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ABSTRACT OF THE DISSERTATION 

A Study on Adaptive Stimulation of the Basal Ganglia 

as a Treatment for Parkinsonism 

by STATHIS S. LEONDOPULOS 

Dissertation Director: Evangelia Micheli-Tzanakou 

 

 

The purpose of this dissertation is to design an automated system for the 

modification of Deep Brain Stimulation (DBS) parameters based on specific identifiers in 

the neuronal response of Parkinsonian patients undergoing DBS treatment. The neural 

response patterns are obtained from an artificial neural network consisting of dynamic 

neuron and synapse components and programmed to exhibit a response to pulse stimuli 

that resembles the activity in the subthalamic nucleus of Parkinsonian patients 

undergoing DBS treatment. Moreover, using pulse stimuli of varying specification, a 

band-pass filtered response of the network is subjected to a set of signal processing 

techniques including Linear Predictive Coding (LPC), Autoregressive Moving Average 

(ARMA) modeling, Discrete Fourier Transform (DFT), moments and higher order 

statistics, producing a set of results or features. Then, each feature is evaluated to 

determine the effectiveness, in terms of error probability, of discerning between different 

neuronal responses to pulse stimuli. Furthermore, a digital circuit is designed at the 

transistor level for computing the 1st LPC coefficient of recorded neural data and also 

autonomously regulating the specifications of the stimulus waveform based on the value 

of the computed coefficient. Also, the circuit design is optimized using a pipeline to 
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reduce dynamic power dissipation. Moreover, it is suggested that a similar design may be 

useful in automating the administration of DBS as a treatment for Parkinsonism with only 

a minimal additional power demand. 
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Preface 

Electricity, soon after it became a focal point of modern scientific investigation in 

the 18th century, was believed to have merit only in the practice of medicine [1]. In this 

regard, the words of Johann Gottlob Kruger, a prominent academician of that time are 

exemplary: “since electricity must have a usefulness, and we have seen that it cannot be 

looked for either in theology or in jurisprudence, there is obviously nothing left but 

medicine.” Indeed, even the first recorded uses of electricity were of a therapeutic nature. 

For example, Scribonius Largus [2] in his “Compositiones” (written in 47 AD) 

mentioned a treatment for gout and headaches using the electric charge produced by the 

torpedo fish.  

The use of the eel and torpedo fish in medicine continued for centuries. However, 

biological sources of electricity became obsolete with the invention of more controlled 

apparatus such as the Leyden jar in 1745 [3] and the Voltaic pile in 1800 [4], the first a 

prototype capacitor and the second an electrolyte battery. Moreover, while artificial light 

and heating were being explored using these inventions, other medical applications were 

being sought including the treatment of paralysis [5] and the revival of those “apparently 

dead” (cardiac defibrillation) [6-7]. 

The measurement of minute electrical phenomena such as those associated with 

biosignals, became possible with the invention of the Galvanometer, an apparatus relying 

on the magnetic flux produced by coils of wire carrying a current. Using this invention, 

the activity of nerve and muscle tissue was amplified and measured as early as 1825 by 

Matteuci [8] and Schweigger [9]. Moreover, the level of amplification was in proportion 
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to the number of coils, however at the expense of a slower response time. Eventually, by 

using appropriate materials and design, DuBois-Raymond in 1848 [10] was able to detect 

the “action potential” waveform emitted by single nerve cells. However, it was not until 

the invention of the vacuum tube by De Forest in 1906 [11] that adequate amplification 

with response times smaller than 33ms was possible. This was critical for measuring the 

details of bioelectric signals that are resolved on a scale of milliseconds [12]. 

The invention of the transistor in 1948 by Bardeen and Brattain [13] allowed for 

response times on the microsecond scale in addition to an array of other advantages over 

the vacuum tube, including lower power demands, lower manufacturing cost, longer 

shelf-life and much smaller size. Using this technology, medical electro-stimulation and 

recording equipment became portable and even implantable. Accordingly, the first 

cardiac pacemaker containing transistor circuitry that functioned successfully for longer 

than several days was compact and light enough to be implanted in a patient in 1960 [14]. 

Soon after that, the integrated circuit was invented separately by Jack Kilby [15] and 

Robert Noyce [16]. This marked the beginning of an ever-increasing number of 

components available on a silicon chip of millimeter or even micron dimensions (known 

popularly as Moore’s law) [181]. As a consequence, the availability and sophistication of 

electronic bio-implants began to greatly increase starting with the work of W.F. House 

[165] on the cochlear implant in 1969, the work of Humayun and de Juan [167] on the 

retinal implant in 1996, and the cortical implant reported by Donoghue [98] and Nicolelis 

[97] in 2002 and 2003. 
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Chapter 1. Introduction 

Electrical stimulation of nuclei in the Basal Ganglia of the brain as a treatment for 

Parkinson’s disease, also known as Deep Brain Stimulation (or DBS), was approved by 

the US Food and Drug Administration and became commercially available in 1997 [174]. 

The apparatus consists of a stimulus generator implanted under the collar bone and a 

subcutaneous lead connecting the stimulator to an electrode fixed at the cranium and 

reaching the Basal Ganglia in the center of the human brain. Following implantation, a 

wireless link facilitates communication with the implant for the routine adjustment of the 

stimulus waveform by medical staff. In this manner, the treatment can be tuned or 

optimized over time while avoiding side effects.  

The neural signals emanating from the Basal Ganglia during DBS have been 

recorded and analyzed by Dostrovsky et al. [43] and Wu et al. [44]. Moreover, there have 

been studies regarding the use of information contained in the neural activity of the Basal 

Ganglia as a control signal or regulator of the stimulus apparatus [101-103] [183,184]. 

However, there are some aspects of this problem that have yet to be addressed. Among 

these, there is the issue of “feature-selection” or the selection of the optimal signal 

processing technique that will provide useful information in regulating the stimulus 

apparatus. Also, there is the issue of designing an application specific integrated circuit 

(ASIC) that can accomplish the task within time and power constraints. Furthermore, 

without direct access to patients undergoing DBS surgery, an accurate model of the 

neural response to DBS would be useful. Accordingly, this dissertation attempts to 

resolve a set of guidelines and methods for achieving useful feature-selection and 
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designing a digital architecture for computing the control signals of an automated DBS 

apparatus. Moreover, these methods are developed and optimized using a software model 

of neural activity. In particular, the model is designed to respond to DBS pulse stimuli as 

neurons in the subthalamic nucleus (STN) have been observed to respond. As such, it 

essentially imitates the “impulse response” of neurons in the STN. 

1.1 Neurons 

Measurable electrical phenomena that occur in the human body are due primarily to 

microscopic nerve cells (or neurons), fundamental components of the human nervous 

system that relay and process information governing movement and perception. At 

roughly 50µm in diameter, the spheroidal neurons have thin extensions (or dendrites) that 

make contact with other neurons. Also, a large extension known as the axon can reach 

between 0.1mm and 2 meters depending on the particular type of neuron from which it 

extends. Moreover, a thin membrane (roughly 50nm in thickness) encapsulates each 

neuron and governs the transport of charged ions into and out of the cell through voltage-

gated channels and concentration gradients [17].  

 

Figure 1.1. Graphic illustration of a neuron (A). Image of a pyramidal neuron from the cerebral 

cortex (B) [142]. 
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The relationship between net current and voltage (Im and Vm) across the neuron 

membrane is described by the Hodgkin-Huxley (HH) equations, a set of nonlinear time-

variant differential equations [18]. Moreover, numerical solutions to the HH equations 

show two general modes of operation: sub-threshold (or linear) and non-linear. In 

particular, at sub-threshold conditions Vm remains close to –70mV (rest potential) and the 

relationship between Im and Vm is linear. However, as Vm approaches Vth (roughly 

50mV− ), the relationship becomes increasingly nonlinear until a pronounced change in 

Im and Vm occurs. The result is an impulse waveform known as a spike event or Action 

Potential that lasts from 1ms to 2ms when Vm peaks at 20mV and Im fluctuates between 

pA50− and 20pA as shown in Fig. 1.2 and Fig. 1.3. In turn, the action potential 

propagates along the axon toward dendritic branches of neighboring cells. 

 
Figure 1.2. An Action Potential (AP) waveform, or the time-course of the trans-

membrane potential Vm when Vm > Vth.  
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Figure 1. 3. The transmembrane current during an action potential event. 

Axon branches terminate at junctions known as synapses where the release (or 

exocytosis) of biochemical agents known as neurotransmitters influences the ion 

transport of neighboring cells [17]. Moreover, each neuron is influenced by thousands of 

such synaptic junctions, making it in effect a weighted summator or filter of distant 

neural activity. Also, the effect of synapses on neighboring neurons can be excitatory or 

inhibitory depending on the particular neurotransmitter that is released. That is, if the 

result is an outflow of positive charge from the neuron, the synapse is considered 

inhibitory. Otherwise, an inflow of positive charge would result from an excitatory 

synapse. Furthermore, random processes within the neuron membrane may cause 

spontaneous events to occur even in the absence of other stimuli [19].  

Long-term processes influenced by neural activity cause the modification of 

synapses, thus strengthening or weakening the influence of one neuron on the behavior of 
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another [20]. Overall, the web of interconnected neurons that defines the human brain 

and nervous system can be thought of as a vast network of non-linear filters and 

integrators that can adapt, learn and process sensory information. Moreover, there are 

roughly 1014 neurons in the human brain alone. 

1.2 Parkinson’s Disease 

Parkinson’s disease is due to the death or alteration of cells that produce the 

neurotransmitter dopamine in a region of the brain called Substantia Nigra pars 

Compacta (SNc). In turn, the lack of dopamine weakens synaptic pathways between the 

SNc and a region called the Striatum resulting in a general imbalance of activity within a 

group of brain nuclei collectively known as the Basal Ganglia [21]. As a result, the spike 

patterns of neurons in the External Globus Pallidus (GPe) become sparse, while the 

neurons in the Subthalamic Nucleus (STN) and Internal Globus Pallidus (GPi) exhibit 

pronounced activity that is often in the form of synchronized oscillatory bursting [22-26]. 

Fig. 1.4 and Fig. 1.5 show neural pathways of the Basal Ganglia as well as activity of key 

nuclei under normal physiological conditions and Parkinsonism, respectively. Moreover, 

dark arrows represent inhibitory synaptic pathways, gray arrows excitatory, and 

perforated arrows are pathways associated with dopamine. Externally, these processes are 

manifested as the Parkinsonian symptoms of essential tremor, muscle rigidity, 

bradykinesia (slowness of movement) and postural imbalance. 
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Figure 1.4. Basal ganglia under normal conditions. Shows the nuclei in the Basal Ganglia 

and their synaptic paths including excitatory ( ), inhibitory ( ) and dopaminergic paths 

( , ). A feedback loop between the STN and GPe can be seen. This figure is modified 

from the figures reported by Gurney et al. [27] to emphasize changes due to dopamine-

depletion as described by Delong et al. [21]. 

 

 

Figure 1.5. Basal Ganglia during a lack of dopamine (Parkinson’s disease). Key nuclei and 

their synaptic paths including excitatory ( ), inhibitory ( ) and dopaminergic ( , ) 

paths are shown. Dark-colored nuclei signify diminished activity while brighter-colored 

regions signify heightened activity. This figure is modified from the figures reported by 

Gurney et al. [27] to emphasize changes due to dopamine-depletion as described by Delong et 

al. [21]. 

1.2.1 Treatments 

The treatment for early stage Parkinson’s disease typically consists of the 

administration of levodopa (L-DOPA) orally. L-DOPA crosses the blood-brain barrier 
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where it is converted into dopamine, thus restoring some of the movement capabilities to 

the patient. However, side effects that may emerge are dyskinesia (difficulty performing 

voluntary movements), depression and psychotic episodes in some patients [28] [29]. 

Surgical procedures that have been used in the past as a treatment for advanced 

stage Parkinson’s disease include pallidotomy, thalamotomy and subthalamotomy [30]. 

In these procedures, functional MRI imaging techniques detect the location of specific 

nuclei in the brain of the patient. Following this, stereotactic surgical techniques are 

employed for the placement of electrodes at the target location. Next, electrode 

recordings are analyzed to achieve a more precise placement [31]. Finally, high 

temperatures (80oC) or electric currents are applied to cause destruction of cells (known 

as lesioning) in the STN or GPi.  

The success of pallidotomies is hypothesized to be due to a reduction of activity in 

the GPi that is caused by the administrated (or artificially placed) lesions [32]. 

Furthermore, lesioning the STN with a subthalamotomy has a similar effect in the GPi 

because of the excitatory neuronal paths from the STN to the GPi [33]. Thus, lesions in 

the GPi simulate the inhibitory input to the STN and GPi that would otherwise be present 

under physiological conditions (see Fig.1.4 and Fig.1.5).  

1.3 Deep Brain Stimulation 

Electrical stimulation of the brain as a treatment for Parkinson’s disease was first 

reported by Benabid et al. [34] in 1987. In particular, during stereotactic neurosurgery it 

was observed that stimulating the Ventral Intermediate Nucleus (VIM) of the brain with a 

sequence of 1-to-2 Volt 0.5ms pulses at 100Hz blocked symptoms of the disease. 
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Eventually, the lesioning procedures mentioned previously were replaced by the 

implantation of electrodes connected to a pulse generator. Moreover, the physician could 

tune the signal generator through a wireless link, thus adjusting the stimulus parameters.    

1.3.1 Nerve Stimulation 

The simplest model of electrical nerve stimulation was introduced by Arvanitaki 

and uses the passive membrane model with membrane resistance Rm and capacitance Cm 

[35] [36]. In this scenario, assuming the stimulus current applied across the cell 

membrane is a constant Is, then the change in trans-membrane voltage becomes 

( )mmCRt
msm eRItV /1)( −−=∆  .      (1.1) 

Moreover, given a threshold voltage ∆Vth, then the minimum stimulus current 

needed for the trans-membrane voltage to reach ∆Vth is found for t=∞, and is called the 

rheobase current 

m

th
rh R

V
I

∆
= .        (1.2) 

Also, another useful measure of stimuli is the time required to reach ∆Vth when 

Is=2Irh. This is called chronaxy or chronaxie [36] [37] and is calculated as 

2lnmmc CRt = .        (1.3) 

As an example, Fig.1.6 illustrates the decay of the minimum amplitude needed for 

stimulating a neuron as pulse width increases [38]. 
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Figure 1.6. Firing threshold of the external urethral sphincter motoneuron (EUS), the neuron 

innervating the bladder (BLA), and the fiber of passage in the white matter (FOP) stimulated with 

bipolar stimulation as predicted by simulation techniques and reported by McIntyre et al. [38] (τCH 

represents the calculated chronaxie of the particular neuron). 

More sophisticated distributed models such as the core conductor model incorporate 

the shape of the neuron axon and conductivity of external media [39] [36]. Moreover, the 

shape and timing of stimuli are also influential as shown in detailed studies by Warman, 

McIntyre, Grill and others [37] [38] [52] [176]. However, the passive membrane model 

with appropriate effective values for Rm and Cm remains a useful approximation for many 

applications [40] [41].   

1.3.2 DBS Mechanism 

There are currently three hypotheses that attempt to explain the inhibitory effect of 

DBS on the STN and GPi. In particular,  (1) the blocking of action potentials by affecting 

properties of ion conductance in the neuron membrane, (2) the preferential stimulation of 

axons that terminate at inhibitory synapses rather than neurons themselves, and (3) the 

desynchronization of mechanisms occurring in the network as a whole. Out of these 

hypotheses, desynchronization seems to be the least refuted, and least understood [42].  
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In practice, the effect of DBS on neural activity can be seen in recordings using 

extracellular electrodes that have been taken from patients during surgical implantation of 

DBS systems, as shown in Fig.1.7. In particular, the work of Dostrovsky et al. [43] shows 

how the activity of pallidal neurons displays a period of quiescence after each stimulating 

pulse of DBS. Furthermore, the quiescent period increases with respect to the DBS pulse 

amplitude as can be seen in Fig.1.8. Also, as the pulses become more dense at higher 

frequency stimulation, the quiescent periods seem to overlap, thus causing the inhibitory 

effect. A more macroscopic view of the effect of pulse amplitude is provided in Fig.1.9 

[44]. 

 

 
Figure 1.7. Effects of DBS pulses on neural activity in the GPi as observed experimentally 

and reported by Dostrovsky et al. [43]. The larger vertical line segments are stimulus 

artifacts while the shorter line segments can be attributed to neuronal spike activity. A 

quiescent or inhibitory period during which there is no neuronal activity can be observed 

after each stimulus. 

 

Fig. 1.10 shows the neuron activity rate following a stimulus pulse measured as a 

percentage of the activity preceding the pulse (baseline activity). As can be seen in Fig. 

1.10, neural activity is nearly zero after the DBS pulse, but returns to normal firing after 

some time (between 50ms and 100ms). 

Neural Spikes 

Stimulus Artifact 
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Figure 1.8. Detail of the effects of a 50µA and 5µA DBS pulse of duration 150µs on a single GPi 

neuron of a Parkinson’s patient as observed experimentally and reported by Wu et al. [44]. The 

tallest thin vertical line segments are the stimulus artifacts while the shorter line segments can be 

attributed to neuronal spike activity. A large pulse immediately followed by an inhibitory period is 

observed following the stimulus. Moreover, the smaller stimulus (5µA) is followed by a short 

inhibitory period (roughly 30ms) while the larger stimulus is followed by a longer inhibitory period 

(roughly 60ms). 

1.3.3 Apparatus 

All commercially available DBS systems are currently designed and manufactured 

by the Medtronic corporation. By name, the neurostimulators commonly used for DBS 

are the “Itrel II Soletra,” “Kinetra,” and “Extrel” units (with Extrel used less frequently 

than the former two). Moreover, the specifications of the apparatus have been described 

in a number of publications [31] [42] [45-47]. Specifically, a 1.27mm diameter probe 

with four 1.5mm long contacts spaced 0.5mm or 1.5mm apart (depending on the version) 

is in contact with the target area of the brain and secured to the cranium at its base. 
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Furthermore, a subcutaneous lead connects the base of the probe to a 53x60x10mm3 

neurostimulator implanted in the chest area under the collarbone of the patient [42]. 

 

 
Figure 1.9. Effects of DBS pulses (at 10Hz) on a single GPi neuron in the GPi as observed 

experimentally and reported by Dostrovsky et al. [43]. The larger vertical line segments are stimulus 

artifacts while the shorter line segments can be attributed to neuronal spike activity. It can be seen 

that as stimulus energy increases from 8µA to 80µA, the neural activity becomes more sparse. 

The Extrel unit differs from the Soletra and Kinetra units in that an external 

stimulus generator communicates with the implant. In particular, the external apparatus 

generates the pulse waveform and then modulates it using a carrier frequency in the RF 

range. In turn, an implanted receiver demodulates the signal using passive circuit 

components including a capacitor [46] [48] [49]. 
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Figure 1.10. Spike-rate in 10ms bins, smoothed with a 20ms sliding window, as percentage of baseline 

(no stimulus) and a function of time (stimulus at time 0) as observed experimentally and reported by 

Dostrovsky et al. [43]. A period of quiescence or inhibition can be seen immediately following a 

stimulus. Then, normal neural firing rates gradually resume.  

1.3.3.1 Stimulus Specifications 

The DBS units are capable of applying stimulus waveforms that consist of a train of 

pulses with the following specifications [47] [42]: 
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Pulse amplitude: 0-10.5V (in steps of 0.1V), and assuming a 1kΩ load as reported, 

this means a 0-10.5mA stimulation current.1  

Pulse duration: 60-450µs (1000µs maximum in the case of Extrel).  

Pulse frequency: 2-185Hz in the Soletra, 2-250Hz in the Kinetra, and 2-1000Hz in 

the Extrel. 

Pulse polarity: both monopolar and bipolar modes are available (only bipolar in the 

Extrel). 

1.3.3.2 DBS Programming 

The typical procedure for programming DBS apparatus postoperatively begins with 

the determination of the “therapeutic window” of stimulation for each electrode [47] [45]. 

That is, using monopolar stimulus, keeping the pulse width at 60µs and the frequency at 

130Hz, the pulse amplitude is increased from 0V at increments of 0.2-0.5V. Furthermore, 

the therapeutic window or range for a particular electrode is the set of amplitude values 

between the smallest therapeutic amplitude and onset of undesirable side effects such as 

rigidity and dystonia (sustained muscle contractions). Next, the electrode with the largest 

therapeutic range is selected as the stimulus electrode [47].  

Over the months following implantation, DBS parameters are modified according to 

the side effects and therapeutic results observed. Typically, the amplitude or frequency is 

increased as the patient develops a tolerance to the stimulus effect. Moreover, it is 

believed that a higher impedance or displacement of the electrodes due to glial tissue 

                                                 
1  The amplitude used in commercial DBS units (0-10.5 mA) is obviously much larger than what is 
reported in the experiments of Dostrovsky et al. [43], Hamilton et al. [79] and Lehman et al. [114], namely 
5 µA to 100 µA. However, the current density turns out to be similar because of the differences in electrode 
diameter. In particular, the experimental work sited uses 25 µm (length) by 25-100 µm (diameter) 
electrodes, while commercial devices use a 1.5 mm (length) by 1.27 mm (diameter) electrodes. 
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scarring is responsible for the diminishing effectiveness of DBS over the first 

postoperative months [50] [51].   

Increasing the pulse width is avoided due to the recruitment of and possible damage 

to adjacent brain centers and the resulting side effects such as dysarthria (a speech 

disorder) and ataxia (loss of movement coordination)  [47] [38] [52]. For example, Fig. 

1.11 shows curves of the minimum pulse width-amplitude combinations that cause 

tremor suppression and onset of adverse side effects as found through experimentation on 

human subjects. Moreover, this is a verification of the response of the theoretical lumped 

parameter model shown previously in Fig. 1.6. 

 

 

Figure 1.11 Minimum pulse width-amplitude combinations causing tremor suppression and 

onset of adverse side effects as found experimentally and reported by Volkmann et al. [47]. 

The asterisk shows the pulse width suggested by Volkmann, while the voltage-doubling limit 

is a property of the Itrel II and Soletra stimulus generators reported by Volkmann. 
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In DBS, bipolar stimulation is avoided due to the higher power dissipation that it 

requires. Only if side effects persist is the bipolar mode turned on because of the more 

localized stimulation that it provides [45] [53]. 

At six months postoperatively, the stimulation parameters require only minor 

adjustments, as reported by Ashkan [45].   

1.3.3.3 Side Effects 

The undesirable side effects of DBS are primarily due to excess current leakage into 

adjacent brain centers and include cognitive degradation and severe emotional 

disturbances. However, other ill side effects may occur when DBS therapy is 

administered in conjunction with unrelated methods of diagnosis or treatment. For 

example, electrodes may be displaced by intense electromagnetic fields during MRI 

sessions, thus causing damage to brain tissue and displacing the location of the applied 

stimulus. Also, temperatures may become dangerously high during the administration of 

therapeutic diathermy (tissue heating), thus resulting in massive trauma or death [54-55]. 

1.4 Biosignal processing 

All biological processes associated with perception and limb movement involve 

measurable electrical phenomena. Moreover, depending on where and how a 

measurement is taken, the recorded signal will exhibit particular characteristics [18] 

[168].  

Typically, biosignal processing involves the analysis and classification of recorded 

biosignals using any combination of signal processing techniques that are suitable for the 
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particular application at hand [60]. In particular, the signal processing reduces the 

dimensionality of the data space by extracting useful information or “features” of the 

signal [66]. Thus, the high-dimensional recorded data is mapped to a lower dimensional 

“feature-space.” Moreover, the feature-space is divided into regions or “classes” in order 

to categorize each measured signal. 

1.4.1 The Local Field Potential (LFP) 

The LFP signal is related to the aggregate of the electric fields produced by 

individual neurons in the vicinity of the electrode within the dielectric medium of brain 

tissue. Furthermore, it is known that the recorded signal is influenced by a frequency 

filtering characteristic, so that only low frequency elements of neural activity such as 

post-synaptic potentials propagate beyond the immediate cellular environment to produce 

measurable signals [56] [57]. Also, characteristics of the front-end recording apparatus 

performing DC bias stability and pre-filtering further modify the frequency band of the 

signal.  

Bedard et al. [56] [57] have shown that the frequency-dependent attenuation with 

distance can be explained by using a non-homogeneous model of extra-cellular dielectric 

properties that take into consideration the properties of neighboring neuron membranes. 

Also, at the macroscopic level, a comprehensive study of dielectric properties of tissues 

in the range of 10Hz to 20GHz was prepared by Gabriel et al. [58], including an 

empirical parametric model that fits well to the experimental data. 
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A more practical model for describing the dielectric properties at the neuro-

electrode interface was developed by Johnson et al. [59]. In that study, an equivalent 

circuit model is used for explaining voltage-biasing effects of the recorded signal. 

1.4.2 Features 

Biosignals can be analyzed using a large set of signal processing methods. 

However, some features are relatively simple to calculate while others are 

computationally demanding (see Appendix B). Moreover, the issue of computational 

complexity becomes particularly important for integrated circuit implementations. 

Accordingly, Table 1.1 shows the computational complexities of various useful features 

in terms of signal sample size N, filter order n, decomposition levels L (for wavelets), 

number of signals m (PCA), lag q in terms of clock cycles, and the number of ALOPEX 

iterations c [66] (a blank ‘-‘ where present indicates that no studies were found). 

Table 1.1 - Feature Extraction Methods 

Method Complexity Parallel and/or Pipelined 

Mean O(N) O(logN) 

Variance O(2N) O(2logN) 

FFT [61,62] O(NlogN) O(logN) 

LPC (Levinson) [63,64] O(nN+n2) 169 clock cycles/iteration2 

Wavelets (lifting) [65] O(4+2N(1-1/2L)) - 

Karhunen-Loeve with ALOPEX[66] O(2cN) O(2clogN) 

PCA - SGA [67] O(nm) O(n2) 

3rd order cumulant (skewness) [68] O(Nq2+3qN) O(N+q) 

4th order cumulant (kurtosis) [69] O(N6)3 - 

                                                 
2  The 169 clock cycles (actually 3378 per 20 iterations) for a pipelined multiplier design are 
reported in [83], however there is no explicit mention of complexity in that paper. It seems evident, 
however, that for p multipliers in parallel, a pipelined implementation of the Levinson algorithm would be 





+ 2n

p

N
O .  

3  O(L4) is mentioned in [90] for 4th order moments. 
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1.4.3 Classifiers 

When some features of measured neural activity contain useful information that can 

be applied in regulating a stimulus generator, a method for automated classification may 

be in order. To this end, there are various methods that can be employed broadly 

categorized as Probability Density Estimation, Nearest Neighbor Search, and Neural 

Networks [70-72]. In particular, Probability Density Estimation or Bayes Estimation 

categorizes the measurement in order to minimize the probability of error, Nearest 

Neighbor Search finds the class that is associated with the nearest neighbors of the 

measurement, while Neural Networks consist of simple interconnected computational 

elements that have the end result of dividing the feature-space into specific regions [31] 

[79] [80]. 

Among these classifiers, neural networks seem to be the most widely used in 

biomedical applications. However, choosing the best classifier as well as a feature set for 

a particular case is often an empirical task. Thus, a set or “ensemble” of different 

classifiers is often used for a single classification task [169]. 

1.4.4 Feature Selection 

Selecting the features that minimize a cost function, such as the probability of 

misclassification, can be done exhaustively by examining each subset. However, this 

process is of complexity 



n

N
 and may become intractable for large feature sets. 

Alternatively, there are a number of methods that reduce the complexity of the task, 

including “branch and bound,” “sequential forward and backward selection,” “Plus-l-
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take-away-r algorithm,” and “max-min feature selection” [73-75]. If the problem at hand 

involves only a binary classification as in the case of classifying an LFP as a “desired” 

versus a “non-desired” response, and if hardware constraints limit the subset of features 

to only one, an exhaustive search may be adequate. 

1.5 Neural Network Modeling 

Since their introduction in 1943 by McCulloch and Pitts, and later modifications by 

Rosenblatt and Hopfield, classical static neural network models have been used 

extensively as classifiers [76-78]. Moreover, Hamilton et al. [79] [80] and Micheli-

Tzanakou et al. [170] used static networks to model the Basal Ganglia and predict the 

outcome of pallidotomies. However, because of the temporal effects of DBS on neural 

activity, it may be more appropriate to employ a dynamic, pulsed or spiking neural 

network (essentially a non-linear dynamical system) to model the DBS response. In 

particular, each neuron unit in a pulsed neural network behaves dynamically as 

physiological neuron. Using these networks, various pathways in the human nervous 

system have been modeled, including those within the Basal Ganglia [133-140] 

[176,177].  

1.5.1 Neuron Models 

The first detailed and physiologically accurate model of electrical behavior in the 

neuron was developed by Hodgkin and Huxley in 1944 [18] after extensive patch-clamp 

experiments where either voltage or current across the cell membrane was controlled 

while other variables were treated as observables. In particular, given some ion X with 
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charge q, in an environment with ambient temperature T, Boltzman’s constant k, and the 

internal and external concentration at rest of [X] i and [X]o respectively, the Nernst voltage 

across the membrane for ion X is constant and is derived as 







=
i

o
X X

X

q

kT
V

][

][
ln .       (1.4) 

Also, given the ion permeabilities of the membrane, which translate into the 

variable conductances ( )tVg mNa ,  and ( )tVg mK , , and the constant leakage conductance 

gL, the model is as shown in Fig. 1.12 (the effects of Cl- and Ca2+ have been omitted for 

simplicity). 

 

Figure 1. 12. The Hodgkin-Huxley model. 

However, the variable conductances in Fig. 1.12 have a time-varying non-linear 

relationship with Vm. In particular, Hodgkin and Huxley (H-H) assumed that the changes 

in conductance were due to the presence (or absence) of hypothetical particles in the cell 

membrane. Furthermore, Vm was thought to influence the time-course of accumulation or 

dispersal of these particles. Specifically, three particles were hypothesized by Hodgkin 
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and Huxley in their experiments, namely the n, m, and h particles. Moreover, given the 

relative trans-membrane potential eqmm VVV −=*
, the rates at which a particle q would 

accumulate and disperse were found to be αq and βq, respectively. These are the transfer 

rate coefficients for each particle:  
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Furthermore, the time-course of each particle was found to satisfy a first-order 

process so that the probability of appearance of each particle is given by  

( ) nn
dt

dn
nn βα −−= 1 ,       (1.8) 

( ) mm
dt

dm
mm βα −−= 1 ,       (1.9) 

( ) hh
dt

dh
hh βα −−= 1 .       (1.10) 

Now, given maximal conductances Nag and Kg , and the associative parameters 

described in equations (1.8-1.10), the individual ion conductances are 

hmgg NaNa
3= , and       (1.11) 

4ngg KK = .        (1.12) 
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Finally, according to the model in Fig. 1.12, the current Im flowing through the 

membrane from the external environment to the axoplasm is  

( ) ( ) ( )LmLKmKNamNa
m

mm VVgVVgVVg
dt

dV
CI −+−+−+= .  (1.13) 

Numerical solutions to equations (1.5-1.13) show that when the trans-membrane 

potential surpasses Vth, it causes a pronounced time-dependent change in the membrane 

conductivity, resulting in the action potential waveforms shown in Fig. 1.2 and Fig. 1.3.   

 Because of the complexity of the H-H equations, there have been various attempts 

to simplify the model while still retaining the fundamental nature of the neural behavior. 

In particular, the Noble [81] and Fitzhugh-Nagumo [82] models were the first to address 

this problem. Subsequently, other models were developed including the Leaky Integrator 

by Scharstein [83], Integrate-And-Fire (IF) by Hanson and Tuckwell [84], Hindmarsh-

Rose [85], Neuromime by Wolpert and Tzanakou [87], and other models by Wilson [88], 

Stein [89], Shinomoto and Kuramoto [90], Coop and Reeke [91] and Izhikevich [92]. Out 

of these, the least computationally complex model is the IF model [93]. 

The IF model uses the passive membrane model as shown previously in equation 

(1.1) with the exception of a non-linear rule that sets the transmembrane voltage Vm to 

some value c when Vth is surpassed [84]. In particular, Vm in the IF model is described by 

ms
m bVaI

dt

dV
−+=

, for Vm < Vth      (1.14) 

and is stepped to Vm = c at the instant Vm > Vth. 

While the integrate-and-fire model cannot reproduce the diverse behavior of a 

physiological neuron, it may be improved significantly by including the effects of a high-

threshold K current or the inactivation of the calcium T current [94] [93]. In contrast, the 
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Neuromime [87] was initially designed using digital circuit components. Thus, it may be 

a preferred choice when building neural networks using digital hardware. 

1.6 Previous Work 

Following the discovery of the effects of electrical brain stimulation on the 

symptoms Parkinson’s disease [34] in 1987, investigations were initiated to explain how 

the stimulus achieved the desired result [42] [176]. Also, methods for administrating the 

new-found treatment as an implantable “brain pacemaker” were being explored [101-

103] [176] [182-184]. In particular, the first disclosure of such an apparatus was the 

original patent on DBS filed by Rise and King [182] of the Medtronic corporation in 

1996, where a system consisting of an electrode sensor, a microprocessor, stimulus 

generator and additional peripheral circuitry was proposed for the purpose of measuring 

tremor-related symptoms in the arm and adjusting stimulus parameters based on the 

measurements. Subsequently, another patent was filed by John M.S. [183] in 2000, 

elaborating on the original proposal by including provisions for multiple sensors such as 

electrodes implanted in the brain and/or surface electrodes on the scalp and limbs. In 

addition, John proposed particular signal processing methods for assessing the measured 

data including the computation of signal variance, correlation, discrete Fourier transform, 

peak detection and Mahalanobis distance or Z-scores. Also, provisions for wireless data 

telemetry to an external PC or handheld processor were included in that patent. 

In the scientific literature, improvements to DBS have been suggested by a number 

of authors [101-103] [184]. In particular, Montgomery and Baker [101] suggested that a 

future direction of DBS would be to incorporate the ability of acquiring and decoding 
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neuro-physiological information “to compute the desired action.” Also, using results from 

a mathematical model of interconnected phase oscillators, Tass [102] proposes a method 

of demand-controlled double-pulse stimulation that would hypothetically enhance the 

effectiveness of DBS while reducing the power consumption of a stimulator in the long-

term. In addition, Sanghavi and Micheli-Tzanakou [103] as well as Feng et al. [184] 

propose methods for adaptively modifying stimulus parameters while seeking to 

minimize measures of brain activity in the vicinity of the implant. 

1.6.1.1 Demand-Controlled DBS 

From a theoretical perspective, Tass established a stimulus methodology based on a 

model of Parkinsonian brain activity [102] [157]. In particular, Tass simulated the 

synchronized oscillatory behavior of the basal ganglia using a network of phase 

oscillators. This method is as follows: given N oscillators with global coupling strength 

K>0 where the phase, stimulus intensity, and noise associated with the j th oscillator are 

Ψj, I j, and Fj(t), respectively, the behavior of  the j th oscillator and its relation to other 

oscillators as well as the stimulus is shown in equations (1.17-1.19). In particular, 

defining factors Sj(Ψj) and Xj(t) as 

( ) )cos( jjjj IS ψψ =  and      (1.17)  
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Tass showed that the model in equations (1.17-1.19) is able to generate patterns of 

both synchronized oscillatory firing and random non-oscillatory behavior. Moreover, the 

network tends to remain in a synchronized oscillation until a global stimulus is applied at 

time t0 so that Xj(t0)=1 for all j.  

Effective stimulation methods for suppression of abnormal burst activity in this 

model, as reported by Tass, include low amplitude high frequency stimulation (20 times 

the burst frequency), low frequency stimulation (equal to the burst frequency), or a single 

high amplitude pulse, with the high amplitude pulse being the most effective when it is 

applied at the appropriate phase of each neuron. Furthermore, Tass proposes a demand-

controlled stimulation technique whereby the synchronicity among individual oscillators 

is measured, and when passing a predefined threshold, activates a stimulation pulse. 

In order to detect synchronicity among neurons, Tass proposes the calculation of 

cluster variables -- the center of gravity in phase space of all oscillators. Specifically, if 

Rm(t) and φm(t) are the magnitude and phase respectively of the center of gravity of m 

clusters, and Ψj is the phase of  the j th oscillator, then the cluster variable is 

∑
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Thus, if the magnitude of the cluster variable is close to zero, there is very little 

synchronicity, but when it is close to unity, there is high synchronicity.  

1.6.1.2 ALOPEX and DBS 

Sanghavi and Micheli-Tzanakou [103] proposed an integrated circuit (IC) design of 

an adaptive DBS system where power estimation of recorded neural activity is used as a 

global “error measure” that drives the modification of stimulus pulse width, amplitude, 
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and frequency of multiple signal generators. Furthermore, the modification is 

accomplished in simulation with minimal power requirements (roughly 0.8mW) using an 

analog design of the stochastic optimization algorithm ALOPEX.  

Since its application to BCI [171] [172] [111] [112], the ALOPEX algorithm was 

applied to numerous studies involving image pattern recognition and artificial neural 

networks [66]. The algorithm itself is based on the principle of Hebbian learning wherein 

the synaptic strength between two neurons increases in proportion to the correlation 

between the activity of those neurons [20]. Similarly, given a set of modifiable variables 

at iteration k, bk={b1,k, b2,k,…,bN,k}, and a global response estimate Rk, ALOPEX 

recursively modifies each bj,k by using correlation measures between previous changes in 

bj,k and changes in Rk. Moreover, to keep the algorithm from falling into an infinite loop, 

stochastic noise r j,k is included. Finally, given stochastic and deterministic step sizes σj,k 

and γj,k, a reformulation of the algorithm in its most simplified “parity” form, as it is 

described in [112] is 
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Subsequently, new versions were developed including the 2T-ALOPEX algorithm 

contributed by Sastry et al. [158] and the ALOPEX-B algorithm contributed by Bia 

[159]. In particular, 2T-ALOPEX incorporates explicit probability distributions into the 

calculation of each iteration, while ALOPEX-B is a similar but simplified version of 2T-

ALOPEX. Finally, Haykin et al. [160] improved convergence by combining the original 

formulation with that of Bia. Moreover, Haykin et al. provide a good contextual 
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introduction and derivation of ALOPEX, while Sastry et al. prove that 2T-ALOPEX 

behaves asymptotically as a gradient-descent method. Also, Melissaratos and Micheli-

Tzanakou [108] introduced parallel and pipelined implementations of ALOPEX applied 

to template matching with corresponding computational and temporal complexities of 

calculating the global response function Rk. 

1.6.1.3 Genetic Algorithms and DBS 

Feng, Greenwald, Rabitz, Shea-Brown and Kosut [184] use a model by Terman, 

Rubin, Yew and Wilson [140] to test a method of stimulus administration where each 

stimulus parameter is obtained from a distribution of such measures, thus incorporating a 

degree of randomness in the stimulus waveform. Moreover, in this method, the shape of 

each distribution curve is a piecewise linear model where the model parameters are 

modified by a genetic algorithm that seeks to reduce the cross-correlation and/or 

autocorrelation of measurements taken from multiple sensors. Fig. 1.13 shows a diagram 

of the method proposed by Feng et al. 

 

Figure 1.13. The method proposed by Feng et al. [184] to draw deep brain stimulation parameters 

(I i
DBS) from distributions whose shape descriptors (ai) are selected by a genetic algorithm that seeks 

to minimize correlations in measures data (xi). Constraints (R) on the genetic algorithm may be 

imposed externally.  
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1.6.2 Related Advances in Other Neuro-prosthetic Reasearch 

Real-time biosignal processing has also advanced in other applications of neural 

prostheses in addition to DBS, such as cardiac pacemakers [95], retinal and cochlear 

implants [166-168], as well as brain-to-computer interfaces (BCI) [111-119]. In 

particular, pattern recognition systems for detecting abnormal heart activity have been 

proposed for cardiac pacemaker technology [95,96]. Also, the decoding of neural activity 

in the pre-motor cortex of the brain to control robotic limbs has been successfully 

implemented in experiments with primates [97] [98]. Moreover, wireless telemetry and 

power transfer to implanted circuitry has been successful for cochlear and retinal 

implants [99] [100]. There has also been research on detecting epileptic seizures and 

building an artificial hypocampus [104] [105].     

Retinal and cochlear implants are relevant to DBS because of their wireless power 

transfer and data telemetry capabilities [166-168], while real-time signal processing of 

biosignals seems to have advanced more in cardiac pacemaking [107-110] and especially 

BCI systems [111-119]. 

A typical setup for the real-time transmission of biosignals from a neural implant 

includes sensors (chemical or electrode) for detecting neural activity, signal processing 

for coding the activity and communications circuitry for transmitting the information as 

shown in the digram of Fig. 1.13. In addition, the need for analog amplifiers, filters and 

stimulus generators is ubiquitous among these designs [106]. Thus, methods included in 

the pre-processing and stimulus pulse generation stages have also been proposed 

including amplifier designs [123-125], analog-to-digital conversion (A/D) [126] and 

voltage multiplier designs [127]. 
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Figure 1.14. A system for recording and decoding neuron activity. Power and data 

are transmitted through wireless telemetry [106]. 

1.6.3 Cardiac Pacemaker Prosthesis 

Some research in cardiac pacemaker technology has sought to modify stimulus 

parameters in response to measured neural activity. Moreover, this notion of autonomous 

regulation is similar in principal to adaptive or autonomous deep brain stimulation 

(DBS).  

The current standard for signal processing in cardiac pacemaking still consists of a 

simple band-pass filter with adaptive threshold detection [107] [108] [109]. However, 

new methods have been proposed that also include non-linear filtering, wavelet analysis 

and linear regression as well as threshold detection [109] [110] [96]. For example, 

Rodrigues et al. [109] implement filter banks (wavelets) with linear regression and 

threshold techniques in an IC design for detecting “R-waves” in cardiograms. In 

particular, given an input waveform x(n) and wavelet filter H, the output of the wavelet 

decomposition is 

 y(n) =  x(n)TH .       (1.15) 
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Next, the “decision signal” is computed as 

T(n) = x(n)TH(HTH)-1HTx(n).      (1.16) 

Finally, the detection of the R-wave is considered positive if for some β>0 and 

maximum decision signal Tmax, T(n) ≥ βTmax. Furthermore, complexity of the algorithm is 

O(N), while the circuit design reported in [109] requires 6 multiplications and 45 

summations per iteration and achieves a performance of roughly 99% correct detection 

and less than 1% false alarm. 

1.6.4 Brain-to-Computer Interface 

The first reported brain-to-computer interface (BCI) employing an adaptive 

algorithm and feedback was reported by Tzanakou et al. [111] [171] [172] where pixels 

on a screen were modified by the ALOPEX algorithm [112] to excite particular neurons 

(or receptive fields) in the visual pathway of a frog brain. Recently, BCI methods have 

been reported for detecting intended movements of primates. These include linear 

methods such as the “population vector” algorithm [113] , finite impulse response (FIR) 

filters [115], Kalman filtering [116], non-linear methods such as neural networks (NN) 

including time-delay NN’s (TDNN) [117], gamma models [118] and recurrent NN’s 

[115], and probabilistic approaches such as Bayesian inference [119]. Moreover, the non-

linear methods tend to achieve more accurate results at the expense of computational 

complexity. 

In the case of linear methods, a typical formulation consists of sampling neuron 

spike-counts at intervals of 50ms from multiple (~15) recording sites. Moreover, the 

training stage consists of sampling roughly 1s of data (20 intervals) and storing this 
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information into a matrix R(20x15) while storing the resulting hand position in terms of x-y 

coordinates into a vector k. Next, the filter is constructed as f = (RTR)-1RTk and the 

reconstruction of movement for a history of neural activity R is obtained as u =  R·f.4 In 

addition, there are more sophisticated formulations that take into account the velocity and 

acceleration of the movement as well as prior information about the behavior of neurons 

in the cortex [120].    

Almost all reported BCI methods utilize the same pre-processing stage that consists 

of spike detection, sorting and counting over an interval typically in the range of 50-

100ms. Moreover, correlation methods and Principal Component Analysis (PCA) with 

threshold detection are reported as methodologies for the spike detection [121] [122]. 

However, Wessberg et al. [117] report using straight linear regression with no spike 

detection.  

1.6.5 Modeling the Basal Ganglia 

Three general methods of modeling nuclei of the basal ganglia can be found in the 

scientific literature. These can be broadly categorized into “functional” models that are 

designed to provide insight into the computational function of the basal ganglia [133-138] 

[141] [177], “physiological” models that incorporate more details of ion transport [139] 

[140] [176], and “conceptual” models [128-132] that provide a description of the synaptic 

connectivity. Moreover, the physiological models have been used in simulations of 

                                                 
4  The formulation is included here as it appears in the literature. However, there are some 
unresolved questions. In particular, it would seem that a separate filter would be required for each 
movement element so that given a history of 20 positions, there are corresponding x and y-coordinate 
vectors x and y of 20 elements each. In that case, two filters would be derived as fx = (RTR)-1RTx and fy = 
(RTR)-1RTy. Then, given a set of new data S in the testing phase, the corresponding hand positions would be 
given as 
 xnew = S·fx and ynew = S·fy.  
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applied Deep Brain Simulation (DBS). In particular, Grill et al. [176] show that extrinsic 

high frequency stimulation “masks” or prevents internal activity of single neurons from 

being expressed at the output, thus causing an “informational lesion,” while Feng et al. 

[184] use a model by Terman et al. [140] to test a novel method of stimulus 

administration. Also, in response to in vitro studies of the rat GPe and STN [178], 

Humphries and Gurney [139] design models that reproduce the oscillatory and bursting 

modality of the neural circuits. Recently, Sridhar and Micheli-Tzanakou sought an analog 

CMOS model of Pakinsonian activity [141]. 

1.7 Dissertation Outline 

The purpose of this dissertation is to design an automated system for the 

modification of DBS stimulus parameters based on specific identifiers in neuronal 

activity. In particular, the design will incorporate real-time pattern recognition of neural 

activity, and a methodology for automated adjustment of microstimulation parameters. 

The steps needed to accomplish this task involve (1) the construction of a model 

that responds as the local field potential does during DBS stimulus, (2) identification of 

salient patterns or features in neural activity that distinguish between responses to stimuli 

of varying specifications, (3) selection of a method for real-time stimulus modification, 

and (4) design of a digital architecture. 

Chapter 2 presents a novel method of designing an artificial dynamic or spiking 

neural network using fundamental properties of integrate-and-fire neuron models in 

conjunction with first-order dynamic synapse models. Moreover, a subthalamo-pallidal 

network is designed that responds to pulse stimuli, essentially producing an impulse 
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response that is similar to the neural activity encountered in the subthalamic nucleus 

(STN) of the brain during DBS treatment.  

Chapter 3 presents an equivalent circuit model of the neuro-electrode interface and 

analog front-end of a hypothetical recording device. Moreover, the model incorporates 

aspects of electrode recordings such as the shape, size and distance of electrodes, the 

dielectric properties of brain tissue, the response of amplifiers, pre-filters and DC-bias 

compensation. Also, an equivalent infinite impulse response (IIR) filter is designed to 

match the magnitude response of the circuit model in the frequency domain. Next, the 

digital filter is incorporated in simulations of the neural network in order to generate 

signals that would be encountered by a hypothetical recording device attached to 

electrodes embedded in brain tissue. 

Chapter 4 presents a method of selecting the optimal signal processing technique 

(among a set of such techniques) that is capable of providing a measure of effectiveness 

of the applied stimulus parameters. In particular, each signal processing method 

(including LPC, ARMA models, FFT and higher order statistics) is applied to the filtered 

responses of the subthalamo-pallidal network while the stimulus parameters of pulse 

amplitude, width and frequency are varied. Next, those methods that provide the best 

discriminating capability between responses of the network to various stimulus 

parameters will be chosen as candidates for digital circuit implementation. 

In Chapter 5, an application specific integrated circuit (ASIC) design is presented 

for computing the first LPC coefficient from a set of data and using the result to select 

appropriate stimulus parameters. Moreover, the design is optimized using a pipelining 

strategy in order to minimize dynamic power dissipation and processing time. Also, 
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limitations posed by safety standards and the effect of various packaging models on the 

operating frequency of the circuit are considered.  

Chapter 6 includes transistor-level designs of the proposed ASIC. In particular, 

some modifications of a pipelined Baugh-Wooley multiplier and a radix-2 divider are 

presented. Also, state machines for controlling data paths in the computation of the LPC 

coefficient as well as regulating stimulus parameter values are presented along with their 

gate-level circuit implementations. 

Chapter 7 shows the response of the subthalamo-pallidal network to pulse stimuli of 

various amplitude, width and frequency. Moreover, the results of feature-selection are 

presented as histograms of computed features and spectra of error probabilities of using 

each feature. Next, the results of analog circuit simulations of key components in the 

ASIC design are presented, followed by a logic-level simulation of the entire circuit in 

conjunction with the subthalamo-pallidal network in a possible operating scenario. 

Chapter 8 contains a summary of the work presented in this dissertation, some 

concluding remarks and some suggestions for conducting related experimental work.  

Appendix A presents derivations of some basic neuron and synaptic properties used 

in programming the neural network.  

Appendix B presents some definitions and methods of signal processing techniques 

used in the dissertation. 

Appendix C presents the transistor level designs of some useful electronic circuits.  
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Chapter 2. Modeling the Subthalamo-Pallidal Loop 

In order to select salient features that can discriminate between responses to DBS 

stimuli of varying specifications, a set of test or training data must be obtained that is 

representative of the signals that would be encountered in a realistic scenario. Thus, for 

the purpose of generating this data, an artificial neural network is programmed to imitate 

the response to pulse stimuli encountered in the subthalamic nucleus of patients 

undergoing neurosurgery as a treatment for Parkinson’s disease. 

2.1 Neuron Models 

The model consists of GPe and STN nuclei, each with its particular type of 

neuron [145] [146]. Moreover, the dynamic electrical behavior of GPe neurons is 

governed mostly by sodium (Na+) and potassium (K+) channels, while STN neurons are 

also heavily influenced by Calcium (Ca2+) channels as well as a leaky Na+ channel [133]. 

However, because of the computational demand in simulating the ion current components 

during an action potential event, an approximation to the Na+ and K+ contributions under 

these circumstances is made while all other dynamics are handled by first order systems 

in conjunction with finite-state-machines (FSM). 

2.1.1 Approximation of Net Na+-K+ Current 

Na+, K+ and leakage current components during an action potential event can be 

modeled using the Hodgkin-Huxley equations [18]. In particular, a numerical solution 

can be obtained using the Euler method [173] with a time step of 1µs. In turn, the net 

transmembrane current resulting from these components can be approximated by a sum 
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of N gaussian pulses as suggested by Plonsey et al. [39] where Ai, Ti and σi are constants 

to be determined and t is time: 
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Curve fitting to the data generated by HH simulation can be accomplished using 

the correlation of differences algorithm known as ALOPEX [112]. 

An alteration in sodium and potassium conductivities by 0.372mS/cm and 

0.112mS/cm respectively for a duration of 0.5ms will produce the transmembrane current 

component of the action potential event. Furthermore, the parameters used in the 

simulation are as shown in Table 2.1. 

Table 2.1 ∆t 10-3 ms Time resolution 
r 25x10-4 Cm Patch radius 
cm 2·π·r·1 µF/cm Capacitance  
Vrest -75 mV Resting potential 
VNa 40 mV Na+ resting potential 
VK -87 mV K+ resting potential 
VL -64.4 mV Leakage potential 
GNa 2·π·r·120 m /cm Na+ conductance 
GK 2·π·r·36 m /cm K+ conductance 
GL 2·π·r·0.3 m /cm Leakage conduct. 

Next, using the results of the H-H simulation, the sum of Gaussian pulses shown 

in equation (2.1) was fit to the transmembrane current signature using the ALOPEX 

algorithm. The optimal parameters obtained from ALOPEX are shown in Table 2.2 

below. 

Table 2.2 
 n=1 N=2 n=3 n=4 
An -24.890pA 14.190pA 5.185pA -0.210pA 
Tn 1.539ms 2.196ms 3.776ms 9.056ms σn 0.343ms 0.445ms 0.454ms 4.228ms 
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A comparison between the trans-membrane current density obtained from a 

solution to the Hodgkin-Huxley (H-H) equations and the INa/K model is shown in Fig. 2.1 

while the power spectrum of the INa/K model is shown in Fig. 2.2. 

 
Figure 2.1.  A comparison between (1) The transmembrane current density during an action 
potential event as obtained from a numerical solution to the Hodgkin-Huxley equations and (2) the 
INa/K model. The action potential is initiated by altering the sodium and potassium conductivities for 
a brief instant of 0.5ms by 0.372mS/cm and 0.112mS/cm respectively. 

 
Figure 2.2. The power spectrum of the INa/K model.  
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From the results in Fig. 2.2 it can be seen that the frequency content of an action 

potential is below 1000 Hz. Thus, sampling rates need not exceed 2kHz when recording 

the action potential. 

2.1.2 Threshold Levels 

Refractoriness was modeled using a time-varying threshold voltage similar to that 

described by Deutsch and Micheli-Tzanakou [143]. In particular, given the impossibility 

of eliciting an action potential during sodium inactivation, followed by the refractory 

period, the threshold model is a piecewise model that combines a very steep curve with a 

decaying exponential. Moreover, the model is reset or initiated at every spike event. 

Thus, given spike time Ts, decay constant α, inactivation duration Tabs and rest threshold 

vΘ, the threshold model is given by equation (2.2) below. 
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2.1.3 State Transition Diagram 

Resting state, inactivation and refractory behavior of neurons can be modeled 

using a state machine architecture as shown in Fig. 2.3. 

The neuron is initiated in the REST state, then it transitions to INACT at the 

moment when the transmembrane voltage Vm exceeds threshold Vth. Next, when the 

inactivation time is elapsed, the neuron transitions to REFR. Finally, the neuron either 

branches to INACT when Vm exceeds Vth, or returns to REST when refractory time is 

elapsed. 
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Figure 2.3. State transition diagram describing the behavior of the neuron model. 

Excursions of Vm beyond Vth bring the neuron to INACT from REST and REFR, while the 

internal “clock” of the neuron determines transitions to REST from REFR, and to REFR 

from INACT. 

2.1.4 Neuron Algorithm 

Given the approximation to the net Na+-K+ current INa/K, an external component 

due to synaptic afferents and microstimulation Iext, and a stochastic component Is, the 

transmembrane voltage Vm is modeled at each iteration as follows: 

 

 

 

Using the Sodium/Potassium current approximation in conjunction with an 

integrate-and-fire mechanism as described in equation (1.14) and Fig. 2.3, the behavior of 

the overall neuron model can be tested by applying stimuli as trans-membrane current 

pulses that would be initiated by some external source. In particular, Fig. 2.4 depicts the 

trans-membrane potential of the neuron as it is stimulated with 0.5ms current pulses 

spaced at intervals of 10ms. Moreover, the amplitude of the pulses is calculated to be the 

minimum to elicit an action potential or 3.551nA (see the section on neural net calculus). 

if ( Vm > Vth( t ) ) t = 0; 
Im = Iext + INa/K( t )  + Is; 
Vm = Vm - (Vm-Vrest) * dt/Rm/Cm + dt*Im/Cm; 
t = t + dt; 
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It can be seen that the pulses following the first are not strong enough to overcome the 

refractory period. Values of nominal membrane capacitance (Cm), resistance (Rm), 

threshold voltage at rest (vΘ), relative refractory threshold (v0), threshold decay rate (α), 

and absolute refractory period (Tabs) are (Cm=0.157pF, Rm=12.73MΩ, Tabs=4ms, 

α=0.1kHz, vΘ=-60mV, v0=0mV). Consequently, the rheobase current described in 

equation (1.2) becomes Irheo= 0.785nA. 

 

 
Figure 2.4. Transmembrane voltage of a neuron model stimulated by a 50µs 31.81nA 
transmembrane current pulse at intervals of 10ms. The effects of refractoriness are seen 
between the two action potentials (Cm =0.157pF, Rm= 12.73MΩ, A=∞, Tabs=4ms, α=0.1kHz, vΘ=-60mV, v0=0mV). 

2.1.5 STN Neurons 

For STN neurons the algorithm remains the same except for an additional Ca2+, 

K+ and leaky Na+ component. In particular, activation of the Ca2+ and K+ currents follow 

the state machine shown in Fig. 2.2 while the leaky Na+ current is a constant current INa. 
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Figure 2.5. Finite state machine for STN neurons. 

The threshold for activating the Ca2+ current ICa is below Vrest [139] so that a 

prolonged inhibition of the neuron will likely be followed by a burst of activity initiated 

by the Ca2+ current and followed by a secondary K+ current. Accordingly, the extra 

current components of the STN neuron are calculated at each iteration as: 

 

 

 

Including the additional Ca2+, K+ and leaky Na+ currents causes the spontaneous 

bursting of the STN neuron model as shown in Fig. 2.6 (with VCa=-95mV, TCa=200ms, 

TK=1000ms, ICa-K=3.1nA, INa= 0.785nA). Moreover, the duration of Ca+ current (200ms) 

and the K+ cycle (1000ms) are evident in Fig. 2.6. 

2.2 Synapses 

The model adopted for a synapse is a decaying exponential response of specified 

magnitude J, decay rate τs and delay tk. Thus, if every action potential that arrives at a 

if (CaACT) ICa-K = (1-dt/10)*ICa-K  + ICa*dt/10; 
else if (KACT) ICa-K = (1-dt/400)*ICa-K; 
else ICa-K = 0; 
 
Im = Im + ICa-K + INa; 
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pre-synaptic terminal at time 0 is considered an impulse, then the local post-synaptic 

current induced follows the impulse response 
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= τ−−        (2.3) 

where u(t) is the unit step function [144]. 

 
Figure 2.6. Spontaneous bursting of an STN neuron model (Cm =0.157pF, Rm= 12.73MΩ, A=∞, 
Tabs=4ms, α=0.1kHz, vΘ=-60mV, v0=0mV, VCa=-95mV, TCa=200ms, TK=1000ms, ICa-K=3.1nA, INa= 
0.785nA). 

Assuming that the synapse connects a source neuron src with a destination neuron 

des and contains a finite length first-in-first-out (FIFO) type delay buffer simulating the 

path delay, the synapse produces a stimulating current Istim in the destination neuron 

according to the following algorithm for each iteration step: 

 

 

 

buffer.put(src.isFiring()); 
if(buffer.get()) Istim = Istim * (1-dt/τs) + J/τs; 
else Istim = Istim * (1-dt/τs); 
if(des.isFiring()) Istim =0; 
des.setStimulus(Istim); 



  44  

 

It should be noted that in reality the stimulus to des remains non-zero when des is 

firing. However, because it is ineffective due to Na+-inactivation, the stimulus is set to 

zero in simulation. 

The synapse model described in equation (2.3) can be tested by connecting two 

neurons, stimulating the first and observing the result on the second. Thus, using a 

synaptic delay tk=5ms, decay τs=10ms and efficacy Jbase=11.74pC (see section 2.3 on 

neural net calculus), the first neuron was stimulated with a 0.5ms 3.551nA 

transmembrane current pulse at intervals of 50ms. Fig. 2.7 shows the results of the 

simulation. In particular, the second and fourth pulses did not elicit an action potential in 

the first neuron due to refractoriness, however the first and third pulses did elicit an 

action potential that propagated to the second neuron with a delay somewhat larger than 

5ms and comprised of tk and the effect of the decay τs. Moreover, the shape of the action 

potential differed between pulse stimuli and synaptic stimuli. This is due to the 

exponential decay of the local post-synaptic current.   

2.3 A Calculus of Spiking Neural Networks 

In designing a spiking neural network that behaves according to prescribed rules, 

there is a useful set of measures that appear frequently. These include: (1) the base 

amplitude (Abase) or minimum current pulse amplitude necessary to elicit an action 

potential in a single neuron at rest, (2) the base efficacy (Jbase) or minimum synaptic 

efficacy necessary to elicit an action potential upon arrival of a pre-synaptic spike and (3) 

the base stochasticity or the variance in transmembrane current necessary to cause a 

neuron to fire with some probability p over some time interval. The following 
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calculations are based on the notion of rheobase current described in equation (1.2) and 

are similar to the derivations of Scharstein [148].  

 
Figure 2.7. The synapse model with 5ms delay, 10ms decay and a synaptic efficacy of 11.74pC. Vm,1 is 

the transmembrane voltage of the pre-synaptic neuron and Vm,2 is the transmembrane voltage of the 

post-synaptic neuron. Pulse stimuli can be seen on the same graph as that of Vm,2. The stimuli are 

from a 0.5ms 3.551nA transmembrane current pulse at intervals of 50ms. 

2.3.1 Base Pulse Amplitude 

Given nominal neuron membrane capacitance Cm and resistance Rm, an equation 

that describes subthreshold dynamics of a neuron membrane excited by a transmembrane 

pulse current of duration Tp and peak A is simply the first order equation 

( ) ( ) ( ))u()u(
1

pm
m

m
m TttAtV

Rdt

tdV
C −−=+     (2.4) 

where u(t) is the unit step function. 
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 Using equation (2.4), the minimum value of A required to elicit an action 

potential or drive ∆Vm=Vm-Vrest past some value ∆Vth is 

  ( ) m
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th
base

Re

V
A

mmp //1 −−
∆

=       (2.5) 

or in terms of the rheobase current Irhe, 
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I
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(more detailed derivations can be found in Appendix A). 

2.3.2 Base Efficacy 

The equation that describes the dynamics of synaptic activation under 

subthreshold rest conditions for a single synapse is  
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The solution for Vm attains a maximum value at time t=∆t where  
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In that case, the minimum efficacy Jbase required to drive ∆Vm past some threshold ∆Vth in 

the post synaptic neuron is 
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or in terms of the rheobase current Irhe, 
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Given that the membrane voltage decay rate RmCm is roughly 2ms while the 

synaptic decay constant τs used in these studies ranges between 3ms and 10ms, the delay 

∆t described in equation (2.8) ranges between 2.4ms and 4ms. This range for ∆t is not 

very significant compared to the path delay T between neurons of different nuclei that is 

set to lie in the range 50ms ≤ T ≤100ms.  

2.3.3 Base Stochasticity 

The size and complexity of the nuclei within the Basal Ganglia prohibit practical 

simulations that take into account the total number of neurons in these regions in addition 

to the myriad pathways arriving from cortical areas. For example, the STN region alone 

contains over 500,000 neurons, while the GPe contains more than twice that number 

[145] [146]. Also, each neuron receives synaptic contributions or afferents that number in 

the thousands. 

Simulating the details of interaction between neurons for such large networks may 

not be tractable. Also, many physiological processes that occur within neurons and 

synapses and are not included in the model are likely influential in the outcome. Thus, in 

keeping with the central limit theorem [147], the aggregate of all these effects are 

modeled as a normal zero-mean stochastic trans-membrane current Istoch. Moreover, the 

variance of Istoch is calculated in terms of the “base” stochasticity or the variance σI
2 

necessary to elicit an action potential with probability p at any given time instance 

resulting in a mean firing rate of f = p/τt (where τt is the time-step of the simulation). 

Again using the passive membrane model in equation (1.1), but substituting the 

nominal parameters Cm and Rm, and the potential with respect to rest, ∆Vm, the system is 

described as 
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and has a corresponding impulse response 
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To find the probability of ∆Vm surpassing ∆Vth (assuming ∆Vm is a Gaussian 

process) the variance 2
mV∆σ  of ∆Vm is needed (assuming zero mean): 
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Substituting the convolution Istoch * hm(t) for ∆Vm and assuming the variance of 

Istoch is 2

stochIσ , the variance of Vm can be solved as  

m

m
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Given 2

mV∆σ , the probability of ∆Vm surpassing ∆Vth is then 
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Assuming a firing frequency of f, and solving for the standard deviation 
stochIσ  of 

the stochastic current,  
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A restriction on p is that it can never exceed 0.5. This is due to the zero-mean nature of 

the stochastic input. Also, firing above the sampling rate or simulation step is not 

practical, while firing above the limitations of absolute refractory is not a realistic 

scenario. 
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2.3.4 A Neural Rate-Coding Theorem 

Given a mean arrival rate of ∆τ, the arrival of spikes at the STN neuron can be 

approximated as 

∑∞
−∞=

∆−=
n

ntts )()( τδ .       (2.17) 

Also, using the synaptic impulse response in equation (2.3), the post-synaptic current that 

will result is given by the convolution equation 
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Furthermore, solving for Il(t) yields 
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As can be gleaned from equation (2.19), the dependence of Il on time t is 

constrained within limits that depend on τs. In particular, the range of Il can be described 

as 
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Furthermore, taking the limit as τs → ∞ yields the result that 

Jf
J

Il =
∆

=
τ .        (2.21) 

This confirms the rate-coding property of neurons in that the mean post-synaptic current 

is proportional to the pre-synaptic firing frequency f and the synaptic efficacy J. 
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2.4 Network Architecture 

The inhibition of the STN in response to microstimulation is assumed to occur 

because of a negative feedback loop between the STN and GPe regions as shown in Fig. 

2.8. 

 
Figure 2.8. Negative feedback of the STN-GPe loop. Each STN module is connected to all 
GPe modules through excitatory or positive pathways. However, each GPe module is 
connected to only one STN module through inhibitory pathways (a), (b) and (c). Moreover, 
each inhibitory pathway has a different delay time associated with it. Also, the same external 
stimulus is applied to each STN module as shown by the electrodes (--) in the diagram. 

By choosing appropriate network and neuron parameters, the model depicted in 

Fig. 2.3 may produce responses to pulse stimulation that are similar to those mentioned in 

experimental studies, effectively inhibiting the STN neurons for some duration ∆T 

following a stimulating pulse.  
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2.4.1 Network Parameters 

The network parameters that are significant in the generation of the DBS response 

are synaptic efficacy (or weight), synaptic decay, path delay, stochastic variation, number 

of modules and size of each module. Moreover, stimulation currents, synaptic efficacies 

and stochastic properties are in terms of the “base” values previously described.  

2.4.2 Module Size 

The total number of STN neurons over all modules includes (1) those that would 

be close enough to the recording electrode to influence the local field potential and (2) a 

set of “hidden” neurons with varying degrees of recruitment such that larger stimuli are 

more likely to activate a larger number of STN neurons thus causing a stronger inhibition 

in the feedback loop. Also, the number of GPe neurons in each module is chosen to 

inhibit the corresponding STN module for a mean duration of ∆T following a DBS pulse. 

In particular, given that the neurons in a particular GPe module have path delays to a 

corresponding STN module that are uniformly distributed between T1 and T2, then a 

sufficiently large number N of those neurons would generate a mean arrival rate at the 

STN module of approximately 
12 TT

N

−
 or a mean inter-arrival time of 

N

TT 12 −
=∆τ . 

Moreover, the limits posed on post-synaptic current in equation (2.20) can be modified to 

ensure that ∆τ does not deviate significantly from its mean. Thus, the mean and range of 

Il can be found respectively as 
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A measure of the smoothness of the response can then be calculated as 

mean

range
m I

I
k = ,        (2.24) 

where km can be considered a “smoothness factor” that indicates how far the response 

will vary from its mean and is independent of the synaptic efficacy J. Furthermore, given 

that the criteria for a synaptic connection are comprised of: (1) synaptic decay time τs, (2) 

a smoothness factor km and (3) a duration of inhibition ∆T = T2 – T1, it is now possible to 

select a GPe module size NGPe that will satisfy the criteria.  

2.4.3 Synaptic Efficacies 

The STN→GPe efficacies are chosen to elicit firing of GPe neurons only when all 

STN neurons fire at once. Thus, given the synaptic decay for the STN→GPe path, the 

size of the GPe module and the base efficacy GPeSTN
baseJ →  of the STN→GPe path calculated 

using the methods previously mentioned, the STN→GPe efficacies can be calculated as 

STN

GPeSTN
base

GPeSTN N

J
J

→

→ = .       (2.25) 

The synaptic efficacy JGPe→STN can be found using the inequalities in equation 

(2.20) such that  −>
∆

−

→
seIJ slSTNGPe

τ
τ

τ 1 ,     (2.26) 

where Il is chosen equal to the maximal sum of positive current (including stochastic 

components) that must be overcome by the GPe→STN pathway in order to achieve 

inhibition. 
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2.4.4 Recruitment 

Recruitment in the context of this study, can be defined as the number of neurons 

in the vicinity of an electrode that are caused to fire as a direct consequence of a stimulus 

pulse. This can be simulated in the model by including an attenuation of the stimulus 

current that varies among neurons in a module. Thus, some neurons in the STN will have 

a lower threshold to stimuli than others while GPe neurons are assumed to be far enough 

away from the stimulus so as to be considered unaffected (actually they are affected 

indirectly through synaptic paths from the STN).  

2.4.5 Connections 

The network was constructed according to Fig. 2.3 so that random firing patterns 

persist without microstimulation. However, when a pulse stimulus is applied to the STN, 

neurons in the immediate vicinity of the stimulus will fire at approximately the same time 

initiating a large counter “pulse” in the feedback loop that acts to inhibit the STN.  

The network parameters used to generate the desired post-stimulus response in the 

STN were derived using equations (2.4) through (2.26) and also from some empirical 

trials. In particular, for a simulation with time step dt=5µs, 

(1) Abase=3.551pA (for a 0.5ms pulse width),  

(2) the current to be countered in the STN is Ic = 6.89nA and includes Ca2+, leaky 

Na+, internal afferents and Istoch.  

The base efficacy for GPe neurons can then be estimated to be Jbase = 24.5 pC. The 

remaining parameters can be found in Tables 2.3 and 2.4. 



  54  

 

Table 2.3: Properties of neurons within each module 
Neurons n=1 n=2 n=3 n=4 

NGPe 25 38 50 - 
NSTN 2 12 8 8 
pGPE 0.15 0.15 0.15 - 
pSTN 0.3 0.3 0.3 0.3 
RGPE 1 1 1 - 
RSTN 1 1 1 [0,1] 

 

Table 2.4: Properties of synaptic connections between modules 
Synapses J τs τd 

GPe→GPe 0.0125Jbase 5ms [1,2]ms 
GPe1→STN1 15.25pC 10ms [0.5,50.5]ms 
GPe2→STN2 15.03pC 10ms [0.5,75.5]ms 
GPe3→STN3 15.25pC 10ms [0.5, 100]ms 
GPe1→STN4 15.25pC 10ms [0.5,50.5]ms 
STN→GPe 25.00pC 3ms [1,2]ms 
STN→STN 0.015Jbase 5ms [1,2]ms 
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Chapter 3. Neuro-Electrode Interface 

Before sampling and digitization, the neuron activity recorded by microelectrodes 

is influenced and modified by a number of factors including the shape, size and distance 

of electrodes, the dielectric properties of brain tissue, the response of amplifiers, pre-

filters and DC-bias compensation. However, the extent of influence and practicality of 

simulating these effects must be taken into consideration before incorporating them into 

simulation as a composite digital band-pass filter.  

3.1 Dielectric Properties of Brain Tissue 

A novel method is incorporated to model the dielectric properties of brain tissue. 

In particular, a combination of the microscopic properties mentioned by Bedard et al. 

[56] [57] and the macroscopic properties mentioned by Gabriel et al. [58] is used. The 

reasoning is that when distances between electrode and neuron in brain tissue are roughly 

equivalent to the diameter of neurons, the dielectric properties resemble those of cerebral 

spinal fluid (CSF), whereas when distances are beyond that range, the cumulative effect 

of neurons and glial cells interspersed with CSF results in the empirical multiple Cole-

Cole model mentioned in [58]. As such, an exponential decay [56] was used to “morph” 

the microscopic model {εµ=10-10F/m, σµ=1.56S/m} to the macroscopic model 

{ εM(ω),σM=0.1S/m} as distances increased (with a decay constant of two neuron radii or 

τs=50µm). Symbolically, the resulting dielectric properties, as a function of frequency ω 

and distance d (where d is always greater than the sum of the radii) are 
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The frequency dependent components were found by Gabriel et al. [58] to 

conform to the following parametric model with parameters shown in Table 3.1. 
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Table 3.1: Cole-Cole model parameters of brain tissue [58] 
N ∆εn [F/m] τn [s] αn ε∞ [F/m] 

1 45 7.96e-12 0.1 4 

2 400 15.92e-9 0.15 4 

3 2e5 106.1e-6 0.22 4 

4 4.5e7 5.3e-3 0 4 

3.2 Equivalent Circuit Model 

The intent is to extract a system of linear equations describing the dynamics of the 

neuro-electrode interface. Then, an equivalent digital filter is to be designed and used in 

simulation. As a first step, passive circuit elements including resistors and capacitors will 

be derived using the dielectric properties of brain tissue. Next, these elements will be 

incorporated into an equivalent circuit model. 

3.2.1 Ohmic Resistance 

Assuming electrodes and neurons have a spherical shape of radii re and rn 

respectively, and using the vector form of Ohm’s law, the resistance between an electrode 

and neuron separated by a distance d in a medium with dielectric properties previously 

defined can be derived. In particular, the electric field E
v

 due to current density 
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J
v

emanating from a point source in a medium of conductivity σ is given by the form of 

Ohm’s law:  

JE
vv

σ
1= .       (3.4) 

Assuming the total current is I0, then the current density at a radius r from the 

point source in a radially outward direction (n
v

) is 
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Thus, the electric field in terms of I0 is 
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Assuming, for simplicity, a constant conductivity (not dependant on r), a path 

integral along a radial ray R
v

 provides the voltage 
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Fig. 3.1 shows two spheres a distance d apart with radii rn and re representing the 

neuron and electrode respectively in a conductive medium. 

 

Figure 3.1. Two spheres a distance d apart with radii rn and re. 

Assuming the electrode is a sink for all the current I0 emanating from the neuron source, 

the voltage at some distance r from the electrode would be the sum of the contributions of 

each pole of the dipole 
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The difference in electric potential between the surface of the neuron and the 

surface of the electrode can be obtained using equation (3.8) such that 

en rrrrdrr VVV
=−=

−=∆ .     (3.9) 

So, 





−

−
−

−+=∆
)(

1

)(

111

4
0

enen rdrdrr

I
V

πσ
.    (3.10) 

The resistance then is  −
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Now, taking into consideration the variability of electric conductivity with respect to 

distance (variability with respect to frequency is not significant), 
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3.2.2 Dielectric Capacitance 

The electric field near a conducting sphere is also influenced by static charge Q 

that builds up on the surface of the sphere in the dielectric of the medium ε. Thus, using 

Gauss’s law, 

n
r

Q
E

v

v

24πε
=  .      (3.13) 

Again, ignoring the spatial variation of conductivity, a path integral along a radial ray 

yields 
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Assuming the charge buildup at the two poles of the dipole in Fig. 3.1 is equal but 

opposite, the difference in voltage between the two surfaces is 
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The capacitance between the two spheres is then  −
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Now, taking into consideration the variation of electric permittivity with respect to 

frequency and distance,    

( )  −
−

−
−+

=

)(

1

)(

111

,4
),(

enen rdrdrr

d
dC

ωπεω .   (3.17) 

3.2.3 Equivalent Circuit 

Each neuron is a signal source in the LFP and is assigned an interface that can be 

modeled as a three-node equivalent circuit where the nodes represent (1) the ground 

plate, (2) recording electrode and (3) the neuron itself. Fig. 3.2 shows the equivalent 

circuit with a neural source Is(t), electrode potential Ve, and corresponding impedances 

between electrode and ground (Zep), neuron and ground (Znp) and neuron and electrode 

(Zne). Also, a capacitance Cdc representing an equivalent of a DC drift stabilizer is 

included. 
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The impedances Zne and Znp are modeled using the dielectric properties of tissue 

previously derived while the impedance between electrode and ground (Zep) is modeled 

according to the method developed by Johnson et al. for iridium microelectrodes in brain 

tissue [59].  

 
Figure 3.2. Equivalent circuit of recorded neuron signal source embedded in a conductive medium 

with specific dielectric properties. Is(t) is a source of action potential waveforms, Cdc and Rin 

represent the equivalent of a DC drift stabilizer and Vr is the signal recorded within the chip. The 

impedances Zne, Zep and Znp represent the neuron-electrode, electrode-ground and neuron-ground 

dynamics respectively.   

In particular, given radial frequency ω and the parameters in Table 3.2 for that 

model, the following equations describe impedance calculations. 

    Table 3.2 
Rex=5.573x105 Rm=9.759x105 Cm=1.256x10-9 
Ren=4.122x105 A=4  

 
Zcpe= π· (44x106 + i·750x106) /ω, 
Am = (A*Rm*Rex)./(A*Rm+Rex+i*ω*Rm*Cm*Rex), 
Zep = Ren + Zcpe + Am. 

Also, 
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where d > 1mm, neuron radius rn=20µm, electrode radius re=1nm and ground plate radius 

rp=1mm. Also, Zne uses the same equation as equation (3.18) and similar parameters 

except for d = 40µm. Furthermore, the equivalent DC bias stabilizing circuit is designed 

to behave as a high-pass filter with 3dB attenuation at 100Hz and minimal influence on 

the rest of the circuit beyond 100Hz [149]. Thus, if V0 is the uncompensated signal, it is 

desired that at 100Hz, 
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This means RinCdc = 9218·10-7. However, since Rin>>[Zep]ω=2π100, Rin can be chosen as 

30MΩ and Cdc = 30.73pF. 

The resulting transfer function between V0 and Is(t) is 
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where n represents each particular neural source of the signal. Also, the magnitude 

response of the compensated circuit becomes  
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Using the parameters of Table 3.3, the magnitude response for various distances 

between neuron signal sources and the electrode is shown in Fig. 3.3. Also, the effects of 

an anti-alias pre-filter are shown in Fig. 3.4. 

Table 3.3: Parameters of the neuro-electrode interface model 

Neuron radius Electrode radius 
Ground plate 

radius 
Input 

impedance 
DC offset 
stabilizer 

rn = 40x10-6 re = 10-9 rp = 10-3 Rin = 30MΩ Cdc = 30.73pF 
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Figure 3.3. Magnitude response of the equivalent circuit (including DC bias offset) for various 

distances from the signal source in terms of neuron radius rn. 

 
Figure 3.4. Magnitude response of the equivalent circuit with DC bias offset stabilization and anti-

alias prefilter for various distances from the signal source in terms of neuron radius rn.  
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Attenuation with respect to distance is shown in Fig. 3.5 for various frequency 

components. According to Fig. 3.5, the model predicts a rapid increase in attenuation 

between 1 and 10 neuron radii, but then remains roughly constant beyond that. 

 
Figure 3.5. Attenuation of the LFP versus distance from the signal source (in neuron radii rn) for 

various frequencies. 

3.3 DC Offset and Antialias Pre-Filtering 

Typically, recording systems of physiological data incorporate DC stabilization 

and analog pre-filtering stages in order to take full advantage of the available 

quantization and protect against signal aliasing. Moreover, DC stabilization effectively 

behaves as a high-pass filter with cutoff frequencies reported near 100Hz [149], while 

antialias pre-filters are analog low-pass filters with cutoff frequency sufficiently low to 

provide high attenuation beyond the Nyquist rate (10kHz in the case of this study). To 

this end, Bessel low-pass filters are reported in the literature [150]. Thus, the overall 
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effect on the signal source is a band-pass filtering effect that combines the tissue 

dielectric response, DC offset stabilization and anti-alias pre-filter [151].  

3.4 Equivalent Digital Filter 

To model the attenuation properties of the neuro-electrode interface in simulation, 

an equivalent digital filter is required. Moreover, due to the rapid attenuation of neural 

signals over distance, only a single digital filter is necessary. Thus, only the activity of 

significant neural sources is superimposed, as in the study by Wang and Micheli-

Tzanakou [175]. Then, the sum is passed through a digital band-pass filter with a 

sampling interval equal to the time step of simulation. In this manner, the output of the 

filter represents the resulting waveform recorded from the electrode.  

Due to stability concerns, a direct bilinear transformation of the analog model 

may not be the best method for choosing an equivalent digital filter. Instead, design 

methodologies known to produce stable filters such as the Butterworth method (see 

Appendix B) can be employed along with an adaptive algorithm such as ALOPEX to 

optimize the filter specifications and fit the digital filter response to the analog model.  

In particular, given a desired response curve Hd(z) defined for frequencies from 0 

to the Nyquist rate fs/2, optimization is accomplished by first choosing a set of filter 

specifications (an initial guess), then using the ALOPEX algorithm (see section 1.6.3.2) 

to iteratively modify the specifications such that ||Hd(z) - Hb(z)|| is minimized where Hb(z) 

is the Butterworth band-pass filter conforming to the specifications [152]. Thus, 

assuming a sampling frequency of 200kHz, an equivalent digital filter realization for a 

40µm electrode-neuron distance was constructed using the method shown in Fig. 3.6. 
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Figure 3.6. Using ALOPEX to modify the band-pass filter specifications (Apass, Astop, f1,pass, f2,pass, f1,stop, 

f2,stop) such that the corresponding response of the Butterworth filter H b(z) matches the desired model 

response Hd(z) as closely as possible. 

Results of the filter optimization method are shown in Fig. 3.7. 

 

Figure 3.7. Comparison between the frequency response of the tissue model with DC-bias 

compensation/pre-filtering (•) and a digital Butterworth filter ( - , -- ). Also, the response of the initial 

parameters (guess) for the Butterworth filter is shown. 
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In less than 800 iterations, the ALOPEX algorithm modified the initial guess of 

filter specifications to an optimum low-pass Butterworth filter with specifications shown 

in Table 3.4. 

Table 3.4: Optimum low-pass Butterworth filter specifications 

 Stop-band Pass-band Stop-band Apass Astop Gain 

Guess 0−1 Hz 7.06−152 Hz 1072−∞ Hz 3.00 dB 40.0 dB 738 

Optimized 0−0.86 Hz 6.34−142 Hz 1195−∞ Hz 3.07 dB 21.8 dB 738 

  

The reduction in error between the magnitude response of the model and that of 

the digital filter versus the adaptive algorithm’s iterations is shown in Fig. 3.8. 

 
Figure 3.8. Performance of the ALOPEX algorithm in finding the optimum Butterworth filter. The 

error measure shown is a percentage of the error of the initial guess. 

The optimized filter coefficients rounded to 7 significant decimals for 

presentation purposes are shown in Table 3.5. The sensitivity of the filter to even minor 

Switch of filter order 
from 7 to 5 
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adjustments of the coefficients suggests that the full accuracy of the coefficients be used 

in practice. 

Table 3.5: Optimum low-pass Butterworth filter parameters 
Coefficient of 

nth delay 
Denominator Numerator 

n=0 1964.923  1.000000 
n=1  0.000000 -3.870584 
n=2 -0.003930  5.619792 
n=3  0.000000 -3.627823 
n=4  0.001965  0.878615 

 

When using the digital filter in simulation, the transient response must be taken 

into consideration. Accordingly, Fig. 3.9 shows the response of the filter to a unit step 

input. 

 

Figure 3.9.  Transient response of the equivalent digital filter to a unit step input. 

According to Fig. 3.9, the transient response of the equivalent filter lasts for about 500ms 

before going into steady state. Thus, during simulation, the first 500ms of simulation are 
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disregarded and only the data obtained from the steady-state portion will be considered 

useful. 

3.5 LFP Synthesis 

The composite digital band-pass filter of Fig.3.7 assumes a sampling frequency of 

40kHz. However, the neuron contributions are simulated with a time step of 5µs or 

200kHz. Thus, in synthesizing the LFP, there is a need for a pre-filtering and down-

sampling stage. To this end, a Hamming low-pass FIR filter of size 200 with an 8kHz 

cutoff frequency is used. Overall, the LFP is modeled by pre-filtering and down-sampling 

the sum of all neural contributions, then passing the result through the composite band-

pass filter and adding a Gaussian noise component with an SNR of 2. Fig. 3.10 illustrates 

the synthesis process. 

 

Figure 3.10. Synthesis of a Local Field Potential (LFP). The sum of all neural contributions is pre-

filtered, down-sampled, then passed through the composite band-pass filter (encompassing the DC-

bias offset compensation, neuro-electrode and analog pre-filter responses) and added to a Gaussian 

noise component with SNR of 2. 
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Chapter 4. Feature Selection 

Choosing the best feature to discriminate between responsiveness and non-

responsiveness of local neural activity to microstimulation requires running trials using 

the STN-GPe network model stimulated by current pulses of various amplitudes, widths 

and frequencies while recording the response through the composite digital band-pass 

filter. Next, a statistically significant number of post-stimulus segments are processed by 

an array of signal processing techniques (see Appendix B) to yield features. Finally, those 

features that provide the best discriminating capability, have a monotonic relationship 

with respect to DBS responsiveness and have a tractable computational complexity are 

chosen as candidates to be implemented in an IC design. Moreover, the processing 

methods can be broadly categorized into high-frequency and low-frequency methods 

where high-frequency methods are applied to the data obtained from brief 7ms segments 

immediately following each DBS pulse whereas low-frequency methods are applied to 

longer 640ms sets of data. 

4.1 High-Frequency Methods 

Non-responsive activity from the STN-GPe model is obtained while applying a 

stimulus with near-zero amplitude. Next, the amplitude is increased 16 times at intervals 

of 0.5 the base pulse amplitude Abase. In this manner, the test or training data used for 

selecting a design is obtained from running multiple simulations of the STN-Gpe model 

for each amplitude setting. In particular, for each setting, one hundred 50µs pulses are 
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applied at intervals of 200ms with a simulation step of 5µs. Thus, the result is a 3-

dimensional array of 100 post-pulse segments (40000 samples each) for 16 different 

pulse amplitudes.   

The data to be processed at any given time was chosen as a 64-point window to 

provide a minimal yet significant amount (as determined empirically) that is a power of 

2. Thus, the post-stimulus segments were divided into 625 bins (625 stimuli were 

examined) of 64 samples each, and a feature set was obtained from each bin. Next, the 

mean and standard deviation of the features were obtained over all trials of the same 

stimulus amplitude and bin location. Furthermore, the probability of error in detecting 

non-response (10-3Abase stimulus amplitude) versus response (7.5 Abase) was calculated for 

each feature in each bin location. Next, only the top 16 features with the smallest 

probability of error were chosen for further evaluation. Also, to test the accuracy of 

transitions between adjacent amplitudes, the same techniques were applied to the 

probability of error between adjacent stimulus amplitudes. 

Given the stochastic nature of the signals measured, there will be an associated 

probability of misclassification. In particular, assuming the distribution of each feature 

across trials of same pulse amplitude and bin location is normal, and given the two data 

sets to be classified are of pulse amplitude 10-3Abase (non-response) and 7.5Abase 

(response), the boundary (or boundaries) of classification can be taken as the intersection 

(or intersections) of the probability distribution curves. 

Given a general random variable c and Gaussian probability distributions pl(c) 

and ph(c) representing the measured variable under two different conditions (l and h) with 

corresponding means and standard deviations µl, σl, µh and σh, it is desired to (1) find the 
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point where the distributions are equal (boundary between deciding l or h) and (2) 

determine the probabilities of misclassification. Fig. 4.1 shows a graphic illustration of 

the problem. 

 

Figure 4.1. Intersection of two Gaussian probability distributions. 

Finding some boundary b comes from equating the Gaussian curves 
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Assuming the probability of occurrence of condition l is known a-priori to be ρl, 

the probability of mistaking condition l for condition h would be the probability that the 

measured variable c is within boundaries b1 and b2 during an event l, or 

∫×=
2

1

)(
b

b

llh dxxpρφ .       (4.5) 

Similarly, the probability of mistaking condition h with condition l would be the 

probability that the measured variable c escapes the boundaries b1 and b2 during an event 

h, or  +×= ∫∫ ∞

∞− 2
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The probability of error can then be computed as 

error = φh + φl.       (4.7) 

4.2 Low Frequency Methods 

The low-frequency (below 50Hz) behavior of the STN-GPe model under stimulus 

and non-stimulus conditions was obtained by running the simulation while increasing the 

pulse width, pulse frequency and pulse amplitude at intervals of one second. 

Furthermore, to avoid transients, the latter 500ms of each interval are used for analysis. 

In particular, the signal is low-pass filtered and resampled at 100Hz. Next, the Discrete 

Fourier Transform (DFT) is computed for the latter 500ms section of each interval. 

Furthermore, peaks in the spectrum are detected by filtering the spectrum using a simple 

difference filter (1, –1) and obtaining the indices of those peaks surpassing the mean of 

the differences. The sum of the magnitudes of the selected peaks that fall within 0-10Hz 
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range is placed into a bin labeled for the stimulus amplitude and frequency for that trial. 

Also, the same is done for a range of 10-20Hz. The resulting raster display shows how 

frequency and amplitude modify the low frequency response of the STN-GPe model. In 

addition, the same analysis is repeated for a raster display of stimulus amplitude and 

pulse width.   

Probability of error was not included for the low frequency Fourier spectra due to 

the limited availability of a statistically significant number of results. This is due to the 

long simulation times necessary to obtain low frequency data on a single Pentium 4. 
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Chapter 5. Design and Optimization  

Given the first reflective coefficient of the LPC spectrum holds promise as a 

measure of responsiveness of neurons to microstimulation (section 7.2.1), it is desired to 

implement an algorithm for calculating this feature in the form of a digital circuit. 

Moreover, the circuit must be optimal in the sense of providing a good estimate of 

responsiveness under some constraints of power dissipation and processing time. Thus, 

an application specific integrated circuit (ASIC) design is more desirable than a general-

purpose programmable signal processing chip that would consume extra power and chip 

area.  

5.1 Principles 

Assuming a signal y(n) is composed of a neuronal component x(n) and noise s(n), 

the first reflective coefficient of the LPC spectrum of y(n) can be found by solving the 

Wiener-Hopf equations for the trivial case of order 1 [153] [154]. Thus, assuming the kth 

lag of the autocorrelation of x(n) is rx(k) and that of s(n) is rs(k), the first reflective 

coefficient can be derived as follows: 

for a signal of the form 

)()()( nsnxny +=        (5.1) 

the autocorrelation of lag 0 is 
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Expanding the terms and eliminating uncorrelated components yields  
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.       (5.3) 

Similarly, the first lag can be computed as 

)1()1()(
1

)1(
1

x

N

n
y rnyny

N
r =+= ∑

=

.     (5.4) 

The first reflective coefficient of the LPC spectrum is then 
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Thus, it can be expected that as the magnitude of the noise component increases (or SNR 

decreases), the auto-correlogram will approach that of random noise. That is, the 

autocorrelation of lag 1 will become small with respect to the average signal power, thus 

causing the first reflective coefficient to tend toward zero magnitude. In the case of 

measuring the response of neurons to microstimulation, this means that immediately 

following a stimulus pulse, many neurons in the vicinity of the electrode are expected to 

fire at once, thus increasing the SNR and reducing the magnitude of the 1st reflective 

coefficient of the recorded signal. 

5.2 Architecture 

The architecture for computing the first reflective coefficient consists of an input 

buffer holding a 64-point segment of the sampled LFP. Next, autocorrelations are 

computed by sequentially selecting appropriate data points, multiplying them, and then 

adding the result to an accumulator. The first lag of the autocorrelation and signal power 

are stored into data registers, then divided to yield the result. Moreover, a microcontroller 
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is needed to coordinate the entire process. Overall, the architecture can be implemented 

as shown in Fig. 5.1. 

 

 

Figure 5.1. Architecture for computing the first reflective coefficient of the LPC spectrum. 
The input waveform is stored in a set of 64 registers. Then, multiplexers sequentially select 
the contents of the registers that are to be multiplied with each other. Next, the factors pass 
through the pipelined multiplication and accumulation stages. Finally, the divider calculates 
the ratio between the 1st lag autocoerrelation and the signal power. Moreover, the 
microcontroller coordinates the entire process by sending and receiving signals to and from 
each component.  

5.3 Pipeline Optimization 

Assuming the multiplication and accumulation stages in Fig. 5.1 make up the 

computational bottleneck, the complexity of the calculations can be improved by 

choosing an appropriate pipelining strategy. In particular, given Gm is the total number of 

gate delays or gate traversals required for a single multiplication and accumulation 

operation (without pipelining), S is the number of divisions in the pipeline, M is the total 

number of operations to be performed and Dreg is the number of gate traversals in a 

register, then the total number of gate delays required to complete the M operations is 
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Given equation (5.6), it can be shown that the smallest Ntot with respect to S, is 
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Using a similar derivation, the effects of performing operations in parallel to 

achieve improvements in speed are shown to be computationally more demanding. In 

particular, given the total number of operations to be performed is divided into K parallel 

procedures, then the number of operations for each parallel procedure becomes 
K
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Clearly, the computational complexity is minimal for smallest possible K which is K=1. 

Thus, a parallel implementation is not considered unless the speed of a single non-parallel 

block is deemed insufficient.   

Selecting an appropriate pipelining strategy may further optimize the architecture 

of the digital circuit. Thus, given the total number of gate traversals for a single 

multiplication and summation is 80, and there are a total of 64 operations to be performed 

(for each autocorrelation), equations (5.6) and (5.7) can be solved to find the optimum 

number of stages in the pipeline. Accordingly, plots for various numbers of operations 

and pipeline stages, including the optimum for the case at hand, are shown in Fig. 5.2. 

Also, Fig. 5.3 shows more details of the plot around the area of interest (64 operations). 
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Figure 5.2.  Total number of gate delays (or traversals) to complete the computations versus the 
number of pipeline stages. The results for various numbers of operations (M) are shown including 
asterisks  (*) for the optimum number of stages for each case and a circle (o) marking the optimum 
for 64 operations. The optimum number of stages is 32. However, near-optimum operation can be 
attained with any number of stages in the range 10-80 (more than 80 is impossible).  

 

 
Figure 5.3. Higher detail of the total number of gate delays (or traversals) to complete the 
computations versus the number of pipeline stages. The results for various numbers of operations 
(M) are shown including asterisks (*) for the optimum number of stages for each case and a circle (o) 
marking the optimum for 64 operations. The optimum number of stages for the case at hand is 32. 
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It can be seen in Fig. 5.3 that the optimum number of pipeline stages in the 

multiplication/accumulation stage to minimize gate traversals is 32. 

Looking at the effects of parallel implementation shows an increase of total gate 

traversals for any parallel implementation higher than one as can be seen in Fig. 5.4.  

 

 
Figure 5.4. Total number of gate traversals versus number of parallel multipliers (each using 
an optimum pipeline strategy as explained previously). The optimum in terms of smallest 
number of gate traversals is 1 (no parallelism). 

As a result, for the case at hand (64 bytes of input data at 8-bit resolution) it will 

be optimal to design the circuit using a single unilateral design separated into 32 stages or 

roughly one stage after every 1-bit adder cell. However, according to Fig. 5.2, it is also 

acceptable to use any number of stages between 10 and 80 with a minimal degradation in 

efficiency. In the case of 10, that would mean one stage for every three adder cells.  
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5.4 Available Technologies 

The physical size, speed and power dissipation of the circuit may be further 

enhanced by selecting an appropriate process technology for fabrication. Moreover, 

simulations of a bench-mark circuit using the BSIM3v3 [155] model for each technology 

can yield approximations to power dissipation and gate delay. In particular, using the 

SPECTRE simulator [156], a chain of inverters and a NAND gate with conservative load 

capacitances were simulated for the purpose of measuring power dissipation, gate delay 

and switching speed. Furthermore, the results can be extrapolated to the entire circuit by 

considering the total number of gates and the longest path delay. 

Figure 5.5. Circuit for evaluating the process technology where Cl is the load capacitance set at 10Cg 

where Cg is the gate capacitance.  

The gate delay and power dissipation were evaluated for varying transistor 

dimensions using the process technologies of TSMC 0.25µm, TSMC 0.35µm and AMI 



   

  

81

1.6µm. In particular, given transistor width W, length L and scaling factor α, the load 

capacitance Cl is calculated using the BSIM3v3 [155] symbolic notation where 

εox =  Dielectric of oxide layer, 

tox = oxide thickness, 

AD = Transistor drain area, 

Cj = source/drain bottom junction capacitance, 

PB =  bottom junction built-in potential, 

MJ = bottom junction capacitance grading, 

PD = perimeter of the drain region, 

CJSW = field oxide sidewall junction capacitance at zero bias, 

MJSW = field oxide sidewall junction capacitance grading coefficient, 
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draingatel CCC *440 +⋅= .       (5.12) 

 
The scaling factor α was increased from 1 to 3 in increments of 0.33, and for each 

α, a voltage step was applied to the circuit in Fig. 5.5 (2.5 V Vdd for the TSMC processes 

and 5V for the AMI process). Furthermore, if T0.2 is the time required for the output 

voltage to reach 0.2Vdd after the application of the step, then the gate delay is estimated as 

3
2.0T

Tgate =  .        (5.13) 

Also, if the total current passing through the NAND gate in Fig. 5.2 is given by 

I(t), and the total number of transitions of the input voltage from Vdd to Vss and visa versa 
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in the simulation is given by Nsw, then the dynamic power dissipation per gate per switch 

can be estimated as 
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Running the benchmark circuit of Fig. 5.2 using the BSIM3v3 models for the 

TSMC 0.25µm, TSMC 0.35µm and AMI 1.6µm process technologies yielded results of 

average gate delay and dynamic switching energy or Joules per gate per switch. The 

switching energy can provide a measure of average power dissipation in Watts when 

multiplied by clock frequency, total number of gates and probability of switching per 

clock cycle. Fig. 5.6 shows the average gate delays and switching energies versus the 

transistor-width scaling factor for each process technology. 

 

 

Figure 5.6. Average gate delay and switching energy versus transistor width scaling factor 
for TSMC 0.25µm, TSMC 0.35µm and AMI 1.6µm process technologies. 
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As can be seen, the TSMC 0.25µm and 0.35µm technologies provide a faster 

switching speed and much lower dynamic power dissipation. Moreover, the results in 

Fig. 5.6 can be used to select an appropriate technology based on the desired clock 

frequency and power dissipation of the design. 

5.5 Timing and Power 

Assuming the stimulus apparatus can offer Ns levels of stimulus amplitude, then a 

worst-case scenario would require the stimulator to increase its amplitude Ns times within 

a time frame that is comfortable for the patient. Furthermore, given that this time is Tc, 

then the computations involved in choosing each step require 
s

c

N

T
 amount of time to 

complete. 

It is estimated that the design in Fig. 5.1 would require roughly 224 clock cycles 

to complete the computation of one feature. This means that the clock frequency would 

have to be 
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Now, given that there are roughly 18000 gates in the design, each with a 

probability ps of switching and expending Eg energy on each clock cycle, the power 

demands become 
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where Eg depends on the process technology while Ns and Tc depend on specifications of 

the apparatus to do with patient safety and comfort. In this regard, commercial DBS 
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systems have 100 levels of stimulus amplitude available ranging from 0 to 10.5mA [42] 

[47]. To determine whether this large number of amplitude settings is necessary, a large 

clinical study would have to be carried out. Moreover, a limitation on Ns and Tc is that the 

top frequency (or shortest clock cycle) attainable by the implant cannot be smaller than 

the longest path delay or 72Tg where Tg is the gate delay (depending on process 

technology used). Accordingly, Table 5.1 shows that maximum frequencies attainable of 

the architecture in Fig. 5.1. 

Table 5.1: Maximum clock frequencies attainable by the architecture 
Process Technology TSMC 0.25µm TSMC 0.35µm AMI 1.6µm 

Maximum Clock Frequency 11.97 MHz 7.05 MHz 1.38 MHz 

5.6 Biocompatibility 

 Conformance to safety standards poses additional limitations on the operating 

frequency and packaging of the circuit. In particular, thermal heat dissipation for 

implanted electronics occurs solely through the thermal conductivity, blood perfusion and 

metabolic processes of the encapsulating tissue [179]. Moreover, there are safety 

standards for the maximal allowable power density exposure for humans [180]. 

Therefore, since increasing the size of an implant reduces power density, it follows that 

as power dissipation becomes larger, the size of the implant packaging must also be 

larger to spread the dissipated energy. 

 The dimensions of the circuit in Fig. 5.1 are calculated using the CMOS transistor 

dimensions presented by Weste and Harris [162] and specifications provided by the 

MOSIS foundry. In particular, given a minimum feature size λ for each process 
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technology and an average of 5 transistors per gate, the surface area of a circuit die can be 

approximated as 

gsurface NA ×××≈ λλ 8125      (5.17) 

where Ng is the total number of gates (the die thickness is standard across all three 

processes and is 250µm). The result for each process technology is shown in Table 5.2. 

Table 5.2: Estimated circuit size 
Process Technology TSMC 0.25µm TSMC 0.35µm AMI 1.6µm 

Die Dimensions 0.194 mm2 x 0.25mm 0.54 mm2 x 0.25mm 5.53 mm2 x 0.25 mm 

 

 Practical design specifications can be drawn assuming a packaging material of 

high thermal conductivity. That is, given the implant is packaged in a 1mm-thick disk 

placed between the scalp and cranium, or alternatively as a 1mm-diameter cylindrical 

probe inserted into the brain such that power is dissipated evenly throughout the 

structure, the power density dissipated by the package is found by dividing the total 

power by the package volume. Furthermore, by comparing the resulting power density to 

the IEEE/ANSI standard [180] for human exposure (1mW per cm3), limitations for 

practical designs can be drawn. Accordingly, Figures 5.7 to 5.12 show maximum 

allowable power dissipation (and clock frequency) for designs of various dimensions and 

various combinations of design parameters relating to Ns (total number of amplitude 

settings) and Tc (maximum allowable duration of patient discomfort). As can be seen in 

Figures 5.7 to 5.11, the TSMC 0.25µm is the most flexible technology in that smaller 

packaging schemes can be approached with less stringent clock frequency limitations. 

Also, it is evident that the cylindrical design, being somewhat smaller, requires stringent 

power and clock frequency limitations.  
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Figure 5.7. Assuming a disk-shaped packaging scheme and TSMC 0.25µm process technology, the 
calculated operating regions of the integrated circuit are shown. Designs for various Amplitude 
gradations (Ns) and maximum patient discomfort durations are considered. Limits posed by the 
IEEE/ANSI standard for human exposure are shown for various disk radii (r) along with the 
maximum clock frequency (f) for that size.  

 

 
Figure 5.8. Assuming a cylindrical-shaped packaging scheme and TSMC 0.25µm process technology, 
the calculated operating regions of the integrated circuit are shown. Designs for various Amplitude 
gradations (Ns) and maximum patient discomfort durations are considered. Limits posed by the 
IEEE/ANSI standard for human exposure are shown for various cylinder lengths (l) along with the 
maximum clock frequency (f) for that size. 



   

  

87

 
Figure 5.9. Assuming a disk-shaped packaging scheme and TSMC 0.35µm process technology, the 
calculated operating regions of the integrated circuit are shown. Designs for various Amplitude 
gradations (Ns) and maximum patient discomfort durations are considered. Limits posed by the 
IEEE/ANSI standard for human exposure are shown for various disk radii (r) along with the 
maximum clock frequency (f) for that size. 

 

 
 Figure 5.10. Assuming a cylindrical-shaped packaging scheme and TSMC 0.35µm process 
technology, the calculated operating regions of the integrated circuit are shown. Designs for various 
Amplitude gradations (Ns) and maximum patient discomfort durations are considered. Limits posed 
by the IEEE/ANSI standard for human exposure are shown for various cylinder lengths (l) along 
with the maximum clock frequency (f) for that size. 
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Figure 5.11. Assuming a disk-shaped packaging scheme and AMI 1.6µm process technology, the 
calculated operating regions of the integrated circuit are shown. Designs for various Amplitude 
gradations (Ns) and maximum patient discomfort durations are considered. Limits posed by the 
IEEE/ANSI standard for human exposure are shown for various disk radii (r) along with the 
maximum clock frequency (f) for that size. 

Moreover, the cylindrical design specifications for the AMI 1.6µm process were not even 

shown because the size would exceed a meter in length -- clearly impractical as an 

implant in the human brain. Also, using a minimal packaging scheme that has dimensions 

similar to the size of the integrated circuit itself would create a power density that far 

exceeds the IEEE/ANSI specifications of 1mW per cm3 as shown in Figures 5.12 to 5.14. 

 The results in Figures 5.7 to 5.14 assume a packaging scheme where power 

density is uniformly distributed throughout the packaging material. However, in a 

realistic scenario, biocompatible materials may not have the physical properties assumed 

here. Thus, further studies for biocompatibility will have to incorporate the effects of 

non-uniform power-density distributions.  
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Figure 5.12.  Power density estimation for a microchip implemented in TSMC 0.25µm for various 
Amplitude gradations (Ns) and maximum patient discomfort durations.  

 
Figure 5.13.  Power density estimation for a microchip implemented in TSMC 0.35µm for various 
Amplitude gradations (Ns) and maximum patient discomfort durations. 
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Figure 5.14.  Power density estimation for a microchip implemented in AMI 1.6 µm for various 
Amplitude gradations (Ns) and maximum patient discomfort durations. 
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Chapter 6. Electronic Design 

The components described in Fig. 5.1 can be constructed using standard CMOS 

technology. In particular, the memory and arithmetic units are designed manually using 

logic gate components, while the micro-controllers are designed using the VHDL 

language (see Appendix C for details on the standard circuit components used).     

6.1 Multiplier 

The multiplier is implemented as a two’s-complement Baugh-Wooley [163] 

architecture with complementary logic stages. Fig.6.1 is a schematic representation of a 

single multiplier cell while Fig.6.2 depicts the complementary version of the first. 

 

Figure 6.1. Multiplier cell.  
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Placing the multiplier cells appropriately (where M and  symbolize cells and 

complementary cells respectively) produces the partial products P01 to P08. Furthermore, 

including adders in the latter portion of the architecture produces the partial products P09 

to P15. Finally, the sign-bit is calculated through a sequence of XOR’s. 

 

Figure 6.2. Complementary multiplier cell (inverted partial product).  

Inverters are included at the outputs of complementary signals to correct for the 

complemented  partial product sums and sign computations. 

For a pipelined implementation, each row of multiplier cells can be selected as a 

candidate for a pipeline stage. Furthermore, as can be seen in Fig. 6.3, there are only two 

arrangements of multiplier cells present in the multiplier, each one is called a “rack.”  

These are shown in detail in Fig. 6.4 and Fig. 6.5.  
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Figure 6.3. Two’s-complement Baugh-Wooley multiplier with complement logic cells. Inputs are X1 
to X8 and Y1 to Y8. M and  symbolize cells and complementary cells respectively. P01 to P08 are 
partial products computed by the cell array. Furthermore, including adders in the latter portion of 
the architecture produces the partial products P09 to P15. Finally, the sign-bit is calculated through 
a sequence of XOR’s. 
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Assuming the multiplier/accumulator combination is split into 5 stages, then each 

stage of the multiplier may consist of three racks and a “save” unit, where the save unit 

consists of memory elements to save the results. Moreover, when the multiplier is 

“cleared” it should be noted that many memory elements within the pipeline must be set 

to ‘1’ in order to produce a zero output. Thus, to solve the problem of identifying those 

memory elements that must be set, a trivial zero-by-zero input can be applied to the 

multiplier. Then, the values of elements at the output of each pipeline stage can be 

inspected to determine whether to set (one) or clear (zero) the corresponding memory 

element. As a result, during a clear, the memory elements of each stage are set to the bit 

string shown in the figures of each pipeline stage (see Fig. 6.6 through Fig. 6.10). 

 

 

Figure 6.4. Rack 1 of the multiplier pipeline. M and  symbolize cells and complementary cells, 

respectively. 

 

Figure 6.5. Rack 2 of the multiplier pipeline. M and  symbolize cells and complementary cells, 

respectively. 
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Figure 6.6. Stage 1 of the multiplier pipeline. Partial products 1 to 3 and Y-inputs 4 to 8 are stored in 
the 8-bit register (REG).  The carry-out and partial products of the previous stage are shown as C 
and P, respectively, while the X-input bits are shown as X. Output of the stage is shown as out{31:1}. 
The clear signal for this stage is a ‘10010010010110110110110’ at the input. 

 

 

Figure 6.7. Stage 2 of the multiplier pipeline. Partial products 1 to 6 and Y-inputs 7 to 8 are stored in 
the 8-bit register (REG). The carry-out and partial products of the previous stage are shown as C 
and P, respectively, while the X-input bits are shown as X. Output of the stage is shown as out{31:1}. 
The clear signal for this stage is a ‘00100100100100100100000’ at the input. 

REG 
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Figure 6.8. Stage 3 of the multiplier pipeline. Partial products 1 to 8 are stored in the 8-bit register 
(REG). The carry-out and partial products of the previous stage are shown as C and P, respectively, 
while the X-input bits are shown as X. Output of the stage is shown as out{23:1}. The clear signal for 
this stage is ‘010101010101001’. 

 

Figure 6.9. Stage 4 of the multiplier pipeline. Partial products 1 to 9 are shown as out (1 to 9). The 
clear signal for this stage is ‘0101010110000’. 
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Figure 6.10. Stage 5 and final stage of the multiplier pipeline. Results of the multiplication P (1 to 16) 
and the carry-out are shown. Here, P(16) is the sign bit of the two’s complement multiplication while 
Cout has no computational significance. 

Assembly of the “rack” components and the “save” unit into pipeline stages is 

shown in Fig. 6.6 to Fig. 6.8. Also, additional elements of the pipeline are shown in Fig. 

6.9 and Fig. 6.10. Essentially, these schematics show the individual stages of the 

multiplier circuit in Fig. 6.3. 

 

Figure 6.11. Bitwise expander from 16-bit output of multiplier to 24-bit input of accumulator. Eight 
zeros (VSS) are appended to the magnitude (MAG) of the input (IN), essentially expanding it to 24 
bits. Then, the result is returned as two’s complement form (OUT). Carry-save adders (CSA) are used 
to compute the two’s complement of a number, and multiplexers (MUXes) are used to select the 
magnitude from the two’s complement form and visa-versa.   

The 16-bit two’s complement output of the multiplier must be expanded to fit the 

24-bit two’s complement input of the accumulator. To this end, the input is first 
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converted to magnitude-sign form, then eight zero-bits are appended to the most 

significant bit of the magnitude. Next, the result is converted back to two’s complement 

form and fed to the accumulator stage. Fig. 6.11 shows the circuit used for bit-wise 

expansion. 

6.2 Divider 

Given that the results of multiplication and accumulation produce the 

autocorrelation of lag 0 and lag 1 of the sampled data, the next step is to divide the latter 

by the former to produce the 1st LPC coefficient. Furthermore, because there is only one 

operation to perform for each set of sampled data, there is no need for a pipeline. Thus, a 

sequential radix-2 division is sufficient. In particular, a shift-and-compare algorithm 

similar to that reported by Stallings [164] may be used with additional iterations to 

increase accuracy: 

 

 

 

 

 

 

 

 

Given binary numbers dvend and dvsor 

N = bit-wise length of dvend and dvsor; 

negate = XOR of most significant bits of dvend and dvsor; 

x = concatenation of 2N zeros, abs(dvend) and N zeros; 

y = concatenation of N zeros, abs(dvsor) and 2N zeros; 

for (i=0 to 2N-1) { 

 x = shift x right by 1; 

 if(x ≥ y){ 
   x[0] = 1; 

x = x-y ; 

 } 

else x[0] = 0;  

} 

quotient = x [0 to 2N]; 

if(negate) quotient = -quotient; 
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However, if an 8-bit division algorithm is to be used, the 24-bit input data must be 

scaled down to fit into an 8-bit representation. Thus, input values are converted from 

two’s complement form to magnitude-sign form so that scaling is simplified to a shift 

operation. Then, both the dividend and divisor are shifted left (divided by 2) until the 

magnitude of the greater number falls below 28 or 256. The circuit in Fig. 6.12 shows the 

two registers holding the autocorrelation values and additional circuitry for converting to 

magnitude-sign notation and scaling down. 

The difference operation in binary arithmetic can be implemented as the addition 

of one number to the two’s complement of another. Also, the comparison operation can 

be implemented by taking the carry-out of the difference to mean “greater-than” and the 

AND of the inverse of the difference to mean equality. Also, including XOR gates at 

each input and at the carry-out of the adder effectively implements a selective inversion 

to compensate for sign switches and overflows. Fig. 6.13 shows a schematic of the 8-bit 

comparator and difference operation. This circuit can easily be expanded to accommodate 

a larger bit-width by including the corresponding adder, inverter array, XOR array and 

AND function. 

 

Figure 6.13. An 8-bit comparator and difference operation. Input Y is subtracted from X by using an 
adder with the two’s complement of Y. In particular, Y is inverted and the carry-in is set to 1. When 
signs change (both X and Y are negative) X is then subtracted from Y. Also, the comparison is 
implemented by using the AND of the inverse of the difference to mean equality (EQ) and the carry-
out, input signs and difference to generate “greater than or equal” (GTOREQ).  
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A carry-select adder was used to reduce the clock period for simulation purposes 

(see Appendix C). However, in practice a slow clock may allow for the ripple-carry 

adder, a simpler circuit that consumes less power.  

The arithmetic core of the division operation consists of the 

difference/comparison circuit along with registers to hold the results at each iteration, a 

shift-by-one operation by physically re-routing wires and multiplexers to choose the next 

step. Fig. 6.14 shows the architecture of the division arithmetic for computing X/Y where 

the input signals (PROC1, PROC2) designate when to enter new inputs (00), cycle 

through the division operation (10) and when to hold the results (01), respectively. Other 

signals are CLK (clock), CL (clear), SE (set), SC (scan chain) and SCI (input of the scan 

chain). 

 

 

Figure 6.14. Arithmetic core of division operation. Inputs are X (dividend), Y(divisor), SE (set 
registers), SCI (scan input), SC (scan chain on), CLK (clock), CL (clear), PROC1 (enter new input) 
and PROC2 (hold result). Output consists of the first 16 bits of Qout.  

The division controller cycles through a finite state machine that responds to input 

signals “START” (perform a division) and “STOP” (time-up for division operation). 

There are four states (0, 1, 2 and 3) where 0 is a wait state when the results of the 

previous division are held (PROC2=1), state 1 is a transitional state when the contents of 
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memory elements are cleared (CLEAR=1), state 2 allows the input data to enter the 

arithmetic unit (PROC1=0, PROC2=0) and state 3 drives the sequential arithmetic 

(PROC1=1) until the division timer is up (STOP), at which point it holds the result in 

memory (PROC2=1). Fig. 6.15 shows the state transition diagram of the division 

controller where output signals are in brackets and also beside the descriptions of each 

state. 

 

 

Figure 6.15. State transition diagram of the division controller. 

Using the VHDL language the circuit shown in Fig. 6.16 is generated. 

 

Figure 6.16. Division control circuit. Inputs are shown to the left while outputs to the right. 

The overall design of the divider consists of the arithmetic core, a memory 

element to hold the result, a counter to keep track of iterations and the controller to 

coordinate the entire process as shown in Fig. 6.17. 
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To allow time for the result of the arithmetic core to appear before the memory 

elements are clocked, an extra delay of two inverters is included between the PROC2 

signal path and the clock gate of the memory elements. 

6.3 Arithmetic Controller 

An arithmetic control unit sets the timing of the paths that the data will take from 

the input registers to the multiplication/accumulation stages, scaling and division. In 

particular, given a signal “PROC” that starts the computations, the main arithmetic 

controller proceeds through three stages (or states) in the computation: (1) 

autocorrelation, (2) scaling and (3) division. Moreover, a secondary controller that 

handles the timing and input-selection of the multiplier/accumulator stages carries out the 

detail of computing the autocorrelations. The main switch for starting and stopping the 

automation is ‘ADBS’. Fig. 6.18 shows a finite state machine representation of the main 

arithmetic controller. The gate-level digital design of the FSM in Fig. 6.18 can be 

realized using VHDL and is shown in Fig. 6.19. The FSM of the secondary controller is 

shown in Fig. 6.20.  

6.4 ADBS Controller 

The ADBS controller adjusts the stimulus energy in response to the results of the 

arithmetic operations. In particular, it iteratively increases the stimulus energy until the 

salient feature of choice reaches a satisfactory value1. First, amplitude is increased until 

the maximum allowable amplitude is reached, then pulse width is iteratively increased. 
                                                 
1 This value can be determined on a patient-by-patient basis. However, for the purposes of the present 
study, it may be arbitrarily set. 



   

 

105

Furthermore, if the feature criterion has been met, the controller decrements the pulse 

width and amplitude every three iterations to conserve power. Also, the external signal 

‘ADBS’ determines whether the adaptive system is on or off. 

 

Figure 6.18. Main arithmetic controller. From rest (state 0) where the scale registers are 
cleared (CLRSD), the ‘PROC’ signal initiates the FSM. In state 1, the second arithmetic 
controller is enabled (GOSUB) and the main controller waits for the second controller to 
finish (SUBDONE). In state 2, the scaling of autocorrelations is enabled (SCALE) and the 
FSM remains there until scaling has completed (SCALEDONE). Then, state 3 enables the 
division unit (DIVIDE) and waits for it to complete (DIVDONE) before it returns to rest. 
When ‘ADBS’ is switched low, the FSM immediately transitions to state ‘0’. 

The signals that direct a decrease and increase in pulse amplitude and width are 

derived from comparisons of the salient feature, ongoing pulse amplitude and width 

settings with user presets while the input signals driving the controller are derived from 

comparisons to a clock. 
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Figure 6.20. FSM of the secondary controller. 

Fig. 6.22 and Fig. 6.23 show the computation of the input signals of the 

controller. In particular, the data during the first clock cycle are not sampled to avoid 

including stimulus artifacts in the computations. Following this, the time required to store 

64 samples is 64 clock cycles (the system is clocked at the sampling frequency), while 

the computation of the first reflective coefficient requires 200 clock cycles. 

The amplitude and pulse width of the signal are within limits specified by medical 

personel. However, during autonomous parameter adjustment, those values may be 

reached. Thus, two of the inputs to the ADBS controller are comparisons of the stimulus 

parameters (amplitude and pulse width) to the specified limits as shown in Fig. 6.23. 

The output signals of the controller are computed as shown in the following 

pseudocode: 
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incamp=false; 
incwidth=false; 
decwidth=false; 
decamp=false; 

 if(GTMARK){ 
  if(!AMPLIM) incamp=true; 
  else if(!WIDTHLIM) incwidth=true; 
 } 
 else{ 
  if(!FREEZEWIDTH && AMPLIM) decwidth=true; 
  else if(!FREEZEAMP) decamp=true; 
 } 
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Figure 6.22. Computation of inputs to the ADBS controller. “RECTIME” refers to recording time, 
“PROCTIME” refers to processing time and “PROCDONE”  means processing of coefficient is done. 

 
 

 

 

Figure 6.23. Comparison of stimulus parameters to specified limits. The desirable region of the 
salient feature depends on the salient feature of interest. Thus, if the 1st LPC coefficient is used, the 
mark could be set at 0.7 and ‘MARKREACHED’ could be asserted when the result of arithmetic 
operations surpasses 0.7.  

? 
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As shown in Fig. 6.24, the controller remains in the “0” or idle state unless 

‘ADBS’ is on and recording time or ‘REC’ is on. It then moves to the “1” or recording 

state where sampled data is buffered. Then, when enough data has been accumulated, it 

moves to “2” or the processing stage where it remains until the features of interest have 

been calculated. Then, on the ‘PROCDONE’ signal (essentially the ‘DIVDONE’ signal 

of the primary arithmetic controller), the ADBS controller moves to the final state for the 

duration of a single clock cycle when the output signals are computed.  

 

 
 

Figure 6.24. State transition diagram of ADBS controller. 

The controller and output signals can be described using the VHDL language 

resulting in the circuit shown in Fig. 6.25. 

The next chapter describes in detail the results and performance of simulations of 

the circuits presented thus far. 
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Chapter 7. Results and Discussion 

The subthalamo-pallidal network was constructed using the methods in Ch. 2, and 

tested by varying synaptic weights and decays to adjust the average post-stimulus neural 

activity. Furthermore, the composite dielectric/DC-compensation pre-filter was used to 

filter the sum of each neural contribution and synthesize an artificial local field potential 

(LFP). Then, signal processing techniques (see Appendix B) were employed to find the 

most salient features in the response of the LFP to microstimulation. Next, the 1st LPC 

coefficient was chosen as a candidate for hardware design because of its low 

computational complexity and satisfactory salience. Following are the results pertaining 

to the Subthalamo-Pallidal network, feature selection, hardware design and a simulation 

incorporating the neural network, neuro-electrode interface and digital circuit models. 

7.1 Subthalamo-Pallidal Loop 

Eight simulations of the Subthalamo-Pallidal loop were carried out, each lasting 

10s (simulation time) while applying a stimulus pulse at 200ms intervals. Furthermore, 

each simulation used an incrementally larger stimulus amplitude where the initial 

amplitude was 0.001*Abase and each subsequent simulation used an amplitude that was 

larger by increments of Abase.  

For each amplitude setting, the response of the model to the stimulus was 

calculated as the average STN neuron firing rate over time (20ms sliding window). 

Moreover, for comparative purposes, the results shown in Figures 7.1 through 7.8 are 

presented in a similar format to experimental observations that have been published in the 

literature [43].  
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Figures 7.1 through 7.4 show responses similar to the findings by Dostrovsky et 

al. [43] that suggest an inhibition of neural activity (as average firing rate) following each 

DBS pulse. Moreover, increasing inhibition in response to increasing pulse amplitude is 

clearly visible in all results except those in Fig. 7.5 where the oscillatory bursting seems 

to overcome the effect of low-amplitude (less than 5·Abase) stimulus. Moreover, 

increasing synaptic strength in the STN→GPe path results in a stronger inhibition of STN 

neurons following a pulse as can be seen in the overall response in Fig. 7.3 where 

JSTN→GPe = 33.5pC and the low swings or valleys of Figs. 7.7 and 7.8. Also, it is evident 

that a more distributed and longer path delay in the GPe→STN paths produces less 

oscillation or a more damped response as in Figs. 7.1, 7.3 and 7.4, whereas a 

homogeneous 50ms path delay across all paths generates the most oscillatory response as 

can be seen in Figs. 7.7 and 7.8. Moreover, oscillatory bursting will occur at intervals 

approximately equal to the inhibitory duration (somewhat longer due to the decay rate of 

post-synaptic current). In addition, although using a smaller STN→GPe efficacy 

diminishes the oscillatory effect as in Fig. 7.5, a side-effect is also a diminished response 

to the DBS pulse stimulus.  

The results suggest that oscillatory bursting of the model can be reduced while 

maintaining a response to DBS pulse stimuli by using multiple modules each with 

different inhibitory response specifications spread out in the vicinity of the desired 

inhibitory response. Moreover, in terms of physiological accuracy, the multiple-module 

configuration may be relatively closer to the actual behavior of the basal ganglia where 

many different pathways with varying delays are likely present.  
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7.2 Feature Selection 

Feature selection techniques were applied to the results of high-frequency 

analysis. However, due to the long simulation times of the low-frequency analysis, there 

was not a statistically significant amount data to apply feature selection techniques. 

Instead, two-dimensional plots showing the results of the FFT versus stimulus settings 

indicate the effectiveness of this method. Details of the results from both methods are 

provided in the following discussion. 

7.2.1 High-Frequency Analysis   

Using synthetic LFP’s, 100 stimulus responses for each amplitude setting (0 to 

7.5·Abase at intervals of 0.5·Abase), each of duration 100ms were sampled at 10kHz and 

analyzed using a set of signal processing techniques (see Appendix B) producing a set of 

features. Next, assuming a normal distribution across trials, the feature performance was 

sought as a probability of error between the response to high amplitude pulse and no (or 

negligible) pulse. Moreover, the most salient 64-point segment of stimulus response was 

sought for each feature of interest. Thus, various plots of error probability measures 

(effectively error spectra) were produced including error vs. feature, error vs. post-

stimulus time and error vs. pulse amplitude. 

The spectrums of the sixteen most salient features versus post-stimulus time are 

shown in Fig. 7.9 to Fig. 7.12, while the spectrum of all features in terms of 

misclassification probability between 0 and 7.5·Abase pulse amplitude is shown in Fig. 

7.13 where sixteen most salient features are marked alphabetically a through p. 
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Figure 7.1.  Response of the DBS model (in average spikes per second per neuron) to various 
stimulus pulse amplitudes in terms of Abase where Abase=3.551nA. 

 

 
Figure 7.2.  Response of the DBS model (in average spikes per second per neuron) to various stimulus 
pulse amplitudes in terms of Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms, 60ms and 75ms resulting in smaller GPe sizes of 25, 30 and 38 respectively. 
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Figure 7.3.  Response of the DBS model (in average spikes per second per neuron to various stimulus 
pulse amplitudes in terms of Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms, 75ms and 100ms. However, the synaptic efficacies JSTN→GPe are larger 
(33.33pC). 

 
Figure 7.4. Response of the DBS model (in average spikes per second per neuron) to various stimulus 
pulse amplitudes in terms of Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms, 75ms and 100ms. However, the synaptic efficacies JSTN→GPe are 16.67pC. 
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Figure 7.5. Response of the DBS model (in average spikes per second per neuron) to various stimulus 
pulse amplitudes in terms of Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms for all GPe→STN connections (essentially one GPE and one STN module) 
and synaptic efficacies JSTN→GPe are 16.67pC. 

 
Figure 7.6. Response of the DBS model (in average spikes per second per neuron) to various stimulus 
pulse amplitudes in terms of Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms for all GPe→STN connections (essentially one GPE and one STN module) 
and synaptic efficacies JSTN→GPe are 25pC. 
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Figure 7.7. Response of the DBS model (in average spikes per second per neuron) to stimulus pulse 
amplitudes from 0 to 4·Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms for all GPe→STN connections (essentially one GPE and one STN module) 
and synaptic efficacies JSTN→GPe are 33.33pC. 

 
Figure 7.8. Response of the DBS model (in average spikes per second per neuron) to stimulus pulse 
amplitudes from 5 to 8·Abase where Abase=3.551nA. In this run, the post-stimulus inhibition 
specifications are 50ms for all GPe→STN connections (essentially one GPE and one STN module) 
and synaptic efficacies JSTN→GPe are 33.33pC. 
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Figure 7.9. The post-stimulus trajectory of the four most salient features including the 5th zero 
coefficient of an order 5 ARMA model, 7th zero coefficient of an order 7 ARMA model, 6th zero 
coefficient of an order 6 ARMA model and 2nd LPC coefficient of an order 2 error predictor. Error 
probability is lowest immediately following the stimulus. 

 
Figure 7.10. The post-stimulus trajectory of the 5th to 8th most salient features including the 
7th zero coefficient of an order 9 ARMA model, 2nd LPC coefficient of an order 3 error 
predictor, 1st LPC coefficient of an order 5 error predictor and the 3rd moment. Error 
probability is lowest immediately following the stimulus. 
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Figure 7.11. The post-stimulus trajectory of the 9th to 12th most salient features including the 
variance, 4th moment, 6th LPC coefficient of an order 7 error predictor, and the 7th zero 
coefficient of an order 10 ARMA model. Error probability is lowest immediately following 
the stimulus. 

 
Figure 7.12. The post-stimulus trajectory of the 13th to 16th most salient features including 
the 5th moment, 7th zero coefficient of an order 8 ARMA model, 1st LPC coefficient of an 
order 2 error predictor and the 4th cumulant. Error probability is lowest immediately 
following the stimulus for each of them. 
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While the error probability between 0 and 7.5·Abase pulse amplitude is a useful 

measure of performance, it does not provide information about the ability of a feature to 

discriminate between neural responses to more subtle changes in pulse amplitude. Thus, a 

spectrum of average probability of error between amplitude settings was constructed 

from the same data set. Figs. 7.14 to 7.17 show the average probability of error between 

amplitude settings so that a difference of 1 on the abscissa represents the average 

probability of error between adjacent amplitude settings while a difference of 15 

represents the average probability of error between amplitude settings that are separated 

by 15·Abase. 

According to Figs. 7.14 to 7.17, the feature with an error spectrum that 

approaches zero fastest with respect to differences in stimulus amplitude is the 7th zero 

coefficient of linear filter orders 8, 9 and 10 with that of 8 being the most successful. 

In Fig. 7.18 to Fig. 7.21, the mean values of the features are shown with respect to 

pulse amplitude. It can be seen there that the 7th zero coefficient has a near-linear 

relationship with pulse amplitude that continues throughout 15·Abase, while the other 

features tend to reach a plateau after 10·Abase.  

The distributions (or histograms) of computed features across 100 trials for a high 

amplitude pulse (15·Abase) and no stimulus (0·Abase) are shown in Figs. 7.22 through 7.25. 

Of particular interest are the distributions of the LPC and ARMA model coefficients in 

that they display a more Gaussian distribution than the moments and cumulants. 

Moreover, this is particularly evident in the case of the 7th zero coefficient of ARMA 

model orders 8, 9 and 10. 
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Figure 7.14. The probability of error between the responses of the model to various pulse amplitude 
settings. The top four best features are shown. All follow the same monotonically decreasing trend as 
the difference between amplitude settings is increased.  

 
Figure 7.15. The probability of error between the responses of the model to various pulse 
amplitude settings. The 5th to 8th best features are shown. Three of them follow the same 
monotonically decreasing trend as the difference between amplitude settings is increased. 
However, the 5th moment displays a diminished quality between the 11ּAbase and 13ּAbase 
abscissa values. 
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Figure 7.16. The probability of error between the responses of the model to various pulse 
amplitude settings. The 9th to 12th best features are shown. Three of them follow the same 
monotonically decreasing trend as the difference between amplitude settings is increased. 
However, the 4th moment displays a diminish in quality between 12ּAbase and 13ּAbase. 

 
Figure 7.17. The probability of error between the responses of the model to various pulse 
amplitude settings. The 13th to 16th best features are shown. Three follow the same 
monotonically decreasing trend as the difference between amplitude settings is increased. 
However, the 5th moment displays a diminish in quality between the 12ּAbase and 13ּAbase. 
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Figure 7.18. Feature values (at 8-bit quantization) versus stimulus amplitude for the top four 
features. The 2nd LPC and 6th zero coefficients start to reach a plateau after roughly 10·Abase.  

 

Figure 7.19. Feature values (at 8-bit quantization) versus stimulus amplitude for the 5th to 8th 
best features. The 1st LPC seems to reach a plateau at 10·Abase, the 4th and 5th cumulants seem 
to reach a peak at 15·Abase, while the 7th zero coefficient monotonically decreases throughout 
the range of pulse amplitudes.  
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Figure 7.20. Feature values (at 8-bit quantization) versus stimulus amplitude for the 9th to 12th best 
features. The variance, 4th moment and 6th LPC seem to reach a plateau after 10·Abase. However, the 
7th zero coefficient monotonically decreases throughout the range of pulse amplitudes. 

 

Figure 7.21. Feature values (at 8-bit quantization) versus stimulus amplitude for the 13th to 16th best 
features. The 1st and 2nd LPC coefficients and 3rd moment seem to reach a plateau after 10·Abase. 
However, the 7th zero coefficient monotonically decreases throughout the range of pulse amplitudes. 
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Figure 7.22. Histograms of the top four features for high stimulus ( ) and no stimulus ( ). 
Features are quantized to 8-bit integer values and bin sizes are selected so that the range between 
highest and lowest values is divided equally by 20.    

 

Figure 7.23. Histograms of the last four of the top eight features for high stimulus ( ) and no 
stimulus ( ). Features are quantized to 8-bit integer values and bin sizes are selected so that the 
range between highest and lowest values is divided equally by 20. 
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Figure 7.24. Histograms of the last four of the top 12 features for high stimulus ( ) and no 
stimulus ( ). Features are quantized to 8-bit integer values and bin sizes are selected so that the 
range between highest and lowest values is divided equally by 20. 

 

Figure 7.25. Histograms of the last four of the top 16 features for high stimulus ( ) and no 
stimulus ( ). Features are quantized to 8-bit integer values and bin sizes are selected so that the 
range between highest and lowest values is divided equally by 20. 
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The computational complexity of calculating higher order statistics may be 

prohibitively large for implementation as a low-power integrated circuit (see Table 1.1). 

However, the computations involved in linear adaptive filtering are relatively tractable, 

especially for the LPC spectrum. Moreover, the 1st LPC coefficient is even more 

attractive because it does not require the calculation of the entire LPC spectrum. 

7.2.2 Low-Frequency Analysis 

The response of the Subthalamo-Pallidal loop to stimulation was recorded over 

500ms following changes in stimulus parameters. Then, the data were low-pass filtered 

and down-sampled to a 100Hz sampling frequency for resolving the low-frequency 

characteristics. Next, Fourier analysis was performed on the results.  

The results indicate low-frequency oscillations or “limit-cycles” in the tremor 

frequency range that subside as higher stimulus energy is applied. In particular, the range 

of oscillation frequencies covered includes delta waves (0-4Hz), theta waves (4-8Hz), 

alpha waves (8-12Hz) and beta waves (12-29Hz). Of these, alpha waves resemble tremor 

frequencies while beta waves have been detected in the STN of patients undergoing 

surgery for Parkinson’s disease.  

Fig. 7.26 shows the oscillatory behavior of the model with respect to pulse 

amplitude, width and pulse frequency. It can be seen that low pulse amplitude/width or 

amplitude/frequency combinations result in oscillations primarily in the alpha range 

whereas higher amplitude/width or amplitude/frequency combinations reveal oscillatory 

behavior in the beta range that ultimately subsides for even higher stimulus energy as can 

be seen in the lower right corners of both plots in Fig. 7.26. 
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Fig. 7.26 indicates that low frequency characteristics of the neural response or 

LFP may provide a good indication of the effectiveness of stimulus parameters. Also, the 

results are a validation of the subthalamo-pallidal loop model in that: (1) the range of the 

low-frequency components are those at which limb-tremor and STN neural activity has 

been observed in Parkinson’s patients, and (2) the oscillations at frequencies in the band 

of interest steadily subside as the stimulus frequency surpasses 100Hz (a phenomenon 

that has been observed) [176]. Moreover, given that the model is an accurate 

representation of what occurs in the subthalamo-pallidal loop of the human Basal 

Ganglia, it may provide an explanation for the effectiveness of DBS in suppressing the 

rest-tremor symptoms. In particular, DBS may be changing the dynamics of the neural 

system as a whole so as to stop limit-cycles in the tremor-frequency or abnormal range. 

Looking back at the theories of DBS with this in mind, the results may grant more 

validity to the hypothesis of “de-synchronization” rather than the theories of preferential 

stimulation of axons and the blocking of ion conductance [42]. 

Probability of error was not included for the low frequency Fourier spectra due to 

the limited availability of a statistically significant number of results. This is due to the 

long simulation times necessary to obtain low frequency data on a single Pentium 4. 

However, the trends of the low-frequency response to stimulus energy are evident as 

shown in Fig. 7.26 regardless of the lack of repeated trials. 
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Figure 7.26. Low frequency oscillations of the model to various pulse frequencies and amplitudes. 
The range of oscillation frequencies covers delta waves or 0-4Hz ( ), theta waves or 4-8Hz ( ), 
alpha waves or 8-12Hz ( ) and beta waves or 12-29Hz ( ). Of these, alpha waves resemble tremor 
frequencies while beta waves have been detected in the STN of patients undergoing surgery for 
Parkinson’s disease. It can be seen that combinations of low pulse frequency, width and amplitude 
result in oscillations primarily in the alpha range whereas higher frequency, width and amplitude 
combinations reveal oscillatory behavior in the beta range that ultimately subsides for even higher 
stimulus energy as can be seen in the lower right corner of the graphs.  
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7.3 Circuit Simulations 

Simulations were performed on the SPECTRE analog simulator using BSIM3v3 

models of the AMI 1.6µm process. Furthermore, results of simulation were saved using a 

strobe period small enough to preserve the digital aspects while large enough to avoid 

analog transient responses and save disk space. Moreover, the strobe period depended on 

the particular clock cycle used due to the varied longest path delay of each circuit (this 

varied between roughly 40ns and 800ns). Also, input signals to the simulator were 

compiled using a routine written in C++ while outputs were saved in a delimited format 

using the OCEAN language. Next, the delimited files were loaded, interpreted and 

graphed using the MATLAB plotting tools. 

Following are results from simulations of circuit components including the 

Baugh-Wooley multiplier, sequential divider, main arithmetic controller, secondary 

arithmetic controller and ADBS controller.   

The 2’s complement Baugh-Wooley multiplier with complementary stages was 

simulated using two inputs incrementing at steps of once and twice the clock duration. 

Moreover, both positive and negative input values were used to verify the two’s 

complement performance as can be seen in Figures 7.27, 7.28 and 7.29. 

The comparator produces the difference between two inputs, the greater-or-equal 

(GTOREQ) and equal (EQ) signals. Fig. 7.31 shows the output of the circuit to a set of 

inputs stepped at once and three times the clock cycle. Simulation of the conversion to 

magnitude-and-sign format, 24-bit registers and scaling circuit in both normal and scaling 

mode are shown in Figs.7.32 through 7.34. 
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Results of 8-bit divider simulation are shown in Fig. 7.35. However, because the 

output consists of 16 bits where the lower 8 bits represent values of 2-n (n being a positive 

integer representing the bit position), the output is scaled or divided by 28 to be compared 

with the calculated output. Also, because the divider is sequential, it requires 16 clocks to 

produce a result. This translates to a 12.8µs time-lag with a clock cycle of 800ns. Thus, 

the output is shifted by 12.8µs to be compared with the calculated output. Although not 

shown in the plot, the division by zero at the start of the simulation causes the output of 

the circuit to be 256 (the maximum value attainable). 

The arithmetic controllers set the data paths and monitor the progress of the 

autocorrelation computations (of lag 0 and lag 1). Moreover, they are split into two 

controllers: (1) the primary controller that takes care of choosing the autocorrelation lag 

and enabling scaling and division, and (2) the secondary controller that controls 

multiplication and division. 

Simulation of the primary arithmetic controller is shown in Fig. 7.36. The 

controller begins in the zero state where ‘CLRSD’ clears the 24-bit registers. When 

‘PROC’ turns on, the controller transitions to state 1 where the secondary controller is 

enabled with the ‘GOSUB’ signal. When the secondary controller completes its cycle and 

issues the ‘SUBDN’ signal, the primary controller transitions to state 2 where the 

‘SCALE’ signal is enabled. Then, when scaling completes (SCALEDN), the primary 

controller enables the division circuit with the ‘DIV’ signal, then transitions back to the 

zero state when division is done (DIVDN). 
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Figure 7.27. Simulation of 8-bit two’s complement Baugh-Wooley multiplier with complementary 
logic stages for positive inputs. Multiplicands (X and Y) are plotted in the two lower graphs, while 
output ( ) of the multiplier is plotted together with the calculated output or X·Y ( ). Also, the 
output has been shifted by 1.2µs to account for the lag introduced by the pipeline. 

 

 
Figure 7.28. Simulation of 8-bit two’s complement Baugh-Wooley multiplier with complementary 
logic stages for one positive and one negative input. Multiplicands (X and Y) are plotted in the two 
lower graphs, while output ( ) of the multiplier is plotted together with the calculated output or 
X·Y ( ). Also, the output has been shifted by 1.2µs to account for the lag introduced by the pipeline. 
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Figure 7.29. Simulation of 8-bit two’s complement Baugh-Wooley multiplier with complementary 
logic stages for one positive and one negative input. Multiplicands (X and Y) are plotted in the two 
lower graphs, while output ( ) of the multiplier is plotted together with the calculated output or 
X·Y ( ). Also, the output has been shifted by 1.2µs to account for the lag introduced by the pipeline. 

 

 
Figure 7.30. The ‘SIGN’ signal turns on when the ratio R1 and R2 is negative. When the ‘scale’ 
signal turns on at 6.5µs (--), ‘SIGN’ retains the last state it had when ‘scale’ was off.  
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Figure 7.31. Simulation of the 8-bit comparator circuit. The difference (X-Y) is shown on the top 
graph, while the individual inputs are shown in the second. The third plot shows the outputs of (X=Y) 
and (X≥Y). 

 

Figure 7.32.  Simulation of the conversion to magnitude-and-sign format and scaling. The magnitude 
(R1Out) is obtained from the input (R1). When the ‘scale’ signal is switched on at 6.5µs (--), the 
scaling or shifting of the last magnitude at every clock cycle is visible as an exponential decay.  
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Figure 7.33.  Simulation of the conversion to magnitude-and-sign format and scaling. The magnitude 
(R2Out) is obtained from the input (R2). When the ‘scale’ signal is switched on at 6.5µs (--), the 
scaling or shifting of the last magnitude at every clock cycle is visible as an exponential decay. 

 
Figure 7.34.  Scaling of the dividend and divisor. The magnitudes R1Out and R2Out are shifted left 
until both are less than 255. When the ‘scale’ signal is switched on at 6.5µs (--), the scaling or 
shiftingbegins. ‘SCALEDONE’ turns on when both R1Out and R2Out are less than 255. 
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Figure 7.35. Results of 8-bit divider simulation. The dividend X and divisor Y are plotted in the lower 
graph, while output of the divider is scaled (divided by 28) and plotted together with the calculated 
output or X/Y in the top graph. Also, the output has been shifted by 12.8µs to account for the lag 
introduced by the sequential operations (16 clocks at 800ns per clock). Although not shown in the 
plot, the division by zero at the start of the simulation causes the output of the circuit to be 256 (the 
maximum value attainable).  

As shown in Fig. 7.37, the secondary controller starts in state 0 where the 24-bit 

registers are cleared with the ‘CLRREGS’ and ‘CLKREGS’ signals, and the multiplier, 

accumulator and counter are cleared with ‘CLRMAC’. When the ‘GOSUB’ signal is 

received from the primary arithmetic controller, the secondary controller transitions to 

state 1 where it remains until the counter completes with the signal ‘COUNTDN.’ At this 

point, the controller again clears the multiplier, accumulator and counter with 

‘CLRMAC’ and transitions to state 2 where the ‘LAGSET’ signal is turned on to select 

the autocorrelation of lag 1. When ‘COUNTDN’ signals, the controller moves to state 3 

for a single clock cycle and signals ‘SUBDN’ before it transitions back to state zero. 
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Figure 7.36.  Simulation results of the primary arithmetic controller. The controller begins in the 
zero state where ‘CLRSD’ clears the 24-bit registers. When ‘PROC’ turns on, the controller 
transitions to state 1 where the secondary controller is enabled with the ‘GOSUB’ signal. When the 
secondary controller completes its cycle and issues the ‘SUBDN’ signal, the primary controller 
transitions to state 2 where the ‘SCALE’ signal is enabled. Then, when scaling completes 
(SCALEDN), the primary controller enables the division circuit with the ‘DIV’ signal, then 
transitions back to the zero state when division is done (DIVDN). 

The ADBS controller circuit uses the results of the feature computation to decide 

when to increment or decrement pulse amplitude and pulse width. Thus, by supplying 

inputs that follow what would be expected in a realistic scenario, the expected outputs are 

verified. In particular, the inputs include ALIM (pulse amplitude has reached some upper 

limit), FAMP (pulse amplitude has reached some lower limit), WLIM (pulse width has 

reached some upper limit), FWIDTH (pulse width has reached some lower limit) and 

GTMARK (the computed feature has crossed some boundary value). Also, the PROC, 

REC and PROCD signals are provided according to the logic shown in Fig. 6.22, 

however, scaled to a shorter time-scale for simulation purposes. 
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Figure 7.37. Simulation of the secondary arithmetic controller. The controller starts in state 0 where 
the 24-bit registers are cleared with the ‘CLRREGS’ and ‘CLKREGS’ signals, and the multiplier, 
accumulator and counter are cleared with ‘CLRMAC’. When the ‘GOSUB’ signal is received from 
the primary arithmetic controller, the secondary controller transitions to state 1 where it remains 
until the counter completes with the signal ‘COUNTDN’. At this point, the controller again clears the 
multiplier, accumulator and counter with ‘CLRMAC’ a nd transitions to state 2 where the 
‘LAGSET’ signal is turned on to select the autocorrelation of lag 1. When ‘COUNTDN’ signals, the 
controller moves to state 3 for a single clock cycle and signals ‘SUBDN’ before it transitions back to 
state zero. 

The scenario used in simulation assumes that initially GTMARK is asserted (the 

computed feature indicates stimulation energy is not enough), ALIM is off, WLIM is off, 

FAMP is on and FWIDTH is on (the pulse amplitude and width are at their minimum 

values). Next, FAMP is switched off assuming the pulse amplitude has been incremented 

(and this is indeed the case as seen in the first 42µs of the INCAMP signal in Fig.7.40). 

Following this, roughly 25µs later, it is assumed that the pulse amplitude has reached a 

limit, thus ALIM is switched on. Accordingly, the controller stops issuing INCAMP 

signals and begins issuing INCWID signals as seen between 40µs and 80µs of Fig.7.40. 

Immediately, the FWID signal is turned off to reflect increments in the pulse width. Next, 

roughly 25µs later, it is assumed that pulse width reaches a maximum value and WLIM is 
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switched on. Then, the controller stops issuing INCWID signals. At this point, it is 

assumed that the stimulus energy is adequate and GTMARK is switched off. Now, the 

controller begins to reduce signal energy. First, the DECWID signal is switched on, 

prompting the decrease of pulse width until the lower limit is reached. At this point, the 

FWID input signal is turned on which causes the controller to switch on the DECAMP 

signal, thus reducing the pulse amplitude until FAMP is detected.  

7.4 Automated DBS 

To observe the expected performance of the automated DBS apparatus, the 

computations of the circuit components can be simulated in conjunction with the neural 

network and neuro-electrode interface model (the composite band-pass filter). Next, the 

resulting signal (the LFP) is downsampled to 10kHz and scaled to fit the range (-27,27-1). 

Furthermore, the samples are converted into Boolean arrays representing binary numbers. 

At this point all computations can be performed using binary arithmetic similar to that 

shown in the previous circuit simulations with the exception of the pipeline methods. 

The stimulus is initially set at 100Hz of 50µs pulses with pulse height equal to 

0.5·Abase or roughly 16.7nA. Also, the stimulus is applied as a current injection into each 

neuron of the STN. As the simulation progresses, the controller increases pulse amplitude 

until it reaches a plateau of roughly 140nA at around 2s into the simulation as can be seen 

in Fig. 7.53. Next, an attenuation factor is introduced at 3s that slowly diminishes the 

effect of the stimulus by reducing the pulse amplitude. This causes the controller to 

further increase pulse amplitude eventually reaching the maximum (10·Abase or 334nA), 

then increasing pulse width until it reaches a plateau of roughly 110µs. 
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The 1st reflective coefficient of the LPC spectrum of the LFP can also be seen as 

the simulation progresses. In particular, for low stimulus energies it seems to vary 

between 0.15 and 0.85, however as stimulus energies are increased it is confined between 

0.7 and 0.9. Also, when stimulus attenuation is increased, the feature can be seen 

approaching the values for low stimulus energy, then increasing again as the automation 

adjusts the stimulus parameters to compensate for the attenuation. 

The controller keeps track of how many times the computed feature has surpassed 

0.75, then after the fourth time, it reduces the signal energy. This is due to the 

fluctuations in the computed feature seen in Fig. 7.41. That is, if the controller 

immediately steps down signal energy, then it was observed that it tends to fluctuate but 

never reaches the desired operating point. Also, counting too many traversals above 0.75 

would result in a steady and perhaps unnecessary increase of signal energy. 

 
Figure 7.38. Input signals to the main controller. These include ALIM that signals when pulse 
amplitude reaches a pre-defined maximum, FAMP that signals when pulse amplitude reaches a pre-
defined minimum, WLIM that signals when pulse width reaches a predefined maximum, FWIDTH 
when pulse width reaches a predefined minimum and GTMARK that signals when stimulus energy 
is not high enough. 
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Figure 7.39. Input signals to the main controller influencing change of state. ‘REC’ moves the 
controller from rest to state 1 when sampling of the LFP data occurs, ‘PROC’ moves the controller to 
state 2 when the feature is computed and ‘PROCD’ moves the controller to state 3 when the output 
signals are selected.   

 

 
Figure 7.40. The output signals of the main controller during an artificial run. ‘INCAMP’ increases 
the pulse amplitude when the signal energy is too low, ‘INCWID’ increases the pulse width when 
signal energy is too low and pulse amplitude cannot be increased further, ‘DECWID’ decreases the 
pulse width when signal energy is too high and ‘DECAMP’ decreases the pulse amplitude when 
signal energy is too high and pulse width cannot be decreased further. 
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Figure 7.41. The stimulus is initially set at 100Hz of 50µs pulses with pulse height equal to 0.5·Abase or 
roughly 16.7nA. As the simulation progresses, the controller increases pulse amplitude until it 
reaches a plateau of roughly 140nA at around 2s into the simulation. Next, an attenuation factor is 
introduced at 3s that slowly reduces the pulse amplitude. The controller compensates for the 
attenuation by further increasing pulse amplitude eventually reaching the maximum (10·Abase or 
334nA), then increasing pulse width until it reaches a plateau of roughly 110µs.  For low stimulus 
energies and during attenuation, the 1st reflective coefficient of the LPC spectrum of the LFP seems 
to vary between 0.15 and 0.85, however as the automation compensates by increasing stimulus 
energies, the feature is confined between 0.7 and 0.9. 

The upper limits, lower limits and step sizes of the pulse amplitude and pulse 

width, as well as the desired range of the feature of interest presented above show success 

in modifying the behavior of the artificial subthalamo-pallidal network. However, it is 

expected that under non-artificial conditions, these parameters will be set according to 

observed patient reactions. Thus, further studies involving human subjects are necessary 

before the design of such an apparatus can be finalized. 
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Chapter 8. Summary and Future Work 

A method has been presented for screening signal processing techniques in search 

of those that provide a measure of the effectiveness of Deep Brain Stimulation (DBS) 

when applied to the neural response of DBS. Moreover, to validate this method, a neural 

network was constructed for simulating the dynamics of key nuclei in the Basal Ganglia 

to produce neural responses similar to what has been observed experimentally by 

Dostrovsky and others [43]. Next, the neural responses were summed and passed through 

a band-pass filter to emulate the neuro-electrode interface and analog front end of the 

recording circuitry. Furthermore, it was shown that some features, such as the 5th, 6th and 

7th zero coefficients of the ARMA model, the 1st, 2nd and 6th LPC coefficients as well as 

the variance, moments and cumulants provided a satisfactory salience in terms of error 

probability. Also, low frequency analysis with the discrete Fourier transform showed 

behavior in the 0-30Hz range that could also be used as an indicator of response to DBS 

treatment.  

The computations involved in producing the variance and first LPC coefficient 

were more tractable compared to other features. However, the first LPC coefficient was 

chosen for circuit implementation because of its inherent normalization with respect to 

signal power. Next, a transistor-level CMOS design for computing the 1st LPC coefficient 

was presented in addition to a control unit for regulating the parameters of DBS in real-

time. Also, various packaging scenarios, process technologies and their conformance to 

the IEEE/ANSI c95.1 standard for human exposure were addressed in terms of 

limitations on power dissipation and clock rate. Moreover, the results suggest that an 
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adaptive approach to DBS treatment may be achieved with minimal additional power 

demands over conventional DBS treatment.   

In addition to emulating the response of neurons in the STN to individual stimulus 

pulses in the time domain, the neural network also exhibited oscillations in the alpha and 

beta frequency bands (8-30 Hz) as observed experimentally in the STN and limb tremor 

of Parkinson’s patients. Moreover, as stimulus energies (amplitude, pulse width and 

frequency) were increased, the Parkinsonian activity in the model subsided. More 

significantly, this behavior occurred as the pulse frequency surpassed 100Hz, a 

phenomenon observed in DBS trials [176]. 

The results of simulation suggest that negative feedback in the basal ganglia may 

play a role in the symptoms of Parkinsonism and the success of DBS. In particular, it may 

be that the non-linear system comprised of neural populations connected in a negative 

feedback loop (such as the subthalamo-pallidal loop) will produce limit cycles or 

oscillations. Moreover, the introduction of an external stimulus at appropriate pulse 

amplitude, pulse width and frequency may move the operating point of the limit cycle 

away from those frequencies that are associated with undesirable symptoms, or even 

cause the oscillatory behavior to cease.    

The methods described in this dissertation are of theoretical interest and the 

results are speculative unless accompanied by experiments involving human subjects. In 

particular, although the subthalamo-pallidal network model displays behavior that has 

been observed experimentally, the details of an actual neuro-physiological response to 

DBS may include critical information that the software model cannot currently 

reproduce. Thus, data obtained from experiments on human subjects undergoing 
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stereotactic neurosurgery for DBS would be necessary for the following reasons: (1) to 

further validate or suggest improvements to the subthalamo-pallidal network model, and 

(2) to obtain real physiological measurements upon which to apply feature selection 

techniques. In turn, this would lead to more plausible settings for the apparatus such as 

the threshold value of the computed feature that discriminates between an adequate and 

inadequate response to DBS stimuli.         

Because of the sensitivity of applications involving medical implants, there are a 

number of steps to be taken before fabricating such a device. First, it will be necessary to 

acquire data from human subjects undergoing DBS. In particular, using a recording 

apparatus that has the same or very similar characteristics to the final product, the 

response of patient neural activity and limb tremor to various stimulus parameters and 

methods must be recorded and analyzed using feature selection techniques. Next, a 

survey of available packaging materials must be conducted in search of those that are 

biocompatible and offer satisfactory heat/energy dissipation. 

Another topic of interest is the behavior of the subthalamo-pallidal model at rest 

and when stimulated. In this regard, chaos and bifurcation theory as well as limit cycle 

dynamics can be investigated. As a result, a more rigorous mathematical model of the 

dynamics may provide insight into the physiological function of the basal ganglia, the 

role of dopamine and the effects of deep brain stimulation. 
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APPENDIX A – DERIVATION OF NEURAL NETWORK PARAMETERS 

A.1 Base Pulse Amplitude 

Given nominal neuron membrane capacitance Cm and resistance Rm, an equation 

that describes subthreshold dynamics of a neuron membrane excited by a transmembrane 

pulse current of duration Tp and peak A is simply the first order equation 
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where u(t) is the unit step function. 

 Using the Laplace transform and assuming an impulse input, equation (A.1) 

becomes 
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 Then, solving for the transfer function H(S) yields 
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This means the impulse response of the system is 

mmCRt

m

e
C

th /1
)( −= .        (A.4) 

The response of the system to the input ( ))u()u( pTttA −−⋅  is then the convolution 
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or, 
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Thus, the minimum value of A required to elicit an action potential or drive ∆Vm=Vm-Vrest 

past some value ∆Vth is 
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or in terms of the rheobase current Irhe, 
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A.2 Base Efficacy 

The equation that describes the dynamics of synaptic activation under 

subthreshold rest conditions for a single synapse is  
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Substituting Vm with ∆Vm and using Laplace transforms, 

( ) ( )
ss

m
m

mm S

J
SV

R
SVSC

ττ ⋅+
⋅=∆⋅+∆⋅⋅
1

11
.    (A.10) 

Solving for ∆Vm yields 
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This means the response over time is 
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Setting the first derivative of equation (A.13) to zero, it can be shown that Vm 

attains a maximum value at a time t=∆t where  
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In that case, the minimum efficacy Jbase required to drive ∆Vm past some threshold ∆Vth in 

the post synaptic neuron is obtained by substituting equation (A.14) into equation (A.13) 

and solving for J so that 
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or in terms of the rheobase current Irhe, 
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A.3 Base Stochasticity 

The aggregate of all contributions to the transmembrane current that stem from 

spontaneous random activity in synapses, external electromagnetic fields and internal 

membrane properties is modeled as a normal zero-mean stochastic trans-membrane 

current Istoch. Moreover, the variance of Istoch is calculated in terms of the “base” 

stochasticity or the variance σI
2 necessary to elicit an action potential with probability p at 

any given time instance resulting in a mean firing rate of f = p/τt (where τt is the time-step 

of the simulation). 
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Again using the passive membrane model in equation (1.1), but substituting the 

nominal parameters Cm and Rm, and the potential with respect to rest ∆Vm, the system is 

described as 
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and has corresponding impulse response 
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To find the probability of ∆Vm surpassing ∆Vth (assuming ∆Vm is a Gaussian 

process) the variance 2
mV∆σ  of ∆Vm is needed (assuming zero mean): 
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Substituting the convolution Istoch * hm(t) for ∆Vm, the variance of Vm can be solved as  
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Now, treating t as a dummy variable, 
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The integral in the parenthesis in equation (A.21) yields a value of zero when τυ ≠ and 

2
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Equation (A.22) may be simplified to 
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Solving the integral then yields 
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Given Vm(t) is a Gaussian process (as a linear transformation of a Gaussian process), the 

probability of ∆Vm surpassing ∆Vth is then 
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Assuming a firing frequency of f, and solving for the standard deviation 
stochIσ  of the 

stochastic current,  
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A.4 Module Size 

Assuming there is a net inhibitory effect on one neuron module (the STN) by 

another neuron module (the GPe), the number of neurons in the GPe must be chosen to 

inhibit the corresponding STN module for a mean duration of ∆T following a DBS pulse. 

In particular, given the neurons in a particular GPe module have path delays to a 

corresponding STN module that are uniformly distributed between T1 and T2, then a 

sufficiently large number N of those neurons would generate a mean arrival rate at the 

STN module of approximately 
12 TT

N

−
 or a mean inter-arrival time of 

N

TT
t 12 −

=∆ .  
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Given a mean arrival rate of ∆t, the arrival of spikes at the STN neuron can be 

approximated as 
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Also, using the synaptic impulse response in equation (2.3), the post-synaptic current that 

will result is given by the convolution equation 
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Thus, equation (A.28) becomes 
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and the integral is solved to yield 
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It can be discerned that  
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will always hold. Furthermore, that means Il will always be bounded by values that 

depend on ∆t (the interarrival rate), J (synaptic efficacy) and τs. In particular, the range of 

Il can be described as 
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Furthermore, taking the limit as τs → ∞ yields the result that 
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This confirms the rate-coding property of neurons in that the mean post-synaptic 

current is proportional to the pre-synaptic firing frequency f and the synaptic efficacy J. 

Moreover, the temporal variations of the post-synaptic current are constrained to lie 

within the limits posed in equation (A.34). Thus, the mean and range of Il can be found 

respectively as 
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A measure of the smoothness of the response can then be calculated as 

mean

range
m I

I
k = ,         (A.38) 

where km can be considered a “smoothness factor” that indicates how far the response 

will vary from its mean and is independent of the synaptic efficacy J. Furthermore, given 

the criteria for a synaptic connection are comprised of: (1) synaptic decay time τs, (2) a 
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smoothness factor km and (3) a duration of inhibition ∆T = T2 – T1, it is now possible to 

select a GPe module size NGPe that will satisfy the criteria (1 to 3) using: 
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APPENDIX B – SIGNAL PROCESSING METHODS 

B.1 Statistical Measures 

The central moment of order k of a random variable X with mean µ, is obtained 

as an expected value ))E(( kX µ− . Moreover, when dealing with a finite set of data of 

size N, this measure can be approximated as 
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As can be observed in equation (B.1), the second central moment µ2 is merely 

the variance of X, σ2. 

Moreover, some “higher order statistical” measures include the skewness: 
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and kurtosis: 
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Also, the first 5 cumulants can be defined in terms of central moments as: 
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B.2 Linear Predictive Coding 

Given a set of m data points defined as vector , the LPC procedure determines 

a set of p+1 values defined by vector  that solve the equation 
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Moreover, an efficient algorithm for completing this task is known as the Levinson or 

Levinson-Durbin algorithm [154]. In particular, given autocorrelation measure 
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B.3 ARMA Model 

Given some impulse response h(n), the autoregressive moving average 

(ARMA) model defines an infinite impulse response (IIR) filter that has an impulse 

response that fits h(n) as closely as possible. Moreover, there are a number of methods 

available for building an ARMA model. One of these is the Prony method [186]. 

The first step in the Prony method is to use the portion of data that lies beyond 

the transient response of the zero IIR coefficients and solve the corresponding 

autoregressive (AR) model assuming an all-pole filter. To this end, the Levinson-

Durbin algorithm can be employed. After which, the LPC coefficients can be 

transformed into the AR coefficients or poles of the IIR filter. Next, while treating the 

pole coefficients as constants, the zeros can be found using the method of least squares. 

B.4 Butterworth Filters 

Given a set of filter specifications such as stop-band attenuation Astop, pass-band 

attenuation Apass, stop-band frequency fstop and pass-band frequency fpass, a stable IIR 

filter with a steady roll-off and flat pass-band can be designed using the Butterworth 

method [185]. In particular, the magnitude response of an order n Butterworth filter is 

given by 
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where Ω is the normalized frequency such that 2πfpass is scaled to the 3dB attenuation 

mark. Moreover, the filter order n can be determined by  
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where Ωt is the normalized stop-band frequency corresponding to 2πfstop. 

 The transfer function of the filter is given by 

( )n
s

sHsH
21

1
)()(

−+
=−        (B.12) 

and can be transformed into a band-pass filter by using the following substitution: 
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where Ωu, Ωl are the normalized upper and lower pass-band frequencies, respectively.  

B.5 Downsampling 

When down-sampling (or reducing the sampling rate of) a sequence of data 

points, the effect of “aliasing” may be avoided by filtering the data through a low-pass 

filter with appropriate specifications. In particular, the cut-off frequency of the filter 

must be low enough so that there is significant attenuation at half of the new sampling 

rate. Moreover, a very low cut-off frequency with respect to the sampling frequency 

may require an impractically large filter order. Thus, the down-sampling process may 

proceed in stages of successive low-pass filtering and decimation.  

The selection of filter parameters can be accomplished by simply observing the 

magnitude response of the filter in the frequency domain while adjusting the cut-off 

frequency and filter order. Moreover, to avoid the effects of frequency leakage, a 

Hamming window can be employed [187]. In particular, given cutoff frequency fc, 
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sampling frequency fs and filter order N, a practical design method of a Hamming low-

pass filter is as follows [152]: 
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where An is the filter response at time index n.  
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APPENDIX C – CIRCUIT COMPONENTS 

C.1 Fundamental Components 

All digital logic in the design is based on the AND, OR and XOR operations. 

Also, C-switches, multiplexers and latches are used. Moreover, all basic components are 

based on designs reported by Weste and Harris [162]. Following are schematics of the 

logic gates. 

 

Figure C.1. Inverter (INV) with input A and output B, and a NAND gate with inputs A and B and 
output C. 

Using two C-Switches, each connected to a different input but the same output 

with complementary select signal inputs, a multiplexing function is achieved as shown in 

Fig. C.7. Also, using C-Switches and inverter/multiplexers, level sensitive latches can be 

constructed and assembled into a positive-edge triggered master/slave register. In 

particular, a negative-level-sensitive latch followed by a positive-level-sensitive latch 

comprises the positive-edge-triggered register shown in Fig. C.10. 

INV 

NAND 
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Figure C.2. AND gate with inputs A and B and output C. 

 

 

Figure C.3. OR gate with inputs A and B and output C. 
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Figure C.4. NOR gate with inputs A and B and output C. 

 

Figure C.5. XOR gate with inputs A and B and output C. 
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Figure C.6. C-switch with input IN, output OUT and gate switch S and  or S_B. 

 

 
Figure C.7. Multiplexer with inputs A and B, output C and select signal SEL. 
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Figure C.8. Positive edge triggered D-Register. When the clock signal CLK is low, the input D is 
passed through the negative-level-sensitive or master latch (through two inverters and a C-switch) to 
the input of the positive-level-sensitive latch. When CLK goes high, the master latch blocks any new 
inputs and holds the result while the slave latch passes the result through to the output Q.  When the 
CLK signal transitions to low, the slave latch blocks any new inputs and holds the result.   

C.2 Memory Elements 

All memory elements are comprised of positive-edge-triggered D-Registers where 

input signals are multiplexed with VDD, VSS and an optional terminal for linking to a 

scan chain. As a result, the element can be set, cleared and operated in ‘scan’ mode as 

shown in Fig.C.9. 

 
Figure C.9. Latch with clear and set. When the CL signal is on (and SE and SC are off), VSS is 
multiplexed to the input of the D-Latch causing a ‘clear’ operation. When the SE signal is on (and SC 
is off), VDD is multiplexed to the input of the D-Latch causing a ‘set’ operation. When the ‘SC’ 
signal is on, the ‘SCI’ or scan-in signal is passed to the D-Latch forming a link in a scan chain. 
Otherwise when CL, SC and SE are all off, the D-Latch performs as a regular single-bit memory 
element. All signals are processed on the next positive clock edge.  
 

1 
1 

1 

0 
0 

0 
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 An array of four 1-bit registers in parallel comprise a 4-bit register with 

‘clear’, ‘set’ and ‘scan’ operations as shown in Fig.C.10. Then, two 4-bit registers can be 

assembled into an 8-bit register and so on.  

 
Figure C.10. Four 1-bit registers or a single 4-bit register. The 4-bit input is shown as A<1> through 
A<4>. The CL, SE and SC signals control the ‘clear,’ ‘set’ and ‘scan’ operations. The outputs are 
shown as Q<1> through Q<4>. The scan chain starts at the SCI or ‘scan-in’ signal, then passes 
successively down each 1-bit register. Q<4> is the final scan-out signal of the scan chain. 

C.3 Multiplexers 

An array of single bit 2x1 multiplexers can be placed in parallel to form a 4-bit 

2x1 multiplexer as shown in Fig. C.11 or an 8-bit 2x1 multiplexer as shown in Fig. C.12. 

Also, multiplexers can be placed in series in a hierarchical fashion to form the 8-bit 4x1 

multiplexer shown in Fig. C.13 or larger circuits as deemed necessary. 
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Figure C.11. A 4-bit  2x1 multiplexer. The inputs are shown as A<1> through A<4> and 
B<1> through B<4>. Outputs are Q<1> through Q<4>. Select signal is S. 

 



 168

 

 
Figure C.12 An 8-bit 2x1 multiplexer. The first input is shown as A<1> through A<8> while the 
second is B<1> through B<8>. Outputs are Q<1> through Q<8>. Select signal is S.  

 
 

 
Figure C.13. A 4x1 8-bit multiplexer. Two 8-bit 2x1multiplexers are placed in parallel as a first stage 
that accepts four 8-bit inputs IN1<1:8>, IN2<1:8>, IN3<1:8> and IN4<1:8>. Next, the two outputs of 
the first stage are further multiplexed by an 8-bit 2x1multiplexer that forms the second stage. 
Furthermore, signal S<1> controls both multiplexers of the first stage while S<2> controls the second 
stage. The result is the output of the second stage or Q<1:8>.   
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C.4 Accumulator 

Considering the summation of 64 16-bit binary numbers, the largest possible sum 

will be 64x(216-1) which requires a 22-bit accumulator to guarantee protection from 

overflows.  

Because the chosen pipelining strategy divides the adder into 3-bit stages, ripple-

carry addition is sufficient to achieve the goal. Thus, all arithmetic operations make use 

of the 1-bit ripple carry adder shown in Fig. C.14. However, it should be noted that no 

circuitry is included to compensate for the inverted carry-out and sum bits. The reason is 

to reduce the overhead delay of including an inverter into every stage of the carry path. 

Instead, inverters are included at the input and output of each stage as needed. For 

example, see the 8-bit ripple-carry adder in Fig. C.15 where 8 1-bit adders are connected 

in series. 

 

 
Figure C.14. Single-bit carry-propagate adder stage. This is implemented as a single gate with CMOS 
logic. Inputs are A and B, and outputs are SUM and CARRY. 
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Figure C.15. An 8-bit ripple-carry adder. Inputs are shown as carry-in Cin, A<1> to A<8> and B<1> 
to B<8>. Outputs representing summation of A and B are S<1> to S<8> and carry-out Cout. Each 
summation symbol represents a single-bit stage. Inverters are included at the output and input 
alternatively at each stage to compensate for the complementary stages. 
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Fig. C.16 shows a pipelined version of the 12-bit ripple-carry (RC) adder where 

each pipeline stage consists of three RC stages. Moreover, delay units (registers) are 

represented by the symbol d
bZ − where b is the bit-width and d is the number of clock-

delays or registers in series of each unit. To ensure a zero output when the clear (CL) 

signal is set, those delay units that hold an inverted value need to be set to ‘one’ instead 

of cleared. Thus, they receive the CL signal into the set (SE) input while the CL input is 

kept at VSS (ground).  

 
Figure C.16. 12-bit pipelined carry-propagate adder. This is comprised of three carry-propagate 

stages. Moreover, delay units (registers) are represented by the symbol d
bZ − where b is the bit-width 

and d is the number of clock-delays or registers in series of each unit. To ensure a zero output when 
the clear (CL) signal is set, those delay units that hold an inverted value need to be set to ‘one’ 
instead of being cleared. 
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Similarly, larger adders can be constructed using longer delay paths and more 3-stage CP 

sections diagonally. For example, a 24-bit pipelined adder can be constructed using two 

12-bit pipelined CP stages arranged diagonally with appropriate delay paths from the 

input signals to the input of each pipeline stage, and from the output of each pipeline 

stage to the output of the adder. 

C.5 Carry-Select Adder 

The carry-select adder is based on the design reported by Weste and Harris [162] 

shown in Fig. C.17 where odd bit-length adders and even bit-length adders are shown in 

Fig. C.18 and Fig. C.19. 

 

Figure C.17. 32-bit carry-select adder (CSA). This is constructed from two 4-bit, two 6-bit, one 5-bit 
and one 7-bit carry-select adder stages. The extra computation time required to calculate the carry-
in of the next stage allows for that stage to compute a larger addition. However, there is no need for 
an 8-bit CSA in this 32-bit adder architecture. Thus, the last stage is a 6-bit CSA.  
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Figure C.18. 4-bit carry-select adder. Includes two ripple-carry adders with carry-in’s of 1 and 0, 
respectively. Both adders compute the same input simultaneously. However, the output is selected by 
a multiplexer controlled by the carry-in bit (CI). Carry-out is complemented because of the 
complementary properties of the next stage, which computes an odd bit length. Moreover, all even 
numbered CSA’s follow this same design except for the size of the ripple carry adder and 
multiplexer. 

 

Figure C.19. 5-bit carry-select adder (CSA). The inverted carry-outs of the 5-bit ripple-carry adders 
and carry-in of the CSA require a change in the carry-out logic of the CSA. Also, the multiplexer is 
inverted to deal with the complementary carry-in. Moreover, the next stage, being even numbered, 
requires a non-inverted carry-out. The 7-bit CSA has the same design as this 5-bit CSA except for a 
7-bit ripple-carry adder and 7-bit multiplexer in p lace of the corresponding 5-bit units. 
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C.6 Simulation Results 

Simulations of the fundamental circuit components are shown in Figs. C.20 and 

C.21. Also, Fig. C.22 shows simulations of the 8-bit register components including the 

set (SE) and clear (CL) functionality, while Fig. C.23 shows the scan chain functionality. 

In particular, the scan chain proceeds from least to most significant bits in the register, 

thus if the scan (SC) signal is set when the bit-value of the register output is zero, it 

remains zero until the scan-in (SCI) value signal is set. Following this, the bit-value 

doubles at every clock cycle as can be seen in Fig. C.23. 

 
Figure C.20. Basic gate simulations including the AND and OR operations and a positive 
edge-triggered D flip-flop where A and B are the inputs to the gates and D and CLK are the 
flip-flop input and clock signal respectively.  
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Figure C.21. Simulations of the XOR gate, multiplexer and inverter circuits. For the multiplexer, A 
and  are the inputs while B is the select signal. The inverter only has one input A. 

 
Figure C.22. Testing the 8-bit register with set (SE) and clear (CL) signals. The input “count” ( ) is 
shown to increment in steps of 1 with the clock (CLK) signal. The output ( ) follows the input 
except where CL and SE appear. In those cases, the output goes to 0 and –1 (all ones) for CL and SE 
respectively. This is shown in more detail in the second plot from the top. 
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Figure C.23. Testing the 8-bit register with scan (SC) and scan in (SCI) signals. The input “count” 
( ) is kept at 64 throughout the simulation. The output ( ) is shifted left (multiplied by 2) at each 
clock (CLK) signal, but follows the input when SC is off. The second column of plots shows the value 
64 shifting to –128 (assuming two’s complement). 

The simulation of the 8-bit 4x1 multiplexer involves the input of four signals that 

increment at different time intervals. Each value of the select signal is followed by the 

corresponding signal at the output of the circuit as seen in Figs. C.24 and C.25. 

The 12-bit pipelined carry-propagate adder was simulated as shown in Figs. C.26 

and C.27. In particular, the effects of an overflow can be seen in Fig. C.27 where the sum 

is outside the range (-2048,2047). Moreover, the output has been shifted by 640ns to 

align the calculated sum with that produced by the SPECTRE simulation. Also, 

simulation of the 16-to-24 bitwise expander can be seen in Fig. C.28 where the 

magnitude of both the 16-bit input and 24-bit output are shown. 

Simulation of a 32-bit carry-select adder used in the division circuit is shown in 

Figs. C.29 and C.30. Moreover, traces of a transient response can be seen in Fig. C.30 

during the transition of the X-input from 3855 to 0 just after 16µs into the simulation. 
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Figure C.24. Simulation of 8-bit 4x1 MUX. The select (S) signal designates the input (IN0, 
IN1, IN2 or IN3 shown by ) that is allowed to pass to the output ( ). Here, IN0 and IN1 
are shown to be selected for S=0 and S=1, respectively. 

 

 
Figure C.25. Simulation of 8-bit 4x1 MUX. The select (S) signal designates the input (IN0, IN1, IN2 
or IN3 shown by ) that is allowed to pass to the output ( ). Here, IN2 and IN3 are shown to be 
selected for S=2 and S=3, respectively. 
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Figure C.26. Simulation of 12-bit pipelined carry-propagate adder. Inputs X and Y are both given 
positive values as shown in the lower graph. The sum X+Y and the actual circuit outputs are shown 
in the top graph. The output has been shifted by 640ns to account for the lag introduced by the 
pipeline. 

 

 
Figure C.27. Simulation of 12-bit pipelined carry-propagate adder. Inputs X and Y are given both 
positive and negative values as shown in the lower graph. The sum X+Y and the actual circuit 
outputs are shown in the top graph. The output has been shifted by 640ns to account for the lag 
introduced by the pipeline. Also, the overflow of the sum above 2047 and below –2048 can be seen 
just after 4000ns and just before 2000ns. 
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Figure C.28. Simulation results of the 16-to-24 bitwise expander. The 24-bit output is shown to follow 
the 16-bit input.   

 

 

Figure C.29. Simulation of a 32-bit carry-select adder. Inputs X and Y are both given positive values 
as shown in the lower graph. The sum X+Y and the actual circuit outputs are shown in the top graph. 
The large clock cycle (850ns) is needed because there is no pipeline in this adder. 
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Figure C.30. Simulation of a 32-bit carry-select adder. Input X is given positive values while input Y 
is given negative values as shown in the lower graph. The sum X+Y and the actual circuit outputs are 
shown in the top graph. The large clock cycle (850ns) is needed because there is no pipeline in this 
adder. Also, traces of a transient response can be seen in the output during the transition of X from 
3855 to 0 just after 16µs.    
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