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ABSTRACT OF THE DISSERTATION
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by Vesselin Marinov

Dissertation Director: Professor Joel L. Lebowitz

In this thesis we study various problems in dependent percolation theory. In the first

part of this thesis we study disordered q-state Potts models as examples of systems in

which there is percolation for an arbitrary low density and no percolation for arbitrary

high density of occupied sites. In the second part of the thesis we study dependent

percolation models in which the correlations between the site occupation variables are

long range, i.e. decaying as r−a for a < d, where r is the separation between any two

sites and d is the dimension of the model. Scaling analysis suggests [1] that such long

range correlated percolation models define a new percolation universality classes with

critical exponents depending on a. We develop a field theoretic description of these

models in an attempt to calculate the critical exponents of the transition in an double

expansion in terms of ε = 6−d and δ = 4−a. In the third part we study the percolation

transition for two specific long range correlated percolation models on the 3 dimensional

integer square lattice. These two percolation models are derived from the Voter model

and the Harmonic crystal respectively. Our simulation results confirm the basic scaling

arguments and the field theoretic results.
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Chapter 1

Introduction

In this thesis we confine our attention to the study of the percolation problems on the

graph with sites x ∈ Zd and edges connecting every two sites for which |x − y| = 1,

where |x| = |x1| + |x2| + · + |xd|. In other words we take as the graph the usual d

dimensional integer square lattice. Sites which are connected by an edge will be called

nearest neighbor sites.

The first step in defining a percolation problem is to introduce a random percolation

field η that lives on the sites or edges of this graph and takes values in {0, 1}. If the

random field is defined on the sites of the graph then we speak of site percolation; if it is

defined on the edges of the graph we refer to it as a bond percolation. A site x ∈ Zd for

which η(x) = 1 is called occupied and one for which η(x) = 0 it is called empty. In the

case of bond percolation the terminology is open and closed, respectively. For clarity

of exposition we will confine our discussion in this Introduction to site percolation.

The next step is to define a measure P on configurations η ∈ {0, 1}
� d

. A natural

and easy to deal with measure is the product or Bernoulli measure. One refers to this as

independent Bernoulli site percolation. One can however consider percolation problems

in which the site occupation probability is assigned in some natural way which is not

independent, i.e., in which the measure in question is not a product measure. This

defines dependent or correlated percolation. In this thesis we will always consider P to

be translation invariant.

Site percolation theory is concerned with the study of various statistics and prop-

erties of clusters of occupied sites that arise in a percolation model. A cluster in a

given configuration is a maximal set of occupied sites such that one can reach any site

from this set from any other site from this set by following a path consisting of nearest
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neighbor bonds.

Although defined simply percolation provides many interesting problems. In par-

ticular it is an example of a second order phase transition. The phase transition in this

case is marked by the existence, with probability one, of an infinite cluster of occupied

sites if the density of occupied sites p = 〈η(x)〉 is in excess of some critical density

pc. The order parameter in this second order phase transition is the probability that

a given site belongs to the infinite cluster. One is interested in calculating the critical

exponents associated with this transition and identifying different universality classes.

There are many applications of percolation theory. It is used for the study of the

spread of diseases, oil fields exploration, diffusion in disordered media, and random re-

sistor networks. For a nice discussion of the applications of percolation theory see [2].

Percolation also has a very direct application in the study of the thermal phase transi-

tion of Ising type statistical mechanics spin models; we will discuss this in Chapter 2.

In this thesis we study various aspects of dependent percolation. In Chapter 2 we

address the question whether there are some natural bounds for the critical percolation

density pc for percolation models on Z2. Using the disordered Potts model we provide

examples of percolation models on Z2 for which pc can be arbitrary close to 1 and

models for which pc can be arbitrary close to 0.

In Chapter 3 we turn our attention to long range correlated percolation models.

These are models for which the occupation measure P has power law decaying two

point correlations, i.e.,

〈η(x)η(y)〉 ∼ |x − y|−a. (0.1)

Some time ago Weinrib and Halperin [3, 1] investigated this question for systems with

such slow decay of the pair correlation. Their results, based on a generalization of

the Harris criteria and confirmed by an ε-expansion, suggest that if the correlation

between the occupation variables falls off as in (0.1) and if a < d, where d is the spatial

dimension of the problem, then these correlations are relevant if aν − 2 < 0, where ν

is the correlation length exponent for the associated independent percolation problem.

Systems which satisfy the above criteria belong to a new universality class for which

the percolation correlation length exponents is νlong = 2
a . In Chapter 3 we develop
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a different field theoretic description for the long range correlated percolation model

from the one in [1] and perform a renormalization group calculation for its critical

exponents. We confirm that up to two loops the prediction for the new correlation

length critical exponent holds.

In Chapter 4 we study two models, the Harmonic Crystal and Voter model, which

fall into the class of long range percolation models. We calculate through Monte Carlo

simulation and finite size scaling the critical exponents associated with the percolation

transition. For both these models a = 1 and our simulation results confirm that the

correlation length critical exponent for both models is ν = 2.

We conclude this thesis with some discussion of other topics of interest and further

directions in Chapter 5
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Chapter 2

The Percolation Threshold

2.1 Percolation Threshold for Independent Percolation

The simplest percolation models that we can define are the Bernoulli independent bond

and site percolation models. In this section we deal with the Bernoulli independent bond

percolation model on the d dimensional integer square lattice , and sketch the proof

that for d > 1 there is a non-trivial percolation threshold pc, i.e. 0 < pc < 1; we follow

[4]. In section 2.3 we will discuss some dependent site percolation models derived from

the q-state Potts Model for which one can have percolation for an arbitrarily small

density and no percolation for an arbitrarily high density of occupied sites.

For independent Bernoulli bond percolation we declare independently each edge

e ∈ Ed to be open with probability p and closed otherwise. Formally we consider the

sample configuration space Ω =
∏

e∈Ed{0, 1}. For an element ω ∈ Ω, ω(e) = 0 cor-

responds to edge e being closed and ω(e) = 1 corresponds of edge e being open. We

take for the σ-algebra to be generated by the σ-algebra of finite dimensional cylinders

of Ω. The probability measure on this space that we consider is Pp =
∏

e∈Ed µe where

µe(ω(e) = 0) = 1 − p and µe(ω(e) = 1) = p.

A particular configuration of open edges defines a random subgraph of the d dimen-

sional integer square lattice that contains the vertex set Zd and all the open edges. The

connected components of this subgraph are called open clusters. We will denote with

C(0) the open cluster that contains the vertex origin of Zd. Independent Bernoulli site

percolation is defined similarly. In this case the sample space is Ω =
∏

s∈Zd{0, 1}. One

can also consider a mixture of bond and site percolation: the percolation models that

one can construct are only limited by ones imagination.

An important quantity of interest is the probability that C(0) has an infinite number
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of components. We will denote this probability by P∞(p)

P∞(p) = Pp(|C(0)| = ∞) (1.1)

P∞(p) plays the role of the order parameter in the percolation “phase transition”. To

establish the existence of this transition one has to establish that P∞(p) > 0 for some

values of the parameter p and P∞(p) = 0 for other values. In fact we are interested in

finding a 0 < pc < 1 such that for p > pc, P∞(p) > 0 and for p < pc, P∞(p) = 0.

It is a trivial observation that if d = 1 then P∞(p) = 0 for any p < 1 and P∞(p) = 1

for p = 1. For d > 1 things are not so trivial and in this case 0 < pc < 1. For

completeness of the exposition we will reproduce a proof of this statement [4].

We first prove that pc(d) > 0. For a given configuration of open bonds, let N(n)

be the number of paths of length n that start from the origin and for which all bonds

are open. Since the measure is a product measure 〈N(n)〉 = pnσ(n) where σ(n) is the

number of paths in the d dimensional integer square lattice that start from a given

point and have length n. We have the following inequality:

P∞(p) ≤ Pp(N(n) ≥ 1) ≤ 〈(N(n))〉 = pnσ(n) (1.2)

It is trivial to prove that the connectivity constant of the d dimensional integer square

lattice, λ(d) = limn→∞ σ(n)
1
n is finite and satisfies the inequality λ(d) ≤ 2d − 1. From

the definition of the connectivity function we can conclude that σ(n) = {λ(d) + o(1)}n

as n → ∞. Substituting this in the last term of (1.2) we conclude that if pλ(d) < 1

then P∞(p) = 0. Thus we have proved that pc(d) ≥ 1
λ(d) and since λ(d) is finite the

result follows.

To prove that pc(d) < 1 it is enought to prove that pc(2) < 1 since pc(d) ≥ pc(d+1).

To prove that pc(2) < 1 we need to introduce the notion of the dual lattice. The dual

lattice and dual models will be relevant for our discussions in section 2.3. For the case of

the 2 dimensional integer square lattice the dual lattice is defined as follows. The nodes

of the dual lattice reside at the center of the faces of the original lattice. We join all these

nodes with edges if the corresponding faces share an edge of the original lattice. A part

of the original 2 dimensional integer square lattice and its dual is drawn in Fig. 2.1. We

declare an edge on the dual lattice to be open if the corresponding edge on the original
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lattice that it crosses is closed and vice versa. This defines a bond percolation model

on the dual lattice with edge probability 1 − p. It is not difficult to realize that if the

cluster of occupied edges that belongs to the origin is finite, then necessarily there exist

a closed circuit of open dual edges on the dual lattice that surrounds the origin, see

Fig. 2.2 , and vice versa.

Let us denote with γ a circuit of bonds in the dual lattice that surrounds the origin

and let us denote with M(n) the number of such open circuits of size n. We have

Pp(|C(0)| = ∞) = Pp(M(n) = 0 for all n) (1.3)

= 1 −Pp(M(n) ≥ 1 for some n)

≥ 1 −
∑

γ

Pp(γ is open).

On the other hand

∑

γ

Pp(γ is open) ≤
∞
∑

n=1

(1 − p)nnσ(n − 1) (1.4)

=

∞
∑

n=1

(1 − p)n((1 − p)λ(2) + o(1))n−1 (1.5)

< ∞ if (1 − p)λ(2) < 1.

The sum in (1.4) tends to zero if p → 1 therefore there must exist an ε ∈ (0, 1) such

that
∑

γ

Pp(γ is open) ≤ 1

2
if p > ε (1.6)

Combining (1.6) and (1.3) we find that Pp(|C(0)| = ∞) ≥ 1
2 if p ≥ ε and thus we

conclude that pc(2) ≤ ε. In fact using duality arguments one can conclude that for this

2 dimensional bond percolation model pc = 1
2 [4].

It is not so easy to prove the existence of a non-trivial percolation threshold when

the occupation measure is not a product measure anymore. This problem is especially

difficult when long range correlations are present. There has been some work on this

subject, most notably [5] where the main result was the proof of the existence of a non-

trivial percolation threshold pc for the level field in the Harmonic Crystal in 3d. We will
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discuss this problem further in Chapter 4, where we will use Monte Carlo simulations to

numercialy identify pc. Here we would like to note that one can easily extend the result

in [5] for d > 3 [6]. To be concrete let us detail how this can be done. Let φ(x) ∈ R

be the massless Gaussian free field on Zd. The percolation field that we are interested

in is defined as η(x) =
�

φ(x)>h with h ∈ R. This field inherits the ergodicity of φ and it

has finite energy [7]. If for a given level h there is a infinite cluster of occupied sites,

we denote this cluster by C∞, then this cluster is necessarily unique [7]. The density of

this cluster ρ(h) is then strictly positive [8]. The key element in the analysis in [5] is

that if η percolates then 〈φ(x)〉 > 0. The same argument as in [5] can be used to prove

this statement. In [5] the key observation is that in three dimensions any infinitely

connected set is recurrent for a simple random walk. Having the extra information that

for any dimension if there is an infinite cluster it has a positive density then again this

cluster is recurrent for a simple random walk and the proof in [5] goes through.

Another model very similar to the Harmonic crystal is the Voter model. We will

discuss this model further in Chapter 4. We have tried hard to find an argument that

will support the existence of a non trivial percolation transition for this model but are

unsuccessful so far. We however completed some Monte Carlo simulations from which

one can conclude that this is the case; see Chapter 4.
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Figure 2.1: Part of the 2 dimensional integer square lattice together with its dual. The
sites of the 2 dimensional integer square lattice are drawn as black dots while the sites
of the dual lattice are drawn as empty circles
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Figure 2.2: A random bond configuration of a percolation model on the 2 dimensional
integer square lattice
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2.2 The Potts Model and Percolation

The nearest neighbor Potts model is a natural generalization of the Ising model where

the “spins” can take any number of q different values. In its most general form the

model is defined by the Hamiltonian

HJ = −
∑

<i,j>

Ji,jδσiσj (2.1)

where 〈i, j〉 denotes nearest neighbors, Ji,j are real numbers which represent the strength

of interaction between sites i and j, and σi ∈ {1...q} is the value of the “spin” at site

i. We will denote by J the collection of couplings {Ji,j}. The model could in general

be defined on an arbitrary graph but for our discussion we will concentrate on d di-

mensional integer square lattice. Later on we will allow Ji,j to be a collection of iid

non-negative random variables with a common distribution F ; in this case we will refer

to the model as the disordered Potts Ferromagnet.

The Gibbs measure for this model in a finite volume with specified boundary condi-

tions is defined as usual. Namely, if Λ ⊂ Zd and the boundary ∂Λ has fixed boundary

spins σ∂Λ we write

P
σ∂Λ
J,Λ (σΛ) ∝ e−HJ(σΛ|σ∂Λ) (2.2)

where HJ(σΛ|σ∂Λ) is the expression (2.1) restricted to the sites in Λ
⋃

∂Λ with σ∂Λ. One

can consider various boundary conditions; the most useful ones are when we consider

all σi ∈ ∂Λ be fixed to one of the q spin values (since the Hamiltonian is symmetric it

does not matter which one we choose). The second choice of interest is the so called

free boundary conditions: defined by taking Ji,j = 0 whenever i ∈ Λ and j ∈ ∂Λ. Note

that we have absorbed the inverse temperature β in the definition of Ji,j .

The phase transition in such systems is signaled by the non-uniqueness of the infinite

volume limit of the Gibbs measure (2.2), see [9]. In this section we are going to describe

the so called Random Cluster Measures which are an important tool for the rigorous

study of these models.

The random cluster model, also known as the Fortuin-Kasteleyn (FK) model, is a

dependent percolation model depending on two parameters R and q, R is a vector of
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parameters Ri,j , one for each edge 〈i, j〉 in the collections of edges E in a finite graph G

and q is some positive real number. For each configuration ω of open and closed bonds

on E the FK measure assigns the following probability

PR,q ∝ {
∏

e∈E
Rω(e)

e (1 − Re)
1−ω(e)}qc(ω) (2.3)

where Re ∈ [0, 1] for all e ∈ E and q > 0, and c(ω) is the number of clusters (connected

components) in the subgraph defined by the bonds for which ω(e) = 1. In principle one

needs to discuss the issue of boundary conditions which have impact on the calculation

of c(ω), but this leads to unecessary complications for the purpose of the current dis-

cussion. We will revisit these random cluster measures in Sec. 2.3.3 , where we discuss

boundary condition in more detail. Note that for q = 1 the above measure reduces to

the Bernoulli bond percolation measure. This observation together with the relation

between the FK measures and Potts models that we will establish below is the base of

the claim that percolation is the q → 1 limit of a q-state Potts model. This observation

can be used to build a field theoretic description of the percolation “phase transition”;

we discuss this in Section 3.3.

For non zero q the FK measure exhibits correlations. If we take q ∈ {2, 3, ...} one

obtains a random cluster measure that is ultimately related to the measure of the cor-

responding q-state Potts model. The relation between these two measures is realized by

the so called Edwards-Sokal measure [9]. Edwards-Sokal measure is a coupling between

the random cluster model with parameters q and R, and the q-state Potts model with

collection of couplings J such that R = 1−e−J. A coupling is a measure defined on the

joined probability space for the two measures such that its two marginals are exactly

the two given measures. To each element (σ, ω) ∈ {1, ..., q}V × {0, 1}E , here V is the

vertex set of G, the Edwards-Sokal measure assign the probability

∏

e=<x,y>∈E
Rω(e)

e (1 − Re)
1−ω(e)I(σ(x)−σ(y))ω(e)=0 . (2.4)

That is the measure assigns non-zero probability only to configurations for which if two

sites are connected with an open bond then they necessarily have the same spin.

One useful application of this coupling is the construction of an effective simulation
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algorithm for q-state Potts models [9]. The basis of this algorithm lies in the following

Theorem that we adopt from [9]:

Theorem 2.2.1 Let Ri,j = 1 − e−Ji,j , and suppose we pick a random spin configura-

tion σ ∈ {1, ..., q}V as follows

1. Pick a random edge configuration ω ∈ {0, 1}E according to the random-cluster mea-

sure PR,q.

2. For each connected component C of ω, pick a spin at random (uniformly) from

{1, ...q}, assign this spin to every vertex of C, and do this independently for different

components.

Then σ is distributed according to the Potts model Gibbs measure PJ.

We note here that the random cluster representation only works for the case of zero

external field, since then all the different “spins” are equivalent.

Theorem 2.2.1 provides us with a route to proving the existence and deriving various

properties of the limit of finite volume Gibbs measures of the q-state Potts model. One

first proves the existence of such limit for the random cluster measure, associate with the

q-state Potts model and then using 2.2.1 one obtains the limit for the Gibbs measure.

The random cluster measures enjoy certain monotonicity properties which makes them

easy to deal with, see [9] and the Appendix in [10]

As is well know, non-uniqueness in the infinite volume Gibbs measure signals the

existence of a phase transition. Another nice application of the random cluster measures

is a characterization of thermal phase transition in a Potts spin model in terms of

percolation in the associated random-cluster model [9], see also Sec. 2.3.3.

2.3 Percolation in High and Low Density Systems

In this section we address the question of whether there are “natural” translation and

(lattice) rotation invariant ergodic measures on configurations η ∈ {0, 1}
� d

, d ≥ 2,

for which site percolation occurs when the density of occupied sites, p = 〈ηi〉, is very

close to zero and/or fails to occur if the density is close to one. It is known that neither

phenomenon occurs for systems with product measures (independent percolation) [9, 4],
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where, in most situations, there is a sharp percolation transition when p−1 is of the

order of the lattice coordination number (e.g. 2d). The question then is what happens

when the occupancy of different sites is specified in some natural way which is not

independent. Of particular interest are equilibrium spin–systems and non-equilibrium

stationary states of interacting particle systems such as the voter model, the contact

process and their various generalizations [11]. Furthermore, one may also consider

projections of such measures, i.e. given a measure on [Ω]
� d

, where σi ∈ Ω is the set of

possible states at i ∈ Zd, we define an occupation variable ηi = 0, 1 , with ηi = 1 if

σi ∈ Ω1 and ηi = 0 if σi ∈ Ω \ Ω1. Well known examples are the fuzzy q-state Potts

model with q = r + s and ηi = 1 if σi ∈ (1, .., r), and systems where σi ∈ R, and ηi = 1

if σi ≥ h and zero otherwise [12, 13, 5].

Adams and Lyons [14] considered these types of question for measures on homo-

geneous trees that are invariant under the graph automorphisms. They found that

whenever the density is large enough there indeed is percolation, see also [15] and [16].

Such a result does not hold for Zd; it is easy to construct counter examples which

exploit, in an obvious way, the vanishing surface to volume ratio of regular sets [9].

Also, for d = 2 one may consider an independent percolating cluster near threshold and

simply declare the complimentary sites to have η1 ≡ 1; these complimentary sites will

have density close to one and fail to percolate. Higher dimensional analogs may even be

possible, albeit at different thresholds (c.f. [17]) and the converse phenomenon can also

be constructed by these means: Consider a slightly super–critical percolating cluster

and declare its compliment to be vacant (ηi ≡ 0). While such examples are not partic-

ularly interesting in their own right, they demonstrate the existence of mechanisms for

these phenomena which might occur in more realistic systems.

In this section, the principal system under study is the 2d disordered Potts ferro-

magnet. First we will demonstrate that at self–dual critical points there is an absence

of percolation despite a density which may be arbitrarily close to one. The compli-

mentary result, namely percolation at small density, would follow immediately from

continuity of the magnetization – a currently open and challenging problem. (We will

state some inconclusive results concerning this question.) However, almost trivially, the
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diluted versions of the disordered Potts models exhibit this property throughout the

low temperature phase provided the system itself is near threshold; we will provide a

formal proof. Finally we will combine the two sets of results via the consideration of

models with strong and weak interactions. These models inherit enough of the features

of the dilute model to display the small density percolation property yet, unlike the

dilute models, can have a self–dual point.

Most of the above stated results are proved in the context of a fixed realization of

the disorder. However, since any particular realization is not translation invariant we

do not satisfy the naturalness criterion that was stated at the beginning of this section.

Therefore we will consider the entire problem from the perspective of the quenched

measures. These objects are manifestly translation invariant and we will demonstrate

various other properties, such as strong mixing.

The remainder of this section is organized as follows: We first define the general

quenched disordered Potts ferromagnets but with the emphasis on d = 2. We define

the quenched measures for these systems; certain general properties of these quenched

measures are stated; the proof of these can be found in the Appendix of [10]. We then

prove our main results: (i) At certain self–dual critical points, any one of the species

is sufficient to prevent percolation of the combined efforts of all the others. (ii) For

the dilute model, with the active bonds in slight excess of the percolation threshold,

there is a non–trivial low temperature phase characterized by the percolation of just

one of the species notwithstanding (for q � 1) the paucity of the overall density of

this species. Finally we construct a weak–bond/strong–bond disordered model with a

self–dual point and, at least in the vicinity of the transition temperature, a regime of

percolation at low density. In the next section, we will provide some discussion. For

further background discussion, see [9] Section 5.2.

2.3.1 Disordered Potts Ferromagnets

The Disordered Potts Ferromagnet is defined as in (2.1) but now the couplings Ji,j are

considered to be iid non-negative random variables with common distribution F not

concentrated at a single point; we emphasize that we may allow Ji,j = 0 with non-zero
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probability, a case we will refer to as dilution.

For finite volume, the quenched measures are defined by averaging the probabilities

in (2.2) over all realizations of the interactions according to
∏

〈i,j〉 dF (Ji,j) (written as

dF ) – where the product runs over the appropriate set, usually i and j in Λ ∪ ∂Λ).

These averaged objects will be referred to as the finite volume quenched measures

and denoted by Q
]
F ;Λ with the superscript denoting one of the two types of boundary

conditions described, i.e., ] = [1] corresponds to fixing the value of the spins at the

boundary to 1 and ] = [f ] corresponds to free boundary conditions. As far as infinite

volume limits are concerned, there are two alternative scenarios: (1) for fixed J take

Λ ↗ Z2 and (somehow) average the resultant measure over J. (2) Take the (vague)

infinite volume limit of the finite volume quenched measures described above. It turns

out that for the pertinent cases at hand, the order of the procedures is immaterial and

the result is independent of how Λ ↗ Z2. We will provide a brief sketch of how this is

established in the appendix.

Below we summarize our claims concerning these quenched measures; the proofs for

these can be found in [10].

Proposition A1 For all F satisfying the ferromagnetic condition, that is Ji,j ≥ 0 with

probability one, the limiting measures

Q
[1]
F = lim

Λ↗ �
2
Q

[1]
F ;Λ (3.1)

exists (independently of how Λ ↗ Z2) and similarly for Q
[f ]
F . Furthermore, the measures

Q
[1]
F and Q

[f ]
F are invariant under Z2 shifts – as well as other Z2 symmetries.

Proposition A2 If µ
[1]
J and µ

[f ]
J are limiting Gibbs measures (which also exist indepen-

dently of how the infinite volume limit is taken) then the average of these measures is

well defined and equal to their respective Q counterpart. Finally, if F is such that the

spontaneous magnetization as defined thermodynamically (or as will be discussed subse-

quent to Eq.(3.7)) is zero then the limiting quenched measure – satisfying all properties

of Proposition A1 above and A3 below – is unique.

Proposition A3 The limiting measure Q
[1]
F satisfies the strong mixing condition. So,

in particular, if the magnetization vanishes the unique measure is strongly mixing.
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While most likely these are non–Gibbsian measures, as is evidenced by the result

in [18] on a related system, they are physically motivated and, possibly, experimen-

tally accessible. Notwithstanding, at self–dual points (and presumably at other critical

points) the combined efforts of species 2 through q will fail to achieve percolation in

spite of their high density. Furthermore in the dilute case (and related cases) despite

a low density, the type–1 spins can, on their own, achieve percolation in the Q
[1]
F –

measures.

2.3.2 Statement of Main Results

For 0 < J < ∞, the dual coupling is defined by

J∗(J) = log

(

1 +
q

eJ − 1

)

. (3.2)

and the dual model is defined by the assignment of the coupling J ∗(Ji,j) ≡ J∗
i,j to the

bond 〈i∗, j∗〉 of the dual lattice (Z + 1
2)2 that is traversal to the bond 〈i, j〉. A model is

self–dual 1 if

dF (Ji,j) = dF (J∗
i,j). (3.3)

Our result on the bond–random Potts ferromagnets reads as follows:

Theorem 2.3.1 Suppose that for the ferromagnetic bond strength distribution F , in

both the direct and the dual model, the spontaneous magnetization vanishes. Then, with

probability one, in the (unique) limiting quenched measure there are infinitely many

circuits surrounding the origin such that the spin–type is constant throughout the circuit

and, moreover, there are infinitely many such circuits of each spin–type. In particular,

there is no percolation (or even ∗–percolation) in the various marginal measures which

identify as many as (q − 1) of the spin–states as a single state notwithstanding that the

density of this amalgamation is 1 − 1
q

Corollary 2.3.2 For a 2D disordered Potts model at a point of self–duality, the (hy-

potheses and) conclusions of Theorem 2.3.1 hold.

1For models that do not respect all of the
� 2 symmetries, a more general definition of self–duality

is possible e.g. the vertical bonds distributed as the dual of the horizontal bonds and vice versa. While

most of our results go through easily in these cases, we make no further reference to these extensions

since the present purpose is to construct “natural measures” on
� 2
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Our next result concerns situations which do have percolation:

Theorem 2.3.3 Consider the dilute model with parameters a and β defined by Ji,j = β

with probability a and zero otherwise. If a > 1
2 there is a βc < ∞ such that for all β > βc,

the magnetization m(β, a), given for [1] boundary conditions by the excess density of

species 1 above 1
q , satisfies the inequalities

0 < m(β, a) < P∞(a) (3.4)

where P∞(a) is the percolation probability in the independent bond–model on Z2. In

particular, for all β > βc, in the measure Q
[1]
F , there is (with probability one) an infinite

cluster of species 1 while the overall density of this species is m(β, a) + 1
q ≤ P∞(a) + 1

q ;

by considering large q and a close to 1
2 , this density can be made as small as desired.

Both features may be exhibited in a single model:

Theorem 2.3.4 Consider a disordered Potts ferromagnet with strong and weak bonds,

e.g. J ≥ b with probability a and J = J ∗(J) with probability (1 − a). Then for b large,

the magnetization is very nearly P∞(a) and the overall density in the measure Q
[1]
F is

very nearly P∞(a) + 1
q . Since the model is self–dual at a = 1

2 , both the high and low

density percolative phenomena occur as the parameter a passes through 1
2 .

2.3.3 Graphical Representations, Dual Models and Dominations

For 〈i, j〉 a neighboring pair let us define

Ri,j = eJi,j − 1. (3.5)

As is well known [19], see also Sec. 2.2 the model admits the random cluster represen-

tation: In finite volume, if ω is a configuration of occupied and vacant bonds (or edges)

the probability of ω is given by

P
]
J;Λ(ω) ∝

∏

〈i,j〉∈ω

Ri,jq
c](ω) (3.6)

where 〈i, j〉 ∈ ω represents the event that the particular bond is occupied and c](ω)

denotes the number of connected components which are counted by rules (]) in accord
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with conditions specified at the boundary: ] = [1] and ] = [f ]. In the former case

– sometimes called the wired measures – c[1](ω) counts all clusters that are attached

to the boundary as part of the same connected component while c[f ](ω) simply counts

the number of components in ω by the conventional definition. Given these random

cluster measures it is possible to write down the conditional probabilities of spin con-

figurations given a bond configuration. This is done by insisting that the spin–value

is constant throughout each component of ω and, except for the components attached

to the boundary, assigning the spin–types to each component independently and with

equal probability. As for the boundary component, as far as concern the two setups

in this work the procedures are simple: For [f ], nothing special is done – all boundary

components are treated like the internal components. For the wired or [1] case, all

components of the boundary are set to the first spin–state. Thus, for example, the

finite volume magnetization at the origin for specified J is given by

mJ;Λ(0) ≡ E
[1]
J;Λ(δσ0 ,1) −

1

q
= P

[1]
J;Λ({0 ↔ ∂Λ}) (3.7)

where {0 ↔ ∂Λ} is the event that the origin is connected to ∂Λ by an occupied path.

The average magnetization at the origin m̄
[1]
Λ (0) is obtained by averaging (3.7) over F.

The infinite volume spontaneous magnetization m̄[1](0) is obtained by taking the limit

Λ ↗ Zd of m̄
[1]
Λ (0). We call m̄[1](0) the spontaneous magnetization of the system.

To conclude: on the basis of Eq.(3.7) the magnetization at the origin is non–zero

in any given quench (realization) if and only if the right hand side does not tend to

zero as Λ ↗ Z2; i.e. percolation and spontaneous magnetization are synonymous. That

the limiting percolation density exists (with or without the quenched average) is well

known and anyway can be derived on the basis of what is discussed later. The fact

that percolation probability is equal to the thermodynamically defined spontaneous

magnetization has been proved elsewhere, see [20] and references therein, as well as [21]

and [22].

In finite volume, the dual model is defined as follows: If 〈i, j〉 is an edge of Z2, let

〈i∗, j∗〉 denote the corresponding edge of (Z + 1
2)2 and let

R∗
i∗,j∗ =

q

Ri,j
. (3.8)
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which is the equivalent of Eq.(3.2). For a finite Λ ⊂ Z2 – with Λ regarded as a graph –

consider the dual graph, Λ∗ consisting of all (dual) edges corresponding to those (direct)

edges in Λ and the collection of (dual) sites which are the endpoints of these dual edges.

As is well known, the model on the dual graph with parameters R∗
i∗,j∗ has configurations

which are in one–to–one correspondence with (and have the same probabilities as) the

original setup on Λ. Of course, some attention must be paid to the conditions at the

boundary. All that is needed in this work is the readily verified fact that the model

with wired boundary conditions on Λ associates with the model with free boundary

conditions on Λ∗ and vice versa. We will refer to the initial model as the direct model

and the induced distribution for the J ∗
i∗,j∗ – collectively denoted by J∗ – by F∗. Of

course when it comes to integration, we may use the “direct” dF .

A model is said to be self–dual if the probability distribution of the {J ∗
i,j} is the

same as that of original e.g. the Eq.(3.3) or, equivalently,

Ri,j =d
q

Ri,j
(3.9)

The “nicest” examples concern a self–duality which is achieved according to a tempera-

ture parameter, in which case one can speak of the self-dual temperature β̄, c.f. Eq.(30)

in [23], but this will not be necessary in the present work.

For the sake of completeness, let us recapitulate in brief (special cases of) the dom-

ination arguments that were derived in [21, 22]. For fixed bond 〈i, j〉 in finite volume

with free or wired boundary conditions, let us calculate the conditional probability that

the bond is occupied. It is not hard to see that this is exactly

pi,j =
Ri,j

1 + Ri,j
(3.10)

if {i ↔ j} while the probability is

peff
i,j =

Ri,j

q + Ri,j
=

pi,j

pi,j + q(1 − pi,j)
(3.11)

if the endpoints are not connected. (In the former, the number of components is

unaffected while in the latter, it is reduced by one.) It therefore follows from elementary

considerations that for each quench, the random cluster measures – wired or free –
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dominate the independent bond measures at parameters peff
i,j and are dominated by

independent bond measures with parameters pi,j. The ease of calculating quenched

averages of independent bond measures (percolation on percolation) is what lead to

the asymptotically sharp results of [22]. Indeed, as is already seen, when the relevant

R–parameter is large compared with q, the upper and lower estimates do not differ by

much.

2.3.4 Proofs of Main Results

We start with a preliminary result which is most of what is needed for the proof of

Theorem 2.3.1

Proposition 2.3.5 Let F denote a distribution of couplings such that the spontaneous

magnetization of the dual model is zero. Then with probability one for both Q
[1]
F and Q

[f ]
F

there are infinitely many circuits surrounding the origin such that, within each circuit,

the spin–type is constant.

Proof. Let ε > 0 and let Ṽ ⊂ Z2 denote a finite set containing the origin. Let Λ̃ ⊃ Ṽ

and DṼ,Λ̃ denote the event

DṼ,Λ̃ = {σ | ∃ a circuit of constant spin–type separating ∂Ṽ and ∂Λ̃}. (3.12)

Then it is sufficient to prove (for arbitrary fixed Ṽ and ε) that Q
[f ]
F (DṼ,Λ̃) > 1 − ε

whenever Λ̃ is sufficiently large, and similarly for Q
[1]
F . We let V – and Λ – denote sets

similar to their tilde counterparts enhanced by a layer or two at the boundary to avoid

discussion of inconsequential provisos caused by discrete lattice effects. Let Λ∗ and V ∗

denote the dual sets and let Υ = ε
|∂V ∗| . Since the quenched magnetization in the dual

measure vanishes by hypothesis, then for every i∗ ∈ ∂V ∗ the average magnetization at

i∗ in the one–boundary conditions in Λ∗ (for the dual model) tends to zero as Λ∗ gets

large. Thus, in a large enough volume,

mF ∗;Λ∗(i∗) ≡
∫

dF E
[1]
J∗;Λ∗(σi∗ −

1

q
) < Υ (3.13)

However, according to Eq.(3.7), the integrand is the probability, in the dual model, of
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a dual connection between i∗ and ∂Λ∗. Thus

∫

dF P
[1]
J∗;Λ∗({∂V ∗ ↔ ∂Λ∗}) ≤

∫

dF

[

∑

i∗∈∂V ∗

P
[1]
J∗;Λ∗({i∗ ↔ ∂Λ∗})

]

≤ |∂V ∗|Υ ≤ ε.

(3.14)

However, 1−P
[1]
J∗;Λ∗({∂V ∗ ↔ ∂Λ∗}) is the probability in the direct model of an occupied

circuit separating ∂V from ∂Λ in the transformed boundary conditions. So we may write

∫

dF P
[f ]
J;Λ({∃ occupied circuit separating ∂V and ∂Λ}) ≥ 1 − ε. (3.15)

But each spin realization associated with such a random cluster event has a circuit

of the desired type and we have obtained the desired result in finite volume with free

boundary conditions:

Q
[f ]
F ;Λ(DṼ,Λ̃) ≥ 1 − ε. (3.16)

The result for infinite volume follows by monotonicity of the integrand in Eq. (3.15)

in the system size: As discussed in the appendix, for free boundary conditions, the

integrand increases when we consider the same event (involving ∂Λ) in a volume Λ ′ ⊃

Λ. For wired boundary conditions, the result follows because the in any volume, the

integrand increases if we replace [f] by [1].

Proof of Theorem 2.3.1 Since the dual magnetization vanishes we already have, accord-

ing to the previous proposition the part concerning the infinitely many circuits. What

is lacking is a proof that these circuits are not not all of the same spin–type (as would

indeed be the case if the spontaneous magnetization were positive). Now, using the

fact that the direct magnetization also vanishes, we may demonstrate, along the lines

of Equations (3.14) through (3.16) that outside any finite V but inside a sufficiently

large Λ the average probability of observing the dual of a circuit composed of vacant

bonds is close to one – even with (direct) wired boundary conditions.

The upshot, when both magnetizations vanish, is that even in finite volume, with

high probability many circuits of dual bonds and many circuits of direct bonds surround

the given V . Since both the direct and dual circuits can be “freshly constructed” at

an increasing sequence of scales, it follows that some portion of these circuits separate

each other. There are many direct rings separated from each other (and the boundary)
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by the dual rings. These direct rings are therefore “at liberty” to take on any of the q

spin–values. In particular for any s ∈ {1, . . . q} and any finite V ,

Q
[1]
F ;Λ({∃ a circuit of spin–type s surrounding V }) −→ 1 (3.17)

as Λ ↗ Z2. The result also holds in Q
[f ]
F ;Λ (which anyway leads to the same limiting

measure as we show in Proposition A2). The conclusion is that with probability one,

in the limiting measure there are infinitely many circuits of all types surrounding the

origin. This establishes the first claim. It also establishes the absence of percolation

for any amalgamation–alliance since an infinite path (connected or ∗–connected) of the

alliance without the sthspin–state, starting from the origin, is prevented by any of the

sth state’s circuits, the presence of which has probability one. Finally, as is evident from

the absence of magnetization, the population density of all species is exactly 1
q .

Proof of Corollary 2.3.2 As was demonstrated in [23], Theorem 1′, the magnetization

of the disordered 2D Potts models vanishes at self dual points. This applies equally

well to the dual model.

Proof of Theorem 2.3.3 This result is, to the largest extent, contained in [22] so we

will be succinct. In a given quench, each edge corresponding to a zero coupling bond

adds nothing to the ferromagnetism. The active bonds must be “reoccupied” with

a conditional probability bounded above by R/[1 + R] and below by R/[q + R] where

R = eβ −1. The fraction of these reoccupied bonds that belong to an infinite cluster (in

the limiting [1]–state) constitute the magnetized fraction. After performing a quenched

average, it is seen that the magnetization is positive whenever

a
R

q + R
>

1

2
(3.18)

but is bounded above by P∞( aR
q+R) < P∞(a). This is small and positive for all β large

enough and a close to 1
2 . The density of ones, in the one state is just this magnetization

plus the ambient 1
q .

Proof of Theorem 2.3.4 For simplicity we will treat just the case where with probability

a, R = eJ − 1 = eb − 1 ≡ B and with probability (1 − a), R = q/B. Obviously, for
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a = 1
2 , the model is self–dual. To prove the remaining statements, we reiterate that

P∞(peff) ≤ m(B, a) ≤ P∞(p) (3.19)

where, in general, peff =
∫

dF [R/(q +R)], etc. Thus it is sufficient to find B and a such

that both peff and p are in slight excess of 1
2 . In this simple case, we may write

peff = a
B

B + q
+ (1 − a)

1

1 + B
(3.20)

and

p = a
B

1 + B
+ (1 − a)

q

B + q
. (3.21)

It is readily seen that that when a & 1
2 and B � q the desired conditions are met.

2.3.5 Conclusion

We have shown that for the disordered ferromagnetic q-state Potts model on Z2 at

points of self–duality there is no percolation for any amalgamation of q−1 components

in the unique translation invariant mixing measure QF . This transpires despite the fact

that the density of these combined q − 1 states is 1 − q−1 which will be arbitrary close

to 1 as q → ∞. Of course we expect that the above holds at all critical points of these

models. In particular, we suppose, on general grounds, that the conditions of Theorem

2.3.1 (namely no percolation and no dual percolation in the graphical representation)

holds at any critical point in a model of this sort.

It is further expected that as soon as the temperature is decreased below the critical

temperature or the overall interaction strength increased, the magnetization will rise

continuously from zero. If this scenario is correct, i.e. if the magnetization (like the

energy density) is continuous for this system, it would follow that in each of these states

we would have percolation at a small density.

Unfortunately, even aided with self–duality, we cannot make such an assertion. We

may use duality for the weaker assertion that the magnetization is not already positive

at a self–dual point (c.f. the discussion in [24]). Indeed, this would imply the identical

circumstance in the dual model – with appropriately modified boundary conditions

– and the latter would be a non–percolative state from the perspective of the direct



23

model which would mean the existence of two states with differing energy density which

is ruled out by the result of [25]. More succinctly, there cannot be a point where the

model exhibits a percolative and a non—percolative state – so the magnetization indeed

vanishes at a self–dual point. But this does not quite rule out the possibility of a critical

interval surrounding a self–dual point with a magnetic discontinuity at the endpoint

and no associated non–percolative state.

Trivial examples of discontinuous order parameters coinciding with critical transi-

tions are abundant in short–range 1D systems at zero temperature e.g. the Ising model.

The energy is continuous as T ↓ 0 but m(0) = 1. More intricate examples can be

found, here we mention two. First there is the (reinterpretation of the) mean–field k–

core transition [26] where, in the presence of two distinct divergent length scales – and

susceptibilities – there is a discontinuity in the order parameter. Second, we mention

the well known Thouless effect [27] for the 1D Ising model with ferromagnetic pair–

interactions that decay like the inverse square of the separation. Here, as was proved in

[21], the magnetization is discontinuous at the transition point but this point is critical

in the sense of a divergent length scale, a divergent susceptibility and, it is presumed,

a continuous energy density. It is interesting to note that, from the low temperature

side, this transition is indeed the endpoint of a critical phase [28, 29].

In our study we have circumvented these mathematical intricacies and demonstrated

percolation at small densities by considering dilute and “nearly dilute” models. In the

former case, the magnetization is always small and in the latter case, it is demonstra-

tively small in the vicinity of the critical point. This certainly does not settle the issue

of magnetic/percolative continuity in these models, but it does, perhaps, bring us a

small step closer.
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Chapter 3

Critical Exponents, Long Range Correlated Percolation

and the Renormalization Group

3.1 Critical Exponents

Once a percolation transition is identified as discussed in Chapter 2 one can think of

various questions concerning the structure of the clusters above and below the perco-

lation threshold. Various quantities of interest diverge as one approaches the critical

density pc. In the rest of this thesis we study a small subset of such quantities and the

associated critical exponents.

The first quantity of interest is the percolation probability P∞(p) which was defined

in Chapter 2. For the case of independent percolation it can be shown that P∞(p) is

a continuous function [4]. This is the order parameter of the percolation transition; it

vanishes for p < pc and is non zero for p > pc

A second quantity of interest is the average cluster size κ(p) = 〈|C(0)|〉, where the

average is over the occupation probability P; this is analogous to the succeptability in

spin models. For p > pc we have P∞(p) > 0 and thus κ(p) diverges for these values

of the site occupation density. For independent percolation it can be rigorously proved

that the point at which κ(p) becomes infinite coincides with pc on most lattices of in-

terest [4].

The connectivity function for two sites x, y is the probability that these two sites

belong to the same cluster. For the case of independent percolation one can prove

that for p < pc the connectivity function decays exponentially with the increase of the

separation between the two sites with a characteristic length ξ(p) commonly refered to

as the correlation length. Similar quantity can be defined for the case of p > pc.
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Near the critical density pc P∞(p) vanishes, and both κ(p) and ξ(p) diverge:

P∞(p) ∼ |p − pc|βfor p ↘ pc (1.1)

κ(p) ∼ |p − pc|−γfor p ↗ pc

ξ(p) ∼ |p − pc|−νfor p → pc

The relations (1.1) define the critical exponents β, γ and ν. Although the full func-

tional dependence of the quantities in (1.1) may depend on the particularities of the

percolation model, the critical exponents are the same for all short range correlated

percolation models on a given d dimensional lattice. By a short range correlated per-

colation model we mean a model in which the two point correlation 〈η(x)η(y)〉 for the

percolation field decays exponentially or as 1
|x−y|a with a > d. We will discuss later

in this chapter percolation models for which a < d, we refer to these as long range

correlated percolation models. We will show through some scaling arguments and RG

calculation that these long range correlated percolation models define new percolation

universality classes that depend on a.

It is notoriously difficult to rigorously calculate the critical exponents defined in

(1.1). For Bernoulli site percolation on the 2d triangular lattice this has only recently

been achieved [30]. For long range correlated percolation models this is an impossible

task. However, renormalization group calculations can be used to compute the critical

exponents up to a given accuracy [31, 32]. We will use the momentum space renormal-

ization group in Sec. 3.5 and will try to compute β,γ and ν for the long range correlated

percolation models up to a two loop expansion.

One can also use Monte Carlo simulations together with a finite size scaling anzatz,

and compute the critical exponents in this way. We will do that in Chapter 4 for two

particular models possessing long range correlations, the Harmonic Crystal and the

Voter model.

The finite size scaling idea is simple [31]. Equations (1.1) correspond to quantities

calculated in an infinite system. The question is how the relations above would change

if one calculated these quantities in a finite system of linear size L. The answer is
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simple:

X(L, ξ) = ξ
κ
ν f(L/ξ) (1.2)

for a quantity X whose infinite size version decays as |p − pc|−κ.

3.2 Scaling Analysis of Long Range Correlated Percolation

For the rest of this thesis we study the effects of correlations on the percolation critical

properties. In this section we use scaling arguments to show that the introduction of

long range correlations drives the percolation model into a new universality class. We

follow closely the exposition in [1] where these calculations have been first presented.

If the correlations are short range then we can use the usual Harris criteria to

determine if they are relevant or not. According to this criteria the correlations are

relevant if dν − 2 < 0, here ν is the percolation correlation length critical exponent for

an independent percolation model. For independent percolation dν−2 > 0 for all d > 0

so we conclude that short range correlated percolation belongs to the universality class

of Bernoulli independent percolation. We confirm this observation for the noisy voter

model and the massive harmonic crystal using monte carlo simulation, see Sec. 4.2.4.

Using scaling arguments, a criteria for the releveance of the correlations similar to

that of Harris can be derived for the case of long range correlations. Let η(x) = {1, 0}

be our occupation variable, 〈η(x)〉 = p and

gη(|x − y|) = 〈η(x)η(y)〉 − 〈η(x)〉〈η(y)〉. (2.1)

To derive the scaling relations we need the following assumption. For a cubic region Λ

containing |Λ| sites the largest cluster is of size ξΛ ∼ |pc−pΛ|−ν , where pc is the critical

density of the infinite system and pΛ = 1
V

∑

x∈Λ η(x) is the density of occupied sites

inside the cube Λ. To be consistent we require the length L of the cube Λ to satisfy the

inequality L ≥ ξΛ. In what follows we take L = ξΛ.

Let us calculate the variance ∆ of pΛ

∆2 ≡ 〈pΛ
2〉 − 〈pΛ〉2 =

1

V 2

∑

x,y∈Λ

{〈η(x)η(y)〉 − 〈η(x)〉〈η(y)〉} (2.2)

∼ 1

ξd

∫ ξ

0
gη(r)r

d−1dr.
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In (2.2) we have taken V = ξd with ξ growing large as p → pc. A uniform percolation

transition is consistent only if ∆2

(p−pc)2
→ 0 as p → pc. After performing the integral in

(2.2) one obtains

∆2

(p − pc)2
=















(pc − p)dν−2, a > d

(pc − p)aν−2, a < d

(2.3)

For a > d we conclude that a percolation transition with the independent percolation

correlation length exponent ν is consistent as mentioned above. For a < d however

we see that if aν − 2 < 0 then we expect a that the correlations are relevant and will

change the properites of the percolation transition.

We can push this analysis further and actually identify the new correlation length

critical exponent. To do that imagine that gη(x) decays as A
|x|a + B

|x|b . If b < a then the

B term will eventually dominate and we expect the model to have a different critical

behavior from the model for which only the A term is present. If however b > a then

the A term dominates and the system should belong to the universality class of the

model for which only the A term is present. We conclude that bνlong − 2 > 0 if b > a

and bνlong − 2 < 0 if b > a. If this is to be true for every b then necessarily

νlong =
2

a
(2.4)

This scaling analysis based on a mean field type calculation tells us that we have a

continuity of percolation universality classes defined by a. Amazingly the analysis also

gives us an exact prediction for the new correlation length critical exponent νlong.

In the Sec. 3.5 we analyze this problem from a field theoretical point of view. We

confirm the results of the scaling analysis above and we also obtain estimates for the

other critical exponents in terms of a double expansion in ε = 6 − d and δ = 4 − a.

3.3 Field Theory Approaches to Percolation

The relation between Potts model and percolation arises from the random cluster de-

scription of the Potts model as discussed in Sec. 2.2. This relation allows one to calculate
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the percolation transition critical exponents through the use of renormalization group

study of a Hamiltonian description of the Potts model. One needs to first construct

a continuum generalization and formulation of the q-state Potts model and then use

momentum space RG and finally take the q → 1 limit to calculate the critical exponents

associated with the percolation transition.

Such a continuum formulation of the q-state Potts model was introduced in [33],

it involves a diagonal traceless tensors Qi,j of dimension q. The Hamiltonian for this

model is

H =
1

2

∫

ddx(rTrQ2+
∑

i,j,k

∇iQjk∇iQjk)+

∫

ddx(wTrQ3 +u(TrQ2)2 +vTrQ4). (3.1)

For percolation the upper critical dimension is 6 and thus the terms of fourth and higher

order in Qi,j are irrelevant. To see the relation between this model and the q-state Potts

model one needs to introduce and appropriate decomposition of Q for details on this

see [33].

One can now use dimensional regularization and renormalization to obtain an ex-

pression for the critical exponents in terms of an ε = 6−d expansion [33]. One can also

use Parisi’s fixed dimensional renormalziation scheme to calculate directly the critical

exponents in say 3 dimensions [34] . We will have more to say about this later.

In [1] Weinrib noticed that analogous relation between the long range correlated

percolation problem and a disordered q-state Potts ferromagnet exists. It can be ar-

gued that the critical exponents for the correlated percolation problem can be obtained

through a mapping of the percolation problem to the q → 1 limit of the q-state Potts

model with long range correlated quenched coupling-constant disorder [1]. Weinrib

obtains the field theoretic formulation of the disordered q-state Potts model by consid-

ering the Hamiltonian in (3.1) with a random “temperature” coefficient r(x). To find

the free energy of the disordered q-state Potts model he uses the replica technique. In

the end, all of this results into an effective Hamiltonian on which a double expansion

in ε and δ up to one loop was performed [1].

In this thesis we use another, in my opinion more elegant approach to the perco-

lation problem. It was noticed by Cardy and Grassberger [35] that the statistical
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properties of the clusters of independent percolation near a percolation threshold can

also be studied using the General Epidemic Process(GEP). GEP is an example of an

absorbing state phase transition. For this process a “disease” is spreading through a

media of susceptible individuals. The susceptible media becomes infected with rate

dependent on the density of the sick and the density of recovered individuals. After

a brief time interval the sick recover and are immune after that. The recovered indi-

viduals, sometimes referred to as debris when GEP is used to describe the spread of

fire for example, stop the spread of the disease locally. The state with zero density

of sick individuals is absorbing, i.e. the disease can not spontaneously reappear. The

statistical properties of the debris clusters that are left behind after the disease has

been extinguished are described by independent percolation [36, 35]. This description

of the independent percolation problem allows to probe in addition to the exponents ν,

γ and β also the spreading exponent zs which is connected to the dynamic exponent z

of the DIP field theory by the relation zs = 2
z [36, 35]. The shortest path , or chemical

distance, between two points on the infinite cluster a distance r apart scales like rzs ,

where zs is the spreading exponent.

We consider a DIP field theory for which the critical control parameter τ is dis-

ordered with a quenched correlated disorder that decays for large distances r as r−a.

The static properties of the clusters that are left behind after the agent has been extin-

guished are described by long range correlated percolation. Performing the averaging

over the disorder for this dynamical model is easy, we do not need the replica trick

[37]. After that we renormalize the resulting field theory using dimensional regulariza-

tion and minimal subtraction.

The procedure of dimensional regularization and minimal subtraction results in a

power series in terms of ε and δ for the critical exponents. For independent percolation,

the power series now are in terms of ε only, such an expansion even only to two loops

after a Pade-Borel resummation agrees well for d ≥ 3 with the values of the critical

exponents obtained from simulations [34]. For the minimal distance exponent the

agreement is remarkable [32]. One might hope, even if it is not realistic, that such

an agreement might hold for the correlated percolation problem when the power series
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are in terms of the two parameters ε and δ. Higher than one loop double expansion

however for such models seem to be difficult. In this thesis we consider the special case

ε = δ. For such a model we perform a two loop calculation.

The results from the two loop calculation do not agree well with simulation results,

this is not very surprising. The power series for the exponents that one obtains from

such an expansion might not even be resummable, and even if it is, the structure of the

problem is much more complicated than the one of independent percolation so higher

loop calculation might be needed to get comparable result.

Another RG approach for calculating critical exponents from field theories is the

fixed dimensional renormalization based on Parisi’s “massive” scheme [38]. Such an

approach for independent percolation for d ≥ 3 up to two loops gives quite good agree-

ment with the simulation results [34]. The agreement is better than the one based on

the ε expansion. Such an approach was used in [39] to calculate the critical exponents

for O(m)-symmetric Ginzburg-Landau-Wilson model in quenched disorder with power

law correlations for d = 3 and 2 ≤ a ≤ 3. We have tried to do similar calculation for

the long range percolation problem for d = 3 and a close to 2. However even after

Pade-Borel resumation the calculations did not reveal any fixed points other than the

pure one. Details of how one performes such a calculation can be found in the Appendix

to this Chapter.

The rest of this Chapter is organized as follows. In Sec. 3.4 we present the field

theoretic description of the independent DIP model. We also present there a sketch of

the renormalization procedure and how one extracts the critical exponents from the RG

equations. In section Sec. 3.5 we discuss our generalization of DIP where we introduce

the long range correlated quenched randomness. A first order calculation is performed

and the new fixed point corresponding to long range percolation is identified. Then we

present the results of the two loop calculation for the special case ε = δ. In Sec. 3.6

we present simulation results for the Voter model. In the Appendix to this Chapter we

provide some details of the calculations.
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3.4 Dynamic Isotropic Percolation

There are two ways to extract an effective field theory functional which after an RG

study gives the critical exponents of DIP [32]. One approach is to start from the master

equation of the microscopic dynamics of a specific model in the DIP universality class.

Representing this in terms of bosonic creation and annihilation operators and using

coherent-states one can proceed towards field theory [40]. A second approach is to use

phenomenological arguments and write down an effective Langevin equation obeying

all the requirements and symmetries of the theory. We can map this equation into a

field theory functional [36]. Following this general principle one obtains the following

effective action for DIP

I [s, ŝ] =

∫

ddrdt

{

ŝ

[

∂t + λ
(

τ −52
)

+
λg

2
(2S − ŝ)

]

s

}

(4.1)

where S(r, t) = λ
∫ t
0 dt

′

s(r, t
′

) is the density of debris at site r, s(r, t) is the density of

infected individuals, τ is the critical control parameter, λ is proportional to the recovery

rate, and finally ŝ is the response field.

The naive scaling dimensions of the fields and couplings for the DIP action are as

follows

S ∼ ŝ ∼ µ(d−2)/2

s ∼ µ(d+2)/2

g ∼ µ(6−d)/2

where µ is an arbitrary scale of length an time. We see that the upper critical dimension

dc of the theory is 6, that is for d > 6 the theory is asymptotically free.

In the calculation of the Green’s functions of a general field theory ultraviolet di-

vergences arise, also infrared divergences if we are at the critical point. For a renor-

malizable field theory the divergences can be removed by absorbing them in the bare

coupling constants and fields. For the DIP field theory we define renormalized fields
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and couplings as follows [32]

sr = Z−1/2s, ŝr = Ẑ−1/2ŝ

u = Gεg
2Ẑ3Zu

−1µ−ε, λr = (ZẐ)1/2Ẑ−1λ

τ = Ẑ−1Zτ τr + τc,

where, ε = 6 − d, Gε = Γ(1+ε/2)

(4π)d/2 . The renormalization constants Z... = Z...(u, µ/Λ, ε)

can be chosen in a UV-renormalizable theory in such a way that

Gr
N,N̂

({r, t}, τr , u, λr, µ) = lim
Λ→∞

Z−N/2Ẑ−N̂/2G({r, t}, τ, g, λ,Λ) (4.2)

and Gr
N,N̂

in (4.2) are finite and well defined, here G(...) are the Green’s functions

of the theory. We have regularized the field theory in (4.2) by introducing a high

momentum cutoff Λ. For d ≤ dc the critical theory has IR singularities and for d ≥ dc

the theory has UV singularities. Indeed, the problematic UV and IR singularities are

linked precisely at d = dc. What is important is that the determination of the Z factors

coming from the UV divergence provides information of the critical IR singularities and

thus on the critical exponents [32, 41].

In the explicit calculation that we perform we fix ε > 0 and take the continuum limit

Λ → ∞ and we require that the Z factors absorb the ε poles. This procedure is called

minimal subtraction. Note that in such a calculation τc is set to zero. By requiring

that as ε → 0 the theory gives finite results we can calculate the exponents as power

series in ε.

The bare Green’s functions are independent of the renormalization scale µ therefore

from (4.2) follows the Renormalization Group (RG) equation:
[

µ
∂

∂µ
+ ξλr

∂

∂λr
+ kτr

∂

∂τr
+ β

∂

∂u
+

1

2
(NΥ + N̂Υ̂)

]

Gr
N,N̂

(r, t, τr, u, λr, µ) = 0 (4.3)

where

β(u) = µ
∂u

∂µ

∣

∣

∣

∣

0

Υ(u) = µ
∂ lnZ

∂µ

∣

∣

∣

∣

0

, Υ̂(u) = µ
∂ ln Ẑ

∂µ

∣

∣

∣

∣

∣

0

k(u) = µ
∂ ln τr

∂µ

∣

∣

∣

∣

0

ξ(u) = µ
∂ln λr

∂µ

∣

∣

∣

∣

0

.

(4.4)
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The partial differential equation (4.3) can be solved employing the method of charac-

teristics. After solving the RG equation and employing dimensional scaling one arrives

to an asymptotic form, long distance , long time of the Green’s function from which

the critical exponents can be obtained [32]. The critical exponents of the percolation

problem are given by

γ

ν
= 2 − Υ̂(u∗)

1

ν
= 2 − k(u∗)

z = 2 + ξ(u∗)

where u∗ is a stable fixed point of the RG, that is β(u∗) = 0 and β
′

(u∗) > 0.

An RG study through an ε = d − 6 expansion for DIP results in exponents which

agree with the exponents obtained from an ε expansion of the q-state Potts model in

the q → 1 limit [35].

3.5 Correlated Dynamic Isotropic Percolation

Let us introduce a variation of DIP in which the critical control parameter τ that

governs the strength of the infection is itself position dependent variable τ + c(r), with

c(r) some random field.

If we take static Gaussian distributed disorder with correlations 〈c(r1), c(r2)〉 ∼

fδ(r1−r2) and zero average, f the strength of the disorder, and we perform the average,

we observe that the scaling dimension of f is 4 − d. This is an irrelevant perturbation

near 6 dimensions so we expect this kind of disorder not to change the critical behavior.

If however we assume Gaussian disorder with correlations 〈c(r1)c(r2)〉 ∼ f 1
|r1−r2|a

and zero average, then the scaling dimension of f is 4−a which is a relevant perturbation

for a < 4. The explicit form of the functional is

I [s, ŝ] =

∫

ddrdt

{

ŝ

[

∂t + λ
(

τ −52
)

+
λg

2
(2S − ŝ)

]

s

}

−

λ2f

2

∫

dt1

∫

dt2

∫

ddr1

∫

ddr2ŝ (r1, t1) s (r1, t1)
1

|r1 − r2|a
ŝ (r2, t2) s (r2, t2) .

(5.1)
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If we are only interested in time independent quantities (emerging as t → ∞) it is

convenient to go to the quasi-static limit [32]. Taking the quasi-static limit amounts to

switching the fundamental field variable from the agent density s to to the final density

of debris φ(r) := S(r,∞) = λ
∫∞
0 s(r, t)dt that is ultimately left behind by the epidemic

and the associated response field φ̂(r) = ŝ(r, 0) [32].

The structure of the action allows us directly to let

ŝ(r, t) → φ̂(r), φ(r) = λ

∫ ∞

0
s(r, t)dt

This results in the quasi-static Hamiltonian:

H
[

φ, φ̂
]

=

∫

ddx
{

φ̂
[

τ −52 +
g

2
(φ − φ̂)

]}

− 1

2
f

∫

ddx1

∫

ddx2φ(x1)φ̂(x)
1

|x1 − x2|a
φ(x2)φ̂(x2)

(5.2)

In addition to the rules coming from the Hamiltonian above we have to specify that

closed propagator loops are not allowed.

It is more convenient to carry the calculations in momentum space. The Fourier

transform of the interaction vertex g(x) ∼ x−a is g(k) = v + wka−d for small k [3]. As

discussed at the beginning of this section v is irrelevant and will be ignored, w > 0. We

now absorb w in the definition of f .

Using again the arbitrary inverse length scale µ by inspection we obtain that

φ̂ ∼ φ ∼ µd/2

g ∼ µ
6−d
2 f ∼ µ4−a

The upper critical dimension is 6 and f is relevant for a < 4. The propagator is

G(q) =
1

τ + q2
(5.3)

and the vertices are given by U1 = −U2 = g and V = f
qd−a . To extract the divergences

we have only to calculate the one particle irreducible diagrams denoted here by Γ.

Inspection of the naive divergence of the one particle irreducible diagrams show that

they arise only in the diagrams contributing to Γ1,1, Γ1,2 = −Γ2,1 and Γ2,2. Here the



35

first index is the number of amputated external φ̂ legs and the second is the number

of amputated φ legs. The vertex functions are considered as functions of external

momenta and we require that Γ1,2(0), Γ2,2(0), Γ1,1(0) and dΓ1,1

dp2

∣

∣

∣

p2=0
are finite. The

model is renormalizable by the following scheme

φr = Ẑ−1/2φ, φ̂r = Ẑ−1/2φ̂,

τr = Z−1
τ Ẑτ,

u = Gεµ
−εẐ3Z−1

u g2,

v = Fδµ
−δẐ2Z−1

v f.

where Fδ =
G(1+ δ

2
)Γ( a

2
)

4πd/2Γ( d
2
)

and δ = 4 − a. Evaluating to one loop order the divergent

diagrams and using minimal subtraction and double expansion, where now we require

that the Z factors absorb both ε and δ poles, we obtain the following results

Ẑ = 1 +
u

6ε
− 4v

6δ
,

Zτ = 1 +
u

ε
− 2v

δ
,

Zu = 1 +
4u

ε
− 12v

δ
,

Zv = 1 +
2u

ε
− 4v

δ
.

This gives us

β(u) = u(−ε +
7

2
u − 10v),

β(v) = v(−δ +
5

3
u − 8

3
v),

k(u, v) =
5u − 8v

6
,

Ῡ(u, v) = −u

6
+

4v

6
.

A nontrivial fixed point, which corresponds to long range correlated percolation is

obtained:

u∗ =
15δ − 4ε

11
,

v∗ =
21δ − 10ε

44
.
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which finally gives us

1

ν
= 2 − δ

2
(5.4)

γ

ν
= 2 − δ − ε

11

One could carry the stability analysis for the different fixed points and he will arrive at

the same conclusion as in [1], that is this calculation confirms the scaling arguments

in Sec. 3.2

In contrast to [1] our formulation allows us to compute the spreading exponent

as well. In order to do this calculation we have to go back to the dynamical model.

Fortunately to extract the dynamical critical exponent we have to only calculate Γ1,1,

as a function of the external momentum q and frequency ω. From the renormalization

of the derivative
∂Γ1,1,

∂ω

∣

∣

∣

q2=ω=0
we obtain

(ZẐ)1/2 = 1 +
3u

4ε
− 2v

δ
(5.5)

and from this we conclude that

ξ(u∗, v∗) = −7u∗

12
+

4v∗

3
= − ε

11
− 7δ

44
, (5.6)

and thus

z = 2 + ξ(u∗, v∗) = 2 − ε

11
− 7δ

44
. (5.7)

We are interested in obtaining estimates for the critical exponents for long range corre-

lated percolation for d ≥ 3. It is quite remarkable that such estimates for independent

percolation in d ≥ 3 coming from an ε expansion up to two loops agree well with simu-

lation results [34]. The agreement for the spreading exponent is quite remarkable [32].

Although it might be unrealistic we are curious whether such an agreement might hold

for the case of long range correlated percolation. Unfortunately it is seems difficult to

carry out a two loop double expansion in ε, δ. We note here that we have performed a

fixed dimension renormalization for d = 3, and a close to 2, which did not result any

fixed point other than the pure one even after Pade-Borel resummation was performed,

see Sec. 3.8.1.

We have performed a two loop expansion for the case ε = δ, in this case it is just
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an expansion in ε. Such models arise naturally when the correlation are expressed in

terms of the probability that a random walk starting at a given site will hit the origin,

this probability for d ≥ 3 is proportional to 1
|x|d−2 , thus a = d − 2. Examples for such

models are the Voter Model and the Massles Harmonic crystal in d ≥ 3 [42]. From the

ε expansion we obtain

Zu = 1 +
1

ε
(4u − 6v) + uv(

69

4ε
− 39

ε2
) + u2(− 59

12ε
+

15

ε2
) + v2(−145

12ε
+

22

ε2
),

Zv = 1 +
2

ε
(u − v) + uv(

91

18ε
− 32

3ε2
) + u2(− 47

24ε
+

11

2ε2
) + v2(− 91

36ε
+

10

3ε2
),

Z = 1 +
1

ε
(
u

6
− v

3
) + uv(

71

144ε
− 3

4ε2
) + u2(− 37

432ε
+

11

36ε2
) + v2(− 139

216ε
+

5

18ε2
),

Zτ = 1 +
1

ε
(u − v) + uv(

91

36ε
− 13

3ε2
) + u2(− 47

48ε
+

9

4ε2
) + v2(− 91

72ε
+

7

6ε2
).

This gives us

βu = (−ε +
7

2
u − 5v − 671

72
u2 +

757

24
vu − 731

36
v2)u

βv = (−ε +
5

3
u − 4

3
v − 193

54
u2 +

293

36
vu − 67

27
v2)v

Ῡ(u, v) = −1

6
u +

1

3
v +

37

216
u2 − 71

72
vu +

139

108
v2

k(u, v) =
5

6
u − 2

3
v − 193

108
u2 +

293

72
uv − 67

54
v2

We identify a long range stable fixed point:

u∗ = ε +
59

88
ε2,

v∗ =
1

2
ε +

131

176
ε2

which results in

k(u∗, v∗) =
1

2
ε, (5.8)

Ῡ(u∗, v∗) =
3

22
ε2

From the dynamical part of the calculation we obtain

(ZZ̄)
1
2 = 1 +

1

ε
(
3

4
u − 227

384
u2 +

569

288
vu − v − 91

72
v2 +

1

8
uv log(2) +

5

32
log(2)u2 − 9

64
log(3)u2)

+
1

ε2
(
51

32
u2 − 83

24
uv +

7

6
v2). (5.9)
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This gives us

ξ(u, v) = − 7

12
u +

2

3
v + (

1747

1728
− 5

16
log(2) +

9

32
log(3))u2 − (

427

144
+

1

4
log(2))uv +

67

54
v2.

For the dynamic exponent, and consequently the spreading exponent, for the long range

fixed point we finally obtain

z = 2 − 1

4
ε + (− 119

2112
− 7

6
log(2) +

9

32
log(3))ε2

zs =
2

z
= 1 +

1

8
ε + (

185

4224
+

7

32
log(2) − 9

64
log(3))ε2 (5.10)

To summarize, the two loop expansion gives for the correlation length critical exponent

ν = 2
a . For the ratio of critical exponents γ

ν we obtain to one loop 2, compare to the

result of 1.8 in [42], but there is a big correction of − 3
22ε2 coming from the two loops.

From a Pade-Borel resummation of the series for zs we obtain zs ≈ 1.6 for d = 3. In

the next section we report on simulation results for zs for the Voter model percolation

problem on Z3 [42].

3.6 Spreading exponent for the Voter Model percolation

To obtain the spreading exponent for independent percolation one uses the Leath algo-

rithm. This corresponds to growing a cluster from a single seed [43]. One could stop

the growth after a certain number of “steps” or after the cluster hits a certain bound-

ary, the first is more natural. For the Voter model percolation problem this approach

is not possible, we can not grow single clusters since the occupation probabilities are

not independent. For a description of the Voter model see Chapter 4

We use the algorithm introduced in Chapter 4 to simulate the Voter model. We pick

a site and we decide that it is going to be occupied, this is our seed. Then we run our

algorithm for a cube that is centered at that site but in addition to the rules detailed

in Chapter 4 when a random walker hits the center we freeze it and assign all of it

ancestors occupied in the percolation problem

We simulate the Voter model at its critical density p = 0.1, see Chapter 4, the results

are presented in Fig. 3.1. In fact not much fluctuation in the results for zs is observed

for p ∈ [0.9, 0.11]. We conclude that zs ≈ 1.32. This is smaller than the exponent
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Figure 3.1: Plot of log(R) versus log(L) for the 3d voter model at p = 0.1. The slope
of the straight line gives zs ≈ 1.32

of independent percolation which is zs ≈ 1.37 [43]. This result clearly does not agree

with our ε expansion result.

3.7 Conclusion

We have investigated the field theory of quenched correlated disordered DIP with dis-

order correlations that decay at large distances r as r−a. We have identified a long

range stable fixed point in a one loop double expansion in ε = 6 − d and δ = 4 − a.

Our results agree with the results obtained in [1] using a different representation of the

problem as well as different RG scheme.

For the special case ε = δ we have performed an expansion to 2nd order in ε. For the

correlation length critical exponent we have obtained ν = 2
a , for the ratio of critical

exponents γ
ν the results is 2 − 3

22ε2 and for the spreading exponent zs the result is

zs = 1 + 1
8ε + ( 185

4224 + 7
32 log(2) − 9

64 log(3))ε2. For d = 3 after a Pade-Borel resumation

of the series we obtained zs ≈ 1.6. From a simulation of the Voter model in 3d we have

obtained zs ≈ 1.32.

We have also performed a fixed dimensional renormalization at d = 3 and a close to 2,

and we did not find any fixed points other than the pure one. It would be interesting

to perform such a calculation in the case of d = 5 and a = 3 to see if a stable long
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range fixed point will appear and how would the results compare with the result of the

ε expansion.

3.8 Appendix

For the quasi-static limit the propagator and interaction vertices are

Propagator

�
k

1
k2+τ

Interaction vertices

−g

g

k
f

kd−a

To one loop in the quasi-static limit the diagrams that contribute to the different Γ ′s

are listed below.

Γ1,1

Γ1,2

Γ2,2

For the dynamical theory the propagator and vertices are

Propagator

�
k

t 0 θ(t) exp(−λ(τ + k2)t)
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Interaction vertices

t

t
′

−λ2gθ(t − t
′

)

λg

k
λ2f
kd−a

Notice the appearance of a time delocalized vertex [36]. For the two loop calculation

we consider all topologically different diagrams that can be obtained with our vertices

and propagator, we discard all diagrams which contain closed propagator loops.

The values of the diagrams that appear in our two loop calculation could be rep-

resented as sums of three types of integrals, or their derivatives with respect to the

parameters, a,b and c.

I1(a, b, c) =

∫

ddk1d
dk2

(a + k2
1)(b + k2

2)(c + (k1 + k2)2)
(8.1)

I2(a, b, c) =

∫

ddk1d
dk2

(a + k2
1)(b + k2

2)(c + k2
1 + (k1 + k2)2)

I3(a, b, c) =

∫

ddk1d
dk2

(a + k2
1)(b + k2

2)(c + k2
1 + k2

2 + (k1 + k2)2)

Only integrals of type I1 appear in the calculation of the quasi static limit, while all

types of integrals appear in the calculation of the dynamic exponent. In our calculation

the integral I1 and its derivatives are evaluated at the point a = b = c = 1 or a =

0,b = c = 1, integral I2 and its derivatives are evaluated at the point a = b = 1, c = 2

or a = 0, b = 1, c = 2 and integral I3 and its derivatives are evaluated at the point

a = b = 1, c = 3 or a = 0, b = 1, c = 3. The dimensional regularized form of the
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integrals I1 and I3 can be found in the literature [44].

I1(a, b, c) =
1

6ε
G2

ε (

(

1

ε
+

25

12

)

(

a3−ε + b3−ε + c3−ε
)

(8.2)

−
(

3

ε
+

21

4

)

(

a2−ε(b + c) + b2−ε(a + c) + c2−ε(a + b)
)

− 3abc)

I3(a, b, c) = G2
ε (

1

ε2
(

5

24
(a3−ε + b3−ε) − 1

4
(a2−εb + b2−εa) − 1

8
(a2−ε + b2−ε)c)

+
1

ε
((

143

288
− 9

16
log(

4

3
))(a3 + b3) + (

1

12
log(

4

3
) − 1

36
)c3

− (
1

16
+

9

8
log(

4

3
))(a2b + b2a) + (

1

8
− 1

2
log(

4

3
))c2(a + b)

+ (
15

16
log(

4

3
))c(a2 + b2) + (

3

2
log(

4

3
) − 1

2
)abc))

For our calculation we only need an expression of the first derivative of I2(a, b, c) with

respect to c for that we have obtained:

−∂I2(a, b, c)

∂c
= G2

ε (
1

ε2
(
1

8
a2 +

1

2
b2) +

1

ε
(−1

8
log(2)a2 (8.3)

+
9

8
b2 + log(2)bc − 1

8
a2 log(a) − log(2)b2 − 1

4
log(2)c2

− 1

2
b2 log(b) +

9

32
a2 +

1

4
c2 − 1

2
log(2)ab +

1

2
log(2)ac +

1

4
ac − 1

2
bc))

3.8.1 Fixed Dimensional Renormalization

One way to calculate the critical exponents is the fixed dimensional Parisi’s massive

scheme [38]. Such a method was used to calculate the critical exponents for indepen-

dent percolation up to second order in [34]. For our field theory for d = 3 there are

no divergencies all integrals are finite for a non-zero mass τ
1
2 . However a perturbative

expansion in terms of the bare dimensionless coupling constant to study the critical

properties of the systems does not work since the perturbative coupling constant di-

verges as we approach the critical region. To remedy this, one has to renormalize the

parameters and obtain an expansion in terms of the renormalized dimensionless cou-

pling constants. The renormalized mass in this case corresponds to the inverse of the

correlation length and thus vanishes as we approach the critical region. In this case

if there is a non-trivial fixed point the renormalized coupling constants stay finite and

non-zero.
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For the quasi-static theory the normalization renormalization conditions are.

Γ1,1,0
r (p, τ, g, f)

∣

∣

p=0
= τr,

∂Γ1,1,0
r (p, ω, τ, g, f)

∂p2

∣

∣

∣

∣

∣

p=0

= 1,

Γ2,1,0
r (p, τ, g, f)

∣

∣

p=0
= τ

6−d
4

r gr,

Γ2,2,0
r (p, τ, g, f)

∣

∣

p=0
= τ

4−a
2

r fr,

Γ1,1,1
r (p, τ, g, f)

∣

∣

p=0
= 1.

Here Γr are the renormalized vertex functions computed in terms of the renormalized

field and square field φr and φ2
r , the third subscript corresponds to φ2 insertions, fr

and gr are the dimensionless renormalized coupling constants and τr is the renormalized

“square mass”. All these are defined as:

φ =
√

Zφφr (same for φ̂)

φ2 = Zφ2φ2
r ,

g =
Zg

Z
3/2
φ

gr,

f =
Zf

Z2
φ

fr.

One can obtain the values of the renormalization factors Z... and coupling constants as

follows

Zφ =

(

d

dp2
Γ1,1,0

r (p, τ, g, f)

∣

∣

∣

∣

p=ω=0

)−1

,

Zφ2 =
(

Γ1,1,1
r (p, τ, g, f)

∣

∣

p=ω=0

)−1
,

τr =
Γ

(1,1,0)
r (p, τ, g, f)

∣

∣

∣

p=ω=0

d
dp2 Γ(1+1,0)

,

gr =
Γ2,1,0

r (p, τ, g, f)
∣

∣

∣

p=ω=0

τ
6−d
4

r

,

fr =
Γ2,2,0

r (p, τ, g, f)
∣

∣

∣

p=ω=0

τ
4−a
2

r

.
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What we have so far is series of the renormalized coupling constants and “square mass”

in terms of the bare ones, when we do the actual calculation we have to invert these

series and we do this as follows

β(gr) = D[gr] = D[g]
∂gr

∂g
,

η(gr) = D[log Zφ] = D[g]
∂ log Zφ

∂g
,

η2(gr) = D[log Zφ2 ] = D[g]
∂ log Zφ2

∂g
,

where

D[g] = −g(1 − g

2

∂ log τr
τ

∂g
),

η and η2 give the critical exponents as ν = (2 + η2 − η)−1 and γ
ν = 2 − η.

If we want to calculate the critical exponent z we need an additional renormalization

condition
∂Γ1,1,0

r (p, ω, τ, g, f)
∣

∣

∣

p=ω=0

∂(−iω)
=

1

λr
(8.4)

We introduce a new renormalization factor Zλ and define ηλ analogously, z = 2 + ηλ.

After one obtains the series for the β function and the critical exponents one per-

forms a resumation. This is usually more appropriate when higher order calculation

has been performed, like the 6 loop calculation for the Ising model critical exponents

in 3d in [45].

These type of resumations are done as follows

∑

ckx
2k+1 = x

∑

ck(x
2)k

1

k!

∫ ∞

0
e−ttudu =

∫ ∞

0

∑

xe−u ck(x
2u)k

k!
du =

∫ ∞

0
xe−uF (x2u)du.

We then use a Pade-Borel approximation for F , in our case since we only go to second

order we look for an approximate of the form F (y) = a0+a1y
1+b1y .

For independent percolation f = 0 this approach gives good results. Before re-

summation there is no fixed point for the beta function, but after resumation one
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miraculously obtains a fixed point and the values of the exponents that are obtained

are comparable to simulation results.

For the long range correlated percolation the power series are in terms of two vari-

ables and one thus has to apply resumation of series of two variables. This is done

analogously to the one variable case.

f(u, v) =
∑

ci,ju
ivj =

∫ ∞

0
e−tF (ut, vt)dt

where F (x, y) =
∑

i,j
ci,j

(i+j)!x
jyj and again a Pade approximation is applied to this

expression. Unfortunately such an approach did not give us any fixed points so we

had to resort to dimensional regulraization and calculation of the exponents within this

approach as detailed in Sec. 3.5.

3.8.2 Calculation of Integrals

Here we detail how we obtained the result in (8.3); the approach was inspired by [46].

−∂I2(a, b, c)

∂c
=

∫ ∫

1

(a + k2
1)(b + k2

2)(c + k2
2 + (k1 + k2)2)2

ddk1d
dk2

=

∫ 1

0
dy

∫ 1−y

0
dx(1 − x − y2)

ε
2
−3{(1 − y − x)(c + y(a − c) + x(b − c))2−εΓ(4 − d)(2π)d}

define

habc = c + y(a − c),

w = 1 − y2,

kabc = b + y(a − b),

z = y − y2.

Then we have

−∂I2(a, b, c)

∂c
=

∫ 1

0
dy

Γ(4 − d)

2 − ε
2

[ − h2−ε
abc (1 − y)w

ε
2
−2 +

(

−(2 − ε)(b − c)
ε
2 − 1

(1 − y)h1−ε
abc w

ε
2 − 1

ε
2 − 1

k2−ε
abc z

ε
2
−1 +

1
ε
2 − 1

h2−ε
abc w

ε
2
−1

)

+

(2 − ε)(b − c)
ε
2 − 1

(

−(1 − ε)(b − c)
ε
2(1 − y)

h−ε
abc(w

ε
2 − 1) − 1

ε
2

k1−ε
abc (z

ε
2 − 1) +

1
ε
2

h1−ε
abc (w

ε
2 − 1)

)

−

1
ε
2 − 1

(

(2 − ε)(b − c)
ε
2

k1−ε
abc (z

ε
2 − 1) − (2 − ε)(b − c)

ε
2

h1−ε
abc (w

ε
2 − 1)

)

]
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We want to identify the divergences in this expression as ε → 0. To accomplish that

one has to extract the divergences in following type of integrals

I1 =

∫ 1

0
f(x)x

ε
2
−1(1 − x)

ε
2
−1dx (8.5)

I2 =

∫ 1

0
f(x)(1 − x)

ε
2
−2dx

here f(x) is assumed to be regular function for x ∈ [0, 1].

To calculate I1 in (8.5 we can split it as follows

I1 =

∫ 1
2

0
f(x)x

ε
2
−1(1 − x)

ε
2
−1dx +

∫ 1

1
2

f(x)x
ε
2
−1(1 − x)

ε
2
−1dx (8.6)

We can deal with the two terms separately.

∫ 1
2

0
g(x)x

ε
2
−1 =

∫ 1
2

0

g(x)
ε
2

d(x
ε
2 ) = (8.7)

g(x)x
ε
2

ε
2

∣

∣

∣

∣

∣

1
2

0

−
∫ 1

2

0

g(x)
ε
2

x
ε
2 dx

but as ε → 0, x
ε
2 → 1+ ε

2 log(x), substituting this in (8.7) and simplifying the expression

one finally obtains

∫ 1
2

0
g(x)x

ε
2
−1 =

g(0)
ε
2

+ g

(

1

2

)

log

(

1

2

)

−
∫ 1

2

0
g
′

(x) log(x)dx. (8.8)

Analogously one can derive an expression for the second integral in the sum in ( 8.7).

For the second integral in (8.5) after similar manipulations one obtains

I2 = −f(0) − f
′

(1)
ε
2

− f
′

(1) −
∫ 1

0
f

′′

(x) log(1 − x)dx (8.9)

Collecting everything together one obtains (8.3).
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3.8.3 Example Calculations

Here we present some examples from the two loop calculation. First we give an example

from the quasi-static calculation.

(8.10)

Diagram 8.10 contributes to the calculation of Γ1,2, we are taking all external momenta

to be equal to 0. The integral that we need to calculate is (remember here we are only

interested in the case d − a = 2)

I =

∫ ∫

ddk1d
dk2

(1 + k2
1)

3(1 + (k1 + k2)2)(1 + k2
2)(k

2
1)

. (8.11)

We represent this integral as

I =

∫ ∫

ddk1d
dk2

k2
1(1 + (k1 + k2)2)(1 + k2

2)

−
∫ ∫

ddk1d
dk2

(1 + k2
1)(1 + (k1 + k2)2)(1 + k2

2)

−
∫ ∫

ddk1d
dk2

(1 + k2
1)

2(1 + (k1 + k2)2)(1 + k2
2)

−
∫ ∫

ddk1d
dk2

(1 + k2
1)

3(1 + (k1 + k2)2)(1 + k2
2)

.

In terms of the integrals in (8.1) we have

I = I1(0, 1, 1) − I1(1, 1, 1) +
∂I1

∂a
(1, 1, 1) − 1

2

∂2I1

∂a2
(1, 1, 1). (8.12)

For the fixed dimensional renormalisation in 3d then we have simplified all integrals

into integrals of two variables. For the integral associated with diagram 8.10 we have

the following expression

I = 4π2

∫ ∞

0

∫ ∞

0

k1dk1k2dk2

(1 + k2
1)

3(1 + k2
2)(k

2
1)

3−a
2

log

(

1 + (k1 + k2)
2

1 + (k1 − k2)2

)

. (8.13)
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We evaluated these type of integrals using Monte Carlo technique.

Now we detail a calculation of a diagram involved in the calculation of the dynamical

exponent z.

t 0

t1

t3

t4

t2 (8.14)

Diagram 8.14 contributes to the calculation of Γ1,1. Here we are taking the external

momentum to be zero. The integral that we need to calculate is

I(t) =
∫ ∫ ∫ ∫ ∫ ∫

e−λ(τ+k2
1)t3e−λ(τ+k2

1)t1e−λ(τ+k2
2)(t2−t1)

e−λ(τ+(k1+k2)2)(t4−t3)e−λ(τ+(k1+k2)2)(t−t1)ddk1d
dk2dt1dt2dt3dt4.

The time integration in Eq. 3.8.3 is restricted to the region t > t4 > t3 > t2 > t1 > 0.

The result after the time integration and a Fourier transform to go from the time

variable t into the frequency ω is

I(ω) =
∫ ∫

1
(iω+2λ(τ+(k1+k2)2))(iω+2λ(τ+k2

1))(iω+3λτ+λk2
1+λk2

2+λ(k1+k2)2)
ddk1d

dk2

−
∫ ∫

1
(iω+2λ(τ+k2

1))(iω+2λ(τ+(k1+k2)2))(iω+3λτ+λk2
1+λk2

2+λ(k1+k2)2)
ddk1d

dk2

−
∫ ∫

1
(iω+2λ(τ+k2

1))(iω+2λ(τ+(k1+k2)2))(iω+2λτ+λk2
1+λ(k1+k2)2)

ddk1d
dk2

+
∫ ∫

1
(iω+2λ(τ+k2

1))(iω+λ(τ+(k1+k2)2))(iω+2λτ+λk2
1+λ(k1+k2)2)

ddk1d
dk2

One then has to take a derivative with respect to iω and represent this as a sum of the

integrals (8.1) or their derivatives as we did in (8.12). When we do the fixed dimensional

calculation we first take a derivative with respect to iω of I and then simplify all the

resulting integrals in terms of an integral of two variables as in (8.13).
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Chapter 4

The Voter Model and The Harmonic Crystal

In this chapter we study the percolation transition in three dimensions for two systems

in which the long range correlations arise naturally from the microscopic dynamics: the

massless harmonic crystal and the voter model on Z3. Both of these systems are known

rigorously have pair correlations decaying as r−1. They also have other similarities but

are intrisicaly quite different. The existence and nature of the percolation transition

in these systems is of interest in their own right. Using Monte Carlo simulations and

finite size scaling we find the pc for both models. We also find that both models have

the same critical exponents as expected from the WH predictions of a long range per-

colation universality class.

For the massless harmonic crystal in Zd we define site x to be occupied if the

scalar displacement field φ(x) is greater than some preassigned value h and empty if

φ(x) < h. Percolation then corresponds to the existence of an infinite level set contour

for φ(x) < h. The existence of percolation threshold, i.e. 0 < pc < 1, was proven by

Bricmont, Lebowitz and Maes [5] for d = 3. There are however no previous calculations

(known to us) concerning the actual value of pc or of the critical exponents for this

system. One expects intuitively that the pc will be smaller than the pc for independent

percolation, c.f. [47], but we know of no proof for this. Similarly a proof that pc > 0 for

the harmonic crystal in d > 3, or for the an-harmonic crystal in d ≥ 3 is still an open

problem [6]. For d ≤ 2, φ(x) is for any h, either plus or minus infinity, with probability

1, when the size of the system goes to infinity. Thus either all sites are occupied or all

sites are empty.

The voter model, often used for modeling various sociological and biological phe-

nomena , is a lattice system in which a site x is occupied or empty according to whether
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the “voter” living there belongs to party A or B. Voters change their party affiliations

according to a well defined stochastic dynamics [11]. The stationary state of this model

is not known explicitly but many of its properties are known exactly. In particular it

has many features in common with the harmonic crystal. Like the harmonic crystal,

the stationary state of the voter model is trivial in d ≤ 2; all sites occupied or all sites

empty. On the other hand any p is possible on Zd for d ≥ 3, where the truncated pair

correlation decays, as it does for the harmonic crystal, like r−1. No proof of the exis-

tence of a pc > 0 is known for this system, i.e. the system could in principle percolate

for arbitrary small p. For examples of systems where pc ≤ ε for any ε > 0 see [12].

The outline of the rest of this chapter is as follows. In section 4.1 we present the

simulation methods and results the massless harmonic crystal. In particular we find

pc = 0.16 ± 0.01. In section 4.2 we study the voter model. We present a new efficient

algorithm for simulating this model and report the results from its implementation. We

find in particular that pc = 0.10 ± 0.01 compared with a pc
∼= 0.16 obtained in [48]

using a less reliable method. We conclude the paper with a brief discussion of some

open problems. In the Appendix we justify our simulation algorithm and also provide

details of how one could calculate the correlations in the harmonic crystal percolation

field and the voter model.

4.1 The Harmonic Crystal

4.1.1 Formulation

Let x ∈ Zd designate the sites of a d-dimensional simple cubic lattice and φ(x) be the

scalar displacement field at site x. The interaction potential in a box Λ with specified

boundary conditions (b.c.), e.g. φ(x) = 0 for x on the boundary of Λ, has the form

U =
1

2
J
∑

<x,y>

(φ(x) − φ(y))2 +
1

2
M2

∑

φ(x)2 ≡ 1

2

∑

x,y

φ(x)C−1(x, y)φ(y) (1.1)

where J > 0 and M ≥ 0, < x, y > indicates nearest neighbor pairs, |x − y| = 1, on Zd.

The sum is over all sites in Λ with the specified b.c. The Gibbs equilibrium distribution

of the {φ(x)} at a temperature β−1, µM
Λ ({φ(x)}) = Z−1

M,Λ = e−βU is then Gaussian with
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a covariance matrix βC which is well defined for M > 0.

The infinite volume limit Gibbs measure µM obtained when Λ ↗ Zd is, for M > 0,

translation invariant, with 〈φ(x)〉 = 0 and is independent of the boundary conditions

[49]. When M → 0, µM does not exist for d ≤ 2 [49]. This is due to the fact that the

fluctuations of the field, e.g 〈φ(x)2〉, become unbounded for these dimensions. However,

for d ≥ 3 the Gibbs measure µ obtained as the limit of µM when M → 0 is well defined.

(It is the same as the infinite volume limit of the measure in a box with M = 0 and

prescribed boundary values φ(x) = 0). In this limit the pair correlations between

different sites have the long distance behavior 1
rd−2 , r = |x − y|, for d > 2 [49].

Following [5] we define the occupation variable ρh(x)

ρh(x) =















1 if φ(x) ≥ h

0 if φ(x) < h

(1.2)

and let p = 〈ρh(x)〉µM , where the average is over the Gibbs measure µM . We can also

define a new measure µ̂M on the occupation variables ρh(x)=0,1 by a projection of

µM . All expectations involving a function of the occupation variables can be computed

directly from µ̂M . The correlations between the occupation variables have the same

asymptotic decay properties as those of the field variables φ,

〈ρh(x)ρh(y)〉µ̂M − p2 ∼ e−|x−y|/ξM

|x − y|d−2
for d > 2 (1.3)

where ξM ∼ M−1 and the averages are with respect to µ̂M (or µM ). In the limit M → 0

the measure µ̂ has a pair correlation that decays like r2−d for d > 2. We note that µ̂ is

not Gibbsian for any summable potential, c.f [50].

4.1.2 Results

Simulating the harmonic crystal on finite lattices is easy, the elements in a discrete

Fourier transform of a harmonic crystal are independently distributed Gaussian random

variables with easily computed variances [51]. We consider the system on a lattice with

periodic boundary conditions and exclude the zero mode. This is essentially equivalent
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to fixing 〈φ〉 = 0.

There are many methods for obtaining the percolation threshold using data obtained

from simulations on finite systems [31]. We used the method employed in [52, 48]. For

a cube of linear size L let

ΓL = 〈
∑

j

j2nj〉 (1.4)

where nj is the number of clusters of j sites, defined by the occupation variables ρh(x),

and the average is taken over a large number of samples obtained from simulation of

the model. We calculate ΓL for different sizes L and concentration of occupied sites p

defined as in (1.2).

One expects [31, 52, 53] that for large L,and (pc − p) � 1, ΓL should have a finite

size scaling form,

L−dΓL ∼ L
γ
ν F (L

1
ν (p − pc)) + corrections to scaling, (1.5)

where γ is the critical exponent for the divergence as p ↗ pc of the second moment of

the cluster size distribution, defined as the limit L → ∞ of ΓL

Ld . Corrections to scaling

should go to zero for L → ∞.

For p > pc, for an infinite system the second moment of the cluster size distribution

can be defined by excluding the infinite cluster. This diverges with a critical exponent

γ
′

for p ↘ pc. The finite system analog is
Γ
′

L

Ld which is defined similarly to ΓL

Ld but not

including the spanning cluster. Γ
′

L scales as

L−dΓ
′

L ∼ L
γ
′

ν F
′

(L
1
ν (p − pc)) + corrections to scaling. (1.6)

It is believed that γ
′

= γ.

According to finite size scaling theory the number of sites in the largest cluster in a

finite system of linear size L, PL(p), scales for |p − pc| � 1 as

PL(p) ∼ Ld−β
ν G(L

1
ν (p − pc)) + corrections to scaling (1.7)

[31, 53], where β is the critical exponent for the approach to zero of the fraction of sites

belonging to the infinite cluster in an infinite system as p ↘ pc. Using the hyper-scaling

relation d = 2β
ν + γ

ν we see that (1.5), (1.6) and (1.7) lead to the scaling form (1.5)
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being valid for all |p−pc| � 1 and large L. That is on a finite system we do not need to

differentiate between p < pc or p > pc, we may include all the clusters when calculating

ΓL(p).

Assuming (1.5) is valid for |p− pc| � 1 the ratio RL = Γ2L
ΓL

should become indepen-

dent of L, for large L, at p = pc. Plotting these ratios as a function of p for different

sizes L and looking for the intersection of these different curves then yields pc. The

value of the ratios at the intersection point of the RL curves should be equal to 2d+ γ
ν

giving us a way to measure γ
ν . Moreover ,we also have

1

ν
=

ln
(

dR2L
dp /dRL

dp

)

ln 2
. (1.8)

Thus the slopes of these curves should also give ν.

In Fig. 3.1 we present results of the simulation for the massless harmonic crystal on

a cubic lattice with periodic boundary conditions. Each ΓL was averaged over 48000

samples except for L = 160 where the average is over 2400 samples. To determine the

error bars we have divided the output of the simulations into 10 parts and assuming

that the averages are Gaussian distributed we evaluated the variance which we used as a

measure of the uncertainty. From the intersection of the curves, after interpolation, we

obtain pc = 0.16± 0.01. Comparing the slopes of the RL curves for L = 80 and L = 40

we obtain ν = 2.1±0.5. From the value of RL at the intersection point of the curves we

obtain γ
ν = 1.8±0.1. We actually computed ΓL for the sequences L = 10, 20, 40, 80, 160

and L = 15, 30, 60, 120. All the simulation results are consistent with what is plotted

in Fig. 3.1 where we have used only part of these simulations since the plot is otherwise

cluttered. These values clearly show that our system is in a different universality class

from independent percolation since for the latter ν = 0.876±0.001 and γ
ν = 2.045±0.001

[54].

The above method is good for finding the percolation threshold and the ratio of

critical exponents γ
ν but clearly does not give good results for ν. To obtain more precise

result for the percolation correlation length exponent we evaluated the probability that

there is a “wrapping cluster”, i.e. one that wraps around the torus, for different densities

p of occupied sites and different linear sizes L.
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For fixed L we denote by peff
c the value of the density of occupied sites for which one

half of the realizations will have such a wrapping cluster. This should obey the following

scaling relation peff
c − pc ∼ L− 1

ν [31]. For sizes between 30 and 100 we evaluated peff
c

from doing simulation in a range between p = 0.13 and p = 0.25 in steps of 0.005. For

each such system 24000 samples were generated. The slope of ln(peff
c −pc) versus ln(L)

should give us ν. A plot of the results is presented in Fig. 4.1. The slope of the fitted

straight line is 0.50 ± 0.01 which gives ν = 2.00 ± 0.04. This is in good agreement with

the theoretical prediction ν = 2 of Weinrib and Halperin [3].

We have used the obtained values of pc,
γ
ν and ν to draw Fig. 4.2 where we see a

good collapse of the data points to a smooth curve.

We also calculated the ratio of the critical exponents β
ν . We did this by finding

the fraction of sites that belong to the largest cluster in a system of linear size L,

P (pc,L)
Ld ,when we simulate at the approximate critical density. From (1.7) we see that

P (pc,L)
Ld ∼ L−β

ν . The result for systems of size from 40 to 170 averaged over 24000

samples is presented in (Fig. 4.3). From the slope of the fitted straight line we obtain

β
ν = 0.60 ± 0.01. Moreover, the fact that P (pc, L) follows well a power law behavior

supports our contention that the true critical value is near pc = 0.16 ± 0.01. Observe

also that 2β
ν + γ

ν = 3.0 ± 0.2 and thus the hyper-scaling relation is satisfied.

4.2 The Voter Model

4.2.1 Formulation

Another system whose pair correlations decays like that of the massless harmonic crystal

is the voter model in Zd [11].

The voter model is defined through a stochastic time evolution. Each lattice site is

occupied by a voter who can have two possible opinions, say yes or no. With rate τ −1

the voter at site x adopts the opinion of one of his/her 2d neighbors chosen at random.

More specifically letting ρ(x) = 0, 1, x ∈ Zd, the time evolution of the voter model is

specified by giving the rate Cv(x, ρ) for a change at site x when the configuration is
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given by ρ

Cv(x, ρ) =
1

τ



1 − 1

2d
(2ρ(x) − 1)

∑

|y−x|=1

(2ρ(y) − 1)





where τ sets the unit of time.

It is clear that for the voter model on a finite set Λ ⊂ Zd with periodic or free

boundary conditions (b.c.), there will be only two possible stationary states: either

ρ(x) = 1 or ρ(x) = 0 for all x ∈ Λ. The same is true for the voter model on an infinite

lattice in one and two dimensions: the only stationary states are the consensus states.

However for d ≥ 3 there are, as for the massless harmonic crystal, unique stationary

states for every density p of positive spins, p = 〈ρ(x)〉. The correlations in this state

decay as

〈ρ(x)ρ(y)〉 − p2 = p(1 − p)Gd(x − y)

where Gd(x) is the probability for a random walker, starting at x ∈ Z d, to hit the

origin before escaping to infinity. It is well known that Gd(x) ∼ 1
|x|d−2 for d ≥ 3, i.e the

pair correlation for the voter model has the same long range behavior as the massless

harmonic crystal.

4.2.2 Simulation Method

An efficient method to simulate the voter model is to consider a box BL of linear size

L with stochastic boundary conditions, i.e. when a voter looks at the boundary he sees

1 with probability p and 0 with probability 1 − p. It is then possible to show that the

distribution of the configuration of voters in a box BL of size L < L centered inside

BL and far away from the boundary will approach the steady state measure (restricted

to BL) with density p for the voter model when L → ∞. In order to sample from the

measure for the voter model inside BL with such stochastic boundary conditions we use

the following algorithm: Start a random walk from each site of BL and let these random

walks move independently until two of them meet in which case they coalesce. When a

random walk hits the boundary of BL it is frozen. We continue this until all the random

walkers either coalesce or are frozen. After this is done we independently for each frozen
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walker, assign the value 1 with probability p and the value 0 with probability 1 − p,

then assign that same value to its ancestors, that is all the random walkers that have

coalesced with it. In this way we assign values 1 or zero to all the sites in BL. One can

prove that in this way we sample configurations inside BL with the distribution coming

from the voter model in BL with the stochastic boundary conditions discussed above

see the Appendix. The advantage of this way of simulating is that one is guaranteed

that the sampling is from the steady state measure with these boundary conditions.

4.2.3 Results

Using this method of generating configurations inside BL for different p we looked for a

spanning cluster inside BL. We did simulations for sizes L = 10, 15, 20, 25 and 30 with

L = 160. The results which are the same for all L in the range (120, 160) are presented

in Fig. 4.4. If we assume the scaling form for the spanning probability [31]

ΠL(p) = F ((p − pc)L
1/ν) (2.1)

then by collapsing the data Fig. 4.5 we obtain pc = 0.10 ± 0.01 and ν = 2 ± 0.2.

To find γ
ν we measured ΓL

L3 and we assume the scaling form (1.5). Note that in

this case we do not have periodic boundary conditions. Results from the simulation

are presented in Fig. 4.6. Collapsing the data Fig. 4.7 we obtain pc = 0.10 ± 0.01,

γ
ν = 1.9 ± 0.2 and ν = 2 ± 0.2.

Analogous simulation measurements for P (p, L) gave β
ν = 0.6±0.1. As in the case of

the massless harmonic crystal the exponents we found satisfy the hyper-scaling relation

2β
ν + γ

ν = d. The exponents for both the massless harmonic crystal and voter model

seem to agree within the error bars.

4.2.4 Comparison of pc with previous simulations

The percolation transition in the d = 3 voter model was first investigated in [48]. This

was done by considering voters who occasionally change their opinions spontaneously,

i.e. independently of what their neighbors are doing. They do this with probability λ.
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In terms of flip rates one has

C(x, ρ) = (1 − λ)Cv(x, ρ) +
λ

τ
[1 + (1 − 2p)(2ρ(x) − 1)] ,

where 0 ≤ p ≤ 1 and 0 ≤ λ ≤ 1 and Cv is the voter model flip rates. This leads to a

stationary state in any periodic box of size Ld with density of pluses equal to p. As λ

increases from 0 to 1 we go from the voter model to an independent flip model. The

stationary state of the latter is a product measure with density p. This model was

studied rigorously in [55] where it was named the noisy voter model.

In [48] the authors used (1.5) on simulation results of the noisy voter model on

lattices with periodic boundary conditions to obtain pc(λ) for λ > 0.1. For d = 3 they

found by extrapolation pc(λ) ∼ 0.16 as λ → 0.

We have repeated the simulations in [48] for larger lattice sizes and smaller values

of λ. We simulated systems with λ as small as 0.01 each with 24000 “effectively uncor-

related” samples and sizes up to 80. From our results we can extrapolate pc(λ) → 0.15

as λ → 0, a value slightly lower than the result in [48]. We also observed that, as

expected, the critical exponents for the noisy voter model agree, for the given range of

λ, with the critical exponents of independent percolation.

This leaves a significant difference with the result for pc obtained in the previous

section. We believe that the answer lies in the necessary extrapolation to λ = 0. Since

the autocorrelation time grows exponentially with lambda, this means we have to wait

for more and more Monte Carlo steps to get independent samples. To check this expla-

nation we investigated the percolation transition in the harmonic crystal with a mass

M. This mass acts much like the random flips in the voter model. For both models the

pair correlation decays exponentially. In the harmonic crystal the characteristic length

scale is ξM = 1
M . An easy calculation shows that the characteristic length scale for the

noisy voter model is ξλ =
√

1−λ
6λ . The noisy voter model with the smallest lambda that

we simulated , λ = 0.01, thus corresponds to ξλ roughly equal to 4 (unit distance is

the lattice spacing). In the language of the massive harmonic crystal this corresponds

to M ∼ 0.25. Estimating the percolation threshold of the massless harmonic crystal

by the extrapolation method we used for the voter model using M ≥ 0.25 yields a
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pc(M) ∼ 0.21 when M → 0. This is obviously a large overestimate of pc = 0.16 which

was obtained by directly simulating the massless harmonic crystal. This shows that the

extrapolation method greatly overestimates the true pc.

4.3 Conclusion

We have performed Monte Carlo simulations to obtain the critical percolation density

and some critical exponents for the massless harmonic crystal and the voter model in

Z3. We found for the first time a value of pc for the former and, using a novel method

of simulation for the voter model, found a new more reliable value of pc for this system.

The critical exponents for both models agree within the error bars. This suggests that

both percolation models are in the same universality class and confirms the theoretical

predictions made in [3]. The result for the correlation length critical exponent ν = 2

supports the conjecture by WH that the relation ν = 2
a is exact.

It is believed that not only the critical exponents but also the finite size scaling

functions are universal. While this is certainly consistent with our simulations we have

not checked this carefully. Such a check would require measuring quantities for the two

systems in the same way. This is not what we have done here as we wanted to use the

most efficient method for each system.

We mention here that there has been much activity in generalizing the voter model

in various ways [56]. Based on our present work we expect that the nature of the perco-

lation transition in these models will depend only on the asymptotic behavior of G(r).

We have however not investigated this. Our simulation method may be extendable to

some of these systems.
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4.4 Appendix

4.4.1 The Voter Model with stochastic boundary conditions and its

dual description

The notation and style of arguments are borrowed from [11]. Let Λ = (0, L)3 and ∂Λ

be the boundary of Λ. Define ∂Λ̄ to be the set which we obtain from ∂Λ when each

point y ∈ ∂Λ is substituted with two points y0 and y1. Let’s introduce the following

function on configurations of the voter model

H(η,A) =
∏

x∈A

[1 − η(x)] (4.1)

with the product over the empty set defined to be equal to 1. Here, η ∈ {0, 1}Λ is

a configuration of the voter modela and A is a subset of Λ ∪ ∂Λ̄. EηH(ηt, A) is the

probability that at time t all of the voters with x ∈ A have spin 0 given that at time

0 the configuration is η. From this probabilities we can construct the probabilities for

any finite configuration of spins. For example we calculate the probability P (E) of the

event E that at time t , η(x1) = 0, η(x2) = 1 and η(x3) = 0 for x1, x2 and x3 ∈ Λ as

follows. Introduce the sets A = {x1, x2, x3} and A
′

= {x1, x3}, we have the following:

P (E) = EηH(ηt, A
′

) − EηH(ηt, A). (4.2)

Here we are dealing with a voter model with stochastic boundary conditions (b.c.).

These b.c. are defined as follows, whenever a voter looks at somebody beyond Λ he

adopts an opinion 1 with prob p and opinion 0 with prob 1 − p. To deal with this we

have introduced the set ∂Λ̄. If the voter looks at the boundary point y he sees the

voter at y0 with probability 1-p and the voter at y1 with probability p, η(y1) and η(y0)

are fixed to be always 1 and 0 respectively. The flip rates for the voter model with

stochastic b.c. are defined as

c(x, η) =
∑

y∈Nx∩Λ

1

2d
η(y) + |Nx ∩ ∂Λ| 1

2d
p if η(x) = 0, (4.3)

c(x, η) =
∑

y∈Nx∩Λ

1

2d
(1 − η(y)) + |Nx ∩ ∂Λ| 1

2d
(1 − p) if η(x) = 1. (4.4)

(4.5)
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The voters at the boundary are stationary, that is c(y, η) = 0 for y ∈ ∂ Λ̄. We can

rewrite the rates for the voter model with a stochastic boundary as follows

c(x, η) = (1 − η(x)) + (2η(x) − 1)
∑

y∈Nx

p(x, y)H(η, y) (4.6)

where p(x, y) is the transition rate for a random walk that is absorbed on the boundary.

For x ∈ Λ and Nx∩∂Λ empty, Nx is the set of nearest neighbors for site x, p(x, y) is the

transition rate for a simple n.n. random walk that is for every y ∈ Nx, p(x, y) = 1
2d and

for y /∈ Nx p(x, y) = 0. For x ∈ Λ and Nx∩∂Λ not empty p(x, y) = 1
2d for all y ∈ Λ∩Nx

, then in addition for every y ∈ Nx ∩ ∂Λ we have p(x, y1) = p
2d and p(x, y0) = 1−p

2d . For

x ∈ ∂Λ̄, p(x, y) = 1 if x = y and p(x, y) = 0 otherwise. Notice that for all x ∈ Λ ∪ ∂ Λ̄

this definition gives
∑

y∈Nx
p(x, y) = 1.

Observe that.

H(ηx, A) − H(η,A) = (2η(x) − 1)H(η,A \ x) if x ∈ A

H(ηx, A) − H(η,A) = 0 if x /∈ A

ηx is the configuration that is obtained from “flipping” the spin at position x.

H(η,A)H(η,B) = H(η,A ∪ B)

Next we apply the generator to the function H and see how it evolves.

ΩH(η,A) =
∑

x∈Λ

c(x, η)[H(ηx, A) − H(η,A)] =

∑

x∈Λ

[1 − η(x) + (2η(x) − 1)
∑

y∈Nx

p(x, y)H(η, y)][H(ηx, A) − H(η,A)] =

∑

x∈Λ∩A

[1 − η(x) + (2η(x) − 1)
∑

y∈Nx

p(x, y)H(η, y)](2η(x) − 1)H(η,A \ x)] =

∑

x∈Λ∩A

[(1 − η(x))(2η(x) − 1)H(η,A \ x) +
∑

y∈Nx

p(x, y)H(η, y)H(η,A \ x)] =

∑

x∈Λ∩A

[−H(η,A) +
∑

y∈Nx

H(η, (A \ x) ∪ y)] =

∑

x∈Λ∩A

∑

y∈Nx

p(x, y)[H(η, (A \ x) ∪ y) − H(η,A)] =

∑

B

q(A,B)[H(η,B) − H(η,A)]
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Here q(A,B) =
∑

x∈Λ∩A

∑

y p(x, y) where the sum over y is over all y ∈ Nx such that

(A \ x) ∪ y = B. Now q(A,B) can be interpreted as a transition rate for a continuous

time Markov chain on Y(set of all subsets of Λ ∪ ∂Λ̄) which evolves in the following

way.

1. Each x ∈ Λ ∩ A is removed from A with a rate 1 and is replaced with y with a

probability p(x, y).

2. When an attempt is made to put a point at a site which is already occupied, then

the points coalesce. Clearly this process will end once all the points are replaced with

points from the boundary. Now we can use a theorem from [11] and conclude that

µ̂t(A) =
∑

B∈Y

EA[At = B]µ̂(B) (4.7)

Here µ̂(A) =
∫

H(η,A)µ(dη) and µt = µS(t) (µ is a measure on spin configurations in

Λ ∪ ∂Λ̄). If we take t → ∞ in the above equation we obtain

µ̂∞(A) =
∑

B∈Y

EA[Aτ = B]µ̂(B). (4.8)

Here τ is the stopping time measuring the time when the last random walk hits the

boundary. We conclude that in (4.8) the only contribution comes from B ∈ Y∂Λ̄ where

Y∂Λ̄ is the set of all subsets of ∂Λ̄. Note that τ is necessarily finite.

Since once a walker hits a boundary point y he chooses to move to point y0 or y1

each time independently with probability 1 − p and p respectively then we can modify

(4.8) as follows

µ̂∞(A) =
∑

B∈Y∂Λ

EA[mod(Aτ ) = B](1 − p)|B|. (4.9)

where now Y∂Λ is the set of all subsets of ∂Λ and mod(Aτ ) is the set obtained from Aτ

by substituting every y0 or y1 with y, and thus mod(Aτ ) ∈ Y∂Λ. Using this formula we

can show that the probability that x1 = 0, x2 = 0, x3 = 1 (event E) say is given by the

following formula

P (E) = P (random walks starting at x1, x2 coalesce but not x3)(1 − p)p

+P (none of the walkers coalesce)(1 − p)2p

Using induction we can prove a formula like that for a general situation.
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4.4.2 Correlations for the level field of a Gaussian field

Let φ be a general translation and rotation invariant Gaussian Field on Zd with 〈φ〉 = 0

and g(r) = 〈φ(x)φ(y)〉 where r = |x − y|. Let us define a percolation field η as follows

η(x) =















1 φ(x) ≥ h

0 φ(x) < h

That is η(x) = H(φ(x) − h) where H is the Heaviside step function. Then we have

〈η(x)〉 =
1

√

2πg(0)

∫ ∞

h
e
− u2

2g(0) du (4.10)

One can also calculate any order of the correlation functions, here we are interested

in the two point correlations 〈η(x)η(y)〉. To do the calculation we use an integral

representation of the Heaviside step function

H(x) = lim
ε→0+

− 1

2πi

∫ ∞

−∞

1

τ + iε
e−ixτdτ. (4.11)

Using this representation one obtains

〈η(x)η(y)〉 = 〈H(φ(x) − h)H(φ(y) − h)〉 =

〈 1

(2πi)2

∫

C1

e−iτ1(φ(x)−h) dτ1

τ1

∫

C2

e−iτ2(φ(y)−h) dτ2

τ2
〉 =

∫ ∞

−∞
dφ(x)

∫ ∞

−∞
dφ(y)

1

2π|Σ|1/2
e−

1
2
φT Σ−1φ

1

(2πi)2

∫

C1

e−iτ1(φ(x)−h) dτ1

τ1

∫

C2

e−iτ2(φ(y)−h) dτ2

τ2

In the above equation C1 and C2 are contours along the real axis which avoid the origin

by crossing the imaginary axis in the upper half plane, φ is a 2d vector with components

φ(x) and φ(y) and Σ is the correlation matrix





g(0) g(|x − y|)

g(|x − y|) g(0)



.

Interchanging the order of integration and performing the integration over φ and

differentiating with respect to g ≡ g(|x − y|) to simplify the remaining integrals one

obtains

∂〈η(x)η(y)〉
∂g

= − 1

(2πi)2

∫ ∞

∞
dτ1

∫ ∞

−∞
dτ2e

− 1
2
τT Στ+ihT τ
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where τ is the 2d vector with coordinates τ1 and τ2 and h is the 2d vector with coor-

dinates h. After performing the integrations we obtain

〈η(x)η(y)〉 = p2 +
1

2π

∫
g(r)
g(0)

0

du√
1 − u2

e−
h2

1+u du

We have the p2 term since if g(r) = 0 then necessarily 〈η(x)η(y)〉 = 〈η(x)〉〈η(y)〉. If

r → ∞ then g(r)
g(0) → 0 so 〈η(0)η(r)〉 → 1

2π e−h2 g(r)
g(0) .

Now let us perform a similar calculation for another percolation field that we define

as follows

η(x) =















1 |φ(x)| > h

0 |φ(x)| < 0

Notice that in this case the field can be represented in terms of Heviside functions as

well

η(x) = 1 − H(φ(x) − h) + H(φ(x) + h).

One can proceed as in the previous case, performing very similar calculations one ob-

tains

〈η(0)η(r)〉 = p2 +
1

2π

∫
g(r)
g(0)

0

1√
1 − u2

(e
− h2

(1+u) − e
− h2

(1−u) )du

for r → ∞ this simplifies to 〈η(0)η(r)〉 ∼ p2 + 1
2π

4g(r)2h2

g(0) .

We are interested in the case when the Gaussian field is the Harmonic crystal in

3d. In this case g(r) ∼ 1
r so for the first percolation field the correlations fall also as 1

r

while for the second percolation field the correlations fall of as 1
r2 .

4.4.3 Correlations for the Noisy Voter Model

Here we work with the spin variable σ(x) = 2ρ(x) − 1. The master equation for the

model is given by

dP (σ, t)

dt
=
∑

x

[c(x, σx)P (σx, t) − c(x, σ)P (σ, t)] (4.12)

Here σx is the configuration that is obtained from σ by a single spin flip at site x.

One can derive a differential equations for the spin two point correlation functions
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〈σ(x)σ(y)〉 =
∑

σ σ(x)σ(y)P (σ, t).

d〈σ(x)σ(y)〉
dt

= (1 − λ)[−4〈σ(x)σ(y)〉 +
2

zd

∑

ei

〈σ(x)σ(y + ei)〉

+
2

zd

∑

ei

〈σ(x + ei)σ(y)〉] − λ[4〈σ(x)σ(y)〉 − 4λ(1 − 2p)2]

In the steady state the left hand side of this equation should vanish. For large separation

|x − y| and assuming spherical symmetry the above equation can be rewritten as.

(1 − λ)∆F (r) − 2adλ + 2daλ(1 − 2p)2 = 0 (4.13)

where a is the lattice spacing.

In 3 dimensions and assuming spherical symmetry the Laplacian operator is very

simple. Substituting solution of the form F (r) = e−
r
k

r + C. we get k =
√

1−λ
6λ and

C = (1− 2p)2. Since < σ(0) >= 2p− 1 we get that the truncated two point correlation

function for large separation r becomes e−
r
k

r .

This looks exactly like the two point correlation function in the massive harmonic

crystal model , if we identify k with 1
M (M is the mass in the model).
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Figure 4.1: Plot of RL versus p for the d = 3 massless harmonic crystal. We estimate
pc = 0.16 ± 0.01
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c − pc) versus ln(L). The slope if the straight line gives

ν = 2.00 ± 0.04
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1
ν for the d = 3 massless harmonic crystal

for pc = 0.16, ν = 2 and γ
ν = 1.8. We have plotted data points for L = 30, 60, 120 for

p = 0.13 to 0.16 in steps of 0.005 and for L = 40, 80, 160 for p = 0.13 to 0.18 in steps
of 0.005.
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Figure 4.4: Plot of ln[P (pc, L)] versus ln(L). The slope of the straight line gives β
ν =

0.60 ± 0.01
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Figure 4.5: Plot of ΠL versus p for the d = 3 voter model. We have plotted data points
for L = 10, 15, 20, 25 and 30 from p = 0.06 to p = 0.205 in steps of 0.005. Each point is
an average over 105 samples. The error bars are not shown since on this scale they are
too small.
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Figure 4.6: Plot of ΠL versus (p − pc)L
1
ν for the d = 3 voter model for pc = 0.105 and

ν = 2. We have used the same data that was used to create Fig. 4.4
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points for L = 10, 15, 20, 25 and 30 from p = 0.06 to p = 0.205 in steps of 0.005. Each
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ν = 1.9. We have used the same data that was used to create Fig. 4.6
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Chapter 5

Conclusion

Percolation is a vast and interesting subject. In this thesis we discussed dependent

percolation models. We used the disordered Potts ferromagnet to provide examples of

models for which the critical percolation density can be pushed arbitrarily close to 0

or 1. We then introduced the long range correlated percolation models. Using mo-

mentum space RG we attempted computing the critical exponents associated with the

percolation transition, the results did not compare well with our Monte Carlo simula-

tion. However, the RG calculation confirmed that introducing long range correlations

changes the critical exponents in the percolation transition. This was also confirmed in

the context of two specific models, the Harmonic Crystal and Voter model in 3d. For a

broad overview of percolation and various interesting research direction see [31].

We would like to outline two further research directions that might be of interest.

In 2d the critical q-state Potts models can be identified with the minimal conformal

models that are parametrised by an integer m which determines the central charge and

critical behavior of the model [57]. The correspondence is given by

m =
π

cos−1
(√

q
2

) − 1 (0.1)

The central charge and exponents are

c = 1 − 6

m(m + 1)
(0.2)

xε =
m + 3

2m

xσ =
(m + 3)(m − 1)

8m(m + 1)

here xε and xσ are the thermal and magnetic scaling dimensions. Bond disorder can be

introduced as a perturbation of this conformal field theory by an operator proportional
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to the energy operator. After using the Replica trick to average over the disorder one

obtains an effective Hamiltonian. This Hamiltonian can be further studied to determine

whether this disorder results into a new critical behavior and if so calculate the new

operator scaling dimensions. This has been done for short range correlations in [58].

We are interested in the study of long range correlations. In this case after averaging

over the disorder using n replicas one obtains the following effective Hamiltonian

Heff = H + g0

∑

α6=β

∫

εα(z1)ε
β(z2)

|z1 − z2|a
dz1dz2 (0.3)

where α and β are any of the n replicas and εα, εβ are the respective energy operators.

One can then perform a perturbative expansion where the last term in (0.3) is considered

a perturbation, renormalize etc. Notice however that if q = 1 then this perturbation

is relevant if a < 3
2 . For 2d independent percolation it is rigorously known that the

correlation length critical exponent is ν = 4
3 [30] we thus recover the generalized

Harris criteria for long range correlated disorder. The disorder is relevant exactly when

aν − 2 < 0.

Another interesting direction for exploration is to study SLE [59] in the context of

appropriate disordered Potts ferromagnets for q > 4. For a study of SLE in the context

of q = 3 Potts models see [60].
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