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ABSTRACT OF THE THESIS

A generic domain specific language for financial contracts

by Anupam Mediratta

Thesis Director: Assistant Professor Chung-chieh Shan

Financial contracts require management, such as valuation, scheduling and generating

legal documents. The current approach for managing financial contracts is inefficient,

for lack of a universal language for representing contracts. Peyton Jones et al.’s pro-

posed such a language, even though contracts are diverse and new ones are introduced

often. We verify that Peyton Jones et al.’s language is expressive enough by using it

to represent two new contracts: credit default swap and power reverse dual currency

swap. We demonstrate its advantage by using the same program to value all contracts

represented. More generally, we need only one program for each contract management

task.
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Chapter 1

Introduction

In this thesis, I present a language to represent financial contracts. To represent a finan-

cial contract means to express its rights and obligations. This language was proposed

by Peyton Jones et al. ([4]). I verify the generic nature of this language by representing

two new contracts, which are not mentioned in their paper.1

The motivation of building such a language comes from the fact that the contracts

traded in the market today are increasingly complex and diverse. The banks which

deal with these contracts have to process them for various activities. The processing

activities of a contract are valuation, generation of legal documents and other back-end

activities. Among all these activities, valuation is the most important and critical one.

This is because the banks want to correctly value a contract as soon as possible, so that

they can make the most profitable trades. There exists a competition between traders,

who trade contracts, and quants, who value contracts. Traders introduce new contracts

so that they can profit because quants take time to value it correctly. The language

can be seen as a tool to help quants to value a contract quickly.

Before building such a language, we have to overcome the following hurdles:

1. The variety of contracts is diverse, so it is challenging to come up with a precise

language (or small set of combinators) that can represent (most of) them.2

2. The industry invents new contracts every now and then. For example, someone

can compose existing contracts to create a new one. An example is the contract

swaption, which is created as an option over swaps. Both of the latter contracts

1Generic in the sense that the language generalizes over a wide variety of contracts.

2I define combinators in chapter 4.
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exist from before.

Figure 1.1: Motivation

The advantage of building such a language is shown in figure 1.1 through two sce-

narios. The job in both scenarios is to apply each of the n processing activities to

each of the m contracts. In the current scenario, we have to write mn programs, one

for each pair of contract and processing activity. If we use the language, which is our

scenario in the figure, we will be able to do this job by writing only m + n programs.

The reason is we would write one program to represent a contract in the language. To

represent m contracts we would write m programs. Once the contracts are represented

in the language, to process all of them for one activity requires only one program. And

similarly to process them for n activities would require n programs. Hence, in total we

would write m + n programs.

Since our work is an extension of Peyton Jones et al.’s paper, I summarize most of

their work in chapter 4. For the rest of their work, I will credit them wherever I use it.

They chose Haskell as a programming language to implement the contract language. I

explain Haskell’s basic syntax and the reasons for choosing it in chapter 3. I verify the

generic nature of the contract language by representing two contracts: Credit Default
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Swap (CDS) and Power Reverse Dual Currency Swap (PRDC). This is how I validate

Peyton Jones et al.’s work. In chapter 5, I show how to represent these contracts in

the language. To illustrate the advantage of the language, I explain in chapter 6 how a

single program suffices to value any contract with an example of a CDS contract. Since

Peyton Jones et al.’s software is publicly unavailable, our code is a good starting point

for future research. I attach our code in Appendix B, C and D.

Since this thesis deals with financial terms and financial instruments, I introduce

them in the next chapter.
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Chapter 2

Finance 101

In this chapter, I explain the finance terms used commonly in this thesis. I begin by

defining a financial contract. From here onwards whenever I write contract it means a

financial contract. A contract usually involves three parties, the buyer, the seller and

the issuer. The buyer is the one who buys the contract; the seller is the one who owns

it and then sells it for its value; the issuer is the one who had issued or introduced the

contract. Now it can be the case that the issuer and the seller are the same entities. A

contract has a set of rights and obligations for both its buyer and the issuer. The rights

of the buyer are the obligations of the issuer and vice versa. The seller has no rights

and obligations once he has sold the contract. For instance, Goldman Sachs (GS) is

the issuer of its bond. If Henry owns this bond, he is the buyer of the contract. So,

for this contract, GS’s rights are Henry’s obligations and vice versa. If Henry chooses

to sell this bond to Anna, she is the buyer and he is the seller. By paying the market

value of the contract, she buys all its rights and obligations from him. Before I define

a contract, I need to define a cash flow.

Definition 2.1 A cash flow is a transfer of money specified by its amount and date.1

An example of a cash flow is ($100, 12/31/2007). It means a transfer of $100 takes

place on Dec. 31, 2007 between given two parties.

Definition 2.2 A financial contract is a set of cash flows.

1More generally, there are conditional cash flows in which the transfer of money occurs only if some
particular condition is true. I will show an instance of it, when I define CDS.
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This set of cash flows are the rights and obligations for the buyer.2 For each cash

flow of a contract, if the amount is positive, then the buyer of the contract receives that

amount, else she has to pay it to the issuer.

A hypothetical contract is, receive $100 at the end of year 2007 and pay $110 at the

end of year 2008. It can be written as: [($100, 12/31/2007) , (−$110, 12/31/2008)].

Definition 2.3 The maturity of a contract is the last date off all the dates of its cash

flows.3

The maturity of the above hypothetical contract is 12/31/2008. If the maturity is

infinite then the corresponding contract never matures. Since there are no cash flows

after the maturity of a contract, the contract offers no opportunity to make money after

it matures. Hence, it is not worth trading then.

Definition 2.4 A contract is void if it has no future cash flows associated with it.

Another relevant term is default :

Definition 2.5 The debtor defaults when he has not met the obligations of the debt

contract.

For instance, in the case of a bond (See Definition 2.6), if the bond issuer fails to

make the payments to the buyer of the bond as per his obligations, then the bond issuer

defaults on this criterion.

2.1 Financial Instruments

Now, I define some financial instruments (or contracts), which will be used in the

following chapters. I begin with a bond whose definition is taken from

http://en.wikipedia.org/wiki/Bond %28finance%29:

2Recall that rights and obligations for the issuer are vice versa of those of the buyer.

3Peyton Jones et al. in their paper use the term horizon instead of maturity.
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Definition 2.6 A bond is a contract in which the issuer owes the buyer a debt and is

obliged to repay the principal and interest (the coupon) at a later date, termed maturity.

The main contract of this thesis, Credit Default Swap, is similar to an insurance

policy. The latter contract works in the following way: the buyer of the policy is the

protection buyer (buyer) and the insurance company is the protection seller (seller).

Till there is no eventuality, the buyer pays to the seller at regular intervals of time, a

fixed amount of money which is called premium or spread. Otherwise, the seller pays

to the buyer a fixed amount which is called nominal and the contract becomes void.

Now a CDS differs from the above contract in following ways: First, the condition of

who pays is whether a company has defaulted or not. This company is called as the

reference company in the definition of a CDS. Its instance is Goldman Sachs (GS).

Second, in contrast to an insurance policy where the buyer secures himself from a

possible eventuality, the purpose of buyer of a CDS may not be to secure himself but

to bet on the default of the company. I present the definition of a CDS which has been

slightly modified from the one at Wikipedia [8].

Definition 2.7 A Credit Default Swap is an agreement between a protection buyer

and a protection seller whereby the buyer pays a periodic fee in return for a contingent

payment by the seller upon a default happening in the reference company.

For ease of explanation the nominal value for CDS is assumed to be equal to $1.
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Chapter 3

Haskell

The language of implementation by both, Peyton Jones et. al. and I, is Haskell. Wikipedia

says: “Haskell is a standardized purely functional programming language with non-

strict semantics, named after the logician Haskell Curry.” Purely functional puts a

restriction that the variables in a program written in Haskell will have immutable val-

ues. Non-strict semantics mean that Haskell will allow lazy evaluation, which I discuss

towards the end of this chapter. In order to understand the representation of contracts

in the contract language, the reader needs to understand some basic syntax and types

in Haskell. I next illustrate these features and then argue why Haskell is a good choice

to implement this work.

3.1 Computing Fibonacci numbers in Haskell

To illustrate how to write a function in Haskell, I write a function to compute Fibonacci

Numbers.

fibonacci 0 = 0

fibonacci 1 = 1

fibonacci n = fibonacci (n-1) + fibonacci (n-2)

The function definition for fibonacci consists of three declarations or rules. When-

ever this function is called, one of the three rules will be executed. Interpret each rule

in the following way: on the left hand side (lhs) of the symbol = we write the function

name followed by the arguments it takes, and on the right hand side (rhs) we write

the body of the rule. The value calculated in this body is returned as a result of the

execution of this rule and hence the execution of the function. I can make calls to
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functions in the body of a rule just as I do in the body of the the rule for fibonacci n.1

This is how I will define functions in the chapters ahead.

3.2 Types in Haskell

Like there are data types in any programming language, there are types for data in

Haskell also. Atomic data like ’a’ and 5 have the following built in types:

’a’ :: Char,

5 :: (Num t) ⇒ t.

In English these definitions mean that ’a’ is of type char and 5 can be of any numeric

type like Int or Double.

Another relevant data type is a list. Its purpose is to store a collection of data, each

of which has the same type. For instance, [’a’, ’b’] has the following type:

[’a’, ’b’] :: [Char].

[Char] means that this list is a collection of data of type Char. Similarly there are

types for functions also. The type of fibonacci is,

fibonacci :: Int → Int.

It means that fibonacci maps an Int value to another Int value. We can have

functions which map multiple data to another data. For instance,

func :: a → b → c

The function func maps data of type a and type b together, to data of type c, where

a, b and c are any types. Similarly, if the type signature of a function contains n types

separated by →, then the nth type is the return type and the rest of n-1 types are the

input data types.

1If you are familiar with rule based languages like Prolog, then it is easy to see that Haskell’s notation
resembles them.
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3.3 Why Haskell?

The reasons for choosing Haskell to implement the language for financial contracts are

the following:

1. Haskell is a declarative language, in which we specify rules, like I did for the

function fibonacci. The contract language also specifies rules or declarations to

construct data of type Contract and Observable. These rules are collectively called

combinator library. I illustrate it in next chapter 4. So, since both the languages

are declarative in nature, it is much easier to implement the latter language in

Haskell than the OO languages like C++ and Java. In chapter 7, I elaborate on

how to implement the contract language in Java and then compare the ease of

implementation in both cases.

2. Since Haskell has non-strict semantics, it supports lazy evaluation, which is very

helpful in evaluating data structures used to implement the contract language.

To illustrate lazy evaluation, I introduce two built in Haskell functions and then

combine them. First function is take:

take :: Int → [a] → [a]

This type signature means that it takes two arguments, an integer, say n, and a

list. It returns a list of the same type as the one in argument. The purpose of

the function is to trim the argument list to its first n elements. Second function

is [1..], it returns a list containing all natural numbers. Since the length of this

list is infinite, it takes forever (infinite time) to compute this list. However, when

I combine the above two functions like this:

take 3 [1..],

it returns [1,2,3] at the next instant. The reason for this is, because I am asking

for only first three elements, Haskell does not compute the whole list, rather only

the first three elements. The moral is that lazy evaluation means that only the



10

needed amount of computation is done. I will demonstrate in chapter 6 how useful

it is in calculating the value of a contract.

3. Built-in Characteristics: Haskell has built-in data structures like lists, functions

over lists and other mathematical functions. For instance, take (to trim a list),

++ (to append two lists), zipWith (to combine the corresponding elements of

two lists using a mathematical operator), so on and so forth. They come in very

handy in implementing the valuation of contracts (Please see Implementation in

Appendix C to know how frequently they are used).
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Chapter 4

Prior Work

In this chapter I will summarize the language proposed by Peyton Jones et al. [4]. This

information will serve two purposes: first, it will provide the necessary background

knowledge for what I say in next chapters; second, it will distinguish the prior work

from my work.

Peyton Jones et al. have proposed a language which consists of combinator libraries

for observables and contracts. The purpose of these libraries is to represent financial

contracts by representing their cash flows and maturity. The amount of a cash flow in

a contract usually depends on time varying quantities, which are called observables in

the contract language.

Definition 4.1 An observable is a time-varying quantity like an interest rate, exchange

rate or today’s date.

In the contract language, the observables are defined as data whose type is Obs a,

where a can be any type. For instance, the observable for interest rate has the type Obs

Double because interest rate can take value of type Double. To construct observables

Peyton Jones et al. define a combinator library for observables. This library is a set of

combinators for observables.

Definition 4.2 A combinator for observables is a construct or a function whose return

type is always Obs a, where a can be any type.

I present the combinators proposed by Peyton Jones et al. in table 4.1. In the table,

the combinator time returns a data of type Obs days, where type of days is Int. The

reader can confirm that all combinators have return type of Obs a, where a is any type.

The description in this table has been taken as it is from Peyton Jones et al.[4].



12

konst :: a → Obs a
(konst x) is an observable that has value x at any time.

time :: Date → Obs days
The value of observable (time t) at time s is the number of days
between s and t, positive if s is later than t.

lift :: Obs(a → b) → Obs a → Obs b
(lift f o) is the observable whose value is the result of applying f to
the value of the observable o

lift2 :: Obs (a → b → c) → Obs a → Obs b → Obs c
(lift2 f o1 o2) is the observable whose value is the result of applying f
to the values of the observables o1 and o2.

Table 4.1: Combinators for Observables

To construct a financial contract, Peyton Jones et al. introduce another data whose

type is Contract. This effectively means that in the contract language a financial

contract is represented as a data of type Contract. Like observables, Contract also

has a corresponding combinator library which is a set of combinators for Contract.

Definition 4.3 A combinator for Contract is a construct or a function whose return

type is always Contract.

Table 4.2 shows the description of a subset of the combinators for contracts. We

can see that all the combinators are functions except one because it doesn’t take any

argument. One is in fact a special function which acts as a seed to construct other

contracts. This description, like that for the observables, is also taken as it is from the

Peyton Jones et al.’s paper.

In the next chapter I present simple examples which use these combinators. Using

these examples, I construct a CDS contract.
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one :: Contract
one is a contract that immediately pays the buyer $1. The contract has
infinite maturity i.e. it never matures.

scale :: Obs Double → Contract → Contract
If you buy (scale o c), then you buy c at the same moment, except that all
the rights and obligations of c are multiplied by the value of the
observable o at the moment of acquisition.

truncate :: Date → Contract → Contract
(truncate t c) is exactly like c except that it expires at the earlier of t
and the maturity of c.

and :: Contract → Contract → Contract
If you acquire (’and’ c1 c2) then you immediately acquire both c1 (unless it
has matured) and c2 (unless it has matured). The composite contract matures
when both c1 and c2 mature.

get :: Contract → Contract
If you acquire (get c) then you must acquire c at c’s maturity. The composite
contract matures at the same moment that c matures.

give :: Contract → Contract
To buy (give c) means to sell c. The buyer’s rights are c’s obligations and her
obligations are c’s rights.

Table 4.2: Combinators for Contracts
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Chapter 5

Representation of Contracts

In this chapter I represent CDS and PRDC in the contract language. In this process, I

detail the combinators in table 4.1 and 4.2. I also describe the combinators I introduced

to be able to represent the above contracts. I choose CDS because it is not mentioned

by Peyton Jones et al. and has a huge market.1 I choose PRDC because it is completely

different from CDS and a relatively new contract.2 By representing these contracts I

validate Peyton-Jones et al.’s claims, that the language is generic for both existing and

new contracts.

5.1 CDS

To represent a CDS contract I introduce an observable combinator dflt. Its type is given

by

dflt :: Int → Obs Bool

It takes an Int as an argument which is the unique identifier of a company, and

returns a Bool value. If the returned value is true, then it implies that the corresponding

company has defaulted, otherwise it has not. Let 0 be the identifier for Goldman Sachs

(GS), then dflt 0 is the observable (of type Bool) for defaulting of GS.3

1According to [3]: ”The British Bankers Association (BBA) and the International Swaps and Deriva-
tives Association (ISDA) estimate that the (CDS) market has grown from $180 billion in notional
amount in 1997 to $5 trillion by 2004.”

2According to http://www.risklatte.com/exotics/hotNotes/hotNotes021.php: ”Since early 2004
Power Reverse Dual Currency (PRDC) swaps have become very popular with the Japanese investors,
especially in the Dollar-Yen market.” I am not sure when PRDC was invented but this source tells that
the contract was not very popular before 2004.

3It was suggested by Prof. Alex that an alternative way of implementing dflt is to use the ticker
symbol of a company, which is already unique rather than creating another unique integer identifier
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In a CDS contract, the buyer pays a regular spread (in case of no default) and the

seller pays the nominal value (in case of default). The contract becomes void when the

contract matures or the company defaults, whichever is earlier. The time to maturity

is divided into periods, at the end of each of which, either the buyer pays the spread or

the seller pays the nominal. Of course, if the latter happens then the contract becomes

void. To represent a CDS contract in terms of combinators I break the contract into

elementary contracts, one for each period. I next break each elementary contract into

two further elementary contracts: Receive Nominal, for the receipt of the nominal

value and Pay Spread, for the payment of spread.

Receive Nominal: I begin by representing the contract for the receipt of the

nominal value. To do this, let us define a made–up contract, which says that if GS

defaults, then the buyer of this contract gets $1 right away, otherwise nothing happens.

This contract has infinite maturity. I define a function called receive nominal which

takes maturity as an argument and returns this made-up contract with this maturity.

The purpose of defining such a function is, I can use this contract in constructing

more complicated contracts by calling this function. Similarly, for each contract I will

construct, I will define the corresponding function along with its arguments. One of

the rules of the function receive nominal which constructs the above contract is defined

below. In this rule, I use a variable called inf whose value is a very large number

signifying infinity.

inf = 123456789

boolToDouble b1 = if(b1 == True)

then 1

else 0

receive nominal inf = scale (lift boolToDouble (dflt 0)) one

In the body of the rule for receive nominal, I have used few combinators. The

combinator one takes no argument and returns a contract, which can be exchanged

(as I am doing). Since it involves significant changes in the current code, I have kept it as a future
improvement.
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for $1 any time (which means infinite maturity). The combinator dflt 0 returns an

observable, whose value is True (if Goldman has defaulted) or False (otherwise). The

combinator lift lifts an operator over observables, in this case it applies the operator

boolToDouble to dflt 0. By doing this, it converts an observable of type Obs Bool to

another observable of type Obs Double. The combinator scale takes two arguments:

an observable and a contract, which in this case are lift boolToDouble (dflt 0) and one

respectively. It then multiplies the cash flows of the contract with the value of the

observable. The maturity of the resulting contract is same as that of the contract in

the argument (which in this case is one). Since there is no combinator preceding scale,

receive nominal inf returns the contract returned by scale. The value of this contract

is $1 in case of default and 0 otherwise; its maturity is equal to infinity.

The type definitions of above methods are

boolToDouble :: Bool → Double

receive nominal :: Int → Contract

Like this, all functions I define in this section have the same type as that of

receive nominal unless otherwise specified.

Now, I extend the above definition to the contract whose maturity is equal to one

period. Before this, let us assume the variable currentDate’s value is today’s date and

period length is the length of the period in days. I define another function addDate,

which adds given number of days to a given date, and returns the resulting date ac-

cording to some calendar.

addDate :: Date → days → Date

nextDate :: Int → Date

nextDate 1 = addDate currentDate (1*period length)

receive nominal 1 = truncate (nextDate 1) (receive nominal inf)

In the body of receive nominal 1, I use the contract combinator truncate. It takes

two arguments: a date which in this case is nextDate 1 and a contract which in this case

is receive nominal inf. The combinator trims the maturity of the argument contract to
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the argument date. Next, I similarly define receive nominal n which returns a similar

contract to the above contract, but it matures after n periods from today.

nextDate n = addDate currentDate (n*period length)

receive nominal n = truncate (nextDate n) (receive nominal inf)

The buyer of receive nominal n gets the nominal as soon as GS defaults. Whereas,

in CDS contract, the buyer will get the money only at the end of the period in which

default occurs, not anytime before. To remove this difference we use the contract

combinator get. The purpose of get is to fix the time of a cash flow, like in this case

I want the cash flow to occur only at the end of the period. This combinator works

as follows, to acquire get c means to acquire c at its maturity. Similarly, to acquire

get (receive nominal n) means to acquire receive nominal n at its maturity, which is at

the end of nth period. Therefore now if there is a default before the end of nth period,

the buyer of get (receive nominal n) receives the nominal value only at the end of nth

period because receive nominal n is not acquired earlier.

get receive nominal n = get (receive nominal n)

So, the contract returned by the above function is corresponding to the receipt of

nominal at the end of nth period. Now I move on to represent the contract corresponding

to the payment of spread.

Pay Spread: The contract corresponding to paying spread differs from receiving

nominal in three ways: First, the condition of payment is that the company has not

defaulted. Second, the value of payment is equal to spread and not nominal. Third,

the buyer of the CDS pays the spread rather than receiving it.

I now explain how to address these differences. To take care of the first difference,

I define not receive nominal inf which is similar to receive nominal inf. In the body, I

use the observable combinator lift2. It lifts a binary operator like subtraction (-) over

observables. .

not receive nominal inf = scale (lift2 (-) (konst 1) (lift boolToDouble (dflt 0) ) ) one
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From what we know till now, I can say that the value of konst 1 is 1 all the time

and the value of lift boolToDouble (dflt 0) is either 1 or 0. The result of the observable

given by (lift2 (-) (konst 1) (lift boolToDouble (dflt 0) )) is the difference of 1 and (lift

boolToDouble (dflt 0)). It is easy to see that this difference is 1 when there is no default

and 0 otherwise.

The steps to construct get not receive nominal n from not receive nominal inf are

same as those of constructing get receive nominal n from receive nominal inf, so I men-

tion these steps without any explanation:

not receive nominal n = truncate (nextDate n) (not receive nominal inf)

get not receive nominal n = get (not receive nominal n)

To overcome the second difference, I scale the contract returned by

get not receive nominal 1 by an observable, which takes constant value equal to spread.

To address the third difference, I use another contract combinator called give; it takes

a contract as an argument and interchanges the rights and obligations for the buyer

(hence for the seller also). This essentially means that the buyer of give c sells c. I

define the payment of spread for one period as

pay spread 1 = give (scale (konst spread) (get not receive nominal 1))

The buyer of the contract returned by pay spread 1 pays the spread at the end of

1st period, if GS does not default. Similarly, for the payment of spread at the end of

nth period,

pay spread n = give (scale (konst spread) (get not receive nominal n)).

1 Period CDS: I combine the two kinds of contracts defined above to write a one

period CDS.

cds 1 = and (get receive nominal 1) (pay spread 1)

In the body of cds 1, I use the contract combinator called and. It takes two contracts

as arguments and returns a contract which combines the rights and obligations of both
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the contracts respectively. Hence, the contract returned by cds 1 means at the end of

the period, its buyer receives the nominal ($1) if the default has occurred, otherwise she

pays the spread, which is what a 1 period CDS contract specifies. The maturity (mat)

of the contract returned by and c1 c2 is max (mat(c1), mat(c2)), so the maturity of

cds 1 is 1 period.4

2 Period CDS: I extend the definition of one period CDS to two period CDS as:

cds 2 = and (cds 1) (and (get receive nominal 2) (pay spread 2))

The two period CDS contract is an and of two contracts: one period CDS and (and

(get receive nominal 2) (pay-spread 2)). Hence, cds 2 implies that at the end of each

period: 1 and 2, the buyer pays the spread in case default has not occurred and gets

the nominal otherwise. This definition does not take care of the fact that the contract

becomes void at default. So, the buyer of cds 2 will receive nominal twice if there is a

default during the first period.5 Since this representation is not exactly what I want, I

define another contract which nullifies the excess money the buyer of cds 2 is getting.

This contract is called excess 2. It will correspond to the situation of default in first

period and payment of nominal at the end of the second period. I negate the value of

this contract by using the combinator give and then add excess 2 to cds 2.

excess 2 = give (get (truncate (nextDate 1) (scale (lift boolToDouble (dflt 0))

(get (truncate (nextDate 2) one)) )))

Since I have not introduced any new combinator in this definition, I leave its rea-

soning up to the reader as a fun exercise. But this exercise requires the knowledge of

valuation of combinators, which I cover in the next chapter. I redefine cds 2 as:

cds 2 = and (and (cds 1) (and (get receive nominal 2) (pay spread 2))) (excess 2)

N Period CDS: Now by generalizing over above definitions, I can represent cds n.

Before that I define excess n as:

4The function max is an built in function in Haskell which returns the greater of the two arguments.

5The underlying assumption in this statement is that the company which defaults remains defaulted
in future.
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excess n = give (get (truncate (nextDate (n-1)) (scale (lift boolToDouble(dflt 0))

(get (truncate (nextDate n) one)) )))

The contract excess n is a generalized form of excess 2. It means payment of nominal

at the end of nth period, when default occurs by the end of n−1th period. I can construct

cds n from cds n-1 as:

cds n = and (and (cds (n-1)) (and (get receive nominal n) (pay spread n))) (excess n)

In this way I can iteratively represent cds n, starting from cds 1. Since I am using

the combinator and to combine contracts corresponding to each period, the maturity

of cds n is n years.

5.2 Representation of Power Reverse Dual Currency (PRDC) Swap

In this section I explain what PRDC is and how I can represent it using the combinators.

PRDC is a kind of a bond such that the its buyer receives a fixed amount (like principal)

at the maturity and a coupon amount after every fixed period of time (like interest).

But, the coupon payments of PRDC depend on the current foreign exchange (FX) rate

between two given economies and not rate of interest. Typically a coupon payment

looks like this:

max(current FX rate - Designated FX rate, 0) × A

In this payment, current FX rate (FX) is the foreign exchange rate between two

economies, Designated FX rate (DFX) and A (A) are constant values. To represent

this coupon payment in the contract language, I introduce an observable combinator

which will represent FX.

fx :: Double → Obs Double

The combinator fx takes the current foreign exchange rate, which is a Double quan-

tity and maps it to its values in future. DFX and A are represented as konst dfx and

konst a respectively.



21

To write coupon payment for a period, I use dol–yen as a variable whose value is

equal to the current Dollar to Yen exchange rate. Also, I use a built-in function in

Haskell, max which returns the greater of the two arguments.

prdc coupon 1 = truncate (nextDate 1) (scale (lift2 max (lift2 (-) (fx dol–yen)

(konst dfx)) (konst 0)) (scale (konst a) one))

Similarly, I can define coupon payments for all the periods. Since they are triv-

ial extension of prdc coupon 1, I omit them. After representing this contract, I have

validated Peyton Jones et al.’s claims in another setting.

Conclusion: It might appear that the combinators were designed keeping these

contracts in mind, but this is not the case. The combinator library was proposed by

Peyton-Jones et al. in the year 2000. This paper does not mention CDS contract in any

form and PRDC was not even popular at that time. Hence, I believe choosing these

contracts to test the representative nature of the language makes sense. To model

these contracts the only addition I have done to the language is to add combinators

for observables. This is a very reasonable addition because different contracts depend

on different time varying quantities. Hence, I believe I can represent different kinds of

present and future contracts by reasonable additions to the current set of combinators.
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Chapter 6

Valuation

Once the contracts are represented, the task of processing them becomes simpler than

treating each kind of contract independently. I illustrate this by showing how to value

a contract represented in the language.

To understand Valuation we need to know Value Process, which Peyton Jones et al.

define as

Definition 6.1 A Value Process (VP) is a partial function or procedure which takes

time as an argument and returns a random variable (RV) corresponding to that time.

VP :: time → RV

In implementation, a VP is a data structure which stores the value of contracts and

observables for present and future times. But for future times, these (predicted) values

are random variable and not fixed values. Hence, the return type of a VP is a random

variable. Also, VP is a partial function because the value of a contract is undefined for

times after maturity.

6.1 Value a Contract

In this sub–section, I show how to value a contract represented in the contract language.

In the absence of any language we have to write a separate valuation program for each

kind of contract. The advantage of using the language is that now we need to write

only one program which values any represented contract.

To value the contracts and observables, Peyton Jones et al. define valuation functions

evalC and evalO as:
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evalC :: Model → Contract → VP

evalO :: Model → Obs a → VP

The function evalC (evalO) takes two arguments, a Model and a contract (observ-

able) and returns the VP corresponding to the value of the contract (observable).

Lets digress a little to learn about data of type Model. This data contains informa-

tion of a financial model. This information is about how the value of each observable

will evolve in future. There are several models used in the industry but I have used

only lattice models in my implementation. This does not reflect any restriction on the

usability of the language because the model is external to the language and hence this

approach is not model specific. However, the implementations of evalC and evalO are

model dependent, but I see no problems in writing these methods for other models also.

Figure 6.1: A Default Model Figure 6.2: An Interest Rate Model

Figure 6.1 and 6.2 show the lattice models I have used to model the default status

and the interest rate respectively. The default model means the following: initially the

value of dflt 0 is false, at the end of first period the probability of dflt 0 being True is

p1 and being False is 1-p1. Once its value is True, it will remain True with certainty

otherwise it will again transition to True with p2 and False with 1-p2. Similarly, the
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model can be extended to more than 2 periods. I believe this explanation is sufficient

to understand the interest rate model also. A more elaborate explanation of the lattice

models and how do we value a contract using them is in the appendix A. The interest

rate lattice model is very common in finance and is mentioned in Peyton Jones et

al.[4], whereas I have designed the default model. In order to represent the combined

information, I multiply these models. The multiplication is accomplished by taking

cartesian product of the snapshots of two models at the end of each period. For instance,

at the end of first period dflt 0 can take any of the values in this set: {True, False}

and similarly interest rate can take values from {6%, 4%} , their cartesian product is:

{(6%, True), (6%, False), (4%, True), (4%, False)}.

The digression is over and now we return to our original goal of writing one program

to value any contract. The trick is to implement the instances of evalC and evalO for

all the combinators for Contract and Obs a respectively. The implementation depends

on what data structure you choose to represent VP and Model. You can see appendix

C to see one instance of implementation for our choice of data structures. We list here

(figure 6.3) all the semantics for applying evalC and evalO on combinators. They can

be appropriately implemented depending on the data structures you choose.

evalO m (Lift2 op o1 o2) = (evalO m o1) op (evalO m o2)
evalO m (Lift op o1) = op (evalO m o1)
evalC m (And c1 c2) = (evalC m c1) + (evalC m c2)
evalC m (Or c1 c2) = max (evalC m c1) (evalC m c2)
evalC m (Scale o c) = (evalO m o) * (evalC m c)
evalC m (Give c) = - (evalC m c)
evalC m (Truncate d c) = trim (evalC m c) d
evalC m (Get c) = disc (evalC m c)
evalC m One = valueprocess 1
evalO m (Konst d) = valueprocess d
evalO m (Default i) = returnVP m i
evalO m (Time d) = returnTimeDiff m d

Figure 6.3: Semantics for the implementation of evalC and evalO

The semantics for the combinators proposed by Peyton Jones et al. are taken from

their paper. I will elaborate on last six semantic rules because the ones before these



25

are fairly easy to understand just by looking at. When we apply evalC to Truncate d

c, we evaluate the contract c and ignore its values after the date d. The function trim

will chop the values which are to be ignored. When evalC is applied to Get c, we need

to evaluate c, find c’s value at maturity and discount this value back to earlier periods

till current time. In the body of the corresponding rule, disc does this job when it

gets VP corresponding to the value of c. Rest of the instances of evalC and evalO are

base cases because they do not in turn call evalC or evalO. When evalC is applied to

One, the return value should be a VP such that this VP maps each time point to a

RV, which takes value 1 with certainty. Similarly, when evalO is applied to (Konst d),

result should be same as evalC m One except that now the RV should take value d.

When evalO is applied to Default i it should return a VP which maps each time point

to a RV, whose probability distribution should be same as that of the default till that

time point. The application of evalO to time d returns a VP such that each time is

mapped to a difference between that time and the date d.

This is the point where I show the real advantage of the contract language. To value

any data of type Contract, we apply the method evalC to it, the method percolates

down to the Contract’s constituent combinators. I now show this next for the Contract

cds 1. Since we have already written evalC and evalO for all the combinators, a call to

any of them will return a VP which will be appropriately combined with other VPs.

evalC m (cds 1) = (evalC m (get receive nominal 1)) + (evalC m (pay spread 1))

evalC m (get receive nominal 1) = disc (evalC m receive nominal 1)

evalC m (receive nominal 1) =trim (evalC m (receive nominal inf)) (nextDate 1)

evalC m (receive nominal inf) = (bool2Double (evalO m (dflt 0))) * (evalC m one)

evalC m (pay spread 1) = -(evalO m (konst spread)) *

(evalC m (get not receive nominal 1))

evalC m (get not receive nominal 1) = disc (evalC m (not receive nominal 1))

evalC m (not receive nominal 1) = trim (evalC m (not receive nominal inf))

(nextDate 1)
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evalC m (not receive nominal inf) = ((evalO m (konst 1)) -

(bool2Double (evalO m (dflt 0)))) *

(evalC m one)

Among these instances of applications of evalC and evalO, the fourth and the last

instances from the top are evaluated first because their rhs consists of evaluation of

combinators only. The resultant values percolate up and are used to evaluate the rest

of the instances. This is how cds 1 gets evaluated; similarly, cds n, PRDC or any other

contract will also get evaluated.

Next I present a discussion on some of the issues regarding the choice of combinators

and the implementation language.
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Chapter 7

Discussion

In this section I will discuss some of the issues regarding the choices I made to implement

this work.

First issue is the way in which the combinator dflt is used in constructing the CDS

contract. While constructing cds 1, what we wanted was to be able to pick one contract

from two contracts: receive nominal 1 and pay spread 1 depending on the value of dflt

0. To accomplish this, we apply different operations on this observable and then scale

these two contracts with the modified obersvable values to get the desired contract. A

cleaner way would be using a combinator which is of the form if–then–else. It checks

the value an observable of type Bool and accordingly returns one of the two contracts.

Peyton Jones et al. must have realized this need, that is why in their later work have

added a combinator which exactly does what I just wrote.1. The combinator is called

cond and is defined below.

cond :: Obs Bool → Contract → Contract → Contract

This combinator values a boolean observable say dflt 0 and if it is true, returns the

first contract, else the second. We can use this to write cds 1 as:

cds 1 = cond (dflt 0)(get (truncate (nextDate 1) one))

(give (scale spread (get (truncate (nextDate 1) one))))

This is clearly a cleaner representation of cds 1 than the one given in chapter 5.

Second is more of a philosophical issue that, why do these combinators work and

are there some better alternative combinators. As a matter of fact, Peyton Jones et al.

1This work is available as a chapter called How to write a financial contract in the book ”The Fun
of Programming”.
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have suggested the future work as expanding the set of their combinators so that we can

represent wider set of contracts. They (and also I) have shown that these combinators

can already represent different kind of contracts. But, there is a possibility that there

are alternative combinators, which are as (or more) primitive as (than) these and can

represent even wider variety of contracts. But, such an alternative does not exists to

our knowledge, so I find it hard to debate. Hence, I see these combinators as a good

starting point to build a combinator library which can represent all the contracts.

Third issue is about the choice of language to implement the contract language.

Peyton Jones et al. choose Haskell, but it can be done in any OO language like Java or

C++. I explain one possible class design for this application in figure 7.1.

Figure 7.1: UML Class Diagram for the Contract Language

As shown in the UML class diagram, I model Contract and Obs as abstract classes,

and each of their combinator extends their corresponding abstract class. The abstract

classes have evalC and evalO respectively as abstract methods, which each combinator

has to implement. These abstract methods return VP as the value of the combinator.

In this scenario, I have to make new class for each combinator, whereas in Haskell,

I just had to add one line in the definition of the data types Contract or Obs. Haskell
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being declarative provides this advantage in implementation.

Next I present the related work to the field of domain specific languages applied to

finance.
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Chapter 8

Related Work

The idea of building a domain specific language (DSL) is a well researched area. The

paper by Deursen et al. ([7]) surveys the relevant literature and presents example DSLs.

It also presents the risks and benefits that come with building a DSL. We see this work

as a good starting point for someone who intends to acquire introductory and broad

knowledge about the topic of DSL.

The paper by Deursen and Klint [6] is more focused and discusses in detail the

issues involved with building a DSL. It takes the case of RISLA, a DSL which was built

by a Dutch bank called Mees Pierson to deal with interest rate products. The paper

addresses two challenges: first, describes a meta environment ASF+SDF (Algebraic

Specification Formalism + Syntax Definition Formalism) to support the development

and maintenance of domain specific languages; second, provides a solution to the prob-

lem of how different applications built for different DSLs can talk to each other. As a

solution, they propose a ToolBus architecture which can be used to coordinate different

domain specific languages.

An an alternative approach to building a DSL, which achieves the same goals is

to build an object oriented framework. Unlike the case of RISLA, it does not build

an environment to support the development and maintenance of dsls, rather it uses

the available technologies like modern user interfaces, domain-specific frameworks and

design patterns to build banking applications [5]. An instance of such a framework

is ET++ SwapsManager, which was built to value the swaps at the Union Bank of

Switzerland [1].

Peyton Jones et al.’s approach falls in the category of building a domain specific
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language, even though it is not quite the same as RISLA. Peyton Jones et al.’s combi-

nator library is applicable to a wider variety of financial instruments, whereas RISLA

was built only for interest rate products. I believe the reason for this limitation is that

RISLA has no concept of observables. So, even though the definition of contract is same

for both RISLA and Peyton Jones et al.’s language, RISLA cannot represent contingent

cash flows, which occur in contracts like a CDS. Another difference is that the RISLA

system is heterogeneous in the sense it is a meta level language which uses COBOL

libraries underneath. In contrast, the combinator library described in this thesis is a

homogeneous system because both the language and the libraries are written in the

same language (Haskell). Intuitively, I believe that the homogeneous design is easier to

maintain and extend. On the other hand, both RISLA and the combinator library are

modular in nature. Both of them define primitive contracts which can be combined to

create complex contracts.
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Chapter 9

Conclusion and Future Work

In this thesis we have tried to educate the reader that Peyton Jones et al.’s approach to

build a domain specific language to represent financial contracts, is indeed an effective

approach. This is because the language is very generic in nature and hence can represent

existing and evolving contracts. We showed this by representing CDS and PRDC. The

most significant advantage of building such a language is that now the number of

computer programs required to process different contracts is much less (m + n) than

otherwise(mn).

There have been a few attempts in this direction and there is a lot to be done so that

this technology can actually be used. We see the following things as a good starting

point for this:

1. Extending the system built by us (my adviser and I) so that it can represent and

value all the traded contracts in any one domain say credit risk domain. For this

we will need to enumerate all the observables, which can appear in the definition

of contracts of this domain. Any mathematical combination of these observables

will be automatically taken care of because we have mathematical operators as

combinators. Now optimistically, we should be able to represent all the existing

and yet to come contracts from credit risk domain. Like this, we can extend it to

other domains like interest rate derivatives and forex derivatives.

2. Educating the user about how to use this system is a concern. He has to be well

versed with the combinators to use them correctly and efficiently. To alleviate

this problem, we see one possible solution as building a UI which can guide the

user in coming up with the correct definition of the contract. Hence, we see this
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as a useful feature because it will ease the job of the user and make the tool easily

usable.
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Appendix A

Finance 102

In this part we illustrate how we use a financial model, specifically a lattice model to

value a financial contract, specifically a CDS. A typical one period CDS corresponding

to Goldman Sachs (GS) from the buyer’s perspective looks like:

CDS1: Both of:

C1: On December 31,2008, if GS has defaulted, Receive $1.

C2: On December 31,2008, if GS has not defaulted, Pay $0.1.

The (present) value of a CDS (or any other contract) is the sum of the expected value

of each cash flow when discounted back to present time1. The expected value of a

cash flow is product of, value of the cash flow and the probability that it will occur.

The discounted value of a cash flow is the equivalent present value assuming risk–free

interest rate as the rate of return. For instance, consider a hypothetical contract in

which the buyer receives $1 after one year with probability 0.3. Assuming the rate of

interest to be 5%, the present value of the contract will be:

value1 = (0.3×$1)
1+0.05

value2 = exp(-0.05)×0.3×$1

If we assume discrete compounding, value1 is the present value and if we have

continuous compounding, value2 is the present value.

To calculate the value of any contract we need to predict its future cash flows

which in turn depend on how the value of observables will evolve in future. In the

1To learn more about financial instruments and their valuation techniques the reader should refer
to ”Options, Futures and Other Derivatives” by John C. HULL[2]
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case of CDS the observables are default status of the company and the interest rate.

Financial models are used to predict these values. We have used lattice model in our

implementation and we now explain this model in more detail.

Figures 6.1 and 6.2 show the lattice models for the prediction of default and

interest rate respectively. The starting point for each model is the left most circle

which contains the present value of the observable. The arrows emanating from this

point are corresponding to possible transitions to values, which the observable might

take by the end of the period. The value labeling each arrow is the probability of that

transition. For instance, Fig 6.1 represents the default model in which the initial value

of the observable Default 0 is False. There are two arrows emanating from this value,

one goes to the value True and the other to False. The probability of first transition

is p1 and that of second is 1-p1. This implies that the probability of default during

the first period is p1. From the value True, the only possible transition is to the same

value. This is because once the company has defaulted it remains so with probability

equal to 1. From the value False, there are similar transitions as there were from the

initial value False. That is how the model is constructed.

If we apply the same reasoning to the interest rate model in Fig 6.2, we can deduce

that the initial interest rate is 5% and in all periods it increases by 1% with probability

p1 and decreases by the same amount with probability 1− p1.

This information allows us to value CDS1:

eVal = (p1*1.00 - (1-p1)*0.1)

dVal = exp(-0.05)×eVal

In these equations eVal is the expected value of the cash flows and dVal is the price

of CDS1 assuming continuous compounding.

We can extend this procedure to value any other CDS contract or any other contract

for that matter.
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Appendix B

Code: Language

{-# OPTIONS -fglasgow-exts #-}

module Language2 where

import GHC.Num

import GHC.Real

import GHC.Base

import List

type TimeI = Int

type Time = Double

-- Contract Definition

data Contract a =

Zero

| One

| Give Contract

| And Contract Contract

| Or Contract Contract

| Truncate TimeI Contract

| Scale (Obs Double a) Contract

| Get Contract

deriving (Show)

-- interface functions

zero = Zero

one = One

give = Give

and = And

or = Or

truncate = Truncate

scale = Scale

get = Get

anytime = Anytime

data Obs a where

Konst :: a -> Obs a

Apply :: Obs (b -> a) -> Obs b -> Obs a

DiffTime :: Double -> Obs Double

IR :: Double -> Obs Double

Default :: Int -> Obs Bool

instance Show (Obs a)

-- interface functions

konst = Konst

apply = Apply
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diffTime = DiffTime

dflt = Default

-- lift functions

lift f o1 = Apply (Konst f) o1

lift2 f o1 o2 = Apply (Apply (Konst f) o1) o2
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Appendix C

Code: Implementation of Evaluation

module Implementation4 where

import Language2

import Data.Array.IArray

-- date types, constants

type Probability = Double

type IR = Double

type Val = Double

type Spread = Double

type Default = Double

type TProb = (Double, Int)

type State = (Double, [Bool])

type Dist = Array Int (State, [TProb])

type Model = [Dist]

--length’ :: Array i e -> Int

length’ arr1 = let bds = bounds arr1

in (snd bds) - (fst bds) + 1

ir :: IR

ir = 0.05

dir :: IR

dir = 0.01

threshold :: Double

threshold = 0.00001

thisyear :: Time

thisyear = 2006

thisyearI :: TimeI

thisyearI = 2006

prob :: Probability

prob = 0.5

getIR :: State -> Double

getIR (x,_) = x

getDef :: State -> [Bool]

getDef (_,x) = x

getP :: TProb -> Double

getP (x,_) = x
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getSt :: TProb -> Int

getSt (_,x) = x

tmpIRState :: State

tmpIRState = (ir, [])

tmpIRM :: Dist

tmpIRM = array (1,1) [(1,(tmpIRState, []))]

tmpDState :: State

tmpDState = (0, [False])

tmpDM :: Dist

tmpDM = listArray (1,1) [(tmpDState, [])]

-- build Interest Rate Model

buildInterestRateModel :: Probability -> IR -> Model

buildInterestRateModel p1 dir1 = let tp = [(p1, 1), (1-p1, 0)]

in let lt = tmpIRM ! 1

in let st = fst lt

in let arr1 = (array (1,1) [(1,(st, tp))])

in arr1 : (buildInterestRateModel’ arr1 p1 dir1)

buildInterestRateModel’ :: Dist -> Probability -> IR -> Model

buildInterestRateModel’ dist1 p1 dir1 = let lt = elems dist1

in let lt1 = reverse (take (length lt) [0..] )

in let newLt = shrink (concat (zipWith (\x y -> [((getIR (fst x) - dir1, get!

!Def (fst x) ), [(p1, y+1), (1-p1, y)] ), ((getIR (fst x) + dir1, getDef (fst x) ), [(p1, y+2), (1-p1, y+1)] )] ) lt lt1 !

!) )

in let len = length newLt

in let newArr = listArray (1, len) newLt

in newArr : (buildInterestRateModel’ newArr p1 dir1)

azipWith :: Ix i => (a -> b -> c) -> Array i a -> Array i b -> Array i c

azipWith f a b | bounds a == bounds b

= listArray (bounds a) (zipWith f (elems a) (elems b))

buildDefaultModel :: [Probability] -> Model

buildDefaultModel [] = []

buildDefaultModel pl = (getInitModel pl) : buildDefaultModel’ pl

buildDefaultModel’ :: [Probability] -> Model

buildDefaultModel’ pl = getDModel pl 0 : buildDefaultModel’ pl

getInitModel :: [Probability] -> Dist

getInitModel pl = let st = (0, take (length pl) (repeat False))

in let tp = getTProbs 0 pl (2^(length pl) - 1)

in array (1,1) [(1, (st,tp))]

getTProbs :: Int -> [Probability] -> Int -> [TProb]

getTProbs sr pl dt = if (dt < 0)

then []

else if (not (validTransition sr dt pl))
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then (0,dt): getTProbs sr pl (dt-1)

else let pl’ = zipWith (\x y -> if x == True

then 1

else y) (getBoolean sr (length pl)) pl

in ((foldl1 (*) (zipWith (\x y -> if (y == True)

then x

else 1-x) pl’ (getBoolean dt (length pl)) ) ), d!

!t) : getTProbs sr pl (dt-1)

validTransition :: Int -> Int -> [Probability] -> Bool

validTransition sr dt pl = let p = zipWith (\x y -> if (x == True && y == False)

then False

else True) (getBoolean sr (length pl)) (getBoolean dt (length pl!

!))

in (not (elem False p) )

getBoolean :: Int -> Int -> [Bool]

getBoolean l1 ln = let l2 = getBoolean’ l1

in (take (ln - (length l2)) (repeat False) ) ++ l2

getBoolean’ :: Int -> [Bool]

getBoolean’ l1 = if (l1 == 0)

then [False]

else reverse (getBoolean’’ l1)

getBoolean’’ :: Int -> [Bool]

getBoolean’’ l1 = if (l1 == 0)

then []

else if (mod l1 2 == 1 )

then True : getBoolean’’ (quot l1 2)

else False : getBoolean’’ (quot l1 2)

getDModel :: [Probability] -> Int -> Dist

getDModel pl l1 = let dst = getDModel’ pl l1

in let len = length dst

in listArray (1, len) dst

getDModel’ :: [Probability] -> Int -> [(State, [TProb])]

getDModel’ pl l1 = if (l1 > (2^(length pl) - 1))

then []

else let st = (0, getBoolean l1 (length pl))

in let tp = getTProbs l1 pl (2^(length pl) - 1)

in (st,tp) : getDModel’ pl (l1+1)

-- shrink for building interest rate model

shrink :: [(State, [TProb])] -> [(State, [TProb])]

shrink (l1:l2:lt) = let l1t = getIR (fst l1)

l2t = getIR (fst l2)

in if ((abs (l1t - l2t)) < threshold)

then shrink (l1: lt)

else l1:(shrink (l2:lt))

shrink (l1:[]) = [l1]

multiplyIntDefModels :: Model -> Model -> Model

multiplyIntDefModels [] md2 = md2

multiplyIntDefModels md1 [] = md1
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multiplyIntDefModels md1 md2 = zipWith (\x y -> let lx = elems x

ly = elems y

in let newlt = concat (map (\z -> let sz = getIR (fst z)

tz = snd z

in map (\p -> let sp = getDef (fst p)

tp = snd p

in let newtp = mulTransi!

!tionProbs tz tp

newst = (sz,sp)

in (newst,newtp) ) ly!

!) lx )

in let len = length newlt

in (listArray (1, len) newlt) ) md1 md2

mulTransitionProbs :: [TProb] -> [TProb] -> [TProb]

mulTransitionProbs [] tp2 = tp2

mulTransitionProbs tp1 [] = tp1

mulTransitionProbs tp1 tp2 = concat (map (\x -> let p1 = getP x

st1 = map (\x -> if (x == True)

then 1

else 0) (getBoolean’ (getSt x))

in map (\y -> let p2 = getP y

st2 = map (\x -> if (x == True)

then 1

else 0) (getBoolean’ (getSt y))

in let newP = p1*p2

tmpst = st1 ++ st2

in let newSt = foldl1 (+) (zipWith (*) (reverse tmpst) !

!(scanl1 (*) (1:(repeat 2))) )

in (newP, newSt) ) tp2) tp1)

-- helper method to build the final Model

buildModel :: Probability -> IR -> [Probability] -> Model

buildModel p1 ir2 pl = multiplyIntDefModels (buildInterestRateModel p1 ir2) (buildDefaultModel pl)

-- shrink for building interest rate model

{-shrink :: [(State, [TProb])] -> [(State, [TProb])]

shrink (l1:l2:lt) = let l1t = getIR (fst l1)

l2t = getIR (fst l2)

in if ((l1t - l2t) < threshold)

then shrink (l1) : lt

else l1:(shrink (l2:lt))

shrink (l1:[]) = [l1]

-}

-- Value Process is now the distribution and not expected value

type ValueProcess a = [RandomV a]

type RandomV a = [a]

-- finds the expected Value for each time point.

findExpValueProcess :: Model -> ValueProcess Double -> [Double]

findExpValueProcess md vp = let pr = getReachableProb md

in zipWith (\x y -> foldr1 (+) (zipWith (\p q -> p* (lookup’ q x) ) y [0..] ) ) pr vp

getReachableProb :: Model -> [[(Int, Probability)]]

getReachableProb (m1:md) = take (length’ m1) (repeat (0,1)) : getReachableProb’ (m1:md) (repeat (0,1))

getReachableProb’ (m1:md) lt = let newLt = sumLists (zipWith (\x z -> let y = lookup’ z lt



42

in map (\p -> let tmpP = y*(getP p)

tmpS = getSt p

in (tmpS, tmpP) ) (snd x) ) (elems m!

!1) [0..])

in newLt : getReachableProb’ md newLt

sumLists :: [[(Int, Double)]] -> [(Int, Double)]

sumLists (l1:[]) = l1

sumLists (l1:l2:lt) = sumLists ((concat (zipWith’ l1 l1 l2 l2) ):lt)

{-sumLists (l1:l2:lt) = sumLists ((concat (zipWith’ (\x y -> let tmpX = (lookup’ (fst x) l2)

tmpY = (lookup’ (fst y) l1)

in if (not (tmpX == -1))

then if (not (tmpY == -1) )

then [(fst x, (snd x + tmpX))]

else ([(fst x, (snd x + tmpX)), y])

else if (not (tmpY == -1))

then [x]

else ([x,y])) l1 l2) ):lt)

-}

--zipWith’ :: (a -> a -> [a]) -> a -> a -> [a]

zipWith’ [] _ [] _ = []

zipWith’ [] l1 (y:lt2) l2 = let tmpY = (lookup’ (fst y) l1)

in if (tmpY == -1)

then [y] : (zipWith’ [] l1 lt2 l2)

else zipWith’ [] l1 lt2 l2

zipWith’ (x:lt1) l1 [] l2 = let tmpX = (lookup’ (fst x) l2)

in if (not (tmpX == -1))

then [(fst x, (snd x + tmpX))] : (zipWith’ lt1 l1 [] l2)

else [x] : (zipWith’ lt1 l1 [] l2)

zipWith’ (x:lt1) l1 (y:lt2) l2 = let tmpX = (lookup’ (fst x) l2)

tmpY = (lookup’ (fst y) l1)

in if (not (tmpX == -1))

then if (not (tmpY == -1) )

then [(fst x, (snd x + tmpX))] : (zipWith’ lt1 l1 lt2 l2)

else [(fst x, (snd x + tmpX)), y] : (zipWith’ lt1 l1 lt2 l2)

else if (not (tmpY == -1))

then [x] : (zipWith’ lt1 l1 lt2 l2)

else [x,y] : (zipWith’ lt1 l1 lt2 l2)

lookup’ :: Int -> [(Int,Double)] -> Double

lookup’ key [] = -1

lookup’ key ((x,y):xys)

| key == x = y

| otherwise = lookup’ key xys

getTValueProcess :: Model -> Double -> ValueProcess Double

getTValueProcess m1 d1 = let t3 = convertDateToTime d1

vp2 = incValueProcess m1 1.0

in map (map (\x -> x - t3)) vp2

incValueProcess :: Model -> Double -> ValueProcess Double

incValueProcess (m1:md) i = [i|x<-[1..(length’ m1)]] : incValueProcess md (i+1)
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andValueProcesses :: ValueProcess Double -> ValueProcess Double -> ValueProcess Double

andValueProcesses [] vp3 = vp3

andValueProcesses vp4 [] = vp4

andValueProcesses (v1:vp1) (v2:vp2) = (zipWith (+) v1 v2) : (andValueProcesses vp1 vp2)

-- evaluate procedures for different contracts

evalC :: Model -> Contract -> ValueProcess Double

evalC m (Zero) = map (\x -> [0.0|y<-[1..(length’ x)]]) m

evalC m (One) = map (\x -> [1.0|y<-[1..(length’ x)]]) m

evalC m (Give c1) = map (map negate) (evalC m c1)

evalC m (And c1 c2) = andValueProcesses (evalC m c1) (evalC m c2)

evalC m (Or c1 c2) = zipWith (zipWith max) (evalC m c1) (evalC m c2)

evalC m (Truncate d0 c1) = let t1 = convertDateToTimeInt d0

vp1 = evalC m c1

in take t1 vp1

evalC m (Then c1 c2) = let vp1 = evalC m c1

vp2 = evalC m c2

in if length vp1 < length vp2

then vp1++drop (length vp1) vp2

else vp1

evalC m (Scale o1 c1) = zipWith (zipWith (*)) (evalC m c1) (evalO m o1)

evalC m (Get c1) = let vp1 = evalC m c1

in let l1 = last vp1

in reverse (discountRandomVar m l1 ((length vp1) - 1))

discountRandomVar :: Model -> RandomV Double -> Int -> ValueProcess Double

discountRandomVar md rv t1 = if (t1 == 0)

then [rv]

else (rv : (discountRandomVar md (discountRV md rv t1) (t1-1)))

discountRV :: Model -> RandomV Double -> Int -> RandomV Double

discountRV md rv1 t1 = let md1 = elems (md !! t1)

md2 = elems (md !! (t1-1))

in map (\y -> let prob = snd y

in foldl1 (+) (map (\z -> let ind = snd z

in ((fst z)*(rv1 !! ind)/(1 + getIR (fst (md1 !! ind)) ))!

!) prob) ) md2

--finds the discount factor

--discountValueProcess :: Model a -> ValueProcess -> Val -> TimeI -> ValueProcess

{- # discountValueProcess m1 vp2 l1 t1 = if t1 < 0

then []

else let l2 = getDiscountedValues m1 l1 vp2 t1

in l2 : discountValueProcess m1 vp2 (foldl1 (+) (zipWith (*) (map (!

!\x -> (getP x) ) (m1 !! t1) ) l2 ) ) (t1-1)

--getDiscountedValues :: Model a -> Val -> ValueProcess -> TimeI -> [Double]

getDiscountedValues m1 v1 vp1 t1 = map ((*) v1) (map ((/) 1.0) ((zipWith (zipWith (+)) vp1 (evalC m1 One)) !! t1))

-}

convertDateToTime :: Time -> Time

convertDateToTime y1 = (y1 - thisyear + 1)
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convertDateToTimeInt :: TimeI -> Int

convertDateToTimeInt y1 = (y1 - thisyearI + 1)

--evaluation of observables

evalO :: Model -> Obs a -> ValueProcess a

evalO m (Konst d) = map (\x -> [d|y<-[1..(length’ x)]]) m

evalO m (DiffTime d) = getTValueProcess m d

evalO m (Default i) = map (\x -> let lt = elems x

in map (\y -> if ( ((getDef (fst y)) !! i) == True )

then True

else False) lt) m

evalO m (IR intr) = map (\x -> let lt = elems x

in map (\y -> getIR (fst y) ) lt) m

evalO m (Apply o1 o2) = zipWith (zipWith (\x y -> x y)) (evalO m o1) (evalO m o2)
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Appendix D

Code: Implementation and Valuation of CDS

module Cds2 where

import Implementation4

import Language2

-- helper function to value a CDS for notional = $1, it is ~ 0 in all cases.

creditDefault’ :: TimeI -> Spread -> ValueProcess Double

creditDefault’ t1 s1 = let p1 = s1/(s1+1)

in let m1 = buildModel prob dir [p1]

in eval m1 (cds t1 s1)

creditDefault :: TimeI -> Spread -> ValueProcess Double

creditDefault t1 s1 = let p1 = s1/(s1+1)

in let m1 = buildModel prob dir [p1]

in eval m1 (returnCDS 1 t1 s1)

-- returnCDS: returns the cds contract in the specified language.

--returnCDS t1 s1 = Get (returnCDS’ 1 t1 s1)

returnCDS :: TimeI -> TimeI -> Spread -> Contract

returnCDS t1 t2 s1 = if t1 > t2

then (Language2.truncate (thisyearI+t2) Zero)

else Language2.and (Language2.and (Language2.and (getCDSGet t1) (getCDSGive t1!

! s1)) (subExcess t1)) (returnCDS (t1+1) t2 s1)

getCDSGet :: TimeI -> Contract

getCDSGet t1 = get (Language2.truncate (thisyearI+t1) (scale (lift boolToDouble (dflt 0)) one))

getCDSGive :: TimeI -> Spread -> Contract

getCDSGive t1 sp = give (scale (Konst sp) (get (Language2.truncate (thisyearI+t1) (scale (lift2 (-) (Konst 1) (lif!

!t boolToDouble (dflt 0))) one))))

subExcess :: TimeI -> Contract

subExcess t1 = give (get (Language2.truncate (thisyearI+t1-1) (scale (lift boolToDouble (dflt 0)) (get (Impleme!

!ntation4.truncate (thisyearI+t1) one)) )))

subExcess’ t1 = give (get (Language2.truncate (thisyearI+t1-1) (get (Language2.truncate (thisyearI+t1) (sca!

!le (lift boolToDouble (dflt 0)) one)) )))

boolToDouble :: Bool -> Double

boolToDouble b1 = if (b1 == True)

then 1

else 0
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