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Dissertation Director: 

Richard K. Brail 

 

Integrated assessment models are being used extensively in the field of disaster damage 

estimation and assessment.  However, there is a great deal of uncertainty involved with 

the use of these models – not only because of the uncertainty of predicting the occurrence 

of hazards but also because of the quality of data that are input into these models.  The 

use of these models for real-world decision-making is limited by the data.  Poor quality 

data can lead to poor decisions, particularly at a local level of analysis.  This dissertation 

looks at the issue of model-data interaction and the uncertainty inherent due to the lack of 

good quality data.  The above interaction is researched using the HAZUS™ model (a 

state-of-the-art damage estimation model) and focusing on building inventory data for 

two cities:  City of Seattle, WA and City of Long Beach, CA.  It assesses how the local 

level building inventory data compares with default building inventory data in HAZUS™ 

for the two cities above.  Finally it looks at how changes in the building inventory data 

lead to changes in the damage estimation from HAZUS™.  In order to understand 

patterns of variation, both of the above are analyzed at the full city level and at the level 

of census tracts comprising the cities.  The dissertation finds that although a lot of basic 



 iii 

GIS data exist for large cities at the local level, the building inventory data are severely 

lacking in some required information, accuracy and completeness.  Where good data 

exist, the results show that there is a large variation in building inventory in the default 

data which leads to an even larger variation in damage estimation.  All occupancy classes 

excepting residential are significantly underestimated and much of the underestimation is 

concentrated in the commercial, industrial, education and institutional classes.  There is 

even large variation for downtown census tracts and single use census tracts such as ones 

with universities, etc.  Where good data do not exist (as in the case of City of Long 

Beach), the use of local data is difficult and requires significant expertise and 

assumptions.  In such cases, the use of HAZUS™ should be with a great deal of caution. 
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Chapter 1: Introduction 
  

In recent years, there have been significant advancements in the development of 

integrated models for hazard assessment and damage estimation. Models such as 

HAZUS™ (FEMA 2003), CATS™ (Swiatek and Kaul 1999), and TAOS (Watson and 

Johnson 1999), have attempted to provide decision-makers with tools to assess the 

impacts of hazardous events on the built environment and human systems.  Particularly, 

they help decision-makers create scenarios of disasters, analyze their impacts, model the 

costs and benefits of various policy decisions and make rational choices amongst 

competing alternatives.  However, the use of these models can be limited not only by the 

quality of the tools but also by the quality of data that is input into the models.  The 

quality of data is crucial for local-level decision-making at the scale of a city, county or 

other local government.  The topics of investigation in this research includes 

understanding the availability of data at the local level for disaster damage assessments, 

analyzing the variation in local-level data versus estimated data, and the changes in 

results from the HAZUS™ model.   

The cost of natural disasters is constantly increasing for both the developed and 

developing world.  During the last decade (1990-99), there were 460 Presidential 

declarations of disasters in the United States, double the number of declarations for the 

previous decade (1980-89).  In the last decade, the Federal Emergency Management 

Agency (FEMA) spent more than $25.4 billion for disasters in comparison with $3.9 

billion (current dollars) in the previous decade (FEMA 2005).  While the increased costs 

of natural disasters in developed countries is attributable to higher property losses, the 
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cost of disasters in the developing world is attributable to higher social costs such as loss 

of life and livelihood, and the complete devastation to the economy from a single event.  

While it is debatable whether the number of disasters have increased, there is no doubt 

that there has been an increase in the cost of disasters.  The higher cost of disasters is 

largely because of the increased occurrence of disasters in densely populated urban 

regions, which is a consequence of urban growth.  It has been estimated that there are 

now 300 cities with more than a million population and 50% of the world’s population 

lives in cities.  Cities are exposed to greater vulnerabilities from disasters due to the 

concentration of people and expensive investment which is particularly vulnerable to 

damage from natural hazards.   

It is important to note that natural disasters are no longer considered to be solely 

caused by “natural” agents.  A complicated intermingling of cause and effect results in 

“complex” disasters even though the initial trigger may be a natural agent such as an 

earthquake, flood or hurricane.  For example, an earthquake can result in a fire or a flood 

can cause an oil spill.  The complexity of disasters, along with the inter-dependencies of 

various human-made systems, particularly in urban areas, makes it difficult to 

understand, manage and mitigate the impacts of such disasters.  Decision-makers and 

urban managers are faced with the challenging task of saving life and property without a 

proper understanding of the complexity of the natural hazard (i.e. the agent causing the 

disaster) and its interplay with urban systems which are also intrinsically connected. 

The assessment of damage from a disaster over an urban fabric requires the 

modeling of the built environment.  Integrated assessment models can be very useful in 

this regard.  Integrated assessment models are tools that formalize assumptions and 
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bridge different disciplinary domains through synthesis of a broad range of expertise.  

Integrated models for disaster management can help estimate, analyze and visualize the 

impacts of various disaster scenarios.  They help in understanding the impacts of various 

policy options and mitigation strategies.  They have the potential to assist decision-

makers both before and after a disaster.  However, the process of integrated modeling by 

itself is a complex one and modeling the complexity of a disaster situation presents many 

challenges.   

One of the most important challenges in the use of integrated models is the 

amount and type of data needed to run them.  Integrated models for damage assessment 

are complex and require the input of large amounts of data on building inventory, 

infrastructure, socio-economic and demographic composition and other environmental 

variables.  The most commonly used integrated hazard assessment tools use geographic 

information systems (GIS) as an integrative framework with the input and output from 

models being GIS datasets.  The large amounts of GIS data required by most models 

involve collecting data at various scales, resolution and levels of aggregation.  Not only 

are data not easily available at a local level, very often the available data do not carry 

adequate information to undertake damage assessments that are useful for public policy 

purposes at the local level.   

An important aspect of the built environment are the building structures and their 

characteristics such as use, type of construction, area, height, age and value.  Data about 

these characteristics are often available locally and are in GIS format.  However, because 

it is unclear how widely used GIS are in local governments and whether such data are 

easily available at the local-level, integrated models make assumptions about buildings 
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and their characteristics.  These assumptions are based on national-level estimates so that 

these models can be run without much local-level data.  However, studies have shown 

significant deviation of these estimates from data available at the local level (Nordenson, 

et al 1999).   

The lack of local data can have a large impact on the sustained use of these 

models, particularly for decision-making at the local level.  The local level perspective is 

important because disaster mitigation policies and first response are undertaken at this 

level, even though the disasters may not follow any political boundary.  There are several 

implications for the use of non-local data – it can lead to greater uncertainty from the 

results of the model, may result in flawed mitigation policies, and lead to the poor 

implementation of policies and priorities.  This may eventually cause decision-makers to 

turn away from these models.  Therefore, to reduce uncertainty from these models, the 

use of local-level data is very important.  This research seeks to understand the 

availability of local-level data for disaster management (particularly damage assessment) 

for large cities in the United States.  In the light of existing data realities, it seeks to 

understand the challenges associated with using local data.  Furthermore, it focuses on 

the usefulness and sensitivity to local level data of HAZUS™, a state-of-the-art damage 

assessment model. 

The HAZUS™ model was developed in the late 1990s in the United States to 

undertake disaster damage estimation due to earthquakes.  The model was developed and 

funded by FEMA and National Institute for Building Sciences (NIBS).  Subsequently 

other modules have been added to the model to include floods and wind-based hazards 

(primarily hurricanes).  Like other integrated models, the HAZUS™ model also uses GIS 
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as an integrative framework.  It is now referred as HAZUS-MH and stands for Hazards 

US, Multi Hazards.  Like most other complex models, this model is also very data 

intensive and involves many datasets.  When the datasets are integrated with a modeled 

hazard scenario, the model provides an assessment of damage and helps identify and 

implement mitigation strategies, as shown in Figure 1.1.   

 

 

Figure 1.1: HAZUS™:  Steps to Assessing Damage 
Source: FEMA 2003 

 

Thus, HAZUS™ integrates information on the hazard (such as ground motion and 

ground failure in the case of earthquakes) with information on general building stock, 

essential and high potential loss facilities, and other systems such as transportation and 

utilities, to assess direct and indirect damage as shown in Figure 1.2.  Other data such as 

socio-economic and demographic data are also used to assess fatalities, injuries, and other 

direct and indirect losses.  Most data are aggregated to the census tract and results from 

the model are also presented at this level of aggregation.  The model comes bundled with 
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all the required data, so that even an inexperienced user can easily run a disaster scenario 

and assess the damage from that scenario.  This includes data about the building stock 

which is derived from census data (for residential buildings) and Dun and Bradstreet data 

(for commercial, industrial and other buildings).  As mentioned before, these datasets can 

be significantly different from reality, particularly in large cities.  

 

Figure 1.2: HAZUS™ Methodology 
Source: FEMA 2003 
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Therefore, the resultant damage from HAZUS™ can be very different depending on 

whether local level data or HAZUS™ default data are used.  The model is flexible in 

terms of improving data from local sources and also provides various tools to collect and 

input local data.  The HAZUS™ has a tool called the Building Inventory Tool (BIT) 

which helps to input local building inventory data into the model.  Information needed 

include the use, type of structure, area, height, age, census tract, and value of the 

buildings.  Likewise, more detailed and accurate hazard information can be input into the 

model.  A detailed discussion of the HAZUS™ model is provided in Chapter 2.  

Many sources of local data exist, such as aerial photos, cadastral (parcel) maps 

along with tax assessor’s files, and public works data.  However, such data are often not 

easily available for most cities, are not updated, or are in a format that is difficult to 

convert into the required format of the model.  Furthermore, the data manipulation 

requires extensive GIS knowledge, as well as knowledge about architecture, civil 

engineering and other fields.  Hence it is not simple to run these types of models with 

more local data. 

One important task of this research was to look broadly at the diffusion of GIS in 

local governments in large cities.  The aim was to understand the state of local GIS 

(particularly in the context of disaster management) and the availability of local-level 

data for input into the HAZUS™ model.  The diffusion of GIS was analyzed under three 

main parameters: the organizational structure of GIS implementation at the local-level; 

the availability of various datasets at the local-level; and the use of GIS for disaster 

management in local agencies. This was accomplished through a survey/phone interview 

of respondents from 19 randomly selected cities with populations between 250,000 and 1 
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million.  The survey also provided a basis for selecting two case study cities where local-

level data were available for input into HAZUS™.  The case studies were undertaken to 

understand the challenges associated with using local data and to look at the sensitivity of 

the HAZUS™ model to local level data pertaining to building characteristics and 

earthquake hazards.  

Based on the survey, the two cities identified for further analysis were the City of 

Seattle, WA and the City of Long Beach, CA. These two cities were chosen as case 

studies essentially because of their imminent threat from earthquakes and because of their 

willingness to share their local data.  Both cities have been quite proactive in managing 

their threats from natural hazards and have used GIS data extensively for disaster 

management.  While the implementation of GIS in Seattle was very advanced, Long 

Beach represented a more “typical” GIS implementation for cities of this size.  The GIS 

organizational structure in Long Beach was much smaller and hence the datasets were not 

as well developed and documented as Seattle.   

The tax assessor’s roll or database (or assessment data as it is commonly called) is 

one of the most widely available datasets at the local level that captures building 

characteristic information such as area, height (or number of stories), use, type of 

construction, assessed value, and market value.  Hence the research focused largely on 

the assessment data and their use for disaster damage assessment.  These data were 

analyzed in-depth for both cities.  The two cases aimed to understand the quality and 

completeness of the assessment data, and the challenges associated with inputting these 

data into HAZUS™.  This research also analyzed the variation of the local-level data vis-

à-vis the default data already available in HAZUS™.  This analysis was done at the level 
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of the whole city and then at the disaggregate census tract level to understand any spatial 

patterns of variation.  The local data were input into HAZUS™ and the same scenario 

was run for each city with local data and default data.  Three scenarios were modeled for 

each city and comprised of earthquakes at the same epicenter and same fault system but 

of three different magnitudes – 5.0, 6.0 and 7.0 events.  The results of damage were then 

analyzed for the three scenarios to understand the sensitivity of the model to local level 

data both at the level of the city and also at the level of the various census tracts that 

comprise the city.   

The two selected case studies were analyzed by themselves and also compared 

with each other to uncover any similar patterns that might exist.  Consistent patterns may 

be replicable in other cities or can inform decision-makers in other cities on the reliability 

of results from HAZUS™ when default data are used.  Finally, recommendations are 

made on the appropriate use of HAZUS™ and on other aspects of local data availability 

and diffusion, and the challenges associated with using local data in HAZUS™.   

A variety of events had an impact on the data analysis for this research.  This 

research started in 2000-2001.  At that time, HAZUS™ comprised only an earthquake 

module that ran on ArcView 3.2 and MapInfo technology.  Interviews and surveys were 

conducted in 2001 to understand the availability of various datasets for input into 

HAZUS™.  Seven interviews were conducted in the summer of 2001.  Then came 

September 11, 2001.  The project suffered a setback as the climate in the aftermath of 

9/11 was not conducive to calling people and requesting information on GIS datasets.  

Many cities were removing GIS datasets previously available to the public from their 

Internet mapping websites.  There was a serious debate in the country about the efficacy 
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of public access to GIS datasets given that they could be used for planning acts of 

terrorism.  After a short break, when the immediate reaction had calmed down, the survey 

was resumed and the rest of the cities were contacted.  In 2002, the two case study cities 

were identified and data collection from these two cities began.   

The earthquake module was the only one available in HAZUS™ at the time of the 

survey.  Therefore, this played a large role in the selection of the case cities and also as 

earthquake was the only hazard that could be analyzed.  As data were prepared and input 

into HAZUS™, this research uncovered many bugs in HAZUS™, particularly in the 

Building Inventory Tool (BIT).  The input data were not being processed correctly, 

resulting in many census tracts within Long Beach having the exact same amount of 

square footage for some occupancy classes.  The local data processed by the BIT tool in 

HAZUS™ were also not adding up to the input data.  These bugs were reported to the 

HAZUS™ development team which acknowledged the issues but was not willing to 

resolve them since a new version of HAZUS™ was under development and would be 

released soon.  Therefore, there was no other option but to wait.   

In 2003, a new version of HAZUS (HAZUS-MH) was released.  This new version 

of HAZUS™ incorporated the flood and hurricane module and was developed on the 

ArcGIS 8.x platform.  Various bugs were uncovered through this research in the new 

version of HAZUS™ as well.  Particularly the BIT tool was not usable until the 

HAZUS™ development team provided a new patch.  Once the tool was made to work, 

and local data could be input, the results were validated to ascertain (as much as possible) 

that there were no discrepancies.  The HAZUS-MH version also contained new data 

based on 2000 census tracts and updated Dun and Bradstreet data.  There were also some 
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changes in the data needs and the tool.  In previous versions of HAZUS™, the residential 

use (or occupancy as HAZUS™ calls it), was divided into 6 categories – single family 

residential, manufactured housing, multi-family dwellings, temporary lodging, 

institutional homes, and nursing homes.  In the newer HAZUS-MH, multi-family 

dwellings were further broken up into 6 subcategories – duplex, triplex/quadruplex, 

apartments (5-9 units), apartments (10-19 units), apartments (20-49 units) and apartments 

(50+ units).  Furthermore, there were two additional fields of information that were 

required by HAZUS-MH which were previously automatically updated by HAZUS™ 

when local data were input into HAZUS™ : value of buildings (building value) and the 

contents in the buildings (content value).   

The above changes in HAZUS™ had some impact on this research.  First, the 

data for Seattle were already prepared for HAZUS™ before the breakdown of multi-

family dwellings.  Therefore, all multi-family dwellings were coded to apartments and it 

was not easy to break this category down further into the subcategories without redoing 

the entire data manipulation.  The Long Beach data were not prepared before and were 

broken up into the subcategories.  Particularly challenging was the issue of building 

exposure values.  While the building values are available from assessment data, the 

content exposure information is not available from any local sources (including 

assessment data).  In the absence of these data, HAZUS™ updates the square footage 

based on local data but keeps the old exposure values.  Since the square footage of local 

data is vastly different from the default values in HAZUS™ (as will be discussed in 

Chapter 4 and 5), keeping default values of exposure can lead only to minimal changes in 

the damage assessment.   Therefore, it is practically useless to input local data if building 
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and content values cannot be updated to reflect local data or at least improvements in 

square footage.  Since no local sources were available for updating content values, in this 

research both content and value information were updated using average per square feet 

exposure information from HAZUS™ based on default values.  It was deemed unsuitable 

to update the building value alone from assessment data because that would mean that 

exposure values were calculated from two different sources.  

Therefore, this research was impacted largely by these various externalities and 

some of them have contributed to limitations of this research.  For example, a lot of time 

was spent analyzing the integrity of the tool.  Besides prolonging the timeline for this 

research, it also turned out to be a lot more work than anticipated because data were 

analyzed multiple times and errors in the model were uncovered.  Furthermore, newer 

versions of HAZUS™ are now available and some of the issues discussed in this 

dissertation may already have been addressed in the newer versions.  However, it is 

important to note that this research has already begun to have its impact since the BIT 

tool has been improved significantly based on feedback from this research. 

This research is presented in the following chapters:  Chapter 2 provides a 

detailed discussion of the context and related literature along with the research 

framework that guided this research.  A discussion of the research design is also 

provided.  This chapter also includes a more detailed discussion of the HAZUS™ model.  

Chapter 3 discusses the findings from a survey of 19 cities, with respect to local level 

GIS diffusion and availability of data for damage assessment.  Chapters 4 and 5, present 

findings from the case studies of Seattle and Long Beach respectively.  Both case study 

discussions follow a similar structure – a discussion of the city, followed by a general 
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discussion on the GIS data and organization.  The challenges of inputting local data into 

HAZUS™ are also discussed in each chapter.  The two case studies also look at the 

variation of local data from HAZUS™ default data and compare the results of damage 

assessments from three scenario earthquakes for each city based on local data and default 

data.  The implications of the findings from each individual case study are analyzed at the 

end of each of the chapters.  Chapter 6 compares the two case studies to uncover any 

patterns of findings.  Finally, Chapter 7 provides a summary of conclusions along with a 

discussion of future research and limitations of the current research. 
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Chapter 2:  Literature Review and Research Design 

 

2.0 Introduction 
 
 
The use of integrated models for hazard assessment and disaster management has caught 

the eyes of disaster managers, researchers, and the scientific community at large.  

However, there is a great deal of uncertainty inherent in these models – the quality of 

data input into these models is a large contributor to the uncertainty.  Often the data 

needed are not available at the local level and datasets at the national level do not reflect 

the reality in most areas, particularly in large cities.  This can be a serious setback to the 

development and use of integrated models for public policy purposes.  This is the context 

of this research and will be explored further in this chapter. 

This chapter will examine the literature surrounding the needs and limitations of 

integrated models for disaster management in the context of large cities.  It will develop a 

conceptual framework for understanding the problems associated with the use of 

integrated models in light of the reality of data available at the local level.  In doing so, it 

will lay the basis for analyzing the use of the HAZUS™ model for large cities with non-

local data and the sensitivity of the model to local level data.  It will also examine the use 

of these models in the context of the availability of local level data in large cities.  The 

chapter starts out by reviewing the context and literature pertaining to use of integrated 

models for managing disasters in large cities.  This is followed by the discussion of the 

framework under which this research is developed.  Research questions based on the 

literature and the research framework will then be presented followed by a discussion of 
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the research design.  The chapter will end with a detailed description of the HAZUS™ 

model which will be a subject of analysis in this research. 

 

2.1 Research Context and Literature Review 
 
 
In this section, a review of the current literature pertaining to integrated models in 

disaster management and their use in large cities in the context of available local data will 

be presented.  Specifically, a review of literature on three topics will be explored – the 

issue of managing disasters in large cities, the use of integrated assessment models and 

their applicability in disaster management, and the diffusion of GIS in local government. 

 

2.11 Disaster Management in Large Cities 
 
 
The management of natural disasters is a complex task but is often simplified by dividing 

it into various phases: preparedness, response, recovery, and mitigation (Figure 2.1).  

Various factors add to the complexity of managing disasters: first, the uncertainty 

associated with hazards makes it difficult to predict their occurrence in space and time.  

Second, it is difficult to comprehend fully the impact of hazards on human systems and to 

analyze their effects at various scales and geographies.   Finally, public policy related to 

disaster management is complex owing to the fact that disasters are often treated as “acts 

of God” and very rare events, making them a low priority for individuals, policy-makers, 

and politicians.   
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Figure 2.1:  Phases of Disaster Management 
Source: This figure is compiled from various sources 
 

The complex nature of disasters is exemplified by the fact that the field of disaster 

research is a subject of study for many disciplines such as geography, geology, 

engineering, social and behavioral sciences, anthropology, international development, 

urban planning, public policy and economics.  The complexity of disasters and its 

understanding is further magnified in the context of large cities which have suffered large 

losses in life and property due to various disasters.  The recent past provides ample 

evidence of the increasing threat of disasters that confront large cities. Among these are: 

Nagoya, Japan (earthquake), Tangshan, China (earthquake), Bucharest, Romania 

(earthquake), Adelaide and Melbourne, Australia (bushfires), Mexico City, Mexico 
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(earthquake), Dhaka, Bangladesh (floods), Oakland, USA (fire), Miami/Dade County, 

USA (hurricane), Los Angeles, USA (earthquake), Cairo, Egypt (earthquake), Kobe, 

Japan (earthquake) and more recently New Orleans, USA (hurricane).   

The number of people in large cities is growing due to the heavy movement of 

population from rural areas into cities, particularly in the developing world.  It has been 

estimated that there are more than 300 cities with population greater than a million 

worldwide and this number has grown dramatically in the last 50 years.  The United 

Nations estimates that by the year 2025, 61% of the world’s population will be living in 

cities and there will be 28 “giant metropolitan complexes” of over 8 million people 

(United Nations Center for Human Settlements1996).   The trend of rapid urbanization is 

not without repercussions for the social, physical, and environmental fabric of the cities.  

Problems of insufficient and inefficient infrastructure, population growth in marginal 

lands, increased competition for limited resources and environmental problems such as 

air, water, and noise pollution accompany most urbanization processes.  This affects the 

normal functioning of the cities, let alone their capacity to cope with catastrophic events.  

Although many of these trends of urbanization are more common in the developing 

nations and no longer occurring in the developed world, large cities in the US are having 

similar issues of crumbling infrastructure, poverty, marginalized population and 

environmental degradation.   

Added to this is the fact that many large cities of the world are located in 

geophysically hazardous areas such as floodplains, seismically active areas, coastal areas, 

and cyclone/hurricane prone areas.  A study by Degg (1992) shows that 78 of the world’s 

100 most populous cities are exposed to at least one of the following hazards: 
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earthquakes, tsunamis, volcanoes, and windstorm; 45 are exposed to more than one of the 

above hazard.  This analysis does not take into account hazards due to flooding which 

could increase the above numbers significantly.  With the current trend of globalization 

and interconnectedness of economies, the impact of a disaster affecting a large city is 

seldom confined to that city or its hinterland alone.  Ripples of its effect can be felt on the 

regional, national and often the world economy.  The above discussion is brought home 

by the unfolding of events in New Orleans in the wake of Hurricane Katrina.  Therefore, 

managing disasters in large cities is important and needs to be an integral part of the 

proper functioning and management of the city. 

The question arises, what makes disasters in large cities different from disasters in 

smaller communities or in rural areas?  Although a natural hazard does not follow 

political boundaries or distinguish between urban and rural area, features of disasters in 

large cities pose entirely new problems for disaster management as compared to smaller 

communities (Mitchell 1995).  The high population density, complex societal mix, large 

income gap, abject poverty, and a large informal sector associated with most large cities, 

lead to a complex intermingling of cause and effect.  Not only do large cities pose special 

problems for the delivery of emergency response services, but recovery in most cities is 

slow owing to the greater vulnerability of infrastructure networks or what may be termed 

the lifelines of the city (Mitchell 1995).  The concentrated but distributed functionalities 

such as delivery of food, power, transportation, etc all depend on high tech infrastructure 

that can break down at the time of a disaster and paralyze the city.  Furthermore, many 

land-use decisions and hazard abatement policies are implemented at the local level.  
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Many large cities undertake their own emergency management and play the role of first 

responders to any disaster, particularly in the US.   

Therefore, it is important to further the discourse of disasters in large cities and to 

understand the problems associated with addressing the impact of disasters in large cities.  

An important aspect of this is to understand the interactions between various urban 

systems such as transportation, electrical generation-and-distribution, housing, water and 

other systems which form the “urban system of systems” (Maheshwari 1999).  In this 

complex interdependent “system of systems” (Figure 2.2), a vital aspect is to understand 

how damage in one or more of these systems can affect other systems and eventually 

impact the recovery of the city as a whole.  This interrelationship between the various 

interconnected systems is essentially lacking in most of the studies on disaster 

infrastructure damage (Carrara and Guzetti 1995).  

 

Figure 2.2:  Interdependence of Urban Systems 
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An understanding of disasters in large urban areas from a systems perspective is 

beyond the scope of a single discipline.  Therefore, a multidisciplinary approach is 

required involving integration of knowledge from disciplines such as geology, 

seismology, electrical engineering, civil engineering, transportation, sociology, 

demographics, urban planning, etc.  It is also important to translate academic research to 

real applications that can be used by the decision-makers and can inform public policy.   

 

2.12 Integrated Assessment and Integrated Assessment Models 
 
 
As mentioned earlier, the field of disaster management is a subject of study for many 

disciplines.  The interdisciplinary nature of disasters has been a double-edged sword.  On 

the one hand it has been instrumental in enriching the field through a multidimensional 

perspective.  On the other, it has contributed to the fragmentation of a holistic 

understanding of disasters and their impacts as researchers and policy-makers from 

various fields have talked past each other without exchanging ideas (Alexander 1995).  

Furthermore, the narrow focus of much of the research in isolated disciplines has limited 

application for the disaster manager who is responsible for saving lives and mitigating 

losses due to disasters.  Therefore, for multidisciplinary studies such as disaster sciences, 

integrated assessment provides an excellent opportunity to synthesize a broad range of 

expert knowledge in advising issues under consideration.   

Assessment involves processes (social or technological) that bridge the domains 

of knowledge to aid public policy.  Integrated assessments synthesize knowledge from 

many different fields of study, and hence allow decision-makers to understand complex 
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systems such as environment, climate, hazards, and other human and technological 

systems and their integration.  Two forms of assessment have commonly been used – 

deliberation by interdisciplinary expert panels and formal modeling (Parson and Fisher-

Vanden 1997).   Integrated assessment models (IAMs) are tools that formalize 

assumptions and relationships between various factors through mathematical computer 

modeling and help decision-makers analyze various consequences by changing 

assumptions and relationships.  Although commonly used in climate and energy 

modeling, integrated assessment has also been used in many policy domains such as 

environmental impact assessment, risk assessment, hazard assessment, transportation 

assessment, and technology assessment.  The quality of the model is highly dependent on 

the strength of the assumptions and the quality of data that is used in the model 

(Consortium for International Earth Science Information Network 1995).  

In the field of disaster management, hazard assessment has been commonly used 

at various levels of sophistication to inform land use planning and management (Burby et 

al 2000; Deyle et al 1998).  Deyle et al (1998) refer to three levels of sophistication in 

hazard assessment:  

Hazard identification, which maps the magnitude, probability and threat of 
hazards geographically;  
Vulnerability assessment, which integrates the threat of hazard with exposure and 
vulnerability of population and investment and their impending losses due to a 
disaster event; and  
Risk analysis, which provides a complete portfolio of risks by incorporating 
probability of injury and damage from a full range of hazard events in an area.   

 

While hazard identification is the most simple and commonly practiced means of 

hazard assessment, vulnerability assessment and risk analysis are more useful in making 

policy decisions (Bernknopf et al 2001).  They integrate various fields of knowledge and 



  22 

 

allow decision-makers to analyze different scenarios, gather support for various policies 

or choose amongst competing alternatives. Although integrated hazard assessment 

models using computer technologies have been discussed for a while (French 1986; 

Haney 1986; Marston 1986; Masri and Moore; 1995), the degree of integration has 

evolved from understanding one aspect of a hazard on a particular system to many 

aspects of a hazard and even multiple hazards on many different systems and their 

complex intermingling.  The tools available these days are much more sophisticated in 

their ease of use and integration of many disciplines.   

Models such as HAZUS™ (FEMA 2003), CATS™ (Swiatek and Kaul 1999), 

TAOS (Watson and Johnson 1999) and other initiatives such as Urban Security Initiative 

at Los Alamos National Laboratory (Heiken, et al 2000) have attempted to formalize 

expert interdisciplinary knowledge.  Such integrated hazard assessment models integrate 

the science related to hazards such as earthquakes, floods, hurricanes (or a combination 

of these), with information about the vulnerability of building stock, population, and 

networks such as electrical, transportation, and water distribution.  By doing so, they aim 

to facilitate decision-makers in analyzing holistically the impact of various scenarios of 

disasters, determine the costs and benefits of various policy alternatives, and assess 

different types of vulnerabilities posed by different populations and systems.  Thus, 

decision-makers can use these models without having expertise on any or all of the above 

systems or sciences.   

The inductive nature of models such as HAZUS™ and CATS™ can lead to 

“spuriously precise” results which can often mislead the user of the uncertainty involved 

in the use of such models (Alexander 2000).  Furthermore, their root in positivism leads 
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decision-makers to often overlook more difficult questions and focus on the ones that can 

be answered by the model.  For example, decision makers may focus on the amount of 

debris that will be generated after a disaster rather than complex issues of magnified 

vulnerabilities due to gender, age, race and socio-economic status that have a significant 

bearing on disaster response and management.  Alexander (2000) argues for deductive 

models where the relationships and processes in disasters are not rigidly embedded in the 

models but specified “a priori”.  However, Alexander agrees that deductive modeling 

requires some inductive modeling to form relationships and processes and in doing so, 

one uncovers changes in the relationships such that the two activities (deductive and 

inductive) loop iteratively (Alexander 2000).  Therefore the importance of inductive 

models such as HAZUS™ cannot be disregarded.  They are particularly useful in 

providing a framework to organize existing knowledge, understand gaps in the 

knowledge and hence identify areas for further research.  They also help in understanding 

the uncertainties related to the modeled systems and highlight ones that need further 

research. 

The use of integrated assessment models for hazard assessment is largely 

dependent upon the degree of reliability of the model, ease of use, and applicability of the 

models for analyzing policy imperatives at various scales and units of analysis.  The 

reliability of the models is dependent on the strength of assumptions, quality of data, and 

some clear articulation of the degree of uncertainty inherent in most integrated 

assessment models, including hazard assessment models.  The prediction of “spuriously 

precise” (Alexander 2000) results as discussed earlier can lead to the masking of 

uncertainty associated with these models rather than informing users of the uncertainty.   



  24 

 

Uncertainty is inherent in hazard assessment models because of the limited 

scientific understanding of the causal processes of natural events that lead to disasters and 

their impact on the built environment.  This is further compounded by the quality of data 

input into the models and the level of aggregation (i.e. geographic scale of analysis).  

While it is not easy to reduce the uncertainty attributable to the lack of understanding of 

scientific phenomenon (and certainly outside the domain of the urban planning 

discipline), the uncertainty due to data quality and aggregation can be better understood, 

addressed and controlled to a large extent.  The need for reliability is higher for smaller 

geographical scales where results/outputs from models inform decisions about 

implementing hazard abatement policies and formulating strategies for saving life and 

property.  Therefore the need to provide some explanation of uncertainty and reduce 

uncertainty is very important. 

Most existing models for damage estimation and assessment are very data 

intensive and need to model the physical built environment in great details.  One of the 

major components of the built environment is the building stock whose characteristics 

(physical, use, and economic value) determine the amount of direct and indirect 

economic loss from any natural hazard.  The impact of building inventory in vulnerability 

assessment is crucial.  The damage to buildings results not only in the largest proportion 

of direct economic losses due to disasters, but also determines the number of casualties, 

need for shelter, hospitals and other emergency services.  They are also large contributors 

to indirect damages and cost due to work interruption, debris removal and other economic 

impacts.  Figure 1.2 shows the interrelationships between various modeled systems in 

HAZUS™ and their contribution to direct and indirect losses.   
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Although the building inventory is central to damage assessment, there are few 

sources of data that can provide a comprehensive picture of the building stock for any 

modeled geography.  A report produced by the Applied Technology Council discusses 

three levels of building inventory: level 1 involves the use of existing facility-specific 

databases, level 2 involves the synthesis of building inventory from economic data such 

as number of employees and annual production amounts, and level 3 involves the coarse 

estimation based on population and other parameters (ATC 1985).   The reliability of the 

model decreases as one move from Level 1 to Level 3 data.  Many damage assessment 

models have used default data that is derived from various sources such as expert panel 

knowledge and inferred from secondary sources such as population, employment, and 

economic output, etc.  The use of this generalized, coarse level data for estimating the 

housing and building stock of a region makes such models suitable only for use at larger 

scale applications. 

However, datasets about the built environment, such as parcels and tax 

assessment data are now commonly available at the local level for much of the United 

States, particularly for larger urban areas.  These datasets provide a fairly accurate picture 

of the built environment at the most disaggregate level possible, and the use of such data 

can render formal models useful for small-scale applications as well.  In fact the 

HAZUS™ model has become widely used at the local level for analysis of disaster 

outcomes to inform policy decisions.  Through the use of local level data, one can at best 

reduce the uncertainty associated with large-scale aggregation or at least understand the 

uncertainty to manage such events better.  Without the latter, there is a danger that 

practitioners will either derive erroneous conclusions or will simply not use these models.  
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Therefore, it is crucial to understand the impact of disaggregate data (available at the 

local level) in comparison to the use of generalized estimates on hazard assessment 

models.  It is also important to understand the sensitivity of the widely used hazard 

assessment models to local level data.   

Information on the use, condition, height and type of structure of buildings is 

important to model the built environment and its response to a natural hazard.  While 

information on square footage based on the type of use is available through a variety of 

local sources, the information on the type of structure is more difficult to get from any 

standard database.  The ATC-13 report uses various methods to infer the distribution of 

structure types based on occupancy or use of the building for a given zip code from 

information about the age and height of the buildings (ATC-13 1985).  Such matrices are 

generated through the use of tax assessment data and workshops of building experts in 

various regions (HAZUS User Manual 2003).   If such matrices were to be generated for 

many geographical regions (rather than for East, West and South as is the case in 

HAZUS™), they would provide a better estimation of structure type.  However, such a 

task is quite difficult and hence for a large project like HAZUS™, encompassing the 

entire country, regional matrices are drawn up and used as defaults. 

While the use of generalized estimates is suitable at large scales encompassing 

several counties, they do not represent the reality of urban areas and cities.  Research has 

shown that often for large cities, real data is significantly different from generalized 

default data (Nordenson et al 1999; Wiggins 2000).  Nordenson et al (1999) show the 

extreme case of the Wall Street census track in New York City by comparing the default 

data in HAZUS™ with locally collected inventory as shown in Table 2.1 and 2.2 below.  



  27 

 

Table 2.1: Comparison of Building Inventory by Occupancy Class: HAZUS™ 
Default vs. Local 

Hazus™ Default Wall Street Census Tract Occupancy 
(Square feet) (Count) (Square feet) (Count) 

Residential 201,800 10 991,914 5 
Commercial 19,599,500 649 38,574,963 57 
Industrial 567,800 31 - - 
Agriculture - - - - 
Religious 250,700 17 18,468 1 
Governmental - - - - 
Educational 52,800 3 - - 
Total 20,672,600 710 39,585,345 63 
Source:  Nordenson et al (1999) 
 
Table 2.2: Comparison of Building Inventory by Structure Type:  HAZUS™  
Default vs. Local 
Structure Type Hazus Default (count) Wall Street Census Tract (count) 
Wood 154 3 
Steel 264 49 
Reinforced Concrete 46 4 
Precast Concrete 22 3 
Reinforced Masonry 61 3 
Unreinforced Masonry 163 1 
Mobile Homes - - 
Total 710 63 
Source:  Nordenson et al (1999) 

 

Such changes in the building inventory can result in damage estimates that are as 

much as 76 percent off the generalized default values or off by a factor of 4 (Nordenson 

et al 1999).  Therefore, the use of these models with default data, particularly for cities, 

can lead to very erroneous results and can lead to flawed outcome in public policy.  

Therefore, to implement policies at the level of a local government or at a smaller scale, 

there is need for accurate data at a low granularity of aggregation i.e. block-level census 

data and parcel-specific data on landuse and structure (Deyle 1998).  Also, for large cities 

a better understanding of uncertainties associated with using regional averages is needed 

since they deviate more from national estimates.   
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While the Wall Street census tract in New York City is an extreme case that is not 

particularly reflective of most cities and also not reflective of all census tracts in New 

York City, the above results establish the variation of local data from default data in 

HAZUS™ for one census tract.  Furthermore, they point to the importance of analyzing 

the variation of the local data at the scale of an entire city to understand where large 

discrepancies occur and how they impact the results from the model with all other 

parameters remaining constant.  This will help determine areas where national averages 

are adequate and where the need for local data is imminent.  An analysis of such spatial 

patterns will help decision-makers decide where to spend their limited resources to 

improve the data that are input in these models.  Also, if resources do not allow the use of 

local level data, it will help decision-makers assess the uncertainty of results obtained 

when default data are used and analyze spatially where such uncertainties exist so that 

they can make more educated policy decisions.  

In this section, it is established that integrated models can be very useful for 

disaster management in large cities.  The role of technologies such as geographic 

information systems (GIS) and remote sensing have been instrumental in the 

advancement of integrated hazard assessment at all levels of sophistication, by providing 

an appropriate means of representing, analyzing, and visualizing information which is 

inherently spatial in nature.  GIS is used as the integrative framework for input and output 

of local data in most of the recent integrated models such as HAZUS™, CATS™ and 

TAOS.  However, the need for local level data (particularly GIS data since most data 

input into models are GIS data) is important for the increased reliability of these models.  
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The next section examines the literature surrounding the availability and diffusion of GIS 

in local government.   

 

2.13 Geographic Information Systems and its Diffusion in Local Government 
 
 
Disaster management is one of the most spatially-oriented of all management sciences 

(Morentz 1986; Drabek 1991).  The importance of geographic information systems and 

other spatial technologies in the management of disasters is well established by its use in 

many disasters and disaster-related research (Eichenbaum 2002, Greene 2002, Dymon 

1999, 1993, 1990, Coppock 1995, Waugh 1995).  The diffusion of GIS in local 

government has been rapid in areas of public utilities, property assessment and taxation, 

and planning.  Although the use of GIS for disaster management has spanned all phases 

of the disaster management cycle (Figure 2.1) and all types of hazards (Radke et al 2000), 

these technologies have not diffused widely in disaster management in local government 

applications.  This is largely due to the above-mentioned perception that disasters are rare 

events for which major investments in technologies are not warranted.  However, the use 

of spatial technologies in the management of the events of September 11, 2001, as well as 

other disasters such as Hurricane Andrew and Hurricane Fran (Dymon 1999, 1993), 

Oklahoma City bombing, etc. has elevated the role of GIS for managing adverse events in 

everyone’s eyes.   

Local governments are now leveraging their GIS investments to collect more data 

on the location of various critical infrastructures or are now investing heavily to acquire 

such systems.  At the same time, the federal government is striving to create it’s own 
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inventories of various datasets for urban regions, as evidenced by efforts to create the 

National Map (US Geological Survey 2001) and 120 Cities Project (Elber 2002).  GIS-

based integrated damage estimation and assessment tools such as HAZUS™ (FEMA 

2003), and CATS (Swiatek and Kaul 1999) are being promoted by the Federal 

Emergency Management Agency (FEMA) and other federal agencies for use by local 

agencies.  The use and integration of local level data is strongly advocated, and often 

assumed in such efforts without a proper understanding of the ground reality of GIS 

development at the local level.  Without a proper assessment of what already exists and 

how local governments are using their GIS systems, such top down efforts can often lead 

to duplication of efforts and be counterproductive to real local needs (Elber 2002).  

Furthermore, such efforts can have little benefit at the local level and risk rejection by 

local disaster managers and first-responders.  

There are a few studies on the diffusion of GIS (Masser and Onsrud 1992; 

Masser, Campbell & Craglia 1996; Chan and Williamson, 1999).  However, there are 

limitations of these studies for this research since none of them focus on particular 

datasets or use of GIS for disaster management.  The Framework Data Survey was 

conducted by the Federal Geographic Data Committee (FGDC) to assess the diffusion of 

GIS in local government throughout the US in the late 1990s (Sommers 1999).  This 

survey also has limited utility for this research because of methodological fallacies.  The 

goal of the survey was to assess the status of Framework data for the entire country 

including federal, state, local, private, and other GIS data producers.  In order to include 

all 50 states, state-level survey coordinators were established but no consistent 

methodology was used to determine the sampling frame for each state.  Each coordinator 
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was free to distribute the survey to GIS users and in the various levels of government 

without any sampling or follow-up methodology (Tulloch and Fuld 2001).  These 

methodological limitations restrict the widespread application of the results of this survey 

(Tulloch 2000, Tulloch and Fuld 2001).  Similar to the FGDC’s effort, states have also 

undertaken their own surveys to assess GIS activity at the local level (Shanley et al 

2001).  Various other studies conducted elsewhere in Europe and US have either taken a 

broad look at diffusion of GIS in local government (Masser 1992; Wiggins 1992) or have 

focused on diffusion in particular cases (Rumor 1992).  Furthermore, most of these 

studies, conducted in early to mid nineties are now outdated with the rapid evolution of 

this technology.  Other surveys conducted by private agencies such as Gartner (2002) 

have methodological limitations with respect to sampling and sampling frame, and also 

focus on a broader aspect of GIS diffusion rather than on particular datasets (Gartner 

2002).   

There are no studies that focus on questions such as what datasets are commonly 

available for a specific type of geography (e.g. large urban areas), what kind of 

organizational structure does GIS operate in, and how GIS is being used to support 

disaster management needs.  Hence there is still a critical need to look in-depth at the 

diffusion of GIS in the case of large US cities and to analyze the use of GIS applications 

and GIS data in the context of disaster management.   

 

2.2 Research Framework 
 
Based on the above review of the literature, it is apparent that GIS-based hazard 

assessment models can be very useful for disaster management at the level of cities.  
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However, the appropriate and sustained use of these tools in local government is largely 

dependent on a delicate balance between three factors: 

• Reliability of the models which is largely determined by the assumptions 

and scientific strengths of the models and the data used to drive these 

models, particularly in the context of smaller scales such as cities; 

• Availability of local-level GIS data (i.e. the degree of diffusion of GIS in 

local governments), particularly in the context of disaster management; 

and 

• Ease of use and applications for analyzing public policy. 

These three factors can be analyzed in the framework of a three-legged stool, 

every leg serving a critical function in maintaining equilibrium for the sustainable use of 

integrated models for hazard assessment (Figure 2.3).     

 

Figure 2.3:  Factors Affecting the Sustainable Use of Integrated Models for Hazard 
Assessment 

Reliability of 
Models 

Availability of Local 
Level GIS 

Ease of Use & Public 
Policy Applications 
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The issue of reliability of integrated models, the scale of analysis and quality of 

data can be analyzed as follows:  the reliability of integrated models needs to be higher as 

the scale of analysis increases (i.e. analysis at the scale of a city or small county) since 

local-level decision-making requires greater details.  Also the quality of data improves 

the reliability of the model.  As advancements are made in hazard assessment sciences, 

the reliability of hazard assessment models is more and more dependent on the input and 

integration of local-level data, particularly for decision-making at smaller scales.  

Likewise, as the diffusion of technologies such as GIS increases at the local level, hazard 

assessment models get more advanced, and the utility of such models in local-level 

decision making increases dramatically.  Therefore it is important to assess the diffusion 

of GIS at the local level to understand the ground reality of availability of GIS data.  The 

use of scientifically advanced models with inadequate and poor data can lead to so much 

uncertainty in the results that the appropriate use of these models is jeopardized.  

However, as shown in Figure 2.3, more advanced models and more data can also mean 

the need for high degree of expertise in the use and manipulation of data, which can be a 

deterrent in the use of hazard model.  The ease of use and the application of the models to 

analyze scenarios that inform public policy decisions related to competing alternatives 

will also determine the degree of acceptance of these models. 

This dissertation aims to address issues associated with two of the three factors 

mentioned in Figure 2.3 that determine the use of integrated assessment models for 

hazard assessment in the context of large cities – the issue of reliability of the models and 

the availability of local data.  The third factor, related to the ease of use of models is 
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beyond the scope of this dissertation.  This dissertation deals broadly with issues 

concerning data availability for doing disaster damage assessments in larger cities in the 

United States and on the appropriate use of such methodologies in assisting at decision-

making, planning and policy.  Specifically, it focuses on the availability of building 

inventory data (particularly from tax assessment rolls) for earthquake damage estimation 

using the earthquake damage estimation model HAZUS™ in the context of large cities in 

United States.  The dissertation also aims to understand the sensitivity (and hence the 

reliability) of the HAZUS™ model to local-level data pertaining to building inventory 

and the challenges associated with using local data.  The HAZUS™ model is used in this 

study because it currently represents the state-of-the-art in earthquake damage estimation.  

This model is developed by the Federal Emergency Management Agency (FEMA) in 

conjunction with National Institute of Building Sciences (NIBS) and RMS Inc, and is 

intended to be applicable for the entire United States.  Furthermore, with the release of 

the wind and flood module, this model is increasingly being used in various contexts 

throughout the whole country.   The next section discusses in detail the specific questions 

that this dissertation will seek to investigate. 

 

2.3 Research Questions 
 
 
Based on the research framework discussed in Section 3.0, this research will address the 

following questions:  
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1) Given the data requirements of hazard assessment models for disaster damage 

estimation, what is the state of GIS in large cities for sustained use of integrated 

models at the local level? 

This research seeks to understand the state of development of GIS in large cities, both 

organizationally and in terms of development of key GIS datasets.  It seeks to investigate 

the availability of various datasets including those needed to determine the characteristics 

of buildings in the city – this includes the height, age, use, construction material, etc.  The 

research looks at the extent to which GIS has been used for disaster management in large 

cities.  It analyzes the various factors that induce or hinder the use of GIS for disaster 

management.  This question helps in understanding how useful integrated models will be 

for local-level decision-making.  An understanding of ground reality for local level data 

also informs the development of these models and other federal initiatives.  This research 

also aims to identify strategies for inducing change at the local level for appropriate GIS 

development which can be more useful in managing disasters (while also serving other 

local needs and mandates).  

 

2) How do default estimates for building inventory in HAZUS™ compare with local 

data for building inventory?   

This research focuses on the local data for buildings and compares it with default data 

available in HAZUS™.  It analyzes the strengths and weaknesses of the tax assessment 

data and look at ways that the tax assessment data can be improved using other datasets.  

It looks at the problems associated with transforming local data (particularly tax 

assessment data) into a format required by HAZUS™.  Finally, it analyzes how much the 
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default data in HAZUS™ deviates from locally available data.  The analysis is conducted 

with the city as the unit of analysis.  It looks at spatial patterns of variation of default data 

from local data over the tapestry of the city.  Therefore, the research investigates whether 

the default data deviates more in certain parts of the city or in certain types of areas such 

as residential, commercial, and industrial areas or if there are specific patterns of 

deviation.  Overall, this question seeks to inform local decision-makers about the issues 

associated with using local data, the degree to which the default data in HAZUS™ is 

different and where in the city (if any) the default data is significantly different from the 

ground reality.   This can help determine appropriate strategies for integrating local data 

and reducing the uncertainty in HAZUS™.  It will also help identify areas of future 

research with respect to improving local data. 

 

3) How sensitive is the HAZUS™ damage estimation model to improvements in 

building inventory data from local sources?   

This research analyzes the changes in damage estimates based on local level building 

information.  It looks at how changes in inventory affect various outputs such as total 

loss, building loss, shelter needs, amount of debris, etc.  It seeks to understand the 

sensitivity of the HAZUS™ model to earthquakes of various magnitudes to see if the 

changes in loss estimates is higher for certain magnitude events.  It also analyzes the 

spatial variation in damage and losses at the city level and at the census tract level across 

the city.  This question will help decision-makers understand the degree of uncertainty in 

the HAZUS™ model, and help them determine where efforts should be put to improve 

data.  It will also help understand the sensitivity of the HAZUS™ model to 
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improvements in data and will help determine areas of further research to improve 

damage assessment models.    

 

2.4 Research Methodology 
 

To address the above questions, the research design consisted of a four-step process: 

In the first step, 19 cities with population between 250,000 to 1 million in the 

United States were selected randomly.  This represented 30% of the cities in the US in 

this population range.  A survey/interview of chief GIS officials in city agencies dealing 

with GIS was conducted.  This survey had a two-fold objective.   

1. To understand the level of GIS diffusion in large cities in the US (both in 

terms of GIS data as well as the organizational structure of GIS 

implementation), with a focus on the use of this technology for disaster 

management, and 

2. To identify cities that could be used for further case study for this 

research. 

A survey questionnaire (Appendix B1) was mailed to the GIS coordinator with a 

follow-up time for a telephone interview.  Through this combination of mailed 

questionnaires and phone interviews, the following information was solicited about GIS 

development and diffusion in all the cities:   

In the first part, the interviewees were asked to provide information about 

themselves (title, GIS expertise, knowledge of HAZUS, etc), their organization (size of 

the jurisdiction in terms of number of parcels and area, department which housed GIS, 
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type of GIS organizational structure in the jurisdiction, number of personnel with GIS job 

descriptions or those that used GIS as an integral component of their job), inter-local 

agreements for spatial data sharing, and methods of GIS data dissemination (such as use 

of Internet-based mapping, etc).   

The second part of the questionnaire was designed to identify the key players and 

custodians of various spatial datasets in the organization in the event that information 

about some datasets was not available with the manager/coordinator. This would be 

expected in cities where GIS was managed in a more distributed organizational 

framework (i.e. many departments undertaking their own GIS data and application 

development without any centralized coordination).  These datasets included parcels, tax 

assessment data, road centerline, building footprint, orthoimagery, topography, utilities 

and critical facilities such as location of schools, hospitals, emergency management 

facilities and hazardous waste sites. 

In the third part of the questionnaire, detailed questions were asked about each of 

the above datasets.  Such questions pertained to the role of the respondent in the creation, 

maintenance, update or distribution of the particular dataset, its completion, positional 

accuracy, currency, format, cost, its use for disaster management, and the willingness of 

the respondent to share that data for more detailed analysis using HAZUS™.  The survey 

questionnaire is provided in Appendix B1. 

In the second step of this process, two cities were selected from the above 

nineteen cities for more detailed analysis.  The selection of the cities was made based on 

the findings of the survey about availability of GIS information and access to it.   For the 

selected cities, local-level data were collected including parcels, building footprints, tax 
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assessment, and digital orthoimages.  These data were then analyzed to understand the 

challenges associated with using the local data for input into HAZUS™.   Since the tax 

assessment data are a primary source of information about building characteristics that 

are widely available throughout the country, this dataset was a central focus for further 

investigation.  The emphasis was on the quality of data, the level of aggregation in the 

data, the degree of integrity of the data, and the amount of information available.  The 

data was then prepared to be input into HAZUS™ to evaluate the difference between 

HAZUS™ default data and local-level data.    This evaluation was done for the entire city 

and for the various census tracts that comprise the city to uncover how local data deviated 

from default data. 

In the third step, the HAZUS™ model was run for the selected case cities for 

three scenarios which involved earthquakes of different magnitude at the exact same 

location.  The variation of the output results from the model was analyzed in detail for 

each city under consideration.  The focus was on the variation of the results due to better 

building inventory data from local sources as compared to the default data.  Results for 

building damage, economic loss, casualties, and shelter capacity were evaluated to see 

which of these results changed most significantly with the input of more local data.  

Results were analyzed at the city level and at the level of the individual census tracts that 

comprised the city.  Finally, in the fourth step, the two case studies were compared to 

understand if there were any consistent patterns of variation between the two cities and if 

there are ways to improve the default data in HAZUS™ rather than going through the 

elaborate process of inputting local data. 
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Based on the above four steps, conclusions are made on whether damage 

assessment at the city level is feasible or even meaningful given the data limitations.   

The conclusions also include analysis of whether improvements in data collection are 

warranted if HAZUS™ is used at this level of analysis.  Furthermore, the research will 

recommend where better data absolutely needs to be collected and if so, the appropriate 

target areas for collection of better data. 

Since the object of analysis in this research is the HAZUS™ model, the next 

section provides a detailed description of the model, including data needs, and sources of 

data and the issue of uncertainty in the model. 

 

2.5 The HAZUS™ Model:  Standardized Earthquake Loss 
Estimation Methodology 
 

The HAZUS™ model, developed by FEMA and NIBS (National Institute of Building 

Sciences) is meant to help decision-makers at the local, state and regional level 

understand the impacts of various earthquakes, assess the level of damage and losses, test 

various alternative mitigation strategies and prepare for response and recovery (Figure 

1.1).   

The methodology involves the integration of various models and knowledge 

domains to assess the level of damage and loss for a given earthquake scenario as is 

shown in Figure 1.2.  The user can select a scenario for an earthquake (the model 

accommodates both deterministic and probabilistic analysis).  The ground motions based 

on the selected scenario are computed and applied to various systems such as building 

stock, essential facilities, transportation and utility lifelines.  Through the use of various 
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damage functions for each of these systems, direct physical damage, induced physical 

damage as well as direct and indirect economic losses are calculated.  The model is 

modular, i.e. analysis can be performed by various levels of expertise and at various 

levels of detail.  For example, detailed ground motion maps from a past earthquake can 

be provided or a scenario can be simulated.  Likewise, the model comes with some 

default data on building stock based on regional estimates (ATC 1985) but local data can 

be input into the model for more accurate analysis.   

As can be seen from Figure 1.2, building inventory is a major component of the 

loss estimation methodology.  It is not only one of the largest contributors for direct 

economic and social loss, but also impacts the induced physical damage such as amount 

of debris, hazardous material and work interruption.  Consequently, it contributes largely 

to indirect economic losses.  Because it is computationally difficult to model the impact 

of the earthquake on every building in a region, the model aggregates the building 

inventory to the census tract.  Various other lifelines are also aggregated to this unit of 

analysis.  The model breaks up the building inventory into 33 specific and 7 general 

building uses (called occupancy classes in HAZUS™) and 36 different structural building 

classifications (called building type in HAZUS™).  The classification and their 

description is provided in Appendix A, Table 1 and Table 2.  Although the model is 

packaged with some default data and default mapping schemes, local level data can be 

input into the model for more accurate assessments.   The Building Inventory Tool (BIT) 

is used to input local-level building data into the model.   

The default building data in HAZUS™ is derived from various sources – the 

default square footage estimates for occupancy classes RES1 (Single Family Residential), 
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RES2 (manufactured housing), RES3 (multi-family housing including duplex, triplex, 

quadruplex and multi-unit apartments), and RES5 (institutional dormitory) are based on 

census data (on number of dwelling units or number of people for that occupancy class).  

The square footage information for the remaining occupancy classes is obtained from a 

building square footage inventory database from Dun and Bradstreet Company, and 

based on SIC (Standardized Industrial Classification) codes mapped to NIBS occupancy 

classes (HAZUS™ Users Manual 2003), shown in Appendix A Table 3. 

For local level data to be integrated into HAZUS™, information on building 

occupancy (or land use), age, square footage, height of building, the type of structure, 

building value, content value and seismic design level are required.  The inference on the 

type of building structure is made based on various matrices in HAZUS™.  The Building 

Inventory Tool (BIT) changes the square footage of the various occupancy classes in the 

default data and also creates new occupancy matrices that reflect local data. 

Based on the building inventory and hazard parameters (such as peak ground 

acceleration, spectral response in the case of earthquakes), various damage functions are 

used to compute the probability of various types of damage – slight, moderate, extensive 

and complete.  Fragility curves, developed for every building type, define the probability 

of being in a certain damage state based on the size of the earthquake.  Figure 2.4 shows 

an example of a fragility curve.  Most inputs can be modified by the user including 

building inventory, soil characteristics, fragility curves and other parameters used to 

calculate losses.  Results can be displayed both spatially (in the form of maps) or in 

tabular formats and reports. 
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Figure 2.4: Example of a Fragility Curve in HAZUS™ 

 

While the use of default data requires minimal effort by the user, modification of 

the defaults or input of local-level data requires significant expertise in GIS, databases 

and in other aspects of the system being modified.  The issue of sensitivity and 

uncertainty is discussed in the User Manual as: 

“Any region or city studied will have an enormous variety of buildings and 
facilities of different sizes, shapes, and structural systems constructed over years 
under diverse seismic design codes.  Similarly, many types of components with 
differing seismic resistance will make up transportation and utility lifeline 
systems. Due to this complexity, relatively little is certain concerning the 
structural resistance of most buildings and other facilities. Further, there simply 
are not sufficient data from past earthquakes or laboratory experiments to permit 
precise predictions of damage based on known ground motions even for specific 
buildings and other structures. To deal with this complexity and lack of data, 
buildings and components of lifelines are lumped into categories, based upon key 
characteristics. Relationships between key features of ground shaking and average 
degree of damage with associated losses for each building category are based on 
current data and available theories. While state-of-the-art in terms of loss 
estimation, these relationships do contain a certain level of uncertainty.  Ranges of 
potential losses are best evaluated by conducting multiple analyses and varying 
certain input parameters to which the losses are most sensitive.” (HAZUS 2003)
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Chapter 3: State of Local Data in 19 Cities 
 

3.0 Introduction  
 

The use of GIS in local units of government has increased significantly in the last decade.  

While local land management functions may have provided the initial impetus for the 

investment in GIS, other application areas such as public safety and disaster management 

have now become the driving force for continued investment in these technologies.  

However, there are very few studies that focus on the diffusion of GIS in large cities and 

particularly in the context of disaster management and disaster damage assessment.  Most 

existing studies, as discussed in Chapter 2, focus either on GIS diffusion in general or on 

anecdotal applications of GIS for a specific disaster and particularly in the disaster 

response phase.  There is no systematic study of the diffusion of GIS at the local level (in 

terms of the organizational setup and the availability of GIS datasets) and its application 

for disaster management and disaster damage assessment.  Therefore, this research sets 

out to conduct a survey of 19 cities to assess the extent of GIS diffusion in local 

government, particularly in the context of disaster management in large cities.  This 

survey also aims to help identify cities that would be suitable candidates for further in-

depth study of the sensitivity of the HAZUS™ model to local level data. 

Thus the purpose of the survey is twofold: 

1. To understand the level of GIS diffusion in large cities in the US (in terms 

of availability of GIS data as well as the organizational structure of GIS 
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implementation), with a focus on the use of this technology for disaster 

management. 

2. To identify two cities that can be used for further case study for the 

HAZUS™ model. 

This chapter discusses the methodology used for this survey with respect to the 

selection of cities to be surveyed, the implementation of the survey, and the design of the 

survey instrument.  This is followed by a discussion of the findings of the research with 

respect to the GIS organizational structure and the state of development of critical GIS 

datasets.  For each category there is a brief description of the topic and it’s relevance to 

disaster management followed by a discussion on the findings of the research and its 

implications.  Finally, the chapter concludes with a discussion of the implications of the 

overall findings for the use of GIS in disaster management and disaster damage 

assessment in the context of large cities. 

 

3.1 Methodology 
 

3.11 Selection of Study Cities 
 
 
The term “large” as applied to cities has been used rather loosely in this research so far.  

It is now important to define what constitutes a “large” city for this research.  For the 

purposes of this research, the population size of the city (in terms of 1990 census 

population) was the sole criterion in the selection process.  This research focused on 

cities with population size between 250,000 to 1, 000,000 according to the 1990 census.  

The US Census (1990) lists 200 cities with a population of over 100,000 – of which 8 
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cities have population over a million, 56 cities have population between 250,000 and 1 

million, and the rest with population less than 250,000.  The 8 cities with population 

greater than a million were too large and unique cities to be considered suitable for 

further case studies since the results could not be generalized.  Furthermore, they were 

considered to be difficult to manage from a data analysis perspective because of their 

large spatial extent.  On the other hand, many of the cities with population between 

100,000 and 250,000 were either smaller freestanding cities that lacked a diverse 

economic base or edge cities of larger metropolitan regions.  For example cities such as 

Ann Arbor, MI (population 109,592), New Haven, CT (population 130,474), and 

Madison, WI (population 191,262), were primarily university-based cities.  Others such 

as Pasadena, CA (population 131,591), Arlington, VA (population 170,936), etc. were 

integrally linked to larger metropolitan regions or a larger city and posed special 

challenge in analysis as a separate entity.  

The 56 cities that fell in the population range of 250,000 - 1 million are mostly 

large urban centers with a diverse economic base, sufficiently mixed land use, and strong 

municipal governments that are responsible for provision of public utilities.  These cities 

are also usually responsible for managing disasters in their jurisdiction and are first 

responders to disasters.  Hence this threshold of population served as a good basis for 

defining the pool of cities from which the sample of survey cities could be drawn.  

Although the threat from an impending disaster (particularly natural disaster) or the 

occurrence of major disasters in a city could be a criterion for the selection of the survey 

sample, this was not used at this stage of the survey.  This was because the focus of this 
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survey was on the general development of municipal GIS and not necessarily on the 

development of GIS in cities with hazard susceptibility.  

A total of 19 cities were randomly drawn from the population of 56 cities (30%) 

for the survey.  A sample size of 19 provided a good range of cities to draw 

generalizations from and also to provide sufficient candidates for further case studies.  

The randomly drawn sample yielded the following cities (as shown in Figure 3.1):   

 

Atlanta (Georgia), Birmingham (Alabama), Colorado Springs (Colorado), 

Honolulu (Hawaii), Jacksonville (Florida), Las Vegas (Nevada), Long Beach 

(California), Miami (Florida), Milwaukee (Wisconsin), Minneapolis (Minnesota), 

 

 

Figure 3.1:  Location of Selected Cities for Survey 
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Newark (New Jersey), Oklahoma City (Oklahoma), Omaha (Nebraska), Portland 

(Oregon), San Antonio (Texas), Santa Ana (California), Seattle (Washington), and 

Wichita (Kansas).  As expected, this sample represented a good spatial distribution across 

the country as shown in Figure 3.1.   

 

3.12 Implementation 
 

In order to assess the diffusion of GIS in the selected cities, a survey questionnaire with a 

follow up telephone interview was chosen as an appropriate method.  This was driven by 

two assumptions based on the size of the cities chosen for this research: 

1. A majority of the chosen cities would have well developed GIS, and  

2. Most well developed GIS programs are likely to have a GIS Coordinator 

or a GIS Manager who would be an appropriate point of contact.   

It was further assumed that once such a person was identified, much of the 

information about the GIS program including the availability of various datasets, the 

organizational structure, and the use of GIS for disaster management would be available 

through this person.  Extensive research on the Internet was used to identify the GIS 

Coordinator/Manager.  Where this information was not easily available, some appropriate 

departments such as planning, information technology, public utilities, engineering, etc. 

were identified and a few phone calls identified the presence or absence of the right 

person for interview.  Where such a person was not present, information was gathered 

from different sources in the different departments or from a person knowledgeable about 

the overall GIS program.  The identified persons were contacted and all the persons 
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agreed to participate in the research.  A questionnaire was prepared to guide the research 

and a copy of this questionnaire was provided to the participant before the actual 

telephone interview.  This provided the respondents with prior knowledge of information 

they would be required to provide and the opportunity to gather the necessary 

information in advance.  The telephone interview took over an hour for each respondent.  

Some of the participants chose to fill out the obvious questions in the questionnaire and 

were available for phone interview for further discussion.  In such cases the telephone 

interview took less than an hour.   

 

3.13 Questionnaire Design 
 
 
The questionnaire was designed to solicit information on three aspects of GIS 

development: 

In the first part, the respondent was asked to provide information about 

themselves (title, GIS expertise, knowledge of HAZUS™, etc), their organization (size of 

the jurisdiction in terms of number of parcels and area, jurisdiction, department in which 

GIS was housed, type of GIS organizational structure in their jurisdiction, number of 

personnel with GIS job descriptions or those that use GIS as an integral component of 

their jobs), inter-local agreements for spatial data sharing, and methods of GIS data 

dissemination (such as use of Internet-based mapping, etc).   

The second part of the questionnaire comprised a table designed to identify the 

key players and custodians of various spatial datasets in the organization in the event that 
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information about some datasets was not available with the manager/coordinator as 

would be expected in a more distributed organizational framework.   

In the third part of the questionnaire, detailed questions were asked about each of 

the datasets.  Such questions pertained to the role of the respondent in the creation, 

maintenance, update or distribution of the particular dataset, its completion, positional 

accuracy, currency, format, cost, its use for disaster management, and willingness to 

share data for more detailed analysis in this research.  Most of the datasets that were 

analyzed were ones identified as part of the Framework Data by FGDC (parcels, road 

centerlines, tax assessment data, orthoimagery, topography, utilities information, location 

of schools etc.) although some datasets were added due to their importance in disaster 

management, e.g. building footprints, location of fire stations, police stations, etc.   

Although for the most part, the design of the questionnaire adhered to the 

Framework Data Survey (www.fgdc.gov), in all the above sections special emphasis was 

placed on analyzing the impact of GIS on disaster management and vice versa.  For 

example, in the first part, respondents were asked about the type of hazards that pose an 

imminent threat to their city.  Answers were also solicited on their knowledge of 

emergency management operations within the organization.  In the third part, information 

was gathered regarding the use of every dataset in emergency/disaster management and 

the phase of disaster management that such efforts occurred.  These questions provided a 

good understanding of the degree of GIS diffusion in management of adverse situations.  

A copy of the survey instrument is provided in Appendix B1. 

It is important to note that this research was started in July 2001.  Interviews with 

7 cities were conducted before September 11, 2001.  After the events of September 11, 
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the environment was not conducive to contacting people over telephone and seeking 

answers to questions regarding the GIS framework, data availability and data sharing.  

Hence there was a brief lapse in this part of the research and the research was resumed in 

November 2001.  There was no perceived bias introduced due to the September 11 events 

although the use of GIS for managing disasters had been elevated in the minds of most 

participants and their higher management.  Some interviewees reported that they had to 

remove access to data through the Internet due to public security concerns. 

 

3.2 Research Findings 
 

The findings of this portion of the research are discussed in this section and are presented 

in three categories:  the characteristics of the respondent, the characteristics of the 

organizational and the data availability and use for disaster management. 

 

3.21 Respondent Characteristics 
 

A single respondent was used for each city.  In most cities, the GIS Manager or someone 

of similar job classification was contacted.  Most of these people contacted were the 

actual respondents for the interview.  However, some of them looked over the 

questionnaire and delegated the questionnaire to someone else in their organization.  All 

the respondents were familiar with GIS operations in their organizations.  Respondents 

from 11 cities were GIS managers/coordinators/directors, whereas respondents from 3 

cities were GIS analysts.  Respondents from 3 cities were IT engineer/supervisor/design 
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engineers, 1 respondent was a city surveyor and 1 was a planner.  All the respondents 

considered themselves to be GIS experts and rated themselves as users of GIS familiar 

with all GIS functionalities – i.e. creating and manipulating spatial databases, spatial 

analysis and display.  Only 6 of the respondents had ever heard about HAZUS™ and 

none of these six respondents had ever used HAZUS™. 

 

3.22 Organizational Structure 
 

The organizational structure under which GIS is implemented in an enterprise is very 

important in the use of GIS for disaster management for all aspects of the disaster life 

cycle which includes phases of preparedness, response, recovery and mitigation.  The 

GIS organizational structure is a major contributing factor to the effective use of GIS in 

any phase of the disaster management cycle.  As mentioned in Chapter 2, the 

understanding of the impacts of an event is a complex process and requires the 

integration of knowledge and datasets from various disciplines and sources.  Hence the 

nature of relationships between different departments within an organization, the 

integration and standardization of hardware, software and data are key factors to the 

effective use of GIS for disaster management.  Broadly speaking, the organizational 

structure encompasses not only the structure within the enterprise but also the linkages 

between the enterprise and other GIS consumers and producers in the region.  It extends 

also to mechanisms for public access to data and maps.  The survey was designed to 

solicit information on all three aspects.   
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To understand the role of the GIS organizational structure in disaster 

management, it is important to understand the progression of organizational structures 

involved with GIS production and consumption along with the progression of GIS 

technology.  The implementation of GIS started with the use of GIS software on isolated 

computer workstations in the back offices of many departments within an enterprise.  As 

technology evolved, and more spatial data were readily available and more applications 

of GIS unfolded, spatial technologies diffused through the various departments in the 

organization.  Many different departments started their own spatial data development and 

often established their own GIS programs.  This resulted in GIS implementation taking 

place in different departments in the same enterprise with very little inter-departmental 

coordination regarding data and software standards.  Eventually this led to redundancy, 

duplication of efforts and higher costs.  This implementation was commonly called the 

“Departmental GIS” approach. 

The problems with the “Departmental GIS” approach paved the way for a more 

coordinated effort in managing the GIS needs of the whole organization.  This led to an 

“Organizational GIS” or an “Enterprise GIS” approach whereby all GIS efforts in an 

enterprise were coordinated; a GIS Manager or GIS Coordinator position, responsible for 

coordinating the GIS efforts throughout the enterprise, was created.  Furthermore, a 

centralized database was used to store all the enterprise datasets in a standard format that 

could be used interchangeably and was accessible to all users across the various 

departments.  Some enterprises went as far as having a central GIS division that 

consolidated all GIS data, applications and support for all the departments.  
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In the late 1990s and early 2000, the Internet unleashed a new model of GIS 

commonly called “Community GIS” or “Societal GIS” whereby the power of the World 

Wide Web made sharing of data between organizations easier, and provided an avenue 

for easy access of geographic information to the public.  Although, this model does not 

strictly comply with an organizational structure, it merely extends the organizational 

structure, whether Departmental or Enterprise.  It allows for regional data sharing and 

analysis along with increasing public participation. 

The cities in the sample display some variation in terms of organizational 

evolution discussed above.  Of the 19 cities, 13 cities have moved to an “Enterprise GIS” 

organizational implementation and 6 cities are still in a “Departmental GIS” mode.  

While many cities have migrated to the “Enterprise GIS” organizational structure, there 

are different types of enterprises.  Of the 13 cities that have an “Enterprise GIS” 

implementation, 3 cities have chosen to implement a very centralized enterprise structure.  

The City of Birmingham has one such structure whereby GIS is a highly centralized 

operation - all editing, update and data capture are done by a Central GIS body which 

consists of 8 staff people (technicians, programmers and analysts).  Data queries and 

access are provided to several departments using customized ArcView applications 

created and maintained by the centralized GIS.  Similar is the case with Oklahoma City 

and City of Wichita.  The other 10 cities have typical “Enterprise Systems” where there is 

a central repository of GIS data and a central GIS division in some department that 

coordinates the GIS efforts over the entire enterprise.  However, individual departments 

maintain custody of datasets that they create or datasets that are pertinent to them.  The 

cities of Atlanta, Honolulu, Jacksonville, Las Vegas, Long Beach, Milwaukee, 
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Minneapolis, Portland, San Antonio, and Seattle are cities that have implemented this 

type of enterprise solution.   

There are 6 cities that are still in a “Departmental GIS” structure and have no 

centralized data repository or standards for GIS development.  These cities include 

Colorado Springs, Miami, Newark, Omaha, Pittsburgh and Santa Ana.  In these cities 

various departments create their own datasets.  Although they may adhere to some 

standards that are set for GIS implementation, such standards are not well established or 

policed and data sharing is not easy between the departments.  For example, the City of 

Pittsburgh has no central GIS - there is a central Computer Information Systems 

Department (CIS) which maintains computers, servers, access, and networks but not GIS 

data or standards.  Many departments in the City of Pittsburgh use GIS and have a 

steering committee.  Data standards exist and everyone complies with them as best as 

they can.  The Water and Sewer Department is outside of the City organization and there 

is no data sharing between the two.  Most needs for GIS-based applications or for 

customization originate from the departments and consultants are hired to implement 

them.  A similar structure is seen in the City of Newark and Omaha.  In cities without an 

enterprise structure, loose and unofficial structures may exist whereby individuals know 

what is happening in other departments even though there are no formal structures in 

place.  It is important to note that it was more difficult to get information on GIS in cities 

with a “Departmental GIS” organizational structure.  

No cities have completely deployed a “Community GIS” model, although some 

cities do provide access to GIS data over the Internet.  Of the studied cities, only 5 cities 

(26%) provide access to GIS data through Internet GIS browsers at the time of the 
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survey.  These cities include Honolulu, Jacksonville, Milwaukee, Portland, and Seattle.  

Another 9 cities (including Atlanta, Birmingham, Las Vegas, Long Beach, Minneapolis, 

Oklahoma, San Antonio, Santa Ana, and Wichita) had Intranets or were working on 

Internet applications that were to be released for public access in the near future.  No 

web-based GIS applications were being planned for 5 cities – these include Pittsburgh, 

Newark, Colorado Springs, Omaha and City of Miami.  Interestingly enough each of 

these cities has a “Departmental GIS” structure.  The City of Pittsburgh and the City of 

Colorado Springs provide some static maps via Internet.  For the cities that have 

interactive GIS websites, there is a variety of access levels.  For example, while the City 

of Seattle provides access to their data through a parcel viewer, the City and County of 

Honolulu provides all their data for viewing through an Internet map browser and even 

allows users to download any of their datasets.   

 It is interesting to note that 11 cities have a position of GIS Coordinator/GIS 

Manager/GIS Director/GIS Project Manager (Birmingham, Honolulu, Jacksonville, Las 

Vegas, Milwaukee, Minneapolis, Oklahoma City, Portland, San Antonio, Seattle, and 

Wichita).   All the 11 cities have either a tight centralized structure or an Enterprise GIS 

implementation.  The cities of Atlanta and Las Vegas have an Enterprise GIS but not an 

official position for a GIS coordinator or Manager.  However, in the above cities, the 

person interviewed served as a coordinator/manager as in the other 11 cities even though 

there was no formal position.  In Atlanta the functions of a GIS manager are performed 

by an IT Engineer position in the Public Works Department.  In Las Vegas a Senior GIS 

Analyst/QA QC position in the Information Technology Department coordinates GIS 

activities throughout the enterprise.  The organizational characteristics of the sample are 
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summarized in Table 3.1.  Table 1 in Appendix B2 provides a summary of the 

organizational characteristics for every city surveyed.   

Table 3.1 Organizational Characteristics in Surveyed Cities 
Type of Organization  Number of Cities 
          Enterprise 13 
          Department 6 
Community GIS  
               Internet 5 
               Intranet 9 
               Neither 5 
GIS Coordinator Position 11 
Department Housing Enterprise 
GIS 

 

          Information Technology 9 
         Public Utilities 2 
         Planning & Permitting 2 
Regional GIS Consortium 9 
Cities Responsible for Emergency 
Management 

11 

(sample size = 19) 

The centralized GIS activities (or the Enterprise GIS) have been housed in a 

variety of departments in different cities.  Of the 13 cities that have an Enterprise GIS, a 

majority (9 cities including Jacksonville, Las Vegas, Long Beach, Milwaukee, 

Minneapolis, Oklahoma, Portland, San Antonio, and Wichita) have their GIS operations 

in the Information Technology Department.  Two (Atlanta and Seattle) have their GIS in 

Public Works or Public Utilities and 2 cities (Birmingham and Honolulu) are in the 

Planning and Permitting Department.  Information Technology Department appears to be 

the most common because of the technological nature of GIS involving expertise on 

servers, networks, and programming and because of the need for a highly technical 

workforce.  Public Works and Public Utilities or Planning and Permitting Departments 

may be suitable choices where such departments have historically been the champions of 

GIS in the organization and creators of some of the biggest datasets in the organization.   
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Only 9 cities reported that there was a consortium/group that coordinated the 

development of geographic data in the region and only 1 out of the 9 cities did not 

participate in this consortium.  A total of 6 cities out of these nine have an Enterprise GIS 

organizational structure.  In other words, 50% of the cities that have Enterprise GIS 

participate in a consortium that coordinates geographic data.  On the other hand, only 

30% of the cities that have Departmental GIS participate in such consortiums.  When 

asked to list the top 3 geographic data coordinating groups, respondents provided a range 

of organizations such as regional commissions, county agencies, metro agencies, state 

agencies, local chapter of URISA (Urban and Regional Information Systems Association) 

and one project-based inter-local agreement to acquire digital orthoimagery. 

It is obvious that an Enterprise GIS implementation is very suitable for the use of 

GIS for disaster management.  GIS can be used most effectively in all phases of disaster 

management if all the data in the organization resides in a central server and in a 

standardized format.  Furthermore, the core GIS team can be the resource to manage the 

deployment of the technology in the response and recovery phases, a key need in the 

aftermath of a disaster (Greene 2002).  This team is aware of datasets from all over the 

enterprise and can leverage the use of all the technologies.  The GIS 

Manager/Coordinator can serve as the coordinator and implementer of all data sharing 

policies and software.  The proper agreements for data sharing and data coordination are 

very important for disaster management since disasters obviously know no geographical 

boundaries and often require analysis beyond jurisdictional boundaries.  Such agreements 

can be negotiated much better through Enterprise organizational structures rather than 

through individual departments in an enterprise. 
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However, a tight centralized structure may be detrimental to the effective use of 

the technology since the emergency managers may not be fully aware of the power of the 

technology and what it can do for emergency management.  Furthermore, it is important 

for the first responders to know the usefulness of any technology.  For example, in the 

case of Hurricane Andrew in Miami-Dade County and World Trade Center bombings, as 

the first responders became aware of the kind of the questions that they could get GIS to 

help them, the needs for maps and analysis emerged (Dymon 1993).  A less-centralized 

enterprise structure can “enable” users by providing the right organizational environment 

where they wouldn’t have to understand the intricacies of GIS development but could 

focus on applications and uses pertaining to their business needs.  Providing easy access 

to data enables the government to provide information to citizens about the response and 

recovery.  Furthermore, it provides citizen groups and other non-profit organizations 

access to data and tools that can help them in analyzing issues of equity, response and 

long-term recovery.   

 

3.23 Availability and Use of Core Datasets 
 

As mentioned earlier, the management of disasters requires knowledge from many 

different disciplines.  Hence there are many different datasets that are needed for any 

meaningful use of GIS for disaster management.  While some datasets are pertinent only 

to certain hazards (e.g. earthquake potential maps, flood boundaries, or hurricane zones, 

etc.), there are some core datasets that are essential for a multi-hazard approach to 

disaster management and particularly for disaster damage assessment.  These include 
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parcels, road centerlines, etc and are created and maintained by most municipal and 

governmental agencies.  The following discussion lists these datasets, their use in disaster 

management in general and damage assessment in particular, and the state of 

development of these datasets in the surveyed cities.   This information is also 

summarized for the full sample in Table 3.2 and presented for each city in Table 2 in 

Appendix B2. 

 

Cadastral (Land Parcel) Data and Related Attributes  

Most municipal or other local governments responsible for collecting taxes keep records 

of every parcel of land that is taxed in the jurisdiction.  This includes a graphical 

representation of a parcel and related information in a database or spreadsheet format.  

The related information includes legal description, and information on ownership, 

address, assessed value, sales transactions, and number of rooms, type of construction, 

height and square footage.  Parcel data were historically in paper format, were later 

converted to CAD (computer aided design) format and now converted to GIS format.  

The conversion to a GIS format allowed the parcel fabric to become intelligent by joining 

to other databases such as tax assessment and building permit data, which are commonly 

maintained by all taxing agencies.  This provides the power of spatial analysis and data 

queries that were never possible before.   

When combined with tax assessment data, parcel data is one of the most valuable 

sources of data for disaster damage assessment.  It is one of the only sources that provide 

detailed information on the use of land at the finest granularity.  Furthermore, if 

information is recorded appropriately, it provides the most basic, accurate and detailed 
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information on every building, which is required to assess the damage from any disaster 

or to engage in mitigation activities for proactive disaster planning.   The use of GIS 

parcel data is so integral to many government functions that many states have invested in 

statewide parcel coverage (e.g. Oregon, Texas, New Mexico, Florida, Kansas, Nebraska, 

Pennsylvania, North Carolina, South Carolina, Maryland, and New York) and most urban 

areas have these data.  

As expected, this research indicates that parcel data are readily available for most 

large cities.  All cities surveyed in this research have parcel data available in digital 

format.  While most of the cities maintain their parcels in some commonly used GIS 

format, the City of Newark is the only city that uses Microstation (primarily a CAD 

product) for maintaining their parcels.  A total of 15 cities use ArcView, ArcInfo, or 

ArcGIS for their parcel creation and maintenance (i.e. an ESRI product, which is one of 

the largest GIS vendor and the technology on which HAZUS is based).  Only 2 cities also 

have applications or use MapInfo products, 4 use AutoCAD, and 4 cities use 

Microstation for parcels.  In addition, the City of Minneapolis uses Oracle Spatial, and 

the City of Portland deployed SDE (Spatial Data Engine) geodatabases.  

The time at which parcel data were first automated (digitized) varies from city to 

city – in 5 cities before 1990, in 6 cities between 1991 and 1995, and 4 cities between 

1996 and 2000, and in 2 cities post 2000.  The respondents for 2 cities did not know the 

vintage of their parcel data.  A majority of cities do regular updates of parcel data with 16 

cities updating their data at least once within a year of the survey.  A total of 11 of these 

cities update their data daily, weekly or monthly.  Only 2 cities had never updated their 
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parcel data which reflected a snapshot from the time of automation (1 city with data as 

old as 1990) and 1 city has data that is more than a year old (18 months old).   

In all the surveyed cities, parcel data were created and maintained at the local 

level (municipal or county).  Of the 19 cities surveyed, 9 cities created and maintained 

their own parcel data, 2 cities didn’t create their own parcel fabric but were responsible 

for maintenance, 1 city created its parcel data but the County took over maintenance.  For 

11 cities, the County was responsible for creation and maintenance of parcel data.   

One of the key elements of the use of parcel data is the ability to link these data to 

various databases that are maintained by many local government departments such as 

assessment data, permit data and derivative datasets such as land use and zoning.  These 

provide intelligence to the parcel data which is critical for disaster management and 

damage assessment.  For example, to assess the level of damage from flooding, it may be 

crucial to analyze how many houses have basements, and what grade they are at.  

Similarly, to assess the level of damage from a forest fire or to predict the spread to fire, 

it is important to know the roofing material of houses and also land use.  Of the 19 cities 

studied, 16 cities have all tax assessment data linked to the parcels while 3 cities have 

partial tax assessment data. Only 3 cities have photographs of every building and 6 cities 

have collected custom building information.  A total of 14 cities have collected custom 

land use (different from that used in tax assessment data) and 13 cities have collected 

custom zoning information.  Permit data are available in digital format for 7 cities and for 

2 cities partial permit data are available (i.e. from the year that this data was collected 

digitally). 
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Parcel data have been widely used for disaster management purposes in most of 

the surveyed cities.  Of the researched cities, only Atlanta, Las Vegas, Pittsburgh and 

Santa Ana reported that parcel data had never been used by the organization for disaster 

management purposes to the best of the respondent’s knowledge.  Most cities reported a 

range of uses for this data for disaster management - from post-disaster damage 

assessment (Honolulu, Long Beach, Miami, Portland, Seattle, Wichita), to evacuation 

(floods and snow in Birmingham, hurricane in Jacksonville), disaster response 

management (Omaha, Portland, San Antonio), floodplain management in Minneapolis, 

and Y2K response in Milwaukee.  However, only a few cities had used parcel data and 

other GIS data in the pre-disaster planning and hazard identification purposes.  The cities 

of Seattle, Long Beach and Portland are worthy of mention - Seattle had used parcel data 

for landslides and earthquake mapping, Long Beach for pre-disaster damage assessment, 

and Portland for what-if scenarios. 

 

Building Footprints 

Many jurisdictions have invested in developing a building footprint layer either 

approximately (through heads-up digitizing) or very accurately (through 

photogrammetric feature extraction).  The building footprint dataset can provide more 

detailed information about buildings in a parcel and can be very useful for the purposes 

of response.  Information regarding entrances, exits, fire escapes, elevators and stairwells, 

roof layout, material and type of construction, year built, number of floors, number of 

occupants and use of every floor, location of water mains and other data such as floor 

plans, and photographs can be tracked in detail.  Cities such as Chicago (not part of this 
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survey) are now requiring owners of large buildings to submit detailed floor plans of 

every floor and linking them to GIS for disaster management purposes (City of Chicago 

2002).  This dataset can also be particularly useful for parcels that have multiple 

buildings in a single parcel as is seen in the case of residential and commercial 

condominiums, institutional campuses, research and industrial parks, etc.  In large cities 

most of the above cases are frequent and the information at a parcel level may not be 

sufficient to understand the impact of a disaster and accurately estimate the damage from 

a disaster.    

While digital parcel data were largely available for all cities, the same is not the 

case for the building footprint data.  Only 12 of the researched cities had a building 

footprint layer that encompassed the entire jurisdiction whereas 3 cities had building 

footprints digitized for either a small part of the City (e.g. CBDs in Honolulu and San 

Antonio) or only certain buildings (e.g. Miami).  The building footprint data are planned 

for the City of Jacksonville whereas no plans are in place for the acquisition of this data 

layer for the cities of Omaha, Santa Ana and Wichita.  

These data are not deemed crucial for city management purpose as they do not 

directly serve tax assessment purpose and have not been available historically in a paper 

format.  However, many cities use Sanborn Maps, which were created for large cities by 

a private company called Sanborn Map Corporation.  However, information on the use of 

such maps was not sought in the questionnaire.  Regardless, the building footprint dataset 

is more difficult to develop in the absence of any historical paper maps that can be 

automated.  Accurate planimetric data can be captured through photogrammetric feature 

extraction but this requires high skill and a large financial investment.  Heads up 
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digitizing from ortho-rectified aerial imagery can develop a very crude layer for building 

footprints as has been done in the case of Portland.  Another method is the one deployed 

in Las Vegas where good spatial representation is captured for all buildings except 

residential buildings, which are represented by a single point.  This significantly reduces 

the level of effort and yet yields a product that can be useful.   

For the 15 cities that had building footprints (full or partial), only 4 cities 

undertook regular updates –Birmingham and Las Vegas did monthly updates whereas 

Milwaukee and Colorado Springs did daily updates.  In all other cities these dataset 

represent a snapshot in time.  The Cities of Atlanta and Portland are currently in the 

process of updating their building footprint layer and Newark and Pittsburgh had done 

some updates to this dataset since its creation.  This dataset was created in the nineties in 

9 cities whereas it was created in the eighties in 3 cities. 

As far as attributes are concerned, few cities tracked any particular attributes 

about the buildings and for most of the cities the only data that can be attributed to the 

buildings is the assessors’ database, either through joining a parcel id number or through 

spatial join.  This presents limitations in parcels that have multiple buildings in them or 

buildings that span multiple parcels.  Of the cities that tracked other information, Atlanta 

kept permit information, Birmingham Planning Department attributed building use 

information through a survey, and Las Vegas did a similar survey to attribute information 

regarding building characteristics such as capacity and year built. The City of Portland is 

notable for having a photo of every building, and had collected custom information on 

use, building characteristics and zoning.  Seattle had information on the elevation of 

every building and structure type (such as building, deck, etc), that was collected as part 
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of the compilation of building footprints. The City of Colorado Springs tracked addresses 

and multiple addresses for all buildings. Honolulu tracked custom building 

characteristics, land use, and permit information even though the building footprint layer 

only covers less than one third of the extent of the jurisdiction.  

Of the 12 cities that had building footprint data, 7 had used this dataset for 

disaster management purposes and 4 had never used it for the same, and one respondent 

was not aware whether it was used for disaster management or not.  The cities that had 

used this data for disaster management included Birmingham, Colorado Springs, Long 

Beach, Newark, Oklahoma City, Portland and Seattle. The use ranged from proactive 

disaster management planning in Colorado Springs (planning and simulations), Long 

Beach (disaster damage assessment using a proprietary tool called VRISK), and Newark 

(mapping for Office of Emergency Management) to post-disaster response in Oklahoma 

City (1995 Oklahoma Building bombing and 1999 tornado response), Portland 

(integration of 3D CAD drawings to assess flood damage), and Seattle (maps for 

Nisqually Earthquake response).   

 

Streets 

Like parcels, datasets on roads/streets are commonly used enterprise datasets and are 

available for most GIS programs, even ones that are not very advanced.  The street 

centerline dataset is one of the foundational datasets that is developed and other datasets 

are based on it.  Address ranges are usually available with this dataset. 

As expected all the studied cities had street centerline data available although the 

City of Newark and City of Minneapolis reported the street centerline data as a work in 
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progress, expected to be completed by 2002.  For all the cities, the extent of the dataset 

was the jurisdiction boundary and two cities reported that they created and maintained the 

street centerlines for an area beyond their jurisdiction.  In 3 cities the street centerline 

data were developed prior to 1990, in 6 cities these data were completed between 1990 

and 1995, and in 5 cities these data were developed post 1995.  Respondents in 5 cities 

were unaware of the vintage of these data.  The degree of updates to these data is also 

variable – 10 cities maintain these data regularly (i.e. daily, biweekly or monthly).  

Others have a periodic or intermittent update strategy.  All cities carry address ranges 

with their street centerline data. 

With respect to the use of this dataset for disaster management, the research 

points to widespread use of the street centerline dataset with 14 cities (74%) reporting the 

use of this dataset for disaster management purposes.  However, much of that use is 

related to E911 activities (and Computer Aided Dispatch) with 7 cities (37%) describing 

their use of street centerline data for E911 dispatch only.  The rest reported uses other 

than or in addition to E911 activities.  Many of those uses relate to disaster response such 

as hurricane evacuation (Jacksonville), tornado response (Oklahoma), emergency routes 

and evacuation (Portland) and post-flood response (San Antonio).  Only a handful of 

cities had used this dataset for proactive planning for disasters. The City of Wichita had 

undertaken tornado frequency analysis with this dataset, Seattle had used it for 

earthquake and landslide mapping, and Long Beach had used it for VRISK. 
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Ortho Imagery 

Aerial imagery in the form of paper photographs has traditionally been used for city 

planning and management.  In recent years these paper photographs have been replaced 

by digital, low-altitude, high-resolution imagery taken from cameras in aircraft.  The 

images are referenced to the earth and corrected for displacement due to tip and tilt of the 

camera, and the uneven surface of the earth.  Such imagery has now come to be a major 

resource for any GIS operation.  It provides accurate location of various features on the 

earth along with a clear picture of the location of natural features such as rivers, lakes, 

shorelines, forests, and wetlands, and human-created features such as roads, buildings, 

parking lots, etc.  It is a powerful dataset for visualization, particularly for politicians, 

decision-makers, planners and public to understand the impact of a disaster, particularly 

in the post-disaster phase.  Imagery taken when the disaster is in progress or immediately 

afterwards can also provide very accurate estimates of the extent of the disaster and the 

losses associated with it.  In recent events in New York City and other floods and 

hurricanes, the media used ortho imagery acquired from airplanes or satellites to convey 

the extent and magnitude of damage to the public.    

As expected, this research shows that all cities had some form of ortho imagery 

associated with their GIS programs.  All surveyed cities had imagery for the whole extent 

of the jurisdiction except for Birmingham and Honolulu, which had imagery for less than 

a third of the jurisdiction.  While this was not completely unexpected for Honolulu since 

the unit of analysis was the whole county, the revelation was somewhat perplexing for 

Birmingham, which seemed to have a very strong GIS program.  The GIS Manager 

attributed the lack of orthoimagery to lack of funding.  For most cities, the available 
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digital orthoimagery represented a recent snapshot of the cities with imagery in 15 cities 

acquired between 1998 and 2001.  However, the imagery in some cities dated back to 

mid-1990s.  Las Vegas and Portland reported that they had a program of acquiring 

imagery every year.  In order to have updated imagery every year, Las Vegas has decided 

to compromise on the ortho-rectification of the imagery since their use revealed that a 

georeferenced aerial imagery served their purpose well and could be acquired for a much 

lower price.  The City of Minneapolis reported a program to acquire imagery for one half 

of the city every year.   

An interesting aspect of ortho-imagery is the issue of licensing – 4 cities reported 

that they licensed their imagery from a private vendor, which severely restricted the use 

of the imagery.  This can have a significant impact on the use of the imagery in the 

response phase of disaster management when many different organizations come together 

to manage the event and most would require aerial imagery.  Particularly, this imposes 

severe restrictions on the use of the imagery by federal, state, or other local and regional 

governments that may be responding to the same disaster. 

With respect to the use of imagery for disaster management, more than 50% of 

the cities reported some kind of use – from cartography and visualization (Birmingham, 

Portland and Wichita) to use in planning (Honolulu), and response (Oklahoma, Seattle 

and Wichita).  Most of the uses pertained to visualization or to analyze before and after 

situations due to a disaster. 
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Topography 

Information on topography is crucial for many engineering applications and work 

performed by many departments of the local government.  Slope can play a critical role in 

determining the feasibility of new construction, erosion control, degree of flooding, run-

off, landslide potential, and soil dynamics, etc.  Elevation data is acquired in the form of 

digital elevation models (DEM), digital terrain models (DTM), or contour lines through 

photogrammetric compilation. 

Given the widespread use of digital topographic data for local government 

functions, it is hardly surprising that only 2 cities (Miami and Santa Ana) do not have 

topography data.  Although the City of Miami (via the Miami County) was planning on 

acquiring LiDAR data, Santa Ana had no plans to acquire any kind of topography data in 

the near future.   All the other cities had some elevation data even though the spatial 

extent of this dataset was variable – 11 cities had data for the full extent of the 

jurisdiction whereas 5 cities had these data for less than two-third of the extent of the 

jurisdiction.  While for the most part this dataset was relatively new in most cities, in 4 

cities these data were created prior to 1990, in 4 cities these data were created between 

1990 and 1995 and in 8 cities after 1995.   

Only 7 cities reported the use of these data for disaster purposes.  Of these, Long 

Beach used these data to report inaccuracies in FEMA’S Flood Insurance Rate Maps 

(FIRMs) and Oklahoma City used these data for flood mitigation.  Portland used the data 

for planning and permitting, flood modeling, and slide potential studies.  In Minneapolis, 

the Sewer Division under Public Works used the topography data for similar purposes. 
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Other Data 

Although the focus of this research was core data, information on other data was solicited 

from responders.  These datasets included transportation, utilities such as water, 

wastewater, and communication networks.  Information was also requested on the 

availability of datasets related to location of schools, sites with hazardous materials, and 

location of police, fire and emergency response facilities.  However, very basic 

information on these datasets was requested and an in-depth analysis was beyond the 

scope of this research.   

Some respondents (4 cities) reported lack of knowledge about data on utilities and 

pointed to other knowledgeable people for further information.  This could be because of 

the fact that utilities’ data is not one of the core datasets and is usually in departments that 

have their own GIS.  However, many respondents were knowledgeable about the utilities 

data. A total of 12 cities had complete water network data, and 3 cities reported that these 

data were a work in progress.  On the other hand 10 cities had wastewater coverage, in 3 

cities these data were work in progress and 2 cities reportied there were no plans to 

develop these data.  There was less data pertaining to communication networks with only 

3 cities having communication data and 2 of these had only data for city-owned 

infrastructure, and not private communication networks.   

Only 6 cities reported using these data for disaster management purposes ranging 

from planning to mapping and responding to disasters.  The City of Long Beach had all 

fire hydrants mapped and available in fire trucks and stations through mobile mapping.  

The City of Portland used water network data in various capacities in mock drills.  None 

of the interviewed officials discussed the use of these data in the protection of their water 
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and utility infrastructure.  Neither was the issue of acquiring these data from private 

utility companies in times of disaster or for proactive disaster management raised by any 

of the respondents.  The questionnaire did not explicitly address such issues. 

With respect to point data such as location of schools, hazardous waste sites, and 

emergency response facilities, 9 cities had mapped sites with hazardous wastes, and 6 

cities did not have this mapped.  Respondents from 3 cities didn’t know about this dataset 

and only 1 city reported that this dataset was under construction.  The statistics are 

slightly better for educational and emergency critical facilities such as police, fire and 

EOCs.  A total of 14 cities had mapped these facilities, 3 cities did not and 2 didn’t know.   

Table 3.2 summarizes information about the above datasets and Table 3.3 

summarizes the use of various datasets for disaster management purposes in the sample 

cities. 

Table 3.2: Availability of Various Datasets in Surveyed Cities 
Name of Dataset Developed 

(# of cities)  
 

Planned/ 
Under 
development 

Not 
available/ no 
plans 

Don’t 
know 

Parcel + Tax Attributes 19     
Building Footprints 12- Full Extent 

3 – Partial Extent 
1  3   

Street Centerline 17  2    
Ortho Imagery 17– Full Extent 

2– Partial Extent 
   

Topography 11– Full Extent 
5– Partial Extent 

1  1   

Water Network 12  3   4  
Wastewater 10  3  2  4  
Communication 3     
Hazardous Waste Sites 9  1  6  3  
Educational 14   3  2  
Critical Facilities 14   3  2  
 
 
 
 
 



  73 

 73

 
Table 3.3: Use of Dataset for Disaster Management in Surveyed Cities 
Name of 
Dataset 

# of cities that 
have used 
dataset for 
disaster 
management  

Types of Uses 

 
Parcel + Tax 
Attributes 

 
15  

Post-disaster damage assessment, evacuation, disaster 
response management, floodplain management, Y2K 
response.  Isolated use for pre-disaster damage assessment, 
what-if scenarios and hazard identification. 

 
Building 
Footprints 

 
7  

Post disaster response (Oklahoma City bombing, flood 
damage assessment, and earthquake response) and pre 
disaster planning (simulations, damage assessment) 

 
Street 
Centerline 

 
14  

Primarily for E911 dispatch.  Other uses include emergency 
routes and evacuation, post disaster response (tornado and 
flood).  Handful of uses for proactive planning (tornado 
frequency analysis, earthquake and landslide mapping, and 
predisaster damagae assessment. 

Ortho 
Imagery 

 
10  

Cartography and visualization.  Some planning and response 

 
Topography 

 
7  

Validation of flood insurance rate map, flood mitigation,  
planning and permitting and flood modeling 

 
Utilities 

 
6  

Fire hydrants mapped and available through mobile 
computing in fire trucks, mock drills 

 

Metadata 

An important aspect of creating data is to document information about the data, 

commonly known as metadata.  Metadata for geographic data includes information about 

the extent of a dataset, projection, data type, and data dictionary for tabular data, 

currency, keywords, and information about the creator and their contact information and 

many other pieces of information regarding the lineage of the data.  Good metadata is key 

to appropriate use of datasets not only between agencies but also within an agency.  

Many standards exist for creating and publishing metadata such as FGDC (Federal 

Geographic Data Consortium), ISO, etc. and most GIS software now have tools that 

automatically capture a portion of the information.  Capturing the rest of the information 

can be a lengthy and cumbersome process and hence is often ignored by many agencies.  
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Recognizing the importance of metadata, many agencies developed their own methods 

(prior to the federal and other standards) for documenting their data in the form of 

“homegrown” metadata.   

This research reveals that 15 cities had some metadata.  However only 5 of these 

cities had metadata that complied with standards such as FGDC, and the rest 10 cities had 

“homegrown” metadata.  Half of these cities with “homegrown” metadata planned to 

convert their metadata to some standard metadata format.  There was no metadata 

available for 4 cities and 3 out of these four cities were cities with a Departmental GIS 

organizational structure.   

 

Data Cost 

An important aspect of data sharing is the issue of whether to charge for the data or share 

the data free of charge with other agencies and the public.  Although the question was 

posed regarding this for every dataset, most respondents gave the same answer for most 

datasets.  Furthermore, many respondents were not clear about their pricing structure and 

either didn’t have a structure in place or were in the process of creating one. Of the 19 

cities that were surveyed, 11 cities sold their data based on various cost models and 

pricing structures.  Many of the cities that sold data did not actually charge other 

governmental agencies.  In addition, 2 cities, charged only for the labor cost and cost of 

media to provide data to outside agencies.  A total of 6 cities did not sell their data.  For 

the cities that did not sell their data, it is not clear whether the data was distributed freely 

or whether the data was not easy to acquire.   
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3.3 Implications of Findings on Use of GIS for Disaster 
Management 

 

This research clearly shows that GIS is widely diffused at the local government level of 

large cities.  Most core layers such as parcels, tax assessment information (which 

includes a wide range of information very crucial to disaster management and damage 

assessment), street centerline, topography, and orthoimagery are available for a majority 

of the cities.  All the above data are critical for use in disaster management and 

particularly to support local level decision-making and the needs of the first responders. 

However, information on building footprints, utilities, and critical facilities is still not as 

widely diffused and efforts need to be made to acquire these datasets for large cities.  

However, such efforts should either be at the local level or at least planned in conjunction 

with local agencies.  The State and Federal government should be involved in setting 

standards for these data and often funding their collection through grants and cost-sharing 

rather than collecting these data themselves as has been proposed by many federal 

programs.  Local participation will ensure that the data is maintained, updated and 

verified for currency and accuracy.  Furthermore, it is evident that most cities have fairly 

advanced GIS programs and hence are well prepared to gather such data.  Where cities do 

not have a good GIS program, assistance from the State and Federal sources can provide 

the impetus in establishing such programs so that they are sustainable in the long term.  

Nevertheless, any development of tools and models, or acquisition of data must take into 

consideration the programs that exist at the local level and the presence of some key 

datasets at most local levels of large cities.  In the absence of this, tools and models will 
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not serve the needs of the local emergency managers and will lead to early rejection 

rather than diffusion and adoption. 

This research also shows that although most cities have advanced GIS programs, 

the use of GIS for disaster management has been limited.  The use of GIS has been 

mostly in the response and recovery phase, after a disaster has struck.  Although some 

examples exist demonstrating the use of GIS for planning, simulations, and proactive 

analysis to understand the likely impacts of hazards, such applications are few and 

restricted to a handful of cities.  This could be because of the low priority given to 

planning for unlikely catastrophic events or the lack of any imminent threat from such 

events.  However, with the heightened awareness of the possibility of such threats as well 

as the knowledge of the use of GIS in managing disasters, this is likely to change.  Many 

GIS programs are now an integral part of emergency management agencies in local 

government and also actively participate in any EOC (Emergency Operations Center) 

activation.  However, for the most appropriate use of the technology, it is important that 

GIS is used not only to respond, but to undertake hazard assessment and vulnerability 

assessment, to identify people and infrastructure at risk, prepare and test emergency 

plans, and mitigate against losses from impending disasters.  To do this, it is essential to 

assess the needs for GIS for emergency/disaster management and make sure that the GIS 

implementation, both organizationally and with respect to appropriate data availability, 

can serve these needs.  

Some organizational changes may be necessary, but if needs are assessed 

appropriately, such changes may be beneficial to the entire organization and not just for 

disaster management.  For example, the needs of disaster management may suggest an 
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Enterprise GIS organizational structure rather than a Departmental structure but the 

benefits of this can be realized for the entire organization.  It is important to note here that 

the findings of this research do not demonstrate that cities with Enterprise GIS 

organizational structure are more likely to use GIS for disaster management.  On the 

contrary, some cities with a Departmental structure (such as Colorado Springs, and 

Newark), have used GIS for disaster management more than some cities with Enterprise 

GIS.  A complex set of factors and their interplay determine the effective use of GIS for 

disaster management, a topic that needs further exploration.  However, an Enterprise GIS 

structure tends to remove a lot of obstacles for the use of GIS in disaster management by 

standardizing data development (with respect to format, projection, accuracy and 

integration), facilitating data access through central servers or through internet, 

facilitating he establishment of data sharing policies, and ensuring the maintenance of 

GIS expertise in the organization.   

An important aspect of using GIS for disaster management is the issue of sharing 

data across jurisdictional boundaries and the establishment of policies and standards that 

will promote such data sharing.  This research points to the lack of regional and interlocal 

agreements for GIS use for disaster management.  Such agreements have to be put in 

place before the occurrence of a disaster and should include agreements for data sharing 

with private utility companies in the aftermath of a disaster.  Of course, such data sharing 

will require good metadata, another area where a lot needs to be done.  Finally, the power 

of using GIS on the Internet to inform the public about any impending disaster, and 

events as they unfold is something that is yet to be realized in most places.  The balance 
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between informing the public and compromising information related to security presents 

challenges, but must be achieved for the greater good of society. 

 

3.4 Selection of Case Studies 
 

Respondents from 13 cities out of 19 said they were willing to share their data in 

exchange for result of analyses of an earthquake event using HAZUS™.  Respondents 

from 6 cities were not so sure about this, 4 because an earthquake analysis provided them 

little value since there were no earthquakes in their region.  Based on the findings of this 

survey, two cities were identified as the case cities for further research:  City of Seattle, 

WA and City of Long Beach, CA.  Both cities had an imminent threat from an earthquake 

and were very proactive in managing disasters.  Both cities had the datasets needed for 

further analysis with HAZUS™ and were willing to share these data for this research.  

The City of Portland was also considered as a candidate for further research.  However, 

the City of Portland was used for the initial validation of the HAZUS™ model and hence 

it was not considered a suitable candidate.  

While the City of Seattle had a very advanced GIS organization, the City of Long 

Beach had a GIS implementation that was more “typical” and hence was important to 

analyze for the purposes of understanding the challenges associated with both types of 

cities.  Other cities such as Atlanta, Birmingham, Las Vegas, Milwaukee, Minneapolis, 

Omaha, Wichita, Pittsburg, and Jacksonville were not suitable candidates for an 

earthquake analysis since and earthquakes were not an imminent threat for these cities 

and coordinators from some of these cities were not too keen on sharing data for such 

analysis. 
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The next two chapters (Chapter 4 and Chapter 5) discuss in details the GIS in the 

two selected case cities, the challenges associated with inputting local data into 

HAZUS™, the deviation of local data from default data, and the difference in loss 

estimates based on the local data and default data.  Inferences will be made based on each 

of the case studies and then the results from the two case studies are compared in Chapter 

6 to analyze any trends in the differences, both in building inventory and in losses from 

earthquakes of various magnitudes. 



  80 

 

Chapter 4: City of Seattle Case Study 

 

4.0 Introduction 
 

The City of Seattle was chosen as a case study because of the highly evolved GIS 

program in the City, the willingness to share data and the imminent threat of earthquakes 

to the City.  This chapter will present the findings from the Seattle case study.  In this 

section, a general introduction of the City is provided.  This is followed by an overview 

of GIS in the City and the GIS data provided by the City for this research.   A detailed 

discussion of using this data and preparing it for HAZUS™ follows.  This discussion 

focuses on data availability, completeness and accuracy and on suitability for input into 

HAZUS™.  The next section discusses the variation of local-level data from data 

available in HAZUS™ - the section will explore the variation at the city-level as well as 

at the level of the various census tracts in the City of Seattle.  The results from running 

various scenarios of earthquakes will then be analyzed – again looking at the variation of 

results using local-level data as compared to default data in HAZUS™ at the scale of the 

city and at the census tract level.  Finally, the chapter will summarize the findings from 

this case study.   

The City of Seattle is located in the State of Washington, about 113 miles from 

the US-Canada border on the northwestern corner of United States.  The city was 

founded in 1869 and is a thriving center of arts, culture, commerce and technology for the 

U.S. Pacific.  It has an area of 84 square miles, a population of 563,374 and a population 

density of 6,715 (2000 US Census).  It is the 23rd largest city in the US based on 
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population.  The city’s population was 530,844 in 1970, and declined to 493,846 in 1980 

and then has been steadily increasing to 516,259 in 1990 and 563,374 in 2000.  As per the 

2000 US census, about 70% of the population is white, 13% is Asian, 8.4% is African 

American, and 1% is American Indian and Alaska native.    

Seattle ranks as one of the best US cities to locate a business (Seattle Datasheet 

2005).  Consequently, Seattle and the greater Seattle region have emerged as a leader for 

aerospace, computer software, bioinformatics, electronics, telemedicine, etc. (Seattle 

Datasheet 2005).  It is the corporate house of Boeing, Costco, Microsoft, Weyerhaeuser, 

Washington Mutual and other corporations.  The city also boasts of a very high quality of 

life with a number of parks and recreational venues such as stadiums, arboretum, theaters, 

aquarium, and waterfront activities (Map 4.1).   Downtown Seattle is not only home to a 

number of offices, but 4% of the city’s total population also lives downtown.   

The City of Seattle has been affected by many earthquakes – 9 earthquakes of 

magnitude between 5.0 and 6.5 on the Richter scale have their epicenter within a 35 mile 

radius of the City of Seattle between 1932 and 1965.  More recently, on February 28, 

2001, the Nisqually earthquake (magnitude 6.8 on the richter scale) struck the region 

(with epicenter 35.7 miles SSW of Seattle) and affected the City of Seattle albeit only 

minimally since the epicenter had a depth of 32.5 miles.  Other hazards affecting the city 

include landslides and volcanoes. 
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4.1 GIS Description and Data Quality 
 

The City of Seattle has an advanced GIS program under the Information Technology 

Division of the Seattle Public Utilities.  The respondent for the survey was the Corporate 

Data and GIS Manager of the Seattle Public Utilities who leads the GIS development for 

the City of Seattle.  At the time of the survey there were 25 GIS professionals working in 

the GIS program (at the Seattle Public Utilities), 15 in the Seattle City Light, 3 in Parks, 4 

in Design, Construction and Land Use, 2 in Strategic Planning, 3 in Police, 3 in Fire and 

2 in Fleets and Facilities Department in the City.  With a true Enterprise GIS 

organizational implementation, many of the core GIS activities (such as creation and 

maintenance of base GIS data) takes place in the Information Technology Division of the 

Seattle Public Utilities.  Many departments in the city administration also have key GIS 

personnel who are responsible for maintaining their own data derived from the base 

layers.  There are also a large number of people throughout the city who are viewers and 

users of the data through GIS browsers or Internet browsers.   

The GIS group is responsible for the creation/procurement and maintenance of 

many core enterprise datasets such as cadastral (parcel data), street centerlines, building 

footprints, ortho photography and digital terrain data.  They are also responsible for the 

creation and maintenance of utility data such as sewer and drainage infrastructure, and 

water distribution systems.  The tax assessment and attribute data is created and 

maintained by the King’s County Department of Assessment.  It is distributed to the City 

departments by the GIS group.  The City also distributes its GIS data and map products 

through a central distribution location called the Seattle Public Utilities GIS Map Counter 

(SPU GIS Map Counter).  The City has well-defined distribution policies and costs.  The 
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city sells predefined and prepackaged data through the GIS Map Counter.  The required 

GIS data were made available free of charge for research purpose only by the Corporate 

Data and GIS Manager.  Various datasets were made available: parcels, building 

footprints, orthoimagery, census tracts, city boundary, contour data and location of 

schools, hospitals, etc. 

Parcel data for the City of Seattle (approximately 203,000 in number 

encompassing 123 census tracts) are created and maintained by the Seattle Public 

Utilities whereas the assessment data are maintained by the King’s County Department of 

Assessments.  Both are updated on a daily basis although for publication purposes, the 

data have a time lag.  Since prepackaged data were made available by the City of Seattle, 

the GIS data dated to October 2000 whereas the assessor’s data were from 2001.  Hence 

there were some inconsistencies in the data but most of these were confined to 

differences in the owner of the property or a few parcels with no match to attribute data 

from assessor’s data.  This number was low (less than 1%) and hence was considered 

insignificant for the purpose of this research.   

The City of Seattle provided a building footprint dataset that was compiled by the 

city in 1993 through photogrammetric techniques.  This data remained static (i.e. with 

little updates) since 1993 and hence had little utility excepting as a source of validation. 

The building footprint data carried information about the peak elevations, which was 

useful for validation purposes.  The city also provided access to a high-resolution (6-inch 

pixel resolution) color orthoimagery.  This was acquired in 1999 and was licensed to the 

City of Seattle from a private data provider.  This imagery also helped immensely in 

validation and other verification purposes.  Other data provided by the City of Seattle 
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included location of churches, bus stops, public hospitals, public libraries, police stations, 

schools (public and private), liquefaction zone hazard areas, surface geology, flood prone 

areas, street networks, street trees, etc.  The City also provided metadata along with the 

data. 

The GIS parcel data for the City of Seattle carried some core parcel attributes and 

99% of the parcels had assessment data attached to them.  Through various tables, the 

information recorded included legal description of the property, type of property, 

taxpayer information, address, present use and square footage of the property.  Detailed 

information included zoning, water and sewer districts, views to different sides of the 

city, number of buildings on the site, current use, hazard information such as hundred 

year flood plain, seismic hazard, landslide hazard, steep slope hazard, and many more.  

Although, fields related to each of the above attributes were present, they were not 

always populated with data.  For example, only 14 records out of approximately 203,000 

records were populated for seismic hazard.  Therefore, by inspecting the data dictionary 

or metadata, it may appear that there are a lot of data for the City of Seattle, but in reality 

much of the fields are not populated.  This is common for other cities too, where the data 

dictionary and metadata lists a lot of fields but the fields are rarely populated. 

Although some core attribute data were attached to the parcels data layer, much of 

the building-specific information was tracked in separate tables.  Primarily, there were 

separate tables for residential buildings (with 1, 2 or 3 living units), commercial buildings 

(including apartments), apartment complexes, and condominiums with one-to-many 

relationships between the parcel data and the multiple buildings on the parcel (i.e. one 

parcel with multiple buildings in it).  Information on building square footage, 
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construction, age and height (number of stories) was tracked in these building tables.  A 

master table was compiled at the building level with data required by HAZUS™: 

information on the square footage, height, age, type of structure, use and census tract for 

every building at the centroid of the parcel.  Although information on the value of the 

building was available in the table, there were no data on the value of content in the 

buildings.  The default HAZUS™ values for building and content exposure, updated to 

reflect updated square footage information was used.  The rationale for this is discussed 

in the next section.   

The master table compiled from the residential and commercial tables was found 

to be missing buildings from about 2269 records (including 1488 records which actually 

had a building from the building footprint layer and a use other than vacant or null).  

These records were added to the master table by assigning square footage based on the 

building footprint square foot multiplied by the number of stories (based on the height of 

the building footprint from the building footprint layer).  This meant that some of these 

records did not contain any information on year built and type of structure. However, 

through this method, the square footage was improved. 

The next section will discuss in detail the quality of data for all the HAZUS™ 

required fields and manipulation of data for input into HAZUS™.   

 

4.2 Data Preparation for HAZUS™ 
 

As mentioned earlier, for inputting local data into HAZUS™, the following attributes 

were required:  use of building (or occupancy), type of building (i.e. the type of 
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construction), square footage of building, number of stories, year the building was 

constructed, census tract in which the building is located, and the value of the building 

and value of contents in the building.  The quality of information regarding each of the 

above attributes varied considerably.  Various checks and data manipulations were done 

to validate the quality of the data and improve it as are described below.  Table 4.1 below 

provides a summary of the percentage of data that is populated for the essential attributes. 

Table 4.1:  Data Input into HAZUS™ for City of Seattle 

Field Description Records populated  % populated (out of 
159,355) 

Use/Occupancy Type 159,026 99.8%
Type of Structure/Building Type 157,086 98.6%
Area/Square Footage 159,352 100%
Height/Number of Stories 159,355 100%
Year Built 157,086 98.6%
Census Tract Derived from other sources and 100% populated 
Building Value Updated through HAZUS™ defaults at the census 

tract level 
Content Value Updated through HAZUS™ defaults at the census 

tract level 
 

Use/Occupancy Type 

Since the use of every building was recorded in great detail, it was not very difficult to 

associate the building use to the building occupancy classes in HAZUS™.  Since 99.8% 

of the records were populated with information on the use of the buildings, this attribute 

was spot checked for consistency and accuracy, both of which were found to be 

acceptable.  An important aspect of the Seattle data was that all tax-exempt buildings 

(such as government, educational and religious buildings) were appropriately recorded 

and all information about them maintained in the assessor’s database.  However, records 

for the University of Washington parcels were missing attribute information.  These 
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parcels comprised one census tract with many buildings in a few parcels.  It is unclear 

why this information was missing from the assessment data, even though information 

about other universities and educational facilities were available in the database.  The 

data for buildings in the University of Washington parcels were used but their area and 

height were estimated in various ways as will be discussed later.   

Although information about occupancy/use was tracked in great details in the 

Seattle datasets, some uses did not translate easily to HAZUS™ use descriptions.  For 

example, uses such as “UTILITY” or transportation hubs such as “airport buildings”, 

“bus stations”, etc were unclear uses in the HAZUS™ occupancy classes.  It is important 

to note, that there are no consistent schemes used to track the use of land across the 

country for assessment purposes.  Therefore, there are many different classifications in 

use for this purpose.   

 

Type of Structure/Building Type 

A major challenge was in the classification of building structure type information from 

the assessor’s data into the 36 categories used by HAZUS™.  The type of structure 

information was recorded differently in the residential and commercial building tables.  

The residential building table had a field called “Percent Brick Stone” with a value from 

0 to 100.  For this research, buildings with 50 percent or more brick or stone construction 

were classified as “Masonry” and those that were less than 50 percent brick/stone were 

classified as wood construction.  The commercial building table had a field called 

“Construction Class”, which had 5 coded values for structural steel, reinforced concrete, 

masonry, wood frame and prefab steel.  This information was complete for the entire 
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table with only 8 records missing data.  Therefore, (even though the Seattle data did not 

incorporate all the 36 structure types required by HAZUS™), the data were considered 

reliable and were associated as best as possible to the generalized classification of 

structure types in HAZUS™.  The HAZUS™ software was allowed to use various 

parameters to distribute the generalized structure type information into the more specific 

structure types used in HAZUS™.  Appendix C (Table 1) shows the structure type data in 

the local assessor’s data and the classifications in HAZUS™ that they were mapped to.   

 

Area/Square Footage   

Square footage information was tracked in many different fields in various tables.  For 

example in the residential table, separate fields tracked the square footage for the 

different floors, basement, garage, etc.  In the commercial table there were two fields 

with information on gross square feet and net square feet.  Apartment complexes carried 

their own average unit size which when multiplied by the total number of units, yielded 

the total square footage.  This could also be acquired from the commercial table (since 

each apartment complex in the apartment table had multiple apartments in the 

commercial table with the corresponding square footage information).  Various checks 

were performed on the data to make sure that the information in the various fields in 

different tables was consistent and all the data triangulated well.   

As mentioned above, about 2269 records were missing square footage 

information and 1488 parcels out of these had a building footprint based on the building 

footprint data layer.  For these records, the total area was estimated by multiplying the 

area of the building footprint by the number of stories (which was calculated based on the 
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height of the building from the building footprint layer).  Of course, this was approximate 

and subject to some uncertainty.  But in the absence of any other source, this was the best 

way to estimate the square footage and since the number of parcels concerned was a 

small percentage of the total number of parcels, this method was suitable. 

 

Height/Number of Stories 

Information on the number of stories for every building was also good with very few 

records containing unlikely values.  For example, the commercial building table 

comprised of 12 buildings with 99 stories, and the residential table comprised 2 buildings 

with 30 stories (even though this table contained information for residential buildings 

with up to 3 units!).  All of these records were discarded as errors and since the number 

was very small relative to the size of the entire database, the error due to this was 

considered negligible.  It is important to note, however, that even though the larger 

fallacies were easily apparent and could be trapped through automated QA/QC, the 

inaccuracies arising out of data that were mistyped, such as 11 instead of 1, or 21, or 31, 

etc. were more difficult to track and not dealt with.  However, any database is expected to 

have some level of inconsistencies and instead of cleaning up the data completely, it was 

deemed more suitable to have a “typical” dataset.  

 As mentioned earlier, the height of some buildings were estimated based on the 

value in the building footprint layer and on the assumption that each floor is 10 feet high 

and rounded to the nearest whole number.  Of course, for older buildings, the assumption 

of height of floors to be 10 feet could itself lead to some overestimation. 
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Year Built 

The information on the age of the buildings was tracked fairly meticulously.  There was 

no missing information or grossly erroneous information.  The earliest year in this field 

was 1900 and it was assumed that all buildings built prior to 1900 were also given the 

same year of construction owing to limitations in database or software.  Since the City 

was established only in 1869, this was not considered to be a huge problem. 

 

Census Tract 

Although the assessment data carried a field for census tract, this field held 1990 census 

tract value.  The boundaries of 2000 census tracts provided by the City were used to 

assign census tract information to the parcel data.   

 

Building and Content Value 

While most assessment datasets carry information about the assessed value (sometimes 

broken up into land value and building value), it is uncommon for assessment data to 

carry information about the value of contents in the building (since content value is not 

taxed).  There are no other easily available sources for content value at the local level.  In 

previous releases of HAZUS™ (when this research was started), value information was 

not a required field.  Both building and content value were updated based on updated 

square footage information derived from local data and an assumed per square feet value 

of building and content for different uses.  In more recent releases of HAZUS™, building 

and content exposure data are required by the software if any other local data is to be 
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input.  If value of building and content is not input, HAZUS™ does not adjust for the 

improvement in square footage from the local level data.  The building and content 

exposure is replaced by default values (which is based on default square footage 

information).  The software provides no interface to populate these values based on 

content value per square foot, nor does it provide any estimates of content value per 

square foot.   

Since the local data for Seattle were prepared before the current release of 

HAZUS™ and no content value was available from assessment data, it was deemed more 

appropriate to take value per square feet (for both building and content value) in 

HAZUS™ and update the values based on the improved square footage.  Therefore, using 

the current version of HAZUS™ meant that these values had to be calculated outside of 

HAZUS™ and input into HAZUS™.  The building value and content value per square 

foot for various uses was established using default data.  In some cases, where data were 

missing, average values were used.   These values were then used to estimate content 

value for the updated local data in database calculations performed outside of HAZUS™ 

user interface.  The HAZUS™ development team provided guidance for this. 

There were various difficulties encountered in doing this.  For many census tracts, 

there were zero values for square feet in default data for various occupancies.  This meant 

that per square feet values could not be calculated for these census tracts and the 

corresponding exposure could not be calculated for updated data.  For such cases, the per 

square feet exposure was calculated for all non-zero census tracts in each occupancy 

class, and the average of this was used for the zero square footage census tracts. In 

HAZUS™, there are no data for the occupancy class Commercial 10 (COM10) which is 
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parking. This meant that exposure per square feet (for building exposure, content 

exposure) could not be calculated for this occupancy.  Therefore, for both default data 

and local data, the exposure for parking structures was missing. 

 Once the master table with all the buildings and their associated information was 

compiled from various sources into one table, this information was processed using the 

Building Inventory Tool (BIT) in the HAZUS™ software.  This tool allows users to 

create their own Occupancy Mapping matrix and replace the default schemes with new 

schemes generated from local level data.  This also generates new square footage 

information, which the user has to replace for the default square footage information in 

HAZUS™.  Since the exposure information (i.e. content and building exposure) was not 

updated using the tax assessment data, these data were not updated in HAZUS™ using 

the BIT tool.  As mentioned above, these data were updated outside of HAZUS™, and 

input into HAZUS™. 

Once the local-level data were input into the model, scenarios for various 

magnitude earthquakes on the Seattle North Zone fault were simulated using default 

building data and local building data, keeping all other factors constant to analyze the 

differences in results due to the difference in building inventory.  Before understanding 

the impact of local data on the results from HAZUS™, it is important to understand the 

deviation of default data in HAZUS™ from local data.  This is discussed in the next 

section, followed by a discussion of the damage results from various scenarios. 
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4.3 Building Inventory Data Variation – Default vs. Local Data 
 

This section analyzes the variation in default data in HAZUS™ as compared to the local 

data.  The variation is first analyzed at the city level and then analyzed at the census tract 

level to understand the spatial variation across different parts of the city.  This will help 

identify strategies to improve data and appropriate use of the results from the HAZUS™ 

model.    

 

4.31 Variation at the City Level 
 

A summary of variation of the default data from the local data is presented in Table 4.2 

and Table 4.3.  As can be seen in Table 4.2, in terms of square footage, the default data in 

HAZUS™ underestimates the total square footage for the entire City of Seattle by 

approximately 33% which is about 150 million square feet.  The variation across the 

different occupancy classes is much larger.  While the residential square footage is 

somewhat well estimated by HAZUS™ defaults, the percentage difference in 

commercial, industrial, government, agriculture and educational square footage are high.   
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Table 4.2: Variation in Square Footage by General Occupancy Classes in City of 
Seattle 
Occupancy 
Class 

Default Data 
(in thousand 
sq ft) 

Local Data 
(in thousand 
sq ft) 

%Difference 
over Default 

Total 
Difference 
(in thousand 
sq ft) 

Difference 
(% of 
total) 

Residential 357,949 339,112 -5.3% -18,837 -12.6%
Commercial 78,775 181,142 130.0% 102,368 68.5%
Industrial 11,898 23,691 99.1% 11,793 7.9%
Agriculture 602 127 -79.0% -476 -0.3%
Religion 2,983 7,100 138.0% 4,117 2.8%
Government 1,149 10,259 792.8% 9,110 6.1%
Education 2,360 43,730 1753.0% 41,370 27.7%
Total 455,712 605,160 32.8% 149,448 100.0%
 

*Notes:  The numbers here do not denote absolute percentage of difference that is 
attributable to each occupancy class because some numbers are negative.  

 

The breakdown of the residential general occupancy into specific occupancies and 

their variation is shown in Table 4.3.  Square footage for single family housing, duplex 

and manufactured housing are overestimated by HAZUS™ whereas triplex/quadruplex, 

and apartments are underestimated.  It is important to note, that the residential table in the 

Seattle data comprised of only 1, 2 or 3 units residential structures (although some uses 

were 4-Plex indicating 4 units).  All other residential structures were captured in the 

commercial and apartment tables.  Although local data provided the breakup of 

residential occupancy into various categories based on the number of units this was also a 

recent change in HAZUS™ (as mentioned in Chapter 1), and local data were compiled 

prior to this change.  Thus, all apartments were mapped to the RES3F occupancy and 

Table 4.3 shows some of the RES3 occupancy classes as 0 values.  Also, the RES3F 

occupancy therefore shows an over-inflated increase.  However, when all the multiple 

dwellings are added, HAZUS™ only underestimates multi-family housing by 4.3%.   
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It is important to look at both percentage difference as well as real difference 

since a high percentage difference on a low default value may contribute only minimally 

to total change.   Thus, as seen in Table 4.2, HAZUS™ overestimates agriculture 

occupancy by 79% but that amounts to only about half a million square feet.  On the 

other hand, a 5.3% overestimation in the residential occupancy results in the 

overestimation of almost 19 million square feet.   

Therefore, as shown in Table 4.2, HAZUS™ significantly underestimates the 

square footage for commercial, industrial, government, religion and educational 

occupancy classes.  Of the overall total change in square footage, commercial accounts 

for 68.5% of the total difference, and education accounts for more than 27.7% of the total 

difference.  The underestimation in commercial occupancy class in City of Seattle may be 

attributable to the high density of commercial occupancy in the downtown.  The 

underestimation in the commercial occupancy is concentrated primarily in retail, 

wholesale, professional and technical services, hospital, entertainment and recreation, and 

parking (the Dun and Bradstreet data in HAZUS™ does not include parking and hence 

the default shows zero values) as shown in Table 4.3.  Personal and repair services, and 

banks are overestimated by HAZUS™.   

The underestimation of the educational occupancy class in HAZUS™ default is 

also fairly large in terms of absolute difference and may be attributable to the 

concentration of educational activities in the city, including the presence of many 

universities and colleges.  Furthermore, even the tax assessment data do not provide a 

complete assessment of educational facilities since many public education facilities do 

not pay taxes.  Some of the underestimation of the education occupancy may also be 
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attributable to overestimation of the local data based on the fact that much of the square 

footage for the University of Washington were estimated by approximate means as 

discussed in previous section.  However, the local data do not make any distinction 

between educational facilities based on their educational levels.  The breakdown of 

change by specific classes (Table 4.3) shows that there are no universities and colleges in 

Seattle based on the real data.  Although some other queries could be performed to better 

distinguish between schools and higher education facilities, this was not undertaken for 

this research.  

The default data in HAZUS™ also underestimates the amount of square footage 

for industrial land use by 99%.  This amounts to 11.8 million more square feet of 

industrial space in the City than is estimated by the default data.  This underestimation is 

concentrated in heavy industry, light industry and high tech industry with some 

compensation by overestimation in foods/drugs/chemicals and construction (Table 4.3).    

Similarly, the occupancy classes, government and religion are also underestimated by 

HAZUS™. 

As mentioned in Chapter 2, the source of the data for the various occupancy 

classes is a significant factor in this underestimation – the HAZUS™ models estimates 

the square footage information for residential occupancy from Census data and for 

commercial, industrial and other uses, from Dun and Bradstreet data (Appendix A, Table 

3). The various SIC codes that are used to pull data from Dun and Bradstreet data may 

not be complete, the data tracked by Dun and Bradstreet may not capture all properties, 

or all the square footage for the properties, and hence the underestimation.  It is difficult 

to assess the source of discrepancy in the default data since the HAZUS™ User Manual 
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does not discuss in detail the methodology used by Dun and Bradstreet to compile this 

data 

Table 4.3: Variation in Square Footage by Specific Occupancy Classes in City of 
Seattle 

HAZUS 
Specific 
Occupancy Description 

Default 
Data (in 
thousand 
sq ft) 

Local 
Data (in 
thousand 
sq ft) 

Percent 
Difference 
over 
Default 

Total 
Difference 
(in thousand 
sq ft) 

RES1 Single Family Dwelling              237,548 215,584 -9.2% -21,964 
RES2 Manuf.  Housing                         613 594 -3.1% -19 
RES3A Duplex                                        14,504 12,811 -11.7% -1,693 
RES3B Triplex / Quads                           9,132 9,838 7.7% 706 
RES3C Multi-dwellings (5 to 9 units)     15,094 0 -100.0% -15,094 

RES3D 
Multi-dwellings (10 to 19 
units)                                           17,844 0 -100.0% -17,844 

RES3E 
Multi-dwellings (20 to 49 
units)                                           23,756 0 -100.0% -23,756 

RES3F Multi-dwellings (50+ units)        22,171 82,286 271.1% 60,115 
RES4 Temporary Lodging                    3,184 11,185 251.3% 8,001 
RES5 Institutional Dormitory               13,453 5,722 -57.5% -7,731 
RES6 Nursing Home 651 1,092 67.9% 442 
COM1 Retail 15,931 30,268 90.0% 14,338 
COM2 Wholesale Trade                         11,014 45,251 310.8% 34,237 
COM3 Personal and Repair Services     7,342 1,434 -80.5% -5,908 

COM4 
Professional/Technical 
Services                                       29,758 63,506 113.4% 33,748 

COM5 Banks                                          1,127 792 -29.7% -335 
COM6 Hospital                                       1,727 8,525 393.6% 6,798 
COM7 Medical Office/Clinic                 4,892 5,144 5.1% 252 
COM8 Entertainment & Recreation       6,714 12,903 92.2% 6,189 
COM9 Theaters                                      271 2,654 880.9% 2,384 

COM10 Parking 0 10,666 
Zero default 

value 10,666 
IND1 Heavy                                         4,061 14,011 245.0% 9,950 
IND2 Light                                            3,468 6,397 84.5% 2,929 
IND3 Food/Drugs/Chemicals              1,634 1,160 -29.0% -474 
IND4 Metals/Minerals Processing        201 191 -4.8% -10 
IND5 High Technology                       49 427 780.9% 379 
IND6 Construction                                2,486 1,505 -39.5% -981 
AGR1 Agriculture 602 127 -79.0% -476 
REL1 Religious 2,983 7,100 138.0% 4,117 
GOV1 General Services                         1,114 10,259 821.0% 9,145 
GOV2 Emergency Response                  35 0 -100.0% -35 
EDU1 Grade Schools                             1,079 43,730 3953.2% 42,651 
EDU2 Colleges/Universities                  1,281 0 -100.0% -1,281 
Total  455,712 605,160 32.8% 149,448 
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The variation in the overall citywide building count is much less than the 

variation in square footage.  The building count data are provided in Table 4.4.  Although 

the square footage is grossly underestimated by default data in HAZUS™, the building 

count is overestimated by HAZUS™ default data but only by 2.7% or 4,350 buildings.  

Therefore, per the local data, Seattle has more square footage but in lesser number of 

buildings, reflecting the higher densities seen in most cities.  This overestimation in 

building count can be explained by the method that HAZUS™ uses to estimate building 

count for default data.  The HAZUS™ methodology is square footage based – to estimate 

the number of buildings in each occupancy class, HAZUS™ simply takes the square 

footage information and divides it by the average size of a building in that occupancy.  

Since the size of residential buildings is smaller and there is high proportion of residential 

buildings in the city, a small variation in the average size can lead to a large variation in 

the count.  Thus, as seen in Table 4.4, the overestimation in the count of buildings is 

largely in the residential occupancy class.  This is the reason why the total building count 

is overestimated in HAZUS™, even though building counts for all other occupancy 

classes are underestimated.   

Table 4.4: Variation in Building Count for General Occupancy Classes in City of 
Seattle 

Occupancy Class 

Default 
Bldg. 
Count 

Local 
Bldg. 
Count 

Percent 
Difference over 
Default 

Total 
Difference 

Residential 159,548 147,469 -7.6% -12,079 
Commercial 3,590 8,707 142.5% 5,117 
Industrial 260 1,416 444.6% 1,156 
Agriculture 5 17 240.0% 12 
Religion 121 643 431.4% 522 
Government 98 371 278.6% 273 
Education 24 673 2704.2% 649 
Total 163,646 159,296 -2.7% -4,350 
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The other occupancy classes are underestimated also because many census tracts 

show small square footage for certain occupancy classes.  Therefore, if the amount of 

area for a particular occupancy is less than the average building size for that occupancy, 

then the building count is 0 for that census tract.  Hence the building counts are 

underestimated to a large extent.  For example, it is rather implausible that the entire City 

of Seattle has only 24 buildings for education (with only 2 buildings that are grade 

school) and 98 buildings for government occupancy classes.   Even more implausible is 

the fact that there are only 47 buildings in the City of Seattle that are used for retail trade 

(COM1 occupancy) as shown in Table 4.5.  The parameters for the average building size 

could easily be changed in previous versions of HAZUS™ but are not available through 

the interface in the current version of HAZUS™.  Table 4.5 shows the breakup of the 

building counts and their variation over specific occupancies. 

The distribution of square footage and building count by structure type is 

summarized in Table 4.6.  Since detailed structure information was not available in the 

assessor’s data to appropriately map to HAZUS™ required values (as discussed in the 

section above), this data cannot be used more effectively. The data input into HAZUS™ 

only mapped the general building types rather than the specific ones.  Matrices in 

HAZUS™ called occupancy to building type matrices were allowed to further classify 

buildings into subcategories.  Also, where no structure data were available, HAZUS™ 

was allowed to assign a structure type based on information about occupancy, height, and 

year built.  As can be seen in the table below, HAZUS™ overestimates the number of 

wood structures – since a majority of wood structures are smaller residential buildings, 

this overestimation is at par with the overestimation of single family residential (11%  
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Table 4.5: Variation in Building Count for Specific Occupancy Classes in City of 
Seattle 

Occupancy 
Class Description 

Default 
Bldg 
Count 

Local 
Bldg 
Count 

Percent 
Difference 
over Default 

Total 
Difference 

RES1 Single Family Dwelling                 148,491 132,119 -11.0% -16,372 
RES2 Manuf.  Housing                             528 130 -75.4% -398 
RES3A Duplex                                            4,458 6,477 45.3% 2,019 
RES3B Triplex / Quads                               2,582 3,008 16.5% 426 
RES3C Multi-dwellings (5 to 9 units)        1,363 0 -100.0% -1,363 
RES3D Multi-dwellings (10 to 19 units)    1,016 0 -100.0% -1,016 
RES3E Multi-dwellings (20 to 49 units)    323 0 -100.0% -323 
RES3F Multi-dwellings (50+ units)           250 5,194 1977.6% 4,944 
RES4 Temporary Lodging                       18 242 1244.4% 224 
RES5 Institutional Dormitory                   495 269 -45.7% -226 
RES6 Nursing Home 24 30 25.0% 6 
COM1 Retail 47 2,987 6255.3% 2,940 
COM2 Wholesale Trade                            314 2,155 586.3% 1,841 
COM3 Personal and Repair Services         642 275 -57.2% -367 
COM4 Professional/Technical Services     282 1,499 431.6% 1,217 
COM5 Banks                                              269 102 -62.1% -167 
COM6 Hospital                                          28 65 132.1% 37 
COM7 Medical Office/Clinic                     657 282 -57.1% -375 
COM8 Entertainment & Recreation           1,335 1,082 -19.0% -253 
COM9 Theaters                                          16 67 318.8% 51 
COM10 Parking 0 193 #DIV/0 193 
IND1 Heavy                                             118 780 561.0% 662 
IND2 Light                                               81 352 334.6% 271 
IND3 Food/Drugs/Chemicals                   26 105 303.8% 79 
IND4 Metals/Minerals Processing           5 14 180.0% 9 
IND5 High Technology                            0 20 #DIV/0 20 
IND6 Construction                                   30 145 383.3% 115 
AGR1 Agriculture 5 17 240.0% 12 
REL1 Religious 121 643 431.4% 522 
GOV1 General Services                             97 371 282.5% 274 
GOV2 Emergency Response                     1 0 -100.0% -1 
EDU1 Grade Schools                                2 673 33550.0% 671 
EDU2 Colleges/Universities                     22 0 -100.0% -22 
Total  163,646 159,296 -2.7% -4,350 

 

overestimation in RES1 occupancy as seen in Table 4.5 above).  The number of steel 

buildings is also overestimated by HAZUS™ even though the square footage of steel 

buildings in HAZUS™ is much lower than the real square footage of steel buildings in 

the City of Seattle (23.7 million sq ft as opposed to 59.8 million square ft).  This points to 
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larger building sizes of steel buildings and might account for the high density 

development in the downtown.  A similar pattern is observed for the reinforced concrete 

building type.  Reinforced masonry is overestimated but the variation in count of 

buildings is much larger than the variation in square foot information.  Precast concrete is 

underestimated in HAZUS™ default values.  A big variation is seen in unreinforced 

masonry which shows huge underestimation in HAZUS™, both in building count and in 

square footage.  The data on mobile homes were not well documented in the local data to 

make the comparison of mobile homes very useful.   

 

Table 4.6: Variation in Building Count by Building/Structure Type in City of Seattle 

Building 
Type 

Default 
Data 
(in 
1000 sq 
ft) 

Local 
Data 
(in 
1000 sq 
ft) 

Total 
Diff. (in 
1000 sq 
ft) 

Percent 
Diff. in 
Sq Ft 
over 
Default 

Default 
Bldg 
Count 

Local 
Bldg 
Count 

Total 
Diff. 

Percent 
Diff. in 
Count  

Wood 336,792 316,840 -19,952 -5.9% 153,745 133,498 -20,247 -13.2% 
Steel 23,729 59,821 36,092 152.1% 1,499 793 -706 -47.1% 
Reinforced 
Concrete 27,747 58,420 30,673 110.5% 1,491 1,360 -131 -8.8% 
Precast 
Concrete 18,536 50,246 31,710 171.1% 626 2,285 1,659 265.0% 
Reinforced 
Masonry 33,236 32,880 -356 -1.1% 4,687 1,922 -2,765 -59.0% 
Unreinforced 
Masonry 9,756 86,360 76,603 785.2% 534 19,285 18,751 

3511.4
% 

Mobile 
Homes 5,915 594 -5,321 -90.0% 1,033 130 -903 -87.4% 
Total 455,712 605,160 149,448 32.8% 163,615 159,273 -4,342 -2.7 

 

Therefore, the local data varies significantly from the default data for the City of 

Seattle at the level of the entire city.  The variation is even larger when the total square 

footage for the city is analyzed by various occupancy classes.  Interestingly, even though 

the total square footage is underestimated by HAZUS™ default data, the building count 

is overestimated (with much of the overestimation occurring in the RES1, single family 
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residential occupancy class).  The default data is also very different from the local data 

when analyzed by the type of structure information.  In the next section, the spatial 

variation in building inventory over the various census tracts in the city are analyzed in 

greater details.  

 

4.32 Variation at the Census Tract Level 
 

The summary of distribution of variation over occupancy classes for the entire City of 

Seattle provides an incomplete picture.  It is important to analyze the spatial distribution 

of the variation of data over the city in order to understand the implications of the use of 

HAZUS™ and other tools for local-level decision making.   Map 4.2 provides a visual 

representation of the spatial variation in the total square footage for the City of Seattle.  

HAZUS™ overestimates the total area in 34% of the census tracts (42 census tracts) and 

underestimates the total area in the remaining 66% of the census tracts.  The degree of 

underestimation is much larger ranging from .1% to 1385% (3000 square feet to 25.6 

million square feet) whereas the overestimation ranges from 1% to 21% only (from 92 to 

911 K sq ft).   

The highest underestimation occurs in the case of University of Washington 

census tract.  An effort was made to categorize the various census tracts into certain types 

such as Single Family Residential, Multifamily, Open Space, Mixed Use, Commercial, 

Institutional, Downtown, etc. based on the zoning dataset and aerial imagery provided by 

the City of Seattle.  This helped analyze the patterns to see if the discrepancies (i.e. 

overestimation and underestimation) could be explained by the various types of census 
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tracts.  As would be expected, most of the HAZUS™ overestimation occurs in census 

tracts that are predominantly single family residential of higher densities (i.e. lot sizes of 

5000 sq ft or 7200 sq ft) with little or no commercial or multifamily development or large 

amounts of open space such as parks.  Significant underestimation of area is concentrated 

in downtown Seattle and its vicinity along with the census tract containing the University 

of Washington.  HAZUS™ also does a poor job of estimating area for industrial census 

tracts.   

The top twelve census tracts with the highest total underestimation (in real values) 

are highlighted in Map 4.2.  These census tracts represent about 111 million square feet, 

which amounts to approximately 74% of the overall underestimation for the City of 

Seattle.  Most mixed census tracts (comprising a mix of single family residential homes, 

multifamily homes, commercial area, and/or other uses such as institutional or 

commercial) are also underestimated largely by HAZUS™.  Once the significantly large 

variations are removed from the data, the variation in square footage follows a fairly 

normal distribution.  Therefore, a few large values in some census tracts skew this 

distribution significantly.  It is important to note that the variation in the overestimation 

and underestimation is not completely and consistently explained by the type of census 

tract. Thus, two very similar census tract can each show underestimation and 

overestimation.  

One of the other census tracts that show a large variation in square footage is the 

census tract with the University of Washington.  The total area in this census tract is 

underestimated by 1384% (or 25.6 million square feet).  As mentioned earlier, the 

assessment data contained no records for buildings on the University of Washington 
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campus.  Since the area and height of buildings in much of this census tract were 

estimated from other sources (i.e. building footprint data), this census tract is somewhat 

less reliable than other census tracts.  Nevertheless, it is obvious that this census tract is 

grossly underestimated by HAZUS™ and much of this underestimation occurs in the 

education occupancy class (as high as 8551% over the default value).   

Although the residential occupancy is fairly well estimated overall for the entire 

city, the default values overestimate the residential square footage in 88 census tracts and 

underestimate it in the remaining 36 census tracts (Map 4.3).  The default overestimation 

occurs in most census tracts that have primarily higher density single-family residential 

development.  There are some census tracts that deviate from this trend (such as the 

University of Washington census tract and some mixed census tracts that contain low-

density commercial development).  HAZUS™ also underestimates the residential square 

footage in most downtown census tracts or census tracts that have mixed development or 

industrial developments or ones with few housing units (such as the census tract with 

Discovery Park).  The downtown census tracts have higher residential area because of 

high-rise apartments and also a concentration of hotels and transient lodging.  While the 

underestimation in downtown census tracts is accountable to transient lodging, it is not 

clear why other census tracts show an underestimation or overestimation since the 

residential area is derived from demographic information from the US Census.   

In direct contrast to the residential occupancy, the commercial occupancy is 

underestimated in 89 census tracts and overestimated in 35 census tracts (Map 4.3).  The 

degree of underestimation is also much larger than the degree of overestimation.  In 

absolute terms much of the underestimation is concentrated in the downtown census 
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tracts and industrial and high-density commercial census tracts.  In fact, the top 12 

underestimated tracts account for 72 million square feet, which is 70.5% of the total 

underestimation of commercial occupancy in the city.  Most of the overestimation occurs 

in census tracts that are primarily single family residential (SFR) or are SFR with open 

area and large parks.  However, the reverse is not necessarily true – i.e. not all primarily 

SFR census tracts are overestimated in terms of commercial use area.  Again, the patterns 

are not consistent based on the type of census tract. 

According to local data, a third of the census tracts (43 census tracts) have no 

industrial buildings.  However, the default data in HAZUS™ shows industrial square 

footage for these census tracts.  The industrial square foot information is underestimated 

by HAZUS™ by more than half a million square feet in 7 census tracts (6 of which can 

be classified as Industrial).  However, there are some census tracts that are industrial for 

which HAZUS™ overestimates the square footage.  Interestingly, the extreme variation 

occurs in census tract with industrial uses – some are overestimated and others are 

underestimated (Map 4.4).  There is little consistency in this and hence it is difficult to 

assess the source of such discrepancies.   

The government occupancy is well estimated for most census tracts with the 

exception of few census tracts in the downtown (which have a concentration of 

governmental offices and facilities).  Percentage difference of square feet information 

over default data is difficult to analyze for occupancy classes such as agriculture, 

religion, government and education because many of the census tracts have 0 values for 

default and the percentage change cannot be calculated.   
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The nine census tracts representing downtown Seattle are very different from the 

default values in HAZUS™ and show a much greater variation than the variation at the 

city scale.  The total square footage for these census tracts as estimated by HAZUS™ is 

almost half of the actual square footage in Seattle based on local data.  In other words, 

while the default square footage data in HAZUS™ is underestimated for the entire City 

of Seattle by 33%, for the nine downtown census tracts alone, the underestimation of total 

square footage is more than 98% (Table 4.6).  This underestimation amounts to 47.4 

million square feet of space and a large portion of it is concentrated in the commercial 

occupancy class – the square footage in the commercial occupancy is underestimated by 

160% (about 43.1 million square feet of area).  It is interesting to note that while 

residential occupancies are overestimated by HAZUS™ at the scale of the city, for the 

downtown census tracts, the residential area is underestimated.   As mentioned before, 

this could be due to the concentration of high density housing downtown and other types 

of housing that are not well estimated by census data such as hotels and transient 

lodgings commonly found in downtowns of large cities.    

The use of Dun and Bradstreet data for square footage information for other 

occupancies is also not a close reflection of the reality for the downtown census tracts as 

shown in Table 4.7.  If the top 11 contributors to change in square foot in real terms are 

removed from the Seattle data, the percentage difference goes down from 33% to 10%.  

These census tracts include some of the downtown census tracts and other commercial 

and industrial tracts around downtown, and the University of Washington census tracts. 
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Table 4.7:  Variation in Square Footage for Downtown Census Tracts in City of 
Seattle 

Occupancy Class 

Default Data 
(in thousand sq 
ft) 

Local Data 
(in thousand 
sq ft) 

%Difference 
over Default 

Total Difference 
(in thousand sq 
ft) 

Residential 16,932 19,527 15.3% 2,595
Commercial 26,894 70,002 160.3% 43,108
Industrial 1,544 1,696 9.8% 152
Agriculture 80 3 -96.3% -77
Religion 946 539 -43.0% -407
Government 839 3,544 322.4% 2,705
Education 793 139 -82.5% -654
Total 48,028 95,450 98.7% 47,422

 

The variation in type of construction (or building type) is also largely 

concentrated in the downtown census tracts and the University of Washington census 

tract.  Since the structure type information was not available in the local data for the City 

of Seattle for the University of Washington census tract, this census tract will not be 

analyzed closely for this information.  Square footage of buildings with wood structure 

are overestimated by HAZUS™ in a majority of the downtown census tract but the 

square footage for steel, reinforced concrete, precast concrete and unreinforced masonry,  

is underestimated.  However some of this underestimation is simply a function of the 

underestimation of square footage for the downtown census tracts and does not reflect 

truly a change in proportion of different types of buildings.  There are also no apparent 

patterns of systematic changes in building types and the type of census tract that can 

explain the changes.   

Thus in summary, the local data for the City of Seattle are very different from the 

default data in HAZUS™ across different types of census tracts.  It is obvious that the 

data are significantly different for the downtown commercial census tracts and for special 

use census tracts such as ones containing the University of Washington.  Although there 
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are some variations for the residential census tracts, these variations are not as stark as the 

downtown commercial and special use census tracts.  The downtown census tracts are the 

primary drivers of the difference in square footage information.  In the next section, the 

change/difference in the damage estimates from HAZUS™ using local data and default 

data is discussed.   

 

4.4 Results of Earthquake Scenarios:  Default Data vs. Local 
Data 
 
 
This section discusses the impact of the variation in the building inventory data between 

HAZUS™ defaults and local data on damage estimation from HAZUS™.  To understand 

the variation in results, the HAZUS™ model was run for the same scenario using default 

data and building inventory data from local sources, i.e. parcel and tax assessment data.  

The purpose of this was to control for building data alone while keeping all other 

variables constant to understand the sensitivity of the model to better building data.  

However, it was not possible to fully overcome the limitations posed by the lack of 

structure information in the assessment data, particularly at the level of detail required by 

HAZUS™.  The object of analysis was the loss attributable to building inventory data, 

which included direct economic loss due to capital stock loss and income loss.  Also, the 

building inventory is a major determinant on other outputs such as shelter requirements, 

casualties, and other induced losses such as amount of debris and fires.  All of these will 

also be analyzed.   

Three scenarios were modeled based on three different magnitudes at the exact 

same location.  Therefore, scenarios were run for a deterministic hazard from a Source 
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Event on the Seattle Fault Zone Northern Trace.  This is a 70.87 km long, reverse slip 

fault with a 45 degree dip angle that runs just south of downtown Seattle and has a 

potential for a maximum 7.2 magnitude earthquake.  Scenarios of magnitude 5.0, 6.0 and 

7.0 on the Richter scale were modeled with the exact same epicenter and all other 

characteristics constant (Map 4.5).  This allows the analysis of the sensitivity of the 

HAZUS™ model to local data at various magnitudes.   

 

4.41 Damage Losses at the City Level 
 
 
At the city level, HAZUS™ underestimates the total direct economic loss from buildings 

by more than $1 billion (69%) for a 5.0 magnitude earthquake, $7.9 billion (115%) for a 

6.0 magnitude earthquake, and $15.5 billion (130%) for a 7.0 earthquake.  The 

percentage difference in damage estimates increases with the increase in the magnitude of 

the earthquake.  This is in contrast with the findings of Nordenson et al (1999) where 

analysis showed that the change in inventory was more sensitive at lower magnitude 

earthquakes.  This may be attributed to the change in data in HAZUS™ since the time 

when Nordenson et al (1999) did their study or could be a result of the location of the 

modeled earthquakes vis-à-vis Seattle downtown and the dramatic effect of any 

earthquake in a densely populated area.  It may also be a result of the composition of 

buildings types – i.e. structure type, age, height, etc. 

More than 75% of the difference is contributed by building damage and content 

damage in all three scenarios.  Although the percent difference in inventory loss and 

wage loss is very large (owing probably to the variation in the data in commercial and 



  110 

 

industrial occupancy classes), in real terms, they contribute to a smaller extent 

(particularly inventory loss) on the overall loss. Other factors such as relocation cost, 

income loss, and rental income loss also contribute to a smaller extent on the total loss.  

Figure 4.1 – Figure 4.3 shows the results of loss from different scenarios.   
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Figure 4.1: Percentage Difference in Loss Due to Building Inventory Change for 3 
Earthquake Scenarios in Seattle 

 

Another interesting finding is that the percentage of total loss that can be 

contributed to building damage (structural and non-structural) is lesser with real data than 

with default data.  This is true for all three magnitude earthquake even though the amount 

of square footage has increased considerably (Figure 4.3).  This may also be a result of 

the difference in variation of the mix of buildings by occupancy and structure types.  The 

content loss as a percent of the total loss is the same with real data and default data for all 
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three earthquakes.  However, whereas the percentage of contribution of building damage 

loss increases with the increase in the magnitude of the earthquake, the percentage 

contribution of content loss decreases with the increase in the magnitude of the 

earthquake, i.e. building damage contributes a larger percentage to total loss for higher 

magnitude events and content damage contributes a smaller percentage to the total loss 

for higher magnitude events (with default data and with local data). 
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Other losses such as shelter needs, casualties and induced damage such as debris 

are underestimated by HAZUS™ default data for all magnitude earthquakes (Table 4.8 – 

Table 4.10).  The amount of underestimation increases as the magnitude of the 

earthquake increases.  An interesting finding is that the number of ignitions in HAZUS™ 

seems to be largely unaffected by the input of better quality building inventory data in all 

the three earthquakes (Table 4.10).  Interestingly, the population exposed is actually 

overestimated by HAZUS™ in the 5.0 and 7.0 event.  Also, the value exposed is also 

overestimated by HAZUS for the 5.0 event. These variations in HAZUS™ are difficult to 

explain since no change is made to the demographic data or other data such as sites 

storing hazardous material, etc.  Furthermore, it is unclear why the value exposed is 

overestimated in HAZUS™ for only the 5.0 event since value should clearly be derived 

from the value of buildings and contents which is significantly larger for the real data.  
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One explanation could be the spatial distribution of fires – if the fires affect census tracts 

that are overestimated by HAZUS™, the exposed value will also be overexposed.   

 

Table 4.8:  Variation in Shelter Needs for 3 Earthquake Scenarios in City of Seattle  
 (assuming earthquake occurs at 2 am) 

Event Shelter Need 
Local 
Data 

Default 
Data Difference %Difference 

Number of Households 
Displaced 1,608 1,283 325 25.3%

Seattle 
Fault 
Northern 
Trace 5.0 
Event 

Number Needing Short-
term Housing 430 342 88 25.7%

Number of Households 
Displaced 21,557 13,697 7,860 57.4%

Seattle 
Fault 
Northern 
Trace 6.0 
Event 

Number Needing Short-
term Housing 5,478 3,460 2,018 58.3%
Number of Households 
Displaced 46,976 27,367 19,609 71.7%

Seattle 
Fault 
Northern 
Trace 7.0 
Event 

Number Needing Short-
term Housing 11,699 6,803 4,896 72%

 

Table 4.9: Variation in Casualties for 3 Earthquake Scenarios in City of Seattle 
(assuming earthquake occurs at 2 am) 

Event Casualties Local Data Default Data Difference %Difference 
Severity 1 573 210 363 172.9%
Severity 2 87 28 59 210.7%
Severity 3 8 2 6 300.0%

Seattle 
Fault 
Northern 
Trace 5.0 
Event Severity 4 16 4 8 300.0%

Severity 1 5,310 1,587 3,723 234.6%
Severity 2 1,245 343 902 263.0%
Severity 3 160 40 120 300.0%

Seattle 
Fault 
Northern 
Trace 6.0 
Event Severity 4 312 77 235 305.2%

Severity 1 11,499 3,327 8,172 245.6%
Severity 2 3,004 816 2,188 268.1%
Severity 3 407 104 303 291.3%

Seattle 
Fault 
Northern 
Trace 7.0 
Event Severity 4 791 200 591 295.5%
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Therefore, as shown in Table 4.9 by using HAZUS™ local data, emergency 

managers, planners, and local officials could be underestimating the needs for medical 

response by 20k people with severity 1 needs, 5K people with severity 2 needs, 938 

people with severity 3, and 1830 people with severity 4 needs (for a magnitude 7 

earthquake).  These changes in result are a direct outcome of the change in building 

inventory.  It is important to note that the results can change significantly by changing 

other parameters as well, which is beyond the scope of this research.  Furthermore, Table 

4.8 shows that based on default data alone, HAZUS™ underestimates the displaced 

households by 19K households and those needing short-term housing by almost 5K.  The 

amount of debris generated could also be underestimated by over 3 million tons of wood 

and brick, and 6 million tons of concrete and steel (Table 4.10).    

In summary, the City of Seattle case study shows that the use of default data in 

HAZUS™ can result in a large underestimation of direct losses from building damage as 

compared to the use of local data.  This difference increases as the magnitude of the 

earthquake increases.  Furthermore, there is a large variation in the estimation of shelter 

needs, debris generated, healthcare needs and number of fires and exposure of life and 

property which can have serious repercussions on planning and responding to a disaster.  

The next section analyzes the spatial variation in damage across the census tracts in the 

City. 
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Table 4.10: Variation in Debris and Fire for 3 Earthquake Scenarios in City of 
Seattle 
(assuming earthquake occurs at 2 am) 
 

Event Loss Type 
Local 
Data 

Default 
Data Difference %Difference

 Debris     
Brick Wood and 
Others 440 158 282 178.5%Seattle Fault 

Northern Trace 
5.0 Event Concrete and Steel 501 242 259 107.0%

Brick Wood and 
Others 2,475 812 1,663 204.8%Seattle Fault 

Northern Trace 
6.0 Event Concrete and Steel 4,784 1,817 2,967 163.3%

Brick Wood and 
Others 4,354 1,428 2,926 204.9%Seattle Fault 

Northern Trace 
7.0 Event Concrete and Steel 9,360 3,302 6,058 183.5%
 Fires  

Number of Ignitions 15 14 1 7.1%
Population Exposed 591 782 191 -24.4%Seattle Fault 

Northern Trace 
5.0 Event 

Value Exposed (in 
thousand $) 56,637 64,713 -8,076 -12.5%
Number of Ignitions 58 55 3 5.5%
Population Exposed 2,386 2,378 8 0.3%Seattle Fault 

Northern Trace 
6.0 Event Value Exposed (in 

thousand $) 172,623 167,639 4,984 3.0%
Number of Ignitions 85 83 2 2.4%
Population Exposed 3,750 3,883 -133 -3.4%Seattle Fault 

Northern Trace 
5.0 Event 

Value Exposed (in 
thousand $) 322,601 277,837 44,764 16.1%

 

4.42 Damage Variation at Census Tract Level 
 

As discussed before, it is also important to analyze the spatial patterns of variation in loss 

over the different parts of the city when default data is used versus when local data is 

used.  An interesting finding of this research is that, even though HAZUS™ 

underestimates the total square footage and building count in some census tracts, and 

overestimates it in other census tracts, the total building economic loss is underestimated 

by HAZUS™ for all the census tracts for all three magnitude earthquakes (with the 
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exception of one downtown census tract that default data overestimates the total building 

economic loss for a magnitude 5 earthquake).  Therefore, even though the square footage 

is overestimated by HAZUS™ in some census tracts, changes in other building 

characteristics in the local data leads to more damage even with lower square footage and 

hence the loss is underestimated by HAZUS™ default data.   

The following analysis focuses only on the 7.0 magnitude event.  Map 4.6 

represents the spatial variation in direct economic loss due to building damage as a result 

of using local data for a magnitude 7.0 earthquake.  In real terms, the variation is less for 

residential census tracts and increases with more mixed land use census tracts and 

downtown census tracts.  In keeping with the findings with respect to spatial variation of 

building inventory, this analysis reveals that the census tracts in the downtown show 

large underestimation in loss due to building damage in real terms.  This may be 

attributable to the larger change in local data from default data in these census tracts and 

to the fact that the epicenter of the modeled earthquake and the source fault are very close 

to the downtown.  The total loss for the 9 Downtown census tracts discussed before is 

156% more when local data is used.  However, in percentage terms, the difference is not 

the highest in the downtown census tracts but is scattered across the City.  The University 

of Washington shows the largest difference in total loss from building, both in real terms 

and in percent difference.  Similar patterns are exhibited by the difference in building 

damage loss and loss due to damage in content in buildings.  
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4.5 Conclusions 
 

The case study of City of Seattle proved to be an excellent one for many reasons.  The 

City of Seattle not only had a good GIS program (with many GIS datasets easily 

available along with good metadata), but more important, the assessment data for the City 

were very robust.  The data were reliable as was validated by the triangulation of many 

fields that tracked square footage.  Furthermore, the City of Seattle data also had 

information about tax exempt properties that provided an accurate description of the 

religious, governmental and educational properties.  This is often lacking in tax 

assessment data, making them less useful for damage assessment.  However, the data 

lacked information on the University of Washington, but this was confined to one census 

tract and because this was identified, various steps were taken to estimate this.  Other GIS 

datasets such as orthoimagery, building footprints, census tract boundaries and zoning 

proved to be very helpful in quality assurance and analysis. 

The findings of this research clearly indicate that local level data, particularly 

parcel data with corresponding tax assessment data, are an invaluable source for building 

information in damage estimation and hazard assessment models.  The research finds that 

even with a good dataset such as the one used here, there are limitations in the granularity 

of the data for the type of structure as required by HAZUS™.  Although most assessment 

data do not carry the same granularity with respect to structure types that is required by 

HAZUS™, the advantages of having better square footage information over different 

occupancies alone can result in major differences in overall loss for the City as a whole.  

Furthermore, the improvement in data also changes distribution of losses attributable to 

different occupancy classes, and also to the spatial distribution of losses in the city.    
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An important challenge to using local data involves the availability of information 

on content value.  While information on building value is available from tax assessment 

data, the value of content is not easily available from any local source.  Therefore, this 

information is a more suitable candidate for estimates based on state or national averages.  

Furthermore, this information does not change too much across the Country.  However, 

in the current version of HAZUS™, it is not possible to do this through the interface.  

Therefore, through the use of BIT tool, the square footage information can be updated to 

reflect the local data, but if the dollar exposure (building and content values) is not 

provided, this information remains at the default value and hence there is minimal change 

in losses and damage assessments.  Therefore, it is virtually useless to improve the square 

footage without improving the exposure values through the use of local data.  In the 

current research, some improvement in building and content value information was done 

to reflect at least the changes in the square feet information.  Because there is no user 

interface provided in HAZUS™ to do this, it had to be done outside of HAZUS™ with 

help from the HAZUS™ development team.   

This research finds that the default building inventory data in HAZUS™ 

definitely need improvement.  The HAZUS™ manual should provide a better description 

of the source of the default data and how they are input into HAZUS™.  This would 

inform the decision-makers on the reliability of the model and inform them of 

appropriately using the model.  While the variation in education, government and religion 

occupancy is somewhat expected (since the Dun and Bradstreet data do not provide good 

estimates for these classes), the large variation in the commercial and industrial 

occupancies are unexpected and not easy to explain.  The variation in building inventory 
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is less in residential census tracts and more in mixed, commercial, industrial and 

educational census tracts.  Particularly the downtown shows stark differences from the 

default values in HAZUS™.  By simply improving the data for the downtown and its 

vicinity, and the University of Washington census tract, a lot of improvements can be 

affected for the entire City of Seattle.   

This research also indicates that a smaller change in inventory can lead to a lot 

larger variation in the total loss.  This variation increases with increase in magnitude of 

the earthquake.  The impact of change is not confined to economic loss alone, but is 

spread to other output results that can have a significant impact on the management of the 

disaster.  For example, the results shown in Table 4.7 indicate that by using default data, 

local officials could severely underestimate the need for hospital rooms, medical services, 

morgues, shelters, equipment for clearing debris, and so on.  Furthermore, the need for 

personnel to respond to the disaster (such as inspect buildings, coordinate shelter needs, 

etc.) can be seriously underestimated when default data is used.  This can result in poor 

preparedness and longer recovery.  Finally, if HAZUS™ is used in the response stage of 

a disaster to request assistance (both operational and financial) from higher levels of 

government such as state and federal governments, the requested aid may be much 

smaller than the impact of the disaster.    

It may be argued that the HAZUS™ tool is meant for regional assessments (where 

overestimation in one area can be compensated by underestimation elsewhere).  

However, the findings of this research show that the variation, even at the city level 

implies that inappropriate distribution of aid and logistical resources will occur when 

decisions are based on the results of the default data in the HAZUS™ model.  It also 
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means that poor decisions will be made regarding mitigation measures and where further 

investment needs to be made to minimize the loss of life and property (such as retrofitting 

buildings, etc.).   

Even at a regional level, the scenarios can show some misleading patterns if large 

cities are part of the region.  For example, the State of Washington can make some 

flawed decisions by using scenarios in HAZUS™ with default data to compare loss 

estimates over several jurisdictions to help prioritize resources on a larger scale.  

Therefore, national level estimates or other large-scale aggregate data for building 

inventory can severely restrict the use of tools such as HAZUS™ for local-level decision-

making.   

At the scale of King’s County or the City of Seattle, officials would have to be 

extremely cautious in using HAZUS™ with default building inventory data to make 

choices about mitigation measures for various parts of the city and run what-if scenarios.  

At the very least, it is crucial that data for the downtown and surrounding census tracts or 

special census tracts such as the one with University of Washington or with highly 

specific occupancies be examined very carefully before making any local decisions about 

allocation of limited resources for different mitigation measures and their impact. 

Finally, it is not easy to assimilate local data into the HAZUS™ models, 

necessitating the need for some expertise with databases and GIS.  Even with good data 

and a well-structured dataset with reliable values, data manipulation needed significant 

expertise in GIS, databases, and HAZUS™.  Hence, data preparation should be 

undertaken by a team knowledgeable about all three aspects discussed above.  

Furthermore, some knowledge of the assessment data and planning data is useful.  
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Therefore, in order to use HAZUS™ with local level data, an emergency manager would 

need the expertise and help of people in different departments.  It is therefore useful to 

assemble the data before the event rather than in the aftermath of a disaster.  Once the 

data are improved and assembled, they can be a significant resource for preparedness, 

exercises and planning. 
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Chapter 5: City of Long Beach Case Study 
 

5.0 Introduction 
 

The City of Long Beach was chosen as a case study because it represented a “typical” 

medium sized city that had a decent GIS division and many GIS datasets (although not as 

advanced as Seattle).  The City also expressed it’s willingness to share data for this 

research and there is an imminent threat of earthquakes in the City (since the Newport-

Inglewood fault runs through the City).  This chapter will present the findings from the 

Long Beach case study.  It is structured similar to the previous chapter on the case study 

of the City of Seattle.  In this section, a general introduction of the City is provided.  This 

is followed by an overview of GIS in the City and the GIS data provided by the City for 

this research.   A detailed discussion of preparing these data for use in HAZUS™ follows 

and focuses on data availability, completeness and accuracy and on suitability for input 

into HAZUS™.  The next section discusses the variation of local-level data from default 

data in HAZUS™ - the section explores the variation for the city as a whole as well as for 

the various census tracts in the City of Long Beach.  The results from running various 

scenarios of earthquakes will then be analyzed – again looking at the variation of results 

between using local data and default data in HAZUS™ at the scale of the city and at the 

census tract level.  Finally, the chapter will summarize the findings from this case study.   

The City of Long Beach is located in the Greater Los Angeles Metropolitan 

Region about 22 miles south of downtown Los Angeles.  The city was incorporated in 

1897 and has a population of 461,522 (US Census 2000).  The population of Long Beach 
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has been steadily increasing – the population grew from 358,879 in 1970 to 361,355 in 

1980 to 429,433 in 1990 and 461,522 in 2000.  According to the 2000 US Census, Long 

Beach is the most ethnically diverse city in the United States, comprising 45.16% White, 

14.87% African American, 0.84% Native American, 12.05% Asian, 1.21% Pacific 

Islander, 20.61% from other races, and 5.27% from two or more races.   

The city comprises an area of 50.4 square miles and density of 9,157 in 2000.  It 

is ranked 34th in population in the United States and 5th in the State of California.  The 

City surrounds another jurisdiction called Signal Hills which is 2 square miles in area 

approximately (Map 5.1).  The City of Long Beach provides many services to Signal 

Hills although it is a separate jurisdiction.  Long Beach is a hotbed for earthquake 

activity.  In the period 1812-1979, there have been about 24 earthquakes ranging in 

magnitude from 5.1 to 6.9 on the Richter scale in a 35-mile radius of the City.  Hence, 

earthquakes are not a remote possibility in the City of Long Beach but an imminent 

threat.   

The City of Long Beach is the busiest port on the West coast and has a mix of 

industries (some of the biggest employers in the City include the Long Beach Unified 

School District, Boeing, City of Long Beach, California State University, Long Beach 

Memorial Medical Center, VA Medical Center, St. Mary Medical Center, Verizon, etc).  

Corporations such as Epson America, SCAN Health Plan, (a Medicare non-profit HMO) 

and Molina Health Care Inc (a Medicaid management healthcare program) are 

headquartered in Long Beach.  Subsidiaries of Toyota make car parts in Long Beach and 

Polar Air Cargo, an international cargo airline is based in Long Beach 

(http://en.wikipedia.org/wiki/Long_Beach,_California).    
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5.1 GIS Description and Data Quality 
 
 
The City of Long Beach has an Enterprise GIS program in the GIS Central Management 

Division housed in the Department of Technology Services.  This GIS Central 

Management Division has 4 GIS professionals lead by a GIS Project Manager who was 

the respondent for the survey in this research and also provided the data for the in-depth 

case study.  Organizationally, it is a typical enterprise implementation.  Most core GIS 

activities take place in the GIS Central Management Division and there are other GIS 

professionals or advanced users in the various departments (4 in Water, 1 in Gas, 2 in 

Public Works, 2 in Planning and Building).  There are several users of GIS data and 

services spread over various departments in the city administration.   

The City’s GIS Central Management Division is responsible for 

creating/procuring and maintaining many key enterprise datasets including parcels, 

building footprints, street centerline, ortho-imagery, digital elevation model, schools, 

hospitals, fire stations, etc.  The Los Angeles County creates the tax assessment data and 

only limited fields are made available to the City for use at a charge.  Although the City 

of Long Beach has a good GIS program, unlike the City of Seattle, there are no proper 

policies for data sharing and no prepackaged CDs containing data for the city.  For this 

research, the GIS Project Manager at the GIS Central Management Division provided all 

the required GIS datasets.  These datasets included: parcels, building footprints, city 

boundary, census tracts, location of schools, hospitals, fire stations, police stations, 

earthquake zones and liquefaction potential zones, and ortho imagery.   

The parcel dataset consisted of 88,264 parcels which included parcels that had 

multiple owners (or condos).  There were no core attributes attached to the parcel 
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database.  However, an APN (a 10 digit assessor’s parcel number) was assigned to each 

parcel through which assessment data could be linked or joined to the parcel data.  APN 

numbers whose last three digits ended with 500, 501, 502, 503 or so on tracked parcels 

with multiple owners in the parcel data.  A corresponding table that tracked all the 

multiple parcel numbers for each of these parcels was provided and this table was linked 

to the assessor’s parcel attribute table.  The parcel data set is updated on a monthly basis 

by the City of Long Beach and was provided in December 2003 for use for this research. 

The building footprint data were compiled by the City of Long Beach in 1985.  

Since then, no major updates were undertaken until 2003.  In 2003, the GIS Central 

Management Division updated some of the large buildings.  The building footprint data 

did not carry any meaningful attributes with them (besides the polygon area and 

perimeter).  The height/elevation of the footprint polygon was not captured in the data 

(even though the data was compiled through photogrammetric techniques).  Because of 

the lack of attribute data and the lack of reliability of this dataset (in terms of updates), it 

was originally deemed to be of limited use but was later used extensively.  

The City also provided high altitude color orthoimagery (coarse resolution with 3 

m pixels).  Although more recent imagery was available (from 1999), this was in a format 

that was too large to be provided for this research without a lot of work on the part of the 

City.  Since orthoimagery was used only for verification purposes in this research this 

was not considered a major setback.   Furthermore, where necessary, imagery from public 

sources such as Google (www.google.com) was used. 

The tax assessment data were not easily acquired for the City of Long Beach.  The 

City was unable to provide these critical data, which are created and maintained by the 
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Los Angeles County Tax Assessor’s Office.  The City had limited access to these data 

through a software application that allowed them to view the tax assessment data record 

by record and with limited attributes.  Some cumbersome process/script was available to 

do exports of the data in another format such as dbf, or txt file, but this had to be done by 

postal zip codes and the city lacked the personnel to do this.  They wanted direct 

acquisition of the data from the County for this research.  This was not easy since Los 

Angeles County charged 2 cents/parcel for tax assessment data and this charge was not 

waived for anyone (even for research purposes).  The cost of getting the data directly 

from the County was more than $2,000.  However, the data were available through 

various resellers and these were used for this research.  The data used were from a 

company called DataQuick and dated to June 2001.  The data were available through an 

application and had to be downloaded by zip code and compiled for the entire city by 

querying for every zip code in the city.  The data carried an APN number through which 

it could be linked to the parcel data.  The data were checked randomly for reliability and 

consistency with approximately 100 records against data available through an Internet 

website (Los Angeles County Office of Assessor, 

http://assessormap.co.la.ca.us/mapping/viewer.asp).  The randomly selected data were 

found to be in conformity with the data provided by the reseller and hence this third party 

source was considered to be reliable for the purposes of this research. 

In terms of completeness, about 99% of the parcel data had corresponding data in 

the tax assessment tables.  The remaining 1% missing data may be attributable to data 

entry errors and the difference in time periods between the GIS parcel data and the tax 

assessment data.  As in the case of City of Seattle, although the assessment data carried 
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many fields (describing the parcel, its ownership, value of land, tax status, and building 

characteristics), very few were actually populated.  However, unlike the City of Seattle, 

only one single table was used to track all the data (whether it was a residential property, 

commercial property, or condos).  This may have been because the data were acquired 

from a third party and they may have collapsed multiple tables into one table.  

Furthermore, attribute data for single parcels were often tracked in multiple records in the 

parcel data, with only one of these records being complete or current.   

Table 5.1 lists the key fields needed by HAZUS™ and the percentage of data that 

were populated.  As can be seen from Table 5.1, data on use of parcel, the square footage 

of living area, and the year built were very well populated and varied from 95% - 99% of 

the data.  An analysis revealed that 4% of all the parcels were vacant and hence were 

unlikely to carry any of the above information.  However, as can be seen on Table 5.1, 

data on the height of the building, and the type of structure were very limited and posed a 

major challenge.  Various assumptions, discussed below, were used to improve the data 

as much as possible before inputting into HAZUS™ and the improvement in data is also 

shown in Table 5.1. 

 

5.2 Data Preparation for HAZUS™ 
 

Unlike the City of Seattle where assessment data were modeled with the individual 

building in mind, the data for the City of Long Beach were tracked with very little 

consideration to the individual building and the parcel was the smallest unit at which the 

data could be meaningfully used.  For this research, the parcel was considered the 
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smallest unit and the individual buildings in each parcel were not modeled separately as 

there was no way of allocating the square footage, year built, use etc. to each building.  

Since HAZUS™ estimates the number of buildings based on area of the building and the 

average area based on the use of the building, this was not a major handicap.   

As mentioned above, the assessment data carried various fields of data but with 

different degrees of completeness.  While the data for use, area, and year built were fairly 

complete, the data for height of the building and the type of construction (or structural 

system) of the building were incomplete.  It is important to note that just because a field 

is populated with value, it does not mean that the data is good or meaningful.  There may 

be data entry errors, or classification inconsistencies that can render the data difficult to 

use.  These will be discussed below about each field along with the methods for 

improving the data or supplementing the data for each of the above categories required.  

It is important to note that the assessment data for City of Long Beach had multiple 

records for many parcels.  This was particularly the case for parcels with multiple 

owners.  All values in the multiple records were similar with only one or two field values 

different.  Thus for each parcel, the most pertinent information was derived from 

different records for that parcel.  For example, the maximum square footage, minimum 

year built, maximum number of stories was used for each unique parcel number.  For 

string fields, data was sorted for the field and both first and last values were compared for 

fields such as type of construction, condition, quality, IRIS landuse.  In the case where 

values of these were the same, they were used as is.  For the purpose of this research, the 

parcels with multiple ownership records (condos) were treated separately from the 

parcels with single ownership and various rules were used to select the appropriate record 
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as will be discussed under.  Once the calculation for area, height and use were completed, 

the two types of parcels (parcels with single ownership and parcels with multiple 

ownerships) were merged together in a single table and joined to the parcel data for the 

whole city. 

The following is a discussion of the local Long Beach data for the fields required 

by HAZUS™. 

 

Use/Type of Occupancy 

The use of parcel was tracked in the field called “Iris_land”.  Although this data was 

fairly complete (more than 99% as shown in Table 5.1), there were various discrepancies 

in how the use of parcel was recorded in the data.  For the City of Long Beach, there 

were 82 different uses ranging from single family residential to airport to cemetery.  

While there was only one use for single ownership parcels, some of the multiple 

ownership parcels had multiple uses.  In this case, the most common or large use was 

considered the use of the parcel (without allocating areas to different uses).  Some of the 

use descriptions were not very meaningful – for example, condominium is a type of 

ownership, not a use.  The Long Beach data tracked condominium as a use - the use 

condominium can refer to either a residential use or commercial use.  This was not 

possible to determine through a generic use such as “condominium”.  Likewise, many 

parcels had a use of PUD (which stands for Planned Unit Development, and are usually a 

mix of commercial, residential, light industrial, open space, and trails etc).  PUDs 

indicate more a zoning type than a use of land.  There was no way to break PUDs into 
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occupancies such as residential, commercial, etc.  All PUDs were therefore assigned to 

residential occupancy since a review of PUD parcels indicated largely residential use.   

Similarly, “utilities” as a use does not specify the use by specific kinds of utilities 

such as electricity, gas, communication, etc.  Another example is that of use “Public 

Service” which contained public lands, governmental and administrative buildings and 

even public housing (which are completely different uses).  However, such 

inconsistencies were very difficult to correct and were left as is for the most part – only 

the glaring mistakes and errors were corrected.  Given the poor quality of the data, other 

GIS data were used to supplement or correct existing data.  For example, all parcels that 

had a school on them (based on Schools data provided by the city) were calculated as 

Education land use (some of these parcels had to be selected manually).  All parcels that 

had a hospital on them were coded hospital/nursing home, and those that had fire stations 

and police stations were also coded as government emergency services.  Finally, all 

parcels that had “*Housing Authority*” as their owner were coded public housing.  Other 

uses were left as is.  The use could be further refined through the field that recorded 

owner names – however this is a very labor-intensive task and beyond the scope of this 

dissertation. 

The City of Long Beach or the Los Angeles County did not collect information on 

government owned parcels or parcels owned by tax exempt agencies such as schools, etc.  

This is unlike the case of City of Seattle but very much a standard practice in most 

assessment data.  For such landuses, some of the above data were improved through other 

means, though not the most accurate, as is discussed below.  For parcels with multiple 
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ownerships, the most common and widespread use for each parcel was used to determine 

the use of the parcel.   

Some local uses could not be mapped to HAZUS™ uses.  For example, 350 

records that had occupancy information in the local data could not be mapped – most of 

these were uses such as utilities, cemetery, airport, truck terminal, TV facility, easement, 

waste disposal, truck terminal, etc. While many of these are empty parcels, some (100 + 

records) had building footprint on them, amounting to 6 million square feet of space.  

These records were discarded by HAZUS™ when processed by the BIT tool.    

 

Type of Construction/Type of Structure 

As in the case of City of Seattle, the information available to determine the type of 

structural system, and building material was very limited in the assessment data and the 

classifications were nowhere as detailed as the 36 classes required by HAZUS™.  

However, unlike the City of Seattle where the data were sufficiently complete for the 

type of construction, in the City of Long Beach, the field with information about the type 

of construction/structure was very incomplete.  Only 16% of the data had information on 

the type of construction and there was little else to supplement that information.  Another 

field tracked the frame code and this was also populated sparsely.  Furthermore, the 

frame code was often populated where the construction was not even frame. Appendix D, 

Table 1 and Table 2 show the various types of construction information and frame codes 

available from the Los Angeles County Assessor’s Office.   

The field tracking frame code was combined with information on the type of 

construction.  Therefore, where there was no information on the type of construction, but 
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there was information on the frame code, the frame code data was used to supplement the 

type of construction information.  Otherwise the two were combined together and later 

classified into HAZUS™ structure types.  By combining these two fields, the 

construction information was improved from 16% to 17.5%.  Since 99% of the structures 

in parcels with land use single family residential (SFR) were frame construction, it was 

fair to assume the remaining parcels with land use SFR with no construction information 

to be frame structure.  This significantly improved the percentage of data populated from 

17.5% to 84%.  However, by doing this, an inherent bias was introduced in the data 

where the single family residential had better information on construction than other land 

uses.  Particularly the type of construction for many of the important high rise buildings 

was still missing through this methodology.  However, since no other source of 

information was available, this could not be improved any further.  For the remaining 

16% of the data, it was decided that HAZUS™ could use default structure types based on 

the height of the structure, use, and the year the structure was built.   

 

Area/Square Footage 

Square footage information was well recorded for 95% of the parcels in the City, and was 

used as the source for area information.  For parcels with multiple ownerships, the living 

area of each owner was recorded separately and was aggregated to calculate the total 

square footage of that parcel.  For the parcels with no area information, the area of the 

building footprint was used as the total area of the building for that parcel (since for 

parcels with no square footage information, the number of stories was also missing).  

This may have underestimated the area since many of the buildings probably had 
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multiple stories.  However, it does significantly reduce the underestimation that may have 

occurred without doing this.  Furthermore, since many of the footprints themselves could 

be larger than the living space (to account for canopies, staircases, multiple car attached 

garages etc), it was fair to assume that this step was a rational one.   

Approximately 26 million square feet of space was calculated by using building 

footprints for parcels that had use information.  Much of this space was concentrated in 

the government (6.2 million sq ft), education (8.9 million sq ft) occupancy classes, and 

under the utilities (1.5 million sq ft) and airport (3.9 million sq ft) uses.  By 

supplementing the area information as such, the data were improved by almost 1.5% as 

can be seen in Table 5.1.  There is also a possibility of overestimation in some cases by 

using the assumptions as some building footprints may represent sheds or temporary 

shelters, oil tanks, etc.  In the absence of anything in the building footprint dataset to 

distinguish between buildings and non-buildings, there is no way to remove these 

extraneous structures.   

Table 5.1:  Improvement of Assessment Data through Supplementing in City of 
Long Beach 
Field Description Records 

populated (out 
of 88017) 

% populated Records 
populated by 
supplementing 

% records 
populated 
by 
supplement-
ing 

Use of Parcel 87,123 99% 87,130 99%
Area/ Living Area 83,696 95% 84,872 96.4%
Age/Year Built 83,697 95% 83,697 95%
Height/No. of Stories 63,982 73% 83,059 94%
Type of Construction 13,812 16% 64,248 73%
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Age/Year Built 

There were no supplemental data available to improve this field.  Since 95% of the data 

was already populated, this was considered suitable enough for this research. 

 

Height/Number of Stories 

Information about height/number of stories needed significant improvement since only 

73% of the data had height information as shown in Table 5.1.  Various steps were used 

to calculate height/number of stories.  For all data that had height/number of stories 

information in the assessment data, this was used without any changes.  For multiple 

ownership parcels, the highest number of stories was used.  For records that had no 

information about the number of stories, but had information on the total living area, the 

number of stories was calculated by dividing the total living area by the area of the 

building footprint in that parcel.  All footprints of less than 600 sq. feet were discarded to 

eliminate small sheds, detached garages, etc.  For parcels with no information on living 

area, the height was assumed to be 1 storey.  This method had some errors due to the 

different vintage of GIS data and assessment data (the GIS analysis caused some building 

centroid to fall in a different parcel, etc).  All height information that was calculated in 

the above manner that was over 8 stories was reviewed case by case and corrected based 

on aerial imagery and other sources on the Internet.  For records that didn’t have height 

information or area information in the assessment data, the height calculated based on the 

building footprint was obviously 1 storey.  Since HAZUS™ lumps height into 3 main 

categories (>8 stories, 4-7 stories, and 1-3 stories), for the most part, it was assumed that 
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for a majority of the data that the height was calculated, the information led to 

classification in the correct category for HAZUS™ purposes. 

 

Census Tract 

Although there was a field in the assessment data to track the census tract of every parcel, 

this data was also not complete and it was more suitable to assign census tracts based on 

the census tract layer provided by the City of Long Beach. 

 

Building and Content Exposure 

Exposure data for the City of Long Beach was not compiled because of the research 

design discussed in detail in Chapter 4.  For the City of Long Beach, it was obviously not 

easy to get this information as the data had a lot of issues and various assumptions were 

used to interpolate and populate square footage and other attribute data.  However, such 

interpolation was not possible for value data.   As expected there was also no information 

in the assessment data about content exposure.  Therefore, the exposure per square feet 

for every census tract was calculated for both building and content exposure from 

HAZUS™ default data to reflect the updated areas as was done for the City of Seattle.  

Similar issues to Seattle were encountered for this (a detailed discussion in provided in 

the previous chapter).  Other fields such as condition and quality were left as is and were 

mapped to corresponding fields by using the Building Inventory Tool (BIT) in 

HAZUS™.  It is important to note that even though a lot of fields were populated, not all 

values could be mapped to HAZUS™ classifications.   
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Therefore, in conclusion, for a city with sketchy assessment information, it is not 

easy to transform the local data to HAZUS™.  Various GIS datasets were useful in 

making assumptions and improving the data.  However, this embedded a level of 

uncertainty that is difficult to quantify.  It was particularly difficult to map the 

information on the type of building, since there were very few sources of this data other 

than assessment data.  On the other hand, there are hardly any sources for these data for 

the content exposure at the local level.  HAZUS™ does not provide any tools to update 

the content and building exposure value based on improvements in other data 

(particularly square footage data) based on local data.  In the absence of improved 

exposure information, it is virtually useless to improve other data using local data.  

However, like the City of Seattle some back door methods were used to incorporate the 

improvements in exposure values into HAZUS™ for this research.   

In the next section, the variation of default data from local data will be analyzed, 

first for the City as a whole and then at the level of the census tracts.  This will be 

followed by an analysis of change in damage estimation for the same scenarios when 

default data and local data are used.   

 

5.3 Building Inventory Data Variation – Default vs. Local Data 
 

This section will analyze the difference in default data in HAZUS™ as compared to the 

local data.  The differences will be first analyzed at the city level and then analyzed at the 

census tract level to understand the spatial variation across different parts of the city.  
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This will help identify strategies to improve the data in HAZUS™ and to use the model 

appropriately.    

 

5.31 Variation at the City Level 
 

The variation of building inventory data for Long Beach is presented in Table 5.2.  The 

local data for the City of Long Beach compares well with HAZUS™ default data with 

respect to the total square footage in the city.  However, even though the data compares 

well, it is to be noted that the real data is underestimated in itself because of poor quality 

data and the method used to interpolate some missing data as discussed before.  

Furthermore, the BIT tool discards data that has missing values in some fields (if 

use/occupancy is not available, the data is discarded).  Therefore, although 270 million 

square feet of data was input into BIT for Long Beach, the output from BIT reduces it to 

252 million square feet.  Thus, the default data is off from the original input data by 8.4% 

but after being processed by BIT in HAZUS™, records that have unknown 

use/occupancy information are discarded and this makes the data off by only 2.3%.   

As mentioned before, the 270 million sq ft is in itself an underestimation - 36 

million sq ft of space was calculated by using the building footprint area and with the 

assumption of 1 storey structure.  Thus, for buildings that were more than 1 storey, there 

was a significant underestimation.  If area was assumed to be two stories and all the 

unknown uses were mapped to some use, this would lead to the default data being off by 

about 23%.   However, given the poor quality of the local data and the assumptions made 
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to calculate some of the missing data, it is difficult to say what is closer to reality in the 

case of Long Beach. 

Even though the overall square footage is well estimated by HAZUS™ default 

data for the City of Long Beach, there is significant variation in the various occupancy 

classes as can be seen in Table 5.2.  The square footage for the residential occupancy 

class is overestimated by HAZUS™ defaults for the City of Long Beach.  The only other 

occupancy class that is overestimated by HAZUS™ is the agriculture occupancy.  All 

other occupancies are underestimated by HAZUS™ and the percentage difference over 

default is very high for government and education occupancy classes.  However, in real 

terms, the higher variations are seen in the residential and commercial occupancy classes.   

 

Table 5.2: Variation in Square Footage by General Occupancy Classes in City of 
Long Beach (in thousand square feet) 

 Occupancy Default Data  Local Data Total Difference 
Percent Difference 
over Default 

Residential 215,773 173,109 -42,664 -19.8%
Commercial 26,929 49,952 23,022 85.5%
Industrial 4,325 15,533 11,207 259.1%
Agriculture 94 44 -50 -52.7%
Religion 991 2,618 1,627 164.2%
Government 308 6,925 6,617 2,147.1%
Education 1,167 7,088 5,920 506.9%
Total 249,590 255,270 5,680 2.3%

 

The overestimation for the residential occupancy class is very high in real terms 

and offsets the underestimation in many other classes so that the data appears very 

accurate overall in terms of total square footage in Long Beach.   Table 5.3 shows that a 

high degree of the overestimation of the residential occupancy class is concentrated in 

single family homes.   However, the square footage for duplexes and triplex/quads 
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(RES3A and RES 3B) are underestimated and the square footage for multi-dwellings 

(with the exception of dwellings with 20-49 units) are overestimated by HAZUS™.  

These findings might be a reflection of the demographic make-up of the City of Long 

Beach.  Temporary lodgings are also underestimated by HAZUS™ and this might reflect 

the greater number of hotels and temporary lodgings that tend to be concentrated in 

downtowns and large cities.  The local data did not yield itself to be categorized into 

Institutional dormitory and hence the overestimation by HAZUS™ for this occupancy 

class.   

The commercial occupancy class is also underestimated in HAZUS™ and much 

of this underestimation is concentrated in COM1 occupancy class (retail trade) and 

COM4 (professional/technical services).  A part of the underestimation in HAZUS™ is 

also contributed by the fact that the default data in HAZUS™ does not contain any data 

for parking garages.  There is also a lot more wholesale trade in Long Beach than is 

estimated by HAZUS™ and this might be a reflection of an old city with a lot of 

warehousing and old industrial uses.  The square footage for banks is overestimated by 

HAZUS™.  Industrial occupancy as a whole is underestimated by HAZUS™ as seen in 

Table 5.2 and the amount of square footage for industrial occupancy is less than half of 

what is in the local data.  This underestimation is spread throughout all the specific 

occupancy classes within the industrial general occupancy class including heavy 

industries, light industries, high tech, and foods/drugs/chemicals.  The default data 

overestimate the square footage for construction and metals/minerals.   

Other occupancies that are underestimated by HAZUS™ are the religious, 

government and education occupancy classes.  It is interesting to note that two-thirds of  
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Table 5.3:  Variation in Square Footage by Specific Occupancy Classes in City of 
Long Beach (in thousand square feet) 

HAZUS 
Specific 
Occupancy Description 

Default 
Data  

Local 
Data 

Total 
Difference 

Percent 
Difference 
over 
Default 

RES1 Single Family Dwelling                  132,543 99,849 -32,694 -24.7% 
RES2 Manufactured Housing                   2,283 1,268 -1,016 -44.5% 
RES3A Duplex                                            11,599 14,291 2,692 23.2% 
RES3B Triplex / Quads                               11,757 14,208 2,451 20.8% 
RES3C Multi-dwellings (5 to 9 units)         15,632 11,206 -4,426 -28.3% 
RES3D Multi-dwellings (10 to 19 units)     15,475 12,070 -3,406 -22.0% 
RES3E Multi-dwellings (20 to 49 units)     8,560 9,890 1,329 15.5% 
RES3F Multi-dwellings (50+ units)            9,944 7,161 -2,784 -28.0% 
RES4 Temporary Lodging                        1,292 2,692 1,399 108.2% 
RES5 Institutional Dormitory                   6,309 21 -6,289 -99.7% 
RES6 Nursing Home 375 454 79 20.9% 
COM1 Retail 6,503 15,949 9,446 145.3% 
COM2 Wholesale Trade                             4,216 6,400 2,184 51.8% 
COM3 Personal and Repair Services         2,879 2,781 -98 -3.4% 
COM4 Professional/Technical Services     7,372 11,371 3,999 54.2% 
COM5 Banks                                              393 53 -340 -86.5% 
COM6 Hospital                                           2,421 3,012 592 24.4% 
COM7 Medical Office/Clinic                     1,374 33 -1,341 -97.6% 
COM8 Entertainment & Recreation           1,740 2,474 734 42.2% 
COM9 Theaters                                          32 71 40 125.3% 
COM10 Parking 0 7,808 7,808 #DIV/0 
IND1 Heavy                                              1,482 5,803 4,321 291.6% 
IND2 Light                                               1,728 7,669 5,941 343.7% 
IND3 Food/Drugs/Chemicals                   281 825 545 193.9% 
IND4 Metals/Minerals Processing            203 322 119 58.5% 
IND5 High Technology                            11 35 24 215.3% 
IND6 Construction                                   620 878 258 41.6% 
AGR1 Agriculture 95 45 -50 -52.7% 
REL1 Religious 991 2,618 1,627 164.2% 
GOV1 General Services                             280 6,925 6,645 2369.9% 
GOV2 Emergency Response                      28 0.0 -28 -100.0% 
EDU1 Grade Schools                                 731 4,173 3,442 471.0% 
EDU2 Colleges/Universities                      437 2,915 2,478 567.1% 
Total  249,590 255,270 5,680 2.3% 

 

the parcels that were assigned the education occupancy did not contain any square 

footage or height information.  For these buildings the square footage was calculated 

based on the building footprint and the height was also estimated to be 1 storey.  
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Therefore, for this occupancy, the local data is itself underestimated.  According to the 

default data there is less than half a million square feet of space for the college/university 

occupancy class as opposed to 2.9 million square feet per the local data.  The Long Beach 

campus of California State University alone comprises 1.86 million square feet of space 

(California State University 2000). 

There are many colleges and universities in Long Beach – California State 

University, Long Beach City College, Brooks College, Keller Graduate School of 

Management, Nova Institute of Health Technology, Travel and Trade Career Institute, 

American Institute of Health Sciences, John Wesley International Barber and Beauty 

College, and Pacific Coast University School of Law.  Therefore, the local data seems 

more representative of the reality and the default data is far from it.  The breakdown in 

specific occupancies for government is not available from local data and hence it is not 

possible to analyze the specific occupancy variations for this class.   

While the variation in square footage is small, the variation in building count in 

Long Beach is much higher.  The building count is overestimated in HAZUS™ (even 

though the building square footage is underestimated).  Much of the overestimation in the 

count of buildings is concentrated in the residential occupancy class.  For all the other 

occupancies, the count of buildings is underestimated by a large amount.  Within the 

residential general occupancy, the building count overestimation is largely concentrated 

in single family homes (Table 5.5) and is proportional with the overestimation of the 

square footage for this occupancy class.  However, multifamily buildings (i.e. 

occupancies RES3A through RES3F) are underestimated by HAZUS™ by more than 

7,500 buildings or by 75% which is much higher than the underestimation of the square 
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footage for these buildings.  This is because of higher underestimation of duplexes and 

triplexes which are fairly common in cities.   

Table 5.4: Variation in Building Count for General Occupancy Classes in City of 
Long Beach 

HAZUS General 
Occupancy Class 

Default 
Data Local Data Total Difference 

Percent 
Difference 
over Default 

Residential 95,833 79,253 -16,580 -17.3%
Commercial 1,083 5,170 4,087 377.4%
Industrial 105 2,033 1,928 1836.2%
Agriculture 0 13 13 #DIV/0
Religion 38 222 184 484.2%
Government 28 521 493 1760.7%
Education 10 122 112 1120.0%
Total 97,097 87,334 -9,763 -10.1%

 
The count of buildings in the commercial occupancy class is also underestimated 

by HAZUS™ and some of it is contributed by the parking structures that are missing 

from the Dun and Bradstreet data.  However, a significant underestimation is seen in the 

retail occupancy (COM1).  The default data shows only 9 buildings in the City of Long 

Beach that are used for retail trade whereas, the local data shows almost 2900 buildings 

dedicated to retail trade.  Likewise, other commercial occupancies are also 

underestimated in HAZUS™ with the exception of banks which are overestimated.  The 

local data does not record the number of banks and the square footage associated with 

them very well.  The number of buildings in all specific occupancies under the industrial 

general occupancy is also underestimated by HAZUS™ even though some of them were 

overestimated in terms of square footage.   

Schools and colleges were not distinguished in the local data – instead, they were 

assigned the Education occupancy and HAZUS™ was allowed to split the data between 

grade schools and universities.  As mentioned before, the square footage for the 

Education occupancy class was missing for a large part in the assessment data and was 
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Table 5.5: Variation in Building Count for Specific Occupancy Classes in City of 
Long Beach 
HAZUS 
Specific 
Occupancy 
Class Description 

HAZUS 
Default 
Data Local Data 

Total 
Difference 

Percent 
Difference 
over 
Default 

RES1 Single Family Dwelling                 82,832 61,119 -21,713 -26.2% 
RES2 Manuf.  Housing                            2,144 112 -2,032 -94.8% 
RES3A Duplex                                           3,784 7,666 3,882 102.6% 
RES3B Triplex / Quads                              3,795 5,009 1,214 32.0% 
RES3C Multi-dwellings (5 to 9 units)        1,777 2,188 411 23.1% 
RES3D Multi-dwellings (10 to 19 units)    1,074 1,814 740 68.9% 
RES3E Multi-dwellings (20 to 49 units)    68 930 862 1,267.6% 
RES3F Multi-dwellings (50+ units)           98 206 108 110.2% 
RES4 Temporary Lodging                       7 160 153 2,185.7% 
RES5 Institutional Dormitory                  239 17 -222 -92.9% 
RES6 Nursing Home 15 32 17 113.3% 
COM1 Retail 9 2,106 2,097 23,300.0% 
COM2 Wholesale Trade                            114 288 174 152.6% 
COM3 Personal and Repair Services        246 625 379 154.1% 
COM4 Professional/Technical Services    65 817 752 1,156.9% 
COM5 Banks                                             91 5 -86 -94.5% 
COM6 Hospital                                         44 102 58 131.8% 
COM7 Medical Office/Clinic                    173 22 -151 -87.3% 
COM8 Entertainment & Recreation          340 495 155 45.6% 
COM9 Theaters                                         1 3 2 200.0% 
COM10 Parking 0 707 707 #DIV/0 
IND1 Heavy                                             44 348 304 690.9% 
IND2 Light                                              50 914 864 1,728.0% 
IND3 Food/Drugs/Chemicals                  3 71 68 2,266.7% 
IND4 Metals/Minerals Processing          4 23 19 475.0% 
IND5 High Technology                           0 577 577 #DIV/0 
IND6 Construction                                  4 100 96 2,400.0% 
AGR1 Agriculture 0 13 13 #DIV/0 
REL1 Religious 38 222 184 484.2% 
GOV1 General Services                            25 521 496 1,984.0% 
GOV2 Emergency Response                    3 0 -3 -100.0% 
EDU1 Grade Schools                                2 106 104 5,200.0% 
EDU2 Colleges/Universities                     8 16 8 100.0% 
Total  97,097 87,334 -9,763 -10.1% 

 
calculated based on various assumptions which underestimates the amount of real square 

footage for this occupancy class.  The number of schools and universities in HAZUS™ 

default is grossly underestimated both in terms of square footage and in terms of building 

count.  Particularly noteworthy is the number of schools estimated by HAZUS™ - the 
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default data show 2 grade schools in the entire city whereas the local data shows 106 

schools.  Interestingly enough, a separate dataset in HAZUS™ compiles data for schools 

from a national-level database and this source documents 124 schools in Long Beach.  

As discussed in the previous section, the structure/building type information in the 

local data was neither complete nor reliable.  Hence, given the great deal of uncertainty in 

the local data, an in-depth analysis of this is not worthwhile.  The dollar exposure 

(although not completely reflective of local data since average default values were used 

as discussed before), also show wide variation in the various occupancies.  Table 5.6 

shows the changes in dollar exposure for building and content.  Thus, overall the square 

footage is underestimated by HAZUS™ by 2.3%, the total dollar exposure is also 

underestimated by 2%.   

 

Table 5.6: Variation in Dollar Exposure for General Occupancy Classes in City of 
Long Beach  

HAZUS 
General 
Occcupancy 
Class 

Default 
Bldg 
Exposure 
(in 1000 
$) 

Local 
Bldg 
Exposure 
(in 1000 
$) 

Default 
Content 
Exposure 
(in 1000 
$) 

Local 
Content 
Exposure 
(in 1000 
$) 

Default 
Total 
Exposure 
(in million 
$) 

Local 
Total 
Exposure 
(in million 
$) 

Percent 
Diff. in 
Total 
Exposu
re over 
Default 

Residential 22,261,963 17,640,196 11,135,673 8,824,001 33,397,636 26,464,197 -21% 
Commercial 2,739,142 3,987,313 3,024,541 4,221,976 5,763,683 8,209,289 42% 
Industrial 339,021 1,186,604 487,887 1,743,395 826,908 2,929,999 254% 
Agriculture 6,341 3,072 6,341 3,072 12,682 6,144 -52% 
Religion 122,100 330,665 122,100 330,665 244,200 661,330 171% 
Govt. 31,440 671,995 33,484 671,995 64,924 1,343,990 1970% 
Education 127,351 775,243 154,413 953,785 281,764 1,729,028 514% 
Total 25,627,358 24,595,088 14,964,439 16,748,889 40,591,797 41,343,977 2% 

 

In summary, the square footage at the City level in Long Beach is fairly well 

represented by HAZUS™ defaults as compared to local data.  However, the assessment 

data for the City of Long Beach are of poor quality and various assumptions were made 
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to improve the data.  A few minor changes in assumptions could lead to larger variation 

in the local data from HAZUS™ defaults as discussed earlier.  Furthermore, even though 

the square footage overall for the whole city is not very different, the variation in 

individual occupancy classes (both in square footage and in building count) is quite large.  

This variation in the various occupancy classes ultimately results in little change in total 

dollar exposure.  In the next section, the spatial variation in building inventory over the 

various census tracts in the City of Long Beach are analyzed in greater details.  

 

5.32 Variation at the Census Tract Level 
 

The spatial variation in total square footage per occupancy class shows some interesting 

patterns.  HAZUS™ overestimates the total area in 61 (58%) census tracts and 

underestimates the total area in 44 (42%) census tracts.  However, the degree of 

underestimation is higher even though it is in fewer census tracts.  The census tract with 

the largest variation is the one containing the airport.  In this census tract, HAZUS™ 

significantly underestimates the square footage for the total area – this underestimation 

would be even larger given the fact that 13 parcels in this census tract (with almost 5 

million square foot of space) did not have use/occupancy information from the 

assessment data and were discarded by HAZUS™.   The model overestimates in census 

tracts that are predominantly residential (with a mix of housing types).  It underestimates 

in census tracts with special uses such as downtown, and tracts peripheral to the 

downtown with high density residential, tracts with mixed use development, industrial 

uses, and tracts containing California State University, US Naval hospital and El Dorado 
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Park.  There are certain exceptions to this general finding.  The spatial variation of total 

area in the City of Long Beach is provided in Map 5.2.  Unlike the City of Seattle, the 

downtown in the City of Long Beach comprises fewer census tracts and is not as dense 

and hence does not show the same concentration of underestimation.   

Residential occupancy is overestimated for 91 census tracts and underestimated 

for 13 tracts and is the same for the census tract that comprises the El Dorado Park.  The 

residential occupancy is overestimated in all census tracts that are primarily residential 

census tracts.  In most of these census tracts, commercial and other occupancies are 

underestimated.  The underestimation of residential occupancy is occurring in special use 

census tracts such as the airport and El Dorado Park census tract, mixed use tracts, and 

the census tracts with high density residential developments (Map 5.3).    

Commercial is overestimated in only 16 census tracts and is underestimated in the 

remaining 89 tracts.  The overestimation of commercial is occurring in census tracts that 

are predominantly one use such as residential, industrial, etc. or used for a specific 

purpose such as El Dorado Park, California State University and US Naval Hospital as 

shown in Map 5.3.  There is very little commercial activity in these tracts.  In other 

census tracts the commercial square footage is underestimated with the majority of the 

commercial underestimation occurring in the downtown and mixed use census tracts.  

This may point to default data being better for larger buildings and establishments used 

for commercial activity than for reporting small businesses and other mom and pop 

establishments.  Furthermore, it may point to the way in which Dun and Bradstreet data 

are being processed.  However, although some generalizations may be reached, as found 
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in City of Seattle, there are no clear and consistent patterns of overestimation and 

underestimation by the type of census tracts in Long Beach either.   

Industrial is overestimated in 68 census tracts and underestimated in 37 census 

tracts.  The underestimation is occurring in census tracts that have industrial activity 

occurring in them (i.e. industrial census tracts or residential industrial census tracts or 

other tracts that have warehouses and other industrial activity interspersed between 

residential).  The degree of underestimation is also higher even though fewer census 

tracts show underestimation (Map 5.4).  Again, this may point to the inaccuracies in the 

Dun and Bradstreet data or in the way these data are being used in HAZUS™.   

The education occupancy is generally well estimated in HAZUS ™ spatially.  

There are a few exceptions such as the census tract with California State University, 

Long Beach Community College, and a few other census tracts that have larger public 

high schools and private schools where square footage is underestimated.  Approximately 

67% of the parcels with education or public school use did not have any square footage 

information in the assessment data.  The area for these were estimated based on building 

footprint and since no height information was available for these parcels, the height was 

assumed to be 1 floor.  Hence there may be some underestimation even in local data 

sources due to the lack of assessment data for this occupancy class.  Only the Long Beach 

Airport census tract shows a large overestimation and it is not clear what the source of 

this is since there are no large educational establishments in this census tract (Map 5.4).   

Similar to the parcels used for education purpose, for those used for public service 

(largely dedicated to government occupancy class), the assessment data only documented 

the use of the parcel, but no other information regarding the square footage and height.  



  154 

 

Square footage was estimated from the building footprint and the height was assumed to 

be 1 storey since no other height information was available.  Of the 141 parcels with use 

of “Public Service” that actually had buildings on them, only 5 had square feet 

information from the assessment data.  The rest were calculated based on building 

footprints.   

These data indicate that for both the education occupancy and government 

occupancy, the local data also provides limited reliability.  Government occupancy is 

well estimated for most census tracts (since both the local data and default data show no 

facilities in this occupancy for a large number of census tracts).  The governmental 

occupancy is underestimated in HAZUS™ for 54 census tracts and the largest of this 

occurs in the tract containing the Airport (which is coded in the local data as public 

service use) as shown in Map 5.5.  The underestimation would be a lot larger if better 

assessment data were available for this occupancy class for the Airport census tract as 

discussed earlier.  Other census tracts where the government occupancy is largely 

underestimated by HAZUS™ include census tracts that contain the US Naval Hospital, 

public buildings like the City Hall, post office and large parks etc.   

Map 5.5 shows that square footage information for the religious occupancy class 

is fairly well estimated for all census tracts and the variation in overestimation and 

underestimation are small.  However, more census tracts are underestimated by 

HAZUS™ and less are overestimated.  It is to be noted here that although parcels that 

were used for education and public purposes did not contain square footage information, 

parcels used for churches and religious purposes were populated with information on 
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square footage.  The height was not well documented in the HAZUS™ data but it was 

safer to assume 1 storey for religious occupancy than for school or government use. 

Since the structure information was missing for a majority of the parcels in the 

assessment data and much of this data was inferred, a comparison of this spatially is 

unlikely to yield any significant conclusions and hence is not attempted in this section.  

Therefore, this section reveals that even though the overall total square footage for the 

City of Long Beach is well estimated by HAZUS™ at the level of the city, there are 

significant variations when analyzed spatially at the census tract level across the city.  

However, this variation is not consistent and cannot be fully explained by the type of 

census tract.  In general HAZUS™ default data tend to overestimate for census tracts that 

are predominantly residential census tracts and severely underestimate square footage for 

census tracts that are special use tracts such as downtown tracts, or tracts containing large 

amounts of particular uses such as airports, parks, or universities.  These census tracts are 

particularly vulnerable to bad decisions if default data are used.  In the next section, the 

variation in earthquake damage and losses from using default data and local data will be 

analyzed in greater detail. 

 

5.4 Results of Earthquake Scenarios:  Default Data vs. Local 
Data 

 

This section discusses the impact of the above variation in the building inventory data 

between HAZUS™ default data and local data on damage estimates from HAZUS™ for 

the City of Long Beach.  To understand the variation in results, the HAZUS™ model was 

run for various scenarios using HAZUS™ default building inventory data and building 



  156 

 

inventory data from local sources, i.e. parcel and tax assessment data.  It is important to 

reiterate that information on building type is very important in assessing the level of 

damage and hence loss.  However, this information was incomplete and unreliable for the 

assessment data for the City of Long Beach.  Hence it was not possible to fully overcome 

the limitations posed by the lack of structure information.  The data were prepared to 

match the HAZUS™ building types as well as possible and was input into HAZUS™ 

with the help of the Building Inventory Tool (BIT).  Parameters in HAZUS™ were 

allowed to further break the structure type information into more specific classes.  

Therefore, building inventory data were the only data that were changed in the model.  

The purpose of this was to control for building data alone while keeping all other 

variables constant to understand the sensitivity of the model to better building data.  The 

object of analysis was the loss attributable to building inventory data, which includes 

direct economic loss due to capital stock loss and income loss.  Also, the building 

inventory is a major contributing factor on other post-disaster needs such as shelter 

requirements, casualties, and other induced losses such as debris and fires, which were 

also analyzed.   

Three scenarios were modeled based on three different magnitudes at the exact 

same location.  The scenarios were run for a deterministic hazard from a source event on 

the Newport-Inglewood Fault with an epicenter (latitude 33.7775 and longitude -118.132) 

located very close to a historical earthquake of magnitude 5.4 that occurred in 1933.   The 

Newport-Inglewood Fault is a 65.74 mile long, strike slip fault with a 90 degree dip angle 

that runs through the City of Long Beach and has a potential for a 7.1 magnitude 

earthquake.  Scenarios of magnitude 5.0, 6.0 and 7.0 on the Richter scale were modeled 
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with the exact same epicenter and all other characteristics constant.  This allowed the 

analysis of the sensitivity of the HAZUS model to local data at various magnitudes (Map 

5.6).  

 

5.41 Damage Losses at the City Level 
 

At the city level, HAZUS™ shows different results based on the magnitude of earthquake 

for the City of Long Beach.  For a 5.0 magnitude earthquake, HAZUS™ local data 

results in lesser total direct economic loss from buildings than that produced using default 

level data by more than $128 million (-17%).  However, for an earthquake of magnitude 

6.0, the losses are larger with local data by $456 million (17%) and for an earthquake of 

magnitude 7.0, the losses are larger with local data by $837 million (16%).  Therefore, 

the percentage change in damage is not consistent with the magnitude of the earthquake.   

The non-structural damage is more with HAZUS™ default data for the 5.0 

magnitude earthquake and is largely responsible for the larger total loss and also larger 

building damage loss with default data for a 5.0 earthquake scenario.  The percentage 

difference in loss from using local data versus default data is much smaller for the City of 

Long Beach for all the loss categories as compared to the City of Seattle.  The percentage 

difference is higher for inventory loss – however, in real terms and as a percentage of 

total loss, inventory loss contributes only a small amount.  Figure 5.1 – Figure 5.3 shows 

the results of loss from different scenarios.  

 The percentage of total loss that can be contributed to building damage 

(structural and non-structural) is lesser with real data than with default data for all three 
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magnitude earthquakes and the difference is higher for a 5.0 magnitude earthquake.  For a 

magnitude 5.0 earthquake, the lower building damage losses from default data are offset 

by larger losses due to content damage (Figure 5.3).   
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It is interesting to note that while the total loss is more when using default data for 

a 5.0 magnitude earthquake, the shelter needs and the number of people displaced is less 

with default data for an earthquake of magnitude 5.0.  For all the other magnitudes, loss 
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is less but shelter needs and number of displaced people are more with HAZUS™ default 

data (Table 5.7).  The percentage difference for these losses is much higher than the total 

loss.  In this case also there is also no consistent trend that can be seen.  

 
Table 5.7:  Variation in Shelter Needs for 3 Earthquake Scenarios in City of Long 
Beach 
(assuming earthquake at 2 am) 

Event Shelter Need 
Local 
Data 

Default 
Data Difference %Difference 

Number of Households 
Displaced 665 622 43 6.9%Newport 

Inglewood 
5.0 Event 

Number Needing Short-
term Housing 180 169 11 6.5%
Number of Households 
Displaced 5,461 5,984 -523 -8.7%Newport 

Inglewood 
6.0 Event 

Number Needing Short-
term Housing 1,574 1,737 -163 -9.4%
Number of Households 
Displaced 12,423 13,512 -1,089 -8.1%Newport 

Inglewood 
7.0 Event 

Number Needing Short-
term Housing 3,595 3,939 -344 -8.7%

 

The number of casualties increases with the increase in magnitude but as can be 

seen in Table 5.8, there are no trends that can be inferred about the percentage difference 

at the three magnitudes.  Table 5.8 shows the casualties for an event at 2 a.m.  Similar 

trend is seen for events at other times that can be modeled in HAZUS™ (i.e. 2 p.m. and 5 

p.m.).  The number of ignitions, and the population and property exposed to fires is also 

lower with real data than with local data for the 5.0 and 7.0 earthquakes (Table 5.9).  A 

similar trend was also seen in Seattle and may point to some algorithm bugs.   
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Table 5.8:  Variation in Casualties for 3 Earthquake Scenarios in City of Long 
Beach 
(assuming earthquake occurs at 2 am) 
 

Event Casualties 
Local 
Data Default Data Difference %Difference

Severity 1 362 131 231 176.3%
Severity 2 54 14 40 285.7%
Severity 3 5 1 4 400.0%

Newport 
Inglewood 
5.0 Event Severity 4 10 1 9 900.0%

Severity 1 2,923 827 2,096 253.4%
Severity 2 686 152 509 351.3%
Severity 3 92 15 81 513.3%

Newport 
Inglewood 
6.0 Event Severity 4 179 29 155 517.2%

Severity 1 6,564 1,979 4,585 231.7%
Severity 2 1,743 448 1,295 289.1%
Severity 3 250 53 197 371.7%

Newport 
Inglewood 
7.0 Event Severity 4 488 101 387 383.2%

 
Table 5.9:  Variation in Debris and Fire for 3 Earthquake Scenarios in City of Long 
Beach  
 

Event Loss Type Local Data 
Default 
Data Difference 

% 
Difference

 Debris     

Brick Wood and Others 
No results from 
HAZUS™ 64

Missing 
value 

Missing 
valueNewport 

Inglewood 
5.0 Event Concrete and Steel 

No results from 
HAZUS™ 57

Missing 
value 

Missing 
value

Brick Wood and Others 483 299 184 61.5%Newport 
Inglewood 
6.0 Event Concrete and Steel 719 524 195 37.2%

Brick Wood and Others 905 600 305 50.8%Newport 
Inglewood 
7.0 Event Concrete and Steel 1,624 1,149 475 41.3%
 Fires  

Number of Ignitions 20 23 -3 -13.0%
Population Exposed 237 542 -305 -56.3%Newport 

Inglewood 
5.0 Event 

Value Exposed (in 
thousand $) 15,889 38,367 -22,478 -58.6%
Number of Ignitions 31 20 11 55.0%
Population Exposed 568 421 147 34.9%Newport 

Inglewood 
6.0 Event 

Value Exposed (in 
thousand $) 35,423 30,972 4,451 14.4%
Number of Ignitions 26 37 -11 -29.7%
Population Exposed 286 1,523 -1,237 -81.2%Newport 

Inglewood 
7.0 Event 

Value Exposed (in 
thousand $) 16,052 78,665 -62,613 -79.6%
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Thus by using HAZUS™, it is apparent that planners may underestimate health 

care and debris removal needs after a large earthquake.  However, depending upon the 

magnitude of the earthquake other needs such as shelter requirements, and fire 

suppression may be overestimated or underestimated depending upon the magnitude of 

earthquake. 

In summary, the data in Long Beach provided more limitations in truly 

understanding the impact on loss.  However, even improving the square footage and 

occupancy information minimally resulted in a much larger percentage difference in loss 

estimates.  In the case of Long Beach, the loss estimates were more for a 5.0 magnitude 

earthquake and less for a 6.0 and 7.0 magnitude earthquake with default data as compared 

to local data.  Also a small improvement in square footage resulted in much larger 

discrepancies in displaced households, shelter needs, number of casualties, amount of 

debris and number of estimated fires along with the exposure on life and property.   

The next section looks at the spatial patterns of loss differences and trends related 

to the type of census tract.   

 

5.42 Damage Variation at Census Tract Level 
 

The spatial variation of total loss is analyzed at the census tract level for the 7.0 

magnitude earthquake only.  In the City of Long Beach, the total loss is variable across 

the different census tracts – in some cases the losses are more with local data and in other 

cases, the losses are more with default data.  For the most part, the overestimation and 
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underestimation of losses follow the pattern of overestimation and underestimation of 

square footage as shown in Map 5.7.  This may be due to lack of improvement in 

building structure information.  Losses are more with default data for 48 census tracts and 

less with default data for 57 census tracts.  For 47 of the above 48 census tracts above, the 

total square footage of the default data is more than the local square footage.  A majority 

of these census tracts (87%) are also primarily residential.  Out of the 57 census tracts 

where losses are more with real data, in 43 census tracts the square footage in the local 

data is also more and in 14 census tracts, the square footage in the local data was less 

than the default data.  The 43 census tracts with losses and square footage greater with 

local data are mostly non-residential census tracts (i.e. downtown tracts, industrial tracts, 

tracts with airport, university, naval hospital, or tracts with mixed uses).  The 14 census 

tracts that have larger default square footage but smaller default losses are primarily 

residential census tracts scattered throughout the city.  No significant clustering is 

occurring near the epicenter to explain these discrepancies.   

Thus, like the building inventory square footage, losses are overestimated by 

default data for residential census tracts but underestimated for downtown census tracts 

or tracts with a single use such as university, park, airport, etc.  The patterns are similar 

when analyzed at the level of the building loss or content loss.  One of the reasons why 

the loss discrepancy follows a similar pattern to the square footage discrepancy might be 

the fact the there was not much improvement in the building structure information (or in 

the occupancy matrices) due to the lack of availability of this information.  
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5.5 Conclusions 
 

The selection of the City of Long Beach as a case study proved to be a useful one for 

many reasons.  The City of Long Beach represented a city with a typical GIS 

implementation which had many GIS datasets available but with varying degrees of 

completeness and with inadequate metadata.  This made it difficult to use some of the 

data.  Furthermore, it provided various GIS data layers but could not provide the 

assessment data (created and maintained by Los Angeles County) because the City had 

limited access to it.  Los Angeles County was not open to sharing the data.  This can be a 

significant impediment to the use of local level data in models such as HAZUS™.  For 

this research, data from a 3rd party reseller were used but this presented difficulties since 

such 3rd party resellers repackage the data in their own data formats and doing bulk data 

downloads were not easy. 

Furthermore, the assessment data were itself very poor – i.e. they were 

incomplete, did not contain square footage and building characteristic information for 

tax-exempt properties, and did not contain reliable information on building type.  For tax 

exempt properties and for missing information on other properties, the building 

characteristics information had to be inferred from various other GIS data (primarily 

building footprint layer) which were again not well collected or maintained.  

Furthermore, these sources of data only helped infer information on height and square 

footage and did not overcome the need for information such as building type, year built, 

building and content exposure, etc.  Other commercial proprietary data are available for 

parts of the City but this was beyond the scope of this research.  These data are often not 
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available for the entire city and hence can assist to improve data only for a limited part of 

the city.   

Information about content exposure was also not available through any local 

sources.  Though building value was available in the assessment data, given the poor 

quality of the data and the large percentage of data missing, it was not used for this 

research.  The average building and content value per square feet for each occupancy 

class based on default data was multiplied by the improved square footage and input into 

HAZUS™.  This operation had to be accomplished outside of the software interface since 

the interface provided no capabilities for this. 

The data reality for the City of Long Beach made the use of local data very 

difficult.  A significant amount of time and effort was needed to prepare the data for input 

into HAZUS™.  Various assumptions had to be made.  Therefore, even with this 

investment of time and effort, it is not clear how much uncertainty could be reduced.  As 

discussed, changing some of the assumptions above could significantly change the 

difference in default and local data.  However, the improvement in square footage alone 

resulted in large differences, particularly for the breakup of the total square footage into 

different occupancy classes for the entire city.  Therefore, while the overall data for City 

of Long Beach was improved only by 2%, the individual occupancy classes in the City of 

Long Beach showed much larger differences, both in real terms and in percentage terms.   

There was also a great deal of spatial variation based on the type of census tracts.  

While census tracts that were primarily residential census tracts were overestimated by 

HAZUS™ default data, non-residential tracts such as downtown and surrounding census 

tracts, mixed use census tracts, and primarily single use census tracts such as those 
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containing airports, university, etc. were largely underestimated by HAZUS™.  These 

census tracts were also more different both in real terms and in percentage terms. 

The difference in building inventory significantly impacted the overall damage 

estimates (for both direct and induced losses).  A 2% change in inventory led to a 

variation of difference in total loss ranging from a decrease of 22% for a 5.0 event to an 

increase of 11% for a 7.0 event.  Significant variations were also seen in the indirect 

losses such as amount of debris, shelter needs, displaced households, and casualties.  

These have a tremendous impact in the use of HAZUS™ for any phase of the disaster 

management cycle - preparedness, response, recovery and mitigation. 

The spatial variations in losses followed a pattern similar to that observed in the 

difference in building inventory between default and local data.  Therefore, losses were 

more different for downtown and surrounding census tracts, mixed use census tracts, and 

primarily single use census tracts such as those containing airports, university, etc.  The 

losses for these census tracts were less with HAZUS™ default data whereas the losses for 

residential census tracts were more. While some general trends existed, it is important to 

note that the trends cannot be completely described by the type of census tracts.  Thus, 

two census tracts with similar land use patterns sometimes showed very dissimilar results 

with respect to change in losses based on local data versus default data. 

The Long Beach case study also shows that there is no consistent pattern of 

change in the loss estimates based on the magnitude of the earthquake (i.e. the loss does 

not increase or decrease consistently with the increase or decrease in the earthquake 

magnitude).  This could be partially attributed to the lack of improvement of the structure 
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type information in the local data resulting in only minimal improvements to the 

occupancy to structure type matrices.    

Thus, it is clear from the Long Beach case study that local data may not be the 

panacea for the use of integrated models for disaster damage assessment where local data 

are not reliable themselves.  There are several challenges associated with using local data 

and even local data need significant improvement (through field surveys, proprietary 

building data or other estimation techniques).  However, this improvement needs to be 

done in the planning and preparedness phase of the disaster.  Without the improvement of 

data in this phase, if the City of Long Beach experienced a large earthquake and decided 

to use HAZUS™ in the response and recovery phase, it would have very little option but 

to use default data.  This is also because local data are not easily available to the city.  

Furthermore the improvement in data involves a significant investment in time and effort.  

If the local data cannot be improved due to lack of expertise, resources, or other reasons, 

this research’s findings can help decision-makers understand some of the uncertainties 

associated with using default data.  Since the risk of making poor decisions is large 

through the use of default data, the risk can be reduced by at least understanding the level 

of differences.  
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Chapter 6: Comparison of Findings from Case Studies 
 

6.0 Introduction 
 

The central premise of this dissertation is discussed in Chapter 2.  Integrated models are 

useful for public policy purposes, and their application for disaster management purposes 

can help decision-makers make more rational decision in an application area already 

wrought with uncertainty.  However, integrated models are very data hungry and there is 

inherent uncertainty embedded in these models.  Lack of good data (particularly about the 

built environment) is a large contributor of uncertainty in most integrated models.  

Assumptions about the built environment are made from data available through various 

sources and at various levels of aggregation making these models useful only at certain 

scales.   

The HAZUS™ model is an integrated model representing the state-of-the-art in 

damage estimation and assessment.   This model is being widely used at various levels of 

governance.  The HAZUS™ model comes with many default datasets that are collected 

from various sources.  The building inventory data, which is a large contributor of loss of 

life and property, is assumed in HAZUS™ on the basis of various datasets available 

nationwide such as census data and Dun and Bradstreet data.   However, sources of data 

exist at the local level that can improve the building inventory and subsequently improve 

the output from the HAZUS™ model.  

This dissertation set out to investigate 3 broad questions: 
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1) Given the data requirements of hazard assessment models for disaster damage 

estimation, what is the state of GIS in large cities for sustained use of integrated models 

at the local level?  

2) How do default estimates for building inventory in HAZUS™ compare with 

local data for building inventory?   

3) How sensitive is the HAZUS™ damage estimation model to improvements in 

building inventory data from local sources? 

Question 2 and 3 above aimed to understand the need for local data and in light of 

the data reality (assessed through question 1 above), the ultimate goal was to address the 

needs for improvement of data in integrated models such as HAZUS™ and to understand 

the appropriate use of these models.  In order to understand and answer the above 

questions, a survey was undertaken to assess the availability of local data in 19 large 

cities.  Based on this survey, two cities (Seattle and Long Beach) were chosen for further 

case studies to better understand issues related to inputting local data into HAZUS™ and 

the sensitivity of the HAZUS™ earthquake model to local data.  The City of Seattle 

represented a city with high investment in GIS and very good data at the local level 

whereas the City of Long Beach represented a city with a modest GIS implementation 

and modest data at the local level.   

This chapter discusses the findings for each of the above questions.  Each 

question will be discussed in a separate section (Section 6.2 – 6.4).  In order to 

understand each question, inferences will be drawn based on the findings of both the 

survey and the case studies.  The policy implications of the findings and need for future 

research will be discussed in the concluding chapter (Chapter 7). 
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6.1 Availability of Local Data 
 

Based on the survey of 19 cities, the research clearly shows that GIS is widely diffused at 

the local government level of large cities.  Most core layers such as parcels, tax 

assessment information (which includes a wide range of information very crucial to 

disaster management and damage assessment), street centerline, topography, and 

orthoimagery are available for a majority of the cities.  However, information on building 

footprints, utilities, and critical facilities is still not as widely available and efforts need to 

be made to acquire these datasets for large cities since they can be very useful for disaster 

management purposes.   

This research shows that although theoretically the datasets are available, in 

reality this does not always mean that these datasets are easily usable for the purpose of 

disaster damage assessment.  While datasets such as parcels and road centerline are 

updated regularly, other datasets such as building footprints and orthoimagery are rarely 

updated and maintained.  This research finds that although 12 cities out of 19 have 

building footprint data for the entire jurisdiction, and 3 cities have footprint information 

for a small part of the city, only 4 cities actually maintain these data on a regular basis.  

This is particularly important given the fact that for 9 cities, these data were collected in 

the nineties and for 3 cities the data were collected in the eighties.  Furthermore, the 

building footprint data rarely carry any intelligence (i.e. building properties, use, etc).  

Therefore, they provide only limited usability for disaster damage assessment.  The 

building footprint data are a crucial dataset for managing a disaster, assessing damage, 
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recovering and mitigating from a disaster.  In the aftermath of a disaster, the recovery 

effort needs to track the damage and condition of each and every building and a detailed 

GIS inventory can be very useful.  The building footprint data proved to be very useful in 

the case of City of Long Beach since they were used to supplement the poor quality 

assessment data with respect to square footage, height, etc.  However, since these data 

were not updated regularly for the City, they provided limited value and were not able to 

reduce uncertainty significantly.  The City of Long Beach building footprint data also had 

no attribute information such as height, etc.  When compiled photogrammetrically, this 

information is usually captured and if this was available for the City of Long Beach, it 

would have allowed much better calculation of number of floors and consequently the 

square footage.  

The tax assessment data are important and provide critical information regarding 

the use of parcels, property values, and information about the building characteristics 

such as height, age, square footage, building material and type of construction, etc.  This 

is perhaps the most comprehensive dataset that provides information about the built 

environment that is available for most large cities nationwide.  The interview/survey as a 

method of investigation had various limitations for this research.  While it informed about 

what datasets were available, it did not inform well on the quality of the data and the 

issues associated with actually using them in a model.  The case studies were useful in 

understanding the latter.  Therefore, although the survey indicated that 16 out of the 19 

surveyed cities have all tax assessment information linked to the parcels, and the rest had 

partial data linked, the case studies revealed that the quality of assessment data can be 

variable.  Thus, for both City of Seattle and City of Long Beach, the tax assessment data 
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carried many fields of information but not all of them were fully populated or even 

partially populated.  Likewise, even for the fields that were populated, the quality of 

information was variable and often not easy to map to HAZUS™ fields and values.  

Furthermore, not all parcels had a match with corresponding assessment data because the 

assessment information was often collected by an agency that was different from the one 

that created the parcel data and no rigorous quality control measures were in place.  Both 

the case study cities showed that many parcels were missing corresponding assessment 

data.  While some of this can be due to different vintages of parcel data and assessment 

data, the degree of mismatches warrants more stringent quality control and accuracy 

standards. 

The two case study cities also revealed that tax assessment data are not always 

complete.  Many assessors do not collect information on tax-exempt properties such as 

schools and educational institutions, publicly-owned parcels, and religious use parcels.  

This can seriously impact the use of assessment data for the purposes of disaster 

management.  Thus, in the City of Seattle, data on tax-exempt properties (with the 

exception of the University of Washington properties) were tracked meticulously.  

However, for the City of Long Beach information about these properties was not 

collected and hence any damage assessment required a lot of assumptions, leading to 

more uncertainty in the results. 

The assessment data are usually collected at the parcel level.  However, often 

there are multiple buildings in a parcel or multiple owners within a building.  Appropriate 

modeling of tax assessment data should capture such information in a way that data can 

be further broken up.  This was done in the data for City of Seattle.  However, similar 
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breakdown was not observed for the City of Long Beach making it more difficult to 

prepare for HAZUS™.   As mentioned above, the availability of data by building are 

important since damage occurs by buildings and not by parcel and it is important to track 

the data at this granularity, particularly for large parcels with multiple buildings such as 

university campuses, hospital complexes, public housing complexes, trailer parks, etc.   

The case studies also show that just because assessment data were available and 

complete, it did not imply that they were easy to use in the HAZUS™ model.  HAZUS™ 

requires many classifications of occupancy and building type.  While the occupancy (i.e. 

use) could be matched to appropriate occupancy classes in HAZUS™ without too much 

difficulty, the building type classifications needed by HAZUS™ (as discussed in Chapter 

1 and 2) were not easily available at the local level.  While the City of Seattle had fairly 

complete information on the type of structure, there were only a few types of buildings 

and there was no way to match them to the 36 specific HAZUS™ building types.  For the 

City of Long Beach, not only did the domain of values not match HAZUS™ building 

type, the field that carried this information was only populated for 16% of the records.   

Another piece of information required by HAZUS™ is information on building 

exposure and content exposure.  While building exposure information is available from 

the tax assessment data, there are very few sources for content exposure as contents 

(other than some kinds of personal property) are not taxed by local assessors.  The 

building exposure in assessment data is tracked through the assessed value field, which is 

not a correct reflection of the market value.  Some assessors maintain a multiplier field 

that that can be used to calculate market value from assessed value.  However, the use of 

assessment data can lead to a large underestimation in building exposure in cases where 
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the assessment data do not carry information on tax-exempt properties.  The content 

exposure is very difficult to get from local sources.  In the absence of these data (i.e. 

content and building exposure) at the local level, it is virtually useless to improve the data 

in HAZUS™ through local sources.   

This research also shows that organizationally, many cities have advanced GIS 

programs with enterprise implementations (centralized data collection and GIS 

management).  Enterprise GIS is seen in 13 of the 19 cities.  This is important since 

models such as HAZUS™ need integration of data from many different government 

departments.  An enterprise implementation implies data standardization, common 

platforms, and easy access to data.  However the utilities data were not always part of this 

enterprise and can pose significant challenges in integrating with the rest of the data.  For 

many cities, the tax assessment data are also not part of this enterprise and hence it is not 

easy to acquire or use for hazard assessment.   

Both the City of Seattle and the City of Long Beach had enterprise GIS 

implementations but the tax assessment data were created and maintained by their 

corresponding counties (King County and Los Angeles County).  While the City of 

Seattle had easy access to tax assessment data from King County, and provided it in easy 

to use format for this research, the City of Long Beach did not.  The City of Long Beach 

had access to the tax assessment data record by record through software provided by the 

County.  They could also do some data exports by zip codes in a cumbersome process.  

The Los Angeles County was not interested in sharing the data either (without a large 

charge) and hence it was difficult to access this dataset.  While it is understandable that 

the County sells these data, the lack of easy access to these data to municipal agencies 
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can be a serious obstacle for damage assessment, particularly in the aftermath of a 

disaster.  Since accessing and preparing local data for one jurisdiction alone can be so 

cumbersome, the task of accessing and preparing data for multiple jurisdictions for a 

regional analysis requires a lot of effort.  Inter-governmental data sharing policies should 

be clearly defined in planning and preparedness stage of the disaster management cycle.  

An enterprise GIS implementation can help in establishing these policies by providing 

single points of contacts rather than establishing contracts with many different 

departments in a single organization.  Furthermore, applications that allow easy access 

and manipulation of data are just as important as the availability of data.  In the case of 

Long Beach, although ultimately the data were available to the City, they were not easy 

to access, or distribute and posed a serious obstacle for their use. 

Good metadata is also needed for analysis and data-sharing and results of the 

survey show that only 5 cities out of the 19 cities have metadata that complies with any 

kind of national standard.  Most cities have “home-grown” metadata.  In the case of City 

of Seattle, the data had very detailed metadata and hence they were much easier to use.  

This was not the case for the City of Long Beach.  The purpose of using local level data 

is to reduce uncertainty from models.  However, using data with no information on 

accuracy, lineage, creation methodology, etc. can actually add to the uncertainty rather 

than reduce it and therefore, the need for metadata cannot be underestimated. 

This research also shows that although many cities have advanced GIS programs, 

the use of GIS for disaster management has been limited.  The use of GIS has largely 

been in the response and recovery phase (i.e. after a disaster has struck).  Although some 

examples of use of GIS for planning, simulations, and proactive analysis to understand 
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the likely impacts of hazards exist, such applications are few and restricted to a handful 

of cities.  Furthermore, only respondents from 6 out of the 19 cities had ever heard of 

HAZUS™ and none of them had ever used HAZUS™.  The lack of use of GIS (and tools 

such as HAZUS™) in preparedness and planning phase could be because of the low 

priority given to planning for unlikely catastrophic events or the lack of any imminent 

threat from such events for some of the surveyed cities.  It could also point to the low 

degree of interaction between disaster managers and GIS experts – since the use of 

HAZUS™ requires considerable GIS expertise, it is unlikely that the tool is being used in 

the surveyed cities without the knowledge of GIS staff (particularly if local data is to be 

integrated). 

In summary, this dissertation finds that there is a proliferation of core GIS data at 

the local level for use in damage assessment models.  A dataset that can be very useful 

and not very widely available or well-maintained is the building footprint data.  Data on 

utilities and critical facilities are also lacking.  However, one key dataset that needs 

significant improvement, in terms of completeness, standardization, and data modeling is 

the tax and assessment data.  Although there is a proliferation of data, the quality of data 

is more important and cannot be easily assessed through surveys.  The case studies reveal 

that local data, particularly information on type of building is incomplete, inaccurate and 

not easy to use in HAZUS™.  One piece of information that is hard to find at the local 

level is the content exposure (and to some extent the building exposure), the lack of 

which makes it virtually useless to improve data from local sources in HAZUS™.  

Finally, in order to use GIS and tax assessment data at the local level, it is critical to have 
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good data-sharing policies and metadata in place before a disaster.  For analysis at the 

regional level, it is also important to have some data standardization.   

The next section discusses the variation of building inventory based on local data 

from the building inventory based on default data in HAZUS™.  This will be followed by 

a discussion of the sensitivity of losses from HAZUS™ based on local level data vs. 

default data. 

 

6.2 Variation of Data in HAZUS™:  Local vs. Default 
 

In the previous section, this research established that although a lot of data are available 

at the local level for disaster management and particularly damage estimation, the tax 

assessment data need improvement to be useful for disaster management purposes.  

However, even when the tax data are complete and accurate, they are difficult to input 

into HAZUS™ since the level and domain of classifications at the local level for 

occupancy and building types are not per HAZUS™ classifications.  Furthermore, values 

for dollar exposures are difficult to attain at the local level (particularly content 

exposure).  This section deals with the variation of local level data from default data for 

building inventory in HAZUS™.  To understand this, two case studies were undertaken 

for the City of Seattle and the City of Long Beach.  The purpose was to analyze the 

variation at various levels, for the city as a whole and for the smallest level of analysis 

possible in HAZUS™ (i.e. census tracts).  The variation in total square footage and in  

various occupancy classes is assessed both for general occupancies (such as residential, 
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commercial, etc) and specific occupancies (such as single family residential, multi-

family, retail, wholesale, etc.). 

The tax assessment data (along with the corresponding parcel data) were the most 

significant source of data for this research but were supplemented by other GIS datasets 

(such as building footprints, orthoimagery, etc.) to improve the data and to validate the 

local data where needed.  It is important to note that the quality of data were variable for 

the two cities.  The tax assessment data for the City of Seattle were modeled better to take 

into consideration the assessment by buildings rather than parcels (since there can be 

more than 1 buildings in a parcel).  Furthermore, the Seattle data were much more 

extensive, complete, and reliable.  The data for the City of Seattle also encompassed 

assessment of properties that were tax-exempt, such as educational, governmental and 

religious uses (with the exception of University of Washington).  On the other hand the 

tax assessment data for the City of Long Beach proved to be very sketchy, incomplete 

and unreliable.  The assessment data for the City of Long Beach did not have any 

information for tax-exempt properties.  Hence a lot of assumptions had to be made to 

infer missing data in the case of City of Long Beach.  Therefore, while comparing the 

two cities, it is important to keep in mind that the results from the City of Seattle are 

more reliable than the results from the City of Long Beach.  For both cities, however, the 

local data classifications did not conform well to HAZUS™ classifications for occupancy 

and building type and it was not easy to conflate the local classifications to HAZUS™.  

This was discussed in the previous section.   

This research finds that at the level of the city, HAZUS™ default data 

underestimate the building inventory square footage for both the cities researched.  The 
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degree of underestimation for Seattle (33%) is much larger than the underestimation for 

Long Beach (2%).  The local data for the City of Long Beach are itself underestimated 

since the assessment data did not contain information on parcels used for educational, 

religious and governmental uses.  Therefore, various assumptions were made to calculate 

some basic information such as square footage, height etc.  For all buildings in parcels 

that didn’t have any height and square footage information, the area of the building 

footprint was used as the square footage and the height was assumed to be one storey.  

Furthermore, because of the quality of data, a lot of records were eliminated when input 

into HAZUS™.  Therefore, if HAZUS™ did not eliminate any records for the City of 

Long Beach, the total default square footage would be underestimated by 8%.  Also, for 

data missing assessment information (particularly height and square footage information), 

if the number of stories were assumed to be 2 stories rather than 1 storey (i.e. 36 million 

square feet of data), and all unknown uses were mapped to some valid HAZUS™, the 

default data would be underestimated in HAZUS™ by 23%.  These variations in 

assumptions as discussed above are not unreasonable, but unfortunately cannot be 

validated.    

Both cities show a significant variation at the city-level when the total square 

footage is broken down into different occupancy classes.  Figure 6.1 shows the variation 

in percent difference for the general occupancy classes for both cities.  The residential 

and agriculture occupancy is overestimated by HAZUS™ default data for both cities.  All 

other occupancy classes (i.e. commercial, industrial, religion, government and education) 

are underestimated by HAZUS™.  Even though the percentage difference for the 

residential occupancy class is not too high for both cities, it translates to a very high 
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absolute value and has a large impact on the overall difference at the city-level.  For 

example, if residential occupancy is removed from both cities, the total square footage is 

underestimated by 172% percent for the City of Seattle and 143% percent for the City of 

Long Beach rather than 33% and 2% respectively.  The difference in the commercial 

occupancy is more in the City of Seattle, perhaps because of better data and also because 

the City of Seattle has a larger and denser downtown than the City of Long Beach.  The 

difference in industrial occupancy is much more for the City of Long Beach than in the 

City of Seattle, reflecting the different types of cities.  However, it is important to note 

that given the uncertainties in the Long Beach data, it is not possible to draw too much 

comparative inferences (or even conclusions on why differences exist).  However, it is 

instructive to note some trends between both the cities with greater emphasis on 

reliability of the Seattle data. 
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Figure 6.1:  Variation in Percent Difference of General Occupancy Classes  
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Within each of the general occupancy classes, much difference exists in both 

cities when the general occupancy classes are broken into specific occupancies.  Figure 

6.2 shows the variation for various categories for the residential occupancy class.  Single 

family residential occupancy, mobile homes and institutional dormitories are 

overestimated by HAZUS™ in both cities.  Mobile homes and institutional dormitories 

may be overestimated because of poor recording of data in the local sources – for 

example, the institutional dormitories that may exist in educational facilities are often 

classified under the education occupancy.  Both cities show more triplex and quads than 

is shown by HAZUS™ defaults.  On the other hand, the trend is in contradiction for 

duplex and apartments in the two cities (i.e. one city shows an overestimation and another 

shows an underestimation for the two occupancy classes).  It is important to note that  
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temporary lodgings (hotels, motels, etc) and nursing homes are largely underestimated by 

HAZUS™ default data. 

Figure 6.3 shows the variation in difference for various categories comprising the 

commercial occupancy.  All the sub-categories of the commercial occupancy are 

underestimated by HAZUS™ for both cities with the exception of personal/repair 

services and banks which are overestimated in both cities.   
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Figure 6.3:  Variation in Percent Difference of Commercial Specific Occupancy 
Classes  

 

Medical offices and clinics are overestimated for the City of Long Beach and this 

could be an indication of poor local data classifications for this class.  For both cities the 

underestimation is high (both in real terms and in percentage terms) for retail trade, 

wholesale trade, professional and technical services, hospitals, entertainment and 

recreation, and theaters.  The underestimation of these is more for the City of Seattle than 
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for the City of Long Beach.  This may point to the difference in the nature of the two 

cities (the City of Seattle being a large regional city with a prominent downtown whereas 

the City of Long Beach being a city that is in the larger metropolitan region of Los 

Angeles).  Furthermore, as discussed before, the quality of local data for Long Beach 

could also contribute to the differences.  Since parking garages are missing in the 

HAZUS™ default inventory data, this is not analyzed here.   

Figure 6.4 shows the variation of difference for the industrial occupancy class.  

For the City of Long Beach, all the sub-categories of the industrial occupancy class are 

underestimated whereas, for the City of Seattle, foods, drugs and chemicals, and metals 

and mineral processing and construction are overestimated by HAZUS™.   
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Figure 6.4:  Variation in Percent Difference of Industrial Specific Occupancy 
Classes  
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Although not validated, one of the reasons for this overestimation could be that 

Dun and Bradstreet data may be recording all the square footage for some companies at 

their corporate headquarters and hence show larger square footage in Seattle even though 

the square footage is not physically located in Seattle.  The data for breakups for 

government and education occupancy classes are either not available for one or both 

cities or not reliable enough to analyze at this degree of granularity. 

Since the building count for the HAZUS™ default is based on the square footage 

divided by the average building size for that particular occupancy, the square foot 

variation is somewhat indicative of the variation in building counts.  However, the 

average size of buildings in different occupancy classes can themselves be different from 

the reality for many different occupancy classes, as shown in Appendix E, Table 1.  A 

comparison of the average sizes for the various occupancy classes shows that the single 

family residential house is fairly well assumed for HAZUS™.  The average size of a 

mobile home in HAZUS™ is about 1100 sq ft but based on the data from the two cities, 

the average size of a mobile home is 4567 square feet in Seattle and 11318 square feet in 

Long Beach.  These results indicate that for both of the cities, the number of mobile 

homes is underestimated by local data.  In reality, in both cities, large parcels are 

designated for use as a mobile home park with many units in them.  Therefore the local 

data reflects the total square footage of all the units in the mobile home park and not of 

individual units as in the case of default data.  The size of duplexes is also overestimated 

by HAZUS™ while triplexes/quads are well assumed by HAZUS™.   

An interesting observation is the size of hotels.  The average size of hotels 

according to HAZUS™ default data is 177K square feet for the City of Seattle, and 185K 
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square feet for the City of Long Beach.  However, the local data shows the average size 

to be 46K and 17K respectively.  This finding may show that the Dun and Bradstreet data 

captures more information on very large facilities and the smaller facilities are not 

recorded in this dataset.  Furthermore, the City of Seattle may have more large hotels 

than the City of Long Beach which is quite intuitive.  However, most cities also have an 

abundance of small hotels and motels and hence the average size is a lot lower.   

Similar is the case with buildings used for retail trade.  As per HAZUS™ default 

data, the average size of a retail establishment is 339K square foot for the City of Seattle 

and 723K square feet for the City of Long Beach.  However, the average size of a retail 

building is 10K square feet and 7.5 K square feet for the two cities respectively.  In terms 

of count, according to the HAZUS™ default data, the City of Seattle has only 47 retail 

establishments and the City of Long Beach has only 9 retail buildings, but in reality the 

local data shows 2987 and 2106 retail establishments in the two cities respectively.  The 

average size of a wholesale trade establishment is also lower than HAZUS™ defaults.   

Buildings classified as professional and technical services are also smaller in 

number in both cities in the HAZUS™ default data as compared with local data and 

average size of these buildings is far smaller than the HAZUS™ defaults.  However, 

there are far less banks in the two cities in comparison with the HAZUS™ and this 

discrepancy is difficult to explain when compared to other uses.  The size of a heavy 

industrial facility is half the assumed average size in HAZUS™ and this is the same for 

both cities.  However, the light industry building in the City of Seattle is half that of the 

light industry building in the City of Long Beach.  The size of religious building in both 

cities is also less than half the default size and this is in conformity in both cities.   



  193 

 

There are also far more educational establishments than shown in the HAZUS™ 

default data in both cities.  The building inventory data for HAZUS™ shows only 2 grade 

schools in Seattle and 2 grade schools in Long Beach and both these schools being very 

large buildings.  However, the local data shows there are far more schools but they are 

much smaller in size.  In fact, HAZUS™ also comes with additional inventory of 

essential facilities (which includes schools, medical care facilities and emergency 

response facilities).  This inventory has 186 schools in the City of Seattle and 124 schools 

in the City of Long Beach.  Therefore, it is clear that the default counts and the square 

footage are significantly different from the local data. 

Since the City of Long Beach did not have good structure type information and 

much of the data were inferred, the analysis of the structure type information is not 

undertaken here.  Furthermore, because no content exposure information was available 

for both cities, all exposure information for the two cities was simply improved to reflect 

better square footage data and hence also not suitable for analyzing in great details.   

So far, this dissertation has analyzed the variation in local data with respect to the 

default data in HAZUS™ for the city as a whole and for the various occupancy classes 

within the entire city.  Next, it looks at the spatial variation across the two cities to see if 

there are any spatial trends in the two cities based on census tracts.  This dissertation 

finds that spatial trends are a little more apparent in the City of Seattle.  In Seattle, 

HAZUS™ overestimates the square footage in less census tracts (34%) and 

underestimates the square footage for more census tracts (66%).  In the City of Long 

Beach, a reverse trend exists – with more census tracts overestimated (58%) and less 
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underestimated (42%).  However, in both the cities, the degree and range of 

underestimation is much larger than the overestimation.   

In general, in both cities, the residential occupancy is better estimated for the 

entire city, as opposed to commercial and industrial occupancies in most census tracts.  

Also, tracts that are primarily residential in character are usually better estimated than 

tracts that are largely non-residential single-use (such as commercial, industrial, 

educational, etc) or mixed use.  Special use census tracts such as those comprising 

universities, airports, large parks or recreational facilities also show large discrepancies.  

Furthermore, for residential tracts, commercial, industrial, and educational uses are 

largely underestimated.  However, for both cities, the patterns of overestimation and 

underestimation cannot be fully explained by the type of census tracts.  In other words, 

two very similar census tracts can show reverse trends (one is overestimated and the other 

is underestimated).  A better understanding of the source data could explain many of the 

discrepancies but such an understanding of the source data is not provided in the 

HAZUS™ manual. 

In the City of Seattle, there is a large concentration of underestimation in the 

downtown census tracts and the census tract comprising the University of Washington.  

The top 12 census tracts in Seattle represent 111 million square feet of underestimation 

which accounts for 74% of the overall underestimation in Seattle.  Although the 

downtown and surrounding census tracts in Long Beach also show an underestimation, 

this is not as stark as in Seattle.  This might reflect the difference in the character of the 

downtown in these two cities.  
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In summary, it is obvious that the default data in HAZUS™ are a poor reflection 

of the reality.  Better local level data are available for the City of Seattle and reveal that 

default data are very different from the local data when one compares the total square 

footage for the entire city.  The City of Long Beach shows less variation in the total 

square footage for the entire city - the various assumptions used to improve the local data 

for the City of Long Beach make these data less reliable.  However, for both cities, there 

is a great deal of variation in data at the various general and specific occupancy classes.  

There is also significant spatial variation in the local data from default data.  These 

variations are smaller in residential census tracts but are very large in commercial, 

industrial, and special use census tracts (such as downtowns and their periphery, airports, 

universities, large hospitals, etc.).  However, there is no consistent pattern of difference 

that can be explained by the type of census tract alone.  It is also clear from this research 

that the quality of local data is variable and various assumptions can be made to improve 

the data.  But this can also add to uncertainty and in these cases the local tax assessment 

data may not be the most appropriate source for improving HAZUS™ default data. 

The next section focuses on the variation in damage estimates and output results 

from HAZUS™ based on local data and default data.  

 

6.3 Variation in Damage Estimates from HAZUS™:  Local vs. 
Default 

 

For both cities, local data were input into HAZUS™ using the Building Inventory Tool 

(BIT).  Three scenarios were modeled for each city at the same epicenter with three 

different magnitudes (5.0, 6.0 and 7.0 on the Richter scale) using default data and local 
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data.  The events in Seattle were on the Seattle Fault Zone North Trace with an epicenter 

near to the downtown (Map 4.5).  The events in Long Beach were modeled on the 

Newport Inglewood Fault, with an epicenter closer to the airport (Map 5.6).  Therefore 

for each city, 6 scenario events were modeled and losses (both direct and induced) were 

analyzed for the entire city as well as for the individual census tracts that comprised the 

city.   

In Seattle, the percentage difference in loss between local data and HAZUS™ 

default data increased with the increase in magnitude of the earthquake.  However, the 

same was not seen for the City of Long Beach.  The degree of difference was a lot greater 

for the City of Seattle than for the City of Long Beach.  This could be a reflection of the 

larger difference in inventory for the City of Seattle than the City of Long Beach.  Thus, 

in Seattle a 33% difference in total square footage resulted in a 130% difference in the 

total loss, whereas in Long Beach, a 2.3% difference in total square footage resulted in 

11% difference in total damage for the for a 7.0 magnitude event.  It is to be noted that 

damage losses could vary based on the location of the scenario earthquake – for example, 

for the City of Seattle, the modeled epicenter was close to a dense downtown, whereas 

for the City of Long Beach the scenario epicenter was in a relatively less dense area.   

Hence the location of the epicenter could contribute to some of the above difference 

observed. 

In Long Beach, the non-structural damage loss was more when using default data 

for the 5.0 event and this contributed largely to the greater losses for this magnitude with 

default data.  It is not clear why the non-structural damage loss was greater for default 

data for a 5.0 event than for a 6.0 event.  For all three scenarios, the loss due to content 
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damage was more with HAZUS™ default.  While in the City of Seattle, the percentage of 

total loss that could be contributed to building damage (structural and non-structural) was 

more with local data for all three magnitude earthquakes, this trend was not seen in the 

City of Long Beach.  In Long Beach, for the 5.0 magnitude earthquake, the local data 

contributed less to total loss than the default data – for all other magnitudes, the 

percentage was the same for real and default data.  In Seattle, the building type 

information was much more reliable and complete and hence the occupancy matrices 

were modified far more than that for the City of Long Beach which had very limited and 

unreliable building structure information.  For both cities, the content damage as a 

percentage of total loss decreased with the increase in earthquake magnitude, which is not 

unusual since the building damage is more with larger magnitude earthquakes.   

Other losses analyzed included shelter needs, casualties, amount of debris 

generated, and fires.  For the City of Seattle, the trend was uniformly the same as 

building losses – i.e. the percentage difference increased with the increase in the 

magnitude of the earthquake and the local data always lead to more losses in all instances 

(except with the value exposed to fires for a 5.0 event) .  However, the same was not the 

case for the City of Long Beach.  The patterns of damage in Long Beach were much 

more erratic and in some cases the losses were more with local data and in other cases, 

less with local data.  The number of casualties was always higher with local data in both 

cities for all three magnitudes.  The discrepancies in the Long Beach findings may be 

partly attributable to the lack of structure type information for the City of Long Beach.  

The results for the City of Seattle show large discrepancies in numbers and have serious 
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implications for planning and preparedness if HAZUS™ is used with default data as will 

be discussed in the next chapter (Chapter 7). 

The two cities also exhibited differences in trends regarding the spatial 

distribution of losses.  For both cities, patterns were only analyzed for the 7.0 magnitude 

event.  For the City of Seattle, even though some census tracts showed overestimation 

and other census tracts showed underestimation in building inventory square footage, the 

damage losses for all census tracts were more with local data for all three magnitudes of 

earthquake.  In real terms, the variation was less for residential census tracts and more for 

census tracts with mixed land use and very large for the downtown census tracts.  In 

percentage terms, the change was not highest in the downtown census tracts but was 

scattered in census tracts throughout the city.  The difference in losses for the City of 

Long Beach followed a similar pattern to the difference in building inventory for the 

City.  Thus, for the most part, census tracts with higher square footage with local data 

showed higher losses with local data and vice versa.  However, as with the City of 

Seattle, the difference in losses were less for residential census tracts and more with other 

single land use (commercial, industrial, university, etc) and mixed land use census tracts. 

In summary, the improvement in building inventory from local sources such as 

tax assessment data can have a significant impact on the loss estimates from HAZUS™.  

Even marginal changes in data can lead to much larger changes in loss estimates as was 

seen in the case of City of Long Beach.  In the case of City of Seattle, the larger 

difference in building inventory yield much larger difference in loss estimates and the 

trends are much more consistent – i.e. loss estimate difference with local data vs. default 

data increased with the increase in earthquake magnitude.  The City of Seattle also 
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showed significant differences in induced losses such as shelter needs, debris removal, 

casualties, and fires, most of which increased with local data and with increase in the 

magnitude of the earthquake.  The trends were not so clear for the City of Long Beach.  

The lack of structure type information could be a factor leading to these inconsistencies 

in Long Beach.  Therefore, improvement in building structure type is an important 

component of the sensitivity of the HAZUS™ to improvement in local data.  Spatially, 

the City of Seattle showed higher losses for all census tracts whether the building square 

footage is overestimated or underestimated by the default data.  In the City of Long 

Beach, the differences in loss estimates followed a pattern similar to the change in square 

footage.  However, in both cities, losses for residential census tracts were usually better 

estimated (overestimated by a smaller extent) than other single use and mixed census 

tracts (which are usually underestimated by a larger degree). 

In the next chapter, the policy implications of the above findings are discussed 

followed by a discussion of the areas for future research. 
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Chapter 7: Conclusions and Policy Implications 
 

7.0 Introduction 
 
 
So far this research has established that although data are available at the local level, 

there is a dearth of data that can assist in damage assessment.  Particularly, local data on 

building inventory are lacking for information on the type of building, and exposure 

value (both building and content exposure).  Many of these building characteristics are 

often not available from local sources and even when available, these data can be 

unreliable and incomplete.  For example, in many cases, information on tax-exempt 

properties (e.g. public properties, religious properties, and educational properties) is not 

available.  Other GIS datasets available at the local level (i.e. building footprint) can 

assist minimally in supplementing information available from the tax assessment data.  

But unless these datasets are properly developed and the right attributes collected at the 

time of digitization, they can offer limited usage and can even compound the uncertainty 

to the model.   

However, where good data are available (as in the case of City of Seattle), this 

research shows that the default data in the HAZUS™ model are very different from the 

ground reality in the case of large cities.  This difference can be seen at all levels:  at the 

overall level of the city, when the various occupancy levels are broken down, and also 

spatially across the city (at the level of the various census tracts that constitute the city).  

In general, residential occupancy is one that is overestimated by HAZUS™ and even 

though it is overestimated by a smaller percentage, this amounts to a large value in real 
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terms.  This overestimation of residential square footage in default data undermines the 

level of underestimation of square footage in other occupancy classes.  The data in 

HAZUS™ are very poorly estimated for commercial, residential, industrial, government 

and religious occupancy classes.  There is also significant variation across the city at the 

census tract level.  In general, census tracts that are primarily residential are better 

estimated than census tracts that are primarily commercial, industrial, mixed uses or other 

single use such as university, airport, hospital, etc.  The downtown shows a large 

concentration of underestimation.  Even a small difference in building inventory data can 

result in a much larger difference in damage estimates.   Thus, a 33% underestimation in 

total square footage in Seattle results in 130% difference in damage loss estimates for a 

7.0 magnitude earthquake.  There is also significant variation in other direct and indirect 

losses such as shelter needs, casualties, amount of debris and fires. 

In the case of City of Long Beach where good data are not available and even 

though the overall difference in building inventory square footage citywide is not high, 

there is a significant variation in the breakup of the total square footage into various 

occupancy classes.  As in the case of City of Seattle, the City of Long Beach also shows 

that the residential square footage is overestimated by default data by a small percentage 

but this leads to a large square footage in real terms and offsets some of the large 

underestimation in all other occupancy classes.  Primarily, there is significant 

underestimation in other occupancy classes such as commercial, industrial, education, 

and government.  When good data are not available (as in the case of Long Beach), 

various assumptions about the data need to be made.  The results are mixed and it is not 

clear how much uncertainty can be removed by using local level data.  However, even 
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slight improvement of data, can lead to larger differences in damage estimates.  Thus a 

2% increase in the inventory for the entire City of Long Beach resulted in 21% decrease 

in losses for a 5.0 magnitude earthquake and an 11% increase in loss for a 7.0 magnitude 

earthquake.  The difference is also substantial for induced losses (shelter needs, debris, 

fires and casualties).   

The findings of this research have various policy implications which are discussed 

in this section.  First the discussion focuses on the appropriate use of models with and 

without local level data.  Second, it looks at issues related to improving local data.  Third, 

the chapter discusses improvements in the HAZUS™ model based on the findings of this 

research.  Finally, there is a discussion on future areas of research.   

 

7.1 Appropriate Use of Damage Estimation Models at Local-
Level 

 

Based on the findings of this research, the most fundamental question that arises is 

regarding the appropriate use of damage assessment models.  Given the uncertainty that 

comes with default data, what is the utility of the HAZUS™ model at the local level?  As 

discussed before, damage assessment models can be very useful for the disaster managers 

and planners for disaster preparedness, response, recovery and mitigation.  Decision 

makers have very little basis to make decisions without such models.  However, decisions 

based on these models at a local-level can be risky if default building inventory data are 

used since the default data are not reflective of the ground reality in the case of large 

cities, as shown by this research.  This research also shows that for models to be useful 

for local decision-making, local-level data should be used for building inventory, 
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particularly where good data are available at the local level.  This is a very important step 

in reducing the uncertainty from the model. 

Where good local level data are not available, a significant amount of time and 

effort is needed to improve the data, without really decreasing the uncertainty and 

changing the results significantly.  In such cases, is the use of HAZUS™ warranted at 

all?  The dissertation concludes that default data should only be used in large cities where 

all other sources of data have been exhausted.  Even small improvements in the square 

footage can be beneficial.  However, it is equally important to understand and assess local 

data thoroughly and be aware of uncertainties that get introduced due to local data 

irregularities.  Local data are particularly needed for non-residential census tracts 

(downtown census tracts, mixed use tracts, and other special use census tracts such as 

census tracts with university, large mall, airport, hospital, etc).  Such data can be 

collected through field surveys or other commercial sources and will be discussed more 

in details in the next section.  If no other data exist at the local level, default data in 

HAZUS™ may be used, but only with a lot of caution and with a clear understanding of 

the fact that the results may show a great deal of underestimation, particularly for non-

residential occupancies and for non-residential census tracts.  These changes in inventory 

can have a much larger impact on the loss estimates for total losses as well as for other 

induced losses such as casualties, debris, shelter needs, and fires.   

It is also appropriate at this time to revisit the discussion on inductive versus 

deductive models (Alexander 2000) as discussed in Chapter 2.  When an inductive model 

such as HAZUS™ makes “spuriously precise” prediction of damage, based on poor 

default data, it can mask the risks and uncertainties involved with making decisions based 



  204 

 

on these models.  Therefore, inductive models with poor data can be very dangerous for 

the decision-makers and particularly when the risks involved are not somehow quantified 

or illustrated with some case studies.  The use of these models with poor data can be 

suitable for deductive modeling where the results are used to understand and establish 

relationships and causalities.  Hence the use of models such as HAZUS™ with default 

data may also be somewhat suitable for preparedness and exercise purposes.  Even for 

this, caution should be taken to rely solely on HAZUS™ default data without any 

understanding of the sensitivity of the model and the degree of variation of results.  

However, these models should definitely not be used with default data for damage 

estimation after a real event as the results can lead to some serious discrepancies and 

decisions that can have dangerous implications.   

The uncertainty inherent in modeling a complex event (such as an earthquake or 

hurricane) may warrant that more attention be paid to stochastic models rather than using 

deterministic models.  Stochastic models allow more suitable modeling of the 

randomness by allowing random variations of one or more parameters of the model and 

analyzing the probability distribution of outcomes from many simulations.  Stochastic 

modeling has its origin in physics and is now being used in life sciences, social science 

and actuarial sciences.  While stochastic modeling provides some obvious advantages to 

applications involving uncertainty, the efficacy of stochastic models to incorporate 

randomness is a large topic and beyond the scope of this dissertation.  

It may be argued that the HAZUS™ model is meant more for regional damage 

assessment, so that overestimations in some parts are offset by underestimations in other 

parts of the region.  If the purpose of HAZUS™ is solely regional assessment, again there 
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is virtually no reason to have the “spuriously precise” (Alexander 2000) results that are 

provided by HAZUS™.  Furthermore, it raises the question - what constitutes “regional”?  

Is “region” defined solely by the number of jurisdictions and geographical extent, or also 

by the population, built environment, exposure, and economic diversity?  A large city 

(such as the ones studied here) can have a population, economic mix, and exposure very 

similar or even more complex than a multi-jurisdictional region comprising many 

counties.  Even for a regional assessment, it is clear that where large cities are part of a 

larger region, the use of default data is so different from reality that its use can result in 

very poor decisions.  For example, if the State of Washington uses HAZUS™ to allocate 

funding for retrofitting buildings in the greater Seattle region which include the City of 

Seattle, it is obvious that the City’s share would be underestimated and some of the 

suburban areas may be overestimated.  Likewise, the planning for the number of 

casualties, debris, shelter needs, etc. may be based on erroneous data.  All of the above 

data are critical for use in disaster management and particularly to support local level 

decision-making and the needs of the first responders. Inappropriate use of the tools can 

lead to poor decisions (which in the case of disasters can mean the difference between 

life and death) or simply the confidence in these tools can be so eroded that they will no 

longer be part of a disaster manager’s toolbox. 

The next section will discuss in details the policy implications related to 

improving local data. 
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7.2 Improving Local Data 
 

This research shows that improving the default data for building inventory in HAZUS™ 

with local data sources has a large impact on the change in damage estimates from the 

HAZUS™ model.  Hence the sensitivity of the HAZUS™ model to local building data is 

well established by now.  Therefore, as more and more advanced scientific models are 

developed, it is also crucial to improve the data that are input into the models. Any model 

development and improvement should occur with an eye on the strengths and weaknesses 

of locally available data since default data are seriously lacking in large urban areas.   

As mentioned before, a critical dataset for damage assessment is parcel data and 

the corresponding tax assessment data.  Although these data are available for most large 

cities now, the utility of these data for damage assessment is largely dependent on the 

quality of the data.  Historically, tax assessment data have not been used for purposes 

other than assessment and often these data are not complete or collected consistently and 

stored in a proper database structure, restricting their use for other applications (Spencer 

2003; Wiggins 1999; Eichenbaum et al 1993).  Furthermore every local government has 

its own ways of collecting these data and there is very little consistency in the use of 

codes and data structure.  Thus, when disasters occur and data from various agencies are 

needed, it is difficult to combine these data and use them appropriately.  In the 

information rich world that we live in, it is important to recognize and acknowledge that 

the wealth of information that is available in the assessment datasets can and should be 

used for purposes other than tax and assessment.  Only when this fact is well recognized, 

will there be an effort to improve these data.   
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There are various ways in which these data can be improved.  First, there is no 

existing standard data model established for these data.  Setting up a data model for 

assessment data can be the first step in standardizing assessment data by specifying fields 

and domains of values for those fields.  Therefore, the field that captures building type 

information can be the same name and can have a domain of values that are used 

consistently.   An advisory group comprising experts in tax and assessment and 

representatives from other departments such as planning, disaster management and other 

fields that consume this information should be formed to establish some minimum data 

requirements that should be collected along with some quality control measures.  This 

group should also establish some basic attributes that should be collected for tax-exempt 

properties including educational, religious and governmental institutions.  The data model 

can be established for the nation and can be altered or modified to reflect local situations.  

The data model can also be established at the state level, regional level or even at the 

County level, if the higher level standards are not conforming to the local needs.  The 

federal and state government can provide incentives (in form of grants and cost-sharing) 

to migrate local data and legacy systems to established models, particularly for large 

urban regions.  Although this is a lofty goal, data models exist for many GIS datasets 

such as parcels, road centerlines, etc. and increasingly being used at the local level.  

Furthermore, recent disasters have made both the assessment community and the disaster 

management community realize the value of tax assessment data for disaster management 

purposes.   

Apart from the assessment data, efforts should be made by large cities to improve 

information on buildings.  Many cities such as the City of are already making a concerted 
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effort to improve their data for large buildings, including collecting building plans and 

information on entrance to buildings, fire escape routes, etc (Roberts 2007; City of 

Chicago 2002).  As discussed above, other datasets can also be used to improve local 

data.  The permit data (which are not available for many cities in digital format, 

particularly for older buildings) should be further explored to see how they can be 

leveraged to improve the assessment data for better building characteristics.  Likewise, 

commercially available datasets can also be used to supplement local data.  Commercial 

data sources include fire insurance maps from Sanborn (commonly called Sanborn Maps) 

which are now available as 3D models called Citysets® for many large cities, real-estate 

datasets such as CoStar, and also other sources such as SIMmetry City Models from 

EarthData.  These commercially available datasets contain a wealth of information on 

high-value buildings including information on square footage, use, number of stories, 

occupants, and photos of the buildings.  However, there are limitations to these sources 

too – primarily the fact that they cover a small extent of a limited number of cities.  

Furthermore, many do not contain much more improved attribute information, 

particularly information on the type of structure.  Such commercial datasets should be 

tapped, particularly for census tracts that HAZUS™ has poor default data such as census 

tracts in the downtown, mixed use census tracts and those containing universities, 

airports, etc.  Local governments should explore mutually beneficial relationships with 

these companies to get affordable access to these data for emergency management.   

Building footprint data should also be collected and maintained on a regular basis 

for large cities and if possible some of the above information should be linked to this 

dataset.  The collection of these data should be at the local level and given their needs for 
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disaster management, the development of these data can be promoted by federal and state 

agencies through incentives such as grants and cost-sharing. However, the needs have to 

be local and this will ensure that the data are maintained, updated and verified for 

currency and accuracy.  It is also evident from this research that most cities have fairly 

advanced GIS programs and hence are well prepared to gather such data.  Where cities do 

not have a good GIS program, assistance from the State and Federal sources can provide 

the impetus in establishing such programs so that they are sustainable in the long term.   

Another important aspect of using data is the issue of sharing data across 

jurisdictional boundaries and the establishment of policies and standards that will 

promote such data sharing.  This research points to the lack of regional and inter-local 

agreements for local data use for disaster management.  Such agreements have to be put 

in place before the occurrence of a disaster and should include agreements for data 

sharing with private utility companies in the aftermath of a disaster.  Again, federal and 

state agencies can provide financial and other incentives for data sharing, standardization 

for easy regional integration and regional assessment with improved data.     

Finally, in order to effectively use HAZUS™ in the aftermath of a disaster (i.e. in 

the disaster response phase) it is important that local data be prepared well before the 

onset of a hazardous event.  It is obvious from this research that input of data for one 

jurisdiction is difficult enough.  To do so for a region comprising many jurisdictions 

requires much more preparation as different local governments use different data 

classifications, schema, and each of the datasets yield different levels of uncertainty.  

Some regional efforts may be needed to get the data ready for use in the aftermath of a 

disaster and FEMA and other regional agencies can play a large role.  In fact, the input of 
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local data should be integrated into preparedness plans.  If HAZUS™ is to be used 

effectively, getting data prepared for input into HAZUS™ should be part of the 

preparedness plan for FEMA, state governments, and local governments.   

Thus, any federal development of tools and models, or acquisition of data must 

take into consideration the programs that exist at the local level and the presence of some 

key datasets at most local levels government of large cities.  In the absence of this, tools 

and models will not serve the needs of the local emergency managers and will lead to 

early rejection rather than diffusion and adoption. While federal dollars are used to 

improve models, some funding should also be available to improve local data through 

incentives such as grants and cost sharing or as seed money to fund data acquisition.   

The next section discusses the improvements needed in HAZUS™ based on the 

findings of this research. 

 

7.3 Improvements in HAZUS™ 
 

HAZUS™ can be an important tool in the toolkit of a disaster manager.  It provides 

disaster managers with the capabilities of running scenarios and analyzing the impacts of 

various types of events.  The integration of many disparate models, scalability and 

flexibility of the tool are some of its greatest strengths.  It is being used not only in the 

preparedness phase but also in the disaster response and recovery phase for many real 

events.  However, this research points to the need for many improvements in HAZUS™, 

most of them focused on issues of data and issues of usability.   The need for 

improvement here focuses only on the building inventory data and the usability of 
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HAZUS™ (i.e. issues explored through this dissertation).  Improvements may well be 

warranted in other areas, including the strength of assumptions, improvements in other 

data and models used (such as the modeling of the physical hazard), etc. which were 

beyond the scope of this research and will not be discussed here.    

It is apparent that one of the biggest drawbacks of HAZUS™ is the data for 

building inventory.  The building inventory data is not a good reflection of the reality, 

particularly for large cities.  While there may be limited data sources nationwide to get 

the type of building information needed to undertake damage assessments, it is important 

to check the quality of the Dun and Bradstreet data and provide a good discussion to the 

users about the strengths and weaknesses of these data.  It is also important to provide the 

users with a thorough description of the nature of the source data, how it is input into 

HAZUS™ and what limitations might be attributable to the processing of the data.  The 

metadata also does not provide information on how these data are gathered or input into 

HAZUS™ or what quality control measures are undertaken for the Dun and Bradstreet 

data.  There is also no discussion of what types of facilities are likely to be under-

represented in the data and what might be over-represented.  A proper understanding of 

these shortcomings will help decision-makers understand the uncertainty better, use the 

tool more appropriately and will allow them to better assess the need for integration of 

local data, acquisition of new data or incorporation of third party data sources. 

From this research, it is apparent that the Dun and Bradstreet data are not very 

good for smaller businesses and establishments.  Retail and most other commercial 

specific occupancies are grossly underestimated and this reveals that only large retail 

establishments are available through the Dun and Bradstreet data.  It is also not suitable 
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for industrial, educational and governmental occupancies, all of which are grossly 

underestimated.  Some of these occupancies can be improved by using other datasets 

already available in HAZUS™.  For example, there is a separate inventory for schools 

and universities.  This inventory shows 124 schools in Long Beach whereas the 

HAZUS™ default data shows only 10 educational buildings and the local data shows 122 

educational buildings.  This inventory of schools also contains information on number of 

students, square footage, etc., although not all of these fields are populated.  These data 

should be leveraged to improve the building inventory.   

At the very least, there should be tools provided to the users to leverage these 

datasets if they were interested in improving the data or supplementing local data.  

Furthermore, alternatives to the Dun and Bradstreet data should also be explored.  This 

may include calculation of square footage based on land use and zoning maps available 

locally.  Particularly if the data are as bad as this research finds, the methodology should 

also be simplified.  Thus, the scalable product’s complexity should be scaled based on the 

inputs into the model so that the users are made aware of the uncertainty in the results.  

For example, when default data are used, the results can also be provided in ranges rather 

than as precise numbers (Alexander 2000). 

The issue of lack of content exposure at the local level also needs to be given 

some thought in next version of HAZUS™.  It is clear that in new versions of HAZUS™, 

for local data to be input, building and content exposure are required from the local data.  

If these are not available, the software keeps the default exposure values and does not 

improve it based on the improvement in the square footage.  Therefore, all the effort 

involved in inputting better square footage and building characteristic information is a 
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complete waste since the dollar exposure is not updated and hence loss estimates are not 

significantly impacted.  At the local level, assessment data carries information on 

assessed values, which are only indicative of market values of building exposure, but not 

equal to market values.  However, if the assessment data do not carry any information on 

tax-exempt properties, this means that the exposure value of buildings with education, 

government and religious occupancies will be underestimated.  The content exposure data 

is virtually impossible to get at the local level and therefore, this fact needs to be 

recognized and accepted.  This will ensure that HAZUS™ devises a methodology to 

improve the content and building exposure data using default per square foot exposure 

values (that can be changed by the user to account for local conditions) to reflect 

improvements in locally-available data (particularly square footage).  If this is not done, 

it is virtually useless to improve the data in HAZUS™ from local sources in cases where 

both building and content exposure data are not available locally. 

As versions of GIS software changes, new versions of HAZUS™ need to be 

released.  While a lot of effort is put into these new releases (which does not really 

improve the underlying science or the data behind these models), there should be some 

effort to improve the data as well.  Software releases of HAZUS™ should also be 

managed better.  Particularly better quality control is needed for not only the software 

interface but also the default data.   It is apparent that the default data in HAZUS™ are 

continuously changing without much testing.  Default data in a new version can be 

significantly different from the old version and it is not discussed why these 

discrepancies occur.  The HAZUS™ team should have some sample datasets for various 

types of regions that have good local level data (urban, suburban, rural, etc.) for testing 
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purposes when new data are incorporated into the model.  Furthermore, based on these 

tests, users should be provided with some results on how far the data vary from local data 

based on these tests.  This will also help in informing users of the degree of uncertainty.   

Finally, as far as usability is concerned, HAZUS™ can do a lot to improve its 

graphical user interface.  Without going into the litany of things that need significant 

improvements, this research found many features of the software that need improvement.  

Primarily, it should allow users to run-what if scenarios a lot easier and save them within 

one region.  As it stands now, each scenario has to be built as a separate region.  Each 

region, the size of Long Beach and Seattle are about half a gigabyte in size and hence 

quite resource intensive.  Furthermore, no two regions can be open at the same time.  

There are no tools available to analyze difference between scenarios other than reports or 

exporting data into software such as Excel to run some statistics.  Hence, it is very 

cumbersome to analyze the differences between two scenarios, or assess the impact of 

various mitigation policies.  Finally, the building inventory tool (BIT) needs significant 

improvements in usability and if this is not accomplished, this can turn out to be a 

significant obstacle in the use of local data in HAZUS™. 

 

7.4 Limitations and Future Research  
 

Based on the findings of this research, there are many areas that need further exploration 

and are discussed in this section.   

First, this research only looked at variations of default data from local data and 

discrepancies in local data for large cities.  Similar analysis can be undertaken for other 
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types of areas as well.  Thus, data can be analyzed for smaller cities, suburban areas, and 

rural areas (possibly at the county scale) and in various parts of the country.  

Furthermore, this research only looked at data needs for earthquake analysis and the 

losses from earthquakes only.  Similar research can be undertaken to take into account 

data needed for other disasters such as hurricanes and floods (both modules are now 

available in HAZUS™) for a variety of region types. 

Second, with only two case studies, there are limited possibilities for drawing 

conclusions about trends and generalizations.  The research design for this research 

comprised of two case cities - the City of Seattle represented a city that had good local 

data whereas the City of Long Beach represented a city where local data, although 

seemingly available and good, proved challenging in many aspects to input into 

HAZUS™.  The purpose was to understand both types of circumstances.  However, the 

choice of cities did not allow a good understanding of trends and generalizations, 

particularly as they relate to building type information.  Therefore, further case studies 

are needed for more cities with good data (like Seattle) to better understand the trends of 

variations of the default data from local data and generalize the results so that they can be 

used to truly assess the range of difference of default data from local data.  By 

understanding the variation in more cities, it may be better possible to devise parameters 

that can be altered to improve default data rather than to input local data. 

Third, for the purpose of this dissertation, the building and content exposure were 

updated simply to reflect updated local square footage information and using HAZUS™ 

default average values.  Although building exposure could be acquired from local 

sources, the content exposure is difficult to get from local sources.  The sensitivity of the 
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model to better building exposure can be further analyzed, particularly if good local data 

can be available for a few cities.  Furthermore, the sensitivity can be analyzed better by 

changing variables in the building inventory one by one – i.e. first the square footage 

alone, then the square footage and building type, then square footage, building type and 

exposure information, etc. to understand the impact of each on the results from the data. 

Fourth, this research shows that default data in HAZUS™ do not provide a good 

picture of the ground reality, at least for large cities and non-residential occupancies.  

Therefore for all types of damage assessment models, it is important to explore if better 

square footage information can be inferred from other local data sources such as land 

use/land cover data, zoning maps and ordinances, etc.  

Fifth, more research is needed to establish a suitable data model for building data 

and assessment data.  These data are crucial for disaster damage assessment and for all 

disaster management purposes.  Hence, in order to leverage these data for purposes other 

than tax and assessment (e.g. planning, disaster management, natural resource 

management, etc), a data model with good data standards and minimum data needs is 

needed.   

Finally, there is always a need to validate the results from a model (with or 

without local data) with results from real events.   This may be better accomplished with 

floods and hurricanes rather than earthquakes because of the frequency of occurrences of 

these hazards.  However, whatever the disaster, the inventory remains the same and can 

inform vastly on the sensitivity and uncertainty involved.
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Appendix A:  Classification in HAZUS™ 
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Table 1:  Occupancy Classes in HAZUS™ 
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Table 2:  Building Types in HAZUS™ 
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Table 3:  Source of Default Data in HAZUS™ 
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Appendix B1: Survey Questionnaire 
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Doctoral Dissertation Title: Disaster Damage Estimation – Data Needs vs. Ground Reality 
Sudha Maheshwari, Dept of Urban Planning and Policy Development, Rutgers University, NJ 
 

Digital Geographic Data Survey 
 
I.  Participant Information 
 
1) Survey Contact  
 
 
2) Survey Contact’s Title/Position  
 
 
 
3) Name of Organization  
Enter the name of the organization along with the specific department that you represent.  
Eg City of Los Angeles, Department of Information Technology, GIS Division. 
 
 
 
4) Organization’s Address  
 
 
 
 
5) Phone  
 
 
6) Fax 
 
 
7) Email 
 
 
8) Which of the following categories of GIS users do you consider yourself? 
 

1. Using GIS for all its functionalities - creating and manipulating spatial databases, 
spatial analysis, and display 

2. Using GIS for analysis and display but not in creating or maintaining spatial 
databases 

3. Using GIS for viewing data only 
4. Very rarely doing anything with GIS 

 
9) Have you heard of HAZUS, the GIS-based tool for disaster damage assessment developed by 

Federal Emergency Management Agency and National Institute for Building Sciences? 
 
a. Yes   b. No.   
 

10) If yes, which of the following categories of Hazus user do you consider yourself? 
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1. Use it extensively in my job 
2. Have assisted other people in using in by providing GIS help 
3. Have attended training or learnt it by reading the manual but never used it 
4. Have never used HAZUS 
 

II.  Organizational Details 
 
11) Which of the following categories best identifies your organization? 
 

1. Municipal Agency 
2. Sub County Region 
3. Single County 
4. Multiple County Organization or Consortium 
5. State 
6. National 
7. Other - Please specify     

 
12) If your organization encompasses multiple jurisdictions, counties, or states, please specify 

these in detail.  
 
 
 
13) Is there any group/consortium that coordinates geographic data in your jurisdiction? 
 

1. Yes   2. No 
 
14) Is your organization a part of any such geographic data coordinating group? 
 

1. Yes   2. No 
 

15) List the top three geographic data coordinating groups your organization works with most: 
1.        
 
2.        
 
3.        

 
 
16) Is there a Geographic Information Systems department in your organization?  If so, please 

include the department under which it is and a contact name and information. 
 
 
 
17) Is there an emergency/disaster management department in your organization? If so, please 

include the department under which it is and a contact name and information. 
 



  224 

 

III.  Digital Geographic Information Data 

Overview 
 
18) Which of the following geographic datasets is available in any standard GIS format for your city?  Also fill in the name of the department in 

your organization that is responsible for the dataset and a contact person if you know. 
  

In the “Available” field ,underneath please write Y if data is available currently, N if data is not available currently, C if data is currently under 
creation, and D if you do not know about the availability of the dataset?  
 
Geographic Dataset 
 

Available 
Department 

Contact Phone/Email 

1. Digital Parcel Maps     
2. Building Footprints     
3. Land/Tax Records     
4. Street Centerlines     
5. Transportation     
6. Water Network     
7. Wastewater Network     
8. Zoning, Landuse     
9. Historical resources     
10. Hazardous waste 
sites 

    

11. Educational 
Institutions 

    

12. Emergency 
Facilities (Fire, 
Emergency Operation 
Centers, Police Stations, 
etc.) 

    

13. Aerial/Ortho Photos     
14. Geodetic 
Control/Engg data 
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Detailed information on above datasets 
 
Please answer the following questions providing detailed information on some of the above 
datasets.  If you are not in a position to answer the questions, please check on the box and 
continue to the next dataset.  However, if you know a contact person or another department that 
can provide this information, please fill in this before moving to the next dataset. 
 
19) Parcel Maps  
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 

Name         
Department        
Phone No        
Email         

 
3. What is your organization’s role with respect to digital parcel map data for your 

jurisdiction?  Select as many as applicable. 
 

a.   Using 
b. Creating 
c. Updating and maintaining 
d. Distributing 
e. None 

 
4. Is there FGDC complaint metadata available for this dataset? 

 
 

 
5. What is the status of the creation of parcel maps for your jurisdiction? 

 
a. Completed 
b. Work in progress 
c. Planned 
d. Not planned 

 
6. Which year was your parcel map created?  If Work in Progress, please put in the 

anticipated month and year of completion. 
 

 
 

7. When was this dataset last updated?  Please specify the month and year. 
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8. What is the current geographical extent of this dataset for your jurisdiction?  Please 
select only one.  For the definition of your jurisdiction please refer to question 12 above. 

 
a. Entire Jurisdiction  
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
d. < one-third of the jurisdiction 

 
9. What attribute data is attached or could be attached with the parcel features?  Please 

select as many as necessary. 
 

a. Parcel Id 
b. Assessor’s Parcel Number (APN) 
c. All tax assessor’s data linked with APN/Parcel Id  
d. Partial tax assessor’s data linked with APN/Parcel Id 
e. Photos of individual properties 
f. Custom created building characteristic information 
g. Custom created land-use information 
h. Custom created zoning information 
i. Other – Please specify        

 
10. What format is used in your organization for this dataset?  Please select as many as 

necessary. 
 

a. ArcView shapefiles 
b.   ArcInfo coverages 
c.  MapInfo 
d.  GeoMedia 
e.   AutoCAD 
f. MicroStation 
g. Smallworld GIS 
h. Other – Please specify        

 
11. Which of the following best represents the positional accuracy of this dataset?  Please 

select only one. 
 

a. 95% of the points within 3 ft 
b. 95% of the points between 3ft and 6 ft 
c. 95 % of the points between 6ft and 15ft 
d. 95% of the points outside 15ft 
e. Not sure 

 
12. If GIS parcel data is not available currently, what mode are the parcel maps in?  Please 

select as many as necessary. 
 

a. Paper Maps 
b. Scanned raster maps 
c.  Geo-referenced scanned raster maps  
d. Legal description 
e. Other 
f. Don’t know 
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13. Has the parcel data layer ever been used in your organization for disaster management 

purposes (i.e. response, preparedness, recovery or mitigation)?   
 

a. Yes 
b. No 
c. Don’t know 
 
If yes, please specify       
 

 
14. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 

be willing to share this data? 
 
 
 
 

15. Do you normally charge for this data?  If so, how much? 
 
 
 
 
20) Building Footprints  
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 
Name         
Department        
Phone No        
Email         

 
3. What is your organization’s role with respect to digital building footprint data for your 

jurisdiction?  Please select as many as necessary. 
 

a.   Using 
b. Creating 
c. Updating and maintaining 
d. Distributing 
e. None 

 
4. Is there FGDC complaint metadata available for this dataset? 

 
 

 
5. What is the status of the creation of building footprints for your jurisdiction?  

 
a. Completed 
b. Work in progress 
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c. Planned 
d. Not planned 

 
6. Which year was your building footprint data created?  If Work in Progress, please put in 

the anticipated month and year of completion. 
 
 
 
7. When was this dataset last updated?  Please specify the month and year. 
 
 
 
 
8. What is the current geographical extent of this dataset for your jurisdiction?  Please check 

only one.  For the definition of your jurisdiction please refer to question 12 above. 
 

a. Entire Jurisdiction  
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
d. < one-third of the jurisdiction 

 
9. What attribute data is attached with the building footprints?  If the data is not attached but 

is available elsewhere and can be linked through some ID, consider it as attached data.  
Please select as many as necessary. 

 
a. Parcel Id 
b. Assessor’s parcel number (APN) 
c. All tax assessor’s data linked with APN/Parcel Id 
d. Partial tax assessor’s data linked with APN/Parcel Id 
e. Photos of individual properties  
f. Custom created building characteristic information 
g. Custom created land-use information 
h. Custom created zoning information 
i. Other – Please specify        

 
10. What format is used in your organization for this dataset?  Please select as many as 

necessary. 
 

a. ArcView shapefiles 
b.   ArcInfo coverages 
c.  MapInfo 
d.  GeoMedia 
e.   AutoCAD 
i. MicroStation 
j. Smallworld GIS 
k. Other – Please specify        

 
11. Which of the following best represents the positional accuracy of this dataset?  Please 

select only one.  
 

a. 95% of the points within 3 ft 
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b. 95% of the points between 3ft and 6 ft 
c.  95 % of the points between 6ft and 15ft 
d. 95% of the points outside 15ft 
e. Not sure 

 
12. Has the building footprint data layer ever been used in your organization for disaster 

management purposes (i.e. response, preparedness, recovery or mitigation)?   
 

a. Yes 
b. No 
c.    Don’t know 
 
If yes, please specify       
 
 

13. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 
be willing to share this data? 
 
 
 
 

14. Do you normally charge for this data?  If so, how much? 
 

 
 
 
21) Land and Tax Records 
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 
Name         
Department        
Phone No        
Email         

 
3. What is your organization’s role with respect to land and tax records data for your 

jurisdiction?  Select as many as applicable. 
 

a.   Using 
b. Creating 
c. Updating and maintaining 
d. Distributing 
e. None 

 
4. Is there FGDC complaint metadata available for this dataset? 
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5. When was this dataset last updated?  Please specify the month and year. 
 
 
 

6. Which year was the last tax assessment done? 
 
 

 
7. Has the tax assessor’s data been linked to the GIS parcel maps? Please select only one. 

 
a. Completed 
b. Work in progress 
c. Planned 
d. Not planned 

 
8. Does the assessor’s data for your city include complete records for properties that are not 

taxed such as religious, educational, or government properties, etc.? 
 
 
 

9. What attributes about buildings does your tax assessor’s data carry in digital format?  
Please select as many as necessary. 

 
a. Building use 
b. Building height 
c. Building square footage 
d. Year of construction/age of building 
e. Building material – e.g. brick, concrete, wood, etc. 
f. Type of building structure – e.g. load bearing wall, steel, wood, or RCC frame  
g. Assessed value of property 
h. Number of occupants in building 

 
10. In your opinion, how complete is the assessor’s data for your city?  Please select only 

one.  
 
a. Covers > 90% of the parcels in the jurisdiction 
b. 75% - 89% of the parcels  
c. 50% - 75% of the parcels 
d. Less than 50% of the parcels 
e. Don’t know 
 

11. What format is used in your organization for this dataset?  Please select as many as 
necessary 

 
a. Relational Database (such as Access, Oracle, SAP, etc.) 
b. Mainframe (such as COBOL, PASCAL, or other format) 
c. Flat File (Excel or other) 
f. Application 
g. Other – Please specify        
f. Don’t know 
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12. Has the tax assessment data ever been used in your organization for disaster management 

purposes (i.e. response, preparedness, recovery or mitigation)?   

 
a. Yes 
b. No 
c. Don’t know 
 
If yes, please specify       

 
13. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 

be willing to share this data? 
 
 
 
 

14. Do you normally charge for this data?  If so, how much? 
 
 
 
 
22) Street Centerlines 
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 
Name         
Department        
Phone No        
Email         
 
 

3. What is your organization’s role with respect to street centerline data for your 
jurisdiction?  Please select as many as necessary. 

 
a.   Using 
b. Creating 
c. Updating and maintaining 
d. Distributing 
e. None 

 
4. Is there FGDC complaint metadata available for this dataset? 

 
 
 

5. What is the status of the creation of street centerlines for your jurisdiction?  Please select 
only one. 

 
a. Completed 
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b. Work in progress 
c. Planned 
d. Not planned 
 

6. Which year was your street centerline data created?  If Work in Progress, please put in 
the anticipated month and year of completion. 

 
 
 

7. When was this dataset last updated?  Please specify the month and year. 
 
 
 

8. What is the current geographical extent of this dataset for your jurisdiction?  Please 
select only one.  For the definition of your jurisdiction please refer to question 12 above. 

 
a. Entire Jurisdiction  
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
d. < one-third of the jurisdiction 

 
 

9. Does your dataset on streets include street addresses? 
 

a. Yes  b.  No 
 

10. What format is used in your organization for this dataset? 
 

a. ArcView shapefiles 
b.   ArcInfo coverages 
c.  MapInfo 
d.  GeoMedia 
e.   AutoCAD 
h. MicroStation 
i. Smallworld GIS 
j. Other – Please specify        
 

 
11. Which of the following best represents the positional accuracy of this dataset?  Please 

select only one. 
 

a. 95% of the points within 3 ft 
b. 95% of the points between 3ft and 6 ft 
c. 95 % of the points between 6ft and 15ft 
d. 95% of the points outside 15ft 
e.    Not sure 

 
 

12. Has the street centerline data layer ever been used in your organization for disaster 
management purposes (i.e response, preparedness, recovery of mitigation)? 
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a. Yes 
b. No 
c. Don’t know 
 
If yes, please specify       

 
13. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 

be willing to share this data? 
 
 
 
 

14. Do you normally charge for this data?  If so, how much? 
 

 
 
 
23) Transportation 
 
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 
Name         
Department        
Phone No        
Email         
 

3. What is the status of the following transportation layers for your jurisdiction?  Please 
select only one for each layer. 

 
Transportation Layer Completed Work in 

progress 
Planned  Not 

Planned 
a.  Roads     
b.  Railroads     
c.  Light Rail     
d.  Waterways     
e.  Airports     
f.  Ports     
g.  Bridges     
h.  Tunnels     

 
4. Is there FGDC complaint metadata available for these dataset? 

 
 
 

5. What is the source of the available transportation layers for your jurisdiction? 
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Transportation 
Layer 

Updated TIGER/other 
agency data (specify) 

Digitized 
by your 
agency 

Other 
methods 
(specify) 

Don’t 
know 

a.  Road     
b.  Railroads     
c.  Light Rail     
d. Waterways     
e. Airports     
f.  Ports     
g. Bridges     
h. Tunnels     

 
6. What is the current geographical extent of transportation datasets for your jurisdiction?  

Please select only one.  For the definition of your jurisdiction please refer to question 12 
above. 

 
a. Entire Jurisdiction  
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
d. < one-third of the jurisdiction 

 
7. Have any of the transportation data layer ever been used in your organization for disaster 

management purposes (i.e. response, preparedness, recovery or mitigation)?   
 

a. Yes 
b. No 
c. Don’t know 
 
If yes, please specify       

 
8. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 

be willing to share this data? 
 
 
 
 

9. Do you normally charge for this data?  If so, how much? 
 

 
 
 
 
24) Public Utilities (Water and WasteWater) 
 
 

1. I do not know much about these datasets.   
 

2.  The following person/department may be able to provide you with more information: 
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a. Water 
 
Name         
Department        
Phone No        
Email         
 

b. Wastewater 
 
Name         
Department        
Phone No        
Email         
 

 
3. What is the status of the creation of digital public utilities data for your jurisdiction? 

 
 

Utility Layer Completed Work in 
progress 

Planned  Not 
Planned 

a.  Water     
b.  Wastewater     
c.  Communication     

 
4. Is there FGDC complaint metadata available for this dataset? 

 
 
 

5. What is the current geographical extent of this dataset for your jurisdiction?  Please check 
only one.  For the definition of your jurisdiction please refer to question 12 above. 

 
a. Entire Jurisdiction 
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
d. < one-third of the jurisdiction 

 
6. Have any of the utility data layer ever been used in your organization for disaster 

management purposes (i.e. response, preparedness, recovery or mitigation)?   
 

a. Yes,  
b. No 
c. Don’t know 
 
If yes, please specify       
 
 

7. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 
be willing to share this data? 
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8. Do you normally charge for this data?  If so, how much? 
 
 
 
 
25) Digital Orthophotography 
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 

Name         
Department        
Phone No        
Email         
 

3. What is your organization’s role with respect to street centerline data for your 
jurisdiction?  Select as many as applicable. 

 
a.   Using 
b. Creating 
c. Updating and maintaining 
d. Distributing 
e. None 

 
4. Is there FGDC complaint metadata available for this dataset? 

 
 
 

5. What is the status of the creation of orthophotos for your jurisdiction? 
 

a. Completed 
b. Work in progress 
c. Planned 
d. Not planned 

 
 

6. Which year was your latest orthophoto acquired?  If new photography is being acquired 
recently, please also put in the anticipated month and year of completion. 

 
 
 

7. What is the current geographical extent of this dataset for your jurisdiction?  Please check 
only one.  For the definition of your jurisdiction please refer to question 12 above. 

 
a. Entire Jurisdiction  
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
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d. < one-third of the jurisdiction 
 

8. Which best represents the spatial resolution of your orthophotos? 
 

a. Finer than 1 m resolution  
b. 1 meter resolution 
c. 1 – 3 m resolution 
d. 3 m resolution 
e. Don’t know 

 
9. Which best represents the accuracy of your orthophotos? 
 

a. 95% of the points within 3 ft 
b. 95% of the points between 3ft and 6 ft 
c. 95 % of the points between 6ft and 15ft 
d. 95% of the points outside 15ft 
e.    Not sure 

 
 

10. Digital orthophotography ever been used in your organization for disaster management 
purposes (i.e. response, preparedness, recovery or mitigation)?   

 
a. Yes 
b. No 
c. Don’t know 
 
If yes, please specify       

 
11. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 

be willing to share this data? 
 
 
 
 

12. Do you normally charge for this data?  If so, how much? 
 
 
 
 
26) Elevation Data 
 

1. I do not know much about this dataset.   
 

2. The following person/department may be able to provide you with more information: 
 

Name         
Department        
Phone No        
Email         
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3. What is your organization’s role with respect to street centerline data for your 
jurisdiction?  Select as many as applicable. 

 
a. Using 
b. Creating 
c. Updating and maintaining 
d. Distributing 
e. None 

 
4. Is there FGDC complaint metadata available for this dataset? 

 
 
 
 

5. What is the status of the creation of elevation data for your jurisdiction? 
 

a. Completed 
b. Work in progress 
c. Planned 
d. Not planned 

 
 

6. Which year was your latest elevation data acquired?  If Work in Progress, please indicate 
the anticipated month and year of completion. 

 
 
 

7. What is the current geographical extent of this dataset for your jurisdiction?  Please check 
only one.  For the definition of your jurisdiction please refer to question 12 above. 

 
a. Entire Jurisdiction  
b. > two-thirds of the jurisdiction 
c. one-third to two-thirds of the jurisdiction 
d. < one-third of the jurisdiction 

 
8. Which best represents the horizontal accuracy of your elevation model? 
 

a. 95% of the points within 3 ft 
b. 95% of the points between 3ft and 6 ft 
c. 95 % of the points between 6ft and 15ft 
d. 95% of the points outside 15ft 
e.    Not sure 

 
 

9. Which best represents the vertical accuracy of your elevation model? 
 

a. < 4 ft  
b. 4 – 10 ft 
c. > 10 ft 
d. Don’t know 
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10. Has digital elevation data ever been used in your organization for disaster management 

purposes (i.e. response, preparedness, recovery or mitigation)?   
 

a. Yes 
b. No 
c. Don’t know 
 
If yes, please specify       

 
11. In exchange for results of analyses of an earthquake event using HAZUS 99, would you 

be willing to share this data? 
 
 
 
 

12. Do you normally charge for this data?  If so, how much? 
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Appendix B2: GIS Diffusion in Selected Cities 
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Table 1: Summary of GIS Diffusion in Surveyed Cities 
 

City Name Type of GIS GIS 
Mgr/ 
Coord. 

Dept 
housing  
Enterprise 
GIS 

Regional 
Consortium 

Intranet 
Mapping 

Public 
Access via 
Internet 

Emergency 
Mgmt 

Atlanta, GA Enterprise No Public 
Works 

Yes Yes No No 

Birmingham, AL Enterprise Yes Planning/ 
Permitting 

No No No City/ County 
EMA 

Colorado Springs, 
CO 

Departmental No  No No No Yes 

Honolulu, HI Enterprise Yes Planning/ 
Permitting 

Yes Yes Yes No 

Jacksonville, FL Enterprise Yes Info Tech No Yes Yes Yes 
Las Vegas, NV Enterprise Yes Dept of 

Tech 
No Yes Yes No 

Long Beach, CA Enterprise No Info Tech Yes Yes No ? 
Miami, FL Departmental No  Yes No No No 
Milwaukee, WI Enterprise Yes Info Tech Yes Yes Yes Yes 
Minneapolis, MN Enterprise Yes Info Tech Yes Yes No Yes 
Newark, NJ Departmental No  No No No Yes 
Oklahoma City, 
OK 

Enterprise Yes Info Tech No Yes No Yes 

Omaha, NE Departmental No  Yes No No No 
Pittsburgh, PA Departmental No  No No No Yes 
Portland, OR Enterprise Yes Info Tech Yes Yes Yes Yes 
San Antonio, TX Enterprise Yes Info Tech No Yes No Yes 
Santa Ana, CA Departmental Yes  No Yes No Yes 
Seattle, WA Enterprise Yes Public 

Utilities 
Yes Yes Yes Yes 

Wichita, KS Enterprise Yes Info Tech No Yes No No 
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Table 2: Availability of Core Dataset by City 
 
 

Parcel 
with Tax 
Attribute 

Bldg 
Footprint 

Street 
Centerline 

Ortho Topography 

Atlanta, GA Yes Yes Yes Yes Yes 
Birmingham, AL Yes Yes Yes Partial Partial 
Colorado Springs, 
CO 

Yes Yes Yes Yes Yes 

Honolulu, HI Yes Partial Yes Partial Yes 
Jacksonville, FL Yes Planned Yes Yes Yes 
Las Vegas, NV Yes Yes Yes Yes Yes 
Long Beach, CA Yes Yes Yes Yes Partial 
Miami, FL Yes Partial Yes Yes Planned 
Milwaukee, WI Yes Yes Yes Yes Yes 
Minneapolis, MN Yes Yes In Progress Yes Yes 
Newark, NJ Yes Yes In Progress Yes Partial 
Oklahoma City, 
OK 

Yes Yes Yes Yes Yes 

Omaha, NE Yes No Yes Yes Partial 
Pittsburgh, PA Yes Yes Yes Yes Yes 
Portland, OR Yes Yes Yes Yes Yes 
San Antonio, TX Yes Partial Yes Yes Yes 
Santa Ana, CA Yes No Yes Yes Yes 
Seattle, WA Yes Yes Yes Yes Yes 
Wichita, KS Yes No Yes Yes Partial 
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Appendix C:  City of Seattle Case Study 
 
Table 1:  Mapping of Local Structure Type to HAZUS™ Structure Types 
Local Structure Source of Assessor Count HAZUS Structure Type 
Wood (<50%) Residential Table 124,080 Wood 
Masonry (>= 50%) Residential Table 15,150 Masonry 
Structural Steel Commercial Table 210 Steel 
Reinforced Concrete Commercial Table 765 Concrete 
Masonry Commercial Table 5,673 Masonry 
Wood Frame Commercial Table 10,491 Wood 
Prefab Steel Commercial Table 717 Precast 
Unknown Commercial Table 2,269 Unknown 
Total  159,355  
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Appendix D:  City of Long Beach Case Study 
 
Table 1: Construction/Structure Type Information in Local Data 

Type of Construction # of Records 
Brick 65
Concrete 295
Concrete Block 35
Frame 13,234
Heavy 1
Light 23
Log 4
Manufactured 6
Masonry 118
Metal 25
Special 4
Steel/Heavy 2
No Data 74,205
 

Table 2: Values in Frame_Code Field 

FRAME_CODE # of Records 
Concrete 99 
Masonry 310 
Steel 90 
Wood 3,274 

No Data 
84,244 
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Appendix E:  Comparison of Seattle and Long Beach 
 
Table 1: Average square footage of various occupancies for Seattle and Long Beach 

    Seattle Long Beach 

Specific 
Occupancy Description 

Average 
Default Size 

Average 
Local Size 

Average 
Default 
Size 

Average 
Local 
Size 

RES1 Single Family Dwelling                       1,600 1,632 1,600 1,634 
RES2 Manuf.  Housing                                   1,161 4,567 1,065 11,318 
RES3A Duplex                                                  3,253 1,978 3,065 1,864 
RES3B Triplex / Quads                                     3,537 3,271 3,098 2,837 
RES4 Temporary Lodging                             176,889 46,218 184,657 16,822 
RES5 Institutional Dormitory                         27,177 21,271 26,401 1,229 
RES6 Nursing Home 27,104 36,413 25,053 14,197 
COM1 Retail 338,951 10,133 722,556 7,573 
COM2 Wholesale Trade                                   35,076 20,998 36,981 22,220 
COM3 Personal and Repair Services               11,436 5,213 11,703 4,450 
COM4 Professional/Technical Services           105,525 42,365 113,411 13,918 
COM5 Banks                                                    4,188 7,761 4,323 10,620 
COM6 Hospital                                                61,679 131,157 55,016 29,533 
COM7 Medical Office/Clinic                           7,446 18,241 7,940 1,505 
COM8 Entertainment & Recreation                 5,029 11,925 5,117 4,998 
COM9 Theaters                                                16,913 39,616 31,600 23,733 
IND1 Heavy                                                   34,414 17,962 33,684 16,676 
IND2 Light                                                     42,815 18,173 34,568 8,390 
IND3 Food/Drugs/Chemicals                         62,846 11,048 93,600 11,625 
IND4 Metals/Minerals Processing                 40,180 13,668 50,750 13,987 
IND5 High Technology                                  #DIV/0 21,362 #DIV/0 61 
IND6 Construction                                        82,870 10,380 155,025 8,782 
AGR1 Agriculture 120,460 7,442 #DIV/0 3,454 
REL1 Religion 24,650 11,042 26,079 11,793 
GOV1 General Services                                   11,484 27,651 11,216 13,293 
GOV2 Emergency Response                           35,200 #DIV/0 9,267 #DIV/0 
EDU1 Grade Schools                                      539,450 64,978 365,450 39,370 
EDU2 Colleges/Universities                           58,227 #DIV/0 54,625 182,194 
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