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ABSTRACT OF THE DISSERTATION

Analyzing the Impact of Local Perturbations of

Network Topologies at the Application-level

by Vincent J. Matossian

Dissertation Director: Professor Manish Parashar

Networked systems are continuously growing in scale and complexity. The techni-

cal and policy engineering challenges introduced by such a fast growth are currently

addressed locally, with limited understanding of their impact on the whole. Such ap-

proaches are becoming impractical and insufficient. Next-generation networks need to

address these issues by deploying adaptive and self-managing protocols and mecha-

nisms to relax the persistent need for human-driven management. However, achieving

these objectives requires conceptual, physical, and logistical modifications to existing

systems and protocols. To this end, the traditional top-down approach to network and

application design needs to be supplemented by understanding the bottom-up nature of

evolving real-world networks.

A critical issue that is significantly impacting computer networks and applications is

the absence of an in-depth understanding and lack of controlover the structural proper-

ties, i.e., topology, of large networks. Network topologies define the link relationships
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between the nodes in the network, and have a direct impact on the performance, re-

silience, and security of distributed applications. Largescale networks such as the

Internet are the result of a time evolving process in which nodes and links between

nodes are added, removed, and reconfigured dynamically. This dynamic process takes

place in a decentralized manner during which nodes make local adaptations and recon-

figuration decisions that optimize local properties. As a result, these local perturbations

yield an emergent network that is often unstructured and complex, and have implica-

tions at the application-level, particularly impacting routing, search, robustness, and

clustering. Understanding the structures emerging out of these adaptations is a com-

plex problem part of the science and study of complexity theory and complex adaptive

systems. Tackling this complex problem requires first, identifying canonical metrics to

quantify the network topology and second, analyzing the impact of local perturbations

of these metrics on the resulting network topology.

This thesis identifies three local metrics, transitivity, assortativity, and entropy, and

analyzes the impact of their perturbation on the applications of routing, search, ro-

bustness, and clustering. The local metric of network entropy is identified as a use-

ful information theoretic measure of homogeneity of a network neighborhood degree.

The metric is further used to derive a novel mechanism of clustering detection of the

network topology. The overall objective of this thesis is toinvestigate metrics and

mechanisms to better understand the evolution of the network topology and its impact

on application-level functionality. The approach is basedon concepts of emergence,

self-organization and graph theory, and has three key aspects: (1) the identification of

canonical local and global graph metrics; (2) the quantitative analysis of the impact of

local perturbations on global properties; and (3) the application of the local to global

mapping on the problems of routing, search, robustness, andclustering. Adaptations

are performed in a decentralized manner in which local nodesuse local information to

add, remove, or rewire an edge to evolve the topology.
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Simulations based on annealing optimization are conductedto empirically determine

the optimal bounds of the network structures for the selected metrics on selected net-

works. Further experiments on two modeled networks, randomand power-law degree

distributed, and two real-world networks, the Gnutella andCanadian Autonomous Sys-

tem networks, show that the impact of optimizing networks with fixed degree distri-

bution on local metrics yield networks with routing, search, robustness, and clustering

that are tightly dependent on the network’s degree distribution. A key outcome of this

thesis is the identification of network entropy minimization as a useful local rewiring

strategy to decrease average path length and search cost, while homogenizing the size

of network clusters and having a low impact on robustness when applied to power-law

degree distributed networks that prevail in real-world networks.
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Preface

Paradoxically, in most publications conclusions are written first and the preface

last. This gives a unique opportunity for the author to express, in the very first pages,

the lessons learned in the process. I take this opportunity to share how this work came

to be and what sustained me throughout.

Upon first joining Professor Parashar’s Applied Software Systems lab, I developed

three-tiered architectures to provide physicists with online tools to interact with high-

performance scientific applications. While the three-tiered architectures were already

quite challenging, they extended inton-tiered(n >> 3) Peer-to-Peer network archi-

tectures. These systems considered a large number of interacting compute nodes and

faced many fundamental problems in distributed systems. I devoted my Masters thesis

to the development of a peer-to-peer messaging library to decouple monolithic legacy

scientific applications into autonomically interacting peer services. My fascination for

networks was strengthened by the conceptual relationshipsbetween P2P networks and

other large-scale networks, in particular social networks. I participated in the devel-

opment of the overlay network associative messaging for data mining that lead me to

question,how do network topologies (self-) organize?

What supported me throughout this work, besides Professor Parashar’s unconditional
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support, are two ideas:

• The first is the famous mottoThink Globally and Act locally, which is an inspir-

ing call aimed at raising our awareness for the environment and the world by

adding accounting into the individuals in a population.

• The second is thePareto principleor 80-20 rulethat in essence says that a distri-

bution is skewed such that 80% of it is represented by only20% of a population.

Or for that matter, that only20% of the people may really be thinking globally.

These contrasting statements make me wonder, how would the world be if everyone

disproved the Pareto principle anddid think globally? The answer, I think, is yet to be

determined...
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Chapter 1

Introduction

1.1 Motivation

In the past decade, the study of the dynamics of large-scale computer networks have

been added to a list of open problems related to the study of complex systems. Prob-

lems in this category include, for example, protein interaction maps in Biology, cita-

tion networks in Social Science, the evolution of Autonomous Systems interconnects

in Computer Networks. Figures 1.1(a) 1.1(b) 1.1(c) show force-based graph layout [2]

representations of such networks. While these figures do notprovide any scientific ev-

idence as such, one can visually note the absence of any apparent pattern or structure

between the elements of the graph. The common thread across all these problems is

the underlying complex web of links that tie the elements together, forming a whole

that is greater than the sum of its parts. The dynamic behavior is complexrather than

complicateddue to the interdependencies between elements that when perturbed, even

so slightly, can render the system inoperable [3].

Such complexity is becoming more apparent on large-scale computer networks such

as the Internet, possibly due to the intricate multi-layered structure of protocols, and

hardware heterogeneity, that form a complex chain of dependencies, in which a change

in one part can cause large and unexpected deviations in another. Attempts at under-

standing the structure of the Internet are only recent. However, the necessity to reach

this understanding is ever greater, as problems across a multitude of disciplines, from
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science and humanities to business are increasingly depending on large computing plat-

forms, which are expected to support reliable and secure heterogeneous applications.

For example, as of September 20071, the distributed computing frameworkBerkeley

Open Infrastructure for Network Computing(BOINC) [4] performs an average of573

TeraFlop/s. Which is currently more computing than the mostpowerful existing super-

computer, the IBM BlueGene/P with a theoretical peak performance of360 TeraFlop/s.

As another example, in the first quarter of 2007 retail sales in electronic commerce con-

ducted on the Internet represented3.3% of the total retails sales in the USA2, a value

that has been growing at a constant rate since the adoption ofthe Internet as a busi-

ness platform in the late 1990’s. As the demand on computing power increases and the

expectations on interoperability and fault-tolerance grow, the need to understand and

manage the networks become increasingly critical to the future of such applications.

(a) (b) (c)

Figure 1.1: (a) Protein Interaction Maps. 31 Nodes using compressed view from a 1458
node network4. (b) Citeseer coauthor network. Top 200 authors. Data compiled by
the author. (c) Canadian Internet’s Autonomous Systems. 496 Nodes. Data compiled
by the author.

The motivation underlying the research presented in this thesis draws from the

following observations:

The network topology defines the link relationships betweennodes that represent

network elements, and links that describe the“who knows who” relation between

1see http://boincstats.com/stats/projectgraph.php

2see http://www.census.gov/mrts/www/data/html/07Q1.html
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nodes.

The representation of networks as graphs of nodes and links enables the application

of the mathematical tool of graph theory to the analysis of networks.

Using graph theory, the structural properties of the network topology can be charac-

terized using metrics that quantify the topology and qualitatively correlate the topology

to a class of applications.

Large-scale networks such as the Internet are the result of atime evolving process

in which nodes and links between nodes are added, removed, and reconfigured dynam-

ically. This dynamic process takes place in a decentralizedmanner during which nodes

make local adaptations and reconfiguration decisions that optimize local properties.

As a result, these local perturbations yield an emergent network that is often un-

structured and complex, and have implications at the application-level.

Understanding the impact of local adaptations on global structures is a complex

problem, part of the science and study of complexity theory and complex adaptive

systems.

However, with networks such as the Internet growing in scale, demand, and expec-

tations, and with the highly dynamic and quasi-instantaneous software-level rewirings

offered by overlay networks, it is becoming increasingly important to address this prob-

lem so that next-generation networks can be better managed and understood.

To tackle this complex problem that has limited theoreticalresults [5] for real-

world networks, one has to take inductive, empirical, and exploratory steps, first by

identifying metrics to quantify the topology, and second byanalyzing the impact of

local perturbations of these metrics on the resulting networks.

This thesis is the result of one such exploration into the identification of local met-

rics, namely transitivity, assortativity, and entropy, and the analysis of the impact of

their perturbation at the application-level for network topologies with given degree dis-

tributions. The application-level properties consideredare fundamental building blocks

of any distributed application and consist of:
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• Routing: how many hops does a message take to reach its destination?

• Search: Howeasilycan an arbitrary object be located?

• Robustness: What is the degree of fault-tolerance of the network?

• Clustering: How many densely connected groups of nodes are in the network,

and what are the sizes of these groups of nodes?

The rest of this introduction details the observations mentioned above, starting from

an overview describing why network topology matters, goingon to explain the nature

and dynamics of network topologies, and finally to a description of the features of

evolving network topologies. The problem statement, contributions, and outline of the

thesis are presented.

1.1.1 Topology Matters!

The network topology has a direct impact on performance, resilience, and security of

distributed applications. To illustrate the significance of network topology, consider the

two canonical topologies, full shown in Figure 1.2(a) andstarshown in Figure 1.2(b).

Both topologies consist of8 vertices but have very different topological properties, as

can be seen in Table 1.1. The table’s rows show the two considered network topologies

and the columns show measures of three structural metrics,average path length, edge

connectivity, andaverage centrality. Average path length counts the average number

of hops between all pairs of nodes, edge connectivity measures the minimum number

of edges that need to be removed to disconnect the network, and average centrality

measure the number of times that a node appears in the shortest path between all pairs

shortest paths.

In the case of thefully connectednetwork, communication between any two active

nodes is disrupted if all nodes fail concurrently, whereas in the case ofstar, com-

munication is disrupted if the single central node fails. Inother wordsfull is more
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(a) (b)

Figure 1.2: Example topologies: (a) fully connected and (b)star

resilient thanstar. On the other hand, the7 links of star compared to the28 of full

make it more scalable, which might explain whystar topologies, also known as hub

and spoke architectures, are dominant on the Internet and inorganizational networks.

While the network topologies of regular structures such as the full andstar topologies

are well known and understood, the application-level properties of complex and irreg-

ular topologies such as the Internet remain an open problem that needs to be better

understood.

Topology Average Path Length Edge Connectivity Average Centrality
Star 1.75 1 2.62
Full 1 7 0

Table 1.1: Comparison of Global Properties of theStar andFull Topologies. Edge
Connectivityrefers to the minimum number of links that need to be removed to discon-
nect the network. Average Centrality measures the number oftimes a node appears in
the shortest path between any pair of nodes.

1.1.2 The Nature and Dynamics of Network Topologies

Real-world networks evolve over time through dynamic nodesand links addition, re-

moval, and rewiring. These dynamic events happen at the local level in the absence
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of centralized and global control, and have complex nonlinear implications at the

application-level that need to be understood and managed.

In the last few years alone the Internet has seen exponentialgrowth in the number of

transactions, both at the network (e.g. BGP route updates and withdrawals) and at the

application level (e.g. DNS, email) [6]. This rapid growth significantly impacts the per-

formance, manageability and reliability of emerging networks. While the limitations

induced by such a fast growth have been remedied, to a certainextent, through manual

changes made to configuration tables (e.g. BGP tables), suchad hoc approaches are

quickly becoming insufficient and impractical. While policies are defined by humans,

their deployment, enforcement, and dependency conflict resolution, which is currently

also human-centric, should be handled by autonomic mechanisms to optimize overall

system performance. However, achieving this objective requires conceptual, physical

and logistical modifications to existing systems and protocols.

A key issue that is significantly impacting emerging networks and applications, and

that can be potentially addressed by autonomic techniques,is the absence of accurate

knowledge of, and control over the actual topology of large networks. Network topolo-

gies define the link relationships between the nodes in the network and have a direct

impact [7] on the security, resilience, and performance of adistributed system (see
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Chapter 3). Large scale systems, such as the Internet, have grown out of minimizing

cost and maximizing performance at the expense of flexibility [8, 9, 10]. In the case of

the Internet, the criticality of these concerns have been highlighted inOvercoming the

Internet Impasse through Virtualization[11] andThe Internet is Broken[12]. While

it is still possible to monitor the state, at the BGP level, ofthe approximately65, 000

Autonomous Systems in existence to date [6], monitoring allthe traffic inside these

Autonomous Systems is a daunting and nearly intractable task. It requires days of data

collection and processing to obtain a global picture of the network [13, 14], which is

likely outdated by the time data collection is completed. Itis for these reasons that

in the past few years most distributed applications have been designed on top of or

asoverlay networks, giving network and application engineers more control over their

target network.

While the physical network topology is hard-set and can not be changed using software

alone, an overlay network can be rewired virtually in any desired way, thereby enabling

dynamic software-driven configuration and management of the topology. Such overlay

networks have been used to study problems of scalability, routing, resilience, fault tol-

erance, security and search in networked systems. The emergence of overlay networks

as supporting platforms for the deployment of next-generation network applications

makes the problem of topology control and selection a critical component of the net-

work design problem.

The network topology can be virtualized according to a metric, e.g., geographic dis-

tance, bandwidth, or signal strength, that redefines the link relationship between the

nodes. For example, in the virtual representation of a network as illustrated in Fig-

ure 1.3, the mapping between application-level requirements to the overlay represen-

tation and onto the physical network provides an abstraction that depends on the func-

tionalities that each layer supports and provides. Furthermore, besides offering content
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and context abstraction, virtualized topologies that are deemed beneficial to the net-

work can be used to guide the deployment of physical connectivities.

In summary, next-generation virtualized networks furtheraccentuate the problem of

network topology selection and construction due to their ease of deployment and high

dynamicity. An in-depth quantitative and qualitative study of various network topolo-

gies is presented in Chapter 3.

1.1.3 Local Perturbations Affect Global Properties

In the absence of global information, nodes gather local information that reflect partial

views of the network. Modifications of the configuration of the network using nodes

local information affect the properties of the global network.

The identification of appropriate metrics to analyze the network is a key requirement

of the design and parameter space. In this thesis, a set of local and global metrics are

presented. In particular, the local metric of network degree entropy as an information

measure of neighborhood homogeneity is introduced. A novelmechanism of cluster

detection based on network entropy is also presented. The number and size of each

cluster is a global application-level metric that characterizes a network topology.

1.2 Problem Statement

The goal of the research presented in this thesis is to betterthe understanding of lo-

cal adaptive strategies on networks application-level properties. To this end, we first

identify network rewiring strategies based on local decisions and adaptations to evolve

topologies, and study the emergent global properties of theresulting network.
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The network topology reconfigurations consist of nodes making connections, discon-

nections, or rewirings at the local level. Inspired by the concepts of emergence and

self-organization, this research tackles the following issues:

• The identification of canonical local structural metrics ofa network.

• The evolution of network topologies of given degree distributions.

• The analysis of the emergent network structures that resultfrom perturbations of

the local metrics.

• The interpretation and correlation of local to global properties to better under-

stand the impact of local network reconfigurations at the application-level.

The assumptions and definitions under which the problem of topology control is

addressed are:

• In the limit of large networks, nodes may have limited view ofthe network.

• Nodes are assumed to be cooperative and not malicious.

• Nodes and Links can be added and/or removed dynamically.

• All edge weights are of constant unit cost.

The local and global metrics that will be used are summarizedin Table 7.2 and are

discussed in Chapter 2.

The proposed approach consists of evolving and adapting thenetwork topology to-

wards satisfying desired local structural properties. Theapproach is based on concepts

of emergence, self-organization, optimization, and graphtheory, and has three key

aspects: first, the application-level properties of the network relating to path length,

search, robustness, and clustering are determined. Second, each node computes local

structural metrics. Adaptations are then performed in a decentralized manner where
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local nodes apply neighbor selection policies, link addition, deletion, and rewiring, to

evolve the topology. These network modifications are done using a simulated annealing

optimization during which a move in the optimization process consists of exchanging

two independent edges in the network. The move is accepted ifit is optimizing or, if it

is non-optimizing according to an annealing probability. Finally, the emergent proper-

ties of the resulting networks are correlated to the local perturbation strategies applied

at each node.

1.3 Contributions

• A quantitative analysis of the impact of topology on networkapplications (Chap-

ter 3).

• The introduction of a novel measure of network robustness (Chapter 3.

• The definition and evaluation ofdegree network entropy(Chapter 4).

• A survey, evaluation, and novel algorithm for cluster detection (Chapter 5).

• The demonstration of degree network entropy as an efficient local strategy to

control average path length (Chapter 6).

1.4 Outline of the Thesis

The thesis is divided into three parts. The first part addressesTopology Mattersand

motivates the problem of topology selection. The second part covers the metrics of

Network Entropy, and Network Clustering, addresses the importance and selection of

respectively local and application-level structural properties in the evaluation and se-

lection of a topology. Finally, the third part onTopology Dynamics and Emergent

Topologies, presents mechanisms based on the selected network metricsand studies

the properties of the resulting networks. More precisely:
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• Chapter 2 covers background, related work, and a description of the tools used

in this research. This chapter starts by showing how networktopologies can

be effectively represented and analyzed using graph theoretic formulations and

metrics. Related research on network topology that use these graph metrics to ap-

proach problems in topology are presented. In particular, topology-aware meth-

ods use topological information at the node level to addresslocal reconfiguration

decisions. Topology modeling approaches attempt to find best-fitting statistical

models of real-world networks by investigate correlationsbetween graph metrics

for the real and model networks. Emergent topologies combine topology aware-

ness and topology modeling and study the bottom-up processes that explain the

observed properties of an evolved topology. The software tools that were used to

generate, evolve, optimize, and measure the network properties are introduced.

• Chapter 3 presents a quantitative and qualitative analysisof network topologies.

It delves into the relationships between structure and function of various network

topologies from regular to random. The chapter starts with the identification of

a set of canonical, regular and non-regular network topologies, and goes on to

present a quantitative analysis of the impact of these topologies on a set of net-

work applications. Chapter 3 is central to the thesis as it motivates the importance

of the network topology and its impact on application behavior and performance.

• Chapter 4 introduces thedegree network entropymetric as a measure of infor-

mation of a node’s neighborhood degree homogeneity. Identifying relevant local

metrics to assess structural and path information of a topology is an important

problem because real-world networks are the result of limited information hori-

zons. Furthermore, the decisions made at the local level yield global structures

that impact application-level functionalities. This chapter analyzes the network

entropy metric for a variety of topologies and a variety of evolving models of
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topologies. It also shows how the network entropy metric canbe used to quan-

tify information for a given network topology.

• Chapter 5 defines the network clustering problem and presents a qualitative anal-

ysis of cluster detection for various network topologies. The number of network

clusters in a network topology and the size of each cluster isa valuable topolog-

ical property of a network. This chapter introduces a reviewof existing methods

to detect clusters in a graph and presents a novel method of cluster detection

based on network entropy.

• Chapter 6 presents an in-depth study of evolving network topologies with arbi-

trary structural properties using the previously identified local and global metrics.

Two modeled topology instances, random and power law degreedistributed, and

two real-world networks, the Canadian Autonomous System and the Gnutella

networks are considered. The evolved networks are evaluated with respect to the

global emergent properties that result from the local adaptive strategies adopted

by nodes locally. Correlations between the local metrics oftransitivity, assor-

tativity, entropy and application-level properties for routing, search, robustness,

and clustering are addressed.

• Chapter 8 concludes the thesis and presents future work.
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Chapter 2

Background, Related Work, and Tools

2.1 Introduction

The representation of a network topology as a graph providesa powerful abstraction

to analyze the structural and flow properties of networks. This chapter first introduces

a brief review of fundamentals of graph theory, from common graph representations to

the metrics that will be extensively used in the rest of the thesis. This chapter goes on

to addresses related work in the area of network topology awareness, network topol-

ogy modeling, and self-organizing evolving topologies. The review is drawn from an

extensive and active literature of which the research papers that have been most influ-

ential in shaping the work in this thesis are [5] [15] [16] [17] [18] [19]. The glossary

in Appendix A provides a reference to the terminology used throughout the thesis.

2.2 Graph Theory Fundamentals

Graph Theory is a field of Mathematics that was officially bornaround 1736 with the

now famous problem ofthe seven bridges of K̈onigsberg. The problem was to find a

route that crossed all bridges in the German town of Königsberg only once. Paths that

solve such problem are now known asEulerian pathsafterEuler who showed using a

graphical representation of the bridges that the conditionfor such a path to exist was to

have all endpoints on the path have an even number of links. Euler showed that it was

not possible to find a path crossing all seven bridges withouttraversing a bridge more

than once. Since then, the field of graph theory has extended theoretical Mathematics
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and been applied to the formulation, analysis, and derivation of many scientific fields

including Biology, Physics, Chemistry, Social Sciences, Computer Science and more.

The strength of graph theory lies in the abstract representation of a problem into a set

of nodes (or vertices) and links (or edges), in which two related nodes are connected

by an edge. This relation applies equally well to molecular structures in which atoms

are the nodes and edges the valency between atoms, or in social networks where nodes

are individuals and edges represent relationships such as friendships or professional

acquaintance between individuals.

2.2.1 Graph Representations

A GraphG is denoted asG = (V, E), whereV is the set of vertices, andE the set of

edges. When relationships between nodes in the graph are notsymmetric, the edges of

the graph are considereddirected, otherwise the edges areundirected. For example, the

graph of the World Wide Web is directed with edges representing web links between

pages as nodes. A link from one page does not imply that a back link exists from the

page that is pointed to. If a graph contains more than one pathto and from a node, it

is said to becyclic, otherwise it is referred to asacyclic. A tree graph or chain graph

are examples of acyclic graphs. There are two common graph representations, matrix

form and list form.

Matrix Representation: The matrix representation of a graph consists of a two-

dimensional integer array indexed by all nodes in the Graph,say from0 to N . Every

matrix entryM [i, j]; i, j ≤ N , contains an integer number that represents the rela-

tionship between nodei and nodej. In an adjacency matrix representation, the entry

M [i, j] is 1 if there is an edge between the two nodes, and0 otherwise. In a Laplacian

representation, the entryM [i, j] is −1 if i 6= j and there is an edge(i, j). For exam-

ple, the sample graph in Figure 2.2.1 has the adjacency matrix representationAi,j and
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Laplacian representationLi,j :

0

1

2

3

Figure 2.1: Sample graph with4
nodes and4 edges.

Ai,j =









0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0









Li,j =









2 −1 0 −1
−1 3 −1 −1
0 −1 1 0
−1 −1 0 2









Once in matrix form, operations from Matrix and spectral graph theory [20] can be

derived to formulate asymptotic analysis. However, this representation can be expen-

sive in memory, and particularly inefficient when graphs consist of very large number

of nodes with few edges between them. Such graphs are known asSparse Graphsand

benefit from an alternate representation of a graph, namely alist representation.

Edge List Representation:Using the list representation, every node in the graphlists

the nodes that they are connected to. The difference with a matrix representation is

that the nodes entriesignore the nodes that they are not connected to. If the graph is

sparse, this representation results in a significantly morecompact form. For example,

the sample graph in Figure 2.2.1 has the following edge list representation:

Ei,j =



















0→ 1

0→ 3

1→ 2

1→ 3



















Graph Attributes: Nodes and Edges of a graph can beaugmentedwith arbitrary

information that is relevant to a problem or application. A classic example in network
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flows considers the distance between two nodes to be an attribute of the edge connect-

ing adjacent nodes. Such a representation is known as aweightedgraph and is used

to derive shortest paths and minimum spanning trees of a graph. Similarly, nodes can

be augmented with characteristic values that reflect an arbitrary property of the node.

For example, Figure 2.2 shows a compressed graph of the NorthAmerican power-

grid graph, the original graph contains4941 nodes and6594 edges, and is shown in

the figure compressed to40 nodes and215 edges. The graph is the result of applying a

clustering detectionalgorithm in which each cluster is represented by a single node and

for which the size of a node is scaled in proportion to the sizeof the cluster. Clustering

is discussed in detail in Chapter 5.

Figure 2.2: A clustered (compressed) representation of the North American electrical
power grid.
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2.3 Graph Metrics

The building blocks of a topology arenodesandedges1, that assemble and form struc-

tures that are well or ill suited to fulfill certain application-level functionalities. Such

goodness of fitcan only be revealed based on observable graph metrics without which

understanding the structures formed by topologies remainsan art. Interpretations based

on relevant graph metrics enable the evaluation of a topology and itsfit to fulfill a cer-

tain function in a quantifiable way. The network and graph theory literature have ad-

dressed a set of metrics that measure local and global aspects of a topology [21, 22]. In

this section we review some of the most common graph metrics and apply them to a set

of topologies commonly encountered in networks. These metrics are now introduced

and are summarized in Table 7.2 (see Appendix).

2.3.1 Fundamental Metrics

Number of Nodes and Edges: The relationship between the number of edges to num-

ber of nodes can determine feasible, i.e., connected, topologies from unfeasible, i.e.,

disconnected, ones. For example when consideringN nodes andN − 1 edges it is

only possible to form aconnected networkby chaining nodes to each other in a linear

fashion. This case is evidently the most straightforward and when more edges than

nodes exist, the number of possible wiring of nodes immediately becomes combinato-

rial, therefore leading to known hard problems in topology such as the identification of

a graph’s automorphism class.

Degree: The degree of a node is its number of adjacent neighbors. It is the most fun-

damental structural property of a topology. The degree of a directed graph can relate

to theindegree, i.e. number of incoming links, oroutdegree, i.e. number of outgoing

links, as distinct measures. Together,In- andOut- degreegive thetotal degree. For an

1Throughout the papernodesmight interchangeably be referred to asvertices, andedgesaslinks.
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undirected graph theIn- andOut- degrees are equivalent and are referred to simply as

degree.

There is a direct relationship between degree and the numberof edges, as the total

number of edges in the topology corresponds to the sum of the degree of each node.

For a directed graph ofn nodes, the number of edgesm is the sum over each nodei

outdegreedi,
∑N

i=1 di. For an undirected graph it is the sum over all nodesi degrees

divided by two,
∑N

i=1
di

2
, as each edge is counted twice.

While degree is a local property of a node, once all nodes degrees are gathered,

global information can be assessed and provides additionalinformation of the network.

Relevant degree-related metrics aredegree distributionandjoint degree distribution.

Degree Distribution: The degree distribution of nodesi with degreedi written as

1

n

∑

di

1

gives the frequency at which a degree is represented in the network graph. The distri-

bution is essential when fitting a network model to real-world network data. For ex-

ample, the Internet router link distribution was believed (pre-1999) to follow a Poisson

distribution because at the time the accepted model was thatthe Internet wiring, un-

der no governing body, evolved as an Erdõs-Rényi random graph. Using network data

collected from a sample of the Internet routers, several studies [10, 17] concurrently

showed,circa 1999, that the Internet link distribution fit a power-law distribution, of

the typey = x−α with α typically between2 and3. Note that as a statistical measure,

degree distribution is only meaningful when the sample sizeor number of nodes is

large and isn’t relevant for small networks, for example tens of nodes.

Joint Degree Distribution: Knowing the degree distribution is significantly more in-

formative than degree alone and is extensively used to analyze graphs. However, an

identical degree distribution can exist for many graphs with very different structural
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properties. The Joint Degree Distribution provides additional information that quan-

tifies the joint node degree to average neighborhood degree.The computation of the

joint degree distribution is performed by averaging the neighborhood degree of every

node. This information highlights structural properties of the network by relating to

degree homogeneity, i.e. whether nodes connect to nodes with like degrees or unlike

degrees. In the network literature this measure of similarity is also referred to asas-

sortativity, when nodes tend to connect to like-degree nodes, anddisassortativitywhen

nodes connect to unlike-degree nodes. Practically,assortativitycan be measured using

Pearson’s correlation on the degree of every node.

Transitivity : also commonly referred to asclustering coefficient, measures the prob-

ability that a node’s neighbors are themselves neighbors. Ahigh transitivity value is

indicative of a cohesive network, where alternate paths to and from nodes are common

within a node’s neighborhood. There are currently two formulations for transitivity,

one is expressed as a ratio betweenk, the number of edges that exist between neigh-

bors, i.e., triangles, to the total possible number of edgesthat could exist between

neighbors, also known astriples, expressed as

C1 =
k

n(n−1)
2

for undirected graphs and k
n(n−1)

for directed graphs. The other formulation takes the

average transitivity over all local transitivity computedat every node as

Ci =
number of triangles connected at vertex i

number of triples centered at vertex i

and the total transitivityC2 = 1
n

∑

i Ci.

Edge and Vertex Connectivity: Considering a connected topology, the edge con-

nectivity is the minimum number of edges that need to be removed to disconnect the

network. The edge connectivity of a connected acyclic graphis obviously0 but can be
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higher for a hightransitivity graph, and reaches a maximum ofn − 1 for a fully con-

nected network. The vertex connectivity is the minimum number of nodes that need to

be removed to disconnect a graph.

2.3.2 Path-related Metrics

The previous metrics presented some fundamental structural graph metrics, more can

be said about a network by measuring various properties obtained bywalking along

the paths between nodes. Path lengths are measured from source to destination, and

can reflect either the shortest path and subsequentlyminimum spanning tree, or longest

shortest path, i.e.,diameter, or the number of shortest paths going through a node, i.e.,

betweenness centrality. These paths related metrics are now introduced:

Shortest Path: The shortest path is the path that leaves a source node to a destination

node and traverses (hops) the fewest number of nodes. The general idea to compute

a single source shortest path is to attempt to reach every other node in the network,

and at every step maintain path information from every node to every other node, if an

alternate path between two nodes can be achieved with fewer hops than is current, the

alternate path becomes the new shortest path. This process is repeated until all nodes

are explored and all paths are checked for being of minimal length.

Minimum Spanning Tree: A spanning tree is an acyclic structure that traverses ev-

ery node in the network. A minimum spanning tree (MST) is a spanning tree on a

weighted network, where edges between nodes are given attributes (i.e., weights) and

the spanning tree is built such that the sum of all edge weights is minimized. There

exists several known processes to construct a minimum spanning tree from global in-

formation, one is to select edges of minimal weight and add them to the spanning tree

as long as there are no cycles and every node is traversed once, known asKruskal’s

algorithm [23], the other is to walk from a source by selecting the edgesof minimal
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weight as the path to every other node goes along, in a manner similar to single source

shortest path, known asPrim’s algorithm[23]. Computing the MST is very important

in many applications that require methods to reach all nodesin the network more effi-

ciently than byfloodingor broadcasting messages to the entire network.

Vertex Betweenness Centrality: The number of shortest paths that traverse a node

is indicative of theimportanceor centralityof that node. This measure of centrality is

very important in estimating the resilience of a network to attack or failure. The more

paths traverse a given node, the more important that node is likely to be and therefore

the more disrupted the network would be if that node is removed. Betweenness central-

ity is computed based on the all pairs shortest paths, and considers for each endpoints

pair the ratio of the number of times a node appears on the shortest paths between all

pairs of nodes.

Edge Betweenness Centrality: Similar to the Vertex betweenness centrality but is

computed per edge.

Diameter: The longest shortest path is the diameter of the network. Besides giving

the maximum number of hops necessary to go from and to any node, the diameter does

not reflect any average or general structural property of thenetwork. However, while

a high diameter might be due to a single unusually long path inthe network, a low

diameter is indicative of a highly cohesive network.

Graph Spectrum: A graph is numerically represented either inmatrix or list form.

As previously mentioned, common graph matrix representations are the Adjacency

and Laplacian forms. From an implementation and representation point of view, it

is more efficient to represent large sparse graphs in list form rather than matrix form

due to the ratio of edges to nodes. However, for smaller graphs or when possible, the
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matrix representation of a graph enables the application ofmatrix theory, and in par-

ticular the identification of the eigenvalues and eigenvector sets corresponding to the

graph. General properties and bounds can be derived from thegraph using the eigen-

vector/eigenvalue sets, and most importantly the strengthof the connectedness of the

graph which is characterized by high eigenvalues [24].

Research efforts related to network topologies can be broadly classified as related

to “topology awareness”, “topology modeling”, and “emergent topologies”, this clas-

sification and a summary of the contributions of each field is presented in Table 2.1.

These research areas further develop into sub-areas or applications as illustrated in

Figure 2.3. These three broad categories are discussed in more detail in the rest of this

section.

Application class Description Main Result
Topology Awareness Use local information to as-

sess the current and next state
of the system

Structured or geographic-
based systems can theoret-
ically achieve logarithmic-
time data propagation.

Topology Modeling Identify best-fitting statistical
models to the observed data
collected from real topologies

Large unstructured networks
tend to follow a power-law
distribution.

Emergent Topologies Build on the concept that the
whole topology has features
that are greater than the sum
of its parts

Solutions to known NP-
complete problems to date
are provided by heuristics
that build on the emergent
property (e.g. ant algorithms)

Table 2.1: Classification of research directions related tonetwork topology

2.4 Topology-Awareness

Recent research in virtualization [11] is in favor of data access protocols that virtual-

ize content distribution, abstracting the data from its physical location into its virtual

network location. However, this communication paradigm has severe drawbacks for

location-dependent applications such as:
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Figure 2.3: Scope of research related to network topology

• Ad-Hoc Routing: mobile networks that can communicate only within a specific

geographical space.

• Security: confidential data that should be transmitted onlywithin trusted net-

works.

• Data Management: data mining and information retrieval systems that collect

and catalog information based on locality.

Such applications need to maintain a proximity view of theirneighbors and, as a

result, are termedlocality-awareor topology-aware. The maintenance of a correct and

persistent view of a dynamic system requires dedicated synchronized protocols that are

either non-existent, or cannot be implemented over an unreliable messaging substrate.

This makes finding the appropriate nodes to communicate within an ad-hoc manner

a difficult and challenging problem. Topology maintenance requires mechanisms to

collect information from a set of nodes in the system in orderto derive a global view.
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The cost of maintaining a full view of the network is proportional to the size of the

network [25]. While such maintenance protocols can achievelogarithmic time for in-

frequent changes, the number of messages exchanged grows exponentially for frequent

changes. A more recent, but conceptually similar idea, is touse geographic locality for

topology building. Several methods have been proposed to maintain geographic local-

ity when a node joins a network. These include approaches based on landmark servers

for position calculation [26], and on translating network distance into geographic dis-

tance [27]. However, as in the case of topology maintenance systems, these solutions

do not scale well and in the case of landmark servers, requirereliable and available

nodes present in the network at all time in order to successfully retrieve the position

of a node. Researchers at the University of Bologna have usedtopology awareness

to evolve a network towards a desired topology [19]. Their work has demonstrated

the efficiency of the gossip algorithm in reachingeventual consistencyamong nodes

in a large network, and has shown that their algorithm can evolve a large network of

nodes towards a given topology in a small number of message passing cycles. Other

more recent techniques for locality and topology awareness, such asGeographic Lay-

out, Proximity Routing, andProximity Neighbor Selection (PNS)[28, 29] are evaluated

in [30]. These geographic or proximity topology-aware protocols determine an optimal

neighbor to forward data to and build structured and unstructured networks. However,

these mechanisms of evolution and adaptation of the topology have been essentially

focused on geographic locality and have not addressed the dynamic optimization of a

network based on local and global structural metrics.

Topology awareness has also been used to achieve fault tolerant routing. For exam-

ple, the Resilient Overlay Network [9] (RON) project addresses the problems raised

by the BGP routing failures between Autonomous Systems. RONproposes an overlay

network protocol to dynamically determine a new route for the packets to go around
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a failed node. RON showed to successfully reroute data around a fault on small net-

works of50 to 60 nodes, but did not address structural properties of the topology and

their impact on application-level functionalities. Similar issues are also encountered

in peer-to-peer networks, in which unreliable communications are established between

peers in the absence of centralization. One such class of P2Papplications,Distributed

Object Location and Routing(DOLR) [31] useslocality awareness, proximity rout-

ing, data replication, andsoft-state maintenancetechniques to guarantee reliable and

high performance search in the P2P system. Another area where topology-awareness

is used is mobile ad-hoc networks (MANET). The cost of routing in MANETs largely

influences the power consumption of the interacting nodes. Each node in a MANET

maintains a local view of its neighboring nodes, i.e. a localmap of the topology, and

when optimized, can improve the performance of the application and reduce the power

consumption of the nodes. One such optimization is used in Ascent [32], an energy-

saving protocol for sensor networks. Ascent uses local topology information and the

density of packet loss to determine the node’s current and next state and uses Directed

Diffusion [33] to build a global view of the topology.

While our research shares conceptual affinities with this work, particularly on the

mechanisms for topology modifications, our focus is on understanding the impact of

local reconfiguration strategies at the application-level.

2.5 Network Topology Modeling

In contrast to the approaches presented in Section 2.4 that grow a network using local

knowledge of the topology, the network modeling field looks at real-world networks

and attempts to identify the generating principles and beststatistical fit between model

networks and their real-world counterpart. The comparisonof the networks is typically

performed using new metrics that invalidate a prior model infavor of a new model

for which the new metric is validated. For example, while theInternet topology was
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originally believed to be a random graph [34] and assumed to have a Poisson degree

distribution it was later shown to have a power-law distribution. Modeling of the Inter-

net topology is actively researched and rendered difficult due to the rapid growth and

frequent changes of the network. Five models of the Internettopology, random, Wax-

man, Doar-Leslie, Exponential, and Locality, were presented and compared in [35, 36],

each model introduced a new metric that invalidated a previous model. The most cur-

rent accepted model is derived from the Highly Optimized Tolerance model introduced

in [8] that takes into consideration the economic and human costs as part of the network

model and has been termed the “robust yet fragile” model.

2.5.1 Models of Complex Networks

The modeling of complex networks from biology, technology,and sociology have led

to important discoveries towards understanding the generating principles of real-world

networks. A “good” model enables the generation of networkswith desired character-

istics that are applied to study or simulate the behavior of the modeled large complex

systems without depending on real-world data.

A complex network can be modeled with nodes joining a networkin discrete time

steps. At each step a node establishes connections to nodes already in the network.

The number and target of these links are the two fundamental variables of the model.

For example, the target nodes can be selected at random amongst all nodes, or prefer-

entially, in which case a measure of preference is necessaryto guide the connectivity

process.

Models of evolving networks may also consider aging, a process by which links be-

tween two nodes are removed if a satisfying condition to maintain the link is not met.

Aging enables the study of the dynamics of networks and is an essential characteristic

of real-world networks. For example, in social networks, new links are formed through
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the discovery of new acquaintances, or friends of friends, and dropped when affinities

change.

The main models of evolutionary networks can be categorizedas:

• Random: The existence of a link between any two nodes is drawn from anarbi-

trary probability distribution. The network may evolve with or without aging.

• Preferential: Links are determined based on a preference factor that measures

an affinity between a considered pair of nodes. The network may evolve with or

without aging.

These two types of models include as sub-categories: configuration model [37],

Callaway Traits [38], and Small-World networks [39]. The next section briefly intro-

duces each model.

Random Graph Models

Erdõs-Rényi Random Graph: The earliest random graph model was proposed by

Rapoport and later reformulated by Erdõs and Rényi in a series of seminal papers [34]

in the 1960’s. This model established graph theory as an areaof combinatorics and

initiated the field of random graph theory.

In this original model, a graph withn nodes is constructed based either on a uniform

probability,p, of existence of an edge between any pair of nodes and is denotedGn,p or

based on a number,m, of edges in the graph and is denotedGn,m. For theGn,p model,

the average number of undirected edges in a random graph ispn(n−1)
2

. This model

grows a network with a Poisson degree distribution. All possible graphs constructed

using these mechanisms belong to the class of Erdõs-Rényirandom graphs.

Callaway Traits [38]: consider that each nodes in a network is assigned a type. A
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type matrix determines the probability that nodes connect to each other. This network

evolves in discrete time steps, at each step two nodes are chosen at random in the net-

work, and are connected according to a predefined probability table based on the matrix

of types.

Configuration Model: The configuration model [37, 40] is a class of random graphs

that are built based on a degree distribution from which a degree sequence is chosen

and all nodes degrees are paired to meet the degree sequence requirement. One process

by which such an arbitrary degree sequence is constructed isto visualize each node as

having “spokes” sticking out of it with no connection to any other node. The spokes

of each node are then paired at random until there are no remaining nodes with uncon-

nected spokes. The condition for such a network to be built isto have an even total

number of spokes. Networks resulting from such a process might not be connected. If

it is a requirement of the model to generate connected networks, the resulting networks

have to be checked by running a connectivity check algorithm, such as breadth-first or

depth-first search, on the generated network.

Watts-Strogatz Small-World Model: The model proposed by Watts and Strogatz

in [41] considers a2D lattice topology on which a fraction of nodes are rewired by

creating long range connections outside of their neighborhood according to a set proba-

bility p. This randomized reconfiguration leads to what is better known asSmall-World

networkswhich have low transitivity (i.e., clustering coefficient)and low average path

length. This model has been very influential to this researchdue to the relationships

between the local reconfigurations and their impact at the global level.

Preferential Attachment Models

The preferential attachment model originated as a candidate model to explain the

emergence of the power-law distribution exhibited by a variety of large-scale systems
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in many sciences. Historically, power-laws have been foundin income distribution

(Pareto, 1897), city sizes (Zipf-Auerbach, 1913/1940s), word frequency (Zipf-Estouf,

1916/1940s), bibliometrics (Lotka, 1926), species and genera (Yule, 1924), economic-

s/information theory (Mandelbrot, 1950s)2.

Simon Model: Herbert Simon was the first to propose and document a preferential

attachment model as a leading factor that exhibits power-law distribution in the context

of Economy and wealth distribution [42]. The model is based on the observation that

as new elements join an existing system, connections are formed with those elements

already in the system that are most known or more popular, andis also known as the

rich club connectivity, or “the rich get richer” phenomenon.

Price Model: In 1965, while studying citation networks, Derek deSolla Price found

that thein andout degrees of coauthors followed a power-law distribution. His pro-

posed model [43] to explain this observation was based on theconcept preferential

attachment similar to that expressed by Herbert Simon earlier.

Barabási-Albert Scale-Free Network: In 1999 several independently conducted stud-

ies [10, 17, 8] showed that the distribution of router links on the Internet exhibited a

power-law distribution. Documents on the World Wide Web were also shown in [17]

to be linked following a power-law distribution and termedscale-freenetworks ac-

cording to the process of preferential attachment described by Barabási and Albert.

More recent studies have elaborated on these initial observations, while revalidating

the power-law distribution but giving different explanations for the underlying gener-

ating principles and manifestations of these properties [44]. A study of the evolution

2These historical references are copied here from a presentation titled “New Directions for Power-

Law Research” by Michael Mitzenmacher.



30

of the Internet topology design is presented in [44], in which a study of a single Inter-

net Service Provider is used to extrapolate information about the global Internet and

confirms the preferential attachment put forward in [17].

Summary: It is becoming key to many sciences to better understand thestructural

properties of complex networks, as well as to identify the appropriate metrics that are

necessary to study and label such networks. Network topology modeling attempts to

identify the guiding principles that drive the evolution ofreal-world networks. The

models are compared to their real-world counterpart through specific metrics that act

assignaturesof a network. Network models that accurately predict the value of a mea-

sured property on the real-world and modeled network can then be used as generators

of arbitrary networks that behave similarly to the real-world networks, and be used as

platforms to simulate interactive and behavioral patterns.

2.5.2 Network Models: An Illustrative Example

Real-world networks evolve over time through dynamic nodesand links addition, re-

moval, and rewiring. These dynamic events take place at the local level in the ab-

sence of centralized and global control, and have complex nonlinear implications at

the application-level that need to be understood and managed.

For example, consider two simple discrete time evolving models, random wiring

and preferential attachment. In the random wiring evolvingmodel, at each step a node

is added to the network and connects to a node already in the network with a uniform

probability p that is a property of the model. In the preferential attachment model,

at each step, a node is added to the network and connects to a node i already in the

network with probabilityP (i) = kα
i + β, wherek is the number of links of a node,

α a preference exponent, andβ the appeal to connect to an unconnected node. A

probabilityP closer to1 means that an added node favors nodes that have more links.

The resulting distribution of number of links, shown in Figures 2.4(a) and 2.4(b), are
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(a) (b)

Figure 2.4: (a) Link Distribution of Growing Random Graph with 10,000 nodes and
2 edges per step. (b) Link Distribution of Growing Preferential Attachment Network
with 10,000 nodes and 2 edges per step,α = 1.

significantly different for each process. The random model leading to an exponential

distribution and the preferential attachment to a power-law distribution. Observations

and lessons learned from the analysis of such dynamics is necessary to understand the

evolution of large scale computer networks such as the Internet.

2.5.3 Statistical Modeling of Networks

Large-scale networks can be described as a large set of interconnected nodes that are

theoretically best described through a stochastic formulation of the nodes, edges, de-

gree distributions, or other arbitrary network properties. One explicit formulation

that has been used and shown successful in recent years is that of generating func-

tions [17, 37, 45] based on the degree distribution of a network. Using generating

functions, a network with arbitrary degree distribution can be represented using the

mathematical notation of power-series [45]. Other properties of the networks can be

obtained by deriving the moment generating function of the degree generating function.
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Probability Generating Functions

Consider the probability distribution of vertex degreesk, the generating function,G0(x)

can be expressed as:

G0(x) =
∑

k=0

pkx
k,

wherepk is the probability that a randomly chosen vertex on the graphhas degreek.

The distributionpk is correctly normalized such that

G0(1) = 1.

Probability generating functions have properties that make them particularly well suited

to the study of evolving networks, especially regarding itsDerivatives, Moments, and

Powers.

Derivativesof the probability generating function ofpk is given by thekth derivative

of G0 according to

pk =
1

k!

dkG0

dxk
|x=0.

Momentsof the probability generating functions give the mean of thegenerating func-

tion given by thekth derivative of the generating function. For example, the first mo-

ment, is given by the first derivative, and expresses the average degreez, i.e., average

number of neighbors, of the nodes

z =< k >=
∑

k

kpk = G′
0(1).

Higher derivatives give higher moments, for example the variance, i.e., the second

moment is given by

v =< k2 >= G′′
0(1)G′

0(1).

and in general, thekth moment is given by

< kn >=
∑

k

knpk = [(x
d

dx
)nG0(x)]x=1.
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Powersof the generating function express the distribution of the total of a sum of

independent realizations of an observed property of the network. For example, form

nodes chosen at random in a large network, the distribution of the sum of the degrees

of those nodes is generated by[G0(x)]m.

Using this formulation, structural properties of large complex networks such as the

mean component size, average number of neighbors, and average path length, can be

formulated analytically and are derived in [37]. The mean component size< s >, is

expressed as

< s >=
1

1− z + zS

wherez is the average number of neighbors of a vertex andS is the size of the giant

component. The average numberzm of mth-nearest neighbors is

zm = G′
1(1)zm−1.

which further reduces to

zm = [
z2

z1
]m−1z1.

Hence, the average number ofmth nearest neighbors can be determined based on the

number of1st and2nd order neighbors alone. The typical lengthl of the shortest path

between two randomly chosen vertices on the graph is analytically expressed as

l =
ln(N/z1)

ln(z2/z1)
+ 1.

As mentioned in [37], such“result is only approximate for two reasons. First, the

conditions used to derive it are only an approximation; the exact answer depends on

the detailed structure of the graph”. In the face of such limited analytical formulation,

these measures should be computed independently for each considered network.
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2.6 Emergent and Bio-Inspired Approaches

Emergence, or the emergent property, is a characteristic ofsome complex systems by

which the number of possible interactions between the elements of the system is so

large that the system as a whole may appear greater than the sum of its parts. For

example, the World Wide Web exhibits an emergent property, as links under no cen-

tralized control follow a power-law, rather than random, distribution. There are several

research efforts that build on the concept of emergence to construct and manage net-

work topologies [46, 19]. While our research is also based onemergence, it differs

in the strategies used to adapt node connectivity and evolvethe network topology, as

well as the metrics used to evaluate candidate adaptations.Other related work include

efforts inspired by self-organization [47], nature and biological systems [48] such as

Amorphous Computing [49], Swarm Intelligence [50, 51], andCellular Automata [52].

2.6.1 Amorphous Computing

Amorphous Computing applies concepts from biology and evolution to develop com-

puter languages (Growing Point Language [53]) and decentralized evolving systems [54].

Each computing cell is viewed as equivalent to an organic cell that is guided by its en-

vironment to determine its next state. The cells follow virtual chemical gradient and

density trails to identify their position and direction of evolution.

2.6.2 Swarm Intelligence

Swarm Intelligence is inspired by social and behavioral theories in the animal and hu-

man kingdom. For example, foraging, nest building, and burial activities of social

insects (ants, wasps, termites) follow local rules appliedby each entity with no knowl-

edge of the whole. Similarly, flocks of birds, schools of fish,and herds of mammals

follow local rules that lead to structures with emergent properties.
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2.6.3 Cellular Automata

Cellular automata is a mathematical model that was introduced by Jon Von Neumann.

It is characterized by the evolution of a set of nodes with deterministic neighboring

rules that interact and form, in non trivial cases, unknown global behavior with or

without apparent pattern formations. While some games, such as the rules of the game

of life yield self-sustaining patterns that are now well understood, cellular automata

rules result in complex non-linear and non-deterministic patterns that remain unex-

plained. In [18], an asynchronous cellular automata is evolve and shown, for specific

considered rules to manifest a surprising degree of structure.

2.7 Summary

The study of the effect of linking strategies between nodes in a network is a complex

and nonlinear problem that is combinatorial in nature. It has been mainly addressed

in the theoretical sciences such as graph theory and statistical physics. In the applied

sciences, structured and unstructured topologies have been studied in areas such as

content management and topology-aware approaches. However, the problem of study-

ing the impact of local rewiring strategies and their implication at the application-level

has received little to no attention from the network engineering research. This prob-

lem requires urgent attention to better predict the evolution of next-generation complex

network structures. Results from recent research show that:

• Large-scale man-made systems appear to follow a power-law degree distribution.

• Nodes in large scale networks can reach eventual consistency using a small num-

ber of message-passing cycles.

• In a structured overlay network, information can be published and retrieved in

logarithmic time.
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While these results are groundbreaking in the understanding of large-scale complex

network, more questions remain unanswered and are addressed in this thesis: (1) Are

there canonical metrics that quantify a network topology, both at the local (i.e., node)

and global level? (2) Are network perturbations based on thelocal metrics correlated

with the application-level properties? (3) Can local reconfiguration heuristics yield

predictable application-level properties?

Further, the strategies proposed by emergent and Bio-inspired computing share simi-

larities in the manifestation of global properties from theinteraction between small and

simple parts. As a result, these approaches are inherently non-deterministic and their

quantification remains little understood. Existing research efforts in this area raise im-

portant questions about the evolution of networks, the distributions that are manifested,

the quantification of their resilience, security, and efficiency, and the rules of evolution

required to obtain a desired behavior.

This research seeks to understand the emergent application-level impact of perturba-

tions of network topologies based on local optimizing structural properties alone. This

is achieved by analyzing networks, both from evolving network models as well as real-

world networks, and using topology-aware mechanisms to obtain information from the

underlying topology at the node level to determine the next system-state. While this

research relies and has been inspired by graph theory, topology-awareness, topology

modeling, and self-organization and the emergent property, it is unique in the iden-

tification of local structural metrics, and application-level properties, and the investi-

gation of correlations between the optimized networks based on local metrics at the

application-level.
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2.8 Description of the Tools Used

The formulation of network topology as a graph and the computer representation of

the graph as adjacency matrices and edge lists was based on the igraph [55] software

library.

igraph is a library written inC, with interfaces to theR [56] statistical language, as

well as Python.igraph offers many features that make it a tool of choice to study and

analyze large complex networks from a structural perspective. Some of the features of

igraph that were most relevant and used in this research include:

• High-level functions for generating random and regular networks.

• Routines for manipulating large graphs by adding, removing, or reconfiguring

edges.

• The definition of structural properties such as degree or centrality.

• The implementation of advanced force-based layout generation such as theKa-

madaandKawai, or FruchtermanandRheingoldalgorithms to facilitate the vi-

sualization of small to medium-sized graph.

• A clean and well documented API that make it easily extensible.

Furthermore, theigraph/Rinterface brings the power of theR language to perform

statistical evaluation on the graphs and related metrics such as map-reduce operations,

vector and matrix arithmetic, list operations, and plotting on top of all the essential

statistical features such as correlation, variance, etc...

As an example consider the following code that is used to measure the degree cor-

relation of a graphg:



38

c o r r e l a t i o n<−f unc t i o n ( g ,m=” p ea rs o n ” ){

e l<−ge t . e d g e l i s t ( g )

d1<−degree ( g , e l [ , 1 ] )

d2<−degree ( g , e l [ , 2 ] )

i f ( sd ( d1 , d2 )==0) re turn ( 1 )

co<−cor ( d1 , d2 , method=m)

re turn ( co )

}

The igraph functions in this illustrative example areget.edgelistanddegree. The

R functions aresd andcor, respectively for standard deviation and correlation. The

first line gets the graph representation as an edge list, i.e., as a from/to relationship,

and stores the degree of each node in a corresponding relationship. The correlation is

computed using a Pearson correlation moment function provided by theR library. All

network visualizations and plots in this thesis were generated usingR-2.5.1andigraph

0.5.
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Chapter 3

A Qualitative Analysis of Network Topologies

3.1 Network Topologies

This section presents some commonly used network topologies, from basic regular

topologies, such as ring, tree, star, and lattice, to more advanced regular topologies such

as hypercube, chordal ring, and Kautz networks, and finally to non-regular topologies,

such as power-law and Poisson degree distributed. The topologies are then evaluated

with respect to their properties for routing and search, robustness, and security. The

network graph representation of a topology can be considered as having directed or

undirected edges1. Figure 3.1 illustrates a high-level view of the range of topologies

based on a three dimensional space that considersmodularity, transitivity, andregular-

ity as properties axis.

3.1.1 Basic Regular Topologies

Fully Connected: The all-to-all pairing of nodes in a network ofN nodes requires

N(N−1)
2

undirected edges.

Ring: The Ring topology has a uniform degree of two links per node.For a net-

work of N nodes it containsN edges.

Tree: A Tree is an acyclic structure for which all nodes but the leaf nodes have two

1In this paper, all topologies, except the Kautz network, areconsidered undirected
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Figure 3.1: Network Topologies classified based onRegularity, Transitivity, andMod-
ularity

edges. For a network ofN nodes it containsN − 1 edges.

Star: The star topology has a central node to which all otherN − 1 nodes connect

to. This topology is very common in local area networks. It implements the hub-and-

spoke architecture which is a common design pattern and consists of a single node that

is common to all nodes in the network, that is used to route information to and from

every pair of nodes. For a network ofN nodes, the star topology containsN−1 edges.

Lattice (Meshes and Tori): A mesh and a torus are related structures that differ in

that tori are circular whereas meshes aren’t. Circularity means that the extremities of

the topology connect to nodes at the other extremity of the topology. For example, in

a two dimensional mesh, all nodes but the ones at the corners have four neighbors, the

four corner nodes have two neighbors, therefore, the total number of edges for a mesh
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of N nodes is2N − 2 ∗ sqrt(N). In the case of a two dimensional torus ofN nodes,

the number of edges is2N .

3.1.2 Advanced Regular Topologies

Hypercube: Hypercubes are high-dimensional lattice topologies and are commonly

used for embedding computations in parallel applications.An n-cubehas2n nodes and

n2n−1 edges.

Kautz Network : A Kautz network of degreeM and dimensiond + 1 has(M + 1)Md

vertices and(M + 1)Md+1 edges. Kautz networks are well suited to fault tolerant

topologies of parallel computer interconnects because they have the smallest diameter

of any directed graph withN vertices and degreeM .

Chordal Ring: An extension of a ring topology in which nodes are interconnected

by chords going across the ring in a periodic manner. The number of neighbors in an

N node chordal ring is between3 andN − 1 (fully connected). When choosing the

periodicity of the neighbors in an efficient manner, the chordal ring topology offers

lower diameter and greater resilience than the ring topology.

3.1.3 Non-regular Topologies

The previous topologies are regular structures in that all nodes have similar degree

characteristics. Non regular topologies have nodes with different properties that can

form complex networks with arbitrary structural properties. We address two categories

of such random networks, uniform random and preferential attachment.

Uniformly Random Networks: In a random network, each possible pair of nodes

is interconnected with a certain probability. When the probability is drawn out of a
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uniform distribution (i.e., forN nodes isp = 1
N

for each pair), the resulting degree

distribution is normal and centered around a mean ofp ∗ N(N−1)
2

. This type of uniform

random graph was proposed in [34]. This topology is particularly valuable when other

topologies are compared to it to identify distinctiveunexpectedproperties of the net-

work.

Preferential Attachment Networks: Are a type of random graphs thatfavor certain

nodes, hence giving a greater probability of attachment to some nodes and less to oth-

ers based on preference. The generating principle of a preferentially attached network

is that nodes are added in discrete time steps such that at every step the newly added

node preferentially attaches to a node in the network that has greater degree. Such net-

works have been shown to exhibit power-law degree distribution due to the nature of

the reinforcement by the preferential attachment to favor highly connected nodes in the

network. The power-law distributed network has a degree distribution that follows a

power-law of the typey = x−α whereα has been shown to be between2 and3 for var-

ious biological, technological, and social networks. Thisdegree relationship expresses

the fact that the node with highest degree is exponentially more connected than the sec-

ond highest degree node and so on. This degree relationship has also been referred to

as scale-free because of the self-similar relationships between nodes at various levels

of degree connectivity.

3.1.4 Edge and Degree Summary

Table 3.1.4 presents a summary of the topologies with respect to fundamental proper-

ties of each topology, the number of edges and degree. Each topology considered has

N nodes.
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Topology Number of Edges [Min-Mean-Max] Degree
Full N(N−1)

2
N − 1, N − 1, N − 1

Ring N 2, 2, 2

Star N − 1 1, 2N−2
N

, N − 1

Tree N − 1 1, ?, 2

Mesh 2(N −
√

N 2, 4(N−2)
N

, 4

Torus 2N 4, 4, 4

Hypercube N(logN)
2

d, d, d

Chordal Ring kN k, k, k

Kautz (M + 1)Md+1 M, M, M

Random N2p

2
1, Np, N

Power-Law Nm− 1 1, ?, N − 1

Table 3.1: Basic Topology Metrics.N is the number of nodes.d is the dimension
of the Hypercube.p is the probability of two nodes being connected by an edge in
the Random topology.k is the number of extra edges for each node in the chordal
ring. M is the degree andd the dimension in the Kautz network.m is the preferential
attachment exponent.
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3.2 Network Applications

The network topology is the supporting structure on which a network application is de-

ployed. It is the fundamental substrate on top of which communication between nodes

takes place and higher order interactions are executed. Theobjective of this chapter is

to show that the structure of the topology significantly affects the performance of an

application. To this end, we consider the followingcanonicaldistributed applications,

Routing, Search, andRobustness. In a first part, we briefly define these applications

and then present an evaluation of the impact of topology on application performance.

3.2.1 Routing

Routing is the process of identifying a route from source to destination in a network

of nodes capable of forwarding information as messages fromhop to hop. Routing is

an essential requirement of any message passing distributed system. The end to end

delivery of a message involves finding a path between the endpoints, preferably short-

est, but might also include finding alternate paths in case a link or node fails along the

route. The most important decision in routing is to choose the node to forward infor-

mation to such that the destination node is closer. The possible nodes to choose from

are the neighbors of the node in the topology. While there arefar too many existing

approaches to routing to present in this section, the majority of approaches fall in one

of three categories,Distance-Vector, Link-State, andAd-hoc.

Distance-Vector Routing: In Distance vector routing approaches, nodes compile a

vector of reachable nodes that is shared to all neighbors, every node then uses the ex-

changed vectors and computes the shortest paths to other nodes. Implementations of

distance vector routing are provided by the Bellman-Ford algorithm, which works on

a weighted graph that can contain negative edge weights. Thealgorithm is used for the

Routing Information Protocol, RIP, but has the disadvantage of not scaling well, and
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not reflecting changes in the topology quickly enough.

Link-State Routing: In Link-state routing every nodefloods the network with in-

formation about its neighbors. Once routershear everything about the network they

can calculate the best path to any host on any destination network. This can be done

usingDijkstra’s shortest path algorithm [23], a variation of Bellman-Ford’s algorithm

for weighted networks with no negative edge weights. The most classical implementa-

tion of link-state routing algorithm is theOpen Shortest Path Firstprotocol.

Ad-Hoc Routing: There are two main categories of ad-hoc routing,table-driven,

also known asproactive, andon-demand, also known asreactive. In table-driven ad-

hoc routing every node maintains a routing table, when the topology changes, nodes

propagate update messages to the network in order to maintain a consistent view of

the topology. Examples of this approach areDestination Sequence Distance Vector,

Distance Vector Routing Protocol, Wireless Routing Protocol, Global State Routing,

Hierarchical State Routing. The differences between these systems are in the way the

information is updated. InOn-Demandrouting routes are discovered as needed, the

path remains valid until the route is not needed anymore or the timestamp for the route

expires. Examples of this approach areAd-hoc On Demand Distance Vector Routing,

Cluster Based Routing, Dynamic Source Routing, Temporally Ordered Routing.

3.2.2 Search

Search is the process of looking from a source node, for a nodeor collection of nodes

that match a query. The query is arbitrary and could be for content or resource. In dis-

tributed search the most challenging task is to obtain guarantees on the search, meaning

that, with certainty, all items matching a query are returned to the requester. The net-

work that is searched can be structured or unstructured. Structured networks offer the

advantage of bounding the search time, possibly achieving logarithmic number of hops
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to discovery.

In regular topologies, all nodes have an identical number ofneighbors. Searching

for an object in such networks is bounded by the average number of hops a message

takes before finding the desired object. This expected search time (measured in number

of hops) goes aslogk(n) wherek is the fixed regular number of neighbors of a node.

However nodes in the network could be structured to optimizefor a given set of

parameters such as geographic locality or bandwidth. Just as in routing, the network

topology is essential in determining which of a node’s neighbors is most likely to lead

towards the desired content. A structured topology might offer similar bounds on the

search process from every node, while an unstructured topology might have a high

variance on the search bounds but offers more flexibility.

In contrast, irregular topologies evolve under no control and can therefore be lo-

cally and globally heterogeneous. Such heterogeneity renders the problem of discov-

ery and searching in these networks difficult, often requiring a traversal of all nodes to

guarantee discovery. Irregular topologies have been modeled using Newman’s formal-

ism [37] of probability generating functions. The probability generating function of a

measurable property is expressed as a power series,G0(z) =
∑∞

k=0 pkz
k wherepk is

the probability of a node to have degreek andzk is the polynomial factor associated to

a degreek. While probability generating functions are useful at setting some asymp-

totic bounds on some graph properties, their generalization remains challenging as the

assumptions that are made to obtain the bounds render the problem more abstract and

further from real networks. Such difficulties combined withgraphs combinatorial ex-

plosion for many problems in search and optimization currently limit the applicability

of analytical tools to real world networks, that are best assessed using experimental

evaluation.
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3.2.3 Robustness

The robustness of a network reflects its capacity to maintainfunctionality in the pres-

ence of changes or disruptions. One way to assess the robustness of a network is by

measuring its edge connectivity, i.e., the minimum number of edges that need to be

removed to disconnect the network.

However, the measure of edge connectivity does not quantifythe importanceof the

edge that is removed in the network. For example, a fully connected network with1

node at the edge of the network connected to the dense networkwill result in an edge

connectivity of1, but fail to recognize that this edge is not the most likely traveled

and therefore not the most important to consider. To addressthis issue, we introduce

a novel measure of robustness that uses theedge betweennessmeasure presented in

Section 2.3, and is computed as shown in Algorithm 1.

Algorithm 1 A Measure of Robustness based on Betweenness Centrality

while G is connecteddo
for all edges∈ G do

compute edge betweenness
end for
S← sort edge betweenness in decreasing order
removeedge = max(S) from G
increment number of edges removed

end while
return number.of.edges.removed

This normalized measure of robustness has the advantage to reflect the centrality

of an edge in the network, and returns a value closer to1 when the total edges have to

be removed.

3.2.4 Security and Cooperation

Identifying malicious activity in a distributed network can be addressed through coop-

erative strategies by which a set of nodes recognize a node asbehaving in an anomalous
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Figure 3.2: Shortest Paths for 500 Node networks

manner and flag it appropriately. Such a quorum forming is only possible if a set of

nodes are in each others neighbor set. The transitivity metric presented earlier is im-

portant in that a higher transitivity reflects a cohesive network in which neighbors are

themselves neighbors of each other, and can therefore vote upon a node’s behavior or

activity.

3.3 Evaluation

Using the metrics presented in Section 2.3, we evaluate the various topologies with

respect to the applications presented in Section 3.2 and discuss the advantages and

disadvantages of each topology for each metric. In this study, the weight distribution

for all topologies is considered constant with cost1. The evaluations with variable

weight cost distributions is left as future work in this research.

3.3.1 Routing through Shortest Paths

The bar plot in Figure 3.2 shows a statistical summary for thedistribution of the short-

est paths for the network topologies presented in Section 3.1, each comprising of500

nodes. The plot shows the minimum, first quartile, median, mean, third quartile, and

maximum value for a shortest path in the respective topologies. The topologies will be
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Figure 3.3: Degree of 500 Node network

referred to asslowwhen they manifest high average path length andfastotherwise.

The ring clearly appears as aslow topology with the highest average shortest path

length. The star and random topology are thefastest, although this is at the expense

of either high number of edges (for random networks), or highbetweenness centrality

(for star networks), as will be discussed below.

The bar plot in Figure 3.3 shows the same topologies and summary statistics for the

nodes degree count. The star topology has a very high maximaldegree, corresponding

to the central node, and indicates that while on average nodes have very low degree,

very few nodes have a very high degree (in the case of star justone). The random topol-

ogy also stands out from the regular topologies as having nodes with higher average

degree, indicating that the nodes have more edges than otherregular structures. The

scale-free network presents a trait similar to the star network, although of lesser scale

and indicates that very few nodes have much higher degree than the average, hinting at

the power-law nature of the degree distribution.

The shortest paths and the degree plots illustrated aspectsof the topology relating

to the distribution of degrees but fail to indicate if nodes in the network are more

important (from a routing perspective) than others. This isshown in the bar plot in

Figure 3.4, which shows the betweenness centrality for the same network topologies.
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A high betweenness centrality indicates that some nodes arecentral to the network and

used in routes to and from many nodes. This is strikingly visible for the star, the scale-

free, and the tree networks. In a ring and random networks however, the distribution

of routing responsibilities are equally distributed amongst all nodes, in particular the

random network indicates the absence of betweenness centrality.

3.3.2 Robustness

The bar plots in Figures 3.5(a) show the edge connectivity and measure of robustness

of the500 nodes network topologies considered.

The random network has the second highest, following the fully connected net-

work, edge connectivity than all other topologies. This could be deduced from Figures

3.3 and 3.4, as the degree summary of the random network indicated that nodes are

on average highly connected, and the betweenness centrality of all nodes remains very

low. It is therefore not surprising that the random network would be highly resilient to

link failure. The edge connectivity of the hypercube, chordal ring, and torus networks

follow.

Figure 3.5(b) shows measurement of the network robustness using the metric intro-

duced in 2.3. The removal of the most central edges in the network reveals the random
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Figure 3.5: (a) Edge Connectivity and (b) robustness measures.
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network as the most robust topology, followed by the Kautz network, the chordal ring,

and the hypercube.

3.3.3 Search and Network Coverage

The following results show the network coverage ratio of each of the topologies pre-

sented in Section 3.1. The coverage is measured for each topology with 1000 nodes.

The results show the average ratio of nodes reached per hop inthe topology over all

nodes. The maximum number of steps corresponds to the diameter of the network.

This can be expressed as:

coveragei =
1

N

∑

N

[

i
∑

j=1

νj

]

, whereN is the number of nodes in the network,i is the number of steps and can take

values between1 andD whereD is the diameter of the network,ν is the number of

neighbors at stepj from the source node.

The nodes closer to the center of the lattice topology have better coverage than

nodes closer to the sides. Figure 3.6 shows that it takes an average of30% of the

diameter to reach50% of the nodes in the topology.

The advantage of the lattice is that it maps easily to geographical grids and fits well

models of local information exchange while retaining a low average degree. However,

the main disadvantage is that nodes at the extremities require larger number of hops to

communicate, which might add significant communication load on nodes in the center

of the topology when routing through shortest paths.

The tree topology forms a hierarchical structure that has a single root and a single

path from every pair of nodes. Therefore the network coverage is greater for nodes

closer to the root than nodes closer to the leaves of the tree.The root node of any

subtree is also responsible for routing between its subtrees, therefore adding a larger

required bandwidth to higher level nodes. This bandwidth issue was addressed in a

modified tree structure known asFat Treewhich contains more links at every level
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Figure 3.6: Average Network Coverage over a Lattice topology
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Figure 3.7: Average Reachability per node per step for a Treetopology
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from the leaf to the root. The regular tree is not a resilient structure as the removal of a

single link disconnects the topology, further, if a root link is disconnected the network

becomes partitioned in half for a balanced tree structure.
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Figure 3.8: Average Reachability per node per step for a Torus topology

The torus, or2D mesh with wraparoundas it is sometimes referred to, is a mesh

topology in which nodes at the extremities are connected to each other. Therefore

the node degree is perfectly uniform and it overcomes the issue of the mesh topology

regarding corner nodes that require many hops in order to communicate. The network

coverage in a torus is therefore much faster than in the mesh.

The Hypercube orn-cubeas it is also referred to, has one extra edge for each

dimension, further, the(n+1)th cube has twice as many nodes as thenth cube. Higher

dimension hypercubes offer higher degree of resilience as there are as many alternate

paths as there are added edges.

The Kautz network is often applied for fault tolerant interconnect topologies of
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Figure 3.9: Average Reachability per node per step for a Hypercube topology
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Figure 3.10: Average Reachability per node per step for a Kautz network
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parallel machines. The advantages of the Kautz network is that it is efficient for em-

bedding a high number of nodes with low diameter and low degree.
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Figure 3.11: Average Reachability per node per step for a Scale-Free network

The non-regular scale-free or power-law distributed network has more nodes that

are little connected than few nodes highly connected. In a hierarchical design in which

some nodes are more important than others, such as the fat tree, this is a naturally

occurring structure. It also emerges in many contexts otherthan computer engineering

such as biological, social, and physics networks.

Besides the fully connected topology, the random network has a very high number

of edges distributed randomly. This makes it very resilientto edge failure and gives the

network a very low diameter.
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Figure 3.12: Average Reachability per node per step for a Poisson (p=0.5) network

3.3.4 Trust and Security

Figure 3.13 shows a statistical summary of the local transitivity for each topology under

study.

It appears that most regular and advanced regular topologies have0 transitivity.

This is due to the fact that these regular structures do not contain any inter-neighbor

edges. The fully connected network, random, and chordal ring topologies are the only

topologies with a positive transitivity. The maximum transitivity is for the fully con-

nected network at the cost of the maximum number of edges. Such a high transitivity

makes identifying malicious activity easier because a voting round can include a max-

imum number of nodes in the network, however the cost of voting increases as the

number of participants increases. So in such a case, the trade-off between number of

participants and voting time can be detrimental to the optimal functioning of an appli-

cation. The chordal ring being between a ring and a fully-connected network offers
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Figure 3.13: Transitivity of different Topologies

higher transitivity with yet fewer number of edges making ita very attractive candidate

topology to identify malicious or dysfunctional nodes.

3.4 Exploring the Network Topology Design Space

We characterize the topologies with respect to the four fundamental properties,number

of edges, resilience, transitivity, andaverage path length. We argue that anoptimal

topology is one that minimizes the average path length and number of edges while

maximizing the transitivity and resilience. The problem can therefore be stated as an

optimization problem in which the objective is to minimize the average path length and
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the number of edges while maximizing resilience and transitivity:

maximize{ ( τ ∗ transitivity + ρ1 ∗ resilience + ρ2 ∗ robustness)−

( α ∗ average.path.length + ǫ ∗ num.edges)}.

With these design choices, it appears that while the fully connected network has

optimal inter-node distance of1 hop and presents very high resilience, it is very costly.

The star topology also offers1 hop to and from every node and has minimal number of

edges, but has very low resilience. The ring topology has lowresilience, low number

of edges, and high diameter. The chordal ring and Kautz network appear as regular

topologies of choice, with high resilience, moderate number of edges, low diameter

and low average inter-node distances.

The optimal topology that satisfies a set of objectives can beobtained by varying the

parametersτ, ρ1, ρ2, α, ǫ. Figure 3.14 shows the results obtained when enumerating

over all possible combinations of the four controlling variables between0 and2. The

bar plot in Figure 3.14 shows the topologies on the horizontal axis and the number of

times that each topology is selected as optimal out of the total 53 enumerations.

3.4.1 Interpretation of the Results

Figure 3.14 shows that the majority of the results favor the random andfully connected

networks, the results that yield a different topology are shown in Table 3.4.1 through

Table 3.4.1.

These results reveal that:

• The Kautz network appears to be optimal when the transitivity and edge connec-

tivity resilience are not factored in the requirements of a topology.

• The Tree topology is optimal when the average path length andnumber of edges
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Chordal Ring
τ ρ1 ρ2 α ǫ
0 1 1 2 0
0 1 1 2 1
0 1 1 2 2
1 0 0 1 0
1 0 0 1 1
1 0 0 1 2
1 0 0 2 0
1 0 0 2 1
1 0 0 2 2
1 0 1 2 0
1 0 1 2 1
1 0 1 2 2
1 1 0 2 0
1 1 0 2 1
1 1 0 2 2
2 0 0 2 0
2 0 0 2 1
2 0 0 2 2

Table 3.2: Costs favoring the Chordal Ring Topology.

Kautz Network
τ ρ1 ρ2 α ǫ
0 0 1 1 0
0 0 1 1 1
0 0 1 1 2
0 0 1 2 0
0 0 1 2 1
0 0 1 2 2
0 0 2 2 0
0 0 2 2 1
0 0 2 2 2

Table 3.3: Costs favoring the Kautz Network Topology.
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Figure 3.14: Distribution of Optimal Topology as a Functionof Costs associated to
Transitivity, Resilience, Average Path Length and Number of Edges.

Tree
τ ρ1 ρ2 α ǫ
0 0 0 1 0
0 0 0 1 1
0 0 0 1 2
0 0 0 2 0
0 0 0 2 1
0 0 0 2 2

Table 3.4: Costs favoring the Tree topology.

are the only coefficients of maximization.

• The Ring is optimal when transitivity and the introduced measure of robustness

are not factored into the optimization.

• The Chordal Ring appears more versatile but is often optimalwhen resilience is

not assigned too much weight in the optimization

Ring
τ ρ1 ρ2 α ǫ
0 1 0 2 0
0 1 0 2 1
0 1 0 2 2

Table 3.5: Costs favoring the Ring Topology
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3.5 Summary

This chapter outlined a study of the structure of network topologies and presented the

main differences from a distributed application perspective, between structured and

unstructured topologies. The lessons learned are that the structure of the topology

plays a fundamental role with respect to essential aspects of distributed applications

relating to routing, search, and resilience. Experimentalevaluations using simulations

on a variety of topologies from regular to random, and with constant link costs of

1 were conducted. The results showed that by ranking the topologies according to

efficiencywith respect to metrics of average path length, robustness,and centrality,

the fully connected network topology is the mostefficient, succeeded by the chordal

ring, the star, and the tree topologies. Future work will address arbitrary link weights

distributions to better understand the optimal topology selection to match a class of

applications.
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Chapter 4

Network Entropy: a Measure of Neighborhood
Homogeneity

4.1 Introduction

The network topology defines the “who-knows-who” relationship between network el-

ements. These relationships can be formulated as a graph of nodes and links. The

representation a network topology as a graph offers the powerful mathematical tool of

graph theory that can be applied to analyze structural properties of the network. Re-

search on network and graph theory has put forward a set of metrics that have been

used to better understand properties of networks [21, 57, 10]. These metrics can be

divided into either local or global depending on the proportion of the graph used to

compute them. Local metrics are obtained using a neighborhood, i.e., adjacent nodes,

view of a node, while global metrics are computed using knowledge of the entire graph.

A summarized description of selected metrics is presented on Table 7.2 in the appendix.

Network entropy measures the expected self-information ofadjacent nodes properties

interpreted as random variables. It provides a measure of the homogeneity of a node,

and by extension the entire graph, with respect to theinformationflowing trough the

paths of the graph [58, 16]. A simple analogy to information entropy is to determine,

for a given node in a graph, the number of yes/no questions that need to be asked in

order to guess through which of the adjacent nodes the information is most likely to

arrive from. The computation of network entropy depends on the observed property

of nodes that can be either a local or global metric, for example degree when local or
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shortest path related when global. The implications of using local and global network

entropy measures are discussed.

This chapter first defines network entropy and goes on to present a quantitative analysis

of the metric applied to graphs with static and dynamic number of nodes and edges.

Network entropy is linked to local structural properties ofgraphs such as transitivity

and assortativity.

4.2 Background and Related Work

4.2.1 Definition(s) of Entropy

There are several definitions ofEntropyacross scientific disciplines, each describing

a specific property in their own field. For example, in thermodynamics, entropy char-

acterizes the amount of energy of transformation dissipated into the environment; in

statistical mechanics, it is the number of micro-configurations that can explain an ob-

served macro-configuration; or yet, in information theory,it is the minimum number

of bits required to encode a signal with known probabilitiesof occurrence. Clearly

distinct by definition, all these instances ofentropypoint to a similar notion, a measure

of ignoranceabout an observed system, which has also been commonly referred to as

a measure ofdisorder.

Information entropy is a measure of the expected self-information, that is also known

as surprisal, and corresponds to the inverse of the probabilityp of occurrence of a

random variable, written as1
p

. The more unlikely an event is to happen, the greater

its surprisal. The self-information can be encoded in binary by taking the logarithm

in base2 of the surprisal, written aslog2(
1
p
) and is expressed in units ofbits of infor-

mation. Information entropy [59], the expected self-information, measures the average

information acquired by observing a sequence of occurrences of a random variable and
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is written as

H(x) = −
∑

x

pxlog(px)

wherep is the probability of occurrence of the observed random variablex. This defi-

nition can also be interpreted as a measure of the number ofyes/noquestions that need

to be asked to find which event occurred.

The value of Entropy expressed asH(x) depends on the number of observed random

variables, this measure can be normalized by dividing it by the logarithm of the number

k of observationslog2k, and can be written as

Hnorm(x) = −
∑

x pxlog2(px)

log2k

. This formula is the one we will use to expressnetwork entropyin the rest of this

chapter.

4.2.2 Network Entropy: An Illustrative Example

To illustrate network entropy, consider a graph of4 nodes and3 edges, such as the

ones in Figure 4.1(a)4.1(b). In this example, the numbers inside the nodes are arbitrary

but in practice reflect a measurable property, local or global, of the node such as for

example degree, betweenness, or transitivity.

Considering a measure of entropy at nodeA, the network in Figure 4.1(a) has a homo-

geneous property distribution, while the network in Figure4.1(b) has a heterogeneous

distribution. Network entropy measures the homogeneity ofa node’s neighborhood

with respect to a given property. The property at each adjacent node is interpreted as

the occurrence of a random variable in a sequence ofd draws, whered is a property of

the considered node.

The normalized entropy of nodeA in the network in Figure 4.1(a) is1 while the one
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in Figure 4.1(b) is0.92. This simple example illustrates how a homogeneous neigh-

borhood is less predictable and has higher entropy, whereasa more heterogeneous

neighborhood is more predictable and has lower entropy.

(a) (b)

Figure 4.1: (a) Simple Network with Homogeneous Arbitrary Node Properties. (b)
Simple Network with Heterogeneous Arbitrary Node Properties.

The notion of network entropy has been studied in related work [16] using measures

related to shortest paths as the observable random variables to compute the entropy

metric. We briefly introduce the notion of search information, target. and road entropy

proposed in related work.

4.2.3 Search Information

A stochastic search in a distributed system can be modeled byconsidering that a mes-

sagefloodsthe network starting from a source and advancing to every neighbor of that

source node, which then becomes the source of the next round of propagation, with

the exception that the message does not return to the node from where it originated.

This model leads to a formulation ofSearch Informationthat is also described in [16].

Search information considers the probability of a message to reach its destination as

the product of probabilities that the destination is reached through a shortest pathp(i, b)
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from a sourcei to the destinationb, such that

Pp(i, b) =
1

ki

∏

j∈p(i,b)

1

kj − 1

. The factor−1 in kj − 1 is due to the message not returning to its point of origin. This

formulation of probability of propagation of a message along a shortest path from node

i to nodeb leads to the information theoretic formulation of theSearch Informationas

S(i− > b) = −log2(
∑

p(i,b)

Pp(i, b))

.

Search information shares similarities with the self-information introduced earlier,

of which entropy measures the expected value. Similarly, network entropy can be

interpreted as a measure of the expected value of the search information.

4.2.4 Road Entropy

Road Entropy quantifies information when all shortest pathsto and from every pair

of nodes(i, j) in the network are considered and leads to an expression of network

entropy as

Ri = −
∑

j

bijlog2bij

.

The valuesbij are related to the betweenness centrality measure [60]. Betweenness

centrality provides a global measure of the importance of a node in a network by count-

ing the number of times a node appears in the all pairs shortest paths of the network.

This can be expressed as

CB(v) =
∑

s 6=t6=v∈V

σs,t(v)

σs,t

, whereσs,t is the shortest path between nodess andt.
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Once computed for a static network, every node is attributeda betweenness cen-

trality measure. As a global network measure, any modification to the network requires

recomputing the betweenness.

Road entropy can then be computed for each node based on its adjacent nodes

betweenness values. The more central a node, the more likelyit is to carry traffic. The

lower the road entropy is, the more predictable the information will be.

4.2.5 Target Entropy

Target Entropy quantifies the information at every node in the network, when consider-

ing each node as a recipient of messages signaling from all other nodes in the network.

The expression for this form of entropy is

Ti = −
∑

j

cijlog2cij

. The difference with road entropy is that only those routes leading to nodei are con-

sidered, the entropy is then averaged over all nodes. While road entropy measures the

predictability of informationthroughnodei, road entropy measures the predictability

aroundnodei.

In [16], the authors show that when optimizing a network to minimize target and road

entropy, the network is reorganized such that the predictability of information arrival is

maximized. The minimal target entropy network becomes vulnerable to node attacks,

whereas the minimal road entropy network becomes vulnerable to edge attacks.
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4.3 Network Entropy for Varying Structural Properties

The network topology of emerging networks such as the Internet has been recognized

as evolving in an ad-hoc manner. With the increasing number of deployed overlay net-

works offering software-level reconfigurations, it is now becoming critical to under-

stand the properties of selected graph metrics in the context of dynamic and evolving

networks in which nodes and links are added, removed, or reconfigured.

This section presents a quantitative analysis of network entropy for varying structural

properties of a network topology evolved according to the Erdõs-Rényi random model.

We study the impact that the operations of adding nodes, adding edges, increasing the

degree correlation, and increasing the transitivity, while maintaining the network de-

gree distribution constant [61], have on network entropy, and discuss the benefits and

drawbacks of building low and high network entropy topologies. We start our analysis

by quantitatively measuring network entropy on a set of known regular and random

topologies.

4.3.1 Degree Network Entropy

As opposed to the Road and Target entropy presented in the previous section, we intro-

duce the local metric of degree network entropy. The formulation of entropy remains

identical to its information theoretic expression while considering the random variables

as occurrences of the degrees of the adjacent neighbors. Note that in the rest of this

chapternetwork entropyrefers todegree network entropy.

4.3.2 Network Entropy of Various Topologies

While for regular topologies all nodes share a similar neighborhood structure, non-

regular structures and random graphs, exhibit heterogeneous degree distribution. Fig-

ure 4.2 shows a statistical summary of network entropy for eleven considered network
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topologies. Specifically, nine regular topologies:full, ring, tree, star, 2D lattice, 2D

torus, chordal ring, Kautz, andhypercube; and two random:Erdõs-Ŕenyiandpower-

law. The random network model has a uniform probabilityp for two edges to be

connected of0.2. The power-law network has a degree power-law exponent of2.1 as

has been commonly observed in real-world networks [8].

Full Ring Tree Star Lattice Torus Chordal Ring Kautz Hypercube Power−Law Random

0
2

4
6

8

Min
1st Qu
Median
Mean
3rd Qu
Max

Figure 4.2: Statistical Summary of Network Entropies for Various Regular and Non-
Regular Topologies

An entropy closer to0 means more predictability and less uncertainty, therefore

as we can see in Figure 4.2, the mostuncertaintopology is the Erdõs-Rényi random

graph, all other topologies have negligible entropy variance.

4.3.3 Varying Structural Properties

Description of the Approach

Changing a graph structure while maintaining its degree distribution constant incurs

a change in the flow of information and a change in the joint degree distribution that

is reflected by the value of network entropy. For example, Figure 4.3 shows two tree

networks of10 nodes and9 edges. The network in Figure 4.3(b) is obtained by rewiring

the network in Figure 4.3(a) by swapping two edges such that the degree distribution of
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the graph remains unchanged. The numbers shown inside each node correspond to the

network entropy at each node, and the average for the entire network is labeled above

the graph.

(a) (b)

Figure 4.3: Impact of Single Edge Rewiring on Degree Entropy.

We notice that the difference in network entropy for both graphs is different for a

single edge swapping. This example illustrates the importance of structural properties

for information flow, and shows that network entropy metric can be applied to quantify

the predictability of information flow in the network. A low network entropy implies

more certainty and neighborhood degree heterogeneity, anda high network entropy,

less certainty and neighborhood degree homogeneity.

Adding Nodes

We consider a network model, such as the regular or non-regular topologies outlined

earlier. We analyze the impact of varying the number of nodeson the average network

entropy for a given network model. Figure 4.4 shows the results for several topolo-

gies while increasing the number of nodes between100 to 5000 by steps of500. The

results show that while the average network entropy is different for different network

topologies, it is not correlated to the variation of the number of nodes for any of the

given network models. This result follows from the definition of network entropy as
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Figure 4.4: Average Entropy with increasing Number of Nodesfor a Variety of Net-
work Topologies

derived from the probability distribution of the nodes degrees, which for a given prob-

ability generating function generates a network entropy distribution function that does

not depend on the number of nodes.

Adding Edges

As was shown in the previous experiment, for a given network model (i.e. identical

degree distribution) the addition of nodes does not impact network entropy. However,

the addition of edges at random in the network has a significant impact on network

entropy as can be seen in Figure 4.5. Increasing the number ofedges is associated to

an increase in network entropy. This result enhances the intuitive result on network

entropy of random networks, indicating that to more edges ina network is associated

less predictability in information flow.
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Figure 4.5: Average Entropy with increasing Number of Edgesfor a Random Graph
Network Topology

Increasing Neighbor Degree Correlation

While the degree distribution is the most widely used structural property of a network,

in the limits of large number of nodes, the possible realizations of a degree distribu-

tion is exponential and can lead to a wide variety of networkswith distinct structural

properties. Properties such as the average path length, diameter, or transitivity, play

an important role in determining the robustness, routing performance, or security of a

network. Another important property that has received attention in biological,social,

and technology networks is the degree correlation between nodes of the network. A

highly correlated network contains nodes with a degree thatis similar to its average

neighborhood degree. Uncorrelated nodes degrees appear when nodes of high degree

connect to node of low degree. Finally, no correlation meansthat there are no apparent

preferences for nodes to connect to either similar or dissimilar nodes degrees.
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Figure 4.6: Average Entropy with increasing Network Assortativity for a Random
Topology

The resulting impact of varying degree correlation on network entropy is presented

in Figure 4.6. The results reveal that a highly correlated network has a higher network

entropy than a low network correlation. This can be explained by the fact that high

correlation is an implicit homogenization of the graph thatleads to less predictability

of the information flow and is reflected by higher network entropy.

Increasing Transitivity

The transitivity measures the number of neighbors of a node that are themselves neigh-

bors. It is a characteristic network property that can be interpreted as a measure of the

number of alternate paths in a neighborhood. Another interpretation of transitivity is

as a measure of how far a set of nodes are from being fully connected. As can be seen

in Figure 4.7, increasing transitivity of the network decreases degree network entropy.

This might be caused by local increase in neighborhood degree heterogeneity formed
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Figure 4.7: Average Entropy with increasing Network Transitivity for a Random Topol-
ogy

by the increased transitivity in the network, causing the nodes to have more information

to assess the source of incoming signals from its neighbors.

4.3.4 Discussion

The previous results can be summarized by observing that network entropy increases

as the homogeneity of the network increases. Choosing a topology based on howin-

formativethe network should be can be addressed using a measure of entropy based

on the degree or betweenness centrality measured at every node. Entropy can be com-

pared to a vector of information propagation, the more informative the network is, the

more spread of information potential it acquires. By analogy, if the network models an

epidemic, the moreinformativenetworks have greater chances to successfully reveal a

vector of disease than lessinformativenetworks.
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4.4 Summary

Network entropy is a useful measure of a network property that has a strong connection

with the information theoretic entropy measure. When studied as an information flow

network, networks present characteristic features that can significantly affect the way

in which information propagates to nodes in the network. In this chapter, we defined

network entropy and studied its properties over various network topologies, from reg-

ular to non-regular. The main observations are that (1) for agiven network evolution

model, the average network entropy does not vary significantly under increase in the

number of nodes; (2) for a given network model for which a number of edges is re-

peatedly added at random, the average entropy increases; (3) for a random network in

which the transitivity is increased, the average entropy decreases; and finally (4) for a

random network in which the assortativity is increased, theaverage network entropy

decreases. These fundamental results show that there is a tight relationship between

structural network properties and the single network entropy metric.
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Chapter 5

Network Clustering

5.1 Introduction

The rapid proliferation of content produced by network applications is urging the de-

velopment of new approaches to address the problem of grouping information into

categories. The two main issues in addressing this problem involve defining the label

of each category and the definition of algorithms to perform the actual cluster detection.

The first issue relies on the derivation of standard taxonomies and meta-descriptions,

while the second one addresses the underlying mechanisms and algorithms for cluster-

ing detection.

Using graph theory, a content network can be represented as agraph in which nodes

represent the type of content and edges represent relationships between content types.

A clustering detection algorithm operates on this graph representation to identify densely

connected groups of interrelated nodes. As an example, Figure 5.1 shows a graph rep-

resentation of an author network collected from the citeseer [1] online computer sci-

ence bibliography database. Each node of the graph represents an author and each link

represents a coauthorship on a publication. The nodes of thecoauthor network are

grouped into clusters that are distinctly colored.

Generally speaking, a cluster is defined arbitrarily as a setof elements that are

more tightly interrelated than expected. This definition leads to the commonly observed

graph theoretic definition of a cluster as a set of nodes that have more edges in common

than on average. To illustrate the notion of cluster, consider for example the graph
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Figure 5.1: A subgraph view of the community structure of theauthors based on data
from Citeseer [1].

in Figure 5.2(a), the graph consists of4 fully connected subgraphs of8 nodes, each

interconnected by one edge. Using a force-directed visual layout [2] of the graph, the

4 communities corresponding to the fully connected graphs can easily be identified by

visual inspection of the graph, see Figure 5.2(b).

There are two main approaches to clustering, a top-down and abottom-up ap-

proach:

• Top-down approaches are applied to structured environments such that the pro-

duced data is deterministicallyplacedinto a predetermined cluster. Examples of

this approach are distributed hash tables [62] that use a setof properties of the

data to map keys to value pairs.

• Bottom-up approaches are applied to unstructured environments and opportunis-

tically detect clusters by grouping nodes by affiliation as they get discovered.

Further, there are two cases in the bottom-up approach, one in which the graph

is globally known a priori, and the other when the graph is only partially known

through local information only.

In this chapter, we address bottom-up approaches to clustering detection and survey
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a number of algorithms that address the clustering detection problem when the graph is

considered static and globally known. The algorithms presented areedge betweenness,

greedy strategy, spectral partitioning, andrandom walker.

Applications of identifying clusters in unstructured P2P overlay network applications

are addressed. In particular, the application of cluster detection as a mechanism to cre-

ate acompressed representationof a graph that can be exchanged amongst nodes in the

network to improve information discovery is presented. Finally, we propose, evaluate,

and compare an algorithm to detect clusters that is based on partial information. The

approach uses the network entropy 4 of nodes and is conceptually similar to the edge

betweenness clustering detection algorithm. Network entropy cluster detection differs

from all other approaches by relying exclusively on local information. The algorithm

runs inO(Nk) whereN is the number of nodes in the graph andk is the maximum

node degree. The results show that the local approach based on network entropy is

fast and performs well compared to the global solution on twomodeled, random and

power-law degree distributed, and two real-world networks, the Canadian Autonomous

System and the Gnutella networks.

5.2 Goodness of Clustering and Overlay Networks1

The clustering detection problem consists of identifying the minimum number of edges

that divide the network into distinct clusters. Real networks do not resemble the mod-

ular networks such as the one shown in Figure 5.2(a). Therefore, the goodness of the

partition of a network into clusters is an arbitrary measurethat is often hard to quantify.

This quantification has been addressed using the modularitymetric [63] as a statistical

1Many approaches to clustering described in this section arederived from the literature in statistical

physics that refers to this type of clustering as community.We will refer to clustering as community

when necessary to maintain the terminology consistent withthe way it is published in the literature.
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measure of the quality of a graph division. Modularity has been widely accepted by

researchers as a measure of the goodness of a network division into clusters, a higher

modularity reflecting a better partitioning.

5.2.1 Modularity

Modularity [63] measures the quality of a graph division into communities. Modularity

is a statistical measure of the expectation for an edge to be inside a community rather

than between communities. The idea underlying modularity is that if an edge inside

a community is removed it contributes little to the modularity whereas when an inter-

community edge is removed it contributes much. Leteij be the fraction of edges in the

network that connect vertices in groupi to those in groupj, and letai =
∑

j eij be the

degree of vertexi. Then the modularityQ is expressed as

Q =
∑

i

(eii − a2
i )

. It is a measure of the fraction of edges that fall within communities minus the ex-

pected value of the same quantity if edges fall at random without regard to the com-

munity structure. Modularity is computed using a mapping ofnodes to community

memberships. A membership assignment that results in higher modularity reflects a

better division of the network into communities.

5.2.2 Clustering and Peer-to-Peer Overlay Networks

In a physical topology, the edges represent the connectivity between nodes physically

connected by a link, in contrast, in an overlay network topology the relationships be-

tween nodes can reflect arbitrary properties of the nodes andlinks such as content,

location, affinities etc... For example in Figure 5.2(a), the fully connected subgraphs

might represent4 physically interconnected local area networks in a wide area net-

work, while as an overlay topology it might represent the grouping of data generated

by a sensor network that has been tagged as4 distinct, yet interrelated, categories.
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Figure 5.2: (a) A Modular Graph of4, 8-node fully connected subgraphs. (b) Commu-
nities of the graph of the network shown in (a).

The virtualization of overlay networks makes clustering detection a useful applica-

tion to aggregate relationships into clusters in a dynamically and adaptive manner [62].

Using cluster detection mechanisms, the overlay network becomes an ad-hoc search-

able relational database.

5.3 Survey of Algorithms for Cluster Detection

This section addresses cluster detection for static and globally known graphs. We

present a brief survey of algorithms that have been proposedto detect clusters in such

graphs. Most work in this area has been done as part of inter-disciplinary studies in sta-

tistical physics, social science, and computer science. The algorithms that we present

are based on distinct strategies that work more or less well depending on the size and

sparsity of the graphs considered.

The algorithms presented are based onedge betweenness, greedy strategies, spec-

tral partitioning, andrandom walker. All these algorithms aim to achieve the same

objective, that of identifying in as few steps and minimal computational cost as possi-

ble the edges separating the graph clusters1.
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5.3.1 Edge Betweenness Community Detection

The betweenness centrality measure was proposed by Mark Newman [5] as the number

of shortest paths that go through a vertex (vertex betweenness) or edge (edge between-

ness) of a graph. It is intuitive to understand that the most traveled vertex or edge is

more central than a rarely traversed vertex or edge.

The approach to detect communities based on this metric consists in consecutively

removing the edge with highest betweenness centrality. Theprocess is then repeated

for each new graph that results from the edge removal, and is performed as many times

as the number of desired communities to detect is reached or until all edges have been

removed. This is a very reliable approach that yields accurate community detection,

but has the down side of being very costly. Every betweennesscomputation requires

an all pairs shortest paths computation that requiresO(n3) operations, this can be done

in worst caseO(n times, yielding anO(n4) computation cost, therefore making the

approach intractable for very large graphs.

5.3.2 Greedy Strategy

The greedy strategy relies on the concept ofModularity proposed in [63]. This ap-

proached is based on the idea that starting from a graph withN nodes andN commu-

nities, each node attempts to form a community with any of itsm neighbor nodes, a

successful merge between two nodes is the one that maximizesthe value of the mod-

ularity. Therefore at each step of the algorithm the cost to compute the modularity

is O(n) which is performedO(n) times, leading a total cost for the greedy approach

of O(n2). The greedy strategy is fast compared to other approaches and works well

in most cases but is not as reliable and accurate as the edge betweenness community

detection.
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5.3.3 Spectral Partitioning

A matrix representation of a graph is one in which the relationships between vertices

are expressed in matrix form as entriesmij between verticesi and j representing a

particular characteristic of their relationship. For example, in an adjacency matrix

representation,aij is 1 if an edge between the vertices exists and0 otherwise. In a

Laplacian representation, entrylii has the degree of nodei, and entrieslij wherei 6= j

is−1 if there is an edge betweeni andj and0 otherwise. The modularity introduced

in the previous section, can be represented as a matrix whereqij is aij − pih wherepij

is the probability that there is an edge between verticesi andj, andaij corresponds to

the entry of the adjacency matrix.

Using the matrix representation of a graph, spectral approaches are concerned with the

decomposition of the matrix into eigenvalue and eigenvector form. A common practice

in graph partitioning is to minimize thecut sizebetween two groups of vertices. The

cut size can be expressed as

R =
1

2

∑

i,jindifferentgroups

Aij

and further reduces to

R =
1

4
sTLs

where L is the Laplacian matrix, that can finally be written as

R =
∑

i

a2
i λi

whereλi is the eigenvalue of vertexi andai = vT
i s is an expression of the eigenvector

vi of L. Therefore minimizing R involves finding the values ofai that place as much

weight as possible on the smallest eigenvaluesλi [64].

Similarly, using the modularity matrix representation

Q =
1

2m

∑

ij

[Aij − Pij]δ(gi, gj)
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whereδ(r, s) = 1 if r = s and0 otherwise, andm is the number of edges in the graph.

This can be reduced to the form

Q =
1

4m
sT Bs

, whereBij = Aij −Pih is the modularity matrix. Using the eigenvalue representation,

B can be expressed as

B =
1

4m

∑

i

a2
i βi

and would need to be optimized rather than minimized as in theprevious case of the

cut size.

Once partitioned into two distinct subgroups, the process is repeated until no further

contributions to the modularity is noticeable. The cost of running this algorithm lies on

the cost of identifying the eigenvectors of the matrix representation, which has a worst

case cost ofO(n3) when using a non-optimized Lanczos method on a given matrix,but

can be reduced toO(n2) for sparse graphs using optimized algorithms. Therefore the

total cost of the spectral approach is on the order ofO(n2).

5.3.4 Random Walker

Random walkers are conceptual agents that traverse a graph by stochastically selecting

their next hop. The intuition underlying the approach basedon random walkersis that

by walking over the graph’s paths, a walker given enough timewill eventually spend

more time within a community than outside of it. This processis explained in detail

and formalized in [65]. A set of random walkers are initialized on a graph and decide

which path to take at random for a given number of steps, the length of the random

walk. After all walkers have completed their round, the algorithm counts for each pair

of nodes, i.e. edge, the number of walkers that traversed thegiven edge. If the number

of walkers that traversed the edge is much greater than the number of walkers that tra-

versed the endpoints on their way to other destinations, then the edge is more likely to

be an inside community edge rather than an in-between community edge, therefore the
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two nodes are merged into a single community.

The random walker is therefore a statistically based variation on the edge betweenness

community detection algorithm for which every possible shortest paths is calculated.

The cost of the random walker algorithm depends on the lengthof the walk but is in

the worst case of the order ofO(mn2) wherem is the length of the walk.

5.4 An Approach to Cluster Detection based on Network Entropy

We propose an approach to cluster detection that uses local information aggregated

asnetwork entropyto assess a global measure ofimportanceof a link. The intuition

underlying the network entropy approach is that the two endpoints of an often trav-

eled link, i.e., high betweenness link, might have more uncertainty regarding which

node information might be coming from than the nodes that connect to the endpoints.

These neighboring nodes might indeed have low entropy as they are morecertain that

information would be traversing the high entropy endpoint.

Algorithm 2 Cluster Detection Using Network Entropy

Require: Graph: G(E,V); Edges: E; Nodes: (i,j)∈ V
while truedo

for all E(i, j) ∈ G do
NG,i ←= DegreeEntropy(G, i)
NG,j ←= DegreeEntropy(G, j)

end for
for all E(i, j) ∈ G do

Ni,j = NG,i + NG,j

end for
edge.to.remove=which.max(Ni,j)
edges← append(edges,edge.to.remove)
G =delete.edge(G,edge.to.remove)
if number.of.edges(G)==0then

return edges
end if

end while

The algorithm for cluster detection using network entropy 5.4 computes the degree
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entropy at every node, anO(Nk) operation, whereN is the number of nodes andk the

degrees of the nodes. Then for each edge, the network entropyof the two endpoints

are added and sorted in decreasing order, such that the highest entropy reflects the edge

for which endpoints reflect the most uncertainty. This edge is then considered to be

a dividing edge and is removed from the network. In a process similar to the edge

betweenness approach, this operation is repeated until alledges have been removed.

The clusters are then merged starting from the last removed edge all the way to the first

dividing edge.

(a) (b)

Figure 5.3: (a) Edge Betweenness Community Formation Tree.(b) Network Entropy
Cluster Formation Tree.

A result for the network in Figure 5.2(a) is presented in Figures 5.3(a) and 5.3(b)

as a dendrogram plot. This plot shows the successive networkmerges that the algo-

rithm identified and for which each merge is a step in the progress of the algorithm.

The Figures show that the clusters identified by the edge betweenness based algorithm

and network entropy based algorithm are exactly similar. Results on various degree

distributed graphs will be presented in Section 5.6.
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5.5 Evaluation

We consider a set of four network topologies, two network models, a random graph

evolved using the Erdõs-Rényi process, and a power-law degree distributed network

evolved using the Barabási-Albert process, and two real-world networks, one of the

Canadian Autonomous System and the other from the Gnutella Peer-to-Peer network.

We evaluate the community detection algorithms on each network and report the results

in Figure 5.4 in which the networks are respectively labeledERG, BAG, Canada, and

Gnutella.
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Figure 5.4: Comparison of various approaches to cluster detection.

The performance of the partitioning is measured using the modularity metric in-

troduced in [63]. All four cluster detection algorithms,edge betweenness, walktrap,

fast greedy, andentropic, show comparable results. The surprising result is that the

entropic community is the only one to consider local information alone, and shows

comparable results to global strategies. Figure 5.5 shows adendrogram plot of the



88

clustering process applied to power-law degree distributed scale-free network with125

nodes, and illustrates the differences between each clustering algorithm. The figures

show how nodes are identified as belonging to a cluster, for which a horizontal cut in

the dendrogram corresponds to the number of clusters at a given step of the algorithm.
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Figure 5.5: Dendrogram representations of various clustering detection algorithms. (a)
Greedy Clustering. (b) Edge Betweenness Clustering. (c) Walktrap clustering. (d)
Network Entropy Clustering.

5.6 Applications

Cluster detection is a powerful mechanism to identify partitions in a large network

graph. The applications of such a mechanism are many and encompass techniques

of graph partitioning for distributing load and computation on parallel and distributed

compute resources, compressing a large graph into a reducedform, i.e. snapshot, that
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can be easily shared amongst nodes in the network, assist in visualization of large data

sets by providing a hierarchical field of view from macro to micro modes, or even

identifying clusters of interest in social network applications.

5.6.1 Graph Partitioning for Parallel and Distributed Computing

A partition of a graph is one that divides the nodes into distinct sets or groups. The

applications of graph partitioning to parallel and distributed computing has been con-

cerned with the identification of the minimal cuts that separate the graph into equally

distributed sets, be it computational resources or computational loads. The identifica-

tion of clusters is not so much concerned with partitioning the graph into a balanced

partition of the graph, rather than identify through clustering the areas that share most

affinities. This approach can therefore show that a large portion of a computation is

spent on a very small fraction of the resources and can assistin devising a solution

to balance the workload across the available resources. Identified clusters therefore

act as a snapshot of the entire graph and are necessary to support further strategies or

approaches to deal with the application’s objective.

5.6.2 Graph Compression

Detecting clusters is a way to compress large graphs by merging densely connected

subgraphs under the label of a single cluster. For a sparse graph with many such densely

connected subgraphs, the overall graph can be significantlyreduced into a graph of

clusters and be of great help to assist in visualizing very large graphs, such as in the

order of thousands of nodes. To illustrate this point, consider for example a small to

medium 200 node power-law degree distributed network as presented in Figure 5.6(a).

Using a greedy strategy, the 15 clusters are detected and areshown in Figure 5.6(b).

While the original graph consists of 200 nodes and 199 edges,the compressed graph

comprises 15 nodes and 14 edges, a compression ratio of92.5%!
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Figure 5.6: (a) 200 Node Power-Law Network. (b) 15 Node compressed power-law
network

As the compression ratio is dependent on the number of clusters detected, we are

interested in arranging a topology of given degree distribution such that the number of

clusters is either minimized or maximized.

5.6.3 Clustering of Various Network Topology Models

Following the observation that clustering can be used as a compressed representation

of a large graphs, it is relevant to answer the question:what is the distribution of cluster

sizes of various topologies?

To this end, we present three cluster distributions from real-world networks,Uni-

form, Poisson, andZeta. Note that while it is obvious that the ultimate compression

rate of a graph is100% corresponding to reducing a graph to a single node, this is not

of any practical value.

Uniform distribution : A probability distribution is uniformly distributed whenall

events out ofk events have exactly the same probability of occurrence1
k
. Applied

to a degree distribution, the uniform distribution impliesthat all degrees are equal

and therefore yields a regular structure such asrings, tori, or hypercubes. Given the

regular pattern of such a distribution, the identification and labeling of a clustering
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depends on the granularity at which the clustering is desired. The compressed view

of a uniformly distributed network is an identical structure at a lower dimension and

therefore corresponds to a constant and preset compressionrate.

Poisson distribution: describes the number of unlikely events that happen withina

certain time. This distribution is characterized by an exponential distribution centered

around an average number of occurrencesλ and is expressed asf(k, λ) = eλλk

k!
, where

k is the number of events observed. The Poisson distribution naturally emerges in a

network where the probabilityp of connection between any two vertices is the same

for every pair of nodes (although this is more accurately represented by a Bernoulli

distribution, which for large number of occurrences leads to a Poisson distribution).

This strategy leads to a total number of edgesn(n−1)p
2

where the dividing factor of

2 is for the case of an undirected graph in which every edge is counted twice. Fig-

ures 5.7(a) 5.7(b) shows respectively a sample Poisson distributed random graph of

200 nodes and the associated distribution of clusters detected. The compression rate in

this case is99%.

(a) (b)

Figure 5.7: (a) A sample Poisson degree distributed network. (b) Corresponding clus-
ters detected using network entropy based clustering detection algorithm

Zeta distribution : obeys a power-law in which the rank of an observed occurrence

k is 1
kα , with α the exponent of the distribution. This distribution has been observed
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across a variety of systems such as the distribution of wealth in a country, actor net-

works, and web graphs. Thescale-freenetwork that evolves through a model of prefer-

ential attachment as proposed by Barabasi and Albert exhibits such power-law degree

distribution and is widely recognized model of evolving network with such character-

istic. Figures 5.8(a) 5.8(b) show respectively a sample power-law distributed graph of

200 nodes and the associated distribution of clusters detected. The compression rate in

this case is93.5%.

(a) (b)

Figure 5.8: (a) A sample power-law degree distributed network. (b) Corresponding
clusters detected using network entropy based clustering detection algorithm.

5.7 Summary

Cluster detection on dynamic graphs is becoming increasingly important as data gener-

ating networks seek to find clustering solutions using distributed algorithms rather than

the aggregation of global information at a single node. Suchapproaches are critical in

sensor network applications in which the sensor data shouldbe aggregated at a data

layer to provide the scientists and engineers with a relational data querying mechanism

to assist in the data mining process.
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This chapter motivated the problem of cluster detection in large networks.A novel ap-

proach based on a local metric of network entropy is presented and shown to perform

comparatively well to global methods on a variety of graphs.Applications of cluster

detection on static and globally known graphs is an extremely valuable tool that can

be used for visualizing large datasets as compressed graphs. Further, the identifica-

tion of clusters and the distribution of cluster size provides a more robust and practical

result than the more common graph partitioning techniques that are concerned with

identifying the bisecting edge or bisection bandwidth.
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Chapter 6

Evolving Topologies with Arbitrary Structural
Properties

6.1 Introduction

An increasing number of unresolved problems in the sciencesare being formulated as

complex networks [5, 17]. From protein folding in biology topopulation migrations in

social science, modeling dynamic adaptive processes can often be reduced to the iden-

tification of structural properties, i.e., topology, of a graph representation of the actors

at play. Large-scale computer networks, such as the Internet have recently been recog-

nized as complex networks. The network topology of such emerging networks is the

result of locally adaptive processes that have an impact on application-level function-

alities. These local processes may be triggered by administrative policy or engineering

requirements and consist of nodes and links being added, removed, or reconfigured dy-

namically. At the application-level, the topology plays a determining role with respect

to routing, search, robustness, and clustering.

Understanding the effect of these local adaptations on the global structure of the net-

work is an increasingly important problem, partly due to theexponential growth of

networks and partly to the software-level configuration offered by overlay network

topologies. For example, consider the growth of the Internet’s Autonomous Systems.

Each Autonomous System can define unique routing or behavioral policies (i.e., con-

tent publication, censorship) that are propagated to otherAutonomous Systems. The

recent increase in the addressing number of the Autonomous System from 16 bits to 32
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bits suggests that more policies are likely to be deployed inthe near future and there-

fore call for an urgent need to first, understand the structure of the networks formed,

and second to control the dynamics of such potential rapid growth. In the absence of

control, such networks could be subject to increased vulnerability as well as to planned

or unplanned attacks possibly leading to a level of disruption that the modern com-

puterized world’s economy could significantly suffer from [12]. As another example,

Peer-to-Peer data sharing applications are overlay network topologies that have gained

wide popular appeal in the past decade, and established themselves as efficient modal-

ities for large volume data transfer [66]. The rapid and constant growth in publication

of content over the Internet requires overlay networks to form application-level con-

nections that speed search and transfer time.

This chapter considers six network reconfiguration strategies that are based on local

metrics of the graph representation of the network. The strategies consist of recon-

figuring the network towards maximizing and minimizingassortativity, transitivity,

andentropy. An analysis of the impact of these optimizing strategies with respect to

application-level properties ofaverage path length, search, robustness, andclustering

is presented.

Experimental evaluations of the application of these optimizing reconfiguration strate-

gies are conducted on two topology models, one with Poisson and the other with a

power-law degree distribution, and two real-world networks, Gnutella Peer-to-Peer net-

work and the Canadian Autonomous System.

6.2 Network Graph Models

We consider two network models, aGnp Erdõs-Rényi model and a scale-free network

model of Barabási-Albert.
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(a) (b)

(c) (d)

Figure 6.1: (a) Erdõs-Rényi random graph model.{p = 0.2; 125 Nodes; 1564 Edges}.
(b) Barabási-Albert scale-free network{α = 1; 125 Nodes; 248 Edges}. The color bar
besides each network corresponds to the range of the degree entropy for every node
in the network. (c) Degree Distribution corresponding to random graph. (d) Degree
Distribution corresponding to scale-free network.

The network models are used to evolve two network topologies, a random net-

work shown in 6.1(a) and a scale-free network shown in Figure6.1(b). The generating

principle that drives the evolution of the random network yields the expected Poisson

degree distribution as shown in Figure 6.1(c). The Barabási-Albert network evolved in

discrete time steps using a preference function ofα = 1 that translates into a power-law

exponent in the degree distribution of the resulting network, as shown in Figure 6.1(d).

6.3 Random Link Addition

The small-world network model proposed by Watts and Strogatz [41] formalizes the

idea that adding random links in a network yields networks with shorter average path
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length and increased transitivity. We experimentally iterate on these theoretical results

for the two considered topologies.

6.3.1 Random Network

The results of the random link addition for theG(125, 0.2) Erdõs-Rényi random net-

work are shown in Figures 6.2(a) and 6.2(b).

(a) (b)

Figure 6.2: (a) Effect of Random Link Addition on Average Path Length and (b) on
Transitivity forG125,0.2.

Further, we show that adding links increases the robustnessof the network by in-

creasing the edge connectivity as well as decreasing the average betweenness for the

considered network models, as can be seen in Figures 6.3(a) and 6.3(b).

6.3.2 Power-Law Network

The results of the random link addition for the Barabási-Albert preferential attachment

networks are shown in Figures 6.4(a) and 6.4(b).

As can be seen in Figures 6.5(a) and 6.5(b), similar to the Random network model,

adding links increases the robustness of the network by increasing the edge connectiv-

ity as well as decreasing the average betweenness.
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(a) (b)

Figure 6.3: (a) Effect of Random Link Addition on Average Betweenness Centrality
and (b) Edge Connectivity forG125,0.2.

(a) (b)

Figure 6.4: (a) Effect of Randomly Adding Links on Average Path Length and (b) on
Transitivity for scale-free network.
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Figure 6.5: (a) Effect of Random Link Addition on Average Betweenness Centrality
and (b) Edge Connectivity for scale-free network.

6.3.3 Local Metrics

The graph theory literature has formulated metrics aimed atassessing a wide range of

properties of graphs. These metrics can be directly appliedto networks represented

as graphs, and can be broadly categorized into either local or global depending on the

proportion of the network required to be computed. The only strictly structural prop-

erty of a node in a graph is its degree, which corresponds to the number of neighbors

that a node has. We identify canonical local metrics derivedfrom node degree that take

into consideration the structure of a node’s neighborhood.In particular, we consider

transitivity, assortativity, andentropy.

Transitivity : measures the number of neighbors of a node that are themselves neigh-

bors. It can be measured as the fraction of triangles in the neighborhood of a node with

respect to the total possible number of triangles that couldbe formed1. In other words,

transitivity measures how far from fully connected a node’sneighborhood is.

1This formulation of transitivity is the one used in social network analysis. Another measure of

transitivity is described and compared in [5].



100

Assortativity : measures the homogeneity between a node’s degree and its neighbor-

hood’s degree. Positively correlated nodes have similar degrees and are said to be

assortative, while anti-correlated nodes degrees have dissimilar degrees and are said to

be disassortative.

Degree Entropy: measures the homogeneity of the degree of a node’s neighborhood.

Similarly to transitivity but unlike assortativity, entropy does not consider the degree of

the node at which it is computed as part of its formulation. A low entropy is associated

to a heterogeneous neighborhood degree. The more homogeneous a node’s neighbors

degree, the higher the entropy.

These three metrics are considered because they reflect properties of the network that

respectively relate to robustness, homogeneity, and information.

6.3.4 Evolving Networks with Arbitrary Structural Propert ies

The effect of randomized link additions presented in the previous section showed a

significant impact on global properties of the network models considered. We now

turn our interest to modifications of the network that maintain the degree distribution

constant, i.e., each node has a fixed number of neighbors, andstudy the impact of these

modifications at the application-level.

The properties of assortativity, transitivity, and entropy for the networks considered

are shown in Table 6.1.

Transitivity, Assortativity, and Entropy reflect canonical local properties of a net-

work topology that, along with degree distribution, provide asignatureof a network.

Finding a lower and upper bound on these metrics for an arbitrary network while main-

taining the network connected is an NP-complete problem. Inorder to empirically



101

Graph Transitivity Entropy Assortativity
Erdõs-Rényi 0.2023626 0.6613184 -0.01692184
Barabási-Albert 0.0483871 0.1580675 0.1728174

Table 6.1: Properties of the two considered graphs, Erdõs-Rényi random graph and
Barabási-Albert scale-free network.

determine these bounds we use a simulated annealing optimization on the considered

networks.

Simulated Annealing

The networks are modified using a simulated annealing and Metropolis-Hastings algo-

rithm. This method, shown in Figure 6.6, consists of selecting two edges at random,

such as(A, B) and (C, D), in the network and exchanging them resulting in edges

(A, D) and(B, C) such that the degree distribution of the graph is maintained. The se-

lected edges are only considered if they are strictly independent, i.e., the potential target

node is not in the source node’s neighborhood. The structural properties of interest are

then measured on the resulting candidate network and is accepted if, (1) the network

remains connected and (2) it has an improved (according to the desired property) mea-

sure. We use an annealing optimization process such that a candidate non-optimizing

move is also accepted with probabilitye−βx in which x is the annealing schedule and

β a multiplicative tolerance coefficient.

P (accept) =







1 if move is optimizing

e−βx if move is not optimizing

6.4 Univariate Network Optimizations

In the following set of experiments, each property is optimized independently using a

univariate simulated annealing optimization. The resultsare presented in Tables 6.2

and 6.3. The results are reported in tables that list the title of the graph in the first row
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Figure 6.6: Rewiring operation maintains degree distribution constant.

and first column, the name of the metric measured on the network is reported in the

column title, the name of the strategy used to optimize the network is reported in the

first column of every row. The name of the networks for the random and scale-free

networks are respectively reported as ERG and BAG. The strategies that maximize the

local metrics are those that maximize Transitivity, Assortativity, and Entropy, labeled

respectivelyMaxTr, MaxAs, MaxNtrp, and those that minimize the local metrics are

respectively labeledminTr, minAs, minNtrp.

6.4.1 G(125,0.2) Erdõs-Ŕenyi Random Graph

Table 6.2 presents the results of the optimizations for the considered Erdõs-Rényi ran-

dom graph. These results set optimal bounds on the networks resulting from the op-

timizations. The assortativity measure seems to be efficiently optimized, in the range

of [−82.94%, +81.54%], while other metrics reflect more modest optimizations. No-

tably, the degree network entropy has a very small window of optimization, from

[−0.04%, 0.24%], that is due to the fact that degree network entropy is increased only

when a node connects to a homogeneous neighborhood, which isalready the case for

the initialG(n,p) random graph, and leaves lesser opportunity for optimization.
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Graph Transitivity Entropy Assortativity
ERG 0.2 [ 0 %] 0.66 [ 0 %] -0.02 [ 0 %]
MaxTr 0.53 [ 32.5 %] 0.66 [ 0.03 %] 0.13 [ 14.96 %]
MaxAs 0.43 [ 22.91 %] 0.66 [ 0.22 %] 0.8 [ 81.54 %]
MaxNtrp 0.08 [ -11.81 %] 0.66 [ 0.24 %] -0.85 [ -83.38 %]
minTr 0.04 [ -16.07 %] 0.66 [ 0.01 %] -0.13 [ -11.75 %]
minAs 0.09 [ -11.67 %] 0.66 [ 0.23 %] -0.85 [ -82.94 %]
minNtrp 0.29 [ 8.98 %] 0.66 [ -0.04 %] 0.02 [ 3.98 %]

Table 6.2: Univariate Optimization of Assortativity, Transitivity, and Entropy of a Ran-
dom graph.

6.4.2 Barab́asi-Albert Graph

The results for the power-law degree distribution of the scale-free networks of Barabási

and Albert shown in Table 6.3 reveals optimizations of the local metrics that are signif-

icantly different than the Poisson degree distribution of the previously considered ran-

dom graph. Transitivity is unchanged because the model generates an acyclic network.

Degree network entropy is optimized between[−1.57%, 2.67%] and assortativity be-

tween[−54.47%, 52.67%]. Compared to the previously described random graph, the

fact that few nodes of the scale-free network have high degree and many low degree

widens the window of optimizations, the maximum assortativity is therefore decreased,

but the degree network entropy optimizations wider, due to more degreediversityin the

network.

Graph Transitivity Entropy Assortativity
BAG 0 [ 0 %] 0.03 [ 0 %] 0.03 [ 0 %]
MaxTr 0 [ 0 %] 0.04 [ 0.31 %] 0 [ -2.88 %]
MaxAs 0 [ 0 %] 0.03 [ -0.8 %] 0.56 [ 52.67 %]
MaxNtrp 0 [ 0 %] 0.06 [ 2.67 %] -0.37 [ -40.31 %]
minTr 0 [ 0 %] 0.04 [ 0.22 %] -0.01 [ -3.99 %]
minAs 0 [ 0 %] 0.06 [ 2.55 %] -0.51 [ -54.47 %]
minNtrp 0 [ 0 %] 0.02 [ -1.57 %] 0.11 [ 8.33 %]

Table 6.3: Univariate Optimization of Assortativity, Transitivity, and Entropy of a
scale-free graph.
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6.5 Effect of Local Perturbations on Application-Level Properties

Unlike local node properties, global properties of a network require computation on

the entire network to quantify the property at each node. Thenetworks obtained by

optimizing on local properties have distinct local and global characteristics from the

original networks. The global metrics of choice in our studyrelate to fundamental

characteristics of any network application, measures of path lengths, robustness, and

clustering.

The application-level metrics considered are:

• Average Path Length: measures how long a path is on average between all pairs

of nodes in the network.

• Search Information: considers the probability of a message reaching its desti-

nation as the product of probabilities that the destinationis reached through all

degenerate shortest pathsp(i, b) from a sourcei to the destinationb, such that

P{p(i, b)} =
1

ki

∏

j∈p(i,b)

1

kj − 1

. The factor−1 in kj−1 is due to the message not returning to its point of origin.

This formulation of probability of propagation of a messagealong a shortest path

from nodei to nodeb leads to an information theoretic formulation of theSearch

Informationas

S(i− > b) = −log2(
∑

p(i,b)

Pp(i, b))

. In other words, the search information measures the numberof yes/no questions

that need to be asked in order to find an object. A higher the search information

means that it is more difficult to find objects in the network. At the application-

level, search information provides a measure, in number of bits, of a relative

size of cache or data storage that would be necessary at everynode in order to
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reach other nodes in the network along the shortest paths. Itcan be associated

to the memory requirement to store routing tables to reach all nodes for a given

network topology.

• Robustness: measures the number of edges that need to be removed in orderto

disrupt the network. While the edge connectivity obtained by applying a mini-

mum cut algorithm on the network gives an indication of the minimum number

that disrupt a network, it does not reflect the importance of the edge that is re-

moved. To circumvent this issue, we introduce a measure of robustness that in-

crementally removes the edge of highest betweenness centrality until the network

is disconnected. This measure of robustness can be understood as answering the

questionhow many of the most important edges need to be removed to disrupt the

network?. The algorithm corresponding to this robustness formulation is shown

in Algorithm 1.

• Clustering: a network cluster is a densely connected group of nodes. Modifying

the structure of a network affects the number and the size of clusters that can be

identified. Clustering was presented in depth in Chapter 5. In this section, the

number of clusters found is computed using the edge betweenness community

detection presented in [63].

We now analyze the relationships between optimizing the local metrics of transitivity,

assortativity, and degree network entropy on average path length, search, robustness,

and clustering.

6.5.1 G(125,0.2) Random Graph

Table 6.4 shows the set of optimized graphs corresponding tothe Random graph model,

and their impact on application-level properties. The results show that all optimiza-

tions increase application-level properties as compared to the original, non-optimized
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network. The most significant impact on average path length comes from maximiz-

ing assortativity, followed by maximizing degree network entropy, both modifications

have the effect of increasing the homogeneity of a network neighborhood, which in the

case of a random network accentuates the similarities and tends to cluster nodes and

yield longer average path lengths. This interpretation is illustrated in Figure 6.7(a),

that plots the shortest paths distribution for the originalnetwork and the one with op-

timized assortativity in Figure 6.7(b). The figures show that the shortest paths distri-

bution stretches and flattens, with less nodes having short path lengths and many more

having longer path lengths. The largest increase in search information is also obtained

by maximizing the assortativity, and can be attributed to the fact that there is lessde-

gree diversityin the network. The robustness is most increased when the assortativity

is minimized. This can be explained by the fact that as nodes connect to unlike degree

nodes, the number of edges with higher betweenness increases, and it takes to remove

more such edges to disrupt the network.

(a) (b)

Figure 6.7: (a) Shortest Paths Distribution forG125,0.2 and (b) for the same network
with maximized assortativity.

The effect of optimization on the network clustering is depicted in Figure 6.8. The

original random graph (leftmost bar in Figure 6.8) shows three distinct homogeneous
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Graph Average Path Length Search Robustness
ERG 1.8 [ 0 %] 5.65 [ 0 %] 572 [ 0 %]
MaxTr 2.01 [ 11.71 %] 6.49 [ 14.91 %] 539 [ -5.77 %]
MaxAs 2.26 [ 25.47 %] 7.16 [ 26.82 %] 650 [ 13.64 %]
MaxNtrp 2.08 [ 15.36 %] 5.51 [ -2.42 %] 613 [ 7.17 %]
minTr 1.81 [ 0.57 %] 5.5 [ -2.57 %] 870 [ 52.1 %]
minAs 2.03 [ 12.6 %] 5.42 [ -4 %] 735 [ 28.5 %]
minNtrp 1.97 [ 9.14 %] 6.22 [ 10.1 %] 660 [ 15.38 %]

Table 6.4: Effect of Optimization on Global Properties for Random Graph

partitions. This is due to the homogeneity and low diameter of the random graph.

Optimizations on the assortativity appear to split the network into two distinct compo-

nents of equal size. As was expected minimizing transitivity is the only reconfiguration

strategies that yields more diverse clusters, although notsignificantly in the case of the

random graph, which might again be explained by the lack ofdiversityin the network.

Figure 6.8: Cluster Distribution for the original and optimized random graph networks.

6.5.2 Barab́asi-Albert Graph

Table 6.5 presents the results of the impact of the local optimizations on the application-

level properties for the scale-free power-law degree distributed network. The effect
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of the optimizations on average path length reveal an increase in most cases, except

when minimizing degree network entropy and maximizing assortativity. The average

path length is significantly increased when the degree network entropy is maximized.

The effect of maximizing degree network entropy is to createa heterogeneous neigh-

borhood for a given node, in the scale-free network with power-law distribution, this

results in a stretched out line-like topology that results in a high average path length.

This interpretation is shown in Figure 6.9 using a force-directed layout representa-

tion [2] of the maximized average path lengths network and the maximized degree

network entropy, on which the apparent linearity of the topology is revealed. Further,

the search information is increased most when degree network entropy is maximized

and decreased most when degree network entropy is minimized. The robustness re-

mains unaffected, a result that might be attributed to the fact that the network is acyclic

with no transitivity and does no have alternate paths to route messages through.

(a) (b)

Figure 6.9: (a) Maximized Average Path Length for Scale-Free network. (b) Maxi-
mized Degree Network Entropy for Scale-Free network.

The effect of optimization on the network clustering is depicted in Figure 6.10. The

degree heterogeneity of the scale-free network shows less distinct clustering distribu-

tions as in the case of the random graph presented in the previous section. Notably,

optimizations of the degree network entropy, decrease the number of clusters while

homogenizing the clusters size. The samediversificationfactor applied by minimizing
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Graph Average Path Length Search Robustness
BAG 4.61 [ 0 %] 11.11 [ 0 %] 1 [ 0 %]
MaxTr 4.91 [ 6.49 %] 11.29 [ 1.6 %] 1 [ 0 %]
MaxAs 3.94 [ -14.46 %] 9.65 [ -13.15 %] 1 [ 0 %]
MaxNtrp 11.18 [ 142.48 %] 14.8 [ 33.14 %] 1 [ 0 %]
minTr 4.96 [ 7.64 %] 11.95 [ 7.54 %] 1 [ 0 %]
minAs 14.05 [ 204.82 %] 14.26 [ 28.33 %] 1 [ 0 %]
minNtrp 3.78 [ -18.08 %] 9.53 [ -14.22 %] 1 [ 0 %]

Table 6.5: Effect of Optimization on Global Properties for Scale-Free Graph

Figure 6.10: Cluster Distribution for the original and optimized scale-free networks.
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assortativity yields one large cluster and a few smaller ones that result from the degree

diversification imposed by the degree correlation minimization.

6.6 Case-Studies: Real-World Networks

The previous section analyzed two widely used network models and the impact of local

reconfigurations on routing, search, robustness, and clustering. This section considers

two real-world networks, the Gnutella Peer-to-Peer file sharing and the Canadian Au-

tonomous System. Both networks are representative of the emergent complexity of

next-generation networks. Figure 6.11(a) shows a force-base layout representation of

the Autonomous System (AS) of the Canadian Internetcirca 2007. Each node in the

graph represents an Autonomous System, and a link between two Autonomous Sys-

tems is a peering relationship between two AS’s. Figure 6.11(b) shows a portion of the

Gnutella Peer-to-Peer networkcirca 2005. Each node in the graph represents a clien-

t/server peer that can exchange data on the network, links represent application-level

connections between the peers.

(a) (b)

Figure 6.11: (a) The Autonomous System of the Canadian Internet. (b) The Gnutella
P2P Network.
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6.6.1 Gnutella P2P Network

The Gnutella [67] P2P file-sharing application is a popular overlay network that pro-

vides its users with the functionality to search for files by name and regular expressions

on names. The search is initiated from a client interface andpropagated through the

network by flooding through an ad-hoc hierarchy of peers. Peers with high uptime and

bandwidth can be promoted to the role of ultra-peer, acting more like a hub than an

edge peer. The search is then directed towards peers that have registered ownership of

the matching content with an ultra-peer.

A Gnutella network graph, circa 2005, is shown in Figure 6.11(b). The figure

represents a small section of the entire network, and consists of a total of393 peers and

471 links.

1

9

1

8

1

5

Figure 6.12: Force-based layout of Maximized Gnutella Network. (a) Maximized As-
sortativity. (b) Maximized Transitivity. (c) Maximized Degree Network Entropy
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Figure 6.13: Force-based layout of Minimized Gnutella Network. (a) Minimized As-
sortativity. (b) Minimized Transitivity. (c) Minimized Degree Network Entropy
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The results of univariate optimizations are presented in Table 6.6. The degree dis-

tribution of the network reveals that it is more similar to the scale-free network than the

random network. The network transitivity of the original network is 0, an interesting

result that reflects the acyclic tree structure of the peers hierarchy. The assortativity

is widely optimized between[−82.75%, 36.75%], while the degree network entropy is

optimized between[−0.82%, 2.39%], results that are comparable to the scale-free net-

work model previously presented. Given the similar ranges of optimizations, we expect

the impact of optimizations on the modeled network to be reflected on the real-world

gnutella network. In particular, that the local strategy ofminimizing degree network

entropy results in minimizing routing and search.

Graph Transitivity Entropy Assortativity
GNUTELLA 0 [ 0 %] 0.04 [ 0 %] 0.22 [ 0 %]
MaxTr 0.04 [ 3.58 %] 0.04 [ 0.33 %] 0.02 [ -20.57 %]
MaxAs 0.02 [ 2.49 %] 0.04 [ -0.16 %] 0.59 [ 36.75 %]
MaxNtrp 0.01 [ 0.87 %] 0.06 [ 2.39 %] -0.44 [ -66.25 %]
minTr 0 [ 0 %] 0.04 [ 0.31 %] -0.03 [ -25.5 %]
minAs 0 [ 0.33 %] 0.06 [ 2.36 %] -0.61 [ -82.75 %]
minNtrp 0.03 [ 3.47 %] 0.03 [ -0.82 %] 0.15 [ -6.85 %]

Table 6.6: Gnutella Network Analysis

Impact at the Application-Level:

Graph Average Path Length Search Robustness
GNUTELLA 4.99 [ 0 %] 11.9 [ 0 %] 9 [ 0 %]
MaxTr 5.97 [ 19.46 %] 15.21 [ 27.87 %] 9 [ 0 %]
MaxAs 4.83 [ -3.26 %] 11.47 [ -3.54 %] 1 [ -88.89 %]
MaxNtrp 8.11 [ 62.47 %] 14.2 [ 19.38 %] 1 [ -88.89 %]
minTr 5.07 [ 1.51 %] 11.89 [ -0.01 %] 6 [ -33.33 %]
minAs 9.2 [ 84.23 %] 13.68 [ 15.04 %] 2 [ -77.78 %]
minNtrp 4.38 [ -12.19 %] 12.04 [ 1.21 %] 7 [ -22.22 %]

Table 6.7: Gnutella Application-Level Properties

Table 6.7 shows that the average path length is increased when maximizing the de-

gree network entropy and decreased when minimizing degree network entropy. This
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result is identical to the modeled network and shows that forpower-law degree dis-

tributed networks, the degree network entropy is a useful local strategy to guide a

network towards increasing or decreasing average path length. The search is increased

most upon maximizing transitivity, which also increases the average path length. This

result can be explained by the fact that as a neighborhood becomes more densely con-

nected, the number of questions to ask to find an object is alsoincreased, this result

concurs with a previous finding presented in [68]. The same justification can be applied

to the increase in search information when maximizing degree network entropy. How-

ever, maximizing assortativity results in a decrease in search information, a surprising

result as, although the degree homogeneity is increased in this case as well, unlike

transitivity and degree network entropy the homogeneity takes into consideration the

node at which the metric is being computed, leading up to a lower search information.

Finally robustness is significantly decreased when maximizing assortativity and degree

network entropy due to the homogenization of the network’s degrees.

Figure 6.14: Cluster Distribution for the original and optimized Gnutella networks.
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The effect of optimization on the network clustering is depicted in Figure 6.14.

The impact of the local strategies on clustering shows that optimizing transitivity is the

only strategy that homogenizes the number and size of clusters. The clusters identified

in all strategies do not differ significantly, a result that may be attributed to thelong

tail distribution characteristic of power-law degree distributed networks, that limits the

number of high degree nodes and therefore does not enable nodes to group into distinct

partitions.

6.6.2 Canadian Autonomous System

The graph representation of the Canadian Autonomous System6.11(a) circa 2007 con-

tains496 nodes and814 undirected links. Results of the local optimizations and the

impact on application-level properties are presented in Table 6.8 and displayed in Fig-

ure 6.15. As in previous instances of scale-free networks, the Average Path Length

is decreased exclusively upon applying a reconfiguration strategy that minimizes the

degree network entropy, which also has the least impact on decreasing robustness. In

the case of the Canadian Autonomous System, unlike in the previous network models,

search is decreased when applying a strategy that minimizestransitivity. Minimizing

transitivity tends to create more tree-like networks that,for a given degree distribution

such as the Canadian AS network, may result in lower search costs. All optimization

strategies yield a decrease in the measure of robustness, revealing a trade-off between

improving the measures of average path length, and search, at the expense of decreased

robustness.

The effect of optimization on the network clustering is depicted in Figure 6.17. The

impact of the local strategies on clustering shows that optimizing degree network en-

tropy and minimizing assortativity are the only strategiesthat homogenize the number

and size of clusters. While minimizing degree network entropy diversifiesthe degree

neighborhood of a node, minimizing assortativity yields a neighborhood that has dis-

similar neighborhood degree than the node considered. Yet,these contrasting results
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Figure 6.15: Force-based layout of Maximized Canadian Autonomous System Net-
works. (a) Maximized Assortativity. (b) Maximized Transitivity. (c) Maximized De-
gree network Entropy
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Figure 6.16: Force-based layout of minimized Canadian Autonomous System Net-
works. (a) Minimized Assortativity. (b) Minimized Transitivity. (c) Minimized Degree
Network Entropy



116

Graph Transitivity Entropy Assortativity
CANADA07 0.03 [ 0 %] 0.07 [ 0 %] -0.22 [ 0 %]
MaxTr 0.09 [ 6.67 %] 0.07 [ 0.38 %] -0.07 [ 15.55 %]
MaxAs 0.07 [ 4.23 %] 0.07 [ 0.23 %] 0.1 [ 31.8 %]
MaxNtrp 0.02 [ -0.51 %] 0.09 [ 2.48 %] -0.38 [ -16.17 %]
minTr 0 [ -2.62 %] 0.06 [ -0.21 %] -0.33 [ -10.83 %]
minAs 0 [ -2.56 %] 0.09 [ 2.29 %] -0.56 [ -33.74 %]
minNtrp 0.06 [ 3.86 %] 0.04 [ -2.81 %] -0.14 [ 8.02 %]

Graph Average Path Length Search Robustness
CANADA07 3.25 [ 0 %] 10.6 [ 0 %] 47 [ 0 %]
MaxTr 4.35 [ 34 %] 12.26 [ 15.7 %] 1 [ -97.87 %]
MaxAs 3.69 [ 13.58 %] 11.18 [ 5.5 %] 1 [ -97.87 %]
MaxNtrp 5.36 [ 65.15 %] 12.38 [ 16.84 %] 2 [ -95.74 %]
minTr 3.26 [ 0.32 %] 9.84 [ -7.12 %] 31 [ -34.04 %]
minAs 4.19 [ 28.94 %] 10.79 [ 1.85 %] 2 [ -95.74 %]
minNtrp 2.96 [ -8.97 %] 11.16 [ 5.36 %] 22 [ -53.19 %]

Table 6.8: Results of Local and Application-Level Network Optimizations for the
Canadian Autonomous System circa 2007

Figure 6.17: Cluster Distribution for the original and optimized Canadian Autonomous
System networks.
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yield more homogeneous partitioning of the network, and reflect the importance that

an initial degree distribution plays in determining application-level properties of a net-

work.

6.7 Summary

The topology of emerging networks is the result of local adaptations that are driven

by administrative policy and engineering decisions. At a large scale, this decentralized

evolving process yields structural properties that need tobe better understood. While

understanding the impact of such local to global propertieshas received most attention

in the areas of statistical physics and mathematics, it remains absent from the network

engineering research. This chapter presented three local metrics deemed representa-

tive of local structural characteristics of a node and its network neighborhood. Using

simulated annealing optimization, the network was modifiedbased on adaptations of

the local metrics, and the impact on the application-level functionalities of path length,

search, robustness and clustering was discussed. The results show that local perturba-

tions that increase the degree network entropy, i.e., increase the degree heterogeneity

of a node’s neighborhood, also increase the average path length, and has an impact on

search, robustness, and clustering that is topology dependent. Minimizing the degree

network entropy, i.e., increasing the degree homogeneity of a node’s neighborhood,

decreases the average path length for the two real-world networks considered. This

result suggests that for such topologies, minimizing the degree network entropy can be

used as a local strategy towards decreasing overall averagepath length and search at

the cost of decreased network robustness.
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Chapter 7

Conclusions and Future Work

We shall not cease from explorations

And the end of all our exploring

Will be to arrive where we started

And know the place for the first Time

- T.S. Eliot

7.1 Conclusions

Research on emerging networks is facing an unusual development, to the traditional

top-down design problems is now added the challenge of understanding the bottom-

up processes that can explain the observed structures of large and dynamic networks.

Understanding the decentralized evolution of computer networks such as the Internet

has been added to a list of open problems in complexity theorywhich have previously

been observed in economics, social science, mathematics, and physics. In particular,

understanding the evolution of large-scale computer network topologies, that define

the structural properties of networks, is becoming increasingly important due to the in-

creasing number of overlay networks being deployed. These virtualized networks offer

software-level configurations that occur on top of the physical topology, and exhibit

frequent reconfigurations and high dynamicity. The evolution of the structure of net-

works follows a process in which nodes and links are added, deleted, and reconfigured

dynamically. Exploring the resulting structures of such evolutions is a combinatorial
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problem that is often computationally intractable.

Current efforts in network topology research have proposedtopology awareness to

augment information at each node with topological information to improve the local

decision making. However much of the global impact on the network topology remains

absent of these studies.

Network topology modeling attempts to isolate and replicate the generating prin-

ciples that drive the evolution of real-world networks. These approaches are based

on collecting real-world network data and quantifying the model by matching metrics

between the real-world and the modeled networks. Over the years, new metrics intro-

duced have helped refine models by adding more and more accuracy into identifying

better models. However, the number of metrics proposed continues to grow.

Emergent properties and self-organization have been applied to topologies to evolve

the network based on adaptive and local information alone. Despite the urgent need to

better understand the impact of such local ad-hoc evolving processes at the application

level, such as routing, search, robustness, and clustering, this branch of research has

received most attention from the statistical physics and biological sciences literature

but have been absent from the computer network research.

The material presented in this thesis falls in the context ofemergent topologies. The

objective of this research is to (1) identify local canonical topological metrics, (2) apply

adaptive strategies based on these metrics to modify various network topologies, and fi-

nally (3) analyze the networks resulting from these adaptations for the application-level

properties of routing, search, robustness, and clustering.

The three local metrics identified, transitivity, assortativity, and entropy, are pre-

sented as canonical properties of the topology relating respectively to aspects of re-

silience, homogeneity, and information. The approach consists in optimizing graph

theoretic representations of network topologies using simulations, and quantitatively
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analyzing the impact of these optimizations at the application-level for routing, search,

robustness, and clustering.

The results show that local perturbations that increase thedegree entropy, i.e., in-

crease the degree heterogeneity of a node’s neighborhood, also increase the average

path length, and has an impact on search, robustness, and clustering that is topology

dependent. A key outcome of this thesis is the identificationof network entropy mini-

mization as a useful local rewiring strategy to decrease average path length and search

cost, while homogenizing the size of network clusters and having a low impact on

robustness when applied to power-law degree distributed networks that prevail in real-

world networks.

7.2 Prospects and Future Work

The exploratory and empirical nature of this research leaves much to study and ex-

plore as future work. Through this research, significantly more questions have been

asked than answers found. The nature of such complex problems requires an inductive

approach and intuitive understanding of the processes thatdrive the evolution of such

systems.

In particular,

• While the local strategy of minimizing network entropy was shown to decrease

average path length and search in scale-free networks, the identification of new

local metrics and their relation to application-level properties remains an open

problem that requires further investigation. Applying thesame methodology on

different metrics could further the understanding of the driving forces that control

large complex networks such as the Internet.

• Local metrics based on local properties other than degree need to be evaluated.
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For example, context information such as location or characteristics of every

node.

• In this thesis, all edges of the considered networks were assumed to have constant

unit cost. Addressing the problem for edges with arbitrary distributions and the

integration of a network flow formulation to the existing structural properties

remains a challenging open problem.

• Building a mapping between the distribution of network properties and observed

global structures provides heuristics that can improve on current ad-hoc ap-

proaches, and in particular on understanding the structureof large-scale net-

works. For example, such heuristics could be used to improvepredictions on

the complex non-linear evolution of the Internet Autonomous Systems that is

driven by political and engineering decisions.

• The dynamics of real-world large-scale networks such as theInternet collected

by agencies such as CAIDA [13] should be used to model strategies, other than

structural, that drive the evolutionary process.

• As a result of the advances in understanding such complex emergent properties,

the development of a suite of software recommender tools to assist Autonomous

Systems network administrators in the reconfigurations of Autonomous Systems

should be undertaken. Such tools would be useful to optimizethe reconfigura-

tions driven by administrative policies and technical engineering decisions while

optimizing application-level properties.
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Metric Name Description Equation/Symbol Bounds Result Size
Number of Nodes number of interacting nodes in

the connected graph
V (G) [1, n] 1

Number of Edges number of edges in the connected
graph

E(G) [(n− 1), n(n−1)
2 ] 1

Average Degree average number of neighbors per
node over all nodes

1
n

∑n
i=1 di [2(n−1)

n
, n− 1] 1

Diameter longest path between any two
nodes

CD = maxi,j∈V δ(i, j) [1, n− 1] 1

Assortativity measures the preference of a
node to connect to like degrees.

r =
M−1

P

i jiki−[M−1
P

i
1

2
(ji+ki)]

2

M−1
P

i
1

2
(j2

i +k2

i )−[M−1
P

i
1

2
(ji+ki)]2

[−1, 1]∗ 1

Degree Network Entropy Expected Self-Information based
on a node degree

Cne = −∑

i∈V (G) pilog(pi), pi = di
P

i di
[2logn

n−1 , log(n(n−1)
2 )] 1

Table 1: Network Metrics. (*) indicates normalized values.M is the number of edges.di the degree of nodei. δ(i, j) the distance
between nodesi andj.
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Metric Name Description Equation/Symbol Bounds Result Size
Degree the number of adjacent nodes,

i.e., neighbors, of a node in the
graph.

di, i ∈ V (G) [1, n − 1] n

Betweenness Centrality number of times a node is present
in the shortest pathσ between all
pair of nodess, t.

CB(v) =
∑

s 6=t6=v∈V
σs,t(v)

σs,t
[0, 1]∗ n

Spectrum set of eigenvalues of the adja-
cency matrix of the graph.

pA(λ) = det(A− λI) [−, n− 1] n

Eigenvector Centrality eigenvector corresponding to the
first eigenvalue.

xi = 1
λ

∑N
j=1 Ai,jxj [−1, 1] n

Transitivity measures the probability that
neighbors of a node are them-
selves neighbors. Computed as
the number of triangles divided
by number of triples.

Ci =
|{ejk}|

di(di−1) : vj , vk ∈ Ni, ejk ∈ E. [0, 1] n

Degree Distribution frequency of appearance of each
unique degreedi of the set of rep-
resented degrees in the graph.

p(k) = 1
n

∑

v∈V |deg(v)=k 1 [0, 1] d

Joint Degree Distribution distribution of average neighbor
degree of a node of average de-
greed.

p(k1k2) =
µk1,k2

Mk1,k2

2M

µk1,k2
=

{

1 if k1 = k2

0 otherwise
[0, 1] d

Table 2: Network Metrics continued. (*) indicates normalized values.M is the number of edges.Mk1,k2
is the number of edges between

all nodes of degreek1 andk2. σs,t is the total number of shortest paths between nodes and nodet. σs,t(v) is the number of shortest paths
between nodess andt that go through nodev. A is the adjacency matrix representation of the graph.di degree of nodei. Ni the set of
nodes in the neighborhood of nodei. ejk the number of edges connecting all nodes in the neighborhoodof nodei.
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Appendix A

Glossary

A.1 Graph Theory

• Subgraph : all edges and vertices of a subgraph are included in the supergraph

• Adjacency Matrix : nodes in rows and columns.

ai,j =







1 if (i,j) ε E

0 otherwise

• Incidence Matrix (for a DAG) : rows are the edges and columns the nodes

(edge-node incidence matrix), or rows are the nodes and columns the edges

(node-edge incidence matrix).

bi,j =



















−1 if edgexj leaves vertex i

1 if edgexj enters vertex i

0 otherwise

• Admittance (Laplacian) Matrix of a Graph : is always positive semi-definite,

so all its eigenvalues are non-negativexT Lx =
∑

(u,v)εE(xu − xv)
2. Particularly

its second eigenvalue is strictly positive.L=D-A where D is the degree matrix

and A is the adjacency matrix.

li,j =



















−1 if (i,j) ε E

di if i=j, and

0 otherwise
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• Degree : Number of edges incident with a vertex in an undirected graph. In

digraphs, distinguish indegree and outdegree

• Regular of Degree r: every vertex has the same degree r

• Walk : any sequence of consecutive edges

• Path/Trail/Open Walk : vertex setx1, ..., xn with edgesxi, xi+1

• Hamiltonian Path : path of an Undirected graph that visits every vertex exactly

once

• Eulerian Path : path that visits every edge exactly once

• Cycle/Circuit/Closed Walk : vertex setx1, ..., xn with edgesxi, xi+1 andxn, x1

• Bridge/Cutpoint : if edge is cut / vertex removed, the number of components is

increased

• Girth : length of shortest simple cycle

• Circumference : length of longest simple cycle

• Diameter : largest distance between the vertices

• Betweenness: Measures the number of times a node on shortest paths between

all pairs of vertices. Betweenness is a measure of centrality of the network, as

the higher it is the more central is.

• Properly Colored : if each vertex is colored so that adjacent vertices have dif-

ferent colors

• K Colorable : if it can be properly colored using k colors

• Bipartite Graph : the vertices of a bipartite graph can be divided into two dis-

joint sets, for which there is no edge between any two vertices of a same set.
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• Chromatic Number k : if graph is k colorable

• K
n

: the complete graph on n vertices

• Tree :a graph in which any two vertices are connected by exactly one path.

• Forest : a graph in which any two vertices are connected by at most onepath.

Disjoint union of trees

• Embedding : drawing of the representation of a graph on any surface suchthat

no edges intersect.

• Edge Connectivity: the minimum number of edges of a connected graph whose

removal decreases the rank of the graph by one.

• Vertex Connectivity : the minimum number of vertices of a connected graph

whose removal leaves the graph disconnected.

• Separabale Graph: if the vertex connectivity is one

• Line Graph : vertices correspond to the edges with two vertices being adjacent

if and only if the corresponding edges in G have a vertex in common

• Planar Graph : graph that can be embedded in a plane so that no edges inter-

sect (Kuratowski’s theorem, finite graph is planar if none ofits subgraph is an

expansion ofK5orK3,3. Any graph with number of edges e ¿ 3n-6 is Nonplanar.

• Dual Graph : exists only if graph is planar. Each vertex of G* corresponds to a

face of G. Each edge of G* crosses the edge of G that connects the two vertices

between the two faces of G. Therefore G* has as many vertices as G has faces,

as many edges as G, and as many faces as G has vertices.

• Ramsey Theorem: In a complete graph of orderR(n1, ..., nc; c)with n vertices,

if the edges of the graph are colored using c colors, then there is a complete

subgraphni of color i.
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• Number of Connected Components: is given by the multiplicity of the eigen-

value 0 of the Laplacian of the graph.

• Fiedler value/ Second eigenvalue of the Laplacian matrix ofa Graph : If

a symmetric matrix is positive semi definite then all its eigenvalues are non-

negative. The multiplicity of the smallest eigenvalue 0 gives the number of con-

nected components. For a connected graph, the dimension of the eigenspace of

0 is 1 and therefore the magnitude of the second eigenvalue (Fiedler value) is a

measure of how well connected the graph is. For a planar graphλ2 ≤ 8d
n

.

• Expander Graph : a graph in which subset of vertices have high vertex or edge

expansion to the complementary set of vertices. The high connectivity between

the various sets acting as redundancy paths might explain why it is used in Error

Correction code. (Low Density Parity Check)

• Spanning Tree: Tree which includes every vertex of a graph

• Minimum Spanning Tree : Find the tree that connects all vertices while mini-

mizing the sum of the weight edges.

• Steiner Tree Problem : Find the shortest network that spans a given set of

points, given that new points can be added to the network at any time. (MST

is a Steiner Tree problem with a fixed given set of points). TheSTP is an NP-

complete problem.

• Kirchhoff’s Theorem : Given a connected graph G with n vertices, letλ1, λ2, ..., λn−1

be the non-zero eigenvalues of the admittance matrix of G. Then the number of

spanning trees of G isG = 1
n
∗ (λ1λ2...λn−1)

• Cayley’s Formula : if n is a positive integer, the number of trees on n labeled

vertices isnn−2
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• Genus of a Graph: the minimum number of handles that must be added to the

plane to embed the graph without any crossings. A planar graph therefore has

graph genus 0.

• Clustering Coefficient : the number of links between the neighbors of a node

divided by the total number of links that could exist. It is a measure of how well

connected a neighborhood is.

• Dominating set for a graph G=(V,E) is a subset V’ of V such that every vertex

not in V’ is joined to at least one member of V’ by some edge.

• Domination number of G is the number of vertices in the smallest dominating

set for G. partition the vertices of a graph into a given number of dominating

sets; the maximum number of sets in any such partition is thedomatic number

of the graph.

• Unit Disk Graph In geometric graph theory , a unit disk graph is the intersection

graph of a family of unit circles in the Euclidean plane. Thatis, we form a vertex

for each circle, and connect two vertices by an edge wheneverthe corresponding

circles cross each other.

A.2 Miscellaneous Principles and Concepts

• Pareto Principle (80-20 rule): for many phenomena 80% of consequences stem

from 20% of the causes.

• Small-world Network : Network in which any node can reach any other node in

a small number of steps. This type of network can be established by analyzing the

network’s clustering coefficient and average path length. If clustering coefficient

is larger than normal and average path length is smaller thannormal, then it is

likely to be a small-world network.
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• Entropy (Concept): Let’s consider an element in a given observable states; En-

tropy is a measure of the number of possible low-level statess’ that manifest the

systems. A system is said to be ordered when it has few possible configurations,

therefore the number of low-level configurations that is linked to entropy is also

linked to order. Entropy is a measure of disorder of a system.There is no sin-

gle entropy across sciences, thermodynamics, statisticalmechanics, information

theory, each have their own definition of entropy that are however linked to each

other.

• Self-Information / Surprisal : The amount of knowledge about the outcome of

an event that adds to global knowledge. Self-Information isalso called Surprisal

because it is a measure of the surprise factor that the realization of an event

induces. The more likely an event is, the less surprised one is. The occurrence

of an event, A, is measured by its probability of occurrence p(A); the unit of

self-information is binary digit (bit), the probability ofoccurrence is therefore

expressed in number of bits, orlog2(
1

p(A)
).

• Information Entropy : Introduced by Claude Shannon to measure the amount of

randomness in a signal, information entropy is expressed asthe expected value

of the self-information (surprisal),H(x) =
∑

i = 1np(xi)log2(
1

p(xi)
).

• Soft Computing: An approach to solving problems that is inspired from hu-

man reasoning, as opposed to rigid computer logic. This formof computing is

embodied by techniques such as Fuzzy Logic, Neural Networks, Probabilistic

Reasoning (such as genetic algorithms, Bayesian networks).

• Ergodicity : An ensemble is ergodic if a small subset of the ensemble at time

t “behaves” the same as the average of the whole over time. For example the

ensemble of articles published in a newspaper is ergodic: the number of errors

in the entire newspaper equate the number of errors an editormakes over time.



130

• Markov chain : the transition probability to state(n+1) is determined only by

the current state(n) and not by the whole history. Therefore, a process modeled

by a Markov Chain is also known to be memoryless.

• Ergodic Markov Process: Connotes reachability of any pair of states in the

transition graph. Translates into a strongly connected transition matrix, i.e. there

is a non-zero transition probability for any (i,j) in the transition matrix.

• Regular Markov Process: There is a sequence of edges of length exactly equal

to k between any pair of vertices in the transition graph.

• Periodic Markov Process: An ergodic process is periodic if it can enter a state

only at specific periodic intervals.

A.3 Probability and Statistics

• Z-score: the number of standard deviations the value is from the sample mean

of the data set. That is,

z − score = xi−(̄x)
s

A.4 Complexity classes

• P: decision problems that can be answered by a deterministic machine in Poly-

nomial time.

• NP: decision problems that can be solved by a Non-deterministic machine in

Polynomial time. Another way to put it is that it’s a type of problem for which a

solution can be verified but not established in polynomial time on a deterministic

machine.

• NP-Hard: A problem L in NP is reducible to another problem not necessar-

ily in NP. NP-Hard problems are “Harder” than NP-complete inthe sense that
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the problems reduce to a set of problems that might not even bedecidable, and

therefore not even in NP.

• NP-Complete: A problem L in NP is polynomial-time many-one reducible to

another problem in NP (hence the difference with NP-Hard). Reduces to a de-

cidable problem.

• Kolmogorov-Smirnov test(often called the K-S test) is used to determine whether

two underlying probability distributions differ, or whether an underlying proba-

bility distribution differs from a hypothesized distribution, in either case based

on finite samples.

A.5 Evolutionary Computing

• Genetic Algorithms: The candidate solutions (chromosomes in GA) are repre-

sented as a string of symbols or numbers (often in binary). The primary genetic

operator is recombination but selection and mutation are used to maintain diver-

sity.

• Genetic Programming: The candidate solutions are represented as computer

programs, their fitness is evaluated by their ability to solve a computation prob-

lem. It uses recombination as a primary genetic operator.

• Evolution Strategy and Evolutionary Programming: Works with vectors of

real numbers as representations of solutions, and typically uses self-adaptive mu-

tation rates.

A.6 Misc Math concepts

• Injective(One-to-one) : Every element A in X has a corresponding map in

codomain Y
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• Surjective (Onto) : Every element B in codomain Y has at least an element in

X mapping to it.

• Bijective (One-to-one and Onto): Every element A in X maps to a single

element B in Y

• Continuous (Topological): Every point A belonging to a domain U of X maps

to an element in V=f(U), no matter how small V is there is a small U containing

A that maps inside V.

• Eigenvalue and Eigenvector: A matrix is a linear operator on a set of vectors,

and its eigenvalues measure the scaling factor by which the set of vectors (eigen-

vectors) is transformed.

• Homeomorphism/Topological Isomorphism: 1) f is a bijection 2) f is contin-

uous 3) the inverse function f -1 is continuous

• Homomorphism: a map from one algebraic structure to another of the same

type that preserves all the relevant structure. For examplef(x) = 3x is a homo-

morphism butf(x) = 3x2 isn’t.

• Isomorphism: a bijective homomorphism (i.e. structure-preserving mapping).

• Jordan Curve : A simple (injective mapping) closed curve

• Hausdorff Space (Housed Off): Space is partitioned into neighborhoods, x and

y are distinct points, neighborhood U of x and V of y are disjoint

• Cantor set (Fractals): The set of elements obtained from recursively removing

the middle-third of the [0,1] interval. It is proved to be uncountable despite the

geometric sum of the rest being the length of the set (1).

• Lebesgue measure: Volume in Euclidian space

• Algebraic Topology : Using Abstract algebra to solve topology problems
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• Open Set : Is not opposed to ”closed”. Is open if elements can be wiggled

around and still be true (e.g. 0¡x¡1 is open 0¡x= 1 is not)

• Connected Space: space that cannot be divided into two disjoint nonempty

open sets whose union is the entire space.

A.7 Routing

• Distance-Vector Routing : Consider a network of nodes, each node builds its

reachability routing table by collecting distances (e.g. number of hops) to its

direct neighbors. Every node then shares this information with all its neighbors,

so that each can build a global routing table on their own. Susceptible to count

to infinity.

• Link-State Routing : As opposed to DV routing, each node in LS routing floods

the network with information about its immediate neighborsonly. The outcome

of all nodes flooding all the network is that all nodes eventually have a complete

view of the network. Each node then applies a shortest path algorithm on the

graph of the network obtained to determine the shortest pathto any other node.

• Differences between DV and LS: The main difference between the two routing

protocols is that in DV, nodes share all the information theyobtain whereas in

LS nodes only share information about their immediate neighbors.

• Wormhole routing is a system of simple routing in computer networking based

on known fixed links, typically with a short address

• Route Flapping occurs when a router alternately advertises a destination net-

work first via one route then another (or as unavailable, and then available again

in quick sequence).
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A.8 Emergence and Self-Organization

• Self-Organization Definition: internal organization of an open system increases

automatically without being guided by an external source.

• Emergence: the formation of complex patterns from simpler rules. An emergent

behavior is likely to occur in a system where the number of interactions taking

place between components increases exponentially with thenumber of compo-

nents. For example, the evolving formation of the human brain. The emergent

property is often unpredictable (to us humans) and unprecedented. Emergent

systems appear to defy the ever-increasing entropy law, butdo not violate it,

as an open system can decrease its entropy while the global system’s entropy

increases. Examples of Emergence are:

– Ant colonies

– Piles of termites

– Swarms of bees

– Flocks of birds

– Schools of fish

– Herds of mammals

– Games such as poker

– Stock Market

– Galaxies formation

– Weather phenomenons such as hurricanes

– open-source projects

– Cities formation (with self-organization)

– In physics, emergence does not equate with complexity but refers to the

microscopic laws on top of which macroscopic laws emerge
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• Reductionism: the nature of complex phenomenons can be reduced to the nature

of its simpler parts, thereby explaining the phenomenon. Forms of reductionism

are: Ontological, Linguistic, Methodological (see Occam’s Razor), Linguistic,

Analytical, Scientific, or Theoretical.

• Occam’s Razor: In a nutshell, of all possible explanations of a phenomenon, the

least complex one is most likely to be the correct one.

• Holism: In contrast to reductionism, the whole is thought to be created than the

sum of its parts.

• Teleology: the belief and philosophical investigation on the idea that nature has

a purpose. While science investigates natural laws, teleology questions the ex-

istence of an organizing principle behind these laws. For example, in teleology,

a man sees because he has eyes, and has eyes so that he can see. Plato sum-

marizes the essential idea in Phaedo as follows: “”Imagine not being able to

distinguish the real cause from that without which the causewould not be able to

act as a cause.”. Teleological concepts heavily rely on the notion of final cause

or purpose of living things. There are two essential finalityconcepts: extrinsic,

bettering the environment, and intrinsic, bettering the self according to what is

good for it. Aristotle in support of Teleology said: ”Natureadapts the organ to

the function, and not the function to the organ”.

• Philosophical Naturalism: Contrasts with Teleology. In Philosophical natural-

ism man sees because he has eyes; it is not interested in understanding why a

many has eyes. The organ serves the function. Lucretius in DeNatura Rerum

says: : ”Nothing in the body is made in order that we may use it.What happens

to exist is the cause of its use”.
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• Complex Systems: System of many parts coupled in a non-linear fashion. In

non-linear systems, the system is greater than the sum of itsparts. Most bio-

logical systems are complex while most engineered systems are linear. Some

characteristics of a complex system:

– A complex system is a highly structured system, which shows structure

with variations

– A complex system is one whose evolution is very sensitive to initial con-

ditions or to small perturbations, one in which the number ofindependent

interacting components is large, or one in which there are multiple path-

ways by which the system can evolve

– A complex system is one that by design or function or both is difficult to

understand and verify

– A complex system is one in which there are multiple interactions between

many different components

– Complex systems are systems in process that constantly evolve and unfold

over time

• Spontaneous Order: Emergence of order out of a chaotic context by balance of

forces or natural selection. For example markets and languages.

• Chaos Theory / Nonlinear Dynamics: a system that exhibits sensitivity to ini-

tial conditions, where it appears to behave in random manner, even though there

are no random variables and the system is deterministic.Examples are: weather,

solar system, economies, population growth...

• Self-Organized Criticality : claims that whenever a self-organizing dynamical

system is open or dissipative, it exhibits critical (scale-invariant) behavior similar

to that displayed by static systems undergoing a second-order phase transition.
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For example: Avalanches, Forest-fires, Sandpile, traffic jams, size of cities, size

of companies, electricity blackouts.

A.9 Optimization

• Combinatorial Optimization : The entire solution space of a problem can be

defined as the total number of permutations of all the elements that compose the

system. This number gets very large very quickly. It can be illustrated as search-

ing for the optimal path in a tree that describes the solutionspace. Meta-heuristic

(“Beyond” “to find”) algorithms are usually applied to solving combinatorial

optimization problems, for example local search, simulated annealing, genetic

algorithms, tabu search, ant colony optimization, GRASP (greedy randomized

adaptive search procedure) , or particle swarm optimization.

• No Free Lunch Theorem: When averaged over all possible cost functions, all

algorithms that search for an extrema of a cost function perform exactly the same.

In other words, when addressing an optimization problem, the problem domain

has to be very well understood to apply the most appropriate optimization algo-

rithm as opposed to generic metaheuristic ones.

• Simulated Annealing: Comes from annealing in metallurgy, a technique involv-

ing heating and controlled cooling of a material to increasethe size of its crystals

and reduce their defects. The heat causes the atoms to becomeunstuck from their

initial positions (a local minimum of the internal energy) and wander randomly

through states of higher energy; the slow cooling gives themmore chances of

finding configurations with lower internal energy than the initial one. In the sim-

ulated annealing method, each point s of the search space is compared to a state

of some physical system, and the function E(s) to be minimized is interpreted as

the internal energy of the system in that state.
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• Tabu search: Similar to simulated annealing, in that both traverse the solution

space by testing neighbors of an individual solution. Whilesimulated annealing

generates only one neighboring solution, tabu search generates many solutions

and moves to the best solution of those generated. In order toprevent cycling and

encourage greater movement through the solution space, a tabu list is maintained

of partial or complete solutions. It is forbidden to move to asolution that contains

elements of the tabu list, which is updated as the solution traverses the solution

space.

• Ant Colony Optimization (ACO) : Mimics ants social works such as foraging,

nest building, cemetery ordering. Ants use stigmergy that exhibit the global

behavior based on ants local behaviors in the absence of centralized control. The

medium of communication is a pheromone deposit on the path taken by an ant.

Ants follow a reinforced pheromone trail. Using this principle, foraging enables

ants to find the shortest path to food from the nest.

• Particle Swarm Optimization (PSO): Is a swarm intelligence mechanism. PSO

are based on a multi-dimensional space in which particles (agents) navigate

freely given a position and a velocity. The next position of aparticle is deter-

mined by a reinforced signal emitted by other particles in the population. In this

sense an ACO can be categorized as a type of PSO.

• Genetic Algorithms: see Genetic Algorithms in Evolutionary Computing sec-

tion

• In game theory, theNash equilibrium (named after John Forbes Nash, who pro-

posed it) is a kind of solution concept of a game involving twoor more players,

where no player has anything to gain by changing only his or her own strategy

unilaterally. If each player has chosen a strategy and no player can benefit by

changing his or her strategy while the other players keep theirs unchanged, then

the current set of strategy choices and the corresponding payoffs constitute a
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Nash equilibrium. The concept of the Nash equilibrium (NE) is not exactly orig-

inal to Nash (e.g., Antoine Augustin Cournot showed how to find what we now

call the Nash equilibrium of the Cournot duopoly game). Consequently, some

authors refer to it as a Nash-Cournot equilibrium. However,Nash showed for the

first time in his dissertation, Non-cooperative games (1950), that Nash equilib-

rium must exist for all finite games with any number of players. Until Nash, this

had only been proved for 2-player zero-sum games by John Von Neumann and

Oskar Morgenstern (1947).
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1999 MS in Applied Physics, Université Pierre et Marie-Cury, Paris VI, Paris,
France.
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