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ABSTRACT OF THE DISSERTATION

Asymptotic Behavior and Denjoy-Wolff Theorems for

Hilbert Metric Nonexpansive Maps

by Brian C. Lins

Dissertation Director: Roger D. Nussbaum

We study the asymptotic behavior of fixed point free Hilbert metric nonexpansive

maps on bounded convex domains. For such maps, we prove that the omega limit sets

are contained in a convex subset of the boundary when the domain is either polyhedral

or two dimensional. Similar results are obtained for several classes of positive operators

defined on closed cones, including linear maps, affine linear maps, max-min operators,

and reproduction-decimation operators. We discuss the relationship between these

results and other Denjoy-Wolff type theorems. In particular, we investigate the inter-

action of nonexpansive maps with the horofunction boundary in the Hilbert geometry

and in finite dimensional normed spaces.
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Chapter 1

Introduction

In his 1957 paper [7], Garrett Birkhoff demonstrated the utility of the Hilbert metric for

studying the eigenvectors of linear maps that preserve a cone. He observed that a linear

map which takes a cone into itself is nonexpanding with respect to Hilbert’s projective

metric. He also gave conditions under which a linear map is a strict contraction with

respect to the Hilbert metric. Around the same time, Samelson [51] also observed the

connection between the Hilbert metric and linear maps. Bushell [13] notes that any

homogeneous of degree one map which is order-preserving with respect to a closed cone

is nonexpansive with respect to Hilbert’s projective metric. In this thesis, we call such

maps positive operators.

Positive operators arise in a wide variety of applications. In some applications, such

as the DAD-problem in linear algebra ([41], [44], [10]) and the existence problem for

diffusions on fractals ([36], [50]), it is crucial to know whether or not a given positive

operator has an eigenvector in the interior of a closed cone. Such problems are related

to the Perron-Frobenius theorem which states that every irreducible nonnegative ma-

trix has a unique eigenvector in the interior of the cone of nonnegative vectors. There

are theorems which ensure, under suitable compactness conditions, that a continuous,

order-preserving, homogeneous of degree one map on a closed cone always has an eigen-

vector in the cone with eigenvalue equal to the cone spectral radius of the map (e.g., see
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section 9 in [32] and Theorem 3.4 in [35]). However, these theorems do not establish the

existence of an eigenvector in the interior of the cone. In fact, ascertaining whether or

not such an eigenvector exists can be a very difficult problem, even in finite dimensions.

With the Hilbert metric, questions about eigenvectors of positive operators become

questions about fixed points of nonexpansive maps. Nussbaum ([40], [41]) has used

this approach to give conditions for finding eigenvectors in the interior of a cone, as

has Sabot ([50], see also [37]). Of course, nonexpansive maps do not always have fixed

points. The main focus of this thesis is to better understand the asymptotic behavior

of Hilbert metric nonexpansive maps in the absence of fixed points.

There is a classical result in complex analysis concerning the iterates of fixed point

free holomorphic maps on the open unit disc D in C. In 1926, Wolff [56] proved that

if f is a holomorphic map from the unit disc into itself and f has no fixed points in

D, then there is a point z ∈ ∂D such that fk(x) → z as k → ∞ for every x ∈ D.

Originally, Wolff assumed that f extended continuously to the boundary, ∂D, but a

few weeks later Denjoy [17] and Wolff [57] independently showed that this assumption

is unnecessary. This result has come to be known as the Denjoy-Wolff theorem.

Beardon [5] has observed that the Denjoy-Wolff theorem in complex analysis can

really be thought of as a geometrical result which applies to nonexpansive maps in a

wide variety of metric spaces. In particular, he proves a version of the Denjoy-Wolff

theorem for Hilbert metric nonexpansive maps on strictly convex domains (Theorem

1a, [6]).

The Hilbert metric nonexpansive maps that appear in applications are typically

defined on domains which are not strictly convex. In chapter 3 of this thesis, we estab-

lish a Denjoy-Wolff type theorem for Hilbert metric nonexpansive maps on polyhedral
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domains and also for arbitrary convex domains in two dimensions. In section 3.5, we

make an observation which amounts to a fixed point theorem for nonexpansive maps

on finite dimensional normed spaces.

In chapter 4, we focus on the asymptotic behavior of iterates of linear and affine

linear maps which preserve a cone. For these maps we are able to prove stronger results

than the general Denjoy-Wolff type results found in chapter 3. Chapter 5 establishes

a Denjoy-Wolff type theorem for a class of nonlinear operators used to study diffusion

on fractals. This class of “reproduction-decimation” operators is defined on a domain

which is neither strictly convex nor polyhedral, so the results of chapter 3 must be

specially adapted for them.

In the final chapter, we consider order-preserving homogeneous of degree one maps

on the standard cone in Rn. We note their connection to topical maps and also construct

an example which shows that the main theorem of chapter 3 is the strongest possible

result for general Hilbert metric nonexpansive maps on polyhedral domains.
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Chapter 2

Preliminaries

2.1 Closed Cones and Convex Sets

Let X be a Banach space with norm || · ||. A closed cone is a closed convex set C ⊂ X

such that λC ⊆ C for all λ ≥ 0 and C ∩ (−C) = {0}. If C has nonempty interior in X,

then we let int C denote the interior of C. A closed cone C induces a partial ordering

≤C on X as follows: for any x, y ∈ X we say that x ≤C y if y − x ∈ C. If there are

positive real constants α and β such that αx ≤C y and y ≤C βx, then we say that

x and y are comparable and we write x ∼C y. The relationship ∼C is an equivalence

relation and the equivalence classes of the cone C under ∼C are called the parts of C.

Observe that x ∼C y for any two points x, y ∈ int C, thus the interior of C is a part.

When the cone C is understood, we write ≤ and ∼ instead of ≤C and ∼C .

A closed cone in C in a Banach space X is called normal if there is a constant

M > 0 such that x ≤ y implies that ||x|| ≤ M ||y|| for all x, y ∈ C. A cone C is called

reproducing if C − C = X, that is X = {x − y | x, y ∈ C}. We say that C is total if

cl (C −C) = X. Any closed cone in a finite dimensional normed space is normal, and a

cone in a finite dimensional vector space is reproducing if and only if it has nonempty

interior.

For any Banach space X, we let X∗ denote the dual space. If C ⊂ X is a closed

cone, we let C∗ = {ϕ ∈ X∗ | ϕ(x) ≥ 0 for all x ∈ C}. If C is total, then C∗ is a closed
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cone in X∗ which we call the dual cone of C. A set S ⊂ C∗\{0} is called a sufficient

set for C if C = {x ∈ X | ϕ(x) ≥ 0 ∀ϕ ∈ S}.

A subset U of a normed space X is affine if (1 − λ)x+ λy ∈ U for all x, y ∈ U and

λ ∈ R. For any subset U ⊂ X, the affine hull of U is the smallest affine set containing U ,

and is denoted aff U. The norm closure of the affine hull, cl (aff U) inherits the relative

topology from X. For any convex set U ⊂ X, we define the relative interior of U , ri U,

to be the union of all subsets of U which are relatively open in cl (aff U). We will refer

to any convex set which is relatively open in the closure of its affine hull as a convex

domain. For any convex set U ⊂ X, we define the boundary of U to be ∂U = cl U\ri U.

At first glance, this is not the usual topological definition of the boundary. However, it

is the boundary with respect to the relative topology on cl (aff U). A convex set U is

called strictly convex if λx + (1 − λ)y ∈ ri U whenever 0 < λ < 1 and x, y ∈ ∂U with

x 6= y. In other words, U is strictly convex if ∂U does not contain any line segments.

If X is finite dimensional and U ⊂ X is convex, then we follow the terminology of

[49] in defining a face of U to be a convex subset F ⊂ U such that, if λx+ (1−λ)y ∈ F

for some x, y ∈ U and 0 < λ < 1, then x, y ∈ U . Note that if U is closed, then the faces

of U are closed.

Lemma 2.1.1 Let C be a closed cone in a finite dimensional Banach space X. The

parts of C are precisely the relative interiors of the faces of C.

Proof By Theorem 18.2 in [49], the relative interiors of the faces of C form a partition

of C. Suppose that F is a face of C. Note that F is a closed cone. For any x, y ∈ ri F,

there exist α, β > 0 such that y−αx ∈ F and βx− y ∈ F . Since F ⊂ C it follows that

αx ≤C y ≤C βx and therefore x ∼C y. To complete the proof it suffices to show that,



6

for any x, y ∈ C, if x ∼C y and x ∈ ri F, then y ∈ ri F. Note that if x ∼C y, then there

exists ǫ > 0 small enough so that xǫ = (1+ ǫ)x− ǫy ∼C x and yǫ = −ǫx+(1+ ǫ)y ∼C y.

Since x ∈ F and x = axǫ + byǫ where a = (ǫ+ 1)/(2ǫ+ 1) and b = ǫ/(2ǫ+ 1), it follows

that xǫ and yǫ are in F . Then, since x ∈ ri F and y = λyǫ+(1−λ)x when λ = 1/(1+ ǫ),

we see that y ∈ ri F.

A convex set U in a finite dimensional normed space X is called polyhedral if it is

the intersection of finitely many half-spaces (which may be either open or closed). If

U is a relatively open polyhedral subset of aff U, then we say that U is a polyhedral

domain. Note that a closed cone C is a polyhedral cone if and only if it has a finite

sufficient set. It turns out that every face F of a polyhedral cone C is an exposed face,

that is, there is a linear functional ϕ ∈ C∗ such that F = {x ∈ C | ϕ(x) = 0}. For

details, see chapter 19 of [49]. If {θ1, ..., θN} is a minimal sufficient set for a polyhedral

cone C with nonempty interior, then we call the faces Fi = {x ∈ C | θi(x) = 0} the

facets of C.

2.2 The Hilbert Metric

The Hilbert geometry provides an example of a metric space where the shortest con-

nection between any two points is given by a straight line. Let D be a bounded convex

domain in a Banach space X. The definition of the Hilbert metric preferred by geome-

ters makes use of the cross ratio:

[a, x, y, b] =
||y − a|| ||x − b||

||x− a|| ||y − b||
.
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Figure 2.1: The definition of d(x, y).

For any two points x, y ∈ D the Hilbert metric d is given by the logarithm of the cross

ratio:

d(x, y) = log ([x̄, x, y, ȳ]) , (2.1)

where x̄ is the unique point in ∂D which lies on the ray from y passing through x and

ȳ ∈ ∂D is the point on the ray from x through y (see figure 2.1).

An alternative formulation of the Hilbert metric has appeared in the analysis of

positive operators. To introduce this construction, let us fix a closed cone C in a

Banach space X. For x, y ∈ X, note that x ∼ y if and only if there exist real numbers

α, β > 0 such that

αx ≤ y ≤ βx. (2.2)

Following the notation of [40] we define the Hilbert projective metric for points x ∼ y

as

d(x, y) = log

(

M(y/x)

m(y/x)

)

, (2.3)

where M(y/x) = inf{β > 0 | y ≤ βx} and m(y/x) = sup{α > 0 | αx ≤ y}.

Hilbert’s projective metric is not a true metric on the parts of C. However it does

satisfy the following properties.
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Proposition 2.2.1 Let C be a closed cone in a Banach space X. Let d denote Hilbert’s

projective metric on C. If Cu is a part of C and x, y, z ∈ Cu, then

d(x, y) = 0 if and only if y = λx where λ > 0, (2.4)

d(x, y) = d(y, x), (2.5)

d(x, z) ≤ d(x, y) + d(y, z), (2.6)

d(αx, βy) = d(x, y) for any α, β > 0. (2.7)

The proof of this proposition is elementary, and can be found in [13].

Suppose that C is a closed cone with nonempty interior and that S is a sufficient set

for C. An alternative formula for Hilbert’s projective metric on int C is given below.

d(x, y) = sup
χ,ψ∈S

log

(

χ(x)ψ(y)

χ(y)ψ(x)

)

for x, y ∈ int C. (2.8)

To see that equation 2.3 and equation 2.8 are equivalent it suffices to prove the following

characterization of M(y/x) and m(y/x).

Lemma 2.2.1 Let C be closed cone with nonempty interior in a Banach space. Let

x, y ∈ int C and let S ⊂ C∗ be a sufficient set for C. Then

M(y/x) = sup
ϕ∈S

ϕ(y)

ϕ(x)
, m(y/x) = inf

ϕ∈S

ϕ(y)

ϕ(x)
.

Proof Let b = supϕ∈S ϕ(y)/ϕ(x). Then for any ϕ ∈ S,

ϕ(bx− y) = bϕ(x) − ϕ(y) ≥ 0.

However, if b′ < b, then there exists ϕ ∈ S such that ϕ(y)/ϕ(x) > b′ and therefore

ϕ(b′x− y) < 0. That means that b′x− y /∈ C and therefore b = inf{β > 0 | y ≤ βx} =

M(y/x).
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Now, let a = infϕ∈S ϕ(y)/ϕ(x). Then for any ϕ ∈ S,

ϕ(y − ax) = ϕ(y) − aϕ(x) ≥ 0.

This implies that y−ax ∈ C. If a′ > a, then there is some ϕ ∈ S such that ϕ(y)/ϕ(x) <

a′. Therefore ϕ(y − a′x) < 0 and thus a = sup{α > 0 | αx ≤ y} = m(y/x).

If C is a polyhedral cone with nonempty interior, then it has a finite sufficient set

{θ1, ..., θN} and equation 2.8 can be simplified as follows.

d(x, y) = max
1≤i,j≤N

log

(

θi(x)θj(y)

θi(y)θj(x)

)

for x, y ∈ int C. (2.9)

The projective metric defined by equation 2.3 is not a metric on the parts of a cone

because it does not distinguish between two points on the same ray emanating from

the origin. We can work around this difficulty by focusing on a projective subset of the

cone. For a closed cone C in a Banach space X, let q : C → R be a homogeneous of

degree one map such that q(x) > 0 for all x ∈ C\{0}. For any part Cu of C we let

Σu = {x ∈ Cu | q(x) = 1} and we refer to Σu as a projective subset of C. The projective

metric d is a metric when restricted to Σu. We call d the Hilbert metric on Σu. Note

that if q is linear, then the projective subsets Σu are convex.

We have now introduced two different Hilbert metrics. The metric defined by equa-

tion 2.1 applies to bounded convex domains in a Banach space, while the expression

given in equation 2.3 is a metric on projective subsets of a cone. It turns out that

the two definitions really are the same. This is established in equation 3.15 of [31], for

example. We will give a proof here, for simplicity. Suppose that C is a closed cone in

a Banach space X, Cu is a part of C, and q : C → [0,∞) is a continuous homogeneous

of degree one map such that q(x) > 0 for all x ∈ C\{0}. Let Σu = {x ∈ Cu | q(x) = 1}

and suppose that Σu is a bounded convex domain in X.
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Let d̂ denote Hilbert’s projective metric on C, as given by equation 2.3, and let

d be the Hilbert metric on Σu defined by equation 2.1. We will show that for any

x, y ∈ Σu, d̂(x, y) = d(x, y). Note that if x, y ∈ Σu and x 6= y, then W = span {x, y} is

a two-dimensional subspace of X. Let CW = C ∩W and note that CW is a closed cone

in W . Furthermore for any two elements u, v ∈ CW , u ≤CW
v if and only if u ≤C v.

Therefore Hilbert’s projective metric on CW agrees with Hilbert’s projective metric on

C for any pair u, v ∈ CW . Therefore it suffices to prove that d(x, y) = d̂(x, y) when C

is a closed cone with nonempty interior in a two-dimensional normed space. For such

a cone, there will be a sufficient set S = {χ,ψ} ⊂ C∗ containing exactly two elements.

By equation 2.9,

d̂(x, y) =

∣

∣

∣

∣

log

(

χ(x)ψ(y)

χ(y)ψ(x)

)∣

∣

∣

∣

.

The line containing x and y intersects ∂Σu at two points, x̄ and ȳ. Furthermore the

points on that line appear in the following order: x̄, x, y, ȳ. Therefore, we may assume

without loss of generality that χ(ȳ) = 0 and that ψ(x̄) = 0. We see that

||x− ȳ||

||y − ȳ||
=
χ(x)

χ(y)
and

||y − x̄||

||x− x̄||
=
ψ(y)

ψ(x)
.

This implies that d(x, y) and d̂(x, y) really are equivalent.

Note that if D is a bounded convex domain in a Banach space Y , then we can think

of D as a projective subset of a cone in the Banach space X = Y ×R. We let C ⊂ X be

the closed cone C = {(λy, λ) | λ ≥ 0 and y ∈ cl D} and q((y, t)) = t for all (y, t) ∈ Y ×R.

Then D can be identified with the projective subset Σu = {(y, 1) | y ∈ D}, and the

above argument shows that the Hilbert metric on D can be thought of in terms of the

definition given in equation 2.3.

If D is a bounded convex domain in a finite dimensional normed space X, then each
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part of the cone C = {(λx, λ) | λ ≥ 0 and x ∈ cl D} will correspond to the relative

interior of a face of cl D and vice versa. Thus it makes sense to refer to the relative

interiors of the faces of cl D as the parts of cl D and to write x ∼D y whenever x and y

are contained in the same part of cl D.

We have seen that any bounded convex domain in a Banach space can be naturally

identified with a bounded convex projective subset of a cone. Not every projective

subset of a cone will be bounded or convex, however. If q : X → R is a linear functional

such that q(x) > 0 for all x ∈ C\{0}, then S = {x ∈ C | q(x) = 1} will be convex.

Unfortunately, in infinite dimensions, it may not be possible to find a linear functional

q ∈ C∗ such that S is bounded. The following lemma shows that we can find such a

functional in finite dimensions.

Lemma 2.2.2 If X is a finite dimensional vector space and C is a closed cone in

X, then there is a linear functional q ∈ C∗ such that q(x) > 0 for all x ∈ C\{0}.

Furthermore, the set SR = {x ∈ C | q(x) = R} is bounded in X for all R ≥ 0.

Proof Let Σ = {x ∈ C : ||x|| = 1}. Then co Σ is a closed convex subset of C. Note

that 0 /∈ co Σ. Otherwise, 0 = (1 − λ)x + λy for some x, y ∈ co Σ\{0} and λ ∈ (0, 1),

which would imply that −y ∈ C, a contradiction. Since 0 /∈ co Σ, the Hahn-Banach

theorem implies that there is a linear functional q ∈ X∗ such that q(x) > 0 for all

x ∈ co Σ. Therefore q(x) > 0 for all x ∈ C\{0} and q ∈ C∗.

The set C ∩ {x ∈ X : ||x|| = 1} is compact and therefore there exists ǫ > 0 such

that q(x) > ǫ for all x ∈ C with ||x|| = 1. This implies that ||x|| ≤ R/ǫ for any x ∈ C

with q(x) ≤ R and therefore SR = {x ∈ C | q(x) = R} is a bounded subset of X.

Remark 2.1 Suppose that X is the Banach space of continuous real valued functions
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C(M,R) on a compact Hausdorff space M , with norm ||f || = supx∈M |f(x)|. Let K be

the cone of nonnegative functions on M and assume that M is not finite. We claim

that there does not exist a ϕ ∈ K∗\{0} such that the set

Σ = {f ∈ int K | ϕ(f) = 1}

is bounded in norm. Fix an element ϕ ∈ K∗\{0}. By the Riesz representation theorem

there is a regular Borel measure µ on M such that µ(M) < ∞ and such that ϕ(f) =

∫

fdµ for all f ∈ X. The set M is not finite and therefore, for every ǫ > 0, there

is a point xǫ ∈ M such that µ({xǫ}) < ǫ. Since µ is regular, it follows that there is

an open set U in M such that xǫ ∈ U and µ(U) < ǫ. For any R > 0, we may use

Urysohn’s lemma to construct a function fR ∈ K such that fR(xǫ) = R, fR = 0 on

M\U , and ||fR|| = R. Thus,
∫

fR dµ ≤ Rǫ. By choosing ǫ small enough, we may

ensure that
∫

fR dµ ≤ 1. From this, we see that for any ϕ ∈ K∗, ϕ 6= 0, the set

Σ = {f ∈ int K | ϕ(f) = 1} is unbounded in X.

We will now turn our attention to some of the important properties of the Hilbert

geometry. In a metric space (M,dM ), a minimal geodesic from x ∈ M to y ∈ M

is a continuous path γ : [0, 1] → M such that γ(0) = x, γ(1) = y and dM (x, y) =

dM (x, γ(t)) + dM (γ(t), y) for all 0 < t < 1. One of the characteristic properties of the

Hilbert metric on a bounded convex domain is that straight lines are minimal geodesics.

Proposition 2.2.2 Suppose that D is a bounded convex domain in a Banach space

X. Let x, y, z be elements in D such that z lies on the line segment [x, y]. Then

d(x, y) = d(x, z) + d(z, y) and [x, y] is a minimal geodesic connecting x to y.

This propostion is well known and a proof can be found in Proposition 1.9 of [40], for

example. Note that the minimal geodesics in the Hilbert geometry may not be unique.
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However, if D is a bounded and strictly convex domain in a Banach space X, then

the line segment [x, y] is the unique minimal geodesic from x to y (see propostion 1.11,

[40]).

Suppose that C is a closed normal cone with nonempty interior in a Banach space

X. If Σ = {x ∈ int C | ||x|| = 1} then Nussbaum points out in remark 1.4 of [40] that

the norm topology on Σ is identical to the topology induced by the Hilbert metric d.

In particular, (Σ, d) is a complete metric space. Because any bounded convex domain

in X can be represented as a projective subset of a cone in X × R, remark 1.4 of [40]

establishes the following lemma.

Lemma 2.2.3 Let D be a bounded convex domain with Hilbert metric d in a finite

dimensional normed space X. Then (D, d) is a complete metric space and the topology

induced by d is equivalent to the norm topology on D.

Note that Zabreiko, Kransnoselskii, and Pokornyi give general conditions in [59]

which imply that a projective subset of a cone is a complete metric space. Birkhoff

gives somewhat weaker conditions in Theorem 5 of [8].

Another useful property of the Hilbert geometry is that Hilbert metric balls are

convex. This is proved as Lemma 4.1 in [40]. We restate the lemma here for convenience.

Lemma 2.2.4 If D is a bounded convex domain with the Hilbert metric d, then the

ball BR(x) = {y ∈ D | d(x, y) ≤ R} is convex for any x ∈ D and R > 0.

The Hilbert geometry on bounded polyhedral domains has additional structure

which we will make use of later. A bounded polyhedral domain equipped with the

Hilbert metric can be isometrically embedded into a subset of a finite dimensional
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normed space. This fact will be the key to proving Theorem 3.2.2 in the following chap-

ter. Recall that the supremum norm || · ||∞ on Rn is defined to be ||x||∞ = max1≤i≤n |xi|

where xi is the ith entry of x.

Lemma 2.2.5 If D is a bounded polyhedral domain in a finite dimensional normed

space X, then there is an isometric embedding of (D, d) into a subset of (RN×N , || · ||∞)

where N is an integer depending on D.

Proof Let C be the cone C = {(λx, λ) | λ ≥ 0 and x ∈ cl D}. Since D is a polyhe-

dral domain, C is a polyhedral cone. We may assume that C has nonempty interior,

otherwise we restrict ourselves to the subspace of X × R spanned by C. Since C is

polyhedral, it has a finite sufficient set {θ1, ..., θN} ⊂ C∗, where N is the number of

facets of C. Let x̂ = (x, 1) for each x ∈ D. By equation 2.9 we have

d(x, y) = sup
1≤i,j≤N

log

(

θi(x̂)θj(ŷ)

θj(x̂)θi(ŷ)

)

,

for any x, y ∈ D. If Φ : D → RN×N is given by Φij(x) = log(θi(x̂)/θj(x̂)), we see

immediately that Φ is one-to-one and ||Φ(x) − Φ(y)||∞ := maxij |Φij(x) − Φij(y)| =

d(x, y). Therefore Φ is an isometric embedding from D with the Hilbert metric d into

a subset of RN×N with the sup-norm || · ||∞.

Remark 2.2 The embedding described in Lemma 2.2.5 maps D into a subset of a finite

dimensional normed space. Foertsch and Karlsson prove in [19] that D is isometric to

a normed linear space if and only if D is a simplex.

Thompson’s metric is another metric which arises in applications to positive oper-

ators and it is closely related to the Hilbert metric. Unlike the Hilbert metric, which

is only a projective metric on the parts of a closed cone, the Thompson metric will be
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a true metric on each part of a cone. It is often referred to as the part metric. Let C

be a closed cone in a Banach space X and let Cu be a part of C. For any x, y ∈ Cu we

define Thompson’s metric d̄ to be

d̄(x, y) = max(logM(y/x), logM(x/y)). (2.10)

Like the Hilbert metric, balls in the Thompson metric are convex (see Lemma 4.2, [40]).

If C is a normal cone with nonempty interior, then the topology induced by d̄ is the

same as the norm topology on int C (see remark 1.4, [40]). The following lemma shows

that we can isometrically embed any part of a polyhedral cone with the Thompson

metric into a subset of a finite dimensional normed space.

Lemma 2.2.6 Let C be a closed polyhedral cone in a finite dimensional normed space

and suppose that Cu is a part of C. Then there is an isometric embedding of (Cu, d̄)

into a subset of (RN , || · ||∞) where N is an integer depending on Cu.

Proof We may assume that Cu = int C since Cu is the interior of cl Cu in aff Cu. Since

C is polyhedral there is a finite sufficient set {θ1, ..., θN} ⊂ C∗, where N is the number

of facets of C. Let Φ : int C → RN be the map given by Φi(x) = log(θi(x)). By Lemma

2.2.1,

logM(x/y) = sup
1≤i≤N

(Φi(x) − Φi(y)) and

logM(y/x) = sup
1≤i≤N

(Φi(y) − Φi(x)) for any x, y ∈ int C.

Therefore d̄(x, y) = ||Φi(x) − Φi(y)||∞, and Φ is an isometric embedding of (int C, d̄)

into a subset of (RN , || · ||∞).
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2.3 Nonexpansive Maps and Omega Limit Sets

Suppose that M is a metric space with metric dM . We say that a map f : M → M

is nonexpansive with respect to dM if dM (f(x), f(y)) ≤ dM (x, y) for all x, y ∈ M . We

say that f is a contraction if dM (f(x), f(y)) < dM (x, y) for all x, y ∈ M . If there is a

constant c < 1 such that dM (f(x), f(y)) ≤ cdM (x, y) for all x, y ∈M , then we say that

f is a strict contraction. The contraction mapping principle tells us that if (M,dM ) is

a complete metric space and f : M → M is a strict contraction, then f has a unique

fixed point in M . Moreover, if x is the fixed point of f and y is any other point in

M , then the iterates of y under repeated application of f will converge to x. That is,

limk→∞ fk(y) = x for all y ∈M .

If f is nonexpansive and f has a fixed point x ∈ M , then the orbit O(y; f) =

{fk(y) | k ≥ 0} of any other point y ∈ M will remain within a bounded distance of x.

The behavior of orbits is quite different when f does not have a fixed point in M . The

following theorem appears in [40] as Theorems 4.2 and 4.4 where it is stated specifically

for the Hilbert and Thompson metrics. The proof is a consequence of a theorem of

Ca lka (Theorem 5.6, [14]) which states that, if an orbit of a nonexpansive map in a

finitely totally bounded metric space contains a bounded subsequence, then the whole

orbit is bounded. A metric space M is finitely totally bounded if any bounded subset

of M can be covered by finitely many balls of radius ǫ, for every ǫ > 0. In particular,

a proper metric space will satisfy the conditions of Ca lka’s theorem.

Theorem 2.3.1 Let M be a convex domain in a finite dimensional normed space X.

Suppose that dM is a metric on M such that every open ball in (M,dM ) is convex.

Furthermore, suppose that the topology on M induced by dM is equivalent to the norm
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topology. If f : M → M is nonexpansive with respect to dM and f has no fixed point

in M , then for any compact subset K ⊂ M and any x ∈ M there exists N ≥ 0 such

that fk(x) ∈ M\K for all k ≥ N . In particular, if O(x; f) is bounded in norm, then

limk→∞ inf{||fk(x) − y|| : y ∈ ∂M} = 0.

Proof If K ⊂ M is compact, then K is bounded with respect to dM . Suppose that

fk(x) ⊂ K for infinitely many k ≥ 0. Then by Theorem 5.6 in [14] it follows that

{fk(x)}k≥0 is bounded with respect to dM . Choose R > diam(O(x; f)) where the

diameter is measured in the dM -metric. Let BR(y) = {x ∈M | dM (x, y) ≤ R} for each

y ∈ M . The set U =
⋂

k≥0BR(fk(x)) is a bounded, nonempty, closed (in the norm

topology), convex subset of M . Note that f(U) ⊂ U . Therefore U contains a fixed

point of f by the Brouwer fixed point theorem. This contradicts the hypothesis, so we

concluded that only finitely many fk(x) are contained in K. If fk(x) is bounded in

norm, we conclude that limk→∞ inf{||fk(x) − y|| : y ∈ ∂M} = 0.

If (M,dM ) is a metric space and f : M → M is a map, then for any x ∈ M the

omega limit set of x is defined to be

ω(x; f) =
⋂

N≥0

(cl

∞
⋃

k=N

fk(x)). (2.11)

The omega limit set can be thought of as the set of accumulation points of the orbit

O(x; f). In fact, if y ∈ ω(x; f), then there is a sequence of integers ki such that

fki(x) → y as i → ∞. Dafermos and Slemrod have shown (Theorem 1, [16]) that if

(M,dM ) is a complete metric space and f : M → M is a dM -nonexpansive mapping

such that ω(x; f) is a nonempty subset of M for some x ∈ M , then f restricted to

ω(x; f) is an invertible isometry onto ω(x; f) and if y ∈ ω(x; f), then ω(y; f) = ω(x; f).
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Actually, Dafermos and Slemrod restrict their attention to Banach spaces, but their

argument also applies to complete metric spaces.

When M is contained in a Banach space X and the topology induced by dM is

equivalent to the topology on M induced by the norm, the definition of omega limit

set given by equation 2.11 is ambiguous. It is not clear whether we are to take the

closure in the norm topology or the metric topology. Because we wish to allow ω(x; f)

to contain points on the boundary of M , we will take the closure in the norm topology

when applying equation 2.11. This gives us an alternative formula for the omega limit

set,

ω(x; f) = {z ∈ cl M | ∃ a sequence ki such that lim
i→∞

||fki(x) − z|| = 0}. (2.12)

Note that if the hypotheses of Theorem 2.3.1 are satisfied, then ω(x; f) ⊂ ∂M for all

x ∈M . If ω(x; f) ⊂ ∂M , then the results of Dafermos and Slemrod can fail. However,

we will show that this will not be the case for several important classes of Hilbert metric

nonexpansive maps. See Theorem 4.2.1 and Theorem 6.2.2.

We are primarily interested in the dynamics of Hilbert metric nonexpansive maps

and for the remainder of this section we will collect facts which are particular to the

omega limit sets of such maps. The following result is Lemma 5.1 in [45]. An earlier

version, which only applies to finite dimensional spaces, can be found in Lemma 1 of

[34].

Lemma 2.3.1 Let C be a closed cone in a Banach space (X, || · ||). Suppose that

{xk}k∈N and {yk}k∈N are sequences in C such that xk ∼ yk and d(xk, yk) ≤ R <∞ for

all k ≥ 1. If limk→∞ ||xk − ζ|| = 0 and limk→∞ ||yk − η|| = 0, where ζ 6= 0 and η 6= 0,

then ζ and η are comparable and d(ζ, η) ≤ R.



19

Proof Since ζ, η ∈ C\{0}, there exist linear functionals ϕ1, ϕ2 ∈ C∗ with ϕ1(ζ) > 0

and ϕ2(η) > 0. We define ϕ = ϕ1 + ϕ2, so that ϕ(ζ) > 0 and ϕ(η) > 0. Let

ζ ′ = ζ/ϕ(ζ) and η′ = η/ϕ(η). Let xk∗ = xk/ϕ(xk) and yk∗ = yk/ϕ(yk) for k large.

Then, limk→∞ ||xk∗ − ζ ′|| = 0, limk→∞ ||yk∗ − η′|| = 0, d(xk∗ , y
k
∗ ) = d(xk, yk) ≤ R, and

d(ζ ′, η′) = d(ζ, η). Thus, we may as well assume from the beginning that ϕ(xk) =

ϕ(yk) = 1 and ϕ(ζ) = ϕ(η) = 1.

For each k ∈ N, there exist αk > 0 and βk > 0 with αkx
k ≤ yk ≤ βkx

k and

log(βk/αk) ≤ R. Since ϕ ∈ C∗ it follows that ϕ(x) ≤ ϕ(y) whenever x ≤ y. Therefore

αk = αkϕ(xk) ≤ ϕ(yk) = 1 and 1 = ϕ(yk) ≤ ϕ(βkx
k) = βk.

Since βk/αk ≤ exp(R) we deduce that

βk ≤ αk exp(R) ≤ exp(R) and αk ≥ βk exp(−R) ≥ exp(−R).

By taking a subsequence we can assume that αk → α > 0 and βk → β < ∞, and we

deduce that αζ ≤ η ≤ βζ, with log(β/α) ≤ R.

An immediate corollary of Lemma 2.3.1 is the following result.

Lemma 2.3.2 Let D be a bounded convex domain in a finite dimensional normed space

X and let d denote the Hilbert metric on D. Suppose that f : D → D is nonexpansive

with respect to d. For any x, y ∈ D, if ζ ∈ ω(x; f), then there is an η ∈ ω(y; f) such

that η ∼D ζ and d(ζ, η) ≤ d(x, y).

Another result which can be derived from Lemma 2.3.1 is the following lemma.

Lemma 2.3.3 Let D be a bounded convex domain in a finite dimensional normed space

X. Suppose that f : D → D is nonexpansive with respect to the Hilbert metric d on D
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and that z ∈ ω(x; f) for some x ∈ D. If f extends continuously to z, then f(z) ∼D z

and d(f(z), z) ≤ infk≥0 d(fk+1(x), fk(x)).

Proof Suppose that fki(x) → z in norm as i→ ∞. Then fki+1(x) → f(z). Since f is

nonexpansive d(fki+1(x), fki(x)) is a decreasing sequence. By Lemma 2.3.1 d(f(z), z) ≤

d(fki+1(x), fki(x)) for all i ≥ 0. Therefore d(f(z), z) ≤ limi→∞ d(fki+1(x), fki(x)) =

infk≥0 d(fk+1(x), fk(x)).

We are particularly interested in omega limit sets which are contained in the bound-

ary of D. The following lemma shows that if one omega limit set is contained in a convex

subset of the boundary, then all of the omega limit sets will be contained in a convex

subset of the boundary.

Lemma 2.3.4 Let D be a bounded convex domain in a finite dimensional normed space

X and suppose that f : D → D is nonexpansive with respect to the Hilbert metric d on

D. If for some x ∈ D, co (ω(x; f)) ⊂ ∂D, then co (
⋃

y∈D ω(y; f)) ⊂ ∂D.

Proof If f contains a fixed point, then ω(x; f) ⊂ D for all x ∈ D, and therefore there

is nothing to prove. If f does not contain a fixed point in D, then ω(y; f) ⊂ ∂D for all

y ∈ D by Theorem 2.3.1. Each element z ∈ ω(x; f) is contained in a part Dz of cl D and

I claim that co (
⋃

z∈ω(x;f) Dz) is contained in ∂D. Suppose that y ∈ co (
⋃

z∈ω(x;f) Dz).

Then y =
∑n

i=1 λiζi where each λi ≥ 0,
∑n

i=1 λi = 1, and ζi ∼D zi where each zi ∈

ω(x; f). Therefore y is comparable to
∑n

i=1 λizi. Since
∑n

i=1 λizi ∈ co (ω(x; f)) ⊂ ∂D,

it follows that y ∈ ∂D. Therefore co (
⋃

z∈ω(x;f) Dz) ⊂ ∂D. By Corollary 2.3.2, ω(y; f) ⊂

⋃

z∈ω(x;f)Dz for all y ∈ D. Therefore co (
⋃

y∈D ω(y; f)) ⊂ co (
⋃

z∈ω(x;f) Dz) ⊂ ∂D.

Lemmas 2.3.2 through 2.3.4 are given as Theorem 1 in [34]. Infinite dimensional

versions of these lemmas are proved by Nussbaum in Theorem 5.3 of [45].
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2.4 Positive Operators

Suppose that C is a closed cone in a Banach space X. For any subset U ⊂ X and

any Banach space Y , we say that a map f : U → Y is a homogeneous of degree one

if f(λx) = λf(x) for all x ∈ U and λ > 0. A map f : U → X is order-preserving

with respect to the partial ordering on C if f(x) ≤C f(y) whenever x ≤C y. Order-

preserving and homogeneous of degree one maps on a cone are nonexpansive with

respect to Hilbert’s projective metric. They are also nonexpansive with respect to

Thompson’s metric.

Theorem 2.4.1 Let C be a closed cone in a Banach space X. Let d denote Hilbert’s

projective metric on C and let d̄ denote Thompson’s metric on C. Suppose that Cu is

a part of C and f : Cu → C is homogeneous of degree one and order-preserving. Then

for any x, y ∈ Cu, d(f(x), f(y)) ≤ d(x, y) and d̄(f(x), f(y)) ≤ d̄(x, y).

Proof Since x, y ∈ Cu there are constants α, β > 0 such that

αx ≤ y ≤ βx.

Since f is homogeneous of degree one and order-preserving,

αf(x) ≤ f(y) ≤ βf(x).

It follows immediately from equations 2.3 and 2.10 that d(f(x), f(y)) ≤ d(x, y) and

d̄(f(x), f(y)) ≤ d̄(x, y).

Let q : C → R be a continuous homogeneous of degree one map with q(x) > 0 for

all x ∈ C\{0}. Let Cu be a part of C and suppose that f : Cu → Cu is order-preserving

and homogeneous of degree one. We define Σu = {x ∈ Cu | q(x) = 1}. For any x ∈ Σu,
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let f̂(x) = f(x)/q(f(x)), so that f̂ : Σu → Σu. Theorem 2.4.1 and equation 2.4 imply

that the map f̂ : Σu → Σu is nonexpansive with respect to d, that is, for any x, y ∈ Σu,

d(f̂(x), f̂(y)) ≤ d(x, y).

Note that x ∈ C with q(x) = 1 is an eigenvector of f if and only if f̂(x) = x. It

is often useful to study the iterates of the normalized map f̂ instead of the iterates

of f itself. The iterates of f may diverge while the iterates of f̂ remain bounded. In

chapter 2 of [40], Nussbaum looks at conditions where the iterates f̂k(x) approach an

eigenvector of f . One of the main motivations for this thesis is to study the orbit

O(x; f̂) when there is no eigenvector of f in the part of the cone containing x.

Let X be a Banach space and let B(X) denote the set of bounded linear operators

from X into X. For any A ∈ B(X) the spectral radius of A is

r(A) = lim
k→∞

||Ak||1/k. (2.13)

For order-preserving homogeneous of degree one maps on a cone there is a notion of

spectral radius which is similar to the spectral radius defined above. Let C be a closed

cone in X and let f : C → C be an order-preserving homogeneous of degree one map.

We let

||f ||C = sup{||f(x)|| : x ∈ C and ||x|| ≤ 1}. (2.14)

We then define the cone spectral radius rc(f) to be

rC(f) = lim
k→∞

||fk||
1/k
C . (2.15)

Suppose that C is a closed cone with nonempty interior in a finite dimensional normed

space X and f : C → C is order-preserving and homogeneous of degree one. Then

general versions of the Krein-Rutman theorem (see section 9 in [32] and also Theorem

3.4 in [35]) ensure that there is an eigenvector u ∈ C such that f(u) = rC(f)u. If
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x ∈ int C, there is some constant α > 0 such that αu ≤ x and therefore α||fk(u)||C ≤

M ||fk(x)||C for some fixed M > 0 and all k > 0. Thus rC(f) ≤ limk→∞ ||fk(x)||
1/k
C .

Since the opposite inequality is obvious, we obtain an alternative formula for the cone

spectral radius when C has nonempty interior in a finite dimensional normed space:

rC(f) = lim
k→∞

||fk(x)||
1/k
C for any x ∈ int C. (2.16)

Note that if A : X → X is a bounded linear operator such that A(C) ⊂ C, then

rC(A) ≤ r(A). The following lemma gives a condition which can be used to show that

the cone spectral radius of a map is greater than zero.

Lemma 2.4.1 Let C be a closed cone in a Banach space X. Let f : C → C be an

order-preserving homogeneous of degree one map. If f(x) ≥ δx for some x ∈ C\{0},

then rC(f) ≥ δ.

Proof By definition, rC(f) = limk→∞ ||fk||
1/k
C . Suppose that rC(f) < δ. Then there

is a δ′ > 0 such that rC(f) < δ′ < δ. Note that fk(x) ≥ δkx for all k > 0. Therefore

δ−kfk(x) ≥ x for all k > 0. This is equivalent to δ−kfk(x) − x ∈ C for all k >

0. Note that ||δ−kfk(x)||1/k ≤ δ−1||fk||
1/k
C ||x||1/k ≤ δ

′

/δ||x||1/k for all k sufficiently

large. Therefore limk→∞ ||δ−kfk(x)|| = 0 and so limk→∞ δ−kfk(x) − x = −x ∈ C, a

contradiction.
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Chapter 3

Denjoy-Wolff Type Theorems

3.1 Classical Results and Modern Generalizations

The classical Denjoy-Wolff theorem concerns holomorphic maps on the unit disc.

Theorem 3.1.1 (Denjoy-Wolff) Let D denote the open unit disc in C. If f : D → D

is a holomorphic map with no fixed point in D, then there is a point z ∈ ∂D such that

limk→∞ fk(x) = z for all x ∈ D.

Proofs of the Denjoy-Wolff theorem make use of the Schwarz-Pick lemma which

asserts that a holomorphic self-map of the open unit disc is nonexpansive with respect

to the Poincare metric. Generalizations of the Denjoy-Wolff theorem have been studied

by many authors working in several complex variables, see [48] for a survey of these

results. Beardon has argued in [5] that the Denjoy-Wolff theorem is best understood

as a geometric result. In Theorem 1a of [6], Beardon proves the following Denjoy-Wolff

type theorem for Hilbert metric nonexpansive maps. Actually, Beardon proves this

theorem for Hilbert metric contractions, but the proof applies to nonexpansive maps

as well.

Theorem 3.1.2 Let D be a bounded strictly convex domain in a finite dimensional

normed space X. Let f : D → D be nonexpansive with respect to the Hilbert metric d on
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D. If f has no fixed point in D, then there is a point z ∈ ∂D such that limk→∞ fk(x) = z

for all x ∈ D.

For convex domains which are not strictly convex Karlsson and Noskov have shown

that the omega limit sets of a fixed point free Hilbert metric nonexpansive map are

contained in a star-shaped subset of the boundary. Recall that a set S is star-shaped

if there is a point z ∈ S such that for any other y ∈ S and any 0 < λ < 1 we have

λz + (1 − λ)y ∈ S. This result is Theorem 5.5 in [25] (see also [24]).

Theorem 3.1.3 Let D be a bounded convex domain in a finite dimensional normed

space X. If f : D → D is nonexpansive with respect to the Hilbert metric d on D and f

has no fixed point in D, then there is a z ∈ ω(x; f) such that for any ζ ∈
⋃

y∈D ω(y; f),

the line segment [z, ζ] is contained in ∂D. In particular, there is a star-shaped subset

of ∂D which contains ω(x; f) for all x ∈ D.

Nussbaum has extended Theorem 3.1.3 to Hilbert metric nonexpansive maps in infinite

dimensions which satisfy suitable compactness conditions (Theorem 4.17, [45]). Both

Karlsson and Nussbaum have proposed the following conjecture.

Conjecture 1 Let D be a bounded convex domain in a finite dimensional normed space

X. Let f : D → D be nonexpansive with respect to the Hilbert metric d on D. If f has

no fixed point in D, then there is a convex subset of ∂D which contains ω(x; f) for all

x ∈ D.

Of course, Theorem 3.1.2 proves the conjecture in the case whereD is strictly convex. In

the following sections we give a proof of the conjecture when D is polyhedral (Theorem

3.2.2) and when D is two-dimensional (Theorem 3.3.2). A general proof for any convex
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domain remains undiscovered. We will discuss some special cases where the conjecture

can be proved even when the domain is neither strictly convex nor polyhedral. We will

even prove that a version of this conjecture is true for linear maps in infinite dimensions,

satisfying certain compactness conditions.

3.2 Polyhedral Domains

Before proving the main theorem of this section, we will need to review some terminol-

ogy from metric geometry. Recall that a metric space (M,dM ) is proper if every closed

bounded subset of M is compact. We choose a fixed reference point z ∈M and define

a map Φ : x 7→ fx where

fx(y) = dM (y, x) − dM (z, x).

If (M,dM ) is a proper metric space, then Φ is a continuous embedding of M into

C(M), the set of continuous real-valued maps on M endowed with the topology of

uniform convergence on compacta. If M is not compact, then the image Φ(M) of M

under this embedding will not be closed. The closure of Φ(M) is called the Busemann

compactification of M . The boundary of M under this compactification is M(∞) =

cl Φ(M)\Φ(M) and is referred to as the Busemann boundary by some authors and the

horofunction boundary by others. The elements of M(∞) are called horofunctions (or

Busemann functions). Note that every horofunction h ∈M(∞) can be written

h(y) = lim
k→∞

dM (y, xk) − dM (z, xk) (3.1)

where xk is a sequence of points in M and z ∈M is a fixed reference point. For a given

horofunction h and a constant R ∈ R, the sublevel set HR = {x ∈ M | h(x) ≤ R} is

called a horoball. For more details of this compactification see [11]. For recent work
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concerning the horofunction boundary of Hilbert geometries see [26] and [55].

Suppose that X is a finite dimensional normed space with norm || · ||. Let B∗ =

{ϕ ∈ X∗ | ϕ(x) ≤ 1 ∀x ∈ X with ||x|| ≤ 1}. In this framework, we prove the following

lemma.

Lemma 3.2.1 Let y ∈ X be an element with ||y|| = 1. Let 0 < λ < 1. For any

R > r > 0 and any z ∈ X with ||z|| ≤ R, if ||z−Ry|| ≤ λR, then ||z−ry|| ≤ R−(1−λ)r.

Proof Suppose that ||z−ry|| > R−(1−λ)r. By the Hahn-Banach theorem there is some

ϕ ∈ B∗ such that ||z−ry|| = ϕ(z−ry) > R−(1−λ)r. Then, ϕ(z)−ϕ(ry) > R−(1−λ)r

so ϕ(ry) < ϕ(z)−R+ (1− λ)r. Since ϕ(z) ≤ ||z|| ≤ R it follows that ϕ(ry) < (1− λ)r

and hence ϕ(y) < (1 − λ). By scaling, (R− r)ϕ(y) = ϕ(Ry − ry) < (1 − λ)(R− r). So

ϕ(z −Ry) = ϕ(z − ry) − ϕ(Ry − ry) > R− (1 − λ)r − (1 − λ)(R − r) = λR.

Since ||z −Ry|| ≥ ϕ(z −Ry) > λR, we have a contradiction.

Lemma 3.2.1 allows us to prove the following result about the interaction of non-

expansive mappings and the horofunction boundary in certain proper metric spaces,

namely those which admit an almost isometric embedding into a subset of a finite

dimensional normed space. In particular this theorem is true for finite dimensional

normed spaces, thus it generalizes Theorem 2.1 in [33].

Theorem 3.2.1 Let (M,dM ) be a complete proper metric space and let (X, || · ||) be a

finite dimensional normed space. Let U ⊂ M and suppose that there is a one-to-one

map Φ : U → X and a constant K > 0 with −K ≤ dM (x, y) − ||Φ(x) − Φ(y)|| < K

for all x, y ∈ U . Let x ∈ U and suppose that f : M → M is a dM -nonexpansive map
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such that fk(x) ∈ U for all k ≥ 0 and limk→∞ dM (x, fk(x)) = ∞. Then there is a

horofunction h defined on M such that limk→∞ h(fk(y)) = −∞ for all y ∈M .

Proof Let xk = fk(x). For each xk let x̂k = Φ(xk). We may assume without

loss of generality that Φ(x) = 0. Observe that ||x̂k|| ≥ dM (xk, x) − K. Therefore

limk→∞ ||x̂k|| = ∞. A simple observation about unbounded sequences implies that we

may choose a subsequence {xki} such that

||x̂ki || > ||x̂m|| for all m < ki.

We shall say that a subsequence {xki} satisfying this inequality has property (A).

Since the unit ball in X is compact, there is a point ȳ ∈ X with ||ȳ|| = 1 which is an

accumulation point of the sequence x̂ki/||x̂ki || (i ≥ 1). By taking a further refinement

we may assume that:
∣

∣

∣

∣

∣

∣

∣

∣

x̂ki

||x̂ki ||
− ȳ

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2−i for all i ≥ 1.

Thus,

||x̂ki − (||x̂ki ||ȳ)|| ≤ 2−i||x̂ki ||, ∀ i ≥ 1.

If we denote ||x̂ki ||ȳ by yi we get:

||x̂ki − yi|| ≤ 2−i||x̂ki ||, ∀ i ≥ 1. (3.2)

Fix some i ≥ 1. Note that ||x̂kj−m|| < ||x̂kj || by property (A). Also,

||x̂kj−m − yj || ≤ ||x̂kj−m − x̂kj || + ||x̂kj − yj||

≤ dM (xkj−m, xkj ) +K + 2−j ||x̂kj || ≤ mdM (x, f(x)) +K + 2−j ||x̂kj ||

by the nonexpansiveness of f with respect to the metric dM . Note that

Km = mdM (x, f(x)) +K
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is a constant which depends only on m. Thus

||x̂kj−m − yj|| ≤ Km + 2−j ||x̂kj ||. (3.3)

Equation 3.3 implies that for j large enough ||x̂kj−m− yj|| ≤ 1
4 ||x̂

kj || = 1
4 ||y

j ||. We will

now use Lemma 3.2.1 with λ = 1
4 , R = ||x̂kj ||, and r = ||x̂ki || so that x̂kj−m takes the

role of z, yi takes the role of ry, and yj takes the role of Ry. We obtain

||x̂kj−m − yi|| ≤ ||x̂kj || −
3

4
||x̂ki ||. (3.4)

Combining equations 3.2 and 3.4

||x̂ki − x̂kj−m|| ≤ ||x̂ki − yi|| + ||yi − x̂kj−m||

≤ 2−i||x̂ki || + ||x̂kj || −
3

4
||x̂ki ||.

Thus,

||x̂ki − x̂kj−m|| ≤ ||x̂kj || −
1

4
||x̂ki ||,

or translating back to M ,

dM (xki , xkj−m) ≤ dM (x, xkj ) −
1

4
dM (x, xki) + 2K (3.5)

whenever ki and m are fixed and kj is large enough.

Since M is proper, the Ascoli-Arzela theorem implies that by taking a further sub-

sequence of xki we may assume that the horofunction

h(y) = lim
j→∞

dM (y, xkj ) − dM (x, xkj )

exists for all y ∈M . Observe that

h(xki+m) = lim
j→∞

dM (xki+m, xkj ) − dM (x, xkj ) ≤ dM (xki , xkj−m) − dM (x0, xkj )
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≤ −
1

4
dM (x, xki) + 2K

by equation 3.5 and the fact that f is nonexpansive. Since dM (x, xki) → ∞ as ki → ∞

it follows from the inequality above that limm→∞ h(xm) = −∞.

To complete the proof, observe that dM (fm(x), fm(y)) ≤ dM (x, y) for all y ∈ M

and m > 0. Therefore,

h(fm(y)) = lim
j→∞

dM (fm(y), xkj ) − dM (x, xkj )

≤ lim
j→∞

dM (fm(x), fm(y)) + dM (fm(x), xkj ) − dM (x, xkj )

≤ dM (x, y) + h(fm(x)).

It follows that limm→∞ h(fm(y)) = −∞ for all y ∈M .

We can now prove the main goal of this section.

Theorem 3.2.2 Let D be a bounded polyhedral domain in a finite dimensional normed

space X. Let f : D → D be nonexpansive with respect to the Hilbert metric d on D. If

f has no fixed point in D, then there is a convex subset of ∂D which contains ω(x; f)

for all x ∈ D.

Proof By Lemma 2.2.5 there is an isometric embedding Φ : D → RN×N of D with the

Hilbert metric into a subset of RN×N with the sup-norm || · ||∞. Since f has no fixed

point in D, we must have d(x, fk(x)) → ∞ as k → ∞ by Theorem 2.3.1. Thus Theorem

3.2.1 implies that there is a horofunction h on D such that limk→∞ h(fk(x)) = −∞ for

all x ∈ D. By Lemma 2.2.4 the Hilbert metric balls in D are convex and so it follows

from equation 3.1 that the horoballs HR = {x ∈ D | h(x) ≤ R} are convex for every

R ∈ R. Let cl HR denote the norm closure of HR. Because h(fk(x)) → −∞ it follows
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that ω(x; f) ⊂ cl HR for every x ∈ D and R < 0. Therefore ω(x; f) ⊂
⋂

R<0 cl HR which

is a convex subset of ∂D.

Remark 3.1 In section 6.3 we show that, for a simplex in Rn, any convex subset of

the boundary is contained in the omega limit set of a Hilbert metric nonexpansive map

(Theorem 6.3.1). This partial converse to Theorem 3.2.2 shows that Theorem 3.2.2

is the strongest possible restriction on the omega limit sets of general fixed point free

Hilbert metric nonexpansive maps on polyhedral domains.

Theorem 3.2.1 can be applied to any metric space which is isometric to a subset of

a finite dimensional Banach space. In addition to the Hilbert metric on a polyhedral

domain, this is also true for any part of a polyhedral cone equipped with Thompson’s

metric by Lemma 2.2.6. Repeating the argument given in the proof of Theorem 3.2.2

will also prove the following.

Theorem 3.2.3 Suppose that C ⊂ Rn is a polyhedral cone and Cu ⊂ C is a part of C.

Let f : Cu → Cu be a Thompson metric nonexpansive map with no fixed point in Cu.

If ω(x; f) 6= ∅ for some x ∈ Cu, then there is a convex subset of ∂Cu which contains

ω(y; f) for all y ∈ Cu.

Remark 3.2 The proof of Theorem 3.2.2 will not work for general convex domains.

In fact, if D is the open unit disc in R2 with the Hilbert metric d, then there is a fixed

point free d-nonexpansive map f : D → D such that for every horofunction h on D and

every x ∈ D, h(fk(x)) is bounded from below. We will sketch the proof of this fact.

The open unit disc in R2 with the Hilbert metric is precisely the Klein model of the

hyperbolic plane. It is well known that there is an isometry from the Klein model of

the hyperbolic plane onto the open unit disc in C with the Poincaré metric (see section
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1

Figure 3.1: The map f(z) = (1−2i)z−1
z−(1+2i) on the open unit disc in C.

6.1 in [47], for example). The open unit disc in C with the Poincaré metric is sometimes

referred to as the Poincaré model of the hyperbolic plane. The balls in the Poincaré

model are discs. Since a horoball is a limit of balls, it follows that the horoballs in the

Poincaré model are discs that are internally tangent to a single point on the boundary

of D (see section 4.5 of [47]). Let f be the Möbius transform

f(z) =
(1 − 2i)z − 1

z − (1 + 2i)
.

The map f sends the open unit disc into itself and is nonexpansive with respect to the

Poincaré metric by the Schwarz-Pick lemma. Note that f is actually the composition

f = g ◦ T ◦ g−1 where

g(z) =
z − i

z + 1
and T (z) = z + 1,

that is, g is the Cayley transform from the upper half-plane into the unit disc and T

is a horizontal translation. From this, we see that limk→∞ fk(z) = 1 for any z ∈ C
with |z| < 1, and every circle inside the open unit disc which is internally tangent to

1 is invariant under f (see figure 3.1). Furthermore, these circles are the level sets

of any horofunction based at 1. It follows that h(fk(z)) is bounded below for every
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horofunction h and z ∈ C with |z| < 1.

3.3 Two Dimensional Domains

In the two dimensional case there is an elegant argument which shows that co (ω(x; f)) ⊂

∂D even when D is neither polyhedral nor strictly convex. Before giving the proof, we

need to review some facts about horofunctions in the Hilbert geometry. The following

lemma is Theorem 5.2 in [25]. Nussbaum points out that this result is true in infinite

dimensions in Theorem 4.13 of [45].

Lemma 3.3.1 Let D be a bounded convex domain with Hilbert metric d in a finite

dimensional normed space. Let w ∈ D be fixed. Let {xk} and {yk} be two sequences in

D such that xk converges in norm to ζ ∈ ∂D and yk converges in norm to η ∈ ∂D. If

the line segment [ζ, η] is not contained in ∂D, then

lim sup
k→∞

[d(xk, w) + d(yk, w) − d(xk, yk)] <∞.

Proof Since [ζ, η] ∩ D is non-empty, an elementary convexity argument implies that

u = 1
2(ζ + η) ∈ D. For each k, let uk = 1

2 (xk + yk). Since uk → u and u ∈ D, it follows

that limk→∞ d(w, uk) = d(w, u) <∞. Observe that

d(xk, yk) = d(xk, uk) + d(yk, uk) ≥ d(xk, w) + d(yk, w) − 2d(w, uk)

by the triangle inequality. Therefore

lim sup
k→∞

[d(xk, w) + d(yk, w) − d(xk, yk)] ≤ lim
k→∞

2d(w, uk) <∞.

In order to prove the main result of this section, we need to construct a horofunction

with somewhat different properties than the ones discussed in the proof of Theorem
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3.2.1. The following theorem is a generalization of a result of Beardon (see Proposition

4.5 of [6]). Note that it is closely related to Theorem 3.1.3. Nussbaum has proved an

infinite dimensional version of this result (Theorem 4.14, [45]).

Theorem 3.3.1 Let D be a bounded convex domain with Hilbert metric d in a finite

dimensional normed space X. Suppose that f : D → D is d-nonexpansive and f has no

fixed point in D. Then there is a point b ∈ D and a sequence {bi} in D such that the

horofunction

h(x) = lim
i→∞

d(x, bi) − d(b, bi)

exists and has the property that h(f(x)) ≤ h(x) for all x ∈ D. Furthermore, the

sequence {bi} converges in norm to a point z ∈ ∂D such that, for any x ∈ D and

ζ ∈ ω(x; f), the line segment [z, ζ] is contained in ∂D.

Proof Choose an arbitrary point b ∈ D. For each i ≥ 1, let fi(x) = (1 − 1/i)f(x) +

(1/i)b. Each fi is a contraction with respect to d. Since fi(D) is contained in the

compact, convex set Ki = {(1 − 1/i)x+ (1/i)b | x ∈ cl D}, it follows from the Brouwer

fixed point theorem that each fi has a unique fixed point bi ∈ Ki ⊂ D. Observe that fi

converges uniformly on D to f in norm, and therefore fi converges pointwise on D to f

with respect to the metric d. Since f has no fixed point in D, it follows that bi → ∂D.

By taking a subsequence, we may assume that bi → z ∈ ∂D and the horofunction

h(x) = limi→∞ d(x, bi) − d(b, bi) exists. Note that,

h(f(x)) = lim
i→∞

d(f(x), bi) − d(b, bi)

≤ lim inf
i→∞

[d(f(x), fi(x)) + d(fi(x), bi) − d(b, bi)]

≤ lim inf
i→∞

[d(fi(x), fi(b
i)) − d(b, bi)] ≤ lim

i→∞
d(x, bi) − d(b, bi) = h(x).
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It remains to show that if fki(x) → ζ ∈ ∂D as i → ∞, then [z, ζ] ⊂ ∂D. Suppose

by way of contradiction that [z, ζ] is not contained in ∂D. For each i ≥ 1 and R ∈ R,

let V i
R = {y ∈ D | d(y, bi) ≤ d(b, bi) + R}. Suppose that h(x) = R. Then there is a

sequence of points vi ∈ V i
R such that limi→∞ vi = x. Since h(fk(x)) ≤ R for all k ≥ 0,

it follows that we may choose a sequence yi ∈ V i
R so that ||yi − fki(x)|| ≤ 1/i for all

integers i large enough. Since limi→∞ fki(x) = ζ, we have limi→∞ yi = ζ as well. Using

the fact that bi → z and [z, ζ] is not contained in ∂D, we may use Lemma 3.3.1 to

conclude that

lim sup
i→∞

[d(yi, b) + d(bi, b) − d(yi, bi)] <∞.

Therefore,

lim inf
i→∞

d(yi, bi) − d(bi, b) = ∞,

because limi→∞ d(yi, b) = ∞. This is a contradiction, since yi ∈ V i
R for every i large

enough.

With Theorem 3.3.1, we can now extend Theorem 3.2.2 to any two dimensional convex

domain.

Theorem 3.3.2 Let D be a bounded convex domain in a two dimensional normed

space. Let f : D → D be nonexpansive with respect to the Hilbert metric on D. If f

has no fixed point in D, then there is a convex subset of ∂D which contains ω(x; f) for

all x ∈ D.

Proof Theorem 3.3.2 is trivial when aff D is one dimensional, so assume that aff D = X.

By Theorem 3.3.1, there is a horofunction h such that h(f(y)) ≤ h(y) for all y ∈ D. In

particular, sequence h(fk(x)) is non-increasing. Let HR = {y ∈ D | h(y) < R}. Note

that each horoball HR is convex. This is an immediate consequence of equation 3.1 and
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Lemma 2.2.4. Since HR is convex, the norm closure of HR, cl HR, is also convex. If

h(fk(x)) → −∞, then ω(x; f) ⊂ cl HR for all R ∈ R. Thus, ω(x; f) ⊂
⋂

R∈R cl HR. But

⋂

R∈R cl HR is a convex subset of ∂D, so Lemma 2.3.4 implies that ω(y; f) is contained

in a convex subset of the boundary for all y ∈ D.

Let us assume, therefore, that h(fk(x)) → R > −∞. Suppose by way of contra-

diction that there exists ζ, η ∈ ω(x; f) such that the line segment [ζ, η] has non-empty

intersection with D. By Theorem 3.1.3 there is a point z ∈ ω(x; f) such that [z, ζ] ⊂ ∂D

and [z, η] ⊂ ∂D. Because D is two-dimensional, z is the only point in ∂D with this

property.

Since we used Theorem 3.3.1 to construct h, there is a point b ∈ D and a sequence

{bi} in D such that h(y) = limi→∞ d(y, bi) − d(b, bi) for all y ∈ D. Furthermore,

limi→∞ bi = z since z is the only point in ∂D such that [z, ζ] and [z, η] are contained

in ∂D. Choose an x̄ ∈ D on the line segment [z, x] so that h(x) − d(x, x̄) < R′ < R.

Let r = ||x̄ − z||. For all i large enough, ||bi − z|| < r. Therefore, for each i large

enough there is unique point yi on the line segment [x, bi] such that ||yi − z|| = r. By

construction, limi→∞ yi = x̄. Note that

h(x) = lim
i→∞

d(x, bi) − d(b, bi)

= lim
i→∞

d(x, yi) + d(yi, bi) − d(b, bi)

≥ lim sup
i→∞

[d(x, yi) + d(x̄, bi) − d(x̄, yi) − d(b, bi)]

= lim sup
i→∞

[d(x, x̄) + d(x̄, bi) − d(b, bi)] = α+ h(x̄).

Therefore, h(x̄) ≤ h(x) − d(x, x̄) < R′ < R.

By Lemma 2.3.2 there are points z̄, ζ̄ , η̄ ∈ ω(x̄, f) such that z̄ ∼D z, ζ̄ ∼D ζ, and

η̄ ∼D η. Furthermore, since h(x̄) < R′ it follows that z̄, ζ̄ , η̄ ∈ cl HR′ . Note that z̄ must
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ζ

ζ

η

η

z

Figure 3.2: An illustration of the domain D in the proof of Theorem 3.3.2.

equal z because D is two-dimensional (see figure 3.2). Since z ∈ ω(x; f) there is an

increasing sequence of integers ki such that fki(x) → z. This means that there is some

N > 0 such that fki(x) ∈ D ∩ co {z, ζ̄ , η̄} for all ki ≥ N . Since z, ζ̄, η̄ are each limit

points of elements of HR′ , and HR′ is a convex set, it follows that h(fki(x)) ∈ HR′ and

h(fki(x)) < R′ for all ki ≥ N . This contradicts the assumption that h(fk(x)) → R,

proving that ω(x; f) is contained in a convex subset of the boundary. Lemma 2.3.4 then

shows that ω(y; f) is contained in a convex subset of ∂D for all y ∈ D.

3.4 A Special Case

Beyond two dimensions, we are unaware of a proof of Conjecture 1 for general convex

domains. In applications however, a Hilbert metric nonexpansive map may have enough

extra structure to ensure that the result of Conjecture 1 is true even when the domain

is neither strictly convex nor polyhedral.

Suppose that C1 ⊂ C2 are closed cones in a finite dimensional normed space X.

Assume that C1 and C2 have nonempty interiors. Let C∗
1 and C∗

2 denote the dual cones
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of C1 and C2 respectively. Note that C∗
2 ⊂ C∗

1 . Let d1(·, ·) denote Hilbert’s projective

metric for the cone C1 and d2(·, ·) denote Hilbert’s projective metric for the cone C2.

For any x, y ∈ C1 ∩ int C2, d2(x, y) ≤ d1(x, y). The following lemma gives conditions

under which d2 restricted to C1 ∩ int C2 is almost equivalent to the projective metric of

a polyhedral cone.

Lemma 3.4.1 Let C1 ⊂ C2 be closed cones with nonempty interiors in a finite dimen-

sional normed space X. Let d2(·, ·) denote Hilbert’s projective metric induced by C2. If

there is a polyhedral cone Cp such that C1 ⊂ Cp ⊂ C2 and such that every element of

C∗
p is comparable to an element of C∗

2 , in the partial ordering induced by C∗
1 , then there

is a constant K ≥ 0 such that Hilbert’s projective metric with respect to Cp, denoted

dp(·, ·), satisfies

d2(x, y) ≤ dp(x, y) ≤ d2(x, y) +K (3.6)

for all x, y ∈ C1 ∩ int C2.

Proof Since C1 ⊂ Cp ⊂ C2 it follows immediately that d2(x, y) ≤ dp(x, y) for all

x, y ∈ C1 ∩ int C2. Since Cp is polyhedral, there is a finite collection {θi}i∈I ⊂ C∗
p such

that

dp(x, y) = max
i,j∈I

log

(

θi(x)θj(y)

θi(y)θj(x)

)

whenever x and y are comparable in the partial ordering induced by Cp. For each i ∈ I

there is a ϕi ∈ C∗
2 such that θi is comparable to ϕi in the partial ordering induced by

C∗
1 . This means that there is an ǫi > 0 such that ǫiϕi(x) ≤ θi(x) ≤ ǫ−1

i ϕi(x) for all

x ∈ C1. Letting ǫ = mini∈I ǫi we see that for each i, j ∈ I and all x, y ∈ C1 ∩ int C2,

log

(

θi(x)θj(y)

θi(y)θj(x)

)

≤ log

(

ǫ−2ϕi(x)ϕj(y)

ǫ2ϕi(y)ϕj(x)

)
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= log

(

ϕi(x)ϕj(y)

ϕi(y)ϕj(x)

)

+ log

(

1

ǫ4

)

≤ d2(x, y) + log

(

1

ǫ4

)

since

d2(x, y) = sup
χ,ψ∈C2∗

log

(

χ(x)ψ(y)

χ(y)ψ(x)

)

and ϕi, ϕj ∈ C∗
2 . Therefore dp(x, y) ≤ d2(x, y) + log(1/ǫ4) which completes the proof.

Using Lemma 3.4.1 and Theorem 3.2.1 we obtain the following corollary of Theorem

3.2.2. We will use this theorem in chapter 5 when we study reproduction-decimation

operators.

Theorem 3.4.1 Let C1 ⊂ C2 be closed cones with nonempty interiors in a finite di-

mensional normed space X. Let d2(·, ·) denote Hilbert’s projective metric induced by

C2. Suppose that there is a polyhedral cone Cp such that C1 ⊂ Cp ⊂ C2 and such

that every element of C∗
p is comparable to an element of C∗

2 with respect to the partial

ordering induced by C∗
1 . Let f : int C2 → int C2 be order-preserving with respect to C2

and homogeneous of degree one. Let q ∈ X∗ be a linear functional such that q(x) > 0

for all x ∈ C2\{0}. Let Σ = {x ∈ int C2 | q(x) = 1} and f̂(x) = f(x)/q(f(x)) for

x ∈ Σ. If for some x0 ∈ C1 ∩ int C2, fk(x0) ∈ C1 for all k ∈ N and f̂ has no fixed point

in Σ, then there is a convex subset of ∂Σ which contains ω(x; f̂) for all x ∈ Σ.

Proof By Lemma 3.4.1 and Lemma 2.2.5, there is a one-to-one map Φ : Σ∩C1 → RN×N

such that −K ≤ d2(x, y)−||Φ(x)−Φ(y)||∞ ≤ K where N and K are constants depend-

ing on C1, Cp, and C2. Since f̂ has no fixed point in Σ, we must have d2(x, f̂k(x)) → ∞

as k → ∞ by Theorem 2.3.1. Thus, Theorem 3.2.1 implies that there is a horo-

function h on Σ such that limk→∞ h(f̂k(x)) = −∞ for all x ∈ Σ. By Lemma 2.2.4,
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the d2-balls in Σ are convex and so it follows from equation 3.1 that the horoballs

HR = {x ∈ Σ | h(x) ≤ R} are convex for every R ∈ R. Let cl HR denote the norm

closure of HR. Because h(f̂k(x)) → −∞, it follows that ω(x; f̂) ⊂ cl HR for every x ∈ Σ

and R < 0. Therefore ω(x; f̂) ⊂
⋂

R<0 cl HR which is a convex subset of ∂Σ.

3.5 Nonexpansive Maps in Finite Dimensional Normed Spaces

Another interesting application of Theorem 3.2.1 is the following result.

Theorem 3.5.1 Suppose that U is a closed convex set in a finite dimensional normed

space X and f : U → U is a norm nonexpansive map. If f does not have a fixed point

in U , then there is a linear functional ϕ ∈ X∗ such that limk→∞ ϕ(fk(x)) = ∞ for all

x ∈ U .

Theorem 3.5.1 is similar to the following theorem of Kohlberg and Neyman (Theorem

1.1 in [30]).

Theorem 3.5.2 Let U be a convex subset of a normed space X and let f : U → U be

nonexpansive. Then there exists a linear functional ϕ ∈ X∗ with ||ϕ|| = 1 such that for

every x ∈ U ,

lim
k→∞

ϕ

(

fk(x)

k

)

= lim
k→∞

∣

∣

∣

∣

∣

∣

∣

∣

fk(x)

k

∣

∣

∣

∣

∣

∣

∣

∣

= inf
y∈U

||f(y) − y||.

This result of Kohlberg and Neyman will imply Theorem 3.5.1 if infy∈X ||f(y)−y|| > 0.

Note that Theorem 3.5.2 applies to infinite dimensional normed spaces unlike Theorem

3.5.1. In section 6.3 we give an example of a nonexpansive map in (Rn, || · ||∞||) which

does not have a fixed point even though infy∈Rn ||f(y) − y||∞ = 0. This shows that

Theorem 3.5.1 is independent of Theorem 3.5.2.



41

In order to prove Theorem 3.5.1, we will make some quick observations about convex

sets in finite dimensional vector spaces. Recall that if U is convex, then the polar set

of U is U◦ = {ϕ ∈ X∗ | ϕ(x) ≤ 1 ∀x ∈ U}.

Lemma 3.5.1 Let U be a convex set in a finite dimensional normed space X. If

spanU◦ = X∗, then there is a closed cone C ⊂ X and a point z ∈ X such that

U ⊂ C + {z}.

Proof Choose a basis {ϕi}
n
i=1 ⊂ U◦ for X∗. Then each ϕi has ϕi(x) ≤ 1 for all x ∈ U .

Note that there is a unique point z ∈ X such that ϕi(z) = 1 for all i ∈ {1, ..., n}. Let

C = {x ∈ X | ϕi(x) ≤ 0 ∀ 1 ≤ i ≤ n}. Then C is a closed cone and every element of U

is contained in C + {z}.

Lemma 3.5.2 Let U be a closed convex subset of a finite dimensional normed space

X. Let V = {x ∈ X | ϕ(x) = 0 ∀ϕ ∈ U◦}. Then U + V = U .

Proof Suppose that u ∈ U and v ∈ V . If u+v /∈ U , then by the Hahn-Banach theorem

there is a linear functional ϕ ∈ X∗ and a constant a ∈ R such that ϕ(u + v) > a and

ϕ(x) ≤ a for all x ∈ U . In particular ϕ(u) ≤ a so we must have ϕ(v) > 0. We may

assume a ≤ 1 by scaling ϕ if a is positive. Then ϕ(x) ≤ a ≤ 1 for all x ∈ U and so

ϕ ∈ U◦. This is a contraction, since v ∈ V and V = {x ∈ X | ϕ(x) = 0 ∀ϕ ∈ U◦}.

Therefore U + V ⊂ U and since it is obvious that U ⊂ U + V we are done.

Theorem 3.5.3 Let X be a finite dimensional normed space. Suppose that {Uk}k∈N
is a collection of nonempty closed convex sets in X such that Uk+1 ⊂ Uk for all k ≥ 1.

If
⋂

k≥1 Uk = ∅, then there is a linear functional ϕ ∈ X∗ such that

lim
k→∞

(

inf
x∈Uk

ϕ(x)

)

= ∞.
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Proof For each Uk let Vk = {x ∈ X | ϕ(x) = 0 ∀ϕ ∈ U◦
k}. Note that each Vk is a

subspace of X. Since U◦
k+1 ⊃ U◦

k for all k ≥ 1, Vk is a decreasing sequence of subspaces.

This implies that there is some K > 0 and a subspace V ⊂ X such that Vk = V for

all k ≥ K. Choose a subspace W ⊂ X such that X = V ⊕ W . By Lemma 3.5.2,

Uk = Uk + V for all k ≥ K. For any u ∈ Uk, we have u = w + v with w ∈ W , v ∈ V .

Then w = u− v ∈ Uk since Uk + V = Uk. This implies that Uk = (W ∩ Uk) + V for all

k ≥ K.

Every ϕ ∈ W ∗ can be extended to a continuous linear functional on X by letting

ϕ(v) = 0 for all v ∈ V . Therefore, we may say that W ∗ = {ϕ ∈ X∗ | ϕ(v) = 0 ∀ v ∈ V }.

Note that (W ∩ UK)◦ = W ◦ ∪U◦
K . Since W is a subspace, if x ∈W and ϕ ∈W ◦, then

ϕ(x) = 0. Thus (W ∩ UK)◦ = U◦
K . For every x ∈ W\{0} there is some ϕ ∈ U◦

K such

that ϕ(x) 6= 0, otherwise x would be in V . This means that (W ∩ UK)◦ spans W ∗.

Lemma 3.5.1 implies that there is a closed cone C ⊂ W and a point z ∈ W such that

W ∩UK ⊂ C + {z}. By Lemma 2.2.2 there is a nonzero linear functional ϕ ∈W ∗ such

that ϕ(x) > 0 for all x ∈ C\{0} and the set SR = {x ∈ C | ϕ(x) = R} is bounded for

all R ≥ 0. Since SR is closed for every R ≥ 0, it is also compact. Furthermore, the set

{x ∈ C | ϕ(x) ≤ R} = co (SR ∪ {0}) is also compact for every R ≥ 0.

Let AR = {x ∈ C + {z} | ϕ(x) ≤ R}. Then x ∈ AR if and only if x = y + z where

y ∈ C and ϕ(y) ≤ R−ϕ(z). Thus AR is compact. We know that W ∩Uk ⊂W ∩UK ⊂

C + {z} for all k ≥ K. Suppose that there is some R > 0 such that W ∩ Uk ∩ AR is

nonempty for every k ≥ K. Since W ∩ Uk ∩AR is compact for every k ≥ K we would

have
⋂

k≥K(W ∩ Uk ∩ AR) 6= ∅ which is a contradiction. Therefore, for every R > 0

there is some k large enough so that ϕ(W ∩ Uk) > R. Because Uk = (W ∩ Uk) + V for

all k ≥ K and ϕ(x) = 0 for all x ∈ V we see that infx∈Uk
ϕ(x) → ∞ as k → ∞.
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Proof of Theorem 3.5.1 By Theorem 2.3.1 limk→∞ ||fk(x)|| = ∞ for all x ∈ U .

Therefore, Theorem 3.2.1 implies that there is a horofunction h defined on X such that

limk→∞ h(fk(x)) = −∞. Let HR = {x ∈ X | h(x) ≤ R} for every integer R < 0. By

equation 3.1 we can see that HR is convex for every R < 0. Since HR−1 ⊂ HR for every

R < 0 and
⋂

R<0HR = ∅, we can use Theorem 3.5.3 to find a linear functional ϕ ∈ X∗

such that infx∈HR
ϕ(x) → ∞ as R → −∞. Then limk→∞ ϕ(fk(x)) = ∞ for all x ∈ U .

Remark 3.3 Theorem 3.5.1 is not true in infinite dimensions. Consider the Banach

space X = ℓ1(N). Let U = {x ∈ X | xi ≥ 0 ∀i ∈ N and
∑

i∈N xi = 1}. Note that

U is closed, bounded, and convex. However, if f is the right-shift operator, f(x) =

(0, x1, x2, ...), then f(U) ⊂ U and f is nonexpansive. The only fixed point of f is 0

which is not in U . Since U is bounded, there cannot be a linear functional ϕ ∈ X∗ such

that limk→∞ ϕ(fk(x)) = ∞ for x ∈ U .
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Chapter 4

Positive Linear Operators

4.1 Spectral Projections and the Essential Spectral Radius

Let X be a Banach space and let B(X) be the set of bounded linear maps from X into

X. For now, assume that X is a complex Banach space, although in the applications

that we have in mind, X will be real. For any A ∈ B(X) we let σ(A) denote the

spectrum of A. Recall that the spectral radius, r(A), is given by equation 2.13. It is

well known that r(A) = sup{|λ| : λ ∈ σ(A)}. We define the peripheral spectrum of A

to be the set {λ ∈ σ(A) : |λ| = r(A)}.

Let q(A) be the seminorm:

q(A) = inf{||A+B|| : B is a compact linear map}.

The essential spectral radius of A, denoted ρ(A), is defined to be:

ρ(A) = lim
k→∞

q(Ak)1/k. (4.1)

Clearly, ρ(A) ≤ r(A). If A is compact, then ρ(A) = 0. It is proved in [38] that if

λ ∈ σ(A) and |λ| > ρ(A), then λ is an eigenvalue of A with finite algebraic multiplicity

and λ is an isolated point of σ(A).

Suppose that A ∈ B(X) has ρ(A) < r(A). Since each λ ∈ σ(A) with |λ| = r(A) is

an isolated point, there are only finitely many eigenvalues in the peripheral spectrum of
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A. Because every such eigenvalue is isolated, we may define the spectral projection P

corresponding to the peripheral spectrum of A. This projection is given by the integral

P =
1

2πi

∮

γ
(λI −A)−1dλ

where γ is a cycle winding once around each eigenvalue in the peripheral spectrum of

A and zero times around every other λ ∈ σ(A). The spectral projection P is a linear

projection, that is P 2 = P , and A commutes with P . Note that P does not depend on

the choice of γ. See section VIII.8 of [58] for more details about this construction.

We let Y and Z denote the ranges of P and I − P respectively. Since A commutes

with P and I − P , the subspaces Y and Z are invariant under A and X = Y ⊕ Z.

Moreover, the spectrum of A restricted to Y is the peripheral spectrum of A, while

the spectrum of A restricted to Z is the interior spectrum of A. Since there are only

finitely many eigenvalues in the peripheral spectrum, and each one has finite algebraic

multiplicity, the subspace Y is finite dimensional. We collect these facts in the following

proposition.

Proposition 4.1.1 Let X be a Banach space and let A ∈ B(X). Suppose that ρ(A) <

r(A). Then there is a spectral projection P such that P commutes with A, the range of

P is finite dimensional, and r((I − P )A) < r(A).

The remainder of this section is devoted to some minor lemmas about iterates of

operators in B(X). We will need these results in order to prove the main goal of this

chapter, Theorem 4.2.1. Let Mn(C) denote the set of n × n complex matrices and let

Jn(λ) ∈ Mn(C) denote the n × n Jordan block corresponding to an eigenvalue λ ∈ C.

We can write

Jn(λ) = λIn +Nn (4.2)
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where In is the n×n identity matrix, and Nn is the nilpotent matrix with entries νij = 1

if j − i = 1 and νij = 0 otherwise.

Lemma 4.1.1 Suppose that J = Jn(λ) and |λ| = 1. If limi→∞ λki = α for some

increasing sequence of integers ki, then

lim
i→∞

k−n+1
i Jki =

αλ−n+1

(n− 1)!
Nn−1
n .

Proof Applying the binomial theorem to equation 4.2 gives:

Jk = Jkn(λ) = λkIn +

k
∑

t=1









k

t









λk−tN t
n.

In particular, if t > n− 1, N t
n = 0. Consider the limit:

lim
k→∞

Jk

λkkn−1
= lim

k→∞









In
kn−1

+
n−1
∑

t=1

λ−t

kn−1









k

t









N t
n









.

We can see that

lim
k→∞

1

kn−1









k

t









= 0

for all 1 ≤ t < n− 1 while

lim
k→∞

1

kn−1









k

n− 1









=
1

(n− 1)!
.

From this and the fact that N t
n = 0 for t > n− 1, we conclude that

lim
k→∞

Jkn(λ)

λkkn−1
= lim

k→∞









In
kn−1

+

n−1
∑

t=1

λ−t

kn−1









k

t









N t
n









=

= lim
k→∞









λ−n+1

kn−1









k

n− 1









Nn−1
n









=
λ−n+1Nn−1

n

(n − 1)!
.
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Since limi→∞ λki = α we have:

lim
i→∞

k−n+1
i Jki = lim

i→∞
λki

(

Jki

λkiki
n−1

)

= α

(

λ−n+1Nn−1
n

(n− 1)!

)

.

Lemma 4.1.2 Let J = Jn(λ) and |λ| = 1. For any x ∈ Cn\{0} there is a y ∈ Cn\{0}

with Jy = λy and an integer q, 0 ≤ q < n, such that for any increasing sequence of

integers ki,

lim
i→∞

k−qi Jkix =

(

lim
i→∞

λki

)

y.

In particular, limi→∞ k−qi Jkix exists if and only if limi→∞ λki exists.

Proof Let α = limi→∞ λki . Note that x = (x1, x2, ..., xn). For now, assume that

xn 6= 0. If q = n− 1, then Lemma 4.1.1 implies that,

lim
i→∞

k−qi Jkix = αλ−n+1Nn−1
n x.

Thus y = λ−n+1Nn−1
n x. Note that y 6= 0 since (Nn−1

n x)1 = xn 6= 0. Because Nn
n = 0,

we see that:

Jy = Jλ−n+1Nn−1
n x = (λIn +Nn)λ−n+1Nn−1

n x = λy.

If xn = 0, then suppose that xp 6= 0 and xp+1, ..., xn = 0 for some 1 ≤ p < n.

Let V = {y ∈ Cn | yp+1, ..., yn = 0}. Note that J(V ) ⊆ V , and furthermore J |V is

represented by the p × p Jordan block Jp(λ). We may simply repeat the argument

above, with p replacing n.

Lemma 4.1.3 Suppose that A ∈ B(X) has r(A) = 1 and ρ(A) < 1. Let P be the

spectral projection operator corresponding to the peripheral spectrum of A. If x ∈ X
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and Px 6= 0, then there is an ǫ > 0 such that ||Akx|| ≥ ǫ for all k ≥ 0. Furthermore,

the sequence {Akx/||Akx||}k≥0 has a convergent subsequence.

Proof Let Y be the image of X under P and let Z be the image of X under I − P .

By Proposition 4.1.1, Y is finite dimensional. Therefore, we can decompose Y into

Y1 ⊕ Y2 ⊕ ... ⊕ Yp where each Yj is an A-invariant subspace on which there is a basis

such that A|Yj
can be represented by an nj × nj Jordan block matrix Jnj

(λj). Since

Y corresponds to the peripheral spectrum of A, each λj will have |λj | = 1. For each

Yj there is a projection Pj from X onto Yj which commutes with A. Since Px 6= 0,

there is a j ∈ {1, ..., p} such that Pjx 6= 0. By Lemma 4.1.2, it is clear that there is an

ǫ > 0 such that ||AkPjx|| ≥ ǫ for all k ≥ 0. Since ||Pj || = 1 and Pj commutes with A,

it follows that ǫ ≤ ||PjA
kx|| ≤ ||Akx||.

Every element in the set {Akx/||Akx|| | k ≥ 0} has norm one. Note that r(A|Z) < 1

so limk→∞Ak|Z = 0. Since ||Akx|| ≥ ǫ for all k ≥ 0, it follows that (I−P )Akx/||Akx|| →

0 as k → ∞. Therefore Akx/||Akx|| approaches the unit ball in Y as k → ∞. Since

Y is finite dimensional, the unit ball in Y is compact and therefore Akx/||Akx|| has a

convergent subsequence.

Lemma 4.1.4 Suppose that A ∈ B(X) has r(A) = 1 and ρ(A) < 1. Let P be the

spectral projection operator corresponding to the peripheral spectrum of A. Let x ∈ X.

If Px 6= 0 and

lim
i→∞

Akix

||Akix||
= ζ,

then there is an integer q ≥ 0 such that limi→∞ ki
−qAkix = cζ where c > 0. Further-

more, ζ ∈W = span{x ∈ X | Ax = λx where |λ| = 1}.

Proof Let the notation be as in the proof of Lemma 4.1.3. Since r(A|Z) < 1, it
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immediately follows that limi→∞Aki |Z = 0. Let Px = x1 + x2 + ... + xp where each

xj ∈ Yj , for 1 ≤ j ≤ p. We may choose a refinement {mi} of the sequence {ki} such

that limi→∞ λmi

j exists for every j ∈ {1, ..., p}. If xj 6= 0, then Lemma 4.1.2 implies

that there is an integer qj ≥ 0 such that

lim
i→∞

Amixj

m
qj
i

= yj

where yj 6= 0 and Ayj = λjyj. If we let q = max1≤j≤p qj, then by the linearity of A,

limi→∞m−q
i Amix = y where y 6= 0 and y ∈W . Since

ζ = lim
i→∞

Amix

||Amix||
= lim

i→∞

m−q
i Amix

||m−q
i Amix||

=
y

||y||

it follows that limi→∞m−q
i Amix = cζ where c = ||y|| = limi→∞ ||m−q

i Amix||.

Note that Pjζ = Pjy/c for all j ∈ {1, ..., p}. Therefore,

||Pjζ|| = lim
i→∞

∣

∣

∣

∣

∣

∣

∣

∣

Pj

(

Akix

||Akix||

)∣

∣

∣

∣

∣

∣

∣

∣

= lim
i→∞

||k−qi Akixj||

||k−qi Akix||
=

||yj ||

c
.

By Lemma 4.1.2, limi→∞ ||k−qi Akixj || = ||yj ||. Therefore, limi→∞ ||k−qi Akix|| = c. Since

Pjζ = lim
i→∞

k−qi Akixj

||k−qi Akix||
,

we conclude that limi→∞ k−qi Akixj exists, and must equal limi→∞m−q
i Amixj for each

j ∈ {1, ..., p}. Therefore, limi→∞ k−qi Akix = cζ.

Lemma 4.1.5 Suppose that A ∈ B(X) has r(A) = 1 and ρ(A) < 1. Suppose that there

is an integer q ≥ 0 and sequences {ki} and {mi} such that

lim
i→∞

Akix

ki
q = ζ and lim

i→∞

Aki+mix

(ki +mi)
q = η

where ζ and η are each nonzero. Then η = limi→∞Amiζ.
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Proof Let the notation be as in the proof of Lemma 4.1.3. For each j ∈ {1, ..., p},

A|Yj
corresponds to a Jordan block Jnj

(λj) where |λj | = 1. By Lemma 4.1.2, if ζj =

limi→∞ k−qi Akixj is a nonzero vector in Yj , then there is a yj ∈ Yj\{0} such that ζj =

αjyj where αj = limi→∞ λki

j . Furthermore, yj is an eigenvector of A with Ayj = λjyj.

For this same j, Lemma 4.1.2 also implies that

ηj = lim
i→∞

Aki+mixj
(ki +mi)q

= αjβjyj

where βj = limi→∞ λmi

j . Since ζj = αjyj is an eigenvector of A with eigenvalue λj , it

follows that limi→∞Amiζj = ηj.

Since limk→∞Ak|Z = 0 and since ζ 6= 0, it follows that there is some j ∈ {1, ..., p}

such that ζj is nonzero. For each such j, limi→∞Amiζj = ηj. For the rest, ζj = ηj = 0.

Thus, limi→∞Amiζ = η.

4.2 Positive Linear Operators

In what follows we will assume that X is a real Banach space. In order to do spectral

theory on X, we need the complexification of X, that is, the complex linear space

X̃ = X ⊕ X where α(x, y) = (a1x − a2y, a2x + a1y) for any α = a1 + ia2 ∈ C and

x, y ∈ X. The complexification X̃ can be given a norm,

|||(x, y)||| = sup
0≤t≤2π

||(cos t)x+ (sin t)y||,

and X̃ is a complex Banach space with this norm. We may identify X with the subset

{(x, 0) | x ∈ X} ⊂ X̃. Any A ∈ B(X) extends to a linear map Ã ∈ B(X̃) as follows,

Ã(x, y) = (Ax,Ay). Note that for A ∈ B(X), the spectrum is defined to be σ(Ã). This

implies that r(A) = r(Ã) and ρ(A) = ρ(Ã).
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Suppose that C is a closed cone in X. If A ∈ B(X) is a linear map such that A(C) ⊂

C, then we know that A is nonexpansive with respect to Hilbert’s projective metric on

C. If C has nonempty interior and A(int C) ⊂ int C, then we can ask whether the

normalized iterates of A satisfy a Denjoy-Wolff type theorem. Theorem 4.2.1 answers

this question even when the cone C is neither strictly convex nor polyhedral. Moreover,

Theorem 4.2.1 gives us a Denjoy-Wolff type result when C is infinite dimensional. Note

that the results of this theorem are much stronger than merely demonstrating that

the omega limit sets of the normalized map are contained in a convex subset of the

boundary. In fact, Theorem 4.2.1 reproduces the results of Dafermos and Slemrod

(Theorem 1 of [16]) for omega limit sets of nonexpansive maps even though the omega

limit sets described below may be contained in the boundary of the domain rather than

in the domain itself.

We say that x ∈ C is a quasi-interior point of C if the closed linear span of the set

[0, y] = {y ∈ X | 0 ≤ y ≤ x} is all of X. Note that if C has nonempty interior, then x

is a quasi-interior point if and only if x ∈ int C.

Theorem 4.2.1 Let C be a closed total cone in a real Banach space X. Let d denote

Hilbert’s projective metric on C. Let A ∈ B(X) be a linear map such that A(C) ⊂ C

and r(A) > ρ(A). Let T (x) = Ax/||Ax|| for all x ∈ C such that Ax 6= 0. Then

for any quasi-interior point x ∈ C such that Ax ∼ x, there is an eigenvector z ∈

C\{0} with Az = r(A)z such that ω(x;T ) ⊂ Cz where Cz is the part of C containing

z. Furthermore, T is an invertible d-isometry on ω(x;T ) and if ζ ∈ ω(x;T ), then

ω(ζ;T ) = ω(x;T ).
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One of the conclusions of Theorem 4.2.1 is that there is an eigenvector z ∈ C with eigen-

value r(A). This is not a new result. For compact linear maps, this is the Krein-Rutman

theorem, see [32] and the appendix of [53]. Bonsall and Schaefer give generalizations

of the Krein-Rutman theorem in [9] and [52], section 10. Nussbaum establishes the

existence of an eigenvector z ∈ C with Az = r(A)z for maps A ∈ B(X) with A(C) ⊂ C

and ρ(A) < r(A) in [39] (see also [43]).

In order to prove Theorem 4.2.1, we need to know that the omega limit sets of the

map T are nonempty. The following lemma, together with Lemma 4.1.3 will prove this.

Lemma 4.2.1 Let C be a closed total cone in a Banach space X. Let X̃ be the com-

plexification of X. Suppose that A ∈ B(X) satisfies A(C) ⊂ C and r(A) > ρ(A). Let

P be the spectral projection in X̃ corresponding to the peripheral spectrum of A. If x is

a quasi-interior point of C, then Px 6= 0.

Proof If x is a quasi-interior point of C, then the closed linear span of [0, x] = {y ∈

X | 0 ≤ y ≤ x} is all of X. Therefore, if Py = 0 for every y ∈ [0, x], then Pv = 0 for all

v ∈ X. Since every z ∈ X̃ has the form z = (v,w) = v + iw, with v,w ∈ X, it follows

that Pz = 0 for all z ∈ X̃ . This cannot be the case since ρ(A) < r(A). Thus, there is

some y ∈ [0, x] such that Py 6= 0. Now, suppose by way of contradiction that Px = 0.

Since A is order-preserving and y ≤ x, Aky ≤ Akx for all k ≥ 0. By Lemma 4.1.3,

we can find an increasing sequence of integers ki such that limi→∞Akiy/||Akiy|| = u

where u ∈ C and ||u|| = 1. Then Lemma 4.1.4 implies that there is a q ≥ 0 such that

limi→∞ ki
−qAkiy = cu where c > 0. At the same time, since Px = 0, we must have

limi→∞ ki
−qAkix = 0 by Proposition 4.1.1. However k−qi Akix ≥ k−qi Akiy for all i > 0.

In other words k−qi Akix− k−qi Akiy ∈ C and since C is closed, we would have −cu ∈ C
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which is a contradiction. Therefore Px 6= 0 for every quasi-interior point x ∈ C.

Proof of Theorem 4.2.1 We can assume without loss of generality that r(A) = 1

by replacing A with r(A)−1A. Let X̃ be the complexification of X and let Ã be the

natural extension of A to X̃ . Let P be the spectral projection on X̃ corresponding

to the peripheral spectrum of A. By Lemma 4.2.1, Px 6= 0. Therefore Lemma 4.1.3

implies that ω(x;T ) exists and is nonempty.

If ζ ∈ ω(x;T ) we may assume that

ζ = lim
i→∞

T kix = lim
i→∞

Akix

||Akix||

for some sequence of integers ki. Lemma 4.1.4 implies that there is a q ≥ 0 such that

limi→∞ k−qi Akix = c1ζ where c1 > 0. Furthermore, ζ ∈ W ∩X where W = span{z ∈

X̃ | Ãz = λz where |λ| = 1}.

Let Cζ be the part of C containing ζ. We know that A is nonexpansive with respect

to Hilbert’s projective metric d by Theorem 2.4.1. Since Ax ∼ x, Lemma 2.3.1 implies

that Aζ ∼ ζ and therefore A(Cζ) ⊂ Cζ since A is order-preserving and homogeneous of

degree one. It follows that T is defined on all of Cζ and T : Cζ → Cζ is nonexpansive

with respect to d by equation 2.4. Since Ã|W is invertible and ω(x;T ) ⊂ W ∩ X, it

follows that T is an invertible map on ω(x;T ).

Now, suppose that η ∈ ω(x;T ). There is a sequence of integers mi such that

η = lim
i→∞

Aki+mix

||Aki+mix||
.

By Lemma 4.1.4, there is an integer q ≥ 0 and a constant c2 > 0 such that

c2η = lim
i→∞

Aki+mix

(ki +mi)q
.
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Lemma 4.1.5 implies that

lim
i→∞

Aki+mix

(ki +mi)q
= lim

i→∞
Ami(c1ζ).

Therefore

η = lim
i→∞

Amiζ

||Amiζ||
.

This tells us that if η ∈ ω(x;T ), then η is also in ω(ζ;T ).

Since Ã|W can be represented by a diagonal matrix with each diagonal entry having

modulus one, it follows that there is a sequence of integers ki such that limi→∞ Ãki |W =

IW where IW is the identity map on W . Therefore limi→∞Akiζ = ζ. Note that by

Theorem 2.4.1, A is nonexpansive with respect to Thompson’s metric on Cζ . Since

Akiζ → ζ as i→ ∞, it follows from Theorem 2.3.1 that A has a fixed point in Cζ . Any

fixed point of A in Cζ will be an eigenvector with eigenvalue one. Let z ∈ Cζ be one

such eigenvector, normalized so that ||z|| = 1.

Let ki be a sequence of integers such that limi→∞ Ãki |W = IW where IW is the

identity map on W . Then limi→∞ T ki(ζ) = ζ for all ζ ∈ ω(x;T ). Suppose that T

were not a d-isometry on ω(x;T ). This would imply that there is a pair ζ, η ∈ ω(x;T )

such that d(T (ζ), T (η)) < d(ζ, η). Then d(T ki(ζ), T ki(η)) < d(ζ, η) for all i > 0 by

the nonexpansiveness of T . Since T ki(ζ) → ζ and T ki(η) → η, we get a contradiction.

Therefore T is an isometry on ω(x;T ).

Remark 4.1 If C has nonempty interior in X, A(int C) ⊂ int C, and x ∈ int C, then

Theorem 4.2.1 tells us that ω(x;T ) is contained in a single part, Cz, of C. If A has

no eigenvector in int C, then Cz will be a convex subset of the boundary of C. Thus,

Theorem 4.2.1 implies that conjecture 1 is true for such maps, even in infinite dimen-

sions. Note that, if C has nonempty interior in X and A is a compact linear map such
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that A(int C) ⊂ int C, then ρ(A) < r(A) automatically. After all, ρ(A) = 0 since A is

compact, and r(A) ≥ rC(A) > 0 by Lemma 2.4.1.

Remark 4.2 There are important examples of closed cones which do not have a

nonempty interior. For example, if X = Lp[0, 1] with 1 ≤ p < ∞ and C is the

closed cone consisting of functions in X that are nonnegative almost everywhere, then

C does not have an interior. Note that any function f ∈ Lp[0, 1] that is positive almost

everywhere is a quasi-interior point of C.

4.3 Linear Maps on Polyhedral Cones

Suppose that X is a finite dimensional normed space and C ⊂ X is a closed polyhedral

cone with nonempty interior in X. If A : X → X is a linear map such that A(C) ⊂ C,

then we have the following lemma about the eigenvalues in the peripheral spectrum of

A.

Lemma 4.3.1 Suppose that C is a closed polyhedral cone with nonempty interior in a

finite dimensional normed space and A is a linear map such that A(C) ⊂ C. If C has

N facets, then each eigenvalue in the peripheral spectrum of A is equal to r(A) times a

kth-root of unity where 1 ≤ k ≤ N .

Lemma 4.3.1 originally appeared in [4] and a corrected proof can be found in Theorem

7.6 of [54]. A special case of Lemma 4.3.1 appears in the paper of Krein and Rutman

[32]. Using Lemma 4.3.1, we can strengthen the results of Theorem 4.2.1 when C is a

polyhedral cone in a finite dimensional normed space. The following theorem appeared

as Theorem 2 in [34], although we give a different proof here.



56

Theorem 4.3.1 Let C be a closed polyhedral cone with nonempty interior in a finite

dimensional normed space X. Suppose that A : X → X is a linear map such that

A(int C) ⊂ int C. Let T (x) = Ax/||Ax|| for all x ∈ int C. There is an integer p > 0

such that for each x ∈ int C, limk→∞ T kp(x) = ζ where ζ is a point which depends on

x and p can be chosen to be the least common multiple of {1, ...,N} where N is the

number of facets of C. Furthermore, the omega limit sets, ω(x;T ), are finite periodic

orbits of T .

Proof Since A(int C) ⊂ int C, it follows that r(A) > 0 (by Lemma 2.4.1). Then by

replacing A with r(A)−1A we can assume that r(A) = 1. By Lemma 4.3.1 every element

of the peripheral spectrum of A is a kth-root of unity where 1 ≤ k ≤ N . By letting

p = lcm{1, ..., N}, we ensure that the peripheral spectrum of Ap contains only 1. If

ζ ∈ ω(x;T p), then we know from the proof of Theorem 4.2.1 that ζ ∈ W = {y ∈

X | Apy = y}. Therefore Ap(ζ) = ζ and so T p(ζ) = ζ. Theorem 4.2.1 tells us that

ω(ζ;T p) = ω(x;T p). We conclude that ω(x;T p) = {ζ} and ζ = limk→∞ T kp(x). It

follows that ω(x;T ) is a finite periodic orbit of T with a period that is a divisor of p.

4.4 Affine Linear Maps

Suppose that X is a finite dimensional normed space and C is a closed cone with

nonempty interior in X. Suppose that q ∈ X∗ is a linear functional such that q(x) > 0

for all x ∈ C\0. Let Σ = {x ∈ int C | q(x) = 1}. Suppose that A : C → C is a linear

map and b ∈ C. If the affine linear map f(x) = Ax + b has f(int C) ⊂ int C, then we

define f̂ = f(x)/q(f(x)) for all x ∈ Σ. Even though f is not homogeneous of degree

one, f̂ will still be nonexpansive with respect to the Hilbert metric on Σ. After all, if

x, y ∈ Σ, then there exist constants α, β > 0 such that αx ≤ y ≤ βx. Furthermore, the
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proof of Lemma 2.3.1 shows that α < 1 and β > 1. Thus α(Ax+b) ≤ Ay+b ≤ β(Ax+b)

and therefore equation 2.3 gives d(f̂(x), f̂ (y)) ≤ d(x, y) where d is the Hilbert metric

on Σ.

As with other Hilbert metric nonexpansive maps we can ask whether the omega

limit sets of affine linear maps satisfy a Denjoy-Wolff type theorem. Certainly if Σ is

strictly convex or polyhedral we have such results. However, in the case of affine linear

maps in finite dimensions we can prove that co (ω(x; f̂)) ⊂ ∂Σ when f̂ has no fixed point

in Σ, even when Σ is neither strictly convex nor polyhedral. In order to prove this, we

need the following lemma.

Lemma 4.4.1 Suppose that A : X → X is linear and b ∈ X. Let f(x) = Ax + b

and let f̂(x) = f(x)/q(f(x)) where q ∈ X∗. Let S = {x ∈ X | q(f(x)) 6= 0}. Then

f̂ is a convexity-preserving map on S. That is, if x ∈ S is a convex combination of

z1, z2, ..., zk in S, then f̂(x) will be a convex combination of f̂(z1), f̂(z2), ..., f̂ (zk).

Proof For x = λ1z1 + λ2z2 + ...+ λkzk, with λi > 0 and
∑

i λi = 1

f̂(x) =
f(x)

q(f(x))
=

Ax+ b

q(Ax+ b)
=

=
λ1Az1 + ...+ λkAzk + b

λ1q(Az1) + ...+ λkq(Azk) + q(b)

=
λ1(Az1 + b) + ...+ λk(Azk + b)

λ1q(Az1 + b) + ...+ λkq(Azk + b)

=
λ1q(Az1 + b)f̂(z1) + ...+ λkq(Azk + b)f̂(zk)

λ1q(Az1 + b) + ...+ λkq(Azk + b)

= µ1f̂(z1) + µ2f̂(z2) + ...+ µkf̂(zk),

with:

µi =
λiq(Azi + b)

λ1q(Az1 + b) + ...+ λkq(Azk + b)
.
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Remark 4.3 For a characterization of convexity-preserving maps on a subset of a

vector space see [3].

Theorem 4.4.1 Let C be a closed cone with nonempty interior in a finite dimensional

normed space X. Let A : C → C be a linear map and b ∈ C such that the affine

map f(x) = Ax + b satisfies f(int C) ⊂ int C. Let q ∈ C∗ be a linear functional

such that q(x) > 0 for all x ∈ C\{0} and define Σ = {x ∈ int C | q(x) = 1}. Let

f̂ = f(x)/q(f(x)). If f̂ has no fixed point in Σ, then for any x ∈ Σ, co (ω(x; f̂)) ⊂ ∂Σ.

Proof Let X be a normed space with dim(X) = n and let C and f be as in the

theorem. Note that if b = 0, then f is linear and we can use Theorem 4.2.1. Therefore

we assume that b 6= 0. This will imply that f̂ is defined continuously on cl Σ. Let us

suppose by way of contradiction that there is a point x ∈ Σ such that co (ω(x; f̂))∩Σ is

non-empty. Let y ∈ co (ω(x; f̂))∩Σ. Thus y is a convex combination of points in ω(x; f̂).

By Carathéodory’s theorem (see [49]), we may assume that y is a convex combination

of at most n points z1, z2, ..., zn ∈ ω(x; f̂).

By Lemma 2.3.2, we know that for each zi ∈ ω(x; f̂) there exists ζi ∈ ω(y; f̂) such

that ζi ∼ zi. Furthermore, co {ζ1, ..., ζn}∩Σ 6= ∅. After all, if y = λ1z1 + ...+λnzn ∈ Σ

where each λi ≥ 0 and
∑n

i=1 λi = 1, then it is easy to check that y′ = λ1ζ1 + λ2ζ2 +

...+ λnζn ∈ Σ.

At the same time, we claim that ω(y; f̂) ⊂ co (U) where U = ω(z1; f̂) ∪ ω(z2; f̂) ∪

... ∪ ω(zn; f̂). To prove the claim, note that for each k ≥ 0, f̂k(y) = λ
(k)
1 f̂k(z1) + ... +

λ
(k)
n f̂k(zn), with each λ

(k)
i ≥ 0 and

∑

i λ
(k)
i = 1, by Lemma 4.4.1. Taking a subsequence,

we can arrange that f̂kj (zi) → z′i ∈ ω(zi, f̂) as j → ∞ for 1 ≤ i ≤ n and simultaneously

λ
(kj)
i → λ′i with each λ′i ≥ 0 and

∑

i λ
′
i = 1. Thus, each point z′ ∈ ω(y; f̂) is a convex
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combination
∑n

i=1 λ
′
iz

′
i with each z′i ∈ ω(zi; f̂), proving the claim.

Let y1 be a point in co (ω(y; f̂)) ∩ Σ, and choose z1
1 , z

1
2 , ..., z

1
n ∈ U such that y1 ∈

co ({z1
1, z

1
2, ..., z

1
n}) Note that each point z1

j ∈ ω(zi; f̂) for some i. Furthermore, since

zi ∈ ∂Σ, we know that zi must lie in a part Czi
of C which has dimension at most

n − 1. Let Σzi
= {x ∈ Czi

| q(x) = 1}. Lemma 2.3.3 implies that f̂(Σzi
) ⊂ Σzi

. If Σzi

contains a fixed point of f̂ , then since f̂ is nonexpansive in the Hilbert metric on Σzi
,

every f̂ -orbit in Σzi
must remain within a bounded Hilbert metric distance of that fixed

point. On the other hand, if Σzi
does not contain a fixed point, then z1

j is contained in

a part of C on the boundary of Czi
by Theorem 2.3.1. Such a part would have to have

dimension strictly less than n− 1.

Repeat this process to obtain a sequence of points y1, y2, ..., yn−2 ∈ Σ with the

property that each yi ∈ co (ω(yi−1; f̂)), and more importantly yi ∈ co ({zi
1, z

i
2, ...z

i
n})

where each zij is contained in a part of C with dimension less than n− i or is contained

in a part of C on which f̂ has a fixed point. This means that yn−2 is a point in Σ

which is a convex combination of points zn−2
1 , zn−2

2 , ..., zn−2
n which all lie in parts of C

containing fixed points of Σ. For each 1 ≤ i ≤ n, let pi be a fixed point of f̂ in the

part which contains zn−2
i . Suppose that yn−2 = λ1z

n−2
1 + λ2z

n−2
2 + ...+λnz

n−2
n and let

ζ = λ1p1 + λ2p2 + ...+ λnpn. Observe that ζ is comparable to yn−2 since zn−2
i ∼ pi for

all 1 ≤ i ≤ n. Thus ζ ∈ Σ. Now, since f̂(pi) = pi if and only if f(pi) = ripi for some

constant ri > 0, we have:

f̂k(ζ) =
fk(ζ)

q(fk(ζ))
=

∑

λir
k
i pi

∑

λirki q(pi)

If r = max ri and J = {i | ri = r}, then the reader can verify that as k → ∞

f̂k(ζ) →

∑

i∈J λipi
∑

i∈J λiq(pi)



60

which is a single point in cl Σ. Since there are no bounded orbits in Σ, this limit point

must be on the boundary ∂Σ. However, if ω(ζ; f̂) is a single point, then co (ω(ζ; f̂)) ⊂ ∂Σ

which gives us the contradiction we need, by Lemma 2.3.4.
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Chapter 5

Reproduction-Decimation Operators

5.1 Positive Semi-Definite Forms and Discrete Dirichlet Forms

A class of nonlinear order-preserving homogeneous of degree one maps appears in the

study of diffusion on fractals. These “reproduction-decimation operators” are defined on

the interior of the cone of positive semi-definite forms. In this section we will introduce

the cone of positive semi-definite forms as well as the cone of discrete Dirichlet forms. In

the following section we will define a general class of reproduction-decimation operators

and show how the results of the chapter 3 allow us to establish a Denjoy-Wolff type

result for these operators even though the cone of positive semi-definite forms is neither

polyhedral nor strictly convex.

Let S be a finite set. If we think of S as a measure space with the counting measure,

then L2(S) is a finite dimensional Hilbert space consisting of the functions x : S → R.

The inner product on L2(S) is 〈x, y〉 =
∑

i∈S x(i)y(i). On L2(S) we have a standard

basis consisting of the functions ei, i ∈ S where ei(j) = δij , the Kronecker delta. We

let 1S be the function 1S(i) = 1 for all i ∈ S.

We say that a bounded self-adjoint linear operator A on a Hilbert space H is positive

semi-definite if 〈Ax, x〉 > 0 and A is positive definite if there is a constant c > 0 such

that 〈Ax, x〉 ≥ c〈x, x〉 for all x ∈ H. Since S is finite, any bounded linear operator

A : L2(S) → L2(S) can be represented by a matrix (aij)i,j∈S where (aij) = 〈Aej , ei〉.
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We shall denote by XS the set of all bounded self-adjoint linear operators A : L2(S) →

L2(S) such that A(1S) = 0. When we refer to elements A ∈ XS , we will not always

make a sharp distinction between the operator A and the quadratic form 〈Ax, x〉 defined

by A. Thus, we may refer to A as a quadratic form when it is convenient. In the space

XS we let KS denote the cone of positive semi-definite operators, that is

KS = {A ∈ XS | 〈Ax, x〉 ≥ 0 ∀x ∈ L2(S)}.

The cone of discrete Dirichlet forms, DS , is defined

DS = {A ∈ XS | (aij) ≤ 0 for all i, j ∈ S with i 6= j}.

Both KS and DS have nonempty interior in XS . In fact it is not hard to show that

int KS = {A ∈ XS | ∃ c > 0 with 〈Ax, x〉 ≥ c〈x, x〉 ∀ x ⊥ 1S},

int DS = {A ∈ XS | (aij) < 0 for all i, j ∈ S with i 6= j}.

For any operator A in XS , there is a nice formula for the quadratic form 〈Ax, x〉 which

we state here as a lemma.

Lemma 5.1.1 If A ∈ XS and x ∈ L2(S), then

〈Ax, x〉 = −
1

2

∑

i6=j∈S

aij(x(i) − x(j))2. (5.1)

Proof Since A ∈ XS , we have A(1S) = 0 and therefore
∑

j∈S aij = 0 for each i ∈ S.

Alternatively, we may write aii = −
∑

j 6=i aij for each i ∈ S. Now,

〈Ax, x〉 =
∑

i∈S

∑

j∈S

aijx(i)x(j).

Each x(i)x(j) term with i 6= j will appear twice in this sum. For each i ∈ S, the term

x(i)2 will appear only once in the sum, but the coefficient on x(i)2 will be −
∑

j 6=i aij .
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Since A is self-adjoint, aij = aji for all i, j ∈ S. From these facts it is clear that

∑

i∈S

∑

j∈S

aijx(i)x(j) = −
1

2

∑

i6=j∈S

aij(x(i) − x(j))2.

Using equation 5.1 it follows immediately that DS ⊂ KS . We say that a Dirichlet

form A ∈ DS is irreducible if A ∈ DS ∩ int KS. The reproduction-decimation operators

will be defined on these irreducible Dirichlet forms. We would like to use Theorem 3.4.1

to establish a Denjoy-Wolff type theorem for this class of maps. In order to do this, we

must first prove the following proposition. Note that Theorem 3.2.2 does not apply to

the cone KS because KS is neither polyhedral nor strictly convex when card S > 3.

Proposition 5.1.1 If S is a finite set with card S ≥ 3 and DS and KS are defined as

above, then there is a closed polyhedral cone Cp ⊂ XS such that DS ⊂ Cp ⊂ KS and

every element in C∗
p is comparable to an element of K∗

S in the partial ordering induced

by D∗
S .

In order to prove this proposition, we need to consider the dual cones of DS and

KS . One can easily show that

D∗
S = {

∑

i6=j∈S

bijψij | bij ≥ 0 and bij = bji for all i 6= j}

where ψij(A) = −〈Aej , ei〉 = −aij for all A ∈ X. Finding a nice characterization of

K∗
S takes a little more work. In what follows, for any x ∈ L2(S), let |x| denote the

“variation norm” of x, that is,

|x| = max
i,j∈S

|x(i) − x(j)|.

Although | · | is not norm on L2(S), it is a norm on the subspace {1S}⊥ = {x ∈

L2(S) | 〈x,1S〉 = 0}.
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Lemma 5.1.2 Let n = card S. The dual cone of KS is

K∗
S = {

n(n−1)/2+1
∑

k=1

ckχxk
| ck ≥ 0, xk ∈ L2(S) with |xk| = 1}

where, for any x ∈ L2(S), χx ∈ X∗
S is the linear functional such that χx(A) = 〈Ax, x〉

for A ∈ XS .

Proof A ∈ XS is positive semi-definite if and only if 〈Ax, x〉 ≥ 0 for all x ∈ L2(S)

with |x| = 1. Thus the set of linear functionals {χx : |x| = 1} is a sufficient set for KS .

Therefore,

K∗
S = cl {

N
∑

k=1

ckχxk
| N ∈ N, ck ≥ 0, xk ∈ L2(S) with |xk| = 1}.

We will now show that the set {
∑N

k=1 ckχxk
| N ∈ N, ck ≥ 0, |xk| = 1} is closed. Since

the set {χx : |x| = 1} is closed and bounded in X∗
S , an application of Carathéodory’s

theorem proves that co {χx : |x| = 1} is compact (see [49], Theorem 17.2). Observe

that if A ∈ int KS and |x| = 1, then χx(A) > 0. This implies that 0 /∈ co {χx | |x| = 1}.

Since co {χx : |x| = 1} is compact and does not contain zero, the set
⋃

λ≥0 λ(co {χx :

|x| = 1}) is closed. To see this, suppose that υk is a sequence in co {χx : |x| = 1} and

bk ≥ 0 is a sequence of real numbers such that bkυk → ϕ. Then since co {χx : |x| = 1}

is compact, a subsequence υki
converges to some υ∞ ∈ co {χx : |x| = 1}. Since υ∞ 6= 0,

the corresponding subsequence bki
must also converge to some b∞ ≥ 0 as i→ ∞. Then

ϕ = b∞υ∞, so ϕ ∈
⋃

λ≥0 λ(co {χx : |x| = 1}) and therefore,
⋃

λ≥0 λ(co {χx : |x| = 1}) is

closed. Now observe that

⋃

λ≥0

λ(co {χx : |x| = 1}) = {

N
∑

k=1

ckχxk
| N ∈ N, ck ≥ 0, xk ∈ L2(S) with |xk| = 1},

and by Carathéodory’s theorem for convex sets (see [49], Theorem 17.1) we may assume

that N = dimX∗
S + 1 = n(n− 1)/2 + 1.
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Since DS ⊂ KS , it follows that K∗
S ⊂ D∗

S . Also note that D∗
S is a polyhedral cone.

Every face of D∗
S has the form FI = {

∑

i6=j∈S bijψij ∈ D∗
S | bij = 0 if (i, j) ∈ I} where

I ⊂ S × S is a symmetric collection of pairs, that is (i, j) ∈ I if and only if (j, i) ∈ I.

Since each face FI of D∗
S corresponds to a collection of pairs I, we may also associate

to FI the graph Γ(I) on n vertices obtained by connecting the i and j vertices with an

edge whenever (i, j) ∈ I.

By Lemma 2.1.1, the parts of the cone D∗
S are the relative interiors of the faces FI .

That is, any two elements θ, ϕ ∈ D∗
S are comparable in the partial order induced by

D∗
S if and only if there is some FI such that θ, ϕ ∈ ri FI.

Lemma 5.1.3 If FI is a face of D∗
S corresponding to the graph Γ(I) and FI ∩K

∗
S 6= ∅,

then FI ∩ K∗
S ⊂ FJ where FJ is the closed subface of FI corresponding to the graph

Γ(J) which is the minimal graph containing Γ(I) such that every connected component

of Γ(J) is complete. In particular, the relative interior ri FI contains an element of K∗
S

if and only if the connected components of Γ(I) are all complete.

Proof Observe that ri FI = {
∑

i 6=j∈S bijψij ∈ FI | bij = 0 if and only if (i, j) ∈ I}. For

any χx, equation 5.1 implies that

χx(A) = 〈Ax, x〉 = −
1

2

∑

i6=j∈S

aij(x(i) − x(j))2,

thus,

χx =
∑

i6=j∈S

1

2
(x(i) − x(j))2ψij ,

so χx is a sum
∑

i6=j∈S bijψij with bij = 1
2 (x(i) − x(j))2. Thus, χx ∈ ri FI if and only if

x(i) = x(j) exactly when (i, j) ∈ I.

If the graph Γ(I) has a connected component which is not complete, then there is

a pair (i, j) /∈ I such that there is a path ik, k = 1, ...,N with i1 = i, and iN = j and
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(ik, ik+1) ∈ I for all k ∈ {1, ..., N − 1}. If χx ∈ FI , then x(ik) = x(ik+1) for each k and

therefore, x(i) = x(j). Thus the constant bij = 0 for that particular χx even though

(i, j) /∈ I. Therefore χx /∈ ri FI.

Observe that, if ϕ =
∑N

k=1 ckχxk
∈ FI with ck > 0 for each k, then xk(i) = xk(j)

for all k ∈ {1, ..., N} and (i, j) ∈ I. If Γ(J) is the minimal graph containing Γ(I) such

that every connected component of Γ(J) is complete, then for all k and (i, j) ∈ J ,

xk(i) = xk(j). Thus χxk
∈ FJ and therefore, ϕ ∈ FJ . Thus K∗

S ∩ FI ⊂ FJ .

Conversely, if every connected component of Γ(I) is complete, then we may choose

an x ∈ L2(S) such that x(i) = x(j) if and only if i and j correspond to vertices in the

same connected component of Γ(I). In other words, x(i) = x(j) if and only if (i, j) ∈ I.

It is then clear that the functional χx =
∑

i6=j∈S
1
2(x(i) − x(j))2ψij is in ri FI ∩ K∗

S.

Lemma 5.1.4 If FI is a face of D∗
S such that FI ∩K

∗
S 6= ∅, but ri FI ∩ K∗

S = ∅, then

there is an A ∈ XS such that ϕ(A) ≥ 0 for all ϕ ∈ K∗
S but θ(A) < 0 for all θ ∈ ri FI.

Proof By the lemma above, the fact that K∗
S∩ri FI = ∅ implies that there exists J ⊃ I

such that all of the connected components of Γ(J) are complete and K∗
S ∩FI ⊂ FJ . To

construct the operator A, let aij = 0 if (i, j) /∈ J , let aij = 1 if (i, j) ∈ J\I, and for

(i, j) ∈ I let aij = −K where K > 0 is some large constant which we will specify later.

Then for any χx,

χx(A) =
∑

i6=j∈S

−
1

2
aij(x(i)−x(j))2 =

1

2

∑

(i,j)∈I

K(x(i)−x(j))2 −
1

2

∑

(i,j)∈J\I

(x(i)−x(j))2.

Suppose that (p, q) ∈ I is the pair which attains the maximum value over (i, j) ∈ I of

the expression (x(i) − x(j))2. Note that for any pair (i, j) ∈ J ,

(x(i)−x(j))2 = |x(i)−x(j)|2 ≤ (|x(i1)−x(i2)|+|x(i2)−x(i3)|+...+|x(iN−1)−x(iN )|)2,
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where each pair (ik, ik+1) ∈ I (or possibly, ik = ik+1), i1 = i, iN = j, and N is the

largest distance on the graph Γ(I) between two vertices in any connected component.

Thus,

(x(i) − x(j))2 ≤ N2(x(p) − x(q))2 for all (i, j) ∈ J.

By letting K > card (J\I)N2 we can see that

χx(A) =
1

2

∑

(i,j)∈I

K(x(i) − x(j))2 −
1

2

∑

(i,j)∈J\I

(x(i) − x(j))2

≥
1

2
card (J\I)N2(x(p) − x(q))2 −

1

2

∑

(i,j)∈J\I

(x(i) − x(j))2

≥
1

2
card (J\I)N2(x(p) − x(q))2 −

1

2
card (J\I) max

(i,j)∈J
(x(i) − x(j))2 ≥ 0.

It remains to show that θ(A) < 0 for all θ ∈ ri (FI). However, if θ ∈ ri FI, then

θ =
∑

i6=j∈S bijψij with bij ≥ 0 for all pairs (i, j) ∈ S × S, and bij = 0 if and only if

(i, j) ∈ I. Therefore

θ(A) =
∑

(i,j)∈J

bijψij(A) =
∑

(i,j)∈J\I

−bij < 0.

Proof of Proposition 5.1.1 We will construct a polyhedral cone C∗
p such that K∗

S ⊂

C∗
p ⊂ D∗

S and such that every element θ ∈ C∗
p is comparable to an element ϕ ∈ K∗

S

under the partial ordering induced by D∗
S .

To construct the polyhedral cone, we will intersect the cone D∗
S with finitely many

closed half-spaces of the form HA = {θ ∈ X∗
S | θ(A) ≥ 0} where A ∈ XS . Suppose that

FI is a face of D∗
S . If FI is disjoint from K∗

S, then the Hahn-Banach theorem implies

that we may find an A ∈ XS such that ϕ(A) ≥ 0 for all ϕ ∈ K∗
S but θ(A) < 0 for all

θ ∈ FI .
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If FI is not disjoint from K∗
S but ri FI ∩ K∗

S = ∅, then Lemma 5.1.4 implies that

there is an A ∈ XS such that θ(A) < 0 for all θ ∈ ri FI while ϕ(A) ≥ 0 for all ϕ ∈ K∗
S .

Therefore, for any face FI such that ri FI ∩ K∗
S = ∅ there is a half-space HA such that

HA contains K∗
S but is disjoint from ri FI. Since there are only finitely many faces of

D∗
S , it follows that by intersecting the cone D∗

S with finitely many half-spaces we may

obtain a polyhedral cone C∗
p such that K∗

S ⊂ C∗
p ⊂ D∗

S and every element of C∗
p lies

in the relative interior of a face FI of D∗
S such that ri FI ∩ K∗

S 6= ∅. This implies that

every element of C∗
p is comparable to an element of K∗

S in the partial ordering of D∗
S

since the parts of D∗
S are precisely the relative interiors of its faces (see Lemma 2.1.1).

5.2 Reproduction-Decimation Operators

A fractal is a set defined by a finite family of functions {ψ1, ...ψN} where each ψk :Rn → Rn has the property that ||ψk(x) − ψk(y)|| = κk||x − y|| with 0 < κk < 1. For

any set U ⊂ Rn we let Ψ(U) =
⋃n
k=1 ψk(U). The fractal is then the unique compact set

F ⊂ Rn such that Ψ(F) = F . We let I = {x ∈ F | x ∈ ψi(F) ∩ ψj(F) for some i 6= j}

and V = {x ∈ F | Ψ(x) ∩ I 6= ∅}. If I is finite, then we say that F is finitely ramified.

From now on, we shall always assume that F is post critically finite which implies that

it is finitely ramified (see section 1.3 of [28] for the definition of post critically finite).

We let W = Ψ(V ). Note that V and W are finite sets when F is finitely ramified,

so we may let L2(V ) and L2(W ) be the corresponding L2 spaces when V and W are

equipped with the counting measure.

We are now ready to define the reproduction operators, which are a class of linear

maps from L2(V ) to L2(W ) determined by the fractal F . For each k ∈ {1, ...,N} define
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Φk : L2(W ) → L2(V ) by (Φkx)(i) = x(ψk(i)). Note that each Φk is a bounded linear

map, so it has a Hilbert space adjoint Φ∗
k : L2(V ) → L2(W ). Also observe that

Φk(1W ) = 1V and Φk(x ∧ 1W ) = Φk(x) ∧ 1V ∀x ∈ L2(W ). (5.2)

We define a reproduction operator to be a map R : XV → XW given by

R(A) =

N
∑

k=1

ηkΦ∗
kAΦk (5.3)

where each ηk is a positive real constant. It is immediately clear that R(KV ) ⊂ KW .

If A ∈ DS , then recall that aij ≤ 0 for i, j ∈ S with i 6= j. Thus for any x ∈ L2(W )

〈R(A)x, x〉 = 〈
N
∑

k=1

ηkΦ∗
kAΦkx, x〉 =

N
∑

k=1

ηk〈AΦkx,Φkx〉 =

= −
1

2

N
∑

k=1

ηk
∑

i,j∈V

aij(Φkx(i) − Φkx(j))2 = −
1

2

N
∑

k=1

ηk
∑

i,j∈V

aij [x(ψk(i)) − x(ψk(j))]
2.

Therefore R(DV ) ⊂ DW . Because R is linear, it follows that R is homogeneous of

degree one, and if A ≤KV
B, then R(A) ≤KW

R(B).

Corollary 1.6.5 in [28] states that a post critically finite fractal F determined by a

family of contractions {ψk | 1 ≤ k ≤ N} is connected if and only if, for all j, j′ ∈ W ,

there exists k0, k1, ..., kp with j ∈ ψk0(V ), j′ ∈ ψkp
(V ), and ψks

(V ) ∩ ψks+1
(V ) 6= ∅ for

0 ≤ s < p. If the fractal F is connected, then R will map irreducible Dirichlet forms

on L2(V ) to irreducible Dirichlet forms on L2(W ).

Lemma 5.2.1 If F is a post critically finite connected fractal and R is a reproduction

operator defined by equation 5.3, then

R(DV ∩ int KV) ⊂ DW ∩ int KW. (5.4)

Proof We have already seen that R(DV ∩ int KV) ⊂ DW. By equation 5.1, it suffices

to prove that if x ∈ L2(W ), A ∈ DV ∩ int KV, and 〈R(A)x, x〉 = 0, then x = λ1W for
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some λ ∈ R. However,

〈R(A)x, x〉 =
N
∑

k=1

ηk〈AΦkx,Φkx〉,

so, if 〈R(A)x, x〉 = 0, then 〈AΦkx,Φkx〉 = 0 for 1 ≤ k ≤ N . Because A ∈ DV ∩ int KV,

it follows that there exists λk ∈ R with

Φk(x) = x ◦ ϕk = λk1V for 1 ≤ k ≤ N.

Therefore x(w) = λk for all w ∈ ϕk(V ), 1 ≤ k ≤ N . If j, j′ ∈ W , select k0, k1, ..., kp as

in the characterization of connectivity. It follows that λks
= λks+1

for 0 ≤ s < p, so

λk0 = x(j) = λkp
= x(j′), and x is a scalar multiple of 1W .

We let H = L2(W ) and define an orthogonal projection P : H → H by (Px)(w) =

x(w) for w ∈ V and (Px)(w) = 0 for w ∈ W\V . We let Q = I − P and H1 = P (H)

and H2 = Q(H). Then H = H1 ⊕H2. It is easy to see that H1 is isomorphic to L2(V ).

We will identify L2(V ) with the subspace H1, and thus any x ∈ L2(V ) can be treated

as an element of L2(W ) with x(w) = 0 for all w ∈W\V .

We define the decimation operator Ψ : XW → XV by letting Ψ(A) be the unique

element in XV such that

〈Ψ(A)x, x〉 = inf{〈A(x + y), x+ y〉 | y ∈ H2}. (5.5)

The operator Ψ is not linear. The following lemma shows that Ψ has several nice

properties, however.

Lemma 5.2.2 If Ψ : XW → XV is a decimation operator, then

(a) Ψ is homogeneous of degree one.

(b) If A,B ∈ XW satisfy A ≤KW
B, then Ψ(A) ≤KV

Ψ(B).
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(c) Ψ(int KW) ⊂ int KV.

(d) Ψ(DW ) ⊂ DV .

Proof (a) It is clear from the definition that Ψ is homogeneous of degree one.

(b) To prove that Ψ(A) ≤KV
Ψ(B) when A ≤KW

B, it suffices to prove that

Ψ(B) − Ψ(A) ∈ KV . Note that

〈(Ψ(B)−Ψ(A))x, x〉 = inf{〈B(x+ y), x+ y〉 | y ∈ H2}− inf{〈A(x+ y), x+ y〉 | y ∈ H2}

≥ inf{〈B(x+ y) −A(x+ y), x+ y〉 | y ∈ H2} ≥ 0

since B −A ∈ KW .

(c) If A ∈ int KW, then it has a unique square root A1/2 ∈ int KW and

inf{〈A(x + y), x+ y〉 | y ∈ H2} = inf ||A1/2(x+ y)||2.

Since H is a Hilbert space, there is some y0 ∈ H2 such that

inf ||A1/2(x+ y)||2 = ||A1/2(x+ y0)||2

and therefore

〈Ψ(A)x, x〉 = 〈A(x+ y0), x+ y0〉.

If 〈Ψ(A)x, x〉 = 0, then the above equation implies that x = λ1V for some λ ∈ R.

Therefore Ψ(A) ∈ int KV.

(d) If y ∈ L2(V ), A ∈ DW , and we identify L2(V ) with H1 as above, equation 5.5

gives 〈Ψ(A)(y ∧ 1V ), y ∧ 1V 〉 = inf{〈A(y ∧ 1W + z), y ∧ 1W + z〉 | z ∈ H2}. Because

z ∧ 1W ∈ H2 for z ∈ H2 and because (y + z) ∧ 1W = y ∧ 1W + z ∧ 1W , we see that

inf{〈A(y ∧ 1W + z), y ∧ 1W + z〉 | z ∈ H2}

≤ inf{〈A(y ∧ 1W + z ∧ 1W ), y ∧ 1W + z ∧ 1W 〉 | z ∈ H2}
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= inf{〈A((y + z) ∧ 1W ), (y + z) ∧ 1W 〉 | z ∈ H2}

≤ inf{〈A(y + z), y + z〉 | z ∈ H2} = 〈Ψ(A)y, y〉.

This proves that Ψ(DW ) ⊂ DV .

We define a reproduction-decimation operator to be a function f = Ψ ◦R where Ψ

is a decimation operator and R is a reproduction operator.

Theorem 5.2.1 Let notation be as above and let R and Ψ be as defined in equations

5.3 and 5.5. Assume that F is connected. Let q be a linear functional which is positive

on KV \{0} and define Σ = {A ∈ int KV | q(A) = 1}. For A ∈ int KV, define f = Ψ◦R

and f̂(A) = f(A)/q(f(A)). Then f(int KV) ⊂ int KV, f(DV ∩ int KV) ⊂ DV ∩ int KV,

f is homogeneous of degree one and f is order-preserving in the partial ordering from

KV . If A ∈ Σ, let ω(A; f̂) denote the omega limit set of A under the map f̂ . If f̂ has

no fixed points in Σ (or equivalently, f has no eigenvectors in int KV), then we have

co (
⋃

A∈Σ

ω(A; f̂)) ⊂ ∂Σ.

Furthermore, for A,B ∈ Σ, every element of ω(A; f̂) is comparable to an element of

ω(B; f̂) in the partial ordering from KV .

Proof Under the given assumptions we have proved that R(int KV) ⊂ int KV and

Lemma 5.2.1 showed that R(DV ∩ int KV) ⊂ DW ∩ int KW. Because R is linear it

follows that R is order-preserving as a map from KV to KW and also homogeneous

of degree one. Lemma 5.2.2 shows that Ψ : int KW → int KV is order-preserving and

homogeneous of degree one and that Ψ(DW ∩ int KW) ⊂ DV ∩ int KV. These facts,

combined with Proposition 5.1.1 allow us to use Theorem 3.4.1. To prove the last claim
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of the theorem, we use Lemma 2.3.1 and the fact that f̂ is nonexpansive with respect

to Hilbert’s projective metric on KV .

We can say more about the omega limit sets ω(A; f̂) of normalized reproduction-

decimation operators in the special case when card (V) = 3. In this case, the set

Σ = {A ∈ int KV | q(A) = 1} is strictly convex. After all, when card (V) = 3, XV is

naturally isomorphic to the set X̃V of real symmetric 3 × 3 matrices with row sums

equal to zero. Under this isomorphism, int KV corresponds to the rank 2 positive semi-

definite elements of X̃V . The boundary ∂KV corresponds to those positive semi-definite

matrices in X̃V with rank less than 2. For any A,B ∈ ∂KV such that A is not a scalar

multiple of B, rank (λA+(1−λ)B) = 2 for all 0 < λ < 1. Therefore Σ is strictly convex.

We can now apply the Denjoy-Wolff type theorem established by Beardon for Hilbert

metric nonexpansive maps on strictly convex domains (theorem 3.1.2) to conclude that

there exists B ∈ ∂KV such that f̂k(A) → B as k → ∞, for all A ∈ Σ. This is a stronger

result than we are able to prove when n > 3. Moreover, since f(int KV ∩ DV) ⊂ DV, it

follows that B ∈ DV ∩ ∂KV and we also know that q(B) = 1. An easy argument then

implies that

(a) B = β

















0 0 0

0 1 −1

0 −1 1

















or (b) B = β

















1 −1 0

−1 1 0

0 0 0

















or (c) B = β

















1 0 −1

0 0 0

−1 0 1

















,

where β is determined by the condition that q(B) = 1.
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Chapter 6

Topical Maps and Positive Operators on Rn+
6.1 Topical Maps

In Rn, we let Rn+ denote the set of vectors with all nonnegative entries, that is Rn+ =

{x ∈ Rn | xi ≥ 0 ∀ 1 ≤ i ≤ n}. Note that Rn+ is a closed cone and we refer to it as the

standard cone in Rn. The standard cone induces a partial ordering ≤ on Rn given by:

x ≤ y if and only if xi ≤ yi for each i ∈ {1, ..., n}.

Let 1 = (1, 1, ..., 1) ∈ Rn be the vector with every entry equal to one. We say that a

map g : Rn → Rn is additively homogeneous if g(x + λ1) = g(x) + λ1 for all x ∈ Rn
and λ ∈ R. If g : Rn → Rn is both additively homogeneous and order-preserving with

respect to ≤, then g is said to be topical. The following proposition due to Crandall

and Tartar [15] shows that topical maps are nonexpansive with respect to || · ||∞.

Proposition 6.1.1 A map g : Rn → Rn is topical if and only if g is additively homo-

geneous and nonexpansive with respect to || · ||∞.

We define a map L : intRn
+ → Rn by Li(x) = log(xi). The inverse map E : Rn →

intRn
+ is given by Ei(y) = exp(yi). Note that if g is topical, then f = E ◦ g ◦ L is

an order-preserving homogeneous of degree one map which takes intRn
+ into itself. By

Corollary 4.8 in [12], every such f extends continuously to the whole cone Rn+.
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If g : Rn → Rn is topical and χ(g) = limk→∞ gk(x)/k exists for some x ∈ Rn, then

χ = χ(g) is called the cycle time vector of g. It is not hard to verify that χ does not

depend on the choice of x ∈ Rn. The cycle time vector χ is closely related to the cone

spectral radius of f = E ◦ g ◦ L. In fact, if rC(f) is the cone spectral radius of f with

respect to C = Rn+, then rC(f) = exp(max1≤i≤n(χi)) by equation 2.16.

Unlike the cone spectral radius, the cycle time vector is not guaranteed to exist for

arbitrary topical maps. In fact, Gunawardena and Keane construct an example of a

topical map with no cycle time vector in [22]. For certain classes of topical maps, the

cycle time vector is known to exist. Katirtzoglou proves this for DAD-maps in [27].

We discuss another such class of maps in the next section.

6.2 Max-Min Operators

The linear operators in the max-plus algebra have received a great deal of attention

because of their applications to transportation and communication networks (see [23]).

These max-plus operators are part of a larger hierarchy of topical maps which has

been studied by Gaubert and Gunawardena (see [21] and the references in that paper).

If a, b ∈ R, then we let a ∨ b = min(a, b) and a ∧ b = max(a, b). For x, y ∈ Rn we let

(x∨y)i = min(xi, yi) and (x∧y)i = max(xi, yi) for 1 ≤ i ≤ n. The following proposition

is easy to verify.

Proposition 6.2.1 Suppose that g, g′ : Rn → Rn are topical. For any u ∈ Rn and

0 < λ < 1 the following maps are also topical: g + u, g ∨ g′, g ∧ g′, λg + (1 − λ)g′.

Following the notation of [21] we let Sim(n,n) denote the set of functions g : Rn → Rn
such that each component gi(x) = xj for some 1 ≤ j ≤ n. We then let A∗ denote the
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closure of Sim(n,n) under the operations in Proposition 6.2.1. Note that the max-

plus linear operators are just the closure of Sim(n,n) under the operations of max and

adding a fixed vector. Every element in A∗ is piecewise affine and nonexpansive with

respect to || · ||∞. Therefore a theorem of Kohlberg (Theorem 2.1 in [29]) implies that

every g ∈ A∗ has an invariant half-line. Gaubert and Gunawardena originally made

this observation in [20].

Theorem 6.2.1 If g ∈ A∗, then g has an invariant half-line. That is, there exists a

vector u ∈ Rn and a unique vector v ∈ Rn such that g(u + tv) = u + (t + 1)v for all

t ≥ 0.

Note that limk→∞ gk(u)/k = v and therefore v is the cycle time vector of g. Thus,

one consequence of Theorem 6.2.1 is that the cycle time vector exists for all g ∈ A∗. If

g : Rn → Rn is topical and u ∈ Rn satisfies g(u+kv) = u+(k+1)v for some v ∈ Rn and all

k ≥ 0, then u is called a generalized additive eigenvector of g. We see that every element

g ∈ A∗ has a generalized additive eigenvector u such that g(u + kχ) = u + (k + 1)χ

where χ = χ(g) is the cycle time vector of g.

The maps in A∗ correspond to order-preserving homogeneous of degree one maps

on the standard cone Rn+ via the transformation Φ : g 7→ E ◦g ◦L. We let Φ(A∗) denote

the set of all order-preserving homogeneous of degree one maps f : Rn+ → Rn+ such that

f(x) = E ◦ g ◦ L(x) for all x ∈ intRn
+. Normalized operators in the class Φ(A∗) have

simple omega limit sets, as the following theorem shows.

Theorem 6.2.2 Suppose that f ∈ Φ(A∗) and let rC(f) be the cone spectral radius of f

with respect to the standard cone C = Rn+. Let f̂ = rC(f)−1f . Then ω(x; f̂) is a finite

periodic orbit of f̂ contained in a single part of Rn+.
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Proof Since f ∈ Φ(A∗) there is a g ∈ A∗ such that f(x) = E ◦ g ◦ L(x) for all

x ∈ intRn
+. By Theorem 6.2.1 there is a generalized additive eigenvector u ∈ Rn such

that g(u + tχ) = u + (t + 1)χ for all t ≥ 0 where χ = χ(g). Let y = E(u). Note

that fk(y) = E(u + kχ), so rC(f) = limk→∞ ||fk(y)||
1/k
∞ = exp(max1≤i≤n χi). Let χ̄

be the vector with each entry equal to max1≤i≤n χi. Then f̂k(y) = rC(f)−kfk(y) =

E(u + k(χ − χ̄)). Since χ − χ̄ ≤ 0 it is clear that the orbit O(y; f̂) is bounded. For

any other x ∈ intRn
+, there is a constant λ > 0 such that x ≤ λy, and since f̂ is order-

preserving it follows that the orbit O(x; f̂) is bounded. By Theorem 6.8 and Lemma

6.7 of [1], this implies that ω(x; f̂) is a finite periodic orbit of f̂ and is contained in a

single part of intRn
+.

6.3 A Pathological Example

We have proved that the omega limit sets of normalized linear maps on a polyhedral

cone are finite (Theorem 4.3.1) as are the omega limit sets of normalized max-min

type operators on the standard cone (Theorem 6.2.2). There are, however, examples of

order-preserving homogeneous of degree one maps on the standard cone whose omega

limit sets contain infinitely many points on the boundary and even contain points from

more than one part of the cone. In this section we will introduce one such example.

Let V = {x ∈ Rn | v1 = 0}.

Lemma 6.3.1 For any sequence {ai}i≥1 ⊂ V such that ai ≥ 0 and ai+1 ≤ ai for all

i ≥ 1, there is a topical map g : Rn → Rn such that gk(0) =
∑k

i=1 a
i for each k ≥ 0.

Proof Let vk =
∑k

i=1 a
i. For each 2 ≤ j ≤ n there is an order-preserving Lipschitz

function γj : R → R with Lipschitz constant Lip (γj) ≤ 1 such that γj(v
k
j ) = vk+1

j .
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Indeed, by constructing each γj piecewise linear we see immediately that this is the

case. Let G : V → V be the map Gj(x) = γj(xj) for each 2 ≤ j ≤ n. For any x ∈ Rn,

let g(x) = G(x− x11) + x11. It is easy to see that g is additively homogeneous since

g(x+ λ1) = G(x+ λ1− (x1 + λ)1) + (x1 + λ)1 =

= G(x− x11) + (x1 + λ)1 = g(x) + λ1.
Suppose that x, y ∈ Rn and x ≤ y. If xj − x1 ≤ yj − y1, then because γj is

order-preserving,

gj(x) = γj(xj − x1) + x1 ≤ γj(yj − y1) + y1 = gj(y).

If xj − x1 > yj − y1, then because Lip (γj) ≤ 1,

0 ≤ γj(xj − x1) − γj(yj − y1) ≤ (xj − x1) − (yj − y1) ≤ y1 − x1.

Therefore

gj(x) = γj(xj − x1) + x1 ≤ γj(yj − y1) + y1 = gj(y).

Thus g : Rn → Rn is a topical map such that gk(0) = Gk(0) = vk.

Every topical map g corresponds to an order-preserving homogeneous of degree

one map defined on the interior of the cone Rn+ by f = E ◦ g ◦ L. We will use this

correspondence to state an alternative version of Lemma 6.3.1. In the following lemma,

∏k
i=1 b

i is understood to be the entry-wise product of the vectors bi.

Lemma 6.3.2 Suppose that {bi}i≥1 is a sequence of vectors in Rn such that bi ≥ 1,

bi+1 ≤ bi and bi1 = 1 for all i ≥ 1. Then there is an order-preserving homogeneous of

degree one map f : intRn
+ → Rn

+ such that

fk(1) =

k
∏

i=1

bi for all k ≥ 1. (6.1)
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Proof If ai = L(bi) for each i ≥ 1, then {ai}i≥1 is a sequence in V which satisfies the

hypotheses of Lemma 6.3.1. Therefore there is a topical map g : Rn → Rn such that

gk(0) =

k
∑

i=1

ai.

The corresponding map f = E ◦ g ◦ L will have

fk(1) = E(gk(0)) = E

(

k
∑

i=1

ai

)

=
k
∏

i=1

bi.

Let Σ = {x ∈ intRn
+ | ||x||1 = 1}, where || · ||1 is the norm ||x||1 =

∑n
i=1 |xi|.

Let d denote the Hilbert metric on Σ. If f : intRn
+ → intRn

+ is order-preserving and

homogeneous of degree one, then f̂(x) = f(x)/||f(x)||1 is a d-nonexpansive map from

Σ into Σ by theorem 2.4.1 and property (i) of Hilbert’s projective metric. Furthermore,

if f satisfies equation 6.1 and ξ = 1
n1, then

f̂k(ξ) =

∏k
i=1 b

i

||
∏k
i=1 b

i||1
. (6.2)

Note that f̂k(ξ) will have f̂k(ξ)1 → 0 as k → ∞ if and only if ||
∏k
i=1 b

i||1 → ∞.

Theorem 6.3.1 For any convex subset U ⊂ ∂Σ there is a Hilbert metric nonexpansive

map T : Σ → Σ and a point ξ ∈ Σ such that the omega limit set ω(ξ;T ) contains U .

Proof Since U is convex, and U ⊂ ∂Σ, there is some coordinate j such that xj = 0 for

all x ∈ U . Assume without loss of generality that j = 1 and let F1 be the closed face

F1 = {x ∈ cl Σ | x1 = 0}. Then U ⊆ F1. We will choose a sequence bi with bi1 = 1,

bi ≥ 1 and bi+1 ≤ bi for all i ≥ 1. We will let ξ = 1
n1. The above comments and Lemma

6.3.2 will then imply that there is a Hilbert metric nonexpansive map T : Σ → Σ

satisfying equation 6.2. Let ξk = T k(ξ) for each k > 0. We wish to choose the bi in
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such a way that subsequences of ξk converge to a countable dense collection of points

in F1. Suppose that the vectors b1, ..., bN are fixed for some N > 0. Observe that for

any two vectors x, y ∈ Rn+ with x ≤ y and x1 = y1, we may choose a finite sequence

of vectors bN+i, 1 ≤ i ≤ m, such that bN+i
1 = 1, bN+i ≤ bN+i−1, and bN+i ≥ 1 for all

1 ≤ i ≤ m, and such that the entry-wise product of x with
∏m
i=1 b

N+i equals y. For

example, by choosing m large enough, let each bN+i
j = (yj/xj)

1/m. Now, suppose that

z ∈ F1 and x ∈ Σ is arbitrarily close (in norm) to z. Suppose also that z′ is any other

point in F1. We may choose a y ∈ Rn+ with x ≤ y and x1 = y1 such that y/||y||1 is

arbitrarily close to z′. This implies that if ξN is arbitrarily close to some z ∈ F1, and

z′ is any other point in F1, we may find an m > 0 such that ξN+m is the entry-wise

product of ξN with
∏m
i=1 b

N+i scaled to have norm one, and ξN+m is arbitrarily close to

z′. Repeating this process, the sequence ξk can accumulate at any countable collection

of points {zi | i ≥ 1} contained in F1. In particular, by choosing a countable dense

subset of F1 and using the fact that ω(ξ;T ) is closed, we may ensure that the omega

limit set ω(ξ;T ) contains all of F1. Thus U ⊆ ω(ξ;T ).

The example above shows that the restrictions on the omega limit sets we found

in Theorems 4.3.1 and 6.2.2 are stronger than can be expected in general. In fact,

this example shows that Theorem 3.2.2 is the best general result we can hope for on

polyhedral domains.

Note that if {ai} is any sequence in Rn such that ai ≥ 0 and ai+1 ≤ ai for all i ≥ 1,

then limi→∞ ai exists. If g is a topical map such that gk(0) =
∑k

i=1 a
i, as in Lemma

6.3.1, then the cycle time vector χ = χ(g) exists and χ = limk→∞ gk(0)/k = limi→∞ ai.

It is a simple matter to construct a sequence ai ≥ 0 with ai+1 ≤ ai for all i ≥ 1 such that

limi→∞ ai = 0 and such that the partial sums
∑k

i=1 a
i are unbounded in Rn. Then the
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cycle time vector of the corresponding topical map g is χ(g) = 0 even though g cannot

have any fixed points. For such a map, we can use Theorem 3.5.1 to at least prove that

there is a linear functional ϕ : Rn → R such that ϕ(gk(x)) → ∞ as k → ∞. However,

the asymptotic behavior of the map g can be quite complicated, despite the existence

of a cycle time vector. This suggest that the cycle time vector may be less useful for

understanding general topical maps than one might hope from studying special classes

such as A∗.
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