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ABSTRACT OF THE DISSERTATION

Analyzing the Impact of Local Perturbations of
Network Topologies at the Application-level

by Vincent J. Matossian

Dissertation Director: Professor Manish Parashar

Networked systems are continuously growing in scale andptexity. The techni-

cal and policy engineering challenges introduced by suadstgrowth are currently
addressed locally, with limited understanding of their &aojpon the whole. Such ap-
proaches are becoming impractical and insufficient. Nextegation networks need to
address these issues by deploying adaptive and self-nmgnpgitocols and mecha-
nisms to relax the persistent need for human-driven managerilowever, achieving
these objectives requires conceptual, physical, andtlogisnodifications to existing

systems and protocols. To this end, the traditional toprdapproach to network and
application design needs to be supplemented by underatatigi bottom-up nature of

evolving real-world networks.

A critical issue that is significantly impacting computetwerks and applications is
the absence of an in-depth understanding and lack of cantenlthe structural proper-

ties, i.e., topology, of large networks. Network topolagikefine the link relationships



between the nodes in the network, and have a direct impadiepdrformance, re-
silience, and security of distributed applications. Lasgale networks such as the
Internet are the result of a time evolving process in whicbesoand links between
nodes are added, removed, and reconfigured dynamicallg.dijniamic process takes
place in a decentralized manner during which nodes makéddegtations and recon-
figuration decisions that optimize local properties. Assaute these local perturbations
yield an emergent network that is often unstructured andptexnand have implica-
tions at the application-level, particularly impactingitimg, search, robustness, and
clustering. Understanding the structures emerging ouhede adaptations is a com-
plex problem part of the science and study of complexity themd complex adaptive
systems. Tackling this complex problem requires first, fifigng canonical metrics to
guantify the network topology and second, analyzing theaichpf local perturbations

of these metrics on the resulting network topology.

This thesis identifies three local metrics, transitivitgsartativity, and entropy, and
analyzes the impact of their perturbation on the applicatiof routing, search, ro-
bustness, and clustering. The local metric of network @mytiie identified as a use-
ful information theoretic measure of homogeneity of a nekwteighborhood degree.
The metric is further used to derive a novel mechanism oftetirgy detection of the
network topology. The overall objective of this thesis isingestigate metrics and
mechanisms to better understand the evolution of the n&ttepology and its impact
on application-level functionality. The approach is basedconcepts of emergence,
self-organization and graph theory, and has three key &spd9 the identification of
canonical local and global graph metrics; (2) the quamigatnalysis of the impact of
local perturbations on global properties; and (3) the apagilbn of the local to global
mapping on the problems of routing, search, robustnessclastering. Adaptations
are performed in a decentralized manner in which local nadedocal information to

add, remove, or rewire an edge to evolve the topology.



Simulations based on annealing optimization are conductemnpirically determine
the optimal bounds of the network structures for the seteatetrics on selected net-
works. Further experiments on two modeled networks, randiodhpower-law degree
distributed, and two real-world networks, the Gnutella @athadian Autonomous Sys-
tem networks, show that the impact of optimizing networkthviixed degree distri-
bution on local metrics yield networks with routing, seanebustness, and clustering
that are tightly dependent on the network’s degree digiohu A key outcome of this
thesis is the identification of network entropy minimizatias a useful local rewiring
strategy to decrease average path length and search cdsthamogenizing the size
of network clusters and having a low impact on robustnesswalpplied to power-law

degree distributed networks that prevail in real-worldvoeks.



Preface

Think Globally
Act Locally

Paradoxically, in most publications conclusions are emitfirst and the preface

last. This gives a unique opportunity for the author to egpyén the very first pages,
the lessons learned in the process. | take this opportumgiiare how this work came

to be and what sustained me throughout.

Upon first joining Professor Parashar's Applied Softwarst&ys lab, | developed
three-tiered architectures to provide physicists withrantools to interact with high-
performance scientific applications. While the threeetiearchitectures were already
quite challenging, they extended intetiered(n >> 3) Peer-to-Peer network archi-
tectures. These systems considered a large number ofdtitgr@ompute nodes and
faced many fundamental problems in distributed systemevdtdd my Masters thesis
to the development of a peer-to-peer messaging library ¢owjg@e monolithic legacy
scientific applications into autonomically interactingepservices. My fascination for
networks was strengthened by the conceptual relationbleipgeen P2P networks and
other large-scale networks, in particular social networkparticipated in the devel-
opment of the overlay network associative messaging fa oaning that lead me to

guestionhow do network topologies (self-) organize?

What supported me throughout this work, besides Profess@sRar’'s unconditional



support, are two ideas:

e The first is the famous motthink Globally and Act locallywhich is an inspir-
ing call aimed at raising our awareness for the environmadtthe world by

adding accounting into the individuals in a population.

e The second is thBareto principleor 80-20 rulethat in essence says that a distri-
bution is skewed such that 80% of it is represented by 20y of a population.

Or for that matter, that onlg0% of the people may really be thinking globally.

These contrasting statements make me wonder, how wouldatié lae if everyone
disproved the Pareto principle addl think globally? The answer, | think, is yet to be

determined...

Vi
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Chapter 1

Introduction

1.1 Motivation

In the past decade, the study of the dynamics of large-scaiguter networks have
been added to a list of open problems related to the studyroptEx systems. Prob-
lems in this category include, for example, protein intécacmaps in Biology, cita-
tion networks in Social Science, the evolution of Autonos&@ystems interconnects
in Computer Networks. Figures 1.1(a) 1.1(b) 1.1(c) showddvased graph layout [2]
representations of such networks. While these figures dpmoetde any scientific ev-
idence as such, one can visually note the absence of anyesppattern or structure
between the elements of the graph. The common thread adtasese problems is
the underlying complex web of links that tie the elementstbgr, forming a whole
that is greater than the sum of its parts. The dynamic beh&/@mmplexrather than
complicateddue to the interdependencies between elements that whiemleat, even

so slightly, can render the system inoperable [3].

Such complexity is becoming more apparent on large-scatguater networks such
as the Internet, possibly due to the intricate multi-lagestructure of protocols, and
hardware heterogeneity, that form a complex chain of depeeids, in which a change
in one part can cause large and unexpected deviations ihemdittempts at under-
standing the structure of the Internet are only recent. Heweéhe necessity to reach

this understanding is ever greater, as problems acrosstaudalof disciplines, from



science and humanities to business are increasingly defgeoillarge computing plat-
forms, which are expected to support reliable and secuerdggtneous applications.
For example, as of September 2007he distributed computing framewoBerkeley
Open Infrastructure for Network ComputifBOINC) [4] performs an average 673
TeraFlop/s. Which is currently more computing than the rposterful existing super-
computer, the IBM BlueGene/P with a theoretical peak peréorce oB60 TeraFlop/s.
As another example, in the first quarter of 2007 retail salesdctronic commerce con-
ducted on the Internet represented% of the total retails sales in the USAa value
that has been growing at a constant rate since the adoptithre dhternet as a busi-
ness platform in the late 1990’s. As the demand on computimgepincreases and the
expectations on interoperability and fault-tolerancengriine need to understand and

manage the networks become increasingly critical to thaéudf such applications.

(@) (b) (©)

Figure 1.1: (a) Protein Interaction Maps. 31 Nodes usingaressed view from a 1458
node network. (b) Citeseer coauthor network. Top 200 authors. Data cleahiy
the author. (c) Canadian Internet’s Autonomous System@8.Ntftles. Data compiled
by the author.

The motivation underlying the research presented in thesithdraws from the
following observations:
The network topology defines the link relationships betweedes that represent

network elements, and links that describe thadno knows who” relation between

see http://boincstats.com/stats/projgciph.php

2see http://www.census.gov/mrts/wwwi/data/ntml/07 Qflht



nodes.

The representation of networks as graphs of nodes and Inétses the application
of the mathematical tool of graph theory to the analysis tfvoeks.

Using graph theory, the structural properties of the neétwapology can be charac-
terized using metrics that quantify the topology and gatliely correlate the topology
to a class of applications.

Large-scale networks such as the Internet are the resultimiesevolving process
in which nodes and links between nodes are added, removedeeonfigured dynam-
ically. This dynamic process takes place in a decentralizadner during which nodes
make local adaptations and reconfiguration decisions titahe local properties.

As a result, these local perturbations yield an emergentar&tthat is often un-
structured and complex, and have implications at the agipdic-level.

Understanding the impact of local adaptations on globaicstres is a complex
problem, part of the science and study of complexity thearg eomplex adaptive
systems.

However, with networks such as the Internet growing in sadenand, and expec-
tations, and with the highly dynamic and quasi-instantasesmftware-level rewirings
offered by overlay networks, it is becoming increasinglportant to address this prob-
lem so that next-generation networks can be better managkedraderstood.

To tackle this complex problem that has limited theoretieslults [5] for real-
world networks, one has to take inductive, empirical, andl@atory steps, first by
identifying metrics to quantify the topology, and secondamalyzing the impact of
local perturbations of these metrics on the resulting neksio

This thesis is the result of one such exploration into thatifieation of local met-
rics, namely transitivity, assortativity, and entropydahe analysis of the impact of
their perturbation at the application-level for networgdtogies with given degree dis-
tributions. The application-level properties considaaesifundamental building blocks

of any distributed application and consist of:



Routing: how many hops does a message take to reach itsatesiin

Search: Howeasilycan an arbitrary object be located?

Robustness: What is the degree of fault-tolerance of theark?

Clustering: How many densely connected groups of nodesnatteei network,

and what are the sizes of these groups of nodes?

The rest of this introduction details the observations noet above, starting from
an overview describing why network topology matters, gaingo explain the nature
and dynamics of network topologies, and finally to a desinipof the features of
evolving network topologies. The problem statement, édbations, and outline of the

thesis are presented.

1.1.1 Topology Matters!

The network topology has a direct impact on performancédjerse, and security of
distributed applications. To illustrate the significanta&twork topology, consider the
two canonical topologies, full shown in Figure 1.2(a) atar shown in Figure 1.2(b).
Both topologies consist &f vertices but have very different topological properties, a
can be seen in Table 1.1. The table’s rows show the two carsisetwork topologies
and the columns show measures of three structural mesnesage path lengtredge
connectivity andaverage centrality Average path length counts the average number
of hops between all pairs of nodes, edge connectivity meagtie minimum number
of edges that need to be removed to disconnect the netwodkagrage centrality
measure the number of times that a node appears in the shpatedetween all pairs
shortest paths.

In the case of théully connectedhetwork, communication between any two active
nodes is disrupted if all nodes fail concurrently, whergashie case oftar, com-

munication is disrupted if the single central node fails. other wordsfull is more



(a) (b)

Figure 1.2: Example topologies: (a) fully connected andsthj

resilient thanstar. On the other hand, thelinks of star compared to theg of full
make it more scalable, which might explain wstar topologies, also known as hub
and spoke architectures, are dominant on the Internet aodyamizational networks.
While the network topologies of regular structures suchhasull andstar topologies
are well known and understood, the application-level prigeof complex and irreg-
ular topologies such as the Internet remain an open proldl@mnieeds to be better

understood.

Topology | Average Path Length | Edge Connectivity | Average Centrality
Star 1.75 1 2.62
Full 1 7 0

Table 1.1: Comparison of Global Properties of @imr and Full Topologies. Edge
Connectivityrefers to the minimum number of links that need to be removetisicon-
nect the network. Average Centrality measures the numb&mnet a node appears in
the shortest path between any pair of nodes.

1.1.2 The Nature and Dynamics of Network Topologies

Real-world networks evolve over time through dynamic noales links addition, re-

moval, and rewiring. These dynamic events happen at the lleeal in the absence



Figure 1.3: Application-Level Overlay mapped onto Phyisicgology.

of centralized and global control, and have complex noalinenplications at the

application-level that need to be understood and managed.

In the last few years alone the Internet has seen expongntiath in the number of
transactions, both at the network (e.g. BGP route updaisvahdrawals) and at the
application level (e.g. DNS, email) [6]. This rapid growtgrsficantly impacts the per-
formance, manageability and reliability of emerging netego While the limitations
induced by such a fast growth have been remedied, to a cextent, through manual
changes made to configuration tables (e.g. BGP tables),alitioc approaches are
quickly becoming insufficient and impractical. While padis are defined by humans,
their deployment, enforcement, and dependency confliotuien, which is currently
also human-centric, should be handled by autonomic mesimenio optimize overall
system performance. However, achieving this objectiveireq conceptual, physical

and logistical modifications to existing systems and protsac

A key issue that is significantly impacting emerging netvgoand applications, and
that can be potentially addressed by autonomic technigaéise absence of accurate
knowledge of, and control over the actual topology of largevorks. Network topolo-
gies define the link relationships between the nodes in theank and have a direct

impact [7] on the security, resilience, and performance dfs&ributed system (see



Chapter 3). Large scale systems, such as the Internet, hewa gut of minimizing
cost and maximizing performance at the expense of flexiiBit 9, 10]. In the case of
the Internet, the criticality of these concerns have beghlighted inOvercoming the
Internet Impasse through Virtualizatighl] and The Internet is Brokefil2]. While
it is still possible to monitor the state, at the BGP levelthed approximately5s, 000
Autonomous Systems in existence to date [6], monitoringhadltraffic inside these
Autonomous Systems is a daunting and nearly intractabite laquires days of data
collection and processing to obtain a global picture of teevork [13, 14], which is
likely outdated by the time data collection is completedislfor these reasons that
in the past few years most distributed applications have lgesigned on top of or
asoverlay networksgiving network and application engineers more controk dkeir

target network.

While the physical network topology is hard-set and can eathanged using software
alone, an overlay network can be rewired virtually in anyigesway, thereby enabling
dynamic software-driven configuration and managementefdpology. Such overlay
networks have been used to study problems of scalabilitying, resilience, fault tol-

erance, security and search in networked systems. The enoergf overlay networks
as supporting platforms for the deployment of next-gemn@natetwork applications

makes the problem of topology control and selection a alitomponent of the net-

work design problem.

The network topology can be virtualized according to a rogtig., geographic dis-
tance, bandwidth, or signal strength, that redefines therétationship between the
nodes. For example, in the virtual representation of a nétws illustrated in Fig-

ure 1.3, the mapping between application-level requirdsenthe overlay represen-
tation and onto the physical network provides an abstra¢hiat depends on the func-

tionalities that each layer supports and provides. Funtbeg, besides offering content



and context abstraction, virtualized topologies that aended beneficial to the net-

work can be used to guide the deployment of physical convites.

In summary, next-generation virtualized networks furtaecentuate the problem of
network topology selection and construction due to theseez deployment and high
dynamicity. An in-depth quantitative and qualitative stud various network topolo-

gies is presented in Chapter 3.

1.1.3 Local Perturbations Affect Global Properties

In the absence of global information, nodes gather locakimétion that reflect partial
views of the network. Modifications of the configuration oéthetwork using nodes

local information affect the properties of the global nettivo

The identification of appropriate metrics to analyze thevoek is a key requirement
of the design and parameter space. In this thesis, a setalfdad global metrics are
presented. In particular, the local metric of network degeetropy as an information
measure of neighborhood homogeneity is introduced. A nosahanism of cluster
detection based on network entropy is also presented. Timbe&muand size of each

cluster is a global application-level metric that charazés a network topology.

1.2 Problem Statement

The goal of the research presented in this thesis is to kbgennderstanding of lo-
cal adaptive strategies on networks application-leveperties. To this end, we first
identify network rewiring strategies based on local decisiand adaptations to evolve

topologies, and study the emergent global properties afebglting network.



The network topology reconfigurations consist of nodes ngkonnections, discon-
nections, or rewirings at the local level. Inspired by theaapts of emergence and

self-organization, this research tackles the followirsyies:
e The identification of canonical local structural metricsaaietwork.
e The evolution of network topologies of given degree disittidns.

e The analysis of the emergent network structures that résatft perturbations of

the local metrics.

e The interpretation and correlation of local to global pndigs to better under-

stand the impact of local network reconfigurations at thdiegion-level.

The assumptions and definitions under which the problem mdlomy control is

addressed are:
¢ In the limit of large networks, nodes may have limited vievitod network.
e Nodes are assumed to be cooperative and not malicious.
e Nodes and Links can be added and/or removed dynamically.
¢ All edge weights are of constant unit cost.

The local and global metrics that will be used are summaiiizdable 7.2 and are

discussed in Chapter 2.

The proposed approach consists of evolving and adaptingeheork topology to-
wards satisfying desired local structural properties. dfygroach is based on concepts
of emergence, self-organization, optimization, and gridpgory, and has three key
aspects: first, the application-level properties of thevoet relating to path length,
search, robustness, and clustering are determined. Sesacid node computes local

structural metrics. Adaptations are then performed in anlalized manner where
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local nodes apply neighbor selection policies, link additideletion, and rewiring, to
evolve the topology. These network modifications are domgussimulated annealing
optimization during which a move in the optimization pragesnsists of exchanging
two independent edges in the network. The move is acceptieid dptimizing or, if it

IS non-optimizing according to an annealing probabilitnafy, the emergent proper-
ties of the resulting networks are correlated to the locdiypleation strategies applied

at each node.

1.3 Contributions

e A quantitative analysis of the impact of topology on netwapllications (Chap-

ter 3).

The introduction of a novel measure of network robustnesspter 3.

The definition and evaluation adfegree network entrop{Chapter 4).

A survey, evaluation, and novel algorithm for cluster detec(Chapter 5).

The demonstration of degree network entropy as an efficaodl Istrategy to

control average path length (Chapter 6).

1.4 Outline of the Thesis

The thesis is divided into three parts. The first part adé€Espology Mattersand
motivates the problem of topology selection. The second garers the metrics of
Network Entropy, and Network Clusterinaddresses the importance and selection of
respectively local and application-level structural majes in the evaluation and se-
lection of a topology. Finally, the third part ofopology Dynamics and Emergent
Topologies presents mechanisms based on the selected network natdcstudies

the properties of the resulting networks. More precisely:
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e Chapter 2 covers background, related work, and a desaripfithe tools used
in this research. This chapter starts by showing how netwapklogies can
be effectively represented and analyzed using graph thedoemulations and
metrics. Related research on network topology that use treph metrics to ap-
proach problems in topology are presented. In particud@glbgy-aware meth-
ods use topological information at the node level to addaesd reconfiguration
decisions. Topology modeling approaches attempt to fintfitéag statistical
models of real-world networks by investigate correlatibasveen graph metrics
for the real and model networks. Emergent topologies coentipology aware-
ness and topology modeling and study the bottom-up prosésaeexplain the
observed properties of an evolved topology. The softwanls tihat were used to

generate, evolve, optimize, and measure the network pgrepare introduced.

e Chapter 3 presents a quantitative and qualitative anatysistwork topologies.
It delves into the relationships between structure andtfonof various network
topologies from regular to random. The chapter starts vighidentification of
a set of canonical, regular and non-regular network topefygnd goes on to
present a quantitative analysis of the impact of these tape$ on a set of net-
work applications. Chapter 3 is central to the thesis as fivates the importance

of the network topology and its impact on application bebaaind performance.

e Chapter 4 introduces thaegree network entropyetric as a measure of infor-
mation of a node’s neighborhood degree homogeneity. liyamgirelevant local
metrics to assess structural and path information of a tmyyois an important
problem because real-world networks are the result of éichibformation hori-
zons. Furthermore, the decisions made at the local levil giebal structures
that impact application-level functionalities. This chapanalyzes the network

entropy metric for a variety of topologies and a variety oblging models of
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topologies. It also shows how the network entropy metriclbamised to quan-

tify information for a given network topology.

e Chapter 5 defines the network clustering problem and presenqialitative anal-
ysis of cluster detection for various network topologiese iumber of network
clusters in a network topology and the size of each clust@wveuable topolog-
ical property of a network. This chapter introduces a revoéexisting methods
to detect clusters in a graph and presents a novel methodistiecldetection

based on network entropy.

e Chapter 6 presents an in-depth study of evolving networkltapes with arbi-
trary structural properties using the previously identifecal and global metrics.
Two modeled topology instances, random and power law defisé#buted, and
two real-world networks, the Canadian Autonomous Systeththa Gnutella
networks are considered. The evolved networks are evalwate respect to the
global emergent properties that result from the local adastrategies adopted
by nodes locally. Correlations between the local metricgafsitivity, assor-
tativity, entropy and application-level properties foutimg, search, robustness,

and clustering are addressed.

e Chapter 8 concludes the thesis and presents future work.
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Chapter 2
Background, Related Work, and Tools

2.1 Introduction

The representation of a network topology as a graph provadesverful abstraction
to analyze the structural and flow properties of networkss €hapter first introduces
a brief review of fundamentals of graph theory, from commmapd representations to
the metrics that will be extensively used in the rest of thesih This chapter goes on
to addresses related work in the area of network topologyeavess, network topol-
ogy modeling, and self-organizing evolving topologies.eTaview is drawn from an
extensive and active literature of which the research [sbat have been most influ-
ential in shaping the work in this thesis are [5] [15] [16] [1Z8] [19]. The glossary

in Appendix A provides a reference to the terminology usedughout the thesis.

2.2 Graph Theory Fundamentals

Graph Theory is a field of Mathematics that was officially baraund 1736 with the

now famous problem aihe seven bridges ofdfigsberg The problem was to find a
route that crossed all bridges in the German town of Koregglonly once. Paths that
solve such problem are now known&slerian pathsafter Euler who showed using a
graphical representation of the bridges that the conditiosuch a path to exist was to
have all endpoints on the path have an even number of linker Ebowed that it was

not possible to find a path crossing all seven bridges wittrauersing a bridge more

than once. Since then, the field of graph theory has exterdeddtical Mathematics
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and been applied to the formulation, analysis, and deamatf many scientific fields

including Biology, Physics, Chemistry, Social Sciencespputer Science and more.

The strength of graph theory lies in the abstract representaf a problem into a set
of nodes (or vertices) and links (or edges), in which twotsglanodes are connected
by an edge. This relation applies equally well to molecularciures in which atoms
are the nodes and edges the valency between atoms, or ihrsetevarks where nodes
are individuals and edges represent relationships suchessi$hips or professional

acquaintance between individuals.

2.2.1 Graph Representations

A Graph(G is denoted as/ = (V, E'), whereV is the set of vertices, anfl the set of

edges. When relationships between nodes in the graph asgmatetric, the edges of
the graph are considereédected otherwise the edges anedirected For example, the
graph of the World Wide Web is directed with edges repreagntieb links between
pages as nodes. A link from one page does not imply that a hr@ckxists from the

page that is pointed to. If a graph contains more than onetpahd from a node, it
is said to becyclic, otherwise it is referred to acyclic. A tree graph or chain graph
are examples of acyclic graphs. There are two common graghgentations, matrix

form and list form.

Matrix Representation: The matrix representation of a graph consists of a two-
dimensional integer array indexed by all nodes in the Grapip,from0 to N. Every
matrix entry M|i, j];4,7 < N, contains an integer number that represents the rela-
tionship between nodeand nodej. In an adjacency matrix representation, the entry
M{i, j] is 1 if there is an edge between the two nodes, @otherwise. In a Laplacian
representation, the entiy [i, j] is —1 if ¢« # j and there is an edgg, j). For exam-

ple, the sample graph in Figure 2.2.1 has the adjacencyxwapresentationt; ; and
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Laplacian representatiafy ;:

@

0101
101 1
A"vﬂ'_0100
1100

@ @ 2 -1 0 -1
0O -1 1 O
-1 -1 0 2

Figure 2.1: Sample graph with
nodes and edges.

Once in matrix form, operations from Matrix and spectraldrgheory [20] can be
derived to formulate asymptotic analysis. However, thig@sentation can be expen-
sive in memory, and particularly inefficient when graphssisinof very large number
of nodes with few edges between them. Such graphs are kno&passe Graphand

benefit from an alternate representation of a graph, nameyrepresentation.

Edge List Representation:Using the list representation, every node in the gregih

the nodes that they are connected to. The difference withtexmapresentation is
that the nodes entriggnore the nodes that they are not connected to. If the graph is
sparse, this representation results in a significantly monepact form. For example,
the sample graph in Figure 2.2.1 has the following edgedistasentation:

0—1
0—3

Ei,j:
1—2

1—3

Graph Attributes: Nodes and Edges of a graph can dasggmentedvith arbitrary

information that is relevant to a problem or application. lAssic example in network



16

flows considers the distance between two nodes to be anuattiolbthe edge connect-
ing adjacent nodes. Such a representation is knownvesightedgraph and is used
to derive shortest paths and minimum spanning trees of engi@imilarly, nodes can
be augmented with characteristic values that reflect atrarpiproperty of the node.
For example, Figure 2.2 shows a compressed graph of the Mondrican power-
grid graph, the original graph contaid841 nodes and594 edges, and is shown in
the figure compressed #0 nodes an@15 edges. The graph is the result of applying a
clustering detectiomalgorithm in which each cluster is represented by a singtieramd
for which the size of a node is scaled in proportion to the sfzée cluster. Clustering

is discussed in detail in Chapter 5.

Figure 2.2: A clusteredcompressedrepresentation of the North American electrical
power grid.
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2.3 Graph Metrics

The building blocks of a topology areodesandedges, that assemble and form struc-
tures that are well or ill suited to fulfill certain applicati-level functionalities. Such
goodness of fitan only be revealed based on observable graph metricswittoch
understanding the structures formed by topologies renaaitast. Interpretations based
on relevant graph metrics enable the evaluation of a toyang itsfit to fulfill a cer-
tain function in a quantifiable way. The network and graplotiditerature have ad-
dressed a set of metrics that measure local and global asfexctopology [21, 22]. In
this section we review some of the most common graph metndspply them to a set
of topologies commonly encountered in networks. Theseioseaire now introduced

and are summarized in Table 7.2 (see Appendix).

2.3.1 Fundamental Metrics

Number of Nodes and EdgesThe relationship between the number of edges to num-
ber of nodes can determine feasible, i.e., connected, dgpes from unfeasible, i.e.,
disconnected, ones. For example when consideNingodes andV — 1 edges it is
only possible to form @onnected networly chaining nodes to each other in a linear
fashion. This case is evidently the most straightforward when more edges than
nodes exist, the number of possible wiring of nodes immetjidtecomes combinato-
rial, therefore leading to known hard problems in topologgtsas the identification of

a graph’s automorphism class.

Degree The degree of a node is its number of adjacent neighbors.tht most fun-
damental structural property of a topology. The degree dfectkéd graph can relate
to theindegree i.e. number of incoming links, avutdegreei.e. number of outgoing

links, as distinct measures. TogetHer,andOut- degreagive thetotal degree. For an

Throughout the paperodesmight interchangeably be referred towastices andedgesaslinks.
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undirected graph thim- andOut- degrees are equivalent and are referred to simply as
degree.

There is a direct relationship between degree and the nuafleelges, as the total
number of edges in the topology corresponds to the sum ofd@feed of each node.
For a directed graph of nodes, the number of edgesis the sum over each node
outdegreel;, ZiNzl d;. For an undirected graph it is the sum over all noddsgrees
divided by two, > | 4, as each edge is counted twice.

While degree is a local property of a node, once all nodesedsgare gathered,

global information can be assessed and provides additioioamation of the network.

Relevant degree-related metrics degree distributiorandjoint degree distribution

Degree Distribution: The degree distribution of nodesvith degreel; written as

2

d;

gives the frequency at which a degree is represented in tinoriegraph. The distri-
bution is essential when fitting a network model to real-@arétwork data. For ex-
ample, the Internet router link distribution was believpef1999) to follow a Poisson
distribution because at the time the accepted model waghbdhternet wiring, un-
der no governing body, evolved as an Erdds-Rényi rand@phgrUsing network data
collected from a sample of the Internet routers, severaliasu [10, 17] concurrently
showedcirca 1999, that the Internet link distribution fit a power-lawtdisution, of
the typey = =~ with « typically betweer2 and3. Note that as a statistical measure,

degree distribution is only meaningful when the sample sizaumber of nodes is

large and isn’t relevant for small networks, for examplestehnodes.

Joint Degree Distribution: Knowing the degree distribution is significantly more in-
formative than degree alone and is extensively used to a@a@aphs. However, an

identical degree distribution can exist for many graphswitry different structural
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properties. The Joint Degree Distribution provides addai information that quan-
tifies the joint node degree to average neighborhood de@ree.computation of the
joint degree distribution is performed by averaging theghborhood degree of every
node. This information highlights structural propertiégtee network by relating to
degree homogeneity, i.e. whether nodes connect to nodkdikétdegrees or unlike
degrees. In the network literature this measure of sintylasialso referred to aas-
sortativity, when nodes tend to connect to like-degree nodesgeadsortativityvhen
nodes connect to unlike-degree nodes. Practicadigprtativitycan be measured using

Pearson’s correlation on the degree of every node.

Transitivity : also commonly referred to austering coefficientmeasures the prob-
ability that a node’s neighbors are themselves neighborkigA transitivity value is
indicative of a cohesive network, where alternate pathstbfieom nodes are common
within a node’s neighborhood. There are currently two fdatians for transitivity,
one is expressed as a ratio betweéemhe number of edges that exist between neigh-
bors, i.e., triangles, to the total possible number of edfas could exist between

neighbors, also known dsples, expressed as

for undirected graphs a% for directed graphs. The other formulation takes the

average transitivity over all local transitivity computaidevery node as

_number of triangles connected at vertex i

&

number of triples centered at vertex i

and the total transitivity’, = 1 >~ C;.

Edge and Vertex Connectivity Considering a connected topology, the edge con-
nectivity is the minimum number of edges that need to be redw disconnect the

network. The edge connectivity of a connected acyclic giagioviouslyO but can be
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higher for a hightransitivity graph, and reaches a maximumyof- 1 for a fully con-
nected network. The vertex connectivity is the minimum nandf nodes that need to

be removed to disconnect a graph.

2.3.2 Path-related Metrics

The previous metrics presented some fundamental strligiaph metrics, more can
be said about a network by measuring various propertiesnautdy walking along

the paths between nodes. Path lengths are measured frooe sowtestination, and
can reflect either the shortest path and subsequemtiynum spanning tre@r longest
shortest path, i.ediameter or the number of shortest paths going through a node, i.e.,

betweenness centralitf hese paths related metrics are now introduced:

Shortest Path The shortest path is the path that leaves a source node siinat®n

node and traverses (hops) the fewest number of nodes. Tieeajjéthea to compute
a single source shortest path is to attempt to reach evegy atide in the network,
and at every step maintain path information from every nodsvery other node, if an
alternate path between two nodes can be achieved with feparthan is current, the
alternate path becomes the new shortest path. This pracesgdaated until all nodes

are explored and all paths are checked for being of mininmajtte

Minimum Spanning Tree: A spanning tree is an acyclic structure that traverses ev-
ery node in the network. A minimum spanning tree (MST) is ansjirag tree on a
weighted network, where edges between nodes are givelouadtsi (i.e., weights) and
the spanning tree is built such that the sum of all edge weighininimized. There
exists several known processes to construct a minimum ggainee from global in-
formation, one is to select edges of minimal weight and addtto the spanning tree
as long as there are no cycles and every node is traversed lormen asKruskal's

algorithm[23], the other is to walk from a source by selecting the edgesinimal
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weight as the path to every other node goes along, in a maimigirsto single source
shortest path, known &im’s algorithm[23]. Computing the MST is very important
in many applications that require methods to reach all nodd® network more effi-

ciently than byfloodingor broadcasting messages to the entire network.

Vertex Betweenness Centrality The number of shortest paths that traverse a node
is indicative of thamportanceor centrality of that node. This measure of centrality is
very important in estimating the resilience of a networkttaek or failure. The more
paths traverse a given node, the more important that nodeelg to be and therefore
the more disrupted the network would be if that node is rerdoBetweenness central-
ity is computed based on the all pairs shortest paths, arsldens for each endpoints
pair the ratio of the number of times a node appears on theestigraths between all

pairs of nodes.

Edge Betweenness Centrality Similar to the Vertex betweenness centrality but is

computed per edge.

Diameter: The longest shortest path is the diameter of the networlsidgs giving

the maximum number of hops necessary to go from and to any, tiueldiameter does
not reflect any average or general structural property oh#teork. However, while
a high diameter might be due to a single unusually long patiheénnetwork, a low

diameter is indicative of a highly cohesive network.

Graph Spectrum: A graph is numerically represented eithemmatrix or list form.
As previously mentioned, common graph matrix represeomatiare the Adjacency
and Laplacian forms. From an implementation and repregentpoint of view, it
is more efficient to represent large sparse graphs in list f@ther than matrix form

due to the ratio of edges to nodes. However, for smaller graphkvhen possible, the
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matrix representation of a graph enables the applicatianaifix theory, and in par-
ticular the identification of the eigenvalues and eigermesets corresponding to the
graph. General properties and bounds can be derived frogrépd using the eigen-
vector/eigenvalue sets, and most importantly the streofythe connectedness of the
graph which is characterized by high eigenvalues [24].

Research efforts related to network topologies can be bradassified as related
to “topology awareness”, “topology modeling”, and “emergpologies”, this clas-
sification and a summary of the contributions of each fieldrespnted in Table 2.1.
These research areas further develop into sub-areas acappis as illustrated in
Figure 2.3. These three broad categories are discussed@datail in the rest of this

section.

Application class Description Main Result

Topology Awareness Use local information to as- Structured or geographig
sess the current and next statkased systems can theoret-
of the system ically achieve logarithmic;
time data propagation.
Topology Modeling | Identify best-fitting statistical Large unstructured networks
models to the observed datdend to follow a power-law
collected from real topologies distribution.

Emergent Topologies Build on the concept that theSolutions to known NP
whole topology has featurgscomplete problems to date
that are greater than the sunare provided by heuristic
of its parts that build on the emergent
property (e.g. ant algorithms

[72)

Table 2.1: Classification of research directions relatatetwork topology

2.4 Topology-Awareness

Recent research in virtualization [11] is in favor of dataess protocols that virtual-
ize content distribution, abstracting the data from itsgatgl location into its virtual
network location. However, this communication paradigrn bavere drawbacks for

location-dependent applications such as:



23

MANET & .
Sepsor getworks émO'D"OUS
( Computing
Topology
Maintenance
Swarm
— — Inteligence
DOLR
Ant
] Algonthms
Localty
Topolo Awareness' Evolutionary
Ralegy Programming
Emergent Topologies
Neighbor

Selecton | Cellular
................ Automata

Topology Modelin Selto
Erdés-Renyi L pology eling e m!:s:uzed
Random Graph

Waxman , Highly
Random Graph Optmized
J Tolerance
| Scale-Free
Degree-based l networks

Figure 2.3: Scope of research related to network topology

e Ad-Hoc Routing: mobile networks that can communicate onithiw a specific

geographical space.

e Security: confidential data that should be transmitted evithin trusted net-

works.

e Data Management: data mining and information retrievatesys that collect

and catalog information based on locality.

Such applications need to maintain a proximity view of threrghbors and, as a
result, are termebbcality-awareor topology-aware The maintenance of a correct and
persistent view of a dynamic system requires dedicatedsgnized protocols that are
either non-existent, or cannot be implemented over an iabtelmessaging substrate.
This makes finding the appropriate nodes to communicateiwi#im ad-hoc manner
a difficult and challenging problem. Topology maintenaneguires mechanisms to

collect information from a set of nodes in the system in otdeterive a global view.
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The cost of maintaining a full view of the network is proportal to the size of the
network [25]. While such maintenance protocols can achiegarithmic time for in-
frequent changes, the number of messages exchanged grnooveeekially for frequent
changes. A more recent, but conceptually similar idea, isseogeographic locality for
topology building. Several methods have been proposed totaiageographic local-
ity when a node joins a network. These include approachesit@aslandmark servers
for position calculation [26], and on translating networktdnce into geographic dis-
tance [27]. However, as in the case of topology maintenaystes, these solutions
do not scale well and in the case of landmark servers, reqeiigble and available
nodes present in the network at all time in order to succgstirieve the position
of a node. Researchers at the University of Bologna have tgerlogy awareness
to evolve a network towards a desired topology [19]. TheirkvMoas demonstrated
the efficiency of the gossip algorithm in reachiegentual consisten@mong nodes
in a large network, and has shown that their algorithm cafveva large network of
nodes towards a given topology in a small number of messaggruacycles. Other
more recent techniques for locality and topology awarersssh asGeographic Lay-
out, Proximity RoutingandProximity Neighbor Selection (PN£8, 29] are evaluated
in [30]. These geographic or proximity topology-aware poatls determine an optimal
neighbor to forward data to and build structured and unsired networks. However,
these mechanisms of evolution and adaptation of the topdiage been essentially
focused on geographic locality and have not addressed thenaig optimization of a

network based on local and global structural metrics.

Topology awareness has also been used to achieve faultiibleuting. For exam-
ple, the Resilient Overlay Network [9] (RON) project addres the problems raised
by the BGP routing failures between Autonomous Systems. RfoNoses an overlay

network protocol to dynamically determine a new route far flackets to go around
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a failed node. RON showed to successfully reroute data drauault on small net-
works of50 to 60 nodes, but did not address structural properties of theldgyand
their impact on application-level functionalities. Siarilissues are also encountered
in peer-to-peer networks, in which unreliable communaatiare established between
peers in the absence of centralization. One such class chpy@RationsDistributed
Object Location and Routin¢DOLR) [31] useslocality awarenessproximity rout-
ing, data replication andsoft-state maintenandechniques to guarantee reliable and
high performance search in the P2P system. Another areseviigology-awareness
is used is mobile ad-hoc networkgIANET). The cost of routing in MANETS largely
influences the power consumption of the interacting nodeshbode in a MANET
maintains a local view of its neighboring nodes, i.e. a lanap of the topology, and
when optimized, can improve the performance of the apjpdinand reduce the power
consumption of the nodes. One such optimization is used ae#g32], an energy-
saving protocol for sensor networks. Ascent uses localltggoinformation and the
density of packet loss to determine the node’s current artistate and uses Directed
Diffusion [33] to build a global view of the topology.

While our research shares conceptual affinities with thiskywparticularly on the
mechanisms for topology modifications, our focus is on usideding the impact of

local reconfiguration strategies at the application-level

2.5 Network Topology Modeling

In contrast to the approaches presented in Section 2.4 ithataynetwork using local
knowledge of the topology, the network modeling field lookseal-world networks
and attempts to identify the generating principles and $tesistical fit between model
networks and their real-world counterpart. The comparddahe networks is typically
performed using new metrics that invalidate a prior moddiawvor of a new model

for which the new metric is validated. For example, while thiernet topology was
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originally believed to be a random graph [34] and assumedte la Poisson degree
distribution it was later shown to have a power-law disttidtn. Modeling of the Inter-

net topology is actively researched and rendered diffiaudt @ the rapid growth and
frequent changes of the network. Five models of the Intdopmilogy, random, Wax-

man, Doar-Leslie, Exponential, and Locality, were preséiaind compared in [35, 36],
each model introduced a new metric that invalidated a ptesvinodel. The most cur-
rent accepted model is derived from the Highly Optimizecefahce model introduced
in [8] that takes into consideration the economic and huneatsa@s part of the network

model and has been termed the “robust yet fragile” model.

2.5.1 Models of Complex Networks

The modeling of complex networks from biology, technologiyd sociology have led
to important discoveries towards understanding the géngrarinciples of real-world

networks. A “good” model enables the generation of netwavits desired character-
istics that are applied to study or simulate the behaviohefrhodeled large complex

systems without depending on real-world data.

A complex network can be modeled with nodes joining a networHiscrete time
steps. At each step a node establishes connections to nlogagyain the network.
The number and target of these links are the two fundameatalbies of the model.
For example, the target nodes can be selected at random ahabdingodes, or prefer-
entially, in which case a measure of preference is necessayide the connectivity

process.

Models of evolving networks may also consider aging, a psd®/ which links be-
tween two nodes are removed if a satisfying condition to taairthe link is not met.
Aging enables the study of the dynamics of networks and isaardial characteristic

of real-world networks. For example, in social networksytiaks are formed through
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the discovery of new acquaintances, or friends of friendd,dropped when affinities

change.

The main models of evolutionary networks can be categoased

e Random The existence of a link between any two nodes is drawn fromarbi

trary probability distribution. The network may evolve Wwibr without aging.

o Preferential Links are determined based on a preference factor thature=sas
an affinity between a considered pair of nodes. The networkewualve with or

without aging.

These two types of models include as sub-categories: coafign model [37],
Callaway Traits [38], and Small-World networks [39]. Thexhsection briefly intro-

duces each model.

Random Graph Models

Erdds-Renyi Random Graph: The earliest random graph model was proposed by
Rapoport and later reformulated by Erdds and Rényi ini@sef seminal papers [34]
in the 1960’s. This model established graph theory as anareambinatorics and

initiated the field of random graph theory.

In this original model, a graph with nodes is constructed based either on a uniform
probability,p, of existence of an edge between any pair of nodes and isetbigt, or
based on a number;, of edges in the graph and is denot&gl,,. For theG,, , model,

the average number of undirected edges in a random grqmﬁ%éﬁ. This model
grows a network with a Poisson degree distribution. All ldsesgraphs constructed

using these mechanisms belong to the class of Erdds-Ré&myom graphs.

Callaway Traits [38]: consider that each nodes in a network is assigned a type. A
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type matrix determines the probability that nodes conreettch other. This network
evolves in discrete time steps, at each step two nodes asemclad random in the net-
work, and are connected according to a predefined probataibte based on the matrix

of types.

Configuration Model: The configuration model [37, 40] is a class of random graphs
that are built based on a degree distribution from which aekegequence is chosen
and all nodes degrees are paired to meet the degree seqagurement. One process
by which such an arbitrary degree sequence is constructedrisualize each node as
having “spokes” sticking out of it with no connection to arther node. The spokes
of each node are then paired at random until there are no memgaiodes with uncon-
nected spokes. The condition for such a network to be buith isave an even total
number of spokes. Networks resulting from such a proceshtmigt be connected. If

it is a requirement of the model to generate connected nksytire resulting networks
have to be checked by running a connectivity check algorigunh as breadth-first or

depth-first search, on the generated network.

Watts-Strogatz Small-World Model: The model proposed by Watts and Strogatz
in [41] considers @D lattice topology on which a fraction of nodes are rewired by
creating long range connections outside of their neightmdaccording to a set proba-
bility p. This randomized reconfiguration leads to what is bettemknasSmall-World
networkswhich have low transitivity (i.e., clustering coefficiert)d low average path
length. This model has been very influential to this resedrghto the relationships

between the local reconfigurations and their impact at tbbaillevel.

Preferential Attachment Models

The preferential attachment model originated as a caralidaidel to explain the

emergence of the power-law distribution exhibited by aetsrof large-scale systems
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in many sciences. Historically, power-laws have been founishcome distribution

(Pareto, 1897), city sizes (Zipf-Auerbach, 1913/1940&xdafrequency (Zipf-Estouf,
1916/1940s), bibliometrics (Lotka, 1926), species ancegefYule, 1924), economic-
s/information theory (Mandelbrot, 1958s)

Simon Model: Herbert Simon was the first to propose and document a preifare
attachment model as a leading factor that exhibits powediatribution in the context
of Economy and wealth distribution [42]. The model is basedh® observation that
as new elements join an existing system, connections amgefibwith those elements
already in the system that are most known or more popularjsaaldo known as the

rich club connectivity, or “the rich get richer” phenomenon

Price Model: In 1965, while studying citation networks, Derek deSolt&c® found
that thein andout degrees of coauthors followed a power-law distributions plio-
posed model [43] to explain this observation was based orcdheept preferential

attachment similar to that expressed by Herbert Simonezarli

Barabasi-Albert Scale-Free Network In 1999 several independently conducted stud-
ies [10, 17, 8] showed that the distribution of router linkstbe Internet exhibited a
power-law distribution. Documents on the World Wide Web evalso shown in [17]

to be linked following a power-law distribution and termsdale-freenetworks ac-
cording to the process of preferential attachment destrifyeBarabasi and Albert.
More recent studies have elaborated on these initial ohsens, while revalidating
the power-law distribution but giving different explarats for the underlying gener-

ating principles and manifestations of these propertid$ [A study of the evolution

2These historical references are copied here from a pragentiled “New Directions for Power-

Law Research” by Michael Mitzenmacher.
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of the Internet topology design is presented in [44], in ahacstudy of a single Inter-
net Service Provider is used to extrapolate informatioruéiee global Internet and

confirms the preferential attachment put forward in [17].

Summary: It is becoming key to many sciences to better understandttiuetural
properties of complex networks, as well as to identify thprapriate metrics that are
necessary to study and label such networks. Network togatogdeling attempts to
identify the guiding principles that drive the evolution r&al-world networks. The
models are compared to their real-world counterpart thnapecific metrics that act
assignaturesf a network. Network models that accurately predict theealf a mea-
sured property on the real-world and modeled network cam bleeused as generators
of arbitrary networks that behave similarly to the real-daretworks, and be used as

platforms to simulate interactive and behavioral patterns

2.5.2 Network Models: An lllustrative Example

Real-world networks evolve over time through dynamic noales links addition, re-
moval, and rewiring. These dynamic events take place ataba level in the ab-
sence of centralized and global control, and have compleimear implications at
the application-level that need to be understood and mahage

For example, consider two simple discrete time evolving edandom wiring
and preferential attachment. In the random wiring evolvimgglel, at each step a node
is added to the network and connects to a node already in th@rewith a uniform
probability p that is a property of the model. In the preferential attaahinmeodel,
at each step, a node is added to the network and connects tbea atveady in the
network with probabilityP (i) = k{* + [, wherek is the number of links of a node,
« a preference exponent, amtdthe appeal to connect to an unconnected node. A
probability P closer tol means that an added node favors nodes that have more links.

The resulting distribution of number of links, shown in Figs 2.4(a) and 2.4(b), are
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Figure 2.4: (a) Link Distribution of Growing Random GraphtkwiL0,000 nodes and
2 edges per step. (b) Link Distribution of Growing PreferanAttachment Network
with 10,000 nodes and 2 edges per step; 1.

significantly different for each process. The random moeatling to an exponential
distribution and the preferential attachment to a powerdastribution. Observations
and lessons learned from the analysis of such dynamics eéssary to understand the

evolution of large scale computer networks such as theriater

2.5.3 Statistical Modeling of Networks

Large-scale networks can be described as a large set ofontezcted nodes that are
theoretically best described through a stochastic fortimlaf the nodes, edges, de-
gree distributions, or other arbitrary network propertieSne explicit formulation
that has been used and shown successful in recent years isf th@nerating func-
tions [17, 37, 45] based on the degree distribution of a nekwdJsing generating
functions, a network with arbitrary degree distributiomdze represented using the
mathematical notation of power-series [45]. Other prapsrdf the networks can be

obtained by deriving the moment generating function of #agrde generating function.
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Probability Generating Functions

Consider the probability distribution of vertex degréethe generating functiotiy, (z)

can be expressed as:
Go(z) =3 puat,
k=0
wherep,, is the probability that a randomly chosen vertex on the gtegshdegreé.

The distributiorp,, is correctly normalized such that
Go(1) = 1.

Probability generating functions have properties thateriakm particularly well suited
to the study of evolving networks, especially regardindigsivatives Moments and

Powers

Derivativesof the probability generating function @f, is given by thek!” derivative

of GGy according to
1 d*Gy

Pr = HW‘xZO'

Momentsof the probability generating functions give the mean ofgbeerating func-
tion given by thek*" derivative of the generating function. For example, the fire-
ment, is given by the first derivative, and expresses theageedegree, i.e., average

number of neighbors, of the nodes
r=<k>=> kpp=Gj(1).
k

Higher derivatives give higher moments, for example theavae, i.e., the second
moment is given by
v=<k*>= Gj(1)Gy(1).

and in general, the’® moment is given by

<K >= YK = () o)
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Powersof the generating function express the distribution of tltof a sum of
independent realizations of an observed property of thear&t For example, forn
nodes chosen at random in a large network, the distributidimeosum of the degrees

of those nodes is generated 63 (z)]™.

Using this formulation, structural properties of large gdex networks such as the
mean component size, average number of neighbors, andyavea#h length, can be
formulated analytically and are derived in [37]. The meamponent size< s >, is

expressed as
1

<§>S=———
y 1—z+28
wherez is the average number of neighbors of a vertex and the size of the giant

component. The average numbgrof m**-nearest neighbors is
Zm = G’l(l)zm_l.

which further reduces to

é]m—l

Zm = | 2.

<1
Hence, the average numberrmf® nearest neighbors can be determined based on the
number of1** and2"? order neighbors alone. The typical lendtbf the shortest path
between two randomly chosen vertices on the graph is anallytiexpressed as

_In(N/z)

= ——-+1.
In(z9/21)

As mentioned in [37], suchresult is only approximate for two reasons. First, the
conditions used to derive it are only an approximation; tkaa answer depends on
the detailed structure of the graphtn the face of such limited analytical formulation,

these measures should be computed independently for eastidered network.
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2.6 Emergent and Bio-Inspired Approaches

Emergence, or the emergent property, is a characterissorok complex systems by
which the number of possible interactions between the elésngf the system is so
large that the system as a whole may appear greater than inefsitis parts. For

example, the World Wide Web exhibits an emergent propestyinks under no cen-

tralized control follow a power-law, rather than randonstdbution. There are several
research efforts that build on the concept of emergenceristaact and manage net-
work topologies [46, 19]. While our research is also base@mergence, it differs

in the strategies used to adapt node connectivity and evbé&/aeetwork topology, as
well as the metrics used to evaluate candidate adaptatiather related work include
efforts inspired by self-organization [47], nature andldgical systems [48] such as

Amorphous Computing [49], Swarm Intelligence [50, 51}, &edlular Automata [52].

2.6.1 Amorphous Computing

Amorphous Computing applies concepts from biology andwgiah to develop com-
puter languages (Growing Point Language [53]) and dedergdbevolving systems [54].
Each computing cell is viewed as equivalent to an organidicat is guided by its en-
vironment to determine its next state. The cells followuwattchemical gradient and

density trails to identify their position and direction afodution.

2.6.2 Swarm Intelligence

Swarm Intelligence is inspired by social and behaviorabttes in the animal and hu-
man kingdom. For example, foraging, nest building, andduwctivities of social

insects (ants, wasps, termites) follow local rules apgdhgeach entity with no knowl-
edge of the whole. Similarly, flocks of birds, schools of fiahd herds of mammals

follow local rules that lead to structures with emergenfanies.
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2.6.3 Cellular Automata

Cellular automata is a mathematical model that was intredlxy Jon Von Neumann.
It is characterized by the evolution of a set of hodes witledeinistic neighboring

rules that interact and form, in non trivial cases, unknowsbgl behavior with or

without apparent pattern formations. While some gamedg) ascthe rules of the game
of life yield self-sustaining patterns that are now well arstood, cellular automata
rules result in complex non-linear and non-deterministaitigrns that remain unex-
plained. In [18], an asynchronous cellular automata isvevahd shown, for specific

considered rules to manifest a surprising degree of streictu

2.7 Summary

The study of the effect of linking strategies between nodes metwork is a complex
and nonlinear problem that is combinatorial in nature. K baen mainly addressed
in the theoretical sciences such as graph theory and &tatighysics. In the applied
sciences, structured and unstructured topologies have $tedied in areas such as
content management and topology-aware approaches. Howey@roblem of study-
ing the impact of local rewiring strategies and their imation at the application-level
has received little to no attention from the network engimgeresearch. This prob-
lem requires urgent attention to better predict the evoltudif next-generation complex

network structures. Results from recent research show that
e Large-scale man-made systems appear to follow a powerdgved distribution.

e Nodes in large scale networks can reach eventual consystising a small num-

ber of message-passing cycles.

e In a structured overlay network, information can be pulddiand retrieved in

logarithmic time.
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While these results are groundbreaking in the understgrafilarge-scale complex
network, more questions remain unanswered and are addnestes thesis: (1) Are
there canonical metrics that quantify a network topologyhlat the local (i.e., node)
and global level? (2) Are network perturbations based ondba& metrics correlated
with the application-level properties? (3) Can local rdiguration heuristics yield

predictable application-level properties?

Further, the strategies proposed by emergent and Bioretsppomputing share simi-
larities in the manifestation of global properties from ihieraction between small and
simple parts. As a result, these approaches are inheresrhigaterministic and their
guantification remains little understood. Existing reshafforts in this area raise im-
portant questions about the evolution of networks, theitigions that are manifested,
the quantification of their resilience, security, and edfidy, and the rules of evolution

required to obtain a desired behavior.

This research seeks to understand the emergent applidatienmpact of perturba-
tions of network topologies based on local optimizing stiel properties alone. This
is achieved by analyzing networks, both from evolving netwoodels as well as real-
world networks, and using topology-aware mechanisms taiolriformation from the
underlying topology at the node level to determine the ngstesn-state. While this
research relies and has been inspired by graph theory,agpalwareness, topology
modeling, and self-organization and the emergent propgriy unique in the iden-
tification of local structural metrics, and applicationééproperties, and the investi-
gation of correlations between the optimized networks daselocal metrics at the

application-level.
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2.8 Description of the Tools Used

The formulation of network topology as a graph and the comprgpresentation of
the graph as adjacency matrices and edge lists was based ignaiph [55] software

library.

igraphis a library written inC, with interfaces to th& [56] statistical language, as
well as Pythonigraph offers many features that make it a tool of choice to study and
analyze large complex networks from a structural perspec8ome of the features of

igraphthat were most relevant and used in this research include:

¢ High-level functions for generating random and regulamnoeks.

e Routines for manipulating large graphs by adding, remgvargeconfiguring

edges.
e The definition of structural properties such as degree araky.

e The implementation of advanced force-based layout genaratich as th&a-
madaandKawali, or FruchtermanandRheingoldalgorithms to facilitate the vi-

sualization of small to medium-sized graph.

e A clean and well documented API that make it easily extessibl

Furthermore, thegraph/Rinterface brings the power of tliRlanguage to perform
statistical evaluation on the graphs and related metricls as map-reduce operations,
vector and matrix arithmetic, list operations, and plajton top of all the essential

statistical features such as correlation, variance, etc..

As an example consider the following code that is used to oreathe degree cor-

relation of a graply:
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correlationc—function (g,m="pearson”)
el<—get.edgelist(g)
dl<—degree(g,el[,1])
d2<—degree (g, el[,2])
if (sd(dl,d2)==0) return (1)
co<—cor(d1,d2, method=m)

return (co)

Theigraph functions in this illustrative example aget.edgelisanddegree The
R functions aresd and cor, respectively for standard deviation and correlation. The
first line gets the graph representation as an edge listaisea from/to relationship,
and stores the degree of each node in a corresponding ralhifo The correlation is
computed using a Pearson correlation moment function geovby theR library. All
network visualizations and plots in this thesis were geteerasingR-2.5.1andigraph

0.5.
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Chapter 3

A Qualitative Analysis of Network Topologies

3.1 Network Topologies

This section presents some commonly used network topapfiiem basic regular
topologies, such as ring, tree, star, and lattice, to morarazkd regular topologies such
as hypercube, chordal ring, and Kautz networks, and finaltyon-regular topologies,
such as power-law and Poisson degree distributed. Thedgiesl are then evaluated
with respect to their properties for routing and searchustibess, and security. The
network graph representation of a topology can be congidasehaving directed or
undirected edges Figure 3.1 illustrates a high-level view of the range ofdimgies
based on a three dimensional space that considedsilarity, transitivity, andregular-

ity as properties axis.

3.1.1 Basic Regular Topologies

Fully Connected The all-to-all pairing of nodes in a network &f nodes requires

N(N-1)
2

undirected edges.

Ring: The Ring topology has a uniform degree of two links per no#&er a net-

work of N nodes it containgV edges.

Tree: A Tree is an acyclic structure for which all nodes but the leades have two

1n this paper, all topologies, except the Kautz network camesidered undirected
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edges. For a network @ nodes it contain&’ — 1 edges.

Star: The star topology has a central node to which all otNer 1 nodes connect
to. This topology is very common in local area networks. Ipiements the hub-and-
spoke architecture which is a common design pattern andsteis a single node that
is common to all nodes in the network, that is used to routerimétion to and from

every pair of nodes. For a network dfnodes, the star topology contaiNs— 1 edges.

Lattice (Meshes and Toriy A mesh and a torus are related structures that differ in
that tori are circular whereas meshes aren’t. Circularigans that the extremities of
the topology connect to nodes at the other extremity of tpelomy. For example, in

a two dimensional mesh, all nodes but the ones at the coraeesfbur neighbors, the

four corner nodes have two neighbors, therefore, the totalber of edges for a mesh
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of N nodes i N — 2 x sqrt(N). In the case of a two dimensional torus/@fnodes,

the number of edges BV.

3.1.2 Advanced Regular Topologies

Hypercube: Hypercubes are high-dimensional lattice topologies ardcammonly
used for embedding computations in parallel applicatiémsn-cubehas2™ nodes and

n2"~! edges.

Kautz Network: A Kautz network of degre@/ and dimensiom + 1 has(M + 1)M¢
vertices and M + 1)M?*! edges. Kautz networks are well suited to fault tolerant
topologies of parallel computer interconnects becauselibee the smallest diameter

of any directed graph withV vertices and degre#!.

Chordal Ring: An extension of a ring topology in which nodes are interautad
by chords going across the ring in a periodic manner. The rumbneighbors in an
N node chordal ring is betweehand N — 1 (fully connected). When choosing the
periodicity of the neighbors in an efficient manner, the dabring topology offers

lower diameter and greater resilience than the ring topolog

3.1.3 Non-regular Topologies

The previous topologies are regular structures in that @alles have similar degree
characteristics. Non regular topologies have nodes witkrdnt properties that can
form complex networks with arbitrary structural propesti®Ve address two categories

of such random networks, uniform random and preferentiathment.

Uniformly Random Networks: In a random network, each possible pair of nodes

is interconnected with a certain probability. When the @itmbty is drawn out of a
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uniform distribution (i.e., forN nodes isp = % for each pair), the resulting degree
distribution is normal and centered around a meaymaow. This type of uniform
random graph was proposed in [34]. This topology is pariduivaluable when other
topologies are compared to it to identify distinctiveexpectegbroperties of the net-

work.

Preferential Attachment Networks: Are a type of random graphs thiavor certain
nodes, hence giving a greater probability of attachmendteesnodes and less to oth-
ers based on preference. The generating principle of arprefelly attached network
is that nodes are added in discrete time steps such that gt see the newly added
node preferentially attaches to a node in the network thegheater degree. Such net-
works have been shown to exhibit power-law degree disiohudue to the nature of
the reinforcement by the preferential attachment to faiginlig connected nodes in the
network. The power-law distributed network has a degretilligion that follows a
power-law of the typg = 2~* wherea has been shown to be betwezand3 for var-
ious biological, technological, and social networks. Tdegree relationship expresses
the fact that the node with highest degree is exponentiabisernonnected than the sec-
ond highest degree node and so on. This degree relationasigléo been referred to
as scale-free because of the self-similar relationshipsd®n nodes at various levels

of degree connectivity.

3.1.4 Edge and Degree Summary

Table 3.1.4 presents a summary of the topologies with réspdendamental proper-
ties of each topology, the number of edges and degree. Epology considered has

N nodes.



Topology Number of Edges| [Min-Mean-Max] Degree
Full RLE) N—-1,N—-1,N-1
Ring N 2,2,2

Star N-1 1,22, N -1
Tree N -1 1,7,2

Mesh 2(N — VN 2,102 4
Torus 2N 4,4,4
Hypercube Nogh) d,d,d
Chordal Ring kN k, k, k

Kautz (M + 1) M+t M, M, M
Random N 1, Np, N
Power-Law Nm —1 1,7, N —1
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Table 3.1: Basic Topology MetricsN is the number of nodesd is the dimension

of the Hypercube.p is the probability of two nodes being connected by an edge in
the Random topologyk is the number of extra edges for each node in the chordal
ring. M is the degree and the dimension in the Kautz network: is the preferential
attachment exponent.
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3.2 Network Applications

The network topology is the supporting structure on whicletavwork application is de-
ployed. It is the fundamental substrate on top of which comigation between nodes
takes place and higher order interactions are executedofjeetive of this chapter is
to show that the structure of the topology significantly etifethe performance of an
application. To this end, we consider the followicgnonicaldistributed applications,
Routing Search andRobustnessin a first part, we briefly define these applications

and then present an evaluation of the impact of topology @tiagiion performance.

3.2.1 Routing

Routing is the process of identifying a route from sourcedstithation in a network
of nodes capable of forwarding information as messages fropnto hop. Routing is
an essential requirement of any message passing disttibyséem. The end to end
delivery of a message involves finding a path between theants preferably short-
est, but might also include finding alternate paths in caggkak node fails along the
route. The most important decision in routing is to choogertbde to forward infor-
mation to such that the destination node is closer. The plessodes to choose from
are the neighbors of the node in the topology. While therdaréoo many existing
approaches to routing to present in this section, the mwgjofiapproaches fall in one

of three categorie®)istance-VectarLink-State andAd-hoc

Distance-Vector Routing: In Distance vector routing approaches, nodes compile a
vector of reachable nodes that is shared to all neighboesy éxode then uses the ex-
changed vectors and computes the shortest paths to othes.ntdplementations of
distance vector routing are provided by the Bellman-Fogb@ihm, which works on

a weighted graph that can contain negative edge weightsalgbeithm is used for the

Routing Information Protocol, RIP, but has the disadvaataignot scaling well, and
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not reflecting changes in the topology quickly enough.

Link-State Routing: In Link-state routing every nod#oodsthe network with in-
formation about its neighbors. Once routbesar everything about the network they
can calculate the best path to any host on any destinatiovoriet This can be done
usingDijkstra’s shortest path algorithm [23], a variation of Bellman-Feralgorithm
for weighted networks with no negative edge weights. Thetmlassical implementa-

tion of link-state routing algorithm is th®pen Shortest Path Firgirotocol.

Ad-Hoc Routing: There are two main categories of ad-hoc routitagple-driven

also known agroactive andon-demangdalso known aseactive In table-driven ad-

hoc routing every node maintains a routing table, when tpeltmgy changes, nodes
propagate update messages to the network in order to mmaentedonsistent view of

the topology. Examples of this approach &restination Sequence Distance Vector
Distance Vector Routing ProtogdlVireless Routing ProtocplGlobal State Routing
Hierarchical State RoutingThe differences between these systems are in the way the
information is updated. I©n-Demandouting routes are discovered as needed, the
path remains valid until the route is not needed anymoreetithestamp for the route
expires. Examples of this approach &@-hoc On Demand Distance Vector Routing

Cluster Based Routindynamic Source Routingemporally Ordered Routing

3.2.2 Search

Search is the process of looking from a source node, for a apdellection of nodes
that match a query. The query is arbitrary and could be fotestror resource. In dis-
tributed search the most challenging task is to obtain giiees on the search, meaning
that, with certainty, all items matching a query are retdrteethe requester. The net-
work that is searched can be structured or unstructuredct8ted networks offer the

advantage of bounding the search time, possibly achiewgayithmic number of hops
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to discovery.

In regular topologies, all nodes have an identical numberegghbors. Searching
for an object in such networks is bounded by the average nuofi®ps a message
takes before finding the desired object. This expected éiane (measured in number
of hops) goes akg,.(n) wherek is the fixed regular number of neighbors of a node.

However nodes in the network could be structured to optirfoze given set of
parameters such as geographic locality or bandwidth. uist @uting, the network
topology is essential in determining which of a node’s nbils is most likely to lead
towards the desired content. A structured topology migfgrafimilar bounds on the
search process from every node, while an unstructured dggahight have a high
variance on the search bounds but offers more flexibility.

In contrast, irregular topologies evolve under no contral aan therefore be lo-
cally and globally heterogeneous. Such heterogeneityersritie problem of discov-
ery and searching in these networks difficult, often reggia traversal of all nodes to
guarantee discovery. Irregular topologies have been raddeding Newman'’s formal-
ism [37] of probability generating functions. The probékibenerating function of a
measurable property is expressed as a power s€figs) = >~ prz¥ wherepy is
the probability of a node to have degreand:* is the polynomial factor associated to
a degree:. While probability generating functions are useful atisgtsome asymp-
totic bounds on some graph properties, their generalizaémains challenging as the
assumptions that are made to obtain the bounds render thiepronore abstract and
further from real networks. Such difficulties combined wgttaphs combinatorial ex-
plosion for many problems in search and optimization culydimit the applicability
of analytical tools to real world networks, that are beskeased using experimental

evaluation.
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3.2.3 Robustness

The robustness of a network reflects its capacity to mairftenationality in the pres-
ence of changes or disruptions. One way to assess the rebastiha network is by
measuring its edge connectivity, i.e., the minimum numidezdges that need to be

removed to disconnect the network.

However, the measure of edge connectivity does not quathtéymportanceof the
edge that is removed in the network. For example, a fully ected network witht
node at the edge of the network connected to the dense netvilbriesult in an edge
connectivity of1, but fail to recognize that this edge is not the most likegvéled
and therefore not the most important to consider. To addressssue, we introduce
a novel measure of robustness that usesetigee betweennesseasure presented in

Section 2.3, and is computed as shown in Algorithm 1.

Algorithm 1 A Measure of Robustness based on Betweenness Centrality

while G is connecteddo
for all edges= G do
compute edge betweenness
end for
S« sort edge betweenness in decreasing order
removeedge = maz(S) from G
increment number of edges removed
end while
return number.of.edges.removed

This normalized measure of robustness has the advantagédot the centrality
of an edge in the network, and returns a value closénttnen the total edges have to

be removed.

3.2.4 Security and Cooperation

Identifying malicious activity in a distributed networkrche addressed through coop-

erative strategies by which a set of nodes recognize a nduEhasing in an anomalous
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Figure 3.2: Shortest Paths for 500 Node networks

manner and flag it appropriately. Such a quorum forming iy paissible if a set of
nodes are in each others neighbor set. The transitivityicngtesented earlier is im-
portant in that a higher transitivity reflects a cohesivevoek in which neighbors are
themselves neighbors of each other, and can therefore poteainode’s behavior or

activity.

3.3 Evaluation

Using the metrics presented in Section 2.3, we evaluate dhieus topologies with
respect to the applications presented in Section 3.2 amdisiisthe advantages and
disadvantages of each topology for each metric. In thisystineg weight distribution
for all topologies is considered constant with cbstThe evaluations with variable

weight cost distributions is left as future work in this rasgh.

3.3.1 Routing through Shortest Paths

The bar plot in Figure 3.2 shows a statistical summary fodiktibution of the short-
est paths for the network topologies presented in Sectibneach comprising o300
nodes. The plot shows the minimum, first quartile, mediaraméhird quartile, and

maximum value for a shortest path in the respective topekgihe topologies will be
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Figure 3.3: Degree of 500 Node network

referred to aslowwhen they manifest high average path length astiotherwise.

The ring clearly appears asstow topology with the highest average shortest path
length. The star and random topology are thstest although this is at the expense
of either high number of edges (for random networks), or ligtweenness centrality
(for star networks), as will be discussed below.

The bar plot in Figure 3.3 shows the same topologies and suyrstatistics for the
nodes degree count. The star topology has a very high maxliegage, corresponding
to the central node, and indicates that while on averagesbdee very low degree,
very few nodes have a very high degree (in the case of stavjegt The random topol-
ogy also stands out from the regular topologies as havingsadth higher average
degree, indicating that the nodes have more edges thanrethdar structures. The
scale-free network presents a trait similar to the star od¢yalthough of lesser scale
and indicates that very few nodes have much higher degredtieraverage, hinting at
the power-law nature of the degree distribution.

The shortest paths and the degree plots illustrated aspieitte topology relating
to the distribution of degrees but fail to indicate if nodestlhe network are more
important (from a routing perspective) than others. Thishiewn in the bar plot in

Figure 3.4, which shows the betweenness centrality for aineesnetwork topologies.
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Figure 3.4: Betweenness Centrality of 500 Node networks

A high betweenness centrality indicates that some nodeseateal to the network and
used in routes to and from many nodes. This is strikinglyblesior the star, the scale-
free, and the tree networks. In a ring and random networkstiexythe distribution

of routing responsibilities are equally distributed amstngl nodes, in particular the

random network indicates the absence of betweenness ldgntra

3.3.2 Robustness

The bar plots in Figures 3.5(a) show the edge connectivityragasure of robustness
of the 500 nodes network topologies considered.

The random network has the second highest, following thlg fidnnected net-
work, edge connectivity than all other topologies. Thislddae deduced from Figures
3.3 and 3.4, as the degree summary of the random networkatedi¢hat nodes are
on average highly connected, and the betweenness centrfadill nodes remains very
low. It is therefore not surprising that the random netwoduld be highly resilient to
link failure. The edge connectivity of the hypercube, cltabrihg, and torus networks

follow.

Figure 3.5(b) shows measurement of the network robustr&sg the metric intro-

duced in 2.3. The removal of the most central edges in thearktieveals the random
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Figure 3.5: (a) Edge Connectivity and (b) robustness measur
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network as the most robust topology, followed by the Kautavoek, the chordal ring,

and the hypercube.

3.3.3 Search and Network Coverage

The following results show the network coverage ratio ofneaicthe topologies pre-
sented in Section 3.1. The coverage is measured for eaclogypwith 1000 nodes.
The results show the average ratio of nodes reached per htbp tepology over all
nodes. The maximum number of steps corresponds to the diamethe network.

This can be expressed as:

coverage; = %Z [i: yj]
N Lj=1

, WhereN is the number of nodes in the netwofks the number of steps and can take
values between and D where D is the diameter of the network, is the number of
neighbors at step from the source node.

The nodes closer to the center of the lattice topology hatetbeoverage than
nodes closer to the sides. Figure 3.6 shows that it takes emrage of30% of the
diameter to reach0% of the nodes in the topology.

The advantage of the lattice is that it maps easily to geducapgrids and fits well
models of local information exchange while retaining a lax@rage degree. However,
the main disadvantage is that nodes at the extremitiesreelguger number of hops to
communicate, which might add significant communicatiorlloa nodes in the center
of the topology when routing through shortest paths.

The tree topology forms a hierarchical structure that hasglesroot and a single
path from every pair of nodes. Therefore the network coweiagreater for nodes
closer to the root than nodes closer to the leaves of the ffée. root node of any
subtree is also responsible for routing between its subtitberefore adding a larger
required bandwidth to higher level nodes. This bandwidsuéswas addressed in a

modified tree structure known &&t Treewhich contains more links at every level
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from the leaf to the root. The regular tree is not a resiliénicsure as the removal of a
single link disconnects the topology, further, if a rooklis disconnected the network

becomes partitioned in half for a balanced tree structure.
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Step as Percent of Diameter

Figure 3.8: Average Reachability per node per step for asltmpology

The torus, 02D mesh with wraparounds it is sometimes referred to, is a mesh
topology in which nodes at the extremities are connectedath @ther. Therefore
the node degree is perfectly uniform and it overcomes theeis$ the mesh topology
regarding corner nodes that require many hops in order toraomcate. The network
coverage in a torus is therefore much faster than in the mesh.

The Hypercube on-cubeas it is also referred to, has one extra edge for each
dimension, further, thén + 1) cube has twice as many nodes asititecube. Higher
dimension hypercubes offer higher degree of resiliench@®tare as many alternate
paths as there are added edges.

The Kautz network is often applied for fault tolerant intemoect topologies of
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parallel machines. The advantages of the Kautz networlkaisitls efficient for em-

bedding a high number of nodes with low diameter and low degre
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Figure 3.11: Average Reachability per node per step for &eSe@e network

The non-regular scale-free or power-law distributed nekwas more nodes that
are little connected than few nodes highly connected. Ireeahchical design in which
some nodes are more important than others, such as the datthis is a naturally
occurring structure. It also emerges in many contexts dtiear computer engineering
such as biological, social, and physics networks.

Besides the fully connected topology, the random netwoskaaery high number
of edges distributed randomly. This makes it very resiliergdge failure and gives the

network a very low diameter.
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Figure 3.12: Average Reachability per node per step for ageai (p=0.5) network

3.3.4 Trust and Security

Figure 3.13 shows a statistical summary of the local traityifor each topology under
study.

It appears that most regular and advanced regular topsldgiee0 transitivity.
This is due to the fact that these regular structures do naooany inter-neighbor
edges. The fully connected network, random, and chordgltapologies are the only
topologies with a positive transitivity. The maximum trangy is for the fully con-
nected network at the cost of the maximum number of edgesh &high transitivity
makes identifying malicious activity easier because angptound can include a max-
imum number of nodes in the network, however the cost of gotintcreases as the
number of participants increases. So in such a case, the-ofadetween number of
participants and voting time can be detrimental to the ogitfiemnctioning of an appli-

cation. The chordal ring being between a ring and a fullyremted network offers
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higher transitivity with yet fewer number of edges making itery attractive candidate

topology to identify malicious or dysfunctional nodes.

3.4 Exploring the Network Topology Design Space

We characterize the topologies with respect to the fourdomehtal propertiesyumber
of edgesresilience transitivity, andaverage path lengthWe argue that aoptimal
topology is one that minimizes the average path length amdbeun of edges while
maximizing the transitivity and resilience. The problenm ¢therefore be stated as an

optimization problem in which the objective is to minimiretaverage path length and
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the number of edges while maximizing resilience and trasitsit

maximize{ ( T *transitivity + p; * resilience + ps * robustness) —

( axaverage.path.length + € x num.edges)}.

With these design choices, it appears that while the fullynexted network has
optimal inter-node distance afhop and presents very high resilience, it is very costly.
The star topology also offefishop to and from every node and has minimal number of
edges, but has very low resilience. The ring topology hasrésilience, low number
of edges, and high diameter. The chordal ring and Kautz n&tappear as regular
topologies of choice, with high resilience, moderate nuntdfeedges, low diameter

and low average inter-node distances.

The optimal topology that satisfies a set of objectives canliained by varying the
parameters, pi, p2, a, €. Figure 3.14 shows the results obtained when enumerating
over all possible combinations of the four controlling @dlies betweef and2. The

bar plot in Figure 3.14 shows the topologies on the horidzais and the number of

times that each topology is selected as optimal out of treg étenumerations.

3.4.1 Interpretation of the Results

Figure 3.14 shows that the majority of the results favor #r&lom andully connected
networks, the results that yield a different topology arevamin Table 3.4.1 through
Table 3.4.1.

These results reveal that:

e The Kautz network appears to be optimal when the trangitand edge connec-

tivity resilience are not factored in the requirements aj@ology.

e The Tree topology is optimal when the average path lengtmantber of edges
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Figure 3.14: Distribution of Optimal Topology as a FunctiminCosts associated to
Transitivity, Resilience, Average Path Length and Numliétdpes.

Tree
TP P2 x]|€
0,0l 0]|1]0
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00020
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Table 3.4: Costs favoring the Tree topology.
are the only coefficients of maximization.

e The Ring is optimal when transitivity and the introduced swa of robustness

are not factored into the optimization.

e The Chordal Ring appears more versatile but is often optwhain resilience is

not assigned too much weight in the optimization

Ring
TP | P2 |X]E
0j1,0(2|0
010|212
01,022

Table 3.5: Costs favoring the Ring Topology
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3.5 Summary

This chapter outlined a study of the structure of networlotogies and presented the
main differences from a distributed application perspegtbetween structured and
unstructured topologies. The lessons learned are thattthetige of the topology
plays a fundamental role with respect to essential aspéassiibuted applications
relating to routing, search, and resilience. Experimesxtaluations using simulations
on a variety of topologies from regular to random, and witimstant link costs of
1 were conducted. The results showed that by ranking the agjes according to
efficiencywith respect to metrics of average path length, robustreess,centrality,
the fully connected network topology is the mesticient succeeded by the chordal
ring, the star, and the tree topologies. Future work willradd arbitrary link weights
distributions to better understand the optimal topologga®n to match a class of

applications.
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Chapter 4

Network Entropy: a Measure of Neighborhood
Homogeneity

4.1 Introduction

The network topology defines the “who-knows-who” relatioipsetween network el-
ements. These relationships can be formulated as a grapbdesrand links. The
representation a network topology as a graph offers the golveathematical tool of

graph theory that can be applied to analyze structural ptiegeof the network. Re-

search on network and graph theory has put forward a set ofasi¢hat have been
used to better understand properties of networks [21, 5]7, TBese metrics can be
divided into either local or global depending on the prooriof the graph used to
compute them. Local metrics are obtained using a neighlookhce., adjacent nodes,
view of a node, while global metrics are computed using kieoge of the entire graph.

A summarized description of selected metrics is presemidé@ble 7.2 in the appendix.

Network entropy measures the expected self-informaticadgdcent nodes properties
interpreted as random variables. It provides a measureedidmogeneity of a node,
and by extension the entire graph, with respect toitfi@mationflowing trough the
paths of the graph [58, 16]. A simple analogy to informatiotrepy is to determine,
for a given node in a graph, the number of yes/no questionsnded to be asked in
order to guess through which of the adjacent nodes the irstiomis most likely to
arrive from. The computation of network entropy dependshendbserved property

of nodes that can be either a local or global metric, for eXardpgree when local or
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shortest path related when global. The implications ofgitaeal and global network

entropy measures are discussed.

This chapter first defines network entropy and goes on to presguantitative analysis
of the metric applied to graphs with static and dynamic nuntbenodes and edges.
Network entropy is linked to local structural propertiesgpphs such as transitivity

and assortativity.

4.2 Background and Related Work

4.2.1 Definition(s) of Entropy

There are several definitions Bhtropyacross scientific disciplines, each describing
a specific property in their own field. For example, in thergrmmics, entropy char-
acterizes the amount of energy of transformation dissipat® the environment; in
statistical mechanics, it is the number of micro-configorat that can explain an ob-
served macro-configuration; or yet, in information theatrys the minimum number
of bits required to encode a signal with known probabilitdccurrence. Clearly
distinct by definition, all these instancesasftropypoint to a similar notion, a measure
of ignoranceabout an observed system, which has also been commonlyeefieras

a measure oflisorder.

Information entropy is a measure of the expected self-médion, that is also known
assurprisal and corresponds to the inverse of the probabjityf occurrence of a
random variable, written a;s The more unlikely an event is to happen, the greater
its surprisal. The self-information can be encoded in hirayr taking the logarithm

in base2 of the surprisal, written aB)g2(IlJ) and is expressed in units bits of infor-
mation Information entropy [59], the expected self-informatiareasures the average

information acquired by observing a sequence of occurseota random variable and
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is written as
H(z) == palog(p:)
wherep is the probability of occurrence of the observed randomeddeiz. This defi-

nition can also be interpreted as a measure of the numlyasafioquestions that need

to be asked to find which event occurred.

The value of Entropy expressed H%z) depends on the number of observed random
variables, this measure can be normalized by dividing ihieyldgarithm of the number

k of observationgogy k, and can be written as

:L’l x
Hnorm(x) = _pr 092(]) )
logsk
. This formula is the one we will use to exprasstwork entropyin the rest of this

chapter.

4.2.2 Network Entropy: An lllustrative Example

To illustrate network entropy, consider a graph4ofiodes and edges, such as the
ones in Figure 4.1(a)4.1(b). In this example, the numbesig@&the nodes are arbitrary
but in practice reflect a measurable property, local or dlafifethe node such as for

example degree, betweenness, or transitivity.

Considering a measure of entropy at notjehe network in Figure 4.1(a) has a homo-
geneous property distribution, while the network in Figdrg(b) has a heterogeneous
distribution. Network entropy measures the homogeneitg abde’s neighborhood
with respect to a given property. The property at each adjavede is interpreted as
the occurrence of a random variable in a sequencedows, wherel is a property of

the considered node.

The normalized entropy of nodé in the network in Figure 4.1(a) is while the one
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in Figure 4.1(b) i90.92. This simple example illustrates how a homogeneous neigh-
borhood is less predictable and has higher entropy, whexeasre heterogeneous

neighborhood is more predictable and has lower entropy.

(a) (b)

Figure 4.1: (a) Simple Network with Homogeneous Arbitrargde Properties. (b)
Simple Network with Heterogeneous Arbitrary Node Progestti

The notion of network entropy has been studied in related ] using measures
related to shortest paths as the observable random varithbleompute the entropy
metric. We briefly introduce the notion of search informatitarget. and road entropy

proposed in related work.

4.2.3 Search Information

A stochastic search in a distributed system can be modeledisidering that a mes-
sagefloodsthe network starting from a source and advancing to eveghtair of that
source node, which then becomes the source of the next rdumebagation, with
the exception that the message does not return to the noaevitere it originated.
This model leads to a formulation &earch Informatiorhat is also described in [16].
Search information considers the probability of a messagedch its destination as

the product of probabilities that the destination is reddheough a shortest patifi, b)
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from a source to the destinatioih, such that

: 1 1
J

" jep(ib)

. The factor—1 in k; — 1 is due to the message not returning to its point of originsThi
formulation of probability of propagation of a message glarshortest path from node

7 to nodeb leads to the information theoretic formulation of tRearch Informatiomas

S(i—>0b) = —lOQQ(Z Pp(i, b))

p(i,b)

Search information shares similarities with the self-infation introduced eatrlier,
of which entropy measures the expected value. Similarljyork entropy can be

interpreted as a measure of the expected value of the sediochation.

4.2.4 Road Entropy

Road Entropy quantifies information when all shortest padhand from every pair
of nodes(, j) in the network are considered and leads to an expressiontwbrie

entropy as

R =— Z bijlogabi
J

The values),;; are related to the betweenness centrality measure [60\wegeiness
centrality provides a global measure of the importance afdenn a network by count-
ing the number of times a node appears in the all pairs shqagiss of the network.

This can be expressed as

Cov) = 7240)

o
sttAvey 5t

, Whereo, ; is the shortest path between nodeand:.
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Once computed for a static network, every node is attribatbeetweenness cen-
trality measure. As a global network measure, any modiboab the network requires
recomputing the betweenness.

Road entropy can then be computed for each node based onateatnodes
betweenness values. The more central a node, the moreilikely carry traffic. The

lower the road entropy is, the more predictable the inforomawill be.

4.2.5 Target Entropy

Target Entropy quantifies the information at every node @rtatwork, when consider-
ing each node as a recipient of messages signaling fromhat abdes in the network.

The expression for this form of entropy is
T, = — Z CijZOQZCij
j

. The difference with road entropy is that only those rougéegling to node are con-
sidered, the entropy is then averaged over all nodes. Wielé entropy measures the
predictability of informatiorthroughnodei, road entropy measures the predictability

aroundnodes.

In [16], the authors show that when optimizing a network taimize target and road
entropy, the network is reorganized such that the prediiiabf information arrival is
maximized. The minimal target entropy network becomesemahle to node attacks,

whereas the minimal road entropy network becomes vulnetal#dge attacks.
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4.3 Network Entropy for Varying Structural Properties

The network topology of emerging networks such as the letdnas been recognized
as evolving in an ad-hoc manner. With the increasing numbeeployed overlay net-
works offering software-level reconfigurations, it is noecbming critical to under-
stand the properties of selected graph metrics in the coatekynamic and evolving

networks in which nodes and links are added, removed, onfggoed.

This section presents a quantitative analysis of netwottopy for varying structural
properties of a network topology evolved according to thadisrRényi random model.
We study the impact that the operations of adding nodesngdatiges, increasing the
degree correlation, and increasing the transitivity, enilaintaining the network de-
gree distribution constant [61], have on network entropy discuss the benefits and
drawbacks of building low and high network entropy topoésgiWe start our analysis
by guantitatively measuring network entropy on a set of kmsagular and random

topologies.

4.3.1 Degree Network Entropy

As opposed to the Road and Target entropy presented in thiepsesection, we intro-
duce the local metric of degree network entropy. The fortmteof entropy remains
identical to its information theoretic expression whil@swmlering the random variables
as occurrences of the degrees of the adjacent neighbors. thidtin the rest of this

chaptemetwork entropyefers todegree network entropy

4.3.2 Network Entropy of Various Topologies

While for regular topologies all nodes share a similar nearhood structure, non-
regular structures and random graphs, exhibit heterogesngegree distribution. Fig-

ure 4.2 shows a statistical summary of network entropy fewes considered network
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topologies. Specifically, nine regular topologidstl, ring, tree, star, 2D lattice, 2D
torus chordal ring Kautz andhypercubeand two randomErdds-Renyiandpower-
law. The random network model has a uniform probabifitfor two edges to be
connected of).2. The power-law network has a degree power-law exponenticds

has been commonly observed in real-world networks [8].

Full Ring Tree Star Lattice Torus Chordal Ring Kautz Hypercube  Power-Law  Random

Figure 4.2: Statistical Summary of Network Entropies foridas Regular and Non-
Regular Topologies

An entropy closer t@ means more predictability and less uncertainty, therefore
as we can see in Figure 4.2, the mostertaintopology is the Erdds-Rényi random

graph, all other topologies have negligible entropy varéean

4.3.3 Varying Structural Properties
Description of the Approach

Changing a graph structure while maintaining its degretidigion constant incurs
a change in the flow of information and a change in the jointreleglistribution that
is reflected by the value of network entropy. For exampleufegt.3 shows two tree
networks ofl 0 nodes an® edges. The network in Figure 4.3(b) is obtained by rewiring

the network in Figure 4.3(a) by swapping two edges such higadégree distribution of
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the graph remains unchanged. The numbers shown inside edeltarrespond to the

network entropy at each node, and the average for the emtiveork is labeled above

the graph.
Degree Entropy= 0.19 Degree Entropy= 0.2
00O o000
® 200 @ © 00
® ® ® ®
® ®

(a) (b)
Figure 4.3: Impact of Single Edge Rewiring on Degree Entropy

We notice that the difference in network entropy for bothpipsis different for a
single edge swapping. This example illustrates the impogaf structural properties
for information flow, and shows that network entropy metaa ®e applied to quantify
the predictability of information flow in the network. A lowetwork entropy implies
more certainty and neighborhood degree heterogeneityadngh network entropy,

less certainty and neighborhood degree homogeneity.

Adding Nodes

We consider a network model, such as the regular or nonaeg¢ppologies outlined
earlier. We analyze the impact of varying the number of naethe average network
entropy for a given network model. Figure 4.4 shows the tedol several topolo-
gies while increasing the number of nodes betws#&nto 5000 by steps 06500. The
results show that while the average network entropy is wdiffefor different network
topologies, it is not correlated to the variation of the nembf nodes for any of the

given network models. This result follows from the definitiof network entropy as
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Figure 4.4: Average Entropy with increasing Number of Noftesa Variety of Net-
work Topologies

derived from the probability distribution of the nodes desgg, which for a given prob-
ability generating function generates a network entrogyriiution function that does

not depend on the number of nodes.

Adding Edges

As was shown in the previous experiment, for a given netwookieh (i.e. identical
degree distribution) the addition of nodes does not impatwark entropy. However,
the addition of edges at random in the network has a signfficapact on network
entropy as can be seen in Figure 4.5. Increasing the numisstgefs is associated to
an increase in network entropy. This result enhances thiiig result on network
entropy of random networks, indicating that to more edges metwork is associated

less predictability in information flow.



73

Average Entropy

_—

T T T
Random Graph Power-Law Watts—Strogatz

Topology

Figure 4.5: Average Entropy with increasing Number of Edigesa Random Graph
Network Topology

Increasing Neighbor Degree Correlation

While the degree distribution is the most widely used stritadtproperty of a network,
in the limits of large number of nodes, the possible reabret of a degree distribu-
tion is exponential and can lead to a wide variety of netwavkh distinct structural
properties. Properties such as the average path lengthetig or transitivity, play
an important role in determining the robustness, routimfppeance, or security of a
network. Another important property that has receivednéitte in biological,social,
and technology networks is the degree correlation betweeeshof the network. A
highly correlated network contains nodes with a degreeithaimilar to its average
neighborhood degree. Uncorrelated nodes degrees appearngles of high degree
connect to node of low degree. Finally, no correlation me¢hatsthere are no apparent

preferences for nodes to connect to either similar or digsimodes degrees.
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Network Entropy
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Figure 4.6: Average Entropy with increasing Network Asatvity for a Random
Topology

The resulting impact of varying degree correlation on nekwentropy is presented
in Figure 4.6. The results reveal that a highly correlatasvaek has a higher network
entropy than a low network correlation. This can be explaibg the fact that high
correlation is an implicit homogenization of the graph tlegtds to less predictability

of the information flow and is reflected by higher network eptr.

Increasing Transitivity

The transitivity measures the number of neighbors of a niealesire themselves neigh-
bors. It is a characteristic network property that can berpreted as a measure of the
number of alternate paths in a neighborhood. Another inééafion of transitivity is
as a measure of how far a set of nodes are from being fully @tedeAs can be seen
in Figure 4.7, increasing transitivity of the network dexges degree network entropy.

This might be caused by local increase in neighborhood eédggterogeneity formed
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Figure 4.7: Average Entropy with increasing Network Tramgy for a Random Topol-
ogy
by the increased transitivity in the network, causing théesxo have more information

to assess the source of incoming signals from its neighbors.

4.3.4 Discussion

The previous results can be summarized by observing thaonleentropy increases

as the homogeneity of the network increases. Choosing dogybased on hown-
formativethe network should be can be addressed using a measure gpebtsed

on the degree or betweenness centrality measured at eveey Batropy can be com-
pared to a vector of information propagation, the more imfative the network is, the
more spread of information potential it acquires. By angldfighe network models an
epidemic, the moreaformativenetworks have greater chances to successfully reveal a

vector of disease than leggormativenetworks.
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4.4 Summary

Network entropy is a useful measure of a network propertiyttha a strong connection
with the information theoretic entropy measure. When gddis an information flow
network, networks present characteristic features thasgmificantly affect the way
in which information propagates to nodes in the network.his thapter, we defined
network entropy and studied its properties over various/oet topologies, from reg-
ular to non-regular. The main observations are that (1) fgivan network evolution
model, the average network entropy does not vary significamider increase in the
number of nodes; (2) for a given network model for which a namdf edges is re-
peatedly added at random, the average entropy increagdsr ¢€Brandom network in
which the transitivity is increased, the average entromyrekeses; and finally (4) for a
random network in which the assortativity is increased,aerage network entropy
decreases. These fundamental results show that theregbktaedlationship between

structural network properties and the single network gmtroetric.
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Chapter 5

Network Clustering

5.1 Introduction

The rapid proliferation of content produced by network &ggilons is urging the de-
velopment of new approaches to address the problem of grgupformation into
categories. The two main issues in addressing this probieaivie defining the label
of each category and the definition of algorithms to perfdrendctual cluster detection.
The first issue relies on the derivation of standard taxoesrand meta-descriptions,
while the second one addresses the underlying mechanishagorithms for cluster-

ing detection.

Using graph theory, a content network can be representedyesph in which nodes
represent the type of content and edges represent relaijisisetween content types.
A clustering detection algorithm operates on this graphesgntation to identify densely
connected groups of interrelated nodes. As an examplerd-tgt shows a graph rep-
resentation of an author network collected from the citegEgeonline computer sci-
ence bibliography database. Each node of the graph repseseauthor and each link
represents a coauthorship on a publication. The nodes afdhethor network are
grouped into clusters that are distinctly colored.

Generally speaking, a cluster is defined arbitrarily as aoéelements that are
more tightly interrelated than expected. This definitiadeto the commonly observed
graph theoretic definition of a cluster as a set of nodes gt more edges in common

than on average. To illustrate the notion of cluster, carsfdr example the graph



78

Figure 5.1: A subgraph view of the community structure ofdléhors based on data
from Citeseer [1].
in Figure 5.2(a), the graph consistsofully connected subgraphs 8fnodes, each
interconnected by one edge. Using a force-directed visyaludt [2] of the graph, the
4 communities corresponding to the fully connected graphseeaily be identified by
visual inspection of the graph, see Figure 5.2(b).

There are two main approaches to clustering, a top-down aookttam-up ap-

proach:

e Top-down approaches are applied to structured envirorsrserh that the pro-
duced data is deterministicalpfacedinto a predetermined cluster. Examples of
this approach are distributed hash tables [62] that use af ggbperties of the

data to map keys to value pairs.

e Bottom-up approaches are applied to unstructured envieotsrand opportunis-
tically detect clusters by grouping nodes by affiliation lasyt get discovered.
Further, there are two cases in the bottom-up approach,nonkich the graph
is globally known a priori, and the other when the graph iy qdrtially known

through local information only.

In this chapter, we address bottom-up approaches to dlgetection and survey
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a number of algorithms that address the clustering deteptioblem when the graph is
considered static and globally known. The algorithms preskareedge betweenness

greedy strategyspectral partitioningandrandom walker

Applications of identifying clusters in unstructured P2Reday network applications
are addressed. In particular, the application of clustegaii®n as a mechanism to cre-
ate acompressed representatioha graph that can be exchanged amongst nodes in the
network to improve information discovery is presented.affynp we propose, evaluate,
and compare an algorithm to detect clusters that is baseamialgnformation. The
approach uses the network entropy 4 of nodes and is condlgpgunailar to the edge
betweenness clustering detection algorithm. Networkogytcluster detection differs
from all other approaches by relying exclusively on locérmation. The algorithm
runs inO(Nk) whereN is the number of nodes in the graph ands the maximum
node degree. The results show that the local approach basedtwork entropy is
fast and performs well compared to the global solution onwamleled, random and
power-law degree distributed, and two real-world netwpitke Canadian Autonomous

System and the Gnutella networks.

5.2 Goodness of Clustering and Overlay Networks

The clustering detection problem consists of identifyimg minimum number of edges
that divide the network into distinct clusters. Real netwgodo not resemble the mod-
ular networks such as the one shown in Figure 5.2(a). Thexefloe goodness of the
partition of a network into clusters is an arbitrary measheg is often hard to quantify.

This quantification has been addressed using the modultaetsic [63] as a statistical

IMany approaches to clustering described in this sectiodeniged from the literature in statistical
physics that refers to this type of clustering as communit will refer to clustering as community

when necessary to maintain the terminology consistenttivégtway it is published in the literature.
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measure of the quality of a graph division. Modularity hasrbeidely accepted by
researchers as a measure of the goodness of a network diingsoclusters, a higher

modularity reflecting a better partitioning.

5.2.1 Modularity

Modularity [63] measures the quality of a graph divisiominbmmunities. Modularity
is a statistical measure of the expectation for an edge tagide a community rather
than between communities. The idea underlying modulasityhat if an edge inside
a community is removed it contributes little to the modulawhereas when an inter-
community edge is removed it contributes much. ¢;gbe the fraction of edges in the
network that connect vertices in groufo those in groug, and leta; = Zj e;; be the

degree of vertex. Then the modularity) is expressed as

Q= Z(eu‘ —a;)

. It is a measure of the fraction of edges that fall within commfties minus the ex-
pected value of the same quantity if edges fall at randomowitinegard to the com-
munity structure. Modularity is computed using a mappinghofles to community
memberships. A membership assignment that results in higbdularity reflects a

better division of the network into communities.

5.2.2 Clustering and Peer-to-Peer Overlay Networks

In a physical topology, the edges represent the connecheitween nodes physically
connected by a link, in contrast, in an overlay network togglthe relationships be-
tween nodes can reflect arbitrary properties of the nodediaksl such as content,
location, affinities etc... For example in Figure 5.2(ag fhlly connected subgraphs
might representt physically interconnected local area networks in a wide aret-

work, while as an overlay topology it might represent theugiog of data generated

by a sensor network that has been taggetidistinct, yet interrelated, categories.
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Figure 5.2: (a) A Modular Graph df, 8-node fully connected subgraphs. (b) Commu-
nities of the graph of the network shown in (a).

The virtualization of overlay networks makes clusterintgedgon a useful applica-
tion to aggregate relationships into clusters in a dynaltyiead adaptive manner [62].
Using cluster detection mechanisms, the overlay netwocktnes an ad-hoc search-

able relational database.

5.3 Survey of Algorithms for Cluster Detection

This section addresses cluster detection for static anblajoknown graphs. We
present a brief survey of algorithms that have been proptsédtect clusters in such
graphs. Most work in this area has been done as part of irgeiptinary studies in sta-
tistical physics, social science, and computer science. alfgporithms that we present
are based on distinct strategies that work more or less wpkding on the size and
sparsity of the graphs considered.

The algorithms presented are basededge betweennesgeedy strategiespec-
tral partitioning, andrandom walker All these algorithms aim to achieve the same
objective, that of identifying in as few steps and minimainputational cost as possi-

ble the edges separating the graph clusters
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5.3.1 Edge Betweenness Community Detection

The betweenness centrality measure was proposed by Markeyb] as the number
of shortest paths that go through a vertex (vertex betwessoe edge (edge between-
ness) of a graph. It is intuitive to understand that the nasieled vertex or edge is

more central than a rarely traversed vertex or edge.

The approach to detect communities based on this metridsteria consecutively
removing the edge with highest betweenness centrality. pfbeess is then repeated
for each new graph that results from the edge removal, arelienmed as many times
as the number of desired communities to detect is reachedtiball edges have been
removed. This is a very reliable approach that yields atceurammunity detection,
but has the down side of being very costly. Every betweeno@sgputation requires
an all pairs shortest paths computation that requixgs’) operations, this can be done
in worst caseD(n times, yielding anO(n*) computation cost, therefore making the

approach intractable for very large graphs.

5.3.2 Greedy Strategy

The greedy strategy relies on the concepMufdularity proposed in [63]. This ap-
proached is based on the idea that starting from a graph/Witlodes andV commu-
nities, each node attempts to form a community with any ofritaeighbor nodes, a
successful merge between two nodes is the one that maxithieeslue of the mod-
ularity. Therefore at each step of the algorithm the costaimpute the modularity

is O(n) which is performed)(n) times, leading a total cost for the greedy approach
of O(n?). The greedy strategy is fast compared to other approactttwarks well

in most cases but is not as reliable and accurate as the etigedomess community

detection.
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5.3.3 Spectral Partitioning

A matrix representation of a graph is one in which the retetiops between vertices
are expressed in matrix form as entries; between vertices and j representing a
particular characteristic of their relationship. For exden in an adjacency matrix
representationg;; is 1 if an edge between the vertices exists @notherwise. In a
Laplacian representation, entryhas the degree of nodeand entries;; where: # j

is —1 if there is an edge betweérand; and0 otherwise. The modularity introduced
in the previous section, can be represented as a matrix whesa;; — p;, wherep;;

is the probability that there is an edge between vertiee®lj, anda;; corresponds to

the entry of the adjacency matrix.

Using the matrix representation of a graph, spectral ajghexare concerned with the
decomposition of the matrix into eigenvalue and eigenvdoron. A common practice
in graph partitioning is to minimize theut sizebetween two groups of vertices. The
cut size can be expressed as

1

i,jindif ferentgroups
and further reduces to
1
R=-s"L
48 S
where L is the Laplacian matrix, that can finally be written as

R = Za?)\i

where); is the eigenvalue of vertexanda; = v} s is an expression of the eigenvector
v; of L. Therefore minimizing R involves finding the valuesqfthat place as much

weight as possible on the smallest eigenvalud$§4].

Similarly, using the modularity matrix representation

Q= % > Ay — Plo(g:,95)

ij
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whered(r, s) = 1if r = s and0 otherwise, andn is the number of edges in the graph.
This can be reduced to the form

1
Q = %STBS

, WwhereB;; = A;; — P, is the modularity matrix. Using the eigenvalue represeatat

B can be expressed as

B = ﬁZa?ﬁi

and would need to be optimized rather than minimized as irptheious case of the
cut size.

Once partitioned into two distinct subgroups, the processpeated until no further
contributions to the modularity is noticeable. The costumiiting this algorithm lies on
the cost of identifying the eigenvectors of the matrix regrgation, which has a worst
case cost of)(n?) when using a non-optimized Lanczos method on a given métuix,
can be reduced t@(n?) for sparse graphs using optimized algorithms. Therefaoge th

total cost of the spectral approach is on the orded pf?).

5.3.4 Random Walker

Random walkers are conceptual agents that traverse a gyagtbdhastically selecting
their next hop. The intuition underlying the approach basethndom walkerss that
by walking over the graph’s paths, a walker given enough tivileeventually spend
more time within a community than outside of it. This processexplained in detalil
and formalized in [65]. A set of random walkers are initializon a graph and decide
which path to take at random for a given number of steps, thgtteof the random
walk. After all walkers have completed their round, the aipon counts for each pair
of nodes, i.e. edge, the number of walkers that traversegitiea edge. If the number
of walkers that traversed the edge is much greater than tidewof walkers that tra-
versed the endpoints on their way to other destinations, ttie edge is more likely to

be an inside community edge rather than an in-between conmyradyge, therefore the
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two nodes are merged into a single community.

The random walker is therefore a statistically based vianain the edge betweenness
community detection algorithm for which every possiblersést paths is calculated.
The cost of the random walker algorithm depends on the leofgthe walk but is in

the worst case of the order 6f(mn?) wherem is the length of the walk.

5.4 An Approach to Cluster Detection based on Network Entroy

We propose an approach to cluster detection that uses lofcaimiation aggregated
asnetwork entropyo assess a global measureimportanceof a link. The intuition
underlying the network entropy approach is that the two eirdp of an often trav-
eled link, i.e., high betweenness link, might have more ttaggty regarding which
node information might be coming from than the nodes thaheonto the endpoints.
These neighboring nodes might indeed have low entropy gsatteemorecertainthat

information would be traversing the high entropy endpoint.

Algorithm 2 Cluster Detection Using Network Entropy
Require: Graph: G(E,V); Edges: E; Nodes: (i V'
while truedo
forall E(i,5) € Gdo
N¢i <= DegreeEntropy(G,1)
Ng¢ ; <= DegreeEntropy(G, j)
end for
forall E(i,7) € Gdo
Nij = Ng,;+ Ng,;
end for
edge.to.remove=which.maX{ ;)
edges— append(edges,edge.to.remove)
G =delete.edgéf,edge.to.remove)
if number.of.edges(G)==ben
return edges
end if
end while

The algorithm for cluster detection using network entrogiy@mputes the degree
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entropy at every node, an(/Nk) operation, wheréV is the number of nodes ardhe
degrees of the nodes. Then for each edge, the network ertfdpg two endpoints
are added and sorted in decreasing order, such that theshigtteopy reflects the edge
for which endpoints reflect the most uncertainty. This edgthén considered to be
a dividing edge and is removed from the network. In a processas to the edge
betweenness approach, this operation is repeated unéitigis have been removed.
The clusters are then merged starting from the last remailgel &l the way to the first

dividing edge.
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Figure 5.3: (a) Edge Betweenness Community Formation Ti®eNetwork Entropy
Cluster Formation Tree.

A result for the network in Figure 5.2(a) is presented in Fagub.3(a) and 5.3(b)
as a dendrogram plot. This plot shows the successive netwergges that the algo-
rithm identified and for which each merge is a step in the msgof the algorithm.
The Figures show that the clusters identified by the edged®iness based algorithm
and network entropy based algorithm are exactly similarsuRe on various degree

distributed graphs will be presented in Section 5.6.
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5.5 Evaluation

We consider a set of four network topologies, two network eteda random graph
evolved using the Erdds-Rényi process, and a power-layegedistributed network
evolved using the Barabasi-Albert process, and two realdwnetworks, one of the
Canadian Autonomous System and the other from the Gnutediat®-Peer network.
We evaluate the community detection algorithms on eachar&tand report the results
in Figure 5.4 in which the networks are respectively lab&l&{5, BAG, Canada, and

Gnutella.
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Figure 5.4: Comparison of various approaches to clustecten.

The performance of the partitioning is measured using thdutaoity metric in-
troduced in [63]. All four cluster detection algorithmesige betweenneswalktrap,
fast greedy andentropic show comparable results. The surprising result is that the
entropic community is the only one to consider local infotiora alone, and shows

comparable results to global strategies. Figure 5.5 shodesndrogram plot of the
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clustering process applied to power-law degree distribstale-free network with25
nodes, and illustrates the differences between each dhgt@gorithm. The figures
show how nodes are identified as belonging to a cluster, faclwda horizontal cut in

the dendrogram corresponds to the number of clusters ata gtep of the algorithm.
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Figure 5.5: Dendrogram representations of various clumjeletection algorithms. (a)
Greedy Clustering. (b) Edge Betweenness Clustering. (dktvep clustering. (d)
Network Entropy Clustering.

5.6 Applications

Cluster detection is a powerful mechanism to identify parts in a large network
graph. The applications of such a mechanism are many andmgrass techniques
of graph partitioning for distributing load and computation parallel and distributed

compute resources, compressing a large graph into a reflacedi.e. snapshot, that



89

can be easily shared amongst nodes in the network, assistialization of large data
sets by providing a hierarchical field of view from macro tocroi modes, or even

identifying clusters of interest in social network apptioas.

5.6.1 Graph Partitioning for Parallel and Distributed Computing

A partition of a graph is one that divides the nodes into dettsets or groups. The
applications of graph partitioning to parallel and disitdd computing has been con-
cerned with the identification of the minimal cuts that sepathe graph into equally
distributed sets, be it computational resources or contiputa loads. The identifica-
tion of clusters is not so much concerned with partitioning ¢raph into a balanced
partition of the graph, rather than identify through cluistg the areas that share most
affinities. This approach can therefore show that a largégyoof a computation is
spent on a very small fraction of the resources and can assigvising a solution
to balance the workload across the available resourcestifidd clusters therefore
act as a snapshot of the entire graph and are necessary wristypfher strategies or

approaches to deal with the application’s objective.

5.6.2 Graph Compression

Detecting clusters is a way to compress large graphs by ngedgnsely connected
subgraphs under the label of a single cluster. For a spaapé grith many such densely
connected subgraphs, the overall graph can be significeediyced into a graph of
clusters and be of great help to assist in visualizing veryelayraphs, such as in the
order of thousands of nodes. To illustrate this point, adersfor example a small to
medium 200 node power-law degree distributed network asepted in Figure 5.6(a).
Using a greedy strategy, the 15 clusters are detected arghaven in Figure 5.6(b).

While the original graph consists of 200 nodes and 199 edbges;ompressed graph

comprises 15 nodes and 14 edges, a compression ratibiot!
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Figure 5.6: (a) 200 Node Power-Law Network. (b) 15 Node casped power-law
network

As the compression ratio is dependent on the number of ctudetected, we are

interested in arranging a topology of given degree distigousuch that the number of

clusters is either minimized or maximized.

5.6.3 Clustering of Various Network Topology Models

Following the observation that clustering can be used asrgoessed representation
of alarge graphs, itis relevant to answer the questidrat is the distribution of cluster
sizes of various topologies?

To this end, we present three cluster distributions frontrwneald networks,Uni-
form, Poisson andZeta Note that while it is obvious that the ultimate compression
rate of a graph i200% corresponding to reducing a graph to a single node, thistis no
of any practical value.

Uniform distribution : A probability distribution is uniformly distributed wheatl
events out ofc events have exactly the same probability of occurretlceﬁ\pplied
to a degree distribution, the uniform distribution impligst all degrees are equal
and therefore yields a regular structure suchigs, tori, or hypercubes Given the

regular pattern of such a distribution, the identificatiow dabeling of a clustering
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depends on the granularity at which the clustering is désifehe compressed view
of a uniformly distributed network is an identical struewat a lower dimension and
therefore corresponds to a constant and preset compreagion

Poisson distribution: describes the number of unlikely events that happen wihin
certain time. This distribution is characterized by an exguial distribution centered

)\)\k

around an average number of occurrentesid is expressed &gk, \) = <3, where

k is the number of events observed. The Poisson distributdurally emerges in a
network where the probability of connection between any two vertices is the same
for every pair of nodes (although this is more accuratelyesgnted by a Bernoulli
distribution, which for large number of occurrences leaws tPoisson distribution).
This strategy leads to a total number of edg&€s? where the dividing factor of

2 is for the case of an undirected graph in which every edgeusited twice. Fig-
ures 5.7(a) 5.7(b) shows respectively a sample Poissonbdigtd random graph of
200 nodes and the associated distribution of clusters dete€tezlcompression rate in

this case i99%.
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Figure 5.7: (a) A sample Poisson degree distributed netw)kCorresponding clus-
ters detected using network entropy based clustering til@tesdgorithm

Zeta distribution : obeys a power-law in which the rank of an observed occuaenc

kis L

==» With o the exponent of the distribution. This distribution hasrbebserved
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across a variety of systems such as the distribution of Wwaalé country, actor net-
works, and web graphs. Tiseale-freenetwork that evolves through a model of prefer-
ential attachment as proposed by Barabasi and Albert @gtsbch power-law degree
distribution and is widely recognized model of evolvingwetk with such character-
istic. Figures 5.8(a) 5.8(b) show respectively a samplegudaw distributed graph of
200 nodes and the associated distribution of clusters deteTtezlcompression rate in

this case i93.5%.
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Figure 5.8: (a) A sample power-law degree distributed ngtwgb) Corresponding
clusters detected using network entropy based clustegtertion algorithm.

5.7 Summary

Cluster detection on dynamic graphs is becoming incresingportant as data gener-
ating networks seek to find clustering solutions using ttiigted algorithms rather than
the aggregation of global information at a single node. Sapgiroaches are critical in
sensor network applications in which the sensor data shoeildggregated at a data
layer to provide the scientists and engineers with a refatidata querying mechanism

to assist in the data mining process.
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This chapter motivated the problem of cluster detectiomige networks.A novel ap-
proach based on a local metric of network entropy is pregesme shown to perform
comparatively well to global methods on a variety of grapApplications of cluster
detection on static and globally known graphs is an extrgmaluable tool that can
be used for visualizing large datasets as compressed gré&jpinther, the identifica-
tion of clusters and the distribution of cluster size pr@&@ more robust and practical
result than the more common graph partitioning technigbeas dre concerned with

identifying the bisecting edge or bisection bandwidth.
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Chapter 6

Evolving Topologies with Arbitrary Structural
Properties

6.1 Introduction

An increasing number of unresolved problems in the scieacebeing formulated as
complex networks [5, 17]. From protein folding in biologygopulation migrations in
social science, modeling dynamic adaptive processes tam loé reduced to the iden-
tification of structural properties, i.e., topology, of agh representation of the actors
at play. Large-scale computer networks, such as the Iriteave recently been recog-
nized as complex networks. The network topology of such gmgmetworks is the
result of locally adaptive processes that have an impacpptication-level function-
alities. These local processes may be triggered by admatiist policy or engineering
requirements and consist of nodes and links being addedvesinor reconfigured dy-
namically. At the application-level, the topology playsetermining role with respect

to routing, search, robustness, and clustering.

Understanding the effect of these local adaptations on libteagstructure of the net-
work is an increasingly important problem, partly due to &xponential growth of
networks and partly to the software-level configuratioresdtl by overlay network
topologies. For example, consider the growth of the Intésreutonomous Systems.
Each Autonomous System can define unique routing or bels\poticies (i.e., con-
tent publication, censorship) that are propagated to diladsnomous Systems. The

recent increase in the addressing number of the Autonomyzisr8 from 16 bits to 32
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bits suggests that more policies are likely to be deploydatemear future and there-
fore call for an urgent need to first, understand the streotfithe networks formed,

and second to control the dynamics of such potential rapd/tr. In the absence of
control, such networks could be subject to increased vabikty as well as to planned
or unplanned attacks possibly leading to a level of disapthat the modern com-
puterized world’s economy could significantly suffer frofi2]. As another example,
Peer-to-Peer data sharing applications are overlay nktwpologies that have gained
wide popular appeal in the past decade, and established#hess as efficient modal-
ities for large volume data transfer [66]. The rapid and tamsgrowth in publication

of content over the Internet requires overlay networks tanfapplication-level con-

nections that speed search and transfer time.

This chapter considers six network reconfiguration stiatethat are based on local
metrics of the graph representation of the network. Thedegji@s consist of recon-
figuring the network towards maximizing and minimiziagsortativity transitivity,
andentropy An analysis of the impact of these optimizing strategiethwespect to
application-level properties @verage path lengttsearch robustnessandclustering

is presented.

Experimental evaluations of the application of these ojziimg reconfiguration strate-
gies are conducted on two topology models, one with Poissdntlze other with a
power-law degree distribution, and two real-world netvgp&nutella Peer-to-Peer net-

work and the Canadian Autonomous System.

6.2 Network Graph Models

We consider two network models(g,, Erdos-Rényi model and a scale-free network

model of Barabasi-Albert.
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Figure 6.1: (a) Erdds-Rényi random graph model= 0.2; 125 Nodes; 1564 Edggs
(b) Barabasi-Albert scale-free netwofk = 1; 125 Nodes; 248 EdgésThe color bar
besides each network corresponds to the range of the degirepyefor every node
in the network. (c) Degree Distribution corresponding todam graph. (d) Degree
Distribution corresponding to scale-free network.

The network models are used to evolve two network topologiesandom net-
work shown in 6.1(a) and a scale-free network shown in Figuté). The generating
principle that drives the evolution of the random networilgs the expected Poisson
degree distribution as shown in Figure 6.1(c). The BariahBert network evolved in
discrete time steps using a preference functiom ef 1 that translates into a power-law

exponent in the degree distribution of the resulting nekywas shown in Figure 6.1(d).

6.3 Random Link Addition

The small-world network model proposed by Watts and StofEt] formalizes the

idea that adding random links in a network yields networkihwhorter average path
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length and increased transitivity. We experimentallyateron these theoretical results

for the two considered topologies.

6.3.1 Random Network

The results of the random link addition for ti&125, 0.2) Erdds-Rényi random net-

work are shown in Figures 6.2(a) and 6.2(b).

Transitivity

022 023 024 025

Average Path Length

1
0.21
1

1.75 176 177 178 1.79 1.80

T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Timestep Timestep
(a) (b)
Figure 6.2: (a) Effect of Random Link Addition on Average Paength and (b) on
Transitivity for G125 0.2
Further, we show that adding links increases the robustfes® network by in-
creasing the edge connectivity as well as decreasing thagadetweenness for the

considered network models, as can be seen in Figures 618{af 8(b).

6.3.2 Power-Law Network

The results of the random link addition for the Barabadyekt preferential attachment
networks are shown in Figures 6.4(a) and 6.4(b).

As can be seen in Figures 6.5(a) and 6.5(b), similar to thel®ametwork model,
adding links increases the robustness of the network bg&sing the edge connectiv-

ity as well as decreasing the average betweenness.
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Figure 6.3: (a) Effect of Random Link Addition on Average Betnness Centrality
and (b) Edge ConneCtiVity f0ﬁ12570,2.
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Figure 6.4: (a) Effect of Randomly Adding Links on AveragdtPaength and (b) on
Transitivity for scale-free network.
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Figure 6.5: (a) Effect of Random Link Addition on Average Betnness Centrality
and (b) Edge Connectivity for scale-free network.

6.3.3 Local Metrics

The graph theory literature has formulated metrics aimebs¢ssing a wide range of
properties of graphs. These metrics can be directly appdietetworks represented
as graphs, and can be broadly categorized into either locdbbal depending on the
proportion of the network required to be computed. The otrigtty structural prop-
erty of a node in a graph is its degree, which correspondsetatimber of neighbors
that a node has. We identify canonical local metrics derfv@th node degree that take
into consideration the structure of a node’s neighborhdodarticular, we consider

transitivity, assortativity andentropy

Transitivity : measures the number of neighbors of a node that are thessssdgh-
bors. It can be measured as the fraction of triangles in tlghberhood of a node with
respect to the total possible number of triangles that cbaltbrmed. In other words,

transitivity measures how far from fully connected a nodegghborhood is.

1This formulation of transitivity is the one used in sociakwerk analysis. Another measure of

transitivity is described and compared in [5].
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Assortativity: measures the homogeneity between a node’s degree andgitdoe
hood’s degree. Positively correlated nodes have similgregs and are said to be
assortative, while anti-correlated nodes degrees hasérdiar degrees and are said to

be disassortative.

Degree Entropy. measures the homogeneity of the degree of a node’s neilgbdadr
Similarly to transitivity but unlike assortativity, en{pg does not consider the degree of
the node at which it is computed as part of its formulationow entropy is associated
to a heterogeneous neighborhood degree. The more homageaeode’s neighbors

degree, the higher the entropy.

These three metrics are considered because they refledrpespof the network that

respectively relate to robustness, homogeneity, andrirdtion.

6.3.4 Evolving Networks with Arbitrary Structural Propert ies

The effect of randomized link additions presented in thevipres section showed a
significant impact on global properties of the network medmnsidered. We now
turn our interest to modifications of the network that mamtae degree distribution
constant, i.e., each node has a fixed number of neighborstadythe impact of these

modifications at the application-level.

The properties of assortativity, transitivity, and engrdpr the networks considered
are shown in Table 6.1.

Transitivity, Assortativity, and Entropy reflect canorlit@cal properties of a net-
work topology that, along with degree distribution, pravia@signatureof a network.
Finding a lower and upper bound on these metrics for an arlitretwork while main-

taining the network connected is an NP-complete problemortler to empirically
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Graph Transitivity | Entropy | Assortativity
Erdds-Rényi 0.2023626 | 0.6613184 -0.01692184
Barabasi-Albert 0.0483871 | 0.1580675 0.1728174

Table 6.1: Properties of the two considered graphs, ERE®¢i random graph and
Barabasi-Albert scale-free network.
determine these bounds we use a simulated annealing oatianizon the considered

networks.

Simulated Annealing

The networks are modified using a simulated annealing andodelis-Hastings algo-
rithm. This method, shown in Figure 6.6, consists of sebgctivo edges at random,
such as(A, B) and (C, D), in the network and exchanging them resulting in edges
(A, D) and(B, C) such that the degree distribution of the graph is maintaifiae se-
lected edges are only considered if they are strictly inddpet, i.e., the potential target
node is not in the source node’s neighborhood. The strugitwaerties of interest are
then measured on the resulting candidate network and iptsetd, (1) the network
remains connected and (2) it has an improved (accordingetdekired property) mea-
sure. We use an annealing optimization process such thaididede non-optimizing
move is also accepted with probability”® in which z is the annealing schedule and

(4 a multiplicative tolerance coefficient.

1 if move is optimizing
P(accept) =
e~P*  if move is not optimizing

6.4 Univariate Network Optimizations

In the following set of experiments, each property is optii independently using a
univariate simulated annealing optimization. The resatts presented in Tables 6.2

and 6.3. The results are reported in tables that list treeditthe graph in the first row



102

/)= X

Figure 6.6: Rewiring operation maintains degree distrdmutonstant.

and first column, the name of the metric measured on the nktiwaeported in the
column title, the name of the strategy used to optimize theork is reported in the
first column of every row. The name of the networks for the camdand scale-free
networks are respectively reported as ERG and BAG. Theegiiest that maximize the
local metrics are those that maximize Transitivity, Asativity, and Entropy, labeled
respectivelyMaxTr, MaxAs, MaxNtrpand those that minimize the local metrics are

respectively labelechinTr, minAs, minNtrp

6.4.1 G(1950.2) Erdds-Renyi Random Graph

Table 6.2 presents the results of the optimizations for tmsiclered Erdds-Rényi ran-
dom graph. These results set optimal bounds on the netwesksting from the op-
timizations. The assortativity measure seems to be efflgieptimized, in the range
of [—82.94%, +-81.54%], while other metrics reflect more modest optimizations. No-
tably, the degree network entropy has a very small window piintization, from
[—0.04%, 0.24%)], that is due to the fact that degree network entropy is irsaé@nly
when a node connects to a homogeneous neighborhood, whatle#sly the case for

the initial G,, ,,) random graph, and leaves lesser opportunity for optinunati



Graph Transitivity Entropy Assortativity
ERG 0.2[0 %] 0.66 [ 0 %] -0.02 [ 0 %]
MaxTr 0.53[32.5%] | 0.66[0.03%]| 0.13[14.96 %]
MaxAs 0.43[22.91%]| 0.66[0.22%] | 0.8[81.54 %]
MaxNtrp | 0.08[-11.81 %]| 0.66[0.24 %] | -0.85[ -83.38 %)]
minTr 0.04[-16.07 %] | 0.66[0.01 %] | -0.13[-11.75 %)]
minAs 0.09[-11.67 %]| 0.66[0.23 %] | -0.85[ -82.94 %)]
minNtrp | 0.29[8.98 %] | 0.66[-0.04 %] | 0.02[ 3.98 %]

Table 6.2: Univariate Optimization of Assortativity, Tstivity, and Entropy of a Ran-
dom graph.

6.4.2 Baralasi-Albert Graph

The results for the power-law degree distribution of thdeséi@e networks of Barabasi
and Albert shown in Table 6.3 reveals optimizations of tlwalonetrics that are signif-
icantly different than the Poisson degree distributiorhef previously considered ran-
dom graph. Transitivity is unchanged because the modefrgtsean acyclic network.
Degree network entropy is optimized betweern.57%, 2.67%] and assortativity be-
tween[—54.47%, 52.67%]. Compared to the previously described random graph, the
fact that few nodes of the scale-free network have high é¢egrel many low degree
widens the window of optimizations, the maximum assoriiytig therefore decreased,

but the degree network entropy optimizations wider, duedcendegreeliversityin the

network.

Graph Transitivity Entropy Assortativity
BAG 00 %] 0.03[ 0 %] 0.03[ 0 %]
MaxTr 0[0 %] 0.04[0.31 %] 0[-2.88 %]
MaxAs 00 %] 0.03[-0.8%] | 0.56[52.67 %]
MaxNtrp | 0[0 %] 0.06[2.67 %] | -0.37[-40.31 %)]
minTr 0[0 %] 0.04[0.22%] | -0.01[-3.99 %)]
minAs 0[0 %] 0.06 [ 2.55 %] | -0.51 [ -54.47 %]
minNtrp 0[0%] |0.02[-1.57%]| 0.11[8.33 %]

Table 6.3: Univariate Optimization of Assortativity, Tsativity, and Entropy of a
scale-free graph.
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6.5 Effect of Local Perturbations on Application-Level Properties

Unlike local node properties, global properties of a nelw@quire computation on
the entire network to quantify the property at each node. Adtevorks obtained by
optimizing on local properties have distinct local and gllbbharacteristics from the
original networks. The global metrics of choice in our studiate to fundamental
characteristics of any network application, measures tf fgngths, robustness, and

clustering.

The application-level metrics considered are:

e Average Path Length measures how long a path is on average between all pairs

of nodes in the network.

e Search Information: considers the probability of a message reaching its desti-
nation as the product of probabilities that the destinaisareached through all

degenerate shortest pat(s, b) from a source to the destination, such that

. The factor—1in k; — 1 is due to the message not returning to its point of origin.
This formulation of probability of propagation of a messatpng a shortest path
from node; to nodeb leads to an information theoretic formulation of thearch

Informationas

S(i— > b) = —logs( > _ Pp(i,b))

p(i,b)

. In other words, the search information measures the nuailyes/no questions
that need to be asked in order to find an object. A higher theels@aformation
means that it is more difficult to find objects in the network.tlhe application-
level, search information provides a measure, in numberitsf bf a relative

size of cache or data storage that would be necessary at evdeyin order to
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reach other nodes in the network along the shortest patlteinibe associated
to the memory requirement to store routing tables to redamoales for a given

network topology.

e Robustness measures the number of edges that need to be removed intorder
disrupt the network. While the edge connectivity obtaingdapplying a mini-
mum cut algorithm on the network gives an indication of th@imum number
that disrupt a network, it does not reflect the importancenefadge that is re-
moved. To circumvent this issue, we introduce a measurebefstoess that in-
crementally removes the edge of highest betweenness lignirdil the network
is disconnected. This measure of robustness can be unaged@answering the
guestiorhow many of the most important edges need to be removed tptike
network? The algorithm corresponding to this robustness formaitais shown

in Algorithm 1.

e Clustering: a network cluster is a densely connected group of nodesifiiiod
the structure of a network affects the number and the siztustars that can be
identified. Clustering was presented in depth in Chaptemn3hik section, the
number of clusters found is computed using the edge betvessrcommunity

detection presented in [63].

We now analyze the relationships between optimizing thalloetrics of transitivity,
assortativity, and degree network entropy on average patjth, search, robustness,

and clustering.

6.5.1 G(i250.2) Random Graph

Table 6.4 shows the set of optimized graphs corresponditiggtBandom graph model,
and their impact on application-level properties. The Itesshow that all optimiza-

tions increase application-level properties as compareléd original, non-optimized
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network. The most significant impact on average path lengthes from maximiz-
ing assortativity, followed by maximizing degree networkrepy, both modifications
have the effect of increasing the homogeneity of a netwoidhitmrhood, which in the
case of a random network accentuates the similarities arus t® cluster nodes and
yield longer average path lengths. This interpretatiolistrated in Figure 6.7(a),
that plots the shortest paths distribution for the origimatiwork and the one with op-
timized assortativity in Figure 6.7(b). The figures showt ti@ shortest paths distri-
bution stretches and flattens, with less nodes having shtrtlengths and many more
having longer path lengths. The largest increase in seafclmation is also obtained
by maximizing the assortativity, and can be attributed ftitt that there is lesde-
gree diversityin the network. The robustness is most increased when tlogetatbgity

is minimized. This can be explained by the fact that as nodesect to unlike degree
nodes, the number of edges with higher betweenness insyeaskit takes to remove

more such edges to disrupt the network.
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Figure 6.7: (a) Shortest Paths Distribution 8,5 ¢ and (b) for the same network
with maximized assortativity.

The effect of optimization on the network clustering is aégd in Figure 6.8. The

original random graph (leftmost bar in Figure 6.8) showsdéhdistinct homogeneous



Graph Average Path Length Search Robustness
ERG 1.8[0 %] 5.65[ 0 %] 572 [0 %)]
MaxTr 2.01[11.71 %)] 6.49[14.91 %]| 539 [ -5.77 %]
MaxAs 2.26 [ 25.47 %)] 7.16[26.82 %]| 650 [ 13.64 %)]
MaxNtrp 2.08[ 15.36 %] 5.51[-2.42%]| 613[7.17 %]
minTr 1.81[0.57 %] 5.5[-2.57 %] | 870[52.1 %]
minAs 2.03[12.6 %] 5.42[-4%)] | 735[28.5%)]
minNtrp 1.97[9.14 %)] 6.22[10.1 %] | 660 [ 15.38 %)]

Table 6.4: Effect of Optimization on Global Properties farf@om Graph
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partitions. This is due to the homogeneity and low diamefathe random graph.

Optimizations on the assortativity appear to split the ekinto two distinct compo-

nents of equal size. As was expected minimizing transjtigithe only reconfiguration

strategies that yields more diverse clusters, althougkigatficantly in the case of the

random graph, which might again be explained by the laak\wdrsityin the network.
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Figure 6.8: Cluster Distribution for the original and opioed random graph networks.

6.5.2 Baralasi-Albert Graph

Table 6.5 presents the results of the impact of the locatropétions on the application-

level properties for the scale-free power-law degree ibistied network. The effect
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of the optimizations on average path length reveal an iser&amost cases, except
when minimizing degree network entropy and maximizing essivity. The average
path length is significantly increased when the degree ritemtropy is maximized.
The effect of maximizing degree network entropy is to createterogeneous neigh-
borhood for a given node, in the scale-free network with pelae distribution, this
results in a stretched out line-like topology that resuita ihigh average path length.
This interpretation is shown in Figure 6.9 using a forceedlied layout representa-
tion [2] of the maximized average path lengths network aredrttaximized degree
network entropy, on which the apparent linearity of the togg is revealed. Further,
the search information is increased most when degree ne®wiropy is maximized
and decreased most when degree network entropy is minimikled robustness re-
mains unaffected, a result that might be attributed to tbetfat the network is acyclic

with no transitivity and does no have alternate paths toeraugssages through.

(a) (b)

Figure 6.9: (a) Maximized Average Path Length for ScalesRretwork. (b) Maxi-
mized Degree Network Entropy for Scale-Free network.

The effect of optimization on the network clustering is aégd in Figure 6.10. The
degree heterogeneity of the scale-free network shows Isssal clustering distribu-
tions as in the case of the random graph presented in theopesection. Notably,
optimizations of the degree network entropy, decrease tineber of clusters while

homogenizing the clusters size. The satnersificationfactor applied by minimizing
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Graph Average Path Length Search Robustness
BAG 4.6110 %] 11.1110 %] 1[0 %]
MaxTr 4.91[6.49 %] 11.29[1.6 %)] 110 %]
MaxAs 3.94[-14.46 %] | 9.65[-13.15%]| 1[0 %]
MaxNtrp | 11.18[142.48%)] | 14.8[33.14%]| 1[0 %]
minTr 4.96 [ 7.64 %] 11.95[7.54%]| 1[0%]
minAs 14.05[204.82 %] | 14.26[28.33 %] 1[0 %]
minNtrp 3.78[-18.08 %)] 9.53[-14.22%]| 1[0%]

Table 6.5: Effect of Optimization on Global Properties faat-Free Graph

BAG

MaxTr MaxAs MaxNtrp minTr minAs minNtrp
Figure 6.10: Cluster Distribution for the original and opized scale-free networks.
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assortativity yields one large cluster and a few smallesdhat result from the degree

diversification imposed by the degree correlation minirtiiaza

6.6 Case-Studies: Real-World Networks

The previous section analyzed two widely used network nsoaiedl the impact of local
reconfigurations on routing, search, robustness, andecingt This section considers
two real-world networks, the Gnutella Peer-to-Peer fileisiggand the Canadian Au-
tonomous System. Both networks are representative of treggamt complexity of
next-generation networks. Figure 6.11(a) shows a foree-b@yout representation of
the Autonomous System (AS) of the Canadian Inteometa 2007. Each node in the
graph represents an Autonomous System, and a link betweeAtonomous Sys-
tems is a peering relationship between two AS’s. Figure(®)ldhows a portion of the
Gnutella Peer-to-Peer netwockca 2005. Each node in the graph represents a clien-
t/server peer that can exchange data on the network, lifgeesent application-level

connections between the peers.
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Figure 6.11: (a) The Autonomous System of the Canadianriate(b) The Gnutella
P2P Network.
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6.6.1 Gnutella P2P Network

The Gnutella [67] P2P file-sharing application is a populsrtay network that pro-
vides its users with the functionality to search for files lyme and regular expressions
on names. The search is initiated from a client interface@og@agated through the
network by flooding through an ad-hoc hierarchy of peersrd?@#h high uptime and
bandwidth can be promoted to the role of ultra-peer, actingeniike a hub than an
edge peer. The search is then directed towards peers thratdgistered ownership of
the matching content with an ultra-peer.

A Gnutella network graph, circa 2005, is shown in Figure @)1 The figure

represents a small section of the entire network, and dsrafis total 0393 peers and

471 links.
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Figure 6.12: Force-based layout of Maximized Gnutella ekw (a) Maximized As-
sortativity. (b) Maximized Transitivity. (c) Maximized [@eee Network Entropy
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Figure 6.13: Force-based layout of Minimized Gnutella Netw (a) Minimized As-
sortativity. (b) Minimized Transitivity. (c) Minimized Dgree Network Entropy
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The results of univariate optimizations are presented bi€l@.6. The degree dis-
tribution of the network reveals that it is more similar te gtale-free network than the
random network. The network transitivity of the originakwerk is 0, an interesting
result that reflects the acyclic tree structure of the peensaithy. The assortativity
is widely optimized betweef-82.75%, 36.75%)], while the degree network entropy is
optimized betweeif-0.82%, 2.39%)], results that are comparable to the scale-free net-
work model previously presented. Given the similar randegptimizations, we expect
the impact of optimizations on the modeled network to be cedlé on the real-world
gnutella network. In particular, that the local strategyrohimizing degree network

entropy results in minimizing routing and search.

Graph Transitivity Entropy Assortativity
GNUTELLA 00 %] 0.04 [ 0 %] 0.22[ 0 %]
MaxTr 0.04[3.58%]| 0.04[0.33%]| 0.02[-20.57 %]
MaxAs 0.02[2.49 %]| 0.04[-0.16 %]| 0.59[36.75 %]
MaxNtrp 0.01[0.87 %]| 0.06[2.39 %] | -0.44 [ -66.25 %]
minTr 00 %] 0.04[0.31%] | -0.03[-25.5%)]
minAs 0[0.33%] | 0.06[2.36%]|-0.61[-82.75 %]
minNtrp 0.03[3.47 %]| 0.03[-0.82%]| 0.15[-6.85 %]

Table 6.6: Gnutella Network Analysis

Impact at the Application-Level:

Graph Average Path Length Search Robustness
GNUTELLA 4.9910 %] 11.9[0 %] 910 %]

MaxTr 5.97 [ 19.46 %)] 15.21[27.87%]| 9[0 %]

MaxAs 4.83[-3.26 %)] 11.47[-3.54 %] | 1[-88.89 %)]
MaxNtrp 8.11[62.47 %] 14.2[19.38 %] | 1[-88.89 %]
minTr 5.07 [1.51 %] 11.89[-0.01 %] | 6[-33.33 %)]
minAs 9.2[84.23 %] 13.68[15.04 %]| 2[-77.78 %]
minNtrp 4.38[-12.19 %] 12.04[1.21%] | 7[-22.22 %]

Table 6.7: Gnutella Application-Level Properties

Table 6.7 shows that the average path length is increasea nvagimizing the de-

gree network entropy and decreased when minimizing degeteork entropy. This
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result is identical to the modeled network and shows thaptwer-law degree dis-
tributed networks, the degree network entropy is a useftdllstrategy to guide a
network towards increasing or decreasing average patithempe search is increased
most upon maximizing transitivity, which also increases élverage path length. This
result can be explained by the fact that as a neighborhoazhies more densely con-
nected, the number of questions to ask to find an object isiatseased, this result
concurs with a previous finding presented in [68]. The sarsigfication can be applied
to the increase in search information when maximizing degetwork entropy. How-
ever, maximizing assortativity results in a decrease inckeimformation, a surprising
result as, although the degree homogeneity is increasdusrcase as well, unlike
transitivity and degree network entropy the homogeneitggdanto consideration the
node at which the metric is being computed, leading up to @t@&arch information.

Finally robustness is significantly decreased when maxgiassortativity and degree

network entropy due to the homogenization of the networ&igrdes.
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Gnutella MaxTr MaxAs MaxNtrp minTr minAs minNtrp

Figure 6.14: Cluster Distribution for the original and epized Gnutella networks.
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The effect of optimization on the network clustering is a¢gd in Figure 6.14.
The impact of the local strategies on clustering shows thitrgzing transitivity is the
only strategy that homogenizes the number and size of ctuskee clusters identified
in all strategies do not differ significantly, a result thaayrbe attributed to théong
tail distribution characteristic of power-law degree disttdalinetworks, that limits the
number of high degree nodes and therefore does not enatd#e tmgroup into distinct

partitions.

6.6.2 Canadian Autonomous System

The graph representation of the Canadian Autonomous Sy&tel(a) circa 2007 con-
tains496 nodes and14 undirected links. Results of the local optimizations anel th
impact on application-level properties are presented bi€l@.8 and displayed in Fig-
ure 6.15. As in previous instances of scale-free netwohes Average Path Length
is decreased exclusively upon applying a reconfiguraticategyy that minimizes the
degree network entropy, which also has the least impact oredsing robustness. In
the case of the Canadian Autonomous System, unlike in theguenetwork models,
search is decreased when applying a strategy that minirtresesitivity. Minimizing
transitivity tends to create more tree-like networks th@ata given degree distribution
such as the Canadian AS network, may result in lower searsts.cAll optimization
strategies yield a decrease in the measure of robustnesaling a trade-off between
improving the measures of average path length, and seditie, expense of decreased
robustness.

The effect of optimization on the network clustering is axd in Figure 6.17. The
impact of the local strategies on clustering shows thatnaptng degree network en-
tropy and minimizing assortativity are the only stratediet homogenize the number
and size of clusters. While minimizing degree network gutrdiversifiesthe degree
neighborhood of a node, minimizing assortativity yieldsegghborhood that has dis-

similar neighborhood degree than the node considered.th¥ete contrasting results
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Figure 6.15: Force-based layout of Maximized Canadian Aomoous System Net-
works. (a) Maximized Assortativity. (b) Maximized Traneity. (c) Maximized De-

gree network Entropy
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Graph Transitivity Entropy Assortativity
CANADAO07 0.03[0 %] 0.07 [0 %)] -0.22 [0 %]
MaxTr 0.09[6.67 %] 0.07[0.38%] | -0.07[15.55 %]
MaxAs 0.07[4.23 %] 0.07[0.23 %] 0.1[31.8 %]
MaxNtrp 0.02[-0.51 %)] 0.09[2.48 %] | -0.38[-16.17 %]
minTr 0[-2.62 %] 0.06 [-0.21 %] | -0.33[-10.83 %]
minAs 0[-2.56 %] 0.09[2.29 %] | -0.56 [ -33.74 %]
minNtrp 0.06 [ 3.86 %] 0.04[-2.81%] | -0.14[8.02 %]
Graph Average Path Length Search Robustness
CANADAO07 3.25[0 %] 10.6 [ 0 %] 47 [ 0 %)]
MaxTr 4.35[34 %)] 12.26[15.7 %] | 1[-97.87 %]
MaxAs 3.69[13.58 %] 11.18[5.5 %)] 1[-97.87 %]
MaxNtrp 5.36 [ 65.15 %)] 12.38[16.84 %]| 2[-95.74 %]
minTr 3.26[ 0.32 %] 9.84[-7.12%] | 31[-34.04 %]
minAs 4.19[28.94 %] 10.79[1.85%] | 2[-95.74 %]
minNtrp 2.96 [ -8.97 %] 11.16[5.36 %] | 22[-53.19 %]

Table 6.8: Results of Local and Application-Level Networlptiizations for the

Canadian Autonomous System circa 2007
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Figure 6.17: Cluster Distribution for the original and opized Canadian Autonomous

System networks.
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yield more homogeneous partitioning of the network, anceceflhe importance that
an initial degree distribution plays in determining apation-level properties of a net-

work.

6.7 Summary

The topology of emerging networks is the result of local ddépns that are driven
by administrative policy and engineering decisions. Atrgdascale, this decentralized
evolving process yields structural properties that nedaktbetter understood. While
understanding the impact of such local to global propehassreceived most attention
in the areas of statistical physics and mathematics, it irsrabsent from the network
engineering research. This chapter presented three |lagaicsndeemed representa-
tive of local structural characteristics of a node and itswoek neighborhood. Using
simulated annealing optimization, the network was modifiaded on adaptations of
the local metrics, and the impact on the application-lewettionalities of path length,
search, robustness and clustering was discussed. Thesrgisolw that local perturba-
tions that increase the degree network entropy, i.e., #aseréhe degree heterogeneity
of a node’s neighborhood, also increase the average pathleand has an impact on
search, robustness, and clustering that is topology demeniinimizing the degree
network entropy, i.e., increasing the degree homogenéity mode’s neighborhood,
decreases the average path length for the two real-worldonke$ considered. This
result suggests that for such topologies, minimizing thgree network entropy can be
used as a local strategy towards decreasing overall avpetgdength and search at

the cost of decreased network robustness.
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Chapter 7

Conclusions and Future Work

We shall not cease from explorations
And the end of all our exploring
Will be to arrive where we started

And know the place for the first Time

- T.S. Eliot

7.1 Conclusions

Research on emerging networks is facing an unusual develaipro the traditional
top-down design problems is now added the challenge of stateding the bottom-
up processes that can explain the observed structuresgefdad dynamic networks.
Understanding the decentralized evolution of computervalds such as the Internet
has been added to a list of open problems in complexity thedigh have previously
been observed in economics, social science, mathematidgheysics. In particular,
understanding the evolution of large-scale computer ndtwapologies, that define
the structural properties of networks, is becoming indregg important due to the in-
creasing number of overlay networks being deployed. Theselized networks offer
software-level configurations that occur on top of the ptgisiopology, and exhibit
frequent reconfigurations and high dynamicity. The evolubf the structure of net-
works follows a process in which nodes and links are addddtete and reconfigured

dynamically. Exploring the resulting structures of sucblations is a combinatorial
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problem that is often computationally intractable.

Current efforts in network topology research have propdseology awareness to
augment information at each node with topological infoliorato improve the local
decision making. However much of the global impact on thevogt topology remains
absent of these studies.

Network topology modeling attempts to isolate and repéidhe generating prin-
ciples that drive the evolution of real-world networks. $leapproaches are based
on collecting real-world network data and quantifying thed®l by matching metrics
between the real-world and the modeled networks. Over thesyaew metrics intro-
duced have helped refine models by adding more and more agdata identifying
better models. However, the number of metrics proposedroced to grow.

Emergent properties and self-organization have beeneapiaitopologies to evolve
the network based on adaptive and local information alomspide the urgent need to
better understand the impact of such local ad-hoc evolvinggsses at the application
level, such as routing, search, robustness, and clustehisgbranch of research has
received most attention from the statistical physics amdbigical sciences literature

but have been absent from the computer network research.

The material presented in this thesis falls in the contexdroérgent topologies. The
objective of this research is to (1) identify local canohtogological metrics, (2) apply
adaptive strategies based on these metrics to modify \saniewvork topologies, and fi-
nally (3) analyze the networks resulting from these adaptatfor the application-level
properties of routing, search, robustness, and clustering

The three local metrics identified, transitivity, assaviat, and entropy, are pre-
sented as canonical properties of the topology relatinges/ely to aspects of re-
silience, homogeneity, and information. The approach istai#n optimizing graph

theoretic representations of network topologies usingukitions, and quantitatively
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analyzing the impact of these optimizations at the appbocalevel for routing, search,

robustness, and clustering.

The results show that local perturbations that increaseddggee entropy, i.e., in-
crease the degree heterogeneity of a node’s neighborhtsadinarease the average
path length, and has an impact on search, robustness, astdraig that is topology
dependent. A key outcome of this thesis is the identificadiometwork entropy mini-
mization as a useful local rewiring strategy to decreasesgeepath length and search
cost, while homogenizing the size of network clusters andnigaa low impact on
robustness when applied to power-law degree distributesdanks that prevail in real-

world networks.

7.2 Prospects and Future Work

The exploratory and empirical nature of this research leamach to study and ex-
plore as future work. Through this research, significantlyrenquestions have been
asked than answers found. The nature of such complex prebisgmires an inductive
approach and intuitive understanding of the processegithet the evolution of such

systems.

In particular,

e While the local strategy of minimizing network entropy wé®wn to decrease
average path length and search in scale-free networksgéméification of new
local metrics and their relation to application-level pedjes remains an open
problem that requires further investigation. Applying #aame methodology on
different metrics could further the understanding of theidg forces that control

large complex networks such as the Internet.

e Local metrics based on local properties other than degree ttebe evaluated.
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For example, context information such as location or chiaratics of every

node.

In this thesis, all edges of the considered networks wereasd to have constant
unit cost. Addressing the problem for edges with arbitrasgributions and the
integration of a network flow formulation to the existingusttural properties

remains a challenging open problem.

Building a mapping between the distribution of network pd@s and observed
global structures provides heuristics that can improve wmeat ad-hoc ap-
proaches, and in particular on understanding the structifarge-scale net-
works. For example, such heuristics could be used to imppogdictions on

the complex non-linear evolution of the Internet Autonom@&ystems that is

driven by political and engineering decisions.

The dynamics of real-world large-scale networks such asnteenet collected
by agencies such as CAIDA [13] should be used to model siestegther than

structural, that drive the evolutionary process.

As a result of the advances in understanding such complexgemieproperties,
the development of a suite of software recommender toolsdisigAutonomous
Systems network administrators in the reconfigurationsudbAomous Systems
should be undertaken. Such tools would be useful to optithieeeconfigura-
tions driven by administrative policies and technical eegring decisions while

optimizing application-level properties.



on a node degree

Metric Name Description Equation/Symbol Bounds Result Size

Number of Nodes number of interacting nodes in V(G) [1,n] 1
the connected graph

Number of Edges number of edges in the connected E(G) [(n—1), %] 1
graph

Average Degree average number of neighbors per % S di [2(";1) ,n—1] 1
node over all nodes

Diameter longest path between any two Cp = max; jevi(i,j) [1,n —1] 1
nodes

— Lo — — L 12
Assortativity measures the preference of|a = —/_ 2idki M 3. 5UitkIl” [—1,1]x 1
. M= S(G7HED)—[M~1 37, 5 (Gitk:)]

node to connect to like degrees|

Degree Network Entropy Expected Self-Information basgdC,,. = — ZieV(G) pilog(pi), pi = de'd, 2flo_gl",log( ("2‘1) )] 1

Table 1: Network Metrics. (*) indicates normalized valuéd. is the number of edgesi; the degree of nodé (i, j) the distance

between nodesand.

act



Metric Name Description Equation/Symbol Bounds | Result Size
Degree the number of adjacent nodes, di,i € V(G) [1,n—1] n
i.e., neighbors, of a node in the
graph.
Betweenness Centrality| number oftimes anodeis presgnt ~ Cp(v) = >, 1 sev ”;sz) [0, 1] n
in the shortest pathbetween all
pair of nodess, t.
Spectrum set of eigenvalues of the adja- pa(A) = det(A — N) [—,n—1] n
cency matrix of the graph.
Eigenvector Centrality | eigenvector corresponding to the T; = %Z;V:l A jxj [—1,1] n
first eigenvalue.
Transitivity measures the probability thatC; = % (vj,v € Nyyej € E. [0, 1] n
neighbors of a node are them-
selves neighbors. Computed as
the number of triangles divided
by number of triples.
Degree Distribution frequency of appearance of each  p(k) = % ZveV|deg(v):kz 1 [0, 1] d
unique degreéd; of the set of rep-|
resented degrees in the graph.
pkrks) = l/«kl,/g]]\\;[kl,k2
Joint Degree Distribution distribution of average neighbar 1 ifky =k [0, 1] d
degree of a node of average de-  Fkik2 = {0 otherwise
greed.

Table 2: Network Metrics continued. (*) indicates normatizvalues.M is the number of edgesdy, , is the number of edges between
all nodes of degrek, andk;. o is the total number of shortest paths between nogled node. o, ,(v) is the number of shortest paths
between nodes andt that go through node. A is the adjacency matrix representation of the grépthegree of node. N; the set of
nodes in the neighborhood of nodle:;;, the number of edges connecting all nodes in the neighborbbodde:.

ect
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Appendix A

Glossary

A.1 Graph Theory

e Subgraph: all edges and vertices of a subgraph are included in therggph

e Adjacency Matrix : nodes in rows and columns.

{ 1 if (i) ¢ E
am- =

0 otherwise

¢ Incidence Matrix (for a DAG) : rows are the edges and columns the nodes
(edge-node incidence matrix), or rows are the nodes andmauhe edges

(node-edge incidence matrix).

—1 ifedger; leaves vertexi
bij =< 1 ifedgez; enters vertexi

0 otherwise

e Admittance (Laplacian) Matrix of a Graph : is always positive semi-definite,
so all its eigenvalues are non-negate.a = >, (., — x,)*. Particularly
its second eigenvalue is strictly positive=D-A where D is the degree matrix

and A is the adjacency matrix.
—1 if(i,j) e E
lij =< d; ifisj,and

0 otherwise
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Degree: Number of edges incident with a vertex in an undirected lgraim

digraphs, distinguish indegree and outdegree

Regular of Degree r: every vertex has the same degree r
Walk : any sequence of consecutive edges
Path/Trail/Open Walk : vertex setry, ..., x,, with edgesr;, x; 1

Hamiltonian Path : path of an Undirected graph that visits every vertex eyactl

once
Eulerian Path : path that visits every edge exactly once
Cycle/Circuit/Closed Walk : vertex setry, ..., x,, with edgesr;, z;,; andzx,,, x;

Bridge/Cutpoint : if edge is cut / vertex removed, the number of components is

increased

Girth : length of shortest simple cycle
Circumference : length of longest simple cycle
Diameter : largest distance between the vertices

Betweenness Measures the number of times a node on shortest paths bretwee
all pairs of vertices. Betweenness is a measure of centi@lithe network, as

the higher it is the more central is.

Properly Colored : if each vertex is colored so that adjacent vertices have dif

ferent colors
K Colorable : if it can be properly colored using k colors

Bipartite Graph : the vertices of a bipartite graph can be divided into twe dis

joint sets, for which there is no edge between any two vestide same set.
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Chromatic Number k : if graph is k colorable
K, : the complete graph on n vertices
Tree :a graph in which any two vertices are connected by exactypath.

Forest: a graph in which any two vertices are connected by at mospaitie

Disjoint union of trees

Embedding : drawing of the representation of a graph on any surface gath

no edges intersect.

Edge Connectivity: the minimum number of edges of a connected graph whose

removal decreases the rank of the graph by one.

Vertex Connectivity : the minimum number of vertices of a connected graph

whose removal leaves the graph disconnected.
Separabale Graph: if the vertex connectivity is one

Line Graph : vertices correspond to the edges with two vertices beifgcadt

if and only if the corresponding edges in G have a vertex inroom

Planar Graph : graph that can be embedded in a plane so that no edges inter-
sect (Kuratowski’'s theorem, finite graph is planar if nonatefsubgraph is an

expansion ofsor K5 5. Any graph with number of edges e ¢, 3n-6 is Nonplanar.

Dual Graph : exists only if graph is planar. Each vertex of G* correspotala
face of G. Each edge of G* crosses the edge of G that connecta/thvertices
between the two faces of G. Therefore G* has as many verte&sfaas faces,

as many edges as G, and as many faces as G has vertices.

Ramsey Theorem: In a complete graph of ordét(n, ..., n.; ¢)with n vertices,
if the edges of the graph are colored using c colors, theretlsea complete

subgrapm; of color i.
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Number of Connected Components is given by the multiplicity of the eigen-

value O of the Laplacian of the graph.

Fiedler value/ Second eigenvalue of the Laplacian matrix o& Graph : If

a symmetric matrix is positive semi definite then all its enpdues are non-
negative. The multiplicity of the smallest eigenvalue Oegithe number of con-
nected components. For a connected graph, the dimensibe eigenspace of
0 is 1 and therefore the magnitude of the second eigenvaladléF value) is a

measure of how well connected the graph is. For a planar g’r@@ﬁ%.

Expander Graph : a graph in which subset of vertices have high vertex or edge
expansion to the complementary set of vertices. The highettvity between
the various sets acting as redundancy paths might explamtwused in Error

Correction code. (Low Density Parity Check)
Spanning Tree: Tree which includes every vertex of a graph

Minimum Spanning Tree : Find the tree that connects all vertices while mini-

mizing the sum of the weight edges.

Steiner Tree Problem: Find the shortest network that spans a given set of
points, given that new points can be added to the networkatiare. (MST
is a Steiner Tree problem with a fixed given set of points). $h® is an NP-

complete problem.

Kirchhoff's Theorem : Given a connected graph G with n verticesgt\,, ..., \,,_1
be the non-zero eigenvalues of the admittance matrix of @nTthe number of

spanning trees of G iI6' = X % (AjXo... A1)

Cayley’s Formula : if n is a positive integer, the number of trees on n labeled

vertices isn" 2
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Genus of a Graph: the minimum number of handles that must be added to the
plane to embed the graph without any crossings. A planargttagrefore has

graph genus 0.

Clustering Coefficient: the number of links between the neighbors of a node
divided by the total number of links that could exist. It is aasure of how well

connected a neighborhood is.

Dominating setfor a graph G=(V,E) is a subset V’ of V such that every vertex

notin V' is joined to at least one member of V' by some edge.

Domination number of G is the number of vertices in the smallest dominating
set for G. partition the vertices of a graph into a given nunmdfedominating
sets; the maximum number of sets in any such partition isitimeatic number

of the graph.

Unit Disk Graph In geometric graph theory , a unit disk graph is the intereact
graph of a family of unit circles in the Euclidean plane. Tisatve form a vertex
for each circle, and connect two vertices by an edge wherteganrresponding

circles cross each other.

Miscellaneous Principles and Concepts

Pareto Principle (80-20 rule) for many phenomena 80% of consequences stem

from 20% of the causes.

Small-world Network: Network in which any node can reach any other node in
a small number of steps. This type of network can be estaalibls analyzing the
network’s clustering coefficient and average path lendttluktering coefficient
is larger than normal and average path length is smallerribamal, then it is

likely to be a small-world network.
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e Entropy (Concept): Let's consider an element in a given observable stefm-
tropy is a measure of the number of possible low-level sttdsat manifest the
systenms. A system is said to be ordered when it has few possible caatiigmns,
therefore the number of low-level configurations that i&éid to entropy is also
linked to order. Entropy is a measure of disorder of a systéhere is no sin-
gle entropy across sciences, thermodynamics, statistieahanics, information
theory, each have their own definition of entropy that aredwawlinked to each

other.

e Self-Information / Surprisal : The amount of knowledge about the outcome of
an event that adds to global knowledge. Self-Informaticaiss called Surprisal
because it is a measure of the surprise factor that the aéializof an event
induces. The more likely an event is, the less surprised @n€he occurrence
of an event, A, is measured by its probability of occurren@®)pthe unit of
self-information is binary digit (bit), the probability afccurrence is therefore

expressed in number of bits, lzrgg(ﬁ).

Information Entropy : Introduced by Claude Shannon to measure the amount of
randomness in a signal, information entropy is expresseleasxpected value

of the self-information (surprisaly{ (z) = > i = 1np(9:i)logQ(Tii)).

e Soft Computing: An approach to solving problems that is inspired from hu-
man reasoning, as opposed to rigid computer logic. This foiricomputing is
embodied by techniques such as Fuzzy Logic, Neural Netwdtkababilistic

Reasoning (such as genetic algorithms, Bayesian networks)

e Ergodicity: An ensemble is ergodic if a small subset of the ensembleret ti
t “behaves” the same as the average of the whole over time. Xeon@e the
ensemble of articles published in a newspaper is ergodentimber of errors

in the entire newspaper equate the number of errors an edékes over time.
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Markov chain: the transition probability to stat@+1) is determined only by
the current statén) and not by the whole history. Therefore, a process modeled

by a Markov Chain is also known to be memoryless.

Ergodic Markov Process Connotes reachability of any pair of states in the
transition graph. Translates into a strongly connecteatsttian matrix, i.e. there

is a non-zero transition probability for any (i,J) in thernstion matrix.

Regular Markov Process There is a sequence of edges of length exactly equal

to k between any pair of vertices in the transition graph.

Periodic Markov Process An ergodic process is periodic if it can enter a state

only at specific periodic intervals.

Probability and Statistics

Z-score the number of standard deviations the value is from the ampan
of the data set. Thatis,

z;—(x)

Z — score =

Complexity classes

P: decision problems that can be answered by a deterministchime in Poly-

nomial time.

NP: decision problems that can be solved by a Non-determinmtichine in
Polynomial time. Another way to put it is that it's a type obpiem for which a
solution can be verified but not established in polynomiakton a deterministic

machine.

NP-Hard: A problem L in NP is reducible to another problem not necessa

ily in NP. NP-Hard problems are “Harder” than NP-completeha sense that
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the problems reduce to a set of problems that might not evelebidable, and

therefore not even in NP.

NP-Complete A problem L in NP is polynomial-time many-one reducible to
another problem in NP (hence the difference with NP-HardjdiRes to a de-

cidable problem.

Kolmogorov-Smirnov test(often called the K-S test) is used to determine whether
two underlying probability distributions differ, or whethan underlying proba-
bility distribution differs from a hypothesized distribom, in either case based

on finite samples.

Evolutionary Computing

Genetic Algorithms: The candidate solutions (chromosomes in GA) are repre-
sented as a string of symbols or numbers (often in binaryg pgrimary genetic
operator is recombination but selection and mutation aee ts maintain diver-

sity.

Genetic Programming The candidate solutions are represented as computer
programs, their fitness is evaluated by their ability to es@womputation prob-

lem. It uses recombination as a primary genetic operator.

Evolution Strategy and Evolutionary Programming: Works with vectors of
real numbers as representations of solutions, and typiasdls self-adaptive mu-

tation rates.

Misc Math concepts

Injective(One-to-one) : Every element A in X has a corresponding map in

codomain Y
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Surjective (Onto) : Every element B in codomain Y has at least an element in

X mapping to it.

Bijective (One-to-one and Onto): Every element A in X maps to a single

elementBinY

Continuous (Topological): Every point A belonging to a domain U of X maps
to an element in V=f(U), no matter how small V is there is a drdatontaining

A that maps inside V.

Eigenvalue and Eigenvector A matrix is a linear operator on a set of vectors,
and its eigenvalues measure the scaling factor by whichethaf sectors (eigen-

vectors) is transformed.

Homeomorphism/Topological Isomorphism: 1) fis a bijection 2) f is contin-

uous 3) the inverse function f -1 is continuous

Homomorphism: a map from one algebraic structure to another of the same
type that preserves all the relevant structure. For exarfiple= 3x is a homo-

morphism butf (x) = 3z? isn't.
Isomorphism: a bijective homomorphism (i.e. structure-preserving piag).
Jordan Curve : A simple (injective mapping) closed curve

Hausdorff Space (Housed Offy Space is partitioned into neighborhoods, x and

y are distinct points, neighborhood U of x and V of y are disfoi

Cantor set (Fractals): The set of elements obtained from recursively removing
the middle-third of the [0,1] interval. It is proved to be wuntable despite the

geometric sum of the rest being the length of the set (1).
Lebesgue measure Volume in Euclidian space

Algebraic Topology: Using Abstract algebra to solve topology problems
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Open Set: Is not opposed to "closed”. Is open if elements can be wigle

around and still be true (e.g. 0jxj1 is open 0jx= 1 is not)

Connected Space space that cannot be divided into two disjoint nonempty

open sets whose union is the entire space.

Routing

Distance-Vector Routing: Consider a network of nodes, each node builds its
reachability routing table by collecting distances (e.gimber of hops) to its
direct neighbors. Every node then shares this informatiidm &l its neighbors,
so that each can build a global routing table on their own.c&pigble to count

to infinity.

Link-State Routing : As opposed to DV routing, each node in LS routing floods
the network with information about its immediate neighbam$y. The outcome
of all nodes flooding all the network is that all nodes evelflsve a complete
view of the network. Each node then applies a shortest pgthritim on the

graph of the network obtained to determine the shortesttpahy other node.

Differences between DV and LS The main difference between the two routing
protocols is that in DV, nodes share all the information tbeyain whereas in

LS nodes only share information about their immediate Heagh

Wormbhole routing is a system of simple routing in computer networking based

on known fixed links, typically with a short address

Route Flapping occurs when a router alternately advertises a destinagon n
work first via one route then another (or as unavailable, bed awvailable again

in quick sequence).
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A.8 Emergence and Self-Organization

¢ Self-Organization Definition: internal organization of an open system increases

automatically without being guided by an external source.

e Emergence the formation of complex patterns from simpler rules. Areegent
behavior is likely to occur in a system where the number dadranttions taking
place between components increases exponentially withuheer of compo-
nents. For example, the evolving formation of the humannbrahe emergent
property is often unpredictable (to us humans) and unpested. Emergent
systems appear to defy the ever-increasing entropy lawdbutot violate it,
as an open system can decrease its entropy while the gloft@insg entropy

increases. Examples of Emergence are:

— Ant colonies

— Piles of termites

— Swarms of bees

— Flocks of birds

— Schools of fish

— Herds of mammals

— Games such as poker

— Stock Market

— Galaxies formation

— Weather phenomenons such as hurricanes
— open-source projects

— Cities formation (with self-organization)

— In physics, emergence does not equate with complexity batsd¢o the

microscopic laws on top of which macroscopic laws emerge
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Reductionism the nature of complex phenomenons can be reduced to thenatu
of its simpler parts, thereby explaining the phenomenonmBaf reductionism
are: Ontological, Linguistic, Methodological (see OccarRazor), Linguistic,

Analytical, Scientific, or Theoretical.

Occam’s Razor In a nutshell, of all possible explanations of a phenometian

least complex one is most likely to be the correct one.

Holism: In contrast to reductionism, the whole is thought to be te@#han the

sum of its parts.

Teleology. the belief and philosophical investigation on the idea tieure has

a purpose. While science investigates natural laws, m@dgotjuestions the ex

istence of an organizing principle behind these laws. Fangle, in teleology,
a man sees because he has eyes, and has eyes so that he cdateesuni?

marizes the essential idea in Phaedo as follows: “’Imagiotebeing able to
distinguish the real cause from that without which the causeld not be able to
act as a cause.”. Teleological concepts heavily rely on tti®m of final cause
or purpose of living things. There are two essential finatiycepts: extrinsic,
bettering the environment, and intrinsic, bettering thHé aecording to what is

good for it. Aristotle in support of Teleology said: "Natuaelapts the organ to

the function, and not the function to the organ”.

Philosophical Naturalism: Contrasts with Teleology. In Philosophical natural-
iISm man sees because he has eyes; it is not interested irstarabng why a
many has eyes. The organ serves the function. Lucretius iNddera Rerum
says: : "Nothing in the body is made in order that we may usé&/liat happens

to exist is the cause of its use”.
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e Complex Systems System of many parts coupled in a non-linear fashion. In
non-linear systems, the system is greater than the sum péits. Most bio-
logical systems are complex while most engineered systeenreear. Some

characteristics of a complex system:

— A complex system is a highly structured system, which shawstire

with variations

— A complex system is one whose evolution is very sensitiventital con-
ditions or to small perturbations, one in which the numbendépendent
interacting components is large, or one in which there ardiphei path-

ways by which the system can evolve

— A complex system is one that by design or function or both fscdit to

understand and verify

— A complex system is one in which there are multiple inteatibetween

many different components

— Complex systems are systems in process that constantlyesaotl unfold

over time

e Spontaneous Order Emergence of order out of a chaotic context by balance of

forces or natural selection. For example markets and layegia

e Chaos Theory / Nonlinear Dynamics a system that exhibits sensitivity to ini-
tial conditions, where it appears to behave in random maenen though there
are no random variables and the system is deterministimpbes are: weather,

solar system, economies, population growth...

e Self-Organized Criticality: claims that whenever a self-organizing dynamical
system is open or dissipative, it exhibits critical (sciaeariant) behavior similar

to that displayed by static systems undergoing a seconer-@fthse transition.
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For example: Avalanches, Forest-fires, Sandpile, traffitsjesize of cities, size

of companies, electricity blackouts.

Optimization

Combinatorial Optimization : The entire solution space of a problem can be
defined as the total number of permutations of all the elestiiat compose the
system. This number gets very large very quickly. It can lostitated as search-
ing for the optimal path in a tree that describes the solgmace. Meta-heuristic
(“Beyond” “to find") algorithms are usually applied to saig combinatorial
optimization problems, for example local search, simulatenealing, genetic
algorithms, tabu search, ant colony optimization, GRASeddy randomized

adaptive search procedure) , or particle swarm optimiaatio

No Free Lunch Theorem When averaged over all possible cost functions, all
algorithms that search for an extrema of a cost functioroperexactly the same.

In other words, when addressing an optimization problem pttoblem domain
has to be very well understood to apply the most appropriatienization algo-

rithm as opposed to generic metaheuristic ones.

Simulated Annealing Comes from annealing in metallurgy, a technique involv-
ing heating and controlled cooling of a material to increthsesize of its crystals
and reduce their defects. The heat causes the atoms to baostnek from their
initial positions (a local minimum of the internal energyidawander randomly
through states of higher energy; the slow cooling gives themne chances of
finding configurations with lower internal energy than thiéahone. In the sim-
ulated annealing method, each point s of the search spaoenjgazed to a state
of some physical system, and the function E(s) to be minichigénterpreted as

the internal energy of the system in that state.
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e Tabu search Similar to simulated annealing, in that both traverse tlatgn

space by testing neighbors of an individual solution. Whitaulated annealing
generates only one neighboring solution, tabu search gesemany solutions
and moves to the best solution of those generated. In orgeetent cycling and
encourage greater movement through the solution spaday éitbis maintained
of partial or complete solutions. It is forbidden to move &oéution that contains
elements of the tabu list, which is updated as the solutavretses the solution

space.

Ant Colony Optimization (ACO) : Mimics ants social works such as foraging,
nest building, cemetery ordering. Ants use stigmergy thxaibét the global
behavior based on ants local behaviors in the absence ohtizet control. The
medium of communication is a pheromone deposit on the p&énthay an ant.
Ants follow a reinforced pheromone trail. Using this priple, foraging enables

ants to find the shortest path to food from the nest.

Particle Swarm Optimization (PSO): Is a swarm intelligence mechanism. PSO
are based on a multi-dimensional space in which particlgenis) navigate
freely given a position and a velocity. The next position gfaaticle is deter-
mined by a reinforced signal emitted by other particles enghpulation. In this

sense an ACO can be categorized as a type of PSO.

Genetic Algorithms: see Genetic Algorithms in Evolutionary Computing sec-

tion

In game theory, thdlash equilibrium (named after John Forbes Nash, who pro-
posed it) is a kind of solution concept of a game involving twanore players,
where no player has anything to gain by changing only his ool strategy
unilaterally. If each player has chosen a strategy and ngeplean benefit by
changing his or her strategy while the other players keeipsthechanged, then

the current set of strategy choices and the correspondingffsaconstitute a
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Nash equilibrium. The concept of the Nash equilibrium (N&Eot exactly orig-
inal to Nash (e.g., Antoine Augustin Cournot showed how td firhat we now
call the Nash equilibrium of the Cournot duopoly game). Gopugently, some
authors refer to it as a Nash-Cournot equilibrium. HoweMash showed for the
first time in his dissertation, Non-cooperative games ()98t Nash equilib-
rium must exist for all finite games with any number of playésstil Nash, this
had only been proved for 2-player zero-sum games by John \émidnn and

Oskar Morgenstern (1947).
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