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ABSTRACT OF THE DISSERTATION

Statistical Strategies for Scaling and Weighting Variables

for Cluster Analysis

by Srinivas P. Maloor

Dissertation Director: David Madigan

Cluster analysis (CA) is a generic name for an array of quantitative methods, the

applications of which are found in numerous fields ranging from astronomy and biology

to finance and psychology. Though the intuitive idea of clustering is clear enough,

the details of actually carrying out such an analysis entail many unresolved conceptual

problems. Multivariate data, often poses a problem, in that the variables are not

commensurate. Since the outcome of a CA is sensitive to the scales of measurement of

the input data, many practitioners resort to standardizing the data prior to the analysis.

Hence, the scaling of such multivariate data prior to CA is important as a preprocessing

step. Autoscaling, is one such näıve approach. Although it is a widely used procedure

to standardize variables in some major point and click statistical software packages, it

ignores the inherent cluster structure and actually proves counterproductive.

This dissertation is broadly divided into two parts - Univariate and Multivariate

strategies. The first part addresses some univariate scaling and weighting approaches.

In an attempt to put all variables on the same footing, we propose some intuitive strate-

gies which we call equalizers. In addition, we consider letting the data suggest weights

or highlighters that emphasize those variables with most promise for revealing the la-

tent cluster structure. The methods vary in degree of complexity from simple weights
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based on order statistics to more complicated iterative ones. The results indicate that,

in a variety of chosen simulated data as well as real data sets, the new methods are

much better than the most popular method, autoscaling. Although these strategies are

computationally appealing, they are at best suboptimal in their ability to unearth the

latent clusters embedded in the multivariate structure of the data. Hence, the next

part of this dissertation is devoted to multivariate scaling and weighting approaches.

We perform a systematic study of the characteristics of a multivariate equalizer in both

the null-cluster scenario and for a variety of cluster structures. In addition, we present

a multivariate approach to perform variable highlighting that is validated by results

from many simulated data sets as well as some real data sets. Taken together, our

results indicate that simple and intuitive strategies to preprocess data sets render them

amenable to superior cluster recovery.
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Chapter 1

Introduction

“Far better an approximate answer to the right question, which is often

vague, than the exact answer to the wrong question, which can always be

made precise” – John Wilder Tukey1

1.1 Cluster Analysis

The innate ability to form meaningful groups of objects is one of the most elementary

modes of human intelligence. Understanding our complex world requires perceiving

the similarities and differences between the entities that compose it. We do this sub-

consciously in our everyday lives with remarkable ease. In relatively early stages of

the human cognitive process, one learns to distinguish, for example, between shapes

of letters of the alphabet or between different colors. However (as also noted in [87]),

enabling a computer to perform this deceptively simple task of automatically forming

natural groupings is a hard and often ill-posed problem.

Cluster Analysis (CA) is the general logic, formulated as a procedure, for exploring

the latent structure of data. It is an important technique in the rapidly growing field

known as Data Mining and is being applied to a variety of scientific disciplines such

as biology, physics, medicine, marketing, computer vision and remote sensing. The

development of clustering methodology has been truly interdisciplinary. As an approach

for analyzing multivariate data, it is widely used, and at an accelerated pace, in recent

years. (See [57].) The goal of CA is to group objects into clusters such that objects

within the same cluster are similar in some sense, and objects from different clusters are

1In “The future of data analysis”. Annals of Mathematical Statistics 33(1), pp. 1 – 67
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dissimilar. These objects could be described in terms of measurements (e.g., attributes,

features) or by relationships with other objects (e.g., pairwise distances or similarity

measures).

Discriminant analysis (DA) has been in the mainstream of the theory and practice of

multivariate analysis for a long time. The key difference between DA and CA situations

is that, in the former setup, one has random samples of data from known groups

in hand and is interested in characterizing differences among the known groups (for

classification) while, in the latter case, all one has is a set of multivariate observations

and is interested in finding both the groups that might exist and an assignment of

the individual observations to these groups. Hence, in CA situations, the groups and

their members, and thus the numbers in the different groups, are all unknown. Thus,

unlike Classification, which belongs to methods in Supervised Learning, CA is a form

of Unsupervised learning in the Computer Science literature.

1.2 Notation

This dissertation contains many mathematical expressions and equations. As the con-

text and convention permits, small Roman and Greek italicized letters are used for

scalars, small Roman boldface letters for vectors and capital Roman boldface letters

are used for matrices. ‖ • ‖ is the L2 norm. The subscript d denotes either a diagonal

matrix (as in upper case W∗
d or B∗

d) or a scalar derived from a corresponding diagonal

matrix (as in lower case b∗
d). Bracketed subscripts such as (m1), (m2) or (f) denote the

number of pairs of data points that were used in computing the corresponding measure.

Specifically, (m1) is used to represent the number of “closest neighbors”, while the sub-

script (m2) is used to represent the number of “farthest neighbors”. For example, B∗
d(m2)

denotes that the diagonal matrix B∗
d was computed using (m2) farthest-apart pairs of

data points. Furthermore, the subscript (f) has a special definition; f =
(
n
2

)
−m1.

Hence, the measure B∗
(f) denotes that the matrix was computed using all but the m1

closest pairs of data points, where the total number of point pairs equals
(
n
2

)
.
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1.3 Background and Motivation

The process of CA (also see, [33]) could be broadly divided into three stages:

1. The input stage

2. The algorithm stage

3. The output stage

Of these three stages, the second stage, concerning the various algorithms for clus-

tering, seems to have received the lion’s share of attention in the literature. As noted

in [33], there has been a deluge of “methods” for clustering, but very little is actu-

ally known about their relative statistical behavior. Among the methods of CA avail-

able currently, there are two broad categories of them (Hierarchical and Partitioning)

and a plethora of specific algorithms within each category. (See, for example, [54].)

Given a user-input choice for the number of clusters, both these methods produce

non-overlapping clusters. However, they also differ in a variety of aspects. Hierarchical

clustering algorithms can proceed divisively (top-down) or agglomeratively (bottom-up)

(also, see [87]). In the top-down approach, one starts with all the objects as belonging

to one cluster at the begining of the procedure and then this encompassing cluster is cut

into successively smaller chunks. Conversely, in agglomerative algorithms, each object

starts as a singleton cluster and the “clusters” are merged successively. Hierarchical

algorithms output a rooted tree structure that can be represented as a dendrogram.

In the case of Partitioning methods (or, flat clustering), hard clustering induces a

partitioning into non-overlapping groups. In contrast, a soft clustering provides the

probabilities for each object being a member of a cluster. Depending on the result of

clustering, one can distinguish between hierarchical and partitioning approaches. In

the literature search described in [57], the most often used techniques seem to be hi-

erarchical ones. The type of method also seems to depend on the subject matter area

of the application. The work of Fraley and Raftery (see [24], [25] and [26]) on model-

based clustering provides an interesting framework for unifying many methods, and

also includes approaches to inferences about the number of clusters, and software for
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model-based clustering (MCLUST).

Despite the wide prevalence of CA as a tool for analyzing multivariate data, there

are pitfalls in the methods used in many of the applications. To mention only one class

of causes for such pitfalls, the ignoring of an inevitable “circularity” involved in CA

situations is a feature of many of the widely used methods (also see [29]). Consequences

of not taking the circularity into account can range from lack of effective discovery of

the groups to even misleading conclusions. This is illustrated in Figures 1.2 and 1.3

respectively (there is more on this on page 7).

There are many types of data that are amenable to a CA. In this thesis, the data

are presumed to be continuous multivariate data. With one important exception, the

model underlying the data follows the usual assumptions of g-group DA or equivalently,

one-way multivariate analysis of variance (MANOVA). The exception is that neither

the number of groups nor the group identities of the observations are known in CA.

Note that explicit use of multivariate normality is not actually necessary, but rather

that the data be viewed as reasonably homogenous ellipsoidal point clouds primarily

differing in location in a multivariate Euclidean space.

An important and hard-to-resolve issue, concerns the appropriate scaling or weight-

ing of the variables prior to a CA (see, for example, [12] and [11].) Choices made at this

stage would have an influence on the subsequent indicators of closeness among the ob-

jects to be clustered and as a result change the output of the CA. Most clustering meth-

ods form clusters based on the proximity between data points in the multi-dimensional

space. A commonly used measure of proximity between a pair of data points (objects)

is the squared Euclidean Distance. If we define the input data matrix (Y) as a p × n

matrix (each yi being a p-length vector, i = 1, 2 . . . n),then the objects (yi) could be

viewed as n points scattered in a p-dimensional Euclidean space. In such a scenario, a

popular criterion for clustering is to minimize the error sum of squares (ESS), or the

sum of squared Euclidean distances between the objects of a cluster and its centroid as

given by:
g∑

j=1

∑
yi∈Cj

‖yi −mj‖2, (1.1)
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Figure 1.1: Clusters obtained using age and height measurements of people

where mj is the p-length mean vector of data points in cluster Cj and g is the number of

clusters (also, see section 5.3 in chapter 2 of [54].) Two popular clustering methods, k-

means and Ward’s hierarchical clustering, attempt to minimize this criterion. A major

drawback of these and other traditional clustering methods is that the clustering results

are sensitive to the units of measurement, that is, changing the units of measurement

may lead to a different clustering result, as shown in Figure 1.1 (also see section 2.1 in

chapter 2 of [54].)

The plot on the left of Figure 1.1 shows two natural clusters {A, B} and {C, D}.

But when the variable “height” is expressed in feet, the obvious clusters are now {A,

C} and {B, D}. This partition is completely different from the first. A commonly

used naive-approach to fix this problem is to normalize the data to unit variance on

each variable before clustering. This is termed as autoscaling. The objective in using

this method of scaling the data is to “put all the variables on an equal footing”. How-

ever, using a standard deviation of all the observations on each variable, instead of an

estimate of the “within-clusters” standard deviation, ignores the fact that the former
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Figure 1.2: Dendrogram using raw (unscaled) data

Figure 1.3: Dendrogram using autoscaled data



7

reflects both inter-cluster and within-cluster variation, thereby, potentially obscuring

the latent cluster structure. As noted in [16], “such a normalization may be appro-

priate if the full data set arises from a single fundamental process (with noise), but

inappropriate if there are several different processes.” This is illustrated in Figures 1.2

and 1.3 respectively. Figure 1.2 displays the dendrogram obtained by a simple average-

linkage hierarchical cluster analysis (HCA) on a raw (unscaled) five-cluster simulated

data set (n=75 observations in p=5 dimensions with 5 spherical clusters of equal size).

As shown in the dendrogram, a simple cut, at say, level 6 on the y-axis, would lead

to perfect cluster recovery. Figure 1.3, however, shows the dendrogram obtained after

autoscaling the same data set. Notice now that we are not able to cut the tree at any

level to recover the original cluster structure!

Consequently, autoscaling is not only unsatisfactory conceptually, but may lead to

misleading results due to its lack of sensitivity to clusters when they are present. Not

knowing the clusters and the observations that belong to them ahead of the analysis

is one reason for using the standard deviation of all the observations. This is thus an

example of the circularity mentioned before.

Another technique, which shares the feature of circularity, is the use of a few leading

Principal Components of the dispersion matrix of the entire data set, followed by a

clustering of the data in the space of these Principal Components. The pitfalls of using

Principal Components Analysis preliminary to a CA have been discussed and illustrated

in the literature (see [9].) However, as in the case of autoscaling, the practice is still

very common. A more appropriate approach would be to use DA and use the first few

discriminant coordinates for a CA. Once again, it is not possible to carry out the more

appropriate analysis directly because in the CA situation one does not know the groups

ahead of time. However, it may be possible to find ways of incorporating the basic

concept of DA, viz., weighting variables that contain information about the separations

of the groups.

Apart from its sensitivity to scale, the Euclidean distance metric might be inap-

propriate for clustering data sets that have highly correlated variables. For instance,

consider the scatter plot given in Figure 1.4. The five-dimensional data set with n=250
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Figure 1.4: Elliptical clusters with cluster centroids after k-means clustering

observations, consists of five homogenous (of equal size and dispersion) elliptical clusters

with high intra-cluster correlation (ρ = 0.99), in the space of the first two variables.

The other three variables have no cluster structure. Each cluster is displayed using

a unique color. Also, note that there is some degree of overlap among clusters 1, 3

and 5. If we were to use the simple k-means algorithm with the Euclidean distance

metric (which is inherently biased to spherical clusters), we get about 117 - 142 errors

of misclassification (computed by comparing the cluster memberships produced by the

algorithm with the known cluster labels), depending on the initialization of the k-means

algorithm (Note: The k-means algorithm requires the user to specify initial locations

of the k cluster centroids. The algorithm used here initializes the centroids to k ran-

domly chosen locations.) The final resulting positions of the cluster centroids after one

such instance of the k-means initialization is also displayed in Figure 1.4 using boldface

black dots. It is interesting to note here that clusters 1, 3 and 5 seem to dominate

the analysis, being in closer Euclidean-proximity to all of the five cluster centroids, as

shown.

For illustrative purposes, suppose we sphericized the elongated point clouds using

the known pooled within-clusters covariance matrix (W) of the data. If we then applied
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Figure 1.5: “Transformed” data with cluster centroids after k-means clustering

the k-means algorithm with the Euclidean distance metric in the transformed space (this

is equivalent to using Mahalanobis distance in the original space), we obtain only 0 -

16 errors of misclassification (again, depending on the k-means initialization.) Figure

1.5 displays the clusters in the transformed space and the corresponding locations of

the final cluster centroids obtained in the last k-means iteration. It is apparent here

that the Euclidean distance metric is an ill-suited choice for clustering the given data.

Hence, in some situations with high intra-cluster correlation, Mahalonobis distances

might be better suited as a measure of proximity. Consequently, variable-weighting

and scaling (univariate and multivariate) could also be thought of as finding alternative

and more appropriate distance metrics for CA.

1.4 Organization

The variable scaling and weighting approaches discussed in this thesis are intuitive and

recognize the possible existence of clusters without actually depending on a detailed

knowledge about the clusters. The remainder of this work is organized as follows.

Section 2.2 in chapter 2 focuses on and discusses some simple univariate, but potentially
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more appropriate ways, for handling the scaling problems than presently widely used

ones. Section 2.3 builds on section 2.2 by discussing methods for emphasizing variables

that best separate the clusters. It is thus in the spirit of DA, which is a well-known

method when the groups and their members are known a priori. In chapter 3, we study

a multivariate approach to address the scaling problem. Though computationally more

intensive than its univariate counterparts, this method will take into consideration the

correlational structure of the data, which we lose, when using univariate methods. We

systematically study what we call the multivariate W∗
(m1) algorithm and characterize

some of its features under the no-clusters scenario. Chapter 4 will extend the analyses

carried out in chapter 3, but with data sets with varying cluster structures. Results

from using a variety of simulated and some real data sets are presented. In chapter 5,

we will introduce a multivariate scheme analogous to DA, but for the clustering context.

We will study some of its characteristics and provide results using some simulated and

real data. Discussion and potential direction for further research follow in chapter 6.
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Chapter 2

Univariate Approach

2.1 Introduction

This chapter focuses on methods to scale and weight the variables, one variable at a

time. Hence, the goal is to propose and study alternative methods that are intuitive

and computationally simple, but more effective than autoscaling. This is based on work

done in a joint paper [38].

Given a space for representing the objects, the prescription of a distance function

or metric would then be the next step. One useful general class of squared distance

functions is provided by a class of positive definite quadratic forms. Specifically, if dij

is the inter-point distance between the p-dimensional point pairs yi and yj , then their

squares are all of the form

d2
ij = (yi − yj)′ M (yi − yj) ∀ i < j = 1, 2, . . . n, (2.1)

where M (p× p) is a positive definite matrix to ensure that d2
ij > 0.

Each of the proposed univariate approaches would be determined by specifying a

choice of a diagonal matrix for M. Some data sets, where n and p are of the same

order of magnitude might suffer from problems of multi-collinearity and ill-conditioned

covariance structures thereby limiting the direct application of multivariate methods,

without some sort of dimensionality reduction. However, an attractive feature of the

univariate methods proposed in this chapter is that they do not require that the number

of observations, n, be larger than the number of variables, p. This adds to their practical

appeal.
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2.2 Univariate Scaling - “Equalizers”

When variables are in different units of measurement, one would ideally want to stan-

dardize them in such a way as to put them on the same footing. Note that in equation

(2.1), when M = I (no scaling), one obtains the familiar Euclidean squared distance

between all pairs of points. So as a first choice, we define,

M1 = I.

It may still be an appropriate choice for certain classes of problems, but if standardizing

variables is desirable then it is flawed for the purpose of CA as it pays no attention to

the fact that changing the scales of measurement of the variables could lead to very

different clusterings of the objects.

A second choice is autoscaling, as described before, and is specified as,

M2=D
[

1
si

2

]
,

where D is a diagonal matrix with elements that are reciprocals of the usual total

sample variances (si
2) of each of the p variables.

Another popular scaling approach denoted M3, is to use the sample range instead

of the standard deviation. This approach (which also ignores the cluster structure), is

defined as,

M3=D
[

1
ri

2

]
,

where D is a diagonal matrix with elements that are reciprocals of squared sample

ranges of each of the p variables. This approach was studied in [65].

The detrimental effects of scaling approaches based on the technique of equalizing

variances without allowing for the possible presence of clusters is not limited to the

presence of clusters in the data, but also aggravated by the presence of outliers. As such,

the interquartile range (IQR) is one alternative to overcome this problem. Denoting

M4 as IQR scaling, we have,

M4=D
[

1
qi

2

]
,
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where (qi)2 represents the square of the interquartile range of each variable.

The technique of autoscaling as reported, involves standardizing all variables us-

ing their respective standard deviations. However, as stated earlier, variable scaling

by the standard deviation ignores the fact that it involves both within-cluster and

between-cluster variation, while what we would ideally want is to use only within-

cluster variation. But not knowing the cluster structure in advance precludes us from

doing this. Intuitively, although one may not know the clusters underlying the data,

“nearest neighbors” are very likely to belong to the same cluster. This is the reasoning

behind M5. To motivate this (also see [4]), we begin by giving below the standard

one-way univariate ANOVA decomposition of total sums of squares of deviations into

“within” and “between” components as:

g∑
i=1

ni∑
j=1

(yij − y)2 =
g∑

i=1

ni∑
j=1

(yij − yi)
2 +

g∑
i=1

ni (yi − y)2. (2.2)

It is common practice to express this as:

t = w + b. (2.3)

An alternative univariate decomposition could be made in terms of pairwise differences

as:

1
n

∑
i<j

(yi − yj)2 =
1
n

∑
i<j

within

(yi − yj)2 +
1
n

∑
i<j

between

(yi − yj)2. (2.4)

The first summation involves only within-group pairs while the second sum is over all

between-group pairs. In short, this can be written as:

t = w∗ + b∗. (2.5)

Notice that the t’s in equations (2.3) and (2.5) are algebraically equivalent. However,

w∗ and b∗ are unknown since the cluster structure is unknown. Exploiting this “nearest

neighbors” theme, we could try to obtain an approximate measure of the within-cluster

variation, by basing it only on the closest pairs of observations. So we have,
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M5=D
[

1
s∗i(m1)

2

]
,

where the quantity (s∗i(m1)
2) is defined as

( 1
n

)
times sum of the m1 smallest inter-point

squared distances measured on each variable individually. So if the jth observation

on the ith variable is denoted yij , then the absolute distance between the jth and kth

observations on the ith variable is,

di(j, k) = |yij − yik| ∀ j < k = 1, . . . n ; i = 1, . . . p. (2.6)

Then we have,

s∗i(m1)
2 =

1
n

∑
1≤j,k≤n

δjk[di(j, k)2]. (2.7)

where

δjk =

 1 if jth and kth observations are among the m closest pairs

0 otherwise

Note that the summation is taken only over the m1 smallest pairwise distances (where

m1 is chosen conservatively small relative to the total number of within-cluster pairs,

which is unknown a priori) which are likely to be ones associated with points belonging

to the same cluster even though we do not know the clusters themselves (more on this

in section 2.4). Also, the factor ( 1
n) in the above definition has no impact on the CA

results.

Chapter 3 describes a full-fledged multivariate analogue of s∗(m1)
2. It is denoted

W∗
(m1) and is a measure of intra-cluster variability based on the m1 nearest neigh-

bors as determined by iteratively computed Mahalanobis inter-point distances in the

p-dimensional space of all p variables (see section 3.2 of the thesis). A simpler version

of the W∗
(m1)-algorithm which works in similar fashion but only computes and iterates

on the diagonal entries of the matrix, leaving the others set to zero, leads to,

M6 =
[
W∗

d(m1)

]−1,

where W∗
d(m1) is the converged diagonal matrix. Thus, M6 yields a weighted Euclidean

distance metric that is determined in a multivariate manner, but involving repeated
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Notation Scaling Strategies
M1 Euclidean distances (no scaling/weighting)
M2 Based on autoscaling
M3 Based on range scaling
M4 Based on IQR scaling
M5 Based on s∗(m1) scaling
M6 Based on W∗

d(m1) scaling

Table 2.1: Univariate Scaling Strategies

inversions of only a diagonal matrix. There is a more detailed description of the steps

of this in section 3.2 of the thesis.

The univariate equalizer scaling strategies described so far are summarized in Table

2.1.

2.3 Univariate Weighting - “Highlighters”

To emphasize those variables that are important in revealing clusters, one could parallel

the approach of DA in the context of clustering. One multivariate approach to this

would be to develop a matrix, B∗, paralleling the standard between-group sum of cross

products matrix B, as in DA. This is studied in chapter 5. But since our focus in

this chapter is on computationally simpler univariate approaches, only methods for

determining weights for the separate variables are considered.

In a sense, M2, M3, M4, M5 and M6 are different methods to equalize the variables,

i.e., to standardize them so as to put them on the same footing. By contrast, we

could let the data suggest weights that highlight those variables with most promise

for revealing the latent cluster structure. A natural extension of the approaches to

scaling considered earlier, would be to conceive of the farthest neighbors in the data

as being more likely to belong to different clusters, although one does not know the

detailed cluster structure underlying the data. Thus, basing estimates of the between-

cluster spread on a subset of the largest inter-point distances is one strategy. In what

follows, some intuitive univariate strategies are proposed to mimic a DA-like setup in

the context of CA. As before, each method will be determined by specifying a choice

of the positive definite matrix, M.
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In this vein, we define,

M7 = D
[

b∗(f)

w∗
(m1)

]
,

where b∗(f) is obtained by subtraction, using the identity among sum of squares “t = b∗ + w∗”,

where t denotes the total sums of squares of pairwise differences and w∗ denotes the

within-clusters sums of squares. Using the earlier notation, w∗
(m1) = (s∗(m1))

2. Then we

have, b∗(f) = t − w∗
(m1). In this setting, variables would tend to receive relatively large

weights if their between-to-within sums of squares ratios are large. Since s∗(m1) (and

hence, w∗
(m1)) is based on only the m1 closest neighbors w∗

(m1) would not be the same

as w∗, as given in the identity, but would be a biased estimate of w∗. Note: In practice,

w∗
(m1) would be smaller than w∗ as it is based on a smaller number of point-pairs.

Similarly, we could define,

M8 = D
[

b∗(m2)

w∗
(m1)

]
,

where b∗(m2) is computed in a manner similar to w∗
(m1), but is based on only the larger

inter-point distances. If the clusters are reasonably homogenous in size (with g ≥ 2),

then the number of between-cluster point pairs will be greater than the number of

within-cluster point pairs. As such, the number of largest pairwise distances, m2 (cor-

responding to between-cluster point pairs) could be chosen to be greater than m1, the

number of smallest pairwise distances (corresponding to within-cluster point pairs).

Hence, if m1 of the smallest inter-point distances are used in computing w∗
(m1), b∗(m2),

analogous to w∗
(m1), could be computed as the sum of the m2 (m2 > m1) largest inter-

point squared distances measured on each variable. However, it may be noted that

depending on the distribution of the n observations across the g clusters, in general,

the number of between-cluster pairs of points could be greater than, equal to, or less

than the number of within-cluster pairs. Hence, a prudent strategy here might be to

study both cases, i.e., m2 > m1 as well as, m2 < m1.

Also,

M9 = D
[

b∗d(f)

w∗
d(m1)

]
,
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where b∗d(f) is an element of the diagonal matrix B∗
d(f) = Td−W∗

d(m1). Td is a diagonal

matrix whose elements are the total sums of squares for the p variables and w∗
d(m1) is

the corresponding element of the diagonal matrix, W∗
d(m1). Recall that we had defined[

W∗
d(m1)

]−1 as M6 in the previous section.

Additionally, we have

M10 = D
[

b∗d(m2)

w∗
d(m1)

]
,

where b∗d(m2) is the corresponding element of a diagonal matrix B∗
d(m2), obtained using

the m2 farthest neighbors instead of the nearest neighbors, as measured by weighted

Euclidean distances, weighted by
[
W∗

d(m1)

]−1.

A second category of highlighters consists of weights that derive from quantiles of the

empirical distribution of the inter-point squared distances. In particular, we consider

the ratio of averages of neighboring upper-tail quantiles to that of neighboring lower-tail

quantiles. If q(p) denotes the pth quantile of the empirical distribution of the inter-point

squared distances, then we could define the diagonal matrix M11 (ratio of quantiles)

as,

M11 = D
[
(q(95) + q(92.5) + q(90))
(q(5) + q(7.5) + q(10))

]
.

An attractive feature of M11 is its simplicity, both conceptually and computationally.

It is important to note that the choice of the specific set of quantiles given above is

intuitively appealing, and other similar sets of quantiles could be investigated.

Note: For the results reported for M8 and M10 in section 2.6.2, we have used m2 = m1,

as we reported in [38]. The univariate weighting strategies described so far are summa-

rized in Table 2.2.

2.4 Choice of “m1”

The underlying intuition that nearest neighbors are likely to belong to the same cluster

and farthest-apart neighbors to different clusters, requires us to essentially obtain a

subset of the smallest and largest inter-point distances, to get at the closest m1 or
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Notation Weighting Strategies

M7 Based on
[

b∗(f)

w∗
(m1)

]
weighting

M8 Based on
[

b∗(m2)

w∗
(m1)

]
weighting

M9 Based on
[

b∗d(f)

w∗
d(m1)

]
weighting

M10 Based on
[

b∗d(m2)

w∗
d(m1)

]
weighting

M11 Based on weights derived from averages of quantiles

Table 2.2: Univariate Weighting Strategies

farthest m2 point pairs respectively. However, care needs to be taken to choose m1 to

be conservatively small to avoid contamination by between-cluster pairs or m2 large

enough to realistically reflect the between-cluster spread. In [34], Gnanadesikan et al.

had developed a rule of thumb (in the multivariate context) for picking m1 in cases

where there is some idea of the number, g, of clusters to expect. The number of within-

cluster pairs of points must be greater than or equal to
(

n
2

)(
n
g − 1

)
, with equality,

if and only if the groups are of equal size. They define m1 =
(

n
3

)(
n
g − 1

)
as a

conservative “2
3

rd rule” for picking the number of closest pairs to work with “in order

to guard against contamination by between-group pairs”. For convenience, this rule

could be applied in the cases where a choice of m1 is needed. However, in practice

it might be advisable to work with a range of m1 values and compare results. As a

related but different challenge, the highlighter weights M8 and M10 clearly require an

appropriate choice of m2, the number of farthest point pairs. This issue is open for

further research and is discussed in chapter 6.

2.5 Issue of “missing constants”

Our goal for developing univariate “equalizers” is an attempt to essentially make the

within-cluster variability the same across all variables. Conversely, with “highlighters”,

we are trying to intuitively develop weights that emphasize those variables that account

for strong separation among clusters. Furthermore, since the highlighter weights involve
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a ratio of between to within components, they would be invariant to scalar transfor-

mations of the variables. However, there are issues of missing constants lurking behind

the proposed univariate equalizers and highlighters. The missing constants would tend

to differ between variables that exhibit cluster structure and those that do not, as well

as vary with the number and relative sizes of the clusters.

In particular, basing the measure of within-cluster variability on a conservatively

small number of nearest neighbors (or likely within-cluster pairs) would yield estimates

that in practice would be typically smaller than the true within-cluster variability.

Hence, we might need to find appropriate constant multipliers to boost these measures

to more realistically reflect the true within-cluster spread. On the other hand, our mea-

sure of between-cluster spread based on a fixed number of farthest-apart point pairs

(or likely between-cluster pairs), could potentially be contaminated by a few within-

cluster pairs. As such, we might again need suitable multiplicative factors (which are

unknown), to make these estimates more nearly unbiased. Hence, not knowing the

precise numbers and contents of the clusters, both the measures could be contaminated

depending on the configurations of the clusters. The essence of our approaches have

been to use the flexibility one has in choosing values of m1 and m2 to hopefully miti-

gate the effects of possible contaminations. By being “conservative” in choosing a small

value of m1 one could try to protect against inflating the measure of within-cluster vari-

ability by including too many inter-cluster pairs of points. Similarly, by choosing fewer

of the farthest neighbors for a measure of inter-cluster variability, one could protect

against deflating the measure of inter-cluster variability. Statistically, the concept in

both choices is protecting against “bias” at the price of “efficiency”. However, one of

the objectives of this research is to investigate to what extent the complexities associ-

ated with these unknown constants can be completely ignored in executing an effective

univariate weighting for CA.
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2.6 Experiments

All the metrics suggested have been tested on five data sets to compare their relative

effectiveness in recovering clusters. The first three are simulated ones, whose struc-

tures have been selected to incorporate specific interesting features. Two real data sets

complete the set of examples. Real data can depart from the idealized assumptions

underlying the methods described heretofore. Hence, they are valuable as test beds for

the methods. The first real example used here is the well-known Iris data set from [2],

which has been used as a test bed for methods of CA. The second is referred to as the

Crabs data and pertains to five variables measured on samples of crabs from Australia.

(See [8].) Brief descriptions of all the data sets are given in section 2.6.1. Results of

using the methods discussed in sections 2.2 and 2.3 are discussed in section 2.6.2.

2.6.1 Description of data sets

The three simulated data sets, denoted D1,D2 and D3, consist of g = 5 multivariate

normal clusters each of size ni = 15 in p = 5 dimensions. They are patterned after

the test sets used in [40] which confined separation in cluster means to the first two

dimensions, effectively leaving the other three as noise dimensions. Standard clustering

techniques tend to be thrown off by (noise) variables that contain no cluster structure.

The challenge is to thus select the structure variables or limit the noise variables through

careful choice of “weights” in order to have a chance at satisfactory cluster recovery.

All of the simulated data sets were constructed from a single five-dimensional multi-

variate standard normal sample of 75 observations. In the case of D1, the observations

were shifted in groups of 15 along the first two (structure) coordinates by the following

amounts: (0, 0), (0, 10), (5, 5), (10, 0) and (10, 10). Figure 2.1 displays a scatter plot for

D1, describing the cluster structure in the space of the structure variables and Figure

2.2 depicts the presence of noise in the space of the two noise dimensions. The five

clusters are seen to be internally cohesive and well separated from each other on the

first two variables.

For D2, a transformation was applied to D1 to induce a (population) correlation of
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Figure 2.1: Cluster structure for D1 in the space of structure variables

Figure 2.2: Presence of noise in D1
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Figure 2.3: Scatter plot for data set D2 (in the space of two structure variables)

0.9 between the first two variables. As in D1, the data are cleanly separated into five

clusters on the first two variables. Data set D3 essentially has the same structure as D2,

but with the cluster centers of D2 brought closer. The cluster means in D3 measured

along the first two coordinates are (0, 0), (0, 7), (3, 3), (7, 0) and (7, 7) respectively. It is

seen that clusters 1, 3 and 5 have been pulled in much closer along the major axis of the

within-cluster dispersion of the data. The difficulty that this feature causes for some

of the methods is discussed further later. In the interest of parsimony, scatter plots of

data sets D2 and D3 are displayed only in the space of the two structure variables in

Figures 2.3 and 2.4 respectively.

The Iris data, denoted D4, involves three groups of 50 observations each, measured

on four variables. Each group represents a different type of iris. The variables are sepal

length and width and petal length and width of the flowers. The latter two appear to

be the more important ones for separating all three groups. This data set has been

widely published and, hence, only two of the six scatter plots are displayed in Figure

2.5.

The Crabs data has 200 observations describing five morphological measurements
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Figure 2.4: Scatter plot for data set D3 (in the space of two structure variables)

Figure 2.5: Scatter plots for data set D4
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Figure 2.6: Scatter plots for data set D5

Notation g ni p Description
D1 5 15 5 Spherical clusters in two dimensions
D2 5 15 5 Elliptical clusters with high intra-cluster correlation
D3 5 15 5 Elliptical clusters with cluster centers drawn closer
D4 3 50 4 Anderson-Fisher Iris data
D5 4 50 5 Crabs data

Table 2.3: Data sets used in this study

Note: The known groups are all of equal size and roughly or exactly homogeneous.
These are ideal conditions under which a simple cut of the hierarchical cluster analysis
tree based on average linkage could be used to exact a sensible partition.
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(frontal lobe size, rear width, carapace length, carapace width and body depth) on 50

crabs, each of two color forms and both sexes, of the species Leptograpsus variegatus

collected at Fremantle, W. Australia. Each crab belongs to one of four groups based

on their species (Blue or Orange) and sex (Male or Female) combination. This five-

dimensional data set constitutes D5. The scatter plots given in Figure 2.6 are a sample

of the 10 possible ones. They exhibit a high level of intra-cluster correlation. The

plots also display the close proximity of the clusters and the degree of overlap therein.

Different symbols are used to depict the different clusters. A brief summary of the five

data sets is provided in Table 2.3.

2.6.2 Results

In all the cases studied, squared distances among all pairs of points were computed

using equation (2.1) with the 11 choices for M described earlier. Then the distances

(dij ’s) were fed as input to an average linkage hierarchical clustering program. The

resulting dendrogram was cut to yield the known “correct” number of clusters. Hence,

for each (M,D) combination, the data was partitioned into the “correct” number of

clusters. The resulting groupings were compared to the known cluster memberships

to get a count of number of mismatches. This provided a measure of performance for

each (M,D) pair. The results are displayed in Table 2.4. For example, if metric M2 is

applied to data set D1, then 36 of the 75 observations are misclassified in the partition

resulting from cutting the dendrogram. The numbers reported in the first five columns

are based on results for the three carefully stylized cases of randomly generated data

(D1 – D3) plus the two real data sets (D4 and D5). Among the simulated cases,

D3 is most delicate in terms of cluster structure and hence was subjected to further

experimentation. The two rightmost columns give results obtained from 100 additional

replications of the D3 model. The numbers reported in these two columns are the mean

and median error counts for these replicates. Note that in the results reported in this

section, for methods requiring a choice of m1 and/or m2, m1 and m2 were set equal and

based on the 2
3

rd rule (with an exception, as explained in the footnote to Table 2.4).

The diagonal elements of matrix M (univariate scales and weights) are shown in
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D1 D2 D3 D4 D5 D3-Mean D3-Median
M1 0 0 2 14 130 7 4

M2 36 35 39 47 134 45 47
M3 4 14 18 17 136 24 27
M4 55 53 50 48 133 52 52
M5 16 14 17 21 130 35 32
M6 0 0 2 4† 132 6 4

M7 0 0 2 14 131 6 4
M8 0 0 2 14 135 7 5
M9 0 0 3 5 136 5 3
M10 0 0 3 5 130 5 4
M11 0 0 2 14 135 6 4
n 75 75 75 150 200 75 75

Table 2.4: Errors of misclassification (mismatches) across data sets
†Choice of m1 (m1 = 1850) yielding the most favorable result was used;see discussion in text

Table 2.5 for M1 through M11. For comparability and ease of interpretation, the entries

are normalized to sum to one. For example, the weights for M1 are all equal for each

data set, as this corresponds to plain Euclidean distances (M1 = I). Hence, for each

(M,D) combination, the numbers denote the relative contributions of scale/weighting

factors for each variable.

The results show that M1 leads to perfect cluster recovery for data sets D1 and

D2 because of the substantial Euclidean spacing between clusters even in the presence

of the three noise variables. The degree of proximity between cluster means dictates

performance across most methods, as is especially evident in the overall weak results in

the extreme case of data set D5. M2−M5 are methods intended to equalize the within-

cluster variation of each variable. But this is not reflected in the corresponding entries

given in Table 2.5. For example, M4, which ignores the cluster structure, seriously

down-weights the first two structure variables for the three simulated data sets, relative

to the noise dimensions. This results in its poor performance (55 errors) even in the case

of data set D1, where the cluster structure is conducive to perfect recovery. Apparently

the “missing constants” (also see section 2.5) can’t be ignored in these cases.

The intent of methods M7 through M11 is to facilitate more enlightened weighting

based on preliminary estimates of within and between-cluster components. Generally,
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D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
M1 0.20 0.20 0.20 0.25 0.20 M7 0.29 0.30 0.22 0.12 0.19

0.20 0.20 0.20 0.25 0.20 0.31 0.29 0.22 0.12 0.22
0.20 0.20 0.20 0.25 0.20 0.13 0.12 0.17 0.44 0.19
0.20 0.20 0.20 0.25 0.20 0.16 0.17 0.23 0.32 0.20
0.20 0.20 0.20 0.20 0.11 0.12 0.16 0.20

M2 0.02 0.02 0.03 0.17 0.23 M8 0.26 0.26 0.20 0.13 0.19
0.02 0.01 0.03 0.60 0.43 0.28 0.26 0.19 0.13 0.22
0.29 0.29 0.28 0.04 0.06 0.14 0.15 0.19 0.42 0.19
0.30 0.30 0.29 0.20 0.05 0.20 0.20 0.26 0.32 0.20
0.38 0.38 0.37 0.24 0.13 0.13 0.16 0.20

M3 0.03 0.03 0.05 0.17 0.26 M9 0.47 0.48 0.44 0.06 0.20
0.03 0.03 0.04 0.38 0.35 0.45 0.48 0.48 0.02 0.05
0.26 0.26 0.25 0.06 0.06 0.03 0.01 0.03 0.60 0.32
0.26 0.26 0.25 0.38 0.05 0.03 0.01 0.02 0.32 0.23
0.42 0.42 0.40 0.28 0.02 0.01 0.02 0.20

M4 0.01 0.01 0.01 0.12 0.20 M10 0.50 0.49 0.45 0.06 0.20
0.01 0.01 0.01 0.78 0.50 0.47 0.50 0.52 0.01 0.05
0.28 0.28 0.27 0.02 0.05 0.01 0.01 0.01 0.60 0.32
0.40 0.40 0.39 0.09 0.05 0.01 0.01 0.01 0.33 0.23
0.31 0.31 0.31 0.20 0.01 0.01 0.01 0.20

M5 0.03 0.03 0.04 0.12 0.22 M11 0.27 0.28 0.22 0.21 0.19
0.03 0.03 0.03 0.42 0.45 0.30 0.27 0.21 0.09 0.22
0.27 0.27 0.27 0.09 0.05 0.13 0.14 0.18 0.44 0.18
0.36 0.36 0.36 0.37 0.04 0.18 0.18 0.24 0.26 0.20
0.31 0.31 0.31 0.24 0.12 0.12 0.16 0.21

M6 0.18 0.27 0.25 0.09 0.32
0.17 0.26 0.25 0.13 0.15
0.20 0.17 0.18 0.20 0.12
0.23 0.15 0.15 0.58 0.07
0.22 0.15 0.17 0.33

Table 2.5: Scaling and Weighting factors (Diag of M) - Normalized to sum to one
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the results are very promising, as observed in both Tables 2.4 and 2.5. For data sets

D1 and D2, where the clusters are well separated, all methods perform perfectly. Fur-

thermore, as shown in Table 2.5, the weights for M7 through M11 reflect the fact that

taking into account between-cluster variability, significantly enhances those weights cor-

responding to the structure variables while simultaneously down-weighting the same for

the noise variables. Hence, methods that incorporate the between-cluster component

stand out when the original variables vary substantially in their discriminatory power.

On the other hand, the univariate version of the multivariate approach of M6, which

skirts the problem of missing constants, has done a much better job of equalizing the in-

fluence of all variables in D1−D3, and apparently D4 too, as judged by the tremendous

decreases in the number of misclassifications.

In case of the simulated data sets D1, D2 and D3, the value of m1 resulting from

the 2
3

rd rule (m1=350) was used for all methods described. Among the real data sets,

for the error counts reported for D4 using M6 in Table 2.4 (marked †), the choice of

m1 (m1=1850) which yielded the most favorable result was used (Note: We tried a

range of different m1 values (1700 – 2200) and found m1=1850 to yield the best result,

although, the results did not vary much across the different m1 values.) Hence for

comparability across methods, the same value of m1 was adopted for all scaling and

weighting approaches for data set D4. In the case of D5, the error count reported (55)

corresponds to using m1 (m1=3200) as obtained by the 2
3

rd rule. Hence, for consistency,

the results reported for all methods using D5, are also based on this m1 value.

A practical advantage of methods M3 through M11 is that they serve as a useful

preprocessing step that does not involve any cluster analysis. However, the above

comparisons of their relative performance in terms of their error counts are all based on

the average linkage HCA algorithm. The weights reported in Table 2.5 are, of course,

not dependent on the particular method of clustering. To the extent that these scaling

and weighting approaches perform as intuition suggests (i.e., equalize the within-cluster

variability or assign more weight to the structure variables relative to noise), one might

expect that the performances of these methods using other clustering algorithms with

similar aims would lead to conclusions similar to those reported above. For instance,
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with the complete linkage HCA algorithm, the results were very close, with the subtle

variations being consistent across all methods and data sets. However, the relative

rankings of performances remained the same.
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Chapter 3

Multivariate W∗
(m1) Algorithm - Null Cluster Structure

3.1 Introduction

With metric data being represented as n points in a p-dimensional space, if the interest

is in grouping the n p-dimensional observations, one could use the p×n matrix, Y, of raw

data as the input. If one wants the results to be invariant under affine transformations

of the initial variables, then one way to achieve this would be to use the transformed

data, Z = A Y, where A is the inverse of the triangular matrix from the Cholesky

decomposition of an estimate of the covariance matrix. Ideally, we would like to use

an estimate of the “within-clusters” covariance matrix analogous to the within-group

covariance matrix used in DA. The difficulty posed by CA, is that the groups are not

known a priori. However, various schemes have been proposed to handle this situation

(see [4]; [34], [40] and references therein.)

A well-known way of securing “invariance” is, by using Mahalanobis’s generalized

distance so as to allow for differing variances of the variables and for inter-correlations

among them (see section 4.3.1 of [33].) The literature on CA contains many algorithms

that have been proposed as schemes for optimizing criteria that are invariant under

certain classes of linear transformations (see, for example, [17] and [29].) For using Ma-

halanobis’s generalized distance, an appropriate choice when the clusters are reasonably

homogenous in their shapes (as in the idealized situation when they are considered as

differing in location but having a common covariance matrix, Σ), is the pooled within-

clusters covariance matrix. In a real data problem, however, the clusters are unknown

to start with, thus creating a dilemma which has been recognized by several authors. A

way out of this quandary is to develop an appropriate metric iteratively from the data.

The within-clusters estimated covariance matrix obtained in this way could also be
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used for transforming the data to make the clusters look “spherical”. In what follows,

we provide a description of an iterative algorithm used to develop such a data-based

metric.

3.2 W∗
(m1) Algorithm

The motivation for the scheme proposed in [4] is the following decomposition of the total

sum of cross products matrix in terms of pairwise differences among the observations:

1
n

∑
i<j

(yi−yj)(yi−yj)′ =
1
n

∑
i<j

within

(yi−yj)(yi−yj)′+
1
n

∑
i<j

between

(yi−yj)(yi−yj)′. (3.1)

Similar to the standard breakdown of total sums of squares and cross products into

the known within and between components, i.e., the identity, T = W + B, we can

denote equation (3.1) as:

T = W∗ + B∗. (3.2)

In the above equation, W∗ is based only on the within-cluster pairs of observations

while B∗ is based only on the between-cluster pairs of observations. In the CA situation,

since we lack advance information on the number of clusters and the cluster labels, we

again use the intuitive reasoning that, despite this difficulty, if there are any clusters

present in the data then the nearest neighbors are likely to belong to the same cluster.

With this thinking in mind, an estimator similar to W∗ was proposed in [4]. Given a

p × n data matrix Y, where yi, i = 1, . . . n are the n p-dimensional observations, the

algorithmic steps are (also see [33]):

1. Set W∗(0)
(m1) = I, the identity matrix, and set the iteration count t = 1.

2. Find the m1 closest pairs of observations according to the squared generalized

distance

(yi − yj)′
[
W∗(t−1)

(m1)

]−1
(yi − yj) ; i < j = 1, . . . n

3. Define:

W∗(t)
(m1) =

1
n

∑
{A}

(yi − yj)(yi − yj)′,
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where {A} is the set of pairs of points points (i, j), i < j, corresponding to the

closest pairs found in step (2).

4. Compute error:

Et = tr
([

W∗(t−1)
(m1)

]−1[
W∗(t)

(m1)

]
− I

)2

.

If the error Et ≤ E, a user-specified number (say, 0.001), or, if t=tmax, the

maximum number of iterations allowed, STOP and set W∗
(m1)=W∗(t)

(m1). Otherwise,

set t← t + 1 and return to step (2).

Note that the matrices W∗
(m1) and W∗ will be equal only if {A} contains all of the

within-cluster pairs and no others at the final step of the iterative process. In practice,

the challenge is to keep m1 “small enough” so that between-cluster pairs are not likely

to contaminate the final {A}.

Diagonal version of W∗
(m1) - W∗

d(m1) algorithm

• The W∗
(m1) algorithm given above, requires the inversion of a non-trivial matrix at

each stage of the iteration. This could put a demand on computational resources

as the dimensionality p, of the data set increases. To circumvent this problem,

we propose a slight variation to the same algorithm, with every step remaining

the same, except for the fact that we would now use only the diagonal entries of

the W∗
(m1) matrix at each step. So we would actually be computing weighted Eu-

clidean distances at each iteration. This only involves the inversion of a diagonal

matrix. The converged matrix would hence be a diagonal matrix (W∗
d(m1)), whose

diagonal entries could be used as estimates of scale of the p variables. We had

defined this as M6 in section 2.2. Hence, this could be thought of as a univariate

version of the multivariate W∗
(m1) algorithm.

Convergence of the W∗
(m1) algorithm is monitored by the error function. As given

in step 4 of the algorithm, when the error between successive iterations falls below

a specified bound, the algorithm terminates. Figure 3.1 displays convergence of the

W∗
(m1)-algorithm, as seen by reducing error with each iteration, for a N(0, I) random
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Figure 3.1: Convergence of W∗
(m1)-algorithm for a N(0, I) sample

sample (n=75, p=5 and m1=1850, based on the 2
3

rd rule). The error values on the y-

axis are plotted in the logarithmic scale to make smaller changes in error more legible.

Also, the algorithm converges in 6 iterations in this example, as shown in Figure 3.1.

To understand the W∗
(m1) algorithm intuitively, consider the sample two-dimensional

scatter plots given in Figure 3.2, for illustrative purposes. In the first iteration, since

we computed Euclidean distances between every pair of points, we use the unit-circle to

indicate the Euclidean distance metric. In subsequent iterations, since a Mahalanobis-

like distance metric is used, we replace the unit circle with a gradually changing ellipse.

As the algorithm reaches convergence, the orientation of this ellipse settles down to

reasonably reflect the elliptical shape of the data.

The W∗
(m1)-algorithm just described, is fully defined, except for the value of m1.

As mentioned earlier, in section 2.4, care needs to be taken to choose an “appropriate”

value of m1 so that primarily within-cluster pairs are used to form W∗
(m1). As explained

in [4], even though the decomposition given in equation (3.2) “does not have as many

nice statistical properties such as the independence of W and B, a key point to note is
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Figure 3.2: W∗(t)
(m1) computations with each iteration, t

that both W∗ and W have the same expected value, apart from a constant. The main

difference is that W∗ gives relatively more weight to large groups than does W”.

Using the inverse of the matrix, W∗
(m1) , obtained after convergence, one can com-

pute a Mahalanobis type of metric to measure the inter-point distances (using the

squared distance function defined in equation (2.1)) as inputs to hierarchical methods

of clustering. Such a metric has the advantage that it is more appropriate for measuring

distances when the variables are correlated and any clusters present are approximately

homogenous and ellipsoidal in shape. Correspondingly, using Mahalanobis distance

in the space of the original variables is equivalent to using Euclidean distance in the

sphericized space of the variables obtained by a linear transformation of the original

variables using
[
W∗

(m1)

]−1/2. Hence, in the transformed space, the clusters, if there are

any, will be more spherical in shape. Furthermore, the transformed data could also be

used as input to non-hierarchical methods of CA such as k-means, using the Euclidean

distance metric which is especially effective at detecting homogenous spherical clusters.
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Although the W∗
(m1) algorithm just described, is simple enough to implement, its per-

formance characteristics have yet to be systematically studied. The primary focus of

this chapter is to study some of the characteristics of the W∗
(m1) algorithm, as given

below.

We begin by studying the characteristics of the algorithm in the case where we

have no clusters. It may be noted that this is also connected to the work on robust

multivariate estimation of dispersion in the single sample situation (see [35]). Since it

can be argued that many practical applications of clustering techniques are to situations

for which there are no real statistical clusters, this could be regarded as a natural place

to begin, and also the simplest model to study. To test the algorithm, we simulate

data from a multivariate normal distribution with zero mean and correlation matrix,

P. A particularly convenient and important theoretical covariance structure is when all

the pairwise correlations are equal. (If all the variances are equal, too, the covariance

matrix is sometimes referred to as compound symmetric.) If the common correlation, ρ,

is positive, then the corresponding ellipsoid of concentration will have p− 1 dimensions

with spherical structure, reflecting the p−1 smaller and equal eigenvalues (λ(1) = λ(2) =

· · · = λ(p−1) = 1 − ρ), and elongated structure along its major axis, dictated by the

largest eigenvalue (λ(p) = 1+(p− 1)ρ). (Note:
p∑

i=1

λ(i) = p). This ellipsoidal structure,

when the common correlation is large and positive is sometimes described as “cigar

shaped” and can be especially challenging for clustering algorithms that are implicitly

or explicitly designed to discover spherical clusters. Hence, such a structure would be

both a convenient and an appropriate challenge case for the W∗
(m1) algorithm.

3.3 Sensitivity to Starting Point

Note that in the first iteration of the W∗
(m1) algorithm, we set W∗(0)

(m1) = I, the identity

matrix, i.e., Euclidean distance is used in the first iteration to obtain a rank ordering of

pairwise distances. This prompts the question whether we could use a more “informed”

starting point to better orient the ellipsoids computed in subsequent iterations of the

algorithm. Along the same lines, we could ask the more general question - “How
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sensitive is the algorithm to its starting point?”

One way to study the sensitivity of the W∗
(m1) algorithm to its starting point is to

consider different random diagonal and full (positive-definite) matrix starting points

(instead of the identity matrix) and then compare the converged matrices arising from

the different random starting points. This would, of course, need to be performed on

data sets with different covariance structures. If the algorithm is not sensitive to its

starting point, then no matter where we start, intuitively, the converged matrix would

be the same, or, nearly the same. The following section delineates the experimental

design used for this study.

3.3.1 Experimental design

Data sets were simulated by drawing random samples of n = 75 observations from a

N(0, P) distribution with correlation matrix P that satisfied the compound symmetry

conditions. In addition, all variances were set equal to one. Hence, in this case, the

corresponding covariance matrix was also equal to P. We picked five different values

for the common correlation ρ (0, 0.5, 0.9, 0.95 and 0.99) and in each case, we simulated

data sets with three different dimensionalities p (5, 10 and 50). With five different

common correlations and three different dimensionalities, we had 15 different random

data sets, all with n = 75 observations. The idea behind such a setup was to evaluate

the sensitivity issue under different conditions, ranging from the simplest (n, p, ρ)

combination of (75, 5, 0) to the extreme combination of (75, 50, 0.99).

One simple way to create random diagonal matrix starting points is to generate

diagonal matrices where the main diagonal elements are Uniformly distributed in the

interval (0,1). We picked this method to generate such random diagonal matrices

with positive diagonal elements, purely for its simplicity. Subsequently, to generate

random symmetric positive-definite (SPD) matrix starting points, we applied the QR

and eigenvalue decompositions in succession, as follows: We know that any p×p random

matrix A, of full rank, has the QR factorization (see [31])

A = Q.R, (3.3)
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where Q is an orthogonal matrix and R is an upper-triangular matrix.

If Λ is a random diagonal matrix with positive diagonal elements (generated as de-

scribed earlier), using Q (from above), and the eigenvalue decomposition, we have,

F = Q.Λ.Q′ (3.4)

F is now an SPD matrix, which could be used as a starting point for the W∗
(m1)

algorithm. Again, it is important to note that this is only one way to generate random

SPD matrices.

With m1 fixed, based on the 2
3

rd rule (m1=1850 for n=75), the W∗
(m1) algorithm was

executed on each of the 15 data sets, for 100 different random starting points (diagonal

and SPD). The 100 converged matrices for each data set, were then compared. To gain

more insight, the corresponding diagonal and off-diagonal elements from each converged

W∗
(m1) matrix were compared separately, described as follows.

Comparing diagonal elements:

The diagonal elements (w∗
ii, i=1. . . p), were first extracted from each of the converged

W∗
(m1) matrices and rescaled to sum to p. This was done to neutralize the effect of any

missing constant (there is more on the missing constant issue later in this chapter) in

the W∗
(m1) matrices and to put the sets of diagonal elements on the same footing. So

we have,

w∗
ii → w∗∗

ii s.t

p∑
i=1

w∗∗
ii = p.

To compare these sets of diagonal elements (p elements in each set) across the 100

matrices, some order statistics (maximum, upper quartile, median, lower quartile and

minimum) were extracted from each set of normalized diagonal elements and plotted, as

shown in Figures 3.3, 3.4, 3.5 and 3.6 respectively. Intuitively, if the diagonal elements

are similar for all the converged W∗
(m1) matrices, then we would expect low variability

in the corresponding order statistics plots.

Comparing off-diagonal elements:

To compare the off-diagonal elements, all matrix components above the main diag-

onal were first extracted from each converged W∗
(m1) matrix and normalized by the
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Comparison of diagonal elements
ρ = 0 ρ = 0.99

Diagonal starting point Figure 3.3 Figure 3.5
SPD starting point Figure 3.4 Figure 3.6

Comparison of off-diagonal elements
ρ = 0 ρ = 0.99

Diagonal starting point Figure 3.7 Figure 3.9
SPD starting point Figure 3.8 Figure 3.10

Table 3.1: Summary of Figures used to study sensitivity to starting point

corresponding diagonal elements to obtain estimates of correlation, ρ. Thus we have,

w∗
ij√

w∗
ii ·
√

w∗
jj

→ r∗ij .

The normalized off-diagonal components of the converged W∗
(m1) matrices were then

compared by studying their distribution using the order statistics plots as described

earlier. These are displayed in Figures 3.7, 3.8, 3.9 and 3.10 respectively.

3.3.2 Results

The plots in Figures 3.3 – 3.10 display the order statistics of the diagonal and off-

diagonal elements of the converged W∗
(m1) matrices. In all plots, the X-axis corresponds

to the 100 random starting points while the Y-axis displays the corresponding order

statistics. Solid lines are used to display the maximum, median and minimum values

corresponding to each random starting point, while, dotted lines are used to display

the corresponding upper and lower quartiles, respectively. Note that in the interest

of parsimony, plots are displayed here only for the two extreme common-correlational

structures of ρ = 0 and ρ = 0.99. Results for other values of the common correlation, ρ,

are similar to those displayed. Also, it is important to note that in Figures 3.3, 3.4, 3.5

and 3.6, where the diagonal elements are compared, the order statistics corresponding

to each starting point are based on only p elements as we have p diagonal elements in

each W∗
(m1) matrix. Similarly, in Figures 3.7, 3.8, 3.9 and 3.10, where the off-diagonal

elements are compared, the order statistics corresponding to each starting point are

based on
(
p
2

)
elements. Table 3.1 lists the plots displayed.
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An interesting common feature gleaned from all the plots is the strikingly low vari-

ability observed in the order statistics across the different random starting points. This

suggests that the W∗
(m1) algorithm converges to almost the same matrix, no matter

what starting point is used, on a given one of the simulated data sets. Specifically, in

Figures 3.3, 3.4, 3.5 and 3.6, in the plots that compares the diagonal elements of the

100 converged W∗
(m1) matrices, the medians of the normalized diagonal elements are

expected to lie close to one. This is exactly what is observed in the empirical plots.

Similarly, with the off-diagonal elements, the respective medians are expected to lie

close to the common correlation, ρ, in each case. Again, this is what is observed in the

plots displayed in Figures 3.7, 3.8, 3.9 and 3.10 respectively. The algorithm converges

on an average in 7 - 10 iterations for all the data sets studied. It is also important to

note that for the purposes of this study, the convergence criterion is fixed at E = 0.001.

However, as a user defined lower bound, this constant could be relaxed slightly, as the

dimensionality, p, increases.

Note that the plots displayed in Figures 3.3 – 3.10 are for one random sample cor-

responding to each (n, p, ρ) combination. To ascertain reliability of the results, we

simulated 50 random data sets for each (n, p, ρ) combination and repeated the entire

process on each data set. We again found similar results, with negligible variability

in order statistics across the 100 random starting points, for each random replicate.

Additionally, the plots given in Figure 3.11 are based on the averaged order statistics

(corresponding to the off-diagonal elements, using random SPD matrix starting points),

averaged over 50 replications of the ρ=0.99 model. As expected, averaging neutralizes

the sampling biases apparent in the single sample experiments, thereby yielding a sym-

metric distribution of the order statistics, as displayed in Figure 3.11. Also, comparable

results are obtained for the other values of ρ.

It may be noted that the results reported here correspond to data sets with a fixed

n = 75. However, limited additional experiments on different values of n also yield

similar results. Furthermore, the results do not change much between using either

random diagonal matrix or SPD matrix starting points. This shows that the algorithm

forgets its initial sets of rank orderings of nearest neighbors after the first few iterations,
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converging to a common subset of nearest neighbors, in Mahalanobis sense, thereby

having captured the embedded correlational structure in the data. In other words, the

W∗
(m1) algorithm is not sensitive to its starting point.

3.4 Quality of the W∗
(m1) estimates

A crucial issue in the study of the W∗
(m1) algorithm is evaluating the quality of the

W∗
(m1) estimates obtained under different experimental conditions. This could be done

by comparing the converged W∗
(m1) matrix with the known Σ matrix as well as the

known W matrix for data sets with different correlational structures (ρ), as well as

different n and p values. Additionally, we could study the adequacy of a single mul-

tiplicative constant for making the W∗
(m1) matrix a more nearly unbiased estimate of

the covariance structure of the data. This would also give us information on the per-

formance of the W∗
(m1) algorithm. In what follows, we explain our design methodology,

followed by some results that would assess the quality of the W∗
(m1) estimates.

3.4.1 Experimental design

To evaluate the quality of the W∗
(m1) matrices under different experimental conditions,

data sets were first generated with varying sizes (n), dimensionality (p) as well as vary-

ing underlying common correlations (ρ). As before, this was done by drawing random

samples from a multivariate normal distribution, corresponding to several different val-

ues of n (n = 75, 150, 200, 250, 300 and 400), p (p = 5, 10, 50, 100, 150, 200 and 300)

and ρ (ρ = 0, 0.5, 0.9, 0.95 and 0.99). Table 3.2 displays the 30 different combinations

of n and p used in this study. Note that in each case, n was always chosen greater than

p, so as to guard against any potential singularity of the resulting W∗
(m1) matrices. So,

for instance, when n = 75, only three values of p (p = 5, 10 and 50) were used, as

displayed in Table 3.2 (marked as “
√

” in the first row of Table 3.2.) Furthermore, this

was repeated for all 5 values of the common correlation ρ, thereby yielding 150 different

experimental conditions under which the quality of the W∗
(m1) matrix was evaluated.

For each (n, p, ρ) combination, 100 random data sets were generated. For each of
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p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75

√ √ √
× × × ×

n = 150
√ √ √ √

× × ×
n = 200

√ √ √ √ √
× ×

n = 250
√ √ √ √ √

× ×
n = 300

√ √ √ √ √ √
×

n = 400
√ √ √ √ √ √ √

Table 3.2: Data sets with the different (n, p) combinations used in this study

these 100 replicates, the W∗
(m1) algorithm was executed, yielding 100 converged W∗

(m1)

matrices. Since the starting-point-invariance characteristic of the algorithm was already

established, Euclidean distances were used in the first iteration of the algorithm in all

cases. The 100 resulting matrices were then averaged so as to smooth out the random

variation arising from the sampling process. A similar averaging was done with the 100

W matrices corresponding to the replicates. Hence, for each value of ρ, there were 30

(averaged) W∗
(m1) matrices and 30 (averaged) W matrices, corresponding to the 30 (n,

p) combinations of data sets.

To begin, as one way to evaluate the quality of the W∗
(m1) estimates, at least in terms

of tracking the correlational structure of the data, each W∗
(m1) matrix was converted

to its corresponding correlation matrix, (R∗). The mean of the off-diagonal elements

(correlations) were then compared with the known common correlation, ρ. Likewise,

the known W matrices were also converted to corresponding correlation matrices, (R),

and a similar comparison with R∗ was performed. The idea behind such a comparison

is to assess the quality of the W∗
(m1) estimates, in terms of providing a good measure

of the true Σ and the known W matrices, respectively.

To further study the accuracy of the W∗
(m1) matrix in approximating the known

W matrix, the eigenvalues of the two matrices were examined. If the W∗
(m1) and W

matrices are approximately proportional (apart from an unknown constant of propor-

tionality), then the respective eigenvalues of the two matrices would also be approxi-

mately proportional to each other. To eliminate the effect of the unknown constant,

the eigenvalues were divided by their respective means so that they sum to one. This

put the sets of eigenvalues on the same footing, ready for comparison. Subsequently,
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the variances of the normalized sets of eigenvalues were computed. Hence, for instance,

when the common correlation, ρ = 0, the true covariance matrix Σ = I, the identity

matrix, and thus the eigenvalues of Σ are all equal to one. In this case, the variances of

the normalized eigenvalues of the W∗
(m1) and W matrices would both be expected to

lie close to zero. Such a variance-analysis provided a closer look into the performance

of the W∗
(m1) algorithm in terms of tracking the known W matrix. Additionally, to

compare the individual eigenvalues of the W∗
(m1) and W matrices with the known Σ

matrix, the mean square error (M.S.E) between the eigenvalues of W∗
(m1) and Σ, and

similarly, between W and Σ matrices, was computed. As before, to render the eigen-

values invariant to any unknown constant, the sets of eigenvalues were first normalized

by their respective means before computing the M.S.E values. This analysis was done

to specifically check for any inherent biases between the individual observed and true

eigenvalues of the respective matrices.

3.4.2 Results

As described in the previous section, for each (n, p, ρ) combination, the resulting (av-

eraged) W∗
(m1) and (averaged) W matrices were first converted to their corresponding

correlation matrices R∗ and R, respectively. The mean of the upper-diagonal elements

from both the matrices were then compared with the known common correlation, ρ.

Tables 3.3 and 3.4 provide this comparison for the 30 different (n, p) combinations of

data sets, for the value of ρ = 0. Tables 3.5 – 3.12 display the same for the other values

of the common correlation, ρ.

The results in Tables 3.3 – 3.12 indicate that the W∗
(m1) algorithm performs cred-

itably in terms of tracking the known W matrices as well as the underlying Σ matrices.

In particular, for all values of ρ, the average correlations from the R∗ matrices are not

only close to the average correlations given by the R matrices, but are also close to the

underlying ρ itself. For instance, in Table 3.3, which displays the average correlations

given by the R∗ matrices, the numbers are reasonably close to the underlying value of

ρ = 0. This suggests that the performance of the algorithm is commendable in trying

to capture the underlying correlational structure of the data.
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Furthermore, Figures 3.12 – 3.16 display plots of variances of the normalized eigen-

values of the (averaged) W∗
(m1) and (averaged) W matrices for each of the five values

of the common correlation, ρ. Additionally, in Figures 3.13 – 3.16, the variances of

the normalized eigenvalues of the corresponding Σ matrices are also plotted. In all

Figures, each set of vertical curves corresponds to a particular value of n, as noted on

the plots. Also, for each value of n, the asterisk (“ * ”) symbols on the curves represent

the variances corresponding to increasing values of p. The different (n, p) combina-

tions for which the variances are plotted are given in Table 3.2. Hence, for each (n,

p, ρ) combination, the plots display the variances of the normalized eigenvalues of the

(averaged) W∗
(m1), (averaged) W and Σ matrices respectively, (except in Figure 3.12,

where the variances from the Σ matrices are not plotted, as they are all equal to zero.)

The plots displayed in Figures 3.12 – 3.16 show the pattern-similarity of the curves

obtained for the W∗
(m1), W and Σ matrices. Furthermore, as expected, in all cases the

variability increases as n and p approach the same order of magnitude. Nevertheless,

it is important to note that for any given value of ρ, the corresponding variances are

relatively the same for the W∗
(m1), W and Σ matrices.

Figures 3.17 – 3.21 display the M.S.E plots of the normalized eigenvalues of the

(averaged) W∗
(m1) and (averaged) W matrices for each of the five values of the common

correlation, ρ. Note that in each case, the M.S.E’s are computed with respect to the true

eigenvalues, i.e., the eigenvalues of the known Σ matrix. The small M.S.Es, coupled

with the nearly overlapping profiles of the plots seen for all values of ρ, is reassuring.

This again demonstrates that the (averaged) W∗
(m1) matrices are very similar to the

known (averaged) W and known Σ matrices, thereby reinforcing the quality of the

W∗
(m1) estimates.

3.4.3 “Missing” constant

To check if the expected value of the W∗
(m1) estimates and their corresponding Σ ma-

trices are approximately apart from only a single proportionality constant, we could

consider the matrix product, M =
[
Σ

]−1[W∗
(m1)

]
. If only a single constant multiplier
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(approximately) “separates” the two matrices, then the matrix M would be (approxi-

mately) proportional to the Identity matrix, i.e., M ≈ kI. Hence, in such a scenario,

the eigenvalues of M would be expected to display low variability. To examine this,

we used a subset of the different (n, p, ρ) combinations of data sets reported earlier.

For each data set, the average W∗
(m1) matrix was used to compute M. The eigenvalues

of M were then extracted and normalized so that they sum to one. Subsequently, in

each case the variance of these normalized eigenvalues was computed, as displayed in

Tables 3.13 – 3.15.

The small variance values in all cases suggests that, indeed, M could be approx-

imated as being proportional to the Identity matrix, I. This provides evidence that

apart from a single constant multiplier, the W∗
(m1) algorithm yields a reliable estimate

of the underlying covariance matrix, Σ. It is also interesting to note that the variances

seem more or less constant as the common correlation, ρ, changes. Furthermore, as seen

for all three values of ρ, the respective variances in each case decreases as n increases

relative to p. It may also be noted that similar results were obtained for data sets with

the other values of n, p and ρ.

Additionally, if we were to estimate the “unknown constant”, k, at least in the least

squares sense, one way to do this would be to minimize the function, trace
[
M− kI

]2.

This could be expressed equivalently as,

arg min
k

trace
[
M− kI

]2 = arg min
k

p∑
i=1

[
(λi − k)

]2
,

where, λi, i = 1 . . . p are the eigenvalues of the matrix, M. It can be easily seen that

the above function is least-squares-minimized when k = λ, where, λ is the average

eigenvalue of M. Tables 3.16 – 3.18 provide the least squares estimates of the unknown

constant computed as described above, that would make the W∗
(m1) matrices more

unbiased. Again, the average W∗
(m1) matrix corresponding to each (n, p, ρ) combination

was used to compute M, in each case. As seen in the Tables, it is interesting to note

that although one would expect the estimates of the constant to vary with m1, the

estimates seem to vary more with n and p and less so with ρ.
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3.4.4 Variability of W∗
(m1) estimates

The focus of the analyses done so far has been primarily on the average performance

of the W∗
(m1) algorithm, based on the average W∗

(m1) matrix used in each case. Hence,

the analysis has mainly concentrated on the issue of bias. However, it is also interesting

to examine the variability of the W∗
(m1) estimates. Specifically, comparing the W∗

(m1)

and W matrices for each of the 100 random replicates corresponding to each (n, p,

ρ) combination would provide more insight into the variability of the W∗
(m1) matrices.

One way to do this is explained as follows. For each (n, p, ρ) combination we have 100

converged W∗
(m1) matrices and 100 known W matrices. We could first convert each

of these into correlation matrices to obtain 100 R∗ and 100 R matrices, respectively.

For each (i, j)th element of the corresponding matrices, i < j = 1 . . . p, we could then

consider the ratio, V1(ij) =
var[r∗(i,j)]

var[r(i,j)]
, and average this measure for all i < j. This

would give us a succinct measure of the variability of the W∗
(m1) matrices relative to

the W matrices for each (n, p, ρ) combination of data sets. Tables 3.19 – 3.21 provide

the V1 variability measures, computed as described above, for a subset of the data sets.

As seen in Tables 3.19 – 3.21, although the variability ratios (V1) are close to one,

they are in general larger than one. This indicates that the W∗
(m1) matrices are more

variable than their corresponding W matrices, as one would expect. This is, in part, the

price making a conservative choice for m1. Also, for the same reason, one would expect

the magnitude of the departure from unity to vary with the choice of m1. However, it

is interesting to note that the ratios seem independent of the common correlation, ρ.

This, taken together with the near-unity variance ratios again indicate that the W∗
(m1)

algorithm provides reliable results, consistently tracking the known W matrix in each

case.

Additionally, to specifically study the variability of the diagonal elements of the 100

converged W∗
(m1) matrices, we could do the following. Given 100 W∗

(m1) matrices and

100 known W matrices for each (n, p, ρ) combination, we could first extract the diag-

onal elements from each of the 100 matrices to get w
∗(j)
(ii) and w

(j)
(ii) respectively, where
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i = 1 . . . p and j = 1 . . . 100. Here, w
∗(j)
(ii) corresponds to the 100 sets of diagonal ele-

ments from the 100 W∗
(m1) matrices, while w

(j)
(ii) corresponds to the 100 sets of diagonal

elements from the 100 W matrices. We could then normalize each set separately, such

that they sum to one. Hence we would have,

p∑
i=1

w
∗(j)
(ii) = 1, j = 1 . . . 100

and,
p∑

i=1

w
(j)
(ii) = 1, j = 1 . . . 100

For each ith diagonal element we could then compute the ratio V2(i) =
var[w∗

(ii)]

var[w(ii)]
,

where the variance for each ith diagonal element is computed across the 100 samples.

We could then average this ratios-of-variances measure over all p. This would provide

a comparison of the variances of the normalized diagonal terms of the W∗
(m1) matrices

with the variances of the normalized diagonal terms of the W matrices, for each (n, p,

ρ) combination. Tables 3.22 – 3.24 provide the V2 variability measures just described.

As displayed in Tables 3.22 – 3.24, the variability ratios are all very close to one,

albeit slightly larger than one. This is again consistent with intuition, as one would

expect estimates of the diagonal elements from the W∗
(m1) matrices to be more variable

than those of the W matrices (also, recall that the diagonal terms of the underlying Σ

matrices were all set equal to one). Furthermore, it may be noted that the V2 variability

ratios seem relatively smaller than the V1 ratios for the off-diagonal elements. This may,

in part, be due to the normalizations performed on the diagonal elements, constraining

them to be relatively more alike. Nevertheless, the near-unity variability ratios indicate

that the variances of the diagonal elements of the respective matrices are very similar.

This result, taken together with the previous result which studied the variability of the

off-diagonal terms of the W∗
(m1) matrices, again reinforces the stability of the W∗

(m1)

algorithm. Hence, the W∗
(m1) algorithm converges to relatively the same underlying

covariance matrix across the 100 random replicates, with the small variability in the

converged matrices attributable primarily to the sampling process.
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3.5 Conclusion

This chapter studied some of the characteristics of the W∗
(m1) algorithm under the

no-clusters scenario. To begin, the starting point issue of the algorithm was studied.

The results indicated that the algorithm is not sensitive to the choice of its starting

point. This is an important finding for this iterative approach, demonstrating that

the natural choice of the Euclidean distance metric (Identity matrix starting point)

for computing nearest neighbors in the first iteration, is as good as any other metric,

thereby providing evidence of simplicity as well as stability of the algorithm. In terms

of performance of the W∗
(m1) algorithm in yielding a good quality estimate of the

covariance structure of the data, the analysis performed suggests that the algorithm

not only converges to a good approximation of the known W matrix (our gold standard

for comparison), but also provides a reasonable approximation of the underlying Σ

matrix. Furthermore, an eigenanalysis of the respective matrices also revealed striking

similarity of the converged W∗
(m1), W and Σ matrices. This, coupled with additional

experiments to study the missing constant issue leads us to reason that in the absence

of clusters, only a single constant multiplier would be needed to make the W∗
(m1) matrix

a more nearly unbiased estimate of the underlying covariance matrix, Σ. In addition to

the average-performance-characteristics of the algorithm, the variability of the W∗
(m1)

estimates was also studied. The results again established the relative stability of the

W∗
(m1) algorithm by converging to covariance estimates that were consistent with W as

well as the underlying Σ matrices in each case. Also, it may be noted that the results

reported in this chapter were based on random data sets with underlying compound

symmetric covariance structures. However, limited experiments were also performed

on data sets with other randomly chosen covariance structures and the conclusions

drawn from them were generally consistent with those reported here. All these results

suggests that the algorithm provides a reliable measure of the covariance structure, at

least in the no-clusters scenario. The next chapter will provide a detailed study of the

characteristics of the W∗
(m1) algorithm for data sets with underlying cluster structure.
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Figure 3.3: Comparison of diagonal elements - diagonal starting point - ρ = 0



49

Figure 3.4: Comparison of diagonal elements - SPD starting point - ρ = 0
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Figure 3.5: Comparison of diagonal elements - diagonal starting point - ρ = 0.99
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Figure 3.6: Comparison of diagonal elements - SPD starting point - ρ = 0.99
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Figure 3.7: Comparison of off-diagonal elements - diagonal starting point - ρ = 0
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Figure 3.8: Comparison of off-diagonal elements - SPD starting point - ρ = 0
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Figure 3.9: Comparison of off-diagonal elements - diagonal starting point - ρ = 0.99
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Figure 3.10: Comparison of off-diagonal elements - SPD starting point - ρ = 0.99
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Figure 3.11: Mean order statistics of off-diagonal elements-SPD starting point-ρ=0.99
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Figure 3.12: Variance of normalized eigenvalues of (average) W∗
(m1) and (average) W

matrices, ρ=0

Figure 3.13: Variance of normalized eigenvalues of (average) W∗
(m1), (average) W and

Σ matrices, ρ=0.5
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Figure 3.14: Variance of normalized eigenvalues of (average) W∗
(m1), (average) W and

Σ matrices, ρ=0.9

Figure 3.15: Variance of normalized eigenvalues of (average) W∗
(m1), (average) W and

Σ matrices, ρ=0.95
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Figure 3.16: Variance of normalized eigenvalues of (average) W∗
(m1), (average) W and

Σ matrices, ρ=0.99

Figure 3.17: M.S.E between normalized eigenvalues of (average) W∗
(m1), (average) W

and Σ matrices,ρ=0
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Figure 3.18: M.S.E between normalized eigenvalues of (average) W∗
(m1), (average) W

and Σ matrices, ρ=0.5

Figure 3.19: M.S.E between normalized eigenvalues of (average) W∗
(m1), (average) W

and Σ matrices, ρ=0.9
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Figure 3.20: M.S.E between normalized eigenvalues of (average) W∗
(m1), (average) W

and Σ matrices, ρ=0.95

Figure 3.21: M.S.E between normalized eigenvalues of (average) W∗
(m1), (average) W

and Σ matrices, ρ=0.99
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p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.02 -0.01 -0.005 × × × ×
n = 150 0.01 -0.006 -0.003 0 × × ×
n = 200 -0.008 -0.005 0 0 0 × ×
n = 250 0.006 0.003 0 0 0 × ×
n = 300 0.005 0.003 0 0 0 0 ×
n = 400 0.004 0.002 -0.001 0 0 0 0

Table 3.3: Average of off-diagonal elements of R∗, ρ = 0

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.03 -0.02 -0.005 × × × ×
n = 150 0.02 -0.006 -0.002 0 × × ×
n = 200 -0.009 -0.004 0 0 0 × ×
n = 250 0.005 0.001 0 0 0 × ×
n = 300 0.004 0.003 -0.001 0 0 0 ×
n = 400 0.004 0.002 0 0 0 0 0

Table 3.4: Average of off-diagonal elements of R, ρ = 0

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.52 0.46 0.46 × × × ×
n = 150 0.47 0.46 0.51 0.47 × × ×
n = 200 0.47 0.48 0.47 0.46 0.47 × ×
n = 250 0.50 0.47 0.48 0.47 0.45 × ×
n = 300 0.51 0.52 0.50 0.48 0.47 0.46 ×
n = 400 0.50 0.47 0.51 0.47 0.46 0.45 0.44

Table 3.5: Average of off-diagonal elements of R∗, ρ = 0.5

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.52 0.47 0.48 × × × ×
n = 150 0.50 0.49 0.50 0.51 × × ×
n = 200 0.48 0.49 0.47 0.50 0.48 × ×
n = 250 0.51 0.47 0.48 0.48 0.50 × ×
n = 300 0.55 0.54 0.50 0.50 0.50 0.52 ×
n = 400 0.52 0.48 0.51 0.49 0.47 0.52 0.52

Table 3.6: Average of off-diagonal elements of R, ρ = 0.5

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.93 0.91 0.88 × × × ×
n = 150 0.91 0.90 0.88 0.87 × × ×
n = 200 0.88 0.89 0.89 0.86 0.86 × ×
n = 250 0.91 0.88 0.89 0.86 0.85 × ×
n = 300 0.90 0.90 0.89 0.87 0.85 0.84 ×
n = 400 0.89 0.90 0.90 0.90 0.86 0.85 0.83

Table 3.7: Average of off-diagonal elements of R∗, ρ = 0.9
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p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.93 0.91 0.91 × × × ×
n = 150 0.91 0.91 0.89 0.89 × × ×
n = 200 0.89 0.90 0.89 0.89 0.88 × ×
n = 250 0.91 0.89 0.89 0.89 0.90 × ×
n = 300 0.90 0.90 0.91 0.89 0.88 0.89 ×
n = 400 0.90 0.91 0.90 0.90 0.89 0.89 0.90

Table 3.8: Average of off-diagonal elements of R, ρ = 0.9

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.95 0.94 0.93 × × × ×
n = 150 0.95 0.95 0.95 0.92 × × ×
n = 200 0.94 0.95 0.95 0.93 0.92 × ×
n = 250 0.94 0.95 0.95 0.93 0.92 × ×
n = 300 0.95 0.95 0.95 0.94 0.92 0.92 ×
n = 400 0.95 0.95 0.95 0.95 0.94 0.93 0.92

Table 3.9: Average of off-diagonal elements of R∗, ρ = 0.95

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.95 0.94 0.95 × × × ×
n = 150 0.95 0.95 0.95 0.94 × × ×
n = 200 0.95 0.95 0.95 0.94 0.94 × ×
n = 250 0.95 0.95 0.95 0.94 0.94 × ×
n = 300 0.95 0.95 0.95 0.95 0.95 0.94 ×
n = 400 0.95 0.95 0.95 0.95 0.95 0.95 0.94

Table 3.10: Average of off-diagonal elements of R, ρ = 0.95

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.99 0.99 0.99 × × × ×
n = 150 0.99 0.99 0.99 0.98 × × ×
n = 200 0.98 0.99 0.99 0.98 0.98 × ×
n = 250 0.98 0.98 0.99 0.98 0.98 × ×
n = 300 0.98 0.99 0.99 0.98 0.98 0.98 ×
n = 400 0.99 0.98 0.99 0.99 0.98 0.97 0.98

Table 3.11: Average of off-diagonal elements of R∗, ρ = 0.99

p = 5 p = 10 p = 50 p = 100 p = 150 p = 200 p = 300
n = 75 0.99 0.99 0.99 × × × ×
n = 150 0.99 0.99 0.99 0.98 × × ×
n = 200 0.99 0.99 0.99 0.99 0.99 × ×
n = 250 0.99 0.99 0.99 0.99 0.99 × ×
n = 300 0.99 0.99 0.99 0.98 0.99 0.99 ×
n = 400 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 3.12: Average of off-diagonal elements of R, ρ = 0.99
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p = 5 p = 50 p = 100 p = 150
n = 75 0.005 0.010 × ×
n = 150 0.004 0.008 0.012 ×
n = 200 0.002 0.007 0.011 0.018

Table 3.13: Variance of normalized eigenvalues of M =
[
Σ

]−1[avg W∗
(m1)

]
, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0.006 0.012 × ×
n = 150 0.006 0.010 0.014 ×
n = 200 0.003 0.009 0.013 0.020

Table 3.14: Variance of normalized eigenvalues of M =
[
Σ

]−1[avg W∗
(m1)

]
, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 0.010 0.016 × ×
n = 150 0.008 0.010 0.018 ×
n = 200 0.005 0.009 0.013 0.021

Table 3.15: Variance of normalized eigenvalues of M =
[
Σ

]−1[avg W∗
(m1)

]
, ρ = 0.9

p = 5 p = 50 p = 100 p = 150
n = 75 27.86 44.76 × ×
n = 150 66.52 93.98 95.66 ×
n = 200 83.76 111.10 120.44 125.22

Table 3.16: Least squares approximation of the unknown constant, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 28.92 45.17 × ×
n = 150 68.36 94.01 96.37 ×
n = 200 86.21 115.14 123.42 127.98

Table 3.17: Least squares approximation of the unknown constant, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 30.11 47.21 × ×
n = 150 71.11 96.24 97.49 ×
n = 200 88.76 117.20 125.35 130.93

Table 3.18: Least squares approximation of the unknown constant, ρ = 0.9

p = 5 p = 50 p = 100 p = 150
n = 75 1.12 1.21 × ×
n = 150 1.10 1.18 1.21 ×
n = 200 1.05 1.11 1.16 1.32

Table 3.19: V1 variability ratios, ρ = 0
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p = 5 p = 50 p = 100 p = 150
n = 75 1.23 1.35 × ×
n = 150 1.16 1.27 1.31 ×
n = 200 1.08 1.17 1.24 1.33

Table 3.20: V1 variability ratios, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 1.30 1.37 × ×
n = 150 1.28 1.33 1.36 ×
n = 200 1.24 1.29 1.30 1.40

Table 3.21: V1 variability ratios, ρ = 0.9

p = 5 p = 50 p = 100 p = 150
n = 75 1.01 1.03 × ×
n = 150 1.00 1.01 1.02 ×
n = 200 1.00 1.01 1.01 1.03

Table 3.22: V2 variability ratios, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 1.01 1.02 × ×
n = 150 1.01 1.02 1.03 ×
n = 200 1.00 1.01 1.02 1.02

Table 3.23: V2 variability ratios, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 1.02 1.02 × ×
n = 150 1.01 1.03 1.04 ×
n = 200 1.00 1.03 1.03 1.05

Table 3.24: V2 variability ratios, ρ = 0.9
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Chapter 4

Multivariate W∗
(m1) Algorithm - Presence Of Clusters

4.1 Introduction

The previous chapter provided a systematic characterization of the W∗
(m1) algorithm

under the null-clusters scenario. We observed that the algorithm is not sensitive to the

choice of its starting point thereby providing reassuring evidence that the Euclidean

distance metric is as good as any other choice of distance measure in the first iteration

of the algorithm. Furthermore, the analysis provided substantial indication that in the

null-cluster structure scenario the resulting W∗
(m1) estimates are reliable measures of

the underlying covariance structures of the data, up to a constant scaling factor. The

goal of this chapter is to extend the analysis carried out in the previous chapter, i.e,

methodically study the starting point characteristic of the W∗
(m1) algorithm, evaluate

the quality of the covariance measure it provides, and also to study its efficacy in

subsequent cluster recovery.

4.2 Sensitivity to Starting Point

A particularly problematic issue with many iterative algorithms is the sensitivity to

initialization conditions. The stability of the algorithm for a large part depends on

its ability to perform consistently, independent of the starting point. In this section

we study the starting point characteristic of the W∗
(m1) algorithm in the presence of

clusters. As described in section 3.3, random diagonal and SPD matrix starting points

are used (instead of the Identity matrix starting point) and the W∗
(m1) algorithm is

executed using the different random starting points. The diagonal and off-diagonal

elements respectively of the converged W∗
(m1) matrices corresponding to the different



67

starting points are then compared separately to evaluate the sensitivity of the algorithm.

This will be done via simulations using a combination of simulated data sets (with

carefully chosen cluster structures) and a few real data sets. The next three sections

provide the experimental design, description of the data sets used and corresponding

results.

4.2.1 Experimental design

A collection of simulated data sets with selectively chosen cluster structures and a few

real data sets are used to evaluate the starting point issue. A brief description of the

data sets used is provided in the next section. Referring back to section 3.3.1, for

each data set, the W∗
(m1) algorithm was executed using 100 random diagonal and SPD

matrix starting points. The random SPD matrices were generated using equation 3.4.

For each data set, the 100 resulting W∗
(m1) matrices were then compared. As in section

3.3.1, this was done by using quantile plots of the normalized diagonal and off-diagonal

elements.

The diagonal elements (w∗
ii, i=1. . . p), were first extracted from each of the converged

W∗
(m1) matrices and rescaled to sum to p. This was done, as before, to neutralize the

effect of any missing constant in the W∗
(m1) matrices and to put the sets of diagonal

elements on the same footing. To then compare these sets of rescaled diagonal elements

(p elements in each set) across the 100 matrices, some order statistics (maximum,

upper quartile, median, lower quartile and minimum) were extracted directly from

each set of (rescaled) diagonal elements and plotted. For the off-diagonal elements, as

described on page 37 in section 3.3.1, all matrix components above the main diagonal

were extracted from each converged W∗
(m1) matrix and converted to obtain estimates

of the within-cluster correlation, ρ. These
(
p
2

)
correlation estimates, r∗ij ’s, were then

directly compared by studying their distribution via quantile plots. As noted before, if

the W∗
(m1) algorithm is not sensitive to the starting point, then intuitively, the quantile

plots (for diagonal and off-diagonal elements) would display “straight line” profiles.

Also, note that in each case, m1 is based on the 2
3

rd rule.
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4.2.2 Description of data sets

The data sets used in this study are a combination of 14 simulated ones (D1 - D14),

whose structures were selected to incorporate specific interesting features, and four real

data sets (D15 - D18). All simulated data sets consist of random samples of size n

and dimensionality p, drawn from a multivariate normal distribution. In each case, the

cluster structure is confined to the space of the first two variables (structure dimensions),

leaving the remaining p−2 dimensions as noise dimensions. Some of the simulated data

sets involve spherically shaped clusters. To obtain data sets with ellipsoidal clusters,

a transformation was applied to induce a (within-cluster) correlation of ρ=0.9 between

the first two variables. Such a setup facilitates a systematic characterization of the

W∗
(m1) algorithm under a variety of carefully controlled scenarios.

Data set D1 consists of n = 75 observations drawn from a spherical multivariate

normal distribution. The data points were then shifted in groups of 15 only along the

first two dimensions (structure dimensions), to yield five spherical homogenous clusters

as shown in Figure 4.1. D2 depicts the same cluster structure as seen in D1, but with

the cluster centers from D1 drawn closer so that the five spherical clusters slightly

overlap. For D3, a correlation of ρ = 0.9 was induced between the structure dimensions

of D1, to obtain five homogenous elliptical clusters. Data set D4 has the same cluster

structure as D3, but with the clusters from D3 drawn closer only along its major axis of

separation. Additionally, D5, has the same structure as D4, but with the clusters from

D4 drawn closer along its minor axis of separation, thereby causing a slight overlap

among all of its five elliptical clusters. One of the reasons behind studying the specific

cluster scenarios shown in data sets D2, D4 and D5 is to evaluate the characteristics of

the W∗
(m1) algorithm when there is potential contamination by between-cluster point

pairs caused by nearly overlapping clusters. Along similar lines, data set D6 is an

interesting test case of within-cluster outliers. Although from a clustering perspective,

outliers could also be thought of as singleton clusters, it might be interesting to consider

their effect when viewed as observations belonging to the individual clusters. This again

considers the issue of “contamination” just discussed. Data sets D7 - D10 consider the
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case of heterogenous clusters. Each data set is a sample from a mixture of three, equal

in size, multivariate gaussians with different covariance matrices.

On the other hand, data sets D11 - D14 highlight perhaps an “extreme” case of

singleton clusters. They all consist of n data points with g = 5 clusters distributed as

four singleton clusters and one big cluster with the remaining n−g+1 data points. Data

sets D11 and D12 consist of n = 75 data points with four singleton clusters and the

one big cluster consisting of n = 71 data points. In D11, the clusters are well separated

from each other, while, in D12, the four singleton clusters are drawn closer to the big

cluster so as to cause the between-pairs to “mix in” with the within-pairs. Data sets

D13 and D14 have the same cluster structure as D12, except that the number of data

points in the big cluster are now 146 and 196 respectively. The idea behind studying

the structures in D12 - D14 is as follows. In such an extreme scenario of singleton

clusters, the ratio of the number of between-cluster point pairs (b) to the number of

within-cluster point pairs (w) is given by:

b

w
=

n(2g − 2)− g2 + g

n2 + n(1− 2g) + g2 − g
= O

(
1/n

)

Hence, as n increases (from 75 data points in D12 to 200 data points in D14), we would

expect the between-cluster point pairs to play a declining role in the W∗
(m1) algorithm.

Among the real data sets, D15 and D16 are the Iris and Crabs data sets respectively.

A description along with an accompanying sample of scatter plots (see Figures 2.5 and

2.6) was provided in chapter 2, in section 2.6.1. The Wine data set (denoted D17)

is a 13 dimensional data set (n = 178) consisting of three groups with 59, 71 and 48

observations in each group, respectively. It is based on the results of a chemical analysis

of wines grown in the same region in Italy but derived from three different cultivars.

The analysis determined the quantities of 13 constituents found in each of the three

types of wines. The 13 corresponding variables are - Alcohol, Malic acid, Ash, Alcalinity

of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins,

Color intensity, Hue, OD280/OD315 of diluted wines, and Proline respectively. It is

publicly available from the UCI Machine Learning Repository. The Cells (D18) data set
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( c©Advanced Animal Diagnostics, NC, 2007) consists of three continuous geometrical

measurements on a set of 250 cells found in milk. Each of the cells is of one of three

types (Lymphocyte, Neutrophil or Macrophage). The three features were extracted

using patented methods that involved computer vision techniques, optical imaging,

image segmentation and feature extraction algorithms. The data set consists of 14

Macrophage, 153 Neutrophil and 83 Lymphocyte samples. The cluster structure in data

sets D16, D17 and D18 respectively, displays considerable cluster-overlap. Additionally,

D16 displays a high degree of intra-cluster correlation, while the variables in data set

D18 display widely differing variances.

A brief description of the 14 simulated data sets with corresponding cluster centers,

and the four real data sets is given below.

• D1 (n=75, p=5, g=5, m1=350)

Description: Five spherical clusters (ρ = 0) in two dimensions, clusters homoge-

nous in size and dispersion, clusters well separated from each other

Cluster centers: (0,0), (5,5), (10,10), (0,10), (10,0)

• D2 (n=75, p=5, g=5, m1=350)

Description: Five spherical clusters (ρ = 0) in two dimensions, homogenous in

size and dispersion, clusters nearly overlapping

Cluster centers: (0,0), (2,2), (5,5), (0,5), (5,0)

• D3 (n=75, p=5, g=5, m1=350)

Description: Five elliptical clusters (ρ = 0.9) in two dimensions, homogenous in

size and dispersion, clusters well separated from each other

Cluster centers: (0,0), (5,5), (10,10), (0,10), (10,0)

• D4 (n=75, p=5, g=5, m1=350)

Description: Five elliptical clusters (ρ = 0.9) in two dimensions, homogenous in

size and dispersion, clusters drawn closer to each other along the major of axis of

separation

Cluster centers: (0,0), (3,3), (7,7), (0,7), (7,0)
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• D5 (n=75, p=5, g=5, m1=350)

Description: Five elliptical clusters (ρ = 0.9) in two dimensions, homogenous in

size and dispersion, clusters nearly overlapping

Cluster centers: (0,0), (3,3), (6,6), (0,2), (2.5,0)

• D6 (n=75, p=5, g=3, m1=600)

Description: Three spherical clusters (ρ = 0) in two dimensions, homogenous in

size and dispersion, with few within-cluster outliers

Cluster centers: (2,1), (5,5), (10,0)

• D7 (n=75, p=5, g=3, m1=600)

Description: Three spherical clusters (ρ = 0) in two dimensions, homogenous in

size but with different within-cluster dispersions

Cluster centers: (0,2), (10,5), (20,0)

• D8 (n=75, p=5, g=3, m1=600)

Description: Three elliptical clusters (ρ = 0.9) in two dimensions, homogenous in

size but with different within-cluster dispersions

Cluster centers: (0,0), (15,15), (15,0)

• D9 (n=75, p=5, g=3, m1=600)

Description: One elliptical (ρ = 0.9) and two spherical clusters (ρ = 0), homoge-

nous in size but with different within-cluster dispersions

Cluster centers: (10,5), (15,15), (20,0)

• D10 (n=150, p=5, g=3, m1=2450)

Description: Three elliptical clusters, homogenous in size and dispersion, one of

the three clusters with different orientation (ρ1 = ρ2 = 0.9, ρ3 = -0.9)

Cluster centers: (0,0), (0,5), (5,5)

• D11 (n=75, p=5, g=5, m1=350)

Description: Extreme case - Five clusters - one elliptical cluster (71 data points,

ρ = 0.9) and four singleton clusters, well separated from each other

Cluster centers: (5,5), (3,7), (6.5,10), (5,1.5), (7,3)
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• D12 (n=75, p=5, g=5, m1=350)

Description: Extreme case - Five clusters - one elliptical cluster (71 data points,

ρ = 0.9) and four singleton clusters, cluster centers close enough to cause slight

overlap of clusters

Cluster centers: (5,5), (4,4.5), (6,6.5), (5,4), (6.5,5.5)

• D13 (n=150, p=5, g=5, m1=1450)

Description: Extreme case - Five clusters - one elliptical cluster (146 data points,

ρ = 0.9), four singleton clusters, cluster centers close enough to cause slight over-

lap of clusters

Cluster centers: (5,5), (4,4.5), (6,6.5), (5,4), (6.5,5.5)

• D14 (n=200, p=5, g=5, m1=2600)

Description: Extreme case - Five clusters - one elliptical cluster (196 data points,

ρ = 0.9), four singleton clusters, cluster centers close enough to cause slight over-

lap of clusters

Cluster centers: (5,5), (4,4.5), (6,6.5), (5,4), (6.5,5.5)

• D15 - Iris data set (n=150, p=4, g=3, m1=2450)

Description: Three groups of 50 observations each, each observation measured on

four variables. Clusters are homogenous in size with moderate heterogeneity of

within-cluster dispersion

• D16 - Crabs data set (n=200, p=5, g=4, m1=3200)

Description: Five measurements on 200 crabs, with four clusters of 50 observations

each. Clusters are homogenous in size with high intra-cluster correlation

• D17 - Wine data set (n=178, p=13, g=3, m1=3460)

Description: 13 continuous measurements on 178 wine samples belonging to three

groups with 59, 71 and 48 samples in each group.

• D18 - Cells data set (n=250, p=3, g=3, m1=6860)

Description: Three continuous measurements on 250 cells belonging to three

groups with 14, 153 and 83 samples in each group.
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Scatter plots of the simulated and real data sets are displayed in Figures 4.1 – 4.23

respectively. Note that for the simulated data sets, scatter plots are displayed only in

the space of the structure variables. Furthermore, among the real data sets, for D15,

D16 and D17, in the interest of parsimony only a (randomly selected) sample of the

scatter plots are displayed.

4.2.3 Results

The plots in Figures 4.24 – 4.33 display the order statistics of the rescaled diagonal

and off-diagonal elements of the converged W∗
(m1) matrices. As before, in all plots,

the X-axis corresponds to the 100 random starting points while the Y-axis displays the

corresponding order statistics. Solid lines are used to display the maximum, median

and minimum values corresponding to each random starting point, while dotted lines

are used to display the corresponding upper and lower quartiles, respectively.

It may be noted that in the interest of parsimony, only plots corresponding to

the random SPD matrix starting points are displayed here. Results for the random

diagonal matrix starting points are similar to those displayed. Also, it is important to

note that in Figures 4.24 – 4.28, where the diagonal elements are compared, the order

statistics corresponding to each starting point are based on only p elements as there are

p diagonal elements in each W∗
(m1) matrix. Similarly, in Figures 4.29 – 4.33, where the

off-diagonal elements are compared, the order statistics corresponding to each starting

point are based on
(
p
2

)
elements.

The plots again display a strikingly low variablility among the order statistics across

the different random starting points. This suggests that the W∗
(m1) algorithm converges

to almost the same matrix, regardless of what starting point is applied, even in the

presence of clusters. Being an iterative algorithm, this is a particularly desirable char-

acteristic that will be reassuring to practitioners who might be concerned about the

dependence of the algorithm on the starting values. This observation along with the

similar set of results observed under the null clusters scenario reported in the previ-

ous chapter, forms an important finding - the W∗
(m1) algorithm is not sensitive to its
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initialization, irrespective of the cluster structure.

4.3 Quality of W∗
(m1) estimates

In section 3.4 we evaluated the quality of the W∗
(m1) estimates under the null-clusters

scenario by studying its proximity to the known W and Σ matrices. The intuition

behind such an analysis was to examine to what extent the W∗
(m1) estimate (apart

from a constant multiplier) serves as an effective proxy for the known W matrix. The

results provided reasonable evidence that the W∗
(m1) matrix not only serves as a reliable

substitute for the known W matrix, but also tracks the underlying covariance structure,

Σ, commendably. The goal in this chapter is to evaluate the extent to which these

results carry over to the situation where clusters are present in the data. In what

follows, we explain the experimental design, supplemented by results from simulations.

4.3.1 Experimental design

To evaluate the quality of the W∗
(m1) estimates in the presence of clusters, a combination

of real and simulated data sets was used. We started with the simulated data sets D1–

D14. Section 4.2.2 provided a complete description of these data sets. They ranged

from the simple case of homogenous or near homogenous cluster structures to more

complex heterogenous cluster structures. As noted earlier, the goal is to evaluate the

quality of the W∗
(m1) matrices under a variety of controlled cluster scenarios, including

those with departures from the idealized assumptions of homogeneity.

Additionally, it may be noted that for a given number of observations (n), dimension-

ality (p), number of clusters (g), underlying covariance structure (Σ) and cluster centers,

as we vary the numbers of within-cluster observations among clusters, ni, i = 1 . . . g,

the least favorable case for the W∗
(m1) algorithm would be one with equal-sized clusters,

i.e., (n1 = n2. . . = ng), because this is the situation when the total number of within-

pairs (w), is at its lowest,
(

w = n(n− g)
2g

)
. Thus, the risk of contamination of the

algorithm by between-pairs would be the greatest.
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p = 5 p = 50 p = 100 p = 150
n = 75

√ √
× ×

n = 150
√ √ √

×
n = 200

√ √ √ √

Table 4.1: Data sets with the different (n, p) combinations used in this study

Hence, in addition to data sets D1 – D14, to systematically study the issue of poten-

tial contamination of within-cluster point pairs by between-cluster pairs, we simulated

data sets with a fixed number of equal sized clusters (g = 5, and ni = n
g , i=1 . . . g), but

varied n (75, 150 and 200), p (5, 50, 100 and 150) and Σ. As in the previous chapter,

the Σ matrix was compound symmetric, with three different values of the common cor-

relation ρ (0, 0.5 and 0.99), while the variances were all set equal to one. Moreover, to

include the effects of noise, the data sets were patterned after the test sets used in [40],

where the cluster structure is confined to the space of only a few dimensions, leaving the

remaining dimensions as noise coordinates. To do this, for each (n, p, ρ) combination

as given above, random samples of equal size (ni), were drawn from five, p
2-dimensional

multivariate Gaussian distributions. Subsequently, an additional p
2 coordinates were

added to each data set by including p
2 independent univariate standard normal random

variables. Hence, approximately half the number, p, of variables had cluster structure

(structure variables), while the others were devoid of any cluster structure and served

purely as noise variables (Note: When p = 5, the number of structure dimensions was

set equal to three, leaving two noise dimensions). Table 4.1 displays the nine different

combinations of n and p used for the simulated data sets. Note that in each case, n

was always chosen greater than p, so as to guard against any potential singularity of

the resulting W∗
(m1) matrices. So, for instance, when n = 75, only two values of p

(p = 5 and 50) were used, as displayed in Table 4.1 (marked as “
√

” in the first row of

Table 4.1)

Furthermore, to specifically evaluate the impact of potential contamination by

between-cluster pairs of points, two different sets of data were generated using the

random simulation model just described. In the first set (Set 1), the cluster means

were randomly set far apart from each other, so that the possibility of contamination
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by between-group pairs is minimized. In the second set (Set 2), the cluster means were

randomly set close to each other, causing the clusters to nearly overlap. These two

conditions could be viewed as two possible extreme scenarios within an entire spectrum

of data sets with shrinking cluster separations. A pair of scatter plots (in the space

of two structure variables) of a sample data set from each the two sets is displayed

in Figures 4.34 and 4.35 respectively. Notice the two cases when the clusters are well

separated and when they nearly overlap.

Hence, with nine different (n, p) combinations, three different values of the common

correlation ρ and two sets of data (i.e., Set 1 - well separated clusters and Set 2 -

nearly overlapping clusters), we had 9 × 3 × 2 = 54 different experimental conditions

to evaluate the quality of the W∗
(m1) matrix.

Finally, to supplement the results obtained from simulations, four real data sets

were also used. Data sets D15 - D18, constituted the real data sets and served as a

useful test bed for evaluation. Section 4.2.2 provided a brief description of the real data

sets along with a few accompanying scatter plots. The following summarizes the data

sets described so far:

1. Simulated data

• Group 1 - Data setsD1 -D14, displaying a variety of cluster scenarios ranging

from simple homogenous clusters to heterogenous structures.

• Group 2 - Data sets from random simulations with different (n, p, ρ) com-

binations and two types of cluster separations

– Set 1: 27 data sets with five well separated clusters

– Set 2: 27 data sets with five nearly overlapping clusters

2. Real data

• D15 (Iris data)

• D16 (Crabs data)

• D17 (Wine data)
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• D18 (Cells data)

To study the quality of the W∗
(m1) estimates, the W∗

(m1) algorithm was first executed

for each data set. Since the starting point invariance characteristic of the algorithm

was already established, Euclidean distance was the choice of the metric used in the

first iteration of the algorithm. Also, in all cases the choice of m1, was based on the 2
3

rd

rule, while the convergence constant E, was set equal to 0.001. It may be noted that for

the real data sets, D17 and D18, which have unequal cluster sizes, the corresponding

values for m1 (using the 2
3

rd rule) were based on an assumption of equal cluster sizes.

Additionally, the known W matrix was also computed for each data set. In the case

of the simulated data sets in group 2, for each of the 54 (n, p, ρ, cluster means)

combinations, 100 random replicates were generated and the W∗
(m1) and W matrices

were computed for each of the 100 random replicates. The 100 resulting W∗
(m1) and

W matrices were then averaged respectively, so as to smooth out the random variation

arising from the sampling process. Hence, we have 14 W∗
(m1) and 14 W matrices

corresponding to the simulated data sets in group 1, 54 (averaged) W∗
(m1) and 54

(averaged) W matrices corresponding to the simulated data sets in group 2, and finally,

4 W∗
(m1) and 4 W matrices corresponding to the real data sets. Comparison of the

W∗
(m1) and W matrices could then be performed in the four following ways:

• Convert each W∗
(m1) and W matrix to corresponding correlation matrices R∗

and R respectively. Compute the mean square error (M.S.E) between the off-

diagonal elements (correlation estimates) of R∗ and R. This would give an idea

of the extent to which the W∗
(m1) and W matrices compare in capturing the

correlational structure of the data. Specifically, for the data sets in group 2, we

could work with the averaged matrices in each case.

• Study the eigenvalues of the W∗
(m1) and W matrices. As described in section

3.4.1, if the W∗
(m1) and W matrices are approximately proportional (apart from

an unknown constant), then the respective eigenvalues of the two matrices would

also be approximately proportional to each other. To make the eigenvalues of

the two matrices invariant to the unknown constant, the eigenvalues could be
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normalized by their respective means. This would put the sets of eigenvalues

on the same footing, ready for comparison. Subsequently, the variances of the

normalized sets of eigenvalues could be compared. Specifically, for the group 2

data sets, variance of the normalized eigenvalues of the averaged matrices could

be compared.

• To additionally check for any inherent biases between the eigenvalues of the W∗
(m1)

and W matrices, the M.S.E between the eigenvalues of the W∗
(m1) and W matrices

could be computed. As before, to render the eigenvalues invariant to any unknown

constant, the sets of eigenvalues could be normalized by their respective means

prior to the M.S.E computations. Again, specifically for the simulated data sets

in group 2, the average W∗
(m1) and W matrices could be used for the analysis.

• Finally, to evaluate the performance of the W∗
(m1) estimates in aiding recovery of

the clusters, each data set could first be scaled (sphericized) by its correspond-

ing W∗
(m1) matrix. The sphericized data could then be applied as input to a

hierarchical cluster analysis (HCA) using average linkage, as described earlier in

section 2.6.2. The dendrograms could be examined prior to cutting the tree and

the resulting cluster labels could be compared with the known cluster member-

ships to obtain an errors of misclassification count. For the simulated data sets

in group 2, this could be automated to be done separately on each of the 100 ran-

dom replicates, using the W∗
(m1) matrix specific to each random replicate. This

would lead to an average error count (averaged over the 100 replicates) in each

case. This procedure could then be repeated for each of the 54 (n, p, ρ, cluster

centers) combinations of data sets and an average error count for each of the 54

combinations could be obtained. The same process could also be repeated using

the respective W matrices and the performance of the W∗
(m1) estimates could

be compared to that of the W matrices by examining their relative error counts.

Note that the application of HCA involves cutting the resulting dendrograms to

yield a partition of the data. However, with data sets that have unequal cluster

sizes (such as D11 - D14, D17 and D18), it is known that “tree cutting” could
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be tricky. Nevertheless, since the goal of this analysis is to primarily perform a

comparative study of the characteristics of the W∗
(m1) and W matrices, we are

only interested in examining the relative performances of the two methods using

any clustering procedure.

4.3.2 Results

As described in the previous section, for each data set, the M.S.E between the correla-

tion estimates from the R∗ and R matrices were first computed. Table 4.2 displays the

M.S.E values for data sets D1 - D18, i.e., the simulated data sets in group 1 and the

four real data sets. The small M.S.E values are indicative of the fact that the resulting

R∗ estimates are close to the known R matrices in all cases, including the cases with

heterogenous cluster structures. Even in the case of D10, where one of the three ellip-

soidal point clouds has a different orientation, the signs of the correlation estimates in

the R∗ matrix are the same as those in the corresponding R matrix, indicating that

the 2
3

rd rule has worked well in selecting the appropriate point pairs to compute the

W∗
(m1) matrix. Furthermore, Table 4.3 provides additional evidence that the W∗

(m1)

matrices do a good job in tracking the known W matrices for most of the data sets.

However, as one would expect, with more challenging cluster structures such as in D2,

D4 and D5, where the clusters centers are close enough to nearly cause cluster overlap,

the W∗
(m1) estimates tend to deteriorate. In such cases, choosing a smaller value of

m1 yields W∗
(m1) estimates that approximates the known W matrices more accurately.

The merits of choosing a smaller value of m1 in cases where the clusters are closer, is

discussed next. Similar results are observed in the M.S.E values given in Table 4.4.

Among the error counts shown in Table 4.5, we observe that the performance of

the W∗
(m1) algorithm in leading to cluster recovery is closely tied with the performance

of the known W matrix. It is important to note that in data sets where there is

sufficient separation among clusters, the W∗
(m1) algorithm is extremely efficient as a

preprocessing step. However, as the cluster separation decreases, the inclusion of many

between-cluster point pairs might be problematic. Even so, as mentioned earlier, in

data sets D2, D4 and D5, where the clusters nearly overlap, choosing a smaller value of
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m1 remarkably improves results. A case in point is data set D4, where three elliptical

clusters lie very close to each other along the major axis of separation. The value of m1

(m1 = 350) based on the 2
3

rd rule leads to poor performance of the W∗
(m1) algorithm,

resulting in 29 errors of misclassification. However, setting m1 to any smaller value in

the range 150 - 225 lowers the error count to two, comparable to that given by the

known W matrix. One possible geometrical explanation for this is as follows. It is

known that the volume of an ellipsoid is directly proportional to the determinant of

the matrix describing it. Hence, when computing the W∗
(m1) matrices, as m1 increases,

the volume of the corresponding ellipsoid it describes also increases as point pairs lying

farther apart are included in the computation, thereby leading to smaller Mahalanobis

inter-point distances. Additionally, the orientation of the ellipsoid (described by the

off-diagonal elements of W∗
(m1)) could change depending on the point pairs entering

the W∗
(m1) computation. This sensitivity in Mahalanobis distances might have been

emphasized for the cluster structure in data set D4, wherein, the choice of m1 = 350

results in smaller Mahalanobis inter-point distances for the data points distributed

among the three clusters along the major axis of separation. This tendency to emphasize

diminution of the distances might have caused the confusion in subsequent cluster

recovery. As a result, all of the 29 errors arise from the three elliptical collinear clusters.

Furthermore, recall that the true underlying correlation between the structure variables

in D4 is, ρ = 0.9. However, the correlation estimate given by the W∗
(m1) algorithm using

m1 = 350 (based on the 2
3

rd rule), is r∗(1,2)(350) = 0.9799, while using m1 = 150 yields

r∗(1,2)(150) = 0.8971, which is closer to the underlying ρ. Hence, it is evident that

the “bias” in using the estimate from the 2
3

rd rule is larger compared to using the

smaller value of m1. This would be a major reason for the poor performance of the

W∗
(m1) algorithm in the case of D4, when the 2

3

rd rule is used to pick m1. Hence,

setting m1 = 150 mitigates this problem, yielding near perfect cluster recovery. Similar

improvements in error are observed for data sets D2 and D5, where smaller values of m1

leads to more accurate W∗
(m1) estimates, thereby resulting in error counts even lower

than using the known W matrix. In D2, for instance, setting m1 = 150, lowers the

error count from 36 to eight. Similarly, in data set D5, m1 = 150, reduces the error
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count of 31, down to 12.

Likewise, among the real data sets, in case of D15 (Iris data), using a value of m1

(m1 = 1850), smaller than that given by the 2
3

rd rule, lowers the error count from 39 (as

reported in Table 4.5) to four (equal with W). Here again, the correlation given by the

known W matrix, r(3,4), between variable 3 (petal length) and variable 4 (petal width)

is 0.4845. Using the 2
3

rd rule value of m1 (2450), the correlation estimate from the

W∗
(m1) matrix is, r∗(3,4)(2450) = 0.6380. However, using a smaller value of m1 (1850),

yields a more accurate, r∗(3,4)(1850) = 0.5461. Hence, as mentioned earlier, while the

2
3

rd rule provides some guidance in picking m1, it is always prudent to try a range of

different values. Furthermore, in situations where the clusters are close to each other,

a more conservative, smaller choice for m1 would prove beneficial in order to avoid the

“bias” caused by “contamination” by between-cluster pairs of data points. In case of

data sets D17 (Wine data) and D18 (Cells data), as noted earlier, the value of m1

(using the 2
3

rd rule), was based on a naive assumption of equal cluster sizes. However,

since in these data sets, the clusters actually vary significantly in size, the 2
3

rd rule value

of m1 might not be an appropriate choice. Additionally, as mentioned earlier, cluster

extraction based on tree cutting could be tricky with unequal cluster sizes. These two

reasons partly explain the poor results of the W∗
(m1) algorithm compared to using the

known W matrix in D17 and D18, as shown in Table 4.5.

In data sets D9 and D10 that display heterogeneity of dispersion and orientation,

the performance of the W∗
(m1) algorithm is commensurate with that of the known

W matrices, as long as there is good cluster separation. However, based on limited

experiments, if the clusters in D9 and D10 are brought any closer, the W∗
(m1) algorithm

performs poorly.

Tables 4.6 - 4.29 display results for the simulated data sets in group 2. A common

feature gleaned from the tables is the good performance of the W∗
(m1) algorithm as

measured by its closeness with the known (average) W matrix, especially when the

clusters are well separated from each other. This is first seen in the small M.S.E values

between the corresponding (average) R∗ and (average) R matrices. However, even when

the clusters nearly overlap (Set 2), reasonably accurate correlations are captured by the
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W∗
(m1) algorithm. This indicates that the 2

3

rd rule performs well when there is good

separation among clusters, notwithstanding the presence of noise. This is also observed

in Tables 4.12 - 4.17 which compares the variances of the normalized eigenvalues of the

(average) W∗
(m1) and (average) W matrices. The variability in the numbers, however,

does increase as n and p approach nearly the same order of magnitude.

Results from a subsequent clustering of the data sets (Tables 4.24 - 4.29) indicates

that even in the presense of noise variables, the W∗
(m1) algorithm performs creditably

when the clusters are well separated. However, the difficulty caused when the clusters

are drawn closer to each other is reflected in the higher error counts, across all values

of the common correlation, ρ. Careful choice of a smaller value of m1 would prove

beneficial in such situations.

The algorithm converges in 7 - 31 iterations across all data sets. Additionally, it

is important to point out that on selected experiments (not reported here) where the

clusters overlap to a higher degree than those reported here in group 2, the performance

of the W∗
(m1) algorithm seems to progressively worsen, leading to a “break-down” of

the method due to the inclusion of an increasing number of between-cluster pairs of

points. This is a very challenging scenario for any clustering procedure and, indeed,

such difficulties of the real world have no simple solutions. However, it is important

to note that the “break-down” point as it relates to the degree of overlap among the

clusters, is dependent on the choice of m1. This again points to the importance of using

a range of values for m1 in practice.

Furthermore, it may be noted that for a fixed number of data points n, and a fixed

number of clusters g, with ni, i = 1 . . . , g data points in each cluster, the number of

within-cluster point-pairs increases as the variability in the distribution of ni increases.

Intuitively in such a scenario, the performance of the W∗
(m1) algorithm would improve

since the number of between-cluster pairs is progressively minimized. This was also

verified via limited simulations performed for random data (n=200, p=5, g=5) as ni

was varied from when the clusters were of equal size to the case when the clusters were

of widely differing sizes. Performance of the algorithm (as measured by the accuracy

of the W∗
(m1) estimates and subsequent misclassification error) improves as the degree
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of discordance among ni, increases.

4.3.3 “Missing” constant

In section 3.4.3, we studied the adequacy of a single multiplicative constant to make the

expected value of the W∗
(m1) matrix an estimate of Σ that is more “comparable” to W,

in the null-clusters scenario. We observed that in the simple null-clusters case, apart

from a single constant multiplier, the W∗
(m1) matrix indeed, provided a very reliable

estimate of Σ. We could perform a similar analysis to check if the adequacy of only

a single, albeit unknown, constant holds true in the more complex, clustering context.

Although in the presence of clusters the characteristics of the missing constant would

be more complex to study, in part due to its unknown dependency on parameters such

as n(i), p, Σ and cluster means, it would nevertheless be interesting to verify if our

intuition regarding the adequacy of only a single multiplier is indeed, true.

Given the average W∗
(m1) matrix corresponding to each (n, p, ρ) combination, we

could consider the matrix product, M =
[
Σ

]−1[W∗
(m1)

]
. As discussed in section

3.4.3, except for a single constant multiplier, intuitively if the average value of the

W∗
(m1) matrix is close to Σ, then the matrix M would be (approximately) proportional

to the identity matrix, i.e., M ≈ kI. To examine this, we could extract the eigenvalues

of M, normalize them to sum to one, and then compute their variance as done in the

previous chapter. If only a single constant multiplier is adequate, then the variances

as computed above would all be expected to lie close to zero. Table 4.30 displays the

corresponding variances of the normalized eigenvalues of M for the simulated data sets

in group 2 (see page 76 for a description of the data sets). Recall that all the simulated

data sets in group 2 have five homogenous, equal sized clusters.

The relatively small variances seen in Table 4.30 are indicative of the fact that even

in the presence of clusters (at least when there is a sufficient degree of inter-cluster

separation), only a single multiplicative constant might be necessary to render W∗
(m1)

more comparable to Σ. In the case where the clusters overlap slightly (second half

of Table 4.30), as one would expect, the variance values are higher. However, it is

important to note that all the results given here correspond to m1 based on the 2
3

rd
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rule, while, using a smaller value of m1 might improve results in such scenarios. This

is a powerful feature of the W∗
(m1) algorithm. Although the challenges associated with

real data might be more complex to handle, it is nevertheless reassuring to know that

at least in the simple homogenous clustering case just studied, only a single constant

multiplier might suffice to make the W∗
(m1) matrix an approximately unbiased estimate

of the within-clusters covariance structure.

Furthermore, as reported in section 3.4.3, if we were to use the least squares estimate

of the unknown constant, k, we would set k = λ, where λ is the mean eigenvalue of

the matrix, M (see page 44 in section 3.4.3 for more details). Table 4.31 provides the

least squares estimates of the unknown constant. Again, the average W∗
(m1) matrix

corresponding to each (n, p, ρ) combination is used to compute M in all cases.

There are two sources of bias in the estimate, W∗
(m1), of the single underlying

covariance structure, Σ. Their effects are important depending on the nature of the

clusters that are present. The two intertwined sources are: (a) smallness of m1 relative

to the unknown number of within-cluster pairs, and (b) the contamination of W∗
(m1)

by inappropriate inclusion of between-cluster pairs, which is a consequence of choosing

m1 to be large.

When there are no clusters (the null case considered in chapter 3), or when they

are well separated (in some subspace of the variables) and relatively homogenous in

their dispersions, the results show that a single constant multiplier would be adequate

to adjust for bias due to (a). This is a very useful finding in and of itself. The results

also indicate that, for a given m1, the constant varies with n and p, and to a lesser

extent, with ρ. Although the least squares estimates displayed in Table 4.31 provides

a first cut approximation for the unknown constant, if one were actually interested in

the value of the constant, further work assisted by some theory and asymptotics would

be needed. This is, however, beyond the scope of this thesis.

The second source of bias becomes more critical when the cluster structure in the

data is not well defined. As the results demonstrate, when the clusters are moved closer

together in the space of the structure variables, the choice of m1 becomes very critical.

With real data and unknown cluster structure, one should expect to have difficulty with
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misclassifying data anyway. However, a single constant might not adjust for this type

of difficulty. Nevertheless, one important finding is that in such situations, a smaller

choice of m1 than one based on any rule of thumb (such as the 2
3

rd rule) would be

valuable to handle this case.

4.3.4 Variability of W∗
(m1) estimates

To study the variability of the W∗
(m1) matrices in the presence of clusters, we could again

parallel the design procedure described in section 3.4.4, by comparing the W∗
(m1) and W

matrices for each of the 100 random replicates belonging to each (n, p, ρ) combination.

As done before, we could first convert these to corresponding correlation matrices, R∗

and R respectively. Subsequently, for every (i, j)th pair of structure variables, we could

consider the ratio, V1(ij) =
var[r∗(i,j)]

var[r(i,j)]
, where the variances are computed across the 100

random samples. Such a statistic would provide more insight into the variability of the

correlation estimates (between any pair of strucure variables) in the W∗
(m1) matrices

relative to the W matrices. Table 4.32 provides the V1 variability ratio just described.

In all cases we have computed the variability measure for the correlation estimate

between structure variables 1 and 2, i.e, using r∗(1,2) and r(1,2). Hence, the results in

Table 4.32 are specifically for V1(1,2).

The relatively near unity variance ratios in the first half of Table 4.32 indicates that

when there is sufficient separation among the clusters, the variability of the correlation

estimates between structure variables 1 and 2 in the W∗
(m1) matrices is almost the same

as those in the known W matrices. An identical analysis on the other structure variables

also resulted in the same conclusion. Also, when the cluster centers are brought closer,

as expected, the nearly overlapping clusters contributes to a marginal increase in the

variability of the W∗
(m1) matrices.
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4.3.5 Experiments using gaussian mixture model-based clustering –

(MCLUST)

It is important to note that all the error counts reported so far are based on a HCA.

However, since the W∗
(m1) algorithm is not tied to any particular method of cluster-

ing, we also studied its performance using the gaussian mixture model-based approach,

MCLUST (also see [24], [25] and [26]). Experiments were performed in concert on the

four real data sets using the W∗
(m1) estimates to preprocess the raw data before their in-

put to MCLUST. We forced MCLUST to extract the known number of clusters, while we

let it pick the best covariance matrix parameterization in each case. Subsequently, the

resulting cluster labels were compared with the known labels to get the misclassification

error counts as given. The first number on each row indicates the error count using the

raw data that was directly input to MCLUST, while the second number (within paren-

theses) indicates the error count from MCLUST after W∗
(m1) preprocessing. It may be

noted that the error counts given below are based on choices of m1 that yielded the

most favorable result in each case. As can be seen, the results clearly establish superior

performance when the data is preprocessed using W∗
(m1).

• D15 (Iris): 4 (4)

• D16 (Crabs): 79 (15)

• D17 (Wine): 5 (1)

• D18 (Cells): 121 (37)
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4.4 Conclusion

This chapter studied some of the characteristics of the W∗
(m1) algorithm in the pres-

ence of cluster structure. The issue of the algorithm’s sensitivity to its starting point

was systematically studied under a variety of cluster scenarios. The results in section

4.2.3 indicated that the W∗
(m1) algorithm is relatively invariant to its initialization.

This result, coupled with the null-clusters results presented in section 3.3.2 provided

substantial evidence that the W∗
(m1) algorithm is not dependent on its starting point,

irrespective of the cluster structure of the data. Section 4.3 subsequently provided a

methodical study of the performance of the algorithm in the presence of homogeneity

as well as moderate heterogeneity in cluster structure. Although, as one would ex-

pect, the W∗
(m1) algorithm worked best in the homogenous case, its performance was

commendable in the presence of moderately heterogenous clusters as well.

Additionally, the 2
3

rd rule worked remarkably well when there was good separation

among clusters. However, when the clusters were brought closer together, the inclusion

of between-cluster pairs of observations into the W∗
(m1) iterations led to slight dete-

rioration of the W∗
(m1) estimates. However, as discussed earlier, in such situations,

choosing smaller values of m1 than the one arrived at by the 2
3

rd rule, could help avoid

the contamination caused by the inclusion of between-cluster pairs and decrease the

bias of the estimate.

Regarding the practical feasibility of the method, in most of the situations studied,

using the estimate of the within-clusters covariance matrix provided by W∗
(m1) works as

well as using the known pooled within-groups covariance matrix, W. Overall, the per-

formance of the W∗
(m1) algorithm, including its starting point invariance characteristic,

is concluded to work well in the presence of clusters and the intercorrelations among

the variables.
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Figure 4.1: Cluster structure for D1

Figure 4.2: Cluster structure for D2
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Figure 4.3: Cluster structure for D3

Figure 4.4: Cluster structure for D4
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Figure 4.5: Cluster structure for D5

Figure 4.6: Cluster structure for D6



91

Figure 4.7: Cluster structure for D7

Figure 4.8: Cluster structure for D8
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Figure 4.9: Cluster structure for D9

Figure 4.10: Cluster structure for D10
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Figure 4.11: Cluster structure for D11

Figure 4.12: Cluster structure for D12
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Figure 4.13: Cluster structure for D13

Figure 4.14: Cluster structure for D14



95

Figure 4.15: Cluster structure for Iris (D15) data set

Figure 4.16: Cluster structure for Crabs (D16) data set
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Figure 4.17: Wine (D17) data set scatter plot 1

Figure 4.18: Wine (D17) data set scatter plot 2
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Figure 4.19: Wine (D17) data set scatter plot 3

Figure 4.20: Cells (D18) data set scatter plot 1
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Figure 4.21: Cells (D18) data set scatter plot 2

Figure 4.22: Cells (D18) data set scatter plot 3
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Figure 4.23: Cells (D18) data set scatter plot 4
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Figure 4.24: Comparison of diagonal elements - SPD starting point
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Figure 4.25: Comparison of diagonal elements - SPD starting point
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Figure 4.26: Comparison of diagonal elements - SPD starting point
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Figure 4.27: Comparison of diagonal elements - SPD starting point
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Figure 4.28: Comparison of diagonal elements - SPD starting point

Figure 4.29: Comparison of off-diagonal elements - SPD starting point
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Figure 4.30: Comparison of off-diagonal elements - SPD starting point
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Figure 4.31: Comparison of off-diagonal elements - SPD starting point
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Figure 4.32: Comparison of off-diagonal elements - SPD starting point
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Figure 4.33: Comparison of off-diagonal elements - SPD starting point
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Figure 4.34: Sample realization when clusters are well separated - from a simulated
data set in group 2

Figure 4.35: Sample realization when clusters touch each other - from a simulated data
set in group 2
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Data set M.S.E Data set M.S.E
D1 0.0061 D10 0.0190
D2 0.0202 D11 0.0032
D3 0.0110 D12 0.0340
D4 0.0207 D13 0.0201
D5 0.0331 D14 0.0090
D6 0.0104 D15 0.0111
D7 0.0120 D16 0.0005
D8 0.0251 D17 0.0141
D9 0.0240 D18 0.0030

Table 4.2: M.S.E between correlation estimates from R∗ and R matrices

Data set Var[eigs(W∗
(m1))] Var[eigs(W)]

D1 0.10 0.09
D2 0.31 0.09
D3 0.60 0.49
D4 0.75 0.49
D5 1.08 0.49
D6 0.11 0.26
D7 0.32 0.63
D8 1.43 1.51
D9 0.45 0.92
D10 0.25 0.11
D11 0.61 0.66
D12 0.36 0.66
D13 0.43 0.47
D14 0.44 0.45
D15 1.34 1.66
D16 4.90 4.93
D17 12.97 12.82
D18 2.99 2.99

Table 4.3: Comparison of variance of eigenvalues of W∗
(m1) and W matrices

Data set M.S.E[eig(W∗
(m1))-eig(W)] Data set M.S.E[eig(W∗

(m1))-eig(W)]
D1 0.0101 D10 0.0402
D2 0.3400 D11 0.0141
D3 0.0501 D12 0.0730
D4 0.1236 D13 0.0081
D5 0.5117 D14 0.0010
D6 0.0322 D15 0.0121
D7 0.1006 D16 0.0001
D8 0.0211 D17 0.0007
D9 0.1210 D18 0.0000

Table 4.4: M.S.E between eigenvalues of W∗
(m1) and W matrices
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Data set After W scaling After W∗
(m1) scaling

D1 0 0
D2 20 36
D3 0 1
D4 2 29
D5 23 31
D6 12 16
D7 0 1
D8 0 0
D9 2 6
D10 3 7
D11 2 0
D12 12 22
D13 27 13
D14 42 16
D15 4 39
D16 54 55
D17 62 79
D18 35 87

Table 4.5: Comparison of errors of misclassification after W and W∗
(m1) scaling

p = 5 p = 50 p = 100 p = 150
n = 75 0.007 0.006 × ×
n = 150 0.002 0.002 0.009 ×
n = 200 0.001 0.003 0.006 0.010

Table 4.6: M.S.E between correlation estimates from R∗ and R matrices, clusters well
separated, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0.014 0.018 × ×
n = 150 0.015 0.013 0.017 ×
n = 200 0.013 0.011 0.011 0.016

Table 4.7: M.S.E between correlation estimates from R∗ and R matrices, clusters
touching each other, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0.003 0.019 × ×
n = 150 0.003 0.003 0.016 ×
n = 200 0.002 0.001 0.009 0.015

Table 4.8: M.S.E between correlation estimates from R∗ and R matrices, clusters well
separated, ρ = 0.5
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p = 5 p = 50 p = 100 p = 150
n = 75 0.006 0.028 × ×
n = 150 0.005 0.009 0.018 ×
n = 200 0.003 0.006 0.010 0.020

Table 4.9: M.S.E between correlation estimates from R∗ and R matrices, clusters
touching each other, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 0.003 0.007 × ×
n = 150 0.001 0.004 0.008 ×
n = 200 0.001 0.003 0.006 0.010

Table 4.10: M.S.E between correlation estimates from R∗ and R matrices, clusters well
separated, ρ = 0.99

p = 5 p = 50 p = 100 p = 150
n = 75 0.004 0.008 × ×
n = 150 0.003 0.005 0.009 ×
n = 200 0.001 0.004 0.008 0.012

Table 4.11: M.S.E between correlation estimates from R∗ and R matrices, clusters
touching each other, ρ = 0.99

p = 5 p = 50 p = 100 p = 150
n = 75 0.87 1.32 × ×

0.84 1.21
n = 150 0.68 0.88 1.25 ×

0.66 0.75 1.05
n = 200 0.66 0.73 1.08 1.50

0.64 0.67 0.91 1.22

Table 4.12: Comparison of variance of eigenvalues of W∗
(m1) (on first line) and W

matrices, clusters well separated, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 1.03 1.39 × ×

0.92 1.23
n = 150 0.76 0.91 1.29 ×

0.67 0.81 1.08
n = 200 0.71 0.84 1.12 1.54

0.65 0.79 0.98 1.31

Table 4.13: Comparison of variance of eigenvalues of W∗
(m1) (on first line) and W

matrices, clusters touching each other, ρ = 0
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p = 5 p = 50 p = 100 p = 150
n = 75 1.63 11.19 × ×

1.08 5.00
n = 150 1.53 10.90 26.30 ×

1.02 4.84 14.92
n = 200 1.44 9.99 22.19 31.81

0.96 3.98 12.87 15.03

Table 4.14: Comparison of variance of eigenvalues of W∗
(m1) (on first line) and W

matrices, clusters well separated, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 1.99 14.25 × ×

1.81 6.04
n = 150 1.69 12.43 28.11 ×

1.64 5.99 16.02
n = 200 1.53 11.12 24.81 33.72

1.10 4.79 17.20 18.19

Table 4.15: Comparison of variance of eigenvalues of W∗
(m1) (on first line) and W

matrices, clusters touching each other, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 4.66 44.09 × ×

4.63 41.04
n = 150 4.32 43.61 66.31 ×

4.21 40.91 58.82
n = 200 4.11 37.91 62.47 71.21

4.01 33.24 55.44 69.94

Table 4.16: Comparison of variance of eigenvalues of W∗
(m1) (on first line) and W

matrices, clusters well separated, ρ = 0.99

p = 5 p = 50 p = 100 p = 150
n = 75 4.88 47.83 × ×

4.79 43.09
n = 150 4.66 46.29 69.82 ×

4.49 45.08 61.33
n = 200 4.31 40.25 67.61 90.19

3.96 39.67 59.95 79.97

Table 4.17: Comparison of variance of eigenvalues of W∗
(m1) (on first line) and W

matrices, clusters touching each other, ρ = 0.99

p = 5 p = 50 p = 100 p = 150
n = 75 0.008 0.009 × ×
n = 150 0.003 0.011 0.014 ×
n = 200 0.013 0.012 0.013 0.022

Table 4.18: M.S.E[eig(W∗
(m1))-eig(W)], clusters well separated, ρ = 0
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p = 5 p = 50 p = 100 p = 150
n = 75 0.087 0.015 × ×
n = 150 0.064 0.014 0.012 ×
n = 200 0.068 0.007 0.009 0.020

Table 4.19: M.S.E[eig(W∗
(m1))-eig(W)], clusters touching each other, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0.010 1.145 × ×
n = 150 0.006 0.117 1.420 ×
n = 200 0.001 0.003 1.370 1.710

Table 4.20: M.S.E[eig(W∗
(m1))-eig(W)], clusters well separated, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 0.018 1.210 × ×
n = 150 0.005 0.077 1.550 ×
n = 200 0.001 0.021 1.404 1.900

Table 4.21: M.S.E[eig(W∗
(m1))-eig(W)], clusters touching each other, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 0.002 0.129 × ×
n = 150 0.000 0.006 0.216 ×
n = 200 0.000 0.001 0.115 0.306

Table 4.22: M.S.E[eig(W∗
(m1))-eig(W)], clusters well separated, ρ = 0.99

p = 5 p = 50 p = 100 p = 150
n = 75 0.006 0.060 × ×
n = 150 0.003 0.002 0.087 ×
n = 200 0.001 0.002 0.091 0.228

Table 4.23: M.S.E[eig(W∗
(m1))-eig(W)], clusters touching each other, ρ = 0.99

p = 5 p = 50 p = 100 p = 150
n = 75 0 3 × ×

0 0
n = 150 1 0 3 ×

1 0 1
n = 200 0 2 4 4

0 4 9 1

Table 4.24: Comparison of average errors of misclassification after W∗
(m1) scaling (on

first line) and after W scaling, clusters well separated, ρ = 0
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p = 5 p = 50 p = 100 p = 150
n = 75 6 1 × ×

3 7
n = 150 21 18 20 ×

16 17 14
n = 200 24 21 25 23

20 18 16 9

Table 4.25: Comparison of average errors of misclassification after W∗
(m1) scaling (on

first line) and after W scaling, clusters touching each other, ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0 0 × ×

0 0
n = 150 0 0 3 ×

0 0 1
n = 200 1 0 2 3

2 0 2 5

Table 4.26: Comparison of average errors of misclassification after W∗
(m1) scaling (on

first line) and after W scaling, clusters well separated, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 4 10 × ×

1 4
n = 150 20 13 16 ×

11 12 12
n = 200 25 23 19 21

19 19 18 10

Table 4.27: Comparison of average errors of misclassification after W∗
(m1) scaling (on

first line) and after W scaling, clusters touching each other, ρ = 0.5

p = 5 p = 50 p = 100 p = 150
n = 75 0 4 × ×

0 1
n = 150 1 2 1 ×

1 3 1
n = 200 0 1 2 3

0 2 3 1

Table 4.28: Comparison of average errors of misclassification after W∗
(m1) scaling (on

first line) and after W scaling, clusters well separated, ρ = 0.99
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p = 5 p = 50 p = 100 p = 150
n = 75 7 11 × ×

8 2
n = 150 16 16 17 ×

9 12 11
n = 200 25 21 20 24

17 14 16 13

Table 4.29: Comparison of average errors of misclassification after W∗
(m1) scaling (on

first line) and after W scaling, clusters touching each other, ρ = 0.99
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Clusters well separated
ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0.10 0.53 × ×
n = 150 0.07 0.31 0.48 ×
n = 200 0.04 0.21 0.50 0.63

ρ = 0.5
p = 5 p = 50 p = 100 p = 150

n = 75 0.11 0.52 × ×
n = 150 0.10 0.30 0.46 ×
n = 200 0.03 0.29 0.47 0.62

ρ = 0.9
p = 5 p = 50 p = 100 p = 150

n = 75 0.12 0.54 × ×
n = 150 0.09 0.31 0.50 ×
n = 200 0.07 0.27 0.49 0.64

Clusters touching each other
ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 0.20 0.86 × ×
n = 150 0.13 0.81 0.92 ×
n = 200 0.11 0.66 0.81 0.93

ρ = 0.5
p = 5 p = 50 p = 100 p = 150

n = 75 0.24 0.88 × ×
n = 150 0.16 0.82 0.94 ×
n = 200 0.12 0.69 0.86 0.92

ρ = 0.9
p = 5 p = 50 p = 100 p = 150

n = 75 0.28 0.89 × ×
n = 150 0.16 0.83 0.93 ×
n = 200 0.14 0.71 0.88 0.94

Table 4.30: Variance of normalized eigenvalues of M =
[
Σ

]−1[W∗
(m1)

]
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Clusters well separated
ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 6.41 8.94 × ×
n = 150 9.66 12.00 15.01 ×
n = 200 14.02 16.17 18.03 21.44

ρ = 0.5
p = 5 p = 50 p = 100 p = 150

n = 75 7.00 8.97 × ×
n = 150 9.81 13.08 16.20 ×
n = 200 13.79 17.01 18.11 20.68

ρ = 0.9
p = 5 p = 50 p = 100 p = 150

n = 75 8.15 9.36 × ×
n = 150 10.04 14.11 17.04 ×
n = 200 14.52 17.00 19.26 21.09

Clusters touching each other
ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 7.74 8.99 × ×
n = 150 10.11 13.03 14.98 ×
n = 200 15.72 18.83 19.97 22.54

ρ = 0.5
p = 5 p = 50 p = 100 p = 150

n = 75 7.71 9.17 × ×
n = 150 10.81 13.09 16.26 ×
n = 200 16.01 19.01 20.13 23.18

ρ = 0.9
p = 5 p = 50 p = 100 p = 150

n = 75 9.21 9.72 × ×
n = 150 11.14 14.89 18.14 ×
n = 200 17.01 19.98 21.21 24.00

Table 4.31: Least squares approximation of the unknown constant
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Clusters well separated
ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 1.27 1.46 × ×
n = 150 1.10 1.34 1.46 ×
n = 200 1.00 1.07 1.31 1.47

ρ = 0.5
p = 5 p = 50 p = 100 p = 150

n = 75 1.25 1.57 × ×
n = 150 1.20 1.39 1.52 ×
n = 200 1.00 1.11 1.41 1.46

ρ = 0.9
p = 5 p = 50 p = 100 p = 150

n = 75 1.27 1.60 × ×
n = 150 1.23 1.40 1.51 ×
n = 200 1.01 1.17 1.36 1.50

Clusters touching each other
ρ = 0

p = 5 p = 50 p = 100 p = 150
n = 75 1.48 1.83 × ×
n = 150 1.39 1.75 1.84 ×
n = 200 1.40 1.70 1.78 1.94

ρ = 0.5
p = 5 p = 50 p = 100 p = 150

n = 75 1.54 1.87 × ×
n = 150 1.44 1.79 1.91 ×
n = 200 1.40 1.78 1.86 1.98

ρ = 0.9
p = 5 p = 50 p = 100 p = 150

n = 75 1.63 1.91 × ×
n = 150 1.56 1.83 1.94 ×
n = 200 1.51 1.83 1.90 1.99

Table 4.32: V1(1,2) variability ratios
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Chapter 5

Multivariate Highlighters : Discriminant Analysis-Based

Weighting

5.1 Introduction

In section 2.6 we introduced the idea of “highlighters” in the univariate context. These

were weights (obtained prior to performing any cluster analysis) that emphasized vari-

ables which possessed strong cluster structure. The results in section 2.6.2 showed that

univariate highlighter strategies that took into account the latent cluster structure led to

improved performance across most of the data sets studied. In contrast, the challenging

example of the Crabs data set underscored the limitations of univariate highlighting,

pointing to the need for a multivariate highlighting approach to tackle such difficult

cluster structures.

In this chapter, we will address highlighting in the multivariate context. The ideas

will draw on the intuition underlying the well-known statistical technique of Linear

Discriminant Analysis (DA). Experimental results from the application of the methods

on a variety of simulated data sets (with specific interesting cluster structures) and a

few real data sets will be provided.

5.2 DA and Pseudo-DA for Multivariate Highlighting

DA is a widely applied statistical technique used to study the differences between two

or more groups of objects simultaneously. It is used to “discriminate” between known

groups on the basis of a set of variables (or features), to study how well the variables

discriminate among the groups, and also to help in identifying which variables are the

most powerful discriminators. Another purpose of DA is to use training data to derive
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Figure 5.1: Illustration of three groups and a single discriminant function

one or more mathematical functions called “discriminant functions” (or discriminant

variables), for the purpose of classification of test data.

To illustrate the idea behind classical DA, consider the three group problem shown

in the two-dimensional scatter plot in Figure 5.1 (also see, [14]). The goal is to identify

a new axis (i.e., a discriminant coordinate) such that the projection of all the data

points onto the new axis would maximize the differences among the three group means.

However, as we can see in Figure 5.1, although groups A and B overlap, a single

discriminant function might not distinguish between all three groups. Hence, with

three or more groups, a single axis may not satisfactorily distinguish the groups. In

general, with g groups and p dimensional data, there are k = min(p, g - 1) possible

discriminant axes (typically, p > g.) However, not all of the k axes might display

statistically significant variation among the groups and in practice, fewer than g - 1

discriminant functions might be needed. This is the intuition underlying classical DA.

Considering the same g group problem in the clustering context (where the groups

or clusters are unknown to begin with), we could think of the discriminant axes to
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be defining a new space or representation of the data points wherein the discriminant

variables “highlight” the differences among the latent clusters. This is the unsupervised

analogue of classical DA which we call, “pseudo-DA”. Hence, parallel to classical DA,

pseudo-DA could be thought of as a technique to find optimal linear combinations of

the original variables that define a new space, where the differences among the latent

clusters are maximized. In section 5.2.1 we describe the computations involved in

classical DA and in section 5.2.2 we discuss the framework for pseudo-DA.

5.2.1 Eigenanalysis of
[
W

]−1[
B

]
- Classical DA

This section describes the classical DA framework when the groups are known a priori.

It may be noted that this description is purely to illustrate the computations involved

in classical DA and is not directly applicable in the clustering context, as in the latter,

the groups are not known ahead of time. Rather the goal is to unearth them. As

described in [33], with g groups and ni, i = 1 . . . g observations in each group, we could

compute the p× p pooled within-groups covariance matrix,

W =
1

n− g

g∑
i=1

(ni − 1)Si, (5.1)

where Si is the sample covariance matrix of the ith group.

Furthermore, we could define the p× p between-groups covariance matrix,

B =
1

g − 1

g∑
i=1

ni (yi − y)(yi − y)′, (5.2)

where yi is the sample mean vector of the ith group and y is the overall mean vector.

If z = a′y denotes a linear combination of the original variables, a one-way ANOVA

for the derived variable z will lead to the following F-ratio of the between-groups mean

square to the within-groups mean square:

Fa =
a′Ba
a′Wa

. (5.3)

If one were to choose a so as to maximize this Fa-ratio (i.e., maximize the group

differences), the required a would be the eigenvector, a1, corresponding to the largest

eigenvalue, c1, of
[
W

]−1[B]
. This would give the first discriminant coordinate (or,
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Figure 5.2: Sample scree plot

CRIMCOORD), z1 = a′1y. Having determined a1, we could seek a second linear com-

bination of the original variables, z2, which has the next largest Fa-ratio, subject to

the condition that it is uncorrelated to z1, within groups. The required solution for

the coefficients in the second linear combination would be the eigenvector, a2, corre-

sponding to the second largest eigenvalue, c2, of
[
W

]−1[B]
. Hence, all that is involved

computationally is an eigenanalysis of
[
W

]−1[B]
, leading to the ordered eigenvalues

c1 ≥ c2 ≥ . . . ck, where, k = min(p, g - 1). (The remaining p - k eigenvalues are all

zero.)

As mentioned earlier, not all of the k CRIMCOORDS might be significant in their

discriminatory power. Hence, to obtain a reduced-rank model to parsimoniously, but

effectively, describe the measured differences among the groups, we would need a de-

scriptive index of importance of the discriminant variables. One approach to do this is

proposed in [7], and is called the scree plot. In this approach (named after the rubble

at the bottom of a cliff), the eigenvalues of each CRIMCOORD are plotted in successive
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order and then an “elbow” in the curve is identified. Figure 5.2 depicts this scree-

analogy (k = 5), where the first four eigenvalues show the “cliff”, and the rest, the

“rubble”. Hence, only the first four CRIMCOORDS are retained. The rationale for the

scree plot is that since the DA procedure extracts CRIMCOORDS in successive order

of magnitude, the substantive axes appear first, followed by the remaining trivial axes

which account for only a small proportion of the total variability. The space defined by

these k CRIMCOORDS or a subset of them using the first t (t ≤ k) CRIMCOORDS is

called the discriminant space. Additionally, it may be noted that Mahalanobis distance

(using
[
W

]−1) in the space of the original variables would now be equivalent to using

Euclidean distance in the discriminant space spanned by the CRIMCOORDS.

In the clustering context, since the clusters are unknown, the W and B matrices are

also unknown. Nevertheless, we could still apply the classical DA intuition described

above, to obtain linear combinations of the original variables that highlight the latent

cluster structure. This is the idea behind pseudo-DA, described next.

5.2.2 Eigenanalysis of
[
W∗

(m1)

]−1[
B∗

(m2)

]
- Pseudo DA

Equation (3.2) in section 3.2 provided the standard multivariate decomposition of the

total sums of squares and cross products matrix into the within-groups and between-

groups components when the groups were known a priori. In the clustering context

we could develop similar “within” and “between” measures by using some of the meth-

ods described in this thesis. When the clusters are unknown, we could first obtain a

within-clusters measure similar to the W∗ matrix using the W∗
(m1) algorithm described

in section 3.2. Subsequently, a between-clusters measure, B∗
(m2), could be developed

using the set {K} of m2 farthest-apart neighbors (farthest-apart in Mahalanobis sense,

computed using
[
W∗

(m1)

]−1) as,

B∗
(m2) =

1
n

∑
i<j

i,j∈K

(yi − yj)(yi − yj)′. (5.4)

We could then use the W∗
(m1) and B∗

(m2) matrices as substitutes for the unknown
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W and B matrices, leading to the ratio (analogous to equation 5.3),

sv =
v′B∗

(m2)v

v′W∗
(m1)v

. (5.5)

Maximizing this ratio with respect to v could again be accomplished by an eigen-

analysis of the matrix product
[
W∗

(m1)

]−1[B∗
(m2)

]
, leading to the ordered eigenvalues,

h1 ≥ h2 ≥ . . . hp, and the corresponding set of eigenvectors, v1,v2, . . .vp. It may be

noted here that since the W∗
(m1) and B∗

(m2) matrices would both tend to be of full

rank, the (non-symmetric) matrix product
[
W∗

(m1)

]−1[B∗
(m2)

]
, would also be of full

rank. In such a setting, the subset r (r < p) of significant discriminating axes could

be chosen by setting r equal to the number of “dominant” eigenvalues of the matrix

product
[
W∗

(m1)

]−1[B∗
(m2)

]
. We could use the scree plot described in the previous sec-

tion to accomplish this. Using the corresponding eigenvectors v1,v2, . . .vr, we could

then determine the r linear combinations of the variables (or, pseudo-CRIMCOORDS),

qi = v′iy, i = 1, 2, . . . r, so that they account for cluster separation in decreasing order.

The qi’s would be similar in spirit to discriminant coordinates as in classical DA and

the space defined by these axes would be similar to a discriminant space. Also, note

that this subset of pseudo-CRIMCOORDS could directly be applied as input to a CA

procedure. Furthermore, since the pseudo-CRIMCOORDS are by definition designed to

pull the groups apart, pairwise plots of the first few of them would graphically depict

distinct groupings. We call this procedure, analogous to classical DA, as pseudo-DA.

Choice of “m2”

In [34], Gnanadesikan et al., developed a statistic (q-statistic) and a graphical aid

for picking the m1 nearest neighbors in the context of the W∗
(m1) algorithm. Results

from simulations did suggest stability of the W∗
(m1) measure over a range of different

m1 values. But for B∗
(m2) however, the choice of the number m2 of farthest-apart

pairs is an important feature. In general, when the clusters are of equal size, with

ni = n
g , i = 1 . . . g, observations in each cluster, the number of between-cluster pairs

would be larger than the number of within-cluster pairs, with the number of between-

cluster pairs increasing as the number of clusters, g, increases. On the other hand, with
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unequal cluster sizes, for a given n and g, it is possible that the number of within-cluster

pairs is equal to, or larger than the number of between-cluster pairs. Hence, to obtain

a reliable measure of between-clusters dispersion based on the m2 farthest-apart point

pairs, a prudent strategy would be to try a few alternative choices for m2. Hence, we

consider four different choices for m2, as given below:

• m2 = m1 (m1 based on the 2
3

rd rule)

• m2 = f (recall from section 1.2, that f =
(
n
2

)
- m1)

• m2 = f1 = m1
3 (m1 based on the 2

3

rd rule)

• m2 = f2 = (n
2)
2

Hence, starting from the simple choice of m2 equal to m1 based on the 2
3

rd rule,

we explore three other choices for m2 ranging from one that is much larger than m1,

to another where m2 is set much smaller than m1. The next section provides the

experimental design followed by corresponding results and conclusions.

5.3 Experimental design

To study the performance of the multivariate highlighting (pseudo-DA) procedure under

a variety of cluster structures, we used the same set of simulated and real data sets that

were reported earlier in sections 4.2.2 and 4.3.1 respectively. Also, it may be noted here

that the experiments on the simulated data sets in group 2 were based on only one

random sample corresponding to each of the 54 (n, p, ρ, cluster centers) combinations.

A summary of the data sets used (also see section 4.3.1 on page 76 of the thesis) is

given below:

1. Simulated data

• Group 1 - Data setsD1 -D14, displaying a variety of cluster scenarios ranging

from simple homogenous clusters to heterogenous structures.

• Group 2 - Data sets with different (n, p, ρ) combinations and two types of

cluster separations
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– Set 1: 27 data sets with five far-apart clusters

– Set 2: 27 data sets with five nearly overlapping clusters

2. Real data

• D15 (Iris data)

• D16 (Crabs data)

• D17 (Wine data)

• D18 (Cells data)

In each case the W∗
(m1) matrix was first computed using the W∗

(m1) algorithm with

m1 based on the 2
3

rd rule. Subsequently, the m2 farthest-apart point pairs were identified

(farthest-apart in Mahalanobis sense, using
[
W∗

(m1)

]−1). The between-clusters measure

B∗
(m2) was then computed using these m2 farthest-apart pairs of points. This was done

for all four choices of m2. Additionally, since we know the the groups a priori for all

data sets, we also computed their corresponding W and B matrices. Hence, for each

data set, we have five matrix products - four
[
W∗

(m1)

]−1[B∗
(m2)

]
matrices corresponding

to the four choices of m2 and one
[
W

]−1[B]
matrix, our gold standard for comparison.

Subsequently, for each data set an eigenanalysis was done on each of the five ma-

trix products, resulting in five sets of corresponding eigenvalues and eigenvectors. This

defined one set of CRIMCOORDS and four sets of pseudo-CRIMCOORDS respectively,

for each data set. For each set, the scree plot was then used to determine by eye, the

subset of significant coordinates, i.e., those with most discriminatory power. Cluster

analysis was then performed in the space of the significant pseudo-CRIMCOORDS us-

ing hierarchical cluster analysis (HCA) with average linkage. As before, the resulting

dendrograms were cut to partition the respective data sets into the known number of

clusters. Performance of the pseudo-DA procedure was then evaluated by studying the

misclassification error counts for all data sets.
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5.4 Results

Table 5.2 displays the misclassification error counts for data sets D1 – D18. Results

from classical DA as well as pseudo-DA using the four different choices of m2 (m1, f ,

f1 and f2) are provided. Additionally, previous results from scaling the data sets by[
W∗

(m1)

]−1 (i.e., HCA applied to the sphericized data) are also displayed. This is done

to study the differential advantage of using pseudo-DA by incorporating between-cluster

information.

Among the simulated data sets in group 1 where the clusters are well separated (viz.,

D1, D3, D7, D8 and D11), the pseudo-DA procedure results in perfect cluster recovery

for all four choices of m2. It may also be noted that these data sets are handled almost

as well by using
[
W∗

(m1)

]−1 alone. However, in data sets D2 and D5 where the clusters

nearly overlap, the error counts from using pseudo-DA are lower, albeit marginally,

than using
[
W∗

(m1)

]−1 alone. Also, similar marginal improvements are observed for

data sets D6, D9, D10, D12, D13, and D14.

It is interesting to note that in case of data set D4, setting m2 = m1 results in 21

errors of misclassification, while setting m2 = f results in only one error, comparable to

that of classical DA. Figure 5.3 displays the corresponding dendrogram obtained using

m2 = m1, while Figure 5.4 displays the dendrogram obtained when m2 = f . Notice

that the dendrogram displayed in Figure 5.4 depicts a more “organized” hierarchical

tree structure (five major branches corresponding to the five clusters), conducive to

near perfect cluster recovery (with only one misclassified observation) by cutting the

dendrogram as shown.

For all the simulated data sets in group 1, either the first two or three pseudo-

CRIMCOORDS are retained after a visual inspection of the corresponding scree plots.

Overall, the performance of the pseudo-DA procedure appears promising. Although for

a few data sets the pseudo-DA procedure seems to offer only a marginal improvement

in results, it consistently yields improved cluster recovery when compared to using[
W∗

(m1)

]−1 alone. This observation suggests that the inclusion of the between-clusters

measure, B∗
(m2), can improve the accuracy of the subsequent clustering step.
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Among the real data sets, the biggest improvement in results is observed in the

Iris (D15) data set. The error count of five (for all choices of m2), is comparable with

that obtained using classical DA. Furthermore, this is a substantial improvement in

performance compared with 39 errors that is obtained using just
[
W∗

(m1)

]−1. Hence

pseudo-DA works very well in this case, as also seen in Figures 5.5 and 5.6. Figure 5.5

shows a scatter plot of D15 in the space of the first two pseudo-CRIMCOORDS for the

case when m2 = m1. While one of the clusters is well-separated from the other two,

only two pseudo-CRIMCOORDS would suffice to discriminate among the three clusters.

Figure 5.6 subsequently shows the corresponding dendrogram obtained using a HCA in

the space of the first two pseudo-CRIMCOORDS. Notice that cutting the dendrogram

at the level shown results in three distinct clusters.

In the Crabs data set (D16) however, the pseudo-DA procedure does not seem to

provide much improvement in results. The lowest error count obtained is when m2 = f1,

when the error count drops to 50, compared to 54 errors obtained using classical DA.

Figure 5.7 depicts the scatter plot in the space of the first two pseudo-CRIMCOORDS

for the case when m2 = f1, while Figure 5.8 displays the corresponding dendrogram.

Also, for illustrative purposes, scree plots for the Iris and Crabs data sets are given

in Figures 5.11 and 5.12, respectively. The scree plots, taken together with the scatter

plots of the Iris and Crabs data in the space of the first two pseudo-CRIMCOORDS

(see Figures 5.5 and 5.7), clearly show the decreasing returns for using the second

pseudo-CRIMCOORD in addition to the first. The first pseudo-CRIMCOORD is more

helpful in pulling at least some of the clusters apart while the second seems to be not

useful in further distinguishing the clusters. For the Crabs data the plot in the space of

the first two CRIMCOORDS from classical DA seems to indicate the same phenomenon.

However, it is important to point out that although pseudo-DA does not appear to have

contributed much in the case of the Crabs data set, the scatter plot displayed in Figure

5.7 (in the space of the first two pseudo-CRIMCOORDS) bears a striking resemblance to

the CRIMCOORD plot shown in Figure 5.9, that is obtained using classical DA, with a

majority of the 50 misclassified observations arising from the clusters labeled with blue

and red solid dots in Figure 5.7. Furthermore, Figure 5.10 displays the dendrogram
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obtained using the three CRIMCOORDS from classical DA (Note: It may be noted that

similar results are obtained even when only the first two CRIMCOORDS are used). This

poor tree structure configuration might explain the high error rate resulting from the

HCA notwithstanding the fact that it is based on classical DA.

For the Wine and Cells data sets, although the pseudo-DA procedure results in much

lower error counts compared to using
[
W∗

(m1)

]−1 alone, it does not seem to perform

well in comparison to classical DA. As seen in Table 5.2, for the Wine data set (D17),

for all choices of m2, the error counts are in the range 46 – 50, while a HCA on data

scaled by
[
W∗

(m1)

]−1 alone, results in 79 errors of misclassification. Similarly, with the

Cells data set (D18), the error count from pseudo-DA ranges from 50 – 64 for the four

choices of m2, while using
[
W∗

(m1)

]−1 alone results in 87 errors.

Table 5.1 displays the number of significant CRIMCOORDS and pseudo-CRIMCOORDS

retained based on the respective scree plots for the simulated data sets in group 1 and

the four real data sets. Notice that in almost all cases the numbers of discriminant axes

retained by DA and pseudo-DA are the same.

Tables 5.3 – 5.8 display corresponding results for the simulated data sets in group

2. An interesting observation gleaned from all the tables is the consistent improvement

in performance when the between-clusters information is included in the analysis. As a

result, the pseudo-DA approach performs well for all the data sets studied. Furthermore,

as one would expect, the performance of pseudo-DA is excellent when the clusters are

well separated from each other, as seen in the small error counts in tables 5.3, 5.5 and

5.7. Among the data sets where the clusters overlap slightly, in most of the cases, the

performance of pseudo-DA is no worse than the classical DA approach. It may be noted

that although for all the data sets studied in this chapter, m1 is based on the 2
3

rd rule,

as discussed in the previous chapter, in situations where the clusters nearly overlap,

setting m1 smaller than that given by the 2
3

rd rule might lead to more accurate W∗
(m1)

estimates, and hence, improved cluster recovery using the pseudo-DA approach. Also,

interestingly, the results show that the pseudo-DA procedure generally does not seem

too sensitive to the choice of m2. Additionally, recall that all of the simulated data sets

in group 2 consist of five clusters. However, scree plots suggest retaining either three or
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four significant CRIMCOORDS across the 54 data sets in group 2, while the number of

pseudo-CRIMCOORDS retained ranges from two to four. Figure 5.13 displays a sample

scree plot for a simulated data set (p = 50) in group 2.

5.4.1 Experiments using gaussian mixture model-based clustering –

(MCLUST)

All the error counts reported in this chapter are based on a HCA. However, since

the pseudo-DA approach is not tied to any particular method of clustering, as we did

in section 4.3.5, we also studied its performance using the gaussian-mixture approach,

MCLUST (also see [24], [25] and [26]). We applied the significant pseudo-CRIMCOORDS

from each of the four real data sets respectively, as input to MCLUST. As done in the

previous chapter, we programmed MCLUST to extract the known number of clusters,

while we let it pick its best covariance matrix parameterization in each case. Sub-

sequently, the resulting cluster labels were compared with the known labels to get

misclassification error counts. The results are given as shown.

• D15 (Iris): 4 (3)

• D16 (Crabs): 79 (12)

• D17 (Wine): 5 (1)

• D18 (Cells): 121 (27)

The first number on each row indicates the error count using the raw data, while

the second number (within parentheses) indicates the error count from MCLUST based

on the pseudo-CRIMCOORDS input. It may be noted that in all cases, m2 was set equal

to m1 based on the 2
3

rd rule. Notice that MCLUST consistently performs better when

applied in the discriminant space spanned by the pseudo-CRIMCOORDS.
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5.5 Conclusion

This chapter described a framework for multivariate “highlighting” following the DA-

based intuition to maximize separations among the latent clusters. Overall, the ap-

plication of the multivariate strategy resulted in improving the performance for most

of the data sets studied. This provided evidence that incorporating between-clusters

information took things in the right direction. Although the multivariate strategy re-

quired a user-input number m2, for the number of largest pairwise distances, the results

indicated that for most of the data sets studied, the approach did not seem too sensitive

to the choice of m2, given the fixed value for m1 based on the 2
3

rd rule.

Overall, the pseudo-DA framework, as a technique to perform multivariate “high-

lighting”, performed commendably, and indeed, merits further investigation.
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Figure 5.3: Dendrogram for data set D4; using pseudo-DA with m2 = m1

Figure 5.4: Dendrogram for data set D4; using pseudo-DA with m2 = f
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Figure 5.5: Scatter plot of Iris data in the space of the first two pseudo-CRIMCOORDS;
m2 = m1

Figure 5.6: Dendrogram for Iris data; using pseudo-DA with m2 = m1
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Figure 5.7: Scatter plot of Crabs data in the space of the first two pseudo-
CRIMCOORDS; m2 = f1

Figure 5.8: Dendrogram for Crabs data; using pseudo-DA with m2 = f1
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Figure 5.9: Scatter plot of Crabs data in the space of the first two CRIMCOORDS, from
classical DA

Figure 5.10: Dendrogram for Crabs data; using classical DA
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Figure 5.11: Scree plot for Iris data; m2 = m1

Figure 5.12: Scree plot for Crabs data; m2 = m1
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Figure 5.13: Sample scree plot for a simulated data set (p = 50) in group 2

Data set p g # CRIMCOORDS # pseudo-CRIMCOORDS

D1 5 5 3 3
D2 5 5 3 3
D3 5 5 3 3
D4 5 5 3 3
D5 5 5 3 3
D6 5 3 2 2
D7 5 3 2 2
D8 5 3 2 2
D9 5 3 2 2
D10 5 3 2 2
D11 5 5 2 2
D12 5 5 2 2
D13 5 5 2 2
D14 5 5 2 2
D15 4 3 2 2
D16 5 4 3 2
D17 13 3 2 3
D18 3 3 2 2

Table 5.1: Comparison of number of significant CRIMCOORDS and pseudo-
CRIMCOORDS retained
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Strategy D1 D2 D3 D4 D5 D6 D7 D8 D9[
W∗

(m1)

]−1 0 36 1 29 31 16 1 0 6[
W

]−1[B]
0 18 0 2 21 10 0 0 1[

W(m1)

]−1[B∗
(m1)

]
0 27 0 21 30 16 0 0 5[

W(m1)

]−1[B∗
(f)

]
0 28 0 1 29 12 0 0 4[

W(m1)

]−1[B∗
(f1)

]
0 21 0 20 23 15 0 0 5[

W(m1)

]−1[B∗
(f2)

]
0 25 0 16 28 13 0 0 5

Strategy D10 D11 D12 D13 D14 D15 D16 D17 D18[
W∗

(m1)

]−1 7 0 22 13 16 39 55 79 87[
W

]−1[B]
2 0 11 11 13 4 54 4 35[

W(m1)

]−1[B∗
(m1)

]
6 0 18 12 13 5 54 50 60[

W(m1)

]−1[B∗
(f)

]
7 0 16 11 12 5 54 52 64[

W(m1)

]−1[B∗
(f1)

]
5 0 14 10 10 5 50 46 50[

W(m1)

]−1[B∗
(f2)

]
6 0 15 12 12 5 53 48 55

Table 5.2: Comparison of errors of misclassification using different highlighter strategies
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Strategy p = 5 p = 50 p = 100 p = 150
n = 75

[
W∗

(m1)

]−1 0 4 × ×[
W

]−1[B]
0 0[

W(m1)

]−1[B∗
(m1)

]
0 0[

W(m1)

]−1[B∗
(f)

]
0 0[

W(m1)

]−1[B∗
(f1)

]
0 0[

W(m1)

]−1[B∗
(f2)

]
0 0

Strategy p = 5 p = 50 p = 100 p = 150
n = 150

[
W∗

(m1)

]−1 1 0 5 ×[
W

]−1[B]
0 0 1[

W(m1)

]−1[B∗
(m1)

]
0 0 1[

W(m1)

]−1[B∗
(f)

]
0 0 2[

W(m1)

]−1[B∗
(f1)

]
0 0 1[

W(m1)

]−1[B∗
(f2)

]
0 0 2

Strategy p = 5 p = 50 p = 100 p = 150
n = 200

[
W∗

(m1)

]−1 2 3 4 5[
W

]−1[B]
1 0 1 0[

W(m1)

]−1[B∗
(m1)

]
1 0 0 1[

W(m1)

]−1[B∗
(f)

]
1 0 0 1[

W(m1)

]−1[B∗
(f1)

]
0 0 1 1[

W(m1)

]−1[B∗
(f2)

]
1 0 0 1

Table 5.3: Comparison of errors of misclassification using different highlighter strategies,
clusters well separated, ρ = 0
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Strategy p = 5 p = 50 p = 100 p = 150
n = 75

[
W∗

(m1)

]−1 9 4 × ×[
W

]−1[B]
3 2[

W(m1)

]−1[B∗
(m1)

]
4 4[

W(m1)

]−1[B∗
(f)

]
6 4[

W(m1)

]−1[B∗
(f1)

]
2 1[

W(m1)

]−1[B∗
(f2)

]
4 4

Strategy p = 5 p = 50 p = 100 p = 150
n = 150

[
W∗

(m1)

]−1 5 19 21 ×[
W

]−1[B]
3 9 12[

W(m1)

]−1[B∗
(m1)

]
3 10 13[

W(m1)

]−1[B∗
(f)

]
4 9 12[

W(m1)

]−1[B∗
(f1)

]
2 6 9[

W(m1)

]−1[B∗
(f2)

]
3 7 11

Strategy p = 5 p = 50 p = 100 p = 150
n = 200

[
W∗

(m1)

]−1 25 22 24 25[
W

]−1[B]
12 12 13 13[

W(m1)

]−1[B∗
(m1)

]
11 10 10 14[

W(m1)

]−1[B∗
(f)

]
15 13 13 14[

W(m1)

]−1[B∗
(f1)

]
9 8 9 8[

W(m1)

]−1[B∗
(f2)

]
10 12 11 12

Table 5.4: Comparison of errors of misclassification using different highlighter strategies,
clusters touching each other, ρ = 0
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Strategy p = 5 p = 50 p = 100 p = 150
n = 75

[
W∗

(m1)

]−1 0 3 × ×[
W

]−1[B]
0 0[

W(m1)

]−1[B∗
(m1)

]
0 0[

W(m1)

]−1[B∗
(f)

]
0 0[

W(m1)

]−1[B∗
(f1)

]
0 0[

W(m1)

]−1[B∗
(f2)

]
0 0

Strategy p = 5 p = 50 p = 100 p = 150
n = 150

[
W∗

(m1)

]−1 0 0 5 ×[
W

]−1[B]
0 0 2[

W(m1)

]−1[B∗
(m1)

]
0 0 2[

W(m1)

]−1[B∗
(f)

]
0 0 2[

W(m1)

]−1[B∗
(f1)

]
0 0 1[

W(m1)

]−1[B∗
(f2)

]
0 0 2

Strategy p = 5 p = 50 p = 100 p = 150
n = 200

[
W∗

(m1)

]−1 2 2 4 4[
W

]−1[B]
0 0 3 4[

W(m1)

]−1[B∗
(m1)

]
0 0 2 4[

W(m1)

]−1[B∗
(f)

]
0 0 0 0[

W(m1)

]−1[B∗
(f1)

]
0 0 3 4[

W(m1)

]−1[B∗
(f2)

]
0 0 2 3

Table 5.5: Comparison of errors of misclassification using different highlighter strategies,
clusters well separated, ρ = 0.5
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Strategy p = 5 p = 50 p = 100 p = 150
n = 75

[
W∗

(m1)

]−1 5 12 × ×[
W

]−1[B]
2 6[

W(m1)

]−1[B∗
(m1)

]
3 7[

W(m1)

]−1[B∗
(f)

]
4 8[

W(m1)

]−1[B∗
(f1)

]
1 4[

W(m1)

]−1[B∗
(f2)

]
3 6

Strategy p = 5 p = 50 p = 100 p = 150
n = 150

[
W∗

(m1)

]−1 22 13 17 ×[
W

]−1[B]
13 10 10[

W(m1)

]−1[B∗
(m1)

]
14 10 11[

W(m1)

]−1[B∗
(f)

]
15 11 11[

W(m1)

]−1[B∗
(f1)

]
9 8 7[

W(m1)

]−1[B∗
(f2)

]
11 11 10

Strategy p = 5 p = 50 p = 100 p = 150
n = 200

[
W∗

(m1)

]−1 25 23 19 21[
W

]−1[B]
13 12 10 9[

W(m1)

]−1[B∗
(m1)

]
12 13 11 10[

W(m1)

]−1[B∗
(f)

]
13 13 11 10[

W(m1)

]−1[B∗
(f1)

]
8 9 7 6[

W(m1)

]−1[B∗
(f2)

]
11 11 11 9

Table 5.6: Comparison of errors of misclassification using different highlighter strategies,
clusters touching each other, ρ = 0.5
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Strategy p = 5 p = 50 p = 100 p = 150
n = 75

[
W∗

(m1)

]−1 1 6 × ×[
W

]−1[B]
0 2[

W(m1)

]−1[B∗
(m1)

]
0 2[

W(m1)

]−1[B∗
(f)

]
0 1[

W(m1)

]−1[B∗
(f1)

]
0 3[

W(m1)

]−1[B∗
(f2)

]
0 2

Strategy p = 5 p = 50 p = 100 p = 150
n = 150

[
W∗

(m1)

]−1 2 3 3 ×[
W

]−1[B]
0 1 1[

W(m1)

]−1[B∗
(m1)

]
0 1 1[

W(m1)

]−1[B∗
(f)

]
0 0 0[

W(m1)

]−1[B∗
(f1)

]
0 1 1[

W(m1)

]−1[B∗
(f2)

]
0 0 0

Strategy p = 5 p = 50 p = 100 p = 150
n = 200

[
W∗

(m1)

]−1 3 4 4 5[
W

]−1[B]
1 1 2 3[

W(m1)

]−1[B∗
(m1)

]
0 1 2 2[

W(m1)

]−1[B∗
(f)

]
1 0 0 1[

W(m1)

]−1[B∗
(f1)

]
0 1 1 2[

W(m1)

]−1[B∗
(f2)

]
0 0 0 0

Table 5.7: Comparison of errors of misclassification using different highlighter strategies,
clusters well separated, ρ = 0.99
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Strategy p = 5 p = 50 p = 100 p = 150
n = 75

[
W∗

(m1)

]−1 7 12 × ×[
W

]−1[B]
5 9[

W(m1)

]−1[B∗
(m1)

]
5 8[

W(m1)

]−1[B∗
(f)

]
6 9[

W(m1)

]−1[B∗
(f1)

]
2 4[

W(m1)

]−1[B∗
(f2)

]
4 7

Strategy p = 5 p = 50 p = 100 p = 150
n = 150

[
W∗

(m1)

]−1 18 16 19 ×[
W

]−1[B]
9 10 11[

W(m1)

]−1[B∗
(m1)

]
7 10 10[

W(m1)

]−1[B∗
(f)

]
8 11 11[

W(m1)

]−1[B∗
(f1)

]
3 7 7[

W(m1)

]−1[B∗
(f2)

]
5 11 9

Strategy p = 5 p = 50 p = 100 p = 150
n = 200

[
W∗

(m1)

]−1 26 21 21 25[
W

]−1[B]
12 12 12 14[

W(m1)

]−1[B∗
(m1)

]
10 9 9 12[

W(m1)

]−1[B∗
(f)

]
11 10 10 12[

W(m1)

]−1[B∗
(f1)

]
8 6 7 8[

W(m1)

]−1[B∗
(f2)

]
9 8 9 10

Table 5.8: Comparison of errors of misclassification using different highlighter strategies,
clusters touching each other, ρ = 0.99
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Chapter 6

Conclusions and Further Work

In this dissertation we have explored some ideas for preprocessing data prior to do-

ing a CA. This chapter summarizes the findings of this work, while identifying further

research that it suggests. Scaling variables to place them on an equal footing or to

emphasize those most likely to aid detection of clusters is a critical preprocessing step

in CA. This dissertation compared the performances of a number of alternatives. They

varied in degree of complexity from very simple weights based on the order statistics of

the inter-observation distances to more complicated iteratively determined ones. The

results presented confirmed that some of the most popular choices are seriously flawed,

while other newer ones offer distinct advantages although none are perfect for all occa-

sions. Indeed, a prudent strategy in practice is to experiment with different choices of

weights, just as one should also try different clustering algorithms.

The scaling challenge could be tackled from a multivariate perspective, as in the

W∗
(m1) method, or a univariate one, which yields a set of weights to be applied indi-

vidually to the different variables, as in autoscaling or the W∗
d(m1) method. One of our

objectives was to demonstrate that the popular autoscaling approach is counterproduc-

tive and well-known alternatives, range and interquartile range scaling, have their own

major limitations. Range scaling breaks down in the presence of extreme outliers (as

pointed out by Milligan and Cooper, 1988). Interquartile range scaling, which has been

suggested as a way of mitigating this flaw, performed even worse in our experiments.

Among the univariate methods tested that aim to equalize the influence of individ-

ual variables (chapter 2), M6 stood out for its superior performance. While iterative

in nature and requiring the user to choose the number of pairs of closest points to

work with, this multivariate approach to finding the best univariate scale factors is
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simple conceptually and more effective overall than the alternatives studied. There is

little doubt, however, that they are worthy replacements for the tarnished favorite of

autoscaling. All the univariate highlighter methods (chapter 2), M7 −M11, produced

impressive results. However, none of the eleven methods helped in the extreme case

of the Crabs data, wherein the clusters overlap considerably. All of these schemes are

in the spirit of giving larger weight to variables that exhibit greater between relative

to within variability. It would be premature to project a winner among the several

alternatives proposed.

The multivariate (equalizer) W∗
(m1) algorithm was systematically studied in both

the “null” clusters scenario as well as in the presence of clusters (chapters 3 and 4).

The results demonstrated the starting point invariance characteristic of the algorithm

irrespective of the presence of cluster structure, thereby providing evidence of both

simplicity and stability of the algorithm. Additionally, when the clusters are reason-

ably separated in in their locations, the results also showed that the algorithm worked

commendably in terms of providing a reliable measure of the within-clusters covariance

structure of the data (apart from a single multiplicative constant, which does not im-

pact CA). When the clusters overlap noticeably, the misclassification errors increased

as one might expect. The algorithm converged in 7 – 31 iterations across all the data

sets studied. Chapter 5 then explored an approach to perform highlighting in the multi-

variate context. As an unsupervised analogue of classical DA, the pseudo-DA approach

to multivariate highlighting displayed promising results. In particular, when used in

conjunction with gaussian mixture model based clustering (MCLUST), the pseudo-DA

approach led to a dramatic improvement in results. Overall, the inclusion of the mul-

tivariate between-clusters measure of dispersion led to superior cluster recovery.

The work in chapters 2, 3, 4 and 5 suggest some natural extensions.

• For the univariate equalizers and highlighters (chapter 2) the issue of missing

constants needed to make the within-clusters and between-clusters measures of

dispersion more nearly unbiased, was discussed in section 2.5. Furthermore, it

was noted that the constants would tend to differ between structure variables and
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noise variables, as well as vary with the number of clusters. This is a hard-to-

resolve problem. However, it would be interesting to study this further to find

statistical approaches to estimate these unknown constants.

• The multivariate W∗
(m1) algorithm studied in chapters 3 and 4, is an appeal-

ing approach to obtain an approximation to W that can be used to perform a

multivariate equalization that reflects the within-cluster variation in the data.

However, for “large n” (and “large p”) data sets, due to its iterative nature, the

algorithm could put a high demand on computational resources. One way to al-

leviate this problem is via random sampling. The key idea is to apply the W∗
(m1)

algorithm to random samples drawn from the data set rather than the entire data

set. Consequently, significant improvements in execution time could be realized.

Efficient algorithms for drawing a sample randomly from data in a file in one-pass

and using constant space are discussed in [90]. Subsequently, one way to merge

the W∗
(m1) matrices from the random samples, would be to average them. This

would however, still be intuitively suboptimal to using the entire data set at once,

but it does provide a solution when dealing with large data sizes.

• As discussed in chapter 5, the application of the pseudo-DA approach to multi-

variate highlighting was studied using a few different choices for m2, the number

of farthest-apart point pairs. In all cases, m1 was fixed based on the 2
3

rd rule,

while only m2 was varied. However, it might be interesting to study ways of

picking m1 and m2 simultaneously, to potentially increase the sensitivity of the

highlighters to the latent cluster structure. This would be useful in the context

of both univariate as well as multivariate highlighting.

This dissertation has explored various strategies to tackle the ticklish problem of

how to scale or weight variables effectively for cluster analysis. The goal has been to

suggest intuitive alternatives that would provide significantly improved performance

relative to current practice. While the tools developed and studied here have proved

promising and have already demonstrated their value, they could definitely be refined

more with further research.
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