)
3
1 Xis £ Cin  Xinnr Yimn) T Yix TWSTC; +S5) X35 +M Q- Xiy5),
j17Vijk3 T hell O o h h ijk ] ) ijk3 ijk3 , (Eq 7_13)
"il B,jT T,kl O
3
ti, Xis 3 Cin Xigne  Yin) Vi FWSTCy +S) X5 - ML= Xy 5), (Eq. 7-14)
jtml T h<d O r=1 ! '
"il B,jT T,kl O
3
DTTijk Etjlxijks' o G X T Yinn) - Yik = (\NSTC”- +S)Xijk3+M a- Xijk3)!’ (Eq. 7-15)
j*m T h<k O r=l
"il B,jT1 T,kl O
X EMR;," i1 B,jT T, (Eq. 7-16)
k r

Xier Xizr Xiwa 1 {01} Y 2 0, DT, £0,DT,; 2 0,DTT, £0, alphg, 2 0, Mis a large

positive number

In the objective function (7-1) the first threener correspond to the total cost from delayed
departures/berthing, the second to the total prexwitrom early departures/berthing, and the

third to the total premium from timely departuresthing (depending on iWST=1 or 0).
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Constraints (7-2) ensure that vessels must becgghwnce; constraints (7-3) ensure that each
berth services one vessel at a time; and congdr@§it) and (7-5) ensure that each vessel is
serviced after its arrival. Constraints (7-6) aridlb) enforce the declaration of the decision and
auxiliary variables. Equation (7-16) enforces diéfet physical and technical constrains that do

not allow the berthing of certain vessels at carbarths (i.e. berth depth).

Solution Approach

In this section we describe how we solve the DDBARocal optimality. In order to solve the
problem we devised two heuristics based on the dgaopdimal heuristic by Lin and Kernighan
(1973). Both proposed heuristics are able to finbaal minima of the problem and reduce
dramatically the number of computations requiretve@ the nature of the problem it is always
almost impossible to obtain an optimal solutionngstlassical optimization approaches. The
complexity of the problem quickly increases asribeber of vessels and berths increase. On the
other hand the same problem with 2 berths and sonedle number of customers for any given
time period may be solved to optimality by usindranch and bound algorithm or even by

enumeration of all the feasible solutions.

2-opt based heuristics

A solution is said to be lamda-optimal if it is iogsible to obtain a better solution by replacing
any lamda relation instances by any other set widéa relation instances. The lamda-optimal
heuristic is based on the concept that in each, tilanda instances of the chosen relation
(mapping between problem components, e.g. vesselsetthing timeslots) in the working

solution are exchanged. The trial process continug a move that satisfies a specified

acceptance criteria is found. The accepted mouwben used to update the working solution.
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Computational time rapidly increases for increasuadues of lamda. As a result, the values
lamda = 2 and lamda = 3 are the most commonly ukednany applications lamda= 2 is
powerful enough to yield near optimal solutionsifraction of the time needed for an exhaustive

search.

In this subsection we first present a heuristicytiic A) that starts with the parameter lamda=2.
This heuristic guarantees a local optimal solutoarh is myopic. In order to account for this
problem we extend Heuristic A and present a sebeudistic (Heuristic B) where Heuristic A is
used internallyn times (wheren are all the possible combination of the berthsatifeach
combination we exchange the positions of two beatlestime, i.e. [Berth 1, Berth 2, Berth 3] and
[Berth 2, Berth 1, Berth 3] are two different comdiions while [Berth 1, Berth 2, Berth 3] and

[Berth 3, Berth 1, Berth 2] are the same combimgtio

Heuristic 7-1: Small Neighborhood Search

STEP 0: Obtain an initial feasible solution using a Genetigorithm
(GA) heuristic (Chapter 6). Assume the objectivection
value from the GA heuristic is OFVSet counter n=0

STEP 1:Set counter n=n+1 and counter c=0

STEP 2: Set counter c=c+1

STEP 3:If c<|B| reassign vessels to berths ¢ and c+1guSIALEX or
enumeration and go to Step 2, Else if c=|B| reassigsels to
berths ¢ and 1 using CPLEX or enumeration, ancddstep 4

STEP 4:1f OFV™-OFV™ NE 0 go to Step lelse end
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Heuristic 7-2: Large Neighborhood Search

STEP O0: Obtain an initial feasible solution using the G#ne
Algorithm (GA) heuristic (Chapter 6). Set countetOn

STEP 1: While n<|B|-1

STEP 2: Set counter n=n+1 and counter k=n

STEP 3: Set counter k=k+1

STEP 4: Set Bi=By+1, Bw1=Bk , Gi=C+1)jp Cu+1);=Cujy S=Sks1,
S«1=Sx, and go to step 5

STEP 5: Apply Heuristic A excluding Step 0

STEP 6:1f k<|B|-1 go to step 3 else go to 7

STEP 7:1f n<|BJ-1 go to Step 2 else end

Computational Experiments

The solution procedure was coded in SciLali*bh a Toshiba Dual Core Intel T2250 with 2GB
of RAM. Problems used in the experiments were ganrdrrandomly but systematically. The
focus was in creating datasets that would be coatipually challenging and reflect real life

conditions. We developed forty base problem dasasdtere vessels are served with various
handling volumes at a multi-user container termiMUT) with five and ten berths, with a

planning horizon of one and two weeks. Vessel hagdvolumes ranged from 250 to 4,000
(TEU) based on a uniform distribution pattern (eaf@t1). The handling time of a vessel was
dependent on the berth assigned, and was a functitihe number of the cranes that may be
assigned. We assume that 1 to 3 cranes operatmalhsized vessels (250-2000 TEU), 2 to 4
cranes on medium sized vessels (2000-3000 TEU)3ahon large mother vessels (3000-4000

TEU). The average crane productivity was assumdzetd5 TEU/hour. The average vessels per

14 Copyright © 1989-2005. INRIA ENPC <www.scilab.org>
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berth per week equivalence (VBWE) was set to fiVesting instances with lower VBWE

averages would not provide a representative evaluaf the heuristics’ performance .

The minimum handling time was calculated by diviithe handling volume by the average
productivity of a crane multiplied by the number @fines operates on the vessel. Random
numbers were used to generate the handling timessfels at the other berths, always in relation
to the berth with the minimum handling time. The@sation of the minimum time with the berth
was also made randomly. Physical restrictions &wsel berthing was created randomly and was
restricted to a maximum of one berth for instanedéth berth capacity of five and two for
instances with berth capacity of ten. Availabiliby berths was calculated using a uniform
probability with a minimum of zero and a maximumldf hours. One of the most crucial issues
was the selection of the interarrival vessel disiion. We assumed that vessels arrived randomly
over a weekly period with a minimum of 40 and a maxn of 80 vessels for instances with
berth capacity of five and a minimum of 80 and aimam of 120 vessels for instances with
berth capacity of ten. Figure 7-1 shows the armpadterns for each one of the forty base problem
datasets. The x-axis shows the arrival time inter¢a4 hours) and the y-axis the number of

vessels arriving at that interval.

Computational time

The computational time of the proposed 2-opt héaris mainly dependent on the computational
time at Step 3 of Heuristic A. Excluding simple BSninimize total service time) Heuristic A

becomes computationally expensive even for smalblpms (five berths and 50 vessels). A
compromising solution would be to use the GA hdigriproposed in chapter 5 as the
optimization algorithm of step 3 of heuristic A.dmain idea behind the use of the GA is that for

small problems similar to the one solved at eveggation at Step 3 of Heuristic A, the GA will



120

most probably provide the optimal solution. We eadéd this assumption for problems with
planning horizon of one week and berth capacitfivef with the objective to minimize the total
service time. The algorithm converged to the sabjeabive value for all the ten datasets and on
average took one fifth of the computational timdhef CPLEX based heuristic. These results do
not guarantee the same behavior for the heuristidifferent BSPs but are promising. For the
computational examples in this chapter we used @Ge heuristic from chapter 5 as the

optimization procedure at Step 3 of Heuristic A. Wéed a population of 25 and 500 generations.

Table 7-1 Dataset Information

Planning Horizon of One Week Planning Horizon ofiio Weeks
Five Berths Ten Berths Five Berths Ten Berths
Dataset | Vessels Volume |Vessels Volume |Vessels Volume [Vessels Volume
(TEU) (TEU) (TEU) (TEU)
1 68 159 330 104 236 186 94 218 387 201 436 71
2 47 94 205 113 258 998 112 250 931 203 438 800
3 75 165 608 105 223 845 109 243 266 2P0 457 128
4 57 131 432 116 254 256 144 299 030 203 442 327
5 53 109 679 111 242 466 109 223 359 169 337 946
6 58 104 474 104 215513 14% 335 261 213 449 117
7 74 157 930 103 214 724 127 270 058 198 412 00
8 43 91 093 115 232 804 123 260 009 201 438 246
9 49 101 118 103 209 773 108 234 985 285 513 681
10 60 131 961 119 244 713 103 215550 177 392 751
Average 58 124 683 109 233 328 117 255 08¢ 202 431 927
(Planning
Horizon)
Average | 3037 | 6483516 5684 | 1213304 6105 13264347 10pR2 460 188
(Annual)
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Figure 7-1 Vessel Arrival Patterns
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Convergence
Figures 7-2 through 7-5 shows the convergenceeobbjective value for each berth capacity and
planning horizon combination for all the datasdtbe algorithm showed a promising rate if

convergence in all the 40 caSes

Conclusions

In this chapter we presented a 2-opt heuristidtierdiscrete and dynamic berth allocation that
guarantees local optimality. The proposed heurrsinaged to improve the solution from the GA
based heuristic, proposed in Chapter 5. The ordgd¥iantage of the proposed approach is the
increased computational time as the problem sizee@ses as compared to the GA based
heuristics from Chapter 5 and 6. A compromising bffective solution was given for this
problem by using the GA based heuristic from Chaptas a replacement to the CPLEX or

enumeration options pf the solution algorithm wittiie heuristic proposed in this chapter.

15 Negative cost means premium for the port operator
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Figure 7-2: Convergence of objective function (HBerths, One Week Planning Horizon)
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Figure 7-3: Convergence of objective function (FBerths, Two Weeks Planning Horizon)
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Figure 7-4: Convergence of objective function (Barths, One Week Planning Horizon)
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Figure 7-5: Convergence of objective function (Banths, Two Weeks Planning Horizon)



127

8. A ROLLING TIME HORIZON HEURISTIC FOR THE BERTH

ALLOCATION PROBLEM WITH WAIT TIME CONSTRAINTS

Introduction

In this chapter we study the berth allocation peablwith waiting time constraints. In this
problem vessels set a maximum waiting time limiydorel which heavy penalties occur to the
port operator. Unlike Imai et al. (2007) our apmto@oes not consider the alternative of vessels
being serviced at a different port if the wait timeceeds a certain time limit, since it is not a
good practice to redirect vessels to other porte Problem formulation seeks to optimality
assign vessels to berths so that the total setiwiwefor all the customers is minimized and the
wait time constraints are not violated. To tackieasibility issues arising from this type of
constraints in scheduling problems, we developea time window based heuristics. The next
section describes and formulates the problem, witthite third section presents the solution

approach. We leave the evaluation of the proposedstics as future research.

Problem Formulation

In order to formulate the discrete and dynamictbatibcation problem with wait time constraints

(BSPWT) we need to define the following:

i=(1,......,) | B set of berths,
i=(1,.....,T)| T setof vessels,
k=(1,.....,T)] O set of service orders,

S= Time when berth becomes idle for the first timetfee current planning horizon,
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A= Arrival time,

HT;= Handling time of vess¢lat berthi,
y, = Idle time of berthi between start of service of vesgeland its immediate
predecessor,

Xijk = 1 if vessej is serviced at berthas the kth vessel and departs/berths before the

requested date and zero,

R; =0 if vessel j cannot be serviced at bartiue to physical or technical restrictions, and

1 otherwise

WT;= wait time limit of vessej.

BSPWT can then be formulated as follows:

[BSPWT]: min (KHT, +S - A)(X; )+ KY; (Eq. 8-1)
iBIVikU iBIVikuU
Subject to: X =1" jiTT (Eq. 8-2)
iBkU
Xy £1"il Bkl O (Eq. 8-3)
it
(HToXimn + Y., )+ Y, - (A - §)X, 2 0"il B,j,I Tkl O (Eq. 8-4)
mjiTh<k O " !
WTX. £ HT X +vy )+vy. + -A)X, +M@A- X ),
j ik (i T e o( im“~imh ylmh) yl]k (S ]) ijk ( uk) (Eq 8-5)
“il B,j1 T,kl O

Xijk ’T {01}, Yik :0 (Eqg. 8-6)
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The objective function (8-1) minimizes the totahdee time of all the vessels. Constraints (8-2)
ensure that vessels must be serviced once; camsti@-3) ensure that each berth services one
vessel at a time; and constraints (8-4) ensure éhah vessel is serviced after its arrival and

constraints (8-5) ensure that each vessels’ waiiing does not exceed the desired time.

BSPWT has a set of hard constraints (8-5) that degm the problem infeasible. In order to
avoid this problem we define the following auxiliarariable:RLj, and relax constraints (8-5).
RL will be greater than zero if the vesjeixceeds its wait time serviced as Kievessel at berth

i, and zero otherwise. The relaxed problem is foatad as follows:

[BSPWTR]: Min (KHT; +S - A)(X) + ky; + Rl (Eq. 8-7)
B Vik U B Vik U
Subject to: X =1" jiTT (Eq. 8-8)
iiBkU
Xy £1"il Bkl O (Eq. 8-9)
it
(HToXimn + Y, )+ Y, - (A - §)Xy 2 0"l B, j,I Tkl O (Eq. 8-10)
mt i Th<k O

(HT X * Y, )+ Y, - (A - S)Xy 2 0"iT B,j,l Tkl O  (Eq.8-11)

mt fiTh<d O

X j1i T hei o(HTimXimh * Yimn) + Vi + (S - A Xy #M Q- X)) + Rl (Eg. 8-12)
il B,jl T,k O

RL, £MX,," il B,jT T,ki O (Eq. 8-13)
Xik 1 {01}, Y 0, R, 20 (Eq. 8-14)

In the relaxed problem the objective function (8Aiinimizes the total service time of all the

vessels and the total excess of wait time.
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Solution Approach

It is not likely that an efficient exact solutiorrggedure exists for BSPWTR, leading to an
optimal solution in polynomially bounded computatibme. For this reason we developed the

following two heuristics for solving the BSPWTR.

Heuristic 8-1: Constant Depth Myopic Heuristic

STEP 0: Sort vessels in ascending order of arrival 8s¢S,, S, ...... , S
S, S} whereA<Ani

STEP 1: Select the firsh vessels and create a set namedS,, S, ...... ,
S

STEP 2: Solve BSPWTR witiN using CPLEX

STEP 3: Create a set namd&tD and include all the vessels framthat
have finished service before the arrival of ve&el, have
exceeded their requested wait time, or finish seriefore
the vessels that exceed their wait time

STEP 4: If ND={} then include inN all vessels that arrived before the
finish time of the vessel finishing first froM and go to
step 2

STEP 5: If ND1! {} reassign vessels iND using CPLEX and remove

these vessels froid
STEP 6: Add vesse§,,; toN

STEP 7: Go to step 2 untM={};
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Heuristic 8-2: Variable Depth Time Window Search Heiristic
Step Q Obtain an initial schedule&Y) by randomly assigning all
vessels in). Name the initial objective function valu@f\°).
Sett= (Planning Horizo#7 ) days. Without loss of generality
assume a minimization problem
Step 1 Setn=0, VA=J
Step 2 Setn=n+1
Step 3 Select vessels that finish service withir(f-1), n*(t+1)] under
S'and name this saf’
Step 4 Schedule vessels of Sétand name this sub-sched 98
Step 5 Select vessels that finish service withifi(f-1), n*t] underSS
and name this s&tS'
Step 6 Schedule vessels of set VS
Step 7 RemoveVS' from VA and update machine availability
Step 8 If VA=empty go to step 9 else go to step 2
Step 9 If OFV'<OFV"! replaceS™ with S, sett= (Planning
Horizon'7) and go to step 11 else go to step 10
Step 10 By a probability of inincrease time step 2 and keep the
S or replaceS™ with S and set= Planning Horizo#7. Go
tostep 9

Step 11:If no improvement is observed end else go to step

The proposed heuristics might be inefficient inesaghere seN| becomes too large to be solved
in an acceptable time by CPLEX. In this case we os®ythe heuristic from Chapter 5 or Chapter

6. This compromise is acceptable since for smathéalium problems the heuristic from Chapter
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5 or Chapter 6 has provided solutions with smalliat@n from the optimal values in small

computational time.

Conclusions

This chapter presented a formulation and a solutigproach for the berth allocation problem
with wait time constraints. Future research is feg in implementing the proposed algorithm

and testing it on real life instances.
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9. BERTH ALLOCATION AND QUAY CRANE SCHEDULING

Introduction

One of the major issues that have not been studiddpth in port operations is the simultaneous
assignment of vessels to berths and quay cranesssels; two problems that are interrelated
(Steenken et al., 2004). Most of the research gagealing with the berth allocation problem

(BAP), as discussed in Chapter 3, considered hagdiperations of the vessel independent to the
number of the quay cranes assigned to that veBsebur knowledge only two research papers
have appeared in the literature that consider ghael of the dynamic BAP and the quay crane
scheduling (QCS) together (Park and Kim, 2003; &iea&l, 2006). In light of the above discussion

this chapter presents a formulation for the sinmgtaus berth allocation and quay crane

scheduling.

In this chapter we present a general formulationthe dynamic and continuous BAP with
simultaneous quay crane assignment and propose-d@limensional Genetic Algorithm based
heuristic for solving the resulting problem. We sier the minimization of costs due to not
meeting agreed (un)loading performance, cost foitimga and handling, and tardiness of
completion for all vessels. Our research deviatemmfBSP presented so far in the following
aspect: a) unlike Lee et al. (2006) we solve thé’Bad QCS simultaneously by determining the
actual position of the vessel along the wharf,gtaet and finish time of the vessels’ handling, and
the number of quay cranes to be assigned at easelyand b) Unlike Park and Kim (2003) we
consider the minimization of costs due to not nmeptigreed (un)loading performance, cost for

handling as well as earliness and tardiness of tetiop for all vessels.
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This chapter is organized as follows. The nextisagirovides the problem formulation while the
third section introduces the Genetic Algorithm (GBdsed heuristic solution algorithm. The

fourth section concludes the chapter.

Problem Formulation

To formulate the Berth Allocation and Quay Cranb&tuling problem (referred to from now on
as the BAQCS) we make the following assumptionsjesof which are similar to Park and Kim
(2003):
1. The maximum number of cranes that can be simedtasly assigned to a vessel, is only
limited by the length of the vessel
2. The duration of berthing of a vessel, is invigrggoportional to the number of cranes
assigned to the vessel and proportional to theawist from the vessels’ non favorable
position
3. For each vessel a cost is incurred if the cotaghiminimum number of TEU moves per
hour is not met. This can be the result of an ifisieht number of crane assignment
and/or the berthing of the vessel in a non fava glaisition
4. For each vessel, a penalty cost/premium is feduby berthing later/earlier or later than
the committed time.
5. For each vessel, a penalty cost/premium is redupby departing later/earlier or later than
the committed time.
6. For the port operator, a cost is incurred foviseng a vessel as the handling time of each

vessels is decreased due to the increase of cranes

To formulate the BAQCS problem (fig. 9-1) we defthe following:
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S : ,2,3,.......... Number of vessels,

Ls : Length of vessed,

Q : Total number of available cranes,

W : Length of wharf,

A : Arrival of vessesk,

Cijs : Handling time of vessalassigned to cranéshrough,

Xijis 1 if vesses covers rectanglgkl, wherei, j (i<j) and k<I) are the first and last

crane assigned to the vessel, &ntis the start and finish time

TBs : Requested berthing time of vessel

TDs Requested departure time of vessel

BTB : Hourly premium for early berthing of vessel

CTB : Hourly cost for late berthing of vessel

BTDs : Hourly premium for early departure of vessel

CTDs : Hourly cost for late departure of vessel

HCs Hourly handling time cost of vessel(depended on the number of cranes

assigned to the vessel)

QCs Number of quay cranes committed to operator ofeless
QCG Unit cost from not meeting quay crane quota foisets
Vs : Volume (in TEUS) to be (un)loaded from vessel

ST : Start time of service of vessel

FT, : Finish time of service of vesssl
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Note: C: Quay Crane

Figure 9-1 Schematic representation of the profemulation

The problem can then be formulated as follows:

min( (-t -t -ty -t )+ o HC.(i - ] +1)Xijkls +
S RV (Eq. 9-1)
QCC,(QC,-i+]- 1)Xijkls
i j k 1 s
Xijkls =1"s, (Eq. 9-2)
i) ko
L X s EW," K (Eq. 9-3)
i i s
M (1' xijkls) + xijkls - xabcds - xabcds
stsi>a j>b d>k>c |>d slsika j>bd>k>c |>d
- X, s T X, s " X, .
stsi<a | b d>kc I>d beds ssi>a b ke | >d beds Sskapbkcbd beds , (Eq. 9-4)
- Xabcds - xabcds - xabcds
s®si<a<j j>b k> | >d stsi>a j>b k<ce<l I<d sl'sika j>b k<e<l I<d

- X pege * 171000k S

slsi<a j j>b k<cd I<d

(k* X,

i jkis

)- A2 0"s, (Eq. 9-5)

i ko
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ST. = K* X s:" S, (Eq. 9-6)
i j |
FT, = 1% X jss" S, (Eq. 9-7)
ik
t, £FT,- DT,, (Eq. 9-8)
t,s £ DT, - FT; (Eq. 9-9)
t,, £ST - BT, (Eq. 9-10)
t,, £BT, - ST, (Eqg. 9-11)
t1s tos stss s <0, Xijus= Binary, (Eq. 9-12)

The first term of the objective function correspsrtd the total costs/premiums form early or late
departures/berthing while the second term to tted tandling costs. The last term corresponds to
the cost from not meeting the committed produdtivvf (un)loading operations to a vessel,

expressed in the number of cranes assigned.

According to constraints (9-2) each vessel is sed/ionce. According to constraints (9-3) at each
point in time the vessels served at the wharf lat@al length less then the length of the wharf.
A grid square must be covered only by one squagerding to constraints (9-4). Constraints (9-
5) ensure that each vessel is served after itvahrnvhile constraints (9-6) through (9-12)
estimate the start and finish time of service drddelay/earliness of berthing/departure for each

vessel.

Solution Approach

A heuristic is proposed for the problem formulatgmesented herein, since there is not likely that

an efficient exact solution procedure exists, whiitlds an optimal solution in polynomially
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bounded computation time. The procedure we empoyhie heuristic is the Genetic Algorithms

(GAs).

Representation

In this chapter we use an integer chromosomal septation in order to exploit in full the
characteristics of the problem. We use a two-dinoegrad chromosome to capture the nature of
the problem (Kahng and Moon, 1995; Pargas and J&@3; Al-Attar, 1994; Lin et al., 1993).
For further details refer to Krzanowski and Rap&001). An example chromosome
representation is provided in Figure 9-2, usingnalsinstance of a problem (5 vessels, 10 quay
cranes, and a planning horizon of maximum of 100ré)o Each chromosome will have 1000
cells {chromosome length= (Number of Quay CranegPbanning Horizon Length)}. In the
chromosome in figure 9-2 vessel 1 is serviced bgyqeranes 1 through 3, starts service at the
beginning of the planning horizon, finishing seevi® hours later. Cells with zero value represent

that no vessel is serviced at that time.

Figure 9-2. Chromosome Representation
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Fitness/Selection

The fithness/selection criterion applied in this gteat was presented in Chapter 5.

Crossover/Mutation

Crossover and mutation will be performed in our rigtic with the objective to zero out
chromosomes with infeasible solutions. A crossaway generate infeasible children i.e., a child
chromosome may have no vessels served or vessetsidavice. Crossover will not be allowed
since this will lead to a large number of infeasibblutions that will either will be discarded or
mutated to produce feasible solutions. Mutation performed using a one dimensional
chromosome that defines the order by which a vesgkbe selected and included to the 2D
chromosome (following a shortest start and sertiioe rule). Figure 9-3 shows an example of
the 1D chromosome used for the genetic operationfigure 9-3 the first vessel that will be
assigned in the 2D chromosome is vessel 2 andoeifissigned so that it begins service as soon

as possible (after its arrival date) and is assighe maximum number of available cranes.

Figure 9-3 One Dimensional Chromosome Representatio

Since it is unlikely that a vessel arriving at #re of the planning horizon will be serviced before
a vessel arriving at the beginning of the planringzon, we apply a tabu ruled based mutation
that restricts certain mutation operations. A sragimple of the tabu mutation is shown in figure

9-4. Assume that vessel 8 arrives at day 1 of tharing horizon while vessel 5 at day 5. The



140

tabu rule forbids any mutation type that will mowessel 5 to be serviced before vessel 8. To
achieve the tabu mutation the 1D chromosome pdpulé partitioned into N sub-populations of
equal size, where N is equal to the number of ds#ythe planning horizon. For each sub-
population vessels are assigned a selection omée(assigned to the 2D chromosome) within a
specific time window after their arrival date, rémg from one day to the full planning horizon.

The resulting 2D mutation is shown in figure 9-5.

Figure 9-4 Tabu Mutation Rule

Before Mutation After Mutation

Figure 9-5 Chromosome mutation scheme in two diness
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Four different types of mutation are applied: imsswap, inversion, and scramble. Each of the
four types of mutations is applied to all the 1D arthosomes and has its own characteristics in
terms of preserving the order and adjacency inftiona Insert mutation picks two cells at
random and moves the second one to follow the, fists preserving most of the order and
adjacency information. Inversion mutation picks twells at random and then inverts the
substring between them preserving most adjacenfynmation (only breaks two links) but
disrupting the order information. Swap mutationkgi¢wo cells from a chromosome and swaps
their positions preserving most of the adjacendgrination but disrupting the order. Finally,
scramble mutation scrambles the position of a dutifseells of the chromosome. Computational
experiments showed that when all four mutationsevagplied, the GA heuristic converged at a
faster rate and there was significant improvemerihé value of the objective function. Thus in
our algorithm we employed all four mutation typag las the GA progressed the weight was
shifted from the Inverse and Scramble mutatiorh®lbhsert and Swap mutation. This way, in the
beginning of the search the heuristic performsd@umpsand as the objective function improves
the heuristic searches in an increasing smalléomed he procedure of the full GA heuristic is

outlined in figure 9-6.

Numerical Experiments

Dataset Description

Problems used in the experiments were generatelbmag but systematically. We developed six
test problem instances where vessels are servadraiitous handling volumes (ranging from 500
to 4000 TEU) at a multi-user container terminal (WUWvith 12 quay cranes, with a planning

horizon of one week. The number of vessels for gaoblem instance was 15, 20, 25, 30, 40,

and 50 respectively. The random generation proeess based on data from two real world
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container terminals with similar terminal operatisggtems (one in Europe and one in the US).
The range of variables and parameters considered @f®sen according to the data obtained
from these two container terminals. To our knowkedgere is limited literature on 2D GA and

none that provides indicative values for the genelgorithm parameters. In this chapter a

generation of 100 and a population of 10 were used.

Figure 9-6 Genetic Algorithm Heuristic

A sub-case of the generic model was used for tper@xents, with the objective to minimize the
total costs from not meeting the committed prodiiigtiof (un)loading operations to a vessel. To
formulate this problem we assumed that t,=ts=t,<~HC=0," S. The sub-case formulation is

shown in equations 9-13 through 9-18
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min QCC QG - i+ ] - 1) X (Eq. 9-13)
i j k | s
Xijkls =1"s, (Eq. 9-14)
i |
L Xi 10 EW," K (Eq. 9-15)
i j s |
M@~ i) + Xijgs - X aboos ~ X apeas
stsi>a j>b d>k>c |>d slsika j>bd>k>c|>d
- xa cds Xa cds xa c
stsi<a j j>b d>ksc 1>d bods sisisa j>b k<c I>d bods sskapbkckd bods , (Eg. 9-16)
- Xabcds - xabcds - xabcds
s si<a<j j>b k> | >d s1si>a j>b k<c<| I<d slsika j>b k<c<| I<d

- X pegs 2 1" 1, 1K1,

slsi<a j j>b k<cd I<d

(k* xijk|s) - A& 3 0, "s, (Eq. 9-17)

P ok

Xixs= Binary, (Eqg. 9-18)

Results

Figure 9-7 shows the average computational timel@fr generations for each problem instance
for the first and second problem respectively. Hailg the last problem instance the average

computational time is within acceptable limits.
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Figure 9-7 Computational Time (Case A)

Figure 9-8 shows the values of the objective fuorctor the instances per generation. The upper
part of the graph shows all the values of the dbhjecfunction obtained from all the
chromosomes at each generation while the lower thartbest. We observe that for all the
problem instances the algorithm converged immelyiahis can be partially attributed to the
large number of population used but mainly to tbgctive of the problem. Since the objective
of the problem is to find the minimum berth produity cost the solution is insensitive to the
service order of the vessels and parameters sutte astal service time or the finish time of each
vessel. To answer this issue we take advantagéeoimulti-population structure of the GA
heuristic and at every generation we store thetfiitime of the last vessel for each chromosome.
Figure 9-9 shows the finish time of the last ve$sekach chromosome for each generation. The
solution approach is flexible to incorporate anlyesttype of criteria (i.e. total service time, tota

waiting time etc).
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15 Vessels 20Vessels
25 Vessels 30Vessels
40 Vessels 50Vessels

Figure 9-8 Objective Value Progression
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15 Vessels 20Vessels
25 Vessels 30 Vessels
40 Vessels 50Vessels

Figure 9-9 Service Time

Conclusions

In berth allocation, the calling time of vesselaydrable vessel berthing locations, and the

number of available quay cranes must be considsiraditaneously. The vessels arrive at the



147

port over a period of time and normally requesviser and departure within a specified time
window. Based on contractual agreement, carrieusllysrequest for a minimum berth service
productivity, translated to the average number @ftainers loaded/unloaded onto the ship per
hour. Failure to meet these contractual agreememises costs to both the port operator and the
ocean carrier. Based on these contractual agresnd#iférent ships receive different service
productivity levels, translated to the berth locatiand the number of quay cranes assigned. In
this chapter the berth-allocation and quay craredualing problem was studied. The problem
was formulated as an integer programming model thi¢hobjective to minimize costs inadequate
berth productivity service levels. The model présdnherein simultaneously assigned quay
cranes and dynamically allocated ships along a fwhaasuming that the handling time of each
ship is a function of the number of cranes assigmatithe location of the vessel along the wharf,

including wharf length constraints.

A two-dimensional GA based heuristic and a tabe mutation based heuristic procedures were
developed to solve the resulting problem. The psepaapproach adopted in this chapter could be
beneficial for ports operated by a company differdran the ocean carrier since it provides
information on costs endured from meeting (or f&lto meet) service contractual agreements.
The proposed approach could also be valuable toinats operated by the carrier as different
ships may have different priorities for the caraed consequently different departure deadlines
by which they must complete cargo handling operatiand leave for the next destination port.
Finally, the formulation and solution approach a#ofor the model to be easily reduced and
produce a number of different BSPs. Future reseaidhfocus on evaluating the proposed

heuristic to real world data and improvement onhteristics performance.
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10. BERTH ALLOCATION BY CUSTOMER SERVICE DIFFERENTI ATION: A

MULTI-OBJECTIVE APPROACH

Introduction

Container terminal operators set several objectiviesn defining berth schedules (reduce vessel
turnaround time, increase port throughput, incre@senues, increase competitiveness of the
port, increase customers’ satisfaction etc), whdgally need to be optimized simultaneously.
These multiple objectives are often non-commenderaBaining an improvement on one

objective often causes degrading performance opttier objectives.

Research on berth allocation has recognized thé&-ohjective nature of the problem (Steenken
et al. 2004, Vis and DeCoster, 2003, Hansen eR@0D7), but has been restricted in either
combining the multiple objectives into a singlelacaalue (Imai et al. 2003; Hansen et al., 2007)
or restricting optimization to one of the objectvghe majority of the literature focuses on the
minimization of the vessels total handling and imgittime). The former approach consists of
using a weighted aggregate function according tefgpences set by decision-makers. The
weighted approach complexity and accuracy liehegroper selection of the weights or utility

functions that are used to depict the decision-mskgreferences. In practice, it can be very
difficult to precisely and accurately select thageights, even for someone familiar with the

problem domain (Coello Coello, 2000; Konak et 2006). Furthermore, in the berth allocation

problem (BAP) selecting the appropriate weights dach vessels/customer in order to satisfy
contractual agreements, between the port operatbthee liner shipping company, may be a very

cumbersome or even an impossible task.
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From the computational complexity theory, bertloedition (as with most scheduling problems)
is known to be NP-hard or NP-complete dependinghenformulation, objective function and
constraint type (Papadimitriou and Steiglitz, 198edo, 2002, Imai et al. 2003, Imai et al.,
2005). In addition, modeling different BSPs resiittsa nhumber of different BAP formulations
with different constraints, some hard and othet.d8ard constraints must not be violated (for
example each vessel must be serviced once andbeaithcan service one vessel at a time, two
constraints found in all the BAP formulations i tliterature) while soft constraints, usually used
to estimate auxiliary variables, can be relaxed @gample see Moorthy and Teo, 2006).
Satisfying both types of constraints is a diffiqgutoblem itself. When different constraints cannot
be satisfied simultaneously, the problem is oftearded to admit no solution. On the other hand
if constraints are relaxed then the problem sotui® inferior. A multi-objective formulation
offers the advantage of treating these constraistsbjectives, and can consistently outperform
the single objective approach without a significaatrifice in terms of performance (Coello
Coello, 2000). This observation could be provenyvealuable in complex berth allocation
problems where a number of the constraints, that the feasible region of the problem, can be

viewed as objectives.

In this chapter we formulate the BAP as a multiealive mixed integer optimization problem
(MOMIP). Special attention is given to customervggr differentiation by the use of different
objective functions. As pointed out by Imai et @003), vessels with a large container handling
volume typically request to be given higher pripritver small vessels, leading to a decrease in
berth productivity (high total service time for #tle vessels at the current planning horizon). On
the other hand if vessels with small container tiagdvolume are given priority then large
vessels are forced to wait, leading to customesadiisfaction. The goal of this chapter is to use a
multi-objective formulation that will provide theopt operator with a variety of different berth

schedules ranging from a schedule with the bestativeerth performance (in terms of the total
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service time for all the vessels) to a schedulé witnimum customer dissatisfaction (in terms of
the total service time for the customers’ vessdls)our knowledge this is the first time that the
proposed BSP has been formulated and solved adtieoimjective optimization problem. Due to
the nature of the problem a Genetic Algorithms (G¥&sed heuristic solution is proposed
(Taboada, 2007). A number of numerical experimangsperformed to evaluate the performance
of the heuristic and critically discuss the bersefit the proposed approach. Results show that the
proposed approach outperforms the weighted appraadhthe state of the art multi-objective
heuristic NSGA-II (Deb et al., 2002). The rest bistchapter is organized as follows. The next
section presents a brief description of the genamablem and the model formulation, while the
third section describes the solution approach. Tiwrth section presents a number of

experimental results and the last section concltiikeshapter.

Problem description and formulation

In our model we make several assumptions: a) Tharfwé divided into a number of berths and
each berth can service one vessel at a time rexgardf the vessel's size, b) The handling time of
the vessel is agreeable to its handling volume @gepknded on the berth assigned, ¢) Once a
vessel has moored, it will remain in its locatianiball the required container processing is done,
and d) There are no physical or technical restmdi(i.e. water depth). In our model we assume
that each vessel arriving at the port requestinge® belongs to a customer (preferential or not).
Each customer may define different subgroups ofelsswith different priorities in terms of their
total service time, since different vessels hayteint priorities depending on the schedule of
the vessel, calling time at the next port, deldyardving at the current port, updated information
of service at the next port of call etc. These sobgs of vessels that belong to the same customer

are considered as separate subgroups that mayyanohae treated preferentially.
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To illustrate this concept we present the examplé-igure 10-1, where two customers with
different priorities for their vessels request $svIn this example vessels 1, and 2 of customer
A, have different priorities than vessels 3 anddd the same stands for vessels 5, 6, 7, and 8
belonging to customer B. Thus, we can assume tisbmer A is represented by two customers,
Al and A2, each having two vessels and that cust&e represented by two customers, B1 and
B2, with three and one vessels respectively. Is #dample only a portion of the vessels of
customer B are preferential (i.e. A1 and A2 arehhmieferential, while only B1 is preferential
from the B1, B2 group) and thus the problem woukléh four objective functions, one for
minimizing the total service time and three for miizing the service time of the vessels

belonging to the three different preferential costos (A1, A2, and B1).

Figure 10-1. Example of Customer and Prefere@isdtomer Sets
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In order to formulate the multi-objective discrea@d dynamic BAP with service priorities

(MBAP) we need to define the following:

i=(1,...... 1) | B set of berths,

j=(1,....T) I T set of vessels,

k=(1,.....T) | O set of service orders,

c=(1,....... C) | Cset of customers,

p=(1,....... P)| PI Cset of preferential customers,

S= Time when berth becomes idle for the first timeatie planning horizon,

A= Arrival time, HT;= Handling time of vess¢lat berth,

y = Idle time of bertti between departure of vesgaslervice as the'kvessel (from the

ijk

end), and its immediate predecessor,

X = 1 if vesselj is serviced at berth as thek™ vessel(from the end) , and zero

ik
otherwise,

WT;=wait time of vessgl serviced at berth

The MBAP can be formulated as follows:

[MBAP]: min (KHT, +S - A) Xy + KYi (Eq. 10-1)
iiBj Vik O iiBj Vik O
min (HT, +WT) Xy, p=1j1 P (Eq. 10-2)
iBi JkoO
min (HT, +WT) Xy, p=2j1 P (Eq. 10-3)
Bl JkoO
min (HT, +WT,) Xy, p=P,jT P (Eq. 10-4)

Bl Jko
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Subject to: X =1" jiTT (Eq. 10-5)
Bk U

Xy £1"i1 Bkl O (Eqg. 10-6)

it

(HTn Xipn ty_ )+ Y, - (A - S)Xy 20,

mt jiT h<® Ci i (Eq' 10_7)
"il B,j,l T,kl O
WTij ° (HTimXimh +yimh)' Aj +S, = M (1- Xijk)!

A mt iTT h<d ,E) (4. 108
“il B,j,I T,kl O
Xyl {01}, Yy ® O WT 2 0 (Eq. 10-9)

The first objective function (10-1) minimizes thaal of waiting and handling time (also known
as vessel service time) for all the vessel anddleetime of the berths, while the second set of
objective functions (10-2.p, p={1, 2, ..... P}) minip@ the total of waiting and handling time of
all the vessels belonging to the preferential austop. Constraint set (10-3) ensure that vessels
must be serviced once; constraint set (10-4) thelh derth services one vessel at a time. Finally,
constraint set (10-5) ensures that each vesselviced after its arrival, while constraint set{10

6) estimates the waiting time of each vessel (f@}2).

Figure 10-2. Prictorial explanation of estimatmfrwait time for vessel j serviced at berth i
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Solution Approach

The general N-objective optimization problem (orgeneral the multi-objective optimization
problem - MOO) can be defined in the following wag stated by Coello Coello, 1999): Find the
vector of decision variables (also called solutigr]x;, X, ..... , X] that optimizes (minimizes or
maximizes) a vector objective functioR(X)=[f1(X), £(X),....... , f{(X)] , subject tom inequality
constraintsG;(X), i=(1,2,3....,m)and k equality constraintd;(X), j=(1,2,3,....,k) When the
variables x are discrete the problem is callédulti-Objective Combinatorial Optimization
(MOCO) problem. Due to the conflicting nature oé tbbjectives it is usually the case that there
is no unique optimal solution. It is possible topiove separately at least one (but not all)
objective function of a given solution but this Milsually cause the declining of its remaining
objective functions (or at least one of them). Traeveral different solutions could be thought of
as “optimal”, because no one dominates the othlee. Main difficulty with the multi-objective

approach lies in the comparison of the solutions.

By definition one solution outperforms anotherhétvalues of all objective functions of the first
solution are better than the second. In other wdrd§ and X, are two solutions theR(Xy)
dominatesF(X,) if and only if, f,(X,)3 f,(X,),"i,andf (X,) f (X,),for atleast oné Such
solutions are called “Pareto-optimal”. If no sotutican dominate the given solution then it can
be considered to be optimal. All Pareto-optimaluohs compose a certain boundary between
the space, which contains dominated solutions aedspace where no solutions exist. This
boundary is called the trade-off surface or Pafednt or Pareto-set. It can be depicted as a

surface in the N-dimensional space, where N isitiraber of objectives.
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The use of exact methods to solve multi-objectiginoization problems is time consuming and
is often infeasible (Zitzler et al., 2002). The moemmon approach for solving these types of
problems is the use of multi-objective metahewssfi.e. Evolutionary Algorithms) and usually
one needs to develop custom made heuristics thata@dvantage of the problems domain. In this
chapter we develop a multi-objective metaheurissing Genetic Algorithms (GA). Initially, the
fast elitist Non-dominated Sorting Genetic Algonith(NSGA-Il) was considered but the
algorithm could not produce any feasible solutiemsn for large combinations of the population
and generation parameters (the maximum number pfilpon and generations used with

NSGA-II was 500 and 75000 respectively).

Representation

Although binary-coded GA are commonly used, theream increasing interest in alternative
encoding strategies, such as integer and real-dakgresentations. For some problem domains,
like scheduling problems, it can be argued thatlimary representation is, in fact, deceptive
since it obscures the nature of the search (Tah@d&a). Thus, in this chapter we use an integer
chromosomal representation in order to exploitult the characteristics of the problem. For
instance, consider the following example of 5 visaad 2 berths (fig. 10-3). For this problem
each chromosome will have ten cells {chromosomgtten (Number of Berths) x (Number of

Customers)}.

Figure 10-3. Chromosome Representation
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The first 5 cells represent the 5 possible sergicers in Berthl and the last 5 cells the 5 possibl
service orders in Berth 2. In this assignment Vies3de4, and 5 are serviced at Berth 1 as the first
second and third vessel respectively, and Vessal®ll3 are serviced in Berth 2 as the first and

second vessel respectively. No vessel will be sedvafter vessels 5 and 3 (zero value of cell).

Genetic Operations: Crossover & Mutation

In GA operations crossover can combine informatimm two parents while mutation can
introduce new information. Crossover is explordfivé makes a big jump to an area somewhere
“in between” two parent areas (Eiben, and Smith0330 On the other hand mutation is
exploitativé”; it creates random diversions staying near oimtie area of the parent, depending
on the mutation (insert, swap, inversion, and sbtajn There is a debate on the use of crossover
and mutation and which approach is the best toTse.main conclusion is that the performance
of either mutation or crossover is highly affectgdthe problems’ domain. In our problem, at
each generation the crossover operation will geaesalarge number of infeasible children in
terms of constraint set (2) (i.e., a child chrommeamay not service all the vessels while other
vessels are served twice). In the BAP literatuneps® heuristics were applied to eliminate this
problem (Nishimura 2001; Imai 2003; Imai 2006 & ZPORunning several computational
examples with and without crossover results showeat problems solved with crossover
returned worse solutions than problems using onigation and were computationally more
expensive. We do acknowledge that complex crossmadmiques (partially mapped crossover,
cycle crossover, and edge recombination) could iedite the former insufficiency of the
crossover operation. This could result though sigaificant increase of the computational time

and was not implemented within this chapter.

16 Exploration: Discovering promising areas in the search spiazegaining information on the problem
17 Exploitation: Optimizing within a promising area, i.e. usingormation
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Instead of crossover we experimented with four edéht types of mutation: insert, swap,
inversion, and scramble mutations that were appbeall the chromosomes at each generation.
Each of the four types of mutations has its ownratizristics in terms of preserving the order
and adjacency information. Insert mutation picke tells at random and moves the second one
to follow the first, thus preserving most of theder and adjacency information. Inversion
mutation picks two cells at random and then invéressubstring between them preserving most
adjacency information (only breaks two links) busrdpting the order information. Swap
mutation picks two cells from a chromosome and saeir positions preserving most of the
adjacency information but disrupting the order.dfin scramble mutation scrambles the position
of a subset of cells of the chromosome. Computatiemperiments showed that when all four
mutations were applied, the GA heuristic converged faster rate and there was significant
improvement in the value of the objective functidihus in our algorithm we employed all four
mutation types but as the GA progressed the weiglst shifted from the Inverse and Scramble
mutation to the Insert and Swap mutation. This vilmyhe beginning of the search the heuristic
performs largejumps and as the objective function improves the hegrisearches in an

increasing smaller region.

Fitness/Selection

The MBAP is a multi-objective minimization problerthus the smaller the values of each
objective function are, the higher the fitness eakill be. In order to find the best solution for

each objective and at the same time retain a yaofedifferent solutions in the Pareto-set we use
a multi-population approach. At every generatidtgrahe genetic operations are completed, the
mutated generation is split into two sets of eqgiaé used to select the parents of the next
generation using two different fitness techniquésder the first technique, and using the first

copy, parents of the next generation are selecasddon the Pareto set. If the selected parents
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are less than the population in the first copyrtheimber is increased by randomly copying from
the current parents. If the selected parents ame t@n the population in the first copy their
number is decreased using the selection algorithoavk as Roulette Wheel Selection (Goldberg,

1989).

Under the second technique, and using the secopy isoused in an elitist way and the best
chromosome based on each objective function iscgleand copied until their cumulative
number is equal to half of the initial populatidfor example for the case of two preferential
customers each best chromosome would be copiellilsntiumber is equal to one sixth of the

initial population (or one third of the size of thecond set).

The purpose of using two separate selection teadlesics that the first will increase the variety of
solutions in the final Pareto set (figure 10-4) Mehihe second will provide better minimum

values for each objective function.

Figure 10-4. Pareto set diversity

The procedure of the GA heuristic is outlined gufie 10-5.
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Figure 10-5. Multi-Objectivé&A Heuristic

Optimality for each objective function in isolation

For small size problems the optimal values for eagjective function in isolation (i.e. excluding
the rest of the objectives and unnecessary consgrdepending on the objective) were obtained
using CPLEX while for medium and large problemghsy 2-opt heuristic presented in Chapter 7.
Any other (meta) heuristic maybe used to obtaindp#mal values for each objective function

separately, before applying the multi-objective ritic.
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Computational Examples

Dataset Description

Problems used in the experiments were generateldmay but systematically. When creating the
experimental data the focus was in obtaining coatutally challenging datasets that portray
real life conditions. We developed forty base peoblinstances where vessels are served with
various handling volumes at a multi-user contateeminal (MUT) with five and ten berths, with

a planning horizon of one and two weeks. Theseshoavn in table 10-1, which presents ten
datasets for each planning horizon and number ghéeonsidered. The random generation
process was based on data from two real world gumtaerminals with similar terminal
operating systems (one in Europe and one in the U&) range of variables and parameters

considered were chosen according to the data autdiom these two container terminals.

In the dataset used in the experiments, vessellihgneblumes (loading and unloading) range
from 250 to 4,000 (TEU/vessel), based on a unifdistribution pattern. The handling time of a
vessel is dependent on the berth assigned, antuiscion of the number of the cranes that may
be assigned. We consider that 1 to 3 cranes operatemall sized vessels (<2000 TEU of
handling volume), 2 to 4 cranes on medium sizedelsg<3000 TEU of handling volume), and
3-6 on large mother vessels (<4000 TEU of handlislgme). The average crane productivity is
taken to be 25 TEU/hour. The average vessels pdr per week equivalence (VBWE) is 5 while
the minimum, average and maximum handling timeGs 18, and 30 hours. Testing instances
with lower VBWE averages would not provide a repraative evaluation of the heuristics

performance.
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The minimum handling time is calculated by dividitige handling volume by the average
productivity of a crane multiplied by the numberoodnes operating on the vessel. The handling
time of vessels at the other berths is generateelation to the berth with the minimum handling
time. Availability of berths is calculated usingiaiform probability with a minimum of zero and

a maximum of 10 hours.

One of the most crucial issues in these experimintie selection of the interarrival vessel
distribution. Vessel interarrival patterns weredih®n the scheduled vessel arrivals at the two
container terminals over a period of a year. Tottes effectiveness of the approach under highly
congested conditions, the peak periods for thetémminals were selected for the purpose of this
application. Based on these data we generated lvagseals with a minimum of 40 and a
maximum of 80 vessels per week for the problems wiberth capacity of five and a minimum
of 80 and a maximum of 120 vessels per week forptioblems with a berth capacity of ten.

Arrival times of vessels within the week period emadomly generated.

Without loss of generality and to graphically pmsexperimental results, we restricted the
preferential customer sets to one and two (p={bH p={1, 2}). From each dataset we generated
four different subsets of vessels belonging togmegitial customers using four beta distributions
with parameters (2,5), (2,4), (2,3), and (2,2) estipely. In the case of the two preferential

customers a beta distribution (2,2) is used tocsdlee number of vessels that belong to each

preferential customer. In total 320 problem datgeaire generated.

The solution procedure was coded in SciLaB®oh a Toshiba Satellite Dual Core Intel T2250

with 2GB of RAM. The number of chromosomes wastee25 and the number of generations

18 Copyright © 1989-2005. INRIA ENPC <www.scilab.org>
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was set to 1000. The average computational timggeeration was less than two seconds for the

larger datasets (ten berths and two weeks plarorigon).

Pareto set

Figures 10-6 to 10-9 show the feasible and Pam@tgien space for all the datasets. The upper
part of each graph shows the feasible solutionespdile the lower the Pareto set. As the total
service time increased the preferential custonwed service time decreased and vice versa, as
expected. Minimum values for each objective fumctivere estimated by solving the single
objective problem using a 2-opt heuristic algoriti@hapter 7). Figures 10-10 to 10-13 show
similar results for the case of two preferentiadtomers. The Pareto set can be further reduced by
exclusion from the Pareto set solutions that dosatgsfy preferences of the port operator in terms
of the total service time i.e. certain values oé thbjective functions might be considered

unacceptable due to their high values.

Solution Space VS Number of Preferential Customers

Figures 10-14 to 10-21 show the feasible and Paw@lation space. Both the single preferential

and the dual preferential customer instances, thighpercentage of the total vessels belonging to
the preferential customers varying from 20% to 508th an increase step of 10%, were

considered. We observe that the solutions arestabuerms of the curve shape. As we increase
the percentage of preferential customers and thblgm size, the Pareto set switches from a
stepwise like function to a smoother curve. Furwre, as we decrease the number of the
vessels of the preferential customer the Paretal@e$ not decrease but retains the number of

solutions to an acceptable number (over twentywamttér one hundred).
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We observe that as we increase the number of prefal customers, the maximum values for the
first objective function (total service time foll #he customers) in the Pareto set does not always
increase. This can be explained as follows: Theimax value of the total service time (TST)
for all the vessels in the Pareto set depends ensitke of the vessels of the preferential
customers. By definition as we increase the nundjepreferential customers, and thus the
number of preferential vessels, the total senviiee tof a schedule focusing on accommodating
the needs of the preferential customers will prevadlow total berth productivity (high total
service time) only if the preferential customerséhdarge handling volumes. This of course is
translated to large vessels being serviced befosdl ¥essels and large idle berth times, and as a

consequence larger service times for all the vessel

In this chapter preferential customer vesselsnatedefined by their volumes but rather by the
owner shipping line and were chosen in random amdbased on vessel handling volumes.
Preferential customers are based on total sergimmeaments and do not necessarily involve large
container vessels. In practice service of a pretekecustomer may involve main liner as well as

feeder vessels. Although the most preferred saistior the terminal operator (i.e. the ones that
balance the objectives) are usually found arouscktiee of the curve, all the solutions should be
kept, since extreme solutions may, under certamcunistances fit the terminal operator’s

objectives.

The proposed heuristic’s performance was also atadlin terms of its consistency. For each
one of the 320 problems, the ratio of the rangehef objective function values for 5 trials
(different starting populations) to the lowest abijee value, which can be expressed by the
highest objective function value during the fiveals divided by the lowest objective function

value during the five trials, was calculated, faclk objective function. The average ratio was less
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than 798° and thus we can conclude that results obtaired fhe GA heuristic are consistent for

different trials.

Optimality

The multi-objective heuristic, as well as any othmulti-objective (meta)heuristic that has
appeared in the literature to date cannot guarasgémality for the solutions in the Pareto set.
The same can be stated for the heuristics that bega presented in literature for the BAP. In
order to test the quality of the Pareto set theghteid approach was used to solve small instances
of the problem using a number of different weightsvhere optimality can be obtained using
CPLEX 9.0. All the solutions obtained from the wigd approach were already present in the

Pareto set, obtained from the proposed multi-ohjedteuristic.

Conclusions

In this chapter the discrete and dynamic BAP wamitated and solved for the first time as a
multi-objective combinatorial problem. There areotgeneral approaches for the solution of a
multi-objective problem, requiring either the aggagion of the objectives into an overall
objective function or the determination of a Parett In this chapter the second approach was
adopted and a genetic algorithms based heurist&c ppaposed as a solution approach for the
resulting problem. Computational examples showed the heuristic performed well even for
large instances of the problem. The proposed h&sidhas two main advantages over the
classical weighted approach, traditionally usedsdtve these types of problems in container

terminal operations research (Imai et al., 2004 xetrms of the computational complexity while

19 The average ratio increased with the problem size
% The weights were sampled from a uniform distribaitiJ (0,1)
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the proposed heuristic required a single run tduata all possible berth schedules, doing the
same with the weighted approach would require aorreous amount of time consuming
computations. In terms of usability, the proposedrfstic allows the derivation of a large list of
different schedules without the need for precisevkadge of the objective functions priorities
and relative importance, which can be very diffictd determine even with a very detailed
knowledge of the system (Taboada, 2007). One dis#dge of the heuristic is its inability to
guarantee optimality for the Pareto set, a probleced by all the heuristics proposed for the

BAP up-to-date.

Future research is focusing on applying the mulfeotive approach to different BSPs and
exploring the computational efficiency of the aligfom presented in the next chapter and one by
Taboada (2007), two heuristics that guarantee @pitiyrfor the Pareto set and can be applied as a

second step to the heuristic presented herein.
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Figure 10-6 Feasible and Pareto Front for Five Berths and Waek Planning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Prnaderential Customer (Dataset 1 through

10)



167

Figure 10-7Feasible and Pareto Front for Five Berths and Tveek¥ Planning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Praéerential Customer (Dataset 1 through

10)
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Figure 10-8Feasible and Pareto Front for Ten Berths and Onek\Wéanning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Prnaderential Customer (Dataset 1 through

10)
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Figure 10-9Feasible and Pareto Front for Ten Berths and Twek&®lanning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Prnaderential Customer (Dataset 1 through

10)
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Figure 10-10~easible and Pareto Front for Five Berths and OreRNPlanning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Pnaferential Customers (Dataset 1 through
10)

Note: PC=Preferential Customer
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Figure 10-11Feasible and Pareto Front for Five Berths and Tveek¥ Planning Horizon, 50%
of Total Vessels Belong to Preferential Customé&vey Preferential Customers (Dataset 1
through 10)

Note: PC=Preferential Customer
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Figure 10-1Zeasible and Pareto Front for Ten Berths and OnekWéanning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Pnaferential Customers (Dataset 1 through
10)

Note: PC=Preferential Customer
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Figure 10-1Feasible and Pareto Front for Ten Berths and Twek&®lanning Horizon, 50% of
Total Vessels Belong to Preferential Customers, Pnaferential Customers (Dataset 1 through
10)
Note: PC=Preferential Customer
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Preferential Customer Vessels=20% Preferentizkt@ner Vessels=30%

Preferential Customer Vessels=40% Preferentiat@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentiat@ner Vessels=50%
Dataset 2

Figure 10-14~easible and Pareto Front for Five Berths and OreRAPlanning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, One Preferential Customer
(Dataset 1 and 2)



175

Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-15-easible and Pareto Front for Five Berths and Tveek8 Planning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, One Preferential Customer
(Dataset 1 and 2)
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Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-16-easible and Pareto Front for Ten Berths and OnekVW&anning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, One Preferential Customer
(Dataset 1 and 2)
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Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-17easible and Pareto Front for Ten Berths and Twek&/®lanning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, One Preferential Customer
(Dataset 1 and 2)
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Preferential Customer Vessels=20% Preferentisk@ner Vessels=30%

Preferential Customer Vessels=40% Preferentiast@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentiat@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-18easible and Pareto Front for Five Berths and OreRAPlanning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, Two Preferential Customers
(Dataset 1 and 2)
Note: PC=Preferential Customer
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Preferential Customer Vessels=20% Preferential @oest Vessels=30%

Preferential Customer Vessels=40% Preferentiast@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentiat@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-19-easible and Pareto Front for Five Berths and Tveek8 Planning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, Two Preferential Customers
(Dataset 1 and 2)
Note: PC=Preferential Customer
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Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentiat@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-20~easible and Pareto Front for Ten Berths and OnekVR&anning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, Two Preferential Customers
(Dataset 1 and 2)
Note: PC=Preferential Customer
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Preferential Customer Vessels=20% Preferentist@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 1

Preferential Customer Vessels=20% Preferentiat@ner Vessels=30%

Preferential Customer Vessels=40% Preferentist@ner Vessels=50%
Dataset 2

Figure 10-21Feasible and Pareto Front for Ten Berths and Twek&/®lanning Horizon, 20%
through 50% of Total Vessels Belong to Preferer@iastomers, Two Preferential Customers
(Dataset 1 and 2)
Note: PC=Preferential Customer
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11 A 2-OPT BASED HEURISTIC FOR THE MULTI-OBJECTIVE BERTH

SCHEDULING

Introduction

Evolutionary algorithms have been applied extergias a solution approach to multi-objective
problems. These algorithms do not guarantee optiymaf the Pareto set. In this chapter we
present a 2-opt based genetic algorithm heurisiét guarantees that the final solutions will

belong to the true Pareto set.

Heuristic Description

Heuristic 11-1

STEP 0: Obtain the best local optimal for each objectiwvaction using the 2-
opt heuristic presented in Chapter 7. Name thiosgalues for the
objective functiond OP

STEP 1 Obtain an approximation of the true Pareto Sébgushe multi-
objective GA presented in Chapter 10. Name thigimaiPS Create
an empty matrix nametPS

STEP 2 Create a weight matridV of equal size tAAPS Use any type of
weight formulation desired

STEP 3 Setn=1

STEP 4 Apply the 2-opt heuristic from Chapter 7, with aggregate weighted
function. As weights use the values from tffeow of matrixW

STEP 5 Add the solution taPS
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STEP 6 If n<|APS|+1 seh=n+1 and go to Step 4 else go to Step 7
STEP 7 End

STEP 8 CombineLOP, APS andTPSsolutions to find the final Pareto Set

A graphical representation of the heuristic is shawfigure 11-1.

Figure 11-1. Graphical representation of heuristic

Proposition 11-t Heuristic 11-1 will always produce solutions thatong to the true Pareto Set

Proof: Any solution obtained using a single objectieenfiulation with an aggregate weighted
objective function belongs to the true Pareto Sedéfinition. Thus, solutions obtained from

Heuristic 11-1 will satisfy the following inequalit

fi+f+. +f £ +f, +........ + f (Eq. 11-1)

n !
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wheren is the number of objective functiorfgjs the value of objective functionobtained using
the procedure from Chapter 10 arfq' is the value of objective function obtained using

Heuristic 11-1
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12 STOCHASTIC BERTH SCHEDULING

Introduction

In this chapter we study the discrete and dynamiAé¢ EDDBAP) where vessel arrival and
handling times are considered as stochastic vasai8DDBAP). We present and conceptually
compare three different heuristic solution apprescla) a Markov Chain Monte Carlo simulation
based heuristic b) an Online Stochastic Optimirati@sed heuristic, and c¢) a deterministic
solution based heuristic. We also present a gefi&itetic Algorithms based heuristic that will
be used within the former two (a and b) heuristi8sveral conclusions are drawn on the
complexity of the problem and the solutions apphescand the possible benefits and drawbacks

of the consideration of a stochastic environmentlie DDBAP.

A conceptual formulation for the Stochastic DDBAP §DDBAP)

In this chapter we present a conceptual formulatibthe SDDBAP. The objective is to provide
the port operator with a model that considers uagdy in the vessels arrivals and handling
times. Usually vessels provide the port operatdh w&itime window in which they may arrive at
the port and request service (berthing, loadingraging, and departure). These time windows are
not known with certainty until few hour of a vessalrival. On the other hand as soon as a vessel
is moored a number of quay cranes are assigneget@i@ on the vessel. The total handling time
of a vessel is directly connected to the produttiof the quay cranes (usually measures in TEU
moves per hour), which is not know with certainfydadepends on a number of deterministic
(relative berth position of the vessel to the gtergard, number of internal transport vehicles

assigned to the vessel, etc) and stochastic (queryecbreakdowns, internal transport vehicle



186

productivity etc) parameters and variables. Foexaellent discussion on the parameters and how
they affect the productivity of quay cranes (i.essel loading/unloading, downtime etc) we refer

to Steenken et al. (2004).

Assume thai=(1,...... 1) I B set of berthsj=(1,.....,T) | V set of vesselsj\=Arrival time of
vessej, C= Handling time of vess¢lat berth. In the SDDBAP the vessels arrivals and handling
times are no longer considered as deterministiblpro parameters, but rather follow as random
variables. For the DDBAP it is sufficient to assum@liscrete distribution for both the vessel
arrival and handling times. Thus we can assume Ahand C; follows a discrete probability
distribution A~(Ax, Az, ..... » A, Ci~(Gij, Gz, ... , Gn) whereA;; andA;,, andCj; andC;,, are
the upper and lower value of the expected arrirak$ and handling times of vesgeland
Pa=(Paj1, Pajzs ..o » RBin), Pe=(Pea, P, ... , Bn) are the probabilities of the arrival and

handling times of vessgl( Pn=1 PR,=1" jT T). The only constraint is on the form of

the distributions. It must be one that we can senipm (Fishman, 2006). Without loss of

generality we can assume tigtand G are discrete distributions for all the vessels.

In the next subsection we will present the concalpformulation for the stochastic berth

allocation problem and proceed with the presemadicfour solution approaches.

SDBAP Conceptual Formulation

The conceptual formulation for the SDDBAP is asdat:

[SDDBAP]:

min E{F (X, A, C, )} (Eq. 12-1)
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Subject to
G, (X ) £Em, (Eq. 12-2)
G, (X ) =n, (Eq. 12-3)
P{H (X, AL Gyt Ea (Eq. 12-4)

The first equation (12-1) minimizes the expectelli®#af the objective function. The terms that
the objective function will consist of depend ore thort operators’ objectives and can take
different forms. Constraint sets (12-2) and (12i83cribe the physical properties of the problem
(i.e. each vessel serviced once, each berth serdoe vessel at a time etc). The last sets of
equations represent probability constraints thairagepend on the port operators’ objectives.
The problem formulation leads to an integer or mixateger stochastic program, which
traditional integer-programming techniques aresuited to exploit the special problem structure
and deal with the problem of dimensionality. Fdsthurpose we propose several heuristics that
can be used to solve the problem by applying diffemodifications of MCMC simulations on
the deterministic problem. It is highly unlikelyatha solution that utilizes probability densities

within the optimization framework will be efficiemven for toy problems.

Proposed Solution Heuristics

Markov Chain Monte Carlo Simulation Based Solutiolypproach

MCMC Module

STEP O GenerateN numbers of unique arrival and handling times pagdy

sampling from the arrival and handling time distitibns
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STEP 1 Solve the deterministic DDBAP using each oneh&f sampled arrival

patterns

Heuristic 12-1
STEP Q Obtain a set of feasible/optimal solutions ugimg MCMC Module
STEP 1 Seth=1
STEP 2 UpdateA; and A,, whereA; are the realized arrival times of vessels
already in the port ané, arethe updated future arrivals of vessels not
yet in the port, at time step
STEP 3 Find thebestschedule that minimizes deviations frémandA,

STEP 4 If all vessels are in the port end elselsdi+1 and go to Step 2

The time steptf) increases every time new information on vesseVas becomes available
(including the actual arrival of a vessel). Heucidi2-1 is easily adopted and applied to any type
of BSPs. The main drawback is that the full DDBA4#% lho be solvelll times, during the MCMC
module. Thus, an efficient solution approach needse adopted for solving the DDBAP, as Step
1 of the MCMC module. Unfortunately, there is ndfignl heuristic solution for the DDBAP,
although a number of heuristic approaches have pessented in the literature , and the problem

needs to be addressed per case.

Stochastic Online Scheduling Based Solution Apprbac

Heuristic 122

Forh=1:H (H: time steps)
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STEP Q Select entt of new time period, (time step maybe variable)

STEP 1 EstimateS;, (berthi becoming idle for time periokl

STEP 2 For vessels that have not finished service upeinning oft, sample
arrivals and handling times and obtain a sample sizN arrival and
handling patterns for each vessel

STEP 3 Select all vessels arriving before the end, of

STEP 4 Solve the DDBAP for each sample

STEP 5 Select the schedule that minimizes the deviatiom all the feasible
schedules at the current time step

STEP 6 If all vessels have been scheduled end othergage Step O

Heuristic 12-2 is based on the idea of the stoahasiline scheduling by Van Hentenryck and
Bent (2006) and the rolling time window heuristior the DDBAP (Chapter 8). The main
advantage of Heuristic 12-2 is that the DDBAP dolutas Step 4 will consist of a much smaller
instance then the original problem since not adiseds will be present at each time step. Heuristic

12-2 though provides a volatile solution, sensitveressel arrival and handling time changes.

Deterministic Based Solution Approach

Heuristic 12-3

STEP Q Solve the DDBAP deterministically using the exggecvalues of the

arrival and handling times for all the vessels

2L The beginning of the time step time peripis the end ofit,
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STEP 1 When a new arrival and/or new handling timesragedized re-optimize
the current schedule if the new realization ofvald and handling times

are different the expected values, used to obtdiiali schedule

Heuristic 3 is more efficient in terms of the cortgiional complexity as compared to Heuristic 1
and 2 and has zero volatility. The main questioonishe additional penalty that occurs when the
assignment of the vessels is rescheduled, eves iew vessels arrivals and/or handling times
become available. This penalty occurs from the hewh availability time for the new schedule,

from the vessels already in service at the timenthe information becomes available.

Genetic Algorithm Solution Approach for the StochasBAP

Heuristic 12-4

STEP O GenerateN numbers of unique arrival and handling times pagdy
sampling from the arrival and handling time distitibns

STEP 1 Initialize GA population to a size equallfp and setounter0
STEP 2 Setcounter= counter+1
STEP 3: Apply genetic operations

STEP 4: Evaluate the genetically altered population usireN different instanced and

select the new population

STEP 5:If countex Generation Limit go to Step 2 else end.
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From the four presented heuristics the GA heuriséems as the most promising solution
approach; mainly due to the multi-population atitdinherit in genetic algorithm heuristic and
the autonomy from an additional heuristic to sdlve DDBAP. The advantage of the multiple
chromosome and simultaneous solution evaluatiora afumber of different input instances
(different arrival and handling time patterns) insigle run reduces the computational
complexity of the problem, but does not guarantee tesults will be stable to the realization of

the input data.

Conclusions

In this chapter we presented a conceptual formarator the stochastic dynamic and discrete
berth allocation problem. Traditional integer-pragming techniques are not suited to exploit the
resulting problem’s structure and four heuristierevpresented as possible solution approaches.
The complexity of the heuristics depends on thepierity of the deterministic formulation and
on the approach adopted for the stochastic samdbegending on the size of the problem and
the complexity of the deterministic formulation awfethe four heuristics may be chosen based on
the time restriction needs and the distributiorihaf stochastic variables. Future research should

focus on the comparison of the proposed heuristicgifferent BSPs.
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13 CONCLUSIONS AND FUTURE RESEARCH

In this dissertation we presented a number of nedets portraying different BSPs, in an attempt
to capture the operational environment of a coetaiarminal and include some of the attributes
of the system that current models lacked. The nsogetsented herein captured a significant
portion of current container terminal operator pices while minimizing assumptions made
about real world conditions. Accompanying the folations were solutions algorithms providing
feasible or optimal schedules for vessel berthingny type of a container terminal (PT or DT).
A number of computational examples were presentedafnumber of the proposed solutions
approaches using different BSPs, while for the odsthe problems this task is left as future
research. One of the main contributions of thiselitation, that should be pointed out, is that the
presented models and solution algorithms are notdd to the berth allocation problem and can,
with minor or no modifications, be applied to therallel and unrelated machine-scheduling, the
vehicle routing, and the facility location problefurthermore, the problem formulations and
heuristics can be used as building blocks (lowerrisgcs) for constructing hyper-heuristics, an
emerging technology in search and optimization witbcope to create general systems that can

handle a wide range of problems.

Future research is directed in the following areas:
a. Evaluate the benefits of a berth scheduling fbation with stochastic vessel arrivals and
extend to include stochastic handling times
b. Complete the coding of the two dimensional genalgorithm heuristic proposed in
Chapter 9
c. Evaluate the heuristic proposed in Chapterd &rd 12

d. Evaluate and compare all the proposed algorithmdifferent berth scheduling policies
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e. Apply and evaluate the proposed algorithms touenber of different parallel and
unrelated machine-scheduling problems

f. Evaluate the applicability and performance @& ghgorithms in construction management
problems

g. Create a software application that Implemengspttoposed algorithms

We believe that this dissertation has only toudgain some of the problems that port operators
face when dealing with the allocation of vesselbéoths. This area of research is vast and we
would like to conclude by indicating a number ofufte research possibilities. These include but
are not limited to: a) Improved algorithms for therth scheduling problem that can guarantee
local/global optimality, b) Effects of port secyrinhitiatives to berth and quay crane performance,

and c) Simultaneous scheduling of internal transpehicles, quay cranes, and berth allocation.
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