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ABSTRACT OF THE DISSERTATION

Differential Delay Equations with Several Fixed Delays

by Benjamin B. Kennedy

Dissertation Director: Roger D. Nussbaum

We study nonlinear autonomous real-valued differential delay equations with several

fixed delays

x′(t) =
D∑

i=1

Fi(x(t− di)), (1)

where the Fi are continuous, have nonzero limits at ±∞, and are similar (in a sense

we make precise) to step functions. Our focus is on periodic solutions of (1), and our

approach is to link (1) to an appropriately related equation

y′(t) =
D∑

i=1

hi(y(t− di)) (2)

where the hi are in fact step functions.

Given a periodic solution p of (2), we describe conditions under which this solution

implies the existence of a similar periodic solution q of (1), and further conditions under

which asymptotic stability of p implies asymptotic stability of q.

We also make a partial study of the global dynamics of (2).
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Chapter 1

Introduction

1.1 What and why

We study differential delay equations of the form

x′(t) =
D∑

i=1

Fi(x(t− di)), t > 0; x(t) = x0(t), t ∈ [−dD, 0] (1.1.1)

where x(t) is real, the Fi are continuous functions, 0 < d1 < · · · < dD, and x0(·) is

a continuous function on [−dD, 0]. (1.1.1) is a real-valued autonomous equation with

several fixed delays.

A time-varying quantity might be modeled by an equation like (1.1.1) if it is governed

by distinct feedback mechanisms with different time delays (the level of a protein reg-

ulated by multiple pathways); a particular feedback mechanism whose strength varies

over time (the size of a population whose members’ fecundity varies with age); or some

delayed control effect that is later undone (the amount in a tank of a chemical that

breaks down after a fixed period) . Here is an example of the third type, adapted from

[5]. Suppose that a species is reproductive from ages d1 to d2, p(t) is the population

of reproductive individuals at time t, and the reproduction rate is given by g(p(t)).

Under the assumption that all individuals live through reproductive age, the function

p satisfies

p′(t) = g(p(t− d1))− g(p(t− d2)). (1.1.2)

The collection of proposed applications of (1.1.1) does not seem very rich; this is

both cause and consequence of the fact that these equations (when D ≥ 2 and the
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Fi are nonlinear) have received relatively little attention. The equations (1.1.1) are,

though, natural extensions of their intensively-studied single-delay counterparts. It is

not surprising that introducing additional delays allows for new dynamical phenomena,

and we will discuss some of these. Nevertheless, numerical studies of (1.1.1) with

several delays leaves the same general impression as with one delay: that strongly

attractive periodic solutions frequently play a dominant role in the global dynamics of

the equations.

Our primary objective, therefore, is to explore the existence and stability of periodic

solutions of (1.1.1). We focus on equations where the feedback functions Fi are similar

in some suitable sense to step functions, and our approach is to link the behavior of

(1.1.1) to the behavior of appropriately related equations where the feedback functions

are in fact step. We call these latter equations step differential delay equations; they

are of the form

y′(t) =
D∑

i=1

hi(y(t− di)), t > 0; y(t) = y0(t), t ∈ [−dD, 0] (SDDE)

hi(y) =


bi 6= 0, y < 0;

0, y = 0;

−ai 6= 0, y > 0.

The idea of using differential delay equations with step feedback to shed light on

more classical equations is not new, and has ranged in its application from the heuristic

to the rigorous. We will show, loosely speaking, that certain periodic solutions of

(SDDE) imply the existence of similar periodic solutions of (1.1.1) if the feedback

functions Fi are similar enough to the hi. The following two examples illustrate and

motivate our main results.

Example 1.1.3. Consider the function

F (x) =
1− ex

ex + 1
2

and the family of problems

x′(t) = rF (x(t− 1)) + rF (x(t− 5)), r > 0. (Er)
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Numerical studies suggest that, for moderate to large values of r, equation (Er) has

a stable periodic solution q with four zeros per period, with one of the gaps between

successive zeros of q greater than the longest delay 5. Accordingly we seek asymptotic

theorems about the existence and stability of solutions like q as r →∞.

By recasting (Er) we can clarify its asymptotic relationship to (SDDE): if x is a

solution of (Er), then the function y(t) = x(t)/r satisfies the equation

y′(t) =
1
r

(rF (x(t− 1)) + rF (x(t− 5))) = F (ry(t− 1)) + F (ry(t− 5)) (Ẽr)

= F̃ (y(t− 1)) + F̃ (y(t− 5)),

where F̃ (y) = F (ry). Thus solutions of (Er) correspond to solutions of (Ẽr). If we

replace F̃ with its pointwise limit as r →∞, we obtain the equation with step feedback

y′(t) = h(y(t− 1)) + h(y(t− 5)), (SE)

where

h(y) =


2, y < 0;

0, y = 0;

−1, y > 0.

In Figure 1 we show simulated continuations of the initial condition

y0(t) = t, t ∈ [−5, 0]

both as a solution of (Ẽ5) and as a solution of (SE) (the thicker curve, with the

“corners,” is the solution of (SE)). We see that the two solutions track each other

fairly well and that both solutions apparently converge to periodic solutions with the

features described above.
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Given any continuous function y0 : [−5, 0] → R with y0(s) < 0 for s ∈ [−5, 0) and

y0(0) = 0, it is fairly simple to calculate, explicitly, its continuation y as a solution of

(SE). Performing such a calculation shows that y coincides, after its first positive zero

at time t = 8, with the periodic solution suggested in Figure 1. We shall prove that this

easily obtained periodic solution implies the existence of a similar periodic solution of

(Ẽr) when r is sufficiently large.

Example 1.1.4. Consider the function

G(x) =
1− ex

1 + ex

and the family of problems

x′(t) = 2G(rx(t− 1)) +G(rx(t− 3)). (Er)

A theorem of Nussbaum’s (Theorem 2.3 in [27]) implies that, for sufficiently large r,

(Er) has two periodic solutions, both with zeros separated by at least 3/2. We amplify

this result here.

The corresponding step problem is

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 3)). (SE)
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It is easy to verify that (SE) has (among many others) three periodic solutions: one

with zeros separated by 10/3, another with zeros separated by 2, and another with zeros

separated by 10/7. (With the apparatus we’ll develop later — and a little bit of practice

— finding these solutions in the first place is not too difficult either.) Moreover, the

first and third solutions are asymptotically stable in a sense that we shall make precise

in sections 2.3 and 3.1 (see especially remark 3.1.15). Our results imply that, for r

sufficiently large, (Er) has periodic solutions similar to these three, respectively, and

that the first and third are asymptotically stable. Indeed, simulation seems to detect

the two asymptotically stable solutions; we show such simulated solutions (with r = 5)

in Figure 2.
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Figure 2

The usefulness of our results rests, of course, on the fact that particular periodic

solutions of the step-feedback problems (SDDE) are often quite easy to find. It also

turns out that the global dynamics of (SDDE) are compelling: tractable enough to

invite thorough investigation, but not trivial. Accordingly a study of (SDDE) develops

interest in its own right — while hopefully also giving additional (heuristic) insight into

(1.1.1).
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In the next section we present some general background on (1.1.1). In the following

three sections we describe some known results on, respectively, (1.1.1) with a single

delay, (1.1.1) with multiple delays, and a generalization of (SDDE) with a single delay.

We conclude this introductory chapter with a more specific description of the problems

we shall be considering and the introduction of some notation.

The simulations and figures

We have generated all of our simulated solutions and created all of our figures with

the software package R. We also used R for the matrix calculations in the analysis

of equation (4.4.10) and in example 5.2.3. R is developed by the R Foundation for

Statistical Computing, Vienna, Austria; see www.r-project.org.

We use the following forward Euler method for simulating solutions of

y′(t) =
D∑

i=1

Fi(y(t− di))

(for Fi continuous or step). Select a step size h > 0 such that di is a positive integer

multiple of h for all i (note that this requires that the di be rationally related). We

approximate y with a function Y defined at points kh, where k belongs to the set of

integers greater than or equal to −dM/h. We first specify initial values for Y at the

points

−dM ,−dM + h,−dM + 2h, . . . ,−h, 0.

We then put

Y (h) = Y (0) + h

[
D∑

i=1

Fi(Y (−di))

]
.

We similarly generate values y(kh) for k > 1, as many as desired. Detailed information

on the code used to generate the simulated solutions is available from the author.

Most of the simulations and figures in this thesis use a step size of h = 10−2;

occasionally we have used a step size of 10−3.
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1.2 Background on equation (1.1.1)

In this section we recall some well-known results on equation (1.1.1):

x′(t) =
D∑

i=1

Fi(x(t− di)), t > 0; x(t) = x0(t), t ∈ [−dD, 0]

0 < d1 < · · · < dD = γ; Fi continuous.

Our discussion is in the spirit of the now-standard [11] or its later incarnation [13]. The

presentation of the return map is essentially that of Xie (see [41] and [39]).

Given dD = γ > 0, write C = C[−γ, 0] for the space of continuous real-valued

functions on [−γ, 0], equipped with the sup norm. Given any real-valued function y(·)

defined on [t − γ, t] for some t, in the standard way we write yt for the element of C

given by

yt(s) = y(t+ s), s ∈ [−γ, 0].

To every initial condition x0 ∈ C corresponds a unique solution x(·) of (1.1.1)

that is defined on [−γ,∞) and satisfies x(t) = x0(t) for t ∈ [−γ, 0]. We call x(·) the

continuation of x0 as a solution of (1.1.1); we call any xt with t ≥ 0 a section of x(·).

We write T : R+ × C → C for the solution operator

T (t, x0) = xt,

where x(·) is the continuation of x0 as a solution of (1.1.1). The map T is continuous,

and the map T (τ, ·) is completely continuous for any given τ ≥ γ. If the feedback

functions Fi are C1, the map T (τ, ·) is C1 for any fixed τ > 0 and the map T is C1 on

(γ,∞)× C.

Given a solution x(·) continuing x0 ∈ C, there might or might not be a way to

extend x(·) so that equation (1.1.1) is satisfied for all t ∈ R. We can certainly do this,

for example, if x(t) is periodic; more generally, we can do this if x0 lies in the attractor

– if one exists – for the solution semiflow on C. (For a general discussion of attractors

for so-called dissapative systems, and how semiflows extend to flows on attractors, see

Hale’s book [12]). Therefore, while solutions are in general defined on [−γ,∞), we will

not hesitate to view periodic solutions as defined for all time.
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Suppose that the Fi are C1. Given some particular solution x(t) of (1.1.1), the

linearization about x(t) is the differential delay equation

y′(t) =
D∑

i=1

F ′i (x(t− di)) · y(t− di), y0 ∈ C.

Unique solutions of this equation also exist for all positive time; write Lx : R+×C → C

for the solution operator. The operator Lx and the partial derivative of T with respect

to its functional coordinate are related as follows: for any τ > 0 and y0 ∈ C,

D2T [τ, x0]y0 = Lx(τ, y0).

(Throughout we shall use notation like the above for Fréchet derivatives: DiG[a, b] is

the derivative of G with respect to the ith coordinate at the point (a, b).)

Write C0 for the subspace {x0 ∈ C : x0(0) = 0}. Take x0 ∈ C0 with continuation

x(t) as a solution of (1.1.1) and suppose that there is some time τ(x0) > γ for which

T (τ(x0), x0) ∈ C0 and x′(τ(x0)) 6= 0.

Then, by the implicit function theorem, τ(x0) extends to a unique C1 real-valued map

on a neighborhood U ⊂ C0 about x0 with the feature that, for all y0 ∈ U with contin-

uation y(t) as a solution of (1.1.1),

τ(y0) > γ; y(τ(y0)) = 0; y′(τ(y0)) 6= 0.

τ(y0) is called the return time of y0. The map

R : U → C0 given by R(y0) = T (τ(y0), y0)

is called a return map (R is a Poincaré map on the hyperplane C0). Return maps

can, of course, be defined on subsets of C other than C0; but the return map we have

described is the only one we shall need.

Any fixed point y0 of R is a section of a periodic solution y(·) of (1.1.1), with

minimal period dividing τ(y0). Finding fixed points of maps like R is one of the most

prominent techniques for establishing the existence of periodic solutions of differential

delay equations, and is what we do in this thesis.
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Proposition 1.2.1. Facts about R (see [41], [39]) As described, the map R : U →

C0 is completely continuous. If the functions Fi are C1, R is C1 also.

Suppose that the Fi are C1, and that R(x0) is defined. Then DR[x0], the derivative

of R at x0, is a compact linear operator. Writing τ = τ(x0), where τ is as above, we

have the following formula for the derivative of DR[x0]: given y0 ∈ C0,

DR[x0]y0 = Lx(τ, y0)−
Lx(τ, y0)(0)
R(x0)′(0)

·R(x0)′,

where R(x0)′ is the pointwise derivative of the function R(x0) ∈ C0.

Suppose in particular that x0 is a fixed point of R. Then

DR[x0]y0 = Lx(τ, y0)−
Lx(τ, y0)(0)

x′0(0)
· x′0.

If the spectrum of DR[x0] lies strictly inside the unit circle, then the periodic solution

x(t) is asymptotically stable: that is, given y0 ∈ C0 close enough to x0, Rk(y0) → x0 as

k →∞.

It is sometimes useful to cast (1.1.1) more abstractly. Rendered in the general form

for retarded functional differential equations with bounded delay used, for example, in

[13], (1.1.1) reads

x′(t) = f(xt),

f(x) =
D∑

i=1

Fi(x(−di)).

If the Fi are C1, the map f : C → R is C1 also, with derivative given by the formula

Df [x]h =
D∑

i=1

F ′i (x(−di))h(−di).

Let Λ be an open set about zero in some Banach space, write f(x) = f(x, 0), and

suppose that f extends to a C1 map

f : C × Λ → R.

Assume also that solutions of the retarded functional differential equation

x′(t) = f(xt, λ), x0 ∈ C (RFDEλ)
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exist and are unique for all positive time, for all λ ∈ Λ. Suppose in this case that x(·)

is a periodic solution of the equation (RFDE0) (which is just equation (1.1.1)), that

x(0) = 0, and that a return map R as described above is defined in a neighborhood

of x0 ∈ C0. Finally, suppose that DR[x0] does not have eigenvalue 1; in this case the

periodic solution x(·) is said to be nondegenerate. Then the implicit function theorem

tells us that there is a neighborhood about 0 in Λ where there is defined a unique

C1 map λ 7→ xλ
0 ∈ C0 such that x0

0 = x0 and xλ
0 is a section of a periodic solution

of (RDDEλ). Conversationally, a nondegenerate periodic solution x(·) persists under

perturbations in the equation.

We now describe an estimate that we will use repeatedly with minimal comment.

Let x and y be two functions continuous on [−γ,∞) and differentiable on (0,∞). Let

b > γ and suppose that we know that |x(t) − y(t)| ≤ M on [0, b] and that |y′(t)| ≤ µ

on (0, b). Then, for any t1, t2 ∈ (0, b),

|x(t1)− y(t2)| ≤ |x(t1)− y(t1)|+ |y(t1)− y(t2)| ≤M + µ|t1 − t2|.

Therefore if τ1 and τ2 lie in (γ, b) we have

‖xτ1 − yτ2‖ ≤M + µ|τ1 − τ2|. (1.2.2)

We will use this estimate in the following way. Suppose now that x and y are solutions

of (1.1.1) and that R(x0) and R(y0) are both defined. Suppose also that there are

numbers a and b such that we know that the following are true:

• γ < a < b;

• τ(x0) and τ(y0) both lie in (a, b);

• On (a, b), x′(t) and y′(t) are of the same fixed sign and |y′(t)| is greater than some

σ > 0;

• |x(t)− y(t)| ≤M for t ∈ [0, b];

• |y′(t)| ≤ µ for t ∈ (0, b).
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In this case, since |y(t)| ≥M for

t ∈ (a, b) \ (τ(y0)−M/σ, τ(y0) +M/σ),

we have that |τ(x0)− τ(y0)| ≤M/σ; the estimate (1.2.2) then reads

‖R(x0)−R(y0)‖ ≤M
(
1 +

µ

σ

)
. (1.2.3)

Two definitions

We close this section by introducing two definitions that, while not really needed until

later, will make some parts of our intervening discussion easier.

Definition 1.2.4. Proper zero. Suppose that y is a continuous function defined in

a neighborhood of z, and that y(z) = 0. We call z a proper zero of y if y(z − ε) and

y(z + ε) are of strictly opposite signs for all sufficiently small positive ε. If y(z + ε) < 0

for such z and ε, we call z a downward proper zero. If y(z+ ε) > 0 for such z and ε, we

call z an upward proper zero.

Definition 1.2.5. k-cyclic periodic function. We say that a periodic function

x : R → R with period P is k-cyclic if x has exactly 2k zeros on any interval of the

form (t, t+ P ].

The periodic solutions pictured in Figure 1, for example, are 2-cyclic while those in

Figure 2 are 1-cyclic.

1.3 One delay and negative feedback

Probably the best-studied nonlinear delay equation (particularly if one counts work on

certain of its generalizations) is

x′(t) = F (x(t− 1)), (DDE)

where F is a smooth function that is bounded above and satisfies the so-called negative

feedback condition that xF (x) < 0 for nonzero x. In this section we review some of
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the known theory for equation (DDE). We will assume throughout that F satisfies the

above hypotheses.

To simplify and unify our presentation, we will describe many results as weaker than

they actually are; in particular, many of the results we review here apply to various

equations of the form x′(t) = g(x(t), x(t − 1)). Not all such equations are reason-

ably described as mere extensions of (DDE): for example, the “singular perturbation”

equation

1
µ
x′(t) = −x(t) + F (x(t− 1)), (1.3.1)

where F is as above and µ > 0, admits distinctive treatment (see, for example, [21]).

Of the techniques used to study periodic solutions of (DDE) many fall into two

rough categories. The first are what we might call “phase-plane” techniques: studying

the properties of the trajectories traced out by solutions x in the (x(t), x(t− 1))- or the

(x(t), x′(t))-plane. This kind of approach does not seem as fruitful when there is more

than one delay (but see section 1.4). The second are fixed-point techniques: studying

periodic solutions cast as fixed points of return maps like the map R introduced in

section 1.2. As already mentioned, this is the sort of approach we will take to our

several-delay problems.

Observe that the constant function x(t) ≡ 0 is a solution of (DDE). This zero

solution is called hyperbolic if the characteristic equation

λ = F ′(0)e−λ,

obtained by looking for solutions of the form eλt of the linearization of (DDE) about

the zero solution, has no solutions on the real axis. The zero solution is hyperbolic

except when −F ′(0) = 2nπ + π/2, n ∈ Z+.

Given a solution x of (DDE), let us define the oscillation speed of x at t to be the

number of proper zeros of x in (τ − 1, τ), where

τ = inf{ s ≥ t : s is a proper zero of x }
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(if τ does not exist, we set the oscillation speed of x at t equal to 0). It has long been

recognized that the negative feedback condition in (DDE) implies, roughly speaking,

that the oscillation speed of a solution is nonincreasing in time (for a precise statement,

see [22]; our definition of oscillation speed is similar but not identical to the definition

given there). Accordingly, oscillation speed provides a convenient way to organize the

global solution semiflow. This organization has been exploited perhaps most fully by

Mallet-Paret, who in 1988 [22] proved (among much else) the following:

Theorem 1.3.2. Collected and simplified results from [22]. If |F ′(0)| > 2πN +

π/2, N ∈ Z+, then (DDE) has a periodic solution of oscillation speed M for every

nonnegative even M ≤ 2N .

Suppose that x(·) solves (DDE). If the zero solution is hyperbolic, then there is

some finite integer K such that either x(·) eventually has oscillation speed less than K,

or x(t) → 0 as t→∞.

Remark 1.3.3. For problems (1.1.1) with several delays, the notion of oscillation

speed has neither an obvious definition nor an obvious utility. We will find in chapter

5, though, that the concept is useful for the study of certain step problems (SDDE).

We call slowly oscillating any solution x of (DDE) that has oscillation speed 0 at

(and after) some time t; we will call a periodic solution with oscillation speed 0 a slowly

oscillating periodic solution. (Any periodic solution that has oscillation speed 0 at some

time necessarily has oscillation speed 0 at all times.) This terminology is widespread,

but not quite standard: many papers use a narrower definition of “slowly oscillating

periodic solution,” and for general solutions the phrase “eventually slowly oscillating”

is sometimes used instead of “slowly oscillating.”

[22] shows that, for F ′(0) < −π/2, (DDE) has a slowly oscillating periodic solution.

(This particular existence result was obtained by Nussbaum in 1974 [26] by fixed point

arguments). Numerical studies have long suggested that certain equations (DDE) have

slowly oscillating periodic solutions that are strongly attractive; accordingly there has

been intensive study of the global dynamics of (DDE). By far the most complete results

have been obtained in the case that F is strictly decreasing. In early work focusing
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on this case, Kaplan and Yorke [17] showed that, if F ′(0) < −π/2, there is an annulus

A about 0 in R2 that attracts all trajectories of the form (x(t),−x(t − 1)) traced by

solutions x of (DDE) whose initial conditions have at most one zero. The boundaries of

A are such trajectories traced by 1-cyclic slowly oscillating periodic solutions of (DDE).

In particular, if F is strictly decreasing and (DDE) has only one slowly oscillating

periodic solution, other slowly oscillating solutions are attracted to it. The question of

the uniqueness of slowly oscillating periodic solutions is therefore of special interest in

the case that F is strictly decreasing. In 1979 Nussbaum [29] showed that if, in addition

to our other hypotheses, F is odd and strictly decreasing, F ′(0) < −π/2, and F ′(x) and

F (x)/x are strictly increasing for positive x, then (DDE) has a unique slowly oscillating

periodic solution; in 1996 Cao [4] showed that the same holds without the hypothesis

of oddness but with the added requirement that xF ′(x)/F (x) be less than 1, strictly

decreasing for positive x, and strictly increasing for negative x (we have given simplified

statements of both results). Both of these papers study the (x(t), x′(t))-trajectory in

the plane.

In a series of papers in the early 1990s ([40], [41], [42] — see also [39]) Xie used

a different approach to prove uniqueness of periodic solutions of various types — all

varieties of 1-cyclic slowly oscillating periodic solutions — for several different classes

of equations (DDE), without the assumption that F is strictly decreasing. The idea,

put roughly, was to find conditions under which, first, any solution of interest must

be asymptotically stable and, second, every asymptotically stable solution of interest

contributes 1 to a total fixed point index of 1. At the expense of asymptotic results, Xie

required relatively little of the shape of F . A simplified example result is the following

[40]: if, in addition to our standing hypotheses, F (x) has finite nonzero limits as x→∞

and x→ −∞, F ′(x) is integrable, and xF ′(x) → 0 as |x| → ∞, then the equation

x′(t) = αF (x(t− 1))

has a unique 1-cyclic slowly oscillating periodic solution for α sufficiently large.

In 1975 Kaplan and Yorke [17] conjectured that a dense set of initial conditions

have slowly oscillating continuations if F is strictly decreasing with F ′(0) < −π/2.
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This conjecture was proven by Walther in 1981 [38] for F satisfying the additional

condition

|F (x)| ≤ c|x|, c <
√

2 +
1
2
;

the full conjecture has been proven more recently by Mallet-Paret and Walther [24].

Mallet-Paret and Sell [23] have proven a Poincaré-Bendixon type theorem for (DDE)

when F is strictly decreasing: if the zero solution is hyperbolic, every solution of (DDE)

approaches a periodic solution (perhaps the zero solution). In the same paper the

authors prove that, if F is strictly decreasing, every periodic solution of (DDE) is

1-cyclic (recall definition 1.2.5).

The situation is very different when F is not strictly decreasing. In 1977 Mackey

and Glass [20] published numerical studies — of a single-delay equation not quite of the

form (DDE) — that suggested that solutions of (DDE) can exhibit chaotic behavior,

in particular if F ′(0) < 0 is not too small and F (x) is nondecreasing far from the origin

(so-called “hump-shaped” F ). This has indeed proven to be the case. In a pair of papers

that together constitute an approach similar to the one we take in this thesis, Peters

[33] and Siegberg [36] exhibited a (DDE), with a hump-shaped F , that has chaotic

slowly oscillating solutions. Peters first exhibited chaotic behavior for a nonmonotonic

step F , and then Siegberg studied a similar F with the discontinuities smoothed out.

Equations (DDE) with odd and hump-shaped feedback functions F have proven

fruitful ground for exhibiting non-uniqueness of slowly oscillating periodic solutions;

see, for example, [29] and [30].

1.4 Several delays

The theory of differential delay equations with several fixed delays is less developed.

Some authors have successfully used Lyapunov functions to show that equilibrium

solutions of certain equations are globally attractive; see for example [18] (where a

several-delay equation different from (1.1.1) is studied) or Gopalsamy’s book [9].

In 1974 Kaplan and Yorke [16] studied the equation

x′(t) = f(x(t− 1)) + f(x(t− 2)),
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where f is odd and satisfies the negative feedback condition. (In the same paper the

authors study the analogous single-delay equation with a similar approach.) Kaplan

and Yorke observed that periodic solutions with period 6 of the three-dimensional ODE

ẋ = f(y) + f(z)

ẏ = −f(x) + f(z)

ż = −f(x)− f(y)

correspond to periodic solutions x(·) of the delay equation (where y(t) = x(t − 1) and

z(t) = x(t− 2)). Using the fact that the ODE has Hamiltonian

H(x, y, z) = −
∫ x

0
f(s) ds−

∫ y

0
f(s) ds−

∫ z

0
f(s) ds,

Kaplan and Yorke proved that there is a solution of period six provided that f is not

integrable and that the limits

α = lim
x→0

f(x)/x, β = lim
x→∞

f(x)/x

exist and strictly straddle π/(3
√

3). Kaplan and Yorke conjectured that a similar

existence theorem should hold for equations of the form

x′(t) =
n∑

i=1

f(x(t− i)).

This conjecture was proven in 1978 by Nussbaum [28] using fixed point techniques.

The results in [28] are actually considerably more general and concern the existence of

periodic solutions of equations of the form (this is in fact still a simplification)

x′(t) =
n∑

i=1

[fi(x(t− γi)) + fi(x(t− q + γi))]

where γi ∈ [0, q]. The hypotheses on the fi, though, are similar to those in [16]: the

fi are continuous, odd, have negative feedback, and satisfy certain conditions on the

limits

αi = lim
x→0

fi(x)/x, βi = lim
x→∞

fi(x)/x.

In the years since, other authors have pursued Kaplan and Yorke’s Hamiltonian

approach, both for equations with single and with several delays: see, for example, [10],

[19], and [31].
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In 1978 Nussbaum [27], in the main inspiration for this thesis, studied a class of

(1.1.1) with two delays. As an example of the kind of results obtained we quote here a

simplified version of Theorem 2.3 in [27] (which we already invoked in example 1.1.4).

Theorem 1.4.1. Theorem 2.3 in [27]. Suppose that f : R → R is continuous and

strictly decreasing with f(0) = 0, and that limx→−∞f(x) = − limx→∞ f(x) = b > 0.

Consider the equation

x′(t) = rαf(x(t− 1)) + rβf(x(t− 3)), (E)

where r > 0 and α ≥ 0 and β ≥ 0 satisfy

α2 + β2 = 1; β ∈
(α

3
, α
)
.

Then, for r sufficiently large, (E) has two distinct 1-cyclic periodic solutions of period

greater than 3.

[27] demonstrated that varying the feedback at each delay, or the relative sizes of the

delays, exerts an important influence on the appearance of whatever periodic solutions

might be present. [27] also showed that there can exist multiple periodic solutions

with what we might regard as “comparable oscillation speed” (as in the above-quoted

theorem). Nussbaum’s approach in [27] is to make careful estimates on solutions with

initial conditions in certain subsets, and then to apply fixed point arguments to return

maps; to explore a wide variety of problems and solutions thus requires many careful

estimates. The labor involved in these estimates motivates the search for a class of

equations with several delays for which we can generate, with somewhat less effort,

examples of many substantially different periodic solutions. This is a central objective

of this thesis.

1.5 Step feedback

Many authors have used delay equations with step feedback to shed light on more

classical delay equations. We have already mentioned [33] and [36]. We also mention

[37], where Stoffer has found stable rapidly oscillating periodic solutions for the singular

perturbation equation (1.3.1) with a non-monotonic F . Stoffer’s approach bears an
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affinity to ours in that he uses an F that is similar to a step function — in particular,

that is locally constant except on a few small intervals. In [27] Nussbaum used solutions

of equations with step feedback to help formulate estimates for solutions of continuous

two-delay problems. In [40] Xie used slowly oscillating periodic solutions of the problem

y′(t) = −ky(t) + h(y(t− 1)),

where k ≥ 0 and h is step with negative feedback, to describe the asymptotic appearance

of slowly oscillating periodic solutions (known to exist) of

εx′(t) = −σx(t) + F (x(t− 1)); ε→ 0, σ/ε→ k

where F satisfies certain conditions.

In this section we describe some results for the well-studied equation

x′(t) = f(x(t))− sgn(x(t− 1)), t > 0; x0 ∈ C = C[−1, 0] (1.5.1)

where f is continuous. While this equation certainly sheds light on continuous delay

equations with one delay, it also possesses considerable inherent interest. (This is a

small part of the topic of “functional differential equations with discontinuous right

hand side,” which ranges far beyond our current focus and uses substantial additional

hardware.) By a solution to (1.5.1) we mean a solution to the corresponding integral

equation

x(t) = x(0) +
∫ t

0
f(x(s))− sgn(x(s− 1)) ds, t ≥ 0; x0 ∈ C.

In 1993, Fridman, Fridman and Shustin [8] studied equation (1.5.1) where f is C1

with |f(x)| ≤ p < 1 for all x. They focused in particular on the forward-invariant

set C ′ ⊂ C[−1, 0] of continuous functions with finitely many zeros. For x0 ∈ C ′ with

continuation x, the positive proper zeros of x form a countable sequence z1 < z2 < . . .

with infinite limit and no accumulation point. The oscillation speed of x at zn (that

is, the number of proper zeros of x in (zn − 1, zn)) is even and nonincreasing in n and
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so has a limit N(x0) that is attained in finite time. In [8] it is proven that to each

nonnegative even N there corresponds a unique periodic solution with oscillation speed

N , and that the set of initial conditions with slowly oscillating continuations is dense in

C. The dynamics of (1.5.1) thus evoke the dynamics of the one-delay problem (DDE)

with strictly decreasing F .

Remark 1.5.2. The version of (1.5.1) studied by Fridman, Fridman and Shustin

essentially subsumes (SDDE) with one delay and negative feedback, at least on the

forward-invariant subspace C ′: just take f(x) to be a constant of absolute value less

than one.

The equation x′(t) = −sgn(x(t−1)) is described, in similar completeness, in section

XVI.2 of [7]. In 2002 Martin [25] gave results almost as complete for the equation

x′(t) = µx− asgn(x(t− 1)),

where µ ≥ 0 and a > 0.

To complete the analysis of the |f(x)| ≤ p < 1 case, we need to consider solutions

that do not lie in C ′ — otherwise put, solutions with infinite oscillation speed. In 1995,

Shustin [35] showed that, for a restricted (but nonautonomous) f , such solutions enter

C ′ in finite time unless x0 ≡ 0. The rough idea was to introduce a functional on the

set of zeros of xt that grows in such a way that, if xt has infinitely many zeros for all

t ≥ 0, we must have x0 = 0. This result was strengthened (in the autonomous case)

by two articles appearing in 2000 and 2001. Akian and Bliman proved Shustin’s result

for f ∈ L∞(R) with ‖f‖∞ < 1 [1], and Nussbaum and Shustin proved the result for

locally Lipschitz f with |f(x)| < 1 [32]. (Dix [6] has shown that infinite oscillations can

persist under nonautonomous feedback or nonconstant delays.)

In section 2.2 we will present a similar but weaker result for solutions of (SDDE)

with infinitely many zeros.
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1.6 The problems under consideration

We take γ > 0 and write C = C[−γ, 0] for the set of real-valued continuous functions

on [−γ, 0], equipped with the sup norm. The problems we are studying are of the form

x′(t) =
D∑

i=1

Fi(x(t− di)), t > 0; x0 ∈ C = C[−γ, 0]; (E)

Fi continuous; 0 < d1 < · · · < dD = γ;

lim
x→−∞

Fi(x) = bi 6= 0; lim
x→∞

Fi(x) = −ai 6= 0

(this is just (1.1.1) with added requirements on the Fi at ±∞). We point out some

distinguishing features of (E).

• x′(t) is a nonlinear function of xt. The theory of linear retarded functional differ-

ential equations — of forms much more general than (E) — is highly developed;

see, for example, the early chapters of [7].

• The delays are discrete and solutions are real-valued.

• The equation is autonomous. Non-autonomous equations, especially those where

the relationship between x′(t) and xt varies periodically, have also been studied;

see, for example, [34].

• The delays are constant. For a recent survey on differential delay equations with

variable delays, see [14].

• The shortest delay d1 is strictly positive — that is, the value x(t) does not directly

affect x′(t). Since so many results for x′(t) = F (x(t − 1)) extend to equations

of the form x′(t) = g(x(t), x(t − 1)), we can reasonably regard this as a serious

restriction.

Throughout, we will adhere to our notation above — in particular γ, C, di, D, Fi,

bi and −ai will always be used as in (E). As described in section 1.1, our approach is

to link the problem (E) to the related “step differential delay equation”
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y′(t) =
D∑

i=1

hi(y(t− di)), t > 0; y0 ∈ C; (SDDE)

hi(y) =


bi, y < 0;

0, y = 0;

−ai, y > 0.

We will always write hi for these step functions.

There is of course no intimate connection between (E) and (SDDE) in general, but

if the feedback functions Fi are close to the hi in some reasonable sense, we expect

(SDDE) to be rigorously informative for (E). This thesis is devoted to this idea.
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Chapter 2

Basic theory for (SDDE)

2.1 Existence and uniqueness

By a solution of the initial value problem

y′(t) =
D∑

i=1

hi(y(t− di)), t > 0; y0 ∈ C (SDDE)

we mean a continuous function y : [−γ,∞) → R that satisfies the corresponding integral

initial value problem

y(t) = y0(t), t ∈ [−γ, 0]; y(t) = y(0) +
∫ t

0

[
D∑

i=1

hi(y(s− di)) ds

]
, t > 0. (2.1.1)

Given y0 ∈ C, the function

fy0 : [0, d1] → R : fy0(t) =
D∑

i=1

hi(y0(t− di)),

being the sum of compositions of Borel measurable functions, is Borel measurable and

hence Lebesgue measurable. The indefinite integral y(t) of f from 0 to d1 is therefore

(uniquely) defined and is absolutely continuous. y(t) is a solution of (2.1.1) on [0, d1],

and we can continue this solution to 2d1, to 3d1, and so on. Furthermore, by Lebesgue’s

differentiation theorem this indefinite integral is differentiable for almost every t ∈

[0, d1], with derivative fy0(t). At such points, y(t) is a solution of (SDDE) as usually

written.

We have established

Proposition 2.1.2. Existence and uniqueness for (SDDE). The initial value

problem (2.1.1) has, for any initial condition y0 ∈ C, a unique solution y defined on

[−γ,∞). 2
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In the situation described in the above result, we call y the continuation of y0 as a

solution of (SDDE). For such a y and any t ≥ 0, we call the function yt ∈ C given by

yt(s) = y(t+ s), s ∈ [−γ, 0]

a section of y. Just as for continuous differential delay equations, we think of solutions

as evolving in C; the solution semiflow sends (t, y0) ∈ R+ × C to yt ∈ C.

Continuous dependence of solutions on initial conditions does not hold.

Example 2.1.3. Continuous dependence on initial conditions does not hold

for (SDDE). Consider the equation with one delay

y′(t) = −sgn(y(t− 1)),

where sgn(y) is either −1, 0, or 1. The zero initial condition continues as 0, but

arbitrarily small positive initial conditions have continuations y(t) with y(1) arbitrarily

close to −1. 2

Write w for the continuation of w0 ∈ C as a solution of (SDDE). If y0 ∈ C has only

isolated zeros, then the map w0 7→ wt is continuous at y0 for small t (see proposition

2.1.7 below). It is possible, though, for a solution whose initial condition has only

isolated zeros to eventually have an interval of zeros, at which point continuity fails for

the reason illustrated in the above example.

Example 2.1.4. Consider, for instance, the equation

y′(t) = −sgn(y(t− 1))− sgn(y(t− 2))− 2sgn(y(t− 3)).

Any initial condition y0 that is negative on (−3,−2)∪(−1, 0), positive on (−2,−1), and

0 at 0 will have continuation y with y′(t) = 2 for t ∈ (0, 1), y′(t) = −2 for t ∈ (1, 2), and

y′(t) = 0 for t ∈ (2, 3). Figure 3 shows Euler method approximations for two solutions

whose initial conditions are both close to such a y0. The two solutions are close until

time t = 3 and then diverge. (Notice that no alternative definition of our feedback

function at 0 would prevent this divergence.) 2
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Remark 2.1.5. The above example prompts one to ask whether nonzero initial condi-

tions can have continuations that are eventually identically zero; under our hypotheses

on (SDDE) (namely, that hi(y) = 0 if and only if y = 0), the answer is no. For imag-

ine that y0 6= 0 but that yτ = 0 for some minimum positive τ . Then there is an open

interval I in (τ − (dD − dD−1), τ) where

y(t) = y(t− d1) = · · · = y(t− dD−1) = 0

but where y(t − dD) is nonzero and of constant sign. This means that, on this same

interval, y′(t) = hD(y(t− dD)) is nonzero and of constant sign, a contradiction. 2

Definition 2.1.6. Write C ′ ⊂ C for the space of continuous real-valued functions

on [−γ, 0] with isolated zeros. Since [−γ, 0] is compact, we can define C ′ equivalently

as the subset of C whose members have finitely many zeros. We equip C ′ with the

subspace topology.

Loosely speaking, continuity with respect to initial data holds, for short time, at

points of C ′. For initial conditions in C ′, we can also give a concrete description of how

differentiability of solutions fails.
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Proposition 2.1.7. Given y0 ∈ C ′ there is a unique continuation y : [−γ, d1] → R of

y0 such that y solves (SDDE) in the following sense:

• y(t) is differentiable for every t ∈ (0, d1) except perhaps at the finitely many points

for which y(t− di) = 0 for some delay di;

• Everywhere that y′(t) exists, it satisfies (SDDE).

Write w for the continuation of w0 ∈ C as a solution of (SDDE). For all t ∈ [0, d1],

the map from C to C given by

w0 7→ wt

is continuous at y0.

PROOF. Existence and uniqueness are clear: the slope of y is prescribed all at but

finitely many points.

About every zero of y0 ∈ C ′ put an open interval of radius so small that the sum

of the lengths of all such intervals is less than ε. Off of these intervals, |y0(s)| has a

minimum value δ. Take w0 ∈ C with ‖w0 − y0‖ < min{δ/2, ε}, and write w and y for

the continuations of w0 and y0, respectively. Then, as t runs from 0 to d1, hi(w(t−di))

and hi(y(t − di)) disagree for at most ε units; and if hi(w(t − di)) 6= hi(y(t − di)) we

have

|hi(w(t− di))− hi(y(t− di))| ≤ |ai|+ |bi|.

Thus we estimate, for t ∈ [0, d1],

|w(t)− y(t)| ≤ ε+
∫ t

0
|w′(s)− y′(s)| ds

≤ ε+
∑

i

∫ t

0
|hi(w(s− di))− hi(y(s− di))| ds ≤ ε+ ε

∑
i

(|ai|+ |bi|) . 2

We restrict our study of (SDDE) almost exclusively to those solutions (or parts

or solutions) whose sections lie in C ′. Proposition 2.1.7 lends some appeal to this

restriction, but it is not the real reason for it. The continuation of y0 ∈ C ′ as a solution

of (SDDE) is completely determined by the signs and locations of the proper zeros of

y0, and the value y0(0). Since y0 has only finitely many zeros, then, we can view the
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solution semiflow as a function of finite-dimensional data, at least until time d1. This

observation is the key to the tractability of (SDDE).

Example 2.1.4 shows that the space C ′ is not, in general, forward-invariant under

the solution semiflow. Moreover, solutions of (SDDE) need never enter C ′, as the

following example shows.

Example 2.1.8. Consider the (SDDE)

y′(t) = −sgn(y(t− 1))− sgn(y(t− 2))− sgn(y(t− 3)).

This equation has a periodic solution none of whose sections lies in C ′. Figure 4 shows

a picture of this periodic solution (the slopes change at points of the form n/3, n ∈ Z,

and the intervals of zeros are each 2/3 units long). 2
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The restriction of our attention to C ′ thus does entail some loss, and we would like

to articulate conditions under which this loss is minimal. We conclude this section with

a fairly mild condition under which the subspace C ′ is forward-invariant. In section 2.2

we shall describe conditions that ensure that solutions enter C ′.

Proposition 2.1.9. A forward-invariance condition for C ′. Suppose that the
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equation

y′(t) =
D∑

i=1

hi(y(t− di)) (SDDE)

satisfies the following condition:

yi 6= 0 ∀i =⇒
D∑

i=1

hi(yi) 6= 0. (2.1.10)

Then C ′ is forward-invariant under the solution semiflow for (SDDE): that is, if

y0 ∈ C ′ with continuation y as a solution of (SDDE), then yt ∈ C ′ for all t ≥ 0.

Observe that condition (2.1.10) is generic in the sense that, if (SDDE) does not

satisfy (2.1.10), we can make (2.1.10) hold with an arbitrarily small adjustment to the

{ai, bi}.

PROOF. Take (SDDE) satisfying (2.1.10) and y0 ∈ C ′ with continuation y. Write

E for the set of nonisolated zeros of y. Since y is continuous, its zeros form a closed

set; E is therefore also a closed set and so, if we imagine E to be nonempty, E must

have a minimum ζ ≥ 0 (remember that y(t) is defined for t ≥ −γ, but that y has only

finitely many zeros on [−γ, 0] by hypothesis). Since all the zeros of y less than ζ are

isolated, there is some ε > 0 such that y(ζ − di + t) is nonzero and of constant sign for

all t ∈ (0, ε). y′(t) therefore exists and is constant on (ζ, ζ + ε), and condition (2.1.10)

guarantees that y′(t) is nonzero on this interval. Thus y(t) has no zeros on (ζ, ζ+ ε). If

ζ > 0, a similar argument shows that there is some ε > 0 such that y(t) has no zeros on

(ζ − ε, ζ) (if ζ = 0, there is such an ε by the hypothesis that y0 has only finitely many

zeros). We therefore see that ζ is not a nonisolated zero after all, and conclude that E

is empty. 2

2.2 Zeroing behavior

Proposition 2.1.9 tells us that C ′ is forward-invariant under the solution semiflow given

condition (2.1.10). The equation in example 2.1.8 satisfies this condition, but (as the

example shows) has solutions that never enter C ′. In this section we examine when
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solutions of (SDDE) enter and remain in C ′. We have found it necessary to restrict

the set of initial conditions we consider.

Definition 2.2.1. The space C ′′. We define the space C ′′ as follows:

C ′′ = { y0 ∈ C : ∂y−1
0 (0) is finite }.

Equivalently, y0 ∈ C ′′ if and only if the inverse image of R \ {0} under y0 has finitely

many connected components.

To insist that an initial condition lie in C ′′ is a substantial restriction. The following

observation makes the situation more palatable by showing that C ′′ is a natural, if

narrow, setting for (SDDE).

Proposition 2.2.2. The space C ′′ is forward-invariant under the solution semiflow

for (SDDE). Furthermore, given M > 0, the differentiability of y fails only at finitely

many points on [0,M ].

PROOF. If y0 ∈ C with continuation y(t) as a solution of (SDDE), the differentia-

bility of y on (0, d1) can fail only at those points t ∈ (0, d1) such that

t− di ∈ ∂y−1
0 (0) for some di.

Thus, if in fact y0 ∈ C ′′, then y is differentiable at all but finitely many points t ∈ (0, d1).

Away from these points, y(t) is of constant slope; and any open interval where y(t) is

of constant slope intersects ∂y−1(0) in at most one point. Therefore [0, d1]∩ ∂y−1(0) is

a finite set, and yt ∈ C ′′ for all t ∈ [0, d1]. Stepping forward, we see that yt ∈ C ′′ for all

t ≥ 0.

The above paragraph shows that y′(t) is defined of all but finitely many points of

the intervals (0, d1/2], (d1/2, d1], and so on. The last part of the proposition follows. 2

Here is a feature of C ′′ that will be useful below.

Lemma 2.2.3. If y0 ∈ C ′′ with continuation y(t), the nonisolated zeros of y(t) occur

in closed intervals of positive length.

PROOF. Write E for the set of nonisolated zeros of y(t); E is a closed set. Suppose

that p ∈ E. This means that, for any ε > 0, the interval Iε(p) about p of radius ε
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contains zeros of y(t) distinct from p. In particular, there are zeros of y(t) in either all

of the sets

(p, p+ ε) or (p− ε, p), ε > 0.

Suppose that we are in the first case (the other is similar). We claim that, for ε

sufficiently small, y(t) is identically zero on [p, p + ε]. For suppose not; then there is

a sequence qn approaching p from above with y(qn) 6= 0, and accordingly ∂y−1(0) is

infinite on [p, p+ γ]. This is impossible by the forward-invariance of C ′′. 2

We now define a class of (SDDE) for which solutions in C ′′ flow into C ′.

Definition 2.2.4. (SDDE) of type I. We say that (SDDE) is of type I if the

functions hi have the feature that

D∑
i=1

hi(yi) = 0 =⇒ yi = 0 for all i.

Remark 2.2.5. There are 3D combinations of the bi and −ai that represent possible

slopes of solutions of (SDDE); to check the type I condition one just computes these

3D combinations and checks that only the trivial combination sums to zero.

The point of the condition is that if (SDDE) is type I and y(t) is any solution of

(SDDE), then y′(t) = 0 only if y(t− di) = 0 for all i. Observe that any (SDDE) with

only one delay is type I, by the definition of (SDDE).

The type I condition implies condition (2.1.10), but not conversely (observe that the

equation in example 2.1.8 is not type I). Even so, the type I condition is “generic” in

the sense that if (SDDE) is not type I an arbitrarily small perturbation in the {ai, bi}

will make it type I.

Here is the main result for this section.

Theorem 2.2.6. If (SDDE) is of type I, then for any nonzero y0 ∈ C ′′ with continu-

ation y there is some finite τ ≥ 0 such that yt ∈ C ′ for all t ≥ τ .

Since any type I (SDDE) satisfies condition (2.1.10), to prove this theorem we need

only show that solutions starting in C ′′ eventually reach C ′.
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Remark 2.2.7. We conjecture that any nonzero solution of a type I (SDDE) even-

tually reaches C ′ (recall analogous results for equation (1.5.1) in section 1.5), but we

have been unable to prove this.

Proof of 2.2.6

We shall lean heavily on the particular values of the delays di, and need the following

observation. Suppose that y(t) is a solution of

y′(t) =
D∑

i=1

hi(y(t− di)). (SDDE)

Then, given κ > 0, the function ŷ(t) = y(κt)/κ satisfies the equation

ŷ′(t) = y′(κt) =
D∑

i=1

hi(y(κt− di)) =
D∑

i=1

hi(ŷ(t− di/κ)) (SDDEκ)

— that is, ŷ(t) is a solution of a version of (SDDE) where all the delays have been

divided by κ. We make three obvious points: first, (SDDEκ) is type I if and only if

(SDDE) is; second, for any t ≥ 0,

(
ŷ−1(0) ∩ [t/κ− γ/κ, t/κ]

)
is finite ⇐⇒

(
y−1(0) ∩ [t− γ, t]

)
is finite;

third, for any t ≥ 0,

∂
(
ŷ−1(0) ∩ [t/κ− γ/κ, t/κ]

)
is finite ⇐⇒ ∂

(
y−1(0) ∩ [t− γ, t]

)
is finite.

Therefore, to prove 2.2.6, we are free to replace (SDDE) with (SDDEκ) at the outset;

otherwise put, we can divide all the delays in (SDDE) by a positive scalar of our

choosing.

For the rest of the section, y(·) will always denote the continuation of some y0 ∈ C ′′

as a solution of (SDDE). Given such a y0 and some t ≥ −γ, let us write

Et = { s ∈ [0, 1] : t+ s is a nonisolated zero of y(·) }.

(Please observe that, in the definition of Et, s lies in [0, 1], not in [−γ, 0].) Each Et is

closed; write St for the complement of this set in [0, 1]. St is open (relative to [0, 1]),
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and to say that y0 6= 0 is just to say that St is nonempty for some t (more particularly,

for some t < 0).

Remark 2.2.8. The members of Et are translates of nonisolated zeros of y, not

translates of zeros of y that are nonisolated in [t, t+1]. Thus, for example, if ε ∈ (0, γ),

y(t) = 0 for t ∈ [−ε, 0], and y(t) > 0 for t ∈ (0, ε), then 0 does belong to E0.

t+Et is just the intersection of [t, t+ 1] with the set E of all nonisolated zeros of y;

accordingly, by proposition 2.2.2 and lemma 2.2.3, t+Et is the intersection of [t, t+ 1]

with a finite set of closed intervals of positive length. Therefore Et itself consists of a

finite set of closed intervals of positive length, along with perhaps one or both of the

points {0} and {1}.

Let (SDDE) be of type I and y0 ∈ C ′′. Suppose that there is some point t > 0 and

some i such that t − di is not in the set of nonisolated zeros of y. In this case there

is an interval around t where y′ is nonzero everywhere it exists (since (SDDE) is type

I) and exists at all but finitely many points (since C ′′ is forward-invariant). It follows

that any zeros of y in this interval are isolated. We see, then, what the hypotheses of

theorem 2.2.6 do for us:

Lemma 2.2.9. If (SDDE) is of type I and y0 ∈ C ′′, then

St ⊂ St+di

whenever t+ di > 0. 2

Our objective is to show, given (SDDE) of type I and nonzero y0 ∈ C ′′, that

St = [0, 1] for all sufficiently large t. It is enough to show that Sn = [0, 1] for all

sufficiently large n ∈ N: for suppose that Sn = [0, 1] for all n ≥ N but that there

is some noninteger t > N such that St 6= [0, 1]. This means that [t, t + 1] contains a

nonisolated zero p of y(·), and accordingly that p lies in some closed interval of positive

length of zeros of y(·). This interval will intersect some [n, n + 1] with n ≥ N and so

En will not be empty — a contradiction.

Our proof of theorem 2.2.6 divides into two cases: that where all the delays are

rationally related (i.e. the ratio of any two delays is a rational), and otherwise. In both
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cases we show that the hypotheses of 2.2.6 imply that Sn = [0, 1] for all sufficiently

large natural n.

We consider the first case. If all the delays are rationally related, by rescaling the

delays as demonstrated above we can take all the delays to be integers. Furthermore,

by scaling out the greatest common divisor of these integers, we may assume that

gcd(d1, . . . , dD) = 1.

We will need the following number-theoretic lemma. The proof here is drawn from

[15], chapter 1.

Lemma 2.2.10. Suppose that d1 < · · · < dD are positive integers such that gcd(d1, . . . , dD) =

1. Then there is an integer k such that any integer n ≥ k can be expressed as a positive

integer combination

n =
D∑

i=1

cidi, ci ∈ N.

PROOF. Write

Σ = {
D∑

i=1

cidi, ci ∈ Z }.

Σ contains positive integers and so contains a least positive integer c. Given x ∈ Σ,

write x = mc + r, where m ∈ Z and 0 ≤ r < c. Since Σ is closed under addition and

multiplication by integers, we see that r ∈ Σ and conclude that r = 0. Therefore c

divides every x ∈ Σ, and so c = 1.

Write 1 =
∑D

i=1 uidi, and put

K = d1

D∑
i=1

|ui|di.

Given n ≥ K, write n = K + md1 + r, where m ∈ Z+ and 0 ≤ r < d1. Then n is

expressible as the non-negative integer combination

n = md1 +
D∑

i=1

(d1|ui|+ rui)di.

That we can express any sufficiently large integer as a non-negative integer combination

of the {d1, . . . , dD} is a standard fact. We want some k such that any n ≥ k is expressible
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as a positive integer combination of the {d1, . . . , dD}; to accomplish this, we just put

k = K +
D∑

i=1

di,

where K is as above. 2

The following is inspired by a similar idea in [32].

Proposition 2.2.11. Suppose that (SDDE) is of type I, that y0 6= 0 lies in C ′′, and

that the delays d1 < · · · < dD are integers with gcd(d1, . . . , dD) = 1.

Imagine that yt /∈ C ′ for all t ≥ 0. Then the intersection

∩n∈Z+En

is nonempty.

PROOF. We show that the collection {En : n ∈ Z+} satisfies the finite intersection

property; it will follow that ∩nEn is nonempty.

2.2.9 and 2.2.10 together imply that there is some positive integer k such that

Sn ⊂ Sn+m for any n ∈ Z+ and any integer m ≥ k; otherwise put, En ⊃ En+m. If

we imagine that some En = ∅, we have that En+m = ∅ for all m ≥ k — contrary

to hypothesis. Therefore every En is nonempty. Now choose any finite subcollection

{Enj}, where n1 < . . . < np. These sets all contain the nonempty set

Enp+k,

and so have nonempty intersection. 2

Suppose now that the hypotheses and conclusion of proposition 2.2.11 hold. By

shifting our solution less than one unit to the right or left, we may assume that 0 ∈ En

for all nonnegative integers n. In this case, of course, it is also true that 1 ∈ En for all

nonnegative integers n. We now show that this is impossible.

Proposition 2.2.12. Suppose that (SDDE) is type I and that the delays in (SDDE)

are integers with greatest common divisor 1. Then if y0 ∈ C ′′ is nonzero it is impossible

that 0, 1 ∈ En for all nonnegative integers n.

Corollary 2.2.13. Theorem 2.2.6 holds when all the delays in (SDDE) are rationally

related. 2
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PROOF OF PROPOSITION. We imagine that 0, 1 ∈ En for all nonnegative integers

n and derive a contradiction.

Our assumption that there is some nonempty Sn implies that Sn is nonempty for

all n large enough; by shifting we may assume that Sn is nonempty for all nonnegative

n. Doing this, for every nonnegative integer n we put

αn = inf Sn.

On the interval [n, n+αn], y(t) is identically zero. αn is the left endpoint of a connected

component In of Sn; since all sections of yt lie in C ′′, y(t) has only finitely many zeros on

In +n (by In +n we mean the interval In translated to the right by n units). Therefore,

y′(t) exists and is nonzero at all but finitely many points on In + n + di for any delay

di. On the other hand, y′(t) = 0 if, for all delays di, t− di lies in some (n, n+ αn). It

follows that, for all n ≥ γ, we have

αn = min
1≤i≤D

αn−di
.

Thus αn is eventually some constant α. By again shifting our solution, we may assume

that αn = α for all nonnegative integers n; by shifting once more, we may assume that

α = 0. Since the nonisolated zeros of y occur in closed intervals of positive length, this

assumption just says that y(0) = 0 and that every n ∈ N is the right endpoint of a

nontrivial interval of zeros of y.

Since the connected components of Sn contain only finitely many zeros, for every n

there is a βn ∈ (0, 1) such that n + βn is the minimum zero of y(t) on (n, n + 1) (our

assumption that every natural n is the right endpoint of a nontrivial interval of zeros

of y guarantees that βn ∈ (0, 1)). Choose some n ≥ γ and write

ν = min
1≤i≤D

βn−di
;

we have that y(n) = 0 and that y′(t) is a nonzero constant on the interval (n, n + ν).

Write µ for the largest possible value of |y′(t)| and σ for the smallest nonzero value of

|y′(t)|. Then |y(n+ ν)| ≥ σν, and so it will take at least (σν/µ) additional time units

after time n+ ν for y(t) to recover to zero. Thus we have that

βn ≥ (1 + σ/µ)ν = (1 + σ/µ) min
1≤i≤D

βn−di
.
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In particular, if

β = min
0≤m≤γ

βm,

then we have

βn ≥ (1 + σ/µ)β, γ + 1 ≤ n ≤ 2γ;

βn ≥ (1 + σ/µ)2β, 2γ + 1 ≤ n ≤ 3γ;

and more generally

βn ≥ (1 + σ/µ)kβ, kγ + 1 ≤ n ≤ (k + 1)γ

for all k ∈ N. It follows that βn →∞ as n→∞, a contradiction. 2

We now turn to the case that two of the delays in (SDDE) are not rationally related.

In this case, by rescaling time we may take these two delays to be 1 and N + α, where

N is a natural number and α ∈ (0, 1) is irrational. (Note that we are not assuming that

these are the only two delays, or that 1 is the shortest delay.) We continue, of course,

to assume that (SDDE) is type I and that y0 is a nonzero member of C ′′.

In this case we have the set inclusions St ⊂ St+1 and St ⊂ St+N+α for all t. Let

us examine how these inclusions behave on the sets Sn, n ∈ Z+. Choose p ∈ Sn. This

means, remember, that n + p does not lie in the set E of nonisolated zeros of y(t).

p + n +N + 1 is not a nonisolated zero either, so we certainly have that p ∈ Sn+N+1.

Suppose now that p ≥ 1− α. Then, since

n+ p+N + α = n+ p+N + α+ 1− 1 = n+ p+N + 1− (1− α)

is not in E, we see that

p− (1− α) ∈ Sn+N+1.

On the other hand, if p < 1− α then

n+ p+N + α+ 1 /∈ E,

and so p+ α ∈ Sn+N+1.
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Thus we see that Sn+N+1 contains both Sn and the image of Sn ∩ [0, 1) under the

following map:

Fα : [0, 1) → [0, 1) given by Fα(x) =

 x+ α, x < 1− α

x− (1− α), x ≥ 1− α.

If Sn 6= ∅, that Sm = [0, 1] for large enough m now follows from

Proposition 2.2.14. The orbit of single point x0 ∈ [0, 1) under Fα is dense in [0, 1).

Furthermore, given any open set U ⊂ [0, 1), there is a positive integer k such that

∪k
i=1F

i(U) = [0, 1).

Corollary 2.2.15. Theorem 2.2.6 holds when the delays in (SDDE) are not all ratio-

nally related. 2

The map Fα is equivalent to the rotation ρα of the unit circle S1 through the angle

2πα in the sense that

ρα ◦ h = h ◦ Fα,

where h(t) = e2πit. Especially as stated in terms of ρα, result 2.2.14 is well known (see,

for example, chapter 8 of [3]); we sketch a proof here.

SKETCH OF PROOF OF 2.2.14. While not homeomorphisms, the bijections h and

h−1 both take dense sets to dense sets, and if U ⊂ [0, 1) is open, h(U) contains an open

set of S1. Therefore it is sufficient to show that ρα-orbits are dense in S1, and that

given an open set W ⊂ S1 there is some k such that

∪k
j=1 ρ

j
α(W ) = S1.

Choose p ∈ S1. Imagine that ρj
α(p) = p for some j ≥ 1; this implies that j2πα is

an integer multiple of 2π, contrary to the irrationality of α. It follows that the points

of any ρα-orbit are all distinct and so contain a Cauchy subsequence. Given ε > 0,

then, there are two powers ρm
α (p) and ρn

α(p), n > m, that are separated by an arc of

circle of angle less than ε; the power ρn−m
α therefore rotates the circle through an angle

less than ε. If W ⊂ S1 is an open set containing an open arc of angle greater than ε,
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then, we see that {ρj
α(W ) : j ∈ Z+} covers S1; the desired conclusion follows from

the compactness of S1. 2

2.3 Finite-dimensional apparatus

In this section we develop tools for studying (SDDE) when solutions, or sections of

solutions, lie in C ′.

Definition 2.3.1. The subset C ′0. We define C ′0 to be the set of y0 ∈ C ′ with

y0(0) = 0; that is,

C ′0 = C ′ ∩ C0.

If yt ∈ C ′ for all t ∈ [0, τ ], the proper zeros of y on (−γ, τ) strictly alternate in sign.

(By contrast, if y has an interval of zeros it is possible, say, for two successive proper

zeros to both be upward.) Accordingly, if y0 lies in C ′0, the following finite-dimensional

information is all that we need to determine its continuation y:

• The locations of the proper zeros of y0 on (−γ, 0);

• The sign of y0(−ε) for sufficiently small positive ε.

This observation lies at the heart of the tractability of (SDDE); we now build an

apparatus to exploit it.

Definition 2.3.2. The sets Sn
± and the function V . For each n ∈ N write

Sn = { x ∈ Rn : 0 < x1 < · · · < xn < γ }.

We will always equip Sn with the sup metric. We take S0 to be a one-point set.

For every n ∈ Z+, we take two copies of Sn, labeled Sn
− and Sn

+.

Suppose that y0 ∈ C ′0. Take i ∈ {−,+} to be the opposite of the sign of y(−ε) for

small positive ε. If y0 has proper zeros −x1 > −x2 > · · · > −xn in (−γ, 0), write

V (y0) = (x1, x2, . . . , xn) ∈ Sn
i ;
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if y0 has no proper zeros in (γ, 0), write

V (y0) ∈ S0
i .

Note the signs: the zeros of y0 are negative, but the entries of V (y0) are positive to

allow us to work in the more customary positive orthant. See Figure 5.

− γ 0

y0

− x1

− x2

y0 → V(y0)

x1

x2

●

V(y0)

S+
2

Figure 5

Definition 2.3.3. The functions z and φ. Given y0 ∈ C ′0, write x = V (y0) and

suppose that x ∈ Sn
− (or Sn

+). Suppose that the continuation y(t) of y0 as a solution of

(SDDE) has the following features:

• y(t) has a downward (upward) proper zero at 0;

• y(t) has a first positive upward (downward) proper zero ζ;

• All zeros of y(t) on [0, ζ] are isolated.

In this case, we define

z(x) = ζ; φ(x) = V (yζ).
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Figure 6 shows the continuation of an initial condition y0 ∈ C ′0 as a solution of

y′(t) = h(y(t− 1)), where

h(y) = 2, y < 0; h(y) = −1, y > 0.

Writing x = V (y0), for this example we have

x =
(

1
3
,
2
3

)
∈ S2

−; φ(x) =
(

1
2
,
5
6

)
∈ S2

+; φ2(x) ∈ S0
−; φ3(x) ∈ S0

+ . . . .

Observe that the second positive zero of this solution (at time t = 1) is improper, and

so is “ignored” by the sequence {φk(x)}.

0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

TIME

Figure 6

Example 2.3.4. z and φ need not be defined. Consider the equation y′(t) =

−sgn(y(t− 1)) and the initial condition given by

y0(s) = −s(s+ 1/2), s ∈ [−1, 0].

y0 ∈ C ′0 and V (y0) ∈ S1
−, but z(V (y0)) and φ(V (y0)) are not defined (0 is not a proper

zero of the continuation y(t) of y0). If we consider instead the same initial condition

y0 with the equation y′(t) = sgn(y(t− 1)), then z(V (y0)) and φ(V (y0)) are not defined
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either because, while the continuation of y0 has 0 as a downward proper zero, it has no

positive proper zeros. 2

Informally speaking, we think of the map φ as the distillation of a return map on

C ′0. Let us suppose that C ′ is forward-invariant and that y0 ∈ C ′0 has continuation y.

If φm(y0) is defined for all m ∈ N, then the sequence {φm(y0)} captures essentially all

information about the evolution of yt ∈ C ′: for if ζ is the mth positive proper zero

of y, then φm(y0) = V (yζ) suffices to compute the continuation of yζ . If φm(y0) is

defined only for m up to some natural M , then y has a maximum positive proper zero

ζ and y(t) has constant slope for t > ζ + γ. If φ(y0) is not defined, then y either has

at most one positive proper zero — in which case y(t) eventually has constant slope

— or there is some minimum τ > 0 where φ(yτ ) is defined; in this case, the sequence

{φm(yτ )} describes the subsequent evolution of y (for as many terms as it is defined).

In any case we see that, except for solutions that eventually have constant slope, the

map φ comprehends the solution semiflow for (SDDE) when C ′ is forward-invariant.

Somewhat more generally, if y0 ∈ C ′0 and ys ∈ C ′ for s ∈ [0, t], then {φm(y0)} describes

the evolution of ys up to time τ , where

τ = sup{ s ≤ t : s is a proper zero of y }.

In particular, periodic points of φ2 correspond to periodic solutions of (SDDE).

Definition 2.3.5. We write D−(n) for the subset of Sn
− where z and φ are defined,

and similarly for D+(n). We extend this notation as follows:

D−(n, j) = D−(n) ∩ φ−1
(
Sj

+

)
; D+(n, j) = D+(n) ∩ φ−1

(
Sj
−

)
.

Given x = (x1, . . . , xn) ∈ D−(n), if z(x) ≥ γ we of course have x ∈ D−(n, 0). If

z(x) < γ, then x ∈ D−(n, j) exactly if

z(x) + xj−1 < γ ≤ z(x) + xj

(with the notational convention x0 = 0) and in this case we have the following formula:

φ(x) = (z(x), z(x) + x1, . . . , z(x) + xj−1). (2.3.6)
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Observe that D−(n, j) is always empty for j > n+ 1.

All of the analogous statements of course hold with the opposite signs.

Example 2.3.7. We describe all of the setsD−(2, j) ⊂ R2 associated with the equation

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 2)).

Observe that

y′(t) = 3 when y(t− 2) < 0, y(t− 1) < 0;

y′(t) = 1 when y(t− 2) > 0, y(t− 1) < 0;

y′(t) = −1 when y(t− 2) < 0, y(t− 1) > 0;

y′(t) = −3 when y(t− 2) > 0, y(t− 1) > 0.

We start by describing D−(2). Suppose that y0 ∈ C ′0 has two proper zeros in (−2, 0),

and write y for the continuation of y0. All positive zeros of y will be isolated (condition

(2.1.10) is satisfied, so C ′ is forward-invariant) and y′(t) will exist for t > 0 except at

isolated points. If we imagine that y has a downward proper zero at 0 but no positive

upward proper zero, then we have that y(t) < 0 and y′(t) = 3 for all t > 2 except a

set of isolated points; this is impossible. For this particular equation, then, y having a

downward proper zero at 0 guarantees that z(V (y0)) and φ(V (y0)) are defined.

If y′(t) exists, it is negative if and only if y(t − 1) > 0. Thus, if y0 ∈ C ′0 has two

proper zeros on (−2, 0), the continuation y of y0 will have a downward proper zero at

0 exactly when y(−ε) > 0 for small ε > 0 and both proper zeros of y0 occur either in

(−2,−1] or in (−1, 0). Therefore, for this equation,

D−(2) = { (x1, x2) ∈ S2
− : x1 ≥ 1 or x2 < 1 }.

Suppose that x = (x1, x2) ∈ D−(2). Direct computation shows that if x1 ≥ 1, then

x ∈ D−(2, 0). If x2 < 1, though, xmight lie inD−(2, 0), D−(2, 1), D−(2, 2), orD−(2, 3).

To see this, choose (x1, x2) ∈ D−(2), with 0 < x1 < x2 < 1. The corresponding solution

y will behave as follows.
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• Drop with slope −3 for (1− x2) units. The value of y at the end of this interval

is −3(1− x2). Next step:

• Rise with slope 1 for (x2 − x1) units. The value of y at the end of this interval

is −3 + 4x2 − x1. If this quantity is greater than zero, x ∈ D−(2, 3). Otherwise,

next step:

• Drop with slope −3 for x1 units. The value of y at the end of this interval is

−3 + 4x2 − 4x1. We have now gone forward one time unit. Next step:

• Rise with slope 1 for 1 − x2 units. The value of y at the end of this interval is

−2 + 3x2 − 4x1. If this quantity is greater than 0, then x ∈ D−(2, 3). Otherwise,

yt has “lost a zero” — x does not lie in D−(2, 3). Next step:

• Rise with slope 3 for x2 − x1 units. The value of y at the end of this interval is

−2 + 6x2− 7x1. If this quantity is greater than zero, x ∈ D−(2, 2). Otherwise, yt

has “lost a zero” — x does not lie in D−(2, 2). Next step:

• Rise with slope 1 for x1 units. The value of y at the end of this interval is

−2 + 6x2 − 6x1. If this quantity is greater than zero, x ∈ D−(2, 1). Otherwise,

x ∈ D−(2, 0). We have now gone forward two time units. 2

Figure 7 displays a decomposition of D−(2) into the four regions D−(2, 0), D−(2, 1),

D−(2, 2), and D−(2, 3). We see from this example that the sets D±(n, j) need not be

especially nice: in general they are neither connected nor convex, are neither open nor

closed in Sn
±, and can contain points of discontinuity of z.
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To forge a connection between (SDDE) and equations with continuous feedback,

we will need to work at points where z and φ are differentiable. ((2.3.6) shows that the

differentiability of z and φ are equivalent.) The following two examples illustrate how

differentiability can fail.

Example 2.3.8. A point of discontinuity of z interior to D−(n, j). Even if x

is interior to D−(n, j), z might be discontinuous there. We revisit the equation from

example 2.3.7:

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 2)).

Consider the point

x = (0.1, 0.5, 0.6, 0.9) ∈ D−(4).

z(x) = 0.8, and there is a neighborhood about x in S4
− where z is strictly less than 1

— this point is therefore interior to D−(4, 5). Nevertheless, z is discontinuous at x in

the third coordinate: for any ε ∈ (0, 0.1) we have

z ((0.1, 0.5, 0.6− ε, 0.9)) = 0.4.

The trouble comes from the fact that the continuation y(t) of y0 ∈ V −1(x) has an
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improper zero at t = 0.4. 2

Example 2.3.9. A point where z is continuous but not differentiable. Consider

the equation

y′(t) = −sgn(y(t− 1))− 2sgn(y(t− 2)).

Observe that

y′(t) = 3 when y(t− 2) < 0, y(t− 1) < 0;

y′(t) = 1 when y(t− 2) < 0, y(t− 1) > 0;

y′(t) = −1 when y(t− 2) > 0, y(t− 1) < 0;

y′(t) = −3 when y(t− 2) > 0, y(t− 1) > 0.

Consider the point x = (x1, x2) = (1, 9/5) ∈ S2
−. First, let us calculate z(x). Suppose

that y0 ∈ C ′0 with V (y0) = x, and write y for the continuation of y0. y′(t) = −3 for

t ∈ (0, 1/5) and then y′(t) = 1 for t ∈ (1/5, 4/5); we therefore have that z(x) = 4/5

and that x ∈ D−(2, 2). In fact, there is an open set about x in S2
− that is contained in

D−(2, 2), and z is continuous at x.

Nevertheless, z is not differentiable at x, as we now show. If x1 is increased slightly

to 1 + ε, z(x) is unchanged; thus the right-hand derivative of z at x with respect to x1

is zero.

On the other hand, suppose that x1 is decreased slightly to 1 − ε. In this case,

y′(t) = −1 for t ∈ (0, ε) and y′(t) = −3 for t ∈ (ε, 1/5); we therefore have

y(1/5) = −3(1/5− ε)− ε = −3/5 + 2ε.

Then y′(t) = 1 for the next 3/5−2ε units, and z(x) = 4/5−2ε. Therefore the left-hand

derivative of z at x with respect to x1 is 2, and z is not differentiable at (1, 9/5). As

we see, the problem stems from the fact that y(0− d1) = y(−1) = 0. 2

We now turn to the articulation of a condition on x that circumvents the sources of

nondifferentiability illustrated in examples 2.3.8 and 2.3.9. The condition is practical

to check in particular cases and implies that the behavior of z at x is particularly nice:

x is interior to D±(n, j), and the derivative of z is locally constant around x.
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Definition 2.3.10. Change points and change index pairs. Let y be a solution

of (SDDE). Any point c such that (c − di) is a proper zero of y for some delay di is

called a change point of y.

Suppose that y0 ∈ C ′0 with V (y0) = x = (x1, . . . , xn) ∈ D−(n), and write x0 = 0.

Given 0 ≤ k ≤ n and 1 ≤ i ≤ D (where D is the number of delays in (SDDE)), we

say that (k, i) is a change index pair of x if there is a change point c = c(k, i) of y(t)

satisfying

• c ∈ [0, z(x)];

• c− di = −xk.

Similarly if x ∈ D+(n).

Remark 2.3.11. The reason for this terminology is obvious — the change points are,

by and large, the places where it is possible for y′(t) to change — but we amplify a few

points. First, if c − di is (for example) the endpoint of an interval of zeros of y, y′(t)

might change at c, but we do not regard c as a change point (in the definition, c−di has

to be a proper zero). Second, at a change point c > 0, y′(t) does not have to change (for

instance, the sign of y might change at c−di for multiple delays di, with the changes in

the hi(y(c − di)) canceling one another). Third, if y0 is an initial condition and c < 0

happens to be a change point, this of course raises no expectation on the behavior of

y′(t) around c because y(t) does not solve (SDDE) for t < 0.

Suppose that y is a solution of (SDDE). If yt ∈ C ′ for t in some positive interval

(τ − δ, τ + δ), then y′(τ) exists if τ is not a change point. For even if y(τ − di) = 0 for

some delay di, since τ is not a change point the zero τ − di is isolated and improper;

there is thus a small interval about τ where y(t−di) is of constant sign, except perhaps

at finitely many points, for all delays di. The solution y therefore has constant slope

on some interval about τ .

From a bookkeeping standpoint, change index pairs are more useful than change

points, since the change index pairs corresponding to a change point c (there might be

more than one) encode how y′(t) changes at c.
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Definition 2.3.12. Simple points in D−(n) and D+(n). Suppose that y0 ∈ C ′0

with continuation y. We say that x = V (y0) is simple if z(x) is defined and

• y has no zeros (at all, not just no proper zeros) between 0 and z(x);

• neither 0 nor z(x) is a change point of y.

Notice that the two parts of this definition remove precisely the sources of discon-

tinuity and nondifferentiability, respectively, in examples 2.3.8 and 2.3.9. We describe

the properties of simple points in the next theorem.

Theorem 2.3.13. Near simple points, the functions z and φ are affine and

change index pairs are invariant. Suppose that n ∈ N and that x ∈ Sn
− is simple.

Then there is an open neighborhood U about x in Sn
− such that the following hold. Every

point ξ ∈ U

• is contained in the domain of z;

• is simple;

• has image φ(ξ) of the same dimension as φ(x);

• has the same set of change index pairs as does x.

Furthermore, z is differentiable on U and the derivative of z is constant on U — that

is, z is affine on U . Therefore φ is affine on U also.

Similarly for x ∈ Sn
+.

PROOF. Write

µ =
D∑

i=1

|ai|+ |bi|;

µ is an upper bound on |u′(t) − v′(t)| for any two solutions u, v of (SDDE). Write

σ > 0 for the smallest nonzero value attainable by |u′(t)|, where u is any solution of

(SDDE).

Let x = (x1, . . . , xn) ∈ Sn
− be simple (the proof is the same for x ∈ Sn

+). Choose

y0 ∈ V −1(x) with continuation y, and write z(x) = z. Finally, choose ρ > 0 such that
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• [−2ρ, 2ρ] ∪ [z − 2ρ, z + 2ρ] contains no change points of y.

Such a ρ does exist, since y(t) will have finitely many change points on [−γ, z+d1].

Notice in particular that y(t) has constant negative slope on (0, 2ρ) and constant

positive slope on (z − 2ρ, z + 2ρ). Observe also that we must have 2ρ < d1, since

d1 and z + d1 are change points. Finally, we point out that the condition that

[−2ρ, 2ρ] contain no change points of y is equivalent to the condition that

| − di − (−xk)| > 2ρ ∀ 0 ≤ k ≤ n and 1 ≤ i ≤ D,

where we are writing x0 = 0.

• y(t) < −ρσ ∀ t ∈ (ρ, z − ρ).

This second condition is not automatic given the first, since y(t) might get quite

close to 0 for t between ρ and z−ρ; but since y(t) is strictly negative for t ∈ (0, z),

this condition does hold for ρ small enough.

This notation is illustrated in Figure 8. The dark bands on the time axis around

t = 0 and t = z are of radius 2ρ.

Remark 2.3.14. Making this choice of ρ is exactly where and how we use the hypoth-

esis that x is simple.
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Figure 8

Now choose ξ = (ξ1, . . . , ξn) ∈ Sn
− with |ξ − x| < ρ (recall that we have endowed

Sn
− with the sup metric). Choose w0 ∈ V −1(ξ) with continuation w as a solution of

(SDDE).

For notational simplicity, we shall write x0 = ξ0 = 0 throughout the proof.

We claim that y′(t) = w′(t) for t ∈ (0, ρ). For given any 1 ≤ i ≤ D, the definition

of ρ implies that there is some 1 ≤ k ≤ n such that

t− di ∈ (−xk,−xk−1) ∀ t ∈ [−2ρ, 2ρ].

Since |ξ − x| < ρ it follows that

t− di ∈ (−ξk,−ξk−1) ∀ t ∈ [−ρ, ρ].

Therefore w(t− di) and y(t− di) are of the same sign for all t ∈ [0, ρ] (except perhaps

at finitely many points where one or the other initial has an improper zero). The claim

follows, and implies that 0 is a downward proper zero of w. We write

ζ = inf{ t > 0 : w(t) = 0 }

and put τ = min{ z, ζ }.
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Suppose that c ∈ (0, τ+d1) is a change point of y. Then, since y(t) < 0 for t ∈ (0, τ),

we must have that c − di = −xk for some 0 ≤ k ≤ n and some 1 ≤ i ≤ D. For every

such pair (k, i) (there might be more than one) we write c = c(k, i). c(k, i) > 2ρ by the

definition of ρ. Since | − ξk − (−xk)| < ρ, there is a positive time point

κ(k, i) ∈ (c(k, i)− ρ, c(k, i) + ρ)

such that

κ(k, i)− di = −ξk.

Conversely, suppose that κ ∈ (0, τ+d1) is a change point of w. Then, since w(t) < 0

for all t ∈ (0, τ), we must have κ− di = −ξk for some 0 ≤ k ≤ n and some 1 ≤ i ≤ D.

For every such pair (k, i) (there might be more than one) we write κ = κ(k, i). We

know from the above claim that κ(k, i) > ρ; therefore there is a positive time point

c(k, i) ∈ (κ(k, i)− ρ, κ(k, i) + ρ)

such that

c(k, i)− di = −xk.

Let us now suppose that t ∈ (0, τ + d1) is more than ρ units from any change point

of y. Then the last paragraph tells us that t is not a change point of w either, and

so w′(t) and y′(t) are both defined (see remark 2.3.11). The fact that y(s − di) is of

constant sign (except at finitely many points) for all s in the interval of radius ρ around

t implies that w(s − di) is of the same constant sign (except at finitely many points)

for all s in the interval of radius

ρ− |ξ − x| > 0

about t (imitate the proof of the above claim). These observations establish that, if

t ∈ (0, τ + d1) is more than ρ units from any change point of y,

• t is not a change point of w;

• w′(t) = y′(t);
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• the change points of y occurring on [0, t] and the change points of w occurring on

[0, t] correspond to identical sets of change index pairs.

The total time over the interval (0, τ + d1) that hi(w(t− di)) and hi(y(t− di)) can

disagree is n|ξ − x|, and therefore we have

sup
t∈[0,τ+d1]

|w(t)− y(t)| ≤ µn|ξ − x|.

If we therefore choose

U = { ξ : |ξ − x| < ρσ

µn
},

for any ξ ∈ U we have that

sup
t∈[0,τ+d1]

|w(t)− y(t)| < ρσ.

Since y(t) has constant slope at least as large as σ on (z − 2ρ, z + 2ρ) and is strictly

less than −ρσ on (ρ, z − ρ), we see that ξ ∈ U implies that ζ ∈ (z − ρ, z + ρ). Thus

z + ρ < τ + 2ρ < τ + d1, and since no point of (z − ρ, z + ρ) is within ρ of a change

point of y we have that w′(t) = y′(t) = y′(z) on (z − ρ, z + ρ). It follows that z(ξ) is

defined, that ξ is simple, and that ξ and x have the same set of change index pairs.

This last implies that φ(x) and φ(ξ) are of the same dimension: for to say that φ(x) has

dimension j is just to say that x has the change index pair (j,D) but not the change

index pair (j − 1, D).

It remains to show that z is differentiable on U . Suppose that in fact ξk = xk + ε,

where |ε| < ρσ/µn, and that ξp = xp for p 6= k. Then, for t ∈ (0, τ +d1), w′(t) and y′(t)

are equal unless t− di lies between −ξk and −xk for some i, in which case

hi(w(t− di))− hi(y(t− di)) = (−1)ksgn(ξk − xk)(bi + ai). (2.3.15)

For t ∈ (z − ρ, z + ρ), then, we actually have

w(t)− y(t) = ε

 ∑
i:(k,i) is a change index pair of x

(−1)k(bi + ai)

 .



51

Therefore

ζ − z =
−ε
y′(z)

 ∑
i:(k,i) is a change index pair of x

(−1)k(bi + ai)

 .
Thus we see that ∂z(x)/∂xk exists, and depends only on the change index pairs of x

and on y′(z). But we have established that these things are locally invariant, and so

conclude that ∂z/∂xk is locally constant.

That φ is affine around x follows from the fact that z is, and the formula (2.3.6). 2

The following formula will be useful later.

Proposition 2.3.16. Determinant of the Jacobian of φ. Suppose that x ∈

D−(n, n) is simple. Then the determinant of the Jacobian of φ at x is given by

−1n+1∂z(x)
∂xn

.

PROOF (Thanks to Roger Nussbaum). The Jacobian of φ at x is given by

Dφ[x] =



∂z(x)
∂x1

∂z(x)
∂x2

· · · ∂z(x)
∂xn−1

∂z(x)
∂xn

1 + ∂z(x)
∂x1

∂z(x)
∂x2

· · · ∂z(x)
∂xn−1

∂z(x)
∂xn

∂z(x)
∂x1

1 + ∂z(x)
∂x2

· · · ∂z(x)
∂xn−1

∂z(x)
∂xn

· · · · · · · · · · · · · · ·
∂z(x)
∂x1

∂z(x)
∂x2

· · · 1 + ∂z(x)
∂xn−1

∂z(x)
∂xn


.

If we subtract the first row from each of the subsequent rows, the determinant is un-

changed. Cofactor expansion along the first row then gives the desired result. 2

Example 2.3.17. The nonsimple points of D−(n) need not have empty inte-

rior. The set of nonsimple points of D−(n) seems frequently to have empty interior in

Sn
−. We have not determined conditions that guarantee that this is the case; it is not

always.

The single element of D−(0) might not be simple. For example, if our (SDDE) is

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 4)),

the member of D−(0) is not simple: for if x ∈ D−(0) then z(x) = 4.



52

We can use almost the same example to exhibit an interval of non-simple points in

D−(1). If our (SDDE) is

y′(t) = −sgn(y(t− 1))− sgn(y(t− 2))− sgn(y(t− 10)),

then there is an interval about x = 5 that is contained in D−(1) and on which z has

the constant value 2. None of the points in this interval is simple. 2

Definition 2.3.18. Suppose that p is a periodic solution of (SDDE). We say that p

is simple if V (pz) is simple (recall definition 2.3.12) for every zero z of p.

In particular, a periodic solution p of (SDDE) is simple if and only if it has the

following properties:

• The only zeros of p are proper zeros;

• No zero of p is a change point.

Definition 2.3.19. Suppose that p is a simple periodic solution with a downward

proper zero at 0. Write 0 < s1 < s2 < · · · for the positive zeros of p. We say that p is

nondegenerate if there is some even positive integer m such that

• sm > γ;

• sm is an integer multiple of the period of p (so V (p0) is a fixed point of φm);

• The Jacobian Dφm[V (p0)] of φm at V (p0) does not have eigenvalue 1.

Intuitively, we regard simple, nondegenerate periodic solutions as “robust.” Our

main theorems relating (SDDE) to equations with continuous feedback apply to simple,

nondegenerate periodic solutions of (SDDE) — roughly speaking, if p is a simple

nondegenerate periodic solution then an equation whose feedback functions are close

enough to the step feedback functions in (SDDE) will have a periodic solution close

to p.

The simplicity and nondegeneracy conditions seem “usually” to hold, but we have

been unable to articulate any precise statement of this sort. Such a statement is desir-

able, because it can be tedious to verify that a periodic solution of (SDDE) is simple

and nondegenerate.
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Chapter 3

Steplike problems

3.1 Existence and uniqueness of periodic solutions

In this chapter we prove our main existence, uniqueness, and stability theorems for a

special (and admittedly artificial) subclass of equations with continuous feedback. In

the next chapter we will extend these results to more natural problems.

We choose and fix, for the duration of the chapter, some particular (SDDE):

y′(t) =
D∑

i=1

hi(y(t− di)), t > 0; y0 ∈ C; (SDDE)

hi(y) =


bi, y < 0;

0, y = 0;

−ai, y > 0.

Definition 3.1.1. Steplike problems. Given (SDDE) as above and numbers η > 0,

µ ≥ 0 and B ≥ 0 (with B = ∞ allowed), we write

P(SDDE)(η, µ,B)

for the set of differential delay equations of the form

y′(t) =
D∑

i=1

Hi(y(t− di)), t > 0; y0 ∈ C (DDE)

where the following hold:

• Each Hi is continuous;

• 2
∑D

i=1 sup |Hi| ≤ µ;
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• Each Hi has total variation less than or equal to B;

• Hi(y) = bi for all y ≤ −η and Hi(y) = −ai for all y ≥ η.

We call (DDE) an η-steplike problem corresponding to (SDDE), µ, and B. Through-

out this chapter, the label (DDE) will always refer to a member of a class P(SDDE)(η, µ,B).

If the functions Hi are Ck, we say that the problem (DDE) is Ck.

For the duration of this chapter, we will fix µ and B with

2
D∑

i=1

sup |hi| ≤ µ; µ ≤ B.

Since we regard (SDDE), µ and B as fixed, we will use the shortened notation

P(SDDE)(η, µ,B) = P(η).

Figure 9 shows a typical “steplike” feedback function H.

− η

η

x

H(x)

Figure 9

Our main results refer to particular periodic solutions of (SDDE). We name such

a periodic solution and its various features in the following definition; we will adhere

to this notation throughout chapters 3 and 4.
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Definition 3.1.2. Standing notation — the solution p. p is a simple nonde-

generate periodic solution of (SDDE), and p has a downward proper zero at 0. We

write

V (p0) = π,

where the function V is as in 2.3.2. We write n for the dimension of π:

V (p0) = π = (π1, . . . , πn).

We write s1 < s2 < · · · for the positive zeros of p. We write m for an even number

such that sm is both greater than γ and a multiple of the period of p, and also such

that the n× n Jacobian matrix

A = Dφm[π] = Dφm[V (p0)],

where φ is as in 2.3.3, does not have eigenvalue 1. (That we can do this is just the

definition of nondegeneracy; recall definition 2.3.19.)

We write σ for the minimum nonzero value of |p′(t)|.

We choose ρ > 0 such that

• no closed interval of radius 6ρ centered at a zero of p contains a change point

of p. Note that 6ρ is less than the shortest delay d1, that sm > γ + 6ρ, that

−πn > −γ + 6ρ, and that any two zeros of p are more than 12ρ units apart.

• |p(t)| > 3ρσ if t is not within 3ρ of a zero of p (that is, if |t− z| > 3ρ for any zero

z of p).

We write t∗ = sm + 3ρ.

Remark 3.1.3. Figure 10 illustrates this notation. The dark intervals about the zeros

of p have radius 6ρ.

The particular solution p pictured in Figure 10, and throughout this section, is a

periodic solution of

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 3)).
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This solution has zeros separated by 10/7, and is simple and nondegenerate. For this

solution, n = 2 and we can take m = 4. We will discuss this solution in more detail in

section 4.4.

For the sake of clarity and readability, the quantities used to generate the figures in

this section are not accurate: the figures should be considered schematic.

Much of our work in this section and in chapter 4 will consist of comparing solutions

of various equations on the interval [0, t∗].

− γ 0

− π2 − π1 s1 s2 s3 s4

t*p(t) γ

Figure 10

As in the proof of 2.3.13, the choice of ρ in 3.1.2 is exactly where and how we use

the hypothesis that p is simple (recall definition 2.3.18). A basic consequence of this

choice is

Lemma 3.1.4. If t is within 3ρ of a zero z of p (that is, if |t− z| ≤ 3ρ), then

|p(t− di)| > 3ρσ

for all delays di.

PROOF. If |p(t − di)| ≤ 3ρσ, then t − di is within 3ρ of a zero of p, contradicting

that p has no change points within 6ρ of z. 2
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Since this section is technical, we first outline the general ideas. Choose y0 ∈ C0

with continuation y as a solution of (DDE). When η is small, we expect y to behave

much as if it were a solution of (SDDE) — at least if y(t) is “usually” not close to

zero. In particular, if y0 is close to p0 we expect that

• y(t) should be close to p(t) for t > 0 not too large;

• the mth positive proper zero z of y should be defined;

• yz should be close to p0.

Definition 3.1.5. Notation — the return map R. Let y0 ∈ C0 with continuation

y as a solution of (DDE). If the mth positive proper zero z of y is defined, we write

R(y0) = yz ∈ C0.

Figure 11 shows a y0 close to p0 and its continuation y as a solution of (DDE),

along with p. y0 and (a translate of) R(y0) are marked with bold lines.

− γ 0

y0 R(y0)

Figure 11
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The simplicity of p implies that, when p(t) is close to zero, the delayed values

p(t − di) are far from zero (this is the substance of lemma 3.1.4). If y0 is close to p0

and η is small, then, since we expect y and p to track each other closely we in turn

expect delayed values y(t − di) to be far from zero when y(t) is close to zero. Since

Hi(y(t− di)) = hi(p(t− di)) when y(t− di) and p(t− di) are of the same sign and far

from zero, we expect y to have constant slope, equal to that of p, near its zeros. Figure

12 illustrates the idea.

0

y0

R(y0)

Figure 12

We therefore expect, if y0 is close to p0 and η is small, that R(y0) will not only be

close to p0 but will also lie in a special subset of C0 — namely, a set of initial conditions

whose zeros are close to the zeros −πk of p0, and whose slopes are constant and equal

to the slopes of p0 around those zeros. Such a subset of C0 is illustrated in Figure 13.

The dashed lines bound the possible graphs of initial conditions in the subset, and the

slopes of these initial conditions are equal to the slopes of p0 near its zeros.
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− γ 0

Figure 13

If y0 lies in a set like that pictured in Figure 13 and η is small enough, then the zeros

of y0 completely determine its continuation y as a solution of (DDE) (for the behavior

of y0, where |y0(t)| is small, is determined by the location of its zeros; and Hi(y0(t)),

when |y0(t)| is large, is locally constant). Therefore we expect that, for η small enough,

there is a neighborhood U ⊂ C0 about p0 such that R2 is defined on U and such that

R is finite-dimensional on R(U). We will be able to give a formula for V ◦ R on R(U)

that is intimately related to the return map φm for (SDDE). This formula will allow

us to assert that R has a fixed point.

We introduce some more necessary machinery, and then follow the program outlined

above. Given y0, w0 ∈ C0, we define the semimetric

〈y0, w0〉 = ‖ȳ0 − w̄0‖,

where

ȳ0(s) =

 y0(s), |y0(s)| ≤ ρσ;

ρσ sgn(y0(s)), |y0(s)| ≥ ρσ
(3.1.6)

and similarly for w̄0(s).
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Figure 13 shows two initial conditions that are not close in norm, but are close in

the 〈·, ·〉 semimetric.

Lemma 3.1.7. Facts about 〈·, ·〉. Suppose that y0, w0, v0 ∈ C0. Then the following

hold:

• Symmetry: 〈w0, y0〉 = 〈y0, w0〉.

• The triangle inequalities:

〈w0, y0〉 ≤ 〈w0, v0〉+ 〈v0, y0〉, 〈w0, y0〉 ≥ 〈w0, v0〉 − 〈v0, y0〉.

• 〈w0, y0〉 ≤ ‖w0 − y0‖.

• Given δ > 0, the set { v0 ∈ C0 : 〈v0, y0〉 < δ } is an open set about y0, and the

set { v0 ∈ C0 : 〈v0, y0〉 ≤ δ } is a closed set about y0.

PROOF. Symmetry and the triangle inequality follow immediately from the corre-

sponding properties of the norm; 〈w0, y0〉 ≤ ‖w0 − y0‖ simply because

|w̄0(s)− ȳ0(s)| ≤ |w0(s)− y0(s)|

for all s ∈ [−γ, 0], where w̄0 and ȳ0 are as in (3.1.6).

Suppose that 〈v0, y0〉 < δ, and suppose that w0 is in the open ball of radius

δ′ = δ − 〈v0, y0〉

about v0. Then

〈w0, y0〉 ≤ 〈w0, v0〉+ 〈v0, y0〉 ≤ ‖w0 − v0‖+ 〈v0, y0〉 < δ′ + 〈v0, y0〉 = δ.

Thus { v0 ∈ C0 : 〈v0, y0〉 < δ } is open.

Suppose now that 〈v0, y0〉 > δ, and suppose that w0 is in the open ball of radius

δ′ = 〈v0, y0〉 − δ about v0. Then

〈w0, y0〉 ≥ 〈y0, v0〉 − 〈v0, w0〉 ≥ 〈y0, v0〉 − ‖v0 − w0‖ > 〈y0, v0〉 − δ′ = δ.

Thus { v0 ∈ C0 : 〈v0, y0〉 ≤ δ }, having open complement, is closed. 2
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Remark 3.1.8. Write

S = { v0 ∈ C0 : 〈v0, y0〉 < δ };

S′ = { v0 ∈ C0 : 〈v0, y0〉 = δ }.

S ∪S′ is not equal to the closure of S. S′ certainly contains ∂S, but might also contain

much more — for S′ can have non-empty interior. For example, if y0 ∈ C0 is any initial

condition that attains an absolute value of greater than ρσ + ε, then for any v0 with

‖v0 − y0‖ < ε we have

〈v0, 0〉 = ρσ.

The continuation of y0 ∈ C0 as a solution of (DDE) is not affected by perturbations

in y0 at points where |y0(s)| is large. Indeed, if η < ρσ and y0, w0 ∈ C0 with 〈y0, w0〉 = 0,

the continuations of y0 and w0 as solutions of (DDE) ∈ P(η) are identical for all positive

time. We have introduced the 〈·, ·〉 semimetric to detect differences between points in

the space C0 that are relevant for (DDE) ∈ P.

Our goal for the current section is to find an open set U in C0 about p0 such that,

for any (DDE) ∈ P(η) with η small enough, the return map R described in 3.1.5 is

defined on U and has a fixed point u0 whose continuation u, as a solution of (DDE), is

close to p in a sense we’ll make precise. In section 3.2 we will develop some properties

of the derivative DR[u0] that will later aid us in extending to non-steplike problems.

If we regard (and we do) (SDDE), p, µ, and B as fixed, then the results of these two

sections (with a handful of exceptions that we will identify explicitly) depend only on

the size of η — that is, the particular shapes of the feedback functions Hi in (DDE)

don’t matter. This uniformity will be pivotal when we extend to non-steplike problems.

Definition 3.1.9. The subspace W and the subset W̃ . We write W ⊂ C0 for

the closed linear subspace defined as follows: W consists of all initial conditions h0

that are equal to zero on [−2ρ, 0] and are constant on each of the n disjoint intervals

[−πk − 2ρ,−πk + 2ρ].

We define affine subset

W̃ = { p0 + h0 : h0 ∈W, ‖h0‖ ≤ ρσ }.
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Lemma 3.1.10. If y0 ∈ W̃ , then y0 has the following properties:

• y0 has exactly n zeros −xn < . . . < −x1 on (−γ, 0), and each of these −xk is

within ρ units of −πk;

• The connected components of y−1
0 [−ρσ, ρσ] are precisely intervals about −xk,

where y0 has constant slope p′(−πk), and an interval with right endpoint 0, where

y0 has constant slope p′(0).

PROOF. Suppose that w0 ∈ W̃ . Since w0 is everywhere within ρσ of p0 and

|p0(s)| ≤ 2ρσ only on the intervals [−πk−2ρ,−πk+2ρ], |w0(s)| ≤ ρσ only on these same

intervals (we are writing π0 = 0). On these intervals, w0 has constant slope p′(−πk) by

definition, and has a unique zero within ρ units of −πk. 2

Remark 3.1.11. In the current section, it is the properties of W̃ described in 3.1.10

that will really concern us. Figure 13 suggests the possible graphs of functions having

these features. The more rigid definition of W̃ that we have given will prove convenient

in section 3.2.

We will use the following observations repeatedly. The proof is immediate from the

definitions of 〈·, ·〉 and W̃ and the fact that µ is an upper bound for |p′(t)|. Recall that,

if w0, y0 ∈ W̃ , the distance |V (w0)−V (y0)| is measured in the n-dimensional sup norm.

Lemma 3.1.12. Suppose that w0, y0 ∈ W̃ . Then

σ|V (w0)− V (y0)| ≤ 〈w0, y0〉 ≤ µ|V (w0)− V (y0)|,

where V is as in section 2.3. If furthermore η < ρσ and V (w0) = V (y0), the continua-

tions of w0 and y0 as solutions of (DDE) ∈ P(η) are identical for all positive time. 2

We now turn to the heart of the chapter — the comparison of solutions of (DDE)

to p. (The reader will find it convenient to review the notation in definition 3.1.2.)

Lemma 3.1.13. Write

I = (0, 3ρ) ∪ (s1 − 3ρ, s1 + 3ρ) ∪ · · · ∪ (sm − 3ρ, sm + 3ρ).
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Given ε0 > 0, there are η > 0 and ε > 0 such that, given y0 ∈ C0 with continuation

y as a solution of (DDE) ∈ P(η) and 〈y0, p0〉 < ε, the following hold.

1. |y(t)− p(t)| < ε0 for all t ∈ [0, sm + 3ρ] = [0, t∗].

2. [0, t∗] ∩ y−1[−2ρσ, 2ρσ] ⊂ I.

3. t ∈ I and (t− di) > 0 implies that |y(t− di)| > 2ρσ.

4. y′(t) = p′(t) for all t ∈ I.

5. The first m positive zeros z1, . . . , zm of y are defined and proper, and for all

1 ≤ j ≤ m we have |zj − sj | < ε0; also,

‖R(y0)− p0‖ = ‖yzm − p0‖ < ε0.

6. There are in fact positive constants k1 and k2 such that

‖R(y0)− p0‖ < k1η + k2ε.

7. R(y0) ∈ W̃ .

PROOF. Choose y0 ∈ C0 with 〈y0, p0〉 < ε. Write y for the continuation of y0 as a

solution of (DDE) ∈ P(η).

Let us write

S = { t ∈ [−γ, t∗] : |p(t)| ≤ η or |y(t)| ≤ η or p(t)y(t) ≤ 0 }.

S is a collection of intervals. The two basic observations are the following. First, given

t ∈ (0, t∗), y′(t) = p′(t) unless t− di ∈ S for some i. Second, for t ∈ [0, t∗],

|y(t)− p(t)| ≤
∫ t

0
|y′(s)− p′(s)| ds (3.1.14)

≤
∑

i

∫ t

0
|Hi(y(s− di))− hi(p(s− di))| ds

≤
∑

i

measure (S ∩ [−γ, t− di]) [sup |Hi|+ sup |hi|]

≤ µ ·measure (S ∩ [−γ, t− d1]) .
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For each 0 ≤ j ≤ m, write N(j) for the measure of S ∩ [−γ, sj + 3ρ] (where we are

writing s0 = 0). For each 0 ≤ j ≤ m, also write

M(j) = sup
t∈[0,sj+3ρ]

|y(t)− p(t)|.

Suppose that η + ε < ρσ. Since |p(t − di)| > 3ρσ for all t ∈ [0, 3ρ] and all di,

|p̄0(t−di)| = ρσ for all such t and di; therefore ȳ0(t−di)p̄0(t−di) > 0 and |ȳ0(t−di)| > η

for all such t and di (here p̄0 and ȳ0 are as in (3.1.6)). Thus we see that t− di /∈ S for

all t ∈ [0, 3ρ] and all di, and hence that y′(t) = p′(t) and y(t) = p(t) for all t ∈ (0, 3ρ).

Similar reasoning shows that t− di /∈ S whenever t ∈ I and t− di ≤ 0.

The set S ∩ [−γ, 3ρ] is contained in the subset of [−γ, 3ρ] where |p(t)| ≤ η+ ε < ρσ,

and we accordingly have the bound

N(0) ≤ 2(n+ 1)
σ

(η + ε) .

Now, for 1 ≤ j ≤ m and t ∈ (3ρ, sj + 3ρ), we have the implication

p(t) > η +M(j) =⇒ y(t)p(t) > 0 and |y(t)| > η =⇒ t /∈ S.

In particular, as long as M(j) < ρσ the connected components of S on (3ρ, sj +3ρ) will

be contained in intervals where p(t) is of absolute value no more than η +M(j) < 2ρσ

— these are intervals where p is of constant slope. Therefore, as long as M(j) < ρσ,

the connected components of S on (3ρ, sj + 3ρ) will be contained in intervals about

s1, . . . , sj each of length no more than

2
σ

(η +M(j)) .

When M(j) < ρσ, then, the N(j) satisfy

N(0) ≤ 2(n+ 1)
σ

(η + ε) ;

N(j) ≤ N(j − 1) +
2
σ

(η +M(j)) , 1 ≤ j ≤ m.

Again as long as M(j) < ρσ, since the positive connected components of S are

contained in intervals of radius 2ρ about s1, . . . , sj and d1 > 6ρ, we have

measure (S ∩ [−γ, sj + 3ρ− d1]) = N(j − 1).
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Thus if M(j) < ρσ the estimate (3.1.14) yields

M(j) ≤ µN(j − 1).

Combining the inequalities for N(j) and M(j) we get

N(j) ≤
(

1 +
2µ
σ

)
N(j − 1) +

2η
σ
.

Therefore we see that, by choosing η and ε small, we can make N(m − 1), and hence

M(m), as small as we like. This yields the first part of the lemma.

Let us suppose in particular that we have chosen η and ε so that M(m) < ρσ. In

this case, since |p(t)| ≤ 3ρσ only for t ∈ I and |p(t− di)| > 3ρσ for all di and t ∈ I, we

conclude that |y(t)| ≤ 2ρσ only for t ∈ I and that |y(t− di)| > 2ρσ whenever t ∈ I and

t− di ≥ 0. These are the second and third parts of the lemma.

We have already seen that t− di /∈ S whenever t ∈ I and t− di ≤ 0; if M(m) < ρσ

the last paragraph shows that t − di /∈ S for all t ∈ I. This yields the fourth part of

the lemma.

If M(m) < ρσ then, since y′(t) = p′(t) for t ∈ I and |y(t)| ≤ 2ρσ only for t ∈ I, we

see that the first m positive zeros of y(t) are defined and proper. Furthermore, we have

the estimate

|zj − sj | <
M(m)
σ

< ρ

for every 1 ≤ j ≤ m. Recalling (1.2.3), we also have

‖R(y0)− p0‖ < M(m)
(
1 +

µ

σ

)
.

This yields the fifth part of the lemma.

The above estimate expresses ‖R(y0) − p0‖ as a constant times M(m), which we

bounded earlier by a constant times N(m− 1). For the sixth part of the lemma, then,

we just need to see that N(m−1) can be bounded by a constant times ε plus a constant

times η. An examination of our estimates on the N(j) confirms this:

N(0) ≤ 2(n+ 1)
σ

(η + ε) = c0η + c′0ε;
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and writing N(j − 1) ≤ cj−1η + c′j−1ε gives us

N(j) ≤
(

1 +
2µ
σ

)
N(j − 1) +

2η
σ

≤
[(

1 +
2µ
σ

)
cj−1 +

2
σ

]
η +

(
1 +

2µ
σ

)
c′j−1ε.

We turn to the last part of the lemma. Suppose that we have chosen η and ε so

small that in fact M(m) + µM(m)/σ ≤ ρσ and |zj − sj | < ρ for all 0 ≤ j ≤ m. Define

ỹ(t) = y(t− (sm − zm)).

The graph of ỹ is obtained by shifting the graph of y to the right by sm − zm units.

Since psm = p0, to prove that yzm = R(y0) ∈ W̃ it is sufficient to prove that

• ỹ is of constant slope, equal to that of p, on each of the intervals

(sm−n − 2ρ, sm−n + 2ρ), · · · , (sm−1 − 2ρ, sm−1 + 2ρ), (sm − 2ρ, sm + 2ρ);

• |ỹ(t)− p(t)| ≤ ρσ for all t ∈ [sm − γ, sm].

The first point follows from the facts that y′(t) = p′(t) for all t ∈ I and that |zj−pj | < ρ

for all 0 ≤ j ≤ m. For t ∈ [sm − γ, sm], the same idea we used for the estimate (1.2.3)

yields

|ỹ(t)− p(t)| ≤M(m) + µ|zm − sm| ≤M(m) + µM(m)/σ ≤ ρσ.

This completes the proof. 2

Remark 3.1.15. Asymptotic stability of simple periodic solutions of (SDDE).

The above lemma holds just as well if y0 is continued as a member of (SDDE) — just

take η = 0. It follows that, if π is asymptotically stable as a fixed point of φm (that

is, if all of the eigenvalues of A = Dφm[π] lie strictly inside the unit circle), then p is

asymptotically stable as a solution of (SDDE) in the usual sense. For given y0 ∈ C0

with continuation y as a solution of (SDDE), lemma 3.1.13 tells us that, if y0 is close

enough to p0, then y has a positive zero z such that yz is close to p0 and V (yz) is close

to π. Since φk(V (yz)) → π, we have as well that Rk(y0) → π and y(t) → p(t).
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We have established that, for η and 〈y0, p0〉 small, R(y0) is close to p0 and lies in

W̃ . This is helpful because we can say a great deal about how initial conditions near

p0 that are also in W̃ continue as solutions of (DDE).

Lemma 3.1.16. Given ε > 0 sufficiently small and η sufficiently small, for every

(DDE) ∈ P(η) there is a constant κ such that the following holds.

Given y0 ∈ W̃ with 〈y0, p0〉 < ε, write y for the continuation of y0 as a solution of

(DDE) and w for the continuation of y0 as a solution of (SDDE). Then the minimum

positive zeros z and ζ of y and w, respectively, both exist and

z − ζ = κ.

κ depends on (DDE), but is O(η); in particular,

κ ≤ 2(n+ 1)µη
σ2

.

PROOF. Write

V (y0) = (x1, . . . , xn)

and x0 = 0.

Applying lemma 3.1.13 and remark 3.1.15, we choose ε and η such that

• z and ζ both exist and lie in (s1 − ρ, s1 + ρ);

• |y(t− di)| ≥ ρσ and |w(t− di)| ≥ ρσ for all 1 ≤ i ≤ D and all t ∈ (0, 3ρ) ∪ (s1 −

3ρ, s1 + 3ρ);

• y(t) and w(t) are both strictly less than −ρσ on (3ρ, s1 − 3ρ).

We assume that η < ρσ. Then the second point above implies the following:

• y′(t) = w′(t) = p′(0) and y(t) = w(t) for all t ∈ (0, 3ρ);

• y′(t) = w′(t) = p′(s1) for all t ∈ (s1 − 3ρ, s1 + 3ρ).

Still assuming that η < ρσ, let us compute∫ s1+3ρ

0
Hi(y(t− di))− hi(w(t− di)) dt. (3.1.17)
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The integrand is nonzero only if

|y(t− di)| < η or |w(t− di)| < η or y(t− di)w(t− di) ≤ 0.

Since the integrand is zero for t ∈ (0, 3ρ)∪ (s1− 3ρ, s1 + 3ρ), any subinterval where the

integrand is nonzero is contained in the interval t ∈ (3ρ, s1 − 3ρ).

Since y(t) and w(t) are strictly less than −ρσ on the interval

(3ρ, s1 − 3ρ)

and t− di ≤ t− d1 < t− 6ρ < s1 − 3ρ for all t ≤ s1 + 3ρ, the integrand is nonzero only

if t − di < 3ρ. When t − di < 3ρ, though, y(t − di) = w(t − di) and — since η < ρσ,

y0 ∈ W̃ , and y′(t) = p′(0) for t ∈ (0, 3ρ) — we know precisely how y(t− di) = w(t− di)

behaves. In particular, writing s = t− di we have that

• |y(s)| < η exactly on intervals of the form(
−xk −

η

|p′(−πk)|
,−xk +

η

|p′(−πk)|

)
and on these intervals y′(s) = p′(−πk);

• If s enters any such interval, it moves through the entire interval;

• s enters such an interval about −xk if and only if (k, i) is a change index pair of

V (y0) (recall definition 2.3.10).

Therefore we see that, if and only if (k, i) is a change index pair of V (y0), there is

a contribution to the integral (3.1.17) of the form∫ 0

−η/|p′(−πk)|
Hi(|p′(−πk)|s)− bi ds+

∫ η/|p′(−πk)|

0
Hi(|p′(−πk)|s) + ai ds (3.1.18)

=
1

|p′(−πk)|

[∫ 0

−η
Hi(s)− bi ds+

∫ η

0
Hi(s) + ai ds

]
.

Observe that this quantity does not depend on the particular y0, and that it is bounded

by 2η(sup |Hi|+ sup |hi|)/σ. Given i, V (y0) has at most (n+ 1) change index pairs of
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the form (k, i). Summing across i, we see that, for t ∈ (s1 − 3ρ, s1 + 3ρ),

|w(t)− y(t)| ≤ 2(n+ 1)µη
σ

;

it follows that

|ζ − z| ≤ 2(n+ 1)µη
σ2

.

Now, shrinking ε further if necessary, we can take ε to be small enough that theorem

2.3.13 applies to y0 and p0 (since y0 ∈ W̃ , by 3.1.12 we can make |V (y0)− π| small by

taking ε small). In particular, by choosing ε small enough we make the set of change

index pairs of V (y0) invariant — and this means that the set of summands of the form

(3.1.18) contributing to the difference y(t)−w(t) for t ∈ (s1 − 3ρ, s1 + 3ρ) is invariant.

We conclude that there is some κ̄ such that y(t)−w(t) = κ̄ on (s1−3ρ, s1+3ρ) whenever

〈y0, p0〉 is small enough; it follows that

z − ζ =
−κ̄
p′(s1)

:= κ. 2

Let y0, y, z, and κ be as above. In this case, observe that the map

V (y0) 7→ V (yz)

is affine: for writing K0 = (κ, κ, . . . , κ)t, we have

V (yz) = V (wζ)+K0 = Dφ[π](V (w0)−π)+V (ps1)+K0 = Dφ[π](V (y0)−π)+V (ps1)+K0.

What we really needed in the above proof was that y0 have the features of W̃

articulated in 3.1.10 and that 〈y0, p0〉 be small. If y0 ∈ W̃ and 〈y0, p0〉 and η are small

enough, the same sort of argument as in lemma 3.1.13 tells us that 〈yz, ps1〉 will be small

and that yz will have features directly analogous to those in 3.1.10 (with ps1 playing

the role of p0). In this case we can adapt lemma 3.1.16 to show that the map

V (yz) 7→ V (yz2),

where z2 is the second positive zero of y, is also affine. In particular, writing π′ = V (ps1)

and π′′ = V (ps2) there is some Euclidean constant K1, with |K1| of order O(η), such

that

V (yz2) = Dφ[π′](V (ys1)− π′) + π′′ +K1.
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Composing, we find that the map V (y0) 7→ V (yz2) is affine as well:

V (yz2) = Dφ[π′](V (ys1)− π′) + π′′ +K1

= Dφ[π′] (Dφ[π](V (y0)− π) +K0) + π′′ +K1

= Dφ2[π](V (y0)− π) +Dφ[π′]K0 + π′′ +K1

= Dφ2[π](V (y0)− π) + π′′ + K̃,

where |K̃| is O(η).

Continuing this way for m steps, and using the fact that the linear part of a com-

position of affine maps is the composition of its linear parts, we obtain the following

proposition.

Proposition 3.1.19. Let ε0 > 0 be given. Then there is an ε∗ > 0 such that the

following hold. Write

U = { y0 ∈ C0 : 〈y0, p0〉 < ε∗ and ‖y0‖ < Z },

where Z > ‖p0‖.

Then for any η > 0 sufficiently small, given y0 ∈ U with continuation y as a solution

of (DDE) ∈ P(η), y satisfies all of the conclusions of lemma 3.1.13. In particular,

• the first m positive zeros z1 < . . . < zm of y are well-defined and proper — in

particular, R : U → C0 is defined;

• |sj − zj | < ε0 for all 1 ≤ j ≤ m;

• |y(t)− p(t)| < ε0 for all t ∈ [0, t∗];

• ‖R(y0)− p0‖ < ε0;

• y′(t) = p′(t) on (0, 3ρ) ∪ (s1 − 3ρ, s1 + 3ρ) ∪ · · · ∪ (sm − 3ρ, sm + 3ρ);

• R(y0) ∈ W̃ .

Furthermore, if y0 also lies in W̃ , we have the formula

V (R(y0)) = A(V (y0)− π) + π +K,
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where

A = Dφm[π]

and K ∈ Rn depends on (DDE) but is O(η). 2

Remark 3.1.20. We include the second part of the definition of the set U to make

U into a bounded open set. This maneuver allows consideration of the Leray-Schauder

degree of I −R on U with minimal technical complication.

Now, the map on Rn given by

v 7→ A(v − π) + π +K,

where A, π, and K are as above, has a unique fixed point: for such a fixed point is a

solution of the equation

(I −A)(v − π) = K,

and this equation has a unique solution by the hypothesis that p is nondegenerate. Fur-

thermore, the distance of this solution from π is O(|K|) and hence O(η). In particular,

for η small enough this solution v must lie within ε∗/σ of π. In this case (recall 3.1.12)

there is some ū0 ∈ U ∩ W̃ such that

V (ū0) = v,

and hence such that

V (R(ū0)) = V (ū0).

3.1.12 now tells us that ū0 and R(ū0) must have identical continuations as solutions

of (DDE), and so we see that u0 = R(ū0) is the unique fixed point of R with initial

condition in U .

Note that 〈u0, p0〉 < ε∗; indeed, we can make 〈u0, p0〉 as small as we wish by taking

η small enough.

We want to bound ‖I − R‖ below on ∂U . We can do this by choosing η and Z in

3.1.19 properly. This is the substance of the next two lemmas.

Lemma 3.1.21. Let U be as above. Suppose that y0 ∈ U and that w0 ∈ W̃ ∩ U ,

and write y(t) and w(t) for the continuations, respectively, of y0 and w0 as solutions of
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(DDE) ∈ P(η). Then there are constants k1 and k2 such that, if η is sufficiently small,

‖R(y0)−R(w0)‖ ≤ k1η + k2〈y0, w0〉.

PROOF. Given c ≤ ρσ, we know that any connected component of the set {t ∈

[0, t∗] : |y(t)| ≤ c} is no more than 2c/σ units long. The point is that, given the

extra information that w0 ∈ W̃ , we know that any connected component of the set

{t ∈ [−γ, t∗] : |w(t)| ≤ c} is no more than 2c/σ units long. This allows us to make just

the same sort of comparison between y(t) and w(t) as we made between y(t) and p(t)

in the proof of lemma 3.1.13. In particular, a direct analog of the sixth part of 3.1.13

can be proven with the same estimates on (analogs of) the numbers N(j) and M(j). 2

Lemma 3.1.22. Let U and ε∗ be as above. Then there is a positive constant ν such

that, for η > 0 sufficiently small,

y0 ∈ U and 〈y0, p0〉 >
3ε∗

4
=⇒ ‖R(y0)− y0‖ > ν.

If Z in 3.1.19 is chosen large enough, this implies that ‖R(y0)− y0‖ > ν for y0 ∈ ∂U .

PROOF. We prove the last statement first. We have

∂U ⊂ { y0 ∈ C0 : 〈y0, p0〉 = ε∗ or ‖y0‖ = Z}.

If 〈y0, p0〉 = ε∗, the desired bound on ‖R(y0) − y0‖ follows immediately from the first

statement of the lemma.

If ‖y0‖ = Z, then since R(y0) is within ε0 of p0 we have

‖R(y0)− y0‖ ≥ Z − ‖p0‖ − ε0;

just choose Z so that the right-hand side is bigger than ν.

We now turn to the first statement of the lemma. We first choose η small enough

that R has a unique fixed point u0 ∈ U , with

〈u0, p0〉 < ε∗/4.
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Suppose that w0 ∈ U ∩ W̃ with 〈w0, p0〉 > ε∗/2. Then 〈w0, u0〉 > ε∗/4, and

|V (w0)− V (u0)| ≥
ε∗

4µ
.

Since V (w0) is not the unique fixed point V (u0) of

v 7→ π +K +A(v − π),

we have that

|V (w0)− V R(w0)| ≥
ε∗α

4µ
,

where α = ‖(I −A)−1‖−1. Thus (again by 3.1.12)

‖w0 −R(w0)‖ ≥ 〈w0, R(w0)〉 ≥
σαε∗

4µ
:= k.

We take η and δ small enough so that lemma 3.1.21 applies: if y0 ∈ U and w0 ∈ W̃∩U

with 〈y0, w0〉 < δ, then

‖R(y0)−R(w0)‖ ≤ k1η + k2〈y0, w0〉 ≤ k1η + k2δ.

We also choose ν > 0 and η > 0 small enough so that

ν < δ and ν <
ε∗

4
and k1η + k2ν + 2ν < k.

Now, suppose that y0 ∈ U with 〈y0, p0〉 > 3ε∗/4. Let w0 be a member of W̃ ∩ U

of minimal distance from y0 (there is such a point, because W̃ ∩ U is a closed set). If

‖y0 −w0‖ > ν, then ‖R(y0)− y0‖ > ν because R maps into W̃ . If ‖y0 −w0‖ ≤ ν, then

we see that we must have

〈w0, u0〉 > ε∗/2

(because ν < ε∗/4 and 〈y0, p0〉 > 3ε∗/4) and so we have

‖R(y0)− y0‖ ≥ ‖R(w0)− w0‖ − ‖R(y0)−R(w0)‖ − ‖w0 − y0‖

≥ k − k1η − k2δ − ν > ν. 2

We summarize.

Theorem 3.1.23. Existence and uniqueness of periodic solutions for steplike

problems. Let ε0, ε∗, U , and R be as in 3.1.19 (with Z large enough that 3.1.22

applies). Then there is an η∗ ∈ (0, ρσ) such that, if (DDE) ∈ P(η∗),
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• all the conclusions of 3.1.19 hold.

• R has a unique fixed point u0 on U , and 〈u0, p0〉 < ε∗/4.

• There is a ν > 0 such that

‖R(y0)− y0‖ > ν whenever y0 ∈ ∂U.

Remark 3.1.24. For the rest of the chapter the reader should regard U , ε∗, ν, and η∗

as fixed. We will henceforth use the fact that η∗ ∈ (0, ρσ) without comment.

Below, whenever some problem (DDE) ∈ P(η∗) is under discussion, we will al-

ways write R for its above-described return map, and we will always write u0, with

continuation u as a solution of (DDE), for the unique fixed point of R on U .

Here and throughout this thesis, we shall always consider Leray-Schauder degree

with respect to 0; for simplicity we will write

deg(F,Ω) := deg(F,Ω, 0)

for the Leray-Schauder degree of F on Ω (with respect to 0). We close this section with

the following proposition on the degree of I −R.

Proposition 3.1.25. The Leray-Schauder degree of I−R on U is defined for all return

maps R for (DDE) ∈ P(η∗), and is constant across all such maps.

PROOF. Let us choose two problems in P(η∗) as follows:

y′(t) =
D∑

i=1

Hi(y(t− di)),

y′(t) =
D∑

i=1

Gi(y(t− di)).

For every s ∈ [0, 1], write

y′(t) =
D∑

i=1

(1− s)Hi(y(t− di)) + sGi(y(t− di)). (DDEs)

Each (DDEs) is a member of P(η∗); write Rs : U → C0 for the corresponding return

map. Each Rs is compact and fixed-point free on ∂U , and so deg(I −Rs, U) is defined.

Moreover, the map

U × [0, 1] → C0 : (y0, s) 7→ Rs(y0)
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is a homotopy from R0 to R1. Therefore deg(I −R0, U) = deg(I −R1, U). 2

3.2 The derivative DR[u0]

We retain all of the notation of the last section. With the exception of corollary 3.2.5,

throughout this section we will assume that the problem (DDE) is C1 (that is, that the

feedback functions in (DDE) are C1). General theory (recall section 1.2) tells us that R

is C1 also and that DR[u0], the derivative of R at its fixed point u0, is a compact linear

operator. In this section we develop some further properties of DR[u0]. These features

will be uniform across C1 problems (DDE) ∈ P(η∗), and will reflect the connection

between DR[u0] and the matrix

A = Dφm[π].

R maps a neighborhood of u0 into the affine space W̃ : that is, R(u0 + h0) ∈ W̃ for

sufficiently small h0 ∈ C0. Since u0 = R(u0) ∈ W̃ , we see that

R(u0 + h0)−R(u0) ∈W

for all sufficiently small h0 ∈ C0. Therefore we see that DR[u0] is a continuous linear

map from C0 into W .

On W̃ , the map V is affine (here V is as defined in 2.3.2 and used in section 3.1). Let

us write L : W → Rn for the linear part of V about u0: so if w ∈W and u0 + w ∈ W̃ ,

we have

V (u0 + w) = V (u0) + Lw.

If w ∈ W and w(s) = c for s ∈ [−πk − 2ρ, πk + 2ρ], then the kth coordinate of Lw is

−c/p′(−πk). We see therefore that L is a surjective linear map onto Rn. Observe also

that the kernel of L is exactly the linear subspace of w ∈W with 〈u0, u0 +w〉 = 0. This

set is contained in the kernel of DR[u0]: for if 〈u0, u0 + w〉 = 0 we have R(u0 + w) =

R(u0) = u0. Finally, note that

σ|Lw| ≤ 〈u0, u0 + w〉 ≤ µ|Lw|.
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For w ∈W sufficiently small we have the formula

V R(u0 + w) = π +K +A(V (u0 + w)− π)

= π +K +A(V (u0) + Lw − π) = π +K +A(V (u0)− π) +ALw

= V (u0) +ALw.

This is an affine map from W̃ into Rn. By taking the derivative on the left (with the

chain rule) and the linear part on the right, we get the formula

LDR[u0]w = ALw, w ∈W.

Similarly, for w ∈W sufficiently small,

V R2(u0 + w) = π +K +A(V (u0) +ALw − π) = V (u0) +A2Lw

and

LDR2[u0]w = A2Lw;

indeed, for any k ∈ N and w ∈W we have

LDRk[u0]w = AkLw. (3.2.1)

Proposition 3.2.2. Comparison of spectra. DR[u0] and A have the same nonzero

spectrum:

spectrum(DR[u0]) \ {0} = spectrum(A) \ {0}.

PROOF. By the spectra of DR[u0] and A we mean the spectra of their complexifica-

tions. Since DR[u0], L and A are all real operators, though, we obtain these complexifi-

cations by applying the operators separately to the real and imaginary parts of vectors.

In particular, DR[u0] maps the complexification of C0 into the complexification of W ,

and on the latter space we still have the formula

LDR[u0] = AL.
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Since DR[u0] is a compact linear operator, its nonzero spectrum consists of eigen-

values.

Suppose that w is an eigenvector of DR[u0] with nonzero eigenvalue λ. Then w

must lie in the complexification of W , and since w is not in the kernel of DR[u0] it is

not in the kernel of L either. Therefore we have

ALw = LDR[u0]w = Lλw = λLw,

and Lw 6= 0 is an eigenvector of A with eigenvalue λ.

Conversely, suppose that λ is a nonzero eigenvalue of A. Since L is surjective, there

is some w in the complexification of W such that ALw = λLw; but in this case we have

LDR[u0]w = ALw = λLw = Lλw.

Therefore we can write DR[u0]w = λw+ v, where v is in the kernel of L (and hence in

the kernel of DR[u0]). We now put w̃ = w + v/λ and compute

DR[u0]w̃ = DR[u0]w = λw + v = λw̃,

whence λ is an eigenvalue of DR[u0]. 2

Recalling section 1.2, we obtain

Corollary 3.2.3. Asymptotic stability of u. If (DDE) ∈ P(η∗) is C1 and the

spectrum of A lies strictly inside the unit circle, then the periodic solution u of (DDE)

is asymptotically stable. 2

The hypothesis that A is nondegenerate now implies

Corollary 3.2.4. If (DDE) is C1, DR[u0] does not have eigenvalue 1. 2

Since u0 is the unique fixed point of R in U , the excision and linearization properties

of Leray-Schauder degree (see, for example, [2]), together with propostion 3.1.25, now

yield

Corollary 3.2.5. For all (DDE) ∈ P(η∗) (whether C1 or not),

deg(I −R,U) 6= 0. 2
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Proposition 3.2.4 tells us that the periodic solution u0 will persist if (DDE) ∈ P(η∗)

is appropriately perturbed (recall section 1.2). In this way we get existence results

for non-steplike problems sufficiently close to some fixed (DDE). The reason that

results like those stated in examples 1.1.3 and 1.1.4 don’t follow immediately is that the

parameterized problems in those examples do not approach a particular, fixed member

of P(η∗) in any suitable sense. We devote chapter four to closing this gap.

For the rest of this section we will need to assume that B <∞. (Recall that we are

writing B for the common bound on the total variation of the feedback functions Hi in

the problems (DDE) ∈ P(η∗).)

Lemma 3.2.6. If (DDE) is C1 and B <∞ then, for any 1 ≤ i ≤ D,∫ t∗

−γ
|H ′

i(u(t))| dt ≤ (n+ 1 +m)
B

σ
.

PROOF. On [−γ, t∗], there are precisely n + 1 + m subintervals where |u(t)| ≤ η;

these are exactly the subintervals where H ′
i(u(t)) is nonzero. On each such subinterval

I, u(t) runs from −η to η (or vice-versa) at constant slope s, where |s| ≥ σ. We

therefore have ∫
I
|H ′

i(u(t))| dt =
1
|s|

∫ η

−η
|H ′

i(t)| dt ≤
B

σ
.

The lemma follows. 2

Proposition 3.2.7. Uniformly bounded derivative of R. Suppose that B < ∞.

Then there is a number k1 (depending on B) such that, uniformly across C1 problems

(DDE) ∈ P(η∗),

‖DR[u0]‖ ≤ k1.

PROOF. The linearization about u is the equation

y′(t) =
D∑

i=1

H ′
i(u(t− di))y(t− di);



79

write Tu : R+ × C → C for its solution operator. The derivative DR[u0] is given by

the formula (recall 1.2.1)

DR[u0]y0 = Tu(τ(u), y0)−
Tu(τ(u), y0)(0)

u′0(0)
· u′0, y0 ∈ C0,

where τ(u) is the mth positive zero of u(t).

Since the solution u(t) has derivative uniformly bounded (by µ) across P(η∗) and

u′0(0) = p′(0) is constant across P(η∗), it suffices to show that the linear operator Tu(τ, ·)

has norm uniformly bounded across τ ∈ [0, t∗] and C1 problems (DDE) ∈ P(η∗).

Given any τ ∈ [0, t∗], we can write

τ = Nτ̄,

where τ ∈ [0, d1] and N is some positive integer no more than the integer ceiling of

t∗/d1.

Choose some y0 ∈ C0. Lemma 3.2.6 yields that

‖Tu(τ̄ , y0)‖ ≤ D(n+ 1 +m)
B

σ
‖y0‖;

another application of 3.2.6 yields that

‖Tu(2τ̄ , y0)‖ ≤
[
D(n+ 1 +m)

B

σ

]2

‖y0‖,

and so on. Applying the lemma N times proves the proposition. 2.

Out of the above proof we extract a corollary that we will need later.

Corollary 3.2.8. Suppose that B <∞. Then there is a number k1 (depending on B)

such that, uniformly across C1 problems (DDE) ∈ P(η∗), for all τ ∈ [0, t∗] we have

‖Tu(τ, ·)‖ ≤ k1,

where u0 is the unique fixed point of R in U , u is the continuation of u0 as a solution

of (DDE), and Tu is the solution operator for the linearization of (DDE) about u. 2

Our next goal is to show that not only is (I − DR[u0]) invertible but that, when

B < ∞, its inverse has uniformly bounded norm across C1 problems in P(η∗). As a
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first step we study the restriction of I−DR[u0] to W . (The reader might find it helpful

to review definitions 3.1.2 and 3.1.9.)

Given w ∈W , we will write

c(w) = sup{ |w(s)| : s ∈
n⋃

k=1

[−πk − 2ρ,−πk + 2ρ] }.

c(w) is the maximal size of w ∈W on the intervals where w is required to be constant

by the definition of W ; if c(w) ≤ ρσ and u0 + w ∈ W̃ , we in fact have

c(w) = 〈u0, u0 + w〉.

(This identity does not necessarily hold if u0 + w /∈ W̃ ; this, roughly speaking, is why

we have found it convenient to introduce the quantity c(w) for the next few pages.) It

is intuitively clear that DR[u0]w depends only on the restriction of the function w to

the set
n⋃

k=1

[−πk − 2ρ,−πk + 2ρ];

the following lemma makes this precise. We continue to write L for the linear part of

the restriction of V to W̃ (see the beginning of the current section 3.2).

Lemma 3.2.9. Suppose that c(w) ≤ ρσ and that u0 + w ∈ W̃ . Then c(w) ≤ ‖w‖, and

σ|Lw| ≤ c(w) ≤ µ|Lw|.

Moreover, there is a vector ŵ ∈W such that

‖ŵ‖ = c(ŵ) = c(w)

and such that, for all δ > 0 sufficiently small,

R(u0 + δw) = R(u0 + δŵ).

Consequently DR[u0]w = DR[u0]ŵ.

PROOF. The first statement is immediate; the second follows from 3.1.12 and the

fact that |Lw| = |V (u0 + w)− V (u0)|.

To construct ŵ, just take ŵ to agree with w on the intervals [−πk − 2ρ,−πk + 2ρ]

and extend ŵ polygonally off of those intervals. 2
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Lemma 3.2.10. Suppose that B < ∞. Then for any C1 problem (DDE) ∈ P(η∗), if

w ∈W we have

‖DR[u0]w‖ ≤ k1c(w) ≤ k1µ|Lw|

where k1 is as in 3.2.7.

PROOF. For any s > 0 we have

‖DR[u0]sw‖ = s‖DR[u0]w‖; c(sw) = sc(w); |Lsw| = s|Lw|.

Therefore we can, without loss of generality, scale w so that the hypotheses of lemma

3.2.9 hold.

That k1c(w) ≤ k1µ|Lw| is just the second point of 3.2.9. For the first inequality,

just choose ŵ as in 3.2.9: we have

‖DR[u0]w‖ = ‖DR[u0]ŵ‖ ≤ k1‖ŵ‖ = k1c(w). 2

Lemma 3.2.11. Suppose that B < ∞. Then there is a constant β such that, for any

C1 problem (DDE) ∈ P(η∗) and w ∈W ,

‖w −DR[u0]w‖ ≥ β‖w‖.

PROOF. Claim: there is some k2 such that

‖DR[u0]w − w‖ ≥ k2c(w).

For we have

‖DR[u0]w − w‖ ≥ σ|LDR[u0]w − Lw| = σ|ALw − Lw| ≥ ασ|Lw| ≥ ασ

µ
c(w),

where α = ‖(I −A)−1‖−1.

Now put β = k2/(k1 + k2), where k2 is as above and k1 is as in 3.2.7 and 3.2.10.

There are two cases to consider.

Case 1: c(w) ≤ ‖w‖/(k1 + k2). In this case lemma 3.2.10 yields

‖DR[u0]w − w‖ ≥ ‖w‖ − ‖DR[u0]w‖ ≥ β‖w‖.
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Case 2: c(w) ≥ ‖w‖/(k1 + k2). In this case our above claim yields

‖DR[u0]w − w‖ ≥ β‖w‖. 2

Proposition 3.2.12. Suppose that B <∞. There is a constant M such that, for any

C1 problem (DDE) ∈ P(η∗),

‖(I −DR[u0])−1‖ ≤M.

PROOF. The result follows immediately from the following general lemma, with

DR[u0] in the role of T and the verifications of the hypotheses on T coming from our

work so far this section. 2

Lemma 3.2.13. Let X be a Banach space with W ⊂ X a closed linear subspace.

Suppose that T is a continuous linear operator on X with the following features:

• T (X) ⊂W ;

• ‖w − T (w)‖ ≥ β‖w‖ for all w ∈W , where β is some positive constant;

• ‖T‖ ≤ k1 where k1 is some constant.

• (I − T )−1 exists.

Then we have

‖(I − T )−1‖ ≤ β + k1 + 2
β

.

PROOF. The restriction of I − T to W certainly maps into W ; we claim that this

map is surjective. For every w ∈W is of the form (I−T )x for some x ∈ X (since I−T

is invertible) and so we have

w = x− T (x) =⇒ w + T (x) = x ∈W

(since T (x) ∈W by hypothesis). Accordingly, given w ∈W write w = (I − T )h where

h ∈W . We have

‖w‖ = ‖(I − T )h‖ ≥ β‖h‖ = β‖(I − T )−1w‖ =⇒ ‖(I − T )−1w‖ ≤ 1
β
‖w‖,
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and so we see that the restriction of (I − T )−1 to W has norm no more than 1/β.

We now need to consider the action of (I − T )−1 on vectors outside of W . Write

c =
β

β + k1 + 2
;

observe that

c = β(1− c)− (1 + k1)c.

There are now two possibilities to consider.

Case 1: h ∈ X has the feature that distance(h,W ) ≥ c‖h‖. In this case, it is

certainly the case that ‖h− T (h)‖ ≥ c‖h‖, because T maps into W .

Case 2: distance(h,W ) < c‖h‖. In this case, we can write h = h0 + h1, where

h0 ∈ W has norm at least (1 − c)‖h‖ and h1 has norm at most c‖h‖. In this case, we

have

‖(I − T )h‖

= ‖(I − T )(h0 + h1)‖

= ‖(I − T )(h0) + (I − T )(h1)‖

≥ ‖(I − T )h0‖ − ‖(I − T )h1‖

≥ β(1− c)‖h‖ − (1 + k1)c‖h‖

= (β(1− c)− (1 + k1)c) ‖h‖ = c‖h‖.

Therefore we see that ‖(I − T )h‖ ≥ c‖h‖ for all h ∈ X. The lemma follows. 2

Corollary 3.2.14. Suppose that B <∞. Then there is a number ε such that, for all C1

problems (DDE) ∈ P(η∗), if S is a continuous linear operator with ‖S −DR[u0]‖ < ε,

then I − S is invertible.

PROOF. If ‖S − DR[u0]‖ < ε, then ‖(I − S) − (I − DR[u0])‖ < ε as well. The

corollary now follows immediately from the following general linear functional analysis

lemma, with I −DR[u0] in the role of T and I − S in the role of Q. 2

Lemma 3.2.15. Suppose that X is a Banach space, and that T : X → X is an

invertible linear operator with

‖T−1‖ < M.
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Then, if ‖Q− T‖ < M1 <
1
M , Q is invertible with

‖Q−1‖ < M

1−MM1
.

PROOF. We have

‖T −Q‖ < M1 =⇒

‖I − T−1Q‖ ≤ ‖T−1‖‖T −Q‖ < MM1 < 1.

Thus (T−1Q)−1 = Q−1T has a series expansion

Q−1T =
∞∑

k=0

(I − T−1Q)k =⇒

‖Q−1T‖ <
∞∑

k=0

(MM1)k =⇒

‖Q−1‖ = ‖Q−1TT−1‖ ≤ ‖Q−1T‖‖T−1‖ < M

1−MM1
. 2

We close this section by considering the spectral radius of perturbations of DR[u0].

Lemma 3.2.16. Suppose that B < ∞. Write r for the spectral radius of A, and let

ε > 0 be given. Then there is some N ∈ N such that, for all C1 problems (DDE) ∈

P(η∗), j ≥ N implies that

‖(DR[u0])j‖1/j ≤ r + ε.

The above lemma, together with the spectral radius formula, doubles as an alter-

native proof that the spectral radius of DR[u0] is no more than that of A (though we

already know, from 3.2.2, that these radii are equal).

PROOF. Given h0 ∈ C0, write

hj = DR[u0]jh0.

h1 ∈W , and 3.2.7 tells us that ‖h1‖ ≤ k1‖h0‖; we therefore have

|Lh1| ≤ k1

σ
‖h0‖.
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Since hj ∈W for all j ∈ N, by 3.2.10 we have that

‖hj+1‖ ≤ k1µ|Lhj |.

Choose any ε′ ∈ (0, ε) and then choose j ∈ N so large that

k2
1µ/σ

(r + ε)2
≤ (r + ε)j

(r + ε′)j

and

‖Aj‖ ≤ (r + ε′)j .

We have

‖hj+2‖ ≤ k1µ|Lhj+1| = k1µ|AjLh1| ≤ k1µ(r + ε′)j |Lh1|

≤ k2
1µ(r + ε′)j

σ
‖h0‖ ≤ (r + ε)j+2‖h0‖. 2

Proposition 3.2.17. Suppose that B < ∞ and that (DDE) ∈ P(η∗) is C1. Let T be

a linear operator on C0. Suppose that A has spectral radius r < 1. Then there is an

ε > 0 such that, if ‖T‖ < ε, then DR[u0] +T has spectral radius less than 1. ε does not

depend on the particular problem (DDE) ∈ P(η∗).

PROOF (Thanks to Roger Nussbaum). Choose r1 ∈ (r, 1). By lemma 3.2.16 there

is an N ∈ N such that, for all C1 problems (DDE) ∈ P(η∗), j ≥ N implies that

‖DR[u0]j‖1/j ≤ r1.

Choose any λ ∈ C with |λ| ≥ 1. Since r < 1, the operator (λI−DR[u0]) is invertible,

and the inverse has series expansion

(λI −DR[u0])
−1 =

∞∑
j=0

1
λj+1

DR[u0]j .

We therefore have the estimate, uniformly across C1 problems (DDE) ∈ P(η∗) and

|λ| ≥ 1,

‖(λI −DR[u0])−1‖ ≤
N−1∑
j=0

‖DR[u0]‖j +
∞∑

j=N

‖DR[u0]j‖

≤
N−1∑
j=0

kj
1 +

∞∑
j=N

rj
1 := M∗.
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If we now choose ε < 1/M∗, lemma 3.2.15 implies that

λI −DR[u0]− T = λI − (DR[u0] + T )

is invertible for all |λ| ≥ 1. It follows that the spectral radius of DR[u0]+T is less than

1. 2
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Chapter 4

A particular parameterized family

4.1 Introduction

In [27] Nussbaum studied families of differential delay equations with two delays of the

type

x′(t) = r
D∑

i=1

Fi(x(t− di)),

where we regard r ≥ 1 as a parameter — recall section 1.4. (This kind of parameteri-

zation has also played an important role in the study of delay equations with a single

delay.) In example 1.1.3 we showed how, with a change of variables, to rewrite the

above problem as

x′(t) =
D∑

i=1

Fi(rx(t− di)).

In this chapter we apply the work we have done so far to problems of this type. We

define the following class and notation.

Definition 4.1.1. The problems (Er), and notation. Suppose that the functions

Fi are continuous, with

lim
x→−∞

Fi(x) = bi 6= 0, lim
x→∞

Fi(x) = −ai 6= 0.

Write F r
i (x) = Fi(rx) for all r ≥ 1 (please take careful note of this nonstandard

notation, which we will use throughout this chapter).

We consider the parameterized family of equations

x′(t) =
D∑

i=1

F r
i (x(t− di)), t > 0; x0 ∈ C. (Er)
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We will write κ ≥ 0 for an exponent and `(·) for a function satisfying the following.

`(·) > 1; and given any ε > 0, |x| > `(ε) implies, for all i, that Fi(x) is within

ε

2D|x|κ

of the limit of Fi at sgn(x) · ∞ (D is the number of delays in (Er)).

If each Fi is in fact differentiable with

lim
|x|→∞

|F ′i (x)| = 0,

we will similarly write κ′ ≥ 0 for an exponent such that, given any ε > 0, |x| > `(ε)

also implies that

|F ′i (x)| ≤
ε

2D|x|κ′
.

To say that κ ≥ 0 is just to say that each Fi has limits at ±∞; the larger κ is, the

faster the functions Fi approach their limits.

As r →∞, the feedback functions F r
i approach, pointwise except perhaps at 0, the

step functions hi in the problem

y′(t) =
D∑

i=1

hi(y(t− di)), t > 0; y0 ∈ C; (SDDE)

hi(y) =


bi, y < 0;

0, y = 0;

−ai, y > 0.

We accordingly regard (SDDE) as the “limit” of the problems (Er) as r →∞.

We will retain all of our notation from the previous chapter. In particular, we

suppose that p is a simple, nondegenerate periodic solution of (SDDE), and we name

various features of p as in 3.1.2. (In particular, throughout this chapter we will use si,

m, n, σ, and ρ as in 3.1.2.)

Our main theorems for this chapter are the following.

Theorem 4.1.2. Existence. Let ε > 0 be given. Then, for r sufficiently large, (Er)

has a periodic solution q that is close to p in the following sense:
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• q has a downward proper zero at 0 and all zeros of q are proper;

• If ζ1 < ζ2 < · · · < ζm are the first m positive zeros of q, then qζm = q0, |ζk−sk| < ε

for all 1 ≤ k ≤ m, and |q(t)− p(t)| < ε for all t ∈ [0, t∗].

Theorem 4.1.3. Uniqueness and stability. Assume further that the Fi are C2,

with bounded second derivative, and of bounded variation. Assume too that

lim
|x|→∞

|F ′i (x)| = 0,

and that κ > 2 and κ′ > 1 (where κ and κ′ are as in 4.1.1).

Then there is an open set U in C0 about p0 such that, for all r sufficiently large,

there is exactly one periodic solution q as described in 4.1.2 with q0 ∈ U .

Furthermore, if all of the eigenvalues of

A = Dφm[V (p0)]

lie strictly inside the unit circle and r is large enough, then this periodic solution q is

asymptotically stable.

4.2 Linking (Er) to steplike problems

We choose µ ≥ 1 such that the functions Fi defining (Er) satisfy

2
∑

i

sup |Fi| ≤ µ.

Let B ≤ ∞ be some fixed constant (we will specify B shortly). Choose ε0 ∈ (0, ρσ).

Given µ,B, ε0, and the simple nondegenerate solution p of (SDDE), we define the

open set U in C0 about p0 as in 3.1.19 and 3.1.23 (ε0 is as in 3.1.19, with the additional

requirement that ε0 ∈ (0, ρσ)). We define the class of steplike problems (recall definition

3.1.1)

P := P(SDDE)(η
∗, µ,B),

where η∗ is as in 3.1.23.

This class P will be fixed throughout the chapter. All that we learned in chapter

3 applies: every (DDE) ∈ P has a periodic solution u close to p in the sense of 3.1.19
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and 3.1.23 (in particular, |u(t) − p(t)| < ε0 < ρσ for all t ∈ [0, t∗]); u0 is the unique

fixed point of the return map R : U → C0 that “advances solutions by m zeros”;

‖y0 − R(y0)‖ > ν for all (DDE) ∈ P and y0 ∈ ∂U ; and deg(I − R,U) is a nonzero

constant across (DDE) ∈ P. Moreover, if (DDE) ∈ P is C1 then the nonzero spectrum

of DR[u0] is equal to the nonzero spectrum of A = Dφm[V (p0)]. If furthermore B < 0

then there are constants k1 and M such that

‖DR[u0]‖ ≤ k1 and ‖(I −DR[u0])−1‖ ≤M

for all C1 problems (DDE) ∈ P.

Throughout this chapter, whenever a particular member of P is understood, we will

write u for this periodic solution and R for this return map.

Our strategy for proving 4.1.2 and 4.1.3 is to link (Er) with a “nearby” member of

P for each r ≥ 1. In this section we describe this link and prove theorem 4.1.2. We

prove theorem 4.1.3 in section 4.3.

Recall that, given ε > 0, we write `(ε) > 1 for a number large enough so that

|x| > `(ε) implies that Fi(x) is within ε/2D|x|κ of the limit of Fi at sgn(x) · ∞. If

|F ′i (x)| → 0 as |x| → ∞, then |x| > `(ε) also implies that |F ′i (x)| < ε/2D|x|κ′ .

We will use these bounds in the following way. Given ε > 0 and α ∈ [0, 1], if

|x| > `(ε)/rα then |rx| > `(ε), and F r
i (x) = Fi(rx) differs from its asymptotic values

by no more than

ε

2D|rx|κ
≤ ε

2Drκ(1−α)`(ε)κ
≤ ε

2Drκ(1−α)
. (4.2.1)

Similarly for κ′: suppose that |x| > `(ε)/rα. Then we have

|(F r
i )′(x)| = |rF ′i (rx)| ≤

rε

2D|rx|κ′
≤ rε

2Drκ′(1−α)
. (4.2.2)

Definition 4.2.3. The problems (DDEr). Choose and fix η ∈ (0, η∗). Write

ψ : (−∞, 0] → [0, 1] for a smooth monotonic function satisfying ψ(x) = 0 for x ∈ [−η, 0]
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and ψ(x) = 1 for x ≤ −η∗. Then, given r ≥ 1 and 1 ≤ i ≤ D, define the functions

Hi(x) =

 ψ(x)hi(x) + (1− ψ(x))F r
i (x), x ≤ 0;

ψ(−x)hi(x) + (1− ψ(−x))F r
i (x), x ≥ 0.

For each r ≥ 1 we define the steplike problem

y′(t) =
D∑

i=1

Hi(y(t− di)), t > 0; y0 ∈ C. (DDEr)

We think of (DDEr) as a steplike problem “similar” to (Er). The feedback functions

Hi in (DDEr) of course depend on r; for simplicity we do not express this dependence

in our notation. Figure 14 illustrates example feedback functions F r
i (x) = Fi(rx) and

Hi(x), for negative values of x.

0− η− η*

Fi(rx)

Hi(x)

Figure 14

The next proposition records some features of the problems (DDEr), and establishes

the crucial point that all of the problems (DDEr), r ≥ 1, fall into a single class P.

Proposition 4.2.4. The member of P linked to (Er). We can choose the constant

B in the definition of P such that (DDEr) ∈ P for all r ≥ 1. Furthermore, if all of the
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Fi are C1 and of bounded variation, then we can take B < ∞ and B larger than the

total variation on (−∞,∞) of any Fi.

In addition, for any r ≥ 1, the functions Hi have the following features.

1. Hi(x) = F r
i (x) for |x| ≤ η.

2. For any α ∈ [0, 1] and ε > 0,

|y|, |x| > `(ε)
rα

, yx > 0 =⇒ |F r
i (x)−Hi(y)| <

ε

Drκ(1−α)
.

In particular, if r is large enough that `(ε)/rα < η, then

|F r
i (x)−Hi(x)| <

ε

Drκ(1−α)
∀ x.

3. If the Fi are C2 with bounded second derivative, and |F ′i (x)| → 0 as |x| → ∞,

there is some 4 > 0, independent of r, such that for all r ≥ 1,

sup
i
|(F r

i )′|, sup
i
|H ′

i| < r4; sup
i
|(F r

i )′′|, sup
i
|H ′′

i | < r24.

4. 4 can also be chosen so that, for any α ∈ [0, 1] and ε > 0,

|y| > `(ε)
rα

=⇒ |H ′
i(y)| <

4ε
2Drκ(1−α)

+
rε

2Drκ′(1−α)
.

Remark 4.2.5. Notation. For the rest of the chapter, we will of course assume

that B is large enough for 4.2.4 to hold (and finite but larger than TV (Fi), the total

variation of Fi on (−∞,∞), if all of the Fi are C1 and of bounded variation). We will

always write (DDE) for a general member of P and (DDE)r for the particular member

of P described in 4.2.3 and 4.2.4.

In addition to fixing µ, B, ε0 and η∗, we will also fix the numbers η and 4 as

described in 4.2.4.

Throughout this chapter, if f is a real-valued function, we shall write ‖f‖ for the

supremum of f (if it exists) over its domain.

PROOF OF 4.2.4. We need to do two things. First, we need to find B ≤ ∞ —

finite if the Fi are all C1 and of bounded variation — such that (DDEr) ∈ P for every

r ≥ 1. Second, we need to verify that the Hi satisfy the stated properties.
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Hi(x) is certainly equal to its asymptotic values outside of [−η∗, η∗] (and so is

steplike); we also certainly have

∑
i

2 sup |Hi| ≤ µ.

If we can exhibit a common bound B on the total variation of the Hi, then, we will

have found B such that all of the problems (DDEr) lie in P.

If any of the Fi are not C1 or have infinite variation, we take B = ∞ and we are

done.

Now suppose that the Fi are C1 and of bounded variation. The Hi are as smooth

as the Fi are. The total variation of F r
i is the same as that of Fi:∫ 0

−∞
|(F r

i )′(x)| dx =
∫ 0

−∞
r|F ′i (rx)| dx =

∫ 0

−∞
|F ′i (u)| du,

where u = rx, and similarly on the positive half-line. Therefore we have, very crudely,∫ 0

−∞
|H ′

i(x)| dx ≤ |bi|
∫ 0

−∞
|ψ′(x)| dx+

∫ 0

−∞
|(F r

i )′(x)| dx

+
∫ 0

−∞
|ψ(x)||(F r

i )′(x)| dx+
∫ 0

−∞
|ψ′(x)||(F r

i )(x)| dx

≤ bi + 2TV (Fi) + µ ≤ 2µ+ 2TV (Fi),

and similarly on the positive half-line. Thus we see that there is a finite bound, inde-

pendent of r, on the total variation of the Hi. We take this bound as our B.

Feature (1) of the Hi in proposition 4.2.4 clearly holds. For the second feature, just

note that if x and y are of the same sign and both greater than `(ε)/rα in absolute

value, then F r
i (x) and Hi(y) are both within ε/2Drκ(1−α) of the asymptotic value of

Fi at sgn(x) · ∞ (this is true of F r
i by the definition of `(ε) and κ; this is true of Hi

because Hi(x) lies between F r
i (x) and its asymptotic value).

Suppose now that the Fi are C2 with bounded second derivative, and that |F ′i (x)| →

0 as |x| → ∞ for all i. We compute

∣∣(F r
i )′(x)

∣∣ = r
∣∣F ′i (rx)∣∣ ≤ r‖F ′i‖;∣∣(F r

i )′′(x)
∣∣ = r2

∣∣F ′′i (rx)
∣∣ ≤ r2‖F ′′i ‖.
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For x ≤ 0,

∣∣H ′
i(x)

∣∣ =
∣∣ (bi − Fi(rx))ψ′(x) + (1− ψ(x))rF ′i (rx))

∣∣
≤ r(2µ‖ψ′‖+ ‖F ′i‖);∣∣H ′′

i (x)
∣∣ =

∣∣ (bi − Fi(rx))ψ′′(x)− 2rF ′i (rx)ψ
′(x) + (1− ψ(x))r2F ′′i (rx)

∣∣
≤ r2(2µ‖ψ′′‖+ 2‖F ′i‖‖ψ′‖+ ‖F ′′i ‖);

similarly for x ≥ 0. Therefore we see that the constant

2µ‖ψ′‖+ 2µ‖ψ′′‖+ 2 max
i
‖F ′i‖‖ψ′‖+ max

i
‖F ′i‖+ max

i
‖F ′′i ‖

is a possible value for 4 in part 3 of proposition 4.2.4.

Taking 4 as above we of course have 4 ≥ ‖ψ′‖; if x ≤ −`(ε)/rα we have

|H ′
i(x)| ≤ |bi − Fi(rx)||ψ′(x)|+ (1− ψ(x))|(F r

i )′(x)|

≤ 4ε
rκ(1−α)

+
rε

2Drκ′(1−α)
,

and similarly if x ≥ `(ε)/rα. This completes the proof. 2

We now compare solutions of (Er) and (DDEr) on [0, t∗].

Lemma 4.2.6. Given δ > 0, for any r sufficiently large the following holds. Given

y0 ∈ U with continuation w as a solution of (DDEr) and continuation v as a solution

of (Er),

• |v(t)− w(t)| < δ for all t ∈ [0, t∗].

• The first m positive zeros ζ1, . . . , ζm of v are defined and proper, and for all

1 ≤ k ≤ m

|ζk − zk| < δ,

where the zk are the first m positive zeros of w.

•

‖P (y0)−R(y0)‖ < δ,

where P (y0) = vζm.
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Throughout this chapter, whenever a particular problem (Er) is understood, we will

write P for the above-described return map. P : U → C0 “advances solutions of (Er)

by m positive zeros.” The substance of the above lemma is that P is indeed defined,

and close to R, for r sufficiently large.

PROOF. The approach is like that used in section 3.1. Take y0 ∈ U and write w

for its continuation as a solution of (DDEr) and v for its continuation as a solution of

(Er). We begin with a reminder of how w behaves (recall 3.1.13 and 3.1.19).

• w has exactly m zeros on (0, t∗) and w(t∗) ≤ −2ρσ.

• w has constant slope, of absolute value at least σ, on every connected component

of the sets

[(0, 3ρ) ∪ (s1 − 3ρ, s1 + 3ρ) ∪ · · · ∪ (sm − 3ρ, sm + 3ρ)]

⊃ w−1[−2ρσ, 2ρσ] ⊃ w−1[−2η∗, 2η∗] ⊃ w−1[−2η, 2η].

• If t ∈ [0, t∗], |w(t)| ≤ 2ρσ, and t− di ≥ 0, then |w(t− di)| > 2ρσ.

Choose ε > 0, and suppose that r is large enough that `(ε)/r < η. Write

S = { t ∈ [0, t∗] : |w(t)| < `(ε)/r or |v(t)| < `(ε)/r or w(t)v(t) < 0 }.

For all t ∈ (0, t∗) we of course have the bound |v′(t)−w′(t)| < µ. The basic observation

is that, for t ∈ (0, t∗), we in fact have the bound

|v′(t)− w′(t)| < ε unless t− di ∈ S for some di.

(This is an immediate consequence of 4.2.4 — the second part of part 2, with κ = 0 —

and the fact that v(t) and w(t) have a common initial condition). Please note that all

points in S are nonnegative.

For each 0 ≤ j ≤ m, write

M(j) = sup
t∈[0,sj+3ρ]

|v(t)− w(t)|

(where we are writing s0 = 0). Similarly, for 0 ≤ j ≤ m write

N(j) = measure (S ∩ [0, sj + 3ρ]) .
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Since t− di < 0 for t ∈ (0, 3ρ), we have M(0) ≤ 3ρε.

If t ∈ S ∩ [0, sj + 3ρ], then |w(t)| must be less than M(j) + `(ε)/r. Accordingly,

for all j such that M(j) + `(ε)/r < ρσ, the connected components of S ∩ [0, sj + 3ρ]

are contained in connected components where |w(t)| < ρσ, and where w has constant

slope of absolute value at least σ. Hence the length of such a connected component is

no more than
2M(j) + 2`(ε)/r

σ

units. In other words, as long as M(j) + `(ε)/r < ρσ, we have

N(j) ≤ 2(j + 1)
σ

[
M(j) +

`(ε)
r

]
.

Suppose now that t ∈ [0, sj + 3ρ], and that t− di ∈ S for some i. Since di > 6ρ, we

see that t− di < sj − 3ρ. If M(j) + `(ε)/r < ρσ, we must have |w(t− di)| < ρσ. Since

|w(s)| > 2ρσ for s ∈ (sj−1 +3ρ, sj − 3ρ), w(t− di) < ρσ implies that t− di ≤ sj−1 +3ρ.

Thus t − di is in that part of S measured by N(j − 1). This tells us that, as long as

M(j) + `(ε)/r < ρσ (compare to the proof of 3.1.13),

M(j) ≤ (sj + 3ρ)ε+ µN(j − 1).

Combining the estimates for N(j) and M(j) yields the following (crude) difference

inequality for M(j), for 0 < j ≤ m and as long as M(j) + `(ε)/r < ρσ:

M(j) ≤ t∗ε+
2(m+ 1)µ

σ
(M(j − 1) + `(ε)/r) .

We have established that, by choosing ε small and then r large, we can make M(m) as

small as we like. This is the first point of 4.2.6.

Assume that we have chosen ε < σ/2 and then r so large that M(m) + `(ε)/r < ρσ.

In this case, |w(t)| ≤ 2ρσ, where t ∈ (0, t∗), implies that (t − di) /∈ S for all di (since

either |w(t− di)| > 2ρσ or t− di < 0). By our choice of ε, it follows that |w(t)| < 2ρσ

implies that |v′(t) − w′(t)| < σ/2. For such an ε and r, then, we see that v(t) has

exactly m zeros on (0, t∗), all of them proper. Corresponding zeros of w(t) and v(t) are

no more than M(m)/σ units apart, and the sort of estimate described in (1.2.3) tells

us that

‖P (y0)−R(y0)‖ ≤M(m)
(
1 +

µ

σ

)
.
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This completes the proof of 4.2.6. 2

PROOF OF THEOREM 4.1.2. We can choose U so that the continuation w of

y0 ∈ U as a solution of (DDE) is as close as we like to p in the sense of 4.1.2 and

3.1.19. Lemma 4.2.6 now tells us that we can arrange for the continuation of an initial

condition in U as a solution of (Er) to also be close to p in the sense of 4.1.2 and 3.1.19.

To complete the proof, then, we need to show that the return map P has a fixed point

on U .

Let ν > 0 be as in 3.1.23: for any (DDE) ∈ P, we have

y0 ∈ ∂U =⇒ ‖R(y0)− y0‖ > ν.

Applying 4.2.6, we choose r large enough that P is defined and ‖P (y0)−R(y0)‖ <

ν/2. Then given y0 ∈ ∂U and s ∈ [0, 1] we have

‖y0 − (sP (y0) + (1− s)R(y0))‖ ≥ ‖y0 −R(y0)‖ − s‖R(y0)− P (y0)‖

> ν − sν/2 ≥ ν/2.

sP + (1− s)R is a compact map and (as we have just shown) is fixed-point-free on

∂U for all s ∈ [0, 1]. Thus, by the homotopy property of Leray-Schauder degree, we

find that deg(I − P,U) is defined and is equal to deg(I −R,U). Since deg(I −R,U) is

nonzero (recall 3.2.5), deg(I −P,U) is nonzero too and we conclude that P has a fixed

point on U . 2

4.3 Uniqueness and stability

We now assume that (Er) is as in 4.1.1 and 4.1.3 — in particular, we assume that the Fi

are C2, with bounded second derivative, and of bounded variation with lim|x|→∞ F ′i (x) =

0. We also assume that

κ > 2, κ′ > 1,

where κ and κ′ are as in 4.1.1.

We will take P and (DDEr) ∈ P as described in 4.2.3 and 4.2.4. In particular, we

are assuming that all of the Fi and all of the Hi have total variation less than or equal

to some B <∞.
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The proof of 4.1.3 relies on the following lemma.

Lemma 4.3.1. Main lemma. With all the above assumptions, there are numbers

a > 2, b > 0, and N > 0 such that the following holds.

Let δ > 0 be given. For any r ≥ 1, let R be the return map (with fixed point u0) for

(DDEr), and let P be the return map for (Er). Then, for r sufficiently large,

1. Everywhere on U ,

‖P −R‖ < δ

ra
;

2. any fixed point v̄0 ∈ U of P satisfies

〈v̄0, u0〉 <
δ

ra
;

3. Given s ∈ [0, 1], if v0 ∈ U lies in the image of sR+ (1− s)P and 〈v0, u0〉 < 1/ra,

then

‖DP [v0]−DR[u0]‖ <
N

rb

and

‖DR[v0]−DR[u0]‖ <
N

rb
.

PROOF OF THEOREM 4.1.3. Theorem 4.1.2 tells us that P has a fixed point in

U for r large enough. The second part of lemma 4.3.1 tells us that, for r large enough,

any fixed point v̄0 of P satisfies

〈v̄0, u0〉 <
δ

ra
.

If we take δ < 1, the third part of lemma 4.3.1 then tells us that

‖DP [v̄0]−DR[u0]‖ <
N

rb
.

3.2.17 now implies that, if r is large enough and the spectral radius of DR[u0] is less

than 1, then the spectral radius of DP [v̄0] is less than one also. 3.2.2 tells us that if the

matrix A = Dφm[V (p0)] has spectral radius less than 1 then DR[u0] does too. This

proves the part of theorem 4.1.3 concerning stability.

Recall (see 3.2.12) that, since B <∞, there is a fixed M such that

‖(I −DR[u0])−1‖ < M
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for all (DDEr), r ≥ 1. 3.2.15 now implies that if T is a linear map with

‖T −DR[u0]‖ < M1 < M−1,

then (I − T )−1 exists and

‖(I − T )−1‖ < M

1−M1M
.

Now fix δ < 1 and choose r large enough for lemma 4.3.1 to apply, and also so

large that N/rb < M−1, where M is as in last paragraph. This choice guarantees, in

particular, that

I −DP [v̄0]

is invertible for any fixed point v̄0 of P .

We now define the straight-line homotopy

Q : U × [0, 1] → C0 : Q(y0, s) = sR+ (1− s)P.

Given y0 ∈ Q(U, s) with

〈y0, u0〉 <
1
ra
,

we have

D1Q[y0, s] = sDR[y0] + (1− s)DP [y0],

and so, by the third part of 4.3.1,

‖D1Q[y0, s]−DR[u0]‖ <
N

rb
< M−1.

(In particular, I −D1Q[y0, s] is invertible for such y0 and all s ∈ [0, 1]). Also, for any

0 ≤ s1 ≤ s2 ≤ 1 we have

‖Q(y0, s1)−Q(y0, s2)‖ = (s2 − s1)‖R(y0)− P (y0)‖ <
δ(s2 − s1)

ra
,

whence

‖D2Q[y0, s]‖ <
δ

ra
.

Now, assume that v̄0 is a fixed point of P = Q(·, 0). By the implicit function

theorem, for small s ≥ 0 there is a unique smooth path s 7→ vs, where v0 = v̄0 and each



100

vs is a fixed point of Q(·, s). Since 〈v̄0, u0〉 < δ/ra, if δ < 1 and for s∗ sufficiently small

we have that

〈vs, u0〉 <
1
ra

∀ s ∈ [0, s∗].

Suppose that s∗ < 1. By the implicit function theorem and the third part of 4.3.1 —

vs of course lies in the image of sR + (1 − s)P — the derivative of vs in s is bounded

by ∣∣∣∣dvs

ds

∣∣∣∣ ≤ ‖D2Q[vs, s]‖‖(I −D1Q[vs, s])−1‖ ≤ δ

ra

1
1−NM/rb

.

By choosing δ small enough and r large enough, then, we can arrange that∣∣∣∣dvs

ds

∣∣∣∣ ≤ 1− δ

ra
,

whence ‖vs∗− v̄0‖ < s∗(1−δ)/ra < (1−δ)/ra and 〈vs∗ , u0〉 < 1/ra. If r is large enough,

we of course have that vs∗ lies in U . In this case, through, we can extend the path

s 7→ vs uniquely beyond s∗. This reasoning shows that, for r large enough, the path

s 7→ vs is defined (uniquely) on the whole unit interval and runs from v̄0 to u0. This

path can be reversed, and we see that as s goes from 1 to 0 we follow a unique path of

fixed points of Q(·, s) from u0 to v̄0.

If we now imagine that there is another fixed point v0 of P in U , exactly the same

argument shows that the above mentioned unique “backward” path actually goes from

u0 to v0. Thus we see that, for r large enough, v̄0 is the unique fixed point of P in U .

2

Proof of 4.3.1

We devote the rest of this section to the lengthy and technical proof of lemma 4.3.1.

Recall our assumptions: the Fi are C2, with bounded second derivative, and of bounded

variation with lim|x|→∞ F ′i (x) = 0. The exponents κ and κ′ satisfy

κ > 2, κ′ > 1. (4.3.2)

We choose and fix α ∈ (0, 1) such that

κ(1− α) > 2. (4.3.3)
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Let us write ` = `(1), where the function `(·) is as in definition 4.1.1. We will always

assume r ≥ 1 large enough that `/rα < η, where η is as in 4.2.3. Recalling 4.2.4, we

have the following for all such r and all a ∈ [0, κ(1− α)]:

• For all x,

|F r
i (x)−Hi(x)| <

1
Dra

;

• If x and y are both greater than `/rα in absolute value and are of the same sign,

then

|F r
i (x)−Hi(y)| <

1
Dra

.

Let us choose v0 ∈ U with continuations v and w as solutions of (Er) and (DDEr),

respectively. Recall from lemma 4.2.6 that we can ensure that v(t) and w(t) are uni-

formly close for all t ∈ [0, t∗] if r is large enough. In particular, since |w(t)| ≤ 2ρσ

implies either that t − di < 0 or that |w(t − di)| > 2ρσ for all i, if we insist that

|v(t)− w(t)| < ρσ/2 for all t ∈ [0, t∗] we have the following.

Lemma 4.3.4. If r is sufficiently large, then for all t ∈ [0, t∗] we have, for all i,

|v(t)| ≤ 3ρσ
2

or |w(t)| ≤ 3ρσ
2

=⇒ t− di < 0 or |w(t− di)|, |v(t− di)| > ρσ. 2

Since we are assuming that `/rα < η < ρσ, applying 4.2.4 immediately yields that,

for any a ∈ [0, κ(1− α)],

Corollary 4.3.5. For r sufficiently large, for all t ∈ [0, t∗] we have that

|v(t)| ≤ 3ρσ
2

or |w(t)| ≤ 3ρσ
2

=⇒ |v′(t)− w′(t)| ≤ 1
ra
. 2

If we further insist that 1/rκ(1−α) < σ/2, we get the following.

Corollary 4.3.6. Summary of behavior of solutions of (Er). For r sufficiently

large, given any v0 ∈ U with continuation v as a solution of (Er) the following hold:
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• if w is the continuation of v0 as a solution of (DDEr), |v(t) − w(t)| < ρσ/2 for

all t ∈ [0, t∗];

• v(t) has exactly m positive zeros, all proper, on [0, t∗];

• The set

S = { t ∈ [0, t∗] : |v(t)| ≤ 3ρσ/2 }

has exactly m+ 1 components S0, S1, . . . , Sm, with

S0 ⊂ [0, 3ρ], S1 ⊂ [s1 − 3ρ, s1 + 3ρ], . . . , Sm ⊂ [sm − 3ρ, sm + 3ρ]

(where the sk are the positive zeros of p);

• Each Sk contains one zero of v, and on Sk we have

|v′(t)− p′(sk)| <
1
ra

for all a ∈ [0, κ(1− α)]. 2

We will henceforth assume r large enough that corollary 4.3.6 holds.

We now define a subset Ŵ of C0 into which P maps. Ŵ is very similar to the space

W̃ , and plays an analogous role, but we can afford to make its definition somewhat

simpler.

Definition 4.3.7. The space Ŵ . Given r ≥ 1, write Ŵ for the set of initial conditions

v0 ∈ C0 that satisfy the following:

• v0 has exactly n zeros −ξn < · · · < −ξ1 on (−γ, 0).

• On the connected component of { s ∈ (−γ, 0) : |v0(s)| ≤ ρσ } whose right

endpoint is 0,

|v′0(s)− p′(0)| < 1
rκ(1−α)

.

• On the connected component of { s ∈ (−γ, 0) : |v0(s)| ≤ ρσ } containing −ξk,

|v′0(s)− p′(−πk)| <
1

rκ(1−α)

(recall that −πk is the kth negative zero of p0).
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Ŵ of course depends on r, but for simplicity we do not express this dependence in

our notation. Observe that W̃ ⊂ Ŵ for all r ≥ 1.

Given v0 ∈ U with continuation v as a solution of (Er), write ζ for the mth positive

zero of v; we know from lemma 4.3.6 that ζ ∈ [sm − 3ρ, sm + 3ρ]. Since

sm − γ ∈ [sm−n−1 + 6ρ, sm−n − 6ρ]

(recall 3.1.2), we have

ζ − γ ∈ [sm−n−1 + 3ρ, sm−n − 3ρ].

4.3.6 now implies that P (v0) = vζ has exactly n proper zeros on (−γ, 0), and having

established this it is easy to see (again by 4.3.6) that P (v0) ∈ Ŵ . We in fact need a bit

more, namely

Lemma 4.3.8. If r is sufficiently large, for any y0 ∈ U and any τ ∈ [0, 1] we have

τR(y0) + (1− τ)P (y0) ∈ Ŵ .

PROOF. Write v and w for the continuations of y0 as solutions of (Er) and (DDEr),

respectively. Assume that r is large enough that 4.3.6 holds, and also so that ‖P (y0)−

R(y0)‖ < ρσ/2 for all y0 ∈ U .

Write

ȳ0 = τR(y0)− (1− τ)P (y0).

The set of s ∈ [−γ, 0] for which |ȳ0(s)| ≤ ρσ contains the set where both |R(y0)(s)| ≤ ρσ

and |P (y0)(s)| ≤ ρσ, and is contained in the set where both |R(y0)(s)| ≤ 3ρσ/2 and

|P (y0)(s)| ≤ 3ρσ/2. We see therefore that

{ s ∈ [−γ, 0] : |ȳ0(s)| ≤ ρσ }

is nonempty and is contained in a collection of subintervals. On each such subinterval,

both P (y0) and R(y0) assume all values on [−ρσ, ρσ] and have slopes of the same

constant sign. It follows that ȳ0(s) has exactly n+ 1 zeros −ξn < · · · < −ξ1 < −ξ0 = 0
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on [−γ, 0]. On the connected component of { s ∈ [−γ, 0] : |ȳ0(s)| ≤ ρσ } containing

−ξk, we have

R(y0)′(s) = p′(−πk)

while 4.3.6 implies that

|P (y0)′(s)− p′(−πk)| <
1

rκ(1−α)
.

It follows that

|ȳ′0(s)− p′(−πk)| <
1

rκ(1−α)
,

and we conclude that ȳ0 ∈ Ŵ . 2

Our objective is to make a careful comparison of solutions of (Er) with initial con-

ditions in Ŵ to solutions of (DDEr) with initial conditions in W̃ . We begin with the

following calculus lemma.

Lemma 4.3.9. Suppose that f and g are two continuous functions satisfying

‖f − g‖ ≤ c1; ‖f‖, ‖g‖ ≤M.

Suppose too that [a, b] and [c, d] are nontrivial intervals each of length no more than L

and that

|a− c| ≤ c2 and |b− d| ≤ c2.

Then ∣∣∣∣∫ b

a
f(s) ds−

∫ d

c
g(s) ds

∣∣∣∣ ≤ 2c2M + c1L.

PROOF. WOLOG suppose that a ≤ c. There are then three subcases to consider.

Case 1: b ≤ c. Then [a, b] and [c, d] are each of length less than c2 and the quantity

in question is less than

2c2M.

Case 2: c < b ≤ d. Then we have∣∣∣∣∫ b

a
f(s) ds−

∫ d

c
g(s) ds

∣∣∣∣
=

∣∣∣∣∫ c

a
f(s) ds+

∫ b

c
f(s)− g(s) ds−

∫ d

b
g(s) ds

∣∣∣∣
≤ 2c2M + c1L.
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Case 3: c < d < b. Then we have∣∣∣∣∫ b

a
f(s) ds−

∫ d

c
g(s) ds

∣∣∣∣
=

∣∣∣∣∫ c

a
f(s) ds+

∫ d

c
f(s)− g(s) ds+

∫ b

d
f(s) ds

∣∣∣∣
≤ 2c2M + c1L.

This completes the proof. 2

Lemma 4.3.10. Let v0 ∈ Ŵ ∩ U with continuation v as a solution of (Er), and let

w0 ∈ W̃ ∩ U with continuation w as a solution of (DDEr). Then there is a constant

K1 such that, given any a ∈ (0, κ(1− α)], if r is sufficiently large we have

〈v0, w0〉 <
1
ra

=⇒ |v(t)− w(t)| < K1

ra
for all t ∈ [0, t∗].

PROOF. The idea is this. Suppose that there is some τ ∈ [0, t∗] and some c ≥ 1

such that

〈v0, w0〉 <
c

ra
and |v(t)− w(t)| < c

ra
for all t ∈ [0, τ ].

Suppose also that r is so large that 4.3.5 and 4.3.6 hold, and also so large that c/ra <

ρσ − η. In this case, we have the following two implications for all t ∈ [−γ, τ ]: first,

|v(t)| ≤ η or |w(t)| ≤ η or v(t)w(t) < 0 =⇒ |v(t)| ≤ ρσ and |w(t)| ≤ ρσ;

second,

|v(t)| ≤ ρσ and |w(t)| ≤ ρσ =⇒ |v′(t)− w′(t)| ≤ 1
rκ(1−α)

≤ c

ra
.

We claim that, in this case, there is a number K(c) ≥ c, that depends on c but not on

a or r (assuming r is large enough to meet the above-stated conditions), such that, for

all 1 ≤ i ≤ D and all t ∈ [0, τ ],∣∣∣∣∫ t

−di

F r
i (v(s)) ds−

∫ t

−di

Hi(w(s)) ds
∣∣∣∣ ≤ K(c)

ra
.

This claim implies that

|v(t)− w(t)| ≤ DK(c)
ra

for all t ∈ [0, τ + d1].
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By increasing r further if necessary to get DK(c)/ra < ρσ − η, we can then apply our

claim again to assert that

|v(t)− w(t)| ≤ DK(DK(c))
ra

for all t ∈ [0, τ + 2d1],

and so on. Finitely many such steps, starting with τ = 0 and c = 1, prove the lemma.

We now prove our claim. As s ranges from −di to t ∈ [−di, τ ], |F r
i (v(s)) −

Hi(w(s))| ≤ 1/Dra unless

|v(s)| < η or |w(s)| < η or v(s)w(s) < 0.

The connected components where this happens are contained in the connected com-

ponents where both |v(s)| and |w(s)| are less than or equal to ρσ; there are at most

m+ n+ 1 such components in [−di, τ ]. Let [τ0, τ1] be such a component (observe that

the length of this component is less than 2ρ). We illustrate this component in Figure

15.

ρσ

− ρσ

w(t)

v(t)

τ0 τ1

Figure 15

To prove our claim it suffices to exhibit a constant c′ such that, for any t ∈ [τ0, τ1],∣∣∣∣∫ t

τ0

F r
i (v(s)) ds−

∫ t

τ0

Hi(w(s)) ds
∣∣∣∣ ≤ c′

ra
.
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On [τ0, τ1], w′(s) is equal to some constant σ̄ and v′(s) is uniformly within 1/ra of

σ̄. Given any s on this interval, write

v′(s) = σ̄ + z;

for r sufficiently large we have ∣∣∣∣v′(s)σ̄
− v′(s)
v′(s)

∣∣∣∣
=

∣∣∣∣v′(s)σ̄ + zv′(s)− v′(s)σ̄
σ̄2 + σ̄z

∣∣∣∣
≤

∣∣∣∣zv′(s)σ̄2/2

∣∣∣∣
≤ c1

ra
.

The point is that v′(s)/v′(s) is uniformly within c1/r
a of v′(s)/σ̄ for all s ∈ [τ0, τ1].

Since |F r
i | ≤ µ, it follows that∣∣∣∣v′(s)v′(s)

F r
i (v(s))− v′(s)

σ̄
F r

i (v(s))
∣∣∣∣ ≤ c1µ

ra

for all such s. We therefore have the estimate∣∣∣∣∫ t

τ0

F r
i (v(s)) ds−

∫ t

τ0

Hi(w(s)) ds
∣∣∣∣ ≤ ∣∣∣∣∫ t

τ0

v′(s)
σ̄

F r
i (v(s)) ds−

∫ t

τ0

Hi(w(s)) ds
∣∣∣∣+2ρc1µ

ra
.

Changing variables, we rewrite the above difference of integrals as

1
σ̄

∣∣∣∣∣
∫ v(t)

v(τ0)
F r

i (u) du−
∫ w(t)

w(τ0)
Hi(u) du

∣∣∣∣∣ .
Since |F r

i | and |Hi| are both bounded by µ, and |F r
i −Hi|, |v(τ0)−w(τ0)|, and |v(t)−w(t)|

are all bounded by some constant times 1/ra, our desired result follows from lemma

4.3.9. 2

Similar to 4.3.10 is

Lemma 4.3.11. Suppose that v0 ∈ U . Write v and w for the continuations of v0 as

solutions of (Er) and (DDEr), respectively. Then there is a constant K1 such that,

given any a ∈ (0, κ(1− α)], if r is sufficiently large we have

|v(t)− w(t)| ≤ K1

ra
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for all t ∈ [0, t∗].

PROOF. The argument is the same the same as for 4.3.10, except that

|F r
i (v(t))−Hi(w(t))| ≤ 1

Dra

whenever t < 0. 2

The above calculations give us our basic control over how solutions of (Er) and

(DDEr) compare. The next lemma translates this control into a comparison of the

maps P and R.

Lemma 4.3.12. There is a constant K such that the following hold. Choose any

a ∈ (1, κ(1−α)]. Take v0 ∈ U and w0 ∈ U with continuations v(t) and w(t) as solutions

of (Er) and (DDEr), respectively. Assume either that v0 = w0 or that v0 ∈ Ŵ and

w0 ∈ W̃ with 〈v0, w0〉 < 1/ra. Then, for r sufficiently large,

1.

sup
t∈[0,t∗]

|v(t)− w(t)| ≤ K

ra
.

2.

‖P (v0)−R(w0)‖ ≤
K

ra
.

3.

sup
t∈(0,t∗)

|v′(t)− w′(t)| ≤ K

ra−1
.

4.

‖P (v0)′ −R(w0)′‖ ≤
K

ra−1
.

5. ∥∥∥∥ P (v0)′

P (v0)′(0)
− R(w0)′

R(w0)′(0)

∥∥∥∥ ≤ K

ra−1
.

PROOF. We know that, by choosing r large enough, we have

|v(t)− w(t)| ≤ K1

ra

for all t ∈ [0, t∗]. Take r large enough that this difference is less than ρσ. In this case

the mth positive zero of w(t) and the mth positive zero of v(t) are less than

K1

σra
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units apart. Accordingly, (1.2.3) tells us that

‖P (v0)−R(w0)‖ ≤
K1

ra

(
1 +

µ

σ

)
.

This the second part of the lemma.

Using the estimate

‖F (v)−H(w)‖ ≤ ‖F (w)−H(w)‖+ ‖F (v)− F (w)‖ ≤ ‖F −H‖+ ‖F ′‖|u− w|,

we see that that v′(t) and w′(t) differ on (0, t∗) by no more than

D

[
1

rκ(1−α)
+
r4K
rα

]
≤ D +D4K

ra−1
:=

K2

ra−1
.

This is the third point of the lemma.

The second derivative of v(t) is bounded above by Dµr4, and by again using the

idea of (1.2.3) we get

‖P (v0)′ −R(w0)′‖ ≤
K2

ra−1
+
Dµr4K1

σra
:=

K3

ra−1

This yields the fourth part of the lemma.

Recall that R(w0)′(0) = p′(0), that ‖R(w0)′‖ ≤ µ, and that

‖P (v0)′(0)−R(w0)′(0)‖ ≤ K3

ra−1
.

Therefore we have, writing z = P (v0)′(0)− p′(0),∥∥∥∥ P (v0)′

P (v0)′(0)
− R(w0)′

R(w0)′(0)

∥∥∥∥
=

∥∥∥∥ P (v0)′

p′(0) + z
− R(w0)′

p′(0)

∥∥∥∥
=

∥∥∥∥(P (v0)′ −R(w0)′)p′(0)− zR(w0)′

p′(0)2 + zp′(0)

∥∥∥∥
≤ ‖P (v0)′ −R(w0)′‖

|p′(0) + z|
+

|z|‖R(w0)′‖
|p′(0)2 + zp′(0)|

.

Since ‖R(w0)′‖ ≤ µ and |z| ≤ K2/r
a−1, the fifth part of the lemma follows. 2

The following corollary immediately implies the first part of our main lemma 4.3.1:

Corollary 4.3.13. Let 0 < a < κ(1 − α). Then, given any δ > 0, for r sufficiently

large we have

‖P (y0)−R(y0)‖ <
δ

ra
.
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PROOF. By 4.3.12,

‖P (y0)−R(y0)‖ ≤
K

rκ(1−α)
.

Given δ > 0 and 0 < a < κ(1− α), for r large enough we have

K

rκ(1−α)
<

δ

ra
. 2

Suppose now that v̄0 is a fixed point of P . Then by lemma 4.3.12 we have

‖v̄0 −R(v̄0)‖ ≤
K

rκ(1−α)
.

For r sufficiently large, the quantity on the right can be made less than both ε∗/4 and

ν, where ε∗ and ν are as in lemma 3.1.22 and theorem 3.1.23. This tells us that we must

have 〈v̄0, p0〉 < 3ε∗/4, and that 〈R(v̄0), p0〉 < ε∗. This last just says that R(v̄0) ∈ U ,

and so R2(v̄0) is defined. Indeed, since R(v̄0) actually lies in W̃ ∩ U , we can apply

lemma 4.3.12 to the pair v̄0 and R(v̄0).

Choosing 0 < a < κ(1− α), if r is large enough we have that

‖v̄0 −R(v̄0)‖ = ‖P (v̄0)−R(v̄0)‖ ≤
K

rκ(1−α)
< 1/ra,

and so we have 〈v̄0, R(v̄0〉 < 1/ra and

‖v̄0 −R2(v̄0)‖ <
K

ra
.

Thus, for a′ < a and r sufficiently large, we have both

‖v̄0 −R(v̄0)‖ <
1
ra′

and ‖v̄0 −R2(v̄0)‖ <
1
ra′
.

Now we know, since R(v̄0) ∈ W̃ , that there is a constant β such that

‖R(v̄0)−R2(v̄0)‖ ≥
σβ

µ
〈R(v̄0), u0〉

(see the proof of 3.1.22). On the other hand,

‖R(v̄0)−R2(v̄0)‖ ≤ ‖R(v̄0)− v̄0‖+ ‖R2(v̄0)− v̄0‖ ≤
2
ra′
.

Therefore we see that

〈R(v̄0), u0〉 ≤
2µ

σβra′
,
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whence

〈v̄0, u0〉 ≤
2µ/σβ
ra′

+
1
ra′
.

Choosing b ∈ (1, a′) establishes the following corollary, which immediately yields the

second point of our main lemma 4.3.1.

Lemma 4.3.14. Given any δ > 0 and any 0 < b < κ(1 − α), for r sufficiently large

any fixed point of P must be within δ/rb of u0 in the 〈·, ·〉 semimetric. 2

Before proving the last point of 4.3.1, we need two more technical estimates. It is

here that we will make use of the hypothesis that κ′ > 1.

Lemma 4.3.15. There is a constant K̄ such that the following holds. Let v0 ∈ U with

continuation v as a solution of (Er). Then, for r sufficiently large,∫ t∗

0
|(F r

i )′(v(s))| ds < K̄.

PROOF. By 4.3.6 we know that, if r is sufficiently large, we can arrange that

|v(t)| ≤ ρσ on exactly m+ 1 connected components of [0, t∗], and that |v′(t)| ≥ σ/2 on

each of those components.

Assume that r is large enough so that

|x| ≥ ρσ =⇒ |(F r
i )′(x)| < 1

t∗

(we can do this because κ′ > 1). Now, the integral∫ t∗

0
|(F r

i )′(v(s))| ds

can be broken up into components where |v(s)| ≤ ρσ and components where |v(s)| > ρσ.

The total integral over all components of the latter type is less than 1. To complete

the proof, then, we show that ∫ t2

t1

|(F r
i )′(v(s))| ds < 2B

σ

where B is as in the definition of P (recall 4.2.4)and (t1, t2) is any connected component

where |v(s)| ≤ ρσ. For simplicity, let us assume that v′(t) ≥ σ/2 on this component;

the proof if the derivative of v is negative on this component is similar.
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We have ∫ t2

t1

|(F r
i )′(v(s))| ds =

∫ t2

t1

v′(s)
v′(s)

|(F r
i )′(v(s))| ds

≤ 2
σ

∫ t2

t1

v′(s)|(F r
i )′(v(s))| ds =

2
σ

∫ v(t2)

v(t1)
|(F r

i )′(s)| ds.

Since B is larger than the total variation of F r
i , this last integral is less than 2B/σ. 2

Lemma 4.3.16. Choose a ∈ (2, κ(1− α)].

Choose β ∈ (0, 1) such that κ′(1− β) > 1, and choose b > 0 such that

b < min{ κ′(1− β)− 1 , κ(1− β), a− 2 }.

There is a constant N1 > 0 such that, if v0 ∈ Ŵ and

〈v0, u0〉 <
1
ra
,

then for r sufficiently large we have

∑
i

∫ t∗

−γ

∣∣(F r
i )′(v(s))−H ′

i(u(s))
∣∣ ds ≤ N1

rb
.

PROOF. We show that, for all i and for r sufficiently large, we have

∣∣(F r
i )′(v(t))−H ′

i(u(t))
∣∣ ≤ 1

Drb

for all t ∈ [−γ, t∗].

We choose r large enough so that the following hold (here, the constant K is as in

4.3.12):

• |v(t)− u(t)| < K/ra for all t ∈ [0, t∗];

• `/rβ < η;

• K/ra + `/rβ < ρσ.

We also insist that K > 1. Then the condition 〈v0, u0〉 < 1/ra guarantees that, for

t ∈ [−γ, 0], |v(t)− w(t)| < K/ra whenever both |v(t)| and |w(t)| are less than ρσ.
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There are two cases to consider. Case 1: t < 0 and either v(t) or u(t) is greater

than ρσ. Then, since 〈v0, u0〉 < K/ra and K/ra + `/rβ < ρσ, v(t) and u(t) must be

of the same sign and both greater than `/rβ. In this case, though, we have (by (4.2.2)

and 4.2.4)

|(F r
i )′(v(t))| ≤ r

2Drκ′(1−β)
and |H ′

i(u(t))| ≤
4

2Drκ(1−β)
+

r

2Drκ′(1−β)
.

For r sufficiently large, the sum of these two estimates is less than 1/Drb.

Case 2: either t < 0 and v(t) and u(t) are both less than or equal to ρσ, or t ≥ 0.

In this case, |v(t) − u(t)| ≤ K/ra. The same sort of estimate as in the proof of 4.3.12

gives

|(F r
i )′(v(t))−H ′

i(u(t))| ≤ |(F r
i )′(u(t))−H ′

i(u(t))|+ ‖(F r
i )′′‖|v(t)− u(t)|.

The second summand on the right is smaller than

K4r2

ra

(recall from 4.2.4 that the second derivative of F r
i is smaller than 4r2 in absolute

value), which is smaller than 1/(2Drb) for r large enough. For the first summand, we

estimate in three cases. If |u(t)| < η then |(F r
i )′(u(t)) − H ′

i(u(t))| = 0. If u(t) ≤ −η,

then |u(t)| > `/rβ and we have

∣∣(F r
i )′(u(t))−H ′

i(u(t))
∣∣ =

∣∣ (F r
i )′(u(t))− (bi − F r

i (u(t))ψ′(u(t)))− (F r
i )′(u(t))(1− ψ(u(t)))

∣∣
≤ 2|(F r

i )′(u(t))|+ ‖ψ′‖
2Drκ(1−β)

≤ 2r
2Drκ′(1−β)

+
‖ψ′‖

2Drκ(1−β)
.

This quantity too is smaller than 1/(2Drb) for r large enough. Similarly for u(t) > η.

2

Let us now choose a ∈ (2, κ(1−α)). This is the a of lemma 4.3.1. We choose β > 0

such that κ′(1− β) > 1, and choose b > 0 in lemma 4.3.1 to satisfy

b < min{ κ′(1− β)− 1, κ(1− β), a− 2 }.

Let us recap what our work so far tells us. Let v0 ∈ U with continuation v as a

solution of (Er). Given δ > 0, for r sufficiently large we have
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•

‖P (v0)−R(v0)‖ <
δ

ra
.

• Any fixed point v̄0 of P satisfies

〈v̄0, u0〉 <
δ

ra
.

• If v0 ∈ Ŵ and 〈v0, u0〉 < 1/ra, for all t ∈ [0, t∗]

|v(t)− u(t)| < K

ra
< ρσ.

• If v0 ∈ Ŵ and 〈v0, u0〉 < 1/ra,

‖P (v0)− u0)‖ ≤
K

ra
.

• If v0 ∈ Ŵ and 〈v0, u0〉 < 1/ra,

‖P (v0)′ − u′0‖ ≤
K

ra−1
.

• If v0 ∈ Ŵ and 〈v0, u0〉 < 1/ra,∥∥∥∥ P (v0)′

P (v0)′(0)
− u′0
u′0(0)

∥∥∥∥ ≤ K

ra−1
.

• ∫ t∗

0
|(F r

i )′(v(s))| ds < K̄.

• If v0 ∈ Ŵ and 〈v0, u0〉 < 1/ra,

∑
i

∫ t∗

−γ

∣∣(F r
i )′(v(s))−H ′

i(u(s))
∣∣ ds ≤ N1

rb
.

We will maintain the notation in the above list for the short remainder of the section.

To complete the proof of lemma 4.3.1 (and hence of theorem 4.1.3) it remains to prove

the following.

Lemma 4.3.17. Last part of lemma 4.3.1. Suppose that v0 ∈ U is in the image of

τR+ (1− τ)P for τ ∈ [0, 1], and suppose that

〈v0, u0〉 <
1
ra
.
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Then there is an N > 0 such that, for r sufficiently large,

‖DP [v0]−DR[u0]‖ <
N

rb

and

‖DR[v0]−DR[u0]‖ <
N

rb
.

We will only prove the first estimate. The second estimate is a special case of the

first: just assume that (Er) is steplike and take (DDEr) = (Er) for all large r.

PROOF OF 4.3.17. Our hypothesis, together with lemma 4.3.8, tells us that we can

assume that v0 ∈ Ŵ . As usual we write v and u for the continuations of v0 and u0 as

solutions of (Er) and (DDEr), respectively.

Let us write Tu : R+ × C0 → C0 for the solution operator for the linearization of

(DDEr) about u and Sv : R+×C0 → C0 for the solution operator for the linearization

of (Er) about v. Let us write τ(u) for the mth positive zero of u(t) and τ(v) for the

mth positive zero of v(t). We have the formula (recall 1.2.1)

DR[u0]y0 = Tu(τ(u), y0)−
Tu(τ(u), y0)(0)

u′0(0)
· u′0;

DP [v0]y0 = Sv(τ(v), y0)−
Sv(τ(v), y0)(0)
P (v0)′(0)

· P (v0)′.

We write out

DP [v0]y0 −DR[u0]y0

= Sv(τ(v), y0)− Sv(τ(v), y0)(0) · P (v0)′

P (v0)′(0)
− Tu(τ(u), y0)

+Tu(τ(u), y0)(0) · u′0
u′0(0)

= (Sv(τ(v), y0)− Tu(τ(u), y0))

− (Sv(τ(v), y0)(0)− Tu(τ(u), y0)(0))
(

P (v0)′

P (v0)′(0)
− u′0
u′0(0)

)
− (Sv(τ(v), y0)(0)− Tu(τ(u), y0)(0))

(
u′0
u′0(0)

)
− (Tu(τ(u), y0)(0))

(
P (v0)′

P (v0)′(0)
− u′0
u′0(0)

)
.
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Therefore we have that ‖DP [v0]−DR[u0]‖ is less than or equal to

‖Sv(τ(v), ·)− Tu(τ(u), ·)‖

+ ‖Sv(τ(v), ·)− Tu(τ(u), ·)‖
∥∥∥∥ P (v0)′

P (v0)′(0)
− u′0
u′0(0)

∥∥∥∥
+ ‖Sv(τ(v), ·)− Tu(τ(u), ·)‖

∥∥∥∥ u′0
u′0(0)

∥∥∥∥
+ ‖Tu(τ(u), ·)‖

∥∥∥∥ P (v0)′

P (v0)′(0)
− u′0
u′0(0)

∥∥∥∥ .
Now, we know from corollary 3.2.8 that there is some k1 such that

‖Tu(t, ·)‖ ≤ k1

for all t ∈ [0, t∗]. We also know that ‖u′0‖/‖u′0(0)‖ ≤ µ/σ. Combining the above

estimate with these facts and 4.3.12 yields

‖DP [v0]−DR[u0]‖ ≤ ‖Sv(τ(v), ·)− Tu(τ(u), ·)‖
[
1 +

K

ra−1
+
µ

σ

]
+
k1K

ra−1
.

Since a− 1 > b, to complete our proof we need only show that

‖Sv(τ(v), ·)− Tu(τ(u), ·)‖ ≤ N

rb

for some N > 0.

Given y0 ∈ C0, let us write y for the continuation of y0 under Tu(t, ·), and let us

write z for the continuation of y0 under Sv(t, ·). (Of course z0 = y0.) We have the

formulas (recall section 1.2)

z(t) = Sv(t, y0) =
∑

i

∫ t

0
(F r

i )′(v(s− di))z(s− di) ds;

y(t) = Tu(t, y0) =
∑

i

∫ t

0
H ′

i(u(s− di))y(s− di) ds.

We know that

|τ(u)− τ(v)| < K

σra
.

Since |y(t)| ≤ k1‖y0‖, the above formulas show that |y′(t)| is bounded above by
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Dr4k1‖y0‖. Making the kind of estimate described in (1.2.3) yields

‖Sv(τ(v), y0)− Tu(τ(u), y0)‖

≤ ‖Sv(τ(u), y0)− Tu(τ(u), y0)‖+Dr4k1‖y0‖
K

σra

≤ ‖Sv(τ(u), y0)− Tu(τ(u), y0)‖+D4k1‖y0‖
K

σra−1
.

Therefore to complete the proof it is enough to show that

‖Sv(t, ·)− Tu(t, ·)‖ ≤ N

rb

for some N > 0 and all t ∈ [0, t∗]. Otherwise put, it is enough to show that, for all

t ∈ [0, t∗],

|z(t)− y(t)| ≤ N‖y0‖
rb

.

Now, let [t0, t1] ⊂ [0, t∗] be any interval of length at most d1. We have

‖zt1 − yt1‖ ≤ ‖(zt0 − yt0)‖+ sup
t∈[t0,t1]

∣∣∣∣∣∑
i

∫ t

t0

(F r
i )′(v(s− di))z(s− di)−H ′

i(u(s− di))y(s− di) ds

∣∣∣∣∣
≤ ‖zt0 − yt0‖+

∑
i

[∫ t1−di

t0−di

|(F r
i )′(v(s))(z(s)− y(s))| ds

]
+
∑

i

[∫ t1−di

t0−di

|(F r
i )′(v(s))−H ′

i(u(s))||y(s)| ds
]

≤ ‖zt0 − yt0‖+
∑

i

[
‖zt0 − yt0‖

∫ max(0,t1−di)

max(0,t0−di)
|(F r

i )′(v(s))| ds

]

+‖yt0‖
∑

i

[∫ t1−di

t0−di

|(F r
i )′(v(s))−H ′

i(u(s))| ds
]
.

Appealing to lemmas 4.3.15 and 4.3.16, we obtain

‖zt1 − yt1‖ ≤ ‖zt0 − yt0‖
[
1 +DK̄

]
+ ‖yt0‖

N1

rb
.

Now choose a finite number of points

0 = t0 < t1 < · · · < tJ = t∗,
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with ti − ti−1 < d1 for all 1 ≤ i ≤ J . Since ‖z0 − y0‖ = 0, the above estimates give

‖zt1 − yt1‖ ≤ ‖y0‖
N1

rb
;

‖zt2 − yt2‖ ≤
[
1 +DK̄

]
‖zt1 − yt1‖+

N1

rb
‖yt1‖

≤
[
1 +DK̄

] N1

rb
‖y0‖+

k1N1

rb
‖y0‖

≤
[
1 +DK̄ + k1

] N1

rb
‖y0‖;

‖zt3 − yt3‖ ≤
[
1 +DK̄

]
‖zt2 − yt2‖+

N1

rb
‖yt2‖

≤
[
1 +DK̄ + 2k1

]2 N1

rb
‖y0‖;

and so on.

Finitely many such steps prove the lemma, and we in fact see that we can take

N = N1

[
1 +DK̄ + Jk1

]J
. 2

4.4 Some examples

In this section we give some examples motivated by our work in this chapter and the

last.

Very slowly oscillating periodic solutions

We revisit example 1.1.3. Consider the parameterized family of equations

x′(t) = F r(x(t− 1)) + F r(x(t− 5)), t > 0; x0 ∈ C (4.4.1)

r ≥ 1, F r(x) = F (rx)

where

F (x) =
1− ex

ex + 1
2

.

The corresponding (SDDE) is

y′(t) = h(y(t− 1)) + h(y(t− 5)), (4.4.2)
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where

h(y) =


2, y < 0;

0, y = 0;

−1, y > 0.

Direct computation shows that, if we take y0 ∈ C ′0 with y0 ≥ 0, its continuation y as a

solution of (4.4.2) will have zeros (all proper) at the following points:

t = 3; t = 4.5; t = 5.625; t = 12.375.

Since 12.375 − 5.625 > 5 = γ, y12.375 is nonnegative and lies in C ′0 — and so has the

same continuation as y0. Thus y agrees with a periodic solution p for t ≥ 0. We readily

see that p is simple (no zero is a change point, and all the zeros are proper). Since any

initial condition for (SDDE) that is entirely of one sign can only continue in one way,

we see that the derivative of φ4 at V (pz), where z is any zero of p(z), is zero. Therefore

p is, trivially, both nondegenerate and asymptotically stable (recall remark 3.1.15).

Theorems 4.1.2 and 4.1.3 apply; we conclude that, for r sufficiently large, (4.4.1) has

an asymptotically stable periodic solution q that is similar to p.

Theorem 4.1.2 tells us that (a translate of) q satisfies q(0) = 0 and qz = q0, where z

is the fourth positive proper zero of q. Therefore q is either 1- or 2-cyclic. Since, for r

large, the zeros of q must be spaced similarly as the zeros of p, q must in fact be 2-cyclic

(recall definition 1.2.5). Note the contrast with the one-delay case, where equations

with strictly monotonic negative feedback have only one-cyclic periodic solutions (recall

section 1.3).

Definition 4.4.3. We call a periodic solution of (SDDE) that ever has two consecutive

proper zeros separated by γ or more units very slowly oscillating.

We have adopted this label so as to reserve the term “slowly oscillating” for a

concept, which we will explore next chapter, that is both more useful and bears stronger

affinity with the “slowly oscillating” solutions studied in the one-delay case.

For the reasons described above, any simple (nonconstant) very slowly oscillating

periodic solution of an equation (SDDE) is both nondegenerate and asymptotically

stable.
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Given a particular problem (SDDE), finding a very slowly oscillating periodic so-

lution (or ruling one out) is often quite easy; here is an example. Consider the equation

y′(t) = sgn(y(t− 1))− 1.5 sgn(y(t− 3))− 0.6 sgn(y(t− 5)). (4.4.4)

Take y0 ∈ C ′0 with y0 ≤ 0; write y for the continuation of y0 as a solution of (4.4.4)

and z for the first positive zero of y. If we can show that z > 5, then z is clearly a

proper zero and not a change point. Since the feedback functions are odd, if z > 5 then

y(t) will satisfy the symmetry y(z + t) = −y(t) for all t ≥ 0, and y will coincide with a

simple 1-cyclic very slowly oscillating periodic solution for t ≥ 0.

For t ∈ (0, 1), y′(t) = 1.5 + .6 − 1 = 1.1. For t ∈ (1, 3), y′(t) = 1 + 1.5 + .6 = 3.1.

For t ∈ (3, 5), y′(t) = 1− 1.5 + .6 = 0.1. Therefore we see that y is increasing on (0, 5),

and so z > 5. Thus (4.4.4) has a very slowly oscillating periodic solution. This solution

is (up to time translation) the only very slowly oscillating periodic solution of (4.4.4),

and it is simple and 1-cyclic.

It is of course a simple matter to concoct continuous problems for which (4.4.4) is

informative.

Consider now the equation

y′(t) = sgn(y(t− 1))− sgn(y(t− 3)). (4.4.5)

The idea here, loosely speaking, is that there is a positive feedback effect with time

delay 1 that is undone two periods later. This equation is an imitation of equation

(1.1.2). This equation has no very slowly oscillating periodic solutions: for if y0 ∈ C ′0

is nonpositive, we see that y′(t) = 0 for t ∈ (0, 1), that y′(t) = 1 for t ∈ (1, 2), that

y′(t) = 2 for t ∈ (2, 3), that y′(t) = 1 for t ∈ (3, 4), and that y′(t) = 0 for t > 4.

Suppose that we change the equation so that the feedback with time delay 1 is

negative instead of positive:

y′(t) = −sgn(y(t− 1)) + sgn(y(t− 3)). (4.4.6)
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then the continuation of y0 ∈ C ′0 with y0 ≤ 0 does coincide with a (non-simple) very

slowly oscillating periodic solution for positive time: for y′(t) = 0 on (0, 1), y′(t) = −1

on (1, 2), y′(t) = 0 on (2, 3), and y′(t) = 1 on (3, 4).

Degeneracy, and a continuum of periodic solutions

The above calculations show that (4.4.5) and (4.4.6) are certainly not similar. Here

is another observation in the same vein. We claim that (4.4.5) has no simple periodic

solutions p with the property that

V (pz) ∈ S1
− ∪ S1

+

for some zero z of p. For choose y0 ∈ C ′0 with V (y0) = x ∈ S1
+ and write y for the

continuation of y0 as a solution of (4.4.5). There are two cases to consider.

Case 1: x < 1. Then y′(t) = 0 for t ∈ (0, 1 − x), y′(t) = −2 for t ∈ (1 − x, 1),

y′(t) = −1 for t ∈ (1, 2−x), y′(t) = −2 for t ∈ (2−x, 3−x), y′(t) = 0 for x ∈ (3−x, 3),

y′(t) = −1 for t ∈ (3, 4− x), and y′(t) = 0 for t > 4− x.

Case 2: x ≥ 1. In this case, y′(t) = −2 for t ∈ (0, 3− x) and y′(t) = 0 for t > 3− x.

See Figure 16. The thicker line is a plot of a solution as described in case 1; the

thinner line is a plot of a solution as described in case 2.
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On the other hand, (4.4.6) has a continuum of simple periodic solutions passing

through S1
±. For choose y0 as just above, but now let y be the continuation of y0 as a

solution of (4.4.6). We consider three cases.

Case 1: x < 1. Then y′(t) = 0 for t ∈ (0, 1−x), y′(t) = 2 for t ∈ (1−x, 1), y′(t) = 1

for t ∈ (1, 2 − x), y′(t) = 0 for t ∈ (2 − x, 3 − x), y′(t) = −2 for t ∈ (3 − x, 3), and

y′(t) = −1 for t ∈ (3, 4− x). We have

y(4− x) = 2x+ (1− x)− 2x− (1− x) = 0;

and for t > 4−x, y will coincide with the negative reflection of the very slowly oscillating

periodic solution of (4.4.6) described earlier.

Case 2a: x ∈ [1, 2). In this case y′(t) = 2 for t ∈ (0, 1), y′(t) = 0 for t ∈ (1, 3 − x),

and y′(t) = −2 for t ∈ (3− x, 4− x). y(4− x) = 0, and

φ(x) = 4− x ∈ S1
−.

Case 2b: x ∈ [2, 3). In this case y′(t) = 2 for t ∈ (0, 3 − x), then y′(t) = 0 for

t ∈ (3− x, 1), and y′(t) = −2 for t ∈ (1, 4− x). y(4− x) = 0, and

φ(x) = 4− x ∈ S1
−.
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Appealing to the oddness of the feedback functions, we see the the orbit of any

x ∈ [1, 3) ⊂ S1
+ under φ is

4− x ∈ S1
−, x ∈ S1

+, 4− x ∈ S1
−, x ∈ S1

+, . . . .
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Figure 17

Figure 17 shows example solutions. The dashed line is a plot of a solution as

described in case 1, the thick line as in case 2a, the thin line as in case 2b. These latter

two periodic solutions are simple, but are degenerate: for φ2 is the identity map on

[1, 3) ⊂ S1
+.

The point we want to make is that the nondegeneracy hypothesis is indeed crucial

to our main existence theorems. For if we now consider a continuous parameterized

problem related to (4.4.6), depending on how we choose our feedback functions we can

exhibit either nonexistence of periodic solutions, or existence of a continuum of periodic

solutions.

Let us first consider the steplike problem

x′(t) = f(rx(t− 1))− f(rx(t− 3)) (4.4.7)
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where f(x) = −sgn(x) when |x| ≥ 1. Suppose that p0 ∈ C0 is a section of a simple

periodic solution of (4.4.6) with

V (p0) ∈ (1, 3) ⊂ S1
+.

Take y0 ∈ C0 close to p0 with continuation y as a solution of (4.4.7). Let us write R

for the map that advances solutions of (4.4.7) by two proper zeros. Since p is simple,

the work we did in section 3.1 shows that, for r large enough, R(y0) lies in an analog of

the space W̃ . Given y0 in such a space, though, direct computation (using the formula

discovered in the proof of lemma 3.1.16) shows that, near the first zero of p, y(t) and

p(t) differ by∫ 0

−1/r
f(x)− 1 dx+

∫ 1/r

0
f(x) + 1 dx−

∫ 0

−1/r
f(x)− 1 dx−

∫ 1/r

0
f(x) + 1 dx = 0.

A similar calculation for the next zero shows that

V (R(y0)) = V (y0).

Therefore we find that (4.4.7) has, for large r, a continuum of periodic solutions close to

the solutions of (4.4.6) described above. We illustrate two simulated periodic solutions

of (4.4.7) in Figure 18 (using the f pictured in Figure 9 and r = 2.5). The initial

conditions are segments of the simple periodic solutions of (4.4.6) illustrated in Figure

17.
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On the other hand, if we consider an equation of the form

x′(t) = f(rx(t− 1))− g(rx(t− 3)) (4.4.8)

where f(x) = g(x) = −sgn(x) for |x| ≥ 1 but f and g are not equal, we no longer

expect this to be true. Rather, if y0 lies in the analog of the space W̃ we expect to have

V (R(y0)) = V (y0) +K,

where K is a nonzero constant. This formula will hold as long as Rk(y0) is close to p0,

and so eventually Rk(y0) must not be close to p0. Therefore we see that, in this case,

(4.4.8) has no periodic solutions close to the solutions p of (4.4.6) that we described

above. Figure 19 illustrates this. We have kept the same f that we used above, taken

g(x) =


1, x ≤ −1

−x, x ∈ [−1, 1]

−1, x ≥ 1,

and r = 2.5. Figure 19 takes a segment of one of the periodic solutions of (4.4.6) as
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an initial condition and continues it both as a solution of (4.4.6) and as a solution of

(4.4.8).
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Figure 19

Multiple stable periodic solutions

We close this section by fleshing out example 1.1.4. Consider the function

G(x) =
1− ex

1 + ex

and the equation

x′(t) = 2Gr(x(t− 1)) +Gr(x(t− 3)); r ≥ 1, Gr(x) = G(rx). (4.4.9)

The corresponding (SDDE) is

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 3)). (4.4.10)

(4.4.10) has a periodic solution p1 with a downward proper zero at 0 whose zeros

are separated by 10/3. This periodic solution is simple and very slowly oscillating, so

it is trivially nondegenerate and asymptotically stable.
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There is also a periodic solution p2 with a downward proper zero at 0 whose zeros

are separated by 2. This periodic solution is simple. To check nondegeneracy, we need

to compute Dφ2[V (p2
0)] = Dφ2[2 ∈ S1

−]. In this particular case, we find

∂z(2 ∈ S1
−)

∂x
=
∂φ(2 ∈ S1

+)
∂x

= 2.

Therefore the derivative of φ2 at 2 ∈ S1
− is 4. We see that p2(t) is nondegenerate

and unstable. p1(t) and p2(t) are the solutions of (4.4.10) that correspond to the two

solutions of (4.4.9) shown to exist in Theorem 2.3 of [27].

There is also a periodic solution p3 with a downward zero at 0 whose zeros are

separated by 10/7. (This is the solution pictured in the figures in section 3.1.) Direct

computation shows that, at

V (p3
0) = (10/7, 20/7) ∈ S2

−,

we have
∂z

∂x1
= 0 and

∂z

∂x2
= −2

3
.

Thus applying (2.3.6) we find that

Dφ[(10/7, 20/7) ∈ S2
−] =

 0 −2/3

1 −2/3

 := M.

Since the zeros of p3 are evenly spaced we see that

V (pz) = (10/7, 20/7) ∈ S2
− ∪ S2

+

for any zero z of p3; since the feedback functions in (4.4.10) are odd we have

Dφ[V (p3
z)] = M

for any zero z of p3.

Since the minimal even m such that 10m/7 > 3 is m = 4, to verify that p3 is

nondegenerate we first examine

Dφ4[V (p3
0)] = M4 =

1
81

 12 −32

48 −20

 .
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Numerical calculation by computer shows that the spectral radius of this matrix is

approximately 0.44. Thus we see that p3 is nondegenerate and asymptotically stable

(recall remark 3.1.15).

Theorem 4.1.2 therefore tells us that (4.4.9) has, for large r, three periodic solutions

close to p1, p2, and p3 respectively; theorem 4.1.3 tells us that the first and third are

asymptotically stable. Again we see a contrast with the one-delay case: the equation

x′(t) = G(rx(t− 1))

where G is as in the current example has exactly one stable nontrivial periodic solution

for r large (this is a consequence of [24], which excludes such solutions whose zeros are

separated by one unit or less, and [40], which gives uniqueness and stability of such

solutions whose zeros are separated by more than one unit). See Figure 2 in section

1.1, which illustrates simulated solutions of (4.4.9) close to p1 and p3 with r = 5.
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Chapter 5

(SDDE) with negative feedback

5.1 Introduction

Motivated by chapters 3 and 4, we return to the study of (SDDE). The reader might

find it convenient to review some of the machinery introduced in section 2.3. We have

been able to build a relatively good understanding of the following class of problems,

which will be our focus for the current chapter.

Definition 5.1.1. (SDDE) with negative feedback. We say that an (SDDE)

y′(t) =
D∑

i=1

hi(y(t− di)) (SDDE)

hi(y) =


bi 6= 0, y < 0;

0, y = 0;

−ai 6= 0, y > 0

has negative feedback if each of the feedback functions hi satisfies the so-called negative

feedback condition

bi, ai > 0 ⇐⇒ yhi(y) < 0 when y 6= 0.

Numerical studies suggest that solutions of (SDDE) with negative feedback usually

converge to periodic solutions; we have not been able to prove any such far-reaching

statement. In this brief section we describe some general features of the solution semi-

flow for (SDDE) with negative feedback. In later sections we look at some subclasses

of (SDDE) with negative feedback for which we have been able to develop a somewhat

fuller picture of the global dynamics. We will use the functions V , z, and φ described
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in section 2.3 (see especially definitions 2.3.2 and 2.3.3). We will also make free and

frequent use of the fact that, if y0 ∈ C ′ ⊂ C ′′ has continuation y(t), y′(t) is defined

except at finitely many points on [0,M ], for any M > 0 (proposition 2.2.2).

Lemma 5.1.2. Oscillation about zero. If (SDDE) has negative feedback, any

solution y has a sequence of zeros approaching ∞.

PROOF. Imagine not and suppose that z is the largest zero of y. Then y(t) is all

of one sign for t ∈ (z,∞) and so y′(t) will be a nonzero constant, of sign opposite that

of y(t), for all t ∈ (z + γ,∞). This is impossible. 2

In the following proposition, and throughout this chapter, by “increasing” and “de-

creasing” we mean non-decreasing and non-increasing, respectively.

Proposition 5.1.3. Monotonicity in coordinates. On each set D±(n), n ≥ 1, the

function z is increasing in odd coordinates and decreasing in even coordinates.

PROOF. Take a point x = (x1, x2, . . . , xn) ∈ D−(n). Choose y0 ∈ V −1(x) and write

y for the continuation of y0.

Suppose that k is odd and that we increase xk to xk +δ; write x̃ for x so altered and

suppose that x̃ is also in D−(n). Choose ỹ0 ∈ V −1(x̃) and write ỹ for the continuation

of ỹ0.

The effect of our alteration is to lengthen an interval where y0 is positive at the ex-

pense of an interval where y0 is negative, with no compensating change in y0 elsewhere.

ỹ′(t) and y′(t) are both defined for all but finitely many t ∈ (0,min{z(x), z(x̃)}). For

all such t, ỹ′(t) will be equal to y′(t) except if some t−di is between −(xk +δ) and −xk;

in this case, ỹ′(t) ≤ y′(t). This means that ỹ(t) ≤ y(t) for all t ∈ (0,min{z(x), z(x̃)});

it follows that z(x̃) ≥ z(x). The argument for z(x) decreasing in the even coordinates

of x is similar; the parallel argument for D+(n) is again similar. 2

Here is a fact in the same spirit:

Proposition 5.1.4. D−(0) is always nonempty, and the value of z on D−(0) is greater

than or equal to

sup
n∈N

sup{ z(x) : x ∈ D−(n) }.

Similarly for D+(0).
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PROOF. To see that D−(0) always coincides with S0
−, choose y0 ∈ C ′0 with V (y0) ∈

S0
−. Since y0 ≥ 0 and y0 has only isolated zeros, y′(t) is a negative constant for all

t ∈ (0, d1). y therefore has a downward proper zero at 0 and a minimum positive zero

z. Moreover, y′ will be nondecreasing (or undefined) on (0, z + d1); but since y′ must

assume a positive value on (0, z) we see that z is an upward proper zero of y. Thus

V (y0) satisfies all the conditions for z(V (y0)) to be defined — that is, V (y0) ∈ D−(0).

For the second assertion, take x ∈ D−(0) and x′ ∈ D−(n) for any n, and write

y0 ∈ V −1(x) and w0 ∈ V −1(x′) with continuations y(t) and w(t) respectively. Then

y′(t) ≤ w′(t) for all t ∈ (0,min{z(x), z(x′)} where both derivatives are defined; we

conclude that z(x) ≥ z(x′). 2

Proposition 5.1.5. Injectivity of φ. Suppose that x, x′ ∈ D−(n, j) and that φ(x) =

φ(x′). If j = n + 1, then x = x′. If j = n and z is strictly increasing or strictly

decreasing in xn at x, then x = x′. Similarly for D+(n, j).

PROOF. To say that φ(x) = φ(x′) is to say that

(z(x), x1+z(x), x2+z(x), . . . , xj−1+z(x)) = (z(x′), x′1+z(x
′), x′2+z(x

′), . . . , x′j−1+z(x
′)).

The first coordinate yields z(x) = z(x′), and the later coordinates in turn yield x1 =

x′1, x2 = x′2, . . . , xj−1 = x′j−1. If j = n+ 1, we’re done. Suppose now that j = n. If

z is strictly increasing or strictly decreasing in xn at x, then to have z(x) = z(x′) we

must have (since x and x′ agree in all but perhaps the last coordinate) that x = x′. 2

Definition 5.1.6. Dominant delay. Suppose that (SDDE) has negative feedback.

We say that (SDDE) has dominant M th delay if

bM >
∑
i6=M

ai and aM >
∑
i6=M

bi.

This means that the sign of y′(t) is strictly opposite the sign of y(t− dM ) whenever

y′(t) is defined and y(t−dM ) 6= 0. If (SDDE) has negative feedback and dominant Mth

delay, then condition (2.1.10) is satisfied, and so the space C ′ is forward-invariant under

the solution semiflow. An (SDDE) with negative feedback need not have a dominant

delay, but if it does the dominant delay is obviously unique.



132

When (SDDE) has negative feedback and dominant delay, we have a reasonable

and useful notion of “oscillation speed” of solutions.

Definition 5.1.7. Oscillation speed. Suppose that (SDDE) has negative feedback

and dominant Mth delay. Given some solution y of (SDDE) with yt ∈ C ′, we define

the oscillation speed S(yt) of yt, which we will also call the oscillation speed of y at t,

to be the number of proper zeros of yτ occurring in the interval (−dM , 0), where

τ = inf{ s ≥ t : s is a proper zero of y(·) }.

Please note that, in the above definition, we count zeros in the interval (−dM , 0),

not in (−γ, 0).

Proposition 5.1.8. Suppose (SDDE) has negative feedback and dominant M th delay,

and let y0 ∈ C ′ with continuation y. The oscillation speed S(yt) is even and decreasing

in t.

PROOF. Suppose that z is a positive proper zero of y. Since C ′ is forward-invariant,

y has a least proper zero z′ greater than z. It suffices to show that S(yz) is even and

that S(yz′) ≤ S(yz). We assume that z is a downward proper zero; the other case is

similar.

Since y′(t) is defined at all but finitely many points on any bounded interval about

z, there is some δ > 0 such that y′(t) is constant on (z−δ, z) and on (z, z+δ). Since z is

a downward proper zero of y, we see that y′(t) must in fact be negative on both of these

intervals. It follows that y(t − dM ) ≥ 0 for t ∈ (z − δ, z + δ), and since C ′ is forward-

invariant we actually have that y(t−dM ) > 0 for all but finitely many t ∈ (z− δ, z+ δ).

The number of proper zeros of y on (z − dM , z) is therefore even.

As t ranges from z to z′, t − dM must cross a proper zero ζ of y, because y′(t)

changes from negative to positive. If we write Z for the collection of proper zeros of y,

then, we see that

Z ∩ (z′ − dM , z
′) ⊂ [(Z ∩ (z − dM , z)) ∪ {z}] \ ζ.

The proposition follows. 2
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Since oscillation speed is even, nonnegative, and nonincreasing, every solution y of

(SDDE) has a limiting oscillation speed

S(y0) = lim
t→∞

S(yt) ≤ S(y0)

that is attained in finite time.

We now make the definition that accounts for the awkward term “very slowly oscil-

lating” introduced in section 4.4.

Definition 5.1.9. Slowly oscillating solutions. Suppose that (SDDE) has negative

feedback and dominant Mth delay. We call a solution y slowly oscillating if S(y0) = 0.

In section 1.3 we discussed some of the ways in which oscillation speed has proven

an important organizing principle in the study of differential delay equations with con-

tinuous negative feedback and one delay. The rest of this chapter is devoted to showing

that many properties of solutions of (SDDE) that hold in the single-delay negative

feedback case (and have, at least, analogs when the feedback is continuous) hold in the

case of (SDDE) with negative feedback and a dominant delay. Not surprisingly, we

can make the strongest statements when the dominant delay is the longest delay; we

turn to this case first.

5.2 (SDDE) with negative feedback and dominant longest delay

Suppose that (SDDE) has negative feedback and dominant longest delay. In this case

the oscillation speed S(yt) of a solution y at t is given by the dimension of V (yτ ), where

τ = inf{ s ≥ t : s is a proper zero of y }.

Existence of a unique slowly oscillating periodic solution is clear: for choose y0 ∈ C ′0

with y0 ≥ 0 and continuation y. If z is the first positive zero of y, then z is proper and

greater than γ; we therefore have V (yz) ∈ S0
+. Similarly,

φ(V (yz)) = V (y0) ∈ S0
−.
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Thus there is a particular periodic solution p such that y(t) = p(t) for all t ≥ 0. This

solution is 1-cyclic and attracts (indeed, eventually coincides with) every solution y

with S(y0) = 0.

Given some nonnegative integer K, we now ask what we can say about the set of

initial conditions y0 ∈ D−(2K) for which S(y0) = 2K — that is, the set of initial

conditions whose continuations have oscillation speed 2K for all positive time. The

main results for the current section are theorems 5.2.1 and 5.2.2, and example 5.2.3.

Theorem 5.2.1. Oscillation speed usually decreases. Suppose that (SDDE) has

negative feedback and dominant longest delay, and that K ∈ N. The set

{ x ∈ D−(2K) : S(y0) = 2K, y0 ∈ V −1(x) }

has measure zero in S2K
− .

Theorem 5.2.2. Unique 1-cyclic periodic solutions at each oscillation speed.

Suppose that (SDDE) has negative feedback and dominant longest delay, and that K

is a nonnegative integer. φ2 has exactly one fixed point on D−(2K).

Example 5.2.3. Other rapidly oscillating solutions are possible. Suppose that

(SDDE) has negative feedback and dominant longest delay, and that K ∈ N. It is

possible that there is a point x ∈ D−(2K) such that φ2n(x) ∈ D−(2K) for all n ∈ N

but φ2n(x) is never the unique fixed point of φ2.

Consider, for example, the parameterized family of problems

y′(t) = −asgn(y(t− 5/9))− sgn(y(t− 1)), a ∈ [0, 1). (SDDEa)

The 1-cyclic periodic solution with oscillation speed four has zeros spaced 2/9 units

apart. To see this, let us take

x = (2/9, 4/9, 6/9, 8/9) ∈ S4
−

and compute z(x). Given y0 ∈ V −1(x) with continuation y as a solution of (SDDEa),

we find that y′(t) = −1 − a for t ∈ (0, 1/9) and that y′(t) = 1 + a for t ∈ (1/9, 3/9).
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Thus z(x) = 2/9 and

φ(x) = (2/9, 4/9, 6/9, 8/9) ∈ S4
+.

Since the feedback functions in (SDDEa) are odd, we see that z(φ(x)) = 2/9 also, and

hence that φ2(x) = x.

Observe that x is simple; therefore φ is affine near x. Making the computation

described in the proof of 2.3.13 we find that

∂z(x)
∂x1

= 0;
∂z(x)
∂x2

=
−2a
1 + a

;
∂z(x)
∂x3

= 0;
∂z(x)
∂x4

=
−2

1 + a
.

Thus the Jacobian of φ at x is

Ma =



0 −2a
1+a 0 −2

1+a

1 −2a
1+a 0 −2

1+a

0 −2a
1+a + 1 0 −2

1+a

0 −2a
1+a 1 −2

1+a


,

and the Jacobian of φ2 at x is M2
a .

Figure 20 shows a plot of the approximate smallest absolute value of the eigenvalues

of Ma as a ranges from 0 to 1. The figure shows that there is some value of a such that

Ma has spectrum on the unit circle. Suppose that v is a vector in the corresponding

generalized eigenspace. Then, if v is small enough in norm, φ2n(x + v) ∈ S4
− for all

nonnegative integers n. φ2n(x+ v) will never be equal to x, though, and so by theorem

5.2.2 will never equal the unique fixed point of φ2. 2
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Remark 5.2.4. Theorems 5.2.1 and 5.2.2 both hold in the one-delay case, of course;

but a stronger version of theorem 5.2.1 holds in the one-delay case because there can

be no solutions like those described in example 5.2.3. In the one-delay case, if V (y0) ∈

D−(2K, 2K) is not equal to the unique periodic point of φ2 in D−(2K, 2K), then S(y0)

is less than 2K (see [8]).

When we move to the case where the dominant delay is not the longest delay we will

see that, while an analog of theorem 5.2.2 “mostly” holds, multiple slowly oscillating

periodic solutions can occur.

For the rest of this section we will assume that (SDDE) has negative feedback and

dominant longest delay. We first describe some general features of the sets D±(2K, 2K),

and of the maps z and φ restricted to those sets. We will then prove theorems 5.2.1

and 5.2.2 in turn.

Write

µ =
D∑

i=1

ai + bi,

and write σ for the smallest nonzero value obtainable by |y′(t)| for t > 0, where y is
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any solution of (SDDE). We will adhere to this notation for the rest of the section.

Choose x ∈ S2K
− and y0 ∈ V −1(x) with continuation y. y will strictly decrease on

(0, γ−x2K) and so has a proper downard zero at 0. We claim that y has a first positive

proper zero, and that it is upward. For since C ′ is forward-invariant, all positive zeros

of y are isolated and so the first positive proper zero of y will be upward. If there is

no such zero on the interval [0, γ], then for t > γ the derivative y′(t) ≥ σ will be a

positive constant until d1 time units after an upward proper zero occurs. Thus we see

that D−(2K) and S2K
− coincide.

To say that x = (x1, . . . , x2K) ∈ D−(2K, 2K) is just to say that

z(x) ∈ [γ − x2K , γ − x2K−1),

and in fact we know more: if x ∈ D−(2K, 2K), y strictly decreases on (0, γ − x2K) and

strictly increases on (γ− x2K , γ− x2K−1); and this latter interval contains z(x). When

y is decreasing, its derivative is between −µ and −σ everywhere it is defined; when y

is increasing, its derivative is between σ and µ everywhere it is defined. Therefore, for

x ∈ D−(2K, 2K), we have the bounds

z(x) ∈
[(

1 +
σ

µ

)
(γ − x2K),

(
1 +

µ

σ

)
(γ − x2K)

]
. (5.2.5)

Similarly, if x ∈ D−(2K) with

γ − x2K−1 >
(
1 +

µ

σ

)
(γ − x2K), (5.2.6)

then x in fact lies in D−(2K, 2K). See Figure 21, which illustrates the K = 1 case.
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Proposition 5.2.7. Properties of D±(2K, 2K), z, and φ. Suppose that (SDDE)

has negative feedback and dominant longest delay. Given K ∈ N, the following hold.

• D−(2K, 2K) is an open and path-connected subset of S2K
− ;

• z and φ are continuous on D−(2K, 2K);

• φ is injective on D−(2K, 2K).

Similarly for D+(2K, 2K).

PROOF. We give the proof for D−(2K, 2K); the proof for D+(2K, 2K) is essentially

the same.

Take u = (u1, . . . , u2K) ∈ D−(2K, 2K). Let ε > 0 be given, and choose ρ > 0 such

that

ρ < min{ γ − u2K , z(u)− (γ − u2K), (γ − u2K−1)− z(u), d1, ε }.

Choose y0 ∈ V −1(u) with continuation y. y′(t) ≤ −σ for all but finitely many t ∈

(0, ρ), y′(t) ≥ σ for all but finitely many t ∈ (z(u) − ρ, z(u) + ρ), and y(t) ≤ −ρσ for

t ∈ [ρ, z(u)− ρ].
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Suppose now that δ > 0 and that v = (v1, . . . , v2K) ∈ S2K
− with |v − u| < δ. We

will show that, for δ small enough, v ∈ D−(2K, 2K) and |z(v) − z(u)| < ε. Choose

w0 ∈ V −1(v) with continuation w. For t ∈ (0,min(z(u), z(v)) + d1) we have

|y(t)− w(t)| ≤
∑

i

∫ min(z(u),z(v))+d1

0
|hi(y(s− di))− hi(w(s− di))| ds

≤
∑

i

(2K)δ|ai + bi| ≤ (2K)µδ.

Now choose δ small enough that 2Kµδ < ρσ. Then z(v) lies in the interval (z(u) −

ρ, z(u) + ρ), and we see that z is continuous at u. We can also choose δ small enough

that z(u) + ρ + δ < γ − u2K−1, which implies that z(v) < γ − v2K−1 and hence that

v ∈ D−(2K, 2K). Thus D−(2K, 2K) is open.

Now take v, u ∈ D−(2K) with vk = uk for 1 ≤ k ≤ 2K − 1 and v2K > u2K . We

know that z(v) ≤ z(u) by proposition 5.1.3; we claim that this inequality is strict.

Again choose y0 ∈ V −1(u) and w0 ∈ V −1(v) with continuations y and w, respectively.

For t ∈ (0,min(z(u), z(v)) + d1) such that w′(t) and y′(t) are defined, we have that

w′(t) = y′(t) unless t−di ∈ (−v2K ,−u2K) for some i, in which case w′(t) > y′(t) by the

negative feedback hypothesis. Since z(v) > γ − v2K , we know that w′(t) > y′(t) for at

least some time interval in (0,min(z(u), z(v)); the claim follows. By proposition 5.1.5,

φ(x) is injective on D−(2K, 2K).

Finally, we prove that D−(2K, 2K) is path-connected. We need two preliminary

observations. The first is that, given any x = (x1, x2, . . . , x2K) ∈ D−(2K, 2K), the line

segment

{(x1, . . . , x2K−1, s) : s ∈ [x2K , γ)}

is contained in D−(2K, 2K), and

z(x1, . . . , x2K−1, s) → 0 as s→ γ.

The second is that, given any

x = (x1, . . . , x2K−1) ∈ S2K−1
− ,

(5.2.6) implies that for s sufficiently close to γ we have

xs = (x1, . . . , x2K−1, s) ∈ D−(2K, 2K).
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Now, choose any two points u, v ∈ D−(2K, 2K). Write

π(u) = (u1, . . . , u2K−1) ∈ S2K−1
− ; π(v) = (v1, . . . , v2K−1) ∈ S2K−1

− .

Let Γ ⊂ S2K−1 be the straight line segment between π(u) and π(v) (S2K−1 is convex,

so Γ is contained in S2K−1
− ). For every n ∈ N, put

Un =

 (x1, . . . , x2K−1) ∈ Γ such that

(x1, . . . , x2K−1, γ − 1/n) ∈ D−(2K, 2K)

 .

Since z is continuous on D−(2K, 2K), each Un is open in Γ, and the sets Un are nested

and cover Γ. Since Γ is compact there is therefore some N ∈ N with Γ = UN . We can

also take γ − 1/N > max(u2K , v2K). Then the union of the three line segments

{(u1, . . . , u2K−1, s) : s ∈ [u2K , γ − 1/N ] }

{(v1, . . . , v2K−1, s) : s ∈ [v2K , γ − 1/N ] }

{(x1, . . . , x2K−1, γ − 1/N) : (x1, . . . , x2K−1) ∈ Γ }

lies in D−(2K, 2K) and constitutes a path in D−(2K, 2K) from u to v. 2

In the proof, we discovered

Corollary 5.2.8. Suppose that (SDDE) has negative feedback and dominant longest

delay. Then, on D−(2K), z is strictly decreasing in its last coordinate. 2

The following lemma is essentially about the partial derivatives of z on D−(2K), but

since z is not differentiable everywhere we need to formulate the statement carefully.

We shall use the first statement immediately, and the second statement later. We shall

be considering the change index pairs of points in D−(2K); the reader might find it

useful to review definition 2.3.10.

Lemma 5.2.9. Suppose that (SDDE) has negative feedback and dominant longest

delay. There is some β > 1 such that the following holds. Given K ∈ N, if x ∈ D−(2K)

is simple then
∂z(x)
∂x2K

≤ −β.

If x and x′ are points in D−(2K, 2K) (simple or not) with

x = (x1, . . . , x2K) and x′ = (x1 + δ, . . . , x2K + δ),
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then if δ > 0 is sufficiently small we have

z(x′) < z(x).

Similarly for D+(2K) and D+(2K, 2K).

PROOF. We will prove the lemma for D−(2K) and D−(2K, 2K); the proof of the

other case is the same.

We consider the first statement. Suppose that x is simple and take y0 ∈ V −1(x)

with continuation y. Choose δ > 0 and write

x′ = (x1, . . . , x2K + δ).

Observe that (2K,D) is a change index pair for x (for t − γ = −x2K at time

γ−x2K < z(x)). The computation in the proof of theorem 2.3.13 shows that, for δ > 0

sufficiently small,

z(x′)− z(x) =
∑

i : (2K,i) is a change index pair of x

−δ(ai + bi)
y′(z(x))

≤ −δ(aD + bD)
y′(z(x))

.

The slope y′(z(x)), being positive, is of the form

y′(z(x)) = bD +
D−1∑
i=1

si,

where each si is either −ai or bi. All the positive terms in the latter sum total less than

aD, and all the negative terms total more than −bD (this is the definition of dominant

longest delay). Therefore we have

aD + bD
y′(z(x))

=
aD + bD

bD +
∑D−1

i=1 si

≥ aD + bD

bD +
∑D−1

i=1 bi
≥ β,

where β > 1 is some constant. It follows that z(x′) ≤ z(x) − βδ, and the first part of

the lemma is proved.

We now turn to the second part of the lemma. Choose x, x′ ∈ D−(2K, 2K) with

x = (x1, . . . , x2K) and x′ = (x1 + δ, . . . , x2K + δ), δ > 0.

Take y0 ∈ V −1(x) and w0 ∈ V −1(x′) with continuations y and w respectively.
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Imagine that z(x′) ≥ z(x). We will show that w(z(x)) > y(z(x)) = 0, obtaining a

contradiction.

Write {(k, i)} for the change index pairs for x. Recall that to say that (k, i) is a

change index pair of x is to say that −di ≤ −xk and that z(x) − di ≥ −xk. (As in

chapter 2, we shall write x0 = 0.)

Suppose that 0 ≤ j ≤ 2K, 1 ≤ i ≤ D, and that (j, i) is not a change index pair of

x. Then there is some minimum ν(j, i) > 0 such that

|(t− di)− (−xj)| ≥ ν(j, i) ∀ t ∈ [0, z(x)].

We now choose δ > 0 small enough so that

δ < min{ν(j, i) : (j, i) is not a change index pair of x}

and also such that the intervals

[xk, xk + δ], 0 ≤ k ≤ 2K

are pairwise disjoint.

Given such a δ, and still assuming that z(x′) ≥ z(x), every change point of w on

[0, z(x)] corresponds to a change point y with the same change index pair (or set of

change index pairs), though not conversely. For suppose that t ∈ [0, z(x)] is such that

t− di = −xk − δ — and so (k, i) is a change index pair of x′ — and imagine that (k, i)

is not a change index pair of x. This implies that z(x)− di < −xk; by the definition of

δ, though, we in fact have

t− di < −xk − δ ∀ t ∈ [0, z(x)],

a contradiction. On the other hand, it is perfectly possible for (k, i) to be a change

index pair of x but not of x′: this will happen if −di lies in the interval

(−xk − δ,−xk].

For each change index pair (k, i) of x, put

δ(k, i) =

 δ, −xk − (−di) ≥ δ;

−xk − (−di), otherwise.
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The point is that, as t runs from 0 to z(x), t− di will be between −xk − δ and −xk for

δ(k, i) time units.

We make three observations. First, (2K,D) is a change index pair of x and δ(2K,D) =

δ (since x2K + δ < γ by our assumption that x′ ∈ D−(2K)). Second, (k,D) is not a

change index pair of x for any k < 2K (since x ∈ D−(2K, 2K) by assumption). Finally,

if we fix some particular i, the sum

∑
k : (k,i) is a change index pair of x

(−1)kδ(k, i)

consists of alternating terms, and each except perhaps the first is of absolute value δ

(since the intervals [xk, xk + δ] are pairwise disjoint). Therefore this whole sum is no

more than δ in absolute value.

The assumption that z(x′) ≥ z(x) implies that w(t − di) < 0 for all t ∈ (0, z(x))

such that t− di > 0. If z(x′) ≥ z(x), then, we have the formua∫ z(x)

0
hi(w(t−di))−hi(y(t−di)) dt =

∑
k : (k,i) is a change index pair of x

(−1)kδ(k, i)(ai+bi).

Summing across 1 ≤ i ≤ D yields

w(z(x))− y(z(x)) =
D∑

i=1

∑
k : (k,i) is a change index pair of x

(−1)kδ(k, i)(ai + bi).

Since δ(2K,D) = δ and (k,D) is a change index pair only for k = 2K, the double sum

on the right rewrites

δ(aD + bD) +
D−1∑
i=1

∑
k : (k,i) is a change index pair of x

(−1)kδ(k, i)(ai + bi).

The absolute value of the latter sum is no more than

δ

D−1∑
i=1

(ai + bi),

which is less that δ(aD + bD) by the definition of dominant longest delay. It follows

that w(z(x)) − y(z(x)) is strictly positive; we have a contradiction and conclude that

in fact z(x′) < z(x). 2

Lemma 5.2.9 and proposition 2.3.16 yield the following corollary.
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Proposition 5.2.10. The Jacobian of φ at simple points in D−(2K, 2K). Let

β > 1 be as in lemma 5.2.9. If x ∈ D−(2K, 2K) is simple, then

∂z(x)
∂x2K

≤ −β < −1

and

detDφ[x] ≥ β.

Similarly for D+(2K, 2K). 2

We need to develop a more detailed picture of the set of non-simple points in

D−(2K, 2K). Any point x ∈ D−(2K, 2K) certainly satisfies the first part of the defini-

tion of a simple point (recall definition 2.3.12): if y0 ∈ V −1(x) with continuation y, y

can have no zeros between 0 and z(x). It might happen, though, that either 0 or z(x)

is a change point of y. To say that 0 is a change point of y is just to say that di = xk

for some 1 ≤ i < D and some 1 ≤ k ≤ 2K. We will, just for the current discussion, call

points x where this happens points of the first kind. Points of the first kind all lie on

the finite collection H1 ⊂ S2K
− of hyperplanes

H1 =
⋃

1 ≤ i < D

1 ≤ k ≤ 2K

{x : xk = di }.

On the other hand, to say that z(x) is a change point of y is to say that

z(x)− di = −xk ⇐⇒ z(x) + xk = di

for some 0 ≤ k < 2K and some 1 ≤ i < D, where we are writing x0 = 0 (note that,

since z(x) lies strictly between γ − 2K and γ − x2K−1, we cannot have k = 2K or

i = D). We will call such an x a point of the second kind.

Where do these simple points lie? Fix some pair (k, i), with 0 ≤ k < 2K and

1 ≤ i < D, and suppose that u = (u1, . . . , u2K−1) ∈ S2K−1
− . Since z is strictly decreasing

with respect to its last coordinate, there is at most one point sk,i(u) ∈ (u2K−1, γ) such

that

(u, sk,i(u)) ∈ D−(2K, 2K) and z(u, sk,i(u)) + uk = di.
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By the continuity of z on D−(2K, 2K), the set of x ∈ S2K−1
− for which sk,i is defined is

open, and the function sk,i is continuous on this set. Let us write Γk,i for the graph of

sk,i over its domain in S2K−1
− . The collection of all such graphs Γk,i contains all points

of the second kind.

If ever (u, sk,i) = (u, sk′,i′) for two distinct pairs (k, i) and (k′, i′) (we must have

k 6= k′ and i 6= i′), then u lies on the hyperplane

{ uk − uk′ = di − di′ }.

Away from this hyperplane, the graphs of sk,i and sk′,i′ do not intersect.

Let us write Γ for the union of the graphs Γk,i, and let us write H2 ⊂ S2K
− for the

collection of hyperplanes

H2 =
⋃

1 ≤ i 6= i′ < D

0 ≤ k 6= k′ < 2K

{ x : xk − xk′ = di − di′ }.

The set

S = (H1 ∪H2 ∪ Γ) ∩D−(2K, 2K)

contains all the non-simple points in D−(2K, 2K). Its complement consists of finitely

many open connected components W1, . . .WM . The restriction of φ to any Wm is affine:

for if we choose x, x′ ∈Wm and draw a path in Wm between them, this path has a finite

cover by neighborhoods where φ is affine (recall theorem 2.3.13). We conclude that φ

is described by the same affine map near x and x′. Write Wm for the closure of Wm in

D−(2K, 2K). By the continuity of φ on D−(2K, 2K), the restriction of φ to each Wm

is affine. Since S has no interior, and there are only finitely many sets Wm, every point

of S lies in the closure of some Wm, and

D−(2K, 2K) = ∪mWm.

We have shown the following.

Proposition 5.2.11. Structure of φ on D−(2K, 2K). The set D−(2K, 2K) is

expressible as the finite union of closed sets

D−(2K, 2K) = ∪mWm,
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where the restriction of φ to each Wm is affine. Similarly for D+(2K, 2K). 2

Proof of theorem 5.2.1

Continuing to assume that (SDDE) has negative feedback and dominant longest delay,

we now prove theorem 5.2.1.

φ is an injective continuous map from D−(2K, 2K) to D+(2K). By invariance of

domain, φ is actually a homeomorphism onto its image. We claim that this image is in

fact all of D+(2K). For choose x = (x1, . . . , x2K) ∈ D+(2K), and consider the following

set of points in D−(2K):

B = {xs = (x2 − x1, x3 − x1, . . . , x2K − x1, s)},

where s ∈ (x2K − x1, γ). As s runs from γ to x2K − x1, z(xs) increases strictly from 0

to some quantity strictly larger than

γ − (x2K − x1) > x1;

as long as z(xs) < γ− (x2K −x1) the increase is continuous in s. This means that there

is a unique xs such that z(x) = x1 and hence such that φ(xs) = x. Thus we conclude

that the restriction of φ to D−(2K, 2K) is a homeomorphism onto D+(2K).

The restriction of φ to the open set D+(2K, 2K) is likewise a homeomorphism onto

D−(2K). Write

U = D−(2K, 2K) ∩ φ−1(D+(2K, 2K)).

The restriction of φ2 to U is a homeomorphism onto D−(2K).

Now, let Wm be a finite collection of open sets in D−(2K, 2K) whose closures Wm

(relative to D−(2K, 2K)) cover D−(2K, 2K), and such that the restriction of φ to each

Wm is affine. Similarly, let Vj be a finite collection of open sets in D+(2K, 2K) whose

closures V j (relative to D+(2K, 2K)) cover D+(2K, 2K) and such that the restriction

of φ to each V j is affine. Then the sets

Wm ∩ φ−1
(
V j

)
∩ U

form a finite cover of U , and the restriction of φ to each such set is affine.
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Let us write F for the inverse of φ2|U on D−(2K). Since φ2 is a homeomorphism

on U , D−(2K) can be written as the finite union of relatively closed sets

D−(2K) = Y1 ∪ · · · ∪ YJ

such that the restriction of F to each Yj is affine. Moreover, the linear part of each

such restriction (being the inverse of the linear part of an affine portion of φ2) has

determinant in the range (0, β−2], where β > 1 is as in proposition 5.2.10. The Jacobi

transformation formula now implies that

measure(F k(D−(2K)) ≤ β−2k
∑

j

measure(Yj).

We conclude that the set

∩k∈NF
k(D−(2K))

has measure 0. But this is precisely the set

{x ∈ D−(2K, 2K) : S(y0) = 2K, y0 ∈ V −1(x) }.

This proves theorem 5.2.1. 2

Proof of theorem 5.2.2

We continue to assume that (SDDE) has negative feedback and dominant longest delay.

In this subsection we prove that, given K ∈ N, (SDDE) has a unique 1-cyclic periodic

solution of oscillation speed 2K. This will complete the proof of theorem 5.2.2; the

slowly oscillating periodic solution (i.e., the K = 0 case) has already been discussed.

Fix some K ∈ N. Choose ` < γ/K and α < `, and let us write p−(`, α) for the

point in D−(2K) of the following form:

p−(`, α) = (α, `, `+ α, 2`, . . . ,K`) ∈ D−(2K).

We define p+(`, α) ∈ D+(2K) similarly.

If x is a fixed point of φ2 lying in D−(2K, 2K), then we see that, in fact, x must be

of the form just introduced:

x = p−(`, α) = (α, `, `+ α, 2`, . . . ,K`) ∈ D−(2K, 2K).
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` is the period of the corresponding 1-cyclic periodic solution, and this solution is

positive for α units at a time and negative for `− α units at a time. See Figure 22.

<−−−−l − α−−−−>

<−−α−−>

<−−−−l − α−−−−>

<−−α−−>

0

Figure 22

If p−(`, α) is in fact a fixed point for φ2, we have

φ(p−(`, α)) = p+(`, `− α) ∈ D+(2K, 2K) and φ2(p−(`, α)) = p−(`, α).

Focusing on the function z, we get the identities

z(p−(`, α)) = `− α; z(p+(`, `− α)) = α. (5.2.12)

Conversely, if there are numbers 0 < ` < γ/K and 0 < α < ` such that conditions

(5.2.12) are satisfied, then the points p±(`, α) lie in D±(2K, 2K) and are fixed points of

φ2. In this subsection we prove theorem 5.2.2 by showing that, for each K ∈ N, there

is exactly one pair (`, α) such that identities (5.2.12) are satisfied.

We make our search easier by remarking restrictions on where ` and α lie. By

construction K` < γ and α < `. Suppose that q is a 1-cyclic periodic solution of

(SDDE) with V (q0) = p−(`, α). Then q(t) is positive for t ∈ (−γ,−K`) and, since q is
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positive for α units at a time, we have that α ≥ γ−K`. This forces (K+1)` > γ. Thus

to have such a periodic solution we actually have the following pair of size conditions:

` ∈
(

γ

K + 1
,
γ

K

)
; α ∈ [γ −K`, `). (5.2.13)

Now, if identities (5.2.12) are satisfied, then not only the pair (`, α) but also the

pair (`, `− α) must satisfy (5.2.13). In particular, we must have

`− α ≥ γ −K` ⇐⇒ α ≤ (K + 1)`− γ.

If there is to be any range that α can occupy, then, we must also have

γ −K` ≤ (K + 1)`− γ ⇐⇒ ` ≥ γ

K + 1
2

.

Therefore we uncover the following more stringent size conditions: the pair (`, α)

must satisfy

` ∈

[
γ

K + 1
2

,
γ

K

)
; α ∈ [γ −K`, (K + 1)`− γ]. (5.2.14)

These conditions are symmetric in α and `− α.

Lemma 5.2.15. The pair (`, α) satisfies (5.2.14) if and only if the pair (`, `−α) does.

PROOF. By symmetry, we only need to prove one implication. Suppose that (`, α)

satisfies (5.2.14). Then, as we have already shown,

α ≤ (K + 1)`− γ =⇒ `− α ≥ γ −K`.

On the other hand,

α ≥ γ −K` =⇒

α ≥ γ − (K + 1)`+ ` =⇒

(K + 1)`− γ ≥ `− α. 2
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We summarize our approach in the following lemma:

Lemma 5.2.16. The approach to proving 5.2.2. 1-cyclic periodic solutions of

(SDDE) with oscillation speed 2K are in bijective correspondence with pairs (`, α)

satisfying (5.2.12) and (5.2.14). 2

We now show that there is exactly one such pair (`, α). We will need two easy

preliminary lemmas and one more difficult lemma. The first lemma is an immediate

consequence of propositions 5.1.3 and 5.2.7, corollary 5.2.8, and lemma 5.2.9, together

with the fact that p−(`, α) ∈ D−(2K, 2K) if and only if z(p−(`, α)) < γ−K`+ (`−α).

Lemma 5.2.17. Suppose that the pair (`, α) satisfies (5.2.14). Then z(p−(`, α)) is

defined, is strictly decreasing in `, and is increasing in α. Moreover, at any (`, α) such

that

z(p−(`, α)) < γ −K`+ (`− α)

— that is, such that p−(`, α) ∈ D−(2K, 2K) — z(p−(`, α)) is continuous and for ε > 0

sufficiently small we have

z(p−(`+ ε, α+ ε)) < z(p−(`, α)).

Similarly for z(p+(`, α)). 2

Lemma 5.2.18. Suppose that ` is minimal and that α is minimal given `: that is,

` =
γ

K + 1
2

, α = γ −K`.

Then

z(p±(`, α)) > `− α.

For any ` and α maximal given `, that is,

` ∈

[
γ

K + 1
2

,
γ

K

)
; α = (K + 1)`− γ,

then

z(p±(`, α)) > `− α.
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PROOF. We give the proof for p−(`, α); the other case is similar. Suppose that ` is

minimal and α is minimal given `. Then

α = γ − Kγ

K + 1
2

=
γ

2K + 1
.

Also,

`− α =
γ

K + 1
2

− γ +
Kγ

K + 1
2

=
γ

2K + 1
.

We have the estimate

z(p−(`, α)) ≥
(

1 +
σ

µ

)
(γ −K`) > γ −K` = α = `− α.

The second statement is similar: if α is maximal given `, then ` − α is equal to

γ −K`, which is strictly less than z(p−(`, α)). 2

Here is the main lemma for the proof of theorem 5.2.2.

Lemma 5.2.19. There is some least

`− ∈

(
γ

K + 1
2

,
γ

K

)

such that, for every

` ∈
[
`−,

γ

K

)
,

there is a unique α−(`) ∈ [γ −K`, (K + 1)`− γ] with the property that

z(p−(`, α−(`))) = `− α−(`).

This function α−(`) is continuous and strictly increasing in `. We have the limits

α−(`−) = γ −K`−; α−(`) → γ

K
as `→ γ

K
.

For ` ∈ [`−, γ/K), the function `− α−(`) is strictly decreasing in `.

There is similarly some least

`+ ∈

(
γ

K + 1
2

,
γ

K

)

such that, for every

` ∈
[
`+,

γ

K

)
,
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there is a unique α+(`) ∈ [γ −K`, (K + 1)`− γ] with the feature that

z(p+(`, α+(`))) = `− α+(`).

This function α+(`) is continuous and strictly increasing in `. We have the limits

α+(`+) = γ −K`+; α+(`) → γ

K
as `→ γ

K
.

For ` ∈ [`+, γ/K), the function `− α+(`) is strictly decreasing in `.

PROOF. We give the proof for `− and α−(·); the other case is the same.

Given any fixed ` ∈ [γ/(K + 1
2), γ/K), the function z(p−(`, α)) is increasing in α

while ` − α is strictly decreasing in α. Therefore, given `, there is at most one α−(`)

satisfying

z(p−(`, α−(`))) = `− α−(`).

Furthermore, lemma 5.2.18 implies that there is no such α−(`) for ` = γ/(K + 1
2).

For ` ∈ [γ/(K + 1
2), γ/K), the function

` 7→ z(p−(`, γ −K`))

is a strictly decreasing function that tends to 0 as ` approaches γ/K. Moreover, lemma

5.2.17 tells us that this function will be continuous as long as

z(p−(`, γ −K`)) < γ −K`+ (`− (γ −K`)) = `.

On the other hand, the function

` 7→ `− (γ −K`) < `

is continuous and strictly increasing, and approaches γ/K as ` approaches γ/K. Since

lemma 5.2.18 tells us that

z(p−(`, γ −K`)) > `− (γ −K`)

for the minimal value γ/(K + 1
2) of `, we see that there must be a unique `− such that

z(p−(`−, γ −K`−)) = `− − (γ −K`−) < `−.
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Write α−(`−) = γ −K`−.

For any ` < `−, there is no α−(`) ∈ [γ −K`, (K + 1)`− γ] such that

z(p−(`, α−(`))) = `− α−(`).

For suppose there were: then since z(p−(`, α)) is strictly decreasing in `,

z(p−(`−, α−(`))) < z(p−(`, α−(`))) = `− α−(`) < `− − α−(`). (5.2.20)

Since we must have

α−(`) ≥ γ −K` > γ −K`− = α−(`−),

inequality (5.2.20) yields

z(p−(`−, α−(`−))) ≤ z(p−(`−, α−(`))) < `− − α−(`) < `− − α−(`−),

a contradiction. Therefore the point `− really is the minimum value where α−(·) is

defined, and α−(`−) = γ −K`−. To complete the proof, we need to show that α−(`) ∈

[γ −K`, (K + 1)`− γ] is defined for all ` ∈ [`−, γ/K), that it is continuous and strictly

increasing, that α−(`) → γ/K as `→ γ/K, and that `− α−(`) is strictly decreasing.

Choose any ` ∈ [`−, γ/K) and suppose that α−(`) is defined: that is, there is

α−(`) ∈ [γ −K`, (K + 1)`− γ] such that

z(p−(`, α−(`))) = `− α−(`).

Note that this implies that p−(`, α−(`)) ∈ D−(2K, 2K): for p−(`, α−(`)) ∈ D−(2K, 2K)

exactly when

z(p−(`, α−(`))) < γ −K`+ (`− α−(`)).

Let ε > 0 be a small enough that

p−(`+ ε, α−(`) + ε)

lies in D−(2K, 2K) and also small enough (invoking lemma 5.2.17) that

z(p−(`+ ε, α−(`) + ε)) < z(p−(`, α−(`)) = `− α = (`+ ε)− (α−(`) + ε).
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Now suppose that we increase some variable δ from 0. Then

z(p−(`+ ε, α−(`) + ε+ δ))

will be increasing in δ. By lemma 5.2.17 this increase is in fact continuous as long as

z(p−(`+ ε, α−(`) + ε+ δ)) < γ −K(`+ ε) + (`− α−(`)− δ);

in particular, this increase is continuous as long as

z(p−(`+ ε, α−(`) + ε+ δ)) ≤ `− α−(`)− δ.

On the other hand, the quantity

(`+ ε)− (α−(`) + ε+ δ) = `− α−(`)− δ

is strictly decreasing in δ. The second part of lemma 5.2.18 tells us that, as δ increases

to the point that α−(`) + ε+ δ is maximal given `+ ε — that is, as

α−(`) + ε+ δ → (K + 1)(`+ ε)− γ

— we will eventually get

z(p−(`+ ε, α−(`) + ε+ δ)) > `+ ε− α−(`)− ε− δ = `− α−(`)− δ.

Thus there is some unique δ > 0 such that, first,

(`+ ε, α−(`) + ε+ δ)

does in fact satisfy (5.2.14) and, second,

z(p−(`+ ε, α−(`) + ε+ δ)) = (`+ ε)− (α−(`) + ε+ δ).

Continuity follows from the continuity of z: if ε is small enough, δ will be small.

We of course put

α−(`+ ε) = α−(`) + ε+ δ;

observe that

p−(`+ ε, α−(`+ ε)) ∈ D−(2K, 2K).
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Thus we see that α−(·) is a continuous and strictly increasing function on [`−, ν),

where ν ≤ γ/K. Since α−(·) increases with respect to ` at rate greater than 1, we see

that ` − α−(`) is strictly decreasing. If we imagine that ν < γ/K, we can extend α−

by continuity to ν, and we see that, since

z(p−(ν, α−(ν))) = ν − α−(ν) < γ −Kν + ν − α−(ν),

the point p−(ν, α−(ν)) lies in D−(2K, 2K) and we can in fact, using the argument used

just above, extend α−(·) to values greater than ν. We conclude that α−(·) is defined

on all of [`−, γ/K).

It remains to show that α−(`) → γ/K as ` → γ/K. As ` → γ/K, z(p−(`, α)) → 0

uniformly across all allowable values of α, so we must have α−(`) → γ/K as `→ γ/K.

This completes the proof. 2

PROOF OF THEOREM 5.2.2 (K ∈ N case). As explained above, we show that

there is exactly one pair (`, α) satisfying both (5.2.12) and (5.2.14).

Suppose that `+ ≥ `− (the other case is similar). Then of course

`+ − α+(`+) = `+ − (γ −K`+) = (K + 1)`+ − γ ≥ α−(`+).

As ` grows from `+ to γ/K, `− α+(`) decreases strictly to zero, while α−(`) increases

strictly to γ/K. Therefore there is a unique `∗ where

α−(`∗) = `∗ − α+(`∗).

Now consider the point

p = p−(`∗, α−(`∗)).

By the definition of α− and α+, we have

z(p) = `∗ − α−(`∗) = α+(`∗).

The first of conditions (5.2.12) is satisfied, and computing we have

φ(p) = (`∗ − α−(`∗), `∗, `∗ + (`∗ − α−(`∗)), 2`∗, . . . ,K`∗)

= (α+(`∗), `∗, `∗ + α+(`∗), 2`∗, . . . ,K`∗)

= p+(`∗, α+(`∗)).
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Since `∗ − α+(`∗) = α−(`∗), we of course have

α+(`∗) = `∗ − α−(`∗),

and an argument symmetric to the one we just gave now shows that the second of

conditions (5.2.12) is satisfied, and that we in fact have

φ2(p) = p.

This completes the proof. 2

If all of the feedback functions hi in (SDDE) are odd, then α− and α+ agree, and

we see that the zeros of any 1-cyclic periodic solution are evenly spaced. In particular,

we have the following corollary.

Corollary 5.2.21. Write q for the unique 1-cyclic periodic solution of (SDDE) with

oscillation speed 2K, translated so that q(0) = 0. If all of the feedback functions hi are

odd, then there is some z such that the zeros of q occur at points nz, n ∈ Z, and q has

the symmetry

q(t) = −q(−t) ∀ t. 2

5.3 (SDDE) with negative feedback and other dominant delay

Consider the equation

y′(t) = −2sgn(y(t− 1))− sgn(y(t− 3)).

This equation has negative feedback and dominant first delay. In section 4.4 we de-

scribed three distinct slowly oscillating 1-cyclic periodic solutions for this equation

(recall definition 5.1.9). Therefore we see that the closest analog to theorem 5.2.2 does

not hold when some delay other than the longest is dominant: slowly oscillating 1-cyclic

periodic solutions need not be unique. Nevertheless, a version of 5.2.2 that is not too

different does hold: in particular, 1-cyclic periodic solutions exist at every oscillation

speed, and are unique at every positive oscillation speed. Here are the main results of

this section.
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Theorem 5.3.1. Existence and uniqueness of rapidly oscillating 1-cyclic pe-

riodic solutions. Suppose that (SDDE) has negative feedback and dominant M th

delay. For each K ∈ N, (SDDE) has a unique 1-cyclic periodic solution of oscillation

speed 2K.

Theorem 5.3.2. Existence of slowly oscillating 1-cyclic periodic solutions.

Suppose that (SDDE) has negative feedback and dominant M th delay. Then (SDDE)

has a slowly oscillating 1-cyclic periodic solution.

Throughout this section, we will assume that (SDDE) has negative feedback and

that the Mth delay, M < D, is dominant.

As in the last section, we shall write

µ =
D∑

i=1

ai + bi,

and write σ for the smallest nonzero value attainable by |y′(t)| for t > 0, where y is any

solution of (SDDE).

Proof of theorem 5.3.1

Our approach is very similar to the long-delay dominant case. Accordingly, we will only

sketch the proofs in this section.

Choose and fix some natural number K. Let ` be any number in the range

` ∈

[
dM

K + 1
2

,
dM

K

)
,

and given this ` let α be any number in the range

α ∈ [dM −K`, (K + 1)`− dM ].

We now define p−(`, α) to be the vector in ∪nSn
− of the form

(α, `, `+ α, 2`, . . . ,K` < dM ,K`+ α ≥ dM , . . . , c),

where c is the greatest number in the sequence α, `, `+ α, 2`, 2`+ α, 3`, . . . that is less

than γ. We define p+(`, α) similarly. We do not know the dimension of p±(`, α), but it

will turn out that these points are special enough that we do not need to. (The loss of
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control over the dimension of zero vectors of solutions is what makes the Mth-delay-

dominant case cumbersome.)

Whatever the dimension of p−(`, α), if y0 ∈ V −1(p−(`, α)) with continuation y,

then y has a proper downward zero at 0; indeed, y will be strictly decreasing for

t ∈ (0, dM −K`), and then strictly increasing for t ∈ (dM −K`, dM −K` + ` − α). If

the point z(p−(`, α)) is in this latter interval, the oscillation speed of y has not dropped

from time 0 to time z(p−(`, α)). In any event, y will have a first positive proper zero,

and so z(p−(`, α)) is defined. Similarly as in the last section, we have the bound

z(p−(`, α)) ≥
(

1 +
σ

µ

)
(dM −K`);

if z(p−(`, α)) < dM −K`+ `− α, we also have the bound

z(p−(`, α)) ≤
(
1 +

µ

σ

)
(dM −K`).

All of the above holds similarly for p+(`, α).

We define the following set:

L− =

(`, α) :

` ∈
[

dM

K+ 1
2

, dM
K

)
;

α ∈ [dM −K`, (K + 1)`− dM ];

z(p−(`, α)) ∈ (dM −K`, dM −K`+ `− α) .


In words, L− is the set of pairs (`, α) such that analogs of the size conditions (5.2.14)

hold and, given (`, α) ∈ L− and y0 ∈ V −1(p−(`, α)) with continuation y, the oscillation

speed of y does not drop between 0 and its first positive zero. We define L+ similarly.

The same sort of reasoning as in section 5.2 yields the following

Lemma 5.3.3. Approach to proving 5.3.1. The 1-cyclic periodic solutions of

(SDDE) with oscillation speed 2K are in bijective correspondence with pairs (`, α) ∈ L−

that satisfy

z(p−(`, α)) = `− α and z(p+(`, `− α)) = α. 2

Observe that the condition in the lemma implies that (`, `− α) ∈ L+.
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As in the last section, our strategy is to prove that there is exactly one pair (`, α) ∈

L− as described in lemma 5.3.3. The following two lemmas are analogs of lemmas 5.2.17

and 5.2.18.

Lemma 5.3.4. Write L for the subset in R2 of pairs (`, α) satisfying

L =

(`, α) :
` ∈

[
dM

K+ 1
2

, dM
K

)
;

α ∈ [dM −K`, (K + 1)`− dM ].

 .

Then L− is open in L. The function

z(p−(`, α))

is continuous on L−, is strictly decreasing in `, and is increasing in α. If (`, α) ∈ L−,

for ε > 0 small enough we have

z(p−(`+ ε, α+ ε)) < z(p−(`, α)).

Similarly for L+ and z(p+(`, α)).

PROOF. We give a proof for L−; the other case is the same.

Observe that the dimension of p−(`, α) is no more than N = (2K + 1) × γ/dM .

A basic difficulty, though, is that p−(`, α) is not necessarily of constant dimension as

` and α range over their allowed values. We are going to adopt an ad hoc way of

de-emphasizing the dimension of p−(`, α). Namely, for each (`, α) ∈ L we write Y =

F−(`, α) for a 1-cyclic periodic function defined on (−∞, 0] satisfying V (Y0) = p−(`, α).

We define F+(`, α) similarly.

Take (`, α) ∈ L− and choose Y = F−(`, α) with continuation y as a solution of

(SDDE). We know that y is strictly decreasing on [0, dM − K`] with derivative less

than −σ almost everywhere, and is strictly increasing on [dM −K`, dM −K`+ `− α]

with derivative greater than σ almost everywhere, and has its first positive zero z =

z(p−(`, α)) on the interval

(dM −K`, dM −K`+ `− α).

Write ρ > 0 for a number satisfying

ρ < min{ dM −K`, z − (dM −K`), (dM −K`+ `− α)− z }.
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Then y is strictly decreasing at rate less than or equal to −σ on (0, ρ), is strictly

increasing at rate greater than or equal to σ on (z − ρ, z + ρ), and is less than −ρσ on

(ρ, z − ρ).

Given δ > 0, choose (`′, α′) ∈ L with

|`− `′| < δ, |α− α′| < δ.

Take W = F−(`′, α′) with continuation w. The same kind of argument as in the proof

of proposition 5.2.7 now shows that, if δ is small enough, for

t ∈ [0,min{z(p−(`, α)), z(p−(`′, α′))}+ d1

we have the bound

|w(t)− y(t)| ≤ Nµδ.

(This bound holds even if p−(`, α) and p−(`′, α′) are not of the same dimension; picture

the initial conditions W0 and Y0 to see this.) If we choose δ small enough, then, we can

guarantee that

|z(p−(`′, α′))− z(p−(`, α))| < ρ and z(p−(`′, α′)) < dM −K`′ + `′ − α′.

This establishes the openness of L− and the continuity of z(p−(`, α)) on L−.

Consider Y = F−(`, α) with continuation y and W = F−(`, α + δ) with continua-

tion w, where (`, α) and (`, α + δ) are both in L. For simplicity write V (Y0) = x =

(x1, . . . , xn). Then, for almost all

t ∈ (0,min{z(p−(`, α)), z(p−(`, α+ δ))}+ d1),

w′(t) = y′(t) unless t − di ∈ (−xk − δ,−xk) for some odd k. If this ever happens,

w′(t) < y′(t). We conclude that z is increasing in α.

Similarly, consider Y = F−(`, α) with continuation y and W = F−(` + δ, α) with

continuation w, where (`, α) and (` + δ, α) are both in L−. Again write V (Y0) = x =

(x1, . . . , xn). Then, for almost all

t ∈ (0,min{z(p−(`, α)), z(p−(`+ δ, α))}+ d1),
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w′(t) = y′(t) unless t − di ∈ (−xk − δ,−xk) for some positive even k. If this ever

happens, w′(t) > y′(t). But this does happen, for t − dM must lie between −x2K − δ

and −x2K for some subinterval of t. We conclude that z is strictly decreasing in `.

Finally, consider Y = F−(`, α) with continuation y and W = F−(`+ δ, α + δ) with

continuation w, where (`, α) and (`+ δ, α+ δ) are both in L−. Let us write

x = p−(`, α); x′ = p−(`+ δ, α+ δ).

We choose δ small enough that x and x′ have the same dimension N .

Imagine that

z(x′) ≥ z(x).

We will show that, for sufficiently small δ, we get

w(z(x)) > y(z(x)),

yielding a contradiction.

We will write (k, i) for the change index pairs for x. Recall that to say that (k, i) is

a change index pair of x is to say that −di ≤ −xk and that z(x)− di ≥ −xk.

Suppose that 0 ≤ j ≤ N , 1 ≤ i ≤ D, and that (j, i) is not a change index pair of x.

Then there is some ν(j, i) > 0 such that

|(t− di)− (−xj)| ≥ ν(j, i) ∀ t ∈ [0, z(x)].

We now choose δ > 0 small enough so that

δ < min{ ν(j, i) : (j, i) is not a change index pair of x }

and also such that the intervals

[xk, xk + δ], 0 ≤ k ≤ N

are pairwise disjoint. Given such a δ, and assuming still that z(x′) ≥ z(x), every change

point of w on [0, z(x)] corresponds to a change point of y with the same change index

pair (though not conversely).
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For each change index pair (k, i) of x, put

δ(k, i) =

 δ, −xk + di ≥ δ;

−xk + di, otherwise.

As t runs from 0 to z(x) ≤ z(x′), t − di will be between −xk − δ and −xk for exactly

δ(k, i) time units. Observe that (2K,M) is a change index pair and that δ(2K,M) = δ

(since x2K + δ < dM by our assumption that x′ ∈ L−). Observe also that (k,M) is a

change index pair only for k = 2K by our assumption that x ∈ L−. Finally note that,

if we fix some particular i, the sum

∑
k : (k, i) is a change index

pair of x

(−1)kδ(k, i)

consists of alternating terms, and each except perhaps the first is of absolute value δ.

Therefore this whole sum is no more than δ in absolute value.

Our assumption that z(x′) ≥ z(x) implies that w(t − di) < 0 for all t ∈ (0, z(x))

such that t− di > 0. We therefore have that w(z(x))− y(z(x)) is equal to

D∑
i=1

∑
k : (k, i) is a change index

pair of x

(−1)kδ(k, i)(ai + bi)

= δ(aM + bM ) +
∑
i6=M

∑
k : (k, i) is a change index

pair of x

(−1)kδ(k, i)(ai + bi)

(recall the proof of lemma 5.2.9). The definition of dominant delay ensures that this

sum is strictly positive . We have a contradiction and conclude that in fact z(x′) < z(x).

2

Lemma 5.3.5. Let (`, α) ∈ L. Suppose that ` is minimal and that α is minimal given

`: that is,

` =
dM

K + 1
2

, α = dM −K`.
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Then

z(p±(`, α)) > `− α.

For any ` and α maximal given `, that is,

` ∈

[
dM

K + 1
2

,
dM

K

)
; α = (K + 1)`− dM ,

then

z(p±(`, α)) > `− α.

PROOF. The same as the proof of 5.2.18. 2

With the above two lemmas in hand, the analogs of lemma 5.2.19 and the proof of

theorem 5.2.2 go through similarly as in section 5.2. Making the necessary changes to

these arguments (mostly substituting dM for γ) proves theorem 5.3.1. 2

Proof of theorem 5.3.2

.

Write

β = dM/γ < 1

and choose N ∈ N so large that

(1− β)Nγ < dM .

We make three easy observations about these choices.

Lemma 5.3.6. Let β and N be as above. Suppose that x1 and x2 are numbers with

0 ≤ x1 ≤ x2 ≤ γ. Then

x2 ≥ x1 + dM =⇒ x2 ≥ x1 + β(γ − x1).

Suppose that 0 ≤ x1 ≤ x2 ≤ γ, and let 4 ≥ dM . Write

x̃1 = min(x1 +4, γ); x̃2 = min(x2 +4, γ).
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Then

x2 ≥ x1 + β(γ − x1) =⇒ x̃2 ≥ x̃1 + β(γ − x̃1).

Finally, suppose that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ γ is a sequence such that

xi ≥ xi−1 + β(γ − xi−1) ∀ 2 ≤ i ≤ N.

Then xN + dM > γ.

PROOF. We verify the three statements in turn. Given 0 ≤ x1 ≤ x2 ≤ γ, suppose

that in fact x2 ≥ x1 + dM . Then, since

β(γ − x1) ≤ βγ = dM ,

the first implication is proven.

We turn to the second implication. If x̃2 = γ, the implication holds automatically.

Suppose that both x̃1 and x̃2 are less than γ. Then

x̃1 + β(γ − x̃1) = x1 +4+ β(γ − x1)− β4 ≤ x2 +4− β4 ≤ x̃2.

The hypothesis of the last part of the lemma rewrites as

γ − xi ≤ (1− β)(γ − xi−1).

Since (γ − x1) ≤ γ, we must have γ − xN < dM by our choice of N . 2

N serves as a bound on the dimension of the zero vectors of slowly oscillating

solutions of (SDDE). We first devise a way to store these zero vectors — of varying

dimension — in RN .

Let us take two copies of RN , labeled RN
+ and RN

− . We define a map

π :
(
∪N

n=0Sn
−
)⋃(

∪N
n=0Sn

+

)
→ RN

− ∪RN
+

as follows. If, for example,

x = (x1, . . . , xn) ∈ Sn
−, n ≤ N,

put

π(x) = (x1, . . . , xn, γ, γ, . . . , γ) ∈ RN
− ;
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similarly for x ∈ Sn
+. The map π is continuous and injective.

We define the following subsets of RN
− and RN

+ :

D− ⊂ RN
− =

 v = (v1, . . . , vN ) such that

dM ≤ vi ≤ γ ∀ 1 ≤ i ≤ N ; vi ≥ vi−1 + β(γ − vi−1) ∀ 2 ≤ i ≤ N

 ,

and similarly for D+ ⊂ RN
+ .

Observe that D−∪D+ lies in the image of π, and so π−1(v) is unambiguously defined

for each v ∈ D− ∪D+. The following observation is immediate, but central to why we

have given D± its somewhat elaborate definition:

Lemma 5.3.7. D− and D+ are closed and convex sets of RN
− and RN

+ , respectively.

2

We define the following map ψ from D− ∪D+ to RN
− ∪RN

+ :

ψ(v) = π ◦ φ ◦ π−1(v).

Our main result for the subsection is the following:

Proposition 5.3.8. ψ is defined and continuous everywhere on D−∪D+. ψ maps D−

into D+ and maps D+ into D−.

PROOF OF THEOREM 5.3.2. Proposition 5.3.8 implies that ψ2 (restricted to D−)

is a continuous mapping of D− into itself; this mapping has a fixed point v by Brouwer’s

theorem. Since π is injective and π−1 is injective on D−, π−1(v) must be a fixed point of

φ2. This fixed point is the zero vector of a 1-cyclic slowly oscillating periodic solution.

2

Remark 5.3.9. It might seem to the reader that the definition of D± is needlessly

complicated. An obvious thing to try would be to take the vectors (x1, . . . , xN ) in D±

to satisy dM ≤ xi ≤ γ and, for all 2 ≤ i ≤ N , either vi ≥ vi−1 + dM or vi = γ. If the

D± were defined this way they would have the desired self-mapping properties under

ψ, but would not be convex (consider the convex combination of two points where the

number of coordinates equal to γ differs by more than one).
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PROOF OF PROPOSITION 5.3.8. We will prove the proposition for the restriction

of ψ to D−; the other case is similar. Choose v ∈ D− and write x = (x1, . . . , xn) =

π−1(v) ∈ Sn
−. We first show that φ(x) is defined and that π(φ(x)) lies in D+.

Choose y0 ∈ V −1(x) with continuation y. Then, since x1 ≥ dM , we know that y

will be strictly decreasing (at rate less than or equal to −σ) for t ∈ (0, dM ) and then

strictly increasing (at rate greater than or equal to σ) until dM time units after the first

positive zero of y. Therefore z(x) > dM is defined, and so φ(x) is defined too. φ(x) is

of the the form

φ(x) = (z(x), z(x) + x1, . . . , z(x) + xm),

where m is the maximal k such that z(x) + xk < γ. We don’t know the dimension of

φ(x) in general, but the last part of lemma 5.3.6 assures us that it is no more than N .

In fact, lemma 5.3.6 assures us that π(φ(x)) lies in D+. Thus ψ is defined and maps

D− into D+.

It remains to show that ψ is continuous on D−. Intuitively, the idea is this: if

x = (x1, . . . , xn) ∈ Sn
− and y0 ∈ V −1(x), we can regard y0 as having its “n+1st through

Nth” negative zeros be equal to −γ without altering anything about the continuation

of y0.

Choose v ∈ D−. v has some maximum coordinate vn < γ. Choose δ such that

γ − 2δ > vn, and then choose v′ ∈ D− such that |v − v′| < δ (sup metric). Write

x = π−1(v) and x′ = π−1(v′); the dimension of x′ is greater than or equal to the

dimension of x (which is n). Take y0 ∈ V −1(x) and w0 ∈ V −1(x′) with continuations y

and w, respectively. Write ρ > 0 for a number such that y is strictly increasing on an

interval of radius ρ about z(x) (in particular, z(x)− ρ > dM ).

We now seek to bound the following quantity:∫ min(z(x),z(x′))+d1

0
|hi(w(t− di))− hi(y(t− di))| dt.

hi(w(t − di)) and h(y(t − di)) will disagree for at most an interval of length δ around

every point t = di − xk, 1 ≤ k ≤ n, as well as perhaps an interval of length δ about 0

(every x′k, k > n, is greater than γ − δ). Therefore we have∫ min(z(x),z(x′))+d1

0
|hi(w(t− di))− hi(y(t− di))| dt ≤ (ai + bi)δ(N + 1).
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Summing across i we see that, if δ satisfies our size conditions, for

t ∈ [0,min{z(x), z(x′)}+ d1

we have the bound

|w(t)− y(t)| ≤ (N + 1)µδ.

If δ is small enough, this quantity is less than ρσ and we see that

|z(x′)− z(x)| ≤ (N + 1)µδ
σ

.

If k is such that both φ(x) and φ(x′) are of dimension greater than or equal to k,

then, we have

|φ(x′)k − φ(x)k| ≤ δ +
(N + 1)µδ

σ
.

By choosing δ small enough we can guarantee that z(x′) > δ; in this case φ(x) will have

dimension greater than or equal to the dimension of φ(x′). Suppose that k ≥ 1 is such

that φ(x)k exists but φ(x′)k does not. Then, since φ(x)k = xk−1 + z(x) and we have

both

|z(x) + xk−1 − (z(x′)− x′k−1)| ≤ δ +
(N + 1)µδ

σ
and z(x′) + x′k−1 ≥ γ,

we have that φ(x)k is within

δ +
(N + 1)µδ

σ

of γ. It follows that

|φ(x′)− φ(x)| ≤ δ +
(N + 1)µδ

σ
.

This shows that ψ is continuous. The proof of 5.3.8, and hence of 5.3.2, is complete. 2

5.4 Some additional remarks on (SDDE) with negative feedback

The situation when (SDDE) has negative feedback but no dominant delay is much less

clear. The lack of any clear nonincreasing “oscillation speed” of solutions deprives us

both of a salutary organizational principle and of some strong — and very helpful —

strictures on the dynamics, and we are able to say relatively little about (SDDE) with

negative feedback when no delay is dominant. On the other hand, it is apparent that
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in this case some interesting phenonema occur: namely, this case is an easy source of

periodic solutions of cyclicity higher than 1 (recall definition 1.2.5 and example 1.1.3).

Example 5.4.1. Let us look at a parameterized version of the equation presented in

example 1.1.3.

y′(t) = h(y(t− 1)) + h(y(t− γ)), (SDDEγ)

where γ > 1 and

h(y) =


2, y < 0;

0, y = 0;

−1, y > 0.

Observe that C ′ is forward-invariant under the solution semiflow for (SDDEγ) (recall

condition (2.2.10)).

If y is a solution then y′(t) < 0 if and only if both y(t− 1) and y(t− γ) are positive.

It follows that, if V (y0) ∈ S0
+, then φ(V (y0)) ∈ S0

−. It is not necessarily true, though,

that φ maps S0
− into S0

+. What is true is that x ∈ S0
− is always a periodic point for φ,

with the period (i.e. the cyclicity of the corresponding periodic solution of (SDDEγ))

increasing in γ. We show this now.

Let us write x ∈ S0
−. Choose y0 ∈ V −1(x) with continuation y as a solution of

(SDDEγ).

Let us first assume that γ ≤ 3. In this case, we have that y′(t) = −2 for t ∈ (0, 1)

and that y′(t) = 1 for t ∈ (1, γ). Therefore, if γ ≤ 3, z(x) ≥ γ, φ(x) ∈ S0
+, and x is a

2-periodic point of φ.

Let us now assume that γ > 3. For t ∈ (0, γ), y will behave like the slowly oscillating

periodic solution of

y′(t) = −h(−y(t− 1))

with a downward zero at 0 — in particular, y will be negative for 3 units at a time and

positive for 3/2 units at a time, with local minima equal to −2 and local maxima equal

to 1.

Suppose now that k is the largest nonnegative integer such that 9k/2 ≤ γ. From

time 0 to time γ, y completes k oscillations about 0 of the type described above. Over
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the time period t ∈ (γ, γ+3), y(t−γ) will be negative and so y will be strictly increasing

at rate at least 1. We claim that y(γ + 3) ≥ 3. If y(γ) ≥ 0, this is clear. If y(γ) < 0,

then y(t) is negative for at least |y(γ)|/2 units of (γ − 1, γ) (since y cannot decrease

at rate more negative than −2). Therefore, for |y(γ)|/2 units of (γ, γ + 3), we have

y(t− 1) < 0 and y′(t) = 4. Thus if y(γ) < 0 we have

y(γ + 3) ≥ y(γ) + 2|y(γ)|+ 3− |y(γ)|/2 ≥ 3 + |y(γ)|/2.

Write γ + τ for the first positive zero of y greater than or equal to γ. From time

τ + 1 to time 2γ, y(t − 1) is positive while y(t − γ) is oscillating; in particular, y acts

like a solution of

y′(t) = −h(−y(t− γ)),

shifted upward by y(γ+3) units. Since y(γ+3) ≥ 3, it follows that y(t) is nonnegative

for t ∈ [γ + τ, 2γ]. Since y(t − γ) is negative for t ∈ (2γ, 2γ + τ) (if τ > 0), we see in

fact that y(t) is nonnegative for t ∈ [γ + τ, 2γ + τ ]. We conclude that y coincides, for

t ≥ 0, with a very slowly oscillating (k + 1)-cyclic periodic solution. The bifurcation

points occur at positive integer multiples of 9/2. Figure 23 shows bifurcation from

a 2-cyclic to a 3-cyclic periodic solution. Both solutions have the nonnegative initial

condition y0(t) = −t. The bold line is a simulated solution for γ = 8.9; the other line

is a simulated solution for γ = 9.1.

This example shows that periodic solutions of (SDDE) of any cyclicity are possible.

Moreover, since the zeros of y are separated either by 3, 3/2, or more than γ units, y

is simple; since y is very slowly oscillating, it is trivially nondegenerate and asymptot-

ically stable. Therefore our main theorems 4.1.2 and 4.1.3 imply that, for differential

delay equations with two delays, stable periodic solutions of any cyclicity are possible

(including when there is strictly monotonic negative feedback in each delay).
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Here are two basic questions for (SDDE) with negative feedback that we have not

been able to answer:

• Given y0 ∈ C ′0, is the dimension of V (yt) for t ≥ 0 bounded by some function

(depending on (SDDE)) of the dimension of V (y0)?

• Is there any sense in which “most” solutions converge to periodic solutions?

We close by presenting, for intrigue and amusement, some simulated solutions of

(SDDE) with negative feedback. Simulated solutions seem most often to have the

general appearance pictured in Figure 24. Figure 25 is meant to illustrate the basic

mechanism by which oscillations often slow down: successive critical points with no

intervening sign changes. Figure 26 shows a solution that apparently converges to a

2-cyclic periodic solution. Figure 27 shows a simulated solution with no apparent con-

vergence in short time (here γ = 11.5 and the simulated continuation is shown to time

t = 100). Continuing the simulation further suggests that the solution might converge

— slowly — to a periodic solution, but for this particular solution our simulations are

not definitive.
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These figures were found by generating, within a certain class, random problems

(SDDE) and initial conditions. Detailed information about the generation of the figures

is available from the author.
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